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The recent data flood has required greater 
and greater reliance on computational 
usage in plant biology. This special issue 
will focus on the utility of computational 
approaches across the breadth of modern 
plant biology with particular focus on the 
following areas: 

(i) Comparative genomics- gene family 
size in the green lineage 
(ii) Adaptive evolution - specifics of 
development 
(iii) Adaptive evolution - specifics of 
secondary metabolism 

(iv) Translational biology- co-response analysis from arabidopsis outwards 
(v) Conserved(and differential) transcriptional response to stress 
(vi) Transcriptomics databases 
(vii) Translatomics
(ix) Proteomics- abundance 
(x) Proteomics- location, 
(xi) Proteomics- interactions 
(xii) Proteomics databases 
(xiii) The activome
(xiv) Metabolite-abundance 
(xv) Metabolite- location 
(xvi) Experimental flux calculations, 
(xvii) Advanced metabolomic technologies 
(xviii) Metabolite databases 
(xix) Genome wide metabolic modelling
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application of metabolite profiling protocols, respectively. In the 
article by Ruprecht et al. (2011) the recently described PlaNet plat-
form (Mutwil et al., 2011) was utilized to perform large scale con-
dition-dependent comparisons of primary and secondary cell wall 
related cellulose synthase A co-expression networks. The authors 
used this approach to select genes from gene families that were 
conserved across seven species to correlate with cellulose synthase 
A and analyzed cell wall properties of Arabidopsis mutant lines 
of these gene families. One of these lines was demonstrated to be 
lignin deficient thus demonstrating the utility of this approach 
and suggesting that it will likely be a highly useful strategy for gene 
functional annotation. Also taking a cross-species approach, Tohge 
et al. (2011) analyzed the difficulties of using standard metabo-
lite profiling approaches in cross-species experiments. Presented 
results support arguments for the need for the adoption of closely 
controlled empirical adaptations each time a new species or tissue 
is analyzed (Fernie et  al., 2011). Such experiments are required 
because reliability of protocols for harvesting, handling, and analy-
sis depends on biological features and chemical composition of the 
plant tissue. Tohge et al. (2011) provide cases studies of two dif-
ferent liquid chromatography mass spectrometry (LC–MS) based 
metabolomics platforms and four species in order to illustrate how 
measurement errors can be detected and circumvented.

The article of Voll et al. (2011) investigated the transcriptomic 
and metabolomics response of three diverse pathosystems, the bar-
ley powdery mildew fungus (Blumeria graminis f. sp. hordei), the 
corn smut fungus Ustilago maydis, and the maize anthracnose fun-
gus Colletotrichum graminicola. Intriguingly, analysis of 42 water-
soluble metabolites, allowed the separation of early biotrophic 
from late biotrophic interactions by hierarchical cluster analysis 
and principal component analysis, irrespective of the plant host. 
Both metabolome and transcript data were employed to generate 
models of leaf primary metabolism during early biotrophy for the 
three investigated interactions and these models will likely prove 
highly important for future studies of these pathosystems.

Sticking with metabolomics, Matsuda and co-workers present 
a novel framework for automated elucidation of metabolite struc-
tures in LC–MS and a co-responding metabolite ontology system. 
As a proof of concept the metabolome of 20 Arabidopsis acces-
sions was evaluated and 704 metabolites were analyzed (Matsuda 
et al., 2011). Exact chemical structure determination remains one 
of the grand challenges of metabolomics and this strategy allowed 
structural estimates for an impressive 30% of these signals. In a 
similar vein, the paper of Hummel et al. (2011) describes a novel 
Ultra Performance Liquid Chromatography-based method as an 
alternative to widely used direct infusion based shotgun-lipidomics 
approaches coupled to a database search software which allows both 

The exact impact of computers on any branch of science is impos-
sible to predict, however, as highlighted in a recent article in Science 
the internet has already had a profound effect on the way academics 
use their brains as information retrieval units (Sparrow et al., 2011). 
Whilst Coleridge is often cited as the last man who read (or would 
have been capable of reading) every article in print, the advent 
of the internet dwarfs even the rapid expansion of the printing 
presses. It’s impact on science, though vast, is clearly incalculable. 
From a data, as opposed to a text, perspective computation has 
undoubtedly greatly enabled genomics – a discipline that would 
certainly not exist in its current form without recent advances in 
computational power. For example the recently sequenced potato 
genome (Xu et al., 2011) could easily be stored on a standard laptop 
computer (Usadel, personal communication).

Within this special issue of Frontiers are collected both reviews 
and primary research papers in which computational support 
played a major role. Whilst the call for papers was open to sub-
missions from any plant biological discipline the collected papers 
are focused on next generation RNA sequencing, co-expression 
analysis, protein sub-cellular compartment prediction, sub-cellu-
lar metabolite analyses, the expansion of capacities for metabolite 
profiling, translational metabolomics, and metabolic flux analyses. 
There is thus a clear bias toward studies focused on metabolites, 
however, it is likely that this reflects their relative complexity both 
in terms of chemical structure and difficulty of analyses (Stitt and 
Fernie, 2003; Matsuda and Saito, 2010) as much as the interest in 
these problems from a biological standpoint.

The article by Jimenez-Gomez provides a detailed perspective 
of how computational analysis has begun, and will continue, to 
revolutionize the analysis of continuous phenotypic trait variation. 
It highlights the current state of the art in using next generation 
sequencing methods for the analysis of expression quantitative trait 
loci (eQTL) detailing recent technical, computational, and techni-
cal innovations which have facilitated the detection of molecular 
markers at higher resolution than previously achievable (Jimenez-
Gomez, 2011). In addition to providing examples of how this 
works within the context of species for which a reference genome 
sequence is present Jimenez-Gomez also describes the utility of 
next generation sequencing in cases where it is absent – a technique 
which will prove highly useful in addressing the grand challenge of 
translational biology (Huber, 2011). In addition he describes com-
plexities of next generation sequencing with respect to expression 
profiling and the identification of allele specific expression. Two 
further studies in this collection, those or Ruprecht et al. (2011) and 
Tohge et al. (2011), also address aspects of translational biology by 
means of co-expression analysis of transcript data and by address-
ing experimental and computational caveats of the translational 
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targeted and non-targeted lipidomic and metabolomics analysis of 
all kinds of mass spectral data. Widespread adoption of either the 
Matsuda et al. (2011) or the Hummel et al. (2011), strategy will 
likely greatly enhance knowledge retrieval from data acquired by 
similar methods.

The identification of biomarkers and complex metabolic signa-
tures is receiving increasing attention. One of the first such searches 
defined the metabolite signature associated with high growth rates 
in Arabidopsis (Meyer et al., 2007) whilst recent studies have identi-
fied starch and protein levels to be key integrators of metabolism 
and growth (Sulpice et al., 2009, 2010). In this issue Kusano et al. 
(2011) describe the use of gas chromatography mass spectrometry 
(GC–MS) aligned with multivariate projection methods to define 
a metabolite signature associated with short-day induced growth 
cessation in aspen. In this paper the authors use this casestudy to 
highlight the power of statistical data analyses including principal 
component analysis (PCA) and orthogonal projection to latent 
structures (OPLS) in data interpretation.

One of the greatest challenges we currently face in plant biology 
is that of understanding spatial compartmentation of metabolic 
pathways and indeed of any other biological function. This problem 
is particularly acute in plants due to the myriad of cell types and 
sub-cellular compartments they contain (Fernie, 2007; Lunn, 2007). 
Whilst considerable advances have been made in determining pro-
tein location using a combination of reporter gene constructs, sub-
cellular proteomics, and in silico sequence analysis (see for example 
Millar et  al., 2009), our inventories for protein content remain 
incomplete and in some instances inaccurate. In the paper by 
Ryngajllo et al. (2011), the authors explored whether gene expres-
sion data could be harnessed to enhance bioinformatics location 
prediction performance. In this paper they show that utilizing their 
approach they could greatly enhance plastid localization prediction 
with notable improvements for the mitochondrion, Golgi appara-
tus, and plasma membrane. On the basis of these results they created 
the SLocX sub-cellular location predictor engine that even works in 
cases where only partial gene sequences are available suggesting that 
it may additionally have great utility for non-sequenced or poorly 
annotated genomes. The sub-cellular localization of metabolites 
is additionally currently seeing somewhat of a renaissance. Early 
plant studies were initiated in the 80s (Gerhardt and Heldt, 1984), 
however, these techniques were not commonly adopted prior to 
the advent of metabolomics (Farre et  al., 2001). In their article 

Klie et al. (2011) discusses computational aspects associated with 
the non-aqueous fractionation method. In addition they provide 
a new version of the BestFit command line tool for calculation and 
evaluation of sub-cellular metabolite distributions and also discuss 
caveats and benefits of the approach.

The final two articles of Schwender (2011) and Sweetlove and 
Ratcliffe (2011) describe two different approaches for assessing met-
abolic fluxes. In the first, the 13C-metabolic flux profiling approach 
is reviewed and Schwender describes the principle of the approach 
before outlining how the model boundaries are defined and the 
need for reaction stoichiometries for this approach. He also details 
computational aspects of 13C-metabolic flux profiling as defined 
by the modeling framework of Wiechert et al. (2001), providing 
recent examples of network definition and validation in plants 
before ending with a perspective for future developments of this 
approach. The article of Sweetlove and Ratcliffe (2011) reviews the 
complementary technique of flux balance modeling. They define 
flux balance modeling as a constraints-based approach in which 
steady-state fluxes are predicted using optimization algorithms 
within an experimentally bounded solution space. Sweetlove and 
Ratcliffe argue that despite the undoubted power of the approach 
described by Schwender it has several limitations and postulate 
that these have driven to the adoption of alternate flux balance 
based approaches. They provide a comprehensive review of the 
field from its early beginnings in microbial systems to the several 
plant models which have been published in the last 2 years, cover-
ing modeling of specific cell types, accounting for cell maintenance 
energy costs, and the evaluation of metabolic efficiency via this 
approach. In concluding their article Sweetlove and Ratcliffe make 
convincing arguments for the adoption of flux balance modeling 
as an important complement to 13C-metabolic flux profiling both 
for understanding metabolic regulation and ultimately as a means 
to determine targets for rational crop improvement.

When taken as a whole these articles cover many, although by 
no means all, of the ways in which computational approaches are 
rapidly advancing our understanding of plant function. As well as 
providing informative overviews of the fields defined in the opening 
paragraphs several of the articles also describe and provide software 
which should allow a relatively simple adoption of the described 
techniques by researchers from other laboratories. I thank all the 
authors for their support in putting together this special issue and 
hope people enjoy reading it as much as I enjoyed editing it.

Fernie	 Computational plant physiology
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Most characteristics in living organisms show continuous variation, which suggests that
they are controlled by multiple genes. Quantitative trait loci (QTL) analysis can identify the
genes underlying continuous traits by establishing associations between genetic markers
and observed phenotypic variation in a segregating population. The new high-throughput
sequencing (HTS) technologies greatly facilitate QTL analysis by providing genetic mark-
ers at genome-wide resolution in any species without previous knowledge of its genome.
In addition HTS serves to quantify molecular phenotypes, which aids to identify the loci
responsible for QTLs and to understand the mechanisms underlying diversity.The constant
improvements in price, experimental protocols, computational pipelines, and statistical
frameworks are making feasible the use of HTS for any research group interested in
quantitative genetics. In this review I discuss the application of HTS for molecular marker
discovery, population genotyping, and expression profiling in QTL analysis.

Keywords: QTL analysis, plant genetics, next generation sequencing, genomics, eQTL analysis, RNA-seq

INTRODUCTION
For almost one century scientists have dissected the genetic archi-
tecture of quantitative traits in plants using Quantitative trait loci
(QTL) analysis (Fisher, 1918). These analyses establish associa-
tions between genetic markers and the phenotypic variation of
a quantitative trait in a segregating population. The techniques
used to obtain markers and physiological phenotypes have been
constantly improved through history (Schlotterer, 2004; Montes
et al., 2007). Recently, the price drop of high-throughput tech-
nologies have allowed plant researchers to quantify the general
abundance of transcripts, proteins, or metabolites in segregating
populations (Kirst et al., 2005; Vuylsteke et al., 2005, 2006; Decook
et al., 2006; Keurentjes et al., 2007; West et al., 2007; Lisec et al.,
2008; Potokina et al., 2008; Drost et al., 2010). These studies show
that there are multiple benefits in using “omic” technologies for
QTL analyses, even when the goal is to characterize physiological
phenotypic diversity. First, molecular phenotypes are the initial
step toward the production of physiological phenotypes and its
regulation underlies much of phenotypic diversity (Hoekstra and
Coyne, 2007; Stern and Orgogozo, 2008). Second, the availability
of genome-wide information significantly increases the ability to
identify candidate genes for QTLs (Jimenez-Gomez et al., 2010).
Third, molecular traits measured at system scale allow estimation
of the effect of QTLs in the genetic pathways of interest, or identi-
fication of additional gene networks altered by the loci responsible
for the variation (Kliebenstein et al., 2006). Finally, molecular traits
offer researchers a better understanding of how mutation drives
physiological variation and what are the evolutionary forces acting
at primary levels.

High-throughput sequencing, or HTS, allows the rapid and
cost–effective generation of massive amounts of short sequences
or reads (Metzker, 2010). The potential of this technology for
mapping loci responsible for phenotypic differences in plants
has already been demonstrated by identifying genes containing

EMS-induced mutations in samples of pooled F2 individuals
(Schneeberger et al., 2009; Austin et al., 2011). HTS technologies
have been in the market for a few years, and new methods are being
developed that will be cheaper, require less sample processing, and
will produce more and longer reads (Munroe and Harris, 2010;
Glenn, 2011; Niedringhaus et al., 2011). It is therefore clear that
very soon HTS will be the tool of choice for QTL analyses. One
important limiting factor remains to be eliminated: Data analy-
sis. It requires long and computationally intensive pipelines that
need to be customized for each particular experimental set up. An
increasing number of new algorithms are constantly released to
the community, and the debate on which pipelines return the
most accurate results is still ongoing. Comparing, combining,
and customizing these pipelines requires simple Unix or Linux
commands and greatly benefits from knowledge in powerful sta-
tistical software such as R, and in scripting languages, such as
Perl or Python (R Development Core Team, 2009). For non-
bioinformaticians, integrated solutions with convenient interfaces
are becoming popular both from collaborative open projects and
companies (Blankenberg et al., 2010; Goecks et al., 2010). A pop-
ular website that keeps an actualized list of the available software
tools is www.seqanswers.com, where users and developers also
discuss new technological advances and pipelines. In terms of
the computational equipment required for HTS data analysis, the
majority of tools are developed for Linux or Unix based systems.
Although parts of the analysis can be performed in any modern
computer, machines with dozens of gigabytes of RAM are rec-
ommended in cases where reference sequences form the species
considered are available, or with hundreds if no reference exists.
An alternative option that is likely to become popular is to rent
storage and computing power in specialized centers, or“the cloud”
(Stein, 2010).

Due to the fast improvement of HTS, this review intends only
to capture a snapshot in time of the possibilities that it offers for
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molecular marker discovery, genotyping, and molecular pheno-
typing in segregating populations of plants. This review has the
purpose of helping researchers who have not incorporated this
technology to their work to think about the requirements and
possibilities of HTS. By no means this review refers to all available
experimental designs or analysis tools, and the solutions proposed
here are mere suggestions that will certainly soon be substituted
by new and better ones. A guide map of the methods proposed in
this review is depicted in Figure 1.

LIBRARY PREPARATION
Sample preparation protocols are continuously improved to use
fewer amounts of biological material, be completed faster, and
reduce the bias in their output. As an example, most current pro-
tocols allow multiplexing samples by adding a short sequence tag to
all reads in a library, a convenient feature given the increasing num-
bers of reads produced per HTS run. The same companies that
developed the HTS sequencers commercialize library preparation
protocols optimized for the most common experimental designs.
There are also kits from other companies that give comparable
results and may be more cost efficient. Finally, many researchers
are developing custom protocols to obtain specific information
such as the transcribed strand in RNA-seq experiments, the rate of
RNA degradation, or the positions occupied by RNA polymerases,
just to name a few (Addo-Quaye et al., 2008; Core et al., 2008;
German et al., 2008; Parkhomchuk et al., 2009).

QUALITY CONTROL AND PRE-PROCESSING
Assessing the quality of HTS reads includes detection of biases on
base composition,base quality, and sample complexity. The quality
of the sequences has an impact on the reliability of the biological
interpretations resulting from the analysis (Dohm et al., 2008).
Part of these biases are introduced by the sample preparation

protocols (Schwartz et al., 2011),particularly during cDNA synthe-
sis in RNA-seq experiments (Hansen et al., 2010; Li et al., 2010b)
and PCR amplification (Aird et al., 2011). Additional biases are
particular to each HTS technology (Smith et al., 2008; Quince
et al., 2011) or specific to each run of the sequencers (Auer and
Doerge, 2010).

After quality control it is usually necessary to pre-process the
reads by trimming low quality nucleotides and adapter sequences.
At this stage, foreign sequences such as vectors or DNA from organ-
isms contaminating the samples can also be removed. Depending
of the type of libraries sequenced further pre-processing may
be needed, such as trimming poly A or poly T tails and termi-
nal transferase tails in RNA-seq libraries. In cases where several
libraries have been multiplexed, reads should be separated by their
barcode.

Both quality control and pre-processing can be easily per-
formed with basic scripts written in Perl (Bioperl), R (Bioconduc-
tor), or Python (Biopython; Stajich et al., 2002; Gentleman et al.,
2004; Cock et al., 2009; R Development Core Team, 2009). For
non-programmers, there are some convenient tools that can carry
out all or some of these tasks (FastQC, 2008; FASTX-Toolkit, 2009;
Blankenberg et al., 2010; Falgueras et al., 2010; Goecks et al., 2010;
Cutadapt, 2010; Schmieder et al., 2010; Schmieder and Edwards,
2011).

MOLECULAR MARKER DISCOVERY
Depending on the availability of a reference sequence short reads
will be aligned or de novo assembled using one of the multi-
ple tools available. There are a number of recent articles that
compare the most popular algorithms and software available for
these purposes (Bao et al., 2011; Lin et al., 2011; Ruffalo et al.,
2011). Please note that the methods proposed below are directed
to developing molecular markers for QTL analysis and not to

FIGURE 1 | Guide map to the proposed pipelines for SNP
identification, genotyping, and molecular phenotyping for QTL
analysis in plants. Medium coverage is considered from 20× to

100× the genome or transcriptome size under study. Low coverage
is considered under 15× the genome or transcriptome size under
study.
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identify the mutation underlying the QTL, which requires much
deeper sequencing.

WITH A REFERENCE SEQUENCE
A cost efficient solution to obtain molecular markers is to sequence
DNA or RNA from the parental genotypes and mine polymor-
phisms from the resulting reads. These polymorphisms can be
used later to design PCR markers or a high-throughput genotyp-
ing assay for the full population. This approach works remarkably
well in diploid and polyploidy species using as low an amount
of sequence as 5× coverage, meaning five times the size of the
genome under study (Ossowski et al., 2008; Gore et al., 2009; Trick
et al., 2009; Lai et al., 2010; Lam et al., 2010; Arai-Kichise et al.,
2011; Geraldes et al., 2011). A recent article reviews the meth-
ods and tools available for single nucleotide polymorphism (SNP)
identification and genotyping (Nielsen et al., 2011). To align the
reads to the reference, mapping softwares based in “seed methods”
are preferred despite their slower nature because their robust-
ness to polymorphisms. Before SNP calling users may consider
removal of the reads that map to multiple locations in the refer-
ence, and of duplicated reads that may have been generated from
PCR artifacts. A recent pipeline also recalibrates the quality of
the nucleotides in the reads to correct for the high error rates in
HTS, and realigns reads in complex genomic positions where the
fast processing alignment algorithms may have failed (Depristo
et al., 2011). Commonly used indicators of the veracity of poly-
morphisms are based in the amount and quality of reads showing
the polymorphism, frequency of the observed alleles, quality of the
alignment, and/or proximity to other polymorphisms. There are
some basic and popular options for calling polymorphisms from
aligned reads (Li et al., 2009a,b; Depristo et al., 2011), tools special-
ized in the analysis of reads from particular sequencing platforms
(Souaiaia et al., 2011), that have the ability to detect structural
variation (Chen et al., 2009; Hormozdiari et al., 2009, 2010), or
that have into account the quality of the reference in addition to
the quality of the reads (Frohler and Dieterich, 2010). An essen-
tial method to control for the quality of the data analysis process
is visual inspection through genome viewers specialized in HTS
datasets (Huang and Marth, 2008; Bao et al., 2009; Milne et al.,
2010; Robinson et al., 2011).

WITHOUT A REFERENCE SEQUENCE
High-throughput sequencing sequences can serve to construct
the necessary reference to identify molecular markers if it is not
already available. Although assembling de novo a complete genome
sequence is possible with HTS, it requires very deep sequencing
and extensive bioinformatic analysis, even more given the rela-
tively large size of most plant genomes. A more efficient option
is sequencing mRNA, which greatly reduces sample complexity in
comparison with genome sequencing and has the advantage of
offering functional information such as coding polymorphisms or
expression levels (Graham et al., 2010; Mizrachi et al., 2010; Ban-
croft et al., 2011; Everett et al., 2011; Garg et al., 2011; Guo et al.,
2011; Ibarra-Laclette et al., 2011; Ness et al., 2011; Su et al., 2011;
Wei et al., 2011). A comprehensive compilation of the methods
and tools available for transcriptome assembly has been recently
published (Martin and Wang, 2011). De novo assembly algorithms

greatly benefit from long and paired-end reads, but are extremely
sensitive to errors and polymorphisms and will not perform well
during assembly of datasets from mixed genotypes or highly het-
erozygous individuals. The amount of new genomic positions
detected in RNA-seq experiments decrease exponentially as the
number of reads increases (Figure 2). The majority of medium and
highly expressed transcripts in a sample are detected at low cov-
erage, and increasing coverage will mainly add non-coding RNAs
and low expressed transcripts at a very high cost (Tarazona et al.,
2011). If the objective is to assemble complete transcriptomes,
obtaining samples from diverse tissues, time points, and condi-
tions is preferred to depth of sequencing. Even in the best possible
conditions assemblies from RNA-seq reads will return only a sub-
set of the existing transcripts, many of which will be fragmented.
This is expected due to low expression of particular transcripts, the
non-uniform read coverage, and the presence of different isoforms
per gene. To help assembly of low expressed transcripts researchers
can use normalization protocols that deplete the most abundant
transcripts from the samples (Christodoulou et al., 2011). In any
case, contigs resulting from de novo assembly can be effectively
used as a reference for molecular marker detection and character-
ization of transcripts in un-sequenced genomes (Parchman et al.,
2010; Wang et al., 2010e; Angeloni et al., 2011; Hiremath et al.,
2011; Kaur et al., 2011).

When highly similar genotypes are compared, RNA-seq may
not be the best option since it mostly targets coding regions, which
are less diverse than non-coding regions. In these cases researchers
can construct reduced representation libraries by shearing DNA
using restriction endonucleases and size-selecting the fragments
that will be sequenced. Reads from these libraries can be clustered
by similarity and mined for polymorphisms close to the restric-
tion sites; or used to detect the presence–absence of particular tags,
indicating a polymorphism in the restriction site itself (Kerstens
et al., 2009; Sanchez et al., 2009; Etter et al., 2011). Obtaining poly-
morphisms from reduced representation libraries is more efficient
when a reference sequence is available (Van Tassell et al., 2008;
Wu et al., 2010). However, researchers have already developed
tools to genotype samples from these tags using a low number

FIGURE 2 | Percentage of transcriptome covered versus number of
RNA-seq reads used. Eighty-one base pair paired-end RNA-seq reads from
S. lycopersicum were randomly sampled in different subset sizes and
aligned to the S. lycopersicum genome reference. The percentage of the
length of the transcriptome covered by at least one read is represented at
different coverages.
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of reads from organisms without a reference (Ratan et al., 2010),
or to reconstruct part of the targeted genome using paired-end
sequencing (Willing et al., 2011). Additional protocols to obtain
markers from reduced representation libraries exist in which dif-
ferent combination of restriction enzymes are used for each of the
genotypes involved (Hyten et al., 2010), or that do not shear the
DNA but filter the reads for single copy sequences (You et al., 2011).
The amount of reads necessary to perform this type of analysis
depends on the size of the genome, the restriction enzymes used,
and the availability of a reference.

GENOTYPING POPULATIONS
With the price drop of the HTS technologies and the possibil-
ity of multiplexing samples, genotyping an entire population has
become realistic (Schneeberger and Weigel, 2011). In the case
of a sequenced system such as rice, generating reads from the
individuals of a population at 0.02–0.055× coverage allowed high-
density genotyping by comparisons with the parental genotypes
(Huang et al., 2009), or by inferring the parental genotypes from
the polymorphisms found in the population (Xie et al., 2010).
Since erroneous polymorphism calls are expected at low coverage,
more or less complex algorithms need to be defined to correctly
genotype each polymorphism in each individual (Huang et al.,
2009; Xie et al., 2010; Li et al., 2011). In addition, a reference
sequence can serve researchers to design enrichment essays that
will target their preferred genomic locations, although at high cost
(Blow, 2009; Mamanova et al., 2010; Nijman et al., 2010; Kenny
et al., 2011). For species where a genome sequence is not available,
a very practical approach is to sequence reduced representation
libraries as mentioned above (Baird et al., 2008; Emerson et al.,
2010b; Hohenlohe et al., 2010, 2011).

MOLECULAR PHENOTYPING
The list of molecular phenotypes that can be quantified with HTS
is extensive and is rapidly increasing (Hawkins et al., 2010). Exam-
ples of these phenotypes are protein–RNA interactions (Licatalosi
et al., 2008; Hafner et al., 2010), translation rates (Ingolia et al.,
2009; Ingolia, 2010), transcription rates (Core et al., 2008; Church-
man and Weissman, 2011), protein–DNA interactions (Albert
et al., 2007; Barski et al., 2007; Johnson et al., 2007; Mikkelsen
et al., 2007; Robertson et al., 2007; Chen et al., 2008; Hesselberth
et al., 2009), RNA degradation rates (Addo-Quaye et al., 2008;
German et al., 2008), RNA secondary structure (Kertesz et al.,
2010; Underwood et al., 2010), transcription start positions (Plessy
et al., 2010), chromatin accessibility (Boyle et al., 2008), methyla-
tion states (Cokus et al., 2008; Down et al., 2008; Lister et al.,
2008; Meissner et al., 2008), natural antisense transcription (Cloo-
nan et al., 2008; Core et al., 2008; He et al., 2008; Armour et al.,
2009; Parkhomchuk et al., 2009) or small RNA profiles (Lu et al.,
2005). QTL analysis using these phenotypes as traits is an excit-
ing field that remains un-explored. Therefore, the computational
frameworks to quantitatively compare these phenotypes between
individuals will need to be established.

EXPRESSION PROFILING WITH HTS
Although many cases of phenotypic variation caused by coding
polymorphisms have been documented, variation in gene expres-
sion has been shown to underlie much of phenotypic diversity

(Reviewed in Hoekstra and Coyne, 2007; Wray, 2007; Stern and
Orgogozo, 2008). One method to detect differences in expression
between individuals using HTS is to sequence 26–27 nucleotide-
long tags from expressed transcripts (Matsumura et al.,2010; Hong
et al., 2011). A recent study shows that this method reaches sat-
uration in mice with 6–8 million reads per sample (Hong et al.,
2011). Its advantages over sequencing full transcripts are the lower
cost, higher sensitivity, reduced bias during amplification due to
the fixed fragment lengths, and use of simplified statistical models
to calculate differential expression. On the other hand, methods
based in tags will not detect the majority of coding polymorphisms
and isoforms, and require a close enough reference sequence to
extract biologically meaningful results.

RNA-seq is rapidly becoming a standard in expression profil-
ing because of its simple protocol of preparation, digital nature,
large dynamic range, and high sensitivity in comparison with pre-
vious technologies (Marioni et al., 2008; Bradford et al., 2010;
Liu et al., 2010). In addition, it can serve to genotype individ-
uals, identify novel transcripts, characterize alternative splicing,
and quantify allele specific expression (Reviewed in Wang et al.,
2009; Costa et al., 2010; Marguerat and Bahler, 2010). Due to the
novelty of the technique there is no consensus on which sample
preparation protocols present fewer biases (Raz et al., 2011). How-
ever, strand-specific methods could become a standard because of
their increased precision due to their ability to distinguish between
sense and antisense transcripts (He et al., 2008; Levin et al., 2010).
In terms of experimental designs, it is necessary to randomize and
replicate biological samples, as with any other type of genome-
wide analysis (Auer and Doerge, 2010; Fang and Cui, 2011; Hansen
et al., 2011). There is little consensus about the depth of sequence
needed for expression profiling with RNA-seq. Recent estimates
range between 30 million reads to compare the expression profiles
of two samples, to 100 million reads to detect most transcribed
genes and quantify isoforms, to 500 million to obtain accurate
profiles, including low expressed transcripts (Zhang et al., 2010;
ENCODE, 2011; Toung et al., 2011). In any case, it is advisable
to balance the number of reads between samples in the same
experiment in order to perform accurate expression comparisons
(Tarazona et al., 2011).

Expression profiling from HTS datasets is necessarily based
on counting the reads mapped to each transcript in a reference
sequence. When a reference genome or transcriptome is not avail-
able, it can be reconstructed using de novo assembly of the reads
for at least one of the genotypes as described above. The simpler
and less computational intensive protocol for expression profiling
is to map the RNA-seq reads to known (or de novo assembled)
transcripts and a set of possible exon–exon junctions (when avail-
able) to detect alternative splicing. However, in organisms with
sequenced genomes this protocol will not allow detection of novel
exons, transcripts, and isoforms. The preferred pipeline involves
aligning the reads to the genomic reference using an alignment
tool that splices the reads to detect intron–exon junctions (For
example Trapnell et al., 2009; Ameur et al., 2010; Au et al., 2010;
Guttman et al., 2010; Wang et al., 2010b; Lou et al., 2011).

A challenge for expression analyses in samples from two unre-
lated individuals is the need to perform robust quantification of
reads generated from two or more alleles. This implies that reads
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with the closer genotype to the reference will align better than
reads from a more distant genotype, in which more polymor-
phisms may interfere with their ability to map (Fontanillas et al.,
2010). In these cases, aligners based in seed methods will perform
better than those based in the Burrows–Wheeler Transform algo-
rithm (For a review see Garber et al., 2011). Although most studies
ignore this problem, there are solutions that go from identifying
and removing the polymorphisms that cause these biases (Degner
et al., 2009), aligning the reads to all references from the genotypes
involved (Bullard et al., 2010a) or including the polymorphisms
found in the references (Gan et al., 2011). When two references
are used, a potential problem may arise from motifs that are more
abundant in one reference with respect to the other if only uniquely
mapped reads are counted. The use of longer reads and/or paired-
end reads greatly decreases the number of ambiguously mapped
reads. In addition, there are robust methods to assign these multi-
mapped reads to a single location (Faulkner et al., 2008; Mortazavi
et al., 2008; Hashimoto et al., 2009; Li et al., 2010a; Wang et al.,
2010a; Ji et al., 2011).

There are a number of tools to count the number of reads
aligned to each transcriptional unit to calculate expression, most
of which require knowledge of Perl, Phyton, Linux/Unix, or R
(Carlson et al., 2009; Bio::DB::Sam, 2009; Anders, 2010; Morgan
and Pagès, 2010; Quinlan and Hall, 2010). Some alignment tools
can directly calculate the number of reads per transcript and/or
a measure of expression based in the reads (or fragments) per
gene size in kilobases per million reads mapped, called RPKM (or
FPKM; Mortazavi et al., 2008; Trapnell et al., 2010). However, these
expression units show biases depending on the length, number,
abundance of the transcripts present in the samples, or because
of technical replication (Oshlack and Wakefield, 2009; Bullard
et al., 2010b; Mcintyre et al., 2011). For this reason researchers
have developed dedicated R/Bioconductor packages to calculate
differential expression between samples based on raw read counts
per transcript (Anders and Huber, 2010; Bullard et al., 2010b;
Hardcastle and Kelly, 2010; Robinson et al., 2010; Wang et al.,
2010c). In addition, there are software packages that take into
consideration the biases inherent to RNA-seq when calculating
expression or performing downstream analyses such as gene ontol-
ogy over-representation studies (Young et al., 2010; Zheng et al.,
2011).

High-throughput sequencing datasets allow quantification of
expression for each isoform separately, resulting in significantly

more accurate estimates than calculating expression at the gene
level (Wang et al., 2010d). For this, users must first identify splicing
events from the reads that align to exon–exon junctions. Quan-
tifying isoform expression is complicated since most reads in
an alternatively spliced transcript cannot be assigned to a single
isoform. The most promising methods to address this complex
problem take advantage from the information offered by paired-
end and/or unambiguously mapped reads (Guttman et al., 2010;
Katz et al., 2010; Li et al., 2010a; Trapnell et al., 2010; Nicolae et al.,
2011). One advantage of going through the intricate process of
identification of alternative splicing is that it can also be used as
a trait for QTL analysis (Li et al., 2010c; Montgomery et al., 2010;
Pickrell et al., 2010; Lalonde et al., 2011).

ALLELE SPECIFIC EXPRESSION IN HYBRIDS
An alternative to sequencing a full segregating population to per-
form eQTL analyses is to sequence F1 hybrid individuals, where
allele specific expression can be calculated for loci with coding
polymorphisms (Babak et al., 2008, 2010; Bullard et al., 2010a;
Emerson et al., 2010a; Mcmanus et al., 2010; Pickrell et al., 2010).
For any gene, both alleles in the hybrid share the same cellu-
lar environment and, as a result, changes in expression between
alleles must necessarily be due to cis-acting regulators (Cowles
et al., 2002). Trans-acting eQTLs can be inferred by perform-
ing RNA-seq in the parentals and comparing the differences in
expression levels between alleles in the hybrid with the differences
between the parentals (Wittkopp et al., 2004). Despite the consid-
erable reduction in price and simplicity of experimental design,
this method has several drawbacks. Allele specific expression can
only be calculated in transcripts with coding polymorphisms that
are highly covered, and it is very dependent on read and transcript
length (Degner et al., 2009; Fontanillas et al., 2010). New statistical
approaches are being developed that will overcome these limita-
tions, starting by being able to estimate false discovery rates and
allele specific alternative splicing (Skelly et al., 2011).

In summary, HTS is changing the way we perform QTL analysis
by allowing high-throughput genotyping of populations and phe-
notyping of traits with a precision not achievable before. It is clear
that HTS has not reached its peak of development, and that tools
and algorithms will have to be modified according to the new tech-
nological improvements. Nevertheless, the first experiments using
this technology have already identified exciting possibilities for the
characterization of natural variation in plants.
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Consequently, the CESA-complex that is active during secondary 
wall formation consists of the three CESA proteins CESA 4, 7, 
and 8 (Turner and Somerville, 1997; Taylor et al., 2000), and the 
primary wall complex of CESA 1, 3, and 6-related CESA proteins 
(Arioli et al., 1998; Desprez et al., 2007; Persson et al., 2007a). At 
least the primary wall complexes are assumed to be guided by 
microtubules at the cell cortex (Paredez et  al., 2006); however, 
the mechanism of this process still remains unclear. The absolute 
need for the three CESA proteins for a functional CESA-complex 
suggests that the corresponding genes may exhibit similar spati-
otemporal expression. Indeed, large-scale co-expression analyses 
have confirmed such behavior (Brown et al., 2005; Persson et al., 
2005). In addition, it was also shown that the three CESA genes, 
either the primary or secondary wall CESAs, could readily be used 
as baits to find other co-expressed genes associated with cell wall 
production. These studies revealed that several crucial genes for 
xylan and lignin synthesis were transcriptionally coordinated with 
the secondary wall CESAs (Brown et al., 2005; Persson et al., 2005). 
More recently, similar approaches have also been utilized for genes 
involved in the synthesis of the primary wall hemicellulose xylo-
glucan (Cocuron et al., 2007). This study showed that the CSLC4 
gene in Arabidopsis, which is presumed to make the glucan back-
bone for the xyloglucan, was co-expressed with other genes that 

Introduction
Plant cell walls constitute a cellular exoskeleton that molds the 
cell shape and protects the cell against environmental threats 
(Somerville et al., 2004; Liepman et al., 2010). The cell wall mainly 
holds carbohydrate-based polymers, such as cellulose, hemicel-
luloses, and pectins, but also polyphenolic macromolecules, or 
lignins, and various highly glycosylated proteins. Historically, cell 
walls have been divided into primary and secondary walls, largely 
depending on the wall function and on the structural contents 
(Carpita and McCann, 2000). While the primary wall in most higher 
plants holds cellulose, hemicelluloses, and pectins, the secondary 
wall is mainly composed of cellulose, xylans, and lignin.

The carbohydrate-based cell wall components are, with the 
exception of cellulose, synthesized as oligomeric structures in the 
Golgi, and are subsequently transported to the cell surface where 
they are incorporated into the growing cell wall matrix (Geisler 
et al., 2008). In essence, these oligomers are assembled by different 
glycosyltransferases, perhaps working as larger protein complexes 
during synthesis (Lerouxel et al., 2006; Scheller and Ulvskov, 2010). 
Cellulose, on the other hand, is synthesized at the plasma mem-
brane by large cellulose synthase (CESA) complexes (Somerville, 
2006; Mutwil et al., 2008a; Taylor, 2008). These complexes con-
sist of three different, yet structurally related, CESA proteins. 
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Biochemical cell wall analyses
For neutral sugar analysis, stems of more than ten different indi-
vidual 9-week-old plants were pooled per sample and then ground 
in liquid nitrogen. The three replicates obtained from this plant 
material were then consecutively washed with 10 ml 70% etha-
nol, 10  ml methanol:chloroform (1:1, v:v) and 10  ml acetone. 
The resulting crude cell wall material was air-dried for 2 days. To 
extract the different cell wall components the material was frac-
tionated. First, pectins were extracted by adding 1.5  ml CDTA 
(1,2-Diaminocyclohexane tetraacetic acid) and shaking the sam-
ples for 12 h at 4°C. After centrifugation for 5 min at 13000 rpm, 
the supernatant was transferred into a fresh 15 ml Falcon tube. 
This extraction was repeated twice and the pooled supernatants 
were dialysed using Spectra/Por dialysis tubes (MWCO: 3.5 kDa, 
Spectrum Laboratories, Rancho Dominguez, CA, USA) for 3 days 
at 4°C in double distilled water, which was exchanged every 12 h. 
With the resulting pellet, this whole procedure was repeated with 
Na

2
CO

3
 and then 4 M KOH. The remaining material after these 

three extractions was the insoluble fraction. All four fractions were 
dried in an Alpha 2–4 lyophilisator (Christ, Osterode, Germany). 
For the analysis of the neutral sugar composition, 1 mg cell wall 
material was transferred to screw-capped eppendorf tubes and 
30  μg inositol was added as internal standard. After hydrolysis 
with 2 M trifluoroacetic acid (TFA), alditol acetates were analyzed 
as described in Neumetzler (2010), which is a modified version 
of the original protocol from Albersheim et al. (1967). Detection 
was performed with an Agilent 6890N GC System coupled with an 
Agilent 5973N Mass Selective Detector (Waldbronn, Germany). 
For analysis of cellulose in the crude cell wall material, Seaman 
hydrolysis (Selvendran et al., 1979) was performed of the pellet 
after trifluoroacetic acid hydrolysis. After this, the hexose content 
was determined with the anthrone assay described in Dische (1962).

Microscopic analyses of xylem vessels
To determine the thickness of the cell wall in xylem cells, 0.5 cm long 
segments from the base of the main stem were fixed in a mixture 
of 2% paraformaldehyde and 2.5% glutaraldehyde on cacodylate 
buffer, pH 7.4 for 4 h at room temperature. The samples were then 
fixed with 2% OsO

4 
on the same buffer for 2 h, dehydrated in series 

of ethanol and propylene oxide and finally embedded in Spurr’s low 
viscosity epoxy resin (Spurr, 1969). The embedded stem segments 
were cut perpendicular to their longitudinal axes. Afterward, the 
surfaces of the created cross sections were diamond-polished down 
to 1 μm. The samples were then coated with a 5 nm gold–palladium 
layer and observed in a Jeol JSM-7500F field emission scanning 
electron microscope with an acceleration voltage of 5 kV using 
a secondary electron in-lens detector. The obtained images were 
analyzed using ImageJ (Rasband, 1997) by measuring the thick-
ness of the cell wall in the middle of the edge of adjacent cells. For 
analysis of the disturbed xylem phenotype, 0.5 cm long pieces from 
the basal part of the main stem were embedded in paraffin as previ-
ously described (Weigel and Glazebrook, 2002) using an ASP300S 
embedding automat (Leica, Wetzlar, Germany). Then, 10 μm thin 
sections were prepared with a RM2265 rotary microtome (Leica, 
Wetzlar, Germany). Phoroglucinol-HCl staining was performed 
directly on the slides. Observations of the xylem cells were made 
with a BX61 (Olympus, Hamburg, Germany) microscope using a 

are associated with xyloglucan synthesis. Furthermore, a broader 
analysis of transcriptional coordination of cell wall-related genes 
in Arabidopsis revealed that members of some gene families tend 
to be co-expressed, e.g., different GH19 family members tend to be 
co-expressed with different CESA members (Mutwil et al., 2009).

To our knowledge, the possibilities of comparative co-expression 
analysis across species remain largely unexplored, with the excep-
tion of a recent study that explored similarities in co-expression 
networks between Arabidopsis and rice for xylan synthesis-related 
genes (Oikawa et al., 2010). By using PlaNet (Mutwil et al., 2011), 
we performed large-scale condition-independent comparisons 
(Mutwil et al., 2008b; Usadel et al., 2009) of primary and secondary 
cell wall-related CESA co-expression networks from seven different 
plant species to discover gene families that are consistently tran-
scriptionally coordinated with cellulose synthesis across species. 
To identify new genes involved in secondary cell wall formation in 
Arabidopsis, we selected genes from gene families that are conserved 
in the co-expression networks of the secondary CESAs across the 
seven species and analyzed their mutant lines. We established a 
statistical pipeline based on biochemical characteristics of the cell 
wall and show that at least one of the analyzed mutants is deficient 
in the secondary wall-related polymer lignin.

Materials and methods
Comparative co-expression analysis
The respective primary and secondary CESA genes for Arabidopsis 
(253428_at, at4g32410, AtCESA1, and 246425_at, at5g17420, 
AtCESA7), poplar (PtpAffx.23691.1.S1_at, PtCESA1, and 
Ptp.3087.1.S1_at, PtCESA7), rice (Os.10183.1.S2_at, Os05g08370, 
OsCESA1, and Os.10206.1.S1_at, Os09g25490, OsCESA9), barley 
(Contig3478_at, aaf89964.1, HvCESA1, and Contig15116_at, 
bab67900.1, HvCESA5/7), medicago (Mtr.14653.1.S1_s_at, 
Medtr3g136720/Medtr7g099810, and Mtr.10615.1.S1_at, 
Medtr8g145000), soybean (Gma.10862.2.S1_x_at, Glyma04g07220, 
and GmaAffx.3712.1.S1_a, Glyma06g30860.1), and wheat 
(Ta.28561.1.S1_a, UniRef90_A2Y0X2, and Ta.4321.1.A1_at, 
UniRef90_A2WV32) were analyzed using the Network Comparer 
tool from PlaNet (http://aranet.mpimp-golm.mpg.de/aranet/ 
NetworkComparer), which is based on the AraGenNet co-expres-
sion analysis platform (Mutwil et al., 2010). The tool classifies genes 
according to their PFAM (Protein family, Finn et al., 2010) annota-
tion and compares gene vicinity networks two steps away (N = 2; 
Mutwil et al., 2010) from the query genes for re-occurring PFAMs.

Plant material and growth conditions
Seeds for all plant-lines used in this study were obtained from 
the Nottingham Arabidopsis Stock Centre (NASC, http://arabi-
dopsis.info). Mutants used for the neutral sugar analysis were all 
in Col-0 background. Homozygous mutants were obtained by 
genotyping using the T-DNA line specific primers and the respec-
tive left border primer of the T-DNA listed in supplementary 
Table S3 in Supplementary Material. Seedlings were first grown 
on MS medium containing 1% sucrose for 2 weeks. Then, plants 
were transferred to standard soil (Einheitserde GS90; Gebrüder 
Patzer, Sinntal-Jossa, Germany) and grown in a greenhouse under 
a 16  h light/8  h dark regime at temperatures 21°C (day) and 
17°C (night).
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silhouette width of the mutants in the cluster. For a clustering with 
k clusters, one can then calculate the overall average of the silhouette 
widths of the k clusters. Larger overall average silhouette width 
indicates better clustering; therefore, the number of clusters with 
maximum overall average silhouette width was taken as the optimal 
number of clusters. The R programming package cluster was used 
to determine the optimal number of clusters with which k-medoid 
clustering was subsequently conducted.

PCA and biplots
Principal component analysis is a standard technique for data 
reduction, from which useful summary biplots can be created. 
Each biplot allows a two-dimensional representation of the mutants 
based on their scores from the first two principle components 
(PCs). We combined the biplot with the clustering results from 
the k-medoids, by including ellipses around each cluster. The load-
ings for the variables (fractions/sugars) are represented in blue in 
the supplementary biplots. PCA was conducted by the R function 
princomp.

Results and Discussion
Conservation of certain co-expressed protein families 
across species using primary and secondary wall CESA  
gene vicinity networks
Genes that are transcriptionally coordinated tend to be function-
ally related (Usadel et al., 2009). For example, many genes that are 
co-expressed with the secondary wall CESA genes in Arabidopsis 
are involved in secondary cell wall formation (Brown et al., 2005; 
Persson et al., 2005; Zhong et al., 2008). While these relationships 
now are obvious in Arabidopsis, no large-scale comparative studies 
have been performed to analyze such relationships in other spe-
cies. To carry out such an analysis, we first created a co-expressed 
gene vicinity network for AtCESA7 using the AraGenNet platform 
(Mutwil et al., 2010), which includes most of the essential genes 
for secondary cell wall biosynthesis (Figure 1). This co-expression 
network contains the other two CESAs responsible for secondary 
wall cellulose AtCESA4 and AtCESA8 and many other genes that 
are involved in xylan production, including IRX8 (IRREGULAR 
XYLEM 8), IRX9, GUX1 (GLUCURONIC ACID SUBSTITUTION 
OF XYLAN 1) and the recently identified IRX15 (Peña et al., 2007; 
Persson et al., 2007b; Brown et al., 2009, 2011; Jensen et al., 2011; 
Mortimer et  al., 2010), and tentatively in lignin synthesis, such 
as IRX12 (Brown et al., 2005). In addition, several transcription 
factors, such as SND1 (SECONDARY WALL-ASSOCIATED NAC 
DOMAIN 1), and SND2, MYB46, 85, and 103, and IRX11 (Brown 
et  al., 2005; Zhong et  al., 2007, 2008), which regulate different 
aspects of secondary cell wall formation are also transcriptionally 
coordinated with the secondary CESAs.

The AtCESA7 co-expression network also displayed the cor-
responding PFAM (Finn et  al., 2010) for each gene (Figure  1). 
Based on these PFAM associations, we have compared primary 
and secondary cellulose synthesis-related co-expression networks 
of seven species to investigate if those networks consistently include 
genes from certain PFAMs across species. We identified primary and 
secondary cell wall specific CESAs for barley, rice, poplar, Medicago, 
soybean, and wheat to create similar co-expression networks as 
for Arabidopsis. The secondary wall CESAs are normally expressed 

20× objective. Imaging was carried out with a ColorView III digital 
camera (Olympus, Hamburg, Germany) controlled with the cell^P 
software from Olympus. Images were processed for publication 
using Adobe Photoshop CS2 (Adobe, Dublin, Ireland).

Lignin measurements
The amount of lignins in selected mutants was analyzed with the 
thioglycolic-acid (TGA) assay as previously described (Campbell 
and Ellis, 1992). However, here, 2 mg of dry crude cell wall material 
was used and directly incubated with 750 μl water, 250 μl concen-
trated HCl, and 100 μl TGA.

Data preprocessing
Seven data sets, each with three replicates, from 18 plant-lines were 
considered in the analysis. The first five data sets correspond to 
the mol percentage values for the crude cell wall material and the 
four different fractions for each of the following sugars: Rhamnose 
(Rha), Fucose (Fuc), Arabinose (Ara), Xylose (Xyl), Mannose (Man), 
Galactose (Gal), and Glucose (Glc). The sixth dataset comprises 
the weight percentage values for each of the following four frac-
tions: CDTA, Na

2
CO

3
, KOH, and insoluble. Since different amounts 

of sugars could be hydrolyzed from each fraction, the dry weight 
percentages of the material extracted by the fractionation were 
normalized according to the total amount of sugars that could be 
measured on the GC–MS for that fraction. Finally, the last data set 
integrates the mol percentage values for the seven sugars of the four 
fractions (CDTA, Na

2
CO

3
, KOH, and insoluble) by normalizing 

each of them to the weight percentage values from the sixth data-
set. Note that the values for Fuc and Ara in the insoluble fraction 
were not considered in the analysis (as they were below detection 
limit across all considered variables, i.e., plants). Each data set was 
represented by a matrix with rows corresponding to the mutants 
and the columns corresponding to the fractions/sugars, such that a 
row defines a profile of a mutant. Clustering and principal compo-
nent analysis (PCA) were then performed on the mean percentage 
values from the three replicates, which were row-wise normalized 
(centered) to zero mean and unit variance.

Clustering
We applied the k-medoid clustering method, which is a more robust 
version of k-means (Theodoridis and Koutroumbas, 2006). We 
used the Euclidean distance as a similarity measure for mutant 
profiles. To determine the number of clusters k, we employed the 
silhouette validation method (Rousseeuw, 1987). For each mutant 
i, the silhouette width, s(i), is defined as follows: Let a(i) denote 
the average dissimilarity between i and all other mutants placed 
in the same cluster as mutant i. Let b(i) denote the smallest aver-
age dissimilarity of mutant i compared to the mutants in another 
cluster. Then

s i
b i a i

a i b i
( )

( ) ( )

max( ( ), ( ))
= −

If s(i) is close to 1, it means that the mutant has been assigned 
an appropriate cluster. A value of 0 for s(i) implies that the mutant 
lies between clusters, while a value of −1 signifies misclassification. 
Using this method, each cluster could be represented by the average 
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gene from the six other species, evaluated the expression profiles 
(Figure S1 in Supplementary Material), and validated the genes 
with previously published results (Tanaka et al., 2003; Burton et al., 
2004; Kumar et  al., 2009). First, we compared the co-expressed 
gene vicinity networks of the secondary CESAs from the seven 

in roots and stems where large amounts of secondary walls are 
produced, while the primary wall CESAs tend to be more uni-
formly expressed across plant tissues and organs. Based on these 
assumptions we selected the closest homologs of the Arabidopsis 
primary wall-related CESA1 and the secondary wall-related CESA7 

Figure 1 | Co-expression gene vicinity network for AtCESA7 (turqois). 
Nodes indicate individual genes, and edges indicate whether two genes are 
co-expressed above a certain mutual rank. Red, green, and gray nodes 
indicate whether mutations in the gene cause embryophytic lethality (red), 
any biological phenotype (green), or if no mutant phenotype currently is 
available (gray) according to TAIR. Green, orange, and red edges indicate a 
mutual rank relationship 10 (green), 10 but 20 (orange), and 20 but 30 (red), 

respectively, for each connected gene pair. Most genes with acronyms have 
been associated with secondary cell wall production. The genes were 
associated to gene families according to PFAM (protein family) classification, 
and the respective PFAM is indicated below the gene name/AGI-code. Bold 
genes have been included in this study. The network was generated, and 
modified from AraGenNet (http://aranet.mpimp-golm.mpg.de/aranet; Mutwil 
et al., 2010).
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categories based on their PFAM description (PFAM version 24.0, 
http://pfam.sanger.ac.uk). Core components and gene families that 
were enriched in primary or secondary cell wall and monocots 
or dicots were defined based on the difference of occurrence in 
primary or secondary wall and monocot and dicot specific net-
works, respectively (Figure 3). We hypothesize that the enrichments 
of certain gene families might reflect the differences of cellulose 
biosynthesis between primary and secondary cell wall as well as 
between monocots and dicots. Interestingly, many genes known to 
be involved in cell wall synthesis in Arabidopsis had homologs in 
other species that are also transcriptionally coordinated with the 
respective CESA genes. For example, most co-expression networks 
contained Glycosyltransferase family 8 genes, for which IRX8/

species using the Network Comparer Tool from PlaNet (Mutwil 
et  al., 2011). This analysis revealed that many gene families are 
conserved across species, because we found genes from the respec-
tive PFAM annotation in at least five (green nodes) or four (orange 
nodes) of the seven networks (Figure 2).

For a more comprehensive representation of conserved com-
ponents in cellulose synthesis across species, we have extended the 
analysis of the secondary CESA genes and included also the co-
expression networks of the primary cell wall-related CESAs from 
the seven species. Figure 3 shows only the highly conserved gene 
families that appear in at least eight of the 14 analyzed networks 
(for a complete list see supplementary Table S1 in Supplementary 
Material). The gene families were grouped into functional 

Figure 2 | Consensus co-expression network of secondary cell wall genes 
from seven plant species. Gene vicinity co-expression networks of the 
Arabidopsis CESA7 homologs from barley, rice, poplar, medicago, soybean, and 
wheat were compared for re-occurring gene families (PFAMs). Nodes with their 
respective PFAM description indicate gene families that are enriched across 
species. Nodes and edges colored green, orange, and red represent gene 
families and co-expression relationships between them, that are present in at 

least five, four or two of the selected networks, respectively. For example, in at 
least five of the seven co-expression networks from the different species there 
is at least one gene belonging to the gene family DUF579 (green node in the 
upper right center). Bold PFAMs indicate gene families from which we selected 
genes for further analysis. This network was generated using the Network 
Comparer Tool from PlaNet (http://aranet.mpimp-golm.mpg.de/aranet/
NetworkComparer; Mutwil et al., 2011), and red nodes were removed for clarity.
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their importance in cellulose related cell wall synthesis. In addi-
tion, DUF231 family members were consistently co-expressed with 
the CESA genes across different species, and at least two DUF231-
related gene products have recently been implicated in cellulose 
production (Bischoff et al., 2010).

Intriguingly, also transcription factors, oxidases, as well as tenta-
tive cytoskeletal components, protein degradation, and signaling 
related genes seem to be consistently co-expressed with the CESA 
genes. In particular, several MYB and NAC transcription factors, 

GAUT12 (GALACTURONOSYL TRANSFERASE 12) and GUX1 
(Peña et al., 2007; Mortimer et al., 2010) have been identified in 
Arabidopsis, though their exact function is still unknown. Also, 
COBRA, a GPI-anchored protein important for anisotropic growth 
(Roudier et al., 2005), KORRIGAN, encoding for a endo-1,4-beta-
D-glucanase (Glycosyl hydrolase family 9, Nicol et al., 1998), and 
CTL1, a chitinase-like protein (Glycosyl hydrolase family 19, Zhong 
et al., 2002), had homologs in most of the primary and secondary 
CESA co-expression networks of the seven species, underlining 
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Figure 3 | Analysis of primary and secondary cellulose biosynthesis 
networks in the seven species using Network Comparer. Seven primary 
cell wall and seven secondary CESA gene vicinity co-expression networks 
have been analyzed for enrichment of PFAMs. Total presence of at least one 
gene of the respective PFAM in the fourteen co-expression networks is 
indicated in the first column. The heatmaps in the second and third column 
represent enrichment of a gene family in primary (P) or secondary cell walls (S) 
and monocots (M) or dicots (D) based on the difference of occurrence of 
genes of the respective PFAM in the 14 co-expression networks. For example, 
the genes from the NAM family (Transcription factor section) are present in 
two primary (P) and six secondary (S) co-expression networks (Table S1 in 
Supplementary Material), which sums up to eight in total (first column), and 

the difference of P − S is −4 (second column). At the same time, genes from 
this NAM family are present in five monocot (M) and three dicot (D) 
co-expression networks resulting in a difference M − D of two (third column). 
Any PFAM was defined as enriched in primary or secondary cell walls and 
marked green or orange, if P − S ³ 4 or P − S £ −4, respectively. Enrichment for 
monocots or dicots, with corresponding PFAMs marked in blue and red, was 
defined as M − D ³ 3 or M − D £ −5, respectively, because eight dicot and only 
six monocot networks (corresponding to four dicot and three monocot 
species) were analyzed. Core components (marked in bold letters) were 
defined as gene families that were present in at least ten networks, without 
being enriched in monocots or dicots, nor primary or secondary cell wall 
biosynthesis.
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co-expression networks and selected genes from gene families that 
are conserved across species (highlighted PFAMs in Figure 2). We 
obtained homozygous T-DNA mutant lines corresponding to 17 
genes that were used for further analyses (Table 1; Figure 1). To gain 
a broader overview on the cellulose synthesis-related gene families, 
these genes covered our previously defined categories “Unknown 
function” (i.e., DUF231, 547, 579, 662), “Protein degradation” (i.e. 
zf_C3HC4, Asp), “Signaling” (i.e., PBD and Ras) and “Oxidases” 
(i.e., Cu_oxidase, Cu_bind_like, Figure 3). Gene homology searches 
revealed that many of the genes also are part of larger gene families, 
perhaps suggesting functional redundancies in the absence of one 
homolog. It is also important to point out that several studies have 
been undertaken to identify irregular xylem (irx) mutants, and 
we therefore reasoned that while it is unlikely that any of the new 
mutant lines would exhibit strong defects in xylem morphology it 
appeared plausible that more subtle changes associated with the 
secondary cell wall, such as the sugar compositions, may be evident.

Cell wall analyses
To provide a statistical pipeline to assess similarities and differences 
of sugar profiles in mutant lines we developed a combined PCA 
with k-medoid clustering of sugar profiles. To elucidate whether this 
approach may reveal differences of known and unknown secondary 
wall mutants we harvested the lower part of stems and analyzed the 
sugar alditols using GC–MS, and the cellulose content using the 
anthrone assay. Figure 4 shows a subset of the sugar alditol estimates 
from crude cell wall material for wild-type, irx5, irx9, irx12, and 
three T-DNA lines affecting the genes At5g05390 (mutant num-
ber 14), At5g60020 (mutant number 16), and At1g32100 (mutant 
number 18; Table 1). The complete set of sugar alditol estimates is 
available in Table S2 in Supplementary Material, and the cellulose 
measurements in Figure S2 in Supplementary Material. As previ-
ously shown the irx9 had substantial reduction in xylose (Brown 
et al., 2005; Bauer et al., 2006), and the CESA4 deficient irx5 dis-
played about 60% reduction in cellulose as estimated from the 
crude cell wall material. On the other hand, the irx mutant irx12 
displayed very minor changes in its sugar composition and cellulose 
content, similar to what Brown et al. (2005) reported.

To get a more conclusive picture of how the sugar profiles for 
the different mutants relate to each other we used the correspond-
ing values of the profiles for the pipeline outlined above. The PCA 
explain the highest variation among the samples (Figure  4B), 
and should detect similar patterns in the sugar profiles for cer-
tain mutants. To manage the latter, we assessed whether the sugar 
profiles for certain mutants clustered together, i.e., we tried to find 
mutant sugar profiles that were similar to each other but dissimilar 
to the other mutant sugar profiles. We did this by using a k-means 
clustering derivative, referred to as k-medoid (Theodoridis and 
Koutroumbas, 2006). Choosing the right number of clusters is very 
important for the result of these clustering algorithms. To obtain a 
statistically reliable number of clusters we analyzed the sugar pro-
files using the silhouette validation method (Rousseeuw, 1987). This 
method estimates whether a certain mutant sugar profile should 
be classified as belonging to a distinct cluster. This is performed 
by first quantifying the average dissimilarity between one mutant 
sugar profile to other mutant sugar profiles in the same cluster, and 
then comparing this difference against the smallest dissimilarity 

which are secondary cell wall specific according to our analysis, 
have been shown to be involved in secondary cell wall formation 
(e.g., MYB46, MYB83, SND1, SND2, Zhong et al., 2008). Oxidases, 
such as laccases (PFAM annotation: Cu_oxidase) and peroxidases 
were only slightly enriched in secondary cell wall co-expression 
networks, suggesting that in addition to their role in lignification of 
the secondary cell wall they might also have a function in primary 
cell wall biosynthesis. Furthermore, the recently identified cellulose 
synthase interacting protein (CSI) 1 (Gu et al., 2010) belongs to 
the C2 domain-containing family, which was highly enriched in 
the CESA vicinity networks. Although the exact function of CSI1 is 
still unclear, the conserved co-expression across species implies an 
important role in cellulose synthesis of this protein. Interestingly, 
actin and two other cytoskeleton related genes appear more pri-
mary cell wall specific, suggesting a more prominent role of these 
components during primary cell wall biosynthesis. To our sur-
prise also several protein degradation and signaling components 
appeared in our analysis. For example, the highly conserved gene 
family Pkinase_Tyr comprises the THESEUS1 homolog FERONIA 
in Arabidopsis. Both receptor-like kinases are involved in control of 
growth regulation (Hématy and Höfte, 2008, Kessler et al., 2010), 
suggesting that their homologs might play a similar role in other 
species. The function of protein degradation in cell wall biosyn-
thesis is unclear. However, given the importance of trafficking and 
recycling of the CESA-complex (Wightman and Turner, 2010), we 
hypothesize that these components might be involved in removing 
inhibited or defect CESA-complex subunits.

