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Editorial on the Research Topic
 Advances in Breeding for Quantitative Disease Resistance



In plant breeding and genetics, traits are frequently classified into qualitative and quantitative. A qualitative trait is generally controlled by one or a few genes, whereas a quantitative trait is controlled by several genes. The effect of each of the alleles responsible for a quantitative trait is typically small when compared to the effect of the environment, making the inference of an individual genotype difficult to establish. Genetic bases of quantitative traits are characterized by a continuous distribution of phenotypes and detected by quantitative trait loci (QTL) analysis and genome-wide association studies (GWAS). In the world of disease resistance, quantitative disease resistance (QDR) has been reported in a large number of crops, and molecular markers tightly linked to quantitative resistance loci (QRL) controlling QDR.

Quantitative disease resistance is expressed when host plants exhibit a reduced disease reaction but not complete resistance. It is widely recognized that QDR provides long term host defense toward the disease, probably due to multiple genes requiring mutation for resistance breakdown as opposed to single genes as in the case of gene-for-gene resistance. However, QDR has been a longstanding challenge in the development of cultivars with durable resistance and new techniques such as GWAS could complement QTL mapping results. Emerging genetic, metabolomics, genomics, phenomics, machine learning, and synthetic biology tools could speed-up the development of new plant cultivars having quantitative disease resistance.

A collection of reports was assembled to represent achievements in understanding and improving QDR. New technologies provide avenues for measuring QDR in plant breeding populations, and new insights on plant-pathogen interactions provide new alternatives for studying QDR. Researchers around the world have made progress toward the goal of achieving QDR, and new tools technologies and knowledge to increase food productivity and sustainability using precision breeding to boost QDR.

The objective of this Research Topic was to collate articles updating the status of breeding for QDR. The interest was to provide an updated view of the science of breeding for QDR as well as the tools that have become available in the development of QDR. We received a total of 37 submissions, of which 27 were accepted into the collection. A group of 50 authors contributed to the collection. Among the accepted submissions, the following eight topics were covered: QTL mapping (5 articles), fine mapping (1 articles), genome-wide association (8 articles), genomic selection (4 articles), marker development (2 articles), pathogen-environment-genotype (2 articles), breeding and pre-breeding (3 articles), and reviews (2 articles).


QTL MAPPING

This collection reported the use of novel genetic populations for the exploration of QTL in mapping, breeding and pre-breeding populations. Karandeni-Dewage et al. screened a doubled haploid (DH) population derived from the secondary genepool of Brassica napus with the aim of introgressing resistance to Pyrenopeziza brassicae, the authors identified four QTLs that had moderate to large allelic effects. Similarly, Yu et al. studied a DH population for mapping resistance to clubroot disease, caused by the fungal pathogen, Plasmodiophora brassicae and used Brassica rapa as a source for resistance. The authors found gene-for-gene interaction with various pathotypes and identified two QTL associated with resistance.

Several QTL analysis papers in wheat diseases were published. Wu et al. studied partial resistance to five fungal isolates representing Fusarium solani, F. avenaceum, F. acuminatum, F. proliferatum and F. graminearum in field pea. The authors used a mapping population between resistant and susceptible parents and found multiple stable QTL for resistance while screening for the various Fusarium isolates. Wang et al. identified and validated stable QTL conferring adult-plant resistance to stripe rust (Puccinia striiformis f. sp. tritici), found in the Chinese landrace ”Gaoxianguangtoumai.” In particular, QTL QYr.GX-2AS was found to be present only in low frequency (5.3%) among 325 Chinese landraces. Roy et al., studied QTL for resistance to spot blotch in wheat. They used two bi-parental mapping populations and found several QTL having low to moderate effects.



FINE MAPPING

A significant contribution by Zhang et al. was published. Their paper focused on fine mapping of the leaf rust resistance gene Lr65 in the spelt wheat cultivar “Altgold.” The authors delimited Lr65–a 0.8 cM interval and provided one simple sequence repeat marker and a high-resolution map, further reducing the region to 60.11 Kb in size.



GENOME-WIDE ASSOCIATION ANALYSIS

Liu et al. used a set of 240 Chinese elite cultivars genotyped using a 90 K single nucleotide polymorphism (SNP) array with the aim of finding signals associated with Fusarium seedling blight resistance. The authors found six stable QTL accounting 4.8–7.5% of the phenotypic variation. The authors also report four Kompetitive allele specific PCR (KASP) markers to enable marker assisted selection in wheat breeding programs. Rashid et al. used a panel of 396 tropical adapted (Asian environments) maize lines genotyped with 296 k SNPs using genotyping by sequencing (GBS) approach to screen for Charcoal rot resistance (Macrophomina phaseolina). The authors found 19 SNPs with significant associations and developed two F2:3 populations to validate the signals. Two QTL co-located with two of the SNP and haplotypes detected. The authors reported that many of the signals found overlap with previously reported QTL for Gibberella stalk rot resistance, thus increasing the opportunity to develop resistance to multiple stalk rots.

Mekonnen et al. studied Septoria tritici blotch (Zymoseptoria titici) in wheat and used a set of 178 bread wheat genotypes to screen for adult plant resistance and agronomic traits for 2 years. The association panel was genotyped using GBS and this resulted in 7 k polymorphic SNPs. Significant marker-trait associations were found in 27% of the marker pairs, suggesting 33 putative QTL with 5 QTL reported as novel. The putative QTL explained 2.7–13.2% of total phenotypic variation.

Kaur et al. deployed 89 backcross introgression lines between Triticum durum × Aegilops speltoides and evaluated them for spot blotch resistance, caused by Bipolaris sorokiniana for four consecutive years. The authors identified five QTLs linked to spot blotch. In particular, QTL Q.Sb.pau-5B was validated in this study, serving as a future diagnostic marker for spot blotch resistance.

Li, Y., et al. used a set of 89 bottle gourd [Lagenaria siceraria (Mol.)] Standl. accessions with the aim of finding significant associationsfor resistance to Fusarium wilt. The study genotyped the panel with 5 k SNPs and revealed a total of 10 SNPs detected in at least two environments. Aoun et al. identified 64 marker trait associations (MTA) for leaf rust (Puccinia triticina), 46 MTAs for stripe rust (Puccinia striiformis f. sp. tritici) and 260 MTAs for stem rust (Puccinia graminis f. sp. tritici) resistance in an elite durum wheat association panel genotyped with a 90 k SNP array. None of the signals for stripe rust found here corresponded to existing designations of resistance genes. In contrast, two and four of the signals for leaf rust and stem rust overlapped with known resistance genes, respectively.

A significant contribution by Ruan et al. can be found in this collection. In this paper, the authors aimed at finding useful fusarium head blight (FHB, Fusarium graminearum Schwabe [teleomorph: Gibberella zeae (Schwein.) Petch]) resistance in durum wheat. The researchers used 186 diverse durum wheat lines, comprised of elite Canadian cultivars, breeding lines and experimental durum wheat lines with FHB resistance. The authors found 31 QTL across all durum wheat chromosomes and one stable QTL of large effect. Also, three haplotypes of the QTL Fhb1 were identified. This large number of signals provides a treasure trove of resources for improving FHB resistance, including durable FHB resistance.

Using a core collection from the United States Department of Agriculture, Shi et al. detected signals and implementing genomic selection toward soybean cyst nematode (SCN, Heterodera glycines) resistance in common bean (Phaseolus vulgaris L.). The authors used 315 accessions from the core collection and screened for SCN. The core set was genotyped with Infinium BeadChips, consisting of 4 k SNPs. A total of 15 accessions were found as resistant and 11 MTA were found. Additionally, the authors applied genome-wide prediction models and reported moderate accuracies for resistance to SCN, indicating the feasibility of using this framework when improving SCN resistance.



GENOMIC SELECTION

A significant study carried out by Merrick et al. was published. The authors conducted research to optimize GS models related to both major and minor genes for resistance to stripe rust (Puccinia striiformis Westend. f. sp. tritici Erikss.) of wheat. The authors used two types of training populations composed of 2,630 breeding lines and 475 diversity panel lines, both groups were phenotyped for 4 years. Model comparisons were also conducted using major gene markers and genome-wide markers as fixed effects. Using 50 replications and a five-fold cross-validation, the models were then compared to marker-assisted selection (MAS). The authors found that GS had higher accuracies than MAS (0.72) for disease severity. In contrast, GS and major gene models did not outperform the base GS model. Different combinations of traits, population types and years resulted in increases in accuracy as well via the inclusion of major markers in the validation sets. As well, adding fixed effects under low prediction scenarios increased GS accuracy when using significant GWAS markers. This study is a significant step in the implementation of breeding efforts for improvement of QDR.

One noteworthy contribution was provided by Larkin et al. The authors used GS for forward prediction and compared naïve GS models (no covariates) and multi-trait GS (MTGS) models by predicting F4:7 lines for FHB resistance traits, deoxynivalenol (DON) accumulation and other traits in soft red winter wheat. They compared predictions with phenotypic performance over 2 years of selection based on selection accuracy and response to selection. The models correctly selected up to 70.1% of elite individuals, compared to 33% with phenotypic selection. The authors also measured realized response to selection for the various traits and found GS models were at least comparable to phenotypic selection for FHB. This study provides a way forward for the implementation of GS toward breeding for QDR in wheat.

Huster et al. conducted GWAS on a diversity panel of 149 snap bean pure lines and evaluated them for Fusarium root rot and multiple root morphological traits. The authors found five SNPs for disease severity and two for biomass, with multiple biochemical functions indicated. Genomic estimated breeding values (GEBV) were estimated across all bean lines and their correlations estimated for the development of GS models. Although low accuracies were found based on correlations, some overlap was found among lines with high GEBV and root rot resistance.

A notable submission was provided by Mphahlele et al. in the search for quantitative resistance to Leptocybe invasa gall wasp and fungal stem diseases such as Botryosphaeria dothidea and Teratosphaeria zuluensis. The authors deployed the Eucalyptus grandis EUChip60K SNP chip, a subset of 964 trees from 93 half-sib families genotyped with 14,347 SNPs. Single-step genomic best linear unbiased predictors (ssGBLUP) were used to predict parameters in the trial. The authors found a high positive genetic correlation with gall wasp tolerance moderate expected gains for traits such as diameter growth and gall wasp. This study may set future strategies for the improvement of Eucalyptus using GS.



MARKER DEVELOPMENT

Peach gummosis has been reportedly caused by Botryosphaeria Fusicoccumaesculi), Botryosphaeria rhodina (anamorph Lasiodiplodia theobromae), and Botryosphaeria obtuse (anamorph Diplodiaseriata). In their study, Li, X., et al. used a previously identified QTL from a biparental population and integrated it with a GWAS and comparative transcriptome sequencing across 195 accessions and 145 k SNPs. The authors found five SNPs linked with gummosis disease resistance and located six candidate genes in the vicinity of significant SNPs. The authors also identified two highly resistant accessions as potential sources for breeding. Cucumber vein yellowing virus (CVYV) does not exhibit single gene resistance in cucumber and is transmitted by the whitefly (Bemisia tabaci). Due to the lack of tightly linked molecular markers, breeding for CVYV is challenging.

A study conducted by Kahveci et al. revealed that, via the use of genomics and bulk segregant analysis, KASP markers were developed for resistance to CVYV in an F2 mapping population and commercial lines. The authors also conducted variant analysis to generate SNP-based markers, and this resulted in a 101 kb-fine mapped region with eight putative candidate genes. Thus, the study provided crucial information and tools necessary to breed for CVYV resistance in the future.



PATHOGEN-ENVIRONMENT-GENOTYPE

In a study to understand the influence of elevated temperatures on resistance against phoma stem canker (Leptosphaeria maculans) in oilseed rape, Noel et al. investigated effects of temperature on individuals with and without race-specific resistance (R) genes and quantitative resistance. The experiments involved field sites and inoculation assays under controlled conditions and found that high maximum temperatures in June increased canker severity while this impact was reduced in genotypes with quantitative resistance but no R genes. This study suggested that the impact of high temperature is significantly reduced when quantitative resistance is present. The authors point out that there is genetic variation available to improve disease resistance under this condition. However, sustained high temperatures reduce the efficacy of QDR—a major concern in the face of global warming/climate change.

In Ozimati et al., the authors evaluated empirical and root necrosis data to determine the effectiveness of screening for Cassava brown streak disease (CBSD) in two breeding populations differing in selection cycles. The study aimed at comparing the assessments in these screening methods when the assessment was conducted by plant breeders vs. pathologists. The study found that broad-sense and marker-based heritability estimates differed widely from assessments within the two groups, with breeders resulting in a slightly higher upper limit.



BREEDING AND PRE-BREEDING

Emebiri et al. reported efforts on pre-emptive breeding for Karnal bunt in wheat. Karnal bunt caused by the fungus, Tilletia indica Mitra [syn. Neovossia indica (Mitra) Mundkur], is a major threat to food security, due to its use as a non-tariff trade barrier by several wheat-importing countries. The cultivation of resistant varieties remains the most cost-effective approach to manage the disease, but in countries that are free of the disease, genetic improvement is difficult due to quarantine restrictions. Using GWAS, the authors identified six DArTseq markers linked with resistance to Karnal bunt, each marker explained up to 29.5% of phenotypic variation. Using GS, the authors reported accuracies of up to 0.56, depending on whether the GS model included known QTL or used genome-wide markers. The authors conducted further research to identify elite parents with Karnal bunt resistance, leading to the identification of one ideal genotype with suitable agronomic traits.

The study in Awata et al. aimed at using backcross populations at the BC3F2 generation to identify progeny resistant to maize lethal necrosis (MLN) developed using marker-assisted backcrossing. The research group used SNP based markers linked to six QTL for resistance through screening 2,400 BC3F2 lines using a KASP platform. The authors found 56 BC3F2 lines that had major resistance for MLN and confirmation experiments in the field resulted in 19 lines with high levels of MLN resistance. These validated KASP markers linked to the two major QTL which will serve to speed up breeding.

Ballén-Taborda et al. used wild relatives of peanut to conduct marker-assisted backcrossing of two loci controlling resistance to peanut root-knot nematode (PRKN, Meloidogyne arenaria) from Arachis stenosperma. The study performed four cycles of backcrossing while utilizing SNP analysis for foreground selection. A population of 271 BC3F1 lines was genotyped to determine introgression level across the peanut genome. The results indicate that PRKN resistance was validated in BC3F3 lines with seed size characteristics maintained. The study concluded that it is the introgression of both loci validated from A. stenosperma that confer the resistance. The work will represent a significant step in breeding for PRKN resistance into elite peanut cultivars.



REVIEWS

Soares et al. reviewed current progress in the improvement of disease resistance to Mycosphaerella fijiensis Morelet [anamorph: Pseudocercospora fijiensis (Morelet) Deighton] in bananas (Musa spp.). With the use of pre-established exclusion and inclusion criteria, the paper is a systematic review of papers collected using six scientific journal databases analyzing 3,070 published studies, identifying 24 relevant to the Musa-M. fijiensis pathosystem. Relevant articles found revealed that variable response to sigatoka exists among resistant and susceptible cultivars. In the case of M. acuminata wild diploids, resistance genes exist, and these have served as parental for new generations of improved diploids and introgression into elite cultivars. One of the highlights of the review indicates that the sequencing of the resistance genes in the M. acuminata genome still require functional validation across multiple omics data layers. Previously reported resistance genes have been involved in primary disease resistance pathways, such as jasmonic acid and ethylene signaling. Gene-based markers have been reported in Musa and are applicable for MAS. This review is a comprehensive panorama of the immune response found in the Musa-P. fijiensis pathosystem and summarizes some of the avenues available for breeders to undertake efforts to develop resistant cultivars.

Manze et al. provided an overview of genetic gain yield and virus resistance in Cassava over the last eight decades in Uganda. This study used 32 Cassava varieties released between 1940 and 2019 and conducted side-by-side multilocation trials in Uganda. Although disease resistance increased at an average up to 2.3% per year, fresh root yield and harvest index genetic gains have been non-significant. The authors reported some of the progress made in Cassava breeding, as well as some of the challenges that have yet to be solved, highlighting that breeding has mainly focused on protecting cassava against diseases while agronomic performance has not received sufficient attention.



FINAL REMARKS

Papers published in this Research Topic highlight progress made in classical and modern breeding for QDR, a trait that used to be evaluated solely based on visual symptom rating. It is known that QDR occurs probably in all pathosystems and is caused by the presence of multiple loci distributed across the whole genome of plants. The effect of each loci varies ranging from small to large and can be affected by environmental factors and plant growth stages as reported in this Topic. Additionally, quantitative disease loci (QDL) appears to be independent from the presence of qualitative resistance; thus, it is possible that breeding for QDR may not necessarily include genes for qualitative resistance. With the use of QTL and GWAS approaches, QDR can be analyzed by bi- or multi-parental QTL mapping and/or GWAS on diversity panels to identify QRLs in host plant genome that are closely associated with QDR. Dissecting QRLs could allow to isolate genes responsible for QDR. From breeding perspective, QRLs can be used for MAS to effectively develop new cultivars with durable resistance to pathogens of interest. The implementation of new tools (e.g., genomic selection) that enable accurate selection of large numbers of marker haplotypes simultaneously is a promising avenue for the accumulation of favorable alleles contributing to QDR. However, detecting and managing Genotype x Environment interaction in breeding for QDR continues to be a challenge.
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Durum wheat is an economically important crop for Canadian farmers. Fusarium head blight (FHB) is one of the most destructive diseases that threatens durum production in Canada. FHB reduces yield and end-use quality and most commonly contaminates the grain with the fungal mycotoxin deoxynivalenol, also known as DON. Serious outbreaks of FHB can occur in durum wheat in Canada, and combining genetic resistance with fungicide application is a cost effective approach to control this disease. However, there is limited variation for genetic resistance to FHB in elite Canadian durum cultivars. To explore and identify useful genetic FHB resistance variation for the improvement of Canadian durum wheat, we assembled an association mapping (AM) panel of diverse durum germplasms and performed genome wide association analysis (GWAS). Thirty-one quantitative trait loci (QTL) across all 14 chromosomes were significantly associated with FHB resistance. On 3BS, a stable QTL with a larger effect for resistance was located close to the centromere of 3BS. Three haplotypes of Fhb1 QTL were identified, with an emmer wheat haplotype contributing to disease susceptibility. The large number of QTL identified here can provide a rich resource to improve FHB resistance in commercially grown durum wheat. Among the 31 QTL most were associated with plant height and/or flower time. QTL 1A.1, 1A.2, 3B.2, 5A.1, 6A.1, 7A.3 were associated with FHB resistance and not associated or only weakly associated with flowering time nor plant height. These QTL have features that would make them good targets for FHB resistance breeding.
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INTRODUCTION

Fusarium head blight (FHB), also known as scab and mainly caused by Fusarium graminearum Schwabe [teleomorph: Gibberella zeae (Schwein.) Petch] (Bai and Shaner, 1994; McMullen et al., 1997), is a devastating fungal disease of small-grain cereals including durum and common wheat and barley, resulting in severe yield and quality losses (Gilbert and Tekauz, 2000; McMullen et al., 2012). Moreover, as food for humans and feed for animals, FHB infected grain also creates health risks due to contamination with mycotoxins. This is a particular concern for durum wheat, as its main purpose is for human consumption (Bai and Shaner, 2004; Zhao et al., 2018; Haile et al., 2019; He et al., 2019). Canada is the largest producer and exporter of durum wheat supplying more than a half of the world’s total exported durum (International Grains Council, 2020). Since the early 1990s, FHB has become the major disease threatening durum production in Canada and has caused major economic losses for producers (Gilbert and Tekauz, 2000). In 2016, a severe FHB epidemic caused 65% of the common wheat and 36% of the durum wheat to be downgraded in Saskatchewan, Canada, with an estimated economic loss of $1 billion (Canadian Grain Commission, 2017). It is therefore a priority to develop durum wheat with desirable FHB resistance to protect it from losses.

Currently, the combination of agronomic and chemical control along with genetic resistance is the most effective means to manage FHB (Gilbert and Haber, 2013; Prat et al., 2014). Genetic resistance is preferred due to its lower cost, higher efficacy, and environmental benefit (Prat et al., 2014). Genetic resistance to FHB in wheat is quantitative in expression due to control by multiple minor genes. FHB resistance is also significantly affected by environment (Bai and Shaner, 2004; Buerstmayr et al., 2009, 2019), thus having lower to moderate heritability (Van Sanford et al., 2001). Therefore, when visual assessment of FHB is performed in the field, lines must be tested in multiple independent environments with intensive phenotyping to reliably identify QTL for resistance.

Developmental traits including flower time, plant height, spike morphology, and anther extrusion/or retention are often reported for their relationship with FHB resistance (Mesterhazy, 1995; Gervais et al., 2003; Srinivasachary et al., 2009; Skinnes et al., 2010; Lv et al., 2014; Buerstmayr and Buerstmayr, 2016). Plant height and disease resistance mostly show a significantly negative correlation (Mesterhazy, 1995; Srinivasachary et al., 2009; Buerstmayr and Buerstmayr, 2016). Pleiotropic effects, tightly linked genes and disease escape have all been hypothesized as feasible mechanisms for resistance related to these developmental traits.

Fusarium head blight resistance can be categorized into three main types or components: (1) type I – resistance to initial infection measured by the incidence of disease in the presence of natural or augmented artificial inoculum (e.g., spray inoculation); (2) type II – resistance to fungal spread measured by the severity of disease; and (3) type III – resistance to the accumulation of the toxin deoxynivalenol (DON) in infected spikes (Miller et al., 1985; Mesterhazy, 1995; Bai and Shaner, 2004). Till now, more than 556 QTL contributing to FHB resistance have been identified on all 21 chromosomes of hexaploid wheat (Buerstmayr et al., 2009; Liu et al., 2009; Löffler et al., 2009; Venske et al., 2019). These QTL can be refined largely into 56 clusters by meta-QTL analysis (Venske et al., 2019). In spite of the relatively large number of identified QTL for FHB, only three QTL, Fhb1 on chromosome arm 3BS (Anderson et al., 2001; Liu et al., 2006), Qfhs.ifa-5A on 5AS (Fhb5) (Buerstmayr et al., 2002; Somers et al., 2003; Steiner et al., 2019a) and Fhb2 on 6BS (Anderson et al., 2001; Cuthbert et al., 2007) have been validated. All of these resistance loci originate from the Chinese cultivar Sumai 3, which displays among the highest levels of FHB resistance observed (Buerstmayr et al., 2009). Fhb1 is the best validated, and most frequently studied and deployed resistance QTL (Buerstmayr et al., 2019). It is currently the only resistance QTL confirmed to be present in several new FHB North American and European varieties with strong resistance (Hao et al., 2019). Fhb1 is reported primarily as conferring strong Type II resistance, and accounting for 20–60% of phenotypic variation in breeding populations (Miedaner and Korzun, 2012). Fhb1 was recently claimed to be cloned by three research groups as two different candidate genes (Rawat et al., 2016; Li et al., 2019; Su et al., 2019) with conflicting interpretations, leaving room for independent validation.

Compared to the large amount of genetic variation for FHB resistance reported in common wheat, durum wheat has limited sources of resistance (Oliver et al., 2008; Prat et al., 2014; Steiner et al., 2019b). Tetraploid sources of FHB resistance that have been identified include the Canadian durum cultivar Strongfield (Somers et al., 2006), experimental line DT696 (Sari et al., 2018), T. carthlicum (Somers et al., 2006; Oliver et al., 2008; Sari et al., 2018), T. dicoccoides (Ruan et al., 2012), T. dicoccum (Buerstmayr et al., 2012; Zhang et al., 2014), and Tunisian durum landraces (Ghavami et al., 2011; Huhn et al., 2012). Among these findings, the most stable and consistent QTL were identified on chromosomes 2B, 3A, 3B, and 5A (Prat et al., 2014; Haile et al., 2019).

As hexaploid wheat has significantly more sources of FHB resistance, introgression of resistance from hexaploid into durum wheat is one possible way to expand the durum resistance gene pool. Previous attempts to introgress FHB resistance from Sumai 3 into durum were largely unsuccessful (Prat et al., 2017). However, several recent successes have been reported with Fhb1 from Sumai 3 (Giancaspro et al., 2016; Prat et al., 2017) as well as a non-Sumai 3-related FHB resistance sources (Chu et al., 2011; Zhao et al., 2018). Despite these partial successes, no commercial durum cultivars with QTL from these non-adapted sources have been released due to the lengthy breeding process, linkage drag or suppression of resistance in durum backgrounds. Because of these challenges, utilizing the FHB resistance already present in durum cultivars is gaining favor as a promising approach to bring durum wheat cultivars with improved resistance to market more quickly. Durum cultivars with an improved level of FHB resistance have been developed and released by the North Dakota durum breeding program using this strategy (Zhang et al., 2014). With the same approach, recent durum cultivars, including Brigade (Clarke et al., 2009) and Transcend (Singh et al., 2012) with a better level of FHB resistance have also been successfully developed and released by Canadian durum breeding programs selecting for reduced symptoms in FHB nurseries. Regardless of this initial success, there is still a need to know and identify additional native sources of resistance as well as more exotic sources. Understanding the association of FHB resistance with developmental traits, flowering time and plant height is also important for recommending which resistance loci may be most relevant to a particular breeding program.

Genome wide association studies (GWAS) are a promising way to detect FHB resistance QTL present in diverse genetic sources. Only a few GWAS have been conducted on FHB resistance, including winter wheat (Wang et al., 2017), elite Chinese wheat (Zhu et al., 2020), durum breeding panels (Steiner et al., 2019b) and type II FHB resistance durum diversity panels (Ghavami et al., 2011). In this study, we aimed to use GWAS to explore FHB resistance of domestic durum cultivars and breeding material as well as exotic sources of resistance, including Sumai 3 and emmer wheat introgression lines. With GWAS in multiple environments, we aimed to: 1) explore and characterize FHB resistance QTL in durum wheat from the domestic as well as exotic sources, and 2) identify resistance QTL that colocalize with flowering time and plant height.



MATERIALS AND METHODS


Plant Materials

In total, 186 diverse durum wheat (Triticum turgidum L. ssp. Durum (Desf.) Husn.) lines were selected to constitute a durum association mapping (AM) panel targeted to improve FHB resistance in durum wheat. This panel was primarily composed of durum from Canada, including elite Canadian cultivars, advanced breeding lines, recently developed germplasm from Canadian breeding programs and from research projects (Supplementary Table 1). Experimental durum lines representing exotic FHB resistance and germplasm from global collections made up the remainder of the AM panel (Supplementary Table 1).



Phenotyping

Lines of the durum AM panel were evaluated for FHB infection in Morden and Brandon, MB, Canada in 2015 to 2017 with artificial inoculation and Indian Head, SK, Canada in 2015 and 2016 with natural infection. At both Morden and Brandon, FHB nurseries, corn spawn inoculum of Fusarium graminearum was used. Corn spawn consisted of grains that were inoculated with a mixture of two F. graminearum isolates, a 3-acetyl-deoxynivalenol (3ADON, M9-07-01) and a 15-acetyl-deoxynivalenol (15ADON, M1-07-02) isolate, after which colonized kernels were air dried. In Morden, approximately 2–3 weeks prior to heading, the corn spawn inoculum was spread at 8 g per single meter row with two applications at weekly intervals. Plots were irrigated three times per week using Cadman Irrigation travelers with Briggs booms. At Brandon, the corn spawn inoculum was applied between the rows at a rate of 40 g/m 6 weeks after planting, with a second application performed at the same rate 2 weeks after the first. Plots were irrigated three times per week with a mist irrigation system to create favorable conditions for F. graminearum infection. In Indian Head, FHB was achieved solely by natural disease infection. FHB incidence (INC, percentage of spikes showing symptoms) and severity (SEV, average percentage of spike with visual symptoms of infection) were estimated with visual assessment. FHB index (IND) was calculated with the formula: (INC × SEV)/100. Plant height (HT) and days to anthesis (DTA) were also recorded for Morden plots.



Genotyping

Genomic DNA of the durum AM panel was extracted from freeze-dried fresh leaf tissue of seedlings with a CTAB based protocol carried out on an automated AutoGen DNA isolation system (AutoGen, Holliston, MA). DNA was quantified with a Quant-iTTM PicoGreen® dsDNA Assay Kit (Thermo Fisher Scientific Inc., Bartlesville, OK, United States) and diluted to 50 ng/μL for SNP array genotyping. Genotyping of DNA was performed with the Illumina iSelect 90K SNP array (Wang et al., 2014) according to the manufacturer protocol (Illumina). SNP arrays were scanned with an Illumina HiScan. Raw intensity files from the HiScan were imported into GenomeStudio Version 2013 (polyploid clustering module v1.0.0, Illumina). SNP calling was performed with the method described by Wang et al. (2014) with 3 cluster steps of the cluster algorithm DBSCAN then OPTICS. All SNPs were subsequently visually checked, and incorrectly clustered SNPs or SNPs with more than 4 clusters were manually removed. Finally, SNPs with minor allele frequency (MAF) below 0.05, and missing genotypes higher than 15% were filtered out. This resulted in a total of 6900 high quality polymorphic SNPs of which 5933 markers were anchored to the wheat consensus map (Wang et al., 2014) for the downstream genome wide association analysis.



Statistical Analysis

Statistical analysis was performed with R 3.4.2 (R Core Team, 2017) with the lme4 package (Bates et al., 2015). Phenotypic traits from each disease nursery site across multiple years were fitted with the linear mixed model (Bates et al., 2015). The model is implemented as: Piy = μ + Gi + Ey + (GiXEy) + Eiy, where, Piy are the values of the tested phenotypic trait, μ is the population mean, Gi is the effect of genotypes, Ey is the effect of environments (here, by Year), Eiy is the residual, where i is the genotype, y is the year. The restricted maximum likelihood (REML) method within lme4 (Bates et al., 2015) was used to estimate the variance components of each trait. The broad sense heritability (H2) was estimated with the equation [image: image] across multiple years in each disease nursery site, where: [image: image] is the genotypic variance, [image: image] is the variance of interaction between genotype and year, [image: image] is the error variance, y is the number years, and p is the total number of replications in all tested years. The least squares means were used for trait correlation and association mapping analysis. The correlation coefficients of disease response, plant height and days to anthesis across multiple years and multiple sites were calculated with the Pearson correlation test and visualized with the R package “corrplot” (Wei and Simko, 2017).



Linkage Disequilibrium, Population Structure, and Kinship Analysis

Linkage disequilibrium (LD) was estimated by correlation coefficient analysis and used the squared correlation coefficients (r2) for all 5933 anchored SNP markers implemented in Tassel v.5.5.0 (Bradbury et al., 2007). The r2 values of unlinked genetic markers (defined as genetic distance > 30 cM) were square-root transformed into a normal distribution. The baseline (or critical) r2 value, a value that suggested LD was likely caused by genetic linkage, was determined by taking the 95% percentile of this distribution (Breseghello and Sorrells, 2006). The scatter plot of r2 versus genetic distance (cM) was fitted using a non-linear model described by Remington et al. (2001) that was implemented in software PopLDdecay (Zhang et al., 2019).

Population structure of the durum AM panel was determined with STRUCTURE v2.3.4 (Pritchard et al., 2000) with a pruned SNP marker dataset that was generated with the LD (linkage disequilibrium)-based pruning approach implemented in the software PLINK (Purcell et al., 2007). A total of 2306 pruned markers with LD (r2) ≤ 0.2 were used for population structure analysis. STRUCTURE analysis was performed with a 50000 burn-in length and 100000 Markov chain Monte Carlo (MCMC) iterations from K = 2 to K = 12 (K, specialized clusters of the AM panel). Fifteen independent STRUCTURE runs were conducted for each specialized K. The optimal cluster (K) was determined by the ΔK method (Evanno et al., 2005), implemented in the software Structure Harvester (Earl and vonHoldt, 2012). Independent runs of the optimal K were summarized using CLUMMP v1.1.2 software (Jakobsson and Rosenberg, 2007). The CLUMMP generated Q matrix was used to graph the population structure using Structure Plot software (Ramasamy et al., 2014) and perform downstream GWAS analysis. A phylogenetic tree was built with the neighbor-joining (NJ) method in MEGA6 (Tamura et al., 2013) and visualized with Figtree v1.4.41. Principal component analysis (PCA) was performed with R package Genome Association and Prediction Integrated Tools (GAPIT) (Lipka et al., 2012; Tang et al., 2016).



Genome-Wide Association Study

Association mapping was performed on the durum association panel using the phenotypic data collected from the multiple nurseries in multiple years, including HT, DTA, INC, SEV and IND. Association mapping was performed using 5933 mapped SNPs that had a MAF > 0.05 using both Tassel v5.5.50 (Bradbury et al., 2007) and GAPIT (Lipka et al., 2012; Tang et al., 2016). Different association models were tested in both software packages, and QQ-plots generated from all the models were compared to select the model that best controls false positives and negatives. All the data presented here were generated in TASSEL using a mixed linear model (MLM) incorporating the STRUCTURE (Q) matrix as a fixed factor and the kinship (K) matrix as a random factor (Q + K MLM). To be considered a QTL in this dataset, we selected SNPs that were significant (p < 0.05, marker-wise) in at least four of the tested environments for FHB resistance or two for plant height and flower time, and with at least one environment with a highly significant response (p < 0.001). Significant SNPs on the same linkage group were grouped into a QTL region if markers were linked with LD > 0.2.



RESULTS


Population Structure and Linkage Disequilibrium (LD) Analysis

STRUCTURE analysis, principal component analysis (PCA) and NJ-phylogenetic tree analysis were all used to determine clustering of lines within the durum AM panel, and two subpopulations were consistently indicated, as shown by different colors in Figure 1. Subpopulation 1 (shown as green in Figure 1 and Supplementary Table 1) contained 124 lines, and consisted of a large proportion of Canadian cultivars and inbred lines including the older cultivar Kyle, more recent cultivars Strongfield and currently most popular cultivars as Brigade, Transcend and CDC Credence. Subpopulation 2 included 62 lines (shown in red in Figure 1 and Supplementary Table 1), consisting of the founder landrace Pelissier and the majority of lines from Austria. All of the inbreeding lines derived from introgression of FHB resistance genes from Sumai 3 into European durum wheat cultivars were contained in subpopulation 2, as were the majority of T. dicoccoides introgression lines. The baseline critical threshold r2 value of LD was identified as 0.2, corresponding to a genetic distance around 3.0 cM from the whole genome analysis (Supplementary Figure 1).


[image: image]

FIGURE 1. Population structure analysis of the durum association mapping (AM panel). (A) Principal component analysis (PCA). (B) Phylogenetic tree constructed with Neighbor Joining (NJ) method, green color and red color represented subpopulations 1 and 2 inferred from Structure analysis. (C) Population structure analysis with K = 2 of the AM panel. Green color, subpopulation 1 and red color subpopulation 2.




Phenotypic Analysis

Mean values (across years) of FHB INC, SEV, IND, DTA and HT of lines from the durum AM panel at Brandon, Morden, and Indian Head, were summarized in Supplementary Table 1. Across environments, FHB INC tended to be higher than SEV (Figure 2) which is reflected in the overall means (Table 1). The lowest INC was observed at Indian Head in 2016, the location with the lowest severities in both 2015 and 2016. Moderate SEV were observed at Brandon in 2016 and 2017. Generally, a large differential in FHB INC and SEV was observed as indicated by the range for each environment in Table 1, except Indian Head where the maximum severity of disease was less than 100%. Plant height showed a larger range with the average shortest 55 cm and the highest 148 cm while DTA was observed in a range of 13 days in 2017 and 20 days in 2015 (Table 1 and Supplementary Figure 2). For both INC and SEV, moderate to high broad sense heritability was observed with the two sites under artificial inoculation showing lower heritability than the natural infection site (Table 1). HT showed the highest heritability, while DTA had the lowest heritability (Table 1). For FHB INC and SEV, moderate to high correlations were observed in all tested environments (years and sites). Generally, both HT and DTA had very significant negative correlations with INC and SEV (Figure 3). Analysis of variance (ANOVA) revealed that genotypic effects were significant for all phenotypic traits (P < 0.001, Supplementary Table 2).


[image: image]

FIGURE 2. Distribution of FHB resistance of the durum association mapping panel (AM) in field trials at (A) Morden, MB; (B) Brandon, MB; and (C) Indian Head, SK. INC: incidence (%), percentage of spikes showing symptoms; SEV: severity (%), percentage of spike area infected. 15, 16 and 17: years 2015, 2016, and 2017.



TABLE 1. Mean, range and heritability of the durum association mapping panel (AM) for FHB incidence, FHB severity, plant height (cm), and days to anthesis (DTA) for the individual trial in Morden, Brandon, and Indian Head across the 2015–2017 trial series, and across sites between Modern and Brandon.

[image: Table 1]
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FIGURE 3. Pearson correlation analysis of fusarium head blight resistance related traits. INC, Incidence (%), FHB incidence, percentage of spikes showing symptoms; SEV, severity (%), percentage of spike area infected; HT, plant height (cM); and DTA, day to anthesis. MD, Morden, MB; BD, Brandon, MB; IH, Indian Head, SK; 15, 16, and 17, field trials in year 2015, 2016 and 2017. Correlation coefficients were shown in upper triangle. Levels of significance claimed at *P < 0.05; **p < 0.005, ***p < 0.0001.




GWAS Analysis of FHB Resistance, HT and DTA

With GWAS analysis, 31 genomic regions were significantly associated with FHB resistance traits (Figures 4, 5). The quantile-quantile (QQ) plots (Supplementary Figure 3) showed that, for the majority of traits, an appropriate model was fitted for the GWAS test. The GWAS results were summarized in Table 2 and Supplementary Table 3. SNPs located within the same region were grouped into QTL, and Table 2 shows the QTL names and physical location of the associated SNPs based on their location on the IWGSC Chinese Spring (CS) reference 1.0 (CS Ref 1.0; International Wheat Genome Sequencing Consortium [IWGSC], 2018). For each significant QTL, the lowest –log10 (p-value) is shown for each environment and trait tested whenever the p-value is less than p = 0.05. As shown in Table 2, there was significant variation in detection of QTL across all of the environments, and more detection of INC than SEV across the environments. The majority of the FHB resistance QTL colocalized with DTA and/or HT.


[image: image]

FIGURE 4. Manhattan plots displaying genome wide marker-trait association analysis for FHB incidence (INC), index (IND) and severity (SEV) at (A) Morden, MB from the years 2015 to 2017; (B) Brandon, MB for years 2015 to 2017; (C) Indian Head, SK from 2015 to 2016 (with natural infection); and for (D) plant height (HT) and day to anthesis (DTA) at Morden, MB for 2015 to 2017 trials.
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FIGURE 5. The reference genotype–phenotype map. A reference genotype–phenotype map with the most significant trait-associated markers in each chromosome aligned to the reference sequence of common wheat (International Wheat Genome Sequencing Consortium [IWGSC], 2018). MB, Morden, MB; BD, Brandon, MB; IH, Indian Head, SK. FHB incidence (INC), severity (SEV), index (IND), plant height (HT), and days to anthesis (DTA).



TABLE 2. Quantitative trait loci names, physical positions, associated traits, explained phenotypic variance and significance of association with Fusarium head blight incidence (INC), index (IND), severity (SEV), days to anthesis (DTA), and plant height (HT) identified from durum association mapping panel across environments.

[image: Table 2]A major QTL, 1B.1, was found between 544 and 580 Mb on 1B (Figure 5 and Table 2). It was significant for INC, SEV and IND, and explained as much as 20% of the phenotypic variation (Table 2 and Supplementary Table 3). The QTL 1A.3 was located in the syntenic region of 1B.1, between 503 and 580 Mb (Figure 5 and Table 2), and it was also significant for IND and INC though present in fewer environments and with lower significance than 1B.1 (Table 2). 1B.1 colocated with significant HT and DTA QTL, while 1A.3 was significant for DTA.

Another major QTL was at 30–31 Mb on 2AS, termed 2A.1 (Figure 5 and Table 2). This QTL was significant for INC, IND and SEV, as well as being associated with HT and DTA (Figures 4, 5, Tables 2, and Supplementary Table 3). It was one of the more stable QTL detected, being present for INC in all environments. Another significant QTL, 2B.1, was located between 8.6 and 22 Mb and was associated with all tested traits and explained up to 15% phenotypic variation (Table 2 and Supplementary Table 3). QTL 2A.2 was also stable, and detected for INC in seven, IND in eight and SEV in five environments (Supplementary Table 3). It was located from 138 to 142 Mb, and was consistently associated with DTA (Table 2 and Supplementary Table 3). QTL 2A.2 explained up to 10% of phenotypic variation (Table 2). On group 5, the QTL 5A.1 in the region between 585 and 591 Mb of 5A had a relatively stable effect for INC in both Brandon, MB, and Indian Head, SK (Figures 4, 5 and Table 2). It was detected at a low level for HT in one environment. 5B.2 was located from 577 to 691 Mb on 5BL (Table 2). It explained up to 9.6% of phenotypic variation, and was most stable for INC in Brandon and Morden. This QTL was also associated with DTA, and minor effects were observed on IND and SEV, including at Indian Head (Figure 4 and Table 2).

Three QTL were identified on chromosome 3B (Figure 5). The 3B.1 QTL was located around 3.7 Mb. It was identified in significant levels for INC, IND and SEV, and explained as much as 20.8% of phenotypic variation (Table 2). The QTL also affected HT with a very large effect on DTA. A stable QTL, designated 3B.3, was located on chromosome 3B at 141–233 Mb (Table 2). This QTL affected up to 9% of phenotypic variation, and also conferred a very stable effect on HT and smaller effect on DTA (Table 2). The third 3B QTL, 3B.2, was located around 9.8 Mb (Table 2), approximately 1 Mb from Fhb1 in common wheat (Rawat et al., 2016; Li et al., 2019; Su et al., 2019). It had no observable effect on HT or DTA, but also had a quite minor effect, explaining at most 7.7% of phenotypic variation (Table 2). Though this QTL was less stable, because of the location of 3B.2 in the region of Fhb1 and because of the importance of this gene to FHB resistance in common wheat, we chose to further characterize the QTL in the durum AM panel. Pedigree information and genotypes of 3B.2 identified three different haplotypes for the significant marker, BS00079522_51, which were defined as tSumai3, tNative and tEmmer types (Supplementary Table 4). The tSumai 3 haplotype was derived from the introgression of Fhb1 from Sumai 3 into durum wheat (Supplementary Table 4). All Canadian cultivars shared the tNative haplotype, and the tEmmer haplotype was found in durum wheat introgressed from Td161 and a few durum wheat experimental lines from Austria (Supplementary Table 4). Allele effect analysis identified that the tEmmer type of 3B.2 conferred an effect that increased disease susceptibility (Figure 6).
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FIGURE 6. Haplotype effects (mean values across years in each site) of Fhb1 (3BS.2) QTL on (A) FHB incidence (Inc); (B) FHB severity (Sev); and (C) FHB index (Ind). Three types of haplotype were identified and defined as tEmmer, tNative and tSumai3. Site: BD, Brandon, MB; IH, Indian Head, SK; and MD, Morden, MB. Y-axis, effects of haplotype on disease susceptibility, larger number indicates that haplotype increases disease susceptibility.


There were a small number of QTL that did not co-locate with DTA or HT QTL. These include 1A.1, 1A.2, 6A.1, and 7A.3. The QTL 1A.1, located near the distal end of the short arm of chromosome 1A within a region from 13 to 20 Mb, was only significant for INC. Also on 1A was 1A.2, which mapped to 366 Mb on chromosome 1AL. It was detected in seven of the eight different environments, though not consistently across INC, IND and SEV, and a minor association with HT was also identified in one environment at this locus (Figure 4, Table 2, and Supplementary Table 3). 6A.1 was positioned at 12–23 Mb on 6AS. It had a significant effect on FHB, explaining up to 16% of phenotypic variation. This QTL also had a very minor effect for both HT and DTA with each only observed in a single environment. The 7A.3 QTL located to the distal region of 7A, around 671 Mb, had an effect on INC, SEV and IND, with no QTL for height or DTA found in this region (Figure 4 and Table 2). This QTL was detected only in Brandon and Morden field sites, and explained up to 9.6% phenotypic variation (Table 2).



DISCUSSION


Phenotypic Data Analysis

The moderate to high heritability observed for FHB resistant traits in multiple environments in the durum AM panel indicated a large part of the phenotypic variation was contributed by genetic variation. The positive correlation between plant height and days to anthesis indicated that the genetic control of plant height and flowering time was partially shared (Table 1; Langer et al., 2014). The high proportion of disease susceptibility we observed in the field tests supports literature emphasizing the limited tetraploid wheat resources with a high level of FHB resistance (Oliver et al., 2008). The observed significantly negative correlations between FHB resistance and plant height and days to anthesis also agreed with previous findings summarized by Prat et al. (2014) and Steiner et al. (2017). Because the significant negative correlations between both DTA and HT and FHB traits ranged from −0.24∗∗∗ to −0.60∗∗∗ and −0.18∗ to −0.42∗∗∗, respectively, there is considerable scope to shift this negative relationships (i.e., to have DTA more consistently around −0.24 and the correlation with HT toward −0.18). By adopting strategies to stratify experimental genotypes into groups by both days to anthesis and plant height, it may be possible to recombine earlier to flower and shorter plants with reduced FHB symptoms. The correlation will not be broken but it can be shifted so that earlier maturing and shorter genotypes can be recombined with reduced FHB symptoms. Using this strategy, the negative relationship between plant height and FHB traits has been shifted by recombining semi-dwarf stature with a moderate level of resistance in hexaploid wheat cultivars such as Carberry (DePauw et al., 2011) and AAC Brandon (Cuthbert et al., 2017), both of which became widely adopted by producers. Adopting this strategy in durum wheat genetic enhancement could prove equally effective.



Genetic Architecture of FHB Resistance in the Durum AM Panel and Its Association With Flower Time and Plant Height

Compared to common wheat, durum wheat has limited genetic variation, and less effort has been committed to improve durum resistance to FHB (Buerstmayr et al., 2009, 2019; Prat et al., 2014, 2017). Within the current study, we identified a large number of QTL associated with FHB resistance with GWAS analysis from multiple environments and sources, broadening the resistance gene pool in durum wheat. The minor effect of these multiple QTL reinforces what is already known about the polygenic nature of FHB resistance, but also reveals the necessity of combining genes from multiple sources (Buerstmayr et al., 2009, 2019; Liu et al., 2009).

The major and most consistent FHB QTL found in previous studies is the hexaploid wheat Sumai 3 derived Fhb1, located on 3BS around 7.6–13.9 Mb (Anderson et al., 2001; Liu et al., 2006).

Introgression of Fhb1 into durum wheat has been challenging, with one possible reason being the unstable expression in a durum genetic background (Zhao et al., 2018). Recently, Prat et al. (2017) successfully introgressed Fhb1 into durum wheat, and some of those introgression lines are part of this AM panel. A QTL was found in the same region as Fhb1 in this study, designated 3B.2. This QTL was detected in limited environments with a minor effect. QTL 3B.2 had three distinct haplotypes (Supplementary Table 4), and compared to haplotypes of Sumai 3 (tSumai 3) and Canadian cultivars (tNative), the haplotype from the experimental lines derived from emmer wheat Td161 (tEmmer) conferred disease susceptibility (Supplementary Table 4). This finding confirms previous findings that the Fhb1 region from Td161 contributed to disease susceptibility when compared to the susceptible durum wheat Floradur (Buerstmayr et al., 2012). The resistance haplotype found in the GWAS study by Steiner et al. (2019b) corresponds to the tNative haplotype presented in this study. The tNative haplotype is the only haplotype found in the Canadian and American cultivars presented in both studies, while both the tNative and tEmmer haplotypes exist in durum wheat from Austria, CIMMYT, ICARDA, Italy and Morocco (Steiner et al., 2019b). Altogether, these findings indicate that one of the two non-Sumai 3 Fhb1 region haplotypes found in tetraploid wheat contributed to disease susceptibility when compared to the other. Further characterizing the region with additional markers is needed to help resolve the source of the alleles and further understand the effects of the three haplotypes identified in this study.