We conclude that many genes in the co-expression networks of 
primary and secondary CESA genes are conserved across species 
indicating that similar genetic modules for cellulose biosynthesis 
are present in higher plants. This demonstrates that cellulose syn-
thesis-related knowledge obtained in the model species Arabidopsis 
is likely to be transferable to other species. However, using this 
comparative analysis we can also attempt to infer gene functions in 
Arabidopsis. For example, several glycosyl hydrolase families (GH3, 
GH16, GH17) are highly conserved in CESA co-regulated clusters 
across species, but do not have any corresponding homologs in the 
Arabidopsis co-expression networks (Table S1 in Supplementary 
Material). This might be due to the fact that only about 63% of the 
Arabidopsis genes are represented on the Affymetrix ATH1 chip and 
the probesets for the respective genes might be missing on the chip 
(e.g., At3g47040 for GH3, At4g13090 and At5g65730 for GH16, and 
At1g11820 for GH17 are not represented on the ATH1 chip). We 
hypothesize that members of these families, whose expression is not 
determined by microarrays, might actually be co-expressed with 
the primary or secondary CESA in Arabidopsis and could constitute 
functional homologs of the respective genes from the other species.

Identification of putative secondary wall-related genes
Several studies have successfully employed the co-expression 
approach to identify new genes, which are associated with sec-
ondary wall cellulose synthesis (for example Brown et al., 2005; 
Persson et al., 2005). However, there are a large number of genes 
that are also closely co-expressed with the secondary CESAs, which 
have not been characterized in previous analyses (Figure 1). To 
identify new genes that are important for secondary wall biosyn-
thesis we made use of the comparative analysis of secondary wall 
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Table 1 | T-DNA insertion information for selected genes, which are enriched in secondary cell wall co-expression networks across species.

Mutant number AGI-code T-DNA line(s)a Annotation PFAM Other speciesb

1 Wild-type Col-0

2 At5g44030 SALK_084627 (exon) CESA4 (IRX5) Cellulose_synt All 6 species

3 At2g37090 SALK_057033 (exon) IRX9 Glyco_transf_43 All 6 species

4 At5g01360 SALK_103316 (exon) Protein of unknown function DUF231 All 6 species

5 At5g60720 SALK_055553 (exon) Protein of unknown function DUF547 All 6 species

6 At1g09610 SALK_050883 (exon) Protein of unknown function DUF579 Os, Hv, Pt, Gm, Ta

7 At3g50220 GABI_735E12 (exon) IRX15 DUF579 Os, Hv, Pt, Gm, Ta

8 At2g27740 SALK_013255 (exon) Protein of unknown function DUF662 Os, Ta, Hv

9 At2g03200 SALK_148906 (5′UTR) Aspartyl protease family protein; similar to CDR1 Asp Os, Hv, Pt, Mt, Ta

10 At1g72220 SALK_104510 (5′UTR) Zinc finger family protein zf_C3HC4 Os, Hv, Pt, Gm, Mt

11 At5g16490 SALK_015799 (exon) p21-rho-binding domain-containing protein PBD All 6 species

12 At5g45970 GABI_212D04 (exon) Arabidopsis thaliana RAC 2 Ras Os, Hv, Pt, Gm, Mt

13 At2g38080 SAIL_196_A02 (exon) Laccase (IRX12) Cu_oxidase Os, Hv, Pt, Gm, Ta

14 At5g05390 SALK_004019 (exon) Laccase 12 Cu_oxidase Os, Hv, Pt, Gm, Ta

15 At5g01190 SAIL_77_A02 (exon) Laccase 10 Cu_oxidase_2 All 6 species

16 At5g60020 SALK_016748 (exon) Laccase 17 Cu_oxidase_2 All 6 species

17 At1g22480 SAIL_381_C11 (intron) Plastocyanin-like domain-containing protein Cu_bind_like Os, Hv, Pt, Gm, Ta

18 At1g32100 SALK_087014 (intron) 

SALK_058467 (exon) 

SALK_090999 (intron)

Pinoresinol-lariciresinol reductase (PRR1) NmrA Hv, Pt, Gm, Ta

aAll lines are in Col-0 background. bThe respective co-expression networks of the Arabidopsis CESA7 homologs of rice (Os), poplar (Pt), barley (Hv), soybean (Gm), 
medicago (Mt), and wheat (Ta) contained at least one homolog of the respective gene. Bold indicates known genotypes, and corresponding secondary wall phenotypes.
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Figure 4 | Principal component analysis and clustering of crude cell wall 
sugar estimates for the selected mutants. (A) GC–MS analysis of sugar 
alditols of crude cell wall material for indicated mutants. (B) Principal component 
analysis (PCA) of the mol% sugar values from the crude cell wall material. The 
first two components explain 93.12% of the variation. The loadings for the 
variables are displayed in supplementary Figure S3 in Supplementary Material. 

The ellipses indicate clustering of mutant sugar profiles based on the k-mediod 
algorithm. The number of clusters was estimated based on the silhouette width, 
i.e., the dissimilarity in sugar profiles as measured by the Euclidean distances 
between the profiles. Wild-type (black), and mutants affecting cellulose (irx5; 
red), xylan (irx9; blue), and potentially lignin (irx12; orange) are indicated in 
different colors.
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To merge the different sugar profiles from the four fractions into 
one estimate, we normalized the mol percentages of the mutants 
based on their amount of extractable material of the individual 
fractions and performed silhouette width-driven clustering on all 
the values for the four fractions. Hence, these estimates reflect the 
composition of the cell wall in a more detailed way than by only 
analyzing the neutral sugar composition in the crude cell wall mate-
rial. The result in Figure 6 shows that three clusters were apparent, 
where irx9 solely occupied one cluster, and the other two clusters 
held the rest of the mutants.

In summary, we propose that the combined sugar profiling and 
clustering analyses may be useful to classify mutants, a task that 
may be relatively difficult using the raw sugar alditol estimates.

A pinoresinol reductase is associated with secondary wall 
integrity
To investigate whether mutations in some of the genes resulted 
in weaker secondary cell walls, we generated hand-cut stem sec-
tions and stained these with Toluidine blue. As expected, none of 
the mutants showed any severe irx phenotype. This may be due 
to extensive genetic redundancy for some of the gene families. 
For example, At5g01360 (assigned to DUF231 pfam) is part of 
a gene family of over 40 genes (Bischoff et  al., 2010), of which 
many have over-lapping expression pattern with At5g01360. One 
of these genes is At2g38320, which is co-expressed with the sec-
ondary wall CESA genes. However, some of the mutants appeared 
to have more disturbed xylem vessel shapes as compared to the 
wild-type. We selected one of these mutants, mutant number 18 or 
prr1, to analyze more in detail, and embedded basal mutant stem 
parts in paraffin and cut sections (10 μm) using a microtome. We 
subsequently stained these sections with either Toluidine blue or 
Phloroglucinol–HCl. The mutant stem displayed what appeared 
to be weakened secondary cell walls, with disturbed xylem vessel 
morphology (Figures 7A,B). Since deformed xylem vessels were 
observed in wild-type stems occasionally, the number of deformed 
xylem vessels was counted in three different mutant lines corre-
sponding to the PRR1 gene and in the wild-type. Table 2 clearly 
shows that all of the three prr1 mutant lines contained about twice 
as many xylem vessels with disturbed shapes as wild-type sections. 
Several of these sections also indicated that the secondary walls 
were thinner in the mutants compared to wild-type. Since it is 
difficult to estimate cell wall thickness by using light microscopy 
we embedded basal stem parts in Spurr’s resin, created a plane 
surface perpendicular to the stem axis for detailed analysis by using 
a scanning electron microscope (Figure 7). The thickness of the 
secondary cell walls of the xylem related cells in one of the mutants 
and wild-type was measured. The results indicate that impairment 
of the PRR1 function results in thinner cell walls, and that this most 
likely affects the integrity of the wall.

The PRR1 can reduce pinoresinols to lariciresinols (Nakatsubo 
et al., 2008), and the latter can subsequently be converted into secoiso-
lariciresinols. These structures are part of a larger family of molecules 
generally referred to as lignans, and may work as antioxidants and 
phytoestrogens (Pan et al., 2009). In addition, some of these struc-
tures have also been found in lignin through two-dimensional-NMR 
studies (Zhang et al., 2003). To investigate whether the prr1 mutants, 
and some of the laccase mutants, caused alterations in lignin related 

between the one mutant sugar profile and mutant sugar profiles 
that are assigned to other clusters. The scores range between −1 
and 1, where a value close to −1 means that the mutant should be 
assigned to another cluster, and a value close to 1 means that the 
mutant is correctly classified. The clustering with the highest aver-
age silhouette width for the sugar profiles from the crude cell wall 
material resulted in an optimal number of two clusters. As seen in 
Figure 4B, most of the mutant profiles were classified as belonging 
to one major cluster. However, at least one of the mutant profiles, 
corresponding to irx9, was retained in its own cluster, and the other 
severe irx mutant, irx5, deviated quite dramatically from the other 
sugar profiles in the larger cluster. These data showed that changes 
in the cell wall composition can be captured by the two methods, 
i.e., PCA and the clustering evaluation.

PCA and Clustering analyses of sugar profiles reveal 
several secondary wall mutant classes
While the crude cell wall sugar measurements are informative for 
mutants with dramatic alterations in certain monosaccharides, 
it is relatively difficult to detect smaller changes associated with 
distinct polymers. To enrich for such small putative changes, we 
fractionated the crude cell walls into four fractions using CDTA, 
which mainly releases Ca2+-chelated polymers such as pectins, 
Na

2
CO

3
, which releases pectic polymers that are associated to other 

polymers by weak hydrogen-bonds, and 4 M KOH, which releases 
hemicellulosic polymers associated by stronger hydrogen-bonds 
to the remaining matrix. In addition, we analyzed the remain-
ing pellet, which largely contains cellulosic polymers. Consistent 
with the supposed fractionation pattern we obtained relatively 
more pectin related monosaccharides, e.g., rhamnose, galactose, 
and arabinose, in the first two fractions, and mainly xylose in 
the third fraction (Table S2 in Supplementary Material). Similar 
to the analysis undertaken for the crude cell wall sugar profiles 
we performed PCA and silhouette width based clustering of the 
mutant sugar profiles for the different fractions (Figure 5). In the 
CDTA fraction we obtained two clusters, one with most of the 
mutants and one containing only irx5. Interestingly, irx12 mutant, 
and also mutant number 14, 16, and 18 were separated on the 
PCA plot. These three mutants correspond to two laccase genes 
and to a pinoresinol reductase (PRR1) gene, respectively (Table 1). 
It is important to note that both the IRX12 and the two laccase 
gene products are proposed to be associated with lignin synthesis, 
and that the gene product from the PRR1 has been shown to be 
involved in the synthesis of lignan (Nakatsubo et al., 2008). The 
main cause for these mutants to separate from the other mutants 
in the PCA plot appeared to be a relative changes in xylose and 
galactose (Figure S3 in Supplementary Material). A similar, but less 
clear, pattern was also seen in the Na

2
CO

3
 fraction where at least 

two of the laccases and the prr1 mutants are contained in a sepa-
rate cluster from the wild-type mainly because of less arabinose 
in the mutants (Figure 5; Figure S3 in Supplementary Material). 
However, these changes were relatively small. It is important to 
note that the results obtained here are based on one T-DNA per 
mutant due to the extensive work load involved in generating the 
profiles from the fractionated material. We can therefore not rule 
out that the observed changes emanate from additional mutations 
in the T-DNA line backgrounds.
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Figure 5 | Principal component analysis and cluster analyses of sugar 
contents from fractionated cell wall material. Principal component analyses 
of the mol% sugar values in the different fractions for each mutant. The 
separation based on the scores from the first two principle components is 
displayed, and the explained variation of these components is indicated below 
each graph. The loadings for the variables are included in supplementary 

Figure S3 in Supplementary Material. The ellipses indicate clustering of mutants 
based on the k-mediod algorithm. The number of clusters was estimated based 
on the silhouette width, i.e., the dissimilarity in sugar profiles as measured by 
the Euclidean distances between the profiles. Wild-type (black), and mutants 
affecting cellulose (irx5; red), xylan (irx9; blue), and potentially lignin (irx12; 
orange) are indicated in different colors.
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Figure 6 | Clustering of combined sugar profiles from the four different 
cell wall fractions. Clustering summary of mutants based on the k-mediod 
algorithm. The number of clusters (3) was estimated based on the silhouette 
width, i.e., the dissimilarity in sugar profiles as measured by the Euclidean 
distances between the combined profiles. Wild-type (black), and mutants 
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Figure 7 | Mutations in PRR1 cause disturbed xylem shapes, thinner 
secondary cell walls and a decrease in lignin related structures. (A,B) 
Example of stem sections stained with phloroglucinol–HCl for SALK_087014 
(A); affecting PRR1) and wild-type (B). Arrowheads indicate xylem vessels with 
disturbed morphology. Scale bars = 25 mm. (C,D) Secondary cell walls from 

stem sections using scanning electron microscopy from SALK_087014 (C) and 
wild-type (D). Scale bars = 1 mm. (E) Secondary cell wall width from wild-type 
(N = 687) and SALK_087014 (N = 585). Displayed are the means of three 
different stems per line. (F) Thioglycolic-acid analysis of lignin contents in 
different mutants, presumably affecting stem lignification.

structures we measured the lignin content using the Thioglycolic-acid 
(TGA) assay (Campbell and Ellis, 1992). Using this method we found 
that the prr1, irx12, and the laccase mutant number 16 indeed held 
lower levels of lignin related structures, whereas the laccase mutant 
number 14 had similar levels as the wild-type control (Figure 7). It 
is important to note that these analyses only estimate the levels of 
lignin related structures, and do not reflect differences in the structure 
of the structures. Given that these mutants displayed similar trends 
for the sugar profiles in the CDTA fraction it is possible that defects 
in the lignin polymers affect pectin levels, or extractability.

Conclusion
The remarkable transcriptional coordination of the genes associ-
ated with secondary cell wall formation in Arabidopsis suggested 
that similar relationships would also be present in other plant spe-
cies. Indeed, by comparing the co-expression networks of primary 
and secondary CESA genes from seven different plant species we 
find that many components in these networks are conserved across 

Table 2 | Quantification of xylem vessels with disturbed shapes for prr1 

(At1g32100).

Genotype	 Distorted xylem vessel (%)	 Counted cells

WT Col-0	 7.8	 N = 1364

SALK_058467	 17.7	 N = 458

SALK_090999	 16.7	 N = 436

SALK_087014	 20.1	 N = 523
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Although plant metabolomics is largely carried out on Arabidopsis it is essentially genome-
independent, and thus potentially applicable to a wide range of species. However, transfer
between species, or even between different tissues of the same species, is not facile.
This is because the reliability of protocols for harvesting, handling and analysis depends
on the biological features and chemical composition of the plant tissue. In parallel with
the diversification of model species it is important to establish good handling and analytic
practice, in order to augment computational comparisons between tissues and species.
Liquid chromatography–mass spectrometry (LC–MS)-based metabolomics is one of the
powerful approaches for metabolite profiling. By using a combination of different extrac-
tion methods, separation columns, and ion detection, a very wide range of metabolites can
be analyzed. However, its application requires careful attention to exclude potential pitfalls,
including artifactual changes in metabolite levels during sample preparation under variations
of light or temperature and analytic errors due to ion suppression. Here we provide case
studies with two different LC–MS-based metabolomics platforms and four species (Ara-
bidopsis thaliana, Chlamydomonas reinhardtii, Solanum lycopersicum, and Oryza sativa)
that illustrate how such dangers can be detected and circumvented.

Keywords: plant metabolomics, sample preparation, ion suppression, chemical diversity, translational biology,
LC–MS

INTRODUCTION
Plant metabolomics is a relatively new analytic strategy which
provides complementary information to transcriptomic and pro-
teomic studies as well as important information in its own right
concerning the regulation of metabolic networks (Hall et al., 2002;
Bino et al., 2004). Initial applications of metabolic profiling were
largely focused on the model plant Arabidopsis thaliana (von
Roepenack-Lahaye et al., 2004; Tohge et al., 2005; Gibon et al.,
2006; Trenkamp et al., 2009; Araujo et al., 2010; Kerwin et al.,
2011), however, several studies have been carried out on the green
algae Chlamydomonas reinhardtii (Giroud et al., 1988; Bolling and
Fiehn, 2005; May et al., 2008; Boyle and Morgan, 2009; Renberg
et al., 2010) with other successful applications being reported for
Catharanthus roseus (Rischer et al., 2006), Fragaria x ananassa
(Aharoni et al., 2000, 2002; Hanhineva et al., 2008), Hordeum
vulgare (Widodo Patterson et al., 2009), Medicago truncatula (Ach-
nine et al., 2005), Nicotiana tabacum (Goossens et al., 2003), Oryza
sativa (Albinsky et al., 2010), Perilla frutescens (Yamazaki et al.,
2008), Pisum sativum (Jom et al., 2010), and Solanum lycopersicum
(Schauer et al., 2005, 2006; Moco et al., 2006; Fraser et al., 2007)
as well as the unicellular prokaryotes Synechocystis sp. (Krall et al.,
2009) and the diatom Phaeodactylum tricornutum (Allen et al.,
2008).

Initially, the use of metabolic profiling in plants, as indeed in
all species, was restricted to diagnostic approaches in which the
obtained profiles were used as markers for a range of biological

conditions (Sauter et al., 1988; Meyer et al., 2007; Semel et al.,
2007; Carmo-Silva et al., 2009; Scherling et al., 2009; Widodo
Patterson et al., 2009). Although such studies remain highly impor-
tant, particularly in medical research (Nicholson and Wilson, 2003;
Griffin and Nicholls, 2006), more sophisticated uses of metabolic
profiling have recently been developed, including identifying regu-
lated enzymes and exploring the regulatory structure of pathways
(Tiessen et al., 2002; Arrivault et al., 2009), searching for unex-
pected effects of genetic manipulation (Catchpole et al., 2005),
screening wild species for beneficial chemical composition (Zhu
and Wang, 2000; El-Lithy et al., 2005), gaining a more comprehen-
sive view of metabolic regulation and as part of integrative analyses
for the systemic response of environmental genetic perturbations
(Hirai et al., 2004, 2005; Fukushima et al., 2009; Sulpice et al., 2009;
Trenkamp et al., 2009). In addition to these uses, metabolomics is
proving to be a powerful tool for gene functional annotation in
plants. There are now several examples of Arabidopsis genes that
have been identified with the help of metabolomic approaches
including MYB transcription factors (Hirai et al., 2007; Stracke
et al., 2007), O-methyltransferase (Tohge et al., 2007), glycosyl-
transferases (Tohge et al., 2005; Yonekura-Sakakibara et al., 2007,
2008), acyltransferases (Luo et al., 2007), UDP-rhamnose syn-
thase (Yonekura-Sakakibara et al., 2008), and pyrophosphorylase
(Okazaki et al., 2009) with the approach being equally effective in
other species (Aharoni et al., 2000; Goossens et al., 2003; Achnine
et al., 2005; Yamazaki et al., 2008).
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One advantage that metabolomics has over transcriptomics
[with the exception of next-generation sequencing tools, see Detlef
Weigels recent review (Schneeberger and Weigel, 2011)] and pro-
teomics is that it is essentially genome-independent (Stitt and
Fernie, 2003) and as such can be applied to a species whose genome
has not been sequenced as easily as those whose has. This “democ-
ratization” of biology allows in depth functional analyses of many
species for which a complete and fully annotated genome is not
yet available (Schneeberger and Weigel, 2011). Despite this fact
caution needs to be taken when adopting a method set up for one
tissue of one species to analyze another tissue of that species or even
another species. This is especially so for metabolite profiling. The
plant kingdom contains an incredibly rich chemical diversity (St-
Pierre and De Luca, 2000). It is obvious that this chemical diversity
poses a large challenge and stimulates research in developing new
and increasingly powerful approaches to separate,detect, and iden-
tify metabolites. However, it also raises important challenges for
experimental design, sample handling, and validation of analytic
procedures. This is because tissue composition affects the relia-
bility with which a particular metabolite can be reliably extracted
and analyzed. This problem is particularly acute when using liq-
uid chromatography–mass spectrometry (LC–MS) due to the so
called ion suppression effects wherein the composition of the
extract affects the efficiency of ionization of some of its constituent
analytes (Fernie et al., 2004). That said, a number of relatively
simple control tests, in combination with the growing number of
chemoinformatic tools for metabolomics (Tohge and Fernie, 2009;
Bais et al., 2010; Carroll et al., 2010; Cottret et al., 2010; Xia and
Wishart, 2010), should at least ameliorate this phenomenon and
hence facilitate high-quality translational metabolomics.

Driven by the increasing diversification of plant research away
from the principle model species A. thaliana we present here case
studies in which methods developed for this species are assessed
for use in determining metabolite levels either in the unicellular
algae C. reinhardtii or in the crop species rice and tomato. For
the former we assessed the analysis of primary metabolism using
an LC–MS/MS method developed to deliver validated measure-
ments of the levels of Calvin–Benson cycle intermediates, organic
acids, nucleotide-sugars, and nucleotides in Arabidopsis rosettes
(Arrivault et al., 2009). Given that information documenting the
transfer of gas chromatography–mass spectrometry (GC–MS)-
based methods of analysis of primary metabolites has already been
extensively supplied for potato and tomato (Roessner et al., 2001;
Roessner-Tunali et al., 2003), we chose crop species to focus our
studies on secondary metabolism. The two LC–MS-based methods
applied in this study complement standard and well-established
GC–MS methods by greatly increasing the range of metabolites
that can be analyzed.

Here some examples of how can be performed using two dif-
ferent LC–MS-based metabolomics platforms, on one algal and
two crop species and A. thaliana are shown. The combined results
illustrate important experimental controls which should be imple-
mented alongside computation algorithms in order to successfully
adapt protocols that have been established for another biological
system. This also applies to other LC–MS-based methods (Okazaki
et al., 2009; Kanno et al., 2010). We additionally discuss how such
studies could be used in conjuncture with novel tools for combined

sequence comparison and co-expression analysis (Mutwil et al.,
2011, and Ruprecht et al., this issue) in order to improve gene
functional predictions from Arabidopsis to crop species.

MATERIALS AND METHODS
CELL CULTURE AND EXTRACTION PROCEDURES
Chlamydomonas reinhardtii strain CC-1690 wild type mt+ was
acquired from the Chlamydomonas Genetics Center (Duke Uni-
versity, Durham, NC, USA). Single colonies were used to inoculate
the growth media containing 5 mM Hepes, 1 mM K-phosphates,
Beijerinck salts (final concentrations of 7.5 mM NH4Cl, 0.34 mM
CaCl2, 0.41 mM MgSO4) and trace salt solution (final concentra-
tions of 184 μM H3BO3, 77 μM ZnSO4, 26 μM MnCl2, 18 μM
FeSO4, 7 μM CoCl2, 6 μM CuSO4, 1 μM (NH4)6Mo7O24; Har-
ris, 1989; May et al., 2008; Kempa et al., 2009) at 25˚C under
constant illumination with 400 μmol photon m−2 s−1 and con-
tinuous shaking. The amount of NH4Cl was reduced to 4 mM
for the experiment shown in Figure 1 to reduce the impact of
ion suppression. Before harvesting, cells were grown to a density
of 3 × 106 cells ml−1 and dark-adapted for a minimum of 20 min
before transferring 1 ml of cells to a cuvette and exposed them
to 660 μmol photon m−2 s−1 under continuous stirring. Before
illumination and at different time points after illumination the
suspension was quenched by vigorously adding 2 ml of −70˚C
methanol (70%). The entire mix was then lyophilized to dryness
at −80˚C and extracted at 4˚C by a chloroform:methanol:water
(1:2:5 [v/v]) mixture. Water fractions of three subsequent washes
were collected, concentrated by lyophilization at −80˚C and fil-
tered before metabolite measurement (80 μl of extracted cul-
ture in 100 μl sample measured) by ion pair (reverse-phase)
chromatography triple quadrupole MS (IPC–MS/MS) detection.

PLANT MATERIALS AND EXTRACTION PROCEDURES
Arabidopsis thaliana ecotype Col-0 and S. lycopersicum (M82)
were grown in soil in a controlled environmental chamber (16 h
light/8 h dark photoperiod; 21˚C at 145 μmol photon m−2 s−1 and
25˚C at 500 μmol photon m−2 s−1, respectively). A. thaliana used
for recovery test was grown in general 1/2 MS agar plate in con-
trolled plant growth chamber (16 h light/8 h dark photoperiod;
21˚C). Rice (O. sativa, Nipponbare) seeds were pre-germinated in
tap water at 28˚C for 10 days. Plantlets were transferred to a con-
trolled growth chamber with 12 h day length at 700 μmol photon
m−2 s−1. Plant material was frozen in liquid nitrogen, ground into
powder and stored at −80˚C until use.

For assessment of ion suppression and recovery tests, extraction
for secondary metabolite profiling was conducted as described in
Tohge and Fernie (2010). Extraction buffer was added to reach
0.2 mg FW μl−1. To evaluate secondary metabolite degradation
due to enzymatic activities, four different extraction procedures
were carried out using aliquots of frozen powders from a pool of
plant materials from at least three plants: (a) extraction was con-
ducted as described in Tohge and Fernie, 2010; extraction buffer
was added to frozen material kept at liquid nitrogen temperature);
(b) extracts obtained by method (a) were incubated at 37˚C for 1 h,
(c) extraction buffer was immediately added to frozen material on
ice; (d) plant material was incubated at 37˚C for 1 h prior addition
of extraction buffer. To assess ion suppression in different plant
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FIGURE 1 | Example of rapid metabolic response by light and darkness.
Metabolites in Chlamydomonas reinhardtii CC-1690 were measured after
quenching in an excess of cold (−70˚C) methanol, lyophilization, and
extraction in chloroform-methanol using IPC–MS/MS. (A)
Ribulose-1,5-bisphosphate (RuBP), malate, and aspartate levels in
Chlamydomonas CC-1690 cells are shown after dark-adaption for 20 min
(black bars) and exposure to 660 μmol photon m−2 s−1 for 0.25, 4.5, and
7.5 min (gray bars). Y -axis indicates amount (pmol/106 cell). (B)
Chlamydomonas cells were harvested in cuvettes after 20 min dark-adaption
and exposure to 660 μmol photon m−2 s−1 for 7.5 min without (gray bars) or

with an additional 2 s of darkness (black bars).. Levels of metabolites are
presented as absolute values (n = 3, ±SD, two asterisks: Student’s t -test
p < 0.01, one asterisk: Student’s t -test p < 0.05). 2-OG, 2-oxoglutarate;
DHAP, dihydroxyacetone-phosphate; ADP, adenosine diphosphate; G6P,
glucose-6-phosphate; UDPG, UDP-glucose; NAD, nicotinamide adenine
dinucleotide; AMP, adenosine monophosphate; F6P, fructose-6-phosphate;
SBP, sedoheptulose-1,7-bisphosphate; S7P, sedoheptulose-7-phosphate;
NADP, nicotinamide adenine bisnucleotide phosphate; FBP,
fructose-1,6-phosphate; X5P, xylulose-5-phosphate; Ru5P,
ribulose-5-phosphate; R5P, ribose-5-phosphate; ADPG, ADP-glucose.

species, an internal standard (IS) mixture containing three stan-
dard compounds (isovitexin, CAS: 29702-25-8; saponarin, CAS:
20310-89-3; sinigrin, CAS: 3952-98-5) was prepared at four dif-
ferent concentrations (20, 10, 5, 1 μg ml−1). Identical volume of
standard mixture and plant extracts were added, resulting in a
final sample containing 0.1 mg FW μl−1 of plant extracts and
10, 5, 2.5, or 0.5 μg ml−1 of standard compounds. Recovery test
was carried out with Arabidopsis extracts (0.2 mg FW μl−1) of
leaves and roots grown on agar plates for 3 weeks, and flowers har-
vested from the plants grown on soil for 4 weeks. Extracts from
leaves “A” and roots “B” (or flowers) were mixed at different ratios
[(A:B), 90:10, 80:20, 50:50, 20:80, 10:90], respectively. The per-
centage recovery was estimated for evaluation using theoretical
concentration of extracts mixture, [(level in leaves × A%) + (level
in roots (or flowers) × B%)]/100.

ION PAIR (REVERSE-PHASE) CHROMATOGRAPHY TRIPLE QUADRUPOLE
MS (IPC–MS/MS)
Primary metabolite analysis by IPC–MS/MS was carried out on
a Dionex HPLC system (Sunnyvale, CA, USA) coupled to a

Finnigan TSQ Quantum Discovery MS-Q3 (Thermo Fisher Sci-
entific, Waltham, USA) equipped with an electrospray ionization
(ESI) interface. It was operated as described in Arrivault et al.
(2009). Chromatographic separation was obtained at 35˚C by a
multi-step gradient with online-degassed eluent A (10 mM trib-
utylamine aqueous solution, adjusted to pH 4.95 with 15 mM
acetic acid) and eluent B (methanol) applied to a Gemini (C18)
150 mm × 2.00 mm inner diameter 5 μm, 110 Å particle column
(Phenomenex, Aschaffenburg, Germany). The MS-Q3 device was
operated in the negative ion scanning mode with selected reaction
monitoring (SRM). The MS-parameters for each compound are
documented in the Supplementary Data of Arrivault et al. (2009).
Calibration curves using authentic standards were used to calcu-
late absolute amounts of metabolites in algal samples. Data were
processed using LC-quan 2.5.6 SP1 software.

REVERSE-PHASE HPLC–MS ANALYSIS
Secondary metabolite analysis by LC–MS was performed on HPLC
system Surveyor (Thermo Finnigan, USA) coupled to Finnigan
LTQ-XP system (Thermo Finnigan, USA) as described by Tohge
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and Fernie (2010). All data were processed using Xcalibur 2.1 soft-
ware (Thermo Fisher Scientific, Waltham, USA). Metabolite iden-
tification and annotation were performed using standard com-
pounds (Nakabayashi et al., 2009) and reference metabolomics
databases (Moco et al., 2006; Shinbo et al., 2006; Iijima et al., 2008;
Tohge and Fernie, 2009).

RESULTS AND DISCUSSION
HARVESTING – OBTAINING REPRESENTATIVE MATERIAL AND
AVOIDING HANDLING-INDUCED CHANGES
Expression of genes and activity of enzymes associated with
photosynthesis, respiration, and energy metabolism are rapidly
affected by changes in environmental conditions. Transcriptional
and metabolic regulation by the circadian clock has been defined
(Harmer et al., 2000; Gibon et al., 2006; Fukushima et al., 2009;
Kerwin et al., 2011). Many metabolites showed marked diur-
nal changes. Problems related to variation in clock and diurnal
rhythms can be circumvented by harvesting plants at the same
time in the 24-h cycle. They can also be affected by shorter term
fluctuations. The exact timing of harvesting and avoidance of
perturbation of metabolism during harvesting, by for instance
shading of leaves or changes in the oxygen tension are therefore
critical (see Geigenberger et al., 2000). Additionally, rapid and
complete quenching of metabolic activity is crucial to ensure faith-
ful measurement of the intracellular metabolite content (discussed
in details below).

To highlight the rapid metabolic response following light treat-
ment, metabolite profiling was performed on the model organism
C. reinhardtii (Figure 1). Quenching was performed by rapid mix-
ing of the algal suspension in the light with an excess of very cold
(−70˚C) methanol to instantaneously freeze the cells. Metabolite
profiling by IPC–MS/MS analysis of short term light treatment
was performed in dark-adapted material and after 0.25, 4.5, and
7.5 min illumination. Ribulose-1,5-bisphosphate (RuBP), which
is a major metabolite in the Calvin–Benson cycle, was already sig-
nificantly elevated by a light treatment of 15 s (Figure 1A). The
levels of malate, the late step in TCA cycle, also displayed signif-
icant increases upon illumination, whilst the level of the amino
acid aspartate was not altered.

Figure 1B illustrates why avoiding perturbations of the con-
ditions by the mean of rapid harvesting is critical for metabo-
lite profiling. Darkening significantly and almost instantaneously
influences operation of the photosystems and the delivery of ATP
and NADPH. The levels of RuBP, sedoheptulose-1,7-bisphosphate
(SBP), fructose-1,6-bisphosphate (FBP), ADP-glucose (ADPG),
and isocitrate were significantly decreased, while adenosine
5′-diphosphate (ADP) and adenosine monophosphate (AMP)
increased within 2 s of darkening. Thus, harvesting protocols that
lead to even very brief decrease or increase in the light intensity
preceding quenching or during the quenching process will lead
to erroneous estimates for the levels of metabolites. An identical
problem arises in higher plants. This is due to the simple fact that
the fluxes in the Calvin–Benson cycle are so high that many of the
metabolites in the cycle as well as ATP and NADPH have short
turnover times of 1 s or less (Arrivault et al., 2009).

This problem is of course especially critical for processes like
photosynthesis, where fluxes are very fast and metabolite pools are

small and turn over very quickly. However, it illustrates the more
general points that (i) all available information about the turnover
times of the metabolites-of-interest should be collected, evaluated,
and used to design an appropriate harvesting and quenching pro-
tocol and (ii) that this protocol should be validated by checking if
slowing down or speeding up the harvesting process modifies the
levels of metabolites that are found in the harvested material.

QUENCHING OF ENZYMATIC ACTIVITIES AND DIFFERENCES BETWEEN
PLANT SPECIES AND CHEMICAL PROPERTIES
Quenching of metabolic activity is not only essential to stop meta-
bolic turnover in the running pathways, but also to inhibit other
enzymatic activities that can destroy the metabolite after tissue
disruption. An old but still instructive example of this is the
precautions needed to determine pyrophosphate levels in plants
(Weiner et al., 1987). Pyrophosphatase activity in leaves is so high
that it can hydrolyse all the pyrophosphate in a leaf extract in
<0.05 s. In an intact tissue, the vast majority of the pyrophos-
phatase activity is in the plastids whilst the pyrophosphate is in
the cytosol. As soon as the tissue is disrupted the pyrophosphatase
comes into contact with and destroys the pyrophosphate. To mea-
sure pyrophosphate it is therefore essential that enzymatic activity
is completely stopped by rapid quenching and remains totally inac-
tive during all subsequent stages in sample handlings as a fraction
of a percent would be enough to destroy all the pyrophosphate
within few seconds. Such problems can be routinely identified by
recovery experiments in which representative amounts of authen-
tic standards are added to the plant material before extraction, and
it is checked that the added standard can be quantitatively detected
in the final extract (Fernie et al., 2011).

Whilst secondary metabolites do not display such rapid
responses to changes in the environment as those observed for
primary metabolism (see an example in Kusano et al., 2011),
they, like primary metabolites, are highly susceptible to degra-
dation by enzymes that come in contact with them after tissue
disruption. For example glucosinolates are converted into isoth-
iocyanates by myrosinase in Arabidopsis (Tierens et al., 2001;
Barth and Jander, 2006). Given that degradative enzymes typ-
ically remain potent subsequent to freezing in liquid nitrogen
when the extract is thawed, particular care must be taken during
the extraction procedure. To illustrate this point, three extraction
procedures were conducted in addition of our original extraction
procedure (extraction a), using frozen powder of plant materials.
To test if breakdown enzymes were definitively inactivated during
this extraction procedure, extracts were incubated at 37˚C for 1 h
(extraction b). A pre-incubation of sample material at 37˚C for
1 h prior extraction was conducted to test the extent of metabolite
degradation upon thawing (extraction d). Secondary metabolite
extraction is routinely performed at liquid nitrogen temperature,
so to test if another temperature would affect metabolic compo-
sition, addition of buffer on frozen sample was performed at ice
temperature (extraction c). All extractions were performed using
pre-cooled extraction buffer (10˚C). Metabolite breakdown was
assessed in A. thaliana leaves, O. sativa leaves, and S. lycopersicum
fruits by mean of LC–MS. Total ion chromatograms and relative
peak areas of selected metabolites are presented in Figures 2 and 3,
respectively.
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FIGURE 2 | Effect of different extraction methods on secondary
metabolite breakdown in Arabidopsis leaves, tomato fruits, and rice
leaves. Total ion chromatograms (TIC) monitored by negative ion detection
mode of extracts of (A) Arabidopsis leaves, (B) tomato fruits, and (C) rice
leaves, are shown. (a–d) indicate different extraction methods. (a)
extraction method as described in Tohge and Fernie (2010), (b) extracts
obtained by (a) method were incubated at 37˚C for 1 h, (c) extraction buffer
was immediately added to frozen material on ice, (d) frozen sample was
incubated at 37˚C for 1 h before extraction. All extractions were performed
using pre-cooled extraction buffer (10˚C). Arrows show peaks which were
newly or not detected in treated samples.

For almost all plant species, an incubation of the material
after addition of extraction buffer at 37˚C for 1 h had no observ-
able consequences on the total ion chromatograms and on the
relative peak areas of selected metabolites [Figures 2 and 3, respec-
tively. Comparison between (a) and (b)]. This result indicates
that the major secondary metabolites are not broken down at
37˚C, provided the tissue has been taken up in the extraction
buffer. However, metabolite profiling of samples extracted after
1 h (pre-incubation of the disrupted tissue at 37˚C) revealed that
samples were significantly changed in some compound species

(pointed by arrows in Figure 2). A more detailed analysis revealed
that within a plant species and between various plant species the
metabolite classes were differently affected [Figure 3, compari-
son between (a) and (d)]. In general non-pigmented flavonoids
such as flavonol glycoside in Arabidopsis leaves and S. lycopersicum
fruits, and glycoflavone in O. sativa leaves were stable. By con-
trast, red-pigmented flavonoids namely anthocyanin derivatives
in Arabidopsis were significantly decreased following the 37˚C pre-
incubation. Furthermore, phenylpropanoids in Arabidopsis such
as sinapoyl-derivatives were broken down by pre-incubation. The
Brassica species specific secondary metabolites glucosinolates are
well-known compounds which can be broken down by myrosinase
(Tierens et al., 2001; Barth and Jander, 2006). The glucosinolate
levels in extracts with 37˚C incubation before extraction were not
detected [Figure 3A, comparison between (a) and (d)]. Despite the
breakdown of phenylpropanoids by enzyme activity in Arabidopsis,
phenylpropanoids in tomato fruit such as chlorogenic acid related
compounds were generally unaffected by enzymes. With the excep-
tion of esculeoside related compounds, levels of glycoalkaloids
which are the major alkaloid in tomato fruits were not signifi-
cantly changed (Figure 3B). These data show that, whatever the
plant species, a pre-incubation of the plant material at 37˚C prior
to extraction leads generally to various levels of secondary metabo-
lite breakdown due to the presence of active enzymes when plant
material is thawed out. Addition of extraction buffer to frozen
material not at liquid nitrogen temperature (extraction c) led to a
significant decrease in the levels of glucosinolates and anthocyanin
derivatives (Figure 3A). This shows that the temperature during
addition of the extraction buffer is also an important factor.

These results taken together illustrate that the tissue extraction
should be carried out in the proper way with attention being taken
to empirically optimize the extraction method for each and every
new tissue measured. The effect of 20 min sonication was also
evaluated in the same manner, but no differences were observed
(data not shown). That said it is important to note that sonica-
tion should only be performed if this can be managed without an
increase in temperature.

ION SUPPRESSION EFFECTS CAUSED BY GROWTH MEDIA
Although LC–MS analysis is a highly sensitive technique, ion sup-
pression is a general problem of LC–MS analytical platforms due
to altered ESI of a target ion by a contamination (Ikonomou et al.,
1990; Kebarle and Tang, 1993; Buhrman et al., 1996; Matuszewski
et al., 1998, 2003; King et al., 2000; Fernie et al., 2004). It is
actually not a single event but a range of response–reducing phe-
nomena which should be avoided as much as possible. While
there is, however, no universal solution to this problem, under-
standing difference between samples and assessing the effects of
ion suppression affords greater confidence in the accuracy of the
results.

An example of ion suppression caused by growth conditions of
Chlamydomonas is shown in Figure 4; Table 1. This example illus-
trates how the composition of the growth media can dramatically
affect the reliability of metabolite analyses in Chlamydomonas.
Following quenching of the algal suspension by mixing with an
excess of cold methanol (see above), we took the entire suspension
for analysis. This was necessary because some metabolites leak
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FIGURE 3 | Comparison of secondary metabolite levels between different
extraction methods. Relative peak area of the result described in Figure 2 of
(A) Arabidopsis leaves, (B) tomato fruits, and (C) rice leaves, are shown.
Y -axis indicates percentage calculated by average of peak area of treatment
(a). (a–d) indicate different extraction methods as described in Figure 2 and
Section “Materials and Methods.” Blue related colors indicate flavonoid
related compounds (flavonol and glycoflavone). Red color indicates
red-pigmented flavonoid related compounds (anthocyanin). Yellow,

phenylpropanoid related compounds (sinapoyl-derivatives and
chlorogenate-related compound); green, glucosinolate related compounds in
Arabidopsis (methionine-derived aliphatic glucosinolate and
tryptophan-related aromatic glucosinolate); purple, indicates glycoalkaloid;
gray, putative sterol derivative; black, unknown compounds. The m/z value
detected in negative ion detection is indicated between parentheses. Average
of three experimental replicates ±SD. Significant differences by t -test
(p < 0.05) are marked by asterisks.

out of the cells into the methanol–water mix and are therefore
lost when the quenched cells are harvested by centrifugation (data
not shown, see also Krall et al., 2009). This means that metabolites

from the cells must be analyzed in a matrix that contains methanol
and all the components of the suspension medium. Because the
Chlamydomonas cells are quite diluted, components of the growth
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FIGURE 4 | Example of ion suppression caused by growth media. (A–C)
A standard mix containing all measured metabolites was mixed with
individual components of the growth media to identify which component(s)
of the growth media most severely influence ionization during electrospray
ionization (ESI). (A) The standard mix was mixed with the whole growth
medium (dark gray) and independently with the medium components
Hepes, K-phosphates, trace salts, and Beijerinck salts (light gray). (B) In a
second experiment, the individual components of the Beijerinck salts were
tested for ion suppression and enhancement. Standards were mixed to all

Beijerinck salts (dark gray) and independently to its components CaCl2,
MgSO4, and NH4Cl (light gray). (C) A third experiment investigated if the
anion or the cation was responsible for ion suppression caused by
ammonium chloride. Standards were mixed to NH4Cl (dark gray), NH4HCO3,
or NaCl (light gray). The data is shown as box plots of the average values
(calculated from three technical replicates) for 24 metabolites. Significant
outliers (p < 0.05) are identified in the figure panels. For a complete list of
percentage of ion suppression and enhancement for all metabolites see
Table A1 in Appendix.

medium are present in rather large amounts compared to metabo-
lites in the cells. Unfortunately, some components of the growth
medium lead to ion suppression.

We were alerted to ion suppression by three routine checks.
First, comparison of the spectrum of metabolites with those

expected from earlier studies of metabolites during photosynthesis
in Arabidopsis showed low levels of several metabolites. Second, we
checked whether the signal for each metabolite shows a strictly lin-
ear relationship to the amount of extract applied. In the case of ion
suppression, the estimated levels of many metabolites decreased
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Table 1 | Ion suppression mainly caused by growth media.

I II III IV V

Methanol − + − + +
Growth media − − + + +
Cells − − − − +
RuBP 100 96 110 106 165

Citrate 100 107 104 104 128

FBP 100 102 96 98 115

SBP 100 102 101 98 111

AMP 100 105 94 94 110

ADPG 100 97 101 100 109

ADP 100 137 89 116 107

2OG 100 117 86 84 101

NADP 100 98 99 97 98

Malate 100 95 94 96 94

Isocitrate 100 98 96 101 93

Aspartate 100 104 134 131 92

Glutamate 100 100 88 90 90

DHAP 100 125 86 86 85

NAD 100 115 77 76 84

Aconitate 100 103 92 93 83

UDPG 100 106 65 64 83

X5P/Ru5P 100 119 77 85 83

S7P 100 108 88 90 74

G1P 91 97 70 75 nd

F6P 100 108 78 79 73

Glycerate 100 119 72 71 66

R5P 100 115 67 70 55

G6P 100 110 35 35 39

Standards were mixed to methanol and growth media independently or together

(column II–IV). In addition, standards were mixed to Chlamydomonas reinhardtii

CC1690 cells grown in growth media and quenched by methanol (column V).

Values represent recovery ratios for all standards (n = 3, SD of raw data <18%).

when more samples were applied. Third, we checked the recovery
of authentic standards added to the extract and found it was very
low.

Attempts to analyze high concentrations of sample resulted
in an almost complete suppression of all metabolite signals,
including those of spiked standards (Figure A1 in Appendix).
A five-time dilution allowed an average of 87–93% recovery of
the spiked standards (Table 1; Figure 4). However, there was
still a residual ion suppression, and this varied from metabo-
lite to metabolite (Table 1). This obviously still prevents reli-
able and comparable analysis of metabolite levels. We there-
fore carried out a further series of experiments to identify the
major sources of ion suppression, in order to modify the growth
medium and circumvent this problem. To show that ion sup-
pression was caused by components of the growth medium and
not the biological sample itself or the methanol, we first mixed
known amounts of standards with either methanol and/or the
growth media compared to the same known amounts of stan-
dards mixed with a sample containing Chlamydomonas cells
(Table 1). For more than half of the metabolites, <15% of the

signal was suppressed by the media, but for many other metabo-
lites including dihydroxyacetone-phosphate (DHAP), fructose-6-
phosphate (F6P), glycerate, NAD+, ribose-5-phosphate (R5P),
sedoheptulose-7-phosphate (S7P), UDP-glucose (UDPG), and
xylulose-5-phosphate/ribulose-5-phosphate (X5P/Ru5P) the sig-
nals were reduced by 15–50%. For G6P ion suppression caused a
decrease of intensities by >50%. Therefore, for all these metabo-
lites the absolute values have to be treated with extreme caution.
Further, small changes in the extent of ion suppression can lead to
changes in the relative signals for the various metabolites. It almost
goes without saying that mixing ISs of these metabolites to each
sample would allow a much more precise determination of their
absolute amounts.

To minimize such errors, we systematically investigated which
of the salts in the medium could contribute to the loss of sig-
nal due to ion suppression or ion enhancement during ioniza-
tion by ESI. The growth media used in this study consisted of
Hepes, K-phosphates, Beijerinck salts, and trace salts (for details
see Materials and Methods). A sequence of experiments was per-
formed to unravel the effects of the individual salts from this
growth media (Figure 4, for details see Table A1 in Appen-
dix). Hepes, K-phosphate, and the trace salt solution had only
minor ion suppression effects (Figure 4A, for details see Table A1
in Appendix). Hepes caused significant ion suppression of G6P
but less than the Beijerinck salts. K-phosphates caused weak but
significant ion induction of ADP, and FBP, RuBP, SBP, aconi-
tate, and isocitrate. The trace salt solution caused overestima-
tion of aspartate due to ion enhancement. However, most of
the ion suppression observed due to the growth media in the
sample could be attributed to the Beijerinck salts present in the
media (Figure 4A). In a second experiment, ammonium chlo-
ride, one component of the Beijerinck salts, was shown to be
responsible for the major part of the residual ion suppression
whereas MgSO4 and CaCl2 had minor effects (Figure 4B). In
a third experiment, the chloride anion was found to be the
main reason why ammonium chloride causes ion suppression
(Figure 4C). From the 24 metabolites routinely measured with
this method, the signal of 10 was significantly suppressed in the
presence of the Beijerinck salt (Figure A1 in Appendix). With
the exception of UDPG which was found to be suppressed by
MgSO4, the chloride anion in the growth media was found to
be responsible for ion suppression. Thus, simply replacing the
chloride anion with bicarbonate greatly decreased ion suppression
(Figure 4C).

For subsequent measurements a growth medium with lower
ammonium chloride concentration was used (Figure 1). Alterna-
tively, a medium in which ammonium chloride is replaced with
ammonium bicarbonate could be used or, as mentioned earlier
ISs for each metabolite could be added to the sample to assure
accurate metabolite measurements. This example shows that dif-
ferent degrees of ion suppression, both with respect of individual
metabolites and with respect to different samples, can be gener-
ated by differences in growth conditions and culture components.
These results imply that erroneous results will also be obtained if
such changes occur as a result of growing algae in different con-
ditions, or are generated in time as a result of the algae using
nutrients.
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The specific issue with growth medium components does not
arise with higher plants. Nevertheless, this example serves as a
warning that differential ion accumulation in plant tissues might
affect ion suppression. In attempt to circumvent this problem
the total ion chromatogram should be carefully checked in areas
which appear to be strongly affected. If strong ion suppression is
observed, both dilution and recovery tests in which standard com-
pounds are added to the extracts should be performed (see Fernie
and Keurentjes, 2011). More generally, such problems can be iden-
tified by routine checks that the signal is linear with the amount of
applied extract and (where available) that authentic samples can
be quantitatively recovered after addition to the extract.

ION SUPPRESSION EFFECTS CAUSED BY DIFFERENT TISSUE TYPES
Metabolite composition varies between plant species and also
between different tissues of the same plant. It is therefore expected
to observe different levels of ion suppression within these samples.
To evaluate this, an IS mixture (sinigrin, isovitexin, and saponarin)
was added to the same volume (ratio 1/1) of extracts from Ara-
bidopsis leaves, tomato fruits, and rice leaves, respectively. This
was performed with four different known concentrations of the IS
mixture with three experimental replicates of the step of mixing
solutions. As control, the 50% diluted original standard mixture
was also analyzed without being mixed with plant extract. Peak
areas for each IS were determined and are presented in Figure 5.
For all IS compounds, the strongest ion suppression was observed
when they were added to rice leaves, followed by Arabidopsis leaves,
and the lowest was seen for tomato fruit extracts. As expected, the
ion suppression in a mixture of Arabidopsis leaf and tomato fruit
extracts (ratio 1/1) was intermediate to what was observed in the
corresponding independent extracts.

Plant material used for metabolic determination is often a
mixture of tissues. For example, plant seedling is a mixture of
hypocotyl and root, or fruit samples are a mixture of pericarp,
seed, and peel. Ion suppression caused by differences between tis-
sue types, in comparative analysis between mutants, transgenic,
time course, and stress treatment is relatively minor. But in case of
comparison between different plant species (as shown above with
Arabidopsis and rice leaves), wild accessions which have important
phenotypical differences, or mutants with strong phenotypic dif-
ferences, such problems due to differential ion suppression could
easily arise. For example, seedling samples that differ in the rela-
tive amount of shoot/root or hypocotyl/root might be particularly
susceptible to differential ion suppression. The same problem is
raised in the case of harvesting flower samples with a varying ratio
of flower/sepal and/or (flower/pedicel).

To evaluate this problem, recombination analyses (Fernie and
Keurentjes, 2011) were evaluated using Arabidopsis samples con-
taining various ratio of leaves and roots or flower extracts, focusing
on the general secondary metabolites which were detected in both
tissues. The percentage recovery was simply estimated for evalua-
tion using theoretical concentration of extracts mixture, [(level in
leaves × A%) + (level in roots (or flowers) × B%)]/100] (Table 2).
Mixture of different tissue types results in >100% recovery (i.e.,
less ion suppression) for some peaks (e.g., IS), presumably because
the area which is strongly suppressed differs between leaf and
root extracts. Increase of recovery was observed in some peaks

FIGURE 5 | Example of ion suppression caused by plant extracts.
Standard solutions (20, 10, 5, 1 μg ml−1) of three standard compounds, (A)
sinigrin, (B) saponarin, and (C) isovitexin, were mixed to the same volume
of plant extracts (0.2 mg FW μl−1) of Arabidopsis leaves, tomato fruits, rice
leaves and mixture of Arabidopsis leaves and tomato fruits (ratio 1/1).
Average and ±SD were calculated from three experimental replicates.

(<117%) at an equivalent mixture of leaf and root extracts. On
the other hand, recovery ratio in mixture of leaves and flowers
showed more significant variance (43 ∼ 122%). This experiment
highlights the value of preliminary analyses in order to check for
ion suppression. It is furthermore useful to understand the range
of variance in instances in which the value of IS is unstable between
samples.

CHEMICAL DIVERSITY AND PEAK ANNOTATION USING CROSS SPECIES
COMPARISON
Many metabolite databases for LC–MS are available, such as
MASSBANK (Horai et al., 2010), METLIN (Smith et al., 2005),
MS2T (Matsuda et al., 2009), KNApSAcK (Shinbo et al., 2006),
and Flavonoid Viewer (Arita and Suwa, 2008). These greatly aid in
the prediction and annotation of detected peaks (Tohge and Fer-
nie, 2010). That said, technical improvement of peak identification
and annotation still represents a major hurdle for LC–MS-based
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Table 2 | Recovery test with mixture of extract of leaves, roots, and flowers.

Tissue type

Leaves (%) 100 90 80 50 20 10 100

Roots (%) 0 10 20 50 80 90 0

Compound m/z Recovery (%)

Saponarin (IS) 593 100 103 101 100 100 104 100

Isovitexin (IS) 431 100 104 107 113 113 111 100

Kaempferol-3Glc2′′Rha-7Rha 741 100 104 102 105 106 108 100

Kaempferol-3Glc-7Rha 595 100 103 100 99 100 103 100

Kaempferol-3Rha-7Rha 577 100 104 104 111 111 106 100

Quercetin-3Glc-7Rha 609 100 103 101 96 94 94 100

Sinapoyl glucoside 385 100 114 111 116 115 111 100

7-methylsulfinylheptyl glucosinolate 478 100 106 109 115 117 111 100

8-methylsulfinyloctyl GLS 492 100 101 97 100 102 100 100

Leaves (%) 100 90 80 50 20 10 100

Flowers (%) 0 10 20 50 80 90 0

Compound m/z Recovery (%)

Saponarin (IS) 593 100 93 87 68 52 55 100

Isovitexin (IS) 431 100 109 111 122 116 116 100

Kaempferol-3Glc2′′Rha-7Rha 741 100 98 92 77 64 70 100

Kaempferol-3Glc-7Rha 595 100 93 87 68 52 55 100

Kaempferol-3Rha-7Rha 577 100 100 99 95 100 108 100

Quercetin-3Glc-7Rha 609 100 98 88 66 46 43 100

Sinapoyl glucoside 385 100 105 108 109 111 113 100

7-methylsulfinylheptyl glucosinolate 478 100 100 95 90 91 102 100

8-methylsulfinyloctyl GLS 492 100 99 94 81 70 80 100

The peaks which were detected in leaves, roots, and flowers, were used for recovery test. The percentage recovery was estimated for evaluation using theoretical

concentration of extracts mixture, [(level in leaves ×A%) + (level in roots (or flowers) × B%)]/100], respectively. Three internal standard compounds, saponarin and

isovitexin were used. Analysis was evaluated by three experimental replicates. (n = 3, SD of raw data <25.7%).

metabolite profiling platforms. The identification of secondary
metabolites is obstructed by the insufficient availability of stan-
dard compounds. It is impossible to comprehensively purchase
standard substances since the diversity of their chemical struc-
ture is far too large. Moreover, complex compounds are largely
unavailable commercially and those that are available are often
prohibitively expensive. Furthermore, LC–MS studies are compli-
cated by the fact that the levels of secondary metabolites are highly
divergent between different organs, growth conditions, and species
(Petersen, 2007; Hanhineva et al., 2008; Matsuda et al., 2010). For
these reasons, peak identification is generally performed by the
use of combinatorial strategies whereby the literature information
is taken alongside available compounds in an attempt to identify
specific peaks (see for example Tohge et al., 2005; Giavalisco et al.,
2009).

Given the recent explosion of genome information afforded
firstly by microarray analyses and more recently by next-
generation sequencing (review of (Schneeberger and Weigel,
2011), further tools for translational biology are becoming avail-
able. One such example, PlaNet, was described recently by Mutwil
et al. (2011). Following this approach gene sequences can be con-
nected between plant species on the basis of BLAST homology
searches and then the positions in co-expression networks can
be ascertained and finally it is possible to link unknown genes

to annotated metabolic genes. As such this approach holds great
promise both for gene functional annotation and via use of mutant
plants in the annotation of unknown metabolites (Tohge and
Fernie, 2010; Mutwil et al., 2011). It demonstrated the utility
of this approach by identifying candidate genes of the general
and species specific flavonoid pathways. It is likely that integrat-
ing metabolomics data on all the species currently in PlaNet will
greatly aid this process and is certainly a research avenue that
should be pursued in the near future.

CONCLUSION
Whilst applying a method established for another species is likely
not to be overly problematic for screening purposes and for a first
insight into the metabolome of an organism, the examples pre-
sented here demonstrate that when more precise information is
required considerable effort should be put into establishing both
the qualitative and quantitative reliability of any LC–MS-based
metabolic profiling method. As evidenced by the ion suppres-
sion (and ion enhancement) examples particular care must be
taken with this issue as well as in ensuring that the extraction
procedure is appropriate for the tissue under study. Once these
important controls have been adhered to a wide array of compu-
tational resources are available (Tohge and Fernie, 2009), which
will greatly aid in translational research. Given that the trend
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in plant science research is to move away from the single model
species of A. thaliana, such tools will become increasingly impor-
tant. However, it is prudent to note that uncritical use of such
tools without adequate controls of the type demonstrated here
may well result in inaccurate representations of the metabolome.
The best way to approach a new tissue, species, or even a dramatic
mutant/transgenic line is to adopt both experimental and compu-
tational approaches to ensure the highest possible data quality.
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APPENDIX

Table A1 | Ion suppression of growth media mainly caused by ammonium chloride.

Components of growth media Beijerinck salts Kation and anion

of NH4Cl

Growth media HEPES K-phosphates Trace

salts

Beijerinck

salts

CaCl2 MgSO4 NH4Cl NH4HCO3 NaCl

2-OG −19.2** −4.4 −12.6* −3.8 −19.0* −2.8 −10.3 −9.6* −6.8 −10.9*

Aconitate −2.7 5.4 13.2* 0.9 2.4 2.9 1.3 1.2 11.4 5.4

ADP 9.1 5.7 24.2* 3.0 9.5 7.3 9.7 8.2 19.6 12.4

ADPG 3.7 −0.7 3.8 0.0 6.1 1.3 3.0 1.2 2.5 1.3

AMP −6.6 −3.2 −7.1 −3.6 −5.6 −0.6 4.5 2.5 2.6 0.0

Aspartate 69.5** −3.5 −1.8 88.5** 7.5 −2.0 −0.7 2.6 −8.9 6.1

Citrate −8.0 −2.5 −2.7 1.9 −5.2 0.5 −1.8 −6.9 −9.7 −6.9

DHAP −37.8* −5.1 −5.9 12.1 −36.5** −11.2* 0.2 −23.5** −3.3 −24.9**

F6P −35.1* −4.9 −4.1 −4.4 −23.9** −6.4 5.4 −24.0** −8.4* −25.4**

FBP 0.5 6.8 21.8* 8.9 6.0 6.2 7.3 5.4 12.5 6.5

G1P −30.8* −3.4 −3.4 12.4 −15.1 −8.8 0.8 −4.8 −4.0 0.2

G6P −59.7** −17.0* −5.6 10.0 −59.6** −10.4* 1.3 −60.7** −4.9 −61.0**

Glutamate 6.4 −2.5 −1.8 6.5* 11.6** −1.9 1.7 7.8 −6.9 8.3

Glycerate −20.6 −1.6 −10.0 4.2 −21.2* −5.8 −7.8 −22.9** −16.2 −20.1**

Isocitrate 6.8** 1.0 6.8** 3.5 −6.0 −0.7 −4.0 −2.1 3.9 −4.6

Malate −3.3 −2.0 0.9 1.7 −7.5 −6.8 −5.2 −3.6 −1.8 −3.1

NAD −27.9** −2.3 −3.6 −7.1 −24.5** −4.5 2.7 −10.8** 2.2 −12.9**

NADP 9.5 3.9 16.7 8.3 6.0 3.6 3.5 6.7 14.6* 7.2

R5P −44.2** −6.8 −5.7 9.6 −41.9** −17.7* 0.9 −36.1** −5.1 −35.7**

RuBP 9.9* 6.8 18.8* 7.8 10.7 3.1 9.1 6.1 13.3 8.5

S7P −27.5* −3.4 −4.6 7.9 −17.8** −11.4** 1.1 −14.8* −1.0 −14.9*

SBP −5.8 4.6 16.2* 3.1 5.6 4.5 8.2 6.7 14.3 10.4

UDPG −12.7** −5.1 −3.1 −1.9 −18.5* 1.5 −18.2** −2.8 1.8 −1.2

X5P/Ru5P −26.1 6.9 13.8 27.2 −23.5** 0.6 9.6 −24.7** −3.3 −18.5**

Raw data of Figure 4. Values are expressed as % ion suppression (x < 0) or % ion enhancement (x > 0) respectively, according to the formula by Buhrman et al.