Two additional 3B QTL were found significantly associated with all of the traits, 3B.1 in the telomeric region of 3BS, and 3B.3 in the centromeric region of the short arm (3BSc). Recently, Wu et al. (2019) reported a QTL positioned at 2.0 Mb on the reference sequence from elite Chinese common wheat germplasm, almost the same region as the 3B.1 identified in this durum AM panel study. The 3B.3 QTL was one of the most stable QTL identified, with a larger effect on FHB resistance than other QTL in this AM panel. Notably, the resistant 3BSc haplotypes were identified in the durum wheat lines that also had Fhb1 introgressed from Sumai 3 by Prat et al. (2017). The location of 3B.3 corresponds to the 3BSc region QTL previously reported as important to FHB resistance, particularly in Canadian elite germplasm, where 3BSc conferred a larger effect than Fhb1 (McCartney et al., 2007). Also in agreement with findings from McCartney et al. (2007), the 3BSc QTL conferred a large effect on both plant height and DTA in elite Canadian wheat. Further research is needed to explore effects of Fhb1, 3B.1 and 3BSc in durum wheat.



QTL With No or Weak Association With Flowering Time and Height

The common association between plant height, flowering time and FHB resistance was illustrated in this study. Of the 31 FHB QTL regions identified, all but five also had strong associations with plant height and/or flowering time. The relatively small effects of these QTL compared to other QTLs detected in this study may be related to the strong influence of flowering time on FHB resistance, potentially overinflating the effects of the QTL for FHB resistance due to the timing of flowering. Due to the progression of the FHB symptoms over time, the correlation between days to anthesis and disease development are confounded by the length of time for disease development. Due to cost constraints, disease rating was not evaluated over a time course to control for this effect, and thus we cannot exclude the observed correlation between FHB resistance and DTA may be caused by these confounding effects.

Fusarium head blight resistance QTL that are not associated with height or flowering time are much more appealing targets, as the negative influence of taller plants and complicated relationship with flowering time can be avoided. The targeted breeding of these QTL for resistance that do not carry extra undesirable traits will have the most likely success. The most favorable of these QTL may be 3B.2, but the QTL 1A.1, 1A.2, 6A.1, and 7A.3 with no association or weak association with DTA and HT are also desirable candidates. The 1A.1 QTL was located in the same region as the major QTL previously reported on the distal part of 1AS (summarized by Buerstmayr et al., 2009; Liu et al., 2009; Venske et al., 2019). Jiang et al. (2007a, b) located an FHB SEV QTL from the Chinese wheat line CJ9306 to position 27.2 Mb, and GWAS by Zhu et al. (2020) similarly identified an FHB QTL for IND from Chinese elite germplasm in the same region. A recent study by Sari et al. (2018) of T. carthlicum cv. Blackbird identified an important FHB QTL for INC, SEV and IND in the region of 1AS that agrees well with the 1A.1. The 1A.2 QTL colocalized with a QTL positioned at around 350 Mb for FHB severity and DON identified in Chinese elite germplasm (Wu et al., 2019) and for FHB resistance based on point inoculation in CIMMYT line C615 (Yi et al., 2018). In our study, we found this QTL was also associated with FHB incidence, index and severity. Within the AM panel of our study, although the resistance allele of 1A.1 was not found in Canadian cultivars, the 1A.2 occurred in several current Canadian cultivars with improved FHB resistance, including CDC Precision (Pozniak and Clarke, 2017b) and Brigade (Clarke et al., 2009; Supplementary Table 3).

The 6A.1 QTL’s large effect on FHB resistance makes it appealing despite a small undesirable influence on DTA and HT. No major QTL clusters have been reported in a similar region as 6A.1, though Yi et al. (2018) reported a minor QTL in this region detected from a susceptible wheat line in one environment, and Lu et al. (2013) identified a minor QTL in the proximal 6A region for both FHB resistance and plant height. Because the 6A.1 resistance haplotype is present in a large number of Canadian durum wheat cultivars, including Brigade (Clarke et al., 2009), Transcend (Singh et al., 2012), CDC Credence (Sari et al., 2018) and CDC Precision (Pozniak and Clarke, 2017b; Supplementary Table 3), it should be possible for Canadian breeding programs to build on this resistance, though the effect of the QTL in Canadian elite durum cultivars remains to be validated.

The 7A.3 QTL, located at 671 Mb, with its relatively large effects on all FHB resistant traits without being associated with plant height or flowering time also make it another good target for breeding FHB resistance. Previous research identified a major QTL for type II resistance based on point inoculation in the vicinity of 7A.3 through the physical mapping of the SSRs gwm276 and gwm262 to positions of 642.9 and 681.4 Mb (Semagn et al., 2007; Buerstmayr et al., 2009). Wu et al. (2019) also reported a QTL affecting DON accumulation in the same region of elite Chinese germplasm, while Sari et al. (2018) reported QTL for SEV and IND in the same region from the durum wheat inbred line DT696.

From the durum AM panel in our study, 2A.2 located in the same region as a native durum FHB resistance QTL in previous research in cultivars Ben by Zhang et al. (2014) and Joppa by Zhao et al. (2018). In addition, the QTL 2A.2 was also found consistently associated with DTA, suggesting it plays a role in controlling flowering. In this durum AM panel, the resistance haplotype of 2A.2 was found in DT696 (Sari et al., 2018), an adapted source of FHB resistance in durum wheat, as well as several Canadian cultivars with improved FHB resistance derived from this line, including Brigade (Clarke et al., 2009), Transcend (Singh et al., 2012) CDC Credence (Sari et al., 2018), and CDC Precision (Pozniak and Clarke, 2017b; Supplementary Table 3). Despite its association with DTA, the effectiveness of the 2A.2 in native durum cultivars from Canada and United States make it another good target to breed durum wheat with improved FHB resistance.



QTL Co-located With Flowering Genes

The majority of the QTL identified from this AM panel were found associated with flowering time and/or plant height. As mentioned previously, the Notably, three QTL pairs, including 1A.3 and 1B.1, 2A.1 and 2B.1, and 5A.1 and 5B.2, were found in syntenic regions of the A/B genome that harbor known orthologous gene pairs controlling flower time. 1A.3 was in a similar region of a major QTL found in United States winter wheat cultivar NC-Neuse (Petersen et al., 2016, 2017). The FLOWERING LOCUS T3-A1 (TaFT3-A1) gene that promotes flowering was found physically mapped around 528.1 Mb of 1A in CS Ref 1.0 (Zikhali et al., 2017; International Wheat Genome Sequencing Consortium [IWGSC], 2018), which is close to the region of 1A.3. The major QTL 1B.1 located to the region coinciding with a QTL of FHB resistance from the European winter wheat Arina (Semagn et al., 2007; Buerstmayr et al., 2009; Liu et al., 2009), as well as loci controlling DTA identified in the recent durum wheat GWAS by Steiner et al. (2019b). This QTL conferred a stable and large effect for INC, SEV, HT and DTA. Recently, the photoperiod gene FLOWERING LOCUS T3-B1 (TaFT3-B1) that promotes flowering time, was physically identified at position 581 Mb of 1B (Zikhali et al., 2017), the same region as 1B.1. The 1B.1 and 1A.3 QTL occur in syntenic region of the genome, indicating the orthologous gene pair, TaFT3-B1 and TaFT3-A1, as candidate genes underling the QTL effect in these regions.

The 2A.1 QTL conferred main effects for INC, IND, DTA and HT, physically positioned to around 27–31 Mb on chromosome 2A. This location is very near to the photoperiod gene Ppd1A, which has an important role in controlling flowering time and height, indicating 2A.1 as candidate gene controlling the QTL. Giancaspro et al. (2016) found a similar QTL positioned at 10 Mb on 2AS for FHB resistance in durum wheat, derived from the introgression of FHB resistance from Sumai 3, but with no report on its association with plant height. Gadaleta et al. (2019) identified a wall-associated receptor-like kinase (WAK2) in this region as the candidate gene for FHB resistance. Our study found a 2B QTL, designated 2B.1 that colocalizes with Ppd1B located in a syntenic region of 2A.1. This QTL contributed to INC, SEV, IND, DTA and HT. Thus, our findings support the Ppd loci on 2AS and 2BS as candidate genes responsible for the observed effects, although further studies with well stratified plant height and FHB rating DTA are required in order to explore the factors underlying these QTL.

Both the QTL 5A.1 on 5AL and 5B.2 on 5BL occur in syntenic regions that harbor orthologs of the well-known vernalization genes VRNA1 (at 585.1 Mb) and VRNB1 (at 613.0 Mb). 5A.1 and 5B.2 both conferred a stable effect for INC and IND, and while 5B.2 also had a large effect of on DTA, 5A.1 had no effect on DTA and only a minor effect on HT in one environment. Sari et al. (2018) reported a major FHB resistance QTL from the Canadian durum wheat line DT696 in the same region as 5A.1, also finding no DTA or HT QTL in this region. Xu et al. (2020) found QTL located in the same regions as 5A.1 and 5B.2 in common wheat that controlled anther extrusion, heading time and FHB resistance. There is potential that these vernalization genes are responsible for the FHB resistance coming from these regions, and that the VRNA1 gene has just a minor effect on flowering time in durum wheat. The resistance haplotype of 5A.1 was found in Canadian durum cultivars including Brigade (Clarke et al., 2009) and CDC Alloy (Pozniak and Clarke, 2017a; Supplementary Table 3). Because of the presence of the resistant haplotype in current durum cultivars, and the minor effect on flowering time, we believe the VRNA1 region QTL from this study and Sari et al. (2018) is a good target to improve FHB resistance in durum wheat. However, there is still need for further research to explore the mechanism of colocalization between the vernalization genes and FHB resistance and their effect on flowering in durum.



CONCLUSION

With genome wide association analysis we identified 31 QTL for FHB resistance. This confirms the quantitative nature and polygenic control of the FHB resistance and also signifies that this durum AM panel contains a large amount of genetic variation for FHB resistance loci. These QTL capture a large amount of the major QTL reported for hexaploid and tetraploid wheat which should facilitate improving FHB resistance in durum wheat. Five QTL found primarily for FHB resistance, including 1A.1, 1A.2, 5A.1, 6A.1, and 7A.3, could be used as initial targets to improve resistance in durum wheat without detrimental effects. Although 2A.2 is associated with DTA, the resistant haplotype exists in several Canadian and United States cultivars with improved FHB resistance, and we think that due to its adaption to durum cultivars in North America it is also a good target. The majority of these QTL identified were associated with plant height and/or flowering time, indicating that phenology, flowering and height genes formed a complex network affecting FHB resistance in durum wheat. Prior knowledge of the haplotypes of these genes in breeding materials will provide an informed approach to stack these genes and give breeders the ability to design a better strategy to use these sources to improve FHB resistance. However, more research is needed to identify the mechanism of the trait associations, and truly determine whether pleiotropic effects of same gene, linkage drag of resistant genes, and/or disease escape due to flowering time and plant height are in effect. Only by completely understanding these relationships, can a better strategy, from genetic, genomics and breeding perspectives be developed to significantly increase FHB resistance in durum wheat. Finally, considering the attributes of QTL identified in this study, including the large number of minor effects, the varied expression across environments, and the complex interaction with flowering time and height, we suggest intercrossing the multiple sources of resistance. Then the progeny should be selected using a multi-trait based, high-throughput marker assisted selection approach that incorporates resistance, flowering time and height loci, in combination with intensive phenotyping, with the genotypes grouped by days to flower and plant height, across multiple target environments, as the most promising approach to develop durum wheat with a better level of resistance.
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Eucalyptus grandis is one of the most important species for hardwood plantation forestry around the world. At present, its commercial deployment is in decline because of pests and pathogens such as Leptocybe invasa gall wasp (Lepto), and often co-occurring fungal stem diseases such as Botryosphaeria dothidea and Teratosphaeria zuluensis (BotryoTera). This study analyzed Lepto, BotryoTera, and stem diameter growth in an E. grandis multi-environmental, genetic trial. The study was established in three subtropical environments. Diameter growth and BotryoTera incidence scores were assessed on 3,334 trees, and Lepto incidence was assessed on 4,463 trees from 95 half-sib families. Using the Eucalyptus EUChip60K SNP chip, a subset of 964 trees from 93 half-sib families were genotyped with 14,347 informative SNP markers. We employed single-step genomic BLUP (ssGBLUP) to estimate genetic parameters in the genetic trial. Diameter and Lepto tolerance showed a positive genetic correlation (0.78), while BotryoTera tolerance had a negative genetic correlation with diameter growth (−0.38). The expected genetic gains for diameter growth and Lepto and BotryoTera tolerance were 12.4, 10, and −3.4%, respectively. We propose a genomic selection breeding strategy for E. grandis that addresses some of the present population structure problems.

Keywords: ssGBLUP, genetic correlation, Eucalyptus grandis, Leptocybe invasa, Botryosphaeria dothidea, Teratosphaeria zuluensis


INTRODUCTION

Fast-growing plantation forests are essential to the pulp, paper, and timber industries and the emerging biorefinery and biomaterials industries (Perlack et al., 2005; Cetinkol et al., 2012; Devappa et al., 2015; Stafford et al., 2020). The sustainability of many of these industries is dependent on woody biomass from plantation-grown Eucalyptus trees. Eucalyptus species are adaptable, fast-growing, generally resilient to pests and pathogens, and have the desired wood qualities for diverse wood products (Malan, 1993; Stafford et al., 2020). Volume growth and wood density are essential measures for forest plantation productivity (Raymond, 2002). However, pest and pathogen challenges have increased in severity in the past decades, posing a significant risk to Eucalyptus plantation forestry productivity and sustainability in subtropical regions (Wingfield et al., 2015). How to ensure continued genetic gains for volume growth in the presence of severe pest and pathogen challenges has become an essential question for plantation species such as Eucalyptus grandis.

Leptocybe invasa Fisher & La Salle is one of the most damaging insect pests of Eucalyptus species that affects growth by forming galls on leaves and leaf petioles. The insect is native to Queensland, Australia, known as the Blue Gum Chalcid wasp (Hymenoptera: Eupholidea). It has spread across the globe, infesting a wide range of commercially grown Eucalyptus species and their hybrids, resulting in severe losses in young plantations and nursery seedlings (Mendel et al., 2004; Nyeko et al., 2010; Chang et al., 2012; da Silva et al., 2020). First reported in the Mediterranean Basin and the Middle East in 2000 (Viggiani et al., 2000; Mendel et al., 2004), L. invasa subsequently spread throughout countries in Africa, America, and Asia (Nyeko, 2005; Wiley and Skelly, 2008; Prabhu, 2010; Zhu et al., 2012). Two parasitoid species of L. invasa from Australia, Quadrastichus mendeli and Selitrichodes kryceri, were deployed as biological controls to manage severe infestation levels in Eucalyptus plantations in Israel (Kim et al., 2008). Tracking the introduction of L. invasa in South Africa, Q. mendeli was recently discovered, and the biological control potential of L. invasa in South African Eucalyptus plantations was investigated (Bush et al., 2018). Another recently discovered parasitoid species of L. invasa from Australia, S. neseri, was described and investigated for its parasitism rates in South Africa, ranging from 9.7 to 71.8% (Dittrich-Schroder et al., 2014).

Resistance-linked DNA markers for molecular breeding is an alternative strategy to manage pest challenges. Towards this, simple sequence repeat (SSR) markers have been identified that jointly explained 3–37% of the variation of resistance in E. grandis and were validated in E. tereticornis explaining 24–48% of the variation of resistance (Zhang et al., 2018). Due to the significant variation that exists within and between Eucalyptus species, there is opportunity to breed for L. invasa tolerance (Mendel et al., 2004; Thu et al., 2009; Durand et al., 2011; Sangtongpraow et al., 2011; Dittrich-Schroder et al., 2012; Nugnes et al., 2015; Zheng et al., 2016). A recent genome-wide association study in an E. grandis breeding population identified candidate genomic regions on chromosomes 3, 7, and 8 that contained putative candidate genes for tolerance. These candidate genomic regions explained ∼17.6% of the total phenotypic variation of L. invasa tolerance (Mhoswa et al., 2020).

Teratosphaeria zuluensis, a fungal pathogen that causes stem canker, previously known as Coniothyrium canker, is a devastating stem disease of Eucalyptus species and is one of the most severe pathogens of plantation-grown Eucalyptus spp. (Wingfield et al., 1996; Crous et al., 2009; Aylward et al., 2019). It was first recognized in South Africa in 1989 and described in 1996 (Wingfield et al., 1996). T. zuluensis has been reported on Eucalyptus spp. in Malawi, Mozambique and Zambia (Jimu et al., 2015), Hawaii (Cortinas et al., 2004), Ethiopia (Gezahgne et al., 2003), and Argentina and Vietnam (Gezahgne et al., 2004b). Infections from T. zuluensis results in necrotic spots on green branches and the main stem, giving a “cat-eye” appearance that develops into large cankers on susceptible trees. T. zuluensis infection reduces wood quality by penetrating the cambium to form black kino filled pockets and may lead to tree death (Wingfield et al., 1996; Gezahgne et al., 2003).

Botryosphaeria dothidea is also a devastating fungal pathogen of eucalypt species affecting the stem. B. dothidea is known to have endophytic characteristics with instances of opportunistic latent infections (Smith et al., 1996; Slippers et al., 2009). Species of the Botryosphaeriaceae family infect plants via natural apertures (Bihon et al., 2011) and wounding (Epstein et al., 2008). B. dothidea infection results in longitudinal cracks that penetrate the bark into the xylem forming kino pockets in the wood, and stem cankers and tip dieback (Smith et al., 1994). It infects eucalypts in many countries including the Congo (Roux et al., 2000), Australia (Burgess et al., 2019), South Africa (Smith et al., 1994), Ethiopia (Gezahgne et al., 2004a), Venezuela (Mohali et al., 2007), Colombia (Rodas et al., 2009), Uruguay (Perez et al., 2008), and China (Chen et al., 2011). Field assessment of the two fungal stem pathogens has revealed that the symptoms of B. dothidea and T. zuluensis can be present separately or concurrently at varying levels on trees in the population in the form of a fungal stem disease complex.

In general, tree breeding strategies use pedigree information to estimate genetic merit, often in trials with large numbers of individuals in open-pollinated families. The availability of a reference genome sequence of E. grandis (Myburg et al., 2014) and the development of a robust single-nucleotide polymorphism (SNP, EUChip60K) chip for high-throughput genotyping in multiple eucalypt species (Silva-Junior et al., 2015) have created opportunities for implementing new breeding strategies based on the genomic prediction of breeding values. While conventional pedigree relationships represent the average proportion of shared alleles, SNP markers can track Mendelian segregation patterns enabling the detection of unknown (cryptic) relationships and more precise estimation of known relationships (Habier et al., 2007; Hayes et al., 2009; Hill and Weir, 2010). However, the genotyping of all individuals in large open-pollinated tree breeding populations would be prohibitively expensive. Single-step genomic (ssG)BLUP analysis is an attractive alternative that blends the known pedigree of the entire population with the genomic relationship matrix of a subset of genotyped individuals (Legarra et al., 2009; Misztal et al., 2009; Aguilar et al., 2010; Christensen and Lund, 2010). Thereby, ssGBLUP analysis extends the benefits of applying of genomic selection to non-genotyped individuals (Legarra et al., 2014), therefore allowing for multivariate and univariate analysis (Guo et al., 2014) in livestock (Lourenco et al., 2015; Ma et al., 2015) and forest trees (Ratcliffe et al., 2017; Klapste et al., 2018, 2020; Cappa et al., 2019).

Improving forest plantation productivity requires recurrent selection of multiple traits, such as growth, wood quality, and tolerance to pests and pathogens. A multivariate analysis involves estimating genetic correlations between traits to understand their correlated responses (Burdon, 1977). The correlated phenotypes of growth and pest and disease traits are attributable to shared genetic factors (pleiotropy) and/or linked genetic factors (linkage disequilibrium) and their interrelationships with environment factors (Falconer and Mackay, 1996). Being able to partition these components will help improve breeding strategies for correlated traits (Chen and Lubberstedt, 2010).

In this study, we measured breeding trials of E. grandis composed of trees from three half-sib pedigree linked generations and some unrelated families for diameter growth at breast height, tolerance to stem disease caused by the co-occurrence of B. dothidea and T. zuluensis (BotryoTera), and tolerance to leaf gall caused by L. invasa (Lepto). The study aimed to obtain genetic parameters and genetic gains for growth, pest, and pathogen tolerance in this multi-generation breeding trial comparing ABLUP (pedigree-based BLUP analysis) and ssGBLUP models. We further investigated the additive genetic correlations and genotype-by-environmental (G × E) interactions of diameter growth and tolerance to Lepto and BotryoTera. Based on the results, we discuss the utility of genomic selection in E. grandis for simultaneous improvement of growth and tolerance to the gall wasp and fungal stem disease.



MATERIALS AND METHODS


Breeding History and Phenotyping of the Study Population

Eucalyptus grandis W. Hill ex Maiden was introduced to South Africa in the early 1900s and included various government breeding populations as a timber resource for the mining industry. Private breeding programs only started in the early 1970s, initiated from government landrace breeding populations. Breeding objectives for these landrace breeding populations gradually shifted to target traits for pulp and paper products rather than timber production in successive generations and trial series (Figure 1). We had access to seed from two first-generation selections from the 2nd trial series in this study population, with 32 selections from the 3rd trial series as our third-generation families and 28 selections from the 4th trial series as our fourth-generation families (Supplementary Table 1). Also included in the study was 33 unrelated (no pedigree link) families as controls, with seed sourced in the early 1990s from selections in Swaziland. The 93 half-sib pedigree linked families and the 33 unrelated control families were planted across three sites Mtunzini, Kwambonambi, and Nyalazi in KwaZulu Natal, a sub-tropical region in South Africa (Figure 2 and Supplementary Table 1). Families from the different generations were planted together in the three trial sites. The experimental design was a randomized complete block planted at single tree plots at 15 replicates per family. Field tolerance to Lepto was assessed at age 1 using a four-scale incidence score in which trees with a score of 4 shows no evidence of an attack on the leaf midrib or petiole, a score of 3 shows evidence of an attack on the leaf midrib or petiole without galls, and a score of 2 indicates trees with an attack on the leaf midrib or petiole with galls. Trees with a score of 1 present a lethal outcome from an attack on the leaf midrib or petiole with galls (Figure 3). Field tolerance to BotryoTera was assessed at age 3 using an incidence score in which a score of 6 represents trees with no spots/cracks or redness and trees with a score 5 show symptoms of T. zuluensis spots with redness, whereas trees with a score of 4 have B. dothidea cracks with redness. Trees with a score of 3 shows symptoms with T. zuluensis spots and B. dothidea cracks with redness, and a score of 2 represents trees with heavy T. zuluensis spots, and B. dothidea cracks with redness, and a score of 1 represents trees with heavy T. zuluensis spots and B. dothidea cracks with redness and cankers (Figure 4). Diameter growth at breast height (1.3 m over-bark) was measured at age 4.
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FIGURE 1. Historical overview of E. grandis breeding in South Africa, including a transition from government to private breeding and introduction of major pest and pathogens. The trial series timeline, as well as the generational timeline, are shown. Selection strategies are noted for each trial series, shifting from timber to pulp and paper related traits, as well as pest and disease tolerance. Selection refers to the selection of phenotyped individuals based on their breeding values, whereas evaluation refers to the selection of individuals based on visual screening without breeding values.
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FIGURE 2. Geographical representation of the trial sites in the KwaZulu Natal province, South Africa. The region has a sub-tropical climate. The distance (straight line) between Mtunzini and Nyalazi is 112 km. The details of the environmental conditions are in Supplementary Table 1. Darker shades of green indicate nature reserves.
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FIGURE 3. Symptoms and incidence scores of Leptocybe invasa (Lepto). (A) Score 4 – No evidence of an attack on the leaf midrib or petiole, (B) Score 3 – Evidence of attack on the leaf midrib or petiole without galls (indicated by red arrows), (C) Score 2 – Evidence of attack on the leaf midrib or petiole with galls, and (D) Score 1 – Evidence of a lethal outcome of an attack on the leaf midrib or petiole with galls.
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FIGURE 4. Symptoms and incidence scores for Botryosphaeria/Teratosphaeria stem disease complex (BotryoTera). (A) A score of 6 represents trees with no spots/cracks or redness. (B) A score of 5 represents trees with T. zuluensis spots with redness. (C) A score of 4 is given for trees with B. dothidea cracks with redness. (D) A score of 3 shows a tree with T. zuluensis spots and B. dothidea cracks with redness. (E) A score of 2 represents trees with heavy T. zuluensis spots and B. dothidea cracks with redness. (F) A score of 1 represents trees with heavy T. zuluensis spots and B. dothidea cracks with redness and cankers.




Genotyping of the Study Population

DNA was extracted from leaves using the NucleoSpin DNA extraction kit (Machery-Nagel, Germany). The Eucalyptus (EUChip60K) SNP chip as described by Silva-Junior (Silva-Junior et al., 2015) available from GeneSeek (Neogen, Lansing, MI, United States) was used to genotype 964 trees across the families and trials (Supplementary Table 1). Of the 95 families in the trials, 93 contained a subset of 964 genotyped trees ranging from 2 to 24 trees per family. The two second-generation families were not genotyped. An average of four trees per family were genotyped of the unrelated families. For the third generation, 15 trees per family were genotyped, while in the fourth generation, 14 per family were genotyped. Of the 64,639 markers on the SNP chip (Silva-Junior et al., 2015), there are a total of 14,347 informative SNP markers with GenTrain score ranging from 0.37 to 0.93. Retained markers had a call rate of above 90% and a minor allele frequency above 0.05. The SNP genotypes frequencies of the 14,347 markers were AA (0.307), GG (0.283), AG (0.270), CC (0.068), AC (0.065), and 0.007 missing. The number of SNP markers distributed on linkage groups ranged from 1018 (Chromosome 1) to 1877 (Chromosome 10). The SNP marker frequencies and distribution analysis were performed with the synbreed 0.10-2 R package (Wimmer et al., 2012) and the imputing of the missing SNP data based on allelic distribution, assuming Hardy–Weinberg equilibrium.



Statistical Analyses


Mixed Model Analysis

Linear mixed models were fit to estimate variance components and solve mixed model equations to obtain solutions for fixed and random effects. The matrix notation for the linear mixed models used is as follows:

[image: image]

where y is a vector of phenotypes, X is the design matrix for the fixed effects (site), β is the vector of the fixed effect coefficients (intercept site), Z is an incidence matrix for the random effects of individual trees, u is the vector of random effect coefficients (genotype, genotype by site interaction, replication effect nested in site effect), and ε is the vector of residual effect coefficients. The expectations of y, u, and e are E(y) = Xβ, [image: image] and E(ε) = 0 and the variances are [image: image], [image: image], and [image: image], respectively, where A is the relationship matrix of the random effects, [image: image] is the variance associated with the residuals, and [image: image] is the variance associated with the random effects. The assumptions of residual matrix R was relaxed to have a heterogeneous error variance across the environments. Similarly, the assumption of the G matrix was relaxed to model full G × E and heterogeneous genetic variances at each site (s + 1 variance parameters), where s is the number of environments (Isik et al., 2017). Empirical breeding value prediction for the half-sibs was performed by solving the mixed model equations.
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where A−1 is the inverted additive genetic relationship matrix derived from the pedigree and [image: image] is the shrinkage factor. The genomic relationship matrix G from the genotyped trees was computed as described in VanRaden (2008):
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where Z and P are two matrices of dimension n (individuals) × p (markers). The base pair calls were transformed into gene content values of the minor alleles at each SNP loci in each individual in matrix Z, with elements −1 (homozygote major allele), 0 (heterozygote), and 1 (homozygote minor allele). The frequencies of the genotypes were 0.584, 0.338, and 0.078, respectively. The allele frequencies in matrix P are presented as 2(pi−0.5), where pi is the observed allele frequency at the marker i for all individuals. The 2∑pi(1−pi) is the variance of alleles summed across all the loci. A ssGBLUP model was fitted using a blended relationship (H) matrix, incorporating the (G) matrix of genotyped trees that are linked to the non-genotyped trees by the half-sib pedigree (A) matrix (Legarra et al., 2009; Aguilar et al., 2010; Christensen and Lund, 2010).

The H matrix used in the ssGBLUP was formulated as follows: where u is a vector of genetic effects with variances [image: image]. Within the genetic effects (u), there are non-genotyped and (u1) and genotyped (u2) individuals partitioned in the A matrix as:
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where A11 is the relationship matrix of non-genotyped individuals, A22 is the relationship matrix for the genotyped individuals, and A12 and its transpose A21 are the covariances between the genotyped non-genotyped individuals. We then replaced the u2 genetic effects with the pedigree relationship of A22 with their G matrix as constructed in Eq. 3. The relationship between the non-genotyped and (u1) and genotyped (u2) individuals in A12 and A21 is then adjusted by the G matrix via the pedigree relationship of all other individuals in the H matrix (Legarra et al., 2009):
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The upper left corner of the H matrix is the variance of the u1 individuals, with [image: image], and [image: image] and [image: image]. The inverse of the H matrix is:

[image: image]

Variance components from the ABLUP and ssGBLUP were estimated along with the heritability for diameter growth and Lepto and BotryoTera tolerance across and within the three sites.



Multivariate Analysis

A multivariate linear mixed model was fitted to estimate additive genetic correlations between three pairs of traits as described in Isik et al. (2017), following the multivariate model general design:
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where n is the number of rows of individuals and d is the number of dependent variables (traits). The design matrix X has the dimensions n = (p1), where p is the number of fixed estimators, which are replication nested in location for the traits, and the additional column is added for the intercept. β is the matrix of coefficients of fixed predictor effects to be estimated with dimensions (p1) = d. The rows of β correspond to predictor variables, and the columns are response variables. The design matrix of Z has dimensions n = r, where r is the number of random effects (individual trees) per trait, and u is a r = d matrix of the random effects.

The G and R variance–covariance matrices of the multivariate model were designed with the variances for the three traits on the diagonal and the covariances between the traits on the off-diagonals:
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where the G matrix is the direct product of the A matrix (pedigree relationship) for the ABLUP model and substituted with the H matrix for the ssGBLUP model with an unstructured, heterogeneous variance and covariance structure, where each environment has a unique genetic variance, and each pair of the environments has a unique covariance, with an s(s1)2 variance parameter (Isik et al., 2017). The R matrix is the direct product of the identity matrix (Im) with m dimensions, m is the number of genotypes with variance [image: image]for diameter growth, [image: image] for BotryoTera, and [image: image] for Lepto and their covariances nested within.

The construction of the expected additive (A matrix) and the realized genomic (G) was calculated using the package synbreed 0.10-2 (Wimmer et al., 2012) in the R environment v3.5.3. The blended genetic relationships and its inverse were obtained using scripts according to Isik et al. (2017). All the statistical models were performed using ASReml software v4.1 (Gilmour et al., 2015).



Expected Direct and Indirect Genetic Gains

The direct genetic gains for diameter growth and Lepto and BotryoTera tolerance were calculated from the ABLUP and ssGBLUP models breeding value predictions. The selection differential was based on the top 10% of individuals for direct selection. The indirect responses of the remaining traits were calculated based on the ranking of the direct selections. The percentage expected genetic gains were calculated as the fraction of the selection differential over the population mean.





RESULTS


Genetic Parameters

To assess the increased accuracy of the ssGBLUP model, we compared the heritability estimates from ssGBLUP with those from ABLUP analysis. The ssGBLUP model generally produced lower heritability estimates compared to the ABLUP model for the three sites (Table 1). The exception was the heritability estimates for BotryoTera tolerance in Kwambonambi and Nyalazi, which were higher for ssGBLUP (0.45 vs. 0.29 and 0.11 vs. 0.08, respectively). Overall, the Kwambonambi site produced the highest heritability values ranging from 0.29 to 0.63 (ABLUP) and from 0.45 to 0.70 (ssGBLUP) across the traits (Table 1). In contrast, the heritability estimates for Lepto tolerance from the ABLUP and ssGBLUP models were the highest at 0.71 and second highest at 0.38, respectively, in Nyalazi, while the estimates for diameter growth and BotryoTera tolerance at the Nyalazi site were reasonably low, ranging from 0.07 to 0.11 for the ABLUP and ssGBLUP models, respectively (Table 1). The overall heritability estimates across sites were higher for the ABLUP model with Lepto tolerance moderately high at 0.54, diameter growth at 0.33, and BotryoTera tolerance at 0.23 (Table 2). The heritability estimates with the ssGBLUP across sites were lower with Lepto tolerance at 0.36, diameter growth at 0.25, and BotryoTera tolerance at 0.23 (Table 2). The heritability estimates for ssGBLUP may be more accurate due to the blended pedigree relationship matrix increased precision.


TABLE 1. Site-specific variance components and genetic parameters estimated using the ABLUP and ssGBLUP mixed models for diameter growth, BotryoTera and Lepto tolerance.

[image: Table 1]

TABLE 2. Overall variance components and genetic parameters across the three sites for solving ABLUP and ssGBLUP mixed models for diameter growth, BotryoTera, and Lepto tolerance.
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ssGBLUP Additive and Type-B Genetic Correlations

The additive genetic correlations of diameter growth and Lepto tolerance estimated with the ssGBLUP model was high at 0.78 (Table 3, Eq. 7). In contrast, the additive genetic correlation of diameter growth and BotryoTera tolerance was moderate at −0.38. The additive genetic correlation for BotryoTera and Lepto tolerance was also moderate at −0.47 (Table 3). These results suggest that tandem improvement of diameter growth and Lepto tolerance is possible, but they predict a negative response in BotryoTera tolerance, which presents a challenge to breeders. The overall Type-B genetic correlation (Eq. 7) was high, ranging from 0.77 to 0.81 for the three traits associated with small standard errors (Table 4), suggesting low G × E interactions across the sites.


TABLE 3. Additive genetic correlations (rg) of diameter growth, BotryoTera, and Lepto tolerance based on ABLUP and ssGBLUP models with standard errors in the parenthesis.
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TABLE 4. Overall Type-B genetic correlation (rB) across sites for diameter growth, BotryoTera, and Lepto tolerance based on ABLUP and ssGBLUP models with standard errors in the parenthesis.
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Trait Performance Across Site and Generations

Diameter growth and the Lepto incidence scores resembled a normal distribution (Supplementary Figure 1). BotryoTera incidence scores had a high frequency of score 6, representing uninfected stems, and Kwambonambi has a high frequency of score 3 (Supplementary Figure 1). The latter may be ascribed to the second-generation families’ higher susceptibility (Figure 5B and Supplementary Figure 2). The Kwambonambi site had the lowest mean BotryoTera tolerance compared to the Nyalazi and Mtunzini (Figure 5E). The average diameter growth improved by 3.2% from the third to the fourth generation (Figure 5A), whereas Lepto tolerance improved by 3.6% (Figure 5C). The improvement in diameter growth is driven by recurrent selection over the generations with Lepto tolerance benefiting from its strong additive genetic correlation with diameter growth (Table 3). There was a 13.3% improvement of BotryoTera tolerance from the second to the third generation; however, it was unchanged from the third to the fourth generation (Figure 5B). The apparent absence in genetic gain for BotryoTera tolerance from the third to the fourth generation is in part due to the moderately negative genetic correlation with diameter growth (Table 3). The above results suggest that a revised breeding strategy is needed to improve the three traits simultaneously.
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FIGURE 5. Marginal trait means with error bars indicating the 95% confidence interval. (A) Mean diameter growth (cm) for families in the three sites. (B) The mean Lepto tolerance score for families in the three sites. (C) The mean BotryoTera tolerance score for families in the three sites. (D) Mean diameter growth (cm) for families in the three generations. (E) The mean Lepto tolerance score for families in the three generations. (F) The mean BotryoTera tolerance score for families in the three generations. Student t-test was performed to assess the significant difference between the means, p < 0.05 (*) and p < 0.001 (***).




Correlated Response Based on ssGBLUP Breeding Values

The direct genetic gains estimated for diameter growth and Lepto tolerance were 12.4% and 24.7%, respectively, with BotryoTera at 9.8% (Table 5). There is an indirect loss of 3.4% in BotryoTera tolerance and a gain of 10.0% in Lepto tolerance when selecting for diameter growth. Direct selection for BotryoTera tolerance would result in an expected indirect loss of 5.6% for diameter growth and 6.5% for Lepto tolerance. However, direct selection of Lepto tolerance would result in an expected gain of 6.0% for diameter growth and loss of 3.8% in BotryoTera tolerance (Table 5). Together, these results illustrate the challenge of achieving genetic gains for all three of these traits and the need for customized breeding strategies to deal with this challenge.


TABLE 5. Expected genetic gains (%) based on the top 10% selected individuals in the population for diameter growth, BotryoTera, Lepto tolerance, and the indirect response in the expected genetic gains of the paired traits.
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DISCUSSION

Pest and pathogens are significant risk factors in forest plantations (Wingfield et al., 2015). These risk factors are highlighted in African agroforestry systems affecting indigenous and natural forests (Graziosi et al., 2020). Mitigation of these risk factors will require recognizing the parallels and synergies in management methods between pest and pathogen studies (Jactel et al., 2020) and integrating system genetic and systems biology (Naidoo et al., 2019) particularly in this genomic era (Naidoo et al., 2014). The continued improvement of economic traits such as volume growth, density, and pulp yield in the context of pest and pathogen challenges is vital. Here, we combined phenotypic data for a large half-sib breeding trial with genotypic data for a subset of siblings in a single-step genomic BLUP approach to estimate genetic parameters and response to selection for diameter growth and BotryoTera and Lepto tolerance in E. grandis breeding population. We also proposed a practical genomic selection breeding strategy that is likely to improve all three traits in E. grandis. One of the study strengths was the availability of replicated trials with BotryoTera infections and Lepto infestation across all three sites.

Furthermore, the study benefited from planting pedigree-linked families from three successive generations in the same space and time. Therefore, the trials provided an opportunity to evaluate the outcomes of three different artificial selection regimes applied in successive generations. A limitation was the inability to score B. dothidea and T. zuluensis infections separately, which we mitigated by developing a combined phenotypic score (Figure 3). Diameter growth and BotryoTera and Lepto tolerance had moderate heritability estimates (0.25–0.36, Table 2). Diameter growth and Lepto tolerance had a strong positive additive genetic correlation. However, both were negatively correlated with BotryoTera tolerance, though the correlations were not strong. This presents a challenge to achieve genetic gains in all three traits simultaneously.


Genetic Parameters for Diameter Growth and Lepto and BotryoTera Tolerance

Coefficients of relationship from pedigree data are expectations and do not represent the actual genome shared between relatives, estimated from various allelic frequency parameters (Forni et al., 2011). Forest trees with deep full-sib pedigrees have estimated coefficients of relationship that are much closer to the actual genetic relationships (Batholome et al., 2016; Chen et al., 2018). However, more precise coefficients of relationship are estimated using DNA markers such as SNPs (Habier et al., 2007; Hayes et al., 2009). When expected genetic relationships are combined with the genome estimated relationships, this precision can be extrapolated to the A matrix with the blended H matrix used in ssGBLUP analyses (Legarra et al., 2009; Aguilar et al., 2010). Half-sib pedigree relationships do not include cryptic genetic relationships in the population, in some instances leading to biased estimation of additive genetic variances (Ratcliffe et al., 2017).

In this study, we generally observed lower heritability estimates from ssGBLUP compared to ABLUP (Table 2). Lower additive genetic correlation estimates were also observed for ssGBLUP compared to ABLUP (Table 3). Luo et al. (2014) presented heritability estimates of Lepto tolerance in E. camaldulensis and E. tereticornis breeding populations in China of 0.54 and 0.52, respectively. da Silva et al. (2020), also presented heritability estimated from multiple Eucalyptus species ranging from 0.27 to 0.68, with E. grandis at 0.58. These heritability estimates are similar to what we obtained in our study at 0.54 for E. grandis (Table 2). The Lepto tolerance scores in the study by Luo et al. (2014) were based on the proportion of the canopy affected, with a score of 0 indicating no symptoms on the canopy and a score of 4 meaning greater than 75% of the canopy affected (Thu et al., 2009).

In contrast, our scoring system was not based on canopy proportions, but rather the severity of gall formation with a score of 4 indicating no evidence of gall formation and a score of 1 indicating lethal outcome from gall formation in both mid-ribs and petioles of the leaves (Figure 3). Luo et al. (2014) reported a moderately negative genetic correlation between tree height (at 9 months) and Lepto susceptibility in E. camaldulensis at −0.33 and for E. tereticornis at −0.47. Due to the inverted scores used in our study, we report a positive genetic correlation (0.78) with diameter growth at 48 months (Table 3). These results suggest that vigorous tree growth is positively related to tolerance to L. invasa. Plant growth regulators are well-characterized phytohormones involved in influencing plant development and abiotic stress responses (Wani et al., 2016) and pest tolerance (Harun-or-Rashid and Chung, 2017). There is evidence to suggest that the microbiome of the maternal environment may affect the performance of their progeny and tolerance to pathogens in E. grandis (Vivas et al., 2017). A study to characterize the relationship of maternal and/or progeny microbiomes, phytohormones, and their interactions, on superior tree growth and health, is warranted.



Genotype-by-Environment Interaction and Trait Performance

The mean annual precipitation of the three sites in the subtropical region of South Africa decreases from South to North, tracking the increase in the mean annual temperature maximum (Figure 2). Therefore, Nyalazi in the North is on average warmer and drier compared to Mtunzini in the South, which is on average colder and wetter, whereas Kwambonambi has mid-ranged environmental conditions (Supplementary Table 1). The pairwise Type-B genetic correlation for diameter growth and Lepto and BotryoTera tolerance across the sites ranged from 0.77 to 0.81 (Table 4), indicating low G × E interaction. The Nyalazi trial was surrounded by a commercial stand of E. grandis × E. camaldulensis (G × C) clone that was highly susceptible to L. invasa. The G × C hybrid genotype has been shown in the literature to be susceptible to L. invasa (Thu et al., 2009; Luo et al., 2014). The G × C clone planted in the Nyalazi site had an increased infestation of L. invasa translating into the high frequency of Lepto tolerance score 2 in the trial and much lower frequency of Lepto tolerance score 3 and 4 (Supplementary Figure 1). In Mtunzini, there was also an increased frequency of Lepto score 2; however, the trial was surrounded by a tolerant E. grandis × E. urophylla (G × U) clone (Supplementary Figure 1). There are above-average actively growing shoots in Mtunzini due to its favorable environmental conditions (Supplementary Table 1). These actively growing shoots are targets for L. invasa infestation. The heritability estimates of Lepto tolerance in Mtunzini and Nyalazi were adjusted lower from 0.35 to 0.24 and 0.71 to 0.38, respectively, by the ssGBLUP model (Table 1). It is not clear why the heritability correction in Nyalazi was so significant compared to that in Mtunzini.

In Kwambonambi, the mid-range environmental conditions to Mtunzini and Nyalazi, which was also surrounded by a tolerant G × U clone, Lepto tolerance showed similar heritability estimates between ABLUP (0.69) and ssGBLUP (0.70) and for diameter growth ABLUP (0.63) and ssGBLUP (0.58) (Table 1). The similar heritability estimates in Kwambonambi of diameter growth and Lepto tolerance may result from their relatively high positive additive genetic correlation. The estimated marginal means for diameter growth and Lepto tolerance in Kwambonambi further support this relationship (Figures 5D,F).

There is an increased incidence of BotryoTera tolerance score 3 in Kwambonambi (Supplementary Figure 1), resulting from the increased susceptibility from the second-generation families (Supplementary Figure 2). BotryoTera appeared as a fungal stem disease in the mid- to late 1990s, which means that the first-generation parents (second-generation families) were selected in the absence of the BotryoTera disease explaining the higher susceptibility of the second generation families. The environmental conditions at the Kwambonambi site are optimal for diameter growth, and, due to the negative correlation with BotryoTera tolerance, there was high susceptibility to BotryoTera in Kwambonambi (Figure 5E). Diameter growth and Lepto and BotryoTera tolerance in the Kwambonambi site, which is the mid-range of Nyalazi and Mtunzini environmental conditions, seem to reflect the trait performances, corresponding to their additive genetic correlation.



Generational Performance for Diameter Growth and Lepto and BotryoTera Tolerance

Recurrent selection in tree breeding ensures the gradual improvement of target economic traits over generations. Such efforts are under threat from pest and pathogen pressures as well as climate change (Wingfield et al., 2015). Reversing the decline of E. grandis in the subtropical region of South Africa due to L. invasa gall wasp and the co-occurrence of B. dothidea and T. zuluensis fungal stem disease is vital. BotryoTera fungal stem disease was discovered and described in South Africa in the early to mid-1990s (Smith et al., 1994; Wingfield et al., 1996). This meant that selections or evaluations in the government landrace breeding populations did not involve BotryoTera tolerance until the first generation in the 2nd trial series and onwards in the private breeding population (Figure 1), evidenced by the high BotryoTera incidence score 3 (Supplementary Figure 2) of the second-generation families in particular in the Kwambonambi site (Supplementary Figure 1). Evaluation for BotryoTera tolerance in the second generation resulted in the increased tolerance in the third generation and maintained in the fourth generation (Figure 5B). When looking at the high frequency of BotryoTera score 6 in Supplementary Figures 1, 2, it does suggest that the evaluation strategy has had a limited role to play in improving BotryoTera tolerance, because this trait seems to have plateaued in the last generations. The limitation of the evaluation strategy for BotryoTera tolerance is that selection was only performed within families already selected for diameter growth and further compounded by the fact that BotryoTera tolerance is negatively correlated with diameter growth.

Leptocybe invasa was reported in South Africa in 2007 (Neser et al., 2007), coinciding with the third generation tested in the 4th trial series (Figure 1). Leptocybe appeared when the trial series was at age 5. The canopies were already inaccessible for scoring and selecting Lepto tolerance for the fourth generation (Figure 1). The indirect improvement of Lepto tolerance from the third to the fourth generation is due to the strong positive additive genetic correlation with diameter growth (Figure 5C). This study showed that the recurrent selection strategy successfully improved diameter growth and indirectly improved Lepto tolerance, with limited impact on BotryoTera tolerance.



Proposed Selection Strategies for Diameter Growth and Lepto and BotryoTera Tolerance

Eucalypts, including E. grandis, are currently experiencing a decline, mainly due to pest and pathogen pressures for commercial deployment and breeding populations such as Puccinia psidii (Silva et al., 2013), L. invasa (da Silva et al., 2020), T. zuluensis (Wingfield et al., 1996; Aylward et al., 2019), and B. dothidea (Smith et al., 1996; Marsberg et al., 2017). This study offers opportunities to revise historical evaluation and selection strategies to improve diameter growth and BotryoTera and Lepto tolerance. Testing all these pedigree-linked E. grandis generations in the same space and time has highlighted the successes and challenges of traditional evaluation and selection strategies and their direct and indirect impact on economic traits over the generations as new pests and pathogens emerge. First, pests and pathogens may appear during a growth stage within a breeding cycle when trees cannot be effectively scored and selected. Second, pests and pathogens affect different parts of the tree, young leaves (early in the growth cycles), and stem (later in the growth cycles); therefore, the correct timing of scoring is crucial. Third, although present, pests and pathogens may differ in their infestation and infection severity due to many factors, leading to highly varying levels of challenge and incomplete expression of tolerance or susceptibility. Fourth, the emergence of pests and pathogens sometimes may reveal inadequacies of already established selection strategies, thereby requiring revision, as is the case for BotryoTera.

A multivariate approach to deal with these challenges requires an understanding of the traits additive genetic correlations. Such a strategy would require turning over a generation in which all three traits were measured on each tree to estimate their between- and within-family breeding values. The challenge with field trials is that there are often difficulties to score pest and pathogen tolerance accurately, as discussed. Breeders may adopt a multivariate approach to primarily select for diameter growth and indirectly for Lepto tolerance and then only consider selecting BotryoTera tolerant individuals from high ranked families (Figure 6A).
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FIGURE 6. Proposed breeding strategies to improve diameter growth under pest and pathogen pressures. (A) Traditional field-based multivariate selection strategy whereby diameter growth (genetically correlated with Lepto tolerance) is the target trait. BotryoTera tolerance selections are made within top-ranked diameter growth families to produce open-pollinated (OP) families for the next generation. (B) Proposed non-field-based serial selection strategy in which Lepto tolerance and BotryoTera tolerance are scored after successive (6 and 12 months) controlled infestation and inoculations, respectively. Candidate seedlings from within these tolerant families are cloned and used for flower induction (Set C) and generation of CP families for the next generation. Another set of candidate clones is used to validate the Lepto and BotryoTera tolerance (Set A). The third set is then planted in field clonal trials for diameter growth (Set B). Accurate phenotypes from the clonal material and genome-wide genotyping of the clones create an opportunity to train a genomic selection model that can reduce (pink arrows) the need for expensive pest and disease phenotyping in the next generation.


Circumventing field trials and the inconsistency of pest infestations or pathogen infections, tree breeders may consider a proposed serial selection strategy with genomic selection and controlled pollination in potted trials (Figure 6B). This approach would require the integration of nursery and field phenotypes to develop a more accurate GS model. Such an approach was demonstrated in Populus deltoids for tree height to accelerating its breeding strategies (Alves et al., 2020). The proposed GS approach in this involves challenging potted families with L. invasa and scoring Lepto tolerance 6 months after potting and then advancing the most tolerant individuals across families for BotryoTera tolerance scoring at 12 months after potting. The best individuals from the top Lepto and BotryoTera tolerant families are then cloned to validate the pest and pathogen tolerance (Set A).

Meanwhile, the second set of ramets from the same clones (Set B) is planted in field trials to validate the expected correlated diameter growth response, while the third set of ramets (Set C) are subjected to flower induction to produce control-pollinated next-generation families. The clonal phenotypic data can be used together with genome-wide genotyping to train a genomic selection model for implementation (pink arrows in Figure 6B). Genomic estimated breeding values and genomic relationship matrices will inform the control pollination (diallel in the potted orchard) (Munoz et al., 2014; Li et al., 2019). This approach should increase the selection intensity and reduce the need for costly controlled pest and pathogen challenges, thereby fast-tracking clonal tests and producing next-generation control-pollinated (CP) seedlings (with breeding value predictions for all three traits) to improve gains per unit time over what can be achieved in a traditional open-pollinated (OP) field testing approach.




CONCLUSION

Diameter growth and pest and pathogen tolerance are essential components of sustainable plantation forestry. Therefore, a multivariate selection approach informed by their additive genetic correlations is key to improving genetic gains in these traits simultaneously. This study shows that evaluation and selection strategies implemented for E. grandis over the past three generations have succeeded in improving diameter growth and indirectly Lepto tolerance, while limited gain was achieved for BotryoTera tolerance. We proposed an alternative to the traditional field-based multivariate strategy, which has many challenges mainly limited by the reliability of assessing pest infestations and pathogen infections in the field. The proposed serial genomic selection strategy involves controlled infestations with Lepto and inoculations with BotryoTera of cloned families in pots to achieve validated and accurate tolerance scores and diameter growth measurements from clonal field trials. This approach will ensure a reliable multivariate genomic selection training and development to exploit the additive genetic correlations void phenotyping challenges with field trials. The proposed genomic selection strategy, possibly via ssGBLUP (Misztal et al., 2013), would be a feasible approach to improve diameter growth and Lepto and BotryoTera tolerance in E. grandis.
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Spot blotch (SB) disease causes significant yield loss in wheat production in the warm and humid regions of the eastern Gangetic plains (EGP) of South Asia (SA). Most of the cultivated varieties in the eastern part of SA are affected by SB under favorable climatic conditions. To understand the nature of SB resistance and map the underlying resistant loci effective in SA, two bi-parental mapping populations were evaluated for 3 years, i.e., 2013–2015 for the BARTAI × CIANO T79 population (denoted as BC) and 2014–2016 for the CASCABEL × CIANO T79 population (CC), at Varanasi, Uttar Pradesh, India. DArTSeq genotyping-by-sequencing (GBS) platform was used for genotyping of the populations. Distribution of disease reaction of genotypes in both populations was continuous, revealing the quantitative nature of resistance. Significant “genotype,” “year,” and “genotype × year” interactions for SB were observed. Linkage map with the genome coverage of 8,598.3 and 9,024.7 cM in the BC and CC population, respectively, was observed. Two quantitative trait loci (QTLs) were detected on chromosomes 1A and 4D in the BC population with an average contribution of 4.01 and 12.23% of the total phenotypic variation (PV), respectively. Seven stable QTLs were detected on chromosomes 1B, 5A, 5B, 6A, 7A, and 7B in the CC population explaining 2.89–10.32% of PV and collectively 39.91% of the total PV. The QTL detected at the distal end of 5A chromosome contributed 10.32% of the total PV. The QTLs on 6A and 7B in CC could be new, and the one on 5B may represent the Sb2 gene. These QTLs could be used in SB resistance cultivar development for SA.

Keywords: Bipolaris sorokiniana, SNPs, bi-parental mapping, DArTSeq, wheat QTLs for SB resistance


INTRODUCTION

Spot blotch (SB) disease caused by Cochliobolus sativus (Ito and Kuribayashi) Drechsler ex Dastur [anamorph Bipolaris sorokiniana (Sacc.) Shoemaker] is considered a significant disease of wheat (Triticum aestivum L.) in South Asia (SA) (Gupta et al., 2018). High temperature and humidity favor the disease development in the warmer wheat growing areas of the eastern Gangetic plains (EGP), particularly in Bangladesh (Siddique et al., 2006), Nepal (Sharma et al., 2007b), and eastern India (Joshi et al., 2007a). The long-established practice of rice–wheat cropping system in the EGP delays the sowing of wheat crop that provides a congenial humid and warm environment for the SB development in the later stages of crop growth. Average yield loss due to SB ranges from 15 to 20%, but under favorable environment, up to 87% yield loss has been observed in susceptible genotypes (Hetzler et al., 1991). Delayed seeding of wheat in the EGP resulted on an average loss of 30% yield due to complex foliar blights, especially SB (Duveiller et al., 2005). Trait association analysis revealed that days to heading (DH) and plant height (PH) often showed a negative correlation with SB severity (Singh et al., 2015). Several attempts have been made including cultural practices and chemical application to control SB, but none of them was completely successful. Integrated disease management using host resistance, chemical control, and cultural practices is considered most effective in managing the disease (Joshi and Chand, 2002).

Except for a recent attempt (Kumar et al., 2019), no host immunity has been observed for SB, and the best released cultivars are only partially resistant. SB resistance is under polygenic control, with quantitative trait loci (QTL) of various phenotypic effects; hence, the progress of cultivar development is relatively slow. Genetic studies for SB resistance have identified multiple QTLs, of which four with major effects have been nominated, i.e., Sb1 through Sb4. The Sb1 is located on chromosome 7DS flanked by the markers Xgwm1220 and Xgwm295, being co-located with the leaf rust resistance locus Lr34 having pleiotropic effects on resistance to yellow rust (Yr57), powdery mildew (Pm8), and leaf tip necrosis (Ltn+) (Lillemo et al., 2013). The Sb2 (Qsb.bhu-5B) has been mapped on chromosome 5BL flanked by the simple sequence repeat (SSR) markers Xgwm639 and Xgwm1043 (Kumar et al., 2015). The third gene, Sb3, was mapped on chromosome 3BS (Lu et al., 2016), being in the same region where two previously reported QTLs Qsb.bhu 3B and Qsb.cim 3B reside. Recently, the Sb4 gene has been mapped on the long arm of chromosome 4B, where 21 putative genes were predicted (Zhang et al., 2020). QTLs with minor effects are also important for SB resistance since stacking such QTLs significantly reduced SB severity (Singh et al., 2018). Multiple minor QTLs have been mapped on 1A, 1B, 1D, 2B, 2D, 3A, 3B, 4A, 5A, 5B, 6A, and 7A (Gurung et al., 2014; Zhu et al., 2014; Singh et al., 2016; Bainsla et al., 2020).

Germplasm development for SB resistance started in the 1980s, which led to the identification of several wheat genotypes with variable resistance like Saar, Yangmai 6, Shanghai 4, M3, Chirya 1, Chirya 3, Chirya 7, and SYN1 (Ibeagha et al., 2005). Looking at the growing incidence of SB in SA, CIMMYT developed a special nursery in 2009 for SA named CSISA-SB, under the Cereal System Initiative for South Asia (CSISA) project. The purpose was to share CIMMYT breeding lines with SB resistance and good agronomic performance with the researchers of other countries and to test the nursery over various locations. This nursery was renamed Helminthosporium Leaf Blight Screening Nursery (HLBSN) in 2015 and distributed beyond SA to South American and African countries like Brazil, Bolivia, Paraguay, and Zambia, where SB is of major concern. The SB screening platform of CIMMYT in Mexico is located at Agua Fria, where the climate is similar to SA, providing strong support in the selection of SB-resistant genotypes for SA (Singh et al., 2015).

In SA, the Varanasi center of India has been identified as one of the most suitable sites for the evaluation of SB; it has a close similarity with the climatic conditions of Bhairahawa and Rampur of Nepal (Joshi et al., 2007a). Previously, four bi-parental mapping populations were evaluated at Agua Fria, Mexico, and their underlying QTLs have been identified (Singh et al., 2018; He et al., 2020). In the present study, we evaluated two of those four mapping populations at Varanasi, India, to determine the resistant QTLs effective under the SA environment.



MATERIALS AND METHODS


Plant Materials

Two SB-resistant lines BARTAI (BABAX/LR 42//BABAX/3/ERA F 2000) and CASCABEL (SOKOLL//W15.92/WEEBILL1) identified in the previous experiments were crossed with a common susceptible parent CIANO T79 (BUCKY/(SIB)MAYA-74/4/BLUEBIRD//HD-832.5.5/OLESEN/3/CIANO-67/PENJAMO-62) to develop two bi-parental mapping populations (Singh et al., 2018; He et al., 2020). Recombinant inbred lines (RILs) were generated following the single seed descent method from F2 generation of the cross BARTAI × CIANO T79 (BC population) and CASCABEL × CIANO T79 (CC population) at CIMMYT, Mexico. Field experiments were conducted using a total of 231 RILs of BC and 226 RILs of CC in F2:7 generation along with the parents constituting the populations, and genotypes Chirya 3 and Sonalika were included as resistant and susceptible check, respectively.



Field Experiments

Field evaluation was carried out at the experimental station of Banaras Hindu University (BHU, 25.2°N, 83.0°E), Varanasi, India, in the years 2012–2013 (denoted as 2013), 2013–2014 (2014), and 2014–2015 (2015) for the BC population, and in the years 2013–2014 (2014), 2014–2015 (2015), and 2015–2016 (2016) for the CC population. Sowing was done in December, under late sown conditions to expose the crop to high temperature and humidity at the later stage of crop growth, which favors SB disease development. The experiments were conducted in a randomized complete block design with two replications, where each entry was sown in 2-m double rows spaced 25 cm apart, with a plant-to-plant distance of 5 cm.



Inoculation Method and SB Assessment

The pure culture of B. sorokiniana (isolate HD 3069/MCC 1572) was maintained using potato dextrose agar (PDA) medium (Chand et al., 2003). The pathogen was mass multiplied on previously soaked and autoclaved sorghum grains, which was kept under room temperature for at least 6 weeks. Spore suspension culture was prepared at a concentration of 1 × 104 spores ml–1. To create an artificial epiphytotic condition, the spore suspension was inoculated at the heading stage [Zadok’s growth stage (GS) 55] in the evening time. Light irrigation was given after inoculation to maintain high humidity for disease development.

Disease scoring was done for three subsequent growth stages at the beginning of anthesis (GS 63), after completion of anthesis (GS 69), and late milking (GS 77) using a double-digit (00–99) scale as prescribed by Saari and Prescott (1975). The first digit (D1) measured disease progress in PH and the second digit (D2) measured the disease severity in terms of the proportion of infected leaf area. The percentage of disease severity for each score was measured as:
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Area under disease progress curve (AUDPC) was calculated using percent of severity estimations corresponding to disease rating as:

[image: image]

where

Yi = disease level at the time ti.

Y(i+1) = disease level at time ti+1.

ti+1 – ti = time difference in days between two disease scores.

n = number of readings.

Area under disease progress curve average of two replications in a single year and mean AUDPC across all 3 years were used for QTL analysis. DH and PH were also measured to determine their association with SB.



Statistical Analysis

Analysis of variance (ANOVA) and Pearson correlation coefficients were calculated using statistical software OPSTAT1. Marker-based narrow sense heritability was calculated with the “heritability” package of R (Kruijer et al., 2015).



Genotyping and Linkage Analysis

Genomic DNA was isolated using the cetyltrimethylammonium bromide (CTAB) method from each entry including the parental lines of respective populations. Genotyping was carried out using the DArTSeq genotyping-by-sequencing (GBS) platform (Li et al., 2015) at the Genetic Analysis Service for Agriculture (SAGA) in Guadalajara, Mexico. Several gene-based markers and D-genome-specific single-nucleotide polymorphism (SNP) markers using “Kompetitive allele-specific PCR” (KASP) were also used. QTL analysis was carried out using an integrated software package ICIMapping version 4.1 (Meng et al., 2015). Monomorphic markers, markers with missing value >20%, and minor allele frequency <30% were removed from QTL analysis. Chromosome anchoring was done for each marker as per the GBS map described by Li et al. (2015). Linkage groups (LGs) were constructed using the MAP function in the ICIMapping software version 4.1, with the LOD threshold set at 15 and the rest parameters at default.

Quantitative trait loci mapping was performed using the BIP function of ICIMapping, where interval mapping was first carried out to identify significant QTLs and after that inclusive composite interval mapping was performed to identify more robust QTLs. QTL mapping was also carried out after adjusting for DH and PH. Adjusted mean was calculated by the software Multi-Environment Trial Analysis with R (META-R) version 6.0 using DH and PH as cofactors. A QTL was considered significant when it exceeded the LOD threshold of 3.4 (1,000 permutations at α = 0.05) for BC and LOD of 3.6 for CC populations in at least one environment. However, QTL with an LOD value of 2.5 or above appearing in more than one environment was also considered as significant. To draw the LGs and LOD curve, software MapChart v. 2.3 (Voorrips, 2002) was used.




RESULTS


Phenotyping for SB Resistance

Significant genetic variation was observed for SB among the genotypes in both the BC and CC populations. Effects of climatic fluctuations across years on SB development were revealed by significant variation in “year” and “genotype × year” interaction effects; however, for the CC population, the latter effect was non-significant (Table 1). Disease pressure was maximum in the year 2014 and least in 2015 for both populations. A similar trend was also observed for Sonalika and Chirya 3, the susceptible and resistant checks, respectively. Continuous distribution of genotypes for SB resistance in different years and their mean were observed (Figure 1). Transgressive segregants for resistance and susceptibility were obtained in both the populations. Twenty-three resistant transgressive segregants were found in the BC population, out of which seven genotypes performed better than the resistant check Chirya 3, whereas in the CC population, 55 genotypes showed higher resistant than CASCABEL, out of which 10 genotypes were better than Chirya 3.


TABLE 1. Analysis of variance and heritability estimates of spot blotch resistance in BARTAI × CIANOT79 (BC) and CASCABEL × CIANOT79 (CC) populations.
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FIGURE 1. Frequency distribution of AUDPC scores in the BC population in the year 2013 (A), 2014 (B), 2015 (C), and mean (D) and CC population in the year 2014 (E), 2015 (F), 2016 (G), and mean (H). AUDPC score of parents BARTAI, CASCABEL, and CIANO T79 is denoted as B, CA, and C.


Moderate heritability estimates for SB in BC (0.61) and CC (0.73) were recorded (Table 1). DH and PH were mostly negatively correlated with SB. PH was found to be more closely associated with SB than DH as exhibited in the significantly negative association across all the environments in both populations (Table 2).


TABLE 2. Pearson correlation coefficient analysis of spot blotch resistance with days to heading and plant height in BARTAI × CIANOT79 (BC) and CASCABEL × CIANOT79 (CC) populations.
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Genotyping and Linkage Analysis

Out of 18,000 GBS markers scored in both populations, 3,174 and 3,197 high-quality non-redundant markers in BC and CC populations, respectively, were screened out for linkage analysis and QTL mapping (Supplementary Tables 1, 2). Both populations contained 21 large LGs representing all the 21 wheat chromosomes, as well as a few fragmented LGs that were not used in subsequent analysis. The linkage map of the BC population covered 8,598.3 cM with an average distance of 2.71 cM between markers, while in the CC population, 9024.21 cM was covered with an average distance of 2.82 cM between markers. All chromosomes were in good coverage with the least length of 199.22 cM for 1D in the BC population and 223.69 cM for 4D in the CC population. The coverage for chromosomes of A and B sub-genome was better than that of D genome in both populations (Supplementary Tables 1, 2).



QTL Identification for SB Resistance

The QTL with the largest phenotypic variation explained (PVE) in the BC population was detected on chromosome 4D, with a mean PVE of 12.23% (Table 3). This QTL was found to be associated with PH. Another QTL was detected on chromosome 1A with the mean phenotypic effect of 4%. Two additional QTLs with minor effects were detected on 4D in 2013 and 5B in 2015 (Table 3 and Figure 2). All the resistance alleles of the QTLs in BC population were contributed by the resistant parent BARTAI. When PH was used as a covariate, the effect of the QTL reduced; in addition, few other QTLs on 4B, 5B, and 6B chromosomes were detected (Supplementary Table 3).


TABLE 3. Quantitative trait loci (QTLs) identified for SB in the BARTAI × CIANO T79 (BC) and CASCABEL × CIANO T79 (CC) populations and their associated QTLs in literature.
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FIGURE 2. QTL profiles for SB in BC population on chromosomes 1A (A) and 4D (B), and in CC population on chromosomes 1B (C), 5A (D), 5B (E), 6A (F), 7A (G), and 7B (H). Genetic distance in cM is presented in the left side of each chromosome. A LOD threshold of 2.5 is indicated by the vertical dashed line.


Seven QTLs were detected in the CC population, altogether explaining 39.91% of phenotypic variation (PV). The QTLs were detected on six chromosomes (1B, 5A, 5B, 6A, 7A, and 7B) with the mean PVE ranging from 2.89 to 10.32%. The resistance alleles of QTLs on 1B, 5A (proximal), 7A, and 7B were contributed by CIANO T79, whereas those of QTLs on 5A (distal), 5B, and 6A were contributed by CASCABEL. Out of 55 resistant transgressive segregants, 40 were carrying at least one QTL contributed by CIANO T79. The major QTL was detected on the distal end of chromosome 5A with a PV ranging from 8.93 to 12.62% in 2015 and 2014, respectively, with a mean PV of 10.32%. The effect of QTLs in the reduction of AUDPC appeared to be additive in nature (Figure 3).


[image: image]

FIGURE 3. Effects of QTL combinations in reducing AUDPC in the BC (A) and CC (B) population.





DISCUSSION

Due to global warming and climate change, wheat production is predicted to be adversely affected (Rosyara et al., 2010). Higher temperature combined with rains during the grain filling stages increases the chances of SB in EGP, resulting in significant yield losses. Since the vulnerability of the wheat crop to SB increases when temperature exceeds 26°C at post-anthesis stage (Chaurasia et al., 2000), sowing in this study was delayed, exposing the populations under higher disease pressure. Joishi et al. (2002) reported that the resistance is independent of plant growth stage as there is appearance of substantial proportion of resistance in tall and dwarf progenies obtained from resistant tall × susceptible dwarf and in early and late progenies from resistant tall × susceptible early cross, respectively. However, to avoid the influence of growth stages on the disease appearance, scoring was done at different growth stages. The present observation on the negative correlation of DH and PH with SB has shown similarity with the previous reports from Agua Fria (Singh et al., 2018) and SA (Singh et al., 2016). Negative association of DH and PH with SB implies the selection of late and tall genotypes for better SB resistance, but such cultivars are not suitable for high rainfall and warmer regions like EGP of SA (Joshi et al., 2007b). Fortunately, this association has been broken, and several early maturing SB resistance cultivars have been identified for warm climatic conditions of SA (Sharma et al., 2004; Joshi et al., 2007b).

All experiments in the current study exhibited a typical quantitative inheritance of SB resistance with strong genotype × environment (G × E) interactions, which has also been reported in earlier studies constituting Indian germplasm, CIMMYT derivatives, and Afghan landraces (Kumar et al., 2016; Singh et al., 2018; Bainsla et al., 2020). Strong G × E interaction has always been a concern for plant breeders as it influences varietal adaptation across the environments. QTL × environment interaction, a component of G × E interaction, affects the efficiency of marker-assisted selection. Identification of QTLs across the location and year helps breeders in design and implementation of breeding strategies for the improvement of complex traits for adaptation in specific or mega environment. Veldboom and Lee (1996) reported that QTLs identified in the mean and across the environment are of major importance. In our study, two stable QTLs on chromosomes 1A and 4D were detected in the BC population, with the latter explaining major PVs. In a previous report, when the same population was evaluated at CIMMYT’s Agua Fria station, a QTL on 4D chromosome was mapped at the same chromosomal region but was significant only in 1 year, having a PVE of 3.6% (Singh et al., 2018), implying a stronger influence of PH on SB resistance in SA. The QTL on 1A was not found in Singh et al. (2018) and thus might be specific only to SA environments. In a previous study, Zhu et al. (2014) identified a QTL on 1A, being close to the QTL identified in the present study.

A QTL on chromosome 5A delimited by the flanking markers 1067537–2257572 was significant in all 3 years explaining major PV in CC population. The same QTL was identified in the previous studies at Agua Fria but with higher phenotypic effects that reduced significantly when adjusted for PH and DH (Singh et al., 2018; He et al., 2020). In the current study, the QTL was identified 47.0 cM distance away from the vernalization locus Vrn-A1; also, the effect of QTL remained significant in all the 3 years when DH and PH were used as covariates. The allele vrn-A1 responsible for late maturity was associated with SB resistance, escaping the disease due to delayed phenology. However, the possibility of the presence of a SB resistance QTL in close proximity of Vrn-A1 cannot be excluded (Singh et al., 2018; He et al., 2020) due to remnant effects of the QTL after adjusting for DH. Similarly, Bainsla et al. (2020) reported a marker 0.8 Mb away from Vrn-A1 that is responsible for SB resistance. Likewise, Zhu et al. (2014) mapped a SB resistance QTL QSb.cim-5A at 30.3 cM away from Vrn-A1. The strong marker trait association would be useful for the selection of SB resistance QTL based on Vrn-A1.

The QTL identified on 5B chromosome in the CC population was also reported earlier when evaluated at Agua Fria (He et al., 2020). However, in the present study, the contribution of this QTL was lower than the previous report, ranging from 4.02 to 5.77% in different years of evaluation. Comparing the QTL position using the sequences of flanking markers through BLAST to the IWGSC RefSeq v1.0 genome sequence of Chinese Spring (CS), the position of this QTL coincides with the previously identified Sb2 gene (He et al., 2020). The presence of Sb2 was reported in resistant genotypes Yangmai 6 (Kumar et al., 2009), Ning8201 (Kumar et al., 2010) and CASCABEL (He et al., 2020). Additionally, this gene has been detected in an Afghan population (Bainsla et al., 2020), CIMMYT germplasm (Jamil et al., 2018), and a diverse germplasm panel with global origin (Gurung et al., 2014), suggesting that Sb2 has been selected by breeders of different continents due to its positive effects on SB resistance. Recently, Tsn1 on 5BL was identified as a sensitivity gene for the pathogen carrying the corresponding virulent gene ToxA (Friesen et al., 2018). It was suggested that Tsn1 gene is the susceptibility gene of Sb2 (Friesen et al., 2018), but He et al. (2020) proposed that the two genes might be different. A recent study of Indian B. sorokiniana population indicated that about 70% of the isolates carried ToxA (Navathe et al., 2019). The presence of ToxA in Mexican B. sorokiniana isolates (Wu et al., 2021) indicates the similarity in virulence factors of pathogenic population in Mexico and SA that reflects why the selections in Agua Fria are effective for SA.

Three QTLs on 6A, 7A, and 7B in the CC population were identified only in SA. Anchoring the flanking markers of the 6A and 7B QTLs in the CS reference genome indicated that they both reside at the distal end of their respective chromosomes. Earlier, SB resistance QTL was mapped on 6A (Sharma et al., 2007a) and 7B (Singh et al., 2016; Ayana et al., 2018) but at different positions, implying that those mapped in the current study might be new. However, the QTL on 7A might not be new, since QTLs with similar confidence intervals were reported in the KATH × CIANO T79 population (Singh et al., 2018), in a CIMMYT wheat panel (Jamil et al., 2018), as well as in the Afghan landrace collection (Bainsla et al., 2020).

The pathotype diversity of B. sorokiniana and some climatic difference among SA and Mexico environments possibly play a significant role in the identification of effective QTLs. In our study, QTLs specific to SA were detected in both populations, providing an opportunity for breeding SB resistance cultivars in SA. In CC, an average of 27.2% reduction in SB was observed when the 5A and 5B QTLs were combined, compared to a 42.3% reduction of SB at Agua Fria (He et al., 2020). Detection of QTLs on 5A and Sb2 at both SA and Agua Fria indicated the potentiality of these genes in resistance breeding for SA, but their lower phenotypic effects for SB in SA environment indicates the role of other QTLs, like those on 4D, 6A, and 7A. Furthermore, validation of these QTLs and markers over multiple locations and years will provide not only more insight into the SB resistance in SA but also more robust markers for the development of SB-resistant cultivars targeting SA.
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Leaf rust, caused by Puccinia triticina (Pt), stripe rust caused by Puccinia striiformis f. sp. tritici (Pst), and stem rust caused by Puccinia graminis f. sp. tritici (Pgt) are major diseases to wheat production globally. Host resistance is the most suitable approach to manage these fungal pathogens. We investigated the phenotypic and genotypic structure of resistance to leaf rust, stem rust, and stripe rust pathogen races at the seedling stage in a collection of advanced durum wheat breeding lines and cultivars adapted to Upper Mid-West region of the United States. Phenotypic evaluation showed that the majority of the durum wheat genotypes were susceptible to Pt isolates adapted to durum wheat, whereas all the genotypes were resistant to common wheat type-Pt isolate. The majority of genotypes were resistant to stripe rust and stem rust pathogen races. The durum panel genotyped using Illumina iSelect 90 K wheat SNP assay was used for genome-wide association mapping (GWAS). The GWAS revealed 64 marker-trait associations (MTAs) representing six leaf rust resistance loci located on chromosome arms 2AS, 2AL, 5BS, 6AL, and 6BL. Two of these loci were identified at the positions of Lr52 and Lr64 genes, whereas the remaining loci are most likely novel. A total of 46 MTAs corresponding to four loci located on chromosome arms 1BS, 5BL, and 7BL were associated with stripe rust response. None of these loci correspond to designated stripe rust resistance genes. For stem rust, a total of 260 MTAs, representing 22 loci were identified on chromosome arms 1BL, 2BL, 3AL, 3BL, 4AL, 5AL, 5BL, 6AS, 6AL, 6BL, and 7BL. Four of these loci were located at the positions of known genes/alleles (Sr7b, Sr8155B1, Sr13a, and Sr13b). The discovery of known and novel rust resistance genes and their linked SNPs will help diversify rust resistance in durum wheat.
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INTRODUCTION

Durum wheat [2n = 4x = 28, AABB, Triticum turgidum L. Var. durum (Desf.)] is the second most cultivated wheat crop. It accounts for about 8% of the world’s total wheat production (Mengistu and Pè, 2016) and is mainly produced in the Mediterranean region, Eastern Europe, and North America (Royo et al., 2009). Annual worldwide durum wheat production is estimated to be around 36 million tons (Magallanes-López et al., 2017), with approximately, 2.5 million tons produced in the United States. North Dakota’s production of durum wheat accounts for over 50% of total U.S. production (NASS, 2018). Leaf rust, stripe rust and stem are major fungal diseases threatening durum wheat production globally. Rust resistance is the most environmentally and economically feasible approach for managing these diseases. Therefore, the development and deployment of rust resistant cultivars is a major goal of wheat breeding programs worldwide.

Tetraploid durum wheat has historically been more resistant to leaf rust than hexaploid common wheat (T. aestivum L.) (Singh et al., 2004; Herrera-Foessel et al., 2006). However, during the last 20 years, new durum-type Pt races have emerged and caused leaf rust epidemics in several durum wheat producing regions (Singh et al., 2004; Goyeau et al., 2012; Mishra et al., 2015; Aoun et al., 2016). Virulent Pt isolates have not been found yet in North Dakota, however, a highly virulent race (BBBQJ) was reported in California and Kansas, United States (Kolmer, 2013, 2015a). This poses a threat to the major durum-producing regions of the USA and Canada. Pt-isolates from durum wheat are often avirulent to most leaf rust resistance (Lr) genes in common wheat (Huerta-Espino and Roelfs, 1992; Ordoñez and Kolmer, 2007a). The durum wheat type-Pt isolates from several durum wheat producing countries have similar phenotypic reactions on ‘Thatcher’ wheat near-isogenic lines and similar or identical SSR and SNP genotypes, suggesting a common origin (Ordoñez and Kolmer, 2007a, b; Aoun et al., 2020; Kolmer et al., 2020). Other Pt-isolates collected on tetraploid wheat in Ethiopia (designated as race EEEEE) are avirulent to Thatcher wheat and have a unique molecular genotype compared to all other Pt-isolates collected from durum wheat and common wheat globally (Ordoñez and Kolmer, 2007a, b; Kolmer and Acevedo, 2016; Aoun et al., 2020; Kolmer et al., 2020).

A total of 79 Lr genes have been identified in wheat, only 20 of them are known to be present in durum wheat (Desiderio et al., 2014; Qureshi et al., 2018). In response to leaf rust epidemics in many durum producing countries, a number of Lr genes were identified in this crop including Lr3a, Lr14a, Lr27+Lr31, Lr61, Lr79, and LrCamayo (Herrera-Foessel et al., 2007, 2008a, 2008b; Huerta-Espino et al., 2009; Qureshi et al., 2018). Other not yet cataloged Lr genes were also detected in durum wheat landraces and cultivars (Loladze et al., 2014; Aoun et al., 2016, 2017, 2019; Kthiri et al., 2018, 2019). However, due to continuous virulence evolution of Pt isolates on many of the identified Lr genes, diversifying the genetic basis for leaf rust resistance in durum wheat is a priority.

Stripe rust is another major disease of wheat worldwide (Chen, 2005). Aggressive Pst races adapted to high temperatures have emerged and spread into most wheat producing regions (Milus et al., 2009). Over 80 stripe rust resistance (Yr) genes have been designated in wheat (McIntosh et al., 2013, 2017, Gessese et al., 2019). The Yr genes that were derived from tetraploid wheat (T. turgidum L. ssp) include Yr7, Yr15, Yr24/Yr26, Yr30, Yr35, Yr36, YrH52, Yr53, Yr64, and Yr65 (McFadden, 1939; Macer, 1966; McIntosh and Lagudah, 2000; Peng et al., 2000; Ma et al., 2001; Marais et al., 2005; Uauy et al., 2005; Xu et al., 2013; Cheng et al., 2014). However, most of the Yr genes identified in wheat are race specific and have become ineffective against the rapidly evolving pathogen (Chen, 2013; McIntosh et al., 2013; Rosewarne et al., 2013). Therefore, identification and pyramiding of new genes is needed for more effective management of this rapidly evolving pathogen.

Stem rust has historically threatened common wheat and durum wheat production. The Ug99 race group that appeared in East Africa overcame several widely used wheat stem rust resistance (Sr) genes (Jin et al., 2007; Singh et al., 2011). More than 70 cataloged Sr genes have been characterized in durum and common wheat. Only 31 genes are still effective against at least one race of the 13 Ug99 variants (Rouse et al., 2011, 2014; Singh et al., 2011, 2015). Approximately half of these genes were introgressed into wheat from secondary and tertiary gene pools (Rouse et al., 2014; Singh et al., 2015) and only a few genes have been identified in durum wheat Designated Sr genes that have be reported in tetraploid wheat include Sr2, Sr7a, Sr8b, Sr8155B1, Sr9d, Sr9e, Sr9g, Sr11, Sr12, Sr13a, Sr13b, Sr14, and Sr17 (Jin et al., 2007; Singh et al., 2015; Nirmala et al., 2017; Saini et al., 2018; Zhang et al., 2017).

In North American durum wheat cultivars, resistance to the Ug99 lineage is mainly due to Sr13, of which the Sr13a allele was first identified in Khapstein, a hexaploid wheat derivative of cultivated emmer wheat (T. turgidum L. ssp. dicoccum, 2n = 4x = 28, AABB) cv. Khapli (Knott, 1962; Jin et al., 2007; Klindworth et al., 2007; Zhang et al., 2017). Sr9e is also another Sr gene frequently deployed in durum wheat (Olivera et al., 2012; Saini et al., 2018). Nirmala et al. (2017) recently identified a possible Sr8 allele, designated as Sr8155B1, in the durum wheat line ‘8155-B1.’ Sr8155B1 is effective to a variant of the Ug99 race TTKST but not to race TTKSK (Nirmala et al., 2017). However, the frequency of this allele in durum wheat cultivars is not yet determined. Besides the Ug99 race group, additional Pgt-races with broad virulence spectra have also emerged during the last decade including TRTTF, JRCQC, and TKTTF. These races do not belong to the Ug99 lineage and pose serious threat to common wheat and durum production (Olivera et al., 2012, 2015). Among these races, TRTTF and JRCQC were reported to be virulent to the major known components of stem rust resistance in North American durum cultivars Sr13 and Sr9e (Olivera et al., 2012). However, according to Zhang et al. (2017), Sr13a is effective to both JRCQC and TRTTF, and Sr13b is effective to TRTTF, but not JRCQC. Identifying and characterizing new sources of stem rust resistance in durum wheat is needed to manage future outbreaks.

This study was designed: (1) to determine levels of leaf rust, stem rust, and stripe rust resistance in a large collection of elite durum wheat lines at seedling stage, (2) to determine the genetic architecture of rust resistance loci using GWAS and Infinium 90K wheat SNP assay (3) to detect novel seedling resistance (all-stage resistance) loci to Pt, Pst, and Pgt races that could be used in breeding programs, and (4) to identify SNPs associated with seedling rust resistance loci for marker assisted breeding.



MATERIALS AND METHODS


Plant Materials

A collection of 248 durum wheat genotypes was used in this study. The collection represented advanced breeding lines evaluated in the North Dakota State University’s (NDSU) Uniform Regional Durum Nursery (URDN) from 1997 to 2014 (for more details, see Johnson et al., 2019; Supplementary Table 1). These genotypes were regularly evaluated for agronomic and quality traits over the years in multiple environments. Thus, this plant material represents the core of the NDSU’s durum breeding program.



Leaf Rust Phenotyping

The durum wheat collection was screened at the seedling stage with six Pt isolates (Supplementary Table 1). Five of these isolates (TUN 20-1, ETH 13D17-1, MEX10, ETH 63-1, and MOR 33-1) were durum wheat type isolates, while ALK-ND is a common wheat type isolate from North Dakota. The virulence/avirulence phenotypes of the Pt isolates were based on the infection types (ITs) of 20 Thatcher near-isogenic lines (NILs) at seedling stage as described by Long and Kolmer (1989). The Tunisian (TUN 20-1) and Moroccan (MOR 33-1) isolates were both of race BBBSJ (virulent to the Lr genes LrB, Lr10, Lr14a, Lr14b, and Lr20). The Mexican isolate MEX10 was of race BBBQJ (virulent to the Lr genes LrB, Lr10, Lr14b, and Lr20). The two Ethiopian isolates ETH 63-1 and ETH 13D17-1 designated as race EEEEE are avirulent on the Thatcher wheat. The common wheat type isolate ALK-ND, designated as race MBDSS was isolated from the durum wheat cultivar ‘Alkabo’ (PI 642020) in North Dakota and is virulent to the Lr genes Lr1, Lr3a, Lr3bg, Lr10, Lr14a, Lr14b, Lr17, Lr20, and LrB.

The phenotyping using isolates EEEEE_ETH 63-1, BBBSJ_MOR 33-1, and MBDSS_ALK-ND was performed at the biosafety level-2 facility at the Agricultural Experiment Station Greenhouse Complex, Fargo, ND, United States using a randomized complete block design (RCBD) with two replicates. In each replicate five-to-seven plants/line were tested and the common wheat cultivar Thatcher and the leaf rust susceptible durum line ‘RL6089’ were included twice as checks in each of the 50-cell trays. For each experiment, two replicates of Thatcher NIL differentials were included to confirm the virulence phenotype of Pt-isolates. Seedling growth conditions, inoculum increase and preparation, inoculation, and greenhouse conditions under which the inoculated plants were kept until disease phenotyping were as described by Aoun et al. (2019).

The screening experiments with the remaining three isolates EEEEE_ETH 13D17-1, BBBQJ_MEX10, and BBBSJ_TUN 20-1 were done at the U.S. Department of Agriculture- Agricultural Research Service (USDA–ARS), Cereal Disease Laboratory (CDL) in Saint Paul, MN, United States. The seedling tests using these three isolates were performed in a single replicate with five-to-seven plants/line. The common wheat Thatcher and the durum line RL6089 were included as checks. The detailed protocols of plant growing conditions and inoculation were described in Kolmer and Hughes (2013).

Leaf rust ITs were taken 12–14 days after inoculation on the second leaf using a 0–4 scale (Long and Kolmer, 1989; McIntosh et al., 1995) where IT of ‘0’ = no visible symptoms, IT of ‘;’ = hypersensitive flecks, IT of ‘1’ = small uredinia with necrosis, IT of ‘2’ = small-to medium-size uredinia surrounded by chlorosis, IT of ‘3’ = medium-size uredinia with no chlorosis or necrosis, and IT of ‘4’ = large uredinia with no necrosis or chlorosis. Larger and smaller uredinia than expected for each IT were designated with ‘+’ and ‘–‘, respectively. Seedling plants exhibiting ITs of 0–2+ and ‘X’ (a mixture of resistant and susceptible reactions evenly distributed on the leaf surface) were considered resistant, whereas seedling plants with ITs of 3–4 were considered susceptible (Long and Kolmer, 1989; McIntosh et al., 1995). In situations where multiple ITs were observed on the same leaf surface, the plant reaction was recorded as the most predominant IT followed by the least predominant IT.



Stripe Rust Phenotyping

Three Pst races (PSTv-37, PSTv-41, and PSTv-52) collected from common wheat in North Dakota (Supplementary Table 2) were used to screen the durum genotypes. These three Pst races are the only ones currently present in North Dakota. PSTv-37 has been the most widely distributed race across the United States (Wan et al., 2016) and has a virulence/avirulence phenotype of Yr6, 7, 8, 9, 17, 27, 43, 44, Tr1, Exp2/Yr1, 5, 10, 15, 24, 32, SP, 76. The race PSTv-52 that has been widely distributed in the United States1 has a virulence/avirulence profile of Yr6, 7, 8, 9, 17, 27, 43, 44, Exp2/Yr1, 5, 10, 15, 24, 32, SP, Tr1, 76. The race PSTv-41 is considered the most virulent race in ND and has a virulence/avirulence profile of Yr6, 7, 8, 9, 10, 17, 24, 27, 32, 43, 44, Tr1, Exp2/Yr1, 5, 15, SP, 76.

To screen for stripe rust, three separate experiments (one experiment/Pst race) with the same set of durum genotypes (n = 248) were planted at the Fargo Agricultural Experiment Station Greenhouse Complex, ND, United States. In each experiment, five-to-seven seeds/genotype were planted in 50-well trays. The susceptible cultivar ‘Avocet’ was included twice in each tray as check. To confirm the race identity, a set of 18 differential lines containing each a single Yr gene (Wan and Chen, 2014) was included alongside each single-race experiment. The seedlings were grown in a rust-free greenhouse at 22°C/18°C (day/night) and 16 h photoperiod. When the second leaves were fully expanded, the plants were spray inoculated with fresh rust urediniospores suspended in Soltrol-170 oil (Phillips Petroleum, Bartlesville, OK, United States) at a concentration of 0.01 g/mL. After the Soltrol-170 oil dried on the leaf surface, the inoculated plants were incubated in a dark dew chamber at 10°C with 100% relative humidity for 24 h. The seedlings were later transferred to a rust-free incubated growth chamber at 17°C/8°C (day/night) and 16 h photoperiod. The seedling ITs were recoded 16–18 days post-inoculation on a scale of 0–9 (Line and Qayoum, 1992). IT of ‘0’ = no visible signs or symptoms, IT of ‘1’ = necrotic or chlorotic flecks with no sporulation; IT of ‘2’ = necrotic and/or chlorotic blotches or stripes with no sporulation; IT of ‘3’ = necrotic and/or chlorotic blotches or stripes with only a trace of sporulation; IT of ‘4,’ ‘5,’ and ‘6’ corresponds to necrotic and/or chlorotic blotches or stripes with light, intermediate, and moderate sporulation, respectively; and IT of ‘7,’ ‘8,’ and ‘9’ corresponds to abundant sporulation with necrotic and/or chlorotic stripes or blotches, chlorosis around the sporulation area, and no chlorosis or necrosis, respectively. ITs from 0 to 3 were considered resistant responses, ITs from 4 to 6 were considered intermediate responses and ITs from 7 to 9 were considered susceptible responses.



Stem Rust Phenotyping

The durum wheat genotypes were tested at seedling stage with six African Pgt races TTKSK (isolate 04KEN156/04; Jin and Singh, 2006), TTKST (06KEN19v3; Jin et al., 2008), TTKTT (14KEN58-1; Newcomb et al., 2016), TKTTF (13ETH18-1; Olivera et al., 2015), TRTTF (06YEM34-1; Olivera et al., 2012), and JRCQC (09ETH08-3; Olivera et al., 2012) (Supplementary Table 3). The durum lines were phenotyped in the biosafety level-3 facility at the USDA-ARS CDL in St. Paul, MN, United States. The lines were planted in two replicates corresponding to different experiments with different planting and inoculation dates. Five seedlings per line were planted per replicate for all six Pgt races. The inoculum preparation, inoculation, greenhouse conditions, and disease screening were as described by Hundie et al. (2019). In brief, the urediniospores stored at –80°C were heat shocked at 45°C for 15 min. For inoculation, gelatin capsules including 14 mg spores were suspended in 0.75 ml mineral oil (Sotrol 170, Phillips Petroleum, Borger, TX, United States) and sprayed onto the plant primary leaves of 240 wheat seedling plants corresponding to 48 wheat lines. After the Soltrol-170 oil dried on the leaf surface, the inoculated plants were placed in a humidity chamber in the dark for 14-to-16 h at 22°C, then exposed to high pressure sodium vapor lamps for 3–4 h. The plants were then transferred to the greenhouse and kept at temperature of 19–22°C and 16 h photoperiod for 10–12 days. The seedling ITs were scored using the Stakman 0–4 scale (Stakman et al., 1962). Plants with ITs of 0–2+3 were considered resistant and those with IT of 3–4 were considered susceptible.



Phenotypic Data Analysis

For statistical analysis, the 0–4 scale for leaf rust and stem rust screening was converted to a linearized 0–9 scale (Zhang et al., 2014) where plants with ITs of 0–6 were classified as resistant and those with ITs of 7–9 were considered susceptible. For further analysis, the mean of replicates per trait were used. Pairwise Pearson’s correlations between traits were calculated and plotted using the ‘corrplot’ package (Wei and Simko, 2013) in the software R 3.4.1 (R Core Team, 2016). Correlation values were considered significantly different from zero at P-value ≤ 0.05.



Genotyping

The durum collection was genotyped as described by Johnson et al. (2019) using the Illumina iSelect 90K wheat SNP assay (Wang et al., 2014). The 90K wheat SNP assay generated 17,377 polymorphic SNPs. Markers which were in common with those included in the tetraploid wheat consensus map (Maccaferri et al., 2015) were kept for further analysis (Supplementary Table 4). Additionally, a diagnostic marker for the presence of either Sr13 allele (Zhang et al., 2017), a linked marker to Sr8155B1 (Nirmala et al., 2017), and three dCAPS markers used to discriminate Sr13a and Sr13b were also used to genotype the durum wheat collection. The durum wheat collection was genotyped using derived cleaved amplified polymorphic sequence (dCAPS) markers for Sr13 and its three alleles R1 (Sr13a-R1), R2 (Sr13b), and R3 (Sr13a-R3). Markers dCAPS_Sr13 (Zhang et al., 2017), dCAPS_Sr13_R1cut, dCAPS_Sr13_R2nocut, and dCAPS_Sr13_R3nocut were used to identify Sr13, Sr13a-R1, Sr13b, Sr13a-R3, respectively (Supplementary Table 5). Sr13a-R1 and Sr13a-R3 correspond to the two resistant haplotypes of Sr13a: R1 and R3 (Zhang et al., 2017). The dCAPs markers used to discriminate among the two Sr13 alleles were designed based on the sequence information of the resistant haplotypes of Sr13 in Zhang et al. (2017). The primer sequences of Sr13 gene/alleles, the restriction enzymes (RE), and the resulting PCR product sizes after RE digestion are described in Supplementary Table 5. The Kompetitive Allele Specific PCR (KASP) marker (KASP_6AS_IWB10558) was used to postulate the presence of the gene Sr8155B1 (Nirmala et al., 2017). Heterozygotes were converted into missing data. Polymorphic markers with >10% missing data and minor allele frequency (MAF) < 3% were excluded from further analysis.



Linkage Disequilibrium and Population Structure

Linkage disequilibrium (LD) was performed using JMP Genomics 8.1 software (SAS Institute Inc, 2004) as described by Aoun et al. (2016). The LD estimates for intrachromosomal markers were calculated as the squared correlation coefficient (R2) for each of the marker pairs. The genome-wide LD decay was estimated by plotting LD estimates (R2) from all 14 durum wheat chromosomes against the corresponding pairwise genetic distances in cM. The genetic positions of the markers were according to the durum wheat consensus map of Maccaferri et al. (2015). Smoothing spline fit was applied to LD decay plot.