(1996): x = 100 *(observed concentration-expected concentration)/ expected concentration Blue, significant ion suppression; red, significant ion enhancement; two

asterisks: Student’s t-test: p < 0.01; one asterisk, Student’s t-test p < 0.05 (n = 3). Abbreviations of metabolites according to Figure 1.
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FIGURE A1 | Sample dilution led to decreased ion suppression.
Illuminated Chlamydomonas reinhardtii CC-1690 suspension was
quenched, harvested, and extracted as in Figure 1. Four different
dilutions of the extract (diluted with water) were then spiked with a
reference standard mix and compared to the standard mix on its own to
assess the extent of ion suppression. The fivefold dilution was selected for
experiments shown in Figures 1 and 4;Table 1 as for several metabolites
the 10-fold dilution was below detection limit. Note that the average of ion
suppression was 77% for the fivefold dilution in this experiment. For
experiment shown in Figures 1 and 4;Table 1, the average ion suppression
for the fivefold dilution was <13%. This improvement was vey likely
achieved by using a quadrupole (Finning TSQ Quantum Ultra) with a larger
ion transfer tube diameter. The plot shows the mean ion suppression for 24
metabolites, each measured with two technical replicates, ±SD.
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enzymes (van Kan, 2006) – and thrive on the dead plant mate-
rial, biotrophic pathogens strictly rely on living tissue to survive 
and complete their life cycle (Divon and Fluhr, 2007). In contrast, 
hemibiotrophs establish themselves during an initial biotrophic 
phase before necrotrophic growth is initiated (Mendgen and Hahn, 
2002; Münch et al., 2008). In general, infection sites of biotrophic 
fungi represent strong local metabolic sinks that drain nutrients 
from the host environment. Evidence obtained for the rust fungus 
Uromyces fabae suggest that nutrients are mainly taken up as hexoses 
(generated by secreted fungal invertase) and amino acids (Hahn 
et al., 1997; Voegele et al., 2001; Struck et al., 2002, 2004). Recently, 

Introduction
Substantial effort is being devoted to gain insight into plant–
pathogen interactions to improve crop plants for sustainable agri-
culture. Phytopathogenic bacteria and fungi drive their own cellular 
metabolism with substrates being diverted from the colonized and/
or surrounding host cells. Nutrient acquisition from the host cells 
is crucial for the successful establishment of bacterial and fungal 
pathogens (reviewed by Divon and Fluhr, 2007). Plant–pathogens 
have evolved different strategies to divert nutrients from their plant 
hosts. While necrotrophic pathogens rapidly kill plant tissue usually 
by the secretion of highly efficient toxins and cell wall degrading 
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During compatible interactions with their host plants, biotrophic plant–pathogens subvert 
host metabolism to ensure the sustained provision of nutrient assimilates by the colonized 
host cells. To investigate, whether common motifs can be revealed in the response of 
primary carbon and nitrogen metabolism toward colonization with biotrophic fungi in cereal 
leaves, we have conducted a combined metabolome and transcriptome study of three quite 
divergent pathosystems, the barley powdery mildew fungus (Blumeria graminis f.sp. hordei), 
the corn smut fungus Ustilago maydis, and the maize anthracnose fungus Colletotrichum 
graminicola, the latter being a hemibiotroph that only exhibits an initial biotrophic phase during 
its establishment. Based on the analysis of 42 water-soluble metabolites, we were able to 
separate early biotrophic from late biotrophic interactions by hierarchical cluster analysis and 
principal component analysis, irrespective of the plant host. Interestingly, the corresponding 
transcriptome dataset could not discriminate between these stages of biotrophy, irrespective, 
of whether transcript data for genes of central metabolism or the entire transcriptome dataset 
was used. Strong differences in the transcriptional regulation of photosynthesis, glycolysis, 
the TCA cycle, lipid biosynthesis, and cell wall metabolism were observed between the 
pathosystems. However, increased contents of Gln, Asn, and glucose as well as diminished 
contents of PEP and 3-PGA were common to early post-penetration stages of all interactions. 
On the transcriptional level, genes of the TCA cycle, nucleotide energy metabolism and amino 
acid biosynthesis exhibited consistent trends among the compared biotrophic interactions, 
identifying the requirement for metabolic energy and the rearrangement of amino acid pools 
as common transcriptional motifs during early biotrophy. Both metabolome and transcript 
data were employed to generate models of leaf primary metabolism during early biotrophy 
for the three investigated interactions.
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a novel high-affinity U. maydis sucrose transporter Srt1 has been 
characterized, which is required for full virulence (Wahl et al., 2010). 
Effective nutrient provision by host cells is necessary to establish a 
compatible interaction with biotrophs, as indicated by increased 
resistance of the variegated barley albostrians mutant toward pow-
dery mildew fungus or by increased resistance of Arabidopsis over-
expressing invertase inhibitors toward clubroot disease (Jain et al., 
2004; Siemens et al., 2011). In addition, it was recently found that the 
induction of sugar efflux carriers in infected tissue by TAL-effectors 
of the bacterial rice pathogen Xanthomonas oryzae pv. oryzae (Xoo) 
is required for pathogenicity (Chen et al., 2010).

Vice versa, a vast array of fungal genes coding for metabolic 
enzymes was found to be induced upon host colonization, provid-
ing evidence that pathogen metabolism adapts to the host environ-
ment and nutrient availability (as reviewed by Divon and Fluhr, 2007). 
Despite its importance for hexose provision to the invaders, the induc-
tion of invertases, and the concomitant increase in free hexoses can 
serve as a signal for the repression of photosynthetic gene expression 
(as reviewed in Biemelt and Sonnewald, 2006). Furthermore, elevated 
hexose contents constitute an important cue in defense signaling (as 
reviewed by Bolton, 2009). Similarly, the support of the host defense 
response by the provision of reducing equivalents in the cytosol via 
glucose-6-phosphate dehydrogenase (G6PDH) seems to be an essen-
tial metabolic process that heightens defense effectiveness (Scharte 
et al., 2009). In Arabidopsis, strong evidence has been gathered that 
lipid metabolism in the chloroplast is involved in regulating the bal-
ance between SA- and JA-mediated defense responses and the induc-
tion of the hypersensitive response, HR (Kachroo et al., 2003; Chanda 
et al., 2008; Chaturvedi et al., 2008; Raffaele et al., 2008).

Although metabolic processes are important determinants of 
compatibility during plant–pathogen interactions, our knowl-
edge on metabolic compatibility factors is scarce. Nevertheless, an 
increase in the sucrose/hexose ratio (Chou et al., 2000; Swarbrick 
et al., 2006) and elevated contents of nitrogen storage amino acids 
Gln and Asn (Olea et al., 2004; Tavernier et al., 2007; Horst et al., 
2010a) have frequently been observed during biotrophic interac-
tions, nourishing the hypothesis that a direct or indirect metabolic 
reprogramming of host metabolism occurs during the establish-
ment of fungal biotrophs on their hosts. Employing comparative 
metabolome analysis, our study aims at identifying metabolic pro-
cesses that are commonly altered during compatible interactions 
of biotrophic fungal leaf pathogens with agriculturally relevant 
cereal hosts. Pathosystems were selected to maximize biological 
diversity in the analyzed interactions and to minimize the chance 
of identifying effects specific to certain subclasses of pathogens. 
First, we have chosen to compare the response of barley, a C

3
-plant, 

with that of maize, a C
4
 plant, and second, the biotrophic lifestyle 

of the three fungal pathogens is quite diverse.
Ustilago maydis (Um), the causal agent of corn smut disease, 

is a biotrophic basidiomycete parasitizing maize and its natural 
ancestor teosinte. It can induce the formation of tumors on all aerial 
organs (Banuett, 1995) and exhibits a dimorphic lifestyle (Kahmann 
and Kämper, 2004): While haploid sporidia are not infectious and 
grow saprophytically in a yeast-like manner, filamentous growth 
is initiated upon mating of two compatible sporidia on the plant 
surface. Filamentous hyphae quickly form appressoria that pen-
etrate host cells. Immediately upon host entry at around 24 h post 

inoculation, the invading biotrophic hyphae grow both inter- and 
intra-cellular without disrupting the host plasma membrane. About 
4 days after penetration, the formation of hypertrophic host cells 
and concomitant tumor development are induced, while the fungal 
hyphae start proliferating in the apoplastic spaces that develop as a 
consequence of cell wall degradation and induced host cell enlarge-
ment (Doehlemann et al., 2008a,b).

Blumeria graminis f.sp. hordei (Bgh) is an obligate biotroph that 
causes powdery mildew disease on barley. Germination of wind-dis-
persed Bgh conidia on the barley leaf surface first produces a short 
primary germ tube prior to the formation of the infectious secondary 
germ tube, at the tip of which a hooked appressorium is formed. From 
the appressorium, a penetration peg is ejected within 15 h post inocu-
lation (Hückelhoven et al., 1999; Both et al., 2005) that penetrates 
cuticle and wall of the host epidermis cell beneath and subsequently, 
a haustorium is established in the periplasmic space of the colonized 
host cell that serves as a strongly invaginated feeding organ. Unlike U. 
maydis hyphae that grow filamentously through the colonized maize 
tissue, only the haustoria of Bgh reside inside the infected leaf, while 
the predominant portion of fungal hyphae are growing epiphytically, 
occasionally forming secondary haustoria in adjacent epidermal cells. 
Eventually at 5 days post inoculation, conidiophores emerge from the 
epiphytic mycelium that shed series of conidiospores from their tips.

In contrast to U. maydis and Bgh, the maize pathogen 
Colletotrichum graminicola leads a hemibiotrophic lifestyle (as 
reviewed by Bergstrom and Nicholson, 1999; Mendgen and Hahn, 
2002; Münch et al., 2008). Rain-dispersed conidia land on the leaf 
surface, produce germ tubes, which then differentiate sophisticated 
appressoria. During maturation, appressoria form rigid cell walls 
which melanize and synthesis of high concentrations of compat-
ible solutes results in generation of enormous appressorial turgor 
pressure by diffusion of water into the appressorium. At the appres-
sorial base, turgor pressure is translated into mechanical force that 
breaches the host cell wall. In the penetrated host epidermis cells, C. 
graminicola establishes itself as a biotroph within 36 h post inocula-
tion by forming an infection vesicle that produces lobed biotrophic 
primary hyphae. During the subsequent colonization of neighbor-
ing cells at around 72 h post infection, the formation of narrow-
bore secondary hyphae is initiated, which grow rapidly, are highly 
destructive and represent the necrotrophic lifestyle of the pathogen.

Thus, our set of fungal pathogens extends (i) an obligate bio-
troph that nourishes via epidermis-localized haustoria, Bgh, (ii) a 
biotroph that colonizes the entire leaf tissue by intra- and inter-
cellularly growing hyphae, Um, and (iii) a hemibiotroph, Cg, that 
switches from biotrophic colonization of epidermis cells to vast 
proliferation by necrotrophic hyphae throughout the entire leaf.

Materials and methods
Plant and fungal cultivation and infection conditions
For combined metabolite and transcript profiling experiments, 
Zea mays cv. Early Golden Bantam was cultivated as described in 
(Doehlemann et  al., 2008a) and infected with U. maydis strain 
SG200 as described by Doehlemann et  al. (2008a) or with C. 
graminicola strain CgM2 as described in Münch et al. (2011).

Combined metabolite and transcript profiling experiments with 
barley (cv. Golden Promise) after challenge with Bgh isolate B6 were 
conducted as described in Molitor et al. (2011).
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Principle component analysis of log-transformed metabolite 
ratios was performed with the MarkerView software (Version 
1.1.0.7, Applied Biosystems, Foster City, CA, USA) using the 
autoscale algorithm for scaling.

Results
Experimental design and sampling strategy
The sampling time points in all three pathosystems were carefully 
adjusted to the on planta development of the respective patho-
gen and to the diurnal light/dark cycles of the growth regimen 
(Figure 1). For every interaction, infected leaves were harvested 
at two crucial stages: (i) shortly after the establishment of bio-
trophy and (ii) at time points late in the biotrophic interaction, 
with a corresponding sampling time point during necrotrophic 
colonization by C. graminicola at 96hpi serving as a reference for 
non-biotrophic colonization. To minimize artifacts by diurnal 
oscillations of metabolite contents, leaf material harvested at the 
end of the subjective light phase was prioritized for comparative 
analysis described below.

To produce leaf infections of barley (cv. Golden Promise) and 
maize (cv. Early Golden Bantam) with Bgh and Cg, respectively, 
expanding leaves of young plants were inoculated with conidia 
of Bgh and Cg. In contrast, the infection of Early Golden Bantam 
with Um was performed by injecting sporidia suspension into the 
leaf canal with a syringe, giving rise to infections on meristematic 
tissue of developing leaves. For all three interactions studied, tar-
geted analysis of 42 metabolites of central carbon and nitrogen 
metabolism as well as major low-molecular antioxidants was con-
ducted in four biological replicates per time point and treatment 
in three independent experiments. For each of the independent 
experiments, material from all four biological replicates used for 
metabolite determination was pooled for subsequent transcriptome 
analysis (as described by Doehlemann et al., 2008).

Comparative metabolome analysis
Since the aim of our work was to assess, whether common metabolic 
signatures of biotrophy can be identified in cereal leaves during 
compatible interactions with fungal leaf pathogens, we first tried 
to identify similarities between the patterns of the 42 determined 
metabolites by HCA. As our goal was comparing the dynamics of 
host metabolism, we employed metabolite ratios between infected 
and mock control leaves for the HCA analysis, in order to avoid 
complications by species and experiment specific variation in steady 
state contents of metabolites. Table S1 in Supplementary Material 
contains a compilation of the individual metabolite contents ± SE 
and the calculated metabolite ratios infected/mock  ±  SE for all 
three replicate experiments for all time points and pathosystems 
analyzed. For the sake of clarity, only two of the three replicate 
datasets were used for subsequent multivariate data analysis, with 
the results remaining comparable.

In the HCA, three major clusters could be distinguished that 
correspond to three different types of interaction (Figure  2). 
The most prominent cluster contained samples derived from U. 
maydis-induced tumors, irrespective, whether the samples were 
taken at the beginning (Um 108hpi) or at the end of the subjec-
tive light phase (Um 96hpi and Um 192hpi), and independent of 
the developmental state of the tumors. This indicates that tumor 

Transcriptome analysis by DNA microarray
Transcriptome data from U. maydis-infected maize leaf tissue was 
obtained from the same set of material described in Doehlemann 
et al. (2008a), which is deposited in the Gene Expression Omnibus1 
under the accession number GSE10023. The transcriptome data-
set of Bgh infected barley leaves represents the same dataset as in 
Molitor et al. (2011). Transcriptome data for C. graminicola infected 
maize leaves (infection procedure as in Münch et al., 2011) were 
obtained as described in Doehlemann et al. (2008a) and are depos-
ited in the Gene Expression Omnibus (see text footnote 1) under 
the accession number GSE31188. If not stated otherwise, a low 
stringent threshold of >1.5-fold change with no p-value filter was 
used for comparative analyses of transcriptome data.

Matching of barley and maize microarray data
To connect the transcripts from different microarray platforms, we 
used the microarray platform translator on the PlexDB homepage2. 
The transformation was performed with the default settings.

Calculation of MapMan BIN enrichment and subsequent HCA
The tool MapMan (Thimm et al., 2004) adapted for maize and bar-
ley Affymetrix microarrays was used to visualize the transcriptome 
data that was obtained as described above. For the analysis, the 
mean values from all three replicate experiments were employed. 
To calculate the percentage of regulated genes per MapMan BIN of 
primary carbon and nitrogen metabolism, the number of regulated 
features with fold change >2.0 was expressed as percentage of total 
number of features in the respective BINs, to enable a compari-
son of maize and barley data that do not share the same number 
of accessions per BIN. Percentage up-regulated and percentage 
down-regulated features were scored separately and used for hier-
archical cluster analysis (HCA) analysis after log transformation, 
median centering, and normalization as described for metabolite 
data below.

Metabolite quantification and analysis
For all three interactions analyzed in this report, metabolite con-
tents were determined in three independent experiments from 
subsets of the leaf material pools that were employed for tran-
scriptome analysis, such that material of four independent samples 
for metabolite analysis were pooled to generate one sample pool 
for transcript analysis per time point. All metabolite assays were 
conducted as described by Horst et al. (2010a).

Multivariate data analysis
Mean values of the four biological replicates taken per time point 
and experiment were calculated for all individual metabolites prior 
to calculating the metabolite ratio between infected vs. non-infected 
tissue, which was employed for HCA. After log transformation of 
the data, median centered ratios were normalized and HCA was 
performed using the complete linkage algorithm of the program 
Cluster V2.11 (Eisen et al., 1998) and the results were visualized 
using Maple Tree3.

1http://www.ncbi.nlm.nih.gov/geo/
2http://www.plexdb.org/modules/MPT/mpt_help.php#overview
3http://mapletree.sourceforge.net/
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Identification of metabolite determinants specific for 
interaction stages
The obtained results indicate that there must be certain metabo-
lites, which can be used to discriminate the three major clusters 
produced in the HCA. Therefore, we conducted a principal com-
ponent analysis (PCA) to identify those metabolite changes that 
contribute most to the distinction between early post-penetration 
(Cg 36hpi and Bgh 24hpi), established biotrophic interaction (Um 
48hpi and Bgh 96hpi) and U. maydis-induced tumors. As already 
suggested by the HCA, principal component 1 (PC1), explaining 
41% of the variation, distinguished U. maydis tumor samples from 
the rest (Figures 3A,B). Including the time point 108hpi sampled at 
dawn did not affect the clustering (not shown). As inferred from the 
metabolite loading scores, Glc, Asn, Ser, Tyr, Gln, and Arg showed 
the strongest positive distinction, while 3-PGA, PEP, and pyroph-
osphate exhibited the strongest negative loading in the U. maydis 
tumor samples. PC2, explaining 17% of the variance, separated the 
necrotrophic interaction (Cg 96hpi), indicating substantial differ-
ences in the metabolite pattern to all other samples (Figure 3B), 
which was reflected by a strong positive loading of the phosphoryl-
ated intermediate F16bP and negative loading of the major amino 
acids Asp, Ala, and Glu. Finally, PC3, corresponding to 13% of the 
overall variance, was able to subdivide the early biotrophic interac-
tion time points (above the abscissa) from leaves with established 
biotrophy (below the abscissa, Figure 3B). Branched-chain amino 
acids, Gly, and His as well as phosphorylated intermediates of car-
bohydrate metabolism, G16bP, RubP, G1P, UDPglc, pyrophosphate, 
and the end product sucrose were the most important metabolites 
to separate these interaction stages from one another.

In general, we have observed numerous metabolite changes at 
most interaction stages (Tables 1 and 2), and therefore we analyzed 
not only the differences between the early interaction phase (Cg 
36hpi and Bgh 24hpi) and established biotrophy (Um 48hpi and 
Bgh 96hpi), but also assessed common metabolite dynamics among 
these stages. Looking only at those metabolites that changed in aver-
age more than 1.4-fold in all four situations of interest (Cg 36hpi, 
Bgh 24hpi, Um 48hpi, and Bgh 96hpi), we could identify glucose 
and the nitrogen storage amino acids Glutamine and Asparagine 
being consistently increased, while the glycolytic intermediate PEP 
and the Calvin cycle intermediate 3-PGA were commonly decreased 
(Table 1). This might indicate that the balance between carbon and 
nitrogen metabolism and respiration is already readjusted early 
during compatible interactions. As indicated by the low number 
of metabolites that were consistently altered more than 1.4-fold in 
infected leaves in all three pathosystems, the stringency of the inter-
species comparison needs to be low in order to identify common 
metabolic changes. For the vast majority of the regarded biotrophic 
interaction stages, changes in the abovementioned five metabolites 
were statistically significant in a Welch–Satterthwaite t-test, but not 
after Benjamini–Hochberg FDR correction.

Distinct metabolite responses are not caused by confined 
transcriptional programs
By multivariate data analysis, we were able to identify common 
and distinct metabolite changes associated with different phases of 
compatible biotrophic interactions, which could represent potential 
metabolic compatibility factors. To identify potential host targets of 

development determines very profound changes in infected maize 
leaves (as already observed by Horst et al., 2010a) that even super-
impose diurnal variations in metabolite contents. Consequently, 
these samples were not within the focus of our further analysis, 
as many metabolic changes specific to tumor formation occur 
at late stages of the U. maydis – maize interaction. However, the 
metabolite changes in maize leaves during the initial coloniza-
tion phase at 48hpi, when no tumors had yet been formed, was 
most similar to that of barley leaves with strong powdery mildew 
colonization (Bgh 96hpi), suggesting that this cluster represents 
established biotrophic interactions. The third cluster is comprised 
of samples taken immediately after penetration (Cg 36hpi and Bgh 
24hpi). For the two latter clusters, it is remarkable that the physi-
ological situation of the samples, i.e., immediate post-penetration 
(Cg 36hpi and Bgh 24hpi) and established biotrophic interac-
tion (Um 48hpi and Bgh 96hpi), respectively, appears to be more 
important for sample parsing than host or pathogen involved. All 
three clusters mentioned so far were separated from the samples 
obtained from the necrotrophic phase of C. graminicola infection 
(Cg 96hpi). Interestingly, replicate samples of pre-penetration 
stages (Bgh 12hpi, Um 12hpi) or from developing leaf tissue (Um 
12hpi and Um 24hpi) did not cluster together when included in 
the HCA (not shown), indicating that despite strong transcrip-
tional changes for genes involved in central metabolism during 
basal defense reaction (see corresponding publications by Horst 
et al., 2010a and Molitor et al., 2011), central metabolism itself 
was not strongly altered at post-penetration stages. This indicates 
that changes in central leaf metabolism only occur upon physi-
cal interaction with pathogens inside the host tissue, when the 
drainage of nutrients to the pathogen and the suppression of host 
defense is being established.

Figure 1 | Mapping of sampling time points to respective infection 
stages in the three studied interactions. Bgh – barley (cv. Golden 
Promise) infected with Blumeria graminis f.sp. hordei isolate A6 (Wiberg, 
1974); Cg – maize (cv. Early Golden Bantam) infected with Colletotrichum 
graminicola strain CgM2; Um – maize (cv. Early Golden Bantam) infected 
with the solopathogenic Ustilago maydis strain SG200 (Kämper et al., 
2006). White bars indicate light period, and dark bars indicate dark period. 
Sampling time points analyzed in this study are indicated in black below the 
bars, while sampling time points that were disregarded are printed in gray. 
inf, Inoculation; pen, penetration, bio, initiation of biotrophic growth, haus, 
haustoria establishment; necro, commencement of necrotrophic growth; 
spo, formation of conidiospores begins.
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Figure 2 | Hierarchical cluster analysis of metabolome data from infected 
leaves. Mean values of metabolite contents from four biological replicates of 
infected and mock control leaves harvested at the indicated time points after 
infection with the respective pathogens (Bgh, Blumeria graminis f.sp. hordei; 
Cg, Colletotrichum graminicola; Um, Ustilago maydis) were used to calculate the 
metabolite ratio infected/mock for the indicated experimental replicates. After 
log transformation of the data, median centered ratios were normalized and 
hierarchical clustering analysis (HCA) was performed using the complete linkage 
algorithm of the program Cluster v2.11 (Eisen et al., 1998 – www.eisenlab.org) 
and the results were visualized using Maple Tree (http://mapletree.sourceforge.
net/). Metabolite ratios from two independent experiments (indicated by Roman 
numbers) of every pathosystem were used for HCA. Color intensity correlates 

with degree of increase (yellow) and decrease (blue) relative to the mean 
metabolite ratio. hpi, hours post infection. Amino acids and nucleotides are 
abbreviated according to three letter code, aKG, (α-ketoglutarate) Asc 
(ascorbate); %AsA red, (% reduced ascorbate); Cit, (citrate); E4P, (erythrose-4-
phosphate); F16BP, (fructose-1,6-bisphosphate); F6P, (fructose-6-phosphate); frc, 
(fructose); Fum, (fumarate); G16BP, (glucose-1,6-bisphosphate); G1P, (glucose-1-
phosphate); G6P, (glucose-6-phosphate); glc, (glucose); GSH, (glutathione); 
%GSH red, (% glutathione reduced); Icit, (isocitrate); PEP, (phosphoenol 
pyruvate); 3PG, (3-phosphoglycerate); 6PG, (6-phosphogluconate); Ppi, 
(pyrophosphate); Pyr, (pyruvate); RubP, (ribulose-1,5-bisphosphate); S6P, 
(sucrose-6-phosphate); suc, (sucrose); Succ, (succinate); T6P, (trehalose-6-
phosphate); UDPglc, (UDP-glucose).
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within MapMan BINs (Thimm et al., 2004) associated with central 
primary carbon and nitrogen metabolism, of which the functional 
annotations are quite robust (Table 3). If transcriptional repro-
gramming of metabolic pathways would account for the observed 
differences in the metabolome between early post-penetration 
and at established biotrophy, we would expect a similar clustering 
result of the transcript data as for the metabolite data. Surprisingly, 
an HCA comparing the fraction of regulated genes in MapMan 
BINs assigned to central carbon and nitrogen metabolism gave a 
completely different picture compared to the metabolome analysis 
(Figure 4). Only the samples reflecting established biotrophy (Um 
48hpi and Bgh 96hpi) still clustered together. On the pathway level, 

metabolic reprogramming by biotrophic fungi, we aimed at refin-
ing the underlying transcriptional changes governing the observed 
metabolic redirections.

We analyzed the corresponding transcriptome data obtained 
from the same pooled material that was used for metabolite analysis 
for transcriptional changes that could account for the observed 
dynamics in the metabolome. As not all genes in a pathway are 
subject to transcriptional regulation, it appeared instrumental to 
analyze the enrichment of transcriptional regulation within entire 
metabolic pathways. To avoid complications by annotation artifacts 
in the pairwise assignment of the maize and barley microarray fea-
tures, we preferred to calculate the enrichment of regulated genes 

Figure 3 | Principle component analysis of metabolite data. For principle 
component analysis (PCA), the same metabolite ratios as in Figure 1 were used, 
representing the ratio infected/mock calculated from the mean values of four 
sample replicates each. Per pathosystem, data from two independent 
experiments (designated by Roman numbers) were employed for PCA. (A) PC1 
vs. PC2. (B) PC1 vs. PC3. Bgh, Blumeria graminis f.sp. hordei; Cg, 
Colletotrichum graminicola; Um, Ustilago maydis; yellow, tumor, red, established 
biotrophy, blue, early biotrophy, black, necrotrophy. Amino acids and nucleotides 
are abbreviated according to three letter code, aKG, (α-ketoglutarate) AsA 

(ascorbate); %AsA red, (% reduced ascorbate); Cit, (citrate); E4P, (erythrose-4-
phosphate); F16BP, (fructose-1,6-bisphosphate); F6P, (fructose-6-phosphate); frc, 
(fructose); Fum, (fumarate); G16BP, (glucose-1,6-bisphosphate); G1P, (glucose-1-
phosphate); G6P, (glucose-6-phosphate); glc, (glucose); GSH, (glutathione); 
%GSH red, (% glutathione reduced); Icit, (isocitrate); PEP, (phosphoenol 
pyruvate); 3PG, (3-phosphoglycerate); 6PG, (6-phosphogluconate); Ppi, 
(pyrophosphate); Pyr, (pyruvate); RubP, (ribulose-1,5-bisphosphate); S6P, 
(sucrose-6-phosphate); suc, (sucrose); Succ, (succinate); T6P, (trehalose-6-
phosphate); UDPglc (UDP-glucose).
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categorized into MapMan BINs. Mostly, clustering of samples occurred 
predominantly according to pathosystems, irrespective, whether only 
the previously analyzed samples were clustered or whether all available 
samples were used for the computation (Figure 5). Similar results were 
obtained when barley and maize genes were matched based on their 
closest homolog in rice (not shown). Although we still cannot rule 
out that part of the clustering is influenced by artifacts arising from 
matching the array annotations, the fact that Cg and Bgh samples 
form one cluster in the full transcriptome HCAs (Figure 5A) argues 
against a strong influence by such misinterpretations. At the bottom 
line, no infection stage specific clustering could be observed when 
transcriptome data were analyzed.

Identification of metabolic genes regulated in response to 
fungal infection
Although we were unable to identify common motifs in the tran-
scriptional response of metabolic pathways at the early post-pen-
etration stage and during established biotrophy, we were surveying 
the transcriptome data for metabolic genes that were found to 
be regulated during biotrophic interactions in more than one 
pathosystem. To address this question, we had to decrease the 
fold change threshold down to 1.5-fold, as the standard twofold 
threshold appeared to be too stringent for such a cross-species 
comparison. Table 4 shows that genes involved in the TCA cycle 
and carboxylate metabolism as well as genes regulating the energy 
status of the nucleotide pool are consistently induced in more than 
one pathosystem. Similarly, remodeling of amino acid metabolism 
appears to be a common theme during compatible biotrophic inter-
actions. Surprisingly, the number of targets in central carbohydrate 
metabolism is quite scarce. While there seems to be different ways of 
transcriptional regulation of fructose-2,6-bisphosphate homeosta-
sis in all pathosystems, only few more genes in central carbohydrate 
metabolism were found, but not as consistent as genes involved 
in carboxylate, nucleotide, and amino acid metabolism, indicat-
ing that there is no strong regulation of carbohydrate flux on the 
transcriptional level.

Thus, a conserved transcriptional program that is activated to 
redirect primary metabolism during biotrophic interactions does 
not exist, indicating that the manipulation of host metabolism 

deregulation of major carbon metabolism was consistent enough 
to parse the MapMan BINs Calvin cycle, sucrose, and starch bio-
synthesis into the same cluster.

During early post-penetration biotrophy (Bgh 24hpi and Cg 
36hpi), the most pronounced changes in metabolite contents 
had occurred in the accumulation of most free amino acids (see 
Figure 3B and Table 2) as well as by decreased contents of phos-
phorylated intermediates of starch and sucrose biosynthesis (see 
Figure 3B). While between 8 and 19% of genes annotated to central 
carbon metabolism and between 12 and 53% of genes annotated 
to amino acid biosynthesis are up-regulated at 24hpi after Bgh 
infection, most of these MapMan BINs are not regulated at all at 
36hpi after Cg infection (Table 3), demonstrating that although 
both early post-penetration situations exhibit similar metabolite 
changes, transcriptional regulation of the corresponding metabolic 
pathways is utterly different. Likewise, the samples attributed to 
established biotrophy (Um 48hpi and Bgh 96hpi) were refined by 
PCA based on concomitant changes in phosphorylated interme-
diates of central carbon metabolism (see Figure 3B). In addition, 
the contents of the glycolytic intermediate PEP, and the Calvin 
cycle intermediates 3-PGA and F16bP (which are predominantly 
localized in the stroma in illuminated leaves, see Gerhardt et al., 
1987; Heineke et al., 1994 and Leidreiter et al., 1995) were consist-
ently diminished at 48hpi after Um infection and at 96hpi after 
Bgh infection (Table  2). MapMan BINs for sucrose and starch 
biosynthesis, the Calvin cycle, glycolysis, and major amino acid 
biosynthesis were much stronger deregulated in Um 48hpi than 
in Bgh 96hpi (highlighted in Table 3), again indicating a sincere 
difference on the transcriptional level despite similar metabolite 
changes as revealed by PCA.

To evaluate whether a more global transcriptome analysis would 
result in a similar outcome compared to the focused analysis of tran-
scripts involved in central metabolism, we matched all features on the 
Barley1 and the maize Affymetrix arrays via the corresponding gene 
annotations deposited at PlexDB4. An HCA employing features with 
fold change >2 from the whole transcriptome dataset resulted in a 
different sample parsing than in the previous analysis employing data 

Table 1 | Metabolites consistently altered in all biotrophic interactions.

Metabolite	 Bgh 24hpi	 Bgh 96hpi	 Cg 36hpi	 Um 48hpi	 Average

Glutamine	 3.16 ± 0.52	 2.19 ± 0.93	 2.42 ± 0.34	 2.48 ± 0.18	 2.56

Glucose	 1.37 ± 0.19	 1.35 ± 0.16	 1.43 ± 0.10	 1.64 ± 0.26	 1.44

Asparagine	 1.81 ± 0.17	 1.67 ± 0.52	 2.76 ± 0.53	 2.07 ± 0.10	 2.07

3-PGA	 −1.28 ± 0.11	 −1.41 ± 0.08	 −1.12 ± 0.10	 −2.04 ± 0.07	 −1.46

PEP	 −1.25 ± 0.05	 −1.37 ± 0.10	 −1.25 ± 0.10	 −2.08 ± 0.05	 −1.48

No. of metabolite with f.c. > 1.5 in infected leaves

Metabolites increased 	 18 (12 – 3)	 11 (3 – 0)	 21 (11 – 0)	 15 (12 – 11)	

Metabolites decreased	 3 (0 – 0)	 6 (1 – 0)	 2 (0 – 0)	 5 (4 – 2)	

Mean values of metabolite contents from four biological replicates of infected and mock control leaves harvested at the indicated time points after infection with 
the respective pathogens (Bgh, Blumeria graminis f.sp. hordei; Cg, Colletotrichum graminicola; Um, Ustilago maydis) were used to calculate the metabolite ratio 
infected/mock. Only metabolites with an average f.c. > 1.4 in both early and established biotrophic interactions are displayed (see right column). The total number 
of metabolites that were increased or decreased at the indicated time point of infection is indicated in the lower part of the table, with the first number in brackets 
giving significant changes in a t-test with p < 0.05, and the second number giving significant changes with p < 0.05 after Benjamini–Hochberg FDR correction. For 
individual p-values and Benjamini–Hochberg-corrected p-values, please see Table 2.

4www.plexdb.org
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Identification of transcriptional signatures in the 
investigated pathosystems
Our analysis has only revealed a few genes of central primary 
metabolism that were regulated in all investigated pathosystems. 
As stated above, a conserved transcriptional program that is acti-
vated to redirect primary metabolism during biotrophic interac-
tions does not exist. Therefore, we set out to identify particular 

depends on the individual pathogen and the effector proteins it 
produces. Nevertheless, some metabolic pathways seem to be con-
sistently addressed on the transcriptional level in all investigated 
pathosystems. Nitrogen metabolism and energy status appeared 
to be regulated more consistently on the transcriptional level than 
carbohydrate metabolism, which might be rather controlled on 
the post-translational level or by interaction-specific modulations.

Table 2 | Compilation of all substantial metabolite changes at biotrophic interaction time points.

Metabolite	 Bgh24	 p-	 adj	 Bgh96	 p-	 adj	 Cg36	 p-	 adj	 Um48	 p-	 adj 

		V  alue	 p-Value		V  alue	 p-Value		V  alue	 p-Value		V  alue	 p-Value

Increased in infected leaves

aKG							       1.25 ± 0.24	 0.304	 0.361			 

Ala	 1.54 ± 0.20	 0.039	 0.124									       

AMP							       1.98 ± 0.12	 0.022	 0.119			 

Arg	 1.60 ± 0.11	 0.016	 0.099				    2.03 ± 0.18	 0.004	 0.050			 

Asn	 1.81 ± 0.17	 0.071	 0.136	 1.67 ± 0.52	 0.094	 0.396	 2.76 ± 0.53	 0.046	 0.146	 2.07 ± 0.10	 0.021	 0.056

Asp	 1.58 ± 0.18	 0.023	 0.107	 1.28 ± 0.26	 0.238	 0.452	 2.47 ± 0.61	 0.054	 0.145			 

F16BP							       1.68 ± 0.63	 0.350	 0.758			 

G1P	 1.34 ± 0.12	 0.052	 0.115	 1.29 ± 0.09	 0.032	 0.242						    

G6P							       1.25 ± 0.09	 0.054	 0.136			 

Glc	 1.37 ± 0.19	 0.269	 0.310	 1.35 ± 0.16	 0.299	 0.517	 1.43 ± 0.20	 0.038	 0.144	 1.64 ± 0.26	 0.028	 0.067

Gln	 3.16 ± 0.62	 0.056	 0.118	 2.19 ± 0.93	 0.182	 0.385	 2.42 ± 0.34	 0.043	 0.150	 2.48 ± 0.18	 0.007	 0.037

Glu							       2.07 ± 0.25	 0.004	 0.070			 

Gly	 1.32 ± 0.16	 0.097	 0.154				    2.50 ± 0.19	 0.056	 0.133			 

His	 1.94 ± 0.33	 0.001	 0.016				    2.36 ± 0.43	 0.018	 0.111	 1.88 ± 0.06	 0.005	 0.044

Ile	 1.74 ± 0.10	 0.013	 0.099				    2.17 ± 0.17	 0.022	 0.105	 1.44 ± 0.08	 0.010	 0.034

Leu	 1.45 ± 0.08	 0.001	 0.020	 1.26 ± 0.42	 0.931	 0.982	 2.07 ± 0.29	 0.291	 0.357			 

Lys	 1.54 ± 0.07	 0.020	 0.109							       1.50 ± 0.43	 0.224	 0.517

Phe	 2.47 ± 0.13	 0.001	 0.034	 1.35 ± 0.39	 0.312	 0.492	 1.99 ± 0.04	 0.006	 0.059	 1.88 ± 0.13	 0.008	 0.030

Ppi				    3.88 ± 0.92	 0.064	 0.302						    

Pro							       2.13 ± 0.51	 0.088	 0.177			 

S6P							       1.25 ± 0.11	 0.065	 0.146	 1.25 ± 0.12	 0.092	 0.160

Ser	 1.59 ± 0.18	 0.050	 0.135				    2.22 ± 0.30	 0.066	 0.139	 1.25 ± 0.02	 0.004	 0.048

Suc										          1.59 ± 0.09	 0.006	 0.044

Succ										          1.43 ± 0.05	 0.001	 0.024

Thr	 1.77 ± 0.24	 0.041	 0.119	 1.45 ± 0.33	 0.166	 0.394	 2.38 ± 0.41	 0.034	 0.144	 1.79 ± 0.15	 0.014	 0.044

Tyr	 1.52 ± 0.21	 0.031	 0.118				    1.97 ± 0.39	 0.051	 0.150	 1.81 ± 0.04	 0.000	 0.003

UDP				    1.29 ± 0.09	 0.025	 0.318						    

UDPglc	 1.50 ± 0.13	 0.035	 0.120	 1.65 ± 0.19	 0.015	 0.294				    1.28 ± 0.12	 0.094	 0.155

Val	 1.81 ± 0.12	 0.024	 0.103				    2.24 ± 0.14	 0.007	 0.051	 1.30 ± 0.05	 0.007	 0.031

Reduced in infected leaves

3-PGA	 1.28 ± 0.11	 0.075	 0.130	 1.41 ± 0.08	 0.026	 0.243				    2.04 ± 0.07	 0.033	 0.074

aKG										          1.89 ± 0.11	 0.063	 0.113

F16BP				    1.21 ± 0.17	 0.137	 0.435				    1.45 ± 0.08	 0.047	 0.099

Gly				    1.42 ± 0.12	 0.142	 0.416						    

Lys				    1.25 ± 0.30	 0.363	 0.511	 1.25 ± 0.27	 0.291	 0.357			 

PEP	 1.25 ± 0.05	 0.051	 0.128	 1.37 ± 0.10	 0.052	 0.333	 1.25 ± 0.10	 0.095	 0.181	 2.08 ± 0.05	 0.017	 0.050

Ser												          

Suc	 1.25 ± 0.06	 0.058	 0.116									       

Starch				    1.63 ± 0.11	 0.094	 0.357				    2.27 ± 0.04	 0.006	 0.041

The metabolite ratio infected/mock is given as the mean value of three independent experiments ± SE. In each experimental replicate, four biological replicates 
were analyzed. Leaves of infected and mock control leaves were harvested at the indicated time points after infection with the respective pathogens (Bgh, Blumeria 
graminis f.sp. hordei; Cg, Colletotrichum graminicola; Um, Ustilago maydis). Metabolites with an average f.c. > 1.25 at any biotrophic interaction time point are 
displayed. p-Values were calculated employing a Welch–Satterthwaite t-test and for multiple testing correction of p-values, Benjamini–Hochberg false discovery rate 
(FDR) was determined (adj p-value). For abbreviations, see legend of Figure 1.
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As already published (Doehlemann et al., 2008a; Horst et al., 
2010a,b), U. maydis-induced tumors exhibit substantial transcrip-
tional changes in almost all displayed metabolic pathways compared 
to mock control leaves (Figure 6; Table 3). While the majority of the 
genes involved in the light reaction, the Calvin cycle, and the pho-
torespiratory C

2
 cycle were transcriptionally repressed in tumors, 

genes of lipid biosynthesis and remodeling, cell wall biosynthesis 
were significantly induced in comparison to mock control leaves 
>4 dpi. More subtle transcriptional differences at early stages of 
the three interactions could be identified. In Bgh infected leaves, 

differences in the transcriptional responses of metabolic pathways 
between the pathosystems. In Figure 6, MapMan representations 
of those pathways were compiled that exhibit most pronounced 
differences between early biotrophy in the barley powdery mildew 
interaction (Bgh 24hpi), biotrophy in the U. maydis-maize interac-
tion (Um 48hpi), necrotrophy (Cg 96hpi), and U. maydis-induced 
tumors (Um > 96hpi), each representing one cluster in the HCA 
of the metabolite data depicted in Figure 2. Please note that the 
transcriptional changes upon Bgh infection were very similar at 24 
and 96hpi (also see Figure 5A).

Table 3 | Percentage of up- and down-regulated genes in MapMan BINs of central primary metabolism.

MapMan BIN	 Bgh 24hpi %	 Bgh 96hpi %	 Um 48hpi %	 Um 96hpi %	 Um 108hpi %	 Cg 36hpi%	 Cg 96hpi %

Percentage of up-regulated

Starch BS	 8.1	 0.0	 3.3	 23.3	 23.3**	 0.0	 10.0

Starch Deg	 14.8	 0.0	 21.7**	 30.4	 34.8	 0.0	 0.0

Sucrose BS	 0.0	 7.1	 16.7	 16.7**	 0.0	 0.0	 16.7

Sucrose Deg	 19.2	 11.5	 18.5	 18.5	 37.0	 0.0	 18.5**

OPPP	 20.5	 23.1	 6.9	 20.7	 44.8	 6.9	 10.3**

Glycolysis	 10.1	 7.1	 25.8	 29.0*	 38.7	 9.7*	 17.7*

Fermentation	 27.6	 13.8	 26.3	 42.1	 52.6	 10.5	 21.1**

TCA cycle	 17.7	 11.4	 16.7	 18.8	 35.4**	 2.1	 22.9***

Calvin cycle	 8.2	 13.7	 10.0***	 13.3***	 16.7***	 3.3**	 10.0

Photorespiration	 10.0	 16.0	 11.9**	 9.5***	 11.9	 0.0	 4.8

aa Deg	 11.8	 9.2	 13.3**	 16.3	 26.7*	 2.2	 9.6

Glu aa BS	 53.3***	 46.7***	 11.8	 17.6	 41.2	 11.8	 5.9**

Asp aa BS	 17.3***	 13.5***	 22.0	 26.8*	 24.4	 4.9	 12.2

bc-aa BS	 23.1*	 0.0	 12.5	 37.5	 43.8	 0.0	 12.5

Ser BS	 23.1	 15.4**	 25.0	 25.0**	 41.7***	 12.5**	 25.0***

aro-aa BS	 37.7***	 43.4***	 36.4**	 38.6	 36.4	 0.0	 31.8**

His BS	 12.5	 18.8***	 12.5	 6.3	 6.3	 0.0	 6.3**

Nucleotides	 16.4**	 15.1***	 13.2	 27.2	 41.2**	 3.5**	 14.0**

Percentage of down-regulated

Starch BS	 10.8**	 5.4**	 21.7*	 43.5**	 60.9**	 0.0	 8.7

Starch Deg	 3.7*	 3.7	 16.7**	 16.7	 30.0**	 3.3**	 6.7

Sucrose BS	 0.0	 14.3**	 33.3**	 66.7**	 66.7**	 0.0	 16.7**

Sucrose Deg	 1.9	 7.7**	 7.4	 18.5	 22.2	 3.7	 3.7**

OPPP	 10.3**	 2.6	 3.4	 20.7	 24.1	 0.0	 3.4

Glycolysis	 5.1***	 4.0**	 8.1**	 11.3**	 38.7**	 0.0	 3.2*

Fermentation	 3.4	 3.4	 15.8*	 31.6**	 26.3**	 0.0	 5.3

TCA cycle	 1.3**	 1.3***	 2.1**	 2.1**	 12.5**	 0.0	 2.1**

Calvin cycle	 11.0***	 6.8**	 16.7*	 56.7**	 66.7***	 3.3**	 6.7**

photorespiration	 6.0***	 0.0	 14.3*	 31.0**	 45.2**	 2.4**	 31.0

aa Deg	 6.5***	 2.6**	 10.4***	 21.5**	 22.2**	 0.7	 6.7

Glu aa BS	 0.0	 0.0	 17.6	 17.6	 11.8	 0.0	 5.9*

Asp aa BS	 0.0	 1.9	 9.8	 12.2	 14.6	 0.0	 4.9

bc-aa BS	 7.7	 7.7	 12.5	 18.8	 56.3	 0.0	 12.5

Ser BS	 0.0	 0.0	 12.5**	 16.7*	 33.3**	 0.0	 0.0

aro-aa BS	 3.8	 1.9	 2.3	 13.6	 15.9	 6.8	 11.4**

His BS	 0.0	 0.0	 6.3	 6.3	 12.5	 0.0	 6.3

Nucleotides	 4.8**	 2.7**	 8.8**	 14.0	 15.8**	 0.0	 2.6*

The percentage of up- (upper half) and down-regulated genes (lower half) in the indicated MapMan BINs was calculated based on the mean fold changes from all three 
replicate experiments. Strong differences between the two time points of established biotrophy, Bgh 96hpi and Um 48hpi, are indicated in bold. Significant enrichment 
of MapMan BINs was calculated with a Wilcoxon rank sum test: *p < 0.1 and **p < 0.05. ***indicates p < 0.05 in a Wilcoxon rank sum test after Benjamini–Hochberg 
FDR correction. BS, biosynthesis; Deg, degradation; aro-aa, aromatic amino acids; bc-aa, branched-chain amino acids; OPPP, oxidative pentose phosphate pathway.
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Figure 4 | Hierarchical cluster analysis of MapMan BIN enrichment. The 
percentage of up- and down-regulated genes in each MapMan BIN was calculated 
based on the mean fold changes from all three replicate experiments. After log 
transformation of the data, median centered percentages were normalized and 
hierarchical clustering analysis (HCA) was performed using the complete linkage 
algorithm of the program Cluster v2.11 (Eisen et al., 1998 – www.eisenlab.org) and 
the results were visualized using Maple Tree (http://mapletree.sourceforge.net/). 

Color intensity correlates with degree of increase (yellow) and decrease (blue) 
relative to the BIN mean of all samples, while gray corresponds to 0% regulated 
genes in the MapMan BINs. Bgh, Blumeria graminis f.sp. hordei; Cg, 
Colletotrichum graminicola; Um, Ustilago maydis; hpi, hours post infection. Amino 
acids are abbreviated by three letter code; aro-aa, aromatic amino acids; bc-aa, 
branched-chain amino acids; BS, biosynthesis; Deg, degradation; OPPP, oxidative 
pentose phosphate pathway.
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metabolite changes that could be identified in infected leaf tissue. 
The pool sizes of branched-chain amino acids and aromatic amino 
acids fueling glucosinolate and phenylpropanoid biosynthesis with 
building blocks increased concomitantly (Parker et al., 2009; Sana 
et al., 2010; Ward et al., 2010; this study). Nevertheless, elevated Gln 
and Asn contents in infected leaves represented a major consistent 
change in primary metabolism at any stage during the biotrophic 
interactions in the cereal pathosystems investigated in our study 
(Table 1). Taken together with the reported results from the above 
cited and other studies (reviewed by Bolton, 2009), this indicates 
that a substantial reprogramming of central amino acid metabolism 
takes place already early during infection. It has to be stressed that 
early after the establishment of the three investigated interactions, 
only five metabolites exhibited consistent changes, most of which 
were only moderately significant. Likewise, only few genes cod-
ing for enzymes of primary metabolism were consistently altered 
on the transcriptional level during the early stages of infection. 
Most of these genes were only deregulated in two out of the three 
pathosystems. This indicates that the congruence of the metabolic 
response is rather low in the three examined cereal pathosystems.

Nevertheless, malate dehydrogenase (MDH) was found to be 
consistently induced early in all interactions we investigated and, 
with the exception of U. maydis-infected leaves, various isoforms of 
malic enzyme were also induced swiftly after inoculation (Table 4). 
Likewise, rice leaves challenged with Magnaporthe grisea (Parker 
et al., 2009) and Arabidopsis leaves in defense of the hemibiotroph 
Colletotrichum higginsianum (Voll et al., unpublished) exhibited an 
induction of malic enzyme activity that was shown to support the 
global defense response by providing reducing equivalents (Parker 
et  al., 2009), identifying malic enzyme as a conserved player in 
early, i.e., basal plant defense. Like malic enzyme, MDH, would also 
produce reducing equivalents from the oxidation of malate in the 
cytosol, yet producting oxaloacetate instead of pyruvate, thereby 
competing with ME for the substrate malate.

Cell wall bound invertase is known to be involved in the 
defense response of several plant species (e.g., Bonfig et  al., 
2006; Swarbrick et al., 2006; Voegele et al., 2006; Essmann et al., 
2008; Horst et al., 2008; Kocal et al., 2008; Siemens et al., 2011). 
Interestingly, we could only observe an induction of cell wall 
invertase (cw-INV) at late interaction stages of the two maize 
pathosystems, indicating that its induction might be slower in 
maize than in other species. As both malic enzyme (Parker et al., 
2009) and invertase (see citations above) have been shown to be 
induced much stronger and faster in incompatible than in com-
patible interactions, we can rule out that their transcriptional 
induction represents a susceptibility factor.

An increase in TCA cycle intermediates Citrate, Malate, 
Succinate, and Fumarate had been observed during the necro-
trophic phase of Magnaporthe grisea infection (Parker et al., 2009). 
Similarly, we have observed an accumulation of these carboxylates 
with isocitrate exhibiting the most pronounced increase in maize 
leaves during necrotrophic colonization with C. graminicola at 
96hpi (Table S1 in Supplementary Material). In addition, TCA 
cycle, glycolysis, and respiration displayed the strongest induction 
on the transcriptional level in C. graminicola infected leaves at 
that time point (Figure 6), suggesting that necrotrophic growth 
in grass species might commonly provoke a strong induction of 

transcriptional suppression of the light reaction is substantially 
more pronounced, while transcriptional regulation of other meta-
bolic pathways is much weaker compared to Um biotrophy or in Cg 
necrotrophy (also see Table 3). This corroborates that changes in 
metabolic flux during Bgh infection are not predominantly caused 
by transcriptional regulation, but rather by post-translational fine-
tuning. During the biotrophic (pre-tumor) colonization of maize 
by U. maydis, lipid biosynthesis, and cell wall biosynthesis are much 
stronger induced than in the other two interactions, already reflect-
ing initial hypertrophic growth. Finally, necrotrophic colonization 
of maize leaves by C. graminicola results in a significant induc-
tion of glycolysis, TCA cycle, and fermentation, indicating that an 
increase in respiratory flux might occur during the challenge with 
the necrotroph.

Discussion
Consistent motifs in metabolic reprogramming during 
plant–pathogen interactions
Despite the extensive use of metabolomics for the analysis of 
plant metabolism (Bino et  al., 2004), metabolomic studies of 
plant–pathogen interactions are rare, most of which rely on 
data acquisition by FIE-MS and NMR-based metabolite profil-
ing and fingerprinting techniques and subsequent deconvolution 
by supervised or non-supervised multivariate data analysis 
(Widarto et al., 2006; Parker et al., 2009; Sana et al., 2010; Ward 
et al., 2010).

In these approaches, defense-associated metabolites like glu-
cosinolates (Ward et al., 2010), indoles (Ward et al., 2010), and 
phenylpropanoids (Widarto et al., 2006; Parker et al., 2009; Sana 
et al., 2010; Ward et al., 2010) were commonly the most prominent 

Figure 5 | Hierarchical cluster analysis of whole transcriptome data. 
(A) HCA for the timepoints analyzed in this report. (B) HCA for all timepoints 
sampled. Barley and maize Affymetrix data were matched via PlexDB (www.
plexDB.org) as described in the methods section and the mean transcript fold 
changes of infected vs. mock samples were calculated based on all three 
replicate experiments and were subsequently used for HCA. After log 
transformation of the data, median centered data were normalized and 
hierarchical clustering analysis (HCA) was performed using the complete 
linkage algorithm of the program Cluster v2.11 (Eisen et al., 1998 – www.
eisenlab.org) and the results were visualized using Maple Tree (http://
mapletree.sourceforge.net/). Bgh, Blumeria graminis f.sp. hordei; Cg, 
Colletotrichum graminicola; Um, Ustilago maydis; hpi, hours post infection.
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tion of carboxylates was most pronounced during necrotrophic 
colonization of maize by Cg (as just discussed), whereas lipid 
and cell wall biosynthesis were most severely affected in the early 
interaction of maize leaves with Um, reflecting the initiation of 
hypertrophic growth. Genes involved in photosynthesis were most 
quickly suppressed in Bgh infected barley leaves. Given the con-
nection of the Cg and the Um response to particular physiological 
situation described above, we can assume that these specific effects 
on the transcriptome and the metabolome of primary metabolism 
arise from the divergent strategies of the fungal pathogens to 
manipulate host metabolism. It appears likely, that besides specific 
targets in defense signaling (as reviewed by de Wit et al., 2009), 
also different enzymes and metabolic pathways are targeted by 
the fungi to match the metabolic requirements of the individual 
pathogens.

carboxylate metabolism via the TCA cycle. Increased metabolic 
flux into carboxylate production via the TCA cycle could either 
provide ample supply of reducing equivalents and ATP to the host 
cells or it could indicate increased respiratory flux as a result of 
impaired photoautotrophy during necrotrophic colonization. We 
also observed a strong induction of the TCA cycle in U. maydis-
induced tumors (Figure  6). However, a thorough inspection 
disclosed that in leaf tumors, the TCA cycle will most probably 
provide nitrogen assimilation with carbon skeletons (Horst et al., 
2010a,b).

Apart from only few very conserved responses of primary 
metabolism on the transcriptional and metabolic level between 
all three pathosystems, we could also identify changes that were 
quite specific to only one of the pathosystems investigated here. 
For instance, the induction of the TCA cycle and the accumula-

Table 4 | Consistent transcriptional changes among the pathosystems.

Gene	 Probe set Barley1	 Bgh	 Bgh	 Probe set Maize Affy	 Cg 96hpi	 Um 48hpi 	C lassification 

		  24hpi	 96hpi

TCA cycle/carboxylate metabolism							     

Citrate lyase	 Contig3815_at	 2.1		  Zm.1942.1.A1_at	 4.4		  Early

Aconitase	 Contig3351_s_at	 1.5		  Zm.12697.1.S1_at	 2.1	 2.6	 Global

Oxoglutarate dehydrogenase	 Contig4963_at		  1.6	 Zm.6807.1.A1_at	 5.0	 2.0	 Global

Cytosolic malate dehydrogenase 	 Contig3610_s_at	 1.9	 3.5	 Zm.2061.1.A1_at	 3.0	 4.0	 Global

NAD malic enzyme	 HV_CEb0015P21f_S_at	 1.8	 1.5	 Zm.3666.1.A1_at	 1.9		  Global

Pyruvate decarboxylase	 Contig5532_s_at		  1.7	 Zm.3994.1.S1_at		  10.2	 Late

Nucleotide metabolism							     

Adenosine/uridine kinase	 Contig2829_at	 1.7	 1.9	 Zm.247.2.A1_at	 5.2	 32	 Global

UMP synthase	 Contig16393_at	 1.9	 2.3	 Zm.908.1.A1_at	 3.0		  Global

Nucleoside diphosphosphate 	 Contig2124_at	 2.3		  Zm.19303.1.	 27	 4.1	 Global 

kinases*				    S1_at (Zm.17247.1. A1_at)

Amino acid metabolism							     

Serine	 Contig2168_s_at	 1.8	 2.6	 Zm.3136.1.A1_at		  2.4	 Global 

hydroxymethyltransferase

Methylene	 Contig3235_s_at	 1.8		  Zm.475.1.S1_at	 1.9		  Early 

tetrahydrofolate reductase

Amino acid transporters	 Contig26356_at	 1.5	 1.5	 Zm.1788.1.A1_at	 –	 2.6	 Global

Aminotransferases**	 Contig1672_s_at	 −2.5	 −1.8	 Zm.13511.1.A1_at	 1.5	 −4.2	 Global biotr

				    Zm.2321.1.A1_at			 

Glutamine synthetase	 Contig1646_at	 −1.7		  Zm.3455.3.A1_at	 −1.6		  Early

PRPP synthetase	 Contig8025_at	 −5.3	 2.3	 Zm.1727.1.A1_at	 −2.0	 1.6	 Early <  to  > late

Sucrose metabolism 							     

PFK2 			   1.5	 Zm.711.1.S1_at		  3.0	 Late

H+/PPase	 Contig385_s_at	 −2.0		  Zm.6095.1.A1_at	 2.1	 4.3	

Starch metabolism/Calvin cycle							     

AGPase	 Contig5267_at	 1.6		  Zm.312.1.A1_at	 1.9		  Early

Phosphoribulokinase	 rbaal2124_s_at	 −1.8		  Zm.2248.1.A1_at		  −2.5	

Aldolase	 Contig4817_at		  1.8	 Zm.4778.1.A1_at		  2.5	 Late

Transcriptional changes during biotrophic Bgh colonization (early stage – Bgh 24hpi; late stage Bgh 96hpi), necrotrophic Cg colonization (Cg 96hpi), and biotrophic 
Um colonization (Um 48hpi) is compiled. Fold changes were calculated based on mean values from all three replicate experiments, respectively. Only genes with 
f.c. > 1.5 are displayed that are regulated in more than one pathosystem.
*For Cg 96hpi, data for adenylate kinase (Zm.17247.1.A1_at) are given.
**For Bgh, and Cg (Zm.13511.1.A1_at), the induced aminotransferases are annotated as aspartate glutamate aminotransferases, while the Um induced aminotran-
sferase (Zm.2321.1.A1_at) is supposed to be an alanine oxoglutarate aminotransferase. Both of these aminotransferase activities are associated with central nitrogen 
metabolism.
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consistent changes in some pathways of primary metabolism on 
the transcript and the metabolite level, which is in accordance 
with our results.

Although our metabolome dataset was restricted to quantita-
tive data for only 42 metabolites of central primary metabolism 
obtained via targeted LC and LC-MS-based methods, we could 
separate discrete infection stages of the three interactions by HCA, 
i.e., early biotrophy, established biotrophy, necrotrophy, and tumors 
(Figure 3), indicating that the information in our dataset provided 
sufficient divergence. However, we cannot rule out that metabolic 
flux through certain pathways even differs between those interac-
tion stages that clustered together in the HCA, because our metabo-
lome data comprises of steady state contents that indicate individual 
metabolite accumulation, but do not reflect metabolic flux.

In addition, multivariate analysis of the metabolome data did not 
yield comparable results to any transcriptome based analysis in our 
study. Even if only transcripts coding for proteins involved in the cor-
responding pathways were regarded, no similarity to the metabolome 
data could be attained. This could be due to several reasons. First, 
secreted effectors of Bgh, Cg, and Um are very likely to target different 
molecular processes in their respective hosts, leading to interaction-
specific variation in the observed transcriptional response that could 
mask common motifs in the defense response. From the complemen-
tary point of view, the defense reactions that are not suppressed by 

Metabolic changes are not caused by a conserved 
transcriptional reprogramming
Based on the comparison between pathosystems from our study 
and published data, we could resolve some recurring metabolic 
motifs in response to pathogen infection.

In the few references available to date, it remains controversial, 
however, whether the observed changes in metabolism fit to the 
corresponding transcriptome dynamics in infected leaf tissue. 
Sana et al. (2010) only reported a weak accordance of metabo-
lome dynamics and the corresponding transcriptional changes 
in the assessed compatible and incompatible X. oryzae pv. oryzae 
(Xoo)-rice interactions. In contrast, Ward et al. (2010) stated a 
quite substantial congruence when aligning their metabolome 
data with the transcriptome analysis of publically available data 
for Pst infections on Arabidopsis (Truman et al., 2006). A specific 
re-assessment of the data by Ward et al. (2010) and Truman et al. 
(2006) did, however, not reveal a substantial number of regulated 
genes involved in central carbon and nitrogen metabolism, while 
the highest agreement of metabolome and transcriptome data 
was achieved for glucosinolate and phenylpropanoid metabo-
lism (Ward et al., 2010). Similarly, we were also unable to identify 
a strong congruence between the observed changes in primary 
metabolism and the corresponding transcript data. Nevertheless, 
both Sana et al. (2010) and Ward et al. (2010) observed few, but 

Figure 6 | Visualization of specific transcriptional changes between 
biotrophy, necrotrophy, and tumors by MapMan analysis. Mean fold 
change of the transcripts in infected vs. mock treated samples was calculated 
based on all three replicate experiments per time point and log-scaled data 
were visualized using MapMan with all filters disabled. Data for established 
biotrophy (Bgh 96hpi and Um 48hpi), necrotrophy (Cg 96hpi), and Um tumors 
(Um > 96hpi) are displayed from left to right. The scale bar represents fold 

change and reaches from −3 (red) to +3 (blue) on the log scale, which 
corresponds to −8-fold (red) to +8-fold (blue) in the linear scale. Photosynthesis 
(Light reactions), Calvin cycle, and photorespiration are depicted in the upper 
panel, glycolysis, TCA cycle, and fermentation are shown in the second tier 
from the top, cell wall metabolism, and minor carbohydrate metabolism (minor 
CHO) are represented in the second panel from the bottom, while lipid 
metabolism is displayed in the bottom panel.
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As suggested by our comparative analyses, there are important 
differences between the interactions. In the early powdery mildew 
(Bgh) infection (Figure 7A), the Calvin cycle genes RubisCO and 
phosphoribulokinase become transcriptionally repressed, which 
is also reflected by diminished 3-PGA contents that commonly 
correlate with activity of the Calvin cycle. Based on steady state 
metabolite contents and the transcriptome data, metabolic flux 
appears to be directed toward the biosynthesis of free amino acids, 
with the major amino acids Gln and Asn representing transient 
stores for organic N. In contrast, the TCA cycle is induced on the 
transcriptional level, but the involved carboxylates did not accu-
mulate. Therefore, the depletion of the PEP pool (including the 
related transcriptional changes) can rather be interpreted due 
to its anaplerotic function of plastid-localized biosynthesis of 
branched-chain and aromatic amino acids (Schulze-Siebert et al., 
1984; Herrmann and Weaver, 1999). As both plastidic and cyto-
solic protein biosynthesis are significantly induced processes in the 
barley–Bgh interaction, it appears likely that elevated production 
of amino acids will serve as building blocks for both PR proteins 
and low-molecular weight compounds like glucosinolates and 
phenylpropanoids. Sucrose breakdown by cw-INV and sucrose 
synthase (SuSy) could lead to an increase in the hexose/sucrose 
ratio. Due to the transcriptional repression of the Calvin cycle and 
the photosynthetic electron transport chain (Figure 6) diminished 
triose phosphate export and increased flux toward PEP could limit 
sucrose biosynthesis in turn. An accumulation of UDPglc further 
indicates diminished formation of sucrose in Bgh infected leaves.

During the biotrophic phase of the C. graminicola infection 
at 36hpi (Figure  7B), almost no transcriptional changes were 
observed, in contrast to numerous changes in steady state metabo-
lite contents. The observed changes in metabolite contents are 
either the result of endogenous post-transcriptional, perhaps of 
allosteric regulation, or are due to altered flux through the respec-
tive pathways determined by substrate availability or substrate 
compartmentation, or it might be effectuated by the action of 
fungal effectors. As indicated by the high similarity to Bgh 24hpi 
in the HCA analysis of metabolite data (Figure 2), the changes 
in the metabolome of Cg 36hpi are almost congruent to those 
of Bgh infected barley leaves at 24hpi, rendering it unlikely that 
secreted effectors of Bgh and Cg exert identical effects on host 
metabolism. Furthermore, the sampled maize leaves perform 
C

3
–C

4
 intermediate photosynthesis, while barley is a C

3
-plant. 

The only substantial difference between the Bgh infected barley 
and the Cg infected maize leaves is an increased accumulation 
of the TCA cycle intermediates and amino acid building blocks 
α-ketoglutarate and isocitrate. At 96hpi, the majority of the genes 
involved in the TCA cycle are strongly induced on the transcrip-
tional level in Cg infected leaves. Besides, an increased Gly/Ser ratio 
indicates increased photorespiration during biotrophic coloniza-
tion of maize leaves with C. graminicola.

Maize leaves infected with U. maydis differ in two important 
aspects from the two previously regarded pathosystems (Figure 7C). 
First, the accumulation of free amino acids resembles the previ-
ously described situation for Bgh and Cg, except for the fact that 
anaplerotic provision of carbon skeletons by the TCA cycle does not 
appear to be substantially induced. Second, the balance of sucrose 
biosynthesis and sucrose degradation seems to be strongly regulated 

the pathogens during the investigated compatible interactions will 
diverge on the molecular level between the pathosystems. Second, 
transcript amounts and steady state contents of metabolites, which 
have been assessed in this study, are not directly correlated with 
metabolic flux. Primary carbon metabolism is strongly regulated 
on both, the post-transcriptional and the post-translational level 
throughout the diurnal cycle (e.g., Gibon et al., 2004), which could 
lead to a discrepancy between the assessed transcript amounts and 
actual in vivo activity of most enzymes in central carbon metabolism 
– which we did not determine. In addition, we have only measured 
steady state contents of the metabolites included in our metabolome 
dataset. As outlined above, despite similar steady state pools of most 
metabolites, flux could be utterly different between two specimen. 
Nevertheless, we have obtained evidence that allosteric regulation 
of key steps in central carbon and nitrogen metabolism is likely to 
account for some of the regulation of metabolic flux during fungal 
biotrophy, as indicated in the models shown below.

Models for the redirection of primary metabolism during 
early biotrophic interactions
By analyzing steady state contents of 42 metabolites in primary car-
bon and nitrogen metabolism, we were able to reveal similarities and 
differences in the response of host metabolism toward Bgh infection 
in barley leaves, Cg infection in maize leaves, and Um infection in 
maize leaves. Together with the transcriptome data obtained from 
the same samples, we integrated all the information into individual 
models of host metabolism at early time points in the investigated 
biotrophic interactions. We assumed that individual changes on the 
transcriptional and the metabolic level would not necessarily have 
to be comparable in strength. Therefore, we used a low stringent 
evaluation of our data for the generation of the presented models 
of primary metabolism, in order to better allow for comparisons 
between the pathosystems. When taken together, the integrated tran-
scriptional and metabolite data were highly consistent for most of 
the depicted pathways in all three analyzed interactions.

Our survey for consistently regulated genes had already revealed 
that the TCA cycle, nucleotide energy status and amino acid metab-
olism represented strongly regulated pathways at early stages of 
all three interactions (Table 4). A concomitant induction of the 
TCA cycle and nucleotide diphosphate kinases apparently reflects 
an increase requirement for building blocks, reducing power, and 
energy in host leaves during the early interaction stage.

Consequently, a comparison of the models for Bgh, Cg, and 
Um infected leaves during early biotrophic colonization reveals 
quite similar gross tendencies between two or more pathosystems, 
despite all the singular differences discussed earlier (Figure 7): (i) 
the biosynthesis of the major amino acids Gln and Asn as well 
as of the defense-associated branched-chain and aromatic amino 
acids are commonly induced, (ii) the Calvin cycle and/or starch 
biosynthesis are reduced while (iii) glycolysis and the TCA cycle are 
more frequented. Mostly, (iv) photorespiration is elevated, while 
sucrose biosynthesis is hampered. Because these changes in pri-
mary metabolism are not specific to one particular pathosystem, 
it appears likely that they are part of a common response of cereal 
primary metabolism during the early infection phase rather than 
being associated with particular responses of the hosts toward tar-
geted manipulation by individual pathogens.
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in favor of glycolytic utilization of sucrose on the transcriptional 
level. As discussed by Horst et al. (2008) for U. maydis-induced 
tumors, the altered regulation of sucrose metabolism indicates that 
the developing leaves at 48hpi might represent sink characteristics 
and cover part of their carbohydrate budget by import of sugar 
(as indicated in Figure  7C). In this light, increased amino acid 
contents without clearly elevated supply of carbon moieties by the 
TCA cycle might also indicate that part of the free amino acid pool 
is replenished by import from systemic leaves (as discussed for 
tumors in Horst et al., 2010b).

Figure 7 | Models of leaf metabolism during early interaction stages. Based 
on the results of the combined metabolome and transcriptome analysis, models 
illustrating the reprogramming of host metabolism during early biotrophic 
interactions are depicted for Bgh infected barley leaves at 24hpi (A), Cg infected 
maize leaves at 36hpi (B) and Um infected maize leaves at 48hpi (C). Please note 
that for simplicity, C4 metabolism has been omitted from the maize models.  
Yellow – up compared to mock control; blue – down compared to mock control. 
Arrow thickness correlates with the proposed metabolic flux relative to the other 
depicted metabolic pathways. For explanations, please see the discussion text. 
Amino acids are abbreviated according to three letter code, 2PG, 

(2-phosphoglycolate); aKG, (α-ketoglutarate) Hex (hexoses); Icit, (isocitrate); PEP, 
(phosphoenol pyruvate); 3-PGA, (3-phosphoglycerate); Suc, (sucrose); TP (triose 
phosphates); αKG-DH, (α-ketoglutarate dehydrogenase); AK, (aspartate kinase); 
AsnS, (asparagine synthetase); CitS, (citrate synthase); cw-INV, (cell wall 
invertase); DCT2, (dicarboxylate translocator); FBPase2, (fructose-2,6-
bisphosphatase); IDH, (isocitrate dehydrogenase); IPMS, (isopropylmalate 
synthase); MDH, (malate dehydrogenase); PEPC, (PEP carboxylase); PFK2, 
(phosphofructokinase 2); PFP, (pyrophosphate-dependent phosphofructokinase); 
PPT, (phosphoenolpyruvate/phosphate translocator); SHMT, (serine hydroxymethyl 
transferase); SPS, (sucrose phosphate synthase); SuSy, (sucrose synthase).
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The structure-related information available from LC–MS analy-
sis includes the retention time, exact mass number, and tandem mass 
spectrum (MS/MS spectrum). The structure associated with each 
metabolite signal has been estimated by searching databases con-
taining reference data using the information obtained from LC–MS 
analysis (Moco et al., 2007; Kind and Fiehn, 2010; Neumann and 
Bocker, 2010). The amount of information obtained from database 
searches varies among metabolite peaks; therefore, four levels of 
structural elucidation have been standardized by the metabolome 
standard initiative (MSI) as follows (Fiehn et al., 2007; Sumner et al., 
2007): (1) Identified: a minimum of two independent data points 
relative to an authentic compound analyzed under identical experi-
mental conditions. (2) Putatively annotated: without chemical refer-
ence standards, based on physicochemical properties and/or spectral 
similarity with public/commercial spectral libraries. (3) Putatively 
characterized: based on characteristic physicochemical properties 
of a chemical class of compounds, or spectral similarity to known 
compounds of a chemical class. (4) Unknown. Based on the stand-
ardized format, a framework for automated structural elucidation 
is required to explore the structural diversity of phytochemicals. 
However, several technical issues must be solved before database-
assisted elucidation of metabolite structures (Kind and Fiehn, 2010; 
Neumann and Bocker, 2010). One bottleneck is represented by a 
shortage of standard compounds and their associated MS/MS spec-
tra data. Owing to the poor availability of plant secondary metabo-
lites, only a very low percentage of the observed metabolite signals 
can be assigned by comparison of the chromatographic behavior 

Introduction
The ability to produce various secondary metabolites has evolved 
in plants for the purpose of self-defense, environmental adapta-
tion, and interaction with other organisms. Because humans utilize 
phytochemicals as a rich resource for various purposes such as 
the production of pharmaceuticals, further understanding of the 
genetic background behind the diversity of secondary metabolites 
produced by plants will facilitate more intensive application of 
these compounds (Saito and Matsuda, 2010). Recent progress in 
gene sequencing has enabled generation of a large volume of data 
on genetic polymorphisms that is related to natural variations in 
phytochemicals (Clark et  al., 2007; Ossowski et  al., 2008; Zeller 
et al., 2008). Accordingly, it is expected that novel genes and func-
tions of plant secondary metabolism as well as those involved in 
evolution could be investigated based on the association between 
genotypes and metabolic phenotypes (metabolotypes; Plantegenet 
et al., 2009; Weigel and Mott, 2009). Since the metabolotype data 
required for such analyses is both qualitative (structure of second-
ary metabolites) and quantitative (amount of metabolite), meta-
bolic profiling analysis using liquid chromatography–tandem mass 
spectrometry (LC–MS) has been used to obtain comprehensive 
profiles of plant secondary metabolites (De Vos et al., 2007). While 
qualitative data describing hundreds of metabolite signals have 
routinely been acquired during analysis (Keurentjes et al., 2006), 
structural elucidation of the observed signals using LC–MS is still 
difficult (Moco et al., 2006; Bottcher et al., 2007; Iijima et al., 2008; 
Matsuda et al., 2010a).
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with chemical reference standards (Matsuda et al., 2010a). Although 
great effort has been put into construction of the MS/MS spectral 
databases (Moco et al., 2006; Wishart et al., 2007; Horai et al., 2010), 
further enrichment is required for structural elucidation of the wider 
range of metabolites. Another difficulty is the low reproducibility 
of the structure-related information. For instance, the fragment 
patterns in MS/MS spectra depend on the mass spectrometers and 
their operating conditions. The error derived from the analysis also 
exists in the high-resolution mass spectral data (Mihaleva et al., 
2008; Matsuda et al., 2009b). Owing to these technical problems, 
elucidation of the structure associated with signals corresponding 
to metabolomes is time consuming, which has hampered the inves-
tigation of phytochemical diversity across plant species or ecotypes.

In this study, a novel framework for the automated elucidation of 
metabolite structures in LC–MS metabolome data was constructed 
by integrating three different databases. To overcome the aforemen-
tioned problems, the MS/MS spectra databases were enriched using 
literature reported information. Additionally, the high-resolution 
MS/MS spectra data were redundantly acquired from each metabo-
lite signal to improve the quality of structure-related information 
that was used to search the databases. The outputs were retrieved 
using the CAS metabolite identifier for identification and putative 
annotation. A simple metabolite ontology system was also intro-
duced to enable putative characterization of the metabolite signals. 
The automated method developed here was applied for metabo-
lome data sets obtained from the rosette leaves of 20 Arabidopsis 
accessions, from which phenotypic variations in novel Arabidopsis 
metabolites among these accessions could be investigated.

Materials and Methods
Plant materials
Seeds of 20 accessions of Arabidopsis thaliana, CS22676 Bay-0, 
CS22677 Bor-4, CS22678 Br-0, CS22679 Bur-0, CS22680 C24, 
CS22681 Col-0, CS22682 Cvi-0, CS22683 Est-1, CS22684 Fei-0, 
CS22685 Goettingen-7, CS22686 Ler-1, CS22687 NFA-8, CS22688 
RRS-7, CS22689 RRS-10, CS22690 Sha, CS22691 Tamm-2, CS22692 
Ts-1, CS22693 Tsu-1, CS22694 Van-0, and CS22695 Lov-5, were 
obtained from the ABRC. The seeds were soaked on MS agar plates 
and then incubated at 22°C under 16 h day and 8 h night condi-
tions. At 18 days after germination, the aerial parts of the seedlings 
were harvested.

Metabolome analysis using LC-ESI-Q-Tof/MS
The collected sample tissues were weighed and stored at −80°C until 
analysis. The frozen tissues of independent plants were homogenized 
in five volumes of 80% aqueous methanol containing 0.1% acetic 
acid, 0.5 mg/l of lidocaine, and d-camphor sulfonic acid (Tokyo 
Kasei, Tokyo, Japan) using a mixer mill (MM 300, Retsch) with a 
zirconia bead for 6 min at 20 Hz. Next, the samples were centrifuged 
at 15,000 g for 10 min and filtered (Ultrafree-MC filter, 0.2 μm; 
Millipore, Bedford, MA, USA). The sample extracts were then applied 
to an HLB μElution plate (Waters, Milford, MA, USA) that had been 
equilibrated with 80% aqueous methanol containing 0.1% acetic 
acid. The eluates (3 μl) were subsequently subjected to metabolome 
analysis by LC coupled with electrospray quadrupole time-of-flight 
tandem MS using an Acquity BEH ODS column (LC-ESI-Q-Tof/MS, 
HPLC: Waters Acquity UPLC system; MS: Waters Q-Tof Premier). 

The metabolome analysis and data processing were conducted 
according to a previously described method (Matsuda et al., 2009c, 
2010a). Briefly, the metabolome data were obtained in the negative 
ion mode (m/z 100–2,000; dwell time: 0.45 s; interscan delay: 0.05 s, 
centroid), from which a data matrix was generated with the aid of 
MetAlign (De Vos et al., 2007; Lommen, 2009). In order to reduce 
a redundancy of the data matrix, fragment ions were removed by 
a following procedure. A metabolite signal was removed from the 
matrix when there is another intense peak eluted at similar reten-
tion times [within the retention time threshold (<0.5 s)] with the 
highest correlation coefficient above the threshold value (>0.8). The 
analysis was conducted using five biological replicates of 20 acces-
sions, from which a data matrix composed of 703 signals (peaks) 
was obtained (Table S1 in Supplementary Material). The number of 
signals would not reflect an exact number of detected metabolites 
due to the complex nature of the metabolome data.

To construct MS2T libraries, the extracts of five ecotypes were 
mixed and utilized for the MS2T data acquisition. The analyses were 
repeatedly conducted for four mixtures by previously described 
methods (Matsuda et al., 2009c). Each MS2T entry was assigned a 
unique accession code, such as ATH10n03690, in which ATH10n 
is the name of the library and 03690 is the entry number. All data 
obtained in this study are available at the PRIMe website1 (Akiyama 
et al., 2008).

Databases and software
The ReSpect (RIKEN MS/MS spectra database for phytochemicals; 
2011 January version), KNApSAcK (2010.12.24 version; Shinbo 
et al., 2006; Takahashi et al., 2008), and PRIMe standard compound 
database (2009 November version) were used in this study. The 
genetic polymorphism data from 20 Arabidopsis accessions were 
downloaded from the TAIR web site (Clark et  al., 2007; Poole, 
2007). All data processing procedures were conducted using the 
in-house script written with Perl. Structural elucidation work was 
performed in-batch search for all metabolite signals.

In the automated structural elucidation procedure, several 
thresholds were required to conduct the database searches. The 
thresholds used in this study are described in Figures 2 and 3. To 
search the MS/MS spectra, the similarity scores were determined by 
employing dot product method with mass tolerance at 0.5 Da (Stein 
and Scott, 1994). The two spectra were considered to be the similar 
when the similarity score was greater than 0.6. For hierarchical 
clustering analysis, log2-transformed Z-scored signal intensity data 
were processed using MEV version 4.4 (Saeed et al., 2003, 2006).

Results
Acquisition of metabolome data from 20 Arabidopsis 
accessions
To investigate variations in the composition of secondary metabolites 
among Arabidopsis strains (accessions), metabolic profile data were 
obtained from the rosette leaves of 20 accessions of Arabidopsis by 
LC-ESI-Q-Tof/MS analysis (Matsuda et al., 2009c, 2010a). The 20 
diverse accessions evaluated herein were previously selected by Clark 
et al. (2007) to investigate the genetic variations within the popula-

1http://prime.psc.riken.jp/
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of those metabolite signals, MS/MS spectra data were obtained from 
identical extracts by using the automated data acquisition methods 
described in Section “Materials and Methods.” Since the analyses were 
conducted repeatedly, multiple MS/MS spectra data were recorded 
for each metabolite signal (Matsuda et al., 2009c). Consequently, 
MS/MS spectral tag (MS2T) libraries containing 126,889 accessions 
were constructed (Table 1). Each MS2T entry was assigned a unique 
ID such as ATH67n06391. Based on the MS2T data, the structure 
of each metabolite signal was elucidated by searching the databases.

tion of Arabidopsis. The analysis was conducted using five biological 
replicates of 20 accessions, from which a data matrix composed of 703 
metabolite signals (peaks) was obtained (Table S1 in Supplementary 
Material). Here, the dataset was designed as AtMetExpress 20 Ecotypes 
and each metabolite signal was addressed by a unique ID, such as 
aen00884. Hierarchical clustering analysis of the dataset revealed 
that there were large variations in the metabolic profiles across 20 
accessions, which should be derived from those genetic polymor-
phisms (Figure 1). To acquire information for structural elucidation 

Figure 1 | Hierarchical clustering analysis of metabolic profile data of the AtMetExpress 20 ecotype dataset. Log2-transformed and Z-scored signal intensity 
data were hierarchically classified using the average linkage clustering methods.

Table 1 | List of databases and datasets used in this study.

Databases Description Number of accessions Data source

AtMetExpress 20 

ecotype

Metabolic profile data obtained from 20 

accessions of Arabidopsis strains

100 metabolic profile data (20 accessions by five 

biological replicates) containing 703 metabolite 

signals

http://prime.psc.riken.

jp/?action = drop_index

MS2T library Library of high-resolution MS/MS spectra 

data obtained from the actual Arabidopsis 

extracts

Subset of MS2T library containing 126,889 

accessions obtained from the Arabidopsis  

ecotypes were used in this study

http://prime.psc.riken.jp/lcms/

ms2tview/ms2tview.html

ReSpect for 

phytochemicals

MS/MS spectra database of standard and 

literature reported phytochemicals

Literature data: 3,136 records corresponding to 

2,741 metabolites Q-TOF/MS data 1,050 

records/575 standard compounds QqQ/MS data: 

4,258 records/861 standards. Total 8,444 

records/3,595 metabolites

http://spectra.psc.riken.jp/

RIKEN Standard 

compound database

List of standard compounds and 

physicochemical data

LC–MS/MS retention time and m/z data of 600 

compounds

http://prime.psc.riken.jp/lcms/data/

StandardCompound/

KNApSAcK Comprehensive species–metabolite 

relationship database

Collection of 50,048 unique metabolites and 

101,500 metabolite–species pairs

http://kanaya.naist.jp/KNApSAcK_

Family/

Metabolite ontology Simple classification of phytochemicals 322 ontology terms are assigned for the ReSpect 

database

In preparation
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the case of a metabolite signal assigned as aen00884 (Rt 3.82 and 
m/z 422), the MS2T library contains 19 MS2T accessions acquired 
from the identical metabolite signal with various spectral qual-
ity (Figure 2A). In other words, the metabolite signal was tagged 
with 19 accessions of corresponding MS2Ts. Each MS2T accession 
consists of the exact mass number of the precursor ion and MS/
MS spectra data. Thus, MS/MS spectra data were submitted to the 
ReSpect database to identify metabolites producing similar MS/
MS spectra. In the case of the MS2T accession, ATH67n06391, the 
MS/MS spectrum was similar to that of 13 compounds whose CAS 
numbers are obtained as search results (Figure 2B). Additionally, 
the exact mass number of the precursor ion was used to search 
the KNApSAcK database to find metabolites possessing a highly 
similar mass number, by which the CAS number of 1 metabo-
lite was obtained. A common CAS number (499-30-9, 2-phenyl-
glucolsinolate) observed in the outputs of both the ReSpect and 
KNApSAcK searches indicated that it is a candidate structure of 
the metabolite signal deduced from the MS2T data. To improve 
the search quality, the procedure was repeated for all 19 MS2T 
accessions, and the same results were observed for 11 MS2Ts. Since 
identical metabolites were elucidated using two distinct search 
methods with high reproducibility (>50%), it is likely that the 
metabolite signal was derived from 2-phenylethylglucosinolate or 
its structural isomers. Based on the MSI standard, the metabolite 
signal could be putatively annotated using the automated structure 
elucidation procedure (Figure 2D).

Furthermore, an automated search of the PRIMe standard com-
pound database revealed that the authentic compound of 2-phe-
nylethylglucosinolate, CAS 499-30-9, was also detected at a similar 
retention time and mass number as the queried metabolite signal. 
Since three distinct pieces of information, including the MS/MS 
spectra, exact mass number, and chromatographic behavior, were 
matched to the identical metabolite, the metabolite signal was iden-
tified as 2-phenylethylglucosinolate (Figure 2F).

Among the 703 metabolite signals in the AtMetExpress 20 
ecotype dataset, 25 and 106 peaks could be identified and puta-
tively annotated, respectively, using the procedure described above 
(Table S1 in Supplementary Material). Additionally, comparison 
with the manually curated results produced in our previous study 
(Matsuda et al., 2010a) revealed no significant error among the 32 
commonly annotated metabolite signals.

Processing of putatively characterized metabolites
In addition to the identification and putative annotation using 
the CAS metabolite identifiers, putative characterization of the 
metabolite signals was conducted by introducing the metabolite 
ontology system. The procedure is explained using the metabo-
lite signal described above as an example (peak ID: aen008844). 
For each MS2T accession tagged to the metabolite signal, MS/MS 
spectra data and the exact mass number were used for ReSpect 
(Figure 3A) and KNApSAcK (Figure 3B) searches. The compound 
ontology information instead of CAS identifiers was obtained 
as outputs in these procedures. The outputs of KNAsSAcK and 
ReSpect searches were compared to identify a common result, 
which is a compound ontology estimated from the MS2T acces-
sion. Repeated searching for 19 MS2T accessions of aen008844 
resulted in 11 MS2Ts being identified as glucosinolate based on 

Preparation of standard compound databases and the 
compound ontology system
Three distinct databases, KNApSAcK, ReSpect, and the PRIMe stand-
ard compound database, were employed for the structural elucidation 
(Table 1). ReSpect is a new web data resource that incorporates records 
from existing literature as well as the MS/MS data from our standard 
compounds. This database contains 8,444 records corresponding to 
3,595 metabolites. ReSpect is the first tool for annotation of phyto-
chemicals that is based on downloadable MS/MS data resources and 
databases (Sawada et al., in preparation). KNApSAcK is a compre-
hensive species–metabolite relationship database developed by the 
Kanaya lab in NAIST (Shinbo et al., 2006; Takahashi et al., 2008). 
KNApSAcK contains the structural data of 50,048 metabolites and 
101,500 metabolite–species pairs. In this study, KNApSAcK was used 
to elucidate molecular formulas of candidate metabolites from the 
high-resolution mass spectra data. The PRIMe standard compound 
database contains a retention time and m/z data of 600 authentic 
compounds acquired using an identical analytical method (Matsuda 
et al., 2009c). For the automated metabolite annotations, accessions 
in these databases were assigned with corresponding CAS identifiers.

Since CAS identifiers basically address a structurally confirmed 
metabolites (Matsuda et  al., 2009a), the metabolite annotation 
procedure based on the identifier cannot deal with information 
describing partially characterized metabolites. For example, the 
metabolite structures were often estimated to be from a compound 
class such as “kaempferol glycoside” and “amino acid derivative” 
(Bottcher et al., 2007; Iijima et al., 2008; Matsuda et al., 2010a). In 
the case of gene annotation, each gene was tentatively annotated 
by gene ontology terms that were manually assigned or automati-
cally estimated from the sequence similarities. Although detailed 
compound ontology systems and vocabularies have been developed 
using several databases such as CheBi and KEGG (Degtyarenko 
et al., 2008; Kanehisa et al., 2008; Matsuda et al., 2009a), a simple 
compound ontology system was newly introduced in this study to 
cover the wide range of phytochemicals. Here entries in the PRIMe 
databases were classified within three levels, ranging from basic 
(Class 1) to detailed (Class 3) with considering the basic skeleton 
and modified parts of metabolites (Table S2 in Supplementary 
Material). The ontology terms prepared in this study is not com-
prehensive, since the classification system was arbitrary prepared by 
manually curating the entries of ReSpect MS/MS spectra database 
for an assistance of structural elucidation of metabolome data. 
For instance, partially characterized metabolites could be classi-
fied as follows: kaempferol-3,7-dirhamnoside is a member of Class 
1: flavonoid, Class 2: flavonol, and Class 3: kaempferol glycoside; 
tryptophan is a member of Class 1: amino acid and Class 2: tryp-
tophan; and pinoresinol-dihexoside is a member of Class 1: phe-
nylpropanoid, Class 2: lignan, and Class 3: pinoresinol glycoside.

These metabolite classifications have been assigned to all accessions 
in the ReSpect and PRIMe standard compound databases. A detailed 
classification study is currently in progress for KNApSAcK, and 60% 
of the accessions in this database have been assigned to Class 1 or 2.

Identification and putative annotation using CAS identifiers
Based on the MS2T libraries and reference databases, the metabolite 
signals in the AtMetExpress 20 ecotypes dataset were identified or 
putatively annotated using the following automated procedure. For 
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pattern. An additional KNApSAcK search suggested that a plausible 
candidate of the metabolite is fraxin (CAS 524-32-1), although the 
position of glycosylation is unclear. Using a similar procedure, a 
metabolites putatively characterized as Class 1: phenylpropanoid 
(aen012096: Rt 3.848 min, m/z 501) were found to be malonyl-
hexosyl-sinapate (Figure 4B).

Structural elucidation of the putative phenylpropanoid 
aen006925 (Rt 5.762, m/z 367) indicated that this metabolite 
is a hexoside of an unknown aglycon (Figure 4C). Because the 
molecular formula of the aglycone was deduced to be C

11
H

9
O

4
 (m/z 

205.0502 obsd, m/z 205.0500 theor), the aglycone should be a meth-
ylated hydroxy-coumarin (according to the presence of four oxy-
gen atoms, aglycone should contain at least two hydroxy-groups 
on the coumarin moiety), or dimethoxycoumarin. Thus, the com-
pound aen006925 can be a glycoside (or C-glycoside) of these two 
aglycones, both of which are novel Arabidopsis metabolites. While 
strict structural elucidation must be conducted following the pro-
tocols accepted for natural product chemistry (Nakabayashi et al., 
2009; Matsuda et al., 2010b), the results presented here demon-
strate that a portion of the phytochemical diversity in Arabidopsis 
could be elucidated from MS/MS spectra via automated structural 
elucidation.

the Class 1 ontology. The Class 2 ontology benzylglucosinolate 
was not accepted, because the result was estimated from only 2 
MS2T accessions. Using the procedure, the metabolite signal was 
successfully characterized as glucosinolate based on the Class 1 
ontology (Figure 3C).

This procedure was conducted for all metabolite signals of the 
AtMetExpress 20 Ecotype dataset, and 188 among 703 metabo-
lite signals were automatically characterized. In the case of Class 
1 ontology, 1 alkaloids, 7 amino acids, 33 flavonoids, 68 glucosi-
nolates, 47 phenylpropanoids, 4 terpenoids, and 28 other char-
acterizations were assigned to the metabolome data (Table S2 in 
Supplementary Material).

Structural elucidation of metabolite signals using the 
database search results
Based on the results obtained using the automated methods, the 
structures of the novel Arabidopsis metabolites were manually elu-
cidated. Among the putatively characterized metabolite signals, the 
metabolite signal aen006966 (Rt 4.051 min and m/z 369) was puta-
tively characterized as being in Class 1: phenylpropanoid. The MS/
MS spectral data for ATH67n05643 (Figure 4A) indicated that the 
metabolite would be a coumarin hexoside based on the fragment 

Figure 2 | Procedure for peak identification and putative annotation using 
CAS identifiers. For the case of a metabolite signal, aen00884, the MS2T 
library contains 19 MS2T accessions acquired from the identical metabolite 
signal (A). MS/MS spectra data in MS2T were submitted to the ReSpect 
database (B). The exact mass number data of the precursor ion was used to 
search the KNApSAcK database (C). Since a common CAS number (499-30-9, 

2-phenylglucolsinolate) in the outputs of both searches were observed for 11 
MS2Ts, the metabolite signal was putatively annotated as 
2-phenylethylglucosinolate (D). Since the authentic compound of 
2-phenylethylglucosinolate,CAS 499-30-9, was also detected at a similar 
retention time and mass number (E), the metabolite signal was identified as 
2-phenylethylglucosinolate (F).
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Figure 3 | Procedure for putative characterization of metabolite signal 
using metabolite ontology. For 19 MS2T accessions tagged to the 
metabolite signal, aen008844, MS/MS spectra data and the exact mass 
number were used for ReSpect (A) and KNApSAcK (B) searches. The 

compound ontology information in KNAsSAcK and ReSpect searches were 
compared to identify a common result. Repeated searching for 19 MS2T 
accessions resulted in 11 MS2Ts being identified as glucosinolate based on 
the Class 1 ontology (C).

Figure 4 | MS/MS spectra of putatively characterized metabolites. The predicted molecular formulas of key fragments, neutral losses, and elucidated 
structures of (A) putative fraxin, (B) hexosylsinapoylmalate, and (C) hexosyl-coumarin are shown in the figure.
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ations among the 20 accessions. These results suggest that the levels 
of flavonoids and glucosinolates in rosette leaves are controlled by 
genetic polymorphisms, which would contribute to the adaptation 
of each accession to local environments (Li et al., 2008; Bednarek and 
Osbourn, 2009; Janowitz et al., 2009; Sawada et al., 2009; Manzaneda 
et al., 2010; De Kraker and Gershenzon, 2011). To investigate the asso-
ciation between large variations in metabolic phenotypes and genetic 
polymorphisms, we considered the levels of 3-hydroxy-n-propylglu-
cosinolate (aen007244) among 20 accessions. Despite significant pro-
duction of Bor-4, Tsu-1, Bay-0, and Ler-1, the glucosinolate was not 
detected from other accessions, including Col-0 (Figure 6A). Single 
nucleotide polymorphisms (SNPs) that commonly occurred in Bor-4, 
Tsu-1, Bay-0, and Ler-1, as well as did not occurred in other accessions, 
were searched against the re-sequence data produced by Clark et al. 
(2007). The results revealed that 80 SNPs of 96 corresponding SNPs 
formed a linkage disequilibrium (LD) block along the long arm of 
chromosome 4 (Figure 6B). Among the 28 ORFs in the 11-kb region 
(from At4g02870 to At4g03090), there is an enzyme gene responsible 

Phenotypic variations across Arabidopsis accessions
The structural elucidation based on the compound ontology infor-
mation enabled us to deal with putatively characterized metabolite 
signals such as glucosinolates and flavonoids without strict metabo-
lite identification or annotation. Here, the natural variations in accu-
mulation levels among 20 Arabidopsis accessions were compared for 
metabolites belonging to lignan, amino acids, flavonoids, and glucosi-
nolate (Figure 5). The metabolites assigned by lignan (Figure 5A) and 
amino acid (Figure 5B) were constitutively accumulated with small 
natural variations, suggesting that the production of those metabo-
lites is essential for Arabidopsis (Matsuda et al., 2010a). Indeed, more 
than 10 genes encoding the dirigent protein for lignan biosynthesis 
are present in the Arabidopsis genome (Burlat et al., 2001; Davin and 
Lewis, 2005; Nakatsubo et al., 2008). This redundancy would con-
tribute to the constitutive production of lignans, although the details 
regarding their physiological role in the growth of Arabidopsis remain 
unknown. In contrast, the metabolites identified as flavonoids (Figure 
5C) and glucosinolates (Figure 5D) tended to show larger natural vari-

Figure 5 | Natural variation in metabolite levels among 20 Arabidopsis accessions belonging to lignan (A), amino acid (B), flavonoid (C), and 
glucosinolate (D). The relative abundances of metabolites were determined by dividing each metabolite level by the average level.
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Discussion
A framework for the automated structural elucidation of LC–
MS metabolome data was developed to investigate the structural 
diversity of phytochemicals. Although the framework requires a 
large amount of structure-related information (MS2T library) and 

for the last step of hydroxyalkylglucosinolate biosynthesis (AOP3, 
At4g03050). Although the biological meaning of the LD are unclear, 
the association between the natural variations in the 3-hydroxy-n-
propylglucosinolate levels and genetic polymorphisms in the AOP3 
gene has been reported (Kliebenstein et al., 2001; Wentzell et al., 2007).

Figure 6 | Association between levels of 3-hydroxy-n-propylglucosinolate 
and single nucleotide polymorphisms (SNPs) across 20 accessions of 
Arabidopsis. (A) Heat-map representation of 3-hydroxy-n-propylglucosinolate 

levels in each accession. (B) Positions of SNPs associated with 3-hydroxy-n-
propylglucosinolate levels on the Arabidopsis genome. Blue triangles indicate 
positions of the SNPs.
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trol since the similarity score is not based on probability. To reduce 
false positives, the output obtained from the ReSpect search was 
compared with that derived from KNApSAcK to identify common 
results (Figures 2 and 3). The cross-check strategy should reduce 
false-positive hits, but many metabolite signals were assigned with no 
structural information. In the case of the AtMetExpress 20 Ecotype 
dataset, 94% of 703 metabolite signals were tagged by at least one 
MS2T, and the metabolite structures could be somehow estimated 
for approximately 30% of the signals (Table S1 in Supplementary 
Material). Further development of a probability-based algorithm 
to determine the similarity between MS/MS spectra is required to 
increase the numbers of structurally elucidated metabolite signals 
while controlling FDR (Mylonas et al., 2009).

In the framework developed herein, putative characterization of 
the metabolite signal could be attained by introducing a new simple 
ontology system to cover the wider range of plant metabolites. 
Additionally, the performance of the ontology system was demon-
strated for the AtMetExpress 20 ecotype datasets, which revealed the 
diversity of secondary metabolites in Arabidopsis based on struc-
tural elucidation using the putatively characterized information. 
The comparison of levels of putatively characterized metabolites 
revealed the genetic background of metabolotype variations, which 
would facilitate the analysis of these associations with genetic poly-
morphism and evolution.
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intensive searches of large databases (Figures 2 and 3), the process-
ing of the AtMetExpress 20 ecotype dataset (Figure 1) demon-
strated that the method is able to reasonably estimate metabolite 
structures. By referring to the automatically assigned information, 
the effort required for the manual curation of metabolome data 
could be drastically reduced (Figure 4), which accelerated the 
investigation of natural variations in the Arabidopsis secondary 
metabolites (Figures  5 and 6). These results demonstrated that 
the framework is effective for the structural elucidation of LC–MS 
metabolome data, although several technical improvements are 
required for more comprehensive annotation of the metabolites.

Since the MS/MS spectra database is one of the most important 
kernels in the framework (Figures 3 and 4), the search results are 
highly dependent on the database quality. For example, processing 
of the AtMetExpress 20 ecotype dataset failed to identify metabolites 
belonging to alkaloids and terpenoids, probably because the current 
version of ReSpect contains poor entries of those metabolites in 
contrast to the rich flavonoids and glucosinolates data2. This bias 
is derived from the available standard compounds and published 
MS/MS spectra data. However, the data dependency indicated that 
further enrichment of the MS/MS spectra database by the addition 
of alkaloids, terpenoids, and other phytochemicals could directly 
improve the results of the structural elucidation. To promote the 
integration and sharing of spectral data, all ReSpect contents were 
opened to the public from the PRIME Web site (Table 1).

Structures elucidated by an automated method should contain 
incorrect hits derived from errors in mass analyses, indicating that 
the false discovery rate (FDR) of large-scale search results must be 
evaluated (Matsuda et al., 2009b; Saito and Matsuda, 2010). In the 
case of the homology searches of gene sequences, the levels of FDR 
could be controlled using a probability-based searching algorithm 
such as BLAST (Altschul and Erickson, 1985). In this study, the 
cosine product (dot product) method was employed to search MS/
MS spectra because it is robust enough to identify identical spectra 
(Stein and Scott, 1994). A drawback of this method is a FDR con-

2http://spectra.psc.riken.jp/menta.cgi/analyses/explains?chapter=1
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Holistic analysis of lipids is becoming increasingly popular in the life sciences. Recently, sev-
eral interesting, mass spectrometry-based studies have been conducted, especially in plant
biology. However, while great advancements have been made we are still far from detect-
ing all the lipids species in an organism. In this study we developed an ultra performance
liquid chromatography-based method using a high resolution, accurate mass, mass spec-
trometer for the comprehensive profiling of more than 260 polar and non-polar Arabidopsis
thaliana leaf lipids. The method is fully compatible to the commonly used lipid extraction
protocols and provides a viable alternative to the commonly used direct infusion-based
shotgun lipidomics approaches. The whole process is described in detail and compared
to alternative lipidomic approaches. Next to the developed method we also introduce an
in-house developed database search software (GoBioSpace), which allows one to perform
targeted or un-targeted lipidomic and metabolomic analysis on mass spectrometric data
of every kind.

Keywords: lipidomics, ultra performance liquid chromatography, high resolution mass spectrometry, accurate mass,
database, all-ion fragmentation, Arabidopsis thaliana, metabolomics

INTRODUCTION
Holistic analysis of a cellular metabolome, the complement of all
small molecules within a cell (Oliver et al., 1998), is still quite
complicated due to the huge complexity and the large chemical
heterogeneity of all the contained molecules. Besides the polar
compounds, like sugars and amino- and organic-acids, there are
also a large number of non-polar (water insoluble) compounds
which need to be analyzed. The high complexity and chemical
diversity, but also the huge difference in the molar abundance of
these compounds explains why up to now no single analytical plat-
form has been developed that is able to detect and quantify all of
these compounds in a single analysis (Oldiges et al., 2007). As a
consequence, different sample extraction and fractionation meth-
ods have been developed which allow a rough separation of the
metabolites into less complex and more homogeneous fractions
before their analysis (Vuckovic et al., 2010). One functionally and
chemically distinct metabolic fraction that can be efficiently sep-
arated from crude extracts contains the water insoluble, generally
hydrophobic lipids.

Lipids have essential functions for all living cells, not only
because they are the building blocks of the membranes, which
enclose the cell and the internal organelles (Van Meer et al., 2008),
but also by functioning as energy storage or signaling molecules
(Downes and Currie, 1998; Spiegel and Milstien, 2003; Wenk, 2005;
Wymann and Schneiter, 2008). For this purpose it is not surpris-
ing that a complete new branch in the metabolomics area, namely
the field of lipidomics, emerged, and has made great advancement
within the last few years (Dennis, 2009; Blanksby and Mitchell,
2010; Wenk, 2010; Harkewicz and Dennis, 2011). Lipids, which are

often defined by their inability to dissolve in water, do still cover a
broad spectrum of diverse substances ranging from slightly polar
[e.g., glycosylated sphingolipids (Merrill et al., 2009) to highly
non-polar lipids like, e.g., triacylglycerol (Kuksis, 2007)]. Esti-
mations on lipid numbers within eukaryotic cells range from a
few 100 to several 1,000 lipid species (Dennis, 2009), indicat-
ing the expected high complexity. To structure this complexity
and to generate a uniform nomenclature for the known lipids
a general classification and nomenclature system was required.
The publicly funded LIPID MAPS Consortium (Fahy et al., 2005,
2009) provided a new definition system, which is mostly based
on the biosynthetic origin of the different lipids and not only
on the solubility of the compound. Therefore the lipids are now
defined as hydrophobic or amphiphatic small molecules, which
originate from carbanion-based condensation of thioesters or by
carbocation-based condensation of isoprene units (Fahy et al.,
2005). This new definition is not only more precise then the old
water insolubility-based definition, but it also allows to classify the
commonly known lipids into homogenous functional subclasses:
namely the fatty acids, glycerolipids, glycerophospholipids, sphin-
golipids, sterols, prenols, saccharolipids, and polyketides (Fahy
et al., 2005).

The fact that no single analytical technology has allowed the
identification and quantification of all metabolite species in a sin-
gle experiment is also true for the analysis of all the different lipids
from a cell (Wenk, 2010). Historically, lipids have been analyzed
by diverse chromatography-based separation methods (Bausch,
1993). Commonly used technologies comprised methods like one
or two dimensional thin layer chromatography in combination
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with different visualization strategies (Touchstone, 1995), but also
high performance liquid chromatography (HPLC) methods in
combination with various detection systems (Picchioni et al.,
1996). Even though these methods have proven useful for many
purposes, it seems that their limitations for large scale quantitative
lipid analysis are more evident (Blanksby and Mitchell, 2010). As
a consequence, mass spectrometry (MS)-based methods, with or
without chromatographic separation techniques, have evolved to
fill this technological gap (Welti et al., 2007b; Griffiths and Wang,
2009; Blanksby and Mitchell, 2010; Wenk, 2010; Harkewicz and
Dennis, 2011).

There are many different MS instruments available which can
be combined with an even larger number of separation sys-
tems (Griffiths and Wang, 2009; Wenk, 2010). Still, only two
main strategies for the analysis of lipids have been used in most
of the described reports: on one hand there is the most suc-
cessfully used method, namely shotgun lipidomics, which relies
on a separation free (direct infusion) analysis of a crude lipid
extract on triple quadrupole (QqQ) or quadrupole time-of-flight
(qTOF) mass spectrometers (Welti and Wang, 2004; Han and
Gross, 2005; Ejsing et al., 2009; Yang et al., 2009), on the other
hand there is chromatography-based separation prior to the mass
spectrometric measurement for the lipid analysis, which has been
used only in a small number of studies thus far (Markham
and Jaworski, 2007; Rainville et al., 2007; Glauser et al., 2008b;
Nakanishi et al., 2009; Nygren et al., 2011). Both methods have
their advantages and disadvantages: for example, the shotgun
approach is prone to strong ion suppression effects, which can
in part be compensated for by large sample dilutions or by
the use of internal reference compounds (Moore et al., 2007).
While the chromatography-based methods are less sensitive to
these suppression effects, due to the chromatographic separation
(Muller et al., 2002; Annesley, 2003), these approaches were thus
far unsuitable for absolute lipid quantification (Stahlman et al.,
2009).

In the field of plant metabolomics both technologies have
found their applications, while the polar glycerolipids have been
widely analyzed by the shotgun lipidomic approach (Devaiah et al.,
2007; Welti et al., 2007b; Zhang et al., 2009; Kilaru et al., 2010),
sphingolipids have been most successfully analyzed by targeted
LC–MS-based approaches (Markham et al., 2006; Markham and
Jaworski, 2007; Chen et al., 2008). Still, since most of these studies
made use of highly sensitive, but low resolution mass spectrom-
eters, they were mostly performed in a targeted way, by simply
profiling a limited number of known lipid species (Lu et al., 2008).

In this report we describe a versatile and reproducible ultra
performance liquid chromatography (UPLC)-based separation
system, coupled to a high resolution mass spectrometer operating
in MS as well as all-ion fragmentation mode. The developed system
allows for the accurate qualitative and semi-quantitative targeted
analysis of several hundred different lipid species extracted from
a single plant sample. Additionally, due to the combination of
chromatography and high resolution MS and all-ion MS/MS, the
method allows to revisit the data long after the actual measure-
ment and therefore extract and possibly elucidate novel structures
(Harkewicz and Dennis, 2011). For the actual data mining we
introduce a novel database search (GoBioSpace), which allows one

to perform either targeted or un-targeted database searches with
the acquired lipid data.

MATERIALS AND METHODS
PLANT GROWTH
The Arabidopsis thaliana Col-0 plants used for the metabolite
extraction were grown in a light and temperature controlled phy-
totron under constant CO2 conditions using a BioBox growth
chamber (GMS Gaswechsel-Messsysteme GmbH, Berlin, Ger-
many). The plant material preparation and the experimental set-
tings for the BioBox were as previously described (Huege et al.,
2007). Plant growth in the BioBox was performed for 42 days. The
aerial parts of the plants were separated from the roots by cutting,
and immediately snap frozen in liquid nitrogen.

LIPID EXTRACTION PROTOCOL
Lipids were extracted from three independent biological repli-
cates of Arabidopsis thaliana leaves. In brief: 50 mg of frozen leaf
tissue was homogenized in a 2 ml Eppendorf tube (Eppendorf,
Hamburg, Germany) for two times 1 min at maximum speed
within a Retsch mill (MM 301, Retsch, Düsseldorf, Germany).
The lipids were extracted from each aliquot using 1 ml of a pre-
cooled (−20˚C) homogenous methanol:methyl-tert-butyl-ether
(1:3) mixture, spiked with 0.1 μg/ml PE 34:0 (17:0, 17:0), and
PC 34:0 (17:0, 17:0) as internal standards. For the extraction,
the samples were incubated for 10 min in a shaker at 4˚C (Ther-
mostat Plus, Eppendorf), followed by another 10 min incubation
in an ultrasonication bath at RT. After adding 500 μl of UPLC
grade water:methanol (3:1), the homogenate was vortexed and
centrifuged for 5 min at 4˚C in a table top centrifuge (Eppendorf).
The addition of water:methanol leads to a phase separation pro-
ducing an upper organic phase, containing the lipids, and a lower
phase containing the polar and semi-polar metabolites. The upper
organic phase was removed, dried in a speed-vac concentrator, and
stored at −80˚C until used.

UPLC–FT–MS MEASUREMENT OF LIPIDS
The dried lipid extracts were re-suspended in 500 μl buffer
B (see below) and transferred to a glass vial. Two microliters
of this sample were injected on a C8 reversed phase column
(100 mm × 2.1 mm × 1.7 μm particles waters), using a Waters
Acquity UPLC system. The two mobile phases were water (UPLC
MS grade, BioSolve) with 1% 1 M NH4Ac, 0.1% acetic acid (Buffer
A,), and acetonitrile:isopropanol (7:3, UPLC grade BioSolve) con-
taining 1% 1 M NH4Ac, 0.1% acetic acid (Buffer B). The gradient
separation, which was performed at a flow rate of 400 μl/min, was:
1 min 45% A, 3 min linear gradient from 45% A to 35% A, 8 min
linear gradient from 25 to 11% A, 3 min linear gradient from 11%
A to 1% A. After washing the column for 3 min with 1% A the
buffer was set back to 45% A and the column was re-equilibrated
for 4 min (22 min total run time).

The mass spectra were acquired using an Exactive mass spec-
trometer (Thermo-Fisher, Bremen, Germany). The spectra were
recorded using altering full scan and all-ion fragmentation scan
mode, covering a mass range from 100–1500 m/z. The resolution
was set to 10,000 with 10 scans per second, restricting the Orbitrap
loading time to a maximum of 100 ms with a target value of 1E6
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ions. The capillary voltage was set to 3 kV with a sheath gas flow
value of 60 and an auxiliary gas flow of 35. The capillary temper-
ature was set to 150˚C, while the drying gas in the heated electro
spray source was set to 350˚C. The skimmer voltage was held at
25 V while the tube lens was set to a value of 130 V. The spectra
were recorded from min 1 to min 20 of the UPLC gradients.

MANUAL AND AUTOMATED PEAK EXTRACTION AND ALIGNMENT
Chromatograms from the UPLC–FT–MS runs were analyzed and
processed either by using Xcalibur (Version 2.10, Thermo-Fisher,
Bremen, Germany), ToxID (Version 2.1.1, Thermo-Fisher), or
automatically with the Refiner MS® software (Version 6.0, Gene-
Data, Basel, Switzerland). In the automated approach the molec-
ular masses, retention time, and associated peak intensities for the
three replicates of each sample were extracted from the raw files,
which contained the full scan MS and the all-ion fragmentation
MS data. The processing of the MS data included the separate
processing of the full scan spectra and the all-ion fragmentation
spectra. Chemical noise was automatically removed from the spec-
tra before the chromatograms were aligned using a pair wise-based
alignment tree algorithm (Refiner MS 6.0).

Further peak filtering on the manually extracted spectra or the
aligned data matrices was performed in Excel or Access (Microsoft,
Seattle, WA, USA).

GOBIOSPACE DATABASE
Based on the fact that the masses measured in the mass spectrom-
eter are almost directly connected to the elemental composition
of a measured analyte, considering either an addition or loss of
a sub structure – so called adducts (i.e., [M + H]+ protonation,
[M − H]− de-protonation, M+NH4]+ Ammonium-, [M + Na]+
Sodium-, [M + Ca]+ Calcium-adduct), GoBioSpace (Golm Bio-
chemical Space) was conceptualized as a repository of elemental
compositions with source tagged annotations for properties such
as InChI strings, CAS numbers, IUPAC names, synonyms, cross
references or KEGG Pathway names, among others.

The source of an annotation – the so called depositor – facil-
itates as a filter for the biological relevance of elemental com-
positions. The meaningful interpretation of search results in a
biological context is accomplished by a targeted search limiting
the formula to biology related depositors such as KEGG and Bio-
Cyc, among others. In contrast, relaxed searches in regard to the
formula’s depositor (i.e., including those elemental compositions
only reported from vendors of potentially synthesized chemicals)
result in search hits with lower biological interpretability.

To date, we collected more than 366 million meta informa-
tion for 2.1 million unique elemental compositions from more
than 150 public available databases (143 included in PubChem),
such as the chemical focused databases PubChem Substance1 and
ChemSpider2 or biological focused databases such as the Human
Metabolome Database3 and Metabolome.JP4 into the GoBioSpace
repository. Our approach also facilitates the search against poten-
tially putative elemental compositions such as described for lipids

1http://www.ncbi.nlm.nih.gov/pcsubstance
2http://www.chemspider.com/
3http://www.hmdb.ca/
4http://www.metabolome.jp/

in the chapter “Targeting Specific Lipids within the Total Ion
Chromatogram: Pick What You Know.”

For high resolution mass search queries, the accurate iso-
topic masses for either ambient 12C or fully isotopic labeled 13C,
15N, and 34S formula were calculated according to Böhlke et al.
(2005). An indexed view in the database allows the single step
matching of measured masses to elemental compositions, toler-
ating a given mass error and considering user defined sets of
expected analytical adducts and depositors to correct the measured
masses. In addition, the client side search application supports the
restriction of elemental composition hits based on atom number
constraints.

To make the mass search functionality accessible to the commu-
nity, we implemented a Web Service within the Golm Metabolome
Database (GMD5; Kopka et al., 2005; Hummel et al., 2010)
and integrated this web service into a graphical user interface
which is also made available http://gmd.mpimp-golm.mpg.de/
GoBioSpace.aspx. Here, elemental compositions and individual
or batched (tabulator formatted text files) masses can easily be
configured and searched against databases of interest. The match-
ing results are returned as browse- and sort-able tables which can
be exported for further analysis as tabular formatted text files.
However, the web services can be integrated for non-commercial
use into any data processing pipeline. All software is implemented
using the Microsoft .NET 4.0 framework, the C# language, and
Microsoft Visual Studio® 2010. The data back end is based on a
Microsoft® SQL Server® 2005.

RESULTS AND DISCUSSION
UPLC–FT/MS-BASED SEPARATION AND MEASUREMENT OF CRUDE
ARABIDOPSIS LIPID EXTRACTS
Arabidopsis thaliana lipids were extracted using a buffer system
containing methyl-tert-butyl-ether instead of chloroform as the
organic solvent (Matyash et al., 2008). This extraction protocol
enabled us not only to extract the lipids with a higher efficiency,
but also to extract lipids, polar and semi-polar metabolites, starch,
and proteins from a single sample (Giavalisco et al., 2011). The
extracted lipids were analyzed on a C8 reversed phase UPLC col-
umn, using 1.7 μm particles (Rainville et al., 2007), in a 22 min
method. Both steps, the extraction as well as the chromatographic
separation are simple and high-throughput compatible methods,
and are applicable for several different plants but also other, non-
photosynthetic organisms like, e.g., yeast, Drosophila, C. elegans,
or mammalian tissue (data not shown).

All mass spectrometric measurements were performed on a
standalone high resolution Orbitrap (Exactive) mass spectrom-
eter (Lu et al., 2010), coupled to an ultra performance liquid
chromatography system. This “smaller” version of an Orbitrap
(lacking a the linear ion trap in front of the Orbitrap analyzer),
which actually does not cost more than a QqQ mass spectrometer,
still matches all the demands of an high resolution mass spectrom-
eter [fast scanning (up to 10 Hz), high resolution (up to 100,000 R),
and accurate mass (<2 ppm)]. The combination of these attrib-
utes therefore allows one not only to distinguish compounds with

5http://gmd.mpimp-golm.mpg.de/
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very similar masses, but also to directly annotate elemental com-
positions, without a need for a reference compound, based on the
measured accurate masses (Giavalisco et al., 2008; Xu et al., 2010).

Each lipid extract was separated and measured twice, once in
positive ionization (Figure 1A) and once in negative ionization
mode (Figure 1B). The reason for this duplicated measurement
can be easily seen by looking at the two chromatograms, as they
appear quite different. The explanation for this difference comes
from the chemical nature of the detected lipid species (Han and
Gross, 2005; Devaiah et al., 2006). Even though all of these lipids
are constructed from a small number of building blocks (a glyc-
erol backbone linked to a number of fatty acids), their general mass
spectrometric behavior is controlled by the chemical property of
their class-specific head group (Yang et al., 2009). Accordingly, even
though most of these lipids ionize in both ionization modes, they
do have a clear bias for a specific adduct and, as a consequence, a
specific polarity (Table 1).

For example, monogalactosyldiacylglycerol (MGDG) 34:6 can
be detected with three different adducts in the positive ioniza-
tion mode ([M + H], [M + NH4], and [M + Na]) and another
two adducts can be detected in the negative ionization mode
([M − H], [M + Acetate − H]). The appearance of these multi-
ple adducts proves to be an extremely useful feature, even if it
increases the spectral complexity, since it improves the analysis
and the correct annotation of the measured lipid classes. As can be
seen in Figure 1A, peak pairs with precise distances can be iden-
tified. A difference of m/z 21.98 (±5 ppm) indicates a [M + H]
and a [M + Na] ion pair, while distances of m/z 17.02 (±5 ppm)
indicate a [M + H] and a [M + NH4] ion pair (Figure 1A).

The correct adduct annotation is of particular importance,
especially if looking at lipids where the different adducts might
have very similar (or even identical) masses. One example for
such a case is given in Figure 2 for a phosphatidylserine (PS) and
phosphatidylglycerol (PG) lipid. As the protonated PS 34:2 is only
0.02 ppm different from the ammonium adduct of PG 34:4, which
means that for the mass of 760.51385 ± 5 ppm we will get two lipid
peaks from our positive mode spectrum. Looking at the adduct
patterns of the spectra (including also the negative ion mode spec-
tra), helps to solve the above mentioned annotation dilemma for
these two compounds, since only the peak with a retention time
of 7.17 min pairs to a sister peak with a distance of 17.02, which
indicates that this peak is the ammonium adduct of PG 34:4, while
the peak at RT 7.97 min can be annotated as the PS 34:2.

TARGETING SPECIFIC LIPIDS WITHIN THE TOTAL ION
CHROMATOGRAM: PICK WHAT YOU KNOW
In almost all cases lipidomics studies performed in the plant field
were conducted in a targeted way, meaning that a number (a few
dozen to several 100) expected lipids species were profiled (Deva-
iah et al., 2006; Markham and Jaworski, 2007). To validate our
system, we decided to profile the lipids from these previously con-
ducted studies by selectively extracting the expected masses from
our chromatograms. In total we prepared a target list containing
332 different lipid species types [168 sphingolipids (Markham and
Jaworski, 2007), 147 phosphoglycero- or galacto-lipids (Devaiah
et al., 2006), and 17 oxylipin species (Buseman et al., 2006)], which
were detected in three independent studies, using three different

extraction protocols, and three different types of mass spectrome-
ters. As illustrated in Figure 3A we conducted the peak extraction
by simply extracting each single mass associated to a specific lipid
and relatively quantified the intensity of the different adducts from
each chromatogram (Table S1 in Supplementary Material). In the
same way it is also possible to extract several masses, belonging
to different lipids, within a specific lipids class or from different
classes, and quantitatively compare them to each other in paral-
lel (e.g., whole PC 36: 1–6 and PC 34: 1–6 series is displayed in
Figure 3B).

By manually extracting the masses from the chromatograms
we matched 187 of the 332 different lipids, including 127/147 of
the previously described phospho-, lysophospho-, and galacto-
lipids (Devaiah et al., 2006), all 17 of the 17 previously described
oxylipins (Buseman et al., 2006), and 43 of the 168 possible
sphingolipids (Markham and Jaworski, 2007). Compared to the
excellent coverage of lipid species from the phosphoglycero and
galacto lipids the result achieved for the sphingolipids were less
comprehensive, only covering the most abundant lipid species
from the Markham and Jaworski (2007) study. This indicated that
we were not having a general loss of sphingolipids in our method,
but rather a sensitivity problem, which can often be observed
if ion trap-like mass spectrometers are compared to QqQ-type
mass spectrometers (Mcluckey and Wells, 2001). Additionally, we
noticed that the sample preparation method used in the sphin-
golipid study was highly sophisticated and specifically tailored to
this lipid class, including a depletion step of the highly abundant
phospholipids, which will lead to a higher detection sensitivity
due to strongly decreased ion suppression effects (Markham and
Jaworski, 2007).