The principal component analysis (PCA) was used to examine the population structure (Q matrix). SNPs with LD (R2) ≤ 0.2 were used to estimate the Q matrix. The identity-by-state (IBS) matrix or Kinship matrix (K matrix) that represents the proportion of shared alleles for all pairwise comparisons between genotypes was also estimated. The K and Q matrices were estimated using JMP Genomics 8.1 software.



Genome-Wide Association Analysis

For each trait, mixed linear model for genome-wide association analyses were performed using JMP Genomics 8.1 software. Five regression models were tested to identify the best model per trait from which MTAs will be derived. The tested models include (i) naïve, (ii) kinship, (iii) kinship plus population structure (first two PCs), (iv) kinship plus population structure (first three PCs), and (v) kinship plus population structure (first four PCs). The K and the Q matrices were included in the genome-wide association analysis model to reduce the chance of false-positive MTAs. Each of the markers was fitted into the regression equation to generate a P-value. The best association mapping model (of the five tested regression models) was selected based on the Bayesian Information Criterion (BIC), where the lowest BIC value corresponded to the best model (Ghosh et al., 2006; Zhang et al., 2010). For each trait, the marker P-values of the selected model were used to calculate the P-value of the false positive discovery rate (FDR) (Benjamini and Yekutieli, 2001). MTAs were considered significant at P-value of FDR ≤ 0.05. The LD estimates between significant markers and marker genetic positions on the tetraploid consensus map (Maccaferri et al., 2015) were used to group MTAs from the GWAS into the same or different underlying loci. Each locus was represented by the most significant SNP marker. The physical and genetic position of the most significant marker per locus and any markers from the literature used for comparative mapping was based on the durum wheat cv. Svevo genome v1 (Maccaferri et al., 2019) and the tetraploid consensus map (Maccaferri et al., 2015), respectively. In the case of multiple identified loci on the same chromosome, the loci were ordered according to their most significant SNP genetic positions on the tetraploid consensus map of Maccaferri et al. (2015).



RESULTS


Phenotypic Data


Leaf Rust

All the durum wheat genotypes were resistant to the common wheat type isolate MBDSS_ALK-ND. For the Pt durum wheat type isolates, the percentage of susceptible lines varied depending on the isolate (Supplementary Table 1). For instance, 10% of the genotypes were susceptible to the Ethiopian isolate EEEEE_ETH 63-1, while 28% of the genotypes showed susceptibility to the Ethiopian isolate EEEEE_13D17-1. The distribution of the ITs to EEEEE_13D17-1 was bimodal, where two ITs were observed. A total of 72% of the genotypes exhibited a mesothetic reaction (IT = ‘3+;’), while the remaining genotypes showed IT = ‘3+’. The plant reactions to EEEEE_ETH 63-1 ranged between ‘;’ and 3+. Even though the two Ethiopian isolates had similar race designation EEEEE (avirulent to the common wheat cv. Thatcher), they carried different virulence/avirulence phenotypes to the durum genotypes in our study (Figure 1 and Supplementary Table 1).
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FIGURE 1. Distributions of the seedling responses of the durum wheat genotypes to Puccinia triticina isolates BBBSJ_TUN 20-1, EEEEE_ETH 13D17-1, EEEEE_ETH 63-1, BBBSJ_MOR 33-1, BBBQJ_MEX10, and MBDSS_ALK-ND. X-axis corresponds to linearized Stakman scale (0-to-9).


In contrast to the Ethiopian isolates, the percentages of susceptible genotypes to durum wheat type isolates from Morocco, Tunisia, and Mexico were much higher. For instance, all the durum genotypes were susceptible to isolate BBBQJ_MEX10. Similarly, 74 and 98% of the genotypes were susceptible to isolates BBBSJ_TUN 20-1 and BBBSJ_MOR 33-1, respectively. The most resistant lines to race BBBSJ_MOR 33-1 had IT of ’23,’ whereas the most resistant lines to race BBBSJ_TUN 20-1 had IT of ‘;’suggesting that these two isolates of the same race (based on Thatcher wheat differentials) carried different virulence/avirulence profiles to durum wheat (Figure 1 and Supplementary Table 1).

The top four durum wheat cultivars grown in ND in 2019 were Joppa (PI 673106, 30.2%), Divide (PI 642021, 21.2%), Alkabo (PI 642020, 7.8%), and Carpio (PI 670039, 6.1%) (USDA, NASS, North Dakota Field Office, 2019). All of these cultivars were resistant to EEEEE_ETH 13D17-1, EEEEE_ETH 63-1, and MBDSS_ALK-ND but susceptible to the Mexican isolate BBBQJ_MEX10. Joppa showed intermediate IT to BBBSJ_TUN 20-1 (IT = ‘23’) and to BBBSJ_MOR 33-1 (IT = ‘32+′). Divide was resistant to BBBSJ_TUN 20-1, whereas Alkabo and Carpio were susceptible to this Tunisian isolate. Divide was resistant to BBBSJ_MOR 33-1, while Alkabo and Carpio were susceptible to this isolate (Supplementary Table 1).



Stripe Rust

A total of 69% of the durum wheat genotypes were resistant to races PSTv-37 and PSTv-52, while 67% of the lines were resistant to race PSTv-41. The ITs to the three Pst races ranged between 1 and 9. The cultivars Divide, Alkabo, Carpio were resistant to all the three Pst races. Joppa was resistant to races PSTv-37 and PSTv-41 but not to PSTv-52 (Figure 2 and Supplementary Table 2).
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FIGURE 2. Distributions of the seedling responses of the durum wheat genotypes to Puccinia striiformis f. sp. tritici races PSTv-37, PSTv-41, and PSTv-52.




Stem Rust

About 81–99% of the genotypes were resistant to the three Ug99-lineage races TTKSK, TTKST, and TTKTT. For race TTKSK, the ITs ranged from 1 to 3+ with most of the lines showing IT of ‘2–’. The ITs to races TTKST and TTKTT ranged between 0; and 33+ with most of the genotypes showing IT = ‘0;’. For race TKTTF, only the breeding line ‘D07726’ showed a susceptible IT, while the remaining genotypes showed resistant ITs that ranged between ‘0;’ and ‘2’ with the most frequent resistant IT = ‘0;’ (Figure 3 and Supplementary Table 3).
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FIGURE 3. Distributions of the seedling responses of the durum wheat genotypes to Puccinia graminis f. sp. tritici races TTKSK, TTKST, TTKTT, TKTTF, TRTTF, and JRCQC. X- axis corresponds to the linearized Stakman scale (0-to-9).


All the durum wheat genotypes showed resistant ITs to race TRTTF ranging between ‘0;’ and ‘2.’ Like races TTKST, TTKTT, and TKTTF, the most frequent resistant IT to race TRTTF was ‘0;’. Even though, 99–100% of the durum genotypes were resistant to race TTKST, TTKTT, TKTTF, and TRTTF, there were phenotypic variations within the resistant ITs (Figure 3 and Supplementary Table 3) appropriate to conduct further analysis (e.g., GWAS). Of all the Pgt races used for screening, race JRCQC was the most virulent race on the durum wheat collection, with 44% of the genotypes showing susceptibility. The resistant ITs to JRCQC ranged from ‘1;’ to ‘2+3’ with most of the resistant genotypes showing ITs of ‘22+’ to ‘2+3’ (Figure 3 and Supplementary Table 3). The durum cultivars Carpio and Alkabo showed resistance to all Pgt-races. Divide was resistant to all races except TTKSK and JRCQC, while Joppa was resistant to all races except TTKSK (Supplementary Table 3).



Phenotypic Data Correlations

For correlation analyses, we considered only traits with phenotypic variations (Figure 4). Pearson’s correlation between linearized ITs showed a significant correlation (r = 0.8, P-value ≤ 0.05) between the durum genotype responses to the Ethiopian Pt races EEEEE_ETH 63-1 and EEEEE_13D17-1. However, there were no significant correlations between the ITs to BBBSJ_TUN 20-1 and the ITs to both Ethiopian isolates of race EEEEE. There were strong significant correlations between ITs to the three Pst races that ranged between 0.8 and 0.9. For Pgt races, we observed significant correlations (r = 0.7–0.9, P-value ≤ 0.05) between ITs to races TTKST, TTKTT, TKTTF, and TRTTF. ITs to TTKSK and JRCQC were not significantly correlated with ITs to any of the remaining four Pgt-races. There was no correlation between ITs to TTKSK and JRCQC. We found no significant correlations between ITs to different rust pathogens, suggesting that different genetic loci confer resistance to leaf rust, stripe rust, and stem rust in this durum wheat collection (Figure 4).
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FIGURE 4. Correlation between durum wheat line infection types to leaf rust, stem rust, and stripe rust pathogen races. Cells with significant correlations at P-value < 0.05 were in blue color.




Marker Properties and Linkage Disequilibrium Analysis

After marker filtering, 10,891 SNPs included in the tetraploid wheat consensus map with MAF ≥ 3% and missing data points ≤ 10% were used for further analysis. Of the 10,891 SNPs, there were 4,779 (43.9%) SNPs on the genome A and 6,112 (56.1%) SNPs on the genome B. Additional four diagnostic dCAPS markers for Sr13 gene/alleles and a single KASP marker for Sr8155B1 gene were included. The genome-wide linkage disequilibrium (LD) dropped by half to 0.33 within 2.5 cM on average (Figure 5). Therefore, MTAs from the GWAS within 2.5 cM on average and with LD (R2) ≥ 0.3 were considered underlying the same locus. In addition, we considered the pairwise LD (R2 cutoff = 0.3) between significant markers on the same chromosome arm to identify the loci.
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FIGURE 5. Scatter plot demonstrating linkage disequilibrium (LD) decay across the 14 durum wheat chromosomes for the 248 durum wheat genotypes. The LD estimate (R2) for pairs of SNPs was plotted against the corresponding genetic distance in centimorgan (cM) based on the tetraploid consensus map of Maccaferri et al. (2015). The dashed lines represent the LD decay that dropped by half at around 2.5 cM in average.




Kinship Analysis, Population Structure, and Regression Model Selection for GWAS

For the identity-by-state matrix or kinship matrix (K matrix), there were some hotspots (red color in the heat map) between some of the durum genotypes (Supplementary Figure 1). This suggests intermediate familial relatedness between genotypes as described by Johnson et al. (2019). The PCA showed that the first two, three, four, and 10 PCs explained a cumulative variance of 9.4, 13.2, 16.5, and 31.4% of variation, respectively. The genotypes were clustered into three groups (Johnson et al., 2019) with majority of the lines grouped within the same cluster (Supplementary Figure 2). This is expected because the genotypes are from the same breeding program. Based on BIC values, mixed linear models that include both Q and K matrices were used for the GWAS for most traits. For traits associated with responses to Pgt races TTKST and TKTTF, the best GWAS regression models included the K matrix but not the Q matrix (Table 1).


TABLE 1. Bayesian Information Criterion of association mapping models for each trait.
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Marker–Trait Associations


Association Analysis for Leaf Rust Response

The GWAS based on the linearized ITs to the three Pt isolates BBBSJ_TUN 20-1, EEEEE_ETH 13D14-1, and EEEEE_ETH 63-1 identified 64 significant SNPs (MTAs) at FDR ≤ 0.05. Based on the LD between significant markers, these MTAs represented six loci located on chromosome arms 2AS, 2AL, 5BS, 6AL, and 6BL. The most significant marker/locus explained 6–31% of phenotypic variation (Table 2, Figure 6, and Supplementary Table 6). Chromosome arms 5BS and 6BL carried most of the MTAs. Therefore, the pairwise LD between the significant markers on each of these chromosome arms were presented in Supplementary Figure 3 that was used to determine the number of loci on chromosomes 5BS and 6BL.


TABLE 2. Summary of leaf rust resistance loci in the durum wheat genotypes.
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FIGURE 6. Manhattan plots showing P-values for single-nucleotide polymorphism (SNP) markers associated with response to leaf rust in durum wheat genotypes to the three durum wheat type isolates BBBSJ_TUN 20-1, EEEEE_ETH 13D14-1, and EEEEE_ETH 63-1. The horizontal dashed red line indicates significance level at P-value ≤ 0.001. The horizontal dotted black line indicates significance level at FDR ≤ 0.05.


On chromosome arm 2AS, the large-effect loci, QLrdu.2AS (Tag SNP: IWB10489, 67.5 cM, 61 Mbp) was associated with response to the Ethiopian isolates EEEEE_ETH 13D14-1 and EEEEE_ETH 63-1. On chromosome arm 2AL, QLrdu.2AL (IWB38096, 197.6 cM) was associated with response to race BBBSJ_TUN 20-1. On chromosome arm 5BS, two loci were associated with response to BBBSJ_TUN 20-1 and designated as QLrdu.5BS-1 (IWB47425) and QLrdu.5BS-2 (IWB26157). QLrdu.5BS-1 explained higher phenotypic variation compared to QLrdu.5BS-2. These two loci spanned a genomic region from 2.0 to 35.8 cM corresponding to 4–21 Mbp on Svevo physical map (Maccaferri et al., 2019). On chromosome arm 6AL, a small-effect locus, QLrdu.6AL (IWB24755, 129.4 cM, 612 Mbp) was associated with response to EEEEE_ETH 63-1. An additional locus on chromosome arm 6BL, QLrdu.6BL (IWB52926, 154.6 cM, 696 Mbp) was also associated with response to EEEEE_ETH 63-1. All the leaf rust resistance loci identified in this study were race/isolate specific, except QLrdu.2AS that was associated with two Ethiopian isolates (Table 2, Figure 6, and Supplementary Table 6).

The postulation of the six Lr loci in each genotype in this germplasm was based on the most significant marker per locus and is presented in Supplementary Table 1. We found that all genotypes carry at least one of the identified loci in this study except lines D06707, D06710, D091721, and D97780. A total of 91% of the genotypes carry QLrdu.6AL and QLrdu.6BL, whereas 88% of the genotypes carry QLrdu.2AS, QLrdu.6AL, and QLrdu.6BL. Nine genotypes carry all the six identified loci in this study including Plaza (PI 613619), D98015, D98016, D01279, D011238, D03004, D05547, D101558, and D101650.



Association Analysis for Stripe Rust Response

The GWAS to the three Pst isolates PSTv-37, PSTv-52, and PSTv-41 identified 46 significant MTAs, corresponding to four loci located on chromosome arms 1BS, 5BL, and 7BL. The most significant SNP/locus explained 6–19% of phenotypic variation (Table 3, Figure 7, and Supplementary Table 7). Most of the MTAs were on chromosome arms 5BL and 7BL. Therefore, the pairwise LD between the significant markers on each of these chromosome arms were presented in Supplementary Figure 4 that was used to determine the number of loci on each chromosome.


TABLE 3. Summary of stripe rust resistance loci in the durum wheat genotypes.
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FIGURE 7. Manhattan plots showing P-values for single-nucleotide polymorphism (SNP) markers associated with response to stripe rust in durum wheat genotypes to the three Pst isolates PSTv-37, PSTv-52, and PSTv-41. The horizontal dashed red line indicates significance level at P-value ≤ 0.001. The horizontal dotted black line indicates significance level at FDR ≤ 0.05.


On chromosome arm 1BS, QYrdu.1BS (Tag SNP: IWB31649, 33 cM, 89 Mbp) was associated with response to race PSTv-52. On chromosome 5BL, two loci were detected. QYrdu.5BL-1 (IWA6271, 187.1 cM, 682 Mbp) was associated with response to the three Pst races, whereas QYrdu.5BL-2 (IWB64287, 193.4 cM, 691 Mbp) was associated with response to race PSTv-41. On chromosome 7BL, QYrdu.7BL (IWB10533, 187.5 cM, 697 Mbp) was associated with response to the three Pst races and explained most of the phenotypic variations. Two of the four identified stripe rust resistance loci in this study, QYrdu.5BL-1 and QYrdu.7BL were associated with response to the three Pst-races, whereas the reaming QYrdu.1BS and QYrdu.5BL-2 were race specific (Table 3, Figure 7, and Supplementary Table 7).

The postulation of the four Yr loci in each genotype in this germplasm was based on the most significant marker per locus and is presented in Supplementary Table 2. All genotypes carry at least one of the identified Yr loci in this study. A total of 78% of the genotypes carry QYrdu.5BL-1 and QYrdu.5BL-2, whereas 52% of the genotypes carry QYrdu.5BL-1 and QYrdu.5BL-2 and QYrdu.7BL. Twenty-six genotypes carry all the four Yr loci identified in this study.



Association Analysis for Stem Rust Response

The GWAS detected 260 significant markers (MTAs), underlying 22 putative loci that were associated with stem rust response to the six Pgt races (TTKSK, TTKST, TTKTT, TKTTF, TRTTF, and JRCQC) (Table 4, Figure 8, and Supplementary Table 8). The highest number of MTAs were on chromosome arms 6AS (98 MTAs, three loci), 6AL (129 MTAs, three loci), 5AL (12 MTAs, three loci), and 6BL (seven MTAs, three loci). The pairwise LD between the significant markers on each of these chromosome arms were presented in Supplementary Figure 5 and were used to determine the number of loci per chromosome. Other MTAs were identified on chromosomes 3AL (three MTAs, two loci), 4AL (four MTAs, a single locus), 5BL (two MTAs, two loci), and 7BL (two MTAs, a single locus). Each of the chromosome arms 1BL, 2BL, and 3BL carried a single MTA. Of the 22 identified loci, seven loci, QSrdu.2BL, QSrdu.4AL, QSrdu.5AL-1, QSrdu.6AS-1, QSrdu.6AL-2, QSrdu.6AL-3, and QSrdu.6BL-3, were the most important loci in this study as they explained high phenotypic variations and/or associated with response to multiple Pgt races. These seven large-effect loci (highlighted in bold in Table 4) are the most robust Sr loci and were well represented in this germplasm (MAF ≥ 19%).


TABLE 4. Summary of stem rust resistance loci in the durum wheat genotypes.
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FIGURE 8. Manhattan plots showing P-values for single-nucleotide polymorphism (SNP) markers associated with response to stem rust in durum wheat genotypes to the three Pgt races TTKSK, TTKST, TTKTT, TKTTF, TRTTF, and JRCQC. The horizontal dashed red line indicates significance level at P-value ≤ 0.001. The horizontal dotted black line indicates significance level at FDR ≤ 0.05.


The most important large-effect locus identified on the distal end of chromosome arm 6AS was QSrdu.6AS-1 (58–80 MTAs, Tag-SNP: IWB10558, 0.2 cM, 2 Mbp) that was associated with response to races TTKST, TTKTT, TKTTF, and TRTTF but not to race TTKSK and JRCQC. KASP_6AS_IWB10558 linked to the gene Sr8155B1 was among the most significant markers in this locus. In addition, KASP_6AS_IWB10558 was in high LD with other significant markers in QSrdu.6AS-1 (Table 4, Supplementary Table 8, and Supplementary Figure 5) suggesting that the latter locus is indeed Sr8155B1. Two additional small-effect loci on chromosome 6AS and proximal to QSrdu.6AS-1 were identified. QSrdu.6AS-2 (IWB67075, 34.9 cM, 50 Mbp) was associated with response to race TTKST, whereas QSrdu.6AS-3 (IWA7295, 45.9 cM, 86 Mbp) was associated with response to both races TTKST and TTKTT (Table 4, Figure 8, and Supplementary Table 8).

Two large-effect loci appeared on chromosome arm 6AL. QSrdu.6AL-2 (Tag-SNP: IWB69393, 128.9 cM, 612 Mbp) was associated with response to race TTKSK, while QSrdu.6AL-3 (Tag-SNP: IWB41394, 129.4 cM, 613 Mbp) was associated with response to race JRCQC. An additional small-effect locus on chromosome 6AL, QSrdu.6AL-1 (Tag-SNP: IWB31531, 122.1 cM, 600 Mbp) was associated with response to race TKTTF. Even though, QSrdu.6AL-2 and QSrdu.6AL-3 were close based on their genetic positions (on tetraploid consensus map) and physical positions (Svevo genome v1), significant markers in these two loci were not in strong LD (R2 = 0.14, Supplementary Figure 5). QSrdu.6AL-2 and QSrdu.6AL-3 appeared to be associated with Sr13 gene/alleles. This is because Sr13 diagnostic marker (dCAPS_Sr13) was among the most significant markers for race TTKSK and in LD with other significant SNPs in QSrdu.6AL-2. Sr13 allele markers, dCAPS_Sr13_R1cut (identifying Sr13a-R1 allele) and dCAPS_Sr13_R2nocut (identifying Sr13 R2 allele or Sr13b) were among significant markers for race JRCQC and in LD with significant SNPs in QSrdu.6AL-3 (Table 4, Figure 8, and Supplementary Table 8).

The major allele (‘T’) of IWB41394 that is the most significant SNP in QSrdu.6AL-3 and present in 62 % of the durum genotypes was associated with susceptibility to race JRCQC. On the other hand, the most significant marker in QSrdu.6AL-3 was Sr13b marker dCAPS_Sr13_R2nocut. The latter showed that 58% of the durum lines carry Sr13b associated with susceptibility to race JRCQC. Therefore, it is likely that the ‘T’ allele of IWB41394 is associated with Sr13b. Overall, in 90.3% of the genotypes, there was agreement between marker dCAPS_Sr13_R2nocut and marker IWB41394 in postulating Sr13b allele (Supplementary Table 9).

On chromosome arm 4AL, QSrdu.4AL (Tag-SNP: IWA4651, 162.4 cM, 719 Mbp) was another large-effect locus identified for response to race JRCQC. On chromosome arm 5AL, three loci were identified. QSrdu.5AL-1 (IWB62132, 136.3 cM, 532 Mbp) was associated with response to multiple races TTKST, TTKTT, TRTTF, and TKTTF and explained 10–20% of phenotypic variation. In addition, two small-effect loci on chromosome 5AL, QSrdu.5AL-2 (IWB2075, 183.0 cM, 623 Mbp) and QSrdu.5AL-3 (IWB14445, 197.7 cM, 640 Mbp) were associated with response to race TKTTF. On chromosome arm 6BL, QSrdu.6BL-1 (IWB21973, 103.7 cM, 622 Mbp) and QSrdu.6BL-2 (IWB5378, 146.0 cM, 682 Mbp) was associated with response to race TRTTF and TTKSK, respectively. QSrdu.6BL-3 (IWB46893, 155.1 cM, 693 Mbp) was associated with responses to races TTKSK and JRCQC. The major allele of the most significant marker in QSrdu.6BL-3, IWB46893, was associated with resistance to TTKSK but with susceptibility to JRCQC.

On chromosome arm 5BL, two small-effect loci were identified: QSrdu.5BL-1 (IWB9652, 181.5 cM, 675 Mbp) and QSrdu.5BL-2 (IWB64287, 193.4 cM, 691 Mbp). Interestingly, IWB64287 was also associated with response to Pst-race PSTv-41 (Tables 3, 4). This suggests that this locus on 5BL at 691 Mbp is associated with response to both stripe rust and stem rust and the allele ‘C’ of marker IWB64287 provides resistance to both rust pathogens. Few MTAs were identified on each of the chromosomes 1BL, 2BL, 3AL, 3BL, and 7BL and most of these associations had minor effects on disease response (6–12%), except QSrdu.2BL (IWB48212, 193.6 cM, 789 Mbp) that explained relatively higher phenotypic variations (9–21%) to races TTKST, TTKTT, TKTTF, and TRTTF. Of the 22 identified loci for stem rust, five (QSrdu.1BL, QSrdu.2BL, QSrdu.5AL-1, QSrdu.6AS-1, and QSrdu.6BL-3) were associated with response to more than one race while the remaining loci were race specific (Table 4, Figure 8, and Supplementary Table 8).



Frequencies of Sr8155B1, Sr13, and Sr7b in the Durum Wheat Genotypes and Their Marker Accuracies

Gene postulation for Sr8155B1, Sr13 alleles, and QSrdu.4AL in each of the durum wheat genotypes is presented in Supplementary Tables 3, 5. Both phenotypic data (Supplementary Table 3) and marker data (Supplementary Table 9) were used to postulate the gene combinations present in each of the durum wheat genotypes. For the genotypic data, the markers dCAPS_Sr13, dCAPS _Sr13_R1cut, dCAPS_Sr13_R2nocut, dCAPS_Sr13_R3nocut, KASP_6AS_IWB10558, and IWA4651 were used to postulate Sr13a-R1, Sr13b, Sr13a-R3, Sr8155B1, and QSrdu.4AL (designated in this study as Sr7b), respectively. We found that 81, 79, and 64% of the durum wheat genotypes carry Sr13, Sr8155B1, and Sr7b, respectively. A single breeding line (D07726) does not carry any of these genes.

A total of 61% of the durum genotypes carry an Sr13 allele and Sr8155B1, whereas 50% of the durum collection carry an Sr13 allele and Sr7b. We found that 54% of the durum genotypes have a least Sr8155B1 and Sr7b and 40% of the genotypes have the three genes Sr13, Sr8155B1, and Sr7b. Based on Sr13 allele markers, Sr13 functional alleles Sr13a-R1, Sr13b, and Sr13a-R3 were identified in the durum genotypes. Sr13b was the most common allele, being present in 56% of the durum genotypes. Sr13a-R1 and Sr13a-R3 were less frequent and occurred in only 17 and 7% of the durum accessions, respectively (Supplementary Table 9).

Because gene postulation for these three genes was possible based only on the phenotype, we determined the accuracies of markers dCAPS_Sr13, IWB69393, KASP_6AS_IWB10558, and IWA4651. For the gene Sr13, the accuracy for dCAPS_Sr13 and IWB69393 was 100 and 95% (3% false positives and 2% false negatives), respectively. For Sr8155B1, the marker KASP_6AS_IWB10558 had an accuracy of 99.6% (0.4% false positives), whereas for Sr7b, the marker IWA4651 had an accuracy of 98.8% (1.2% false positives). The postulation of the remaining three large-effect Sr loci in each genotype (Supplementary Table 3) showed that 30 genotypes carry Sr8155B1, Sr13, Sr7b, QSrdu.2BL, QSrdu.5AL-1, and QSrdu.6BL-3.



DISCUSSION


Leaf Rust Resistance in Durum Wheat Genotypes

All the durum genotypes were resistant to the common wheat type race MBDSS that is widely distributed in the wheat growing regions of the United States (Kolmer and Hughes, 2014). This agrees with previous studies indicating that Pt-isolates from common wheat are generally avirulent on durum wheat (Singh, 1991; Huerta-Espino and Roelfs, 1992; Ordoñez and Kolmer, 2007a; Aoun et al., 2016). Herrera-Foessel et al. (2014) reported that most of the CIMMYT durum wheat germplasm carry Lr72 that is effective against common wheat type races. Thus, Lr72 could be also present in the durum wheat genotypes in this study. Many of the genotypes in our study were susceptible to Mexican, Moroccan, Tunisian, and Ethiopian durum wheat type isolates. None of the durum genotypes were resistant to the Pt-Mexican race BBBQJ. The latter is similar to a race collected on durum wheat in California (Kolmer, 2013) and on hard red winter wheat in Kansas (Kolmer, 2015b). Even though Pt-race BBBQJ is not yet present in North Dakota, introgression of leaf rust resistance to this race in the NDSU durum wheat lines will help the growers in tackling in future challenges. For instance, previously identified Lr genes like those identified in CIMMYT germplasm (Herrera-Foessel et al., 2007, 2008a, 2008b; Huerta-Espino et al., 2009) and in the USDA–National Small Grains Collection (NSGC) of durum wheat (Aoun et al., 2016, 2017, 2019) could be used to enhance leaf rust resistance to race BBBQJ in the NDSU durum wheat germplasm. The Ethiopian isolates of race EEEEE were virulent to only 10–28% of the durum genotypes. Even though, the two Ethiopian isolates in this study carry the same race (EEEEE) on Thatcher wheat differentials, there were differences in their

virulence profiles on durum wheat genotypes in our study. These results agree with Aoun et al. (2020) observations showing that different virulence phenotypes were found within a collection of isolates of race EEEEE based on a set of durum wheat differentials.

Comparative mapping between the identified six all-stage leaf rust resistance loci in this study and designated wheat Lr genes showed that any of the two loci on chromosome 5BS could be Lr52 that was previously identified in the durum wheat cultivar Wallaroi (Singh et al., 2010). Similarly, QLrdu.6AL is most likely Lr64 that originated from wild emmer wheat (Triticum dicoccoides) (Dyck, 1994; McIntosh et al., 2009; Kolmer et al., 2019). The remaining loci did not map close to known Lr genes and thus could be novel. Comparison of the map locations suggests that QLrdu.2AS (67.5 cM, 61 Mbp) is likely the same locus which was earlier found associated with leaf rust response in durum wheat and tagged by the SSR marker wmc522 (63.6 cM, 58 Mbp) (Maccaferri et al., 2010). The nine genotypes that carry all the six identified Lr loci in this study are useful to keep these resistance sources in future released varieties.



Stripe Rust Resistance in Durum Wheat Genotypes

Many of the durum wheat genotypes (67–69%) in this study were resistant to the three U.S. Pst races (PSTv-37, PSTv-52, and PSTv-41). A previous study that screened a worldwide collection of elite durum wheat lines to six US and Italian Pst-races (including PSTv-37) showed that only 7.8–31.5% of the genotypes were resistant (Liu et al., 2017). This suggests that the durum wheat collection in this study had undergo selection to accumulate potentially useful loci for stripe rust resistance to the North American Pst races. The durum wheat responses to these three Pst- races used in this study were highly correlated, showing that the NDSU durum genotypes had a broad spectrum of stripe rust resistance.

With rapid and dangerous shifts in Pst populations globally (Solh et al., 2012), our study will help durum wheat breeding programs by providing new stripe rust resistance sources. We identified four loci associated with all-stage stripe rust resistance that did not correspond to any designated stripe rust resistance genes. At the same time, some of the loci identified in this study were mapped close to not yet characterized stripe rust resistance quantitative trait loci (QTL) in the literature. For instance, QYrdu.1BS (IWB31649, 33.0 cM) was located close to previously identified locus Yrdurum-1BS.1 (34.1–40.1 cM) that was associated with stripe rust response in a worldwide collection of elite durum wheat (Liu et al., 2017). Similarly, the QYrdu.5BL-1 (IWA6271, 187.1 cM, 682 Mbp) was mapped close to the stripe rust resistance QTL, QYr.usw-5B (IWA7066, 179.6 cM, 674 Mbp, Lin et al., 2018) that was earlier detected in the durum wheat line W9262-260D3 (Kyle∗2/Biodur). The position of QYrdu.7BL (IWB10533, 187.5 cM, 697 Mbp) also overlaps with that of Yrdurum-7BL (184.5–190.5 cM) that was associated with stripe rust response at seedling stage in elite durum wheat genotypes (Liu et al., 2017). At the similar location, Lin et al. (2018) also identified QYr.usw-7B (181.1 cM, 694 Mbp) in the durum wheat line W9262-260D3 (Kyle∗2/Biodur) to Canadian isolates at seedling stage and to Mexican races at adult-plant stage. Further research warrants to characterize the four stripe rust resistance loci detected in this study and study their relationship with those previously identified in the literature. The 26 genotypes that carry all the four Yr loci identified in this study are excellent sources to introgress these stripe rust resistance sources in future durum wheat varieties.



Stem Rust Resistance in Durum Wheat Genotypes

The majority of durum wheat genotypes were resistant to the three Ug99-lineage races TTKSK, TTKST, and TTKTT. Interestingly, 19% of the genotypes were susceptible to race TTKSK while only 1% of the genotypes were susceptible to the other two Ug-99 lineage races TTKST and TTKTT. This suggests that these durum advanced breeding lines carry stem rust resistance gene(s)/allele(s), such as Sr8155B1, that are effective against TTKST and TTKTT but ineffective against TTKSK. Therefore, a combination of multiple Sr genes in the newly developed durum wheat cultivars is recommended for effective resistance to different races of the Ug99 lineage. Similarly, only one line was susceptible to the Digalu race (TKTTF) (Olivera et al., 2015). The durum genotypes were all resistant to race TRTTF. In contrast to TRTTF, race JRCQC that is adapted to durum wheat (Hundie et al., 2019) in Ethiopia was the most virulent race on the durum genotypes in our study. This suggests that Sr genes/alleles effective to races TTKSK, TTKST, TTKTT, TKTTF, and TRTTF do not provide resistance to JRCQC. Olivera et al. (2015) showed that races JRCQC, TRTTF, and TKTTF are phylogenetically different from Ug99-lineage races. Therefore, Sr genes effective to each of these race lineages could be different. This implies that a combination of diverse Sr genes should be implemented in newly released cultivars.

The durum wheat genotypes in this study showed higher levels of stem rust resistance compared to germplasm collections used in previous studies. For example, in a durum wheat collection from different durum wheat-growing regions in Mediterranean countries, the Southwestern United States, and Mexico, 42.1, 18.6, and 52.5% of the tested accessions were susceptible to TTKSK, TRTTF, and JRCQC, respectively (Letta et al., 2014). In another study (Chao et al., 2017), most of the USDA– NSGC of durum wheat collection comprised of landraces, breeding lines, and cultivars were found susceptible to TTKSK (81.6%), TRTTF (72.1%), and JRCQC (90.6%). This shows that the NDSU breeding program selected for stem rust resistance to most of the Pgt-races used in this study. It was reported that resistance to the Ug99 lineage in the North American durum cultivars is mainly due to Sr13 alleles that were first identified in durum wheat and was then transferred to hexaploid wheat (Knott, 1990). However, in our study we observed variations in the ITs to the Pgt-races. For instance, the most common resistant IT to races TTKST, TTKTT, TKTTF, TRTTF (IT = 0), indicative of Sr8155B1, was much lower compared to the most common resistant infection type to TTKSK (IT = 2–) and JRCQC (IT = 22+). This suggests that stem rust genetic architecture in this durum wheat collection is much more complex and multiple genes/alleles could be identified in this durum germplasm. In this germplasm, we found that 40% of the durum genotypes carry Sr13, Sr8155B1, and Sr7b and 30 genotypes (12%) carry large-effect loci identified in this study including Sr8155B1, Sr13a/Sr13b, Sr7b, QSrdu.2BL, QSrdu.5AL-1, and QSrdu.6BL-3. This gene/loci combination is critical to keep in future released durum wheat varieties. The remaining 15 Sr loci that explained low phenotypic variation or associated with relatively low MAF need to be first validated before being used in breeding programs.

Comparative mapping showed that out of the 22 identified all-stage stem rust resistance loci in this study, four loci corresponded to cataloged Sr genes/alleles. In addition, eight loci in this study were mapped close to previously detected stem rust resistance QTL that were not yet cataloged in wheat. QSrdu.1BL was also found close to the DArT marker wPt-1876 (26.3 cM) that was associated with stem rust response in durum wheat (Letta et al., 2014). The locus QSrdu.2BL (IWB48212, 193.6 cM, 789 Mbp) was mapped close to SSR marker wmc356 (788 Mbp) that has been found associated with stem rust response in durum wheat (Letta et al., 2014). Within the genomic regions of QSrdu.3AL-1 (IWB36155, 90.4 cM, 572 Mbp) and QSrdu.3AL-2 (IWB72044, 177.9 cM, 737 Mbp), Letta et al. (2013) identified two stem rust resistance loci in durum wheat tagged with the SSR marker wmc428 (93.8 cM, 589 Mbp) and DArt marker (wPt-8203, 178.3 cM). The locus QSrdu.4AL (IWA4651, 162.4 cM, 719 Mbp) that was associated with response to race JRCQC was close to the mapping position of Sr7 locus (McIntosh et al., 1995; Saini et al., 2018) and it is likely Sr7b. We found that 64% of the durum genotypes carry Sr7b and it is important to keep it in future released varieties, especially that only few known genes confer resistance to race JRCQC. Within the genomic region of QSrdu.4AL (Sr7b), Letta et al. (2014) identified a locus tagged with the SSR marker barc78 (161.7 cM, 656 Mbp) associated with response to race JRCQC at seedling stage in elite durum wheat panel. In the same durum wheat panel, Letta et al. (2013) identified two MTAs on chromosome arm 4AL tagged by the DArT markers wPt-9196 (157.7 cM) and wPt-0798 (161.7 cM) associated with stem rust response at adult-plant stage in field trials in Ethiopia. Proximal to the genomic region of QSrdu.5AL-1, a MTA represented with the SSR marker gwm1570 (134.5 cM) was associated with stem rust seedling response in durum wheat (Letta et al., 2014). Similarly, the genomic region near QSrdu.5AL-2 and QSrdu.5AL-3 were found to carry two stem rust resistance loci tagged with markers gwm126 (191.2 cM) and gwm291 (205.0 cM) in durum wheat in field trials in Ethiopia (Letta et al., 2013). On chromosome 5BL and at a close genomic region to QSrdu.5BL-2, Letta et al. (2014) detected a GWAS hit tagged by DArt marker wPt-0566 (191.6 cM) associated with stem rust seedling response in durum wheat (Letta et al., 2014).

The locus QSrdu.6AS-1 (KASP_6AS_IWB10558, 0.2 cM, 2 Mbp) that was associated with resistance to race TTKST, TTKTT, TKTTF, and TRTTF was identified in the region of Sr8155B1. This gene was first identified in the durum wheat line 8155-B1 and known to confer resistance against race TTKST (Nirmala et al., 2017). The gene Sr8155B1 was later reported in the durum wheat cultivar ‘Lebsock’ and provided resistance to race TRTTF (Saini et al., 2018). In our study, we observed that Sr8155B1 provides resistance to additional Pgt-races TTKTT and TKTTF. In agreement with Nirmala et al. (2017), we found that this gene is common in the Midwestern durum wheat with 79% of the breeding lines and cultivars carrying this gene. Based on Sr13 diagnostic markers, QSrdu.6AL-2 and QSrdu.6AL-3 were found to be associated with Sr13 gene/alleles. Sr13 is known to be common in North American and CIMMYT durum wheat cultivars (Jin, 2005; Singh et al., 2015) and is present in 84% of this durum wheat germplasm. Sr13a that confers resistance to JRCQC is present in only 17% of the durum genotypes in this study. However, 66% of the genotypes were resistant to JRCQC. This is most likely explained by the presence of other genes conferring resistance to JRCQC, e.g., Sr7b. Sr13 gene/allele CAPS markers used in this study are difficult to be used in high-throughput genotyping for marker assisted selection. Therefore, the most significant SNPs in QSrdu.6AL-2 (e.g., IWB69393) and QSrdu.6AL-3 (e.g., IWB41394) can be converted into KASP or thermal asymmetric reverse PCR (STARP) markers to postulate the presence of Sr13 gene and Sr13b allele, respectively.

The locus QSrdu.7BL (IWB17567, 147.0 cM, 675 Mbp) that was associated with response to race TRTTF is mapped close to the gene Sr17. The gene Sr17 has been reported in tetraploid wheat and synthetic bread wheat (Bansal et al., 2008). However, race TRTTF is virulent to Sr17, therefore QSrdu.7BL is likely linked to Sr17 or a new allele of Sr17. Close to the genomic region of QSrdu.7BL, Letta et al. (2013) also reported a stem rust resistance locus in durum wheat tagged by DArt marker wPt-8615 (154.0 cM).



CONCLUSION

We investigated the levels of all-stage resistance in durum wheat genotypes adapted to the Midwest region of the U.S. against six Pt-races, three Pst-races, and six Pgt-races. Many of the durum wheat breeding lines and cultivars were susceptible to durum wheat type Pt isolates, whereas all lines were resistant to the common wheat type Pt isolate. In contrast to leaf rust, many of the durum wheat genotypes has high levels of resistance to most stripe rust and stem rust pathogen races. Association mapping revealed six leaf rust resistance loci located on chromosomes 2AS, 2AL, 5BS, 6AL, and 6BL. Two of the loci are likely Lr52 and Lr64, while the remaining four loci are most likely novel. Except QLrdu.2AS, the identified leaf rust resistance loci were race specific. For stripe rust, four loci were detected on chromosome arms 1BS, 5BL, and 7BL. All of these loci did not correspond to cataloged Yr genes. The loci QYrdu.5BL-1 and QYrdu.7BL were associated with response to the three U.S. Pst-races used in this study. For stem rust, 22 resistance loci were detected on chromosomes 1BL, 2BL, 3AL, 3BL, 4AL, 5AL, 5BL, 6AS, 6AL, 6BL, and 7BL. Seven of these Sr loci had large effect and high frequencies in this germplasm, thus important to keep in future released durum wheat varieties. Our results showed the presence of known Sr genes Sr8155B1, Sr13, and Sr7b that were found together in 40% of this durum wheat germplasm. Seventeen Sr loci from this study are not yet cataloged and need to be validated and further characterized. Five of the identified stem rust resistance loci (QSrdu.1BL, QSrdu.2BL, QSrdu.5AL-1, QSrdu.6AS-1, and QSrdu.6BL-3) were associated with response to more than one race. The novel resistance loci identified in this study will enhance breeding for rust resistance in durum wheat. Because it is relatively easy to make crosses between tetraploid wheat and hexaploid wheat, new rust resistance genes identified in this durum wheat germplasm could also be transferred to common wheat. The SNP markers associated with the large-effect all-stage rust resistance genes/loci in this study can be converted to KASP or STARP markers for use in marker assisted breeding. The presence of gene pyramiding that is already present in this germplasm would be very valuable for breeding for rust resistance.
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Bananas are an important staple food crop in tropical and subtropical regions in Asia, sub-Saharan Africa, and Central and South America. The plant is affected by numerous diseases, with the fungal leaf disease black Sigatoka, caused by Mycosphaerella fijiensis Morelet [anamorph: Pseudocercospora fijiensis (Morelet) Deighton], considered one of the most economically important phytosanitary problem. Although the development of resistant cultivars is recognized as most effective method for long term control of the disease, the majority of today's cultivars are susceptible. In order to gain insights into this pathosystem, this first systematic literature review on the topic is presented. Utilizing six databases (PubMed Central, Web of Science, Google Academic, Springer, CAPES and Scopus Journals) searches were performed using pre-established inclusion and exclusion criteria. From a total of 3,070 published studies examined, 24 were relevant with regard to the Musa-P. fijiensis pathosystem. Relevant papers highlighted that resistant and susceptible cultivars clearly respond differently to infection by this pathogen. M. acuminata wild diploids such as Calcutta 4 and other diploid cultivars can harbor sources of resistance genes, serving as parentals for the generation of improved diploids and subsequent gene introgression in new cultivars. From the sequenced reference genome of Musa acuminata, although the function of many genes in the genome still require validation, on the basis of transcriptome, proteome and biochemical data, numerous candidate genes and molecules have been identified for further evaluation through genetic transformation and gene editing approaches. Genes identified in the resistance response have included those associated with jasmonic acid and ethylene signaling, transcription factors, phenylpropanoid pathways, antioxidants and pathogenesis-related proteins. Papers in this study also revealed gene-derived markers in Musa applicable for downstream application in marker assisted selection. The information gathered in this review furthers understanding of the immune response in Musa to the pathogen P. fijiensis and is relevant for genetic improvement programs for bananas and plantains for control of black Sigatoka.

Keywords: black Sigatoka, Musa spp., Pseudocercospora fijiensis, genetic resistance, state-of-the-art


INTRODUCTION

Bananas and plantains (Musa spp.) are important commodity fruit crops in terms of trade and consumption, and represent the fourth most important staple food worldwide (Weber et al., 2017). World production in 2018 was ~154.5 million tons, of which 74% were bananas and 26% plantains, grown over a total area of 11.3 million hectares (FAOSTAT, 2021).

Although bananas originated in Southwest Asia and the Western Pacific region, popularity and economic importance occurred following introduction to Africa, Latin and Central America and the South Pacific (Valmayor, 2001; De Langhe et al., 2009). The vast majority of banana and plantain cultivars originated from hybrids of the two wild diploid species, Musa acuminata Colla (genome A) and M. balbisiana Colla (genome B). Such crossings resulted in a series of diploids, triploids and tetraploids, with genomic groups classified as AA, AB, AAA, AAB, ABB, AABB, AAAB, and ABBB (Simmonds and Shepherd, 1955).

Banana and plantain production are affected by various pests and diseases, including bacterial wilt (Addy et al., 2016), nematodes (Seenivasan, 2017), Fusarium wilt (Dita et al., 2018; Arinaitwe et al., 2019) and yellow and black Sigatoka diseases (Ferreira et al., 2004; Timm et al., 2016). Black Sigatoka, caused by the fungus Mycosphaerella fijiensis Morelet [anamorph: Pseudocercospora fijiensis (Morelet) Deighton], can result in considerable negative economic impact, affecting both bananas and plantains across all global growing regions. Whilst chemical control is considered efficient, problems can arise from indiscriminate use, where this approach is detrimental to human health and the environment. Agrochemical-based control is also expensive (Churchill, 2011), with data indicating ~US$ 1,000/ha spent on disease control annually in large plantations, corresponding to up to 30% of the total production costs (Churchill, 2011; Alakonya et al., 2018). Another important factor to be considered with dependency on agrochemicals is the possible medium- and long-term selection for pathogen strains acquiring resistance to fungicides, potentially reducing effectiveness (Churchill, 2011; Chong, 2016; Friesen, 2016; Rodríguez-García et al., 2016; Oiram-Filho et al., 2019).

Rain splash of asexual conidia and airborne dispersal of sexual ascospores enable effective spread of P. fijiensis (Churchill, 2011; Rodríguez-García et al., 2016; Alakonya et al., 2018). The onset of the first symptoms of the disease typically occurs between 7 and 14 days after contamination, depending on local environmental conditions. Following fungal penetration of leaf stomata, colonization of intercellular spaces and subsequent necrotic damage then decrease the photosynthetic capacity of the plant, reducing the quantity and quality of fruits (Churchill, 2011; Alakonya et al., 2018; Cruz-Martín et al., 2018).

Whilst increased understanding of the genetic structure of pathogen populations and their evolution are important components to consider in strategies for Musa genetic improvement and management of the disease (Churchill, 2011), the identification at the molecular level of host genes related to resistance to P. fijiensis will advance improvement of banana through both assisted selection and genetic engineering (Mendoza-Rodríguez, 2014). Our understanding of the innate immune system in plants has advanced considerably in recent years, with challenge by pathogen molecules known to activate host receptor proteins for pathogen recognition. In a first layer of the immune response, referred to as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), or non-host resistance, host cell surface pattern recognition receptors (PRRs) (Dangl and Jones, 2001; Monaghan and Zipfel, 2012) recognize conserved pathogen-associated molecular patterns (PAMPs) (Jones and Dangl, 2006; Boutrot and Zipfel, 2017) such as bacterial flagellin and fungal cell wall chitin (Felix et al., 1999; Wan et al., 2004; Thomma et al., 2011; Zipfel, 2014; Gong et al., 2020). Plant PRRs, which include receptor-like kinases (RLKs) and receptor-like proteins (RLPs), generally contain extracellular domains with a capacity for ligand binding, transmembrane domains and intracellular domains (Zipfel, 2014). Activation of PRRs following PAMP recognition will trigger intracellular signaling and plant defense responses to block pathogen advance in the host. These include reactive oxygen species (ROS), mitogen-activated protein kinase (MAPK) cascades and Ca2+ signaling influx (Chisholm et al., 2006; Dangl et al., 2013; Li et al., 2016). Race-specific pathogen effector proteins, or avirulence (Avr) proteins, when secreted into the host cell by evolving pathogens, by contrast, can suppress PTI and result in an effector-triggered susceptibility (ETS) with subsequent disease (Jones and Dangl, 2006; Boller and Felix, 2009). In a second layer of the plant immunity defense response, intracellular nucleotide-binding and leucine-rich repeat domain intracellular resistance receptors (NLRs) recognize directly or indirectly evolved pathogen effectors, activating effector-triggered Immunity (ETI) (Jones and Dangl, 2006). As a more intense response, this again involves calcium ion signaling and ROS, together with transcriptional reprogramming, changes in levels of plant hormones salicylic acid (SA) and jasmonic acid (JA) (Creelman and Mullet, 1995), and the accumulation of pathogenesis-related (PR) proteins (Gururani et al., 2012). Such a suite of responses can also involve the signature hypersensitive response, comprising a programmed and localized host cell death at the site of infection (Jones and Dangl, 2006; Coll et al., 2011; Cui et al., 2015), effectively limiting pathogen advance. Subsequent systemic acquired resistance (SAR) can also occur, conferring a broad spectrum response in the host that heightens resistance to any subsequent pathogen attack (Dong, 2001; Spoel and Dong, 2012).

The pathosystem Musa spp. x P. fijiensis is complex, given the characteristics of the polyploid host and the morphophysiology of the hemibiotrophic fungus. To date, there have been few studies on the biology of this hemibiotroph and the mode of action of genes involved in the host-pathogen interaction (Cavalcante et al., 2011; Torres et al., 2012; Mendoza-Rodríguez, 2014; Arango-Isaza et al., 2016). Similarly, although the genus Musa has been relatively widely studied with regard to molecular marker development and analysis of genetic diversity, with whole genome sequences also developed in recent years for M. acuminata and related species, detailed investigation and validation of gene function in immune responses in different Musa-pathogen interactions remains limited (Sun et al., 2009; Li et al., 2012; Wang et al., 2012; Bai et al., 2013; Castañeda et al., 2017). With regard to Musa-Pseudocercospora interactions, candidate gene discovery has broadly been undertaken through analysis of gene analogs and through transcriptomics approaches (Miller et al., 2008, 2011; Emediato et al., 2009, 2013; Portal et al., 2011; D' Hont et al., 2012; Passos et al., 2012, 2013; Sulliman et al., 2012; Timm et al., 2016).

Systematic literature reviews are analyses that gather and critically evaluate compiled data from previously published scientific investigations. Such an approach for synthesis of findings is widely employed in medical fields, enabling, in a single document, relevant information to be gathered on a specific topic, for example on a disease or active ingredient in medicines and potential side effects (Falcomer et al., 2019; Jones et al., 2020). For Musa spp., there have only been two studies using such a strategy, with focus on plant physiology associated with water deficit and on fruit consumption preferences (Santos et al., 2018; Falcomer et al., 2019).

Accumulation of knowledge on host genetics and genomics, resistance and defense mechanisms, together with information on methods and tools employed in development of resistance to black Sigatoka, is relevant for genetic improvement strategies for development of resistant cultivars. This systematic review synthesizes relevant literature published in the last 10 years on genetic improvement of banana with a focus on black Sigatoka, to answer the following question: what are the strategies adopted in genetic improvement that aim to reduce the impact of black Sigatoka on banana plants? To our knowledge, this is the first systematic review applied to the Musa spp. x P. fijiensis pathosystem.



MATERIALS AND METHODS

The systematic review was conducted using the software StArt (State of the Art through Systematic Review) Beta version. 3.0.3, developed at the Federal University of São Carlos (UFSCar) to assist in systematic reviewing (Santos et al., 2018). The software is freely available at http://lapes.dc.ufscar.br/tools/start_tool. This review consisted of three fundamental steps, summarized in Figure 1.


[image: Figure 1]
FIGURE 1. General systematic literature review flowchart [Adapted from Santos et al. (2018)].



Planning

In this step, a defined protocol was followed according to the following information: article title, authors, objective, keywords, research questions, research sources, inclusion/exclusion criteria and definition of study type (https://doi.org/10.5281/zenodo.4437073). The questions raised in this review are listed in Table 1.


Table 1. List of questions raised in the review.
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Execution

In order to answer the question of our research, “which strategies were adopted in genetic breeding to reduce the impact of black Sigatoka in bananas?” a research strategy of Population Intervention Comparison Outcome (PICOS), was used (de Costa Santos et al., 2007). This strategy guides what the research question really needs to specify avoiding a less biased answer (Wright et al., 2007). For it's elaboration, these following questions should be answered:

P–What is the research problem or who are the individuals populations?

I–What will be done, or which treatment or intervention or exposure?

C–Will any action intervention alternative treatment, or in parallel, be carried out?

O–What is the expected result or outcome?

S–What is the type of study?

The PICOS strategy used in this systematic review is shown in Table 2.


Table 2. Definition of the PICO terms of strategy for the question in the research used in this research.
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Searches were conducted in selected databases: CAPES journals (https://www.periodicos.capes.gov.br), PubMed Central (https://www.ncbi.nlm.nih.gov/pmc), Google Scholar (https://scholar.google.com.br), Springer (https://link.springer.com), Web of Science (http://apps.isiknowledge.com) and Scopus (https://www.scopus.com). The selected files were imported in BIBITEX and MEDILINE format compatible with StArt. Automated searches were made from the themes located in titles, keywords and summaries. Additional articles of relevance that were not identified automatically were subsequently added manually. For all databases, the same search string was employed, with connectors such as “or” and “and” used to group synonymous keywords and the main topics. The String employed was as follows: Musa spp. and bananas or plantains and black Sigatoka or Mycosphaerella fijiensis or Pseudocercospora fijiensis and genetic resistance and markers and genes.



Summarization

This step comprised the elaboration of graphs, tables and a word cloud to summarize the systematic review. All articles that were selected during the selection and extraction phase were based on the following inclusion criteria: articles that contained the search string terms in the title, abstract or keywords; and articles that answered the protocol questions (Table 1). Criteria for exclusion were as follows: theses, dissertations, manuals, reports, book chapters, review articles, articles published in annals of events and studies without any clear contribution.

During the selection stage, articles imported into the software StArt were classified as accepted, rejected, or excluded due to duplication. In the extraction phase, a second selection was made considering only the articles that were accepted in the initial selection stage. During this phase, it was possible to delete duplicates, accept articles or reject those that were not in accordance with the objectives of the work, based on reading the articles in full, as well as on the inclusion and exclusion criteria. A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) checklist is presented for download at https://doi.org/10.5281/zenodo.4659141.




RESULTS


Database Searches

Aiming to reduce bias risks we opted to insert only articles with scientific and statistical data and also those which really considered our main and secondary questions whose conclusions were reliable. Regarding the specific evaluation of risk and bias tools used in clinical studies that were not yet adapted for use in other areas of knowledge also related to meta-analysis, were used. A PRISMA checklist was also used which is used strategically in systematic reviews aiming transparency and quality in the elaboration and publication of this review. Therefore, we guarantee that there is no bias risks in our review since all the PRISMA parameters were followed accordingly, guaranteeing reproducibility and reliability.

Electronic database searches using StArt resulted in the selection of 3,070 articles, published between January 2010 and December 2020. PubMed Central contributed with the largest number for this systematic review, corresponding to 1,786 papers, or 58% of the total. Web of Science contributed with 1,130 papers, representing 37% of those initially selected, followed by Google Academic (102), Springer (47), CAPES Journal (4) and Scopus (3). Although papers were selected using the search string, most were subsequently excluded from the study, as they were not related to the topic, and/or falling within the exclusion criteria. Two articles were also added manually (Figure 2).


[image: Figure 2]
FIGURE 2. Prisma diagram for the screening process of articles selected in this review.


During the initial evaluation of articles based on title and abstract, 2,070 articles did not meet the inclusion criteria. Together with 142 articles that were duplicated, these were all excluded from the systematic review. In the extraction stage, of the 228 remaining articles, 24 were accepted for analysis in the review from the criteria established for inclusion, as these answered the questions proposed in the initial protocol. For consultation purposes, these are stored in a free digital library at the following link: https://doi.org/10.5281/zenodo.

A word cloud was generated during the extraction phase of the database search based on the frequency of keywords in the selected articles (n = 228). Highest frequencies of keywords in the articles were observed for black Sigatoka, Mycosphaerella fijiensis, Musa spp., disease and genetic resistance (Figure 3).


[image: Figure 3]
FIGURE 3. Word cloud based on the frequency of selected article keywords during the extraction phase of the systematic review into genetic improvement of banana for resistance to black Sigatoka.




Study Locations

Most of the research work included in this systematic review was conducted in only three countries, namely Cuba (21%), Brazil (18%) and Colombia (17%). Belonging to the American continent, these represented the source of ~67% of the total 24 articles examined (Figure 4A). Articles from Africa, Europe and Asia represented 17, 13, and 4%, respectively (Figure 4B).


[image: Figure 4]
FIGURE 4. Summary pie charts for the published data from the last 10 years recognized in the systematic review into genetic improvement of banana for resistance to black Sigatoka. (A) Principal countries publishing data on resistance of Musa spp. to black Sigatoka. (B) Main continents to publish data on resistance of Musa spp. to black Sigatoka.




Sources of Resistance and Study Environment

Cultivars and genotypes that are resistant, moderately resistant or susceptible to black Sigatoka were the object of study across the selected articles (Table 3). As summarized in Figure 5, most genotypes were diploid AA genome members, representing 46% of those studied, 28% were AAA triploids, 13% AAB genome triploids, 13% AAAB genome tetraploids, and 1% were AB genome diploids. Genotypes most widely employed in studies with P. fijiensis were identified as: M. acuminata Calcutta 4, Grande Naine and Williams. Although the majority of the resistant or moderately resistant genotypes were AA diploids, resistance was also reported across AAA, AAB, and AAAB members.


Table 3. Musa spp. genotypes most employed in published data recognized in the systematic review into genetic improvement of banana for resistance to black Sigatoka.
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FIGURE 5. Genotype frequency of Musa spp. employed in published data recognized in the systematic review into genetic improvement of banana for resistance to black Sigatoka.


With regard to the study environment, most of the studies were conducted on plant material in vitro (46%), followed by greenhouse (23%), field-based (15%) and glasshouse environments (13%) (Figure 6). In vitro work encompassed laboratory activities such as propagation of plants for testing, molecular analysis and fungal multiplication. Field work focused on analysis of agronomic characters, evaluation of resistance and other complementary analyses, such as consumer acceptance of resistant cultivars. In relation to greenhouse experiments, different pathogen inoculation approaches were utilized during evaluation of levels of resistance of different banana genotypes to P. fijiensis (Alvarado-Capó et al., 2003; Leiva-Mora et al., 2010).


[image: Figure 6]
FIGURE 6. Study environment frequency.




Methodologies Employed

With regard to the main methodologies employed, gene expression analysis was addressed in 38% of the selected publications, followed by enzyme analysis (17%), symptomatology analysis (13%), transgenic development (13%), agronomic characterization (8%), Musa hybridization (8%) and characterization with molecular markers (4%) (Figure 7).


[image: Figure 7]
FIGURE 7. Frequency of methodologies utilized in the selected publications recognized in the systematic review in of genetic improvement of banana for resistance to black Sigatoka.


Leaf disease symptom evaluation employed grading scales that were proposed by Alvarado-Capó et al. (2003) and Stover (1972), as modified by Gauhl (1989). Three publications employing transgenic approaches were also identified in the study. Vishnevetsky et al. (2011) focused on the development of a transformation system for banana for pathogen control, with expression of the ThEn - 42 endochitinase gene from Trichoderma harzianum, together with a stybene synthase (StSy) gene resulting in transgenic events with improved tolerance to Sigatoka. Onyilo et al. (2018) conducted pathogen gene silencing approaches targeting mitogen-activated protein kinase pathogen genes Fus3 and Slt2, which are reported to be essential for pathogenicity. Portal et al. (2012) verified a green fluorescent protein-transformed Mycosphaerella fijiensis strain on susceptible banana “Grande Naine” and resistant “Yangambi km 5” plants, demonstrating that mutation events in P. fijiensis can increase virulence. In relation to agronomic characterization, two articles evaluated growth and production performance of genotypes resistant to black Sigatoka (Nowakunda et al., 2015; Weber et al., 2017). Enzymatic activity was also addressed in four publications that reported host enzyme actions during plant-pathogen interaction (Table 4). In two articles, Musa interspecific hybridization was also used to assess resistance development to black Sigatoka in progenies (Barekye et al., 2011; Tumuhimbise et al., 2018). Regarding molecular markers, one article addressed the development of microsatellite markers as a resource for Musa genetic improvement for resistance (Passos et al., 2012).


Table 4. Enzyme activities in Musa spp. during interaction with Pseudocercospora fijiensis in the selected publications recognized in the systematic review into genetic improvement of banana for resistance to black Sigatoka.
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Musa Gene Expression Analysis During Interaction With P. fijiensis

Overall, eight articles (38%) investigated gene expression during the Musa x P. fijiensis interaction. Several candidate genes expressed differentially potentially involved in defense responses were identified in the selected articles (Supplementary Table 1). Of the genes identified in this systematic review, 18% are classified as an unassigned function, that is, the functions of these genes have yet to be discovered. The other genes are related to jasmonic acid signaling (14%), ethylene signaling (13%), primary metabolism (8%), secondary metabolism (8%), transcription factors (7%), via phenylpropanoid pathways (6%), antioxidants (6%), carbohydrate metabolism (5%), proteins related to pathogenesis (2%), among others (Figure 8) (Supplementary Table 1). In total, six different methods were used to inoculate the plants, with differences mainly in the form of application of spores on the leaf (brush or spray) and in relation to the concentration of spores, with values ranging from 1 × 103 to 1 × 106 (Supplementary Table 1).


[image: Figure 8]
FIGURE 8. Frequency of analyzed Musa genes according to predicted function in the selected publications recognized in the systematic review of genetic improvement of banana for resistance to black Sigatoka.




Enzymatic Activity

A total of 10% (n = 4) of the articles were related to analysis of enzyme activity in plants infected with P. fijiensis (Figure 7). In these publications, increased activity following inoculation was shown for the enzymes peroxidase (POX), phenylalanine ammonia lyase (PAL), β-1, 3-glucanase (GLU) and chitinase (CHI), superoxide dismutase (SOD), ascorbate peroxidase (APX), with elevated H2O2 production after infection and pathogen advance also shown (Table 4). In general, enzyme activity was investigated through comparison of resistant and susceptible genotypes after inoculation with P. fijiensis. One exception was the publication by Cruz-Martín et al. (2018), where enzymatic activity in Musa was analyzed in response to a strain of Bacillus pumilus.




DISCUSSION


Database Searches

This review gathered articles published from January 2010 to December 2020 containing information related to studies on the genetic improvement of Musa spp. for resistance to P. fijiensis. Only articles that answered the questions established in the initial protocol were selected, with emphasis on genetic improvement of bananas and plantains. For this reason, first reports of the disease, articles on the genetic diversity of P. fijiensis, and strategies for disease management were not considered in the study. In addition, literature reviews were excluded in order to avoid underestimation of data, as data could theoretically be repeated when considering that the reviews published cite a large number of articles that are already present in our systematic review. In addition, we opted for articles that performed experimental analyses.



Study Locations

Latin America accounts for 25% of the world's banana production and 80% of banana exports (FAOSTAT, 2021). Although Brazil is ranked fourth in terms of global banana production, production in the country is destined almost entirely to internal markets. Brazil and Cuba stand out in this study with the largest number of studies conducted within the objectives of this review. These countries, in addition to having adequate climates for the development of P. fijiensis, both employ irrigation systems for banana and plantain cultivation, potentially creating an environment favorable to the fungus. With the exception of certain high-altitude regions (> 1,500 m) (Costa Rica, Guatemala and Mexico), studies have shown that Central America has a natural rain scenario climate which is suitable for the persistence of P. fijiensis. In Latin America, Costa Rica is considered the second largest exporter of commercial bananas. Here, however, the black Sigatoka index is high, with fungicides applied up to 45 times a year in heavily infested areas (Yonow et al., 2019). In the main banana export cultivation areas of South America (Northern Colombia, Ecuador and Peru), the climate is less prone to the development of P. fijiensis when compared to Central America (Yonow et al., 2019). Here too, however, the number of fungicide cycles has increased considerably, particularly in Ecuador. This is likely due to reduced sensitivity of P. fijiensis populations to the widely employed fungicides (Jimenez et al., 2007). A study by Bebber (2019) on climate change related to black Sigatoka showed that in banana cultivation areas in Latin America and the Caribbean, the risk of infection has increased by a median of 44.2% since 1960. This is likely due to increased humidity and temperatures more favorable to the development of the pathogen. Although increased banana production and global trade have also probably facilitated the establishment and spread of black Sigatoka, climate change has made these regions more conducive to pathogen infection of plants (Bebber, 2019).



Musa Breeding and Black Sigatoka Resistant Cultivars

The development of black Sigatoka resistant cultivars has been the focus of numerous breeding programs worldwide, with a number employing biotechnology as a support tool. The main banana breeding programs mentioned in the review are located in Africa, Asia and the Americas. In Africa, these comprise the International Institute of Tropical Agriculture (IITA), the National Research Organization (NARO), the Center Africain de Recherches sur Bananiers et Plantains (CARBAP) and the Center National de Recherche Agronomique (CNRA). In Asia, breeding programs are conducted at the National Banana Research Center (NRCB), the Indonesian Fruits Research Institute (ITFRI) and the Chinese Academy of Tropical Agricultural Sciences (CATAS). In the Americas, the Brazilian Agricultural Research Corporation (EMBRAPA), the Honduras Foundation for Agricultural Research (FHIA) and the Center de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) are active in Musa improvement. These programs have made significant progress to date in breeding for resistance to black Sigatoka. The FHIA program developed a number of genotypes resistant to P. fijiensis that are now grown in different countries around the world, such as Uganda, Tanzania, Ghana, Kenya and Nigeria. In addition, these genotypes have also been employed in breeding programs at IITA, EMBRAPA, CIRAD, and CARBAP (Tenkouano and Swennen, 2004). IITA, together with NARO-Uganda, have also developed several East African cooking banana hybrids, known as NARITAs, which are high yielding and resistant to Black Sigatoka, with the most promising varieties now released to farmers (Ortiz, 2015). Hybrid plantains developed by IITA and considered resistant to P. fijiensis, known as PITAs, as well as resistant cooking hybrids, known as BITAs, are also available in countries such as Ghana, Ivory Coast, Cameroon, Uganda and Nigeria (Tenkouano and Swennen, 2004; Tenkouano et al., 2011). The EMBRAPA breeding program has also developed hybrid bananas that are currently being evaluated for resistance to P. fijiensis in Nigeria and Uganda by IITA, countries where bananas and plantains represent the principal food base (Amorim et al., 2021). Several hybrids developed by EMBRAPA also form the basis of banana production in Northern Brazil, a region widely affected by black Sigatoka. Cultivars included in an ongoing adoption process by Brazilian producers include BRS Platina, a Prata-type, together with BRS Princesa, a Silk-type hybrid, which are both resistant to black Sigatoka, and Fusarium oxysporum f. sp. cubense race 1. In addition to the above, CIRAD and CARBAP also have advanced breeding programs that have also developed banana hybrids resistant to P. fijiensis through conventional strategies. These programs employ colchicine to duplicate chromosomes and aim to develop new cultivars rather than improving available germplasm (Tomepke et al., 2004). CARBAP maintains the largest collection of Musa spp. in the world, with more than 700 varieties from various geographic regions, and more than 150 banana cultivars (group AAB) susceptible to black Sigatoka (Mourichon et al., 1997; Tomekpe et al., 2011). All of these breeding programs use crossing methods to obtain resistant materials.



Sources of Resistance

Black Sigatoka seriously affects dessert banana cultivars such as those of the Cavendish subgroup. One of the possible reasons for this susceptibility may lie in the monoculture format adopted for this subgroup, which theoretically may provide a favorable environment both for the emergence of resistance to fungicides within the pathogen population, as well as individuals with different virulence and/or aggressiveness characteristics (Churchill, 2011). A second reason is due to the type of host response to the pathogen. Although a reaction of the plant to attack by the pathogen has been recognized, the magnitude and development over time is regarded as insufficient to stop the progress of the fungus (Churchill, 2011; Torres et al., 2012; Cruz-Martín et al., 2018). For these reasons, one of the main recommended alternatives to fungicide-based approaches for the control of black Sigatoka is through the replacement of susceptible cultivars, such as those within the Cavendish subgroup, with agronomically appropriate resistant cultivars (Churchill, 2011).

In the present study, cultivars were reported with different levels of resistance, being classified as resistant, moderately resistant or susceptible to black Sigatoka. Among the most widely employed genotypes in the selected publications, the resistant M. acuminata wild diploid Calcutta 4, widely employed in breeding programs, and the susceptible triploid Grande Naine (Cavendish), used in commercial plantations for export and local consumption, both stand out in terms of frequency. Wild diploid M. acuminata bananas possess AA genomes and can harbor important sources of resistance genes for the genetic improvement of triploid cultivars (Timm et al., 2016). Studies into gene expression in Calcutta 4 have served as an approach to reveal candidate genes for resistance to the disease and to elucidate the mechanisms of resistance involved in the hypersensitivity response (Arango-Isaza et al., 2016; Timm et al., 2016; Mendoza-Rodríguez et al., 2017). In addition to Calcutta 4, other diploids resistant and moderately resistant to P. fijiensis include: Krasan Saichon, Zebrina, Birmanie, No. 118, Tuu Gia, PA Rayong, Pisang Cici, Malaccensis 1, 028003-01, Microcarpa, Pisang Lidi, Pisang Lilin, and Malbut. These have served as parentals for generation of improved diploids for subsequent introgression of genes in new cultivars (Nascimento et al., 2020).

Among the cultivars resistant to P. fijiensis mentioned in this review, BRS Maravilha, BRS Platina, FHIA-02, FHIA-18, and Galil 18 have adequate size and high yield potential, and represent alternatives to the traditional Prata subgroup. BRS Princesa, BRS Tropical and Caipira have also been promoted as alternatives to Silk bananas, with the cultivar Buccaneiro also an alternative to susceptible cultivars of the Gros Michel subgroup and appropriate for irrigated agrosystems (Weber et al., 2017).

The cultivar BRS Preciosa can also replace the commercial varieties Prata and Pacovan, without jeopardizing acceptability (Garruti et al., 2012; Amorim et al., 2021). In our review, we did not identify options of resistance to black Sigatoka in any cultivars of the Cavendish subgroup. Banana genetic improvement programs have, however, been focused on this objective, with EMBRAPA, CIRAD and FHIA working on the development of pathogen resistant genotypes with similar fruit quality to Cavendish subgroup bananas.



Host Immune Responses to P. fijiensis

The identification of physical and chemical barriers related to banana defense has been the object of study to understand the mechanism of resistance to P. fijiensis. Lignification, together with production of phytoanticipins, phenols, phenylphenalenones, peroxidases, PAL (phenylalanine ammonia lyase), β-1,3 glucanase, and hydrogen peroxide all increase during incompatible interactions (Hoss et al., 2000; Otálvaro et al., 2007; Cruz-Cruz et al., 2010; Cavalcante et al., 2011; Torres et al., 2012; Sanchez-García et al., 2013; Hidalgo et al., 2016; Alakonya et al., 2018).

The sequencing of the reference genome of the diploid species Musa acuminata DH Pahang is an important resource for Musa improvement and has advanced understanding of banana evolution. In this study, numerous genes were identified that encode proteins potentially related to conserved components of PTI and ETI in monocots (D' Hont et al., 2012).

Analysis of gene expression is important for the identification of genes involved in plant-pathogen interactions. The genes C4H (cinnamate-4-hydroxylase), CHS (chalcone synthase), IRL (isoflavone reductase) and PAL (phenylalanine ammonia) are all related to the phenylpropanoid pathway. In the selected studies in this systematic review, these genes displayed similar up-regulated expression profiles in infected Calcutta 4 in contrast to an absence of such expression modulation in the susceptible cultivars Grande Naine (Mendoza-Rodríguez et al., 2018) and Williams (Alvarez et al., 2013), which presupposes recognition of the pathogen in Calcutta 4 and the appropriate expression of defense responses. The regulation of genes related to phytohormone defense responses is not entirely resolved in Musa spp. (Portal et al., 2011), although signaling associated with jasmonic acid (JA), salicylic acid (AS) and ethylene (ET) also participate in defense responses against pathogens. A total of 24 genes in the selected articles were related to signal transduction regulated by plant hormones, such as JA and ET (Supplementary Table 1). All genes related to the JA signaling pathway were found to be overexpressed in Calcutta 4 after inoculation with P. fijiensis (Rodriguez et al., 2020), whereas in the susceptible cultivar Williams, the activation of JA and ET defense responses was marginal, slow or non-existent, indicating potential suppression by pathogen effectors (Rodriguez et al., 2020). Pathogenesis-related proteins (PR) are induced in host plants after pathogen infection. PR-4 has been shown to have antifungal activity, disrupting cell polarity and binding to chitin in the cell wall of the fungus (Bormann et al., 1999; Portal et al., 2011). PR-10 exhibits ribonuclease and antifungal activity against pathogens in Arachis hypogaea, Jatropha curcas, and Crocus sativus (Chadha and Das, 2006; Gómez-Gómez et al., 2011; Agarwal et al., 2013). Here, in Calcutta 4, increased expression of genes encoding pathogenesis-related proteins PR-4 and PR-10 were found during interaction with P. fijiensis (Portal et al., 2011; Rodriguez et al., 2016). In a study by Mendoza-Rodríguez et al. (2018), gene expression in the incompatible interaction in Calcutta 4 also reported positive regulation of the PSI gene (primary metabolism), TRX (an antioxidant) and SAMS (methyl cycle), suggesting roles in the defense response. In their work, negative regulation of genes from the phenylpropanoid pathway were also active in Grande Naine during initial phases of infection by P. fijiensis. Despite the advances in studies to date, further functional analyses of genes are warranted to validate use as candidate genes for resistance in susceptible banana cultivars (Timm et al., 2016). It is clear that there is no standardized protocol for studies of gene expression in banana during interaction with P. fijensis, which may be a contributing factor to differences in results obtained.

Enzymes related to the defense response to P. fijiensis have been identified at different time points during infection and colonization. Raised enzymatic activities have been reported to occur earlier in certain resistant genotypes than in susceptible cultivars. As an example, Calcutta 4 showed a rapid induction of several defense-related enzymes, with peroxidase (POX), phenylalanine ammonia lyase (PAL), β-1, 3-glucanase (GLU) and well as the production of hydrogen peroxide (H2O2) during the first 72 h after inoculation, when compared to cv. Williams (Torres et al., 2012). H2O2 has been postulated to perform multiple functions in plant defense, with this reactive oxygen species involved in the rapid defense response of the plant identified as a hypersensitivity response (HR) (Awwad et al., 2019). One study has reported the accumulation of H2O2 associated with hypersensitivity reactions in Calcutta 4, enabling the rapid response in containing the development of the pathogen (Cavalcante et al., 2011). The enzymes POD and SOD are closely associated to oxidative stress responses caused by an increase in H2O2. As such, increased activities in these enzymes, in addition to other antioxidant enzymes such as APX, have been described during incompatible responses (Cruz-Martín et al., 2018; Awwad et al., 2019). As the first enzyme in the phenylpropanoid pathway, the role of PAL in conversion of precursors in lignin biosynthesis has been well-elucidated. In relation to banana, however, its' role in the production of secondary metabolites such as phenylphenalenones and phytoanticipins, with potential activity against P. fijiensis, is poorly resolved (Hidalgo et al., 2009; Cruz-Cruz et al., 2010; Torres et al., 2012).



Study Environments

In relation to study environment, in vitro studies were conducted in a considerable proportion of the selected articles (45%). These comprised laboratory experiments investigating gene expression, enzymatic activity analysis, and gene function validation through transgenic approaches. Greenhouse studies corresponded to 24% of the articles, with focus on bioassays for evaluation of gene expression in Musa leaf tissues following inoculation with P. fijiensis. Field studies, which corresponded to only 16% of the articles, mostly focused on agronomic characterization and acceptance of resistant cultivars, with the exception of Barekye et al. (2011), who evaluated the contribution of diploid and tetraploid genotypes to triploid progenies, and Nascimento et al. (2020), who phenotyped 31 diploid accessions of Embrapa's germplasm collection for resistance.



Principal Techniques Employed

Evaluation of symptoms was described in 13% of the articles, with scales employed for measurement of black Sigatoka symptoms based on the quantification of percentage leaf area with characteristic lesions. In the selected articles, two different scales were cited: Fouré (1985), Alvarado-Capó et al. (2003) and Stover (1972), modified by Gauhl (1989). The main difference between the evaluation scales is that the former presents five evaluation stages for black Sigatoka in the greenhouse, whilst the latter describes six stages which can be used both in the greenhouse and in the field.

Amongst the techniques, one single study assessed surgical defoliation as a strategy for reducing disease severity (Jiménez and Brioso, 2018).

Transgenic approaches were also employed in 13% in the selected articles. Transformation protocols based on the use of fluorescent markers were employed with the pathogen to better understand the infection process in susceptible and resistant banana germplasm (Portal et al., 2012). Gene silencing strategies were also applied to determine gene function in the pathogen in relation to virulence (Onyilo et al., 2018). Vishnevetsky et al. (2011) developed a transformation system for improved tolerance to Sigatoka, with focus on endochitinase and stybene synthase candidate genes for resistance.

Hybridization and agronomic characterization represented only 9% of the frequency of the selected articles. The generation of banana triploids using this technique requires an understanding of the influence of the progenitors on potential resistance to black Sigatoka, as well as agronomic characteristics of the progenies generated (Barekye et al., 2011). Evaluation of growth and production of banana genotypes with resistance to P. fijiensis in comparison with cultivars susceptible to the disease was also carried out (Weber et al., 2017).

Among the biotechnological techniques employed, molecular markers such as gene-derived microsatellite markers have also been developed (Passos et al., 2012). These markers are appropriate for use in molecular genotyping and marker-assisted selection (MAS) in order to accelerate strategies for Musa genetic improvement.




LIMITATIONS OF THE REVIEW AND FUTURE RESEARCH

As this systematic review was highly specific to the Musa x P. fijiensis interaction with regard to genetic improvement for resistance, the number of studies was limited to only 24 articles suitable for inclusion. This indicates not only the need for further studies with this focus, but also that research trends may be focused more on other methods of controlling black Sigatoka in banana, such as those based on the use of fungicides or cultural control strategies for disease management.

Nevertheless, we strengthen as our closing remarks, that the banana genetic breeding for black Sigatoka based in the development of resistant cultivars through different methods is an efficient tool in the integrated management of the disease. It is possible, through genetic breeding to obtain basal, quatitative resistance, since complete resistance has not yet been reported for the Musa x P. fijiensis pathosystem due to its complexity, especially as to selection of resistance genes with higher effect, and this is common for most agricultural crops (Kushalappa et al., 2016; Pilet-Nayel et al., 2017; Nascimento et al., 2020). Therefore, decreasing the symptoms of black Sigatoka obtained with limitations in the development of the pathogen in the tissues combined with cultural practices that aim reduction of the inoculum in the cultivated area is the best strategy for mitigating the impacts of the disease.

Banana possesses numerous characteristics that make genetic improvement a laborious and complex task. Despite this, breeding programs maintain a sustainable global banana agribusiness through the development of cultivars resistant to the main diseases of the crop. The process is inevitably slow, as Musa is a long cycle species that requires years for precise agronomic analysis of a new genotype to be completed. Agronomic studies combined with genetic studies employing biotechnological tools do, however, provide essential information for continuous genetic improvement.

The information contained in the literature on genes involved in the interaction between Musa x P. fijensis is still relatively scarce, with the need for further focus on this pathosystem. Future advances in this direction will no doubt contribute to the elucidation of important processes occurring during this plant-pathogen interaction. In the short term, priorities for future studies are summarized below:

- In terms of accurate disease assessment, appropriate symptom scales are required that consider both greenhouse and field assessment, as symptomology can differ between these environments.

- Standardized inoculation protocols are recommended for the rapid screening of plants for resistance in greenhouse environments.

- Standardized protocols for analysis of gene expression in Musa during interaction with P. fijiensis are recommended, to reduce differences due to methodologies in results obtained by different research groups.

- The sources of resistance in Musa germplasm highlighted in the results are relevant for conventional breeding for development of disease resistant cultivars. No options for resistance to black Sigatoka were identified in any cultivars within the subgroup Cavendish.

- The development of a Musa x P. fijiensis interaction model at the molecular level is warranted, that infers how resistant genotype such as M. acuminata Calcutta 4 recognize the pathogen and develop a resistance response, as well as what types of weapons the pathogen launches to succeed in infection against susceptible genotypes.

- Gene editing based on CRISPR/Cas9 has been a recent major advance that can pave the way for large scale functional genomics, enabling validation and modification of candidate genes associated with characteristics such as resistance to biotic stresses (pathogens and pests) and tolerance to abiotic stresses (temperatures and extreme droughts). Although this approach has not yet been applied to the Musa-P. fijiensis pathosystem, it offers considerable potential for the development of banana varieties with multiple and durable resistance and tolerance (Tripathi et al., 2019, 2020).



CONCLUSION

Invaluable tools and resources have been developed in recent years to further understand the interaction between Musa and P. fijiensis. These include reference genome sequences, bioinformatic tools, transcriptomic, proteomic, enzymatic, and histochemical data that have enabled identification of genes, proteins and intracellular events activated during pathogen invasion and host defense responses. Although breeding programs have developed hybrids resistant to P. fijiensis, the continued identification of additional sources of resistance is necessary, considering that resistance offered may have only a low durability, given the high variability of this fungus and potential appearance of aggressive pathogen variants.

The data collected in this systematic review highlight the considerable information accumulated in the last 10 years that is applicable for improvement of Musa for resistance to black Sigatoka. The M. acuminata genotype Calcutta 4 has been widely studied and can be a target for breeding programs and future studies. Certain questions can also be raised in relation to specific datasets highlighted here, such as which genes identified through expression studies as candidates for disease resistance are appropriate for transgenic or genetic editing systems, or which molecular markers are applicable in marker-assisted selection. The functional characterization of genes and proteins will advance understanding of function of these potential targets in the host, facilitating the development of novel disease control strategies.
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Maize lethal necrosis (MLN), resulting from co-infection by maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV) can cause up to 100% yield losses in maize in Africa under serious disease conditions. Maize improvement through conventional backcross (BC) takes many generations but can significantly be shortened when molecular tools are utilized in the breeding process. We used a donor parent (KS23-6) to transfer quantitative trait loci (QTL) for resistance to MLN into nine adapted but MLN susceptible lines. Nurseries were established in Kiboko, Kenya during 2015–2017 seasons and BC3F2 progeny were developed using marker assisted backcrossing (MABC) approach. Six single nucleotide polymorphism (SNP) markers linked to QTL for resistance to MLN were used to genotype 2,400 BC3F2 lines using Kompetitive Allele Specific PCR (KASP) platform. We detected that two of the six QTL had major effects for resistance to MLN under artificial inoculation field conditions in 56 candidate BC3F2 lines. To confirm whether these two QTL are reproducible under different field conditions, the 56 BC3F2 lines including their parents were evaluated in replicated trials for two seasons under artificial MLN inoculations in Naivasha, Kenya in 2018. Strong association of genotype with phenotype was detected. Consequently, 19 superior BC3F2 lines with favorable alleles and showing improved levels of resistance to MLN under artificial field inoculation were identified. These elite lines represent superior genetic resources for improvement of maize hybrids for resistance to MLN. However, 20 BC3F2 lines were fixed for both KASP markers but were susceptible to MLN under field conditions, which could suggest weak linkage between the KASP markers and target genes. The validated two major QTL can be utilized to speed up the breeding process but additional loci need to be identified between the KASP markers and the resistance genes to strengthen the linkage.

Keywords: maize, backcross, kompetitive allele specific PCR, alleles, maize lethal necrosis, introgression


INTRODUCTION

Maize is the major food crop in Sub-Saharan Africa, however, its productivity remains low due to various production constraints such as biotic and abiotic factors. Recently, maize lethal necrosis (MLN) has emerged as one of the most deadly maize diseases in the region with high yield losses. MLN is caused by co-infection of maize plants by Maize chlorotic mottle virus (MCMV) in combination with any of the cereal viruses in the family Potyviridae, such as Sugarcane mosaic virus (SCMV), Maize dwarf mosaic virus (MDMV), or Wheat streak mosaic virus (WSMV). In east Africa, it has been established that it is mostly SCMV in combination with MCMV causing MLN. MLN disease causing viruses are transmitted by vectors such as thrips and beetles for MCMV (Nault et al., 1978), and aphids for potyviruses such as SCMV and MDMV (Brandes, 1920; Pemberton and Charpentier, 1969). MLN can cause losses in maize ranging from 30 to 100% depending on disease pressure (Gowda et al., 2018; Awata et al., 2019). Elite maize lines used in countries like South Sudan and others are highly susceptible to MLN and farmers risk losing their crops and money if MLN is not controlled. Therefore, efforts to develop high yielding varieties with resistance to MLN are urgently required. Breeding for host resistance can provide added advantage to farmers in terms of costs as compared to spraying against the vectors using chemicals, which is expensive and results in pollution to the environment. Conventional backcrossing is a routine breeding approach used for introgression of novel genes into the genetic backgrounds of adapted but susceptible germplasm but requires 8–10 generations to develop lines with desired characteristics. Studies to identify genomic regions associated with MLN resistance using linkage mapping revealed three major quantitative trait loci (QTL) on chromosomes 3, 6, and 9 that were consistently detected in at least two populations (Gowda et al., 2018) with recessive genetic effects. Introgression of genes for MLN resistance into the adapted lines using molecular markers is a quick option for fast-tracking development of varieties with resistance to MLN. Marker assisted backcrossing (MABC) has been widely used in improvement of maize for traits of economic importance including resistance to diseases (Lübberstedt et al., 2006; Muthusamy et al., 2014; Feng et al., 2015; Rasheed et al., 2016). Therefore, use of MABC can be used to speed up identification of fixed QTL conferring resistance to MLN into the backgrounds of adapted but susceptible maize lines. Kompetitive allele specific PCR (KASP) markers, developed by LGC Genomics (Teddington, United Kingdom),1 is a PCR-based homogeneous fluorescent single nucleotide polymorphism (SNP) genotyping system. It has the power to detect single nucleotide polymorphism at a specific locus using dual Fluorescent Resonance Energy Transfer (FRET; Semagn et al., 2014). KASP has high throughput, low cost, and more roboust than other genotyping assays such as Restriction Fragment Length Polymorphism (RFLP), Randomly Amplified Polymorphic DNA (RAPD), and Amplified Fragment Length Polymorphism (AFLP), which require longer time and have higher cost per sample. KASP technology has been utilized on various crops including wheat (Rasheed et al., 2016) and cordgrass (Graves et al., 2016). The objectives of this study were: (i) introgression of MLN resistance from a resistant source into adapted but susceptible elite maize lines using the KASP method; (ii) validate the effect of the introgressed QTL for resistance to MLN in lines evaluated under MLN artificial inoculation in the field; and (iii) identify resistant lines for future breeding.



MATERIALS AND METHODS


Genetic Materials

Genetic materials were provided by CIMMYT Global Maize Program and consisted of two maize categories: (i) MLN resistant donor line (KS23-6) developed by Kasetsart University in Thailand, which is a yellow maize line and considered suitable parent for maize improvement in Africa because of its tropical adaptation; (ii) 19 elite but MLN susceptible white CIMMYT lines, with diverse tropical backgrounds and each line belonging to one of the two heterotic groups (A and B) and are commonly used for hybrid development in the region including South Sudan due to their high yield performance and resistance to major foliar diseases (Supplementary Appendix 1).



Development of Bi-Parental Backcross Populations

Crossing blocks to develop backcross (BC) populations were established at CIMMYT in Kiboko, between July 2015 and 2017 cropping seasons. Kiboko is located within the dry-mid altitude environment at 370 75'E and 20 15'S, and 975 masl in Makueni County, Kenya, with mean temperature ranging from 14.3 to 35.1°C (Ziyomo and Bernardo, 2013; Odiyo et al., 2014). The first crossing block was set up in April 2015 and bi-parental populations were formed by crossing KS23-6 as pollen donor to the 19 selected elite but MLN susceptible lines (Awata et al., 2018). Adequate moisture was supplied through drip irrigation and standard agronomic practices and nursery management were applied. A nursery to develop backcross populations was established in October 2015, where 19 F1 populations were grown in single-row plots of 4.0 m spaced at 0.75 × 0.25 m (Table 1). Larger population size was required so that both major QTL associated with resistance to MLN could be detected (Bouchez et al., 2002; Hospital, 2003; Vales et al., 2005; Ribaut and Ragot, 2007). Therefore, 10 F1 individual plants (females) were tagged per population and each backcrossed to its recurrent parent (males), hence BC1F1 populations were developed (Brown and Caligari, 2008; Acquaah, 2012). The BC1F1 progeny were planted in March 2016. About 60 agronomically healthy BC1F1 individuals (females) were labeled within each population and backcrossed to their respective recurrent parents (males), to generate BC2F1. The BC2F1 populations were planted in the nursery in August 2016 and about 60 clean plants in each population were tagged and backcrossed to the recurrent parents where BC3F1 populations were generated. The BC3F1 populations were planted in January 2017 and tissue samples were collected from this nursery and sent to LGC in United Kingdom and genotyped with 100 markers for MLN and 250–300 individuals per population were selected based on the marker information received from LGC. The selected 250–300 individuals for each population were manually self-pollinated and BC3F2 seeds obtained (Table 2). The BC3F2 populations were eventually used for genotyping during the subsequent seasons and for trials in Naivasha during field evaluation under MLN artificial inoculation.



TABLE 1. List of 19 bi-parental crosses generated and used to develop BC3F2 lines genotyped for resistance to MLN using two polymorphic SNP markers linked to major QTL for resistance to MLN in BecA-ILRI Hub Lab in July 2017.
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TABLE 2. List of selected BC3F2 lines including resistant and susceptible parents evaluated for two seasons under artificial inoculations for resistance to MLN in Naivasha in 2018.
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Genotyping and Marker-Trait Association Analysis

In the present study, we used 19 SNP markers linked to two major QTL associated with resistance to MLN on chromosomes 3 and 6 developed by CIMMYT from two association mapping (AM) panels of diverse tropical/subtropical maize lines (Supplementary Table S1). The two markers explained 33.8% of the phenotypic variance for MLN resistance in the two panels (Gowda et al., 2015). These SNPs were used to design 21 KASP primers for resistance to MLN at BecA-ILRI Hub Laboratory, with three primers for each SNP; two allele-specific forward primers (5'-3') and one common reverse primer (3'-5'; Supplementary Appendix 2).

The 20 parent lines were planted in tray pots filled with sterile soil in a screen house in July 2017. Two seeds were sown per pot with four replicates and each pot was considered an entry so that a total of 80 entries were generated. No fertilizer was applied and soil moisture was maintained using irrigation. Leaf samples were collected from each entry 14 days after seedling emergence. Trays were carried aseptically onto the bench in the laboratory to avoid contamination. About 8–10 leaf disks per plant were collected from tips of the youngest leaves of each entry using a leaf puncher and placed in a 1.2 ml Eppendorf tube (F and S Scientific Ltd., Kenya) arranged in a 96-well plate placed in an ice bucket. At least 94 wells were filled with samples, while two more were filled with no treatment control (NTC) using ddH20.

DNA extraction procedures were based on Cetyl Trimethyl Ammonium Bromide (CTAB) protocols developed by BecA-ILRI Hub Laboratory with some modifications. After sampling, leaf samples were frozen in liquid nitrogen for 2–5 min and ground into fine powder using Geno/Grinder (SPEXSamplePrep(R) 2000, 2 Dalston Gardens Stanmore, HA7 1BQ, United Kingdom). Genomic DNA was extracted from the fine powder samples following the CTAB protocols. DNA concentration was measured using a spectrophotometer (NanoDrop 8000 Spectrophotometer, Thermo Fisher Scientific, Wilmington, DE, United States) and was adjusted to 50 ng/μl using Nuclease-free water (Patterson et al., 2017). DNA samples of poor quality were discarded and therefore, only samples with high DNA quality were retained and used in this study. Extracted genomic DNA samples were clearly labeled and stored at −20°C until further use (Kusza et al., 2018). The 21 primers generated above were screened for polymorphism to MLN resistance using the 20 parent lines (one resistant donor and 19 susceptible lines) described earlier. Genotypic analyses were conducted using KASP platform established in BecA-ILRI Hub Laboratory in Nairobi, Kenya.

Kompetitive allele specific PCR assays refer to a combination of three SNP-specific primers (two forward and one common reverse), while master mix contained FRET cassettes, free nucleotides, and enzyme components. These materials are required for running the PCR therefore, they should be secured before initiating any PCR process. Correct combination of assays and master mix is vital for obtaining good PCR output and KASP results. In the present study, both SNP specific KASP Assays and KASP master mix (2xKASP) were ordered from LGC Genomics (LGC Group, Queens Road, Teddington, Middlesex, TW11 0LY, United Kingdom; see Footnote 1). Each assay was supplied in a single 2D barcoded tube with the allele-specific forward primers differing in their tail sequences: allele-1 tail was labeled with fluorescein amide (FAM) oligo-sequence; allele-2 tail contained Hexachloro-flourescein (HEX) oligo-sequence (Rasheed et al., 2016; Patil et al., 2017; Patterson et al., 2017). KASP master mix was composed of universal FRET cassette dyes (FAM and HEX), ROX™ passive reference dye, KASPTaq™ DNA polymerase, free nucleotides, and MgCl2 in an optimized buffer solution. On arrival, the assays and the mix were stored at −20°C until further use. The SNP-specific KASP assays (primers) and universal KASP master mix (2xPCR) obtained above were used to constitute KASP reaction mix. Universal KASP master mix was readily obtained from the supplier as described earlier. The reaction mix was constituted in a 100 μl volume as follows:



.
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Volume of each of KASP master mix and Assay mix required for KASP reaction was aliquoted into new 1.5 ml Eppendorf tube using a pipette as follow:



.
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where N = number of wells to be filled per reaction, 1.5 = error factor. The KASP master mix and Assay mix were then combined into a common volume to constitute a KASP genotyping reaction mix (cocktail). A volume of KASP genotyping reaction mix was aliquoted in each reaction well of a four-quadrant 384-well plate (one quadrant = 96 wells) as below:



.
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Assays were put in wells in a 96-well plate where two last wells were stamped with sterile water as NTCs. KASP reaction plate was sealed with optically clear seal and centrifuged at 3,500 rpm for 10–15 s. The template was then amplified using KASP thermal cycling reaction in a FRET-capable plate reader (qPCR) instrument (GeneAmp® PCR System 9700, Roche Molecular Systems, Inc., United States). Unlike other traditional thermal cyclers where three thermal regimes are required, only two temperature steps were used for KASP thermal cycling. In the first step, KASP activation and DNA denaturation was completed in one cycle and at higher temperature (94°C) in 15 min. Step 2 involved two cycle regimes: Annealing and elongation completed in 10 cycles and at lower temperatures of 61–55°C in 60 s; and the last step required 26 cycles where DNA denaturation occurred at 94°C in 20 s; while annealing and elongation occurred at 55°C in 60 s. Sample amplifications were performed for 30, 35, and 40 cycles. Running the PCR for more than two cycles was necessary to provide an opportunity to select a cycle with the best and clearest clustering of samples for further genotyping (Rasheed et al., 2016; Patil et al., 2017). After KASP reactions were complete, plates were read using fluorescence plate reader BMG FLUOstar Omega software (LGC, Queens Road, Teddington, Middlesex, TW11 0LY, United Kingdom). Data was then displayed as cluster plots where FAM values were plotted on the x-axis, HEX values plotted and on y-axis and heterozygous values clustered on the diagonal (Figure 1). KASP reactions with NTCs were plotted at the origin (represented by black dots) since they did not generate any fluorescence. Each data point on the cluster plot represented the fluorescence signal of individual DNA samples. Based on the plate readings, two SNP markers (S3_146250249 and S3_146363360) associated with major QTL for resistance to MLN (Table 3) showed polymorphisms in the parents, hence were used for genotyping of the backcross populations.
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FIGURE 1. Schematic illustration of kompetitive allele specific PCR (KASP) cluster plots showing segregation of bi-parental backcross (BC) populations for alleles for resistance and susceptibility to maize lethal necrosis (MLN). Fluorescein amide (FAM) alleles for resistance to MLN are clustered on x-axis, while susceptible Hexachloro-flourescein (HEX) alleles are on y-axis.