Taken together we can conclude that we do see most of the
expected lipid species in our samples and most of them with sev-
eral different ion species (different adducts). The data of these
initially extracted and validated lipid species is collected in Table
S1 in Supplementary Material.

SYSTEMATIC DISTRIBUTION OF RETENTION TIME AND MASS AIDS TO
VALIDATE THE ANNOTATION OF THE MEASURED LIPIDS
Confidence in the annotation of a measured compound can be
increased with the number of parameters this compound shares
with related compounds. Since lipids are constructed as modu-
lar molecules (Fahy et al., 2009; Yang et al., 2009), which usually
vary only slightly between the different species within a lipid class
(extension of the fatty acid chain length or the degree of satura-
tion), they have a very systematic mass and retention time behavior
(Hermansson et al., 2005). Therefore, both these parameters allows
the validation of lipids within a specific class by simply plotting
the m/z and RT values of the measured species of the most abun-
dant adduct in a scatter plot. As can be seen for Figure 4 (scatter
plot for the measured PCs from Table S1 in Supplementary Mate-
rial), the lipids with longer fatty acid chains lead to a higher mass
and increased retention time, while fatty acids with higher degrees
of un-saturation result in lipids with lower masses and decreased
retention times. As a consequence, a diagonal series appears within
the plots. These contain lipid species with the same number of car-
bons atoms in the fatty acid chains but show decreasing number
of double bonds from left to right (Figure 4). Wrongly annotated
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FIGURE 1 | Ultra performance liquid chromatography
chromatograms and selected mass spectra from Arabidopsis
thaliana leaf lipid extracts. (A) Total ion chromatogram (TIC, upper
part) of mass spectra recorded in positive ion mode. The lower part

shows the mass spectrum from the apex of the MGDG 34:6 peak with the
retention time of 7.08 min and its associated ionization adducts. (B) As above,
but here the TIC and the spectrum of the negative ion mode measurements
are shown.

or unusually distributed lipids can be easily detected within these
patterns since they appear as dots outside the systematic scatter

pattern. A curious and unexplained example is given for the PCs
with 40 carbons in the two fatty acid chains (Figure 4). Even
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Table 1 | Ionization adducts of the detected lipid classes within the

UPLC chromatograms.

Lipid class Detected ions Most abundant ion

PC [M + H]+, [M + Na]+,[M +Ac − H]− [M + H]+

PE [M + H]+, [M + Na]+, [M − H]− [M + H]+

PG [M + H]+, [M + NH4]+, [M + Na]+,

[M − H]−
[M − H]−

PI [M + H]+, [M + NH4]+, [M − H]− [M − H]−

PS [M + H]+, [M − H]− [M + H]+

MGDG [M + NH4]+, [M + Na]+, [M − H]− [M + Na]+

DGDG [M + NH4]+, [M + Na]+, [M − H]− [M + Na]+

SQDG [M + NH4]+, [M + Na]+, [M − H]− [M − H]−

Cer [M + H]+, [M + NH4]+, [M + Na]+,

[M − H]−
[M − H]−, [M + H]+

GlcCer [M + H]+, [M + NH4]+, [M + Na]+,

[M − H]−
[M − H]−, [M + H]+

GIPC [M + H]+, [M + NH4]+, [M + Na]+,

[M − H]−
[M + H]+

Oxylipins [M + NH4]+, [M + Na]+, [M − H]− [M + Na]+

TAG [M + NH4]+, [M + Na]+ [M + NH4]+

DAG [M + NH4]+, [M + Na]+ [M + Na]+

FA [M − H]− [M − H]−

PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglyc-

erol; PI, phosphatidylinositol; PS, phosphatidylserine; MGDG, monogalactosyldia-

cylglycerol; DGDG, digalactosyldiacylglycerol; SQDG, sulfoquinovosyldiacylglyc-

erol; Cer, ceramide; GlcCer, glucosylceramides; GIPC, glycosylinositolphospho-

ceramides; TAG, triacylglycerols; DAG, diacylglycerols; FA, fatty acids.

though these lipids are systematically distributed by themselves, it
is evident from the plot that they are not matching the distribution
of the other, shorter fatty acid chain lipids in this lipid class. The PC
40:2 for example, which would be predicted to have a later elution
time than the PC 38:2, does actually elute almost a minute earlier
than the shorter chain classmate (Figure 4). This could indicate
that the PC 40:X lipids have been either annotated wrongly or
there is a systematic shift in these longer fatty acid chain lipids.

Next to the exclusion of possibly wrongly annotated lipids, the
scatter plot representation allows one to also quickly detect missing
lipid species within a systematic series. In this case one or several
dots would be missing within the diagonal line. In Figure 4 we can
see for example that we could not detect PC 38:1. Even rechecking
the spectra at the expected retention time did not allow us to detect
the expected peak.

ALL-ION FRAGMENTATION DATA FOR THE LIPID ANNOTATION
VALIDATION
Using high resolution accurate mass data is in many cases suf-
ficient to predict an elemental composition of a measured peak
(Giavalisco et al., 2009). Still the accuracy and probability for a cor-
rect annotation is increased if along with the accurate mass of the
intact molecule (precursor) an additional mass of a compound-
specific fragment can be detected. The measurement of the mass of
the intact precursor and one or several fragments are the essential
values for the peak identification in shotgun lipidomic analysis
(Han and Gross, 2005). The occurrence of these specific frag-
ment ions results from either a specific loss of a charged molecule
(e.g., choline head group from PC lipids) or from the loss of an

FIGURE 2 | Positive and negative ion mode spectra and adduct annotations of PG 34:4 (red boxed) and PS 34:2 (blue boxed).
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FIGURE 3 | Extracted ion chromatograms of a single lipid species [PC 36:6 (A)] or a whole series of lipids [PCs (B)]. The spectra were recorded in and
extracted from positive ion mode lipid chromatograms (Figure 1A).

uncharged fragment (neutral loss). This technique can also be used
on LC–MS-based systems in non-shotgun lipidomic studies, but
only if fragmentation mass spectra are recorded.

The main advantage of high pressure sub 2 μm particle UPLC
systems, compared to conventional, lower pressure, larger particle

HPLC systems, is its fast, sensitive, and highly reproducible chro-
matography (Plumb et al., 2004). The faster chromatography and
the smaller peak width, which is a consequence of the higher
plate number achieved in the UPLC system, turns into a disad-
vantage when the number of scans/time of the mass spectrometer
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FIGURE 4 | Scatter plot of all lipids annotated as phosphocholines (Table
S2 in Supplementary Material). The plot contains the measured retention
time in minutes on the x -axes and the recorded mass of the [M + H]+ adduct
on the y -axes. Due to the modular building block structure of lipids within a
homogenous class, systematic patterns of parallel lines should be observed.
From bottom to top these lines should contain lipids with increasing fatty acid

chain length, while the number of double bond should decrease from left to
right. The star under PC 38:1 indicates that this lipid was not detected in the
analyzed samples, but it would have been expected at this retention time. The
PC 40:X series is highlighted since these compounds seem to elute too early
and therefore do not match the expected elution pattern given by the whole
class.

are too low to perform the survey full scans and data-dependent
MS/MS measurements of the most abundant peaks (Schmitt-
Kopplin et al., 2008). The FT–MS instrument used in this study,
which has a scan speed of up to 10 Hz at a resolution of 10,000
can circumvent this problem partially, but still, even 10 scans/s
are not enough time to perform classical data-dependent MS/MS
analysis of several eluting masses while recording sufficient infor-
mation for good peak integration, especially if the eluting peaks are
only 3–6 s long (Figure 3A). The solution for this problem, which
has originally been developed and implemented under the name
MSe as a scan method for qTOF mass spectrometers (Bateman
et al., 2007), and simply relies on the fragmentation of all precur-
sor ions measured in the full scan instead of selecting individual
masses. This approach has successfully been used in a proteomic
study in the Exactive MS and was called all-ion fragmentation
(Geiger et al., 2010). In Figure 5A an illustration of the measure-
ment method used for our lipidomic analysis is given, showing
that we constantly alter between low energy full scans and high
energy all-ion fragmentation scans throughout the whole chro-
matographic separation. The advantage of this procedure is that
two independent MS data-sets are generated, one contains the
intact mass information for all the compounds eluting during the
chromatographic separation, while the second contains the frag-
mentation data for the selfsame compounds. To integrate this data
and to validate a predicted lipid it is only necessary to connect the
elution profile of a full scan (low energy) mass to the similarly
eluting masses from the all-ion MS/MS (high energy) spectra. In
Figure 5B this procedure is illustrated for PC 36:6. As can be seen,

three fragment masses (m/z 184.07381, m/z 500.31598, and m/z
518.32513) within the mass spectra between 7.2 and 7.8 min are
exactly co-eluting to the phosphocholine lipid (m/z 778.53894)
and should therefore be associated. Another two masses (m/z
728.52446 and m/z 573.48822), which are closely co-eluting, show
clearly differential elution profiles and can therefore excluded to
be associated to PC36:6, indicating that they should represent
different lipids.

The systematic analysis of these all-ion MS/MS spectra there-
fore allows us to uncover a number of lipid specific fragments,
which can be used to validate a specific lipid species, e.g., the masses
m/z 500.31598 and m/z 518.32513, which are specific fragments
of PG 36:6 (Figure 5B). As well, we can also find class-specific
fragments, like the m/z 184.07381, which is the positively charged
choline fragment that can be detected for all phosphocholine
lipids.

AUTOMATED LIPID ANNOTATION STRATEGIES
The strategy presented for the analysis of lipids thus far still
requires a high manual input, especially for the validation of the
lipid annotation. Of course this is only true if a novel sample
(a new organism or a new tissue) is analyzed. Once a sample
is annotated and no major changes in the extraction procedure
or the chromatographic separation are introduced, the following
lipid profiles can be simply matched to the results of the initially
performed peak annotation.

The chromatographic and the spectral compatibility between
different samples, namely the retention time and the spectral
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FIGURE 5 | Ultra performance liquid chromatography–MS
measurement strategy employed for the lipid analysis in this
study: (A) illustration of high and low energy alteration for the
acquisition of full scan and all-ion MS/MS spectra. (B) Extracted ion
chromatograms of the indicated masses (derived either from the high or low

energy mass spectra) from a representative positive ion modes UPLC
chromatogram. Peaks with the same elution profile can be regarded as
co-eluting masses, which are derived from the same precursor molecule.
Differentially eluting peaks have to be regarded as different compounds,
requiring different annotations.

intensities, are achieved by using the two internal standards (PE
34:0 and PC 34:0), which we have spiked into the extraction buffer.
Increasing the number of internal standards might be useful in the
long run if the retention time system needs to be converted into
a retention index system, which would possibly allow one to not
only match lipids within a single experiment, but also between
different experiments.

After having annotated the initial expected lipids from a novel
matrix the data analysis can be automated by using one of the
two different strategies depicted in Figure 6. The main distinction
between the two approaches lies in the fact that one strategy
directly targets only the peaks of interest by selectively extracting

the masses of lipids of interest at specific retention times from the
generated chromatograms (left part of Figure 6), while the second
strategy relies on a slightly different approach. Here, all the peaks
from the chromatograms are extracted and aligned into a data
matrix before matching these peaks to the m/z and RT values of
an annotated peak list (right part of Figure 6). The result in both
cases should be almost identical. The major difference between
the two approaches lies in the fact that in the first approach only
annotated peaks can be used for the analysis, while the second
approach allows for the further use of an un-annotated matrix,
derived from the peak picking software, providing the basis for
fully un-targeted lipidomics.
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FIGURE 6 | Automated, software-assisted, strategies for targeted but
also un-targeted lipid profiling. On the left hand side a purely targeted
strategy is depicted, where based on a target list several chromatograms are
searched for the occurrence of specific m/z and retention times. If a peak is
found, within certain tolerance boundaries, the intensity is loaded to a result

table. The strategy on the right hand side indicates a diverse strategy. Here all
peaks are extracted first and these are written into an un-annotated data
matrix. This matrix can then be compared against a target list (same as for the
first strategy) or used for statistical analysis of significantly differential peaks,
which then have to be annotated.

For the purpose of targeted peak picking (left part of Figure 6),
software is usually provided by the vendor of the mass spectrome-
ter. This software can be used by uploading a target list containing
the name, the m/z, and the RT of the peaks of interest. This target
list is then used to query the chromatograms generated during
the analysis. The output of such a search is a list where every
peak of interest is associated to the compound name, the mea-
sured m/z and RT, and an intensity value, which is equivalent to
the relative amount of the compound within the sample. For the
analysis of Exactive or other Thermo-Fisher MS data two software
packages are available: either a processing method [which has to
be entered compound by compound within Xcalibur (Thermo-
Fisher, Bremen, Germany)] can be generated, or if the ToxID
software package (Thermo-Fisher) is used, a comma separated text
file can be employed for the targeted analysis of the lipidomic data.

For the purpose of targeted, but also un-targeted data analy-
sis (right part of Figure 6), peak picking and matrix alignment
of all peaks is necessary first. Here several commercial, but also
open source software packages are available (Katajamaa et al., 2006;
Smith et al., 2006; Katajamaa and Oresic, 2007; Benton et al., 2008;

Lommen, 2009; Pluskal et al., 2010). Once the initial, un-annotated
matrix is generated from a suitable software package, this matrix
can be further filtered and compared to the previously generated
reference lists.

Usually a matrix from Arabidopsis leaf tissue contains 30,000
or more reproducible peaks which are above a minimal threshold
of 10,000 counts (data not shown). The difference in dimensions
between the target list and the global matrix already indicates that
even though we are mining a significant portion of lipids from
these samples (200–300 lipid species, Tables S1 and S2 in Supple-
mentary Material), the majority of the detectable peaks remains
un-annotated.

GOBIOSPACE: A DATABASE SEARCH INTERFACE FOR MASS
SPECTROMETRIC DATA
As shown in Figure 6 the un-targeted global matrix, which con-
tains all the extractable peaks from the recorded mass spectra, can
be compared against a reference list of annotated compounds. The
size and the content of these lists can vary significantly: therefore
one can use the reference list generated in this study (Table S1 in
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Supplementary Material) or other more comprehensive customer
made lists. Furthermore public and commercial databases like, e.g.,
the Lipid Maps (Fahy et al., 2005, 2009), the KNApSAcK (Shinbo
et al., 2006), KEGG (Kanehisa et al., 2008), PubChem (Wang et al.,
2009), or ChemSpider (Williams, 2008) can be employed for even
more comprehensive or specific database searches. The problem
with these comparisons is that first of all not all these databases
are easily accessible, but also even if they are, it still requires expe-
rience and personal effort with appropriate tools to compile these
databases into a suitable resource. For this purpose we decided to
develop a distributed client-server application utilizing a graphical
user interface which supports the matching of measured masses
to elemental compositions deposited in a relational database and
make this tool publicly available.

We named this software GoBioSpace (for Golm Biochemical
Space), which can be installed on Microsoft Windows XP Ser-
vice Pack 3 and later desktop computers using the ClickOnce
deployment6. The database server is accessed in-house directly
using ADO.NET7, while internet users fall back to WSDL-based
[W3C (2001) Web Services Description Language (WSDL)8] web
services9.

The main functionality of GoBioSpace is to compare measured
masses from mass spectrometric measurements, now including
all kind of mass spectrometric data (high accurate mass but also
lower mass accuracy), against a single or several databases (see
Materials and Methods). As illustrated in Figure 7, the work-
flow for the data analysis is simple: a single mass or an elemental
composition, but also a list of masses or formulas (tab-delimited
text file) can be loaded into the software and searched against
a single or several databases (at the moment more than 150
public databases are hosted, including the whole PubChem col-
lection). Prior to the database search a number of parameters have
to be specified, including the possible adducts of the measured
mass (e.g., [M + H]+, [M + Na]+, [M + NH4]+, [M − 2H]2−,
[M − Acetate + H]−), the mass accuracy of the entered data,
and finally a selection of elements expected to be contained in
the matching compounds. The database search by itself (the in-
house version) is quite fast and can process easily 2,000 searches
per second, meaning that even a large list containing 30,000
peaks is processed within 15 s. However, reasoned by the increased
complexity of protocol layers utilizing xml (eXtensible Markup
Language)10 and http (Hypertext Transport Protocol)11 for data
encapsulation and transport over the internet, we expect the per-
formance of the internet version to fall below this value, also
depending on the final capacity of the web and database servers.
The output format of the result list, which is again a tab-delimited
text file, contains all the information contained in the input table
(measured m/z, RT and intensity of the measured peaks) added
by the possible elemental composition of the measured mass, the
adduct used to match measured and calculated mass, the database

6http://msdn.microsoft.com/en-us/library/t71a733d.aspx
7http://msdn.microsoft.com/en-us/library/h43ks021%28v =VS.100%29.aspx
8http://www.w3.org/TR/wsdl
9http://gmd.mpimp-golm.mpg.de/webservices/wsGoBioSpace.asmx
10http://www.w3.org/XML/
11http://www.w3.org/Protocols/

this hit was derived from, one or several compound name(s) if
specified within the selected databases, and the mass error between
the measured mass and the matched hit.

To re-validate our chromatographic data we searched the
30,000 peaks against an in-house assembled lipid database con-
taining approximately 1,000 entries. This table contained the
previously described lipids profiled in Arabidopsis thaliana lipids
samples (Buseman et al., 2006; Devaiah et al., 2006; Markham et al.,
2006; Markham and Jaworski, 2007; Glauser et al., 2008a,b), but
also a large set of other lipid species including sterols (Benveniste,
2004; Hemmerlin et al., 2004), several di- and tri-acylglycerols,
fatty acids, chlorophylls (Tanaka and Tanaka, 2006), and other
plant pigments (Grotewold, 2006).

This database search resulted initially in a list of more than
4,000 hits for the positive mode spectra and 1,500 hits for the
negative mode spectra. After correcting for the accurate adducts
(Table 1) but also the expected retention times of the expected
lipids within their lipid classes (Table S1 in Supplementary Mater-
ial) we annotated, still very conservatively, 577 distinct peaks which
were annotated to 265 unique elemental compositions (Tables S1
and S2 in Supplementary Material). Still, the number of hits within
the already highly targeted database search seems to promise that
this data-set contains many more compounds awaiting a proper
annotation.

For overview purposes and to visualize the annotated data we
mapped all the annotated lipids from Table S2 in Supplementary
Material into a scatter plot (Figure A1 in Appendix) and the dif-
ferent lipid classes and their distribution within the positive mode
UPLC chromatogram (Figure 8).

PROS AND CONS OF DIFFERENT LIDOMIC STRATEGIES
The most common approach for systematic lipid profiling is still
the well-established shotgun lipidomic approach (Han et al., 2005;
Welti et al., 2007b; Yang et al., 2009), which was conceptually devel-
oped more than 15 years ago (Han and Gross, 1994). Due to this
fact, there are several publications available (including compre-
hensive plant studies), which either made directly use of the QqQ
approach (Welti and Wang, 2004; Devaiah et al., 2006; Welti et al.,
2007b) or modified it for the use on different mass spectrome-
ters like qTOF (Ekroos et al., 2002; Ejsing et al., 2006; Esch et al.,
2007) or the Orbitrap (Yang et al., 2007. As a consequence different
commercial and open source software packages were developed to
make use of this kind of data (Ejsing et al., 2006 #127; Graessler
et al., 2009; Yang et al., 2009; Herzog et al., 2011).

The developments and the application of LC–MS lipidomics,
especially in the plant field, seems to be less popular, even though
a number of groups developed different open source software
packages for these applications (Haimi et al., 2006, 2009; Taguchi
and Ishikawa, 2010; Nygren et al., 2011). The lack of absolute
quantification, or better the lack of control of ion suppression in
LC–MS-based lipidomic studies and the increased analytical com-
plexity seem to be the main reasons for this discrepancy (Stahlman
et al., 2009).

Ion suppression in shotgun lipidomic studies cannot be elimi-
nated, even if lipid class-specific internal standards are used. The
function of these internal standards is basically to corrected for the
differential suppression effects on each measured lipid molecule

http://msdn.microsoft.com/en-us/library/t71a733d.aspx
http://msdn.microsoft.com/en-us/library/h43ks021%28v=VS.100%29.aspx
http://www.w3.org/TR/wsdl
http://gmd.mpimp-golm.mpg.de/webservices/wsGoBioSpace.asmx
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FIGURE 7 | Overview with screenshots of the GoBioSpace-
assisted database search procedure. The workflow is separated in
three steps: data input (single mass, mass list, or formula), specification

of search criteria (databases, expected mass adducts, mass error
tolerance, expected elements, and isotope label), and data
output.

(Stahlman et al., 2009; Yang et al., 2009). Making use of mix-
tures of internal standards (in best case using one or two standard
lipids per lipid class (Welti and Wang, 2004)) for LC–MS-based
lipidomic studies could be possible if these mixtures are spiked in
the eluting sample post-column, using a second pump and a t-
connection. Such an on-line LC–MS approach using continuously
infused internal standards at low concentrations, which has not
been demonstrated yet, would definitely be an excellent compro-
mise between complicated and time consuming off-line sample
pre-fractionation (Stahlman et al., 2009), and the use of strongly

ion-suppressed shotgun lipidomics. Our developed system could
therefore provide an excellent test case for such an approach.

Alternatively, the use of fully labeled metabolomes or lipidomes
(Ekroos et al., 2002; Hegeman et al., 2007; Giavalisco et al., 2008,
2009) could be an alternative way to quantify and annotate lipids
in LC–MS-based studies. For this purpose analytical samples will
be spiked with the same amount of the isotope-labeled matrix
(Giavalisco et al., 2009). This approach, which has been tested by
us (data not shown), is of course more complicated and expen-
sive than the post-column spiking with a handful of reference
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FIGURE 8 | Positive ion mode chromatogram from Figure 1A delineating the retention time areas of the different detected lipids fromTable S2 in
Supplementary Material.

compounds, but next to the relative quantification, it will also
allow the reliable annotation of previously unknown compounds
(Giavalisco et al., 2008, 2009).

ANNOTATING LIPIDS WITH DIFFERENT STRATEGIES: HOW MANY
LIPIDS REMAIN UN-ANNOTATED?
One of the biggest differences between targeted and un-targeted
lipid analysis lies in the fact that even though a number of 150
profiled and quantified lipids enables a meaningful analysis of an
organism (Ejsing et al., 2009), there still remain many unidentified
peaks to be annotated before we can really call it a lipidomic analy-
sis. Looking at the data from our study already shows that of the
30,000 extractable peaks“only”577 were annotated to a compound
by using a targeted approach (Table S2 in Supplementary Mater-
ial). Increasing the size of the employed databases would therefore
directly provide a larger number of possible annotations, but this
comes, in dependence of the database size used for the annotation,
at the price of also annotating more false positives (Matsuda et al.,
2009). Here the use of additional, orthogonal, physico-chemical
properties can increase the validation of the recorded data. While
the use of fragmentation data will greatly help to exclude false pos-
itives, also the use of the retention time information will improve
the predictability of an annotation, which strongly argues in favor
of LC–MS-based lipidomics (Figures 4 and 8).

Another advantage of LC–MS-based lipidomics in combina-
tion with global, un-targeted peak extraction lies in the statistically
analyzed whole data-set consisting of 30,000 peaks prior to peak
annotation. As a consequence, only the differential peaks would
be regarded as potentially interesting and therefore subjected
to more sophisticated peak annotation strategies. The annota-
tion strategy could include isotope-labeling (see above) or ana-
lytical preparation techniques, including peak collection from
the chromatographic run and subsequent analysis using higher
order MS/MS, analysis on a high resolution mass spectrometer
(Schwudke et al., 2007), or other orthogonal analytical techniques
such as NMR.

COME BACK LATER: REVISITING OLD SPECTRA WITH NEW
KNOWLEDGE
High resolution full scan and all-ion fragmentation spectra con-
taining thousands of peaks are not only a rich source of biological
information for a “one-pass” analysis but could serve as a repos-
itory of information, which can be reused with new knowledge
repeatedly.

We demonstrated in our study that the use of targeted
data, derived from a limited number of plant lipidomic stud-
ies (Buseman et al., 2006; Devaiah et al., 2006; Esch et al.,
2007; Markham and Jaworski, 2007; Welti et al., 2007a,b; Glauser
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et al., 2008a,b), allowed us to profile and annotate more than
260 lipid species. Increasing the list of targets by annotat-
ing novel lipid species, or simply checking literature for previ-
ously un-targeted lipids like N -acyl phosphatidylethanolamines
(NAPE) and more complex sphingolipids (Welti and Wang,
2004), or tetra galactolipids (Moreau et al., 2008), will increase
the length of the list of lipids which can be profiled. This
includes the repercussive profiling of old data. Therefore, in
the future more knowledge about thus far unidentified lipid
moieties will allow us to annotate and profile more and more
lipid species; we will not have to rerun all of our old experi-
ments, since we can simply revisit our old high resolution chro-
matograms and reexamine them. This cannot be done using
shotgun lipidomics with highly sensitive, but low resolution mass
spectrometers.
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APPENDIX

FIGURE A1 | Overview scatter plot of all lipids fromTable S2 in
Supplementary Material. The plot contains the measured retention time in
minutes on the x -axes and the recorded mass of the [M + H]+ adduct on the
y -axes. Due to the modular building block structure of lipids within a
homogenous class, systematic patterns of parallel lines should be observed.
From bottom to top these lines should contain lipids with increasing fatty acid
chain length, while the number of double bond should decrease from left to

right. Abbreviations are as follows: PC, phosphatidylcholine; PE,
phosphatidylethanolamine; PG, phosphatidylglycerol; PI,
phosphatidylinositol; PS, phosphatidylserine; MGDG,
monogalactosyldiacylglycerol; DGDG, digalactosyldiacylglycerol; SQDG,
Sulfoquinovosyldiacylglycerol; Cer, ceramide; GlcCer, glucosylceramides;
GIPC, glycosylinositolphosphoceramides; TAG, triacylglycerols; DAG,
diacylglycerols; FA, fatty acids.
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poplars overexpressing the Populus FT-gene under the cauliflower 
mosaic virus 35S-promotor do not form buds during short photo-
periods (Bohlenius et al., 2006). This suggests that the FT protein is 
a key mobile regulator of daylength-controlled shoot elongation in 
Populus, similar to the FT protein role in flowering in Arabidopsis 
(Corbesier et al., 2007) and rice (Tamaki et al., 2007).

Previous research suggests that plant daylength detection 
is mediated by Phytochrome A (PHYA) in the woody hybrid 
aspen species, Populus tremula × P. tremuloides (Olsen et al., 1997; 
Kozarewa et al., 2010). Antisense PHYA hybrid aspen shows ear-
lier bud-set in short winter photoperiod than in the correspond-
ing wild-type (WT) plants (Kozarewa et al., 2010), and hybrid 
aspens expressing oat PHYA are severely dwarfed and insensitive 
to induction of dormancy by short days (Olsen et  al., 1997). 
Furthermore, levels of the gibberellin group of plant hormones 
(GAs) are down-regulated in the PHYA overexpressing hybrid 
aspen (PHYAOX). Researchers have hypothesized that this is 
the reason for the loss of induced growth cessation under short 
photoperiods in hybrid aspen (Olsen et al., 1995; Eriksson and 
Moritz, 2002). Nevertheless, many other possible candidates act-
ing as a transmittable metabolic signal that mediate photoperiod 
controlled elongation exist, including plant hormones (Baba 
et al., 2011) and primary and secondary metabolites (Ruttink 
et al., 2007).

Introduction
The initiation of cold acclimation and dormancy for tree species 
in northern latitudes is synchronized with the end of the growth 
season and the onset of low temperatures in the autumn. Elongation 
growth stops in many woody species with indeterminate growth 
patterns after a few weeks under short photoperiods in controlled 
environments (Thomas and Vince-Prue, 1997). The photoperiodic 
timing of growth processes are dependent on photoreceptors that 
detect the day/night cycle, along with an endogenous circadian 
oscillator that perceives and resets the endogenous clock accord-
ing to the environmental conditions (Eriksson and Millar, 2003; 
Schultz and Kay, 2003; Salome and Mcclung, 2005; Mcclung, 2008; 
Hoffman et al., 2010).

In Populus, the site of daylength detection and cessation of 
stem elongation is in the leaf-rib meristem area (Ruonala et al., 
2008). One of the main players in the signaling pathways involved 
in short-day-induced growth cessation is the flowering locus T 
(FT) protein. However, flower induction generally occurs by trans-
mission of FT and its ortholog from phloem to the shoot apex 
in Arabidopsis (Corbesier et al., 2007) and in rice (Tamaki et al., 
2007). Studies of the FT in aspen species (Populus spp.), suggest 
that FT has dual roles in wood species (Bohlenius et al., 2006). 
Research indicates that FT is involved in the regulation of both 
flowering and short-day‑induced growth cessation. Transgenic 
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In metabolomics, the goal is to identify and quantify every 
metabolite in a biological system (Fiehn, 2002; Fernie et al., 2004; 
Hall, 2006). Although this method is not technologically feasible 
(Saito and Matsuda, 2010), relevant metabolic profiles of different 
samples can be obtained and contrasted. Using a metabolomics 
approach, we investigated metabolite profiles in leaves at different 
developmental stages using hybrid aspen (P. tremula × P. tremu-
loides) during short-day-induced growth cessation. Our aim was 
to reveal at which developmental stage of the foliar metabolite 
responses to changes in photoperiod were most prominent. The 
metabolite profiles of those leaves were further explored in PHYAOX 
and the controls. The observed metabolic changes may provide can-
didates for the “metabolic signature” of short-day-induced growth 
cessation in hybrid aspen leaves. These candidates might belong 
to the PHYA-associated signaling pathways or primary metabolic 
responses. However, because PHYAOX are dwarfed, differential 
metabolites might be related with the developmental shift in these 
transgenic poplars rather than with their photoperiod insensitiv-
ity. Therefore, developmental shift- or age-dependent metabolites 
were annotated in a separate time-course study of wild-type leaves 
taking into account the photoperiod.

Materials and methods
Plant growth and harvesting
Twenty-eight hybrid aspen trees were grown under long photoperi-
ods (long-day conditions, LDs) of 18 h/6 h day/night cycle using 
photosynthetic active radiation (PAR) light for 12 h at 400 μmol 
m−2s−1, and extended for another 6  h at 30  μmol m−2s−1. After 
3 months, 20 consecutive leaves (the length of the first leaf below 
the apex was approximately 1 cm) and the apex (defined as apical 
tissue from which all major leaf primordia had been removed) were 
sampled from seven plants (LD

0
-samples). Two days later another 

seven plants were sampled (LD
2
-samples), and the daylength was 

changed to short winter photoperiods (short-day conditions, SDs): 
12/12 h day/night). After 2 and 6 days under short photoperiods 
(SD

2
 and SD

6
), seven plants were sampled. To examine the effect 

of 35S:: oat PHYA-overexpression, we sampled 10 leaves from 
22-PHYAOX and 21-control plants. We used two different pho-
toperiods [LD

0
 and short photoperiod at day 7 (SD

7
)] to obtain 

PHYOX and the control plants (wild-type, WT). After removal 
from the plant samples were dipped in liquid nitrogen and stored 
at −80°C until required.

Metabolite profiling analysis
Leaf samples were crushed, extracted, and their metabolite profiles 
were analyzed according to (Gullberg et al., 2004). Stable isotope 
reference compounds (15  ng μl−1 each of [13C

3
]-myristic acid, 

[13C
4
]-hexadecanoic acid, [2H

4
]-succinic acid, [13C

5
, 15N]-glutamic 

acid, [2H
7
]-cholesterol, [13C

5
]-proline, [13C

4
]-disodium 

α-ketoglutarate, [13C
12

]-sucrose, [2H
4
]-putrescine, [2H

6
]-salicylic 

acid, and [13C
6
]-glucose) were added to an extraction mixture of 

chloroform:MeOH:H
2
O (3:1:1). The samples (10 mg fresh weight 

each) were then extracted in 1 ml of the extraction mixture using a 
MM 301 Vibration Mill (Retsch GmbH & Co. KG, Haan, Germany) 
at a frequency of 30 Hz s−1 for 3 min using a 3-mm of tungsten 
carbide bead (Retsch GmbH & Co. KG, Haan, Germany) per tube 
to increase the extraction efficiency. After extraction samples were 

placed in an Eppendorf centrifuge (Model 5417C) for 10 min at 
14,000 rpm. Following this, 200 μl of the supernatant was trans-
ferred to a GC-vial and evaporated to dryness. The samples were 
then derivatized by shaking them with 30  μl of methoxyamine 
hydrochloride (15 mg ml−1) in pyridine for 10 min at 5°C. Samples 
were then incubated overnight at room temperature. The samples 
were then trimethylsilylated by adding 30 μl of MSTFA with 1% 
TMCS and incubating for 1 h at room temperature. After silylation, 
30 μl of heptane was added.

The samples were analyzed according to Gullberg et al. (2004) 
using gas chromatography–time-of-flight mass spectrometry (GC–
MS). We used blank control samples and a series of n-alkanes (C

12
–

C
40

) to allow us to calculate retention indices (Schauer et al., 2005). 
One microliter of each derivatized sample was injected using a split/
splitless injector in splitless mode of an Agilent 7683 autosampler 
(Agilent, Atlanta, GA, USA) into an Agilent 6890 gas chromato-
graph equipped with a 10-m × 0.18-mm i.d. fused silica capillary 
column with a chemically bonded 0.18 μm DB 5-MS stationary 
phase (J&W Scientific, Folsom, CA, USA). The injector tempera-
ture was 270°C, the septum purge flow rate was 20 ml min−1 and 
the purge was turned on after 60 s. The gas flow rate through the 
column was 1 ml min−1, the column temperature was held at 70°C 
for 2 min, then increased by 40°C min−1 to 320°C, and held for 
2 min. The column effluent was introduced into the ion source 
of a Pegasus III time-of-flight mass spectrometer, GC–MS (LECO 
Corp., St Joseph, MI, USA). The transfer line and the ion source 
temperatures were 250 and 200°C, respectively. Ions were generated 
by a 70-eV electron beam at an ionization current of 2.0 mA, and 
30 spectra s−1 were recorded in the mass range 50–800 m/z. The 
acceleration voltage was turned on after a solvent delay.

All non-processed metabolite profile data were exported from 
the ChromaTOF software in NetCDF format to MATLAB™ 
software 7.0 (MathWorks, Natick, MA, USA), in which data pre-
treatment procedures such as base-line correction chromatogram 
alignment, data compression, and hierarchical multivariate curve 
resolution (H-MCR), were performed using custom scripts follow-
ing Jonsson et al. (2005). All manual integrations were performed 
using ChromaTOF 2.00 software (LECO Corp., St Joseph, MI, USA) 
or custom scripts as described in Kusano et al. (2007).

Statistical data analysis
Multivariate statistical investigations were performed using 
SIMCA-P + 12 software (Umetrics, Umeå, Sweden). All variables 
were log

10
-transformed, centered, and scaled to unit variance for 

the analysis. To connect the information of two-block variables 
(X and Y) to each other, we used an orthogonal projection to 
latent structures (OPLS). OPLS is one of the supervised methods 
which is commonly applied in metabolomics. An OPLS regres-
sion model (Trygg and Wold, 2002) was calculated to investigate 
potential relationships between the metabolic compositions (X) 
of the aspen leaves and their positions (Y) on the stem. Peak areas 
under the resolved GC–MS peaks were used as descriptors (X) and 
the leaf positions as the response (Y) in the OPLS model. R2X is the 
cumulative modeled variation in X, R2Y is the cumulative modeled 
variation in Y, and Q2Y is the cumulative predicted variation in Y, 
according to cross-validation. The range of these parameters is 0–1, 
where 1 indicates a perfect fit.
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preliminary study was conducted with an aspen plant grown in 
LDs (18  h). After 3  weeks, 20 consecutive leaves were sampled, 
from the first leaf below the apex approximately 1 cm long (which 
was numbered 1, Figures 1A,B). This sampling strategy provided 
a sequence of 20 leaves in different developmental stages, ranging 
from actively growing sink leaves to mature source leaves. Plant 
metabolites were extracted, derivatized, and analyzed from leaf 
samples using GC–MS (Gullberg et al., 2004; Jonsson et al., 2005). 
The OPLS model obtained showed a clear relationship between the 
leaf number and the corresponding metabolite profile (Figure 1C). 
Substantial differences between the leaves were anticipated from 
the differences in their developmental stages. Although similar 
age-related differences have previously been found in metabolite 
profiles of Populus leaves (Jeong et al., 2004), the validation result 
demonstrated that evaluation of the sampling strategy using OPLS 
is important when examining a large number of plants. Therefore, 
we chose leaf 2, leaf 10, and leaf 20 as representative of young sink, 
middle, and mature source leaves, respectively.

Mature source leaves show rapid responses to changes in 
daylength
The second step in the study was to investigate how the metabo-
lite profiles of aspen leaves sampled from different developmental 
stages differ under long- and short-day conditions (18 and 12 h 
respectively). Metabolite profiling was conducted on leaf samples 
(see Materials and Methods above) from 28 aspen plants grown 
continuously in LD, or from plants grown first under LD and then 
SD (for 2 or 6 days). The data, including unknown and annotated 
peaks, were first evaluated by principal component analysis (PCA) 
in an unsupervised manner (Figure A1 in Appendix). The PCA 
of leaf 20 samples shows a clear separation between the different 
photoperiods on the first component 1 (Figure A1C in Appendix). 
However, the PCA scores of leaf 2 and 10 samples revealed no clear 
photoperiod differences s (Figures A1A,B in Appendix). Therefore, 
any further analysis of metabolite data were carried out on samples 
from the leaf 20 position. The supervised method orthogonal pro-
jection to latent structures discriminant analysis (OPLS-DA) was 
used for metabolite profiling data of leaf 20 samples to maximize 
the information related to the differences in the four different pho-
toperiods (Figure 2). For leaf 20, the LD

0
-samples were predicted to 

be similar to LD
2
, with the SD

2
-samples to be intermediate between 

LD
2
 and SD

6 
(Figure 2B). This is consistent with the hypothesis that 

samples grown for two more days in LD (LD
2
) should group with 

the LD
0
-samples. Plants exposed to only two SD days should have 

intermediate profiles between those of LD
2
 and SD

6
. The loading 

plot suggests that the most of the detected peaks increased in their 
levels during short-day treatment (Figure 2B).

Metabolic alternations between LD and SD conditions in 
mature leaves
To identify the metabolites contributing the differences between 
the LD and SD samples in mature leaves, we conducted a two-way 
ANOVA (factors: time periods × daylength) to determine metabo-
lites that showed significant changes between LD and SD. Among 
454 peaks, 12 peaks showed significant changes in accordance 
with different photoperiods (LD and SD) after the FDR correction 
(Figure A2 in Appendix; Data Sheet 1 in Supplementary Material). 

To determine metabolites which were affected only by time peri-
ods (i.e., day 0, day 2, day 4, and day 6), or only by daylength (i.e., 
LD or SD), which do not show any interaction, we used a two-way 
analysis of variance (ANOVA) as described in Pavlidis (2003). Here, 
we assume that the metabolite level was expressed as

X T L T L

i n

j m

k p

ijk i j ij ijk= + + + ⋅ +

=
=
=

m e( ) ,

, ,

, ,

, .

1

1

1

…,
…,
…,

This indicates a linear model of metabolite accumulation in 
replicate k of level i of factor T (time-period) and level j of factor L 
(daylength) with n and m levels, respectively; p represents replicates 
per group; m is the mean metabolite level, and e represents random 
error. The level of significance was set at p < 0.05 when corrected for 
the false-discovery rate (FDR) method (Benjamini and Hochberg, 
1995). In PHYAOX samples, we calculated two-way ANOVA (fac-
tors: genotype × daylength). The ANOVA analyses were carried 
out using the R statistical environment (http://cran.r-project.org).

Results
Design and experimental set-up for sampling
We investigated which positions on hybrid aspen trees were rep-
resentative of young (sink), middle, and mature (source) leaves 
for this study, to obtain insights into the extent of differences of 
metabolite composition of leaf samples across different develop-
mental stages (Figure  1A). To validate the sampling strategy, a 

Figure 1 | The OPLS model of the metabolite profile of Populus leaves at 
different sampling positions. (A) The leaf numbers (leaf) refers to the 
sampling position, where leaf one is the first leaf longer than 1 cm. We 
sampled leaves from position 1 (leaf 1) to position 20 (leaf 20). (B) Expansion 
of upper side including apex, leaf 1 to leaf 8 of an aspen plant. (C) The number 
of components in the OPLS model was determined as two (one orthogonal 
and one predictive) according to seven-fold full cross-validation (Wold, 1978). 
The model explains 98.1% of the variation in Y (R2Y = 0.981) and the 
estimated ability to predict 92.1% of the variation in Y (Q2Y = 0.921) according 
to cross-validation. The model was able to model 47.8% of the variation in X, 
22.9% of the variation is correlated to leaf position (Y) and 24.9% is 
uncorrelated.
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of PHYAOX and those of WT differ in the first component and 
difference between LD and SD appeared in the second compo-
nent (Figure 3). The results of OPLS-DA suggested that genotype-
dependent and photoperiod-dependent differences were likely to 
exist, though the latter differences were very small (Figure A3 in 
Appendix). Since the PHYAOX plants do not induce growth ces-
sation in SD (Olsen et al., 1997), we hypothesized that: candidate 
metabolite levels of which the levels can be regarded as “metabolite 
signature” for SD treatment should (1) differ in PHYAOX samples 
compared to WT, and (2) show no photoperiod-dependent changes 
in PHYAOX samples as PHYAOX is insensitive to short-day-induced 
dormancy. To identify such metabolites, an ANOVA (factors: 
daylength × genotype; Data Sheet 2 in Supplementary Material) 
was conducted and the results presented in a Venn diagram. This 
revealed 97 metabolite peaks that are genotype-specific and, thus, 
candidates for this “metabolite signature” (Figure A4 in Appendix). 
Of these, 39 peaks were annotated as known metabolites. In addi-
tion to the 97 genotype-specific peaks, the abundance of 20 peaks 
differed between PHYAOX and wild-type poplar, yet differences 
due to the photoperiod were also apparent; among these peaks 
were serine, aspartate, and glutamate. These metabolites showed 
an increase in their metabolite levels in mature WT leaves under 
SD (Figure A2 in Appendix).

Comparison of genotype-dependent metabolites with 
age-dependent metabolites
The result of the two-way ANOVA on the leaf 20 dataset dem-
onstrated that WT leaves showed metabolite changes across the 
four different time periods (day 0, day 2, day 4, and day 6). These 
metabolites were thought to be involved in plant growth from 
day 0 to day 6 and are called age-dependent changes. Because 
PHYAOX have a dwarfed phenotype and is able to grow under 
short-day conditions, age-dependent changes might contribute 
to the observed genotype-specific differences. To reduce the num-
ber of the candidates for the “metabolite signature” of short-day-
induced growth cessation, the age-dependent metabolites found 
in the leaf 20 dataset were filtered out from the genotype-specific 

These changes were visualized in box plots (Figure A2 in Appendix). 
Furthermore, 303 peaks, such as intermediates belonging to tricar-
boxylic acid (TCA) cycle, showed significant changes with different 
time periods (Data Sheet 1 in Supplementary Material) and reflect 
rather developmental or age-associated changes in the leaf. Of the 
12 metabolite peaks, serine, aspartate, pyroglutamate, glutamate, 
and three unknown peaks also showed significant alternations 
across different days of growth (Data Sheet 1 in Supplementary 
Material).

Metabolite profiling of leaves of PHYAOX grown under 
LD and SD
Metabolite profiling of WT leaves enabled us to find the metabo-
lites that altered their levels between different photoperiods. To 
investigate which metabolites remain unchanged in the metabolite 
profiles of PHYAOX, but changed in those of WT between LD and 
SD, we performed metabolite profiling of leaves of PHYAOX and 
the control plants (WT). We conducted a PCA to investigate the 
distribution of PHYAOX and WT samples under LD and SD con-
ditions (Figure 3). The PCA plot showed that metabolite profiles 

Figure 3 | The PCA score scatter plot of PHYAOX and WT samples under 
LD and SD conditions. Black square, LD0; green triangle, SD7. Abbreviations: 
PHYAOX, PHYA overexpressor; WT, wild-type. 

Figure 2 | The OPLS-DA score scatter plot (A) and loading plot (B) of leaf 
20 samples under different photoperiods. Each point represents an 
independent plant in the score scatter plots and an individual peak in the 
loading plots. The OPLS-DA model for leaf 20 samples shows two significant 
components, with R2X, R2Y, and Q2Y values of 0.58, 0.55, and 0.32, 
respectively. (A) Black square, LD0; pink circle, LD2; blue diamond, SD2; green 
triangle, SD6. (B) Pink diamond, identified metabolite peak; blue triangle, 
annotated metabolite peak; green square, MST; gray dot, unclassified peak. 
Abbreviations: Pred comp, predictive component; MST, mass spectral tag.

Kusano et al.	 Metabolite profiling of hybrid aspen

http://www.frontiersin.org/plant_physiology/
http://www.frontiersin.org/plant_physiology/archive


www.frontiersin.org	 	 July 2011  | Volume 2  |  Article 29  |  94

Discussion
Metabolite profiling analysis can recognize difference of 
metabolite composition of aspen leaves in their positions, 
different time frames and photoperiods
Our aim was to examine foliar metabolite alterations to changes in 
photoperiod at different developmental stages of the leaf. Metabolite 
composition of aspen leaves can be captured using GC–MS analysis 
with respect to the extent of leaf expansion (Jeong et al., 2004). In 
this study, we analyzed aspen leaf extracts from position 1 (leaf 
1) to position 20 (leaf 20) using GC–TOF-MS by applying the 
definition of each leaf position as shown in Figure 1A. The OPLS 
analysis, which is one of the supervised methods, clearly showed 
that metabolite profiles of aspen leaves were well correlated with 
their leaf positions (Figures 1A,C).

A scatter plot of the score values provides an overview of the 
samples (observations) and their inter-relationships, e.g., group-
ings, trends, and deviating samples. The PCA score scatter plots of 
leaf 2 (young leaves), leaf 10 (middle), and leaf 20 (mature) showed 
that the profiles of mature leaves reflected better metabolite changes 
related to different time frames and change of photoperiods as 
compared to those of young and middle leaves, while young and 
middle leaves did not (Figure A1 in Appendix). To interpret the 
patterns found in the score plots of the leaf 20 dataset, we examined 
the corresponding loading plots (Figure 2). This method revealed 
how each variable contributed to the separation among samples in 
the model plane, indicating the relative importance of each variable. 
Using multivariate projection methods, we validated our data. We 
used preliminary data sets in our models that enabled us to pre-
dict external sample data verifying the usefulness of our calculated 
models (Figure 2). This strategy is essential when multivariate pro-
jection methods are used to avoid problems associated with over-
fitting of the data (Eriksson et al., 2004). Our study demonstrated 
that after a few days in SD the mature source leaves form hybrid 
aspen trees showed a clear metabolic response.

Dissection of the candidate metabolites for metabolite 
signature during growth cessation from multivariate 
datasets
Changes in the metabolome of plants grown under different photo-
periods are complex phenomena. Various parts of the metabolome 
may be affected by other variables, depending on the experimental 
set-up, diurnal effects, differences in the time at which the lights 
turn on, differences in the PAR availability, or differences in the 
photoperiods per se (Thomas and Vince Prue, 1997). These aspects 
should be taken into account when interpreting our results. For 
example, large effects on the primary carbohydrate metabolism may 
indicate that some of the changes observed are from differences in 
photosynthesis, especially over a relatively short time-period. Our 
study used similar amounts of PAR in both LD and SD treatments, 
and extended the days in SD with low light conditions. Therefore, 
we reduced the possibility that the differences in metabolite changes 
are due to the amount of light that plants received. Furthermore, 
we emphasize that some of the alterations in metabolite profiles 
we observed after transferring hybrid aspen from LD to SDs are 
due to the aging of the plant, i.e., from first sampling time (LD

0
) 

to the last sampling time (SD
6
). Since PHYAOX plants grow under 

SD (Olsen et al., 1997; Ruonala et al., 2008), we need to consider 

metabolites in the PHYAOX dataset (Figure A5 in Appendix). 
We focused on known metabolites to compare the two different 
datasets (Data Sheet 1 and 2 in Supplementary Material). As 
visualized in the Venn diagram (Figure A5 in Appendix), 14 of 
the 38 known genotype-specific metabolites were retained. Of 
these, the levels of 3-cyano-alanine, caffeate, 2-oxo-glutarate, 
spermidine, putrescine, and 4-amino-butyrate were increased 
in PHYAOX samples, whereas there was a significant decrease 
in the levels of threonate and tryptophan (Table 1; Figure A5 
in Appendix).

Pathway projection of changes of the candidate metabolites 
for metabolite signature during growth cessation
Among the candidate metabolites, several metabolites belong to 
the 4-aminobutyric acid (GABA) shunt and polyamine pathway. 
To visualize the changed peak levels on metabolic pathway, we 
projected the corresponding metabolites onto a metabolic map 
(Figure 4). In the GABA shunt pathway, the levels of 2-oxo-gluta-
rate and 4-amino-butyrate in PHYAOX samples were higher than 
those in WT under LD and SD. However, there were no signifi-
cant changes in the level of succinate (Figure  4A). Concerning 
the polyamine pathway, the levels of putrescine and spermidine 
showed a significant increase in PHYAOX, particularly under LD 
(Figure 4A; Table 1).
For another candidate metabolite, tryptophan, the level in 
PHYAOX was lower than that in WT under LD and SD (Figure 4B). 
Tryptophan is a known precursor of indole-3-acetic acid (IAA) 
which is a plant hormone in higher plants (Zhao, 2010).

Table 1 | The candidate metabolites for metabolite signature found in 

PHYAOX dataset.

Metabolite	 Log2ratio	 Log2ratio 

	 (PHYAOX/WT in LD)	 (PHYAOX/WT in SD)

Phosphoric acid, 	 −2.33	 −0.44 

monomethyl ester*		

Norvaline*	 0.86	 0.62

Alanine, 3-cyano-	 1.13	 0.84

Threonic acid	 −1.03	 −0.38

Caffeic acid, trans-	 0.52	 0.60

Tryptophan	 −2.18	 −1.99

Inositol-2-phosphate, myo-*	 −0.54	 −0.44

Quercetin*	 −1.19	 −0.87

beta-Alanine*	 −0.69	 −0.47

2-Oxo-glutaric acid	 0.40	 0.63

Spermidine	 0.87	 0.07

Putrescine	 0.43	 0.35

Dibutyl-sebacic acid*	 0.56	 0.64

4-Aminobutyric acid	 0.44	 0.50

These metabolites were determined by comparing ANOVA results of leaf 20 
and PHYAOX datasets. We assayed the leaf 20 dataset using ANOVA to find 
metabolites that showed significant changes according to age-dependent 
differences (FDR  <  0.05). We also assayed PHAOX dataset to find genotype-
dependent metabolites (FDR  <  0.05). We then compared known metabolite 
names in age-dependent and genotype-dependent metabolites. 
*The metabolites were detected in PHYAOX and WT samples, but not in leaf 
20 samples.
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Possible link between growth cessation and nitrogen 
metabolism in hybrid aspen
Levels of the candidate metabolites were altered in PHYAOX after 
1 week with a short photoperiod. The expression level of FT2 in 
WT source leaves was down-regulated after 1 week of SD (Ruonala 
et al., 2008). Constitutive expression of Populus FT1 and oat PHYA 
in mature aspen leaves suppresses short-day-induced growth ces-
sation. This is because the plants fail to down-regulation of FT1 
and CONSTANS2 (CO2) within a week under SDs (Bohlenius et al., 
2006). Furthermore, FT protein and the protein encoded by a rice 
ortholog of FT can mobilize to the apex via phloem as a long-dis-
tance signal for flowering in Arabidopsis (Corbesier et al., 2007) and 
rice (Tamaki et al., 2007). This suggests that a phloem-unloading 

the age-dependent differences. The results of the ANOVA of leaf 
20 samples demonstrated that many metabolite peaks are likely 
to be involved in age-dependent differences even though the time 
frame is only 1 week (Data Sheet 1 in Supplementary Material). 
By comparing the age-dependent metabolites found in the leaf 20 
dataset with those in the PHYAOX dataset, we selected candidate 
metabolites of which the levels are a metabolite signature during 
growth cessation. Similar approaches could be applied to other 
datasets using this multivariate approach. For example, using a 
multivariate analyses may be useful when trying to detect changes 
that occur during growth cessation that involve transcript and 
metabolite levels in hybrid aspen (Bylesjo et al., 2007) and Populus 
(Ruttink et al., 2007) at a global scale.

Figure 4 | Overlay of changes in the candidates for metabolite 
signature and related metabolites observed in PHYAOX and WT 
samples onto the metabolic map. (A) Changes in the levels of four 
candidate metabolites (in bold) and related metabolites in GABA shunt and 

polyamine pathway and (B) those of other cadidate metabolites for 
metabolite signature. In each box plot, x-axis represents metabolites 
detected in WT and PHYAOX (OX) in LD and SD, while y-axis shows the 
normalized response of metabolite levels after log10-transfromation. 
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mechanism has to be well developed in leaves before any signal can be 
transmitted. Thus, our observations that sink leaves are not affected 
by daylength change in aspen may have a physiological explanation.

For the candidate metabolites belonging to the GABA shunt 
pathway, the level of 2-oxo-glutarate was increased in PHYAOX 
samples after transferring to the SD treatment while metabolites 
in WT remained unchanged (Figure 4A). In contrast, the GABA 
level decreased in the WT during short-day-induced growth ces-
sation. We found no significant changes in PHYAOX samples 
(Figure 4A). 2-Oxo-glutarate is not only one of the intermediates 
in the TCA cycle but serves as a carbon assimilation precursor 
that is derived from nitrogen metabolism (Foyer et  al., 2011; 
Millar et al., 2011 ). The significant increase in the level of 2-oxo-
glutarate in PHYAOX samples may provide a source of carbon 
skeletons for macromolecules from source leaves that maintains 
their growth in short photoperiod (Ruonala et al., 2008).

GABA is an important component of signaling systems in 
both vertebrates and invertebrates, but its role in plants is largely 
unknown (Bouche and Fromm, 2004; Fait et al., 2008). GABA has 
been suggested to have various roles. For instance, in the regu-
lation of nitrogen metabolism and transport, in oxidative stress, 
and in controlling pollen tube growth. Our results suggest that the 
level of GABA in WT decreased during short-day-induced growth 
cessation, implying that it may not only act as a protector from 
stress, but may also play a role during growth cessation. GABA 
can be detected in xylem sap and phloem exudates of walnut trees 
(Frak et al., 2002) and in a Brassica species (Beuve et al., 2004). 
GABA might be a signal molecule remobilized from source leaves 
to apex after a week of exposure to the short-day treatment. Like 
GABA, levels of its precursor glutamate were lower in WT under 
SD (Figure 4A), suggesting that short days induce changes in the 
flow through GABA shunt.
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Figure A1 | The PCA score scatter plot of leaf 2 (A), leaf 10 (B), and leaf 
20 (C) samples under different photoperiods. Black square, LD0; pink circle, 
LD2; blue diamond, SD2; green triangle, SD6. t[1] and t[2] present the first and 
second components and each percentage shows the fraction of the sum of 
squares for the selected component. We excluded a leaf 20 sample grown 
under the LD2 condition because the sample was identified as an outlier in the 
score and Hotelling’s T2 plot.

Kusano et al.	 Metabolite profiling of hybrid aspen

http://www.frontiersin.org/
http://www.frontiersin.org/plant_physiology/archive


Frontiers in Plant Science  |  Plant Physiology		  July 2011  | Volume 2  |  Article 29  |  99

Figure A2 | Box plots of the 12 metabolites that showed significant 
changes from a two-way ANOVA. These metabolites were found to be 
significantly different in relation to our photoperiod treatments. The x-axis 

indicates sampling periods (LD0, LD2, SD2, and SD6).The y-axis shows an 
arbitrary unit of each metabolite level after log10-transformation. 
FDR < 0.05.
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Figure A3 | The OPLS-DA score scatter plot of PHYAOX and WT samples. 
(A) Genotype-dependent differences. (B) Photoperiod-dependent differences. 
Pink star, PYHAOX; blue inverted triangle, SD7; black square, LD0; green 
triangle, SD7.
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Figure A5 | The Venn diagram of known metabolites found as 
age-dependent (left) and genotype-dependent (right) metabolites in 
each dataset as determined by ANOVA. The number in the left-hand circle 
represents how many metabolites showed significant changes according to 
age-dependent differences. The number in the right-hand circle represents the 
number of significant metabolites with respect to genotype-dependent 
differences. The number in the middle represents the common metabolites 
between age-dependent and genotype-dependent metabolites. FDR < 0.05. 
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Figure A4 | The Venn diagram of the result of ANOVA using metabolite 
profile data of PHYAOX and WT samples. The number in the left-hand circle 
indicates how many metabolites showed significant changes according to 
genotype-dependent differences. The number in the right-hand circle 
represents the number of significant metabolites with respect to photoperiod-
dependent differences. The number in the middle represents the common 
metabolites between PHYAOX and WT samples. FDR < 0.05.
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Despite the growing volume of experimentally validated knowledge about the subcellular
localization of plant proteins, a well performing in silico prediction tool is still a necessity.
Existing tools, which employ information derived from protein sequence alone, offer limited
accuracy and/or rely on full sequence availability. We explored whether gene expression
profiling data can be harnessed to enhance prediction performance. To achieve this, we
trained several support vector machines to predict the subcellular localization of Arabidopsis
thaliana proteins using sequence derived information, expression behavior, or a combina-
tion of these data and compared their predictive performance through a cross-validation
test. We show that gene expression carries information about the subcellular localization
not available in sequence information, yielding dramatic benefits for plastid localization
prediction, and some notable improvements for other compartments such as the mito-
chondrion, the Golgi, and the plasma membrane. Based on these results, we constructed
a novel subcellular localization prediction engine, SLocX, combining gene expression pro-
filing data with protein sequence-based information. We then validated the results of this
engine using an independent test set of annotated proteins and a transient expression of
GFP fusion proteins. Here, we present the prediction framework and a website of predicted
localizations for Arabidopsis. The relatively good accuracy of our prediction engine, even
in cases where only partial protein sequence is available (e.g., in sequences lacking the
N-terminal region), offers a promising opportunity for similar application to non-sequenced
or poorly annotated plant species. Although the prediction scope of our method is currently
limited by the availability of expression information on the ATH1 array, we believe that the
advances in measuring gene expression technology will make our method applicable for
all Arabidopsis proteins.

Keywords: subcellular localization, support vector machine, prediction, gene expression

INTRODUCTION
In eukaryotic cells, the targeting of proteins to subcellular com-
partments is universally recognized to be important for proper
protein function (Eisenhaber and Bork, 1998). In plants, several
metabolic pathways either consist of enzymes residing in multiple
compartments (e.g., the photorespiration pathway), or they occur
in parallel in different compartments as is the case for the gly-
colysis. Therefore, detailed knowledge about protein localization
is necessary to understand the plant metabolic network (Lunn,
2007). In addition, the presence of three compartments (nuclei,
plastids, and mitochondria) harboring their own genetic infor-
mation, makes a complex information flow necessary (for a recent
overview see Pfannschmidt, 2010).

It is thus not surprising that many studies have focused on
the experimental determination of protein subcellular localiza-
tion in plants (Koroleva et al., 2005). Many of these have profited
from the adoption of high-throughput proteomics (Schulze and
Usadel, 2010; Wienkoop et al., 2010). These studies have rev-
olutionized our understanding of the localization of proteins
in organs (Baerenfaller et al., 2008) and individual subcellular

compartments (van Wijk, 2004; Dunkley et al., 2006; Ito et al.,
2010). In particular, the technique of organelle purification in
combination with highly sensitive LC–MS/MS instruments has
proven to be useful in providing a detailed experimental com-
pendium of proteins localized in, e.g., the mitochondrion or the
chloroplast (Heazlewood et al., 2004; Ferro et al., 2010). Several
independent studies used relative protein concentration along
density gradients (Dunkley et al., 2004, 2006) making use of
statistical association methods similar to those for subcellular
determination of metabolites (Gerhardt and Heldt, 1984; Krueger
et al., 2011).