TABLE 3. Segregation of nine recurrent parents and a donor parent genotyped for resistance to MLN using two SNP markers.
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Seeds of BC3F2 progeny obtained from the nine populations were planted in a nursery in Kiboko in July 2017. Leaf samples were collected from 250 to 300 healthy individual BC3F2 plants per population 15–20 days after seedling emergence. The leaf sampling techniques followed the procedures adopted by BecA-ILRI Hub Laboratory for field sample collection. Each 96-well plate was labeled and only 94 wells were filled with samples, while two wells were the NTCs as described earlier. Tubes were securely closed with perforated strip caps. To enhance moisture reduction and drying of the leaf samples, a 50 g bag of silica gel (Grade 4) obtained from BecA-ILRI Hub Laboratory was put on top of each 8 × 12 strip tubes in a plate, covered and securely tied with a rubber band, then packaged in a zip-tight polythene bag. Samples were transported to BecA-ILRI Laboratory in Nairobi within 12–24 h and stored at room temperature on the bench until DNA extraction was initiated. Genomic DNA extraction and genotyping followed the same protocol as described for parental screening. The two SNP markers identified above were used for the genotyping using Omega software. Fifty-seven BC3F2 progeny carrying the two markers were identified through the genotyping.

Data from Omega software were imported into KlusterCaller software (LGC Genomics, Queens Road, Teddington, Middlesex, TW11 0LY, United Kingdom) and cluster plots were normalized using ROX (passive reference dye) then called into X:X, X:Y, and Y:Y alleles depending on the corresponding genotype. Results were then exported onto Excel 2016 version, following 96-well plate format and calls were converted into specific alleles where X:X represented homozygous alleles for FAM, Y:Y represented homozygous alleles for HEX, and X:Y represented segregating (heterozygous) alleles (FAM/HEX; Graves et al., 2016; Kusza et al., 2018). The KASP analysis revealed that six of the SNP primers were polymorphic and could clearly discriminate between resistance alleles of donor parent (KS23-6) and the susceptibility alleles of the recipient parents (Table 4). The remaining 15 SNPs were monomorphic and could not differentiate between the resistant and susceptible parents. Previous reports confirm that two out of the six polymorphic SNPs are linked to major QTLs for resistance to MLN, while the remaining four markers are also for resistance but with minor effects (Gowda et al., 2015, 2018). As a result, only the two major SNPs (S3_146250249 and S3_146363360) were retained and used as markers for genotyping of the BC3F2 populations.



TABLE 4. List of six polymorphic KAPS primers validated for resistance to MLN using 20 parent lines including a resistant donor parent.
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Phenotypic Evaluation of Backcross Populations

The 57 BC3F2 lines selected from the molecular analysis for this study, including four checks (one MLN resistant and three MLN susceptible) and their parents were evaluated for two seasons in 2018 to validate the effects of the two markers for resistance to MLN under MLN artificial inoculation in the field. The two markers, located approximately 0.62 cM (113111 nt) apart on chromosome 3, were putatively identified in different populations using genome-wide association studies (Gowda et al., 2015). Experiments were conducted in Naivasha, Kenya (36°26E; 0°43S; 1896 masl; 677 mm rainfall; and 24.9°C; Ziyomo and Bernardo, 2013; Odiyo et al., 2014). To reduce soil borne diseases and pest infections, seeds were treated with Apron Star WS seed treatment chemical at the rate of 20 g/kg of seed. Recommended fertilizer rates were adopted and applied in two separate regimes (Izge and Dugje, 2011). The trial was laid out in an alpha lattice design with two replications, and a one-row plot of 3.0 m, with spacing of 0.75 m between rows and 0.3 m between plants. Two seeds were planted per hill and thinned to one plant per hill 3 weeks post emergence, resulting in a total of 10 plants per row. Standard agronomic practices were maintained (Gowda et al., 2015; Mahuku et al., 2015).



Artificial MLN Inoculation

Infected leaf samples collected from the field were cut into small pieces and ground using a mortar and pestle in a grinding buffer of 1:10 dilution ratio (10 ml potassium-phosphate, pH 7.0) as described by Gowda et al. (2015) and Mahuku et al. (2015). The resulting sap extract was centrifuged for 2 min at 12,000 rpm. Celite powder was added to the decanted sap extract at the rate of 0.02 g/ml. A susceptible hybrid was inoculated by rubbing sap extract onto the leaves at the two leaf stage and infected maize plants grown in separate, sealed greenhouses that were maintained for each of SCMV and MCMV inoculum production. Three weeks before inoculation of the experimental materials, ELISA test was conducted on random samples of leaves from the plants infected with SCMV and MCMV, respectively, to confirm presence and purity of the inoculum (Gowda et al., 2018). Separate extracts from the SCMV and MCMV infected plants were prepared at the ratio of one part of leaf sample: 20 parts of phosphate buffer. The two extracts were then mixed to form MLN inoculum at the ratio of four parts of SCMV: one part MCMV (weight/weight; Gowda et al., 2015). In order to keep uniform disease pressure, plants were inoculated using a motorized, backpack mist blower (Solo 423 mist Blower, 12 L capacity) with an open nozzle (2-in diameter) delivering inoculum spray at a pressure of 10 kg/cm2 (Gowda et al., 2015). Two inoculations were applied at 4th and 5th week after planting (Gowda et al., 2018). Spreader rows of susceptible maize hybrid (H614) were also planted as border rows along the experiment to enhance disease spread and intensity (Tivoli et al., 2006). Nitrogen (Urea) and Phosphorus (DAP) fertilizers were applied as described by Makumbi et al. (2015). Drip irrigation was used to provide moisture and all other agronomic practices relating to maize production were followed according to CIMMYT procedures for field practices.

A quantitative scale of 1–9 introduced by Reddy and Singh (1984) was used for recording data on MLN severity, where 1 = resistant (no symptoms); 2 = resistant to moderately resistant (isolated plants with very few lesions in the lower canopy); 3 = moderately resistant (1–5 leaves with symptoms in the lower canopy); 4 = moderately resistant to moderate (most or all plants with one or more leaves affected in the lower canopy); 5 = moderate (most or all plants with many leaves affected on plant, few leaves affected in the mid canopy); 6 = moderate to moderately susceptible (numerous lesions on most leaves in the mid canopy, limited defoliation in lower canopy); 7 = moderately susceptible (same as six, but limited defoliation in mid canopy and severe defoliation in lower canopy); 8 = moderately susceptible to susceptible (severe defoliation in mid canopy and limited defoliation in upper canopy); and 9 = susceptible (complete plant necrosis; Ngugi et al., 2002; Meyer and Pataky, 2010). The scale of 1–9 was considered more convenient (in terms of recording and time) compared to 1–5 because: 1 = 1; 1.5 = 2; 2 = 3; 2.5 = 4; 3 = 5; 3.5 = 6; 4 = 7; 4.5 = 8; and 5 = 9. Disease severity was recorded four times, beginning 21 days from the date of first inoculation (Mahuku et al., 2015; Mezzalama, 2015; Gowda et al., 2018).

Disease severity data were first tested for independence, normal distribution and constant variance (GenStat ver 12.0). ANOVA was performed using the restricted maximum likelihood (REML) model established in SAS 9.4 (SAS institute Inc, 2016), based on lattice incomplete block analysis as follows:
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where Yijk is the disease severity of the ith genotype in the jth replication of the kth incomplete block, μ is the population mean, gi is the genetic effect of the ith genotype, rj is the effect of the jth replication, bkj is the effect of the kth incomplete block in the jth replication, and eijk is the error term. Genotype was considered fixed, while season, replication, and block within replication were considered random. Best linear unbiased prediction estimates (BLUP) for the populations were generated and used for further QTL analysis in the present study.


Marker-Trait Association Analysis

The BLUP estimate for phenotypic data was generated for each genotype as described above. Co-segregation of loci with phenotype was detected by comparing allele type with the phenotype. Positive co-segregation was declared when a genotype showed resistance allele and MLN score of below 4.0 (in the scale of 1–9). Relationship between allele and phenotype was confirmed by splitting the BC3F2 progeny into resistant and susceptible groups and means of the two groups compared using a t-test. Further, significance of differences between variances of means was determined using F-tests.





RESULTS


Screening of Parental Lines

A total of 21 KASP primers designed from 19 SNP markers, originally developed by CIMMYT Global Maize Program, were tested for polymorphism to MLN resistance using 20 parental lines that were involved in development of bi-parental backcross populations. Six KASP markers showed polymorphism for resistance to MLN among 9 of the 19 bi-parental backcross populations used. As a result, the remaining 11 populations were eliminated. Two of the six polymorphic KASP markers (S3_146250249 and S3_146363360) were previously reported to be linked to major QTL associated with resistance to MLN (Gowda et al., 2015). Therefore, they were retained for this study. The preliminary KASP analysis revealed that recurrent parents of the nine selected populations were fixed for susceptibility alleles, while the donor parent was homozygous for resistance alleles for both markers (Table 3).



Genotyping of BC3F2 Populations for Resistance to MLN

Selected high quality DNA samples representing 957 BC3F2 lines selected from nine bi-parental populations and their 10 parental lines were genotyped for resistance to MLN using KASP genotyping platform at BecA-ILRI Hub Laboratory, Nairobi. The two polymorphic KASP markers mentioned earlier linked to major QTL for resistance to MLN were used (Semagn et al., 2014; Rasheed et al., 2016; Kusza et al., 2018). KASP results showed clustering of the genotypes based on the two KASP markers. Some BC3F2 and all recurrent parents clustered with susceptible homozygous HEX alleles on y-axis. The donor parent and some BC3F2 lines clustered with the resistant homozygous FAM alleles on x-axis. A few BC3F2 lines clustered for heterozygous alleles on the diagonal. However, the two markers failed to discriminate between some BC3F2 including parents (Figure 2).

[image: Figure 2]

FIGURE 2. Single nucleotide polymorphism (SNP) views showing cluster plots of BC3F2 progeny and their parental lines for two SNP markers for resistance to MLN: (A) KASP cluster plots showing genotypes clustering for resistance (blue), susceptibility (red), and heterozygous (green) alleles. Unclassified DNA samples (purple) clustering toward the origin and closer to no treatment control (NTCs; black dots). The heterozygous genotypes (green) still segregate for MLN resistance alleles; (B) BC3F2 individuals lacking both SNP markers and clustered with susceptible alleles (red). Only donor parent was clustering for homozygous resistant FAM alleles (blue); (C) Both SNP markers were not effective hence did not discriminate between BC3F2 progeny and the parents (including donor).


Cluster plot results indicated that 57 BC3F2 individuals were segregating for resistance to MLN. A total of 26 BC3F2 lines were homozygous (fixed) for the favorable alleles of both KASP1 (S3_146250249) and KASP2 (S3_146363360). The remaining BC3F2 lines were fixed for one locus and heterozygous for the other (Supplementary Appendix 3). The selected 57 BC3F2 lines were subjected to artificial MLN infection for phenotypic selection under field conditions. Allele distribution for each SNP marker varied among the nine populations (Figure 3). Both markers showed higher percentages of alleles for resistance to MLN among progeny from populations six and seven. Population 6 contributed most with over 40% of the population showing favorable alleles for resistance to MLN, followed by population 7 with over 30% distribution of BC3F2 progeny containing favorable alleles for resistance to MLN for both markers. Populations 1, 2, 3, and 9 contributed the least with less than 20% each for both markers.
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FIGURE 3. Percent distribution of BC3F2 progeny per population based on resistance and susceptibility alleles for two SNP markers linked to major quantitative trait loci (QTL) associated with resistance to MLN.




Phenotypic Evaluation of BC3F2 Populations for Resistance to MLN

The mean distribution for the populations used in the current study is presented in Table 5. The results showed that mean distribution for MLN scores ranged from 3.2 for first score to 6.0 for the last fourth score, with area under disease progress curve (AUDPC) of 133.2, respectively. A total of 19 selected BC3F2 lines including MLN resistance donor parent showed MLN severity and AUDPC below the population mean for both early and late scores. BCL02 was the most resistant line with MLN score of 3.1, which was similar to the mean of the donor parent and it had an even lower AUDPC score of 69.6 compared to the donor parent that showed a score of 81.8. When mean severity (1–9) was plotted against the score interval (in weeks), it was observed that the best performing BC3F2 lines had lower MLN mean severity across scores compared to the general population mean (Figure 4A). Similarly, the trend of the development of AUDPC showed that both disease severity and AUDPC values increased as MLN severity increased from first to fourth scores (Figure 4B). Results obtained from ANOVA are shown in Table 6. It was observed that there were variations among the BC3F2 lines for response to MLN infections under field conditions. The variability among the genotypes ranged from significant (p ≤ 0.05) at first MLN severity score (MLN1) to highly significant (p ≤ 0.01) for the fourth MLN severity score (MLN4). Similarly, the results showed highly significant (p ≤ 0.001) variability for AUDPC. Broad-sense heritability was detected to be very high and it ranged from of 0.84 to 0.91. Narrow-sense heritability was moderate to high with values ranging from 0.32 to 0.58, respectively.



TABLE 5. Mean scores and AUDPC for MLN severity for 10 resistant BC3F2 lines compared to donor and susceptible parents evaluated under artificial MNL infections in Naivasha for two seasons in 2018.
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FIGURE 4. (A) Means of best BC3F2 progeny compared to population means across four scores; (B) Area under disease progress curve (AUDPC) produced by plotting AUDPC values (along y-axis) against MLN development stage (along x-axis).




TABLE 6. Mean squares and variance components of BC3F2 populations evaluated for two seasons for resistance to MLN in Naivasha in 2018.
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Validation of Marker Effects on Phenotypic Variations

At least 57 BC3F2 lines selected using the two KASP markers linked to major QTL for resistance to MLN were evaluated together with their parents under artificial MLN inoculation in Naivasha during first season of 2018. Phenotypic means and genotypic data were compared and co-segregations of resistance alleles with phenotype were determined (Supplementary Appendix 4). Some selected BC3F2 lines with strong allele-phenotype associations for resistance to MLN are shown in Tables 7 and 8. Additionally, 31 BC3F2 lines fixed for one of the two resistance loci showed resistant to moderately susceptible reactions to MLN with means ranging from 3.1 to 6.7. However, 20 BC3F2 lines fixed for both resistance loci, showed susceptibility to MLN with mean severity of 7.5–8.8 (data not shown).

Distribution of genotypes based on their responses to MLN infection is shown in Figure 5. The recurrent parents demonstrated moderate to highly susceptible responses to MLN. Comparison between early and late scores showed that early MLN mean severity values for all genotypes were below 4.0 (Figure 5A), however, for later scores, a number of individual plants succumbed to MLN infection with disease scores above 8 (Figure 5B). Out of 57 BC3F2 lines genotyped, six were fixed for both resistance loci and showed high resistance to MLN under MLN artificial inoculation in the field, whereas 31 lines fixed for only one of the two loci demonstrated moderate resistance to the disease. Another 20 lines though fixed for both resistance loci, however, manifested high susceptibility to MLN under artificial MLN inoculation in the field (Figure 5C). Mean scores for resistant genotypes was compared to the means of the susceptible group. The resistant category demonstrated lower mean MLN score of 3.9 compared to 7.0 for the susceptible genotypes (Figure 5D). Means of the two groups were subjected to t-test and the results revealed highly significant differences (p ≤ 0.001) between means of resistant and susceptible groups of the populations (Table 9). Further, differences between variances of the two means were determined using the F-test and the results showed highly significant differences (p ≤ 0.0001) as shown below (Table 8). Consequently, 19 elite BC3F2 lines fixed for both or one locus and showing resistant to moderately resistant reaction to MLN infection were identified.
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FIGURE 5. Responses of BC3F2 lines to MLN infections in the field recorded at scale of 1–9: (A) mean distribution of MLN severity for first score; (B) mean distribution of MLN severity fourth score; (C) mean distribution of MLN scores for resistant, moderate, and susceptible genotypes; and (D) mean distribution of MLN scores for resistant and susceptible groups of genotypes.




TABLE 7. Some selected BC3F2 lines and a donor parent showing strong co-segregation of resistant alleles with phenotypic MLN scores under field infections.
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TABLE 8. List of 19 MLN resistant BC3F2 lines selected for testcross development.
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TABLE 9. Summary of t-test of means and F-test statistics for the significance of the difference between variances of means for resistance to MLN between resistant and susceptible groups of BC3F2 populations.
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DISCUSSION

Kompetitive allele specific PCR analysis showed clustering of some BC3F2 lines with the donor parent. This indicates that the lines could be fixed for favorable alleles of the two KASP markers for resistance to MLN. The high MLN severity observed at fourth score was attributed to an increase in disease severity with time. The genotypes under study revealed two categories in the field based on their responses to MLN incidence. The first category showed low MLN scores. This might imply that the two QTL were stable across different genetic backgrounds. Therefore, materials in this category were fixed for the two loci, hence were able to manifest resistance under field conditions and minimize MLN effects. The second group, though fixed for both loci, showed high susceptibility under field conditions, which could be due to false positive effects. This means the QTL were falsely selected for favorable alleles, while they were carrying susceptibility alleles. The reason could be that the KASP markers separated from the resistance genes during meiosis resulting in the markers being present but the genes are not. This outcome highlights the critical importance of confirming resistance of MLN under field conditions when molecular markers are used to select for resistance. The significant (p ≤ 0.01) variability observed among the genotypes for resistance to MLN, in this study implies that the genotypes responded differently to MLN infection. Further, statistical results showed significant AUDPC and with increased disease development for MLN, with maximum at the fourth score. Development of MLN within plant systems is rapid and is supported by viral movement and replication proteins produced by the pathogens (Mbega et al., 2016; Xia et al., 2016). Therefore, MLN quickly developed such that by the 42nd day (4th scores) after first inoculation, the disease had advanced and colonized most parts of the plant systems leading to expanded AUDPC.

Narrow sense heritability estimates for MLN scores were moderate to high indicating that resistance to MLN was mostly conditioned by additive gene action as opposed to non-additive inheritance. Additionally, the high heritability indicated that genotype played major roles in influencing the variability in MLN resistance among the individuals compared to the environment in which the experiment was conducted. In summary, the moderate to high narrow-sense heritability estimates imply the ease of transfer of the target trait from parent to offspring. High heritability estimates for disease resistance have been reported in maize (Gowda et al., 2015; Sukruth et al., 2015; Cao et al., 2017). Gowda et al. (2018) reported moderate to high heritability estimates of 0.34–0.89 for early and late MLN scores. Beyene et al. (2017) observed broad sense heritability of 69–73% for MLN resistance. The moderate to high narrow-sense heritability estimates observed in the present study also indicates that genotypes contributed significantly to the phenotypic variation observed. Therefore, identification of these lines for resistance to MLN is possible through field evaluation of the genotypes similar to findings of Pereira et al. (2015).

The present study validated two KASP markers (S3_146250249 and S3_146363360) on chromosome 3, which have been reported to habor a hot spot region for various genes responsible for resistance to diseases of economic importance in maize (Gowda et al., 2015; Lohithaswa et al., 2015). T-test analysis revealed that means of resistant and susceptible groups were highly significant (p ≤ 0.0001) meaning that resistant and susceptible genotypes performed differently under MLN infections. Similarly, F-tests showed that differences between variances of the means were highly significant (p ≤ 0.0001). The findings implied that phenotypic resistance demonstrated by genotypes was highly related to the favorable alleles associated with major QTL for resistance to MLN. Consequently, 26 BC3F2 lines containing both KASP markers demonstrated resistance to MLN infections, suggesting that the two QTL were associated with phenotypic resistance in those populations. Tanweer et al. (2015) used marker assisted backcrossing for introgression of two blast resistance genes (Pi-b and Pi-kh) into a locally adapted rice line. Evaluation for blast resistance under field conditions revealed that the improved lines had higher resistance against pathotype P7.2. However, a QTL may be transferred into recipient background yet its effect may not show due to interactions (epitasis and linkage) with other genes in the new backgrounds (Hospital, 2005; Collard and Mackill, 2008). In the current stury, 20 BC3F2 lines were fixed for both KASP markers but were susceptible to MLN under field conditions, which could mainly be due to weak associations (in terms of genetic distance) between the KASP markers and target gene. This could indicate the possibility of false-positive detection of QTL. The susceptible genotypes could be because of separation of these markers with the gene. This probably indicates weak linkage between the markers and the resistance genes. We recommend the identification of more closely linked loci between these markers and the resistance genes.



CONCLUSION

The current study confirmed presence of two KASP markers (S3_146250249 and S3_146363360) with major effects for resistance to MLN under field conditions. Both QTL are located on chromosome 3 at a distance of 113,111 nucleotides apart. These two QTL were reproducible under different genetic and environmental conditions. The validation study confirmed that 19 superior BC3F2 lines were fixed for favorable alleles of the two QTL, and showed higher levels of resistance to MLN under artificial field inoculations. These elite BC3F2 lines represent useful parents for developing maize hybrids with resistance to MLN. Furthermore, the validated QTL can be utilized to speed up marker assisted breeding for resistance to MLN. The study identified 20 lines fixed for two KASP markers for resistance to MLN but with susceptible reaction under artificial MLN inoculations suggesting weak marker-gene linkage. We recommend the identification of additional loci between these markers and the resistance genes to strengthen the linkage. The results highlight the importance of confirmation of resistance under field conditions when molecular markers are used for selection.
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Fusarium wilt (FW) is a typical soil-borne disease that seriously affects the yield and fruit quality of bottle gourd. Thus, to improve resistance to FW in bottle gourd, the genetic mechanism underlying FW resistance needs to be explored. In this study, we performed a genome-wide association study (GWAS) based on 5,330 single-nucleotide polymorphisms (SNPs) and 89 bottle gourd accessions. The GWAS results revealed a total of 10 SNPs (P ≤ 0.01, −log10P ≥ 2.0) significantly associated with FW resistance that were detected in at least two environments (2019DI, 2020DI, and the average across the 2 years); these SNPs were located on chromosomes 1, 2, 3, 4, 8, and 9. Linkage disequilibrium (LD) block structure analysis predicted three potential candidate genes for FW resistance. Genes HG_GLEAN_10001030 and HG_GLEAN_10001042 were within the range of the mean LD block of the marker BGReSe_14202; gene HG_GLEAN_10011803 was 280 kb upstream of the marker BGReSe_00818. Real-time quantitative PCR (qRT-PCR) analysis showed that HG_GLEAN_10011803 was significantly up-regulated in FW-infected plants of YD-4, Yin-10, and Hanbi; HG_GLEAN_10001030 and HG_GLEAN_10001042 were specifically up-regulated in FW-infected plants of YD-4. Therefore, gene HG_GLEAN_10011803 is likely the major effect candidate gene for resistance against FW in bottle gourd. This work provides scientific evidence for the exploration of candidate gene and development of functional markers in FW-resistant bottle gourd breeding programs.

Keywords: bottle gourd, Fusarium wilt, genome-wide association (GWAS), novel genomic regions, qRT-PCR


INTRODUCTION

Bottle gourd [Lagenaria siceraria (Mol.) Standl.] (2n = 2 × = 22), also known as calabash or long melon, is a member of the Legendaria genus, Cucurbitaceous family, and is an annual plant (Whitaker, 1971; Erickson et al., 2005). Its fresh young fruits are eaten as a vegetable in parts of Asia and Africa, while dry old fruits are used for containers, musical instruments, and crafts (Heiser, 1979; Morimoto and Mvere, 2004). Moreover, due to its strong resistance to disease and abiotic stress, bottle gourd is commonly used as grafting rootstock for other crops, such as watermelon and melon (Lee, 1994; Yetisir and Sari, 2003). According to records, bottle gourd has been cultivated in China for more than 7,000 years, covering a cultivation area of more than 2 million mu; this is an important vegetable crop in China, especially in the southern part.

Fusarium wilt (FW), which is caused by Fusarium oxysporum, is a typical soil-borne disease of economic crops worldwide (Katan, 1994; Wechter et al., 2012; Bodah, 2017). Since this pathogen can survive in the absence of host-infected plants, once the disease occurs in the field, F. oxysporum is likely to remain in the soil indefinitely, which seriously affects the yield of crops (Cha et al., 2016; Khan et al., 2017). FW has a broad host on cucurbit crops, including watermelon, melon, cucumber, luffa, and bottle gourd (Bodah, 2017). Usually, the infected plants morphologically show a constriction in the stem xylem, resulting in vascular bundle clogging, plant wilting, or death (Freeman et al., 2002; Singh et al., 2017). FW commonly occurs during the whole growth period of bottle gourd, especially the flowering to fruiting period. Its incidence is approximately 20–40%, and severe cases could cause devastating losses (data from Ningbo Institute of Agriculture), which severely restrict the sustainable development of the bottle gourd industry.

Breeding resistant varieties is one of the most effective and economic methods to control FW disease. At present, a series of commercial varieties that are highly resistant to FW has been grown for production, such as watermelon, melon, and cowpea (Zink and Gubler, 1985; Martyn and Bruton, 1989; Ehlers et al., 2000, 2009). To improve FW resistance, we need to exploit markers tightly linked to FW resistance using quantitative trait loci (QTL) and then generate germplasm by molecular marker assistant selection (MAS; Zhao et al., 2014; Li et al., 2017). To date, QTLs/genes conferring FW resistance have been thoroughly studied in many crops. For example, a dominant gene I-2 that confers resistance to race 2 of FW was cloned in tomato by map-based cloning (Simons et al., 1998; Catanzariti et al., 2015). Using the same map-based cloning technique, Joobeur et al. (2004) identified two candidate genes of melon FW resistance in the physical range of Fom-2. Several genes associated with cowpea FW resistance were identified using QTL analysis in “California Blackeye 27” (Pottorff et al., 2012, 2013). In cucumber, a major QTL Foc2.1 conferring resistance to FW was detected using recombinant inbred lines (Zhang et al., 2014), and a major QTL, Fo-1.1, associated with FW resistance to race 1 was identified by using selective genotyping in genetic populations derived from related watermelon lines (Lambel et al., 2014). However, research progress on the FW resistance of bottle gourd is relatively limited. Only its specialization of F. oxysporum f. sp. lagenariae has been reported, whereas the genetic mechanism of FW resistance and related genes/QTLs are unknown in bottle gourd.

To date, a high-density genetic map has been constructed, and a series of ISSR, SSR, and single-nucleotide polymorphism (SNP) markers has been exploited for bottle gourd (Xu et al., 2011, 2014; Bhawna et al., 2014), allowing the establishment of various marker–trait associations, such as association analysis for the free glutamate content of bottle gourd (Wu et al., 2017). Genome-wide association study (GWAS), based on linkage disequilibrium (LD), has also been widely used in the study of plants, and various results have been reported (Joobeur et al., 2004; Wang et al., 2009; Sabbavarapu et al., 2013; Zhang et al., 2014). In bottle gourd molecular breeding, Wu et al. (2017) performed a GWAS for SNPs related to the free glutamate content of the umami factor. With the development of quantitative genetics, many researchers have proposed different analytical models, such as efficient mixed-model association (Kang et al., 2008), compressed mixed linear model (Zhang et al., 2010), restricted two-stage multi-locus GWAS (He et al., 2017), etc. Among them, general linear model (GLM) and mixed linear model (MLM) are still the common GWAS methods in plants (Huang et al., 2010; Li et al., 2013; Fang et al., 2017). In this study, we initially genotyped 89 bottle gourd accessions using 5,330 SNPs and surveyed the disease index (DI) of FW resistance in two consecutive years. We then performed a GWAS to identify significant associated SNPs and potential candidate genes. Finally, three candidate genes associated with FW resistance were verified by quantitative real-time PCR (qRT-PCR). Our study is the first to use GWAS to identify genomic regions and candidate genes associated with FW resistance. The GWAS results can lay a foundation for MAS breeding and the genetic mechanisms of FW resistance in cucurbit crops.



MATERIALS AND METHODS


Plant Materials

Germplasm consisting of 89 bottle gourd accessions was collected, consisting of 87 accessions from wide areas across China, one accession from Europe, and one accession from Mexico (Supplementary Table 1). All accessions (inbred lines) were evaluated for FW resistance in a glasshouse of the Haining Experimental Station (30° N, 120° E) in 2019 and 2020. According to a completely randomized block design, the plants were studied based on two replications in both years.



Inoculation System of FW Resistance in Bottle Gourd

During 2018–2019, bottle gourd FW fungus was isolated from wilted plants that were collected from severely affected areas such as Shaoxing and Haining (Supplementary Figures 1A,B). According to the conventional tissue separation method, FW strains with obvious antagonistic effects were obtained by using potato dextrose agar (containing 100 mg/ml Kana and Amp) for screening four to five times (Supplementary Figure 1C). Under a microscope with 10 × 40 magnification, small conidia were observed to be ovoid or kidney-shaped, and large conidia were spindle-shaped or sickle-shaped with hooked apex (Supplementary Figure 1D). PCR assays showed that the similarity between the sequence of FW isolates and the 16S rRNA sequence was as high as 99%. After cytological tests and PCR detection, the isolates were identified as F. oxysporum f. sp. strains and were stored at 4°C at the Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

Each FW strain was shake-cultured on potato sucrose broth for 3 days in the dark at 28°C at 200 rpm. With the use of a hemacytometer, the conidial suspension was adjusted to a final concentration of 1.0 × 106 conidia/ml with sterile distilled H2O. The seeds of each accession were sown in mixed soil (nutritional soil/vermiculite = 3: 1) in plastic pots (6 by 6 by 5 cm) and were grown in a glasshouse set at 24°C, 16-h light/18°C, 8-h darkness, 60% humidity. At the second true leaf of the seedling spreading stage, we used the root dipping method for bottle gourd FW resistance screening and testing. Each accession consisted of 10–12 seedlings, and two duplicates were set per environment.



Disease Assessment and Statistical Analysis

Leaf damage was used as a main index to evaluate resistant/susceptible phenotypic traits. The standard reported by Gao et al. (2015) and Xu et al. (2016) was further improved and implemented with a few modifications. We classified the phenotypes of plants according to a 0–4 scale as follows: level 0, no disease symptoms, i.e., immune (I); level 1, slight disease symptoms, featured by less than 25% of leaves with disease symptoms, with normal plant growth, i.e., highly resistant (HR); level 2, slight wilt symptoms, featured by 25–50% of leaves with disease symptoms, i.e., resistant (R); level 3, moderate wilt symptoms, featured by 50–90% of leaves with disease symptoms, i.e., susceptible (S); and level 4, completely wilted or dead plants, i.e., highly susceptible (HS; Supplementary Figure 2). After 10–12 replicates per material were evaluated individually, we calculated the mean value to determine the disease severity for each accession. The DI was calculated according to the following equation:
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where DI is the disease index, Pi is the grade of the DI, ni is the plant number of the corresponding DI grade, N is the total number of plants investigated, and P4 is the highest DI grade.

According to the DI scores, the FW resistance of each material was determined following Shen and Li (2008) with a few modifications: immune (DI = 0, level 0), highly resistant (0 < DI ≤ 15%, level 1), resistant (15% < DI ≤ 45%, level 2), susceptible (45% < DI ≤ 75%, level 3), and highly susceptible (DI > 75%, level 4).



SNP Genotyping, LD, and Population Structure

The SNP markers used in this study were generated from RAD sequencing with paired-end sequencing (150 bp) on the Illumina HiSeq platform. We initially found 89 bottle gourd accessions that aligned to the Hangzhou gourd reference genome of ∼330 Mb (Wang et al., 2018)1 and then removed those SNPs with a minor allele frequency (MAF) of ≤0.01 and a heterozygous rate ≥25% for data filtering. This left a total of 6,222 high-quality SNPs. Of these SNPs, 85.66% were located on the 11 chromosomes of the bottle gourd, leaving 5,330 high-quality SNPs. These were used for the correlation analysis of traits (Wu et al., 2017). The density of SNP markers was estimated to be one SNP per 59.37 kb for the 11 bottle gourd chromosomes.

The LD parameters (r2) for estimating the LD distance of the genome between pairwise SNPs (MAF > 0.01) were calculated using PLINK V1.07 (Purcell et al., 2007; Xu et al., 2021, unpublished), and the average LD decay was drawn with R. The population structure was constructed by STRUCTURE 2.3.4 software (Evanno et al., 2005). K (number of subgroups) values were set to 2–8, with 10,000 (MOMC, Markov chain Monte Carlo)–100,000 runs (MCMC, Monte Carlo Markov Chain) with four replications. Then, the best value of K was determined by Ln P(D) and Delta K according to the principle of maximum likelihood (Evanno et al., 2005). The neighbor-joining tree was constructed using PHYLIP software. The kinship matrix was assessed based on the SNP dataset using TASSEL 5.2.14 to determine the relatedness among individuals (Anderson and Weir, 2007; Zhang et al., 2010). In previous studies, the population was divided into two subgroups depending on the markers used in the tests (Wu et al., 2017).



Genome-Wide Association Analysis and LD Block Construction

For natural populations, the population structure and relative kinship always lead to high levels of false positives in association maps (Yu et al., 2006). After assessment of the population structure (Q), relative kinship (K), and principal component analysis (PCA) of 89 accessions, four correlation analysis models including (1) a general linear model GLM (Q), GLM (PCA) and (2) a mixed linear model MLM (Q + K), MLM (PCA + K) were used to conduct a genome-wide correlation analysis of FW resistance using TASSEL 5.2.14 (Anderson and Weir, 2007; Zhang et al., 2010). The significance threshold for SNP–trait associations was determined by 1/n, where n is the number of markers in the association panel (Yang et al., 2014), and P ≤ 1/5,330 or −log10P ≥ 3.7. Considering that population structure and kinship reduced the detection efficiency of SNPs associated with FW resistance, the −log10P value of significantly associated SNPs identified in this study was low, which has also appeared in previous studies (Atwell et al., 2010; Huang et al., 2010). In order to fully exploit the valuable genetic information in the bottle gourd germplasm population, the significant threshold for SNP–trait associations was set as −log10P = 2. This threshold has already been applied to other traits in an association analysis (Li et al., 2015; Zhang et al., 2018). The correlation analysis results were plotted using a Manhattan plot and Q–Q plot based on the “qqman” package in R software.

The genome-wide LD decay rate, defined as the LD block distance where the LD decays to half of its maximum value, was about 400 kb in a natural population of bottle gourd (from Xu et al., 2021, unpublished). We defined the average LD decay distance as the candidate region to select candidate genes associated with large-effect SNPs. The genome of “Hangzhou gourd” was used as a reference sequence (Wang et al., 2018). Based on the genomic annotations of GourdBase,2 potential candidate genes for FW resistance were predicted.



Validation of Candidate Genes

The expression levels of the candidate genes were measured before and after infecting plants with FW by using qRT-PCR. Based on the phenotype data in 2019 and 2020, Hanbi (HR to FW, level 1), Yin-10 (HR to FW, level 1), and YD-4 (HS to FW, level 4) were chosen as extreme materials and were cultivated in the glasshouse. The leaves from healthy plants (CK) and treatment plants were collected 3 days after FW infection and stored in liquid nitrogen. Total RNA was extracted from Hanbi, Yin-10, and YD-4 leaves using an RNA Simple Total RNA kit (Tiangen, China). After the quality and concentration of total RNA were evaluated using 1% agarose gel and an Agilent 2100 Bioanalyzer, complementary DNA (cDNA) was synthesized by using a Script cDNA Kit (Tiangen, China) with a standard protocol. The CDS sequences of genes were obtained from the GourdBase website.3 qRT-PCR primers (Supplementary Table 2) were designed using the Integrated DAN Technologies website4 and were synthesized by Sangon Biotech (Shanghai) Co., Ltd. The bottle gourd TuB-α gene (BG_GLEAN_10019523) was used as the internal control gene. qRT-PCR was performed on a Bio-Rad CFX96 Touch q-PCR System (Bio-Rad, CA, United States) with SuperReal PreMix Plus/SYBR Green (Tiangen, China). Each reaction was replicated three times. The relative expression level of candidate genes was evaluated by the 2–ΔΔCt method (Livak and Schmittgen, 2001); healthy plants (CK) served as the control. Student’s t-test was used for statistical analyses (∗0.01 ≤ P < 0.05, ∗∗0.001 ≤ P < 0.01, ∗∗∗P < 0.001).



RESULTS


Identification of a F. oxysporum f. sp. lagenariae Race

According to the conventional tissue separation method, purified strains from Fusarium wilt-infected plants were obtained. Through morphological identification of the colony, the microscopic view of its conidia, and PCR detection of its sequence (Supplementary Figure 1), we preliminarily identified the bottle gourd wilt isolates as F. oxysporum f. sp. Due to differences in the infectivity and pathogenicity of different strains to cucurbit crops, individual strains of F. oxysporum usually infect only one or few host species. Thus, to better distinguish the different races of F. oxysporum f. sp., we still relied on the special host for identification. The pathogenicity results showed that bottle gourd plants had obvious wilt infection symptoms, featured by the first and second leaves that were more than 50% wilted and the third and fourth leaves that were crumpled. However, there were no symptoms of wilt infection in watermelon, melon, cucumber, and luffa plants (Figure 1). Therefore, we proposed that the isolated F. oxysporum f. sp was a F. oxysporum f. sp. lagenariae race and was named physiological race ShaoX-1, which was used for the subsequent phenotypic identification of bottle gourd.
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FIGURE 1. Morphology and Fusarium wilt (FW)-inoculated infestation response of cucurbit crops. (A) Bottle gourd was more susceptible than other crops after FW inoculation. (B) Plant phenotype of bottle gourd inoculated treatment group and control group after 10 days. (C) Plant phenotype of watermelon inoculated treatment group and control group after 10 days.




Phenotypic Analysis of FW Resistance in the Natural Population

In this study, a total of 89 bottle gourd accessions were evaluated for resistance to Fusarium wilt in a glasshouse in 2019 (DI2019) and 2020 (DI2020), with two replicates per environment. DI, as an evaluation of FW resistance, had a wide range of phenotypic variation in the 2-year trials. The DI of all accessions ranged from 6 to 95%, with a mean value of 46% in 2019 (DI2019), and from 11 to 94%, with a mean value of 55% in 2020 (DI2020). The ANOVA results showed that the broad-sense heritability (h2) was 87.19% across the 2 years (Table 1), suggesting that the genetic effect played a predominant role in the phenotypic variation of FW resistance in bottle gourd. We divided the DI into five levels (Supplementary Figure 2): immune (level 0), highly resistant (level 1), resistant (level 2), susceptible (level 3), and highly susceptible (level 4), according to relevant previous studies (Gao et al., 2015; Xu et al., 2016). Only a tiny percentage of accessions had DI values less than 15% (8 in 2019 and 1 in 2020), whereas the majority of the accessions were within the range of 15.01–45% (35 in 2019 and 28 in 2020) and 45.01–75% (37 in 2019 and 42 in 2020). When DI exceeded 75%, there were 9 accessions in 2019 and 18 accessions in 2020 (Figure 2). Unfortunately, we did not select for any material that was immune to FW in the 2-year trials; only a small amount of material had high resistance to FW (Figure 2), which showed that the bottle gourd germplasm resource of FW resistance is scarce. The correlation coefficient between the 2-year trials was as high as 0.62 (Supplementary Figure 3), and the frequency distribution of DI was approximately normally distributed, which indicated that this natural population could be suitable for correlation analysis for FW resistance.


TABLE 1. Descriptive statistics and heritability (h2) of the Fusarium wilt disease index.
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FIGURE 2. Phenotypic distribution of Fusarium wilt resistance in 89 bottle gourd accessions.




SNP Marker Analysis

The SNP markers used in this work resulted from RAD-sequencing by using the Illumina HiSeq platform. After removal of SNPs with a MAF of ≤0.01 and a heterozygous rate ≥25%, a total of 5,330 high-quality SNPs were retained for GWAS of the FW resistance trait. These SNPs covered all 11 chromosomes, with an uneven distribution across the genome (Table 2). The average density of SNP markers was about 59.37 kb/SNP. The maximum marker density was found on chromosome 11 (101.18 kb/SNP) followed by chromosome 6 (67.25 kb/SNP), whereas the minimum marker density was found on chromosome 1 (42.11 kb/SNP). Based on the SNP markers, we estimated the population structure of 89 bottle gourds using STRUCTURE software and cluster analysis. The delta K reached a sharp peak when K was 2. Therefore, this association population was divided into two subgroups, namely, subgroup 1 and subgroup 2 (Figures 3A,C). Subgroup 1 contained 80 accessions, and subgroup 2 was small and included nine accessions. A neighbor-joining result also classified the population into two subgroups, consistent with the population grouping result (Figure 3D). Because all accessions have some distant relationship, there were no primary factors, such as geographic distribution, affecting the population structure of the 89 accessions. Genotype data were subjected to correlation analysis of the free glutamate content trait in bottle gourd (Wu et al., 2017).


TABLE 2. Single-nucleotide polymorphism (SNP) marker distribution on 11 chromosomes of bottle gourd.
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FIGURE 3. Population structure and linkage disequilibrium (LD) decay rate analysis of 89 bottle gourd accessions. (A) The mean delta K value, when K ranged from 2 to 8. (B) Decay of LD in the germplasm collection [from Xu et al., 2021, unpublished]. (C) Population structure of 89 bottle gourd accessions based on STRUCTURE software; subgroup1 is shown in red, and subgroup 2 is shown in blue. (D) Neighbor-joining tree of 89 bottle gourd accessions constructed by PHYLIP software.


To determine the mapping resolution of the GWAS, we estimated the genome-wide LD decay distance of the association population. The average LD decay distance was approximately 400 kb, where r2 = 0.3 for all chromosomes [half of its maximum value, from Xu et al., 2021, unpublished] (Figure 3B).



Model Comparison for Correlation Analysis

To reduce a false positive association, we applied four kinds of association analysis models to GWAS for FW resistance in bottle gourd. Based on the mean value of DI across the 2 years, quantile–quantile (Q–Q) plots were drawn (Supplementary Figure 4). The results showed that there was a large deviation in the −log10P value between the observed values and the expected values in GLM (PCA) and GLM (Q) models, which indicated that the two models might cause a high false positive correlation. Due to the introduction of the covariable K, the observed −log10P values fit well with the expected values in the MLM (PCA + K) and MLM (Q + K) models, indicating that those two models could effectively control the false positive of the association analysis results. Taking into account the Q–Q plots of each environment, the MLM (Q + K) model (red scatter plot in Supplementary Figure 4) was selected for the follow-up association analysis for FW resistance.



Genome-Wide Association Analysis

A GWAS was performed to detect SNPs associated with FW resistance between 5,330 SNP markers and 89 phenotype data points from the mean across the 2 years (aDI) and within an individual year (DI2019 and DI2020). The Manhattan plots and Q–Q plots for the GWAS results are shown in Figure 4. The GWAS result showed that 20 SNPs (with a significance threshold of p ≤ 0.01, −log10P ≥ 2.0) significantly associated with FW resistance were detected in at least one environment (Supplementary Table 3), including 12 SNPs from the 2019 data, 11 SNPs from the 2020 data, and 11 SNPs from the mean data. Among these SNPs, 10 significantly correlated SNP sites were detected in at least two environments, which were located on chromosomes 1, 2, 3, 4, 8, and 9, indicating that the FW resistance of bottle gourd is controlled by multiple genes (Figures 4A–C). The phenotypic variation explained by these sites ranged from 8.82 to 15.03% (Table 3). Among them, markers of BGReSe_14212 and BGReSe_14202 were located on chromosome 9, and those two SNP markers were within the range of the genome-wide LD block (400 kb). BGReSe_14202 was detected in all three environments with relatively high significant levels (−log10P = 2.81/2.49/2.46) and an effect on FW (R2 = 14.14%/13.90%/10.49%). Therefore, the region range of chromosome 9 may contain the major genes associated with FW resistance. On chromosome 8, two SNP markers were detected with a certain LD distance away. BGReSe_12911 was significantly correlated with FW resistance in all three environments, and BGReSe_12338 was detected in DI2019 and aDI. Two SNP markers, BGReSe_02569 and BGReSe_02108, were detected on chromosome 2. Of these two, BGReSe_02569 explained the largest phenotypic variation in DI2020 and aDI, i.e., 16.19 and 15.38%, respectively. BGReSe_02108 was detected in three environments, with a contribution rate for phenotypic variation of 12.60, 11.03, and 11.28%. BGReSe_01042 and BGReSe_00818 were located on chromosome 1. One of the markers, BGReSe_00818 (−log10P = 2.25/2.02), was significantly correlated with FW resistance in the two environments of DI2019 and aDI, and its contribution rate for phenotypic variation was 12.26 and 12.84%, respectively (Table 3).
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FIGURE 4. Manhattan plot and Q–Q plot of genome-wide association study for Fusarium wilt (FW) resistance in bottle gourd. (A–C) Manhattan plot for FW resistance in 2019 and 2020 and the mean across the 2 years, respectively, (D–F) Q–Q plot for FW resistance in 2019 and 2020 and the mean across the 2 years, respectively. The red horizontal dashed line indicates the genome-wide significance threshold (−log10P ≥ 2). The blue vertical bar spanning three graphs denotes 10 significantly correlated single-nucleotide polymorphism sites for FW resistance detected in at least two environments.



TABLE 3. Significant markers associated with Fusarium wilt resistance in at least two environments.
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Prediction of Candidate Genes for FW Resistance

In this study, we were interested in the markers with the greatest effect, such as marker BGReSe_00818 (MAF = 1.16) on chromosome 1 and markers BGReSe_14202 (MAF = 1.09) and BGReSe_14212 (MAF = 1.07) on chromosome 9. To reduce the range of candidate regions, we performed LD block structure analysis. The results showed that BGReSe_14202 and BGReSe_14212 could form an obvious LD (±400 kb) block, meaning that these two SNPs were closely linked (Figure 5A). The candidate region of chromosome 9 was narrowed down to approximately 140 kb. This region contained 15 genes, of which two candidate genes were significantly associated with FW resistance of bottle gourd (Table 4). Both of them, HG_GLEAN_10001030 (ethylene-responsive transcription factor RAP2) and HG_GLEAN_10001042 (GDSL esterase), are involved in signaling pathways, such as resistance genes and hormone induction. LD block reduced the candidate region of BGReSe_00818 to about 415 kb, which contained seven genes (Figure 5B). Among them, HG_GLEAN_10011803 encodes carboxylesterase and a CDPK-related kinase protein and plays a role in the signal transduction pathway. To confirm whether the potential candidate genes participated in the FW resistance pathway, the expression patterns of the three genes in both FW-infected and healthy bottle gourd plants were analyzed via qRT-PCR. The representative materials were selected from the association analysis population in this study. The DI of Yin-10 and Hanbi was 10.83 and 13.44%, respectively, and both were highly resistant (HR, level 1) to FW. The DI of YD-4 was 87.81%, i.e., highly susceptible (HS, level 4) to FW. The expression pattern of three potential candidate genes HG_10011803, HG_10001030, and HG_10001042 in materials YD-4, Yin-10, and Hanbi is presented (Figure 6). Compared to healthy YD-4 (HS material, level 4), the expression levels of the three candidate genes were all significantly higher (P < 0.001) in the FW-infected group (3 days after infection) (Figure 6A). For Yin-10 and Hanbi (HR materials, level 1), the expression level of gene HG_10011803 showed a significant difference (P < 0.05 and P < 0.001) between FW-infected and healthy groups. However, the expression levels of HG_10001030 and HG_10001042 in infected plants showed a higher or lower expression level than those in healthy Yin-10/Hanbi plants, without a significant difference (Figures 6B,C). Combining the above-mentioned interesting results, we speculated that HG_10011803 is a major effect gene, whereas HG_10001030 and HG_10001042 might be the candidate genes involved in the FW resistance response in bottle gourd.


TABLE 4. Function annotation and genes in candidate intervals of Fusarium wilt resistance single-nucleotide polymorphisms.
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FIGURE 5. Regional Manhattan plot and linkage disequilibrium heat map of the candidate region of significantly associated single-nucleotide polymorphism (SNP) markers. (A) The candidate region of marker BGReSe_14212 on chromosome 9. (B) The candidate region of marker BGReSe_00818 on chromosome 1. The black horizontal dashed line indicates the genome-wide significance threshold. The region between the two black vertical dashed lines indicates the candidate region. Red pots indicate SNPs (−log10P ≥ 2.0) associated with Fusarium wilt resistance in at least one environment.
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FIGURE 6. Relative expression level of three potential candidate genes in bottle gourd leaves. (A) Relative expression level of candidate genes in Fusarium wilt (FW)-infected and healthy (CK) YD-4. (B) Relative expression level of candidate genes in FW-infected and healthy (CK) Yin-10. (C) Relative expression level of candidate genes in FW-infected and healthy (CK) Hanbi. Statistical significance was detected by a two-tailed t-test (*0.01 ≤ P < 0.05, **0.001 ≤ P < 0.01, ***P < 0.001).




DISCUSSION

Fusarium wilt is one of the most important diseases throughout the world, which seriously affects the yield and quality of cucurbit crops (Miguel et al., 2004; Wechter et al., 2012; Oumouloud et al., 2013). The genetic mechanism of resistance to FW in cucurbit crops is complex, showing genetic diversity. However, there are no studies on the genetic effect and inheritance of genes governing FW resistance in bottle gourd, and molecular markers linked to FW resistance are also poorly reported.

Genome-wide association study has emerged as a powerful tool to study complex traits and genetic variations in SNP loci and has been successfully applied to different crops in recent years (Joobeur et al., 2004; Wang et al., 2009; Sabbavarapu et al., 2013; Zhang et al., 2014). Especially the general linear model and mixed linear model are still the common GWAS methods in plants (Huang et al., 2010; Li et al., 2013; Fang et al., 2017). GLM, based on a linear regression model, is usually used for the analysis of quantitative traits and discrete resistance traits. MLM, based on population structure (Q) and kinship (K) as covariance, could better reduce the false positive association (Yu et al., 2006). Taking into account the deviation between expected −log10P and observed −log10P in Q–Q plots, we finally selected the MLM (Q + K) (Supplementary Figure 4) as GWAS model for FW resistance. In this study, we used a GWAS to evaluate a population of 89 accessions for FW resistance under glasshouse inoculation conditions. A total of 20 SNPS (P ≤ 0.01, −log10P ≥ 2.0)significantly associated with FW resistance were identified in at least one environment (Supplementary Table 3). These sites were distributed on seven chromosomes, which could explain the phenotypic variation up to 16.19%. Among them, 10 significantly correlated SNP sites were detected in at least two environments, which were located on chromosomes 1, 2, 3, 4, 8, and 9 (Figure 4). According to the reference genome sequence of “Hangzhou Gourd” (Wang et al., 2018), we preliminarily predicted three candidate genes in candidate regions or LD block regions of these 10 SNP markers (Figure 5). HG_GLEAN_10011803, a candidate gene, which was located 280 kb upstream of the BGReSe_00818 marker on Chr.1, encodes calcium-dependent protein kinase (CDPK) protein. There have been increasing studies confirming the involvement of CDPKs in plant disease resistance defense responses (Boudsocq and Sheen, 2013). For example, Loss-AtCPK28 or overexpression-AtCDPK1 mutants displayed enhanced responses to antibacterial immunity in Arabidopsis (Coca and Segundo, 2010; Monaghan et al., 2014). SlCRK6 in tomato played a role in resistance to both Sclerotinia sclerotiorum and Pseudomonas syringae pv. tomato (Pst) DC3000 (Wang et al., 2016). StCDPK5VK in potato could increase resistance to late blight fungus through the production of ROS (Kobayashi et al., 2012). In addition, by conducting a qRT-PCR analysis, we found that the expression level of HG_GLEAN_10011803 in FW-infected plants was significantly higher than that in healthy plants (Figure 6). Therefore, we inferred that the candidate gene HG_GLEAN_10011803 might be related to the FW resistance of bottle gourd.

In the LD block region of another candidate marker BGReSe_14202, one candidate gene HG_GLEAN_10001030, located 50 kb upstream of this marker on chromosome 9, encoded the ethylene-responsive transcription factor (ERTF) RAP2 protein. ERTFs play an important regulatory role in plant signal transduction of disease resistance and stress resistance, and overexpression could improve plant disease resistance and stress resistance (Singh et al., 2002; Gutterson and Reuber, 2004). For example, OsRAP2.6-overexpressed plants showed improved resistance to rice blast fungus (Wamaitha et al., 2012). TERF1 and TSRF1 genes in tomato could be resistant to Ralstonia solanacearum and Botrytis cinerea (Huang et al., 2004; Zhang et al., 2004, 2008). Another candidate gene, HG_10001042, located 18 kb downstream of this marker on chromosome 9, is a member of the GDSL gene family. The GDSL gene family consists of a wide range of members and plays important roles in plant growth, development, and stress defense responses (Akoh et al., 2004; Chepyshko et al., 2012). Overexpressed GDSL genes, such as AtGLIP1 and CaGLIP1, could enhance the resistance to a variety of pathogenic fungi (Hong et al., 2008; Lee et al., 2009; Naranjo et al., 2010). The qPR-PCR results showed that the expression levels of these two candidate genes were significantly increased in FW-infected YD-4 (HS material, level 4), while their expression levels were not significantly different before and after infection of Yin-10/Hanbi (HR materials, level 1) (Figure 6). Thus, we postulate that these three genes were candidate genes for FW resistance; in particular, HG_GLEAN_10011803 might be a major effect gene. However, further evidence is needed to functionally validate this hypothesis. To our knowledge, this study is the first to perform GWAS for FW resistance in cucurbit crops. Our results provide the molecular tools for FW resistance selection and lay a foundation for candidate gene discovery. The resistant materials and SNP markers that we identified will promote breeding programs for FW-resistant bottle gourd.
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Supplementary Figure 1 | Morphological features of wilted plant and Fusarium oxysporum f. sp. lagenariae. (A) Symptoms of wilted bottle gourd. (B) Symptoms of vascular bundle browning of wilted plants. (C) F. oxysporum colony of Fusarium wilt on potato dextrose agar. (D) Microscopic view of conidia of F. oxysporum f. sp. lagenariae.

Supplementary Figure 2 | Plant symptoms of Fusarium wilt disease at levels 0–4 in bottle gourd. From left to right: level 0 (I), level 1 (HR), level 2 (R), level 3 (S), and level 4 (HS).

Supplementary Figure 3 | Correlation analysis of disease index of 89 bottle gourd accessions between 2019 and 2020.

Supplementary Figure 4 | Q–Q plot of genome-wide association study for Fusarium wilt resistance based on four different association analysis models. (A) Four different association analysis models of DI2019. (B) Four different association analysis models of DI2020. Different colors represent different models: blue, GLM (PCA); black, GLM (Q); green, MLM (PCA+K); red, MLM (Q+K).

Supplementary Table 1 | Accession, origin, and disease index of 89 bottle gourd accessions used in this study.

Supplementary Table 2 | Primer sequences used for qRT-PCR.

Supplementary Table 3 | Significant markers associated with Fusarium wilt resistance in at least one environment.


FOOTNOTES

1http://www.gourdbase.cn

2http://www.gourdbase.cn

3http://www.gourdbase.cn

4https://www.idtdna.com/scitools/Applications/RealTimePCR/Default.aspx
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Spot blotch (SB) of wheat is emerging as a major threat to successful wheat production in warm and humid areas of the world. SB, also called leaf blight, is caused by Bipolaris sorokiniana, and is responsible for high yield losses in Eastern Gangetic Plains Zone in India. More recently, SB is extending gradually toward cooler, traditional wheat-growing North-Western part of the country which is a major contributor to the national cereal basket. Deployment of resistant cultivars is considered as the most economical and ecologically sound measure to avoid losses due to this disease. In the present study, 89 backcross introgression lines (DSBILs) derived from Triticum durum (cv. PDW274-susceptible) × Aegilops speltoides (resistant) were evaluated against SB for four consecutive years, 2016–2020. Phenotypic evaluation of these lines showed a continuous variation in disease severity indicating that the resistance to SB is certainly quantitative in nature. Phenotypic data of DSBILs were further used for mapping QTLs using SNPs obtained by genotyping by sequencing. To identify QTLs stable across the environments, Best Linear Unbiased Estimates (BLUEs) and Predictions (BLUPs) were used for mapping QTLs based on stepwise regression-based Likelihood Ratio Test (RSTEP-LRT) for additive effect of markers and single marker analysis (SMA). Five QTLs, Q.Sb.pau-2A, Q.Sb.pau-2B, Q.Sb.pau-3B, Q.Sb.pau-5B, and Q.Sb.pau-6A, linked to SB resistance were mapped across chromosomes 2A, 2B, 3B, 5B, and 6A. Genes found adjacent to the SNP markers linked to these QTLs were literature mined to identify possible candidate genes by studying their role in plant pathogenesis. Further, highly resistant DSBIL (DSBIL-13) was selected to cross with a susceptible hexaploidy cultivar (HD3086) generating BC2F1 population. The QTL Q.Sb.pau-5B, linked to SNP S5B_703858864, was validated on this BC2F1 population and thus, may prove to be a potential diagnostic marker for SB resistance.

Keywords: leaf blight, spot blotch, backcross introgression lines, Aegilops speltoides, Bipolaris sorokiniana, Triticum durum, QTL


INTRODUCTION

Wheat, a major food crop of the world population, is in a constant threat from various biotic and abiotic stresses, limiting its potential for yield. Helminthosporium leaf blight/foliar blight/spot blotch (SB), caused by Cochliobolus sativus (anamorph: Bipolaris sorokiniana), is a major foliar disease of wheat in warmer wheat-growing regions. This hemibiotrophic fungus can potentially infect and damage various species of Poaceae family (Gupta et al., 2018). Due to drastic changes in the weather conditions in the last few decades leading to higher average temperature and unusual rainfall patterns, foliar leaf blight is emerging as a major threat to wheat production in India. Globally, an estimated 25 million ha of wheat land is affected by SB (Yadav et al., 2015), out of which around 10 million ha is in the Indian Subcontinent and 9 million ha of this is in the North-Eastern Plain Zone of India (Duveiller and Sharma, 2012; Chowdhury et al., 2013). This disease is extending gradually toward the North-West part characterized by high temperature and humidity late in the season (Saari, 1998) with an average yield loss of about 15–20% (Chand et al., 2003). The disease also causes serious damage in seed quality and market value of the produce leading to substantial economic losses (Singh and Kumar, 2008). Under heavy infestation, yield losses vary from 80 to 100% (Kumar et al., 2008). It is chiefly a seed-transmitted disease and the conidia can also survive in the soil.

Considering the huge wheat acreage attacked by this disease, it becomes obligatory to tackle this disease in wheat-growing areas through use of disease-free seed, seed treatment with a suitable fungicide reducing the carryover inoculum, and crop rotation to provide enough window period for decomposition of inoculum-carrying stubble (Chowdhury et al., 2013). Fungicide application seems to be the most convenient method. However, their repeated application involves significant cost, health hazard, and emergence of fungicidal resistance in the target pathogen. Among various alternatives, deployment of resistant cultivars remains a top priority approach as genetic resistance is an economical, robust, and environmentally friendly tool in the management of leaf blight disease. Resistance to leaf blight in the commonly grown wheat varieties of South-East Asia is generally insufficient or lacking (Joshi et al., 2004). So, there is an urgent need to identify sources of SB resistance from the gene pool of wild relatives.

From the limited number of inheritance studies, it has been found that both qualitative and quantitative type of inheritance are involved in SB resistance. A number of bi-parental studies and association mapping studies have reported QTLs linked to SB resistance present all over the wheat genome. Among them, four major QTLs, Sb1 on 7D (Lillemo et al., 2013), Sb2 on 5B (Kumar et al., 2015), Sb3 on 3B (Lu et al., 2016), and Sb4 on 4B (Zhang et al., 2020), have been identified and mapped. Several QTLs on chromosomes 2AL, 2BS, 5BL, and 6DL in “Yangmai#6”; on 2AS, 2BS, 5BL, and 7DS in the cultivar “Ning#8201”; and on 2BS, 2DS, 3BS, 7BS, and 7DS in the cultivar “Chirya#3” have been reported (Kumar et al., 2008, 2010). Neupane et al. (2010) reported a single, dominant gene conditioned resistance to leaf blight in “Chirya#3” and “Milan/Sanghai#7.” Association mapping studies conducted by Gurung et al. (2014) and Adhikari et al. (2012) identified genomic regions associated with resistance to SB on chromosomes 1A, 1B, 3B, 5B, 6B, 7B, and 7D.

However, identification of donor lines resistant to SB remains a major continuing challenge (Joshi et al., 2007). At CIMMYT, a number of Aegilops and Triticum species were used as donors for resistance to leaf blight which included Aegilops triuncialis, Aegilops cylindrica, Aegilops speltoides, Aegilops triaristata, Triticum dicoccoides (wild emmer wheat), Triticum boeoticum, Triticum persicum, Triticum timopheevii, Triticum araraticum, Triticum urartu, and Triticum sphaerococcum (Singh and Dhaliwal, 1993; Smurova and Mikhailova, 2007). Aegilops species is considered as a good and less exploited source for increasing the genetic potential of cultivated wheat to various biotic and abiotic stresses.

In the wide hybridization program at Punjab Agricultural University, Ludhiana, a set of stable interspecific backcross introgression lines derived from Triticum durum and A. speltoides (DSBILs), putative B genome donor of wheat, were evaluated under polyhouse conditions for four consecutive seasons from 2016 to 2020 against SB. These DSBILs were used further to detect QTL(s) governing SB resistance and identify linked markers to aid in breeding for disease resistance in wheat. The linked markers were further used for validation on a BC2F1 population derived from HD3086 and one of the resistant DSBILs.



MATERIALS AND METHODS


Plant Genetic Material

A total of 89 backcross introgression lines derived from A. speltoides (accession #pau3809) and T. durum cultivar “PDW274” as recurrent parent were screened for resistance against SB. The F1 plants from the cross of T. durum cv. PDW274 and A. speltoides acc. pau3809 were backcrossed for two generations with T. durum and selfed to generate BC2F10 introgression lines (DSBILs). Details of development of material can be retrieved from Awlachew et al. (2016).



Screening for SB Resistance

All the 89 DSBILs along with resistant parent A. speltoides, recurrent parent PDW274, and hexaploid susceptible check “Raj 4015” were evaluated under polyhouse conditions following artificially induced epiphytotic conditions. Susceptible check WL711 was sown after every 20 rows, and also in alleys to promote inoculum build-up and spread. Screening to leaf blight disease was done during four consecutive wheat seasons 2016–2017 (E1), 2017–2018 (E2), 2018–2019 (E3), and 2019–2020 (E4). Artificial epiphytotic conditions were created by spraying conidial suspension of the pathogen B. sorokiniana maintained on sorghum grains which were previously soaked and autoclaved. Aqueous conidial suspension (106 conidia/ml) was sprayed on plants during evening hours until symptoms appeared on the susceptible checks. After inoculation, plants were lightly irrigated to provide high-humidity conditions, which is one of the predisposing conditions for infection by B. sorokiniana. Disease scoring was done at three different growth stages (GS) on Zadoks’ scale (Zadoks et al., 1974), which are GS55 (flowering stage or FS), GS75 (medium milk/dough stage or DS), and GS87 (hard dough stage or HDS), using a double-digit scale (00–99) which is based on percent leaf area covered due to blight in flag leaf and one leaf below flag leaf (F-1) as mentioned in Supplementary Table 1. The digit toward the left side indicates score of percent blighted area on flag leaf whereas the right digit gives the score of penultimate/F-1 leaf (Khan and Chowdhury, 2011). These two leaves at this stage contribute most to the grain-filling process thus directly affecting the grain yield (Chowdhury et al., 2013).

The AUDPC (area under disease progress curve) based on disease severity at GS55 (FS), GS75 (DS), and GS87 (HDS) was calculated as the total area under the graph of disease severity against time t, from the first disease evaluation to the last, with the following equation as given by Shaner and Finney (1977):

[image: image]

where yi = disease severity at time, (ti+1–ti) = time in days between two disease scores, and n = number of dates for which SB disease level was recorded.



Statistical Analysis

The disease severity scores across different years using scores of FS, DS, HDS, and AUDPC were used to obtain best linear unbiased estimates (BLUEs) and predictions (BLUPs) by fitting linear mixed effects models in lme4 package v 1.1-26 (Bates et al., 2015) in R v4.0.3 (R Core Team, 2019) using
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where Yik is the trait of interest, μ is the mean effect, Yeari is the effect of the ith year, Linek is the effect of the kth line, and εik is the error associated with the ith year and the kth line, which is assumed to be normally and independently distributed, with mean zero and homoscedastic variance σ2. For BLUEs model, the genotypes were considered as fixed effects, while for BLUPs model all the effects were considered as random effects. Considering genotypes as random effects reduces the effect of screening time along with other environmental effects on SB severity (Tomar et al., 2021). The disease severity scores obtained by fitting the BLUPs and BLUEs models were plotted using ggplot2 v3.3.3 (Wickham, 2016) and ggpubr v0.4.0 (Kassambara, 2020) in R v4.0.3 to study the distribution across the DSBILs.

Further, principal component analysis was performed to identify the number of principal components required to explain the variation across the years along with fitted values from linear mixed effect models using FactoMineR v2.4 (Lê et al., 2008) and factoextra v1.0.7 (Kassambara and Mundt, 2020) in R v4.0.3. The principal components were plotted as biplots to study the relation between disease severity scores of FS, DS, HDS, and AUDPC along with identification of reduction in environmental effects in fitted values.



Genotyping

DNA extraction for all the 89 DSBILs along with both the parents was done using modified cetyltrimethylammonium bromide (CTAB) method (Saghai-Maroof et al., 1984). All these DNA samples were genotyped with genotyping-by-sequencing (GBS) to provide dense genome-wide marker coverage. Raw sequence files were processed in the TASSEL GBS pipeline version 5.2.31 (Glaubitz et al., 2014) and further aligned to the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v1.0 reference genome. The vcf file so obtained was filtered for a minimum depth at 3 (DP3) and converted to hapmap format. The TASSEL output was then filtered for homozygous SNPs for each parental line and SNP markers polymorphic between the two parents were selected, and loci with very low coverage (<50%)/high missing data (>50%) or heterozygosity (>50%) were filtered out. DSBILs with more that 10% missing data were filtered out. Missing SNPs were imputed using the LD-kNNi method implemented in TASSEL with the following default parameters of minimum number of high LD sites = 30 and number of nearest neighbors = 10 (Ladejobi et al., 2019). SNPs with minor allele frequency (MAF) < 0.05 were excluded from further analysis and finally, 4056 SNPs with good quality genotype calls for 77 DSBILs along with recurrent parent were used for mapping.



QTL Mapping Using QTL IciMapping

QTL mapping was done by using CSL functionality of QTL IciMapping version 4.1 software (Meng et al., 2015). Disease resistance mapping was conducted with 4056 SNPs (MAF > 0.05) in 77 DS-BILs plus recurrent parent by stepwise regression-based Likelihood Ratio Test (RSTEP-LRT) for additive effect of markers and single marker analysis (SMA) in the software. Stepwise regression was used to determine the percentages of phenotypic variance explained (PVE) (R2) by individual QTL and their respective additive effects at the likelihood of odds ratio (LOD) peaks. Significant SNPs were identified using threshold LOD of 3 at significant p ≤ 0.001 and 1000 permutations. Only QTLs detected by both the algorithms and using both BLUPs and BLUEs were considered stable and significant. Further, the allelic effects were investigated to identify significantly associated markers with phenotypic data by Kruskal–Wallis test for studying the importance of individual alleles in SB disease resistance.



Postulation of Candidate Genes

The identified QTLs were further used to identify genic regions adjacent to their linked SNPs using reference genome assembly’s functional annotation for high confidence genes (IWGSC Ref Seq v1.0). The genes were retrieved from a region of 500 kb on either side of the SNP and using the functional annotations, the proteins coded by these genes were identified. The functions of the proteins were further literature mined to identify their role in imparting resistance against SB.



Validation of the Identified QTLs and Markers

For validation of the identified QTLs and markers, a BC2F1 population was developed from bread wheat cv. ‘‘HD3086’’ (high yielding, susceptible cultivar) and one of the DSBILs showing highly resistant response persistently under polyhouse conditions. All the plants were evaluated by creating artificial epiphytotic conditions as explained previously and scoring was done using a double-digit scale. Genomic DNA for all plants of BC2F1 mapping population and parents was extracted using CTAB method. To validate the SNP markers significantly linked to SB resistance as identified in mapping results, Kompetitive allele-specific PCR (KASP) assay was used for genotyping1. For this purpose, SNPs linked to the QTLs were used to design KASP markers.



RESULTS


Phenotypic Evaluation of DSBILs

Large variation in disease severity was observed across the different growth stages with disease pressure increasing from flowering to hard dough stage (Table 1 and Supplementary Table 2). Across the environments, overall disease pressures were the lowest in E1 and highest in E3. To enhance the accuracy and map stable QTLs across the environments, linear mixed-effects models were used to obtain fitted values of disease severity, accounting for G × E effect. These values are termed as BLUPs (genotypes as random effects) and BLUEs (genotypes as fixed effects) from here onward. Plotting the eigenvalues/variances explained by each individual principal component (from PC1 to PC2), across the different growth stages and AUDPCs for all the environments, including BLUEs and BLUPs, showed that the first two principal components explained 93.7% of total (Supplementary Figure 1). The first two dimensions of principal components showed both BLUEs and BLUPs were able to explain the variance of disease scores across the four environments (Figure 1). The BLUPs showed lower variance than the BLUEs which meant BLUPs were able to reduce the environmental variance across the years to a larger extent. The disease score distribution curves further agreed to this showing better normal distribution (Figure 2).


TABLE 1. Phenotypic evaluation for spot blotch disease severity of DSBILs along with recurrent parent (RP) and susceptible check.
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FIGURE 1. Principal component analysis (PCA) biplot of disease severity of spot blotch across four individual environments E1, E2, E3, and E4 (turquoise color), across environment BLUEs (blue color), and across environment BLUPs (red color) for disease severity at flowering stage (FS), dough stage (DS), hard dough stage (HDS), and AUDPCs.



[image: image]

FIGURE 2. Distribution of 89 DSBILs for spot blotch severity based on BLUEs (yellow color) and BLUPs (blue color) for disease score at flowering stage (A), dough stage (B), hard dough stage (C) and AUDPC (D). The vertical red line indicates disease score of recurrent parent PDW274, the vertical black line indicates disease score of susceptible check Raj4015, and the disease score or A. speltoides was 00 across the stages.


The donor parent A. speltoides acc. pau3809 was found to be immune to SB showing highly resistant disease severity score of 00, on the double-digit scale, across all the growth stages studied. Overall, the recurrent parent PDW274 showed moderate to high susceptibility and the susceptible check Raj4015 showed high susceptibility across the growth stages and AUDPCs when compared with range of disease scores of respective data sets. At FS, disease score BLUEs of the recurrent parent PDW274 and susceptible check Raj4015 were 14.5 and 38.0, respectively, while for the DSBILs, it ranged from 0.25 to 39.00. The disease score BLUPs of PDW274 and Raj4015 were 13.61, and 24.20, respectively with DSBILs showing a range from 07.18 to 24.65 (Table 1). At DS, disease score BLUEs of the recurrent parent PDW274 and susceptible check Raj4015 were 62.00 and 70.25, respectively, while for the DSBILs, it ranged from 08.75 to 70.50. The disease score BLUPs of PDW274 and Raj4015 were 52.92 and 57.58, respectively, with DSBILs showing a range from 22.82 to 57.73. At HDS, disease score BLUEs of the recurrent parent PDW274 and susceptible check Raj4015 were 77.75 and 89.00, respectively, while for the DSBILs, it ranged from 35.00 to 83.75. The disease score BLUPs of PDW274 and Raj4015 were 75.00 and 82.81, respectively, with DSBILs showing a range from 45.32 to 79.17.

The AUDPC values showed a similar trend, where the disease score BLUEs of the recurrent parent PDW274 and susceptible check Raj4015 were 1081.25 and 1337.50, respectively, while for the DSBILs, it ranged from 302.50 to 1228.75. The disease score BLUPs of PDW274 and Raj4015 were 985.25 and 1147.62, respectively, with DSBILs showing a range from 491.81 to 1078.71. Only three genotypes, DS13, DS61, and DS80, were found highly resistant across all the growth stages. Overall, less than 1% of lines were categorized under highly resistant category while 29 and 25% of genotypes showed moderate to high susceptibility, respectively. The rest of the lines fell under resistant to moderately resistant category.



QTL Mapping

QTL mapping using both SMA and RSTEP-LRT for additive effect of markers using BLUPs and BLUEs for disease severity scores at different GS and AUDPCs resulted in detection of five QTLs across five chromosomes (Table 2 and Figure 3). These QTLs were located on chromosomes 2A, 2B, 3B, 5B, and 6A. The phenotypic variation explained by these QTLs varied from 16.03 to 25.56%, while the LOD score varied from 3.04 to 5.02. QTL QSb.pau-2A was mapped at chromosome 2A at 755.77 Mb using disease severity at hard dough stage with LOD 3.12, PVE 18.44% using BLUEs and LOD 3.18, PVE 18.77% using BLUPs with resistance allele contributed by A. speltoides. Two QTLs, Q.Sb.pau-2B and Q.Sb.pau-3B, were mapped using both disease severity at HDS and AUDPC, where the resistant allele for Q.Sb.pau-2B was contributed by PDW274 while the resistant allele for Q.Sb.pau-3B was contributed by A. speltoides in both cases. QTL QSb.pau-2B was mapped at chromosome 2B at 673.60 Mb using disease severity at HDS with LOD 4.09, PVE 21.27% using BLUEs and LOD 5.02, PVE 25.56% using BLUPs. Using AUDPCs, it was mapped with LOD 3.04, PVE 16.03% using BLUEs and LOD 3.16, PVE 16.98% using BLUPs. QTL QSb.pau-3B was mapped at chromosome 3B at 104.70 Mb using disease severity at HDS with LOD 3.22, PVE 17.86% using BLUEs and LOD 3.82, PVE 20.43% using BLUPs. Using AUDPCs, it was mapped with LOD 4.33, PVE 23.27% using BLUEs and LOD 4.58, PVE 25.27% using BLUPs.


TABLE 2. Summary of the QTLs detected using both single marker analysis (SMA) and RSTEP-LRT for additive effect of markers algorithms of QTL ICI mapping for spot blotch disease severity.
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FIGURE 3. Physical map of candidate QTLs on 2A, 2B, 3B, 5B, and 6A chromosomes. Significant QTLs mapped for resistance against spot blotch are highlighted in black with their respective physical positions (in Mb) in blue, while previously reported QTLs/markers are labeled in red.


Only one QTL was mapped for disease severity at FS and DS. QTL QSb.pau-5B was mapped at chromosome 5B at 703.86 Mb using disease severity at DS with LOD 3.32, PVE 19.48% using BLUEs and LOD 3.23, PVE 18.97% using BLUPs with resistance allele contributed by A. speltoides. QTL QSb.pau-6A was mapped at chr6A at 131.74 Mb using disease severity at FS with LOD 3.07, PVE 16.38% using BLUEs and LOD 3.08, PVE 16.42% using BLUPs with resistance allele contributed by PBW274.



Allelic Effect of Identified QTLs

The allelic effect of the SNPs linked to SB QTL was plotted for the five significant QTLs (Figure 4). The allelic variation patterns of the QTLs, between the two alternate alleles, further agreed with positive mapping results. Also, the donor parent of resistant alleles was confirmed for the QTLs. The disease severity scores of growth stages in which the QTLs were detected were used along with AUPDCs. The patterns of disease severity for the alternate alleles confirmed that three of the QTLs (QSb.pau-2A, QSb.pau-3B, and QSb.pau-5B) had resistant allele donated by A. speltoides, while the remaining two QTLs (QSb.pau-2B, and QSb.pau-6A) had resistant allele donated by PDW274. The alternate alleles of QTL QSb.pau-3B and QSb.pau-5B were the most significantly different for respective disease severity score and AUDPCs, while the alternate alleles of QTL QSb.pau-6A were least significantly different.
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FIGURE 4. Boxplots showing the effect of phenotypic variation between the two alleles of the SNP markers linked to QTLs for disease score of DSBILs. Kruskal–Wallis test was used to determine the significant differences between the mean values of two alleles.




Postulation of Candidate Genes

Because the physical locations of the SNPs linked to the QTLs detected in the present study were known, they were used to identify the genes present adjacent to them in a region of 500 kb on either side of the SNP (Supplementary Table 3). For each target locus, the regions were inspected to identify candidate genes for the QTL and the genes known to be involved in different pathways of pathogen–host interactions and pathogenesis were considered to understand their role in imparting resistance to SB (Table 3). The SNP S2A_755774702 linked to QTL QSb.pau-2A was found adjacent to genes TraesCS2A01G547800 and TraesCS2A01G547900. The gene TraesCS2A01G547800 codes for Auxin response factor (ARF) and TraesCS2A01G547900 codes for Zinc finger CCCH domain-containing protein 32. Gene TraesCS2A01G547400 was found in close vicinity of the QTL for FBD, F-box, and Leucine Rich Repeat domains protein. Other genes in the genomic region with probable role in disease resistance coded for cysteine proteinase (TraesCS2A01G546700), Cytochrome P450 (TraesCS2A01G546600 and TraesCS2A01G547600), and Zinc finger MYM-type-like protein (TraesCS2A01G546800). The SNP S2B_673595704 linked to QTL QSb.pau-2B was found adjacent to genes TraesCS2B01G476500 and TraesCS2B01G476600 both encoding senescence-associated family protein (DUF581). Four other genes coding for DUF581 were also found in the genomic region of the QTL. The SNP S3B_104700839 linked to QTL Q.Sb.pau-3B was found adjacent to genes TraesCS3B01G127000 and TraesCS3B01G127100. The gene TraesCS3B01G127000 coded for protein FAR1-RELATED SEQUENCE 3 and gene TraesCS3B01G127000 coded for IQ domain-containing protein.


TABLE 3. QTLs along with SNPs and corresponding proteins and functional gene annotation elucidated based on the high confidence genes from wheat reference sequence (RefSeq V1.0) annotation database.

[image: Table 3]The SNP S5B_703858864 linked to QTL Q.Sb.pau-5B was found adjacent to genes TraesCS5B01G553900 and TraesCS5B01G554000. The gene TraesCS5B01G553900 coded for F-box family protein and gene TraesCS5B01G554000 coded for ATP-dependent Clp protease ATP-binding subunit. Along with six other F-box family protein coding genes in the region, three disease resistance protein genes RPM1 (TraesCS5B01G554100), NBS-LRR family protein (TraesCS5B01G554200), and AIG2 like protein (TraesCS5B01G554300) were found in the genomic region of the QTL. The SNP S6A_131743987 linked to QTL Q.Sb.pau-6A was found adjacent to genes TraesCS6A01G149500 and TraesCS6A01G149600. The gene TraesCS6A01G149500 coded for Ubiquitin family protein and gene TraesCS6A01G149600 coded for uricase.



Validation of the Identified QTLs and Markers

BC2F1 population derived from DSBIL13 × HD3086 was generated for transfer of SB resistance into wheat and to validate the identified SNP markers linked to SB QTLs, where HD3086 is a high-yielding SB-susceptible hexaploid cultivar and DSBIL13 is a highly resistant line. Besides being highly resistant to SB, DSBIL13 also harbored resistant alleles of four out of five QTLs mapped in the present study, namely QSb.pau-2A, QSb.pau-2B, QSb.pau-3B, and QSb.pau-5B. About 75% of the plants were found to show resistance reaction when screened phenotypically under polyhouse conditions.

The SNPs linked to the five SB resistance QTLs were converted to KASP markers (Supplementary Table 4) and parental polymorphism survey was done to study the allelic composition of HD3086, DSBIL13, PDW274, and A. speltoides acc. pau3809. Out of five markers, only S5B_703858864 was found to be polymorphic between HD3086 and DSBIL13, i.e., HD3086 harbored an alternate allele to the allele imparting resistance. Thus, only this marker could be successfully used to track the SB resistance allele of QTL QSb.pau-5B. This marker was then applied to BC2F1 population derived from DSBIL13 × HD3086. The disease severity scores of growth stages in which the QTL was detected was used along with AUPDCs to evaluate significance of differences by Kruskal test of significant difference (Figure 5). The patterns of disease severity for the alternate alleles confirmed that the QTL QSb.pau-5B having resistant allele from A. speltoides was transferred to the BC2F1 population with significant difference of alternate alleles at p = 0.0034 for DS and p = 0.0036 for AUDPC. Thus, this marker can be used for marker-assisted selection (MAS) and gene pyramiding in future crop improvement programs.
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FIGURE 5. (A) Validation of QTL using KASP assay on BC2F1 population from DS13/HD 3086 with marker S5B_703858864. The central cluster (green) represents heterozygous individuals, whereas clusters near the axes are homozygous for resistant allele (HEX; red) and susceptible allele (FAM; blue). (B,C) Boxplots showing the effect of phenotypic variation between the two alleles of the QTLs for disease score and AUDPC of BC2F1 population. Kruskal–Wallis test was used to determine the significant differences between the mean values of two alleles.




DISCUSSION

Spot blotch is one of the major constraints to the global wheat production, especially in areas with hot and humid climate (Tomar et al., 2021). To counter the constraints from foliar diseases like SB, there is a need for constantly identifying and introgressing new sources of resistance. The DSBIL panel used in the present study showed wide range of variation for different traits and has already been reported to possess various QTLs for heat tolerance, stripe rust, and powdery mildew resistance (Awlachew et al., 2016; Dhillon et al., 2020). In the present study, during phenotypic evaluation of disease severity for SB, three DSBILs (DSBIL 13, 61, and 80) were identified to be highly resistant against SB. Because no wheat cultivar presently grown in North-Western plains of India possess resistance to SB, these lines become an important resource for transfer of SB resistance. The phenotypic evaluation showed increased disease severity from FS (GS55) to HDS (GD87). At HDS, immunity was mostly characterized by moderate resistance in the DSBIL panel. The continuous distribution of disease severity score in the panel indicated additive effect leading to quantitative nature of resistance. Most of the studies on SB resistance dictate that multiple genes with minor effect control the SB resistance in wheat (Adhikari et al., 2012; Lillemo et al., 2013; Zhuang et al., 2013; Gurung et al., 2014; Lu et al., 2016; Ayana et al., 2018; Kaur et al., 2018; Singh et al., 2018; Tomar et al., 2021). Kumar et al. (2008) also suggested that the resistance to SB is polygenic and controlled by a number of loci each having its own additive effect. This was further confirmed by Singh et al. (2018) in which lines were continuously distributed based on phenotypic screening, indicating that the resistance to leaf blight is certainly quantitative in nature. Latwal et al. (2016) reported that out of 200 wheat accessions obtained from CIMMYT, ∼5 lines were highly resistant, ∼123 lines resistant to moderately resistant, and 28 lines were susceptible to highly susceptible. A similar pattern was observed in the present study.

In the present study, five QTLs were mapped on chr 2A, 2B, 3B, 5B, and 6A. Three out of five QTLs (QSb.pau-2A, QSb.pau-3B, and QSb.pau-5B) had resistance allele donated by A. speltoides and are probably novel as no gene/QTL for SB resistance from A. speltoides has yet been reported, despite large genetic potential against SB (Smurova and Mikhailova, 2007). FBD, F-box, and Leucine Rich Repeat domains protein was 80.98 kb from the QTL QSb.pau-2A. NBS-LRR genes are the most common disease resistance gene family in plant genomes (Lee and Yeom, 2015; Dubey and Singh, 2018). A gene coding for ARF protein was found 5.68 kb from the QTL. As reported by Fu and Wang (2011), ARF regulates (enhance or repress) the transcription of primary auxin-responsive genes, thus involving auxin in biotic stress defense responses. Auxin-responsive genes are downregulated in Arabidopsis thaliana upon Botrytis cinerea infection making it more susceptible (Llorente et al., 2008). The genomic region of this SNP harbored another gene with Zinc finger CCCH domain-containing protein 32 (AtC3H32). Tandem CCCH zinc finger (TZF) motifs are known to play a variety of roles: ABA and gibberellin stress response (Lin et al., 2011), seed germination (Kim et al., 2008), mediated pathogen-associated molecular pattern (PAMP)–triggered immune responses (Maldonado-Bonilla et al., 2013), and involved in salt stress responses (Sun et al., 2007). Maldonado-Bonilla et al. (2013) reported that in A. thaliana, tandem zinc finger protein is phosphorylated by PAMP-responsive MAPKs which is required to trigger a PAMP-triggered immunity (PTI). Two genes coding for Cytochrome P450 were also found in the genomic region of the QTL and wheat Cytochrome P450 family protein is known to induce resistance to mycotoxin deoxynivalenol (DON) (Gunupuru et al., 2018). The cysteine protease coding gene in the region of the QTL also plays an important role as the extracellular cysteine protease is important for pathogen recognition. An oxidative burst is triggered by recognition, accompanied by transcriptional reprogramming and HR, which leads to disease resistance (Thomas and van der Hoorn, 2018). QTL QSb.pau-2A mapped in the present study was found 55 Mb from QTL Q.Sb.bisa.2A (Tomar et al., 2021) and in same genomic region of QTL QSb.bhu-2A (Kumar et al., 2010) and is probably novel as this QTL had been contributed by A. speltoides while previously reported QTL are from cultivated wheat.

QTL QSb.pau-2B was mapped 20 Mb from another QTL previously mapped in the region (Bainsla et al., 2020) and was found to be flanked by six senescence-associated family protein (DUF581) coding genes. In wheat, if one allele of the gene is involved in senescence, the other is associated with the stay-green trait (Tomar et al., 2021) and the stay-green trait has been reported to positively correlate with wheat leaf blight resistance (Joshi et al., 2006; Rosyara et al., 2008). QTL QSb.pau-3B was found to be linked with Protein FAR1-RELATED SEQUENCE 3 which is known to modulate plant immunity. FHY3 and its homolog FAR1 improve resistance by negatively regulating ROS accumulation and suppressing plant cell death (Ma and Li, 2018) and by positively regulating the biosynthesis of myo-inositol (Ma et al., 2016). The genomic region of the QTL was found to carry another gene coding for IQ domain-containing protein. Levy et al. (2005) reported that in A. thaliana, this protein, IQD1, encodes a novel nuclear protein that binds to calmodulin in a Ca2+-dependent fashion and stimulates accumulation of plant defense–related secondary metabolite glucosinolates. QTL QSb.pau-3B was mapped 28 Mb from QTL QSb.bhu-3B (Kumar et al., 2010) and hence this QTL introgressed from A. speltoides might be novel.

QTL QSb.pau-5B was found 20 Mb from earlier reported QTL Q.Sb.bisa.5B (Tomar et al., 2021) and 24 Mb from another QTL S5B_679369233 (Jamil et al., 2018). Chromosome 5B has been reported as hotspot for SB resistance as a large number of QTLs/genes mapped for resistance against SB have been mapped on this chromosome. The annotation study revealed that the SNP S5B_703858864 linked to loci QSb.pau-5B is associated with three disease resistance protein coding genes. Both RP1 and AIG2 protein are known to play a crucial role in recognition of pathogens and effector-triggered immune responses in plants (Reuber and Ausubel, 1996; Beth Mudgett, 2005; Chisholm et al., 2006). The third resistance gene was NB-LRR gene which are the most common disease resistance gene family in plant genomes (Lee and Yeom, 2015; Dubey and Singh, 2018). The region also included six F-box family proteins. F-box family protein mediates a variety of biological processes, such as leaf senescence (Woo et al., 2001), and responses to biotic (Kim and Delaney, 2002) and abiotic stresses (Calderón-Villalobos et al., 2007). In mutant seedlings of Arabidopsis showing high susceptibility to pathogen Peronospora parasitica, Kim and Delaney (2002) have reported to isolate son1 protein which was responsible to induce resistance among the seedlings. On cloning son1, it was found to encode a novel protein containing F-box motif, an element found within the E3 ubiquitin–ligase complex, suggesting the existence of a novel defense response through the ubiquitin–proteosome pathway, independent of SAR. The genomic region also carries gene encoding for ATP-dependent Clp protease ATP-binding subunit. Clp protease degrades damaged or non-native proteins in mitochondria and chloroplasts whose amount increases during abiotic and biotic stress conditions (Ali and Baek, 2020).

QTL QSb.pau-6A was mapped 53 Mb from QTL SNP_3021829 (Bainsla et al., 2020) mapped in the same genomic region. A gene for Ubiquitin family protein was found flanking the QTL. Ubiquitin-related proteins implant plant resistance by degrading flagellin-sensing 2 (FLS2) receptor, which binds the microbe-associated molecular pattern (MAMP), flagellin (Trujillo and Shirasu, 2010; Lu et al., 2011). Ubiquitin, which is a part of the ubiquitin–proteasome system (UPS), controls various pathways including response to biotic and abiotic stresses (Sadanandom et al., 2012), and acts as one of the major systems in plant immunity (Üstün et al., 2016). Besides immunity, their role in defense responses by the production of ROS and forming hypersensitive reactions have also been reported (Marino et al., 2012). Another gene flanking the QTL coded for uricase. Increased activity of uricase has been observed in bean leaf tissue after infection with Uromyces phaseoli (Montalbini, 1991) in both resistant and susceptible plants. Higher activity of uricase was observed more in plants with hypersensitive reaction than in the susceptible plants.

The SNPs linked to QTLs were used to design KASP-based markers for marker-assisted transfer and validation. Using a susceptible high-yielding cultivar HD3086 and highly resistant DSBIL13, a BC2F1 population was generated. Since four of the five markers were not polymorphic between HD3086 and DSBIL13, only one marker S5B_703858864 linked to QTL QSb.pau-5B could be validated on the segregating population. The homozygous alternate alleles of this marker showed significant difference for SB severity with p value < 0.01, and thus this marker could be used for marker-assisted transfer of the QTL. The phenotypic evaluation of the segregating population showed a wide range of SB severity scores from highly resistant to highly susceptible, which indicated that more than one locus for resistance was segregating in the population. This segregation pattern was highly expected as DSBIL13 harbored four QTLs viz. QSb.pau-2A, QSb.pau-2B, QSb.pau-3B, and QSb.pau-5B. Thus, there is a need to explore more marker systems to design markers for marker-assisted transfer of other QTLs identified in the present study.
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Soybean cyst nematode (SCN, Heterodera glycines) has become the major yield-limiting biological factor in soybean production. Common bean is also a good host of SCN, and its production is challenged by this emerging pest in many regions such as the upper Midwest USA. The use of host genetic resistance has been the most effective and environmentally friendly method to manage SCN. The objectives of this study were to evaluate the SCN resistance in the USDA common bean core collection and conduct a genome-wide association study (GWAS) of single nucleotide polymorphism (SNP) markers with SCN resistance. A total of 315 accessions of the USDA common bean core collection were evaluated for resistance to SCN HG Type 0 (race 6). The common bean core set was genotyped with the BARCBean6K_3 Infinium BeadChips, consisting of 4,654 SNPs. Results showed that 15 accessions were resistant to SCN with a Female Index (FI) at 4.8 to 9.4, and 62 accessions were moderately resistant (10 < FI < 30) to HG Type 0. The association study showed that 11 SNP markers, located on chromosomes Pv04, 07, 09, and 11, were strongly associated with resistance to HG Type 0. GWAS was also conducted for resistance to HG Type 2.5.7 and HG Type 1.2.3.5.6.7 based on the public dataset (N = 276), consisting of a diverse set of common bean accessions genotyped with the BARCBean6K_3 chip. Six SNPs associated with HG Type 2.5.7 resistance on Pv 01, 02, 03, and 07, and 12 SNPs with HG Type 1.2.3.5.6.7 resistance on Pv 01, 03, 06, 07, 09, 10, and 11 were detected. The accuracy of genomic prediction (GP) was 0.36 to 0.49 for resistance to the three SCN HG types, indicating that genomic selection (GS) of SCN resistance is feasible. This study provides basic information for developing SCN-resistant common bean cultivars, using the USDA core germ plasm accessions. The SNP markers can be used in molecular breeding in common beans through marker-assisted selection (MAS) and GS.

Keywords: common bean, Phaseolus vulgaris, soybean cyst nematode, Heterodera glycines, genomic prediction, genome wide association study, genomic selection, single nucleotide polymorphism


INTRODUCTION

Common bean (Phaseolus vulgaris L.) is the most important edible grain legume crop worldwide, with crop value equal to the combined value of all other food legumes such as peas and chickpeas (Jain et al., 2016). The most common bean is harvested as seed grain called “dry bean,” but it is also grown as a green vegetable (called “green bean” or “snap bean”) in many parts of the world. Common bean has high nutritional value and is one of the most important sources of protein for billions of people in the world. In recent years, about 2 million acres were planted, and approximately 1.3 million metric tons of common beans valued at US$2 billion were produced annually in the United States (US) (USDA NASS, 2020).