However, despite this avalanche of experimental data, experi-
mentally determined subcellular information is only available for
ca. 30% of all proteins for the well studied model organism Ara-
bidopsis (SUBA database, Heazlewood et al., 2006; TAIR database,
Rhee et al., 2003). Even in the case of the chloroplast, which is
probably the most well studied organelle in terms of proteomics,
only 30–60% of the estimated protein population has been found
by proteomics methods (van Wijk and Baginsky, 2011). It has
been suggested that this lack of information can be explained by
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temporal, spatial, or experimental condition specificity of protein
accumulation, or even by simple technical limitations (van Wijk
and Baginsky, 2011). Furthermore, one must keep in mind that
no fractionation is perfect and that some proteins might thus be
wrongly tagged as belonging to a certain compartment. In part,
this can be overcome by trusting high-throughput experimental
evidence only if proteins have been associated with a particular
compartment by multiple independent studies. Indeed, by com-
bining different data sets an improved assignment can be reached
(Trotter et al., 2010). Unfortunately, no matter how many studies
are combined, it is still possible that certain wrong assignments can
result from systematic problems in separation techniques. Further-
more, although some subcellular localization studies have been
conducted for crop plants (Majeran et al., 2005; von Zychlinski
et al., 2005; Huang et al., 2009), proteomics cannot yet keep up
with the growth of genomic data for multiple plant species.

Therefore, it is still necessary to be able to accurately predict the
subcellular localization of proteins. Traditionally, this was done by
identifying protein sequence motifs such as signal peptides or tar-
geting signals (see Emanuelsson et al., 2007 for an overview of
these methods). Indeed, the widely used TAIR database relies on
such predictions made by TargetP which only uses the N-terminal
sequence information containing the signal peptide (von Heijne
et al., 1989) to decide whether a protein is to be targeted to the
chloroplast, the mitochondrion, the secretory pathway, or another
location (Emanuelsson et al., 2000). Other widely applied predic-
tion tools screening for N-terminal targeting signals are Predotar
(Small et al., 2004) and iPSORT (Bannai et al., 2002). Since these
tools have different strengths and weaknesses, a selection was com-
bined in a meta-predictor using a naive Bayes approach (Schwacke
et al., 2007). Although a wide variety of such N-terminal prediction
systems has been developed throughout the years, some methods
are limited in accuracy and/or in the breadth of coverage of sub-
cellular compartments. More importantly, these methods fail to
make a valid prediction when a protein is targeted to its final com-
partment through non-classical mechanisms of protein sorting
(Herman and Schmidt, 2004; Nickel and Seedorf, 2008; Wienkoop
et al., 2010) or contains a non-conventional targeting sequence
(Brix et al., 1999; Diekert et al., 1999). Moreover, these predictors
cannot operate in cases where only a partial protein sequence is
known as might often be the case in projects relying on EST data
to study a non-model plant organism.

To overcome the limitations of N-terminal-based predictions,
tools employing a diverse range of other protein features have been
developed. Due to the complexity of extracting protein localiza-
tion, machine learning techniques such as neural networks, hidden
Markov models or support vector machines (SVM) have been
applied. As SVMs have yielded very good results, SVM based pre-
diction tools based on diverse and robust protein features have
gained in popularity (Hua and Sun, 2001; Gardy and Brinkman,
2006). Initially, the main features that were considered were sim-
ply derived from the amino acid composition of the whole protein
(Nishikawa et al., 1983). Since then, many additional features have
been employed to enhance the predictive power which has resulted
in the development of systems which apply hybrid approaches
using very diverse protein features in combination (Garg et al.,
2005; Cui et al., 2011). Among the popular methods, some are

homology-based (Kaundal et al., 2010), and others identify sub-
cellular localization of proteins from phylogenetic profiles (Mar-
cotte et al., 2000; Blum et al., 2009). Obviously though, the latter
methods do not work on species-specific proteins.

Based on the expected avalanche of transcript data from next
generation sequencing for non-model plants (Severin et al., 2010;
Zhang et al., 2010), the need to develop robust methods for the
prediction of protein subcellular localization is becoming more
pressing. As a case study, we developed a novel tool to predict the
subcellular localization of Arabidopsis proteins integrating protein
amino acid composition with expression profiling data.

MATERIALS AND METHODS
GENERATION OF A WORKING AND AN INDEPENDENT TEST DATA SET
In order to construct a working data set, the GO
Slim annotation was downloaded from the TAIR database1

(ATH_GO_GOSLIM_02_01_11). Experimentally confirmed sub-
cellular localizations were extracted by selecting only those records
containing the IDA (i.e., “inferred from direct assay”) evidence
code. Afterward, all instances containing annotations for mito-
chondrion and plastid genome encoded proteins were removed
from the data set. In cases where multiple splicing isoforms existed
the “representative protein model” was downloaded from TAIR.
In contrast to most previous approaches, proteins annotated to
be localized in multiple localizations were retained. This yielded
a total number of 6,188 unique protein identifiers having at least
one experimentally confirmed subcellular localization. We further
filtered this set based on available expression information yielding
5,429 unique proteins.

An independent test data set was created as follows: from all
representative Arabidopsis proteins, those used to create the work-
ing data set were subtracted. Furthermore, all mitochondrion and
plastid genome encoded proteins were removed giving a total
number of 20,016 unique protein identifiers. From these, only
proteins represented on the ATH1 chip where retained, yielding
13,104 proteins. For these proteins, the SUBA database was queried
and 1,398 proteins with experimentally determined subcellular
localization could be retrieved.

PREDICTIONS FROM STATE OF THE ART PREDICTORS
Sequences of 1,398 proteins from the independent test data set
were downloaded from TAIR database (TAIR10_pep_20110103_
representative_gene_model) and used to query: Predotar2, Multi-
Loc23 [MultiLoc2-HighRes (Plant) method], and AtSubP4 (“best
hybrid” method). For the same proteins, predictions made by
TargetP were downloaded from the TAIR database5.

FEATURE SET GENERATION
For the proteins in the working and in the independent test
data set, sequence data was downloaded from the TAIR data-
base (TAIR10_pep_20110103_representative_gene_model). For

1http://www.arabidopsis.org/
2http://urgi.versailles.inra.fr/predotar/predotar.html
3http://abi.inf.uni-tuebingen.de/Services/MultiLoc2
4http://bioinfo3.noble.org/AtSubP
5http://www.arabidopsis.org/tools/bulk/protein/index.jsp
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each protein the amino acid composition was calculated as the
occurrence of each of the 20 amino acids in the sequence normal-
ized to the protein length, as previously described in Garg et al.
(2005). Additionally, for every protein in the working data set, its
dipeptide and higher-order dipeptide composition was calculated
(as in Garg et al., 2005). The dipeptide composition was calculated
as the occurrence of two adjacent amino acids and pairs of amino
acids separated by one, two, or three intervening residues normal-
ized on the number of such dipeptides in the protein, yielding a
total of 1,600 features.

The expression data set for Arabidopsis was the same as the one
used in Giorgi et al. (2010). In brief, 3,707 Arabidopsis thaliana
Affymetrix ATH1 (22,810 probe sets) microarray samples were
obtained from the Gene Expression Omnibus database6 (Edgar
et al., 2002). The microarrays were normalized using the RMA
(Robust Multi-Array Average) technique. The original data was
further processed by removing Arabidopsis Gene Identifiers which
matched more than one probeset or where one probeset matched
multiple genes. Due to this reduction and absence of probesets for
some genes on the ATH1 array, this data set provided expression
information only for 5,429 and 1,398 experimentally annotated
proteins in the working and in the independent test data set respec-
tively. Subsequently, the whole microarray data matrix was linearly
scaled between values of 0 and 1 (Eq. A1 in Appendix) as previously
reported to be beneficial for SVM (Hsu et al., 2008).

The rice expression data set consisted of all non-redundant
Affymetrix Rice Genome microarrays deposited in ArrayExpress
(Parkinson et al., 2009) and GEO (Barrett et al., 2011). After qual-
ity filtration (as in Mutwil et al., 2011) and normalization using
RMA, 487 arrays were retained.

FEATURE SELECTION AND PERFORMANCE MEASUREMENT
Features were selected in a stepwise manner using F-score and
Spearman’s correlation. The F-score (Eq. 1) is calculated as the
ratio of the inter- and intra-group variation. Traits with a higher
F-score have more separation between the positive and negative
cases.

F(i) ≡
(

x̄(+)
i − x̄i

)2 +
(

x̄(−)
i − x̄i

)2

1
n+−1

n+∑
k=1

(
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k,i − x̄(+)
i

)2 + 1
n−−1
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k=1

(
x(−)

k,i − x̄(−)
i

)2
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where, x̄(+)
i , x̄(−)

i , x̄i , n+, and n− are the average of the positive data
set, average of the negative data set, average of the whole data set,
the total number of members of the positive dataset, and the total
number of members of the negative data set for feature i, respec-
tively. In each step, the feature with the next highest F-score was
selected for addition to the set of selected features. The F-scores
of the remaining features were then adjusted using the maximum
Spearman’s correlation coefficient of all features in the selected set
(Eq. 2).

adjFscri = Fscri−Fscri×abs(max(correlation(ftri , selected_ftrs)))

(2)

6www.ncbi.nlm.nih.gov/geo

where adjFscri , Fscri , and selected_ftrs are for feature i (ftri): the
adjusted F-score, the F-score and the features selected in previous
steps, respectively.

To assess the performance of the prediction engine and to com-
pare it with existing state of the art predictors, three common
performance measures were applied: the Matthew’s correlation
coefficient, MCC (as in Matthews, 1975; Eq. 2 in Appendix), the
sensitivity, SE (Eq. 3 in Appendix) and the precision (Eq. 4 in
Appendix).

PREDICTION ENGINE CONSTRUCTION AND EVALUATION
The prediction engine constructed in this study is based on binary
SVM classifiers. Each protein in the training data set of 5,429
proteins is characterized by a vector �xi (i = 1,. . .,5429) that repre-
sents the chosen combination of features, along with the positive
label“compartment”or the negative label“not compartment.”The
training of a classifier was conducted using a one-versus-rest (1-
v-r SVM) strategy, where the nth SVM was trained with all the
proteins in the nth class with a positive label and all other proteins
with a negative label. The application of binary classifiers enabled
training with proteins found in more than one compartment. The
data was modeled by C-Support Vector Classification (as imple-
mented in the libsvm library for python; Chang and Lin, 2011).
The prediction engine construction and evaluation was performed
on the entire working data set in two independent runs and using
the same training procedure (Figure 1).

The training procedure first involved feature selection, when
applicable, and then training of the classifiers on the given data
based on the chosen features. The underlying training algorithm
uses a cost parameter (C) that penalizes errors. The kernel used
was the radial basis function (RBF), which requires a gamma para-
meter (γ) that determines the kernel bandwidth. To estimate the
two parameters, we performed a grid search using fivefold cross-
validation (CV) at each point in the grid to assess the performance
of each parameter pair. The best performing parameter pair was
then used to train an optimized classifier.

To assess the performance of the prediction engine, we used
fivefold CV applying the training procedure described above to
the training set of each fold and testing the resulting optimized
classifier with the test set. The resulting performance measure
distribution across five folds of CV is then used to estimate
the performance of a prediction engine constructed using the
applied training procedure (Figure 1). In both parameter esti-
mation and performance evaluation, the proportion of positive
and negative examples in the training and testing data sets was
maintained.

TYPES OF PREDICTORS TESTED
In total, six types of predictors were built to compare different
sets of features (Table 1). To investigate the predictive power
of sequence and expression features separately, predictors based
on either amino acid sequence or expression features were built.
To test whether expression data provides additional information
about subcellular localization that is not available in sequence data
alone, further predictors using a combination of amino acid com-
position and expression features were built and the performance
compared to the earlier predictors. The features were selected by
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FIGURE 1 | Outline of prediction engine construction and evaluation.
The prediction engine was constructed and its performance was evaluated
in two independent runs on the entire working data set, as indicated by the
green and blue arrows respectively. (A) Assessment of prediction engine
performance through fivefold cross-validation (CV) loop. In each fold of CV
an optimized classifier is built on the training set and its performance is
assessed on the test set. The resulting performance measure distribution
of the optimized classifiers was used to assess the performance of the
prediction engine. (B) The training procedure used during prediction engine
construction and evaluation. The training of a classifier involved feature
selection and estimation of the best Cost (C) and gamma (γ) parameters
using a grid search with fivefold CV loop. The best performing parameter
pair was then used to train an optimized classifier.

using the above described method. The top 20 features were used
as the stopping criterion to facilitate a fair comparison between
predictors built on sequence, expression data, and mixed feature
predictors. A further three types of predictors were built based
on the top 1,000 expression features, the top 1,000 mixture of
expression and amino acid composition features and the top 1,000
mixture of expression, amino acid composition and dipeptide fea-
tures. Each predictor was tested using the above prediction engine
evaluation procedure.

The final predictor, which was compared with the state of the
art predictors, was built using top 1,000 features selected from
a mixture of amino acid composition information and expres-
sion data. We found this number of features to be sufficient for

Table 1 |Types of predictors tested and their underlying features.

Predictor List of features

AA Amino acid composition of 20 natural amino acids

T20 E Top 20 expression features

T20 AA + E Top 20 amino acid composition and expression features

T1000 E Top 1000 expression features

T1000 AA + E Top 1000 amino acid composition and expression fea-

tures

T1000 AA + D + E Top 1000 amino acid composition, dipeptide composi-

tion, and expression features

The top features were selected according to the rank given by adjusted F-score.

our classifiers, as addition of a higher amount of features did not
result in a noticeable improvement (data not shown).

CATEGORY ENRICHMENT ANALYSIS
In order to search for enriched categories for the plastidial pre-
dictor, we tested for functional enrichment of the false negative
and false positive set, using all “true” plastidial predictions and all
proteins having an experimentally derived localization as back-
grounds, respectively. The enrichment analysis was performed
using the MapMan (Usadel et al., 2009) categories for TAIR9
and employing the online enrichment calculator based on Fisher’s
exact test (Usadel et al., 2006).

GENERATION OF CUSTOM VECTOR AND PROTEIN–GFP FUSION
CONSTRUCTS
Two candidate genes, At1g16000.1 and At5g19540.1, whose sub-
cellular localization was hitherto not experimentally determined
(according to the SUBAII and TAIR database) were randomly
selected. Our method predicted these to be localized in the mito-
chondrion and the plastid respectively. In order to validate our
predictions, these two genes were cloned and the localization of
their corresponding gene products investigated using protein–GFP
fusions. Briefly, total RNA was isolated from entire Arabidopsis
(Col-0) seedlings using the phenol–chloroform extraction method
(as in Pant et al., 2009). Subsequently, the isolated RNA samples
were digested with TURBO DNase (Ambion) and used as a tem-
plate for reverse transcription using SuperScript®III Reverse Tran-
scriptase Kit (Invitrogen) in the presence of the RNase inhibitor
RNasion (Promega) as specified by the manufacturer. The cod-
ing sequence of the genes was amplified from this cDNA by PCR
using Phusion DNA-Polymerase (Finnzymes). The primers used
to obtain the final constructs are listed in Table 2. The pAM1 vector
used for transient transformation was derived from pGreen0029
and pA7-GFP (Katrin Czempinski, Potsdam University, Germany)
vectors. pGreen was digested at SmaI, Ecl136II, XhoI, SalI, EcoRI,
and HindIII restriction sites, to remove multiple cloning sites. The
pA7-GFP vector was digested at EcoRI and HindIII restriction sites
and this cassette, bearing GFP(S65T) under an enhanced version
of CAMV35S promotor, was further cloned into the digested, as
described above, pGreen0029 and relegated to give the pAM1 vec-
tor. Each candidate gene was inserted into pAM1 vector in two
orientations, with respect to GFP sequence. By inserting the genes
into pAM1 at either XbaI/BamHI or Xho/NcoI restriction site,
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Table 2 | Primers used for producing N-/C-terminal GFP fusion

constructs together with their sequences.

Primer Sequence

N-TERMINAL

At1g16000N-fw 5′-ATCTAGAAATGGGAAATGAGACGAAGACCA-3′

At1g16000N-rev 5′-AGGATCCCTTGTTAGCTGATGAAGACGATGAG-3′

At5g19540N-fw 5′-AGCTAGCAATGGCGGTGAGCTCATTCGC-3′

At5g19540N-rev 5′-AGGATCCTACAATTTTTGTATTATCTATAAACT-3′

C-TERMINAL

At1g16000C-fw 5′-ACTCGAGATGGGAAATGAGACGAAGACC-3′

At1g16000C-rev 5′-ATCCATGGCCTTGTTAGCTGATGAAGACGATGAG-3′

At5g19540C-fw 5′-ACTCGAGATGGCGGTGAGCTCATTCGC-3′

At5g19540C-rev 5′-ATCCATGGCTACAATTTTTGTATTATCTATAAACT-3′

N- and C-terminal GFP fusion constructs were obtained. The
resulting inserts were sequenced to confirm correctness of the
constructs.

TRANSIENT EXPRESSION IN TOBACCO
Five to 6-week-old tobacco protoplasts (cv. Petit havana) were
generated and transformed via the polyethylene glycol-mediated
(PEG) method adapted from Huang et al., 2002; Koop et al., 1996;
Negrutiu et al., 1987. The transformed protoplasts were further
incubated overnight in the dark. The protoplasts were transformed
with the candidate gene–GFP constructs and control for the mito-
chondrion, pre101, and the plastid, TP101 (both controls, Renate
Luhrs, personal communication) in parallel experiments. The
protoplast cells, transformed with constructs and control for val-
idation of At1g16000, were additionally stained with MitoTracker
Orange (Invitrogen).

The transformed tobacco protoplasts were visualized 24 h after
transformation using a confocal laser scanning microscope (TCS
SP2/UV, Leica, Germany). The instrument was equipped with
Argon and He/Ne lasers, and a 63× as well as a 20× planapo
water objective. Two different filter settings were used: (i) for
the GFP fluorescence excitation wave length: 488 nm, beam split-
ter: DD 488/568 (double dichroic, reflects at 488 and 568 nm),
barrier filter: BP 530 (band pass, 515–545 nm); (ii) for the Mito-
Tracker Orange, excitation wave length: 554 nm, beam splitter: DD
488/568, barrier filter: BP 590 (long pass > 590 nm). Autofluores-
cence of chlorophyll was detected at 580–600 nm. During image
acquisition each line was scanned four times and averaged. Image
analysis was performed with the Leica Confocal Software of TCS
SP2 (version 2.61. build 1537).

RESULTS AND DISCUSSION
GENERATION OF A NOVEL SUBCELLULAR PREDICTION ENGINE
Many accurate subcellular localization predictors, including the
one used by the TAIR database, rely on the targeting signal con-
tained in the N-termini of proteins (Small et al., 2004; Emanuels-
son et al., 2007). Therefore these predictors cannot estimate the
correct subcellular localization if the N-terminus of proteins is
absent. It had been shown, however, that the prediction of pro-
tein subcellular localization can be obtained by training a SVM
employing the amino acid composition of a whole protein (Hua

and Sun, 2001). Unfortunately, relying on amino acid composi-
tion alone has been shown to be insufficient for high accuracy
predictions and consequently several predictors use additional
information (Garg et al., 2005; Su et al., 2007; Blum et al., 2009;
Kaundal et al., 2010).

We argue that in order to predict protein subcellular localization
for plant species where no genome is available and thus full length
transcript models are often lacking, one would need robust fea-
tures that could be determined relatively quickly. It has previously
been observed that Arabidopsis transcripts encoding for proteins
localized in the plastid or in the mitochondrion are often highly
correlated (Usadel et al., 2005, 2009; Cui et al., 2011) and that
transcript accumulation in different experiments might therefore
contain important information about protein localization.

To test whether expression data contained information about
the subcellular localization, we extracted 3,707 slides from a com-
pendium of Arabidopsis microarrays (Giorgi et al., 2010) and
subjected them to principle component analysis (PCA). By using
PCA we wanted to investigate whether a pattern in this expres-
sion data set exists, which would correlate with distribution of
proteins in different subcellular localizations. The PCA revealed
that over 80% of variance in the data could be explained by the
first two principal components. Afterward, we projected the pro-
teins in the coordinates of these two principle components and,
to facilitate visual separation, we highlighted plastid proteins in
green, leaving the proteins from the remaining compartments in
black (Figure 2).

Within these projections most proteins lay on a somewhat diag-
onal line. However, it also became obvious that proteins separated
off from this line by the second principal component tended to
be enriched for plastid proteins (Figure 2). This observation indi-
cated that expression data contains information that allows for

FIGURE 2 | Principle component analysis plot of plastid and
non-plastid proteins. Exemplary principal component plot showing plastid
proteins in green and proteins from other compartments in black.
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a considerable degree of separation of plastid proteins from the
background of proteins localized in the other compartments. We
performed the same analysis for other compartments as well,but in
no case did we see such a striking difference for the compartments
for the first two principal components (Figure A1 in Appendix).
Furthermore, we wanted to check if this separation is conserved
across species, and investigated if rice transcript data would also
contain information that makes its plastid proteins distinguish-
able. To examine this, we performed PCA with the expression
information from 487 experiments that used rice microarrays.
Afterward, we projected the entire data in the coordinates of the
first two principal components and highlighted the proteins,which
were experimentally found in either the etioplast (von Zychlin-
ski et al., 2005) or in the mitochondrion (Huang et al., 2009)
in green and blue respectively, leaving the remaining proteins in
black (Figure A2 in Appendix). Here, we could also observe some
degree of separation of plastid proteins (green) from other pro-
teins (black). The separation from the rest of the proteins was
much weaker for mitochondrial proteins (colored in blue), as in
the case of Arabidopsis.

We therefore examined whether expression estimates could be
combined with “traditional” data to predict the subcellular local-
ization of plant proteins. To investigate this, we extracted only
those proteins having an experimentally derived subcellular local-
ization from the GO Slim annotation of the TAIR database. In
total, this set comprised 6,188 proteins. After filtering for proteins,
where we could find a unique probeset on the ATH1 chip, we
were left with 5,429 proteins. These proteins were not evenly dis-
tributed between the different compartments. Here, as expected
from the large organellar proteomics studies, a considerable por-
tion was shown to be localized in the plastid or the mitochondrion
(Figure 3A). Moreover, many proteins had been shown to be in the
nucleus or the plasma membrane. Furthermore, for a significant

proportion (24%) different experimentally determined localiza-
tions existed (Table A1 in Appendix). Dual localization has prob-
ably been best studied for the plastid and the mitochondrion and
Morgante et al. (2009) have already shown more than 50 Arabidop-
sis proteins to have these dual localization signals. This is reflected
in the fact that most proteins from the plastid which have a sec-
ond experimentally determined localization were also found in
the mitochondrion (Figure 3B). However, for several other com-
partments such as the plasma membrane and the vacuole this was
rather surprising and might indicate ambiguities in the data set
or false positives in proteomic studies (Figure 3B; Table A1 in
Appendix).

Nevertheless we used the full experimentally determined pro-
tein set to train SVMs for the following compartments: the vacuole,
the peroxisome, the cytosol, the ER, the plastid, the mitochon-
drion, the Golgi apparatus, the nucleus, the plasma membrane
and the cell wall. It has to be noted that the latter is not repre-
senting any compartment but a training was attempted due to
good experimentally derived evidence. In each case, we trained
one SVM using only amino acid composition, one using the top
20 features selected from expression data, one incorporating the
top 20 features chosen from the amino acid composition and
expression behavior, one incorporating the top 1,000 expression
features, one incorporating the top 1,000 features chosen from a
mixture of amino acid composition and expression features and a
final SVM, where the top 1,000 features were chosen from amino
acid and dipeptide composition and transcript expression. The
SVMs trained with the top 1,000 mixed features were used to
gauge whether additional features beyond the amino acid compo-
sition could improve the SVM performance. On the other hand,
the SVMs incorporating the top 20 mixed features were chosen
to assess whether the inclusion of relatively few of these data sets
would already increase prediction performance. Additionally, we

FIGURE 3 | Composition of the training set. The composition of
the training set is shown in (A). The size of each sector
corresponds to all proteins in that compartment. Proteins localized
to multiple compartments are counted toward each of their

compartments. In (B) the data for plastid localized proteins from
Table A1 in Appendix is visualized, showing proteins having
annotations for the plastid only, as well as for the plastid and other
compartments.
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wanted to test how informative the expression information on its
own is and to investigate this we constructed SVMs based solely on
expression features. The whole data set comprising 5,429 values by
5,327 features was then subjected to a model training procedure
and subsequent evaluation using CV. We have performed feature
selection by using an F-score based approach to identify features
providing a high predictive power for the SVM (Chen and Lin,
2006). CV was used in two cases: once to estimate the parame-
ters used to train the SVMs, and once to provide an unbiased
assessment of prediction accuracy.

After evaluation of the prediction performance of the differ-
ent SVMs, it became obvious that leveraging the expression of
the underlying transcripts did not strongly improve the predic-
tion, as judged by the MCC, for the cell wall, the cytosol, or the
ER (Figure 4, upper panel and Table 3). In any case, for these
compartments we only obtained a very low MCC (below 0.4) and
therefore decided that these compartments could not be predicted
solely based on these simple features. For the vacuole and the per-
oxisome we saw a slight increase of the MCC, but it stayed below
a value of 0.4 (Figure 4, upper panel) and the predictive power
was therefore also deemed to be not acceptable. In the case of the
nucleus we did not observe any improvement in predictive power
when incorporating expression data either (Figure 4, lower panel).
However, here the addition of dipeptide composition elevated the

MCC to nearly 0.5. Finally in the case of the plasma membrane, the
Golgi and the mitochondrion we achieved an improvement of the
predictive power by incorporating expression data, reaching MCC
values slightly above 0.4 in every case (Figure 4 lower panel).
Strikingly, in accordance to the previous observations we saw a
dramatic increase in MCC for the prediction of plastid proteins,
where the MCC increased from below 0.4 to nearly 0.7 when about
1,000 array slides were incorporated (Table 3). Interestingly, when
choosing as little as 20 features from the combined set of array
slides and the amino acid composition the MCC rose to above 0.5
already, indicating that relatively few (targeted) expression arrays
might be enough to significantly boost the predictive power for
the plastid predictors.

Finally, when analyzing the performance of the SVMs based
solely on the top 20 expression features we could notice that for
the peroxisome, the cytosol, the ER, and the nucleus, the expression
information alone is less informative than amino acid composi-
tion. However, with the same number of array slides, the predictor
performance for the vacuole, the plastid, the Golgi apparatus, the
plasma membrane, and the mitochondrion was already as good
as, or sometimes even better than for those based on amino acid
composition alone. In fact, what we have found characteristic for
almost all compartments, except the nucleus and the cytosol, is
that the 1,000 top expression features seemed to overlap with the

FIGURE 4 | Matthew’s correlation coefficient plots presenting the
performance of the predictors constructed for 10 subcellular
compartments. The investigated compartments were: the vacuole, the
peroxisome, the cell wall, the cytosol, the ER, the plastid, the Golgi apparatus,
the nucleus, the plasma membrane, the mitochondrion. For each of the 10
compartments the prediction engines were built using: amino acid
composition (AA), the top 20 expression features (T20 E), the top 20 mixed

features selected from the amino acid composition and the expression data
(T20 AA + E), the top 1,000 features selected from the expression features
(T1000 E), the top 1,000 amino acid composition and expression features
(T1000 AA + E) and the top 1,000 features selected from amino acid
composition, dipeptide composition and expression data (T1000 AA + D + E).
For each predictor the Matthews’ correlation coefficients from the 5
cross-validation loops are visualized as a box plot.
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Table 3 | Matthew’s correlation coefficient values obtained using different features.

AA T20 E T20 AA + E T1000 E T1000 AA + E T1000 AA + E + D

Cell wall 0.33 ± 0.04 0.30 ± 0.04 0.32 ± 0.03 0.35 ± 0.05 0.38 ± 0.05 0.36 ± 0.05

Cytosol 0.25 ± 0.03 0.17 ± 0.05 0.25 ± 0.04 0.16 ± 0.03 0.19 ± 0.05 0.20 ± 0.04

ER 0.24 ± 0.03 0.21 ± 0.05 0.24 ± 0.03 0.31 ± 0.08 0.31 ± 0.06 0.32 ± 0.03

Golgi apparatus 0.28 ± 0.04 0.31 ± 0.06 0.34 ± 0.08 0.42 ± 0.06 0.42 ± 0.07 0.44 ± 0.06

Mitochondrion 0.23 ± 0.03 0.29 ± 0.04 0.26 ± 0.04 0.41 ± 0.03 0.41 ± 0.02 0.38 ± 0.03

Nucleus 0.41 ± 0.02 0.30 ± 0.01 0.43 ± 0.03 0.42 ± 0.02 0.44 ± 0.04 0.50 ± 0.04

Peroxisome 0.19 ± 0.04 0.06 ± 0.14 0.17 ± 0.08 0.31 ± 0.05 0.31 ± 0.07 0.28 ± 0.04

Plastid 0.37 ± 0.01 0.54 ± 0.02 0.53 ± 0.02 0.69 ± 0.01 0.68 ± 0.01 0.69 ± 0.01

Plasma membrane 0.22 ± 0.03 0.31 ± 0.03 0.31 ± 0.03 0.43 ± 0.02 0.43 ± 0.02 0.42 ± 0.01

Vacuole 0.25 ± 0.03 0.28 ± 0.04 0.31 ± 0.03 0.35 ± 0.06 0.33 ± 0.05 0.32 ± 0.05

For each compartment the average MCC is given (± SD). The columns correspond to the amino acid composition as sole features (AA), the top 20 features chosen

from the microarray slides (T20 E), the top 20 features chosen from the amino acid composition and the microarray slides (T20 AA + E), 1,000 top features chosen

from the microarray slides (T1000 E), 1,000 top scoring features chosen from the amino acid composition and the microarray slides (T1000 AA + E) and finally the

1,000 top scoring features from the same set where dipeptide composition was added as an additional feature set (T1000 AA + E + D). Values above 0.4 are in italics

and values above 0.5 in bold.

informative content of the protein sequence features (Figure 4),
as the performance of predictors built on this data could not be
further improved by incorporation of amino acid or dipeptide
composition.

These results confirmed the initial findings from the PCA plots
for the plastid. However, unlike in the PCA, we could show that
expression profiling can provide useful information for half of the
investigated compartments, albeit this improvement is not as dra-
matic as it is for the plastid. Furthermore, even the incorporation
of relatively few expression sets increased the predictive power in
the case of the plastid and for the plasma membrane (see Figure 4
lower panel). This would suggest that, if one were to use expression
information from crop or exotic plant species, a limited RNASeq
profiling data set might be enough to provide an additional level
of information for protein subcellular localization prediction, at
the very least for plastid proteins.

IMPORTANCE OF INDIVIDUAL FEATURES FOR PLASTIDIAL PREDICTOR
AS JUDGED BY AN ADJUSTED F -SCORE
We next set out to assess which data is most useful for the pre-
diction of plastid proteins. We therefore investigated the ranking
of the F-scores which were used for feature selection in the SVM
training steps. As expected in the case of the plastid, microarray
slides were residing at the top of the list (Table A2 in Appen-
dix). Interestingly, when assessing common themes amongst the
microarrays providing most information about localization of
plastid proteins, a set of microarrays studying a triose phosphate
transporter mutant grown (Walters et al., 2004) under an 8-h
light regime scored best. As even wild-type control arrays from
this set were ranked amongst the most informative, it is likely
that this might be rather due to the growth conditions and sam-
pling time (2 h after light onset according to http://affymetrix.
arabidopsis.info/narrays/experimentpage.pl?experimentid = 84)
than the actual mutation, as many other top scoring arrays were
from experiments investigating tissues grown under constant light
(Schmid et al., 2005) or from the morning hours of carefully con-
trolled diurnal cycles (Bläsing et al., 2005; Usadel et al., 2008).

This might imply that one could tailor expression studies to be
maximally beneficial for inferring protein subcellular localization,
by choosing diurnal cycles or varying light intensities. This is not
surprising, as many plastid proteins are obviously involved in light
dependent processes and/or under the regulation of carbon status
and react in response to either input. Consequently, when studying
a carbon and light insensitive mutant, photosynthesis and plas-
tid organization were the most significantly changed functional
categories (Thum et al., 2008).

OVERREPRESENTED CATEGORIES
We next investigated whether we could detect any particular bias
in the prediction accuracy for plastid localized genes. To inves-
tigate this, we used the proteins from our working data set and
compared the set of false positives to all proteins contained in
the working data set using the online MapMan enrichment tool
(Usadel et al., 2006). In total, there were 23 false positive predic-
tions, but we were not able to detect any meaningful enriched
categories in this set (data not shown). Next we assessed the final
false negative set which comprised 628 proteins for enriched cate-
gories by comparing it against the full set of 1,709 plastid proteins
in the working data set. Interestingly, in this case we obtained
many enriched categories pertaining to ribosomal proteins. How-
ever, it turned out that most of these were annotated as proteins
constituting the eukaryotic ribosome. Furthermore, 10 proteins
were classified as proteasome subunits. As in both cases plastid
localization would be relatively unlikely, we concluded that these
were either caused by experimental problems in high-throughput
data sets or by a functional miss-annotation. We therefore revis-
ited the underlying data by scrutinizing all 1,709 proteins from
the plastid set manually without incorporating the novel predic-
tions. We inferred subcellular localization based on experimental
evidence and on textbook knowledge about processes and path-
ways. We further incorporated information about the occurrence
of ribosomal subunits in cyanobacteria, algae, or bacteria derived
from Interpro (Hunter et al., 2009) and by this checks we were
indeed able to confirm the MapMan based annotations. We thus
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concluded that 68 proteins were most likely not contained in plas-
tids. After correcting our working data set based on these manual
improvements, we did not seem to grossly improve SVM perfor-
mance indicating that our training resulted in a relatively robust
model despite the incorporation of false positives.

That said, the inclusion of at least ca. 5% false positive pro-
teins in the plastid set shows that despite growing experimental
evidence about the subcellular localization of proteins, these data
have to be treated with caution. This is in agreement with the fact
that organelle purification is not perfect (van Wijk and Baginsky,
2011). Furthermore, this observation is meaningful as it shows that
– at least in the case of this novel plastid predictor – it is possible
to find potential experimental errors by using in silico approaches.
This further underlines the necessity for highly precise prediction
tools even for well studies model organisms like Arabidopsis. It is
likely that future studies will thus rely on intersected sets for train-
ing and testing and potentially weigh various experimental studies
differently by assessing between-lab concordance.

COMPARISON OF PLASTIDIAL PREDICTORS PERFORMANCE USING AN
INDEPENDENT TEST SET
We next compared the performance of our best performing clas-
sifier for the plastid with other state of the art predictors that
could assess localization for this compartment. We chose TargetP,
as this is being used by the TAIR database, Predotar, MultiLoc2, and
AtSubP, as the latter represents another tool based on SVMs, which
was specifically developed to annotate the Arabidopsis proteome
and has been shown to have an excellent performance (Kaun-
dal et al., 2010). Predictions made by Predotar and TargetP are
based solely on the analysis of the N-terminal end of the protein
sequence. Therefore these two predictors are tailored to predict
mainly plastid or mitochondrial proteins. AtSubP and MultiLoc2
are another class of predictors which go beyond analysis of protein
sequence and incorporate additional information. AtSubP lever-
ages entire protein sequence composition and order, together with
homology information using PSI–BLAST, to discriminate between
proteins destined for seven plant compartments. MultiLoc2, apart
from exhaustively analyzing protein sequence, incorporates addi-
tional protein information in the form of phylogenetic profiles
and Gene Ontology terms to provide predictions for 10 plant
subcellular compartments.

When comparing the performance of our predictor with that
of other predictors according to the values from their internal

performance validation tests, it became obvious that our MCC
value estimated from CV was relatively low. However, this might be
explained by the inclusion of many more proteins in our working
data set or the inclusion of proteins which are hard to classify. We
therefore composed an independent test data set, by querying the
SUBAII subcellular localization database for proteins whose local-
ization was experimentally confirmed. As the SUBAII database
is curating protein subcellular localization independently from
TAIR, we were thus able to obtain evidence for proteins not con-
tained in our working data set. In total, we were able to retrieve
experimentally derived subcellular localization annotations for
1,398 unique proteins for which expression information existed
as well. Of these, 187 were from the plastid.

The compared predictors were queried with all proteins from
the independent test data set and those predicted to be localized
in the plastid were then selected for benchmarking. The Predo-
tar predictions labeled as “possibly plastid” were not included.
We next re-calculated the performance, for our SLocX predic-
tor and the other four predictors, based on the independent test
data set. As expected the performance dropped for all the pre-
dictors. Whilst it cannot be excluded that the independent test
data set contains proteins which are harder to classify explain-
ing the drop in MCC, the most likely explanation would be an
overly optimistic estimation of MCC which might result from
biases in CV (Jiang et al., 2008; Zervakis et al., 2009). However,
we could show that on this independent test data set our plastidial
predictor performed slightly better than Predotar and MultiLoc2.
Generally, these three predictors performed better than the other
two predictors by scoring MCC values of 0.48, 0.47, and 0.46
respectively (Table 4). Although Predotar and MultiLoc2 outcom-
peted SLocX in sensitivity, it still showed a higher precision. Even
though TargetP made more true positive predictions than any of
the three top predictors in Table 4, they were accompanied by
almost the same number of false positive predictions and this
was reflected in its very low precision (0.51). Interestingly, it can
be noticed that the sensitivity of AtSubP, which is the highest of
all classifiers, came at the cost of low precision as it made much
more false positive predictions than true positive predictions. The
low precision of AtSubP was also reflected in its MCC value of
0.32, which was the lowest among all the compared predictors.
Additionally, we checked how the performance of Predotar would
change after inclusion of its low confidence,“possible plastid,” pre-
dictions. As expected, here we could observe a slight improvement

Table 4 | Benchmarking of predictions from SLocX, Predotar, MultiLoc2,TargetP, and AtSubP on the independent test set of 1,398 proteins.

Predictor No. of predicted proteins TP FP TN FN MCC Precision SE

SLocX 75 62 13 1198 125 0.48 0.83 0.33

Predotar 86 65 21 1190 122 0.47 0.76 0.35

MultiLoc2 90 66 24 1187 121 0.46 0.73 0.35

TargetP 144 74 70 1141 113 0.38 0.51 0.40

AtSubP 201 80 121 1090 107 0.32 0.40 0.43

According to SUBAII database, 187 proteins from the independent test data set were experimentally found in the plastid and 1211 in different compartments.

The abbreviations mean: TP, true positive predictions; FP, false positive predictions; TN, true negative predictions; FN, false negative predictions; MCC, Matthew’s

correlation coefficient; SE, sensitivity. MCC values are given in bold.
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in Predotar’s sensitivity at the cost of lower precision (data not
shown).

Given these differences, we investigated which proteins were
correctly predicted by SLocX and the remaining classifiers and
found these to have a relatively small overlap (data not shown).
This might indicate that the protein sequence alone or enhanced
with information derived from either homology, phylogenetic
profiles, and GO annotations, does provide independent signals
as compared to amino acid composition and expression data.
Therefore, in the case of model species, where good gene mod-
els are known, it would thus likely make sense to combine such
protein sequence-based prediction tools with the novel plastidial
predictor.

EXPERIMENTAL VALIDATION OF CANDIDATE PROTEINS LOCALIZATION
As our results were comparing favorably to that of other prediction
methods, we tried to validate two randomly chosen proteins by
GFP fusions. The selected proteins were predicted by our method
to be localized in the mitochondrion (At1g16000) and the plas-
tid (At5g19540). We cloned the corresponding transcripts from
seedling cDNA and transiently transformed tobacco leaf proto-
plasts. Each investigated protein was tagged with GFP either at its
amino or carboxyl terminus. Tagging of the proteins in these two
orientations was done to make sure that the observed localization
was not due to the masking of a terminal signal peptide. We also
queried publicly available prediction tools with the sequence of
the investigated proteins.

The protein At1g16000 was predicted by our method to be
located in the mitochondrion; however, both, Predotar and Mito-
ProtII (Claros and Vincens, 1996) estimated the probability for an
import of this protein into the mitochondrion at just 1 and 0.6%
respectively. According to the specifications for interpretation of
results of Predotar and MitoProtII, their predictions indicate that
the protein is not localized in the mitochondrion. Furthermore,
neither AtSubP nor TargetP were able to make any valid predic-
tion for this protein whereas, MultiLoc2 predicted that this protein
resides in the cytosol. The only prediction which overlapped with
ours was the one made by Cui et al. (2011). After transforming
the protoplasts with C-terminally tagged At1g16000 protein, we
observed that the GFP signal overlaps with the cyan signal from
MitoTracker (Figures 5D–F), which validates our prediction. This
observation was additionally corroborated by the results obtained
with the pre101(GFP) mitochondrial control (Figures 5A-C).

Interestingly enough, the cells expressing the N-terminally
tagged version of this protein show a mitochondrial localiza-
tion (Figures 5G–I). It came as a surprise to find both con-
structs in mitochondria, as it is known that proteins destined to
this compartment usually contain an N-terminal mitochondrial
transfer peptide (mTP) which should be blocked in case of the
N-terminally tagged protein and therefore result in a different
than mitochondrion localization. The reason for this behavior is
unclear, but it might be explained by the presence of an alterna-
tive, not N-terminal, localization signal, which can reside inside of
the protein sequence, as it was previously reported for a few mito-
chondrial proteins (Brix et al., 1999; Pfanner and Geissler, 2001).
It could also be explained by the possibility that the available pro-
tein sequence is incomplete and its N-terminal part was wrongly

FIGURE 5 | Fluorescent microscopy analysis of tobacco protoplast cells
transformed with At1g16000–GFP construct. Protoplast cells
transformed with control for the mitochondrion – pre101(GFP) (A–C),
At1g16000 with C-terminally fused GFP (D–F), and At1g16000 with
N-terminally fused GFP (G–I). Left panel – GFP (green fluorescence),
middle panel – MitoTracker Orange (pseudo cyan fluorescence), right panel
– channels overlay plus chlorophyll (red) autofluorescence. Bars in all
pictures are 15 μm.

assigned by gene prediction tools, thus making it impossible for the
predictors based on N-terminal signal recognition to make a cor-
rect prediction. In order to exclude the possibility that At1g16000
is an incomplete gene model and to support the explanation that
the observed localization was likely due to alternative localiza-
tion signal, we filtered out the possible alternative starting sites
and manually checked the 3,000-nucleotides upstream region of
this gene. We found no putative N-terminal localization sequence
(according to Predotar). The same result was achieved by checking
for alternative starting codons in the first exon of this gene. The
checked sequences are available in Table A3 in Appendix. It appears
that only the prediction methods which are not entirely based on
protein sequence, but also on expression information, as ours and
of Cui et al. (2011), can make a correct prediction in such cases.

The second investigated protein, At5g19540, was predicted by
our method to be localized in the plastid. In this case, Predotar,
iPSORT and TargetP predicted that this protein contains a chloro-
plast transit peptide (cTP). Furthermore, the other prediction
tools, such as MultiLoc2 and AtSubP also agreed with our verdict.
The observed localization of C-terminally tagged At5g19540 pro-
tein indicated its localization to the plastid (Figures 6C,D). This
observation was additionally validated by the results obtained with
the TP101(GFP) plastidial control (Figures 6A,B).

As expected, the localization changed when the cells were trans-
formed with an N-terminally GFP tagged protein. In this case our
localization studies suggest a cytosolic location or a targeting to
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FIGURE 6 | Fluorescent microscopy analysis of tobacco protoplast cells
transformed with At5g19540–GFP construct. Protoplast cells
transformed with control for the plastid –TP101(GFP) (A,B), At5g19540 with
C-terminally fused GFP (C,D), and At5g19540 with N-terminally fused GFP
(E,F). Left panel – GFP (green fluorescence), right panel – channels overlay
plus chlorophyll (red) autofluorescence. Bars in all pictures are 15 μm.

the endoplasmic reticulum (Figures 6E,F). This two observations
together demonstrate that this protein indeed contains a transit
peptide at its N-terminus, as predicted by Predotar and iPSORT,
which was masked in case of the N-terminally tagged version of
this protein resulting in its possible mislocalization in cytosol/ER.

Taken together these experimental confirmations show that our
novel predictor performs well on unknown proteins, and is indeed
able to either correctly classify truncated mitochondrial proteins
or to detect alternative localization signals for mitochondrial
proteins.

LIMITATIONS OF THE METHOD AND FURTHER PERSPECTIVES
Given the performance of the SVM based predictor using sim-
ple amino acid and expression information it will be possible to
combine these predictions with those stemming from N-terminal
predictors for well studied model plants to (i) improve predictive
power and in the case of conflicting predictions to (ii) poten-
tially identify non-classically targeted proteins. Although, such

leveraging of expression information for subcellular localization
prediction appears promising, there are some limitations. Firstly,
we could show that the compartments which can benefit from this
information would be primarily the plastid and, to some extent,
the mitochondrion and the plasma membrane. However, the main
limitation is the need to have expression data for the protein to
be studied. Therefore, our predictor requires that a protein’s tran-
script must be represented on the ATH1 microarray. Generalizing
this, repeating our methodology for other plant species would
depend on the availability of data from experiments performed
using microarrays designed for them. Moreover, it cannot be guar-
anteed that this would be as robust as for Arabidopsis and would
depend of the quality of the microarrays, i.e., the number of tran-
scripts that they measure. These limitations however, might no
longer be a bottleneck of our methodology, since next generation
sequencing can now provide expression measures for entire tran-
scriptomes and this technique was already applied many times
for Arabidopsis and other plant species (Jia et al., 2009; Eveland
et al., 2010; Filichkin et al., 2010; Gilardoni et al., 2010; Zhang
et al., 2010; Hsieh et al., 2011). As RNASeq projects can be used
to infer (often incomplete) transcript and thus protein models at
the same time, a prediction solely based on amino acid composi-
tion and expression information should be highly useful for these
studies.

WEBSITE
In order to make the data available in a convenient form, we
have set up a website of localizations predicted by SLocX. The
website is available at the following URL: mapman.mpimp-golm.
mpg.de/general/slocx/. Additional improvements will directly be
incorporated into the database.

CONCLUSION
By leveraging gene expression information we could show that
we can predict protein subcellular localization with a signifi-
cantly higher accuracy than when using sequence data alone.
Beyond simple CV and an independent test set, a subset of novel
predictions was also shown to be correct using protein–GFP
fusions.
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APPENDIX
The formula used to linearly scale the microarray data between
values of 0 and 1. V, V min, and V max are, respectively, the value to
be scaled, the smallest, and the largest value in the expression data
set.

Scaled Value =
V − Vmin

Vmax − Vmin
(A1)

The formula used to calculate Matthews’ correlation coefficient
(MCC). Where, the true positive (TP) predictions is the total
number of correctly predicted proteins which are localized in a
particular compartment, the true negative (TN) predictions is the
total number of proteins correctly predicted not to be localized in
a particular compartment, the false positive (FP) predictions is the
total number of proteins incorrectly predicted to be localized in a
particular compartment, the false negative (FN) predictions is the

total number of proteins incorrectly predicted not to be localized
in a given compartment.

MCC =
(TP × TN) − (FP × FN)√

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)
(A2)

The formula used to calculate sensitivity (SE).

Sensitivity = TP

TP + FN
(A3)

The formula used to calculate precision.

Precision = TP

TP + FP
(A4)
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Table A1 | Overlap between localizations for proteins representing 10 compartments.

cw Cytosol ER Golgi Mitochondrion Nucleus Peroxisome Plastid pm Vacuole

cw 386 35 15 5 40 47 5 72 96 84

Cytosol 35 654 11 6 23 343 6 62 133 34

ER 15 11 278 13 14 20 4 20 76 63

Golgi 5 6 13 155 1 3 0 3 24 18

Mitochondrion 4U 4 14 1 575 35 14 222 52 79

Nucleus 47 343 20 3 35 1188 10 116 130 64

Peroxisome 5 6 4 0 14 10 129 32 14 17

Plastid 72 62 20 3 222 116 32 1709 153 144

pm 96 133 76 24 52 130 14 153 1474 197

Vacuole 84 34 63 18 79 64 17 144 197 709

Proteins annotated to be localized to multiple compartments are shown. For each combination of compartments the total number of shared proteins is given. The

numbers in the diagonal give the total number of proteins per compartment as a reference. Abbreviations: cw, cell wall; pm, plasma membrane.
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Table A2 |Top Scoring Arrays for the plastid.

Array accession code F -score Title

GSM133833.CEL 0.620 Walters A-12-Kruger-MH3 REP3

GSM133831.CEL 0.613 Walters_A-10-Kruger-MH1_REP 1

GSM133826.CEL 0.610 Walters A-05-Kruger-WH2 REP2

GSM133828.CEL 0.588 Walters_A-07-Kruger-ML1_REP1

GSM133827.CEL 0.584 Walters A-06-Kruger-WH3 REP3

GSM133830.CEL 0.579 Walters_A-09-Kruger-ML3_REP3

GSM133832.CEL 0.570 Walters A-11-Kruger-MH2 REP2

GSM133825.CEL 0.567 Walters_A-04-Kruger-WH1_REP 1

GSM133823.CEL 0.565 Walters A-02-Kruger-WL2 REP2

GSM133824.CEL 0.558 Walters_A-03-Kruger-WL3_REP3

GSM318330.CEL 0.545 EL 14DAS 1

GSM183507.CEL 0.543 WT_for_ATR1/MYB51rep1

GSM131473.CEL 0.542 ATGE 7 C2

GSM133822.CEL 0.541 Walters_A-01-Kruger-WL 1 REP 1

GSM133829.CEL 0.538 Walters A-08-Kruger-ML 2 REP2

GSM131472.CEL 0.533 ATGE 7 B2

GSM131471.CEL 0.532 ATGE 7 A2

GSM131500.CEL 0.532 ATGE 5 C

GSM131499.CEL 0.530 ATGE 5 B

GSM45208.CEL 0.530 00304WT 1

GSM131501.CEL 0.529 ATGE 10 A

GSM131503.CEL 0.522 ATGE 10 C

GSM131502.CEL 0.527 ATGE 10 B

GSM131498.CEL 0.525 ATGE5A

GSM45278.CEL 0.522 00304AS12_2

AtGen_6-9512_Heatstress(3h) + 9hrecovery-Shoots-

GSM131464.CEL 0.510 12.0h_Rep2

GSM318331.CEL 0.509 EL14DAS2

GSM183508.CEL 0.509 WT_for_ATRl/MYB5 l_rep2

AtGen 6-9511 Heatstress(3h) + 9hrecovery-Shoots-

GSM131463.CEL 0.502 12.0h_Repl

GSM269488.CEL 0.501 mkk2, no-treatment, rep-A

gsm77059.CEL 0.500 04h Col-0 replicate B

GSM135552.CEL 0.499 syd-2_rep2

GSM135551.CEL 0.495 syd-2_repl

gsm77062.CEL 0.495 08h Col-0 replicate B

GSM265858.CEL 0.495 control shortB

GSM183516.CEL 0.494 MYB51_OE_repl

GSM268009.CEL 0.494 Col-0, Time 0, rep-B

GSM133084.CEL 0.492 JD AT + EO COL WT 24H UNINFECTED

GSM269490.CEL 0.491 mkk2, no-treatment, rep-C

GSM45209.CEL 0.491 00304WT_2

GSM133078.CEL 0.490 JD AT + EO COL WT 06H UNINFECTED

AtGen 6-9611 Heatstress(3h) + 21hrecovery-Shoots-

GSM131467.CEL 0.489 24.0h_Repl

GSM265868.CEL 0.489 long 10B

GSM183512.CEL 0.486 MYB76_OE_rep2

AtGen_6-9612_Heatstress(3h) + 21 hrecovery-Shoots-

GSM131468.CEL 0.485 24.0h_Rep2

GSM131252.CEL 0.483 AtGen_6-0512_Control-Shoots-12.0h_Rep2

GSM133079.CEL 0.481 JD AT + EO COL WT 12H INFECTED

GSM131260.CEL 0.481 AtGen_6-l 112_Cold(4˚C)-Shoots-0.5h_Rep2

GSM131251.CEL 0.481 AtGen_6-051 l_Control-Shoots-12.0h_Repl

The adjusted F-score, the Arrays accession code as well as a title for the arrays series is given. Arrays from the same series are colored in the same color.

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Physiology
http://www.frontiersin.org/Plant_Physiology/archive


www.frontiersin.org		  September 2011  | Volume 2  |  Article 43  |  117

Ryngajllo et al. Expression to predict subcellular localization of proteins

Table A3 | Sequences of upstream and downstream regions of At1g1600.

Seq id Sequence

>5′3′ Frame 1-1 MKSPKLTCYKLQLFSFKSESLYFSQSLHCSCGRR

>5′3′ Frame 1-2 MAFDVSSEILR

>5′3′ Frame 1-3 MHPLF

>5′3′ Frame 1-4 MTMSCPRLT

>5′3′ Frame 1-5 MSCPRLT

>5′3′ Frame 1-6 MLLMIQCLKI

>5′3′ Frame 1-7 MIQCLKI

>5′3′ Frame 1-8 MCL

>5′3′ Frame 1-9 MSQNTN

>5′3′ Frame 1-10 MSFIDLKKTKKNIAIF

>5′3′ Frame 1-11 MYWDLYIILRNNHKLHAKINLTTSQQISII

>5′3′ Frame 1-12 MWESV

>5′3′ Frame 1-13 MIKENLGLEET

>5′3′ Frame 1-14 MRSVFTAYFDEARRVIIALFSSI

>5′3′ Frame 1-15 MGFKMLFNKKEILC

>5′3′ Frame 1-16 MLFNKKEILC

>5′3′ Frame 2-1 MKQEAQVLHC

>5′3′ Frame 2-2 MNIISLTGSPSRTM

>5′3′ Frame 2-3 MSLLRSLGKL

>5′3′ Frame 2-4 MFSSSTPLVSNHLY

>5′3′ Frame 2-5 MRSAKRRSPAIAIAMENKTSPGNVLVCSP

>5′3′ Frame 2-6 MENKTSPGNVLVCSP

>5′3′ Frame 2-7 MKTPKMSRVLCTSYRLNQ

>5′3′ Frame 2-8 MSRVLCTSYRLNQ

>5′3′ Frame 2-9 MMNKCLKTLIKKSHIYIETLTWLASIYQRR

>5′3′ Frame 2-10 MNKCLKTLIKKSHIYIETLTWLASIYQRR

>5′3′ Frame 2-11 MFNNAVFVGNTSDPLDP

>5′3′ Frame 2-12 MVLRVVVVTASFVSIPIQLLPELSTMGR

>5′3′ Frame 2-13 MGR

>5′3′ Frame 2-14 MTNNLFHTRSVLS

>5′3′ Frame 2-15 MQKLT

>5′3′ Frame 2-16 MTDE

>5′3′ Frame 2-17 MSESYHASTLICNKIWGLKCYSIKRKSYVDGP

>5′3′ Frame 3-1 MFVEPVDYEVS

>5′3′ Frame 3-2 MSEALHHKSLLLLTTLC

>5′3′ Frame 3-3 MYLSAALDLTCCS

>5′3′ Frame 3-4 MPEDIA

>5′3′ Frame 3-5 MYQNAPVICQNVFVKSESDQ

>5′3′ Frame 3-6 MLTE

>5′3′ Frame 3-7 MPFSLVTHPIL

>5′3′ Frame 3-8 MLSSFHLLGSLG

>5′3′ Frame 3-9 MK

>5′3′ Frame 3-10 MND

>5′3′ Frame 3-11 MKKLRVPT

>5′3′ Frame 3-12 MND

>5′3′ Frame 3-13 MSSEFTAYFLVKL

>5′3′ Frame 3-14 MLMGHNKAHLYMVLKPLMDKPC

>5′3′ Frame 3-15 MGHNKAHLYMVLKPLMDKPC

>5′3′ Frame 3-16 MVLKPLMDKPC

>5′3′ Frame 3-17 MDKPC

>At1g16000_down1 MAGGGGFRAKMEHYVYSGEKKHVLVGIGIVTIIFGVPWYLMTQG SKHQSHQDYMDKADKARKARLSSSSSANK

>At1g16000_down2 MEHYVYSGEKKHVLVGIGIVTIIFGVPWYLMTQGSKHQSHQDYM DKADKARKARLSSSSSANK

The sequences were searched for a N-terminal targeting signal for mitochondrion.

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Physiology/archive


Frontiers in Plant Science  |  Plant Physiology	 	 September 2011  | Volume 2  |  Article 43  |  118

Ryngajllo et al. Expression to predict subcellular localization of proteins

FIGURE A1 | Principle component analysis plots for all compartments. Exemplary principal component plots showing proteins belonging to a compartment
in red and all other proteins in black. In each case 500 array slides were randomly sampled for the PCA plots and displayed exactly as in Figure 1.
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FIGURE A2 | PCA plot for rice. Principal component analysis plot showing
plastid proteins in green, mitochondrial proteins in blue, and proteins from
other compartments in black.

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Physiology/archive


www.frontiersin.org	 	 September 2011  | Volume 2  |  Article 55  |  120

ORIGINAL RESEARCH ARTICLE
published: 22 September 2011

doi: 10.3389/fpls.2011.00055

Analysis of the compartmentalized metabolome – a
validation of the non-aqueous fractionation technique

Sebastian Klie1†, Stephan Krueger 2†, Leonard Krall 1, Patrick Giavalisco1, Ulf-Ingo Flügge2,
Lothar Willmitzer 1 and Dirk Steinhauser 1*†

1 Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
2 Botanical Institute II, University of Cologne, Cologne, Germany

Edited by:
Alisdair Fernie, Max Planck Institute
for Plant Physiology, Germany

Reviewed by:
Alisdair Fernie, Max Planck Institute
for Plant Physiology, Germany
Lee Sweetlove, University of Oxford,
UK

*Correspondence:
Dirk Steinhauser , Department of
Molecular Physiology, Max Planck
Institute of Molecular Plant
Physiology, Am Mühlenberg 1, 14476
Potsdam-Golm, Germany.
e-mail: steinhauser@mpimp-golm.
mpg.de
†Sebastian Klie, Stephan Krueger and
Dirk Steinhauser have contributed
equally to this work.

With the development of high-throughput metabolic technologies, a plethora of primary and
secondary compounds have been detected in the plant cell. However, there are still major
gaps in our understanding of the plant metabolome. This is especially true with regards to
the compartmental localization of these identified metabolites. Non-aqueous fractionation
(NAF) is a powerful technique for the determination of subcellular metabolite distributions
in eukaryotic cells, and it has become the method of choice to analyze the distribution of a
large number of metabolites concurrently. However, the NAF technique produces a contin-
uous gradient of metabolite distributions, not discrete assignments. Resolution of these
distributions requires computational analyses based on marker molecules to resolve com-
partmental localizations. In this article we focus on expanding the computational analysis
of data derived from NAF. Along with an experimental workflow, we describe the critical
steps in NAF experiments and how computational approaches can aid in assessing the
quality and robustness of the derived data. For this, we have developed and provide a new
version (v1.2) of the BestFit command line tool for calculation and evaluation of subcellu-
lar metabolite distributions. Furthermore, using both simulated and experimental data we
show the influence on estimated subcellular distributions by modulating important parame-
ters, such as the number of fractions taken or which marker molecule is selected. Finally,
we discuss caveats and benefits of NAF analysis in the context of the compartmentalized
metabolome.

Keywords: subcellular metabolomics, analysis workflow, computational simulations, least squares algorithms,
BestFit tool, visualization

INTRODUCTION
Although the main biochemical pathways in plants have been
resolved by classical biochemical approaches in the last century
(Fernie, 2007; Stitt et al., 2010a), many aspects of cellular metab-
olism and its regulatory functions are still not well understood,
mostly due to technical limitations in gathering a more holistic
insight into the cell’s biochemistry. In recent years tremendous
progress has been made in the establishment of high-throughput
methods enabling the simultaneous analysis of a multitude of
chemically diverse, small molecule metabolites from highly com-
plex compound mixtures (Fiehn, 2001; Kopka et al., 2004; Brown
et al., 2005; Pan and Raftery, 2007). Metabolomics, the compre-
hensive study of an organism’s metabolite composition, has thus
become an important tool in functional genomics and systems
biology (Fernie et al., 2004; Saito and Matsuda, 2010). It has been
widely used to study metabolic responses toward altered gene
expression (Junker et al., 2006; Mugford et al., 2009; Albinsky
et al., 2010), biotic and abiotic stresses (Kaplan et al., 2004;
Bednarek et al., 2009), to characterize genetic and metabolic diver-
sity (Schauer et al., 2006; Huege et al., 2011; Kusano et al., 2011),
and has been combined with further Omic technologies in systems
biology driven research (Kaplan et al., 2007; Hannah et al., 2010;
Jozefczuk et al., 2010). While unexpected findings have yielded

refined pathways as well as insights into their regulation and
evolution (Zeeman et al., 2004; Eisenhut et al., 2008; Bednarek
et al., 2009; Fettke et al., 2009), it has become evident that cellular
metabolism needs to be considered as a highly integrative net-
work bridging the genotype and ultimate phenotype or cellular
responses (Meyer et al., 2007; Sweetlove et al., 2008; Sulpice et al.,
2009; Stitt et al., 2010b). Even though the abovementioned studies
provided major breakthroughs in the description of biological sys-
tems, we are still lacking information concerning the temporal and
especially spatial regulation of the metabolome (Stitt and Fernie,
2003).

It is widely acknowledged that the compartmentalization of
metabolism in eukaryotic cells represents a crucial factor for meta-
bolic activity and functionality (Lunn, 2007). Consequently, the
interrelation of metabolic networks within and between compart-
ments needs to be deciphered. Whereas the subcellular localization
of enzymes can be computationally predicted (Emanuelsson et al.,
2000; Schwacke et al., 2003) or experimentally determined (Carter
et al., 2004; Heazlewood et al., 2007; Taylor et al., 2011), the analy-
sis of the subcellular localization of metabolites, the products and
substrates of these enzymes, is more challenging due to redun-
dant pathways, transport, and storage (Kruger and Von Schaewen,
2003; Büttner, 2007; Rébeillé et al., 2007; Krueger et al., 2010).
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Further hurdles for reliable metabolite determinations in subcel-
lular compartments are the fast turnover (Stitt et al., 1983; Stitt and
Fernie, 2003) and the exceptionally rapid translocation of metabo-
lites between compartments (Bowsher and Tobin, 2001; Martinoia
et al., 2007; Weber and Fischer, 2007). Because of this, methods
providing accurate information on the subcellular distributions of
multiple metabolites are still limited.

Immunohistochemistry has been utilized to analyze the local-
ization of non-protein molecules, such as cell wall polysaccharides
and amino acids, permitting the analysis of metabolite composi-
tions in compartments (e.g., Golgi, ER) which are normally not
accessible by fractionation methods (Walker et al., 2001). How-
ever, dramatic losses of metabolites have been observed during
tissue fixation which makes the interpretation of the results some-
times difficult (Peters and Ashley, 1967; Heinrich and Kuschki,
1978; Zechmann et al., 2011). Nuclear magnetic resonance (NMR)
spectroscopy facilitates the determination of in vivo metabolite
compositions in cells, tissues, and whole plants (Gout et al., 1993,
2000; Libourel et al., 2006). It requires distinct signals for the dif-
ferent compartments, which can be partly achieved by the pH
dependency of the chemical shift of some molecules like inor-
ganic phosphate, or organic and amino acids (Bligny and Douce,
2001). Compared to other spectroscopy/spectrometry methods,
NMR is relatively insensitive and thus only feasible for metabo-
lites which are highly abundant in the cell (Bligny and Douce,
2001). Genetically encoded molecular biosensors, proteins fused
to two variants of the green fluorescent protein displaying con-
formational changes and fluorescence resonance energy transfer
when a specific ligand binds, represent a promising molecular tool
for temporal and spatial analyses of in vivo metabolite dynamics
(Fehr et al., 2002; Lalonde et al., 2005; Chen et al., 2010). While
this has been successfully applied for subcellular analysis of glucose
and glutathione redox potentials (Deuschle et al., 2006; Gutscher
et al., 2008), each targeted metabolite requires a unique sensor and
therefore only a small number of metabolites might be simultane-
ously detectable in the same individual transgenic. Another widely
used technique is protoplast fractionation. It is based on the fast
purification of intact organelles through silicone oil or membrane
filters followed by rapid quenching of metabolism (Wirtz et al.,
1980; Lilley et al., 1982; Stitt et al., 1989). This method facilitates
fractionation of plastids, mitochondria, and the cytosol from a sin-
gle cell type, commonly mesophyll cells. However, digestion of the
cell wall and the purification of protoplasts might substantially
affect the metabolic state and therefore the obtained metabolite
readout and the transferability of results.

Non-aqueous fractionation (NAF) is probably the most widely
used technique to study metabolite compartmentalization, espe-
cially in plant science (Gerhardt and Heldt, 1984; Riens et al., 1991;
Farre et al., 2001; Fettke et al., 2005; Krueger et al., 2009; Yamada
et al., 2009). It separates fragments of subcellular compartments
under non-aqueous conditions where biological activities, such as
metabolite leakage, conversion, and translocation, are essentially
completely arrested (Gerhardt and Heldt, 1984). Small subcellular
particles, generated during lyophilization and ultrasonication of
ground material, are separated by their composition-dependent
density using equilibrium centrifugation in a gradient consist-
ing of two differently dense, non-aqueous solvents (for details

see Krueger et al., 2011). The abundance of metabolites and
compartment-specific markers, which are also used as anchors
to computationally estimate subcellular metabolite distributions,
are analyzed throughout the collected gradient fractions. As non-
aqueous fractionated material can be combined with a wide range
of Omic technologies, it allows the determination of subcellular
localizations for a large number of molecules including metabo-
lites and lipids (Farre et al., 2001; Weise et al., 2004; Fettke et al.,
2006; Krueger et al., 2011). In its routine application, the NAF tech-
nique allows for the separation of three distinct compartments –
the cytosol, the plastids, and the vacuole (Riens et al., 1991; Farre
et al., 2008; Krueger et al., 2009). However, it was recently shown
that the resolution power of this technique has not yet been fully
explored (Krueger et al., 2011).

As NAF results in continuous compartmental distributions due
to variable and composition-dependent particle densities, compu-
tational methods need to be employed to analyze the obtained data.
This and the interpretation of generated computational results
reflect the main challenges for experimentalists. From the compu-
tational point of view as well, this type of data analysis is mostly
underexplored.

Using both experimentally derived and simulated data, we
investigated the effects of computationally modulating parameters
important for the analysis of NAF gradients in order to address
several technically and biologically relevant questions, such as:
How many fractions are required to produce a good compartmen-
tal separation? Does the fraction number or the marker choice
influence the estimated compartmental abundances? How good
must the compartmental separation be in order to get reasonable
estimates of compartmental abundances? How accurate must an
estimate of compartmental abundances be in order to be con-
sidered valid? Taken together, the answers to these questions give
a solid theoretical basis for the planning and execution of NAF
experiments. Finally, we demonstrate and discuss alternative visu-
alizations of NAF derived data in order to efficiently integrate
additional knowledge to aid in the biological interpretation of the
obtained results.

MATERIALS AND METHODS
The following sections introduce computational terminologies,
used throughout the manuscript, denoted as italicized text along
with their definition and/or abbreviation.

EXPERIMENTAL DATA
Experimental data and associated classifications used in this
study were taken from Krueger et al. (2011). In brief, Arabidop-
sis thaliana leaf material was harvested 3 h after the onset of
light and separated using an optimized NAF protocol (Krueger
et al., 2009, 2011). A total of six fractions from three indepen-
dent gradients were analyzed using mass-spectrometry (MS) –
based metabolite profiling for primary and secondary metabo-
lites as well as lipids in total comprising 3,921 mass spectrometric
features. Three compartments, the plastids, the vacuole, and the
cytosol were unambiguously delineated, each being represented
by three compartment-specific markers. Although a clear trend
was observed, the mitochondrial compartment was not consid-
ered to be unambiguously separated from the cytosol. However,
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un-supervised clustering suggested the existence and contribution
of yet unconsidered compartments (Krueger et al., 2011).

SIMULATED GRADIENTS
All simulation studies were performed using R 2.11.1 (R Develop-
ment Core Team, 2010).

The distribution of a cellular constituent throughout a virtual
gradient was simulated by 3,000 random deviates selected from
a truncated normal distribution (Robert, 1995) in the interval
between 0 and 30 units using the package “msm” (Jackson, 2010).
Furthermore, 750 (25%) random deviates selected from a uniform
distribution in the same interval were overlaid onto the random
normal deviates to account for the fact that a cellular constituent is
usually detectable throughout the entire gradient. The entire 3,750
random deviates were binned with a window width of 0.1 units,
resulting in 300 bins. To place a simulated distribution at any bin
position within the virtual gradient the mean parameter of the
truncated normal distribution was changed from 0 to 30 in steps
of 0.1 units. The SD, as the second parameter of the truncated
normal distribution, was changed from 0.5 (as 0.0 is very unlikely
to be achieved experimentally) to 30 in steps of 0.5 units to mod-
ify the degree of enrichment reflected by the amount of a cellular
constituent observed at a certain gradient position. To simulate
a non-enriched distribution, where the abundances throughout
the gradient fractions are approximately equal, an SD of 35 and
a mean of 15 (i.e., centrally positioned within the gradient) were
used (approximately uniform distribution).

For the three-compartmental simulation model we assumed
two compartments at the terminal positions at approximately
0 and 30 units of the gradient and a third, uniformly distrib-
uted compartment. For the four- and five-compartmental models,
added compartments were positioned equidistant from each other,
with exception of the uniformly distributed compartment, and
from the terminal compartments (e.g., means of approximately
0, 10, 20, and 30 units in case of five compartments). In all sim-
ulations each compartment was represented by either 2, 3, or 5
compartment-specific marker distributions. To control the vari-
ation within compartments, the positions of markers reflecting
the same compartment were varied (marker spread, ms) around
the compartment center by shifting the means of their distrib-
ution by 0.1, 0.2 and further to 2.0 in steps of 0.2 units. Thus,
for a compartment comprising a marker spread of 1.0, the gradi-
ent distance between the two most distant markers would be 2.0
units. For all simulations the aforementioned characteristic para-
meters (SD and marker spread) were changed identically for all
compartmental distributions.

To simulate a systemic, technical, or experimental error on
the abundances throughout the collected gradient fractions, we
assume a uniform error model quantified as the normalized Man-
hattan distance (Eq. 2) between the initial (error-free) and modi-
fied (error-containing ) distributions. The error was changed from
2 to 20% in steps of 2%.

DATA ANALYSIS
The abundances of cellular constituents throughout gradient frac-
tions (fraction abundances) were expressed as percentages denot-
ing the contribution of each fraction relative to the total amount

(scaled data). Manhattan (Eq. 1) and Euclidean (Eq. 3) distances
between the fraction abundances of cellular constituents were
computed and normalized to fall within the range of 0–1 (relative
scale; Eqs 2 and 4) and then multiplied by 100 to reflect percent-
ages (percentage scale) (Krueger et al., 2011). A set of coordinates
for each cellular constituent were derived by classical multidimen-
sional scaling (CMD, Cox and Cox, 1994), such that the distances
between the fraction abundances of those constituents are approx-
imately equal to the normalized Euclidean distances. The within-
compartment cohesion (WCC) was estimated as the average of all
Manhattan distances between markers within the compartmental
clusters. The between-compartment separation (BCS) was com-
puted as the average of all Manhattan distances between markers of
different compartmental clusters. Both parameters were computed
using the package “fpc” (Hennig, 2010) on normalized Manhat-
tan distances. Silhouette information, a combined measure of the
WCC and BCS (Rousseeuw, 1987), was computed using the pack-
age “cluster” (Maechler et al., unpublished) and expressed as mean
silhouette width for a clustering (cluster solution). Pearson’s matrix
correlation [also termed normalized gamma index (Halkidi et al.,
2001) or non-parametric ANOVA using Mantel test (Sokal and
Rohlf, 1995)] were computed between the initial distance matrix
computed on fraction abundances and a binary (0, 1) matrix rep-
resenting cluster assignments. Both cluster validity indices yield
values in the interval of [−1, 1], in which larger positive values
reflect more favorable cluster solutions.

The percentage abundance of a cellular constituent in each
of the resolved compartments (compartmental abundances), were
computed on the basis of linear least squares methods with the
BestFit (v1.1) command line tool using either the best fit (BFA,
Riens et al., 1991) or non-negative least squares (NNLS, Lawson
and Hanson, 1995) algorithms. The abundances of all markers
delineating the same compartment were mean–averaged prior to
computation (compartmental center). Due to run-time perfor-
mance constraints, compartmental abundances on simulated data
were estimated using NNLS while BFA was used for experimen-
tal data. The differences in compartmental abundances estimated
using two different strategies, or on two different data sets for the
same cellular constituent (compartmental error), were expressed
as maximum error or solution error, i.e., only the maximum (iden-
tified on the absolute scale) or all observed differences among the
considered compartments were taken into account. The 5th and
95th percentile of the observed differences are given, comprising
the interval in which 90% of (non-extreme) differences lay.

The total percentage discrepancy (TPD, Krueger et al., 2011)
was used as a quality measure for the estimated compartmen-
tal abundances derived from least squares solution (LSS). If not
otherwise stated only LSS with a TPD ≤ 10% were considered in
comparisons to avoid bias in estimated parameters due to large
discrepancies between two LSSs and to their respective fraction
abundances. In some cases, thresholds to consider a LSS and
thus the compartmental abundances as sufficiently explained were
estimated as described in Krueger et al. (2011).

DATA VISUALIZATION
All figures were created with R 2.11.1 using the“graphics”(R Devel-
opment Core Team, 2010) or “lattice” package (Sarkar, 2008).
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Mean-difference (MD) plots were constructed to visualize the
agreement of results derived from two different computational
estimation strategies or on two different data sets. Generally, pos-
itive differences reflect larger estimates using strategy or data set
A, while negative differences reflect larger values using strategy
or data set B. The distribution of differences were visualized as
box plots overlaid by violin plots to depict the data density. Level
plots were generated to show the effects of two variables (x, y),
represented as a two-dimensional grid, on a third variable (z)
indicated by the coloring of every grid position. Contour lines
were added to aid interpretation. As a convention throughout this
manuscript for all constructed level plots, the values for the third
variable z are smoothly colored using blue–yellow–red, where
blue reflects a favorable measure while red reflects an unfavor-
able measure. Topological maps were created as scatter plots by
depicting the first two principal coordinates (PCo’s) derived from
CMD analysis, which explain together about 98% of the total vari-
ance of the underlying distance matrices. Triangle (or ternary)
plots were constructed to visualize the compartmental abundances
for a three-compartmental estimation strategy using the “plotrix”
package (Lemon, 2006).

EQUATIONS
Manhattan distance

dM (x , y) =
n∑

i=1

∣∣xi − yi
∣∣ (1)

Normalized Manhattan distance

dm(x , y) = dM (x , y)

200
(2)

Euclidean distance

dE (x , y) =
√√√√

n∑
i=1

(
xi − yi

)2
(3)

Normalized Euclidean distance

de(x , y) = dE (x , y)√
2 · 1002

(4)

RESULTS AND DISCUSSION
NON-AQUEOUS FRACTIONATION – DATA ANALYSIS WORKFLOW
The entire NAF procedure can be divided in experimental- and
computational-driven analyses as illustrated in Figure 1. Although
the main focus in this manuscript is targeted toward the compu-
tational analysis of NAF data, we include here, for completeness, a
brief overview of the experimental analyses as well (for details see
Krueger et al., 2011).

The experimental part encompasses the separation, discretiza-
tion, and profiling of sample material (Figure 1). After sample
processing, subcellular compartments are enriched at discrete
positions within a continuous density gradient. The gradient can
then be separated into a number of fractions of ideally equal vol-
ume for the subsequent determination of cellular constituents.

The collected gradient fractions are analyzed with respect to
both compartment-specific markers (to unambiguously desig-
nate a compartment) and cellular constituents (to estimate their
compartmental abundances) either using targeted assays or high-
throughput analytical technologies (Gerhardt and Heldt, 1984;
Fettke et al., 2005; Benkeblia et al., 2007; Krueger et al., 2009,
2011).

The computational part comprises the validation, classification,
visualization, and interpretation of the obtained data (Figure 1).
As each step consists of various tasks achievable by using a mul-
titude of computational approaches, we here only provide a short
overview for comprehension.

Validation
While the fidelity of the obtained measurements first requires an
evaluation, regardless the specific methodology employed, here
validation focuses on the evaluation of the computed compart-
mental enrichments and separation. First, defined compartments
must be delineated through the use of compartment-specific
markers, which ideally represent compartments under investi-
gation in an unambiguous manner. The enrichment of these
markers is commonly depicted as bar plots (Riens et al., 1991;
Winter et al., 1993; Farre et al., 2001) and, but less frequently,
statistically supported by pairwise comparisons (e.g., Student’s t -
test) of the fraction abundances of markers (Krueger et al., 2009,
2011). However, while this shows the compartmental enrichment,
it does not easily provide a parameter for the topological sep-
aration of all considered compartments. Normalized distances
(Eqs 2 and 4) estimated on fraction abundances can be used to
measure the separation between compartments designated using
a single or multiple markers (Krueger et al., 2011). The subse-
quent use of clustering and associated cluster validation techniques
(Halkidi et al., 2001), such as gap statistic (Tibshirani et al., 2001),
or resampling approaches (Suzuki and Shimodaira, 2006), are
powerful tools to statistically validate the cohesions within and
separation between compartments, especially if multiples markers
representing the same compartment are assayed (Krueger et al.,
2011).

Classification
The main goal of this step is to estimate the compartmental abun-
dance by computing the amount of cellular constituents in each of
the previously defined compartments. While this can be achieved
using simple linear regression for an individual compartment
(Gerhardt and Heldt,1984; Benkeblia et al., 2007),other linear least
squares algorithms are more flexible for this purpose as estimates
for all considered compartments can be computed simultaneously
which also facilitates the assessment of the overall fit quality. These
include the frequently used best fit algorithm (BFA, Riens et al.,
1991), as well the non-negative least squares algorithm (NNLS,
Lawson and Hanson, 1995). Both BFA and NNLS solve a sys-
tem of linear equations defined by the marker-resolved compart-
ments to determine the compartmental abundance by minimizing
the discrepancy between the measured and fitted fraction abun-
dances. Moreover, the iteratively (BFA), or by using the active-set
method (NNLS), estimated compartmental abundances are con-
strained and thus restricted to yield always positive (and biological
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FIGURE 1 | Simplified scheme of non-aqueous fractionation procedure and associated data analysis steps. For details see manuscript text.

meaningful) estimates. However, the summed amount over all
considered compartments does not need to equal 100% when
using NNLS (Krueger et al., 2011). While estimates of compart-
mental abundances are computationally obtained, their qualities
still need to be evaluated using the remaining associated discrep-
ancy, commonly expressed as Euclidean distance or a derivate of
it (Krueger et al., 2011).

Visualization and interpretation
A visual representation of the derived compartmentalization can
be displayed through the combination of textual and graphical for-
mats to aid in data interpretation. The choice of the visualization
format depends on the questions addressed, the computational
approach chosen, and the scientist’s preferences. Typically the
estimated compartmental distributions are provided in tabular
format while the underlying fraction abundances are depicted as
heat maps or are converted into cluster trees (Farre et al., 2001;
Benkeblia et al., 2007; Krueger et al., 2009). A topological format
may also be used to facilitate the inclusion of previous results or
prior knowledge (Krueger et al., 2011). This can greatly aid in data
interpretation, as the integration of enzyme localization or path-
way properties can lead to new knowledge and facilitate hypotheses
generation.

NON-AQUEOUS FRACTIONATION – A SIMULATION MODEL
Due to limited availability of experimental data, a simulation
model was developed in order to study the influence of parameters

on the compartmental separation and the estimation of compart-
mental abundances from NAF gradient data. To approximate the
distribution of cellular constituents, such as compartment-specific
markers or metabolites, we used random sampling from a trun-
cated normal distribution, defined by the mean and SD within
an interval ranging from 0 to 30 units. This choice was primar-
ily motivated by four reasons: First, we used the abovementioned
interval as a NAF gradient can comprise up to 30 mL (cf. Krueger
et al., 2011) and therefore numerical parameters can be compared
and interpreted in the context of existing experimental gradients.
Secondly, by using the mean, simulated distributions can be easily
placed at any position in the virtual gradient. Thirdly, by increasing
the SD we can transform a cellular constituent from being highly
enriched to being approximately equally distributed throughout
the gradient. Finally, the effects produced through modifying the
mean and SD are simple to understand as they are common
parameters used to describe experimental results.

A model to illustrate the influence of distribution parameters
on a virtual NAF gradient with four resolved compartments is
shown as Figure 2, while a model for five compartments can
be found as Figure A1 in Appendix. In experimental data, the
two terminal distributions would correspond to compartmental
distributions observed for plastids and the vacuole in plant stud-
ies (Krueger et al., 2011), while the non-enriched compartment
with approximately equal fraction abundances can be consid-
ered as “cytosol” (Figure 2A, Figure A1A in Appendix). Whereas
the exact characteristics of the distributions are shown as line
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FIGURE 2 | Simplified scheme of the four-compartmental simulation
model. (A) The continuous distributions are depicted by line plots for each
of the 4 compartments represented by 3 individual marker distributions. To
aid visualization the distributions are scaled to half-maximum (blue-colored
compartment) or maximum (all other) observed values. (B) The bar plots
show the mean–averaged fraction abundances including SD among

compartment-specific markers for each compartment after the continuous
distributions were discretized into 6 equally spaced fractions. The left–side
graph illustrates the effect of increasing the SD (SD = 5, ms = 0.4), while the
right-side graph shows the effect of increasing the marker spread ms
(SD = 1, ms = 1.2) compared to a standard (middle graph with SD = 1,
ms = 0.4).

plots (Figure 2A, Figure A1A in Appendix), experimentally only
the discretized distributions can be assessed, i.e., the abundance
of a cellular constituent throughout sampled gradient fractions
(Figure 2B, Figure A1B in Appendix). When the SD is increased,
the fraction abundances for the enriched compartments become
closer to the non-enriched compartment (Figure 2B, Figure A1B
in Appendix). Contrarily, increasing the marker spread by posi-
tioning markers representing the same compartment more dis-
tant from each other, the variation around the mean is increased
(Figure 2B, Figure A1B in Appendix).

To show the behavior of the BCS and the WCC in dependence
of changing SD and marker spreads, simulations were conducted
individually for virtual NAF gradients containing either 3, 4, or 5
compartments each represented by 2, 3, or 5 markers, respectively.
All combinations were tested using 2–30 fractions with 60 differ-
ent SDs and 12 marker spread values each randomly repeated 99
times (see Materials and Methods). Both the BCS and the WCC
were estimated on normalized Manhattan distances and visual-
ized (Figure 3). Figure 3A clearly shows that with increasing SDs
the BCS declines almost exponentially as the fraction abundances
of compartmental markers become more similar to each other
(Figure 2B, Figure A1B in Appendix), while the marker spread has
minimal to no effect on the BCS. Contrarily, the WCC (Figure 3B)

is influenced primarily by the marker spread, however, it is also
affected by the compartmental separation modulated using the
SD. Essentially the largest cohesion (i.e., the smallest distance) is
observed at a high marker spread when the markers representing
individual compartments are sharply focused at a specific gradient
position (right bottom corner of Figure 3B).

HOW MANY FRACTIONS ARE NECESSARY TO PRODUCE A GOOD
SEPARATION?
The answer is a trade-off between technical difficulties in gen-
erating highly reproducible gradients, the sampling of the same
amount of liquid from gradients (fractionation), how much mate-
rial is required for the down-stream analytical technologies to be
used, and the analytical workload associated with taking more
fractions. While this is truly a question of experimental con-
straints, from the computational point of view limits can be
deduced.

For this we used the simulated data generated as described
above. To quantitatively evaluate the clustering results we used
the mean–average of the average Silhouette information and the
Pearson’s matrix correlation as the NAF validity index. Figure 4
illustrates this index with respect to the BCS (modulated by the
SD of the marker) and the WCC (modulated by the marker spread)
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FIGURE 3 | (A) The between-compartment separation and (B) the
within-compartment cohesion in dependence of the SD and marker
spread. Both indices were estimated as mean–average of normalized,
percentage-scaled Manhattan distances either (A) between or (B)
within-compartmental clusters and are depicted as level plots color-coded

according to the right-sided color bars. To aid interpretation, lines have
been drawn at each 5% level. The closer the between-compartment
separation is to 100% the better the separation while the closer the
within-compartment cohesion is to 0 the tighter the compartmental
clusters.

in dependence of the number of fractions collected. The figure was
generated irrespective of the number of compartments (3–5) and
markers (2, 3, or 5) per compartment considered by taking the
mean value of the NAF validity index for different values of frac-
tions and markers. For more detailed results see Figures A2–A4
in Appendix depicting the individual results from simulations
using 3, 4, or 5 compartments each represented by 3 independent
compartmental markers.

While these figures first appear to be very complex, essentially
the closer the values are to 1 (the bluer the color) the better the
NAF validity index. Accordingly, we can conclude that the mini-
mum number of fractions (nF) necessary to be collected should
equal the number of compartments (nC) to be resolved, although
similar cluster validities are also observed at nC −1 due to the
inclusion of a non-enriched compartment (cf. Figure 2). The col-
lection of a large number of small-volume fractions can result
in the splitting of compartmental markers representing the same
compartment, especially if markers are sharply focused (SD ≈ 1)
and under increasing marker spreads. However, this can also hap-
pen when taking only a few fractions (see Figure 4, darker blue
areas at SD ≈ 1 from left to right) but is more clearly evident when
the number of fractions is increased. Finally, an increase in the
number of fractions does not increase the cluster validity overall,
i.e., there is no increase in the compartmental separation and thus
the computationally estimated resolution of the gradient remains
unchanged.

While this analysis only considers the compartmental separa-
tion, from the mathematical point of view there are constraints
to the minimum number of fractions which should be taken. The

least squares algorithms are usually applied to over-determined
system of linear equations to yield an approximated solution, as
otherwise an exact solution exists (Strang, 2009). In terms of the
experimental system this means that there should be at least one
more fraction used than the number of compartments which are to
be determined, regardless if they are enriched or not. However, as
it is desirable to apply additional constraints to the solution space
(e.g., by restricting each variable to be positive and/or that all sum
to 100%) even in cases where the number of fractions taken equals
the number of compartments considered, a least squares approach,
as opposed to an analytic solution, has to be employed as is the
case for BFA or NNLS.

Therefore and in conclusion, the minimum number of fractions
taken should ideally exceed the number of compartments. While
the upper limit seems not to be definable, collecting a large num-
ber of fractions may led to compartment splitting which could be
overcome by later combining and averaging the data from fractions
known to be split. Nonetheless, it is rather important to determine
the robustness of separation and compartmental boundaries in
order to determine the experimentally optimal number of frac-
tions and volumes to be collected. In some cases it may also be
useful to take fractions of different volumes if the system under
investigation is well defined or preliminary data with respect to
compartmental boundaries is available.

DOES THE FRACTION NUMBER INFLUENCE THE COMPARTMENTAL
ABUNDANCES?
To further address the influence of the number of fractions on the
distribution of compartmental abundances we used the previously

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Physiology/archive


Frontiers in Plant Science  |  Plant Physiology		  September 2011  | Volume 2  |  Article 55  |  127

Klie et al. Analysis of subcellular metabolomics data

FIGURE 4 |The cluster validity in dependence of the number of
collected fractions, the SD of markers, and the marker spread. While
the SD modulates the between-compartmental separation, the marker
spread modulates the within-compartmental cohesion (cf. Figure 3). The
cluster validity index, estimated as mean–average of the Silhouette
information and the Pearson’s matrix correlation, is depicted independent

of compartments (3–5) as well as markers (2, 3, or 5) per compartment
considered. The closer the value is to 1 the better the observed cluster
validity, color-coded as depicted in the right-side bar. To aid visualization
negative cluster validity values were set to 0 and contour lines were drawn
for each 0.05 unit. More detailed graphs can be found as Figures A2–A4 in
Appendix.

generated experimental data (Krueger et al., 2011). To modify the
number of fractions we averaged either the terminal neighboring
fractions 1 + 2 (plastidic enriched) and 5 + 6 (vacuolar enriched),
resulting in 4 fractions (Figure 5A), or all neighboring fractions
(1 + 2, 3 + 4, and 5 + 6) resulting in 3 fractions (Figure A5A in
Appendix).

First, we evaluated the compartmental cluster solutions which
revealed silhouette information of 0.63 ± 0.03, 0.68 ± 0.02, and
0.76 ± 0.01 and Pearson’s matrix correlations of 0.74 ± 0.01,
0.75 ± 0.01, and 0.77 ± 0.02 for 6, 4, and 3 fractions, respectively
(all as mean ± SD). Although an increase in both cluster validity
indices were observed, indicating a better cohesion of and sepa-
ration between compartments, the compartmental abundances of
the individual markers were unchanged by reducing the fractions
with, on average, 92.4 ± 8.9, 93.4 ± 7.5, and 93.3 ± 8.4% for 6, 4,
and 3 fractions, respectively (all as mean ± SD) of the expected
100%. Comparing the differences of compartmental abundances
for all metabolites based on 6 versus 4 or 3 fractions revealed
rather narrow difference distributions (Figure 5B, Figure A5B in
Appendix) independent of the observed mean values (Figure 5C,
Figure A5C in Appendix) for both the maximum and the solution

error. Using 4 fractions, 90% of all differences are within −8.7
to 10% and −6.7 to 7% for the maximum and solution error,
respectively (Figures 5B,C). Similarly, using 3 fractions, 90% of
all differences are in range from −8 to 13% and −8 to 9% for
both the maximum and the solution error (Figures A5B,C in
Appendix). While only minor effects were observed with respect to
the compartmental abundances, reducing the fractions increased
the number of sufficiently explained BFA estimates from 81.5%
(TPD ≤ 10%), to 94.4% (TPD ≤ 9.4%) and 93.1% (TPD ≤ 7.4%)
for 4 and 3 fractions, respectively. However, while this result is an
enhancement, the reduced distribution space produced by shrink-
ing the number of fractions effectively removes potential biolog-
ically meaningful intermediate distributions which are not delin-
eated by the compartment-specific markers. Therefore, potential,
yet-unresolved compartments can be overlooked. For instance,
using 6 fractions, citrate synthase, a marker considered specific
for the mitochondrial compartment (Stitt et al., 1982), has an
insufficiently explained compartmental distribution (cf. Krueger
et al., 2011). However, using 4 or 3 fractions, it is sufficiently
explained with a 40% plastidic and 60% cytosolic distribution.
Note that while the main isoform of citrate synthase is located in

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Physiology
http://www.frontiersin.org/Plant_Physiology/archive


www.frontiersin.org	 	 September 2011  | Volume 2  |  Article 55  |  128

Klie et al. Analysis of subcellular metabolomics data

FIGURE 5 | Influence of the number of collected fraction on estimated
compartmental abundances based on experimental data. (A) Bar plots
depicting the mean–averages and SDs of the three compartment-specific
markers for each of the three resolved compartments on the basis of 6 and
4 collected fractions. Neighboring terminal fractions, i.e., 1 + 2 and 5 + 6,
were averaged to obtain results for 4 fractions. (B) Combined box- and
violin plots (red lines) as well as (C) mean-difference plots showing the
difference of the maximum and solution error based on compartmental
abundances estimated using BFA for gradients comprising 6 and 4
fractions. For both, positive values indicate larger compartmental
abundances for 6 fractions while negative values depict larger abundances
for 4 fractions. The 5th and 95th percentiles are drawn as black dashed
lines. The figures show the average of three independent gradients.

mitochondria, other isoforms are known to be present within the
peroxisomes. These have been implicated in fatty acid respiration
during seedling development and senescence (Pracharoenwattana
et al., 2005; Kunz et al., 2009).

In conclusion, reducing the number of fractions only mar-
ginally influences the compartmental separation and the estima-
tion of compartmental abundances. However, it does reduce the
potential of detecting unknown, potentially fully resolved com-
partments. Therefore, increasing the number of fractions might
enhance the detection of yet unassigned subcellular distribu-
tion and potential designation of a yet-unresolved or uncon-
sidered compartment, especially if un-supervised “marker-free”
approaches are employed (cf. Krueger et al., 2011).

DOES THE MARKER CHOICE INFLUENCE THE ESTIMATED
COMPARTMENTAL ABUNDANCES?
Compartment-specific markers are central to NAF analyses as they
anchor and establish the compartmental boundaries, and are ulti-
mately used to estimate the compartmental abundances of the
measured cellular constituents. Therefore the selection of certain
cellular components as markers may influence the down-stream
analysis and validity of the resulting data. Theoretically, the use
of an unspecific marker (a marker that is shared between com-
partments or simply not localized to that compartment) would
lead to erroneous conclusions. For example, although mannosi-
dase enzyme activity has been widely used as a vacuolar marker
in previously NAF studies (Gerhardt and Heldt, 1984; Riens et al.,
1991; Winter et al., 1993; Farre et al., 2001; Benkeblia et al., 2007),
recent experimental data from Arabidopsis showed activity in the
Golgi (Strasser et al., 2006). This result questions the validity of
using this marker specifically in Arabidopsis.

The use of multiple markers designating the same compart-
ment can balance for a potential non-specificity of markers or
their measurement errors. To test the importance of this factor we
used the experimental NAF data where each of the resolved com-
partments (cytosol, plastid, and vacuole) is represented by three
compartment-specific markers. First, we estimated how strong the
compartmental abundance would be influenced by using jack-
knife approaches where we deleted a single marker, or used a
marker twice. Although there are influences with respect to the
cluster validity and BCS, for both the majority of observed values
lay in a range of ±4% (Figures A6A,B in Appendix). Further-
more, all combinations of removing a marker or considering a
marker twice do not largely influence the estimated compartmen-
tal abundances, compared to using all markers (Figures A6C,D
in Appendix). Essentially, using one marker twice (Figure A6D
in Appendix) led to very similar compartmental abundance, as
90% of all estimates were in range of −2.7 to 3% for the maxi-
mum error and −2.3 to 2.3% for the solution error. A similar, but
slightly larger bias was observed with the omission of a marker
with −5 to 5.7% for the maximum error and −4 to 4.3% for the
solution error. Interestingly, the deletion or addition of a cytosolic
marker influenced the estimates more strongly as compared to vac-
uolar or plastid-specific markers (Figures A6C,D in Appendix).
This is in agreement with previous analyses, as it has been noted
that the cytosolic compartment will cluster separately into three
sub-clusters (Krueger et al., 2011). To further illustrate the effects
of marker combinations and thus marker choice on compart-
mental abundances, we computed the compartmental abundances
for each non-redundant marker combination. In contrast to the
jackknife approaches, the distributions of differences are more het-
erogeneous. Here, 90% of the values over all marker combinations
are in a range of −16 to 21.7% for the maximum error and −13.7%
to 15.3% for the solution error (Figure 6). This illustrates that
there is a clear influence on compartmental abundance estimation
depending on the marker selected to represent a compartment.
Therefore, by using multiple markers which ideally comprise the
entire compartmental distribution space, the bias toward indi-
vidual combinations can be reduced either by averaging prior to
the estimation of compartmental abundances, or by averaging the
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FIGURE 6 | Influence of compartment-specific marker combinations
on estimated compartmental abundances based on experimental
data. Combined box- and violin plots (red lines) showing the difference of
the maximum and solution error based on compartmental abundances
estimated using BFA as mean–average difference over the three
independent gradients. While positive values indicate larger
compartmental abundances when all nine markers were used, negative
values depict larger abundances for a certain 3-marker combination. The

5th and 95th percentiles among all combinations are drawn as black
dashed lines. Marker 1–3, 4–6, and 7–9 represent the plastids, the
cytosol, and the vacuole, respectively. Plastids: 1 –
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 2 – starch, 3 –
Digalactosyldiacylglycerols (DGDGs); Cytosol: 4 – Uridine diphosphate –
glucose-pyrophosphorylase (UGPase), 5 – glyceroceramids (GlcCer), 6 –
triacylglycerides (TAGs); Vacuole: 7 – nitrate, 8 – glucosinolates, and 9 –
flavonoids.

compartmental abundances estimated using all non-redundant
combinations (cf. Krueger et al., 2011).

HOW GOOD MUST THE SEPARATION BE TO GET REASONABLE
ESTIMATES OF COMPARTMENTAL ABUNDANCES?
In order to show the influence of the BCS and the metabolite error
on compartmental abundance estimation, simulations were con-
ducted individually for virtual NAF gradients containing either
3, 4, or 5 compartments each represented by two markers with
6, 9, or 12 considered fractions, respectively, and for all 60 SDs.
The BCSs were estimated with normalized Manhattan distances
(percentage scale) and binned in steps of 5% from 5 to 75. Differ-
ences in compartmental abundances were compared for each of
the 300 gradient positions separately between the error-free and
the error-containing distribution if the TPD did not exceed 15%.
For all models and combinations of metabolite error and BCS bins,
200–1800 random estimates of compartmental abundances were
considered.

Figure 7 illustrates the compartmental error with respect to the
BCS and the cellular constituent error irrespective of the number
of compartments (3–5) and fractions (6, 9, or 12) considered by

taking the mean of the cellular constituent error for different values
of the number of compartments and fractions. For more detailed
results see Figures A7 and A8 in Appendix depicting the indi-
vidual results of the compartmental errors for the compartments
and fractions considered. As expected, the error in compartmental
abundance estimation shows a clear dependence on both variables
– the BCS and cellular constituent error (diagonal contours). Gen-
erally, the error of compartmental abundances increases rapidly
with small increases of the cellular constituent error and small
decreases of the BCS (Figures 7A,B). When considering the mean
(Figure 7A) of all errors of compartmental abundances obtained
for each binned value of BCS and cellular constituent error, both
variables seem to contribute almost equally. However when con-
sidering the magnitude in the error of compartmental abundance,
here derived by taking the 99th percentile (Figure 7B) of all com-
puted values, a stronger influence of the cellular constituent error
can be seen, illustrated as the much larger area of high errors of
compartmental abundances, indicated by the dark red shading.
This shows that the risk of obtaining high errors of compartmen-
tal abundances is more likely when the individual error of a cellular
constituent is high, rather than with a low BCS. For experimentally
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FIGURE 7 | Calculation error of compartmental abundances in
dependence of the between-compartment separation and the
metabolite error based on simulated data. The estimated error, the
discrepancies to the estimates of the error-free distributions, are
depicted as (A) mean–average and (B) 99th percentile for each
combination of between-compartment separation and metabolite error

independent of the number of compartments (3–5) and fractions (6, 9,
and 12) considered. The closer the value is to 0% the smaller the
maximum error of the compartmental abundances, color-coded as
depicted in the right-side bar. Contour lines have been drawn for each
5% error. More detailed graphs can be found as Figures A7 and A8 in
Appendix.

obtained data, this would mean that the individual measurement
accuracy of fraction abundances and the associated measurement
error influence the compartmental abundance estimation stronger
than the overall compartmental separation.

To validate this, we performed a similar analysis on the exper-
imental data (Figure 8). Similarly, the error in compartmental
abundances increased almost exponentially with the increasing
metabolite error, irrespective of either the maximum or the solu-
tion error. At the 10% metabolite error level the majority of differ-
ences in estimated compartmental abundances revealed a ∼10%
compartmental error. When the metabolite error was increased
further, the compartmental error rose rapidly to the point
where the majority of absolute values reside in the range of up
to 30%.

In conclusion, both simulated and experimental data revealed
a larger effect of the measurement error of a cellular constituent
on estimated compartmental abundances compared to the over-
all separation of compartments. To balance for these effects,
the number of technical (ideally biological) replicates could be
increased to obtain more robust compartmental estimates, thus
increasing the confidence of the estimated subcellular metabolite
distributions.

HOW ACCURATE MUST A LEAST SQUARES SOLUTION BE TO BE
CONSIDERED STATISTICALLY VALID?
The quality or the “goodness of fit” of any statistical model
describes how well a set of observed data points fit to the estimated

values the model returns. In our case this corresponds to how well
the measured fraction abundances match the fitted ones deter-
mined by BFA or NNLS. Classically, the fit quality is quantified
as the distance between the measured and estimated model data.
Here, the residual sum of squares (RSS) or the Euclidean distance
(the square-rooted RSS) is used where a small, closer to zero value
indicates a “good fit.” However, since both measures are unscaled
(unadjusted), it impedes interpretation of the fit quality. While
TPD employs a normalized Manhattan distance to map distances
on a percentage scale (Krueger et al., 2011), here we additionally
suggest the use of a normalization of the Euclidean distance (Eq.
4), which is very closely related to the distance parameter a least
squares approach tries to minimize.

Conceptually, one wants to use the discrepancy to decide
whether a cellular constituent can be partitioned with confidence
into the delineated subcellular compartments. The reason for
investigating the fit quality by any of the mentioned measures
is because a cellular constituent can display, compared to the frac-
tion abundances of the marker, intermediate fraction abundances
or a unique pattern that does not coincide with any considered
marker/compartmental pattern. Both BFA and NNLS try to derive
a predictive model assigning this cellular constituent into one
of the defined subcellular compartments by using the observed
marker distributions. Both algorithms will therefore result in a
relatively high discrepancy and thus an incorrect classification of
the cellular constituent with respect to its abundances in the con-
sidered compartments. However, in order to detect such cases,
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FIGURE 8 | Calculation error of compartmental abundances in
dependence of the metabolite error based on experimental data.
Compartmental abundances are estimated using BFA and visualized as
absolute mean–average difference over the three independent gradients.
The 95th percentile among all metabolite error levels is drawn as black
dashed lines. The light-blue solid line shows a fitted smooth curve to
illustrate the increase of the estimated compartmental error with increasing
metabolite error.

one needs to qualify or statistically quantify such a relatively high
discrepancy.

While this could be achieved by arbitrarily defining a threshold
to consider discrepancies as being acceptable, the threshold could
also be adaptively inferred by employing a topological measure.
For this purpose we use the degree of cohesion, defined by the
spatial distance of the markers to their respective compartmen-
tal centers, either between independent gradients (Krueger et al.,
2011) or within a gradient (applicable when multiple markers are
assayed). We assume that the topological space a cellular con-
stituent occupies cannot be larger than the one observed for the
resolved compartments. Therefore, if the observed discrepancy for
a cellular constituent exceeds the topological space of the compart-
ments, the marker does not encompass its compartmentalization
either due to potential transport processes or due to an uncon-
sidered compartment. By assuming normality of the cohesion,
one can express the divergence of an observed fit-discrepancy to
this topological measure by standard (z-) scores, indicating how
many SD a particular fit-discrepancy differs from the mean of
the distances as defined by the compartmental cohesion. While
negative values reflect discrepancies below the mean compart-
mental cohesion, positive values show discrepancies above the
mean. Also, by employing a standard normal distribution function
(e.g., pnorm in R), one can devise a right-tailed test to obtain p-
values to further assess the statistical significance of the measured
distributions.

BESTFIT – FURTHER DEVELOPMENTS AND CURRENT
IMPLEMENTATION
As previously mentioned (Krueger et al., 2011), for fast computa-
tion on large data sets both least squares algorithms were imple-
mented (BFA) or compiled (NNLS; Fortran 77 routine from R’s
“nnls”package; Katharine and Van Stokkum, 2010) into the BestFit
C-language command line tool (v1.1; Steinhauser et al., unpub-
lished). In order to further enhance the calculation and evaluation
of subcellular metabolite distributions from NAF data we have
restructured and added further statistical analyses routines. In the
current version (v1.2), BestFit supports the automatic calculation
of compartmental cluster statistics, such as BCS, WCC, silhouette
information, z-score estimation, and Pearson’s matrix correlation,
based on both normalized Euclidean as well as Manhattan dis-
tances. Using the −A option (if multiple markers designating the
same compartment are assayed) the user can control if the com-
partmental center or all marker combinations should be used to
compute compartmental abundances for cellular constituents. Per
default (−M option), markers are included in this analysis, i.e.,
treated as cellular constituents. To evaluate the fit quality the user
can specify the cutoff (−T option; default to “max”) adaptively
estimated either using the distance to the compartmental center
(default) or the WCC using the −W option.

We observed when using NNLS that the sum of compartmen-
tal abundances for a solution equals the sum of fitted fraction
abundances, even though the compartmental abundances do not
need to sum to 100%. Interestingly, both the sums of fitted frac-
tions and the compartmental abundances are perfectly correlated
with a coefficient of determination of R2 = 1 (data not shown).
Rescaling of the NNLS fitted fraction abundances followed by
re-calculation using NNLS bound the sum of estimated com-
partmental abundances to 100% (termed NNLSs). To compare
the difference in compartmental abundances estimated using BFA
and NNLS or NNLSs we computed the LSS using a three- or four-
compartmental model (the mitochondrial compartment was for
this purpose considered as being unambiguously resolved) on the
experimental data (Figure 9 and Figure A9 in Appendix). When 3
compartments are considered,90% of all differences (TPD ≤ 10%)
are within −1 to 0.9% and −0.8 to 0.8% for NNLSs while reveling
for NNLS a larger spread, namely from −4.7 to 2.6% and −1.4
to 2%, for the maximum and solution error, respectively, com-
pared to BFA (Figure 9). Similarly, using 4 compartments, 90%
of all differences fall in the range from −0.8 to 1.6% and −0.7 to
0.7% for both the maximum and the solution error (Figure A9 in
Appendix). As BFA uses a 1% interval to iteratively compute com-
partmental abundances, a large fraction of the observed differences
fall within this range of ± 1% or can be the result of error prop-
agation. Compared to BFA, which is limited to 5 compartments
due to run-time constrains, NNLS is applicable to more than 5
compartments and is guaranteed to find the optimal solution that
satisfies the conditions (non-negative solution). Also,using NNLSs
the compartmental estimates can be scaled. This can be advanta-
geous for some visualization formats (see below). Although there
might be more sophisticated algorithms for constrained-based LSS
to obtain non-negative values that sum up to 100%, we find it use-
ful to implement NNLSs, an iterative NNLS, where the user can
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FIGURE 9 | Diagnostic plots showing the differences in estimated
compartmental abundances using (A,B) a three-compartmental
estimation strategy based on experimental data. (A) The distributions of
observed differences in compartmental abundances are shown as box- and
violin plots (red lines). (B) The mean-difference plots depict the differences in
dependence of the averages of compartmental abundances. For all graphs

the difference in compartmental abundances between BFA and NNLS or
iterative (seed-based) NNLS (NNLSs) are visualized based on the
mean–average of compartmental abundances for the three independent
gradients. The 5th and 95th percentiles are drawn as black dashed lines. Only
values are shown if they are considered as sufficiently explained, i.e.,
TPD ≤ 10% based on the BFA solutions.

decide to choose this using −I option (default is set to 1 iteration,
i.e., NNLS).

BestFit (v1.2) is available from CSB.DB website (Steinhauser
et al., 2004) at http://csbdb.mpimp-golm.mpg.de/bestfit.html.

VISUALIZATION-AIDED INTERPRETATION OF DATA
While metabolic data has traditionally been visualized as cluster
trees and their associated heat maps, we have attempted to focus
on alternative types of visualization which can be easily overlaid or
integrated with additional knowledge in order to achieve a more
holistic overview of the data produced from NAF.

The use of PCo space, based on normalized Euclidean distances,
is an excellent method to show the localization of the markers and
associated metabolite classes or markers and compartment assign-
ments through a visually appealing and easily interpretable figure
(Figure 10). Here, the spatial spread of the markers clearly illus-
trates the heterogeneity of the considered classes across the entire
space for metabolites from primary metabolism (Figure 10A), or
the enrichment of the metabolite classes from secondary metab-
olism associated with specific compartments, such as the galac-
tolipids in the chloroplast, the flavonoids or glucosinolates in the
vacuole, or the triacylglycerides in the cytosol (Figure 10B). Using
PCo space, the specificity for the metabolites assigned into a certain
compartment or even between the compartments (for details on
assignments see Krueger et al., 2011) can also be easily visualized
(Figures 10C,D). Theoretically there is no limit to the number
of compartments which may thus be shown. As this method

greatly reduces the complexity of the data, the aid in biological
interpretations is greatly increased.

However, the data simplification for visualization using PCo
space does not show the absolute compartmental enrichment or
to what extent metabolites or classes of metabolites are shared
between the analyzed compartments. Therefore the use of tri-
angle plots is another useful way to present NAF derived data
(Figure 11). They present the percent distribution of a certain
metabolite, or group of metabolites shared between the differ-
ent compartments, in an easily interpretable figure. In essence,
this is the graphical equivalent of a tabulation of the data, as the
estimated fraction amounts can be directly determined from the
figure.

For example, it is more obvious in a triangle plot that amines
are closer associated to the chloroplast and cytosol than to the
vacuole, that carbohydrates are more closely associated with the
cytosol and vacuole, and that organic acids are more associated to
the cytosol (Figure 11A). Just by eye, additional important infor-
mation can be extracted. For example, only very few metabolites
are located in the clp|cyt|vac space within the triangle plot, indi-
cating that only few metabolites are equally shared between all
three compartments (Figures 11A–D) and only a minor amount of
metabolites show a distinct enrichment within the vacuole and the
chloroplast, without being present in the cytosol. This is even more
pronounced when depicted for all metabolites (Figure 11D). This
is most likely due to the cytosol being the transit route between
the other two compartments. One caveat for use of the triangle
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FIGURE 10 |Topological maps of (A,C) primary metabolites as well as
(B,D) secondary metabolites and lipids based on experimental data in
proximity to resolved compartments. All graphs depict classification results
visualized in principal coordinates (PCo) space on the basis of averaged

normalized Euclidean distances among metabolites for the three independent
gradients. (A,B) Chemical superclass assignments were overlaid on
structurally identified metabolites and (C,D) k-medoids cluster assignments
(cf. Krueger et al., 2011) were overlaid on all metabolites.

plot as a visualization tool is that the sum of the compartmental
abundances must total 100%. Furthermore, it is only feasible for a
three-compartmental separation.

CAVEATS AND BENEFITS OF NON-AQUEOUS FRACTIONATION
Although several different approaches exist to study metabolite
composition on the subcellular level,none can be referred to as“the
method of choice”as every method has specific advantages and dis-
advantages. The best method to use depends on the experimental
question.

First, the caveats: NAF is a generally labor intensive process
and requires technical precision to produce consistent gradients.
Secondly, analysis of the data from NAF gradients is critically
dependent on the use of compartment-specific markers. The
more markers used to define the compartmental space, and the
more specific the markers are for a compartment, regardless of
their biochemical nature, the better the resulting designation of

the compartments. Until suitable markers are determined for
the mitochondria or other unconsidered compartments, such
as the peroxisome, or organelle sub-compartments, these struc-
tures must be considered unresolved. Finally, while the absolute
purity of the isolated compartments in NAF gradients is not
as tight as seen with protoplast fractionation or the perfusion
technique, using statistical tests (as we have shown in this manu-
script), high confidence data can clearly be produced from NAF
gradients.

As for the benefits, the main one is that metabolism is effec-
tively stopped immediately after harvesting. This prevents metabo-
lite conversion or translocation, unlike protoplast fractionation
(Robinson and Walker, 1979; Wirtz et al., 1980; Lilley et al., 1982;
Stitt et al., 1989) and intracellular perfusion techniques (Takeshige
and Tazawa, 1989).

Non-aqueous fractionation also produces an enrichment
of the compartmental constituents, allowing for the potential
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FIGURE 11 |Triangle plots of (A,C) primary metabolites as well as (B,D)
secondary metabolites and lipids based on estimated compartmental
abundances for the three resolved compartments – plastids, the cytosol,

and the vacuole. (A,B) Chemical superclass assignments were overlaid on
structurally identified metabolites and (C,D) k-medoids cluster assignments
(cf. Krueger et al., 2011) were overlaid on all metabolites.

detection of low-abundant compounds, such as hormones. As
well, the relatively large amount of material used permits mul-
tiple down-stream analysis techniques to be applied, based on
the number and volume of fractions taken. While we have rou-
tinely used GC/and LC/MS – based metabolomic approaches,
this can easily be expanded toward the measurements of enzyme
activities (Gibon et al., 2004; Steinhauser et al., 2010), proteomic-
based technologies (Giavalisco et al., 2006), or to NMR (Weise
et al., 2004). In the current age of systems biology the combi-
nation of comprehensive Omics technologies with classical NAF

and modern computational biology approaches can dramati-
cally increases the knowledge about the spatial and also temporal
changes of metabolism on the subcellular level.

As NAF has been generally applied to whole organs or tissues,
there has also been a concern of the contribution of the differ-
ent cell types to the detected metabolite pools. As the Arabidopsis
leaf is composed mainly of mesophyll cells, it can be assumed that
these cells are the major contributor to the observed metabolite
pool sizes. However, as shown previously, with a comprehen-
sive enough or even specific analysis metabolites known to be
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spatially separated in different cell types can be localized to their
experimentally proven compartments (Krueger et al., 2011).

Interestingly, because NAF separates not only intact organelles
but also fragments of organelles, it might be also possible that iden-
tification of sub-organelle compartments may be achievable, such
as the thylakoids from the stroma in chloroplasts, or dissecting the
sub-compartments present in the plant vacuole (Paris et al., 1996),
however this would require specific markers to delineate these
compartments. For example, using NAF Riewe et al. (2008) could
demonstrate that the apoplast of potato tuber is similarly, but not
identically distributed as the vacuole in potato tubers. For Ara-
bidopsis leaves, unassigned subcellular compartments could thus

far only be identified by metabolite distributions that could not
be explained by the three compartment-specific markers, strongly
indicating the presence of additional subcellular compartments
(Krueger et al., 2011).
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APPENDIX

FIGURE A1 | Simplified scheme of the five-compartmental simulation
model. (A) The continuous distributions are depicted by line plots for each
of the 5 compartments represented by 3 individual marker distributions. To
aid visualization the distributions are scaled to half-maximum (blue-colored
compartment) or maximum (all other) observed values. (B) The bar plots
show the mean–averaged fraction abundances including SD among

compartment-specific markers for each compartment after the continuous
distributions were discretized into 6 equally spaced fractions. The left–side
graph illustrates the effect of increasing the SD (SD = 5, ms = 0.4), while the
right-side graph shows the effect of increasing the marker spread ms
(SD = 1, ms = 1.2) compared to a standard (middle graph with SD = 1,
ms = 0.4).
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FIGURE A2 |The cluster validity in dependence of the number
of collected fractions, the SD of markers, and the marker
spread for the three-compartmental model. While the SD
modulates the between-compartmental separation, the marker
spread modulates the within-compartmental cohesion (cf. Figure
3). The cluster validity index estimated as mean–average of the

Silhouette information and the Pearson’s matrix correlation is
depicted for 3 compartments each represented by 3 markers. The
closer the value is to 1 the better the observed cluster validity,
color-coded as depicted in the right-side bar. To aid visualization
negative cluster validity values were set to 0 and contour lines
were drawn for each 0.05 unit.
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FIGURE A3 |The cluster validity in dependence of the number of collected fractions, the SD of markers, and the marker spread for the
four-compartmental model. The cluster validity index is depicted for 4 compartments each represented by 3 markers. For further details see Figure A2.
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FIGURE A4 |The cluster validity in dependence of the number of collected fractions, the SD of markers, and the marker spread for the
five-compartmental model. The cluster validity index is depicted for 5 compartments each represented by 3 markers. For further details see Figure A2.
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FIGURE A5 | Influence of the number of collected fraction on estimated
compartmental abundances based on experimental data. (A) Bar plots
depicting the mean–averages and SDs of the three compartment-specific
markers for each of the three resolved compartments on the basis of 6 and
3 collected fractions. Neighboring fractions, i.e., 1 + 2, 3 + 4, and 5 + 6,
were averaged to obtain results for 3 fractions. (B) Combined box- and
violin plots (red lines) as well as (C) mean-difference plots showing the
difference of the maximum and solution error based on compartmental
abundances estimated using BFA for gradients comprising 6 and 3
fractions. For both, positive values indicate larger compartmental
abundances for 6 fractions while negative values depict larger abundances
for 3 fractions. The 5th and 95th percentiles are drawn as black dashed
lines. The figures show the average of three independent gradients.
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FIGURE A6 | Influence of compartment-specific marker
combinations on (A) cluster validity, (B) between-compartment
separation, and (C,D) estimated compartmental abundances based
on experimental data. (A) The cluster validity index, estimated as
mean–average of the Silhouette information and the Pearson’s matrix
correlation, and (B) the between-compartment separation are depicted
as percentage difference from the cluster solution using all nine
compartmental markers. The values are provided for all three
independent gradients (1–3) and as mean–average (∅) by deleting one
marker (−; jackknife−) or taking one marker twice (+; jackknife+). (C,D)

Combined box- and violin plots (red lines) showing the difference of the
maximum and solution error based on compartmental abundances
estimated using BFA when (C) deleting one marker or (D) considering
one marker twice. All estimates are based on the difference observed
after mean–average of the three independent gradients. Red squares in
(C) depict the difference in the marker that was deleted. The 5th and
95th percentiles are drawn as black dashed lines. For both, positive
values indicate larger compartmental abundances when all nine markers
were used while negative values depict larger abundances when a
marker was deleted or considered twice.
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FIGURE A7 | Mean–averaged calculation error of compartmental
abundances in dependence of the between-compartment
separation and the metabolite error based on simulated data. The
estimated maximum error is depicted as mean–average for each
combination of between-compartment separation and metabolite error

in dependence of the number of compartments (3–5) and number of
fraction (6, 9, and 12) considered. The closer the value is to 0% the
smaller the error of the compartmental abundances (estimated using
NNLS), color-coded as depicted in the right-side bar. Contour lines are
drawn for each 10% error.
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FIGURE A8 | Percentile (99%) calculation error of compartmental
abundances in dependence of the between-compartment separation
and the metabolite error based on simulated data. The error is depicted as

99th percentile for each combination of between-compartment separation
and metabolite error in dependence of the number of compartments (3–5) and
number of fraction (6, 9, and 12) considered. For further details see Figure A7.
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FIGURE A9 | Diagnostic plots showing the differences in estimated
compartmental abundances using (A,B) a three- and (C,D) a
four-compartmental estimation strategy based on experimental data.
(A,C) The distributions of observed differences in compartmental abundances
are shown as box- and violin plots (red lines). (B,D) The mean-difference plots
depict the differences in dependence of the averages of compartmental

abundances. For all graphs the difference in compartmental abundances
between BFA and NNLS or iterative (seed-based) (NNLSs) are visualized
based on the mean–average of compartmental abundances for the three
independent gradients. The 5th and 95th percentiles are drawn as black
dashed lines. All values are shown, regardless if they are considered as
sufficiently explained or not.
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Metabolic flux is a fundamental property of living organisms. In recent years, methods for
measuring metabolic flux in plants on a network scale have evolved further. One major
challenge in studying flux in plants is the complexity of the plant’s metabolism. In partic-
ular, in the presence of parallel pathways in multiple cellular compartments, the core of
plant central metabolism constitutes a complex network. Hence, a common problem with
the reliability of the contemporary results of 13C-Metabolic Flux Analysis in plants is the
substantial reduction in complexity that must be included in the simulated networks; this
omission partly is due to limitations in computational simulations. Here, I discuss recent
emerging strategies that will better address these shortcomings.

Keywords: 13C-metabolic flux analysis, primary metabolism, flux balance analysis, carbon partitioning, constraint-
based model

INTRODUCTION
Isotopic tracers have different but important uses in metabolic
research. Among the various approaches to stoichiometrical mod-
eling of cell metabolism (Llaneras and Pico, 2008), 13C-Metabolic
Flux Analysis (13C-MFA) is a method that combines a knowl-
edge of cell metabolism with 13C-tracer experiments to analyze
the in vivo flux distribution in the network of central cellu-
lar primary metabolism. It affords us a quantitative integrated
view of core metabolism (Koschutzki et al., 2010) that unrav-
els the in vivo function of biochemical pathways under different
physiological conditions, or reveals the effect of manipulation by
transgenic approaches. In plants, 13C-MFA mostly is applied to
cultures of cells or tissue, growing heterotrophically or photo-
heterotrophically on 13C-labeled substrates. The increasing num-
ber of studies on different species over the last 10- to 15-years
documents the development of researches with 13C-MFA in plants.
Maize root tips, detached from germinating seeds, were first used
as a model to study energy metabolism in non-photosynthetic
tissues (Dieuaide-Noubhani et al., 1995; Alonso et al., 2005,
2007b,c). Other studies used the hairy root cultures of Catha-
ranthus roseus, the Madagascar periwinkle (Sriram et al., 2007),
and cell-suspension cultures of tomato or Arabidopsis thaliana
(Rontein et al., 2002; Williams et al., 2008; Masakapalli et al.,
2010). Various studies focused on the distribution of flux in cen-
tral metabolism in the developing seeds and embryos of rapeseed
and Arabidopsis (Schwender and Ohlrogge, 2002; Schwender et al.,
2003, 2004a, 2006; Junker et al., 2007; Lonien and Schwender,
2009), soybean (Sriram et al., 2004; Iyer et al., 2008; Allen et al.,
2009b), sunflower (Alonso et al., 2007a), and in developing maize
endosperm or embryos (Ettenhuber et al., 2005; Spielbauer et al.,
2006; Alonso et al., 2010, 2011). Several studies also began to assess
the effect of physiological- or genotypical-perturbations of central
metabolism (Alonso et al., 2007b; Junker et al., 2007; Iyer et al.,
2008; Williams et al., 2008; Lonien and Schwender, 2009). Recent
studies began to explore the synergy between plant 13C-MFA and

the more predictive modeling approach of flux balance analysis
(FBA; Williams et al., 2010; Hay and Schwender, 2011a,b).

A great deal of biological knowledge about an organism is
needed to construct a model of its biochemical network. Even
in the post-genomic age, the definition of metabolic networks is
not straightforward (Sweetlove et al., 2008). Yet the results of the
analytic process critically depend upon having a realistic network
(van Winden et al., 2001a; Schwender et al., 2004b; Masakapalli
et al., 2010). Due to the practices of computational analysis, the
typical scale of a 13C-MFA network (Table 1) results from tailoring
to a smaller size the detailed topology inferred from literature, e.g.,
by lumping the metabolite pools present in different subcellular
compartments.

This paper offers some insights into the experimental- and
computational-modeling practices of 13C-MFA to highlight the
typical assumptions built into such models, and to discuss how
their constructions and their general reliability can be improved.
I discuss modeling related to applying 13CFLUX (Wiechert et al.,
2001; www.13cflux.net), a software used by many groups in the
field. The paper is not intended to be a comprehensive review of
all recent work, but rather, to give my personal perspective based
on the practice of experimental- and computational- modeling of
plant central metabolism.

PRINCIPLE OF STEADY-STATE 13C-MFA
Several recent detailed reviews summarize experimental proce-
dures, the modeling process, as well as discuss important bio-
logical insights that have resulted from plant 13C-MFA stud-
ies, e.g., Libourel and Shachar-Hill (2008), Schwender (2008),
Kruger and Ratcliffe (2009), Allen et al. (2009a), and Schwen-
der (2009). Figure 1 illustrates a general experimental workflow.
Zamboni et al. (2009) gave a very detailed and useful descrip-
tion of 13C-MFA, including a tutorial for 13CFLUX. In short,
an organism is grown on a minimal culture medium with well-
defined composition of organic- and inorganic-substrates. While
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Table 1 | Characteristics of example networks used in 13C-MFA and FBA of higher plants.

E. coli 1 B. napus2 A. thaliana3 B. napus4 A. thaliana5 A. thaliana6

Modeling approach 13C-MFA 13C-MFA 13C-MFA FBA FBA FBA

Reconstruction Bibliomic,

lumped

Bibliomic,

lumped

Bibliomic,

lumped

Bibliomic,

large-scale

Genome-scale Genome-scale

Network type Carbon label

network

Carbon label

network

Carbon label

network

Stoichiometric

network

Stoichiometric

network

Stoichiometric

network

Intracellular compartments 1 3 3 9 4

Metabolic pools 37 8610 82 376 1253 1748

Reactions 68 14610 125 572 1406 1567

Uptake/exchange reactions 7 2 4 4 14 6 18

Biomass drain fluxes8 10 15 19 41 36 47

Total carbon positions in network 186 35410 387 − − −
Full network simulation

(cumomers)9
3183 197410 4045 − − −

Reduced network simulation

(EMU’s)9
438 67210 514 − − −

MS measurement

groups/number of total

signals

35/193 37/165 29/160

Data were obtained from different 13C-MFA models available in executable 13CFLUX model format, with consideration of outputs of the function “Benchmark” in

13CFLUX2 (re-implementation of 13CFLUX, www.13cflux.net). For FBA models, data were obtained from respective publications. 1Zamboni et al. (2009). 2Schwender

et al. (2006). 3Lonien and Schwender (2009). 4Hay and Schwender (2011a,b). 5Poolman et al. (2009). 6de Oliveira Dal’Molin et al. (2010a). 7Includes inorganic uptakes,

CO2 and O2 exchanges, or light flux. 8Number of metabolites that are accumulated in biomass. 9The number of labeling state variables (cumomers or EMU’s) largely

determines computational speed. 10The network size actually reflects the presence of three metabolic networks simulated simultaneously to evaluate data from three

experiments with different 13C-tracers.

a 13C-labeled carbon source (e.g., [1-13C]glucose) is being metab-
olized, 12C- and 13C-atoms are distributed throughout the organ-
isms’ metabolic network. The fate of a 13C-labeled carbon posi-
tion of the carbon source, or of pairs of adjacent 13C-atoms
(13C–13C bond label) is traced through the network by detect-
ing the labeling signatures of the intermediary metabolites by the
techniques of mass spectrometry (MS; Dauner and Sauer, 2000;
Schwender and Ohlrogge, 2002) or nuclear magnetic resonance
(NMR; Dieuaide-Noubhani et al., 1995; Szyperski, 1995). For the
widely used approach of metabolic- and isotopic-stationary 13C-
MFA, the essential prerequisite is that the labeling state of each
metabolite attains a steady-state before the cells are harvested,
the metabolites extracted, and the labeling signatures analyzed
(Wiechert, 2001). Thus, information is gained about intracellular
fluxes for alternative pathways converging to the same metabolite
(Szyperski, 1995; van Winden et al., 2001b), meaning that differ-
ent labeling signatures are generated and mixed in one metabolite
at the convergent node. For example, oxaloacetate (OxA) may be
labeled differentially depending on whether it is formed by the
carboxylation of phosphoenol pyruvate, or from α-ketoglutarate
via the reactions of the tricarboxylic acid (TCA) cycle (Figure 2B).
Whether we can evaluate the flux ratio at the OxA node rests upon
the particular 13C-substrate label used in the culture. Other nodes
of this kind are pyruvate, α-ketoglutarate, and 3-phosphoglyceric
acid. Often the labeling pattern in these intermediates is not
measured directly, but accessed indirectly through their anabolic
products (Szyperski, 1995, 1998). Asp, for example, accumulates in

FIGURE 1 | Basic workflow in 13C-MFA. For details see text.

protein and represents the labeling signature in OxA (Figure 2A).
For studying plant flux, the analyses of protein-bound amino
acids by NMR, or by gas chromatography/MS (GC/MS) meth-
ods, have emerged as standard practices (Allen and Ratcliffe,
2009).
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FIGURE 2 | Difference in network topology between large-scale
stoichiometric models and the models used in 13C-MFA. Two
representations are shown of a sub-network representing the TCA cycle and
some associated reactions in B. napus developing embryos. Indices c, p, and
m indicate whether the localization of a metabolite is specified to be cytosol,
plastid, or mitochondrium, respectively. Metabolites for which 13C-labeling
signatures are measured are boxed. (A) Representation of the network in
bna572 (Hay and Schwender, 2011a). Arrows depict individual reactions that
are formulated in bna572 by a complete reaction stoichiometry. To make the
topology understandable, in most cases only one substrate to product
transition is shown for each reaction. Thick arrows indicate that two pools are
inter-converted by multiple reactions. Sets of metabolite pools that are

lumped in the 13C-MFA model are highlighted in gray. (B) Representation of
the network for a related 13C-MFA model (Schwender et al., 2006) showing
the carbon backbones of the metabolites. Biochemical reactions are carbon
transitions as connecting arrows (double-headed arrows for reversible
reactions). For succinate (Succ), the symmetric randomization of carbon
atoms is indicated that is accomplished in the model by two reactions (e.g.,
KDHa: alKG(#ABCDE) > Succ(#ABCD) + CO2(#E); KDHb: alKG(#ABCDE) > Succ(#DCBA) +
CO2(#E)) occurring at the same rate. Metabolites with measured 13C-label
signatures are boxed. Metabolite abbreviations: AcCoA, acetyl coenzyme A;
alKG, α-ketoglutarate; Cit, citrate; Fum, fumarate; Ici, isocitrate; Mal, malate;
OxA, oxaloacetate; Pyr, pyruvate; Succ, succinate; SuccCoA, succinyl
coenzymeA.

DEFINING THE MODEL BOUNDARIES
A 13C-MFA experiment allows to explore the distribution of
in vivo flux under a particular physiological condition. For all
organic substrates present in the medium, such as sucrose or glu-
tamine, their uptake reactions must be defined. Furthermore, by
quantitatively breaking down the cell components, we can identify
the most abundant compounds to result from biosynthetic fluxes
(Figure 1). This approach defines several biomass drain fluxes that
are responsible for cell growth. Typically neglected are the growth
demands for synthesizing a multitude of low-abundance free inter-
mediary metabolites, as well as enzyme cofactors, pigments, and
phytohormones. The inclusion of such minor compounds into
the metabolic network would not significantly affect the flux dis-
tribution in central metabolism. Finally, measurements of growth
kinetics can serve to scale the model fluxes relative to a specific
growth rate.

ENCODING BIOCHEMICAL REACTIONS
In 13C-MFA all reaction stoichiometries must be augmented by
carbon transitions. Any particular biochemical reaction may be
formulated as a set of carbon-atom transitions, defining how each
one moves between the main substrates and products. For exam-
ple, a textual notation following the style of Wiechert and de Graaf
(1996) for the carboxylation of phosphoenol pyruvate (PEP) is

PEP(# ABC) + CO2(#a) > oxaloacetate(# ABCa)

with A, B, and C respectively denoting the carbons one, two, and
three of PEP being converted into carbons one, two, and three of

OxA. The carbon chain #ABC joins with #a (CO2), becoming
carbon four of OxA (Figure 2B). Co-substrates, such as ATP,
phosphate, or H2O are not considered; hence, both PEP carboxy-
lase (EC 4.1.1.31) and PEP carboxykinase (EC 4.1.1.32) would be
encoded by the above equation. In addition to carbon transitions,
we must decide if the reaction is a unidirectional- or bidirectional-
one. Several plant models define the above reaction as unidirec-
tional, assuming it to be PEP carboxylase, which reportedly is
unidirectional. Such reactions with very large standard enthalpy
can safely be assumed to be unidirectional in any organism under
any condition. Yet, for reactions with smaller standard enthalpy
a highly reliable definition of a reaction’s directionality would
require knowledge of organism- or tissue-specific in vivo concen-
trations of all enzyme substrates (Heinrich and Schuster, 1996).

ESSENTIAL COMPUTATIONAL ASPECTS OF 13C-MFA
Based on the definition of all reactions in the network outlined
above, the modeling framework 13CFLUX (Wiechert et al., 2001)
automatically generates the necessary equation systems to sim-
ulate the distribution of the 13C-label in the network. Labeling
state variables can be encoded as the relative abundance of iso-
tope isomers (isotopomers; Schmidt et al., 1997). Accordingly, in
the above example, PEP would be represented by the fractional
abundances of the eight isotopomer species #000, #100, #010,
#001, #110, #011, #101, and #111 (with “1” denoting 13C, and “0”
denoting 12C). Recently, the efficiency of computations increased,
based on derived concepts like cumulated isotopomers (cumomers;
Wiechert, 2001), bond isomers (bondomers; van Winden et al.,
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2002; Sriram et al., 2007), and elementary metabolic units (EMUs;
Antoniewicz et al., 2007). The network examples in Table 1 range
between about 2000- and 4000-simulated cumomer species, while
the EMU approach reduces by several-fold the number of label-
ing state variables (Table 1); in future, this should support the
simulation of much larger networks.

The goal of the computational analysis is to determine the
unknown fluxes that best explain the experimental data. While
various studies can differ considerably in their details, a general
outline is given here. To determine the fluxes in the system, we use
a search algorithm (iterative least-squares fitting procedure). Start-
ing from an initial guess, a set of flux values is sought wherein the
fluxes and labeling signatures predicted by the model are the closest
to the experimentally determined flux and labeling measurements.
Various studies repeated this optimization process between about
200- and 1000-times (Allen et al., 2009b; Lonien and Schwender,
2009; Masakapalli et al., 2010) to assure an adequate exploration
of the possible existence of alternative solutions. In addition, the
search algorithm might converge repeatedly to flux values that rep-
resent only a local optimum. The more often the search is done, the
more confident can the modeler be that the global optimum solu-
tion is uncovered. For the network definition process discussed
below, it is important to note that the required computation time
per optimization run increases with the network’s size and com-
plexity, as does the computational effort necessary to analyze a
solution space of increasing complexity (alternative optima). For
modeling four genotypes (model variants) of a larger network
(Lonien and Schwender, 2009), access to cluster computing has
proven indispensable.

Finally, an important part of computational analysis is to deter-
mine the statistical confidence in the obtained flux values (statis-
tical analysis). Flux values that are not obtained consistently by
multiple optimizations and have large statistical uncertainty are
called “not resolved.” Additionally, to assess how strong is the
foundation of the flux results in the experimental data, we can
determine in a sensitivity analysis how the values for optimal flux
depend on the label measurements and other model parameters.
By further considering the choice of substrate labeling, experi-
ments can be optimized to resolve particular fluxes of interest
(experimental design; Libourel et al., 2007).

NETWORK DEFINITION AND VALIDATION IN 13C-MFA
The core of a formulated network in 13C-MFA typically consists
of the reactions in glycolysis, the pentose-phosphate pathway and
Calvin cycle, the TCA cycle, and in anaplerosis. This formulation
could be based on a consensus from the biochemical literature
on the plant’s central metabolic pathways. For example, while
the presence of mitochondrial- and plastidic-isoforms of pyruvate
dehydrogenase in higher plants is well established (Tovar-Méndez
et al., 2003), including a cytosolic isoform in a model would be
unrealistic unless there was good evidence from the particular
plant being studied. Beyond a consensus, experimental evidence
in the literature or databases about a particular plant species and
cell type typically also is considered.

A key to resolving fluxes of pathways organized in parallel in
different compartments is to obtain compartment-specific label-
ing information. For example, Val, Leu, and Ile are formed from

pyruvate in the plastid, i.e., their carbon chains store label informa-
tion of plastidic pyruvate (Singh and Shaner, 1995). Furthermore,
protein-bound Asp, Ala, and Glu, respectively, are assumed to
represent cytosolic oxaloacetate, pyruvate, and α-ketoglutarate,
provided that the following two assumptions are valid: (1) Asp,
Ala, and Glu in the cytosol are isotopically equilibrated with their
respective corresponding α-ketocarboxylic acids due to the high
activity of the reversible aminotransferases, and, (2) Most of the
analyzed protein is synthesized from cytosolic amino acids, i.e.,
in the analyzed biomass only very small fractions of proteins
originated from plastidic or mitochondrial protein synthesis.

In 13C-MFA models, the intrinsic complexity of the meta-
bolic network often is reduced extensively by lumping metabolic
pools (van Winden et al., 2001b), as demonstrated for the highly
connected sub-network of the TCA cycle in B. napus (Figure 2).
Pools of OxA and malate (Mal), localized in the cytosol and
mitochondria (Figure 2A), are lumped into one pool (Oxa/Mal,
Figure 2B). This combination was justified mainly by observations
made in labeling signatures in Asp, derived from storage protein
(Schwender et al., 2006). Symmetries in the labeling pattern sug-
gested that OxA, after its derivation from the carboxylation of
PEP in the cytosol, undergoes a randomization, attributed to the
symmetry in succinate (Succ) and fumarate (Fum; Figure 2B).
Therefore, the equilibration of the carbon-labeling signatures
of the C-4 carboxylic acids OxA, Mal, Succ, and Fum suppos-
edly reflects the large fluxes that inter-convert those pools within
cytosol and mitochondria, and across the mitochondrial mem-
brane (Figure 2A). Therefore, for the 13C-MFA model, the com-
plexity of the C-4 carboxylic acids inter-conversions was reduced
by defining two lumped pools, i.e., OxA/Mal and Succ/Fum, and
condensing the various reversible inter-conversions (Figure 2A)
into one reversible reaction (vFM, Figure 2B). The consequence
of this network reduction is that the net and exchange flux of
vFM can be determined with good precision, although the parallel
reactions in the cytosol and mitochondria cannot be resolved.

Typically, the modeling process also considers whether adding
or removing particular reactions in an existing model might gener-
ate a model that better fits the labeling measurements (Schwender
et al., 2006; Williams et al., 2008; Lonien and Schwender, 2009;
Masakapalli et al., 2010). For example, the isocitrate dehydroge-
nase reaction is often considered unidirectional from citrate to
α-ketoglutarate. Yet, in Brassica napus (rapeseed) and soy embryos,
the labeling pattern in citrate is explained only if the model also
allows for conversion of α-ketoglutarate back to citrate (Schwender
et al., 2006; Allen et al., 2009b). This finding showed that, in con-
trast to the common assumption in the literature, the isocitrate
dehydrogenase reaction (Figure 2B) must be reversible in vivo.
Other observations on labeling signatures in B. napus justified the
assumption that the conversions of PEP to OxA, or PEP to Pyr are
in vivo irreversible (Schwender et al., 2006).

In conclusion, the topology of published 13C-MFA networks
often reflects several assumptions and circumstantial experimental
evidence used to justify using lumped networks. Often the under-
lying unreduced (large-scale) network, and the reduction process
are not documented fully and transparently. Lumped metabolic
models might depend in part on intuition, and only somewhat
result from a transparent process to reduce network complexity.
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Yet, in 13C-MFA, the resulting values for flux and their interpreta-
tion critically depend upon the network’s topology (van Winden
et al., 2001a). In addition, once flux results are obtained, project-
ing the lumped metabolic models on to large-scale models involves
substantial ambiguity. This means that mapping fluxes to pathways
from pathway databases is problematic.

Generally, more organized, transparent, and reproducible
workflows might improve model reconstruction; this is a major
topic in other fields of biological computational research (Dal-
man et al., 2010; Goecks et al., 2010; Mesirov, 2010). With this in
mind, we can employ some recently published genome-scale plant
metabolic models used for FBA (Table 1; Poolman et al., 2009; de
Oliveira Dal’Molin et al., 2010a,b; Williams et al., 2010; Saha et al.,
2011) as a reference for a more unbiased and more clearly defined
network reconstruction in 13C-MFA. Yet, although the genome-
scale networks claim to be unbiased representations of the whole
genome (Covert et al., 2001), they suffer from incompleteness and
from the limited accuracy of gene annotation; certainly, for eukary-
otes (plants) they reflect the very limited availability and reliability
of predictions of the subcellular localization of the gene products
(Poolman et al., 2006; Sweetlove et al., 2008). A particular prob-
lem arising in deriving compartmentalized networks is that many
of the intracellular transporters functionally required remain
unidentified and uncharacterized. Also, there is the ambiguous
affinity of many of the known transporters to different substrates
of similar structure (Linka and Weber, 2010). Furthermore, if a
whole plant-genome is the template for network reconstruction,
the result must be a generalized network rather than a network
specific for a certain cell type. In addition, despite the recent
comprehensive atom mapping of an E. coli genome-scale model
(Ravikirthi et al., 2011), the carbon transitions in such large plant
networks cannot yet be straightforwardly derived from databases.

Consequently, deriving reliable networks from plant-genome
databases should require an enormous amount of manual cura-
tion. Alternatively, more useful may be the well- documented
“bottom-up” reconstructions of large-scale plant models based
on published biochemical- and tissue-specific-evidence (Table 1;
Grafahrend-Belau et al., 2009; Hay and Schwender, 2011a,b).
These models might be developed into large-scale 13C-MFA mod-
els. While current 13C-MFA models encompass between ∼50 and
100 reactions (Table 1), Suthers et al. (2007, 2010) modeled a large-
scale E. coli network with 238 reactions. Recent advances in the
mathematical formulation of isotope models, like the simulation
of EMU support the representation of such networks with substan-
tially less computation time than presently required (Antoniewicz
et al., 2007). If large-scale plant 13C-MFA models are to be sim-
ulated, certain aspects must be dealt with as detailed for the E.
coli large-scale 13C-MFA model (Suthers et al., 2007). No single
optimal flux solution is obtained, and a complex analysis of the
solution space is necessary, implying that, for many fluxes, a range
of optimum values will be obtained rather than a discrete one. This
problem can be attributed largely to parallel pathways that produce
redundant labeling patterns and cannot be resolved. Some redun-
dant solutions involving parallel pathways can contain substrate
cycles that expectedly are of little biological relevance; thus Suthers
et al. (2007) suggested a multi-step reduction in network size. They
verified that each time metabolic pools are merged or a parallel

pathway is removed, the model fit is not worsened, i.e., simplifying
the model does not introduce bias. This kind of approach could
replace the more intuitive “classical” model definition of lumped
13C-MFA networks.

A further improvement of the definition of large-scale meta-
bolic networks could lie in using quantitative analysis of the tran-
scriptome by deep-sequencing technologies (RNA-seq;Wang et al.,
2009). This technology requires having a genome sequence but
should assure a more precise definition about which gene prod-
ucts are present in a particular cell type under specific conditions.
The definition of central core metabolism would be improved, in
particular since the subcellular localization of core metabolism
enzymes can differ between cell types or species. For example,
phosphoglyceromutase is only present in plastids of certain cell
types (Stitt and ap Rees, 1979). The subcellular localization of
ADP-Glucose Pyrophosphorylase differs between gramineous and
non-gramineous species (Beckles et al., 2001).

CONCLUSION
In plant-specific 13C-MFA studies published to date lumped net-
work topologies are required. These networks represent a sub-
stantial simplification relative to the real complexity inherent to
plant central metabolism. Often the validity of network simplifi-
cations has to be justified by vague assumptions or circumstantial
experimental evidence. Constructing large-scale metabolic mod-
els can provide fully detailed networks, useful as a clearly defined
reference point for deriving lumped 13C models. Moreover, with-
out lumping, 13C-MFA with plant models of about 500 reactions
in size should become computationally feasible, as indicated by
recent microbial studies using large-scale 13C-MFA (Suthers et al.,
2007, 2010).

The large-scale reference models also offer the potential to
develop approaches that combine FBA with 13C-MFA (Blank
et al., 2005). Some explorations of the synergies between the two
approaches were reported (Williams et al., 2010; Chen et al., 2011;
Hay and Schwender, 2011b). With FBA, different physiological
conditions can be simulated in silico to analyze situations in which
steady-state 13C-tracer experiments are impossible.

Another important goal in plant 13C-MFA is to improve the
precision of the flux estimates. This can be achieved by simula-
tion of different experiments with differently 13C-labeled tracers
in one flux model (Schwender et al., 2006; Alonso et al., 2007b,
2011; Junker et al., 2007; Masakapalli et al., 2010).

Furthermore, analysis of how the distribution of cellular flux
changes in response to targeted perturbations can help to unravel
the kinetic- and regulatory-controls in metabolism (Lonien and
Schwender,2009). Such approaches should be particularly promis-
ing if for experimental systems that have been well established for
13C-MFA, metabolomic, transcriptomic, and proteomic data are
recorded in parallel.
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Where control is more evenly distributed, it is often possible to 
identify transcription factors that co-ordinately affect the expres-
sion of genes encoding enzymes in a pathway (Schwinn et al., 2006; 
Memelink and Gantet, 2007). In contrast, the main growth com-
ponents of the cell are synthesized through a highly connected set 
of reactions that is commonly referred to as “central metabolism.” 
Not only is control of flux generally shared amongst many, if not all, 
enzymes of central metabolism (Raines, 2003; Geigenberger et al., 
2004; Araujo et al., 2011), but because of the degree of connectivity, 
a perturbation of one part of the network has consequences for 
other parts of the network.

So in central metabolism, the functioning of individual enzymes 
and even pathways is dependent on the operational state of the 
whole metabolic network (Kruger and Ratcliffe, 2008; Sweetlove 
et al., 2008). As a result, efforts to understand the regulation of 
the central metabolic network in the last few years have focused 
on measuring the metabolic phenotype – flux – at a network level. 
Much of this work has centered on the development of approaches 
to determine network fluxes based on the steady-state redistri-
bution of isotopically labeled carbon (Libourel and Shachar-Hill, 
2008; Allen et al., 2009a; Kruger and Ratcliffe, 2009). This approach, 
known as steady-state metabolic flux analysis (MFA), has matured 
into a powerful technique whereby it is possible to reliably quantify 
both net and exchange fluxes of tens of reactions across the central 
metabolic network. MFA has been applied to several different plant 
species and tissue types and has yielded some significant insights 
into the behavior and organization of plant metabolism. For exam-
ple, MFA was used to establish that Rubisco can function without 
the Calvin cycle to recycle carbon lost as CO

2
 during lipid synthesis 

in green oilseeds in the light, substantially increasing the carbon 
conversion efficiency (Schwender et al., 2004; Allen et al., 2009b). 
MFA has also revealed a variety of different flux modes in the TCA 
cycle (Sweetlove et al., 2010) as well as demonstrating the inherent 
stability of central metabolism to environmental perturbation (Iyer 
et al., 2008; Williams et al., 2008), and the complex, non-intuitive 
relationship between fluxes, metabolite levels, and enzyme activities 
(Junker et al., 2007; Kruger and Ratcliffe, 2009).

Introduction
Metabolism is a prerequisite for life. Hundreds of chemical reac-
tions, mostly catalyzed by enzymes, define a metabolic network 
that supports all biological activity. In particular, the coupling of 
energy-releasing processes to energy-consuming anabolic reac-
tions drives the biosynthesis of the polymers and metabolites 
that constitute the fabric of the cell. The rates of all the enzyme-
catalyzed reactions, including the associated relocation of ions 
and metabolites across membranes, are tightly controlled through 
the regulation of enzyme activity, allowing metabolic outputs to 
be adjusted according to varying environmental conditions and 
growth patterns.

Plant metabolic networks are arguably the most complex of 
any organism, both because of the tremendous variation in their 
metabolic output and because of the range of environmental con-
ditions that they encounter. Nevertheless, because the growth and 
survival of plants is intimately connected to metabolism (Smith 
and Stitt, 2007; Stitt et al., 2010) there is a need to understand and 
predict metabolic behavior. In particular, there is a need to con-
nect genotype to specific metabolic outputs so that plant breed-
ers and metabolic engineers can generate new varieties of crops 
with increased yield or altered chemical composition (Fernie and 
Schauer, 2009).

Although there have been some notable successes in engineer-
ing plant metabolism (Butelli et al., 2008; Naqvi et al., 2009), these 
are mainly related to the production of secondary metabolites. In 
contrast, there are few examples where the synthesis of the main 
biomass polymers has been manipulated in a predictive manner. 
At the heart of this contrasting ability to engineer the metabolic 
network is the difference in connectivity of primary and second-
ary metabolism. Many secondary metabolites are synthesized by 
reactions that occur at the periphery of the metabolic network with 
relatively few interconnections to other parts of the network. As a 
result, there are fewer regulatory constraints on the flux through 
these essentially linear pathways and control may be dispropor-
tionately resident in a single enzyme, providing a single target 
for genetic manipulation (Fraser et al., 2002; Enfissi et al., 2005). 
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However, despite the undoubted power of steady-state MFA 
for defining the metabolic phenotype, it does have some limita-
tions. In particular, the requirement to supply a labeled organic 
carbon substrate to isotopic steady-state limits the approach to 
heterotrophic or mixotrophic tissues in culture. The method is also 
entirely dependent on the correctness of the user-defined metabolic 
network because it is often possible to fit the labeling data to more 
than one network structure with little statistical power to discrimi-
nate between the alternatives (Masakapalli et al., 2010). MFA is, 
moreover, a relatively low throughput technique and this limits its 
use as a comparative tool since comparison of multiple samples 
(e.g., different genotypes) requires substantial effort (Lonien and 
Schwender, 2009).

These limitations have driven the search for alternative, com-
plementary approaches to characterize and explore the plant meta-
bolic network. Following the lead of the microbial field (Borodina 
and Nielsen, 2005), flux-balance modeling has emerged as an 
alternative to MFA. Like MFA, flux-balance analysis (FBA) is a 
constraints-based modeling approach in which steady-state fluxes 
in a metabolic network are predicted by applying mass-balance 
constraints to a model of the network based on the matrix of reac-
tion stoichiometries. Typically, simple and easy to measure mass-
balance information, such as growth rate, biomass composition, 
and substrate-consumption rate, is used to place boundaries on the 
flux solution space (Reed and Palsson, 2003). However, in contrast 
to MFA, isotopic labeling information is not used. As a result, the 
network fluxes are underdetermined and a range of feasible flux 
solutions are obtained that satisfy the constraints. Within this range, 
flux solutions that are optimal with respect to a specific objective 
function (such as maximizing growth rate or minimizing substrate 
consumption) can be identified with optimization algorithms such 
as linear programming (Edwards and Palsson, 2000).

Several flux-balance models of different plant species have been 
published in the last 2 years. These include models for Arabidopsis 
(Poolman et al., 2009; de Oliveira Dal’Molin et al., 2010a; Radrich 
et al., 2010), barley seeds (Grafahrend-Belau et al., 2009), Brassica 
napus seeds (Hay and Schwender, 2011b; Pilalis et al., 2011), maize 
(Saha et  al., 2011), Chlamydomonas (Boyle and Morgan, 2009; 
Cogne et al., 2011), and photoautotrophic bacteria (Knoop et al., 
2010; Montagud et al., 2010). The aim of this article is to review 
what has been learnt from these models, to discuss the advantages 
and limitations of flux-balance modeling and to look to the future. 
What insights into plant metabolic networks can we expect to obtain 
from flux-balance modeling and what are the main challenges for 
the biologically informative application of flux-balance modeling?

Genome-scale metabolic modeling
One of the main advantages of flux-balance modeling is that it 
is relatively easy to scale up to cover very large networks. Indeed, 
metabolic models can be constructed at a genome-scale, using all 
the reactions catalyzed by the enzymes encoded in an annotated 
genome. However this remains a non-trivial task: Arabidopsis and 
maize are the only higher plants with genome-scale metabolic 
models (Poolman et al., 2009; de Oliveira Dal’Molin et al., 2010a; 
Radrich et al., 2010; Saha et al., 2011) – all the other plant mod-
els have been constructed using metabolic databases, biochemical 
textbooks, and the primary literature, and are essentially confined 

to the well known pathways of central metabolism. Several prob-
lems arise in the construction of metabolic models from genome-
annotation databases, including network gaps caused by incomplete 
or imprecise genome annotation, mass-balance errors caused by 
reaction stoichiometry errors in the annotation database, and the 
presence of excess, non-functional reactions. However, working 
practices and computational approaches are emerging to help 
deal with such issues (Fell et al., 2010; Henry et al., 2010; Soh and 
Hatzimanikatis, 2010).

An additional challenge is that genome-annotation databases 
contain no information about reaction directionality. In smaller 
models of primary metabolism, it is possible to manually constrain 
reactions to a defined direction based on standard Gibbs free energy 
changes (and sometimes the in planta concentration of the reac-
tion substrates and products). However, in genome-scale models, 
reaction directionality is often left unconstrained, with the result 
that flux solutions may contain thermodynamically infeasible reac-
tions. A comprehensive standard Gibbs free energy of formation 
database is urgently required for metabolites to allow thermody-
namic constraints to be included in genome-scale FBA. However, 
because experimentally measured free energies are not available for 
many reactions, theoretical approaches for estimating standard free 
energies such as the group contribution method (Jankowski et al., 
2008) will need to be implemented.

Given the challenges inherent in constructing and analyzing 
such large models (the current Arabidopsis genome-scale mod-
els contain around 1500 reactions), it is relevant to ask whether 
this effort is worthwhile. Indeed, only 232 of the available 1406 
reactions in the Arabidopsis genome-scale model constructed by 
Poolman et al. (2009) are required to synthesize the main biomass 
components and account for maintenance costs of heterotrophic 
Arabidopsis. The model may be genome-scale, but the flux solution 
is of similar size and considers similar reactions to FBA models of 
primary metabolism. It is also worth pointing out that most flux-
balance models to date consider a similar span of the metabolic 
network to previous plant MFA models, although due to reaction 
lumping and network simplification the actual number of reactions 
in the MFA models is generally considerably lower.

A genome-scale metabolic network is, of course, not a biological 
reality. It is unlikely that every enzyme is expressed in a single cell 
type and under a single condition. Much of secondary metabolism, 
for example, is induced upon abiotic or biotic stress. Nevertheless, a 
genome-scale metabolic network has significant value as a founda-
tion for investigating condition-specific scenarios. Thus, cell type-
specific sub-models can be constructed based on transcriptomic 
or proteomic datasets (Lewis et al., 2010) although this has not yet 
been done to any significant degree for plant metabolism. Similarly, 
with the inclusion of appropriate constraints, it should be possible 
to model the consequences of the synthesis of a range of secondary 
metabolites. For example, in a recent genome-scale flux-balance 
model of maize, lignin metabolism was explicitly included as part 
of the biomass function (Saha et al., 2011).

The issue of multiple flux solutions
Although boundaries are imposed on the flux solution space, it will 
often still be possible to accommodate multiple solutions that sat-
isfy the chosen objective function. Thus, when linear programming 

Sweetlove and Ratcliffe	 Flux-balance modeling

http://www.frontiersin.org/Plant_Physiology/archive
http://www.frontiersin.org/Plant_Physiology


www.frontiersin.org	 	 August 2011  | Volume 2  |  Article 38  |  156

a linear programming routine based on a secondary minimization 
and maximization of the flux through each reaction (Mahadevan 
and Schilling, 2003). In a 572-reaction network of primary metabo-
lism solved by minimization of substrate consumption, it was found 
that 75 reactions, mainly in the central core of the network, were 
variable. Flux variability was classified according to the direction 
and magnitude of the flux change, and it was found that the varia-
bility type of 57 reactions altered when different external substrates 

provides a flux solution that minimizes or maximizes a particu-
lar objective function, it is not necessarily a unique solution (Lee 
et al., 2000; Mahadevan and Schilling, 2003). The ability to uniquely 
define fluxes is dependent both on the structure of the metabolic 
network and the objective function being considered. For example, 
the objective function “minimization of total intracellular fluxes” 
will select metabolic routes that contain the fewest steps since this 
will result in a lower sum of fluxes. However, the metabolic net-
work may contain equivalent alternative routes for the production 
of a given metabolite. For example in Figure 1A, both routes lead 
to the conversion of input substrate to output metabolite via an 
equal number of steps, meaning that there is no basis by which to 
select one over the other when minimization of total intracellular 
flux is used as an objective function. Other commonly used objec-
tive functions such as maximization of biomass per unit substrate 
(and the equivalent minimization of substrate consumed per unit 
biomass produced) which optimize the molar yield of the system 
would also fail to discriminate between the two routes if they are 
stoichiometrically equivalent with respect to carbon.

In contrast, if the two routes contain a different number of 
steps (Figure 1B) then the route with the fewest steps will be uti-
lized under the minimization of flux objective function. Other 
differences between parallel pathways relate to energy production 
(Figure 1C). If the objective function is to maximize ATP yield then 
the objective function would select the ATP-producing pathway 
in Figure 1C. Another source of alternative solutions can be the 
presence of substrate cycles (Figure 1D). The minimization of flux 
objective function will eliminate such cycles, but other objective 
functions, such as maximization of biomass production, will not 
because substrate cycles do not influence the net flux from input 
to output. Accordingly the flux through the cycle is not defined 
by the objective function and it can hold any value. Subcellular 
compartmentation, especially the presence of equivalent pathways 
in different compartments (Figure 1E), can also lead to alternative 
flux solutions.

This issue of alternative optima can be dealt with in two ways: 
either, additional optimization criteria can be applied such that a 
unique flux solution is reached; or, flux variability can be viewed 
as a potentially informative aspect of network behavior that can be 
explicitly quantified and explored. A model of barley seed metabo-
lism took the former approach (Grafahrend-Belau et al., 2009). First 
a conventional linear optimization was applied (with the objective 
function to maximize growth) and then a non-linear quadratic 
optimization was applied using the objective value (growth rate) 
of the first optimization as an additional constraint to the second 
optimization (with the objective function to minimize the overall 
sum of fluxes). This two-step procedure provided a unique solu-
tion because of the nature of the quadratic optimization. Similarly, 
a two-step linear optimization procedure can be used in which a 
“maximization” objective function (e.g., maximization of biomass) 
is followed by a “minimization” objective function (e.g., minimi-
zation of photon use). This approach led to a unique flux solu-
tion in an flux-balance model of photoautotrophic metabolism in 
Synechocystis (Shastri and Morgan, 2005, 2007).

In contrast, a recent FBA analysis of oilseed rape seed metabo-
lism (Hay and Schwender, 2011a,b) made a virtue of flux variability. 
An explicit analysis of the extent of variability was performed using 

Figure 1 | Features of a metabolic network than can lead to flux 
variability in FBA. (A) Two equivalent routes (shown in green and blue) for 
converting an input substrate into an output metabolite. (B,C) illustrate 
non-equivalent routes that may be discriminated in FBA, depending on the 
objective function. (D) A substrate cycle. (E) Equivalent routes in different 
subcellular compartments (the dashed line indicating a membrane separating 
two subcellular compartments).
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3-phosphate dehydrogenase, malate dehydrogenase, and malic 
enzyme. Production of NADPH by these routes is marginally 
more efficient in terms of either carbon use or overall flux, and 
so the models predict that the oxidative branch of the pentose 
phosphate pathway is not required. Two points are worth making 
here. First, neither of the flux-balance models include thermody-
namic constraints beyond specification of reaction directions, and 
there may be thermodynamic limitations to the establishment of a 
high NADPH:NADP ratio using these dehydrogenases. Secondly, 
the NADPH requirement specified in both models is only that 
required for synthesis of biomass components. There are several 
other known NADPH requirements in the cell including antioxi-
dant enzyme activity (Apel and Hirt, 2004) and membrane NADPH 
oxidase activity (Torres, 2010). Thus, the actual NADPH demand 
in the cell is certainly higher than that specified in the model and 
would require NADPH to be produced in different subcellular 
compartments.

Perhaps the most rigorous way to validate an FBA flux solution is 
to compare it to fluxes estimated independently by 13C-MFA, and this 
has been done for both B. napus and Arabidopsis flux-balance mod-
els (Williams et al., 2010; Hay and Schwender, 2011b). Two points 
need to be borne in mind in making such comparisons. First, the 
metabolic networks that are used during 13C-MFA are projections 
of the real network that provide an explanation of the redistribu-
tion of 13C that occurs during the steady-state labeling experiment 
(Roscher et al., 2000). Steps between branch-points are represented 
as single steps, since the net flux carried by each intermediate step 
must be the same, and the model is usually constructed to eliminate 
indeterminable fluxes, i.e., fluxes that cannot be defined from the 
labeling data and which would therefore show infinite flux variability 
if included in the model. In contrast, a flux is assigned to every step 
in the complete network in FBA, even though many of them are the 
same, and indeterminable fluxes are not grouped to eliminate flux 
variability. Thus, many reactions in the FBA solution do not have a 
direct counterpart in the MFA model. It is also simpler to restrict the 
comparison to reactions that do not show flux variability in the FBA 
solutions, although statistical comparisons are possible that include a 
weighting factor to account for flux variability (Schuetz et al., 2007). 
Secondly, both FBA and MFA constrain the fluxes that lead directly 
to synthesis of biomass in the same manner, so these reactions will 
necessarily hold the same values in the FBA and MFA solutions. When 
these factors are taken into account, only a relatively small number 
of fluxes can be directly compared between the two approaches (24 
reactions in the Arabidopsis genome-scale model and 19 reactions 
in the B. napus seed primary metabolism model). Nevertheless, for 
these few reactions (which are mainly from the core backbone of 
the network) a reasonable correlation with the predicted fluxes and 
those estimated by 13C-MFA was found, suggesting that FBA is able to 
predict realistic values for plant metabolic network fluxes. Moreover, 
FBA was able to successfully predict changes in flux under two envi-
ronmental stress conditions in Arabidopsis (Williams et al., 2010).

Subcellular compartmentation in flux-balance 
models
Most of the published flux-balance models of plant metabo-
lism make some attempt to take subcellular compartmentation 
into account, which is clearly desirable if the model is to reflect 

were used in the model. Flux variability is essentially a modeling 
issue that arises because the available constraints do not produce a 
unique solution with the chosen objective function. Nevertheless, 
changes in variability type can supplement the information that 
can be deduced from the changes that occur in the fluxes that are 
uniquely defined. It was also found that 51 reactions varied with 
infinite bounds and these were largely due to metabolite cycles in 
which there was no net consumption of carbon or energy. The flux 
through these reactions can hold any value if the constraints applied 
only relate to carbon or energy use. Most of the variable fluxes 
are substitutable, meaning that a solution to the flux optimization 
problem can be found using alternative reactions. This is a clear 
demonstration of metabolic redundancy. This work illustrates the 
utility of flux variability analysis in providing an additional layer of 
information about the behavior of the network and the nature of 
the flux solution, and this is particularly valuable when dealing with 
large networks in which it is not possible to manually inspect the 
entire flux solution. A similar analysis of flux variability was used 
to ascertain flux differences between bundle sheath and mesophyll 
cells in a model of C4 photosynthesis, although in this case, only 
four reactions were not uniquely defined by the optimality criterion 
and imposed constraints (de Oliveira Dal’Molin et al., 2010b). To 
date, only these two studies and a model of Synechocystis (Knoop 
et al., 2010) have explicitly analyzed flux variability in plant flux-
balance models, but one would expect it to be a standard compo-
nent of FBA in future work.

Validation of flux-balance models
When a flux-balance solution is generated it is important to estab-
lish how closely it reflects the actual behavior of the metabolic net-
work. One way of doing this is to look for the operation of metabolic 
pathways that are known to be physiologically important. Thus, 
when photosynthetic metabolism was modeled in an Arabidopsis 
genome-scale model (de Oliveira Dal’Molin et al., 2010a), the clas-
sical photorespiratory cycle was observed to support a flux when a 
3:1 ratio of the carboxylation:oxygenation reaction of Rubisco was 
imposed and the photon-use efficiency was optimized. Moreover, 
the model predicted that 30–50% of the carbon fixed by photo-
synthesis would be lost through the photorespiratory cycle, a range 
consistent with experimental measurements.

However, while the recapitulation of known metabolic behavior 
is reassuring, FBA is unlikely to give a completely faithful represen-
tation of the actual flux distribution, and consideration of areas 
in which the flux-balance model diverges from known metabolic 
behavior is potentially more informative. For example, the oxida-
tive reactions of the oxidative pentose phosphate pathway typi-
cally carry no flux in flux-balance solutions of heterotrophic plant 
metabolism (Williams et al., 2010; Hay and Schwender, 2011a). This 
is in contrast to the known importance of the oxidative pentose 
phosphate pathway in heterotrophic tissues (Averill et al., 1998) 
and to the fact that the oxidative reactions carry considerable 
flux in MFA-based flux maps (Kruger and von Schaewen, 2003; 
Schwender et  al., 2003; Sriram et  al., 2004; Alonso et  al., 2007, 
2010; Masakapalli et al., 2010). The discrepancy arises because in 
the flux-balance models the provision of NADPH, a likely role 
for the oxidative pentose phosphate pathway, can be met by plas-
tidial NADP-dependent dehydrogenases, such as glyceraldehyde 
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the number of alternate solutions to the optimization problem. 
There have been too few attempts to include the necessary level of 
subcellular compartmentation in plant models to reach a conclu-
sion on this point, and the extent to which flux-balance models can 
usefully analyze highly compartmented networks requires further 
investigation.

Flux-balance modeling of specific cell  
types or tissues
Almost all of the flux-balance models of plant metabolism, com-
partmented or not, consider only a single cell type, either by mod-
eling single-celled organisms such as Chlamydomonas (Boyle and 
Morgan, 2009; Cogne et al., 2011) or Synechocystis (Knoop et al., 
2010; Montagud et al., 2010), modeling cell suspension cultures 
(Poolman et al., 2009; Williams et al., 2010) or simply ignoring 
the presence of multiple cell types in models of specific organs 
or tissues (Grafahrend-Belau et al., 2009; de Oliveira Dal’Molin 
et al., 2010a; Hay and Schwender, 2011a,b; Pilalis et al., 2011; Saha 
et al., 2011). To an extent this is justifiable because the measured 
biomass composition used to constrain these models are whole 
tissue biomass compositions. However, it follows that the result-
ing metabolic network flux solution represents an average of the 
different cell types in that tissue or organ. Given that different cell 
types have very different metabolic capacities (Brady et al., 2007; Lee 
et al., 2011), it is likely that there will be major differences in both 
the structure of their metabolic networks and in the fluxes through 
them. Ultimately, if a flux model is going to be useful in explaining 
the metabolic phenotype in detail, it will be necessary to provide 
information about flux at a cell-type level (Sweetlove et al., 2010).

The challenge goes beyond simply constructing specific mod-
els for specific cell types, but also in joining up these models to 
form multi-layered representations of complete tissues. This has 
been achieved in a sophisticated model of metabolic interactions 
between different cell types in the human brain (Lewis et al., 2010). 
This study used transcriptomic and proteomic data to define cell 
type specific metabolic networks for three different neuronal cell 
types, astrocytes, and blood/endothelium. Subcellular compart-
mentation was introduced into each cell-type model and trans-
porters were included to allow transport of specific metabolites 
between the cell types. The model was able to generate possible 
explanations for the differential effects of Alzheimer’s disease on 
different cell types and regions of the brain.

This flux-balance model of brain metabolism is state-of-the-art 
and in principle there is no reason why such detailed large-scale 
models should not be constructed for plant metabolism. To date, 
only one study has attempted to account for the interaction of more 
than one cell type. Based on their previous genome-scale model of 
Arabidopsis metabolism, de Oliveira Dal’Molin et al. (2010b) con-
structed a flux-balance model describing the interaction between 
bundle sheath and mesophyll cells in C4 photosynthesis. The meta-
bolic network was restricted in each cell type to reflect the known 
distribution of carbon fixation in C4 photosynthesis, with primary 
fixation of carbon through PEP carboxylase in mesophyll cells, 
transport of aspartate or malate to the bundle sheath cells, and 
subsequent decarboxylation by NADP-malic enzyme, NAD-malic 
enzyme or phosphoenolpyruvate carboxykinase. Flux solutions 
were generated using optimization of photon use as an objective 

biological reality (Lunn, 2007). However, inclusion of subcellular 
compartmentation is problematic and at present, there is insuffi-
cient information to assess whether inclusion of compartmentation 
improves the models. One of the biggest problems is how to place 
reactions in the correct compartment. While the compartmentation 
of the core pathways of central metabolism is well established, this 
only accounts for a small percentage of a genome-scale network. 
Similarly, while databases such as SUBA (Heazlewood et al., 2007) 
are excellent inventories of subcellular compartmentation sup-
ported by experimental evidence mainly drawn from organellar 
proteome studies, they only represent a relatively small proportion 
of the metabolic network. Ideally subcellular location of reactions 
would be assigned automatically in a genome-scale model, perhaps 
on the basis of predicted protein sequences, but current algorithms 
are too unreliable (Heazlewood et al., 2004) and there is currently 
no alternative to manual curation.

Thus, the assignment of subcellular compartmentation is usually 
done manually. As a result, particularly in genome-scale models, 
the extent of compartmentation is patchy and may contain errors. 
For example, in the AraGEM genome-scale model of Arabidopsis 
metabolism (de Oliveira Dal’Molin et al., 2010a), the vast major-
ity of reactions are assigned to the cytosol (1265 reactions in the 
cytosol, with 60, 159, and 98 reactions assigned to mitochondria, 
plastid, and peroxisome, respectively). This is almost certainly not 
a true reflection of the situation in the cell, and indeed many reac-
tions assigned to cytosol in the model are known to occur in other 
compartments. For example, most reactions of amino acid biosyn-
thesis and secondary metabolism were assigned a cytosolic location 
even though it is well established that both occur extensively in the 
plastid. By way of comparison, only 20% of the reactions in a model 
of Chlamydomonas primary metabolism were cytosolic and nearly 
half were plastidic (Boyle and Morgan, 2009). This was despite 
the use of the cytosol as a “default” location where the subcellular 
localization of an enzyme was unclear.

Another issue with introducing compartmentation into meta-
bolic models is the lack of information about metabolite trans-
port. This means that intracellular transporters are often added to 
metabolic models based on their necessity to allow the synthesis of 
biomass within the compartmented model (de Oliveira Dal’Molin 
et al., 2010a). It is also generally the case that no attempt is made to 
account explicitly for the energetic cost of transport, so by default 
this is included in the energy cost attributed to cell maintenance.

The functional significance of subcellular compartmentation is 
not necessarily obvious, and steady-state MFA has drawn attention 
to the importance of transmembrane metabolite exchange rates 
in determining the extent to which the intermediates in physi-
cally compartmented pathways are able to function indistinguish-
ably from an uncompartmented pathway (Schwender et al., 2003; 
Ratcliffe and Shachar-Hill, 2006; Masakapalli et al., 2010). Thus in 
principle it would be useful if the problems identified above could 
be resolved to allow FBA to explore the functionality of subcel-
lular compartmentation. However, it might be well to consider 
whether flux-balance models are sufficiently constrained to define 
compartmented fluxes. The addition of compartmentation, and 
especially the addition of parallel pathways in more than one com-
partment, effectively increases the solution space and it seems likely 
that increased compartmentation in a model will simply increase 
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However, there is a wide variation in reported values for maintenance 
respiration for plant tissues, and maintenance costs are likely to 
increase during environmental stress, which may be one explana-
tion for the observed reduction in carbon conversion efficiency 
under stress (Williams et al., 2010). The importance of an accurate 
measure of maintenance costs is revealed by the observation that 
the maximum yield of ATP generated by the metabolic network of 
heterotrophic Arabidopsis cells is over seven times that required for 
the synthesis of the main biomass components (Masakapalli et al., 
2010), the implication being that maintenance costs account for the 
majority of ATP consumed by the cell.

Poolman et al. (2009) used an alternative approach for the esti-
mation of maintenance costs. Initially, fluxes in the network were 
estimated, with the synthesis of biomass components as constraints 
and minimization of total flux as an objective function, without 
taking maintenance into account. Subsequently, a generic ATPase 
reaction was added to the model to represent the maintenance 
ATP requirement. The flux value of this ATPase was iteratively 
varied and the linear programming optimization repeated. As the 
ATPase was increased, glucose consumption, glycolysis, and oxida-
tive phosphorylation increased to meet the increased ATP demand. 
This allowed the maintenance ATP cost to be set to the ATPase reac-
tion flux that led to a glucose consumption rate equal to the value 
measured experimentally in the cell suspension cultures (Williams 
et al., 2010). Effectively, the maintenance cost was estimated from 
the carbon balance of the system by assuming that consumed car-
bon that was not accounted for by biomass synthesis must have 
been for maintenance. A similar approach was used in a recent FBA 
model of oilseed rape, with the slight modification that carbon 
conversion efficiency was used as the parameter to set the value 
for the generic ATPase flux (Hay and Schwender, 2011b). The use 
of a generic ATPase flux in this way provides a convenient method 
for accounting for ATP costs that are additional to those required 
for biosynthesis of biomass components. However, it should be 
pointed out that the accuracy of the predicted maintenance ATP 
cost will be dependent on how close the flux-balance solutions are 
to the actual metabolic flux state.

Exploring metabolic efficiency with  
flux-balance models
Flux-balance modeling is well equipped for the analysis of meta-
bolic efficiency because FBA is based on the discovery of flux solu-
tions that are optimal with respect to a specific objective function. 
Several of the published FBA studies of plant metabolism explore 
issues that relate to metabolic efficiency. For example photorespira-
tion was non-zero in a model of photoautotrophic metabolism in 
Synechocystis optimized for maximal biomass production (Knoop 
et al., 2010). This is surprising because Rubisco oxygenase was not 
forced to operate and one would expect that reactions leading to 
loss of carbon as CO

2
 would have zero flux when maximization of 

biomass production is the objective function This is because when 
the carbon input rate is fixed, maximization of biomass equates 
to a maximization of carbon conversion efficiency. The fact that 
photorespiration carried flux under these circumstances means 
that the requirement for production of intermediates by this route 
outweighed the loss of carbon. Part of the explanation appears to 
be a lack of alternative routes to serine in the Synechocystis model. 

function. While this objective function could not reproduce every 
aspect of C4 metabolism, for example the preferential accumula-
tion of starch in bundle sheath cells, the model could be used to 
examine the energetic implications of the three C4 sub-types. For 
example, the ATP/NADPH ratio required in NAD-malic enzyme 
species is higher in mesophyll cells than in bundle sheath cells, 
but the opposite is true for NADP-malic enzyme species. The flux 
distribution in the models of the different sub-types confirmed 
the hypothesis that the additional ATP demand in the different 
cell types is met by cyclic photophosphorylation.

Another interesting observation from this study was that the 
relative fluxes between bundle sheath and mesophyll cells corre-
lated well with the relative abundance of the enzymes estimated 
from proteomic studies (de Oliveira Dal’Molin et al., 2010b). It 
is clear that enzyme abundance does not relate directly to flux, 
partly because of post-translational regulation of enzyme activity 
and partly because of the impact of the thermodynamic poise of a 
reaction on the ability of an enzyme to support a net flux. However, 
what this correlation shows is that changes in flux are reflected in 
proteome-wide adjustments in enzyme amount. The implication 
is that relative enzyme abundance might be a useful proxy for the 
change in flux between two conditions or cell types. That said, there 
are many reasons why such a correlation might break down. For 
example, it has been shown in yeast that while some V

max
 values 

correlate positively with flux changes, others show an inverse cor-
relation and some show no correlation at all (Rossell et al., 2006). 
And during stress, many enzymes are inhibited by oxidative damage 
(Taylor et al., 2004; Lehmann et al., 2009), but this is not necessarily 
reflected at the protein level. An alternative way of exploiting the 
correlation between changes in flux and enzyme amount would be 
to use the enzyme abundance data as a constraint when predicting 
changes in flux, although the effort required to establish proteomic 
measurements of sufficient enzymes to cover a significant propor-
tion of the metabolic network would be substantial.

Accounting for cell maintenance energy costs
In modeling the central metabolic network, the published flux-bal-
ance models have exclusively considered the conversion of carbon 
and nitrogen inputs into biomass. Biosynthesis of the precursors 
that constitute the main biomass polymers (cell wall, protein, lipid, 
starch) requires both ATP and NAD(P)H and thus, the energy costs 
of biomass synthesis are explicitly taken into account. However, 
there are several other cellular drains on ATP and NAD(P)H apart 
from the synthesis of biomass. These other energy costs are often 
bracketed together under the term “maintenance,” implying that 
these are growth-independent costs that are required just to keep 
the cell ticking over. This distinction is not strictly accurate because 
the maintenance costs in metabolic models often include some 
growth-associated costs.

Other energy costs are associated with the need to replace poly-
mers as they turn over, with the costs of maintaining plasma mem-
brane and tonoplast electrochemical potential gradients through 
ATP- and PP

i
-dependent proton pumps, and with the consumption 

of reductant during antioxidant metabolism (Amthor, 2000). The 
usual approach to dealing with these maintenance costs in flux-bal-
ance modeling is to include a fixed value for maintenance costs based 
on experimental measures (e.g., Grafahrend-Belau  et  al.,  2009). 
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The conclusion that plant metabolic networks may already be 
operating close to maximal carbon conversion efficiency is impor-
tant, because improvement of carbon conversion efficiency is often 
cited as a key breeding target for improved crop yield (Hauben 
et al., 2009; Parry et al., 2010). However, the conclusion, as it stands, 
requires substantial qualification. The main issue is that the car-
bon conversion efficiency in the Arabidopsis and B. napus models 
is forced to match the measured value and this to a large extent 
dictates the good match between the modeled and measured fluxes 
in the central metabolic network. Moreover, only a small fraction 
of the flux distribution can be legitimately validated for the reasons 
discussed earlier, and systematic assessments of different objective 
functions (Schuetz et al., 2007) have not yet been reported for plant 
models. It is entirely possible that the differences in the flux solu-
tions obtained with different objective functions may fall within the 
statistical error of the flux determinations, and thus provide no real 
discriminatory power to investigate metabolic network efficiency. 
Nevertheless the conclusion is in line with previous estimates of 
the theoretical efficiencies of plant energy metabolism based on less 
sophisticated pathway analysis (Penning de Vries, 1974; Penning 
de Vries et al., 1974).

Future challenges for flux-balance modeling of 
plant metabolism
The flux-balance models of plant metabolism that have been pub-
lished in the last 2 years have been steadily gaining in sophistication. 
The inclusion of subcellular compartmentation, the analysis of 
multiple cell types, and the analysis of flux variability are significant 
developments that increase the utility and predictive capacity of the 
models. Technical challenges remain, for example in the analysis of 
subcellular compartmentation, but it is clear that FBA is a useful 
addition to the toolbox for analyzing plant metabolic networks. 
Moreover the ease of implementation in comparison to stable 
isotope-based MFA, and the availability of metabolic compendia 
(Zhang et al., 2010) based on genomic information, suggest that 
flux-balance models will continue to be developed for a variety of 
plant species and tissue types. Given the growing popularity of the 
approach, and the potential for genome-scale models to be used 
in tandem with computational analysis of genomes (Bekaert et al., 
2011) it is pertinent to try and identify the areas in which FBA could 
be most usefully deployed as the technique develops.

Ultimately, the goal toward which metabolic modeling must 
advance is a reconstruction of metabolism at the whole-plant level. 
While in principle FBA is well suited to dealing with interacting 
cell types, considering whole plants raises the problem of temporal 
differences in metabolism during the development of the tissues 
(Walton and de Jong, 1990). A particular issue is that the pattern 
of growth of most plant tissues is not uniform with time: cells are 
initiated by division at the meristem and subsequently grow by 
expansion. This represents two very different modes of growth that 
will not be fully captured by constraints derived from biomass com-
position of mature cells. This is because such constraints assume 
that each component of biomass accumulates in a linear fashion 
and in the same proportion over the history of the cell. This is 
unlikely to be true since the nature of biomass accumulation during 
cell expansion is different to that during division (Thornley and 
Johnson, 1990). Moreover mature organs can make a significant 

However, it is noteworthy that a flux-balance model of hetero-
trophic Arabidopsis metabolism also contains a non-zero flux for 
the Rubisco oxygenase reaction and subsequent reactions of pho-
torespiration as far as glycine. (Poolman et al., 2009). In this model, 
this was the main route for synthesis of glycine. Transcript and pro-
teomic data both suggest the presence of photorespiratory enzymes 
in non-photosynthetic tissues in Arabidopsis (Zimmermann et al., 
2004; Baerenfaller et al., 2008). The precise role of the photorespi-
ratory reactions in non-photosynthetic tissues, and their require-
ment for optimal growth of photosynthetic tissues, requires further 
investigation, highlighting the power of FBA in the identification 
of non-intuitive flux behavior in metabolic networks.

Flux-balance modeling can also be used to explore the efficiency of 
different modes of carbon assimilation within realistic growth con-
straints. Because the carbon conversion efficiency of photosynthesis 
is directly related to crop yield, there is a great deal of interest in the 
possibility of alternative photo-assimilatory pathways that might 
operate at higher efficiency (Bar-Even et al., 2010). The efficiency of 
six carbon assimilation pathways (Calvin–Benson–Bassham cycle, 
reductive TCA cycle, 3-hydroxypropionate/malyl-CoA cycle, reduc-
tive acetyl-CoA pathway, 3-hydroxypropionate/4-hydroxybutyrate 
cycle, and the dicarboxylate/4-hydroxybutyrate cycle) was com-
pared by establishing flux-balance solutions for six different bac-
teria (Boyle and Morgan, 2011). Based on comparisons of either 
photon requirement or the energy demand for conversion of 
photoassimilate into biomass, it was found that photoautotrophic 
pathways are more efficient than chemoautotrophic carbon assimi-
lation pathways (unless there is a free source of hydrogen) and that 
the reductive TCA cycle is the most efficient way of generating 
biomass from solar energy. However, the reductive TCA cycle is 
only marginally more efficient than the Calvin–Benson–Bassham 
cycle (25.3 and 24.9% efficiency, respectively, where efficiency is 
calculated as the heat of combustion of biomass divided by the 
total amount of energy used to create biomass).

The calculation of theoretical optimal yields of metabolic net-
works is relatively straightforward from flux-balance models, but 
more biologically informed assessments of metabolic efficiencies 
can be made by comparison of computed optimal flux distribu-
tions against those that actually occur. Two studies have found 
that flux-balance models can replicate experimentally determined 
flux distributions in heterotrophic Arabidopsis cells (Williams et al., 
2010) and B. napus seeds (Hay and Schwender, 2011b). In both of 
these studies objective functions were used that equate to carbon 
conversion efficiency: minimization of total intracellular flux or 
minimization of substrate consumption, per unit biomass pro-
duced. The fact that these objective functions produce flux solutions 
that match the measured in vivo flux distributions suggests that the 
metabolic network in these tissues is functioning close to optimal 
carbon conversion efficiency. A similar conclusion can be reached 
from a flux-balance model of barley seed in which maximization 
of growth rate for a fixed substrate-consumption rate was able to 
predict the growth rate of barley seeds (Grafahrend-Belau et al., 
2009). Maximization of growth (biomass) for a fixed amount of 
substrate is effectively a maximization of molar yield (Schuster 
et al., 2008). In other words, this objective function is closely related 
to objective functions that minimize substrate consumption or 
overall intracellular flux for a fixed biomass output.
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