The production of dry beans in the US may be challenged by an emerging, invasive pest, the soybean cyst nematode (SCN), Heterodera glycines Ichinohe (Tylenchida: Heteroderidae). The SCN is the most serious pathogen of soybean [Glycine max (L.) Merr.] in the US and suppresses a yield more than any other pathogen (Koenning and Wrather, 2010; Allen et al., 2017). The SCN reduces a yield by feeding on plant nutrients, retarding root growth, reducing water and nutrient uptake and transportation from roots to shoots, and inhibiting rhizobium nodulation. Yield losses can exceed 40% (Koenning and Wrather, 2010), depending on many factors such as SCN population density, soil texture and fertility, rainfall, and the presence of susceptible soybean genotypes (Duan et al., 2009). The SCN has been widely spread in the US, especially in the North Central region that produces most soybeans (Tylka and Marett, 2017). Unfortunately, the top four common bean-growing states, North Dakota, Michigan, Nebraska, and Minnesota, which produce approximately 70% of the common bean in the US, are also in the North Central region. The SCN has been reported in the common bean fields of those states (Poromarto et al., 2010; Yan et al., 2017). SCN infection can cause severe yield loss without any aboveground symptoms in common beans (Poromarto et al., 2010, 2012) and becomes a serious threat to common bean production.

The use of host resistance has been highly successful in SCN management for soybeans. Numerous commercial SCN-resistant soybean cultivars are available and are planted in most soybean fields in the US. Similarly, the use of host resistance in common bean cultivars will also be crucial to SCN management in dry bean production. Growing common bean cultivars resistant to SCN infection will not only reduce common bean yield loss but also relieve SCN pressure for soybean production if common beans and soybean are rotated with wheat (Triticum aestivum L.). Recently, Osorno et al. (2020) has released the first pinto bean cultivar “ND Falcon,” a new pinto bean with combined resistance to SCN and rust. Screening more common bean germplasm for SCN resistance, using different HG Types (races) will provide breeders to use germplasm as parents to develop and release new superior common bean cultivars with broad and more stable resistance.

Limited research has demonstrated that some common bean germplasm and cultivars are resistant to SCN. Smith and Young (2003) conducted a greenhouse study to evaluate 20 common bean lines for SCN resistance and found a few lines resistant to SCN, and some Mesoamerican genotypes were more resistant than Andean genotypes. Poromarto et al. (2012), in North Dakota, evaluated 416 accessions (germplasm lines) in the USDA core collection of P. vulgaris and found 23% of the lines had low nematode reproduction and were considered highly resistant to SCN HG Type 0 (Jain et al., 2016, 2019). Wen et al. (2019), in Illinois, evaluated 363 accessions of the same core collection and found 19 accessions (5%) were highly resistant to SCN HG Type 2.5.7, and 160 (44%) resistant to HG Type 1.2.3.5.6.7, with FI < 10.

Jain et al. (2016) analyzed the transcriptome sequences of the SCN-resistant line PI533561 vs. SCN-susceptible P. vulgaris line GTS-900 and demonstrated that genes-encoding nucleotide-binding site leucine-rich repeat resistance (NLR) proteins, WRKY transcription factors, pathogenesis-related (PR) proteins, and heat shock proteins involved in diverse biological processes were differentially expressed between SCN-resistant and susceptible genotypes. Recently, two reports on SCN-resistant quantitative trait loci (QTLs) in common beans were published. Wen et al. (2019) conducted a genome-wide association study (GWAS) based on the dataset of 363 USDA common bean core accessions phenotyped against SCN HG types 2.5.7 and 1.2.3.5.6.7 and genotyped, using 84,416 single nucleotide polymorphisms (SNPs) obtained from genotyping by sequencing (GBS) and reported that there were five SNPs on chromosome Pv01 and one on Pv09 associated with resistance to HG Type 2.5.7. They also reported a gene cluster orthologous to the three genes at the SCN-resistant rhg1 locus in soybeans. In addition, an SNP was found on Pv09, associated with resistance to HG Type 1.2.3.5.6.7. Jain et al. (2019) conducted GWAS in 317 accessions of USDA common bean core collection, challenged with SCN HG Type 0, and found 14 significant SNP markers on Pv04, 05, 06, 07, 08, 10, and 11 in the Middle American subpopulation and 23 SNP markers on Pv01, 02, 07, 08, 09, and 11 for the Andean subpopulation. Besides, Jain et al. (2019) reported several candidate genes on Pv01 and Pv08, which had high similarity to the three genes of rhg1 of soybean for SCN resistance. Based on previous reports and the study, the SCN resistance in the common bean is polygenic traits with multiple genes or alleles.

Plant molecular breeding has been the foundation for crop improvement into the twenty first century and has become part of the breeding programs to expedite advances and genetic gains in many crops (Moose and Mumm, 2008). Marker-assisted selection (MAS) has been successfully used in the selection of specific major genes/alleles in plant breeding (Collard et al., 2005; Collard and Mackill, 2008; Xu and Crouch, 2008). More recently, predictive breeding via GS has become an essential tool in crop improvement. GS refers to selecting the performance of individuals within a population based on genomic-estimated breeding values (GEBV) (Hayes et al., 2009; Desta and Ortiz, 2014). The decreasing cost of DNA sequencing renders GS affordable and powerful by providing high-density markers across the genome (Lin et al., 2014). GS is more efficient than the traditional MAS when dealing with small-effect QTL (Bernardo and Yu, 2007; Heffner et al., 2009, 2011; Cortés et al., 2020). So far, genomic prediction (GP) as a GS parameter has been investigated in a dozen of crops such as maize (Zea mays L.), rice (Oryza sativa L.), soybean, and wheat (Bernardo and Yu, 2007; Heffner et al., 2009, 2011; Albrecht et al., 2011; Jarquin et al., 2014, 2016; Onogi et al., 2016; Xavier et al., 2016; Shikha et al., 2017; Zhang et al., 2017; Qin et al., 2019) for various agronomic traits, and abiotic and biotic stress traits. Genomic breeding value estimation in GP is the key step in GS. Several approaches have been proposed for GEBV, such as BLUP methods (gBLUP, RR-BLUP, cBLUP, and sBLUP) and Bayesian methods (BayesA and BayesB). All articles discussed the selection prediction accuracy (PA), estimated using the Pearson's correlation coefficient (r) between the GEBV and observed values for each trait in validation sets (testing sets), using several models. In recent years, GP has also been reported in common beans to predict agronomic traits under different environmental stresses (Keller et al., 2020) and SCN resistance (Wen et al., 2019).

Currently, SNP technology is the molecular-marker platform of choice in genome-wide mapping, association studies, diversity analysis, and tagging of important genes in plant genomics and breeding. SNPs are abundant in the genome, cost-effective, and amenable to high throughput analysis (Collard and Mackill, 2008; Xu and Crouch, 2008). Therefore, the identification of SNP markers will provide breeders with powerful tools to assist in selecting biotic and abiotic stress resistance/tolerance and expedite the development of elite cultivars with stress resistance/tolerance in common bean breeding programs. SNPs have been reported and used in common beans (Cortés et al., 2011; Blair et al., 2013). Gene-based SNP markers were developed in common beans (Galeano et al., 2012). SNP genetic maps for common beans have been constructed, using the 6K SNP BeadChips (Song et al., 2015) and were used to anchor the scaffold of the common bean whole-genome sequence reference assembly for the Andean landrace G19833 (Schmutz et al., 2014). In common beans, the BARCBean6K_3 Infinium BeadChip has been used for QTL and association mapping to identify genes/QTL controlling different traits (Hagerty et al., 2015, 2016; Hoyos-Villegas et al., 2016, 2017; Moghaddam et al., 2016; Castro et al., 2017; Hurtado-Gonzales et al., 2017; Valentini et al., 2017). Recently, several versions of P. vulgaris (common bean) genome assembles were released. They include the aforementioned Andean genome (Schmutz et al., 2014; https://phytozome-next.jgi.doe.gov/info/Pvulgaris_v2_1) and four Middle American genomes: (1) race Mesoamerica: cultivar OAC Rex (https://www.ncbi.nlm.nih.gov/genome/380?genome_assembly_id=1500596) and breeding line BAT93 (https://www.ncbi.nlm.nih.gov/genome/380?genome_assembly_id=262776; Vlasova et al., 2016; Rendón-Anaya et al., 2017); (2) race Durango: cultivar Pinto UI111 (https://phytozome-next.jgi.doe.gov/info/PvulgarisUI111_v1_1), and cultivar Labor Ovalle of race Guatemala (https://phytozome-next.jgi.doe.gov/info/PvulgarisLaborOvalle_v1_1). The genome assembly of G19833 has been used as a reference to map SNPs of the BARCBean6K_3 Infinium BeadChip to the 11 chromosomes in common beans (Song et al., 2015).

With the decreased genotyping cost and improved statistical methods, GWAS and GS offer new approaches for genetic improvement of complex traits in crop species. GWAS, based on a population of unrelated lines and high-density markers, has been used to identify candidate genes for a broad range of complex traits in different crops (Huang et al., 2010; Li et al., 2013; Morris et al., 2013; Yano et al., 2016). GWAS is relatively new for common beans, but it has been reported to be an effective approach to identify SNP markers associated with SCN resistance (Jain et al., 2019; Wen et al., 2019). However, MAS has been successfully coupled with backcrossing schemes for transferring several traits, among which anthracnose resistance and seed mineral accumulation traits (even from the wild) in common beans (Garzón et al., 2008; Blair and Izquierdo, 2012). Therefore, research is needed to identify SNP markers associated with SCN resistance and to use these SNP markers in molecular breeding to enhance common bean improvement.

We initiated a project in 2016 to study the SCN resistance in common beans, using SCN HG Type 0. So far, two studies for SCN resistance QTLs in the USDA common bean core collection have been reported (Jain et al., 2019; Wen et al., 2019). Wen et al. (2019) conducted GWAS in 363 accessions of USDA common bean core collection phenotyped against SCN HG Types 2.5.7 and 1.2.3.5.6.7 and genotyped, using GBS. The common bean core sets were also genotyped BARCBean6K_3 Infinium BeadChip SNPs, and the SNP data are available (Song et al., 2015; Gepts et al., 2019; Kuzay et al., 2020). The BARCBean6K_3 Infinium BeadChip could provide additional SNPs for a breeding program. Therefore, we conduct GWAS and GP analysis for resistance to HG Type 2.5.7 and HG Type 1.2.3.5.6.7, using the phenotypic data from Wen et al. (2019) and genotypic data of the BARCBean6K chip SNPs in this report. Although Jain et al. (2019) conducted GWAS in 317 accessions of USDA common bean core collection with SCN HG Type 0, only 86 accessions with FI < 10 were published in the article; hence, their data are not included in this study for further analysis. The overall goal of the research was to develop technology to effectively manage the SCN in common bean productions. Specifically, the objectives of this study were to evaluate the SCN resistance in the USDA common bean core collection, to conduct GWAS, and to identify SNP markers associated with SCN resistance. The approach was to first conduct GWAS to identify associated SNP markers and then use the associated SNP markers to do GS. This is an approach combining MAS and GS through GEBVs, using associated SNP markers (Spindel et al., 2016; Zhang J. P. et al., 2016; Qin et al., 2019; Ravelombola et al., 2019, 2020, 2021; Ali et al., 2020). The information presented in this report is a new contribution to the understanding of SCN resistance in common beans beyond the previous studies (Jain et al., 2019; Wen et al., 2019).



MATERIALS AND METHODS


Plant Materials

About 315 common bean germplasm accessions, a core set of common beans, described at USDA Germplasm Resources Information Network (GRIN), were used in this study. This common bean core set has been widely used for genetic diversity analysis (Kwak and Gepts, 2009; McClean et al., 2012; Campa et al., 2018; Gepts et al., 2019; Kuzay et al., 2020). The core set was mainly from two gene pools, i.e., the Andean and Mesoamerican pools (Gepts et al., 1986, 2019; Koenig and Gepts, 1989; Koinange and Gepts, 1992; Beebe et al., 1997, 2000; Kwak and Gepts, 2009; Bitocchi et al., 2012, 2013; McClean et al., 2012; Schmutz et al., 2014; Campa et al., 2018; Kuzay et al., 2020), and can form three clusters and seven groups (Kuzay et al., 2020). The 315 accessions in this study were originally collected from 11 countries, including Mexico (163 accessions), Colombia (35), Guatemala (30), Peru (17), Costa Rica (17), Ecuador (16), El Salvador (13), Nicaragua (13), Honduras (9), Bolivia (1), and United States (1) (Supplementary Table 1) They represented 241 accessions from Middle American gene pools, 67 from the Andean pool, and seven from an admixture (Supplementary Table 1).

In addition, the seven soybean SCN HG Type indicator (differential) lines PI 548402 (Peking), PI 88788, PI 90763, PI 437654, PI 209332, PI 89772, and PI 548316 (Niblack et al., 2002), and four SCN race differential lines PI 548402 (Peking), PI 548982 (Pickett 71), or PI 548988 (Pickett), PI 88788, and PI 90763 (Riggs and Schmitt, 1988), with the susceptible Williams 82 (PI 518671) as control were included to confirm the virulence phenotype of the SCN population (Supplementary Table 2). Based on the reactions of the differential lines to the SCN population, the population was HG Type 0 and race 6 similar to race 3.



Soybean Cyst Nematode Resistance Phenotyping

The 315 common bean accessions were tested for their resistance to SCN HG Type 0 (race 6). HG Type 0 is avirulent to most current commercial SCN-resistant soybean cultivars, and if there is any SCN resistance in common beans, it is likely resistant to HG Type 0 based on the knowledge of SCN resistance in soybeans. Consequently, we started screening, using the HG Type 0, to identify more SCN-resistant common bean lines and genes/alleles.

The SCN population was collected from a field in Swift County, Minnesota, USA, in 2007. Since it was collected from the field, the population had been maintained in the greenhouse on susceptible soybean cultivars or stored in a freezer at −20°C. Prior to the experiment, the nematode population was cultured on susceptible soybean “sturdy” for about 45 days. Newly formed females and cysts were washed with a vigorously applied water stream through an 850-μm-aperture sieve onto a 250-μm-aperture sieve and extracted by centrifugation in a 63% (w/v) sucrose solution. Eggs were released from the cysts by crushing the cysts on a 150-μm-aperture sieve with a rubber stopper mounted on a motor (Faghihi and Ferris, 2000). The eggs were separated from debris by centrifugation in a 35% (w/v) sucrose solution for 5 min at 1,500 g, and an egg suspension of 800 eggs/ml was made. The reproduction of the SCN population on the soybean or bean lines was assayed by growing the bean in cone-tainers (4-cm diameter and 13.5-cm high) in a growth room (Supplementary Figure 1).

The experimental design was a randomized complete block design (RCBD) with three replicates. Each replicate included two common bean plants in two separate cone-tainers per common bean accession. Control soybean Williams 82 in each replicate included five plants in five separate cone-tainers. All three replicates of the 315 common bean accessions, with a total of 1,890 cone-tainers, plus the Williams 82, were set up within 2 days of December 14 to 15, 2016, in the growth room, and they were arranged in three blocks (Supplementary Figure 1). The cone-tainers were filled with autoclaved soil (80% sands + 20% field clay loam soil) to half to which 2,000 eggs in 2.5 ml of water were added. Additional soil was placed in the cone-tainer to approximately 2 cm from the top. Another inoculum of 2,000 eggs in 2.5 ml of water was added to the soil surface, and one common bean or soybean seed was sowed in each cone-tainer. The seed was covered with additional soil to about 1-cm depth. The cone-tainers were placed on a rack and maintained in the growth room with the temperature set at 28°C and daily artificial lights for 16 h. Water was applied with a sprinkler irrigation system to maintain adequate soil moisture (Supplementary Figure 1). The environments, including soil temperature, moisture, and lights, were controlled relatively even over time and across the benches in the growth room. After 35 days in the growth room, the plants were cut to about 1 cm above the soil surface, and all of the cone-tainers were moved to a cool room (4°C) to stop SCN development. The samples were stored in the cool room until processed.

Cysts (females) were extracted from the roots and soil according to established procedures after 35 days. Briefly, the soil and plant roots were removed from the cone-tainer and placed in a beaker, and water was added. Any cysts on the wall of the cone-tainer were washed off. Plant roots were removed and females washed off on an 850-μm-aperture sieve, nested on a 250-μm-aperture sieve. In addition, the cysts in the soil were extracted by pouring soil suspension on the sieves. After rinsing the materials on the 850-μm-aperture sieve, the cysts with debris on the 250-μm-aperture sieve were collected. The cysts were separated from the debris by flotation centrifugation in sucrose solution (63%) and counted under a dissecting microscope.

A FI for each common bean plant was determined by comparing SCN female number of the plant with the average female number on the five plants of Williams 82: FI = female number on a given plant × 100/mean number of females on Williams 82, where we defined FI on Williams 82 as 100. The average FI of the two plants in each block was considered as one replicate, and three replicates were included.

So far, two studies for SCN resistance in the USDA common bean core collection have been reported (Jain et al., 2019; Wen et al., 2019). Wen et al. (2019) conducted GWAS in 363 accessions of USDA common bean core collection phenotyped against SCN HG Types 2.5.7 and 1.2.3.5.6.7. Among the 363 accessions reported in Wen et al. (2019), 276 accessions were further analyzed for GWAS and GP in this report based on available SNP data. Therefore, we also include their SCN FI data in this study for comparative data analysis. Although Jain et al. (2019) conducted GWAS in 317 accessions of USDA common bean core collection with SCN HG Type 0, only 86 accessions with FI < 10 were published in the article; hence, their data are not included in this study for further analysis.



Phenotypic Data Analysis

The SCN resistance phenotypic data FI of SCN HG Type 0 (race 6) among the 315 common bean accessions were analyzed, using the ANOVA, with the general linear models (GLM) procedure of JMP Genomics 7 (SAS Institute, Cary, NC). For comparisons among individual accessions in JMP, the “LSMeans Student's t” was used to perform multiple comparisons at α = 0.05. The mean, range, SD, SE, and coefficient of variation (CV) were estimated for FI, using “Tabulate.” Person's correlation coefficients (r) were calculated, using “Multivariate Methods.” The distribution of FI was drawn, using “Distribution” in JMP Genomics 7. The average of FI to SCN HG Type 0 (race 6) for each soybean accession from ANOVA was used as the phenotypic data for GWAS.

The broad-sense heritability (H) was estimated, using the following formula (Holland, 2003).
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with [image: image] being the total genetic variance, [image: image] being the residual variance, and r being the number of blocks. The estimates for [image: image] and [image: image] were [EMS(G)–Var (Residual)]/r and Var (Residual), respectively. EMS(G) and Var (Residual) were obtained from the ANOVA table.



Genotyping

The common bean core set was genotyped with the BARCBean6K_3 Infinium BeadChips (Song et al., 2015), consisting of 5,398 SNPs distributed across the 11 pairs of common bean chromosomes with the Illumina BeadStation 500G (Gepts et al., 2019; Kuzay et al., 2020). The 5,389 SNPs across 382 accessions of the common bean core set are available and can be downloaded on the website at https://datadryad.org/stash/dataset/10.25338/B8KP45, with AA BB AB—format. The AA BB AB—was changed to the nucleotide format (A C T G) based on P. vulgaris G19833 reference sequences. After elimination of the missing data, a total of 4,654 SNPs were used for genetic diversity, population structure analysis, and GWAS in this study with a missing rate <20%, heterogeneous <10%, and minor allele frequency (MAF) > 5%. The distribution of the 4,654 SNPs on the 11 chromosomes of the common bean is shown in Supplementary Figure 2.



Genetic Diversity and Population Structure Analysis

This collection was previously analyzed with simple-sequence repeats (SSRs) (McClean et al., 2012) and SNPs (Gepts et al., 2019; Kuzay et al., 2020) for their genetic diversity and population structure. They found mainly three or seven subpopulations in the core set. In this study, we repeat the genetic diversity and population structure in the 315 accessions from the core set. A model-based clustering method in the STRUCTURE 2.3.4 program (Pritchard et al., 2000) was used to infer the population structure of the common bean accessions based on the 4,654 SNPs. To identify the number of populations (K) capturing the major structure in the data, the burn-in period was set at 50,000, with the Markov Chain Monte Carlo iterations, and the run length was set at 10,000 in an admixture model; correlated allele frequencies were assumed to be independent for each run (Lv et al., 2012). Ten runs were performed for each simulated value of K, ranging from 1 to 10. For each simulated K, the statistical value delta K was calculated, using the formula described by Evanno et al. (2005). The optimal K was determined, using Structure Harvester (Earl and Vonholdt, 2012; http://taylor0.biology.ucla.edu/structureHarvester/). Each common bean genotype was then assigned to a cluster (Q) based on the probability determined by the software that the genotype belonged in the cluster. The cutoff probability for assignment to a cluster was 0.50 or above. Based on the optimum K, a bar plot with “Sort by Q” was obtained to show the population structure among the common bean genotypes (accessions).

The number of principal components (PC) was chosen according to the optimum subpopulation determined in STRUCTURE 2.3.4, and a PCA plot was drawn, using R package ggplot2 by the data from TASSEL 5 (Bradbury et al., 2007; http://www.maizegenetics.net/tassel). Genetic diversity also was assessed, and phylogenetic trees were drawn, using MEGA 7 (Kumar et al., 2016) based on the Maximum Likelihood (ML) tree method with the following parameters (Shi et al., 2016, 2017): the bootstrap method with the number of bootstrap replications 500; model/method: the General Time Reversible model; rates among sites: Gamma distributed with Invariant sites (G + I); the number of discrete gamma categories: five; gaps/missing data treatment: Use all sites; the ML heuristic method: Subtree-Pruning-Regrafting-Extensive (SPR level 5); the initial tree for ML: Make the initial tree automatically (Neighbor-Joining); and a branch swap filter: Moderate. During the drawing of the phylogeny trees, the population structure and the cluster information were imported to MEGA 7 for combined analysis of genetic diversity. For the sub-tree of each Q (cluster), the shapes of “Node/Subtree Marker” and the “Branch Line” were drawn with the same color as in the figure of the bar plot of the population clusters from the STRUCTURE 2.3.4 analysis.



Association Analysis

GWAS was performed, using the Genomic Association and Prediction Integrated Tool version 3 (GAPIT3) (Lipka et al., 2012; Wang and Zhang, 2020; https://zzlab.net/GAPIT/index.html; https://github.com/jiabowang/GAPIT3), where the mixed linear model (MLM), compressed MLM (CMLM) (Zhang et al., 2010), GLM, SUPER (Wang et al., 2014), multiple-locus MLM (MLMM), Fixed and Random Model Circulating Probability Unification (FarmCPU) (Liu et al., 2016), and Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) (Huang et al., 2019) were run in this study. Single marker regression (SMR), GLM (Q), and MLM (Q+K) were also conducted, using TASSEL 5 (Bradbury et al., 2007; http://www.maizegenetics.net/tassel). Q-matrix (Q) was obtained from the population structure analysis by STRUCTURE 2.3.4, and Kinship (K) was estimated by the tool Kinship with the Scald_IBS method built-in TASSEL 5. In addition, a t-test was performed for every single SNP, using visual basic codes in Microsoft Excel 2016. Multiple modes in several tools were used to identify SNP markers associated with resistance to SCN HG Types to recognize more sTable NP markers and to tag the candidate gene(s) or QTL region(s) strongly associated with the SCN resistance. Highly significant associations were determined, using a strict Bonferroni correction of P-value at an α = 0.05, in which the P = 0.05/ (SNP number) as the significance threshold (López-Hernández and Cortés, 2019). In this study, for the panel of all 315 accessions, the significant LOD [−log10 (P-value)] [LOD was used instead of −log10 (P-value) in the text] threshold value was 4.97, 4.84, and 4.52 for the panel of all 315 accessions, Q1, and Q2, respectively, based on the 4,654 SNPs, 3,455 SNPs, and 1,653 SNPs used for each panel after filtered with a missing rate <20%, heterogeneity <10%, and MAF > 5%.

Besides the SCN phenotypic data of resistance to HG Type 0 (race 6) in the USDA common bean core collection from the experiment used to conduct GWAS for SCN resistance, the phenotypic data of resistance to HG Types 2.5.7 and 1.2.3.5.6.7 from the report by Wen et al. (2019) were also used to conduct GWAS, using the same BARCBean6K_3 Infinium BeadChips (Song et al., 2015). Although Wen et al. (2019) conducted the GWAS for the two HG Types, using 84,416 SNPs identified from GBS, more information and more SNP markers would be provided that are associated with resistance to HG Types 2.5.7 and 1.2.3.5.6.7 when using different SNP sets and different GWAS models. An LD heat map was drawn for regions containing a significant SNP marker, using Haploview (Barrett et al., 2005; https://www.broadinstitute.org/haploview/haploview). However, we do not conduct an LD-based haplotype association analysis in this research.



Candidate Gene Prediction

Candidate gene models were searched within 50 kb on either side of significant SNPs (Zhang H. Y. et al., 2016) and retrieved from the reference annotation of the common bean genome reference Pvulgaris v1.0_218 (https://genome.jgi.doe.gov/portal/pages/dynamicOrganismDownload.jsf?organism=Phytozome) because the SNP information was based on this reference sequence (Gepts et al., 2019).



Genomic Prediction of SCN Resistance

In this study, the ridge regression best linear unbiased prediction (RR-BLUP) was used to predict GEBV in GP and performed in the rrBLUP package (Endelman, 2011), with the R software Version 4 (https://cran.r-project.org/bin/windows/base/rtest.html). The RR-BLUP is an effective and accurate prediction method as demonstrated in a wide range of traits and crops (Jarquin et al., 2014; Zhang J. P. et al., 2016). In additions, GP was performed with the genomic best linear unbiased prediction (gBLUP) (Wang and Zhang, 2020; https://zzlab.net/GAPIT/index.html; https://github.com/jiabowang/GAPIT3) and also performed using Bayesian models: Bayes A, Bayes B, Bayes LASSO (BL), and Bayes ridge regression (BRR) (Legarra et al., 2011; Barili et al., 2018), random forest (RF) (Ogutu et al., 2011), and support vector machines (SVM) (Maenhout et al., 2007). The “Bayesian Generalized Linear Regression (BGLR),” “RF,” and “kernlab” were used and run in the R package to perform the GP models for Bayes A, Bayes B, BL, BRR, RF, and SVM (Bao et al., 2014; Ravelombola et al., 2019, 2020, 2021).

In this study, we conducted four groups of GP analyses (Bao et al., 2014; Tan et al., 2017; Ravelombola et al., 2019, 2020, 2021). (1) GP was performed with six different ratios of a training set: a testing set with 19:1, 9:1, 4:1, 2:1, and 1:1; or as 5, 10, 20, 30, 40, and 50% of a testing set in the panel of 315 common accessions. Each training population subset was randomly selected from the association panel, and the remainder was used as a testing set. (2) Nine different SNP number sets from 20 SNPs to all 4,654 SNPs were used in cross-predictions of resistance to three HG Types, using five GP models: rrBLUP, Bayes A, Bayes B, BL, and BRR. (3) Six different testing set sizes (percentages) from 5 to 50% were used in cross-prediction for resistance to three HG Types in three common bean populations (all tested accessions, Q1 population, and Q2 population), using a rrBLUP model. (4) Three SNP sets (all 4,654 SNPs, 20 SNP markers, and 20 random SNPs) were used in cross-prediction of resistance to three HG Types, using eight GP models (rrBLUP, gBLUP, Bayes A, Bayes B, BL, BRR, RF, and SVM). The PA was estimated using the average Pearson's correlation coefficient (r) between the GEBVs and observed phenotypic values for SCN resistance in the validation set (testing set) (Zhang J. P. et al., 2016; Shikha et al., 2017). The r-value indicates PA and the selection efficiency of GP; the higher the r-value, the more PA and the better the selection efficiency in GS. The training and testing sets were randomly created 100 times, and the r-value was estimated each time. The average r-value of 100 times was calculated for each trait (here for SCN HG Type 0, 2.5.7, or 1.2.3.5.6.7). The distribution charts were drawn by Microsoft Excel 2016 and R package ggplot2.




RESULTS


Soybean Cyst Nematode Resistance Evaluation

The reactions of SCN HG Type indicator lines and race differential lines to the SCN population are presented in Supplementary Table 2. In the HG Type test, the susceptible control Williams 82 soybean yielded 289 averaged SCN females per plant, indicating there was adequate SCN reproduction for this study. All of the seven HG Type indicators were resistant with FI < 10, confirming that the SCN used in this study was the HG Type 0 (Supplementary Table 2). In the race test, the susceptible control Williams 82 soybean yielded 426 averaged females per plant, indicating there was adequate reproduction for this study. The lines PI 548982 (Pickett 71) and PI 548988 (Pickett) were moderately resistant to the SCN population with FI 19.3 and 25.6, respectively; and other indicator lines were resistant with FI < 10, confirming the population was race 6 (Supplementary Table 2).

The FI of the HG Type 0 (race 6) on the common bean core accessions had a large range (145.5) from 4.8 on PI 313733 to 150.3 on PI 313671 (Supplementary Tables 1, 3, Figure 1), with an average of 49.9, SD of 25.45, SE of 1.43, and CV of 51.0%; and a near-normal distribution (Figure 1A), indicating a large variation of resistance reactions to the SCN HG Type 0. Fifteen accessions were resistant to the HG Type 0 with FI < 10. The top seven accessions with the highest resistance to HG Type 0 were PI313733, PI201329, PI319684, PI313440, PI325614, PI417616, and PI313445, with FI ranging from 4.8 to 6.7, and the two most susceptible accessions were PI313671 with FI 150.3 and PI182004 with FI 124.5 (Supplementary Tables 1, 3). The H was 65.7%, indicating the HG Type 0 resistance was highly inheritable.
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FIGURE 1. Distribution of female index (FI) of soybean cyst nematode (SCN) HG Type 0 (race 6) (A), HG Type 2.5.7 (B), and HG Type 1.2.3.5.6.7 (C) on 315 USDA common bean germplasm core collection.


The FI of HG Type 2.5.7 ranged (199.1) from 0.4 on PI 313445 to 199.6 on PI 313671 (Supplementary Tables 1, 3, Figure 1), with an average of 62.9, SD of 36.4, SE of 2.19, and CV of 50.1%; a skewed near-normal distribution (Figure 1, middle) indicated a large variation of resistance reactions to this SCN HG Type. Twelve accessions were resistant to the HG Type 2.5.7 with FI < 10. The top seven accessions with the highest resistance were PI313445, PI417754, PI430210, PI201354, PI415913, PI417616, and PI325653, with FI ranged from 0.4 to 4.0; the two most susceptible accessions were PI313671, with FI 199.6 and PI 307820, with FI 158.6 (Supplementary Tables 1, 3).

The FI of HG Type 1.2.3.5.6.7 had a large range (146.1) from 0 for five accessions to 146.2 for PI 207148 (Supplementary Tables 1, 3, Figure 1), with an average of 15.9; SD of 17.0; a skewed distribution (Figure 1, bottom) indicated there was a large variation of resistance reactions to this SCN HG Type. Fifty-nine out of the 276 accessions (21.4%) had FI < 5.0, and 115 out of 276 accessions (41.7%) had FI < 10, indicating there was a high percentage for the accessions resistant to the HG Type 1.2.3.5.6.7 (Supplementary Table 1). Many accessions were classified as resistant or highly resistant to HG Type 1.2.3.5.6.7, and only eight were susceptible (FI > 65). The two highest susceptible entries were PI207148 with FI 111.4 and PI313671 with FI 146.2.

Combining analysis of resistance to the three HG Types, only one accession, PI 313671, was susceptible with high FI > 100 for the three HG Types, indicating this accession can serve as a susceptible control. Four accessions, namely, PI201354, PI 313445, PI417616, and PI313733, had FI < 10 for resistance to the three HG Types, suggesting they have high and broad resistance to the three HG Types 0, 2.5.7, and 1.2.3.5.6.7 (Supplementary Table 1). There were 37 accessions with resistance to the three HG Types (FI < 20: Table 1); their genetic diversity will be analyzed in the following section of this report.


Table 1. Accession ID, origin (country), population clusters and groups, and their SCN Female Index (FI) of top 37 SCN-resistant common bean accessions in reaction to HG Types 0, 2.5.7 and 1.2.3.5.6.7.
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There were weak correlations (r = 0.31 to 0.33) of SCN resistance to HG Types, 0, 2.5.7, and 1.2.3.5.6.7 resistance among the 315 common bean accessions (Supplementary Table 4), suggesting that they had different genetic resistance to the three HG types.

From the 86 common bean accessions reported by Jain et al. (2019), 59 accessions were also screened for their resistance to HG Type 0 in this study. Six out of the 59 lines, PI201354, PI201329, PI430206, PI319684, PI343950, and PI269209, showed HG Type 0 resistance with FI < 10 in both studies, indicating the six lines had more durable or stable resistance. However, the correlation of the SCN HG Type resistance in the 59 lines between the two studies was very low, with r = 0.057, indicating that the SCN pathogens used in the two studies might have different pathogenicity. It is possible that the HG Type 0 population used in Jain et al. (2019) and the population we used belonged to different races because HG Type 0 can be race 3 or 6, and the race of the former was not reported.



Genetic Diversity and Population Structure Analysis

The population structure of the 315 USDA germplasm accessions was initially inferred, using STRUCTURE 2.3.4 (Pritchard et al., 2000). The peak delta K was observed at K = 2, indicating the presence of two main population clusters, Q1 and Q2, in the common bean germplasm panel (Supplementary Figures 3A,B). The classification of accessions into populations or clusters based on the model-based structure from STRUCTURE 2.3.4 is shown in Supplementary Figure 3B and Supplementary Table 1. The 315 accessions were assigned to one of the two populations or clusters, defined as Q1 and Q2 groups (populations). Q1 and Q2 consisted of 248 (78.7%) and 67 (21.3%) accessions, respectively (Supplementary Table 1). Seven accessions were classified as Q1(2) because their probability belonging to Q1 was >0.5 but <0.7 (Supplementary Table 1, bottom). A graphical plot of the PCA of the 315 common bean accessions showed two clusters (Supplementary Figure 3C) based on data from TASSEL 5 with two subpopulations.

The genetic diversity among the 315 accessions was also assessed, using the ML method in MEGA 7 (Kumar et al., 2016), with phylogenetic trees are drawn based on the results. All accessions were assigned into one of the two clusters (populations), further indicating there were two distinct genetic populations in the common bean core set.

The second highest peak of delta K in STRUCTURE 2.3.4 was observed for K = 3, using Structure Harvester, indicating the 315 common bean germplasm accessions can be divided into three clusters (G1 to G3) (Figure 2A). Figure 2B shows the bar plot drawn in STRUCTURE 2.3.4 to visualize the three-clustered populations. The classification of the germplasm accessions into populations based on the model-based structure developed in STRUCTURE 2.3.4 was shown in Figure 2B, Supplementary Table 1. Each common bean accession also was assigned to one of the three populations based on probabilities calculated in STRUCTURE 2.3.4 (Supplementary Table 1). A Q value = 0.5 was used to divide the three populations (clusters) and the admixture. In total, 301 out of 315 accessions (95.6%) were assigned to one of the three populations. G1 to G3 consisted of 97 (30.8%), 138 (43.8%), and 66 (21.0%) accessions, respectively. The remaining 14 accessions (4.4%) were categorized as having admixed ancestry between G1 and G3 (Supplementary Table 1). A PCA plot was shown in Figure 2C based on data from TASSEL 5.
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FIGURE 2. Model-based populations in the association panel consisted of 315 USDA common bean germplasm accessions. (A) Delta K values for different numbers of populations (K) assumed in the analysis completed with the STRUCTURE Version 2.3.4 software. (B) Classification of 315 common bean accessions into three populations using the STRUCTURE Version 2.3.4, where the numbers on the y-axis show the subgroup membership and the x-axis shows the different accessions. The distribution of accessions in different populations is indicated by the color coding (Cluster 1, G1, is red; Cluster 2, G2, is green; and Cluster 3, G3, is blue). (C) Graphical plot of the principal component analysis (PCA) of the 315 common bean accessions. The horizontal and vertical axes are the first and second principal components, and the variances explained by each component are noted. (D) Maximum Likelihood (ML) tree of the 315 common bean accessions drawn in MEGA 7. The color code for each population is consistent in the (B–D).


The genetic diversity of the 315 common bean accessions was also analyzed, using the ML method in MEGA 7 by combining the three populations G1 to G3, identified by STRUCTURE. The results shown in Figure 2D indicate there may be three differentiated genetic populations and admixtures among the 315 accessions.

Combining (1) the two subpopulations (Q1 and Q2) and (2) the three clusters (G1 to G3) from STRUCTURE 2.3.4, a rectangular phylogenetic tree was drawn, using the ML method from MEGA 7 (Supplementary Figure 4). The common bean accession number, the original country of the accession, and the two populations (clusters) were merged into one taxon name for each branch in the combined tree drawn by MEGA 7 (Supplementary Figure 4). The resulting tree shows there were three main groups: (1) Q1G1, (2) Q1G2, and (3) Q2G3 in the 315 accessions (Supplementary Figure 4). Q1G1 included 96 accessions (30.5%), Q1G2 138 accessions (43.8%), Q1G (admixture) 8 (2.5%), Q2G3 66 (21.0%), Q2G31 (admixture) 1 (0.3%), and Q1(2) Gx (admixture) 7 (2.2%), indicating that the Q1 population was further divided into two groups and some admixture. The entire Q2 group (except one) was not subdivided into the K = 3 analysis and became group G2 (G2~ = Q2~ = Q2G2), with only one exception (Supplementary Table 1), suggesting the Q2 population has a well-defined genetic background with stable boundaries.



Association Analysis

In this study, we performed GLM, MLM, SUPER, MLMM, FarmCPU, and BLINK analyses in GAPIT3 by setting PCA = 3, and SMR, GLM (Q), and MLM (Q+K) analyses in TASSEL 5, where Q = 3. We also conducted a t-test for each SNP. If an SNP had a LOD [−log (P-value)] greater than the significance threshold value LOD [−log (0.05/SNP number)] in one of the six MLM models (gapit.mlm, gapit.mlmm, gapit.super, gapit.farmCPU, gapit.blink, or tassel.mlm), the SNP was selected as a candidate-associated SNP marker and listed in Supplementary Tables 5–7 for resistance to SCN HG Types 0, 2.5.7, and 1.2.3.5.6.7, respectively. After combining the output from GAPIT3 and Tassel 5 for the three association panels (all tested accessions (all.set), Q1 and Q2 populations), the SNP markers, which were significant for resistance to the three HG Types, are listed in Table 2.


Table 2. SNP markers associated with three SCN HG Types, 0, 2.5.7, and 1.2.3.5.6.7 in three sets of common bean genotypes, based on six models, BLINK, FarmCPU, MLM, MLMM, SUPER, and GLM in GAPIT 3 and three models, MLM, GLM, and SMR in Tassel 5, and T-test.
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Genome-Wide Association Study for Resistance to SCN HG Type 0

The distributions of the QQ plots between the observed vs. expected LOD [−log10 (p)] showed a large divergence from the expected distribution (Supplementary Figure 5), indicating there were SNPs associated with the resistance to SCN HG Type 0 in the three association panels. The Manhattan plot showed there were a dozen SNPs with LOD value >4.97 in all.set and Q1 (Supplementary Figure 5), and associated with SCN resistance to HG Type 0. Based on MLM models, a total of 18 SNPs, located on Pv 03, 04, 05, 06, 07, 08, 09, and 11 had LOD > 4.79 in all.set or > 4.84 in Q1 (Supplementary Table 5), associated with the resistance to SCN HG Type 0 (Supplementary Table 5). Among the six models, BLINK had the highest LOD values, and several SNP markers were observed in all.set and Q1 but not in Q2 (Figure 3).
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FIGURE 3. Distributions of Manhattan plot (left side) and QQ-plot (right side) of genome-wide association study (GWAS) for common bean resistance to SCN HG Type 0 (race 6) in all 315 accessions (top), 241 accessions of Q1 population (middle), and 67 accessions of Q2 population (bottom) based on BLINK, where x-axis represents the common bean 11 chromosomes and y-axis represents LOD [–log(P-value)] value of each SNP in Manhattan plot, and x-axis represents the Expected LOD [–log(P-value] and y-axis represents Observed LOD [–log(P-value)] value of each SNP in QQ-plot.


There were several SNPs with LOD > 4.97 in all.set and > 4.84 in the Q1 population in the SMR and GLM models but not in the MLM model (Supplementary Table 5), indicating that there were significant SNP markers, but they were not strongly associated with SCN resistance based on the Tassel tool. However, there were several SNPs with a LOD score > 4.0 or 3.0, indicating there were small-effect QTLs for SCN resistance (Supplementary Table 5). Based on t-tests, all 18 SNPs had LOD values > 2.0 (P < 0.01) either in all.set, Q1, or Q2 (Supplementary Table 5).

After combining, six SNP markers, ss715640464, ss715650114, ss715647158, ss715649511, ss715639339, and ss715647549, located on chromosomes Pv04, 06, 07, 07, 09, and 11, were associated with resistance to SCN HG Type 0 in all.set (Table 2). The two SNPs, ss715647158 and ss715649511, were located at 7,343,812 bp and 7,759,866 bp, respectively, on Pv07 based on the Pvulgaris v1.0_218 whole-genome reference sequences (Table 2), suggesting that there was a QTL on Pv07 for HG Type 0 resistance. The ss715639339 SNP at 12,175,377 bp on Pv09 and ss715647549 at 44,651,807 bp on Pv11 were observed in both all.set and Q1 for HG Type 0 resistance (Table 2), suggesting the presence of a QTL on each of the two chromosomes.



Genome-Wide Association Study for Resistance to SCN HG Type 2.5.7

The distributions of the QQ plots between the observed vs. expected LOD [-log10 (p)] showed a large divergence from the expected distribution (Supplementary Figure 6), suggesting there were SNPs associated with resistance to SCN HG Type 2.5.7 in the three association panels. The Manhattan plot showed there were a dozen SNPs with a LOD value >4.97 in all.set (Supplementary Figures 6A,B) and Q1 (Supplementary Figures 6C,D) for resistance to HG Type 2.5.7. A total of 15 SNPs, located on chromosomes Pv01, 02, 03, 07, 09, and 11 had LOD > 4.79 in all.set, or > 4.84 in Q1 (Supplementary Table 6). Among the six models, SUPER had the highest LOD values, and several SNP markers had LOD values greater than the 4.97 significance threshold in all.set, and > 4.84 in Q1, but not in Q2 (Figure 4, Supplementary Table 6).
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FIGURE 4. Distributions of Manhattan plot (left side) and QQ-plot (right side) of GWAS for common bean resistance to SCN HG Type 2.5.7 in all 276 accessions (top), 207 accessions of Q1 population (middle), and 62 accessions of Q2 population (bottom) based on SUPER, where x-axis represents the common bean 11 chromosomes and y-axis represents LOD [–log(P-value)] value of each SNP in Manhattan plot, and x-axis represents the Expected LOD [–log(P-value] and y-axis represents Observed LOD [–log(P-value)] value of each SNP in QQ-plot.


The TASSEL 5 analysis showed that there were several significant SNPs with a LOD score > 4.97 in all.set and > 4.84 in the Q1 population in the SMR and GLM models but not in the MLM model (Supplementary Table 6). Nevertheless, these markers were not strongly associated with SCN resistance. However, there were several SNPs with a LOD score > 3.0 or 2.5, suggesting there were QTLs for HG Type 2.5.7 resistance with a small effect (Supplementary Table 6). Based on t-tests, 14 of the 15 SNPs had a LOD value > 2.0 (P < 0.01) either in all.set, Q1, or Q2, (Supplementary Table 6), indicating that the 14 SNPs were associated with resistance to HG Type 2.5.7 at the P = 0.01 significance level.

After combining, four SNPs were associated with resistance to the HG Type 2.5.7 in all.set, eight SNPs in Q1, and none in Q2 (Table 2). Among the eight SNPs in Q1, the three SNPs, ss715650604, ss715651021, and ss715647960, were located in the same region of chromosome Pv01, from 41,625,385 bp to 41,789,504 bp, indicating that there was a QTL on Pv01 for HG Type 2.5.7 resistance. The ss715639285 was identified in both all.set and Q1, suggesting that there was a QTL in the 33.3 Mbp region on Pv02 for HG Type 2.5.7 resistance. The two SNPs, ss715640389 and ss715639339, were located in the same region, from 12,154,448 bp to 12,175,377 bp on Pv09, and the two SNPs had very high LOD values (>26) in the t-test (Table 2). In addition, a SNP, ss715640488 at 35,740,746 bp on Pv07 and another SNP, ss715641522, at 13,037,340 bp on Pv11 were associated with HG Type 2.5.7 resistance.



Genome-Wide Association Study for Resistance to SCN HG Type 1.2.3.5.6.7

The distributions of the QQ plots between the observed vs. expected LOD [–log10 (p)] showed a large divergence from the expected distribution (Supplementary Figure 6), indicating there were SNPs associated with resistance to SCN HG Type 1.2.3.5.6.7 in the three association panels. The Manhattan plot showed there were several SNPs with LOD values >4.97 in all.set (Supplementary Figures 7A,B), suggesting there were SNPs associated with SCN resistance to HG Type 1.2.3.5.6.7. Six SNPs, ss715647636, ss715647109, ss715647614, ss715649401, ss715640509, and ss715639563, located on chromosomes Pv 03, 06, 09, 09, 10, and 11, respectively had LOD > 4.79 in all.set (Supplementary Table 7). Among the six models, BLINK had the highest LOD values, and several SNP markers were observed with a significant LOD value > 4.97 in all.set but not in Q1 or Q2 (Figure 5), indicating there were significant SNPs associated with SCN resistance to HG Type 1.2.3.5.6.7 based on the association panel of all.set of 276 accessions. Two additional SNPs, ss715646397 and ss715648134, located on Pv03 and 04, also had LOD values greater than four and were selected as markers for HG Type 1.2.3.5.6.7 resistance in the Q1 population (Supplementary Table 7).


[image: Figure 5]
FIGURE 5. Distributions of Manhattan plot (left side) and QQ-plot (right side) of GWAS for common bean resistance to SCN HG Type 1.2.3.5.6.7 in all 276 accessions (top), 207 accessions of Q1 population (middle), and 62 accessions of Q2 population (bottom) based on BLINK, where the x-axis represents the common bean 11 chromosomes and the y-axis represents LOD [–log(P-value)] value of each SNP in Manhattan plot, and x-axis represents the Expected LOD [–log(P-value)] and the y-axis represents Observed LOD [–log(P-value)] value of each SNP in QQ-plot.


There were only three SNPs that had a LOD score > 4.97 in all.set and one SNP with LOD > 4.84 in the Q1 population, either in SMR, GLM, or MLM models (Supplementary Table 7). However, seven out of the eight listed SNPs had LOD > 3.0 or 2.5 in all.set or Q1, suggesting there were QTLs for SCN resistance with small effects (Supplementary Table 7). The t-tests indicated that the eight SNPs had a LOD value > 2.0 (P < 0.01) either in all.set, Q1, or Q2 (Supplementary Table 7).

After combining, four SNPs were associated with resistance to SCN HG Type 1.2.3.5.6.7 in all.set, one SNP in Q1, and none in Q2 (Table 2). The four SNP markers in all.set were ss715647636, ss715647109, ss715640509, and ss715639563, located at 3,963,582 bp, 27,257,765 bp, 2,792,311 bp, and 46,491,205 bp on Pv 03, 06, 10, and 11, respectively (Table 2). SNP marker ss715639563 was also identified in Q1 population, increasing the confidence in this SNP as a marker for HG Type 1.2.3.5.6.7 resistance.



Combining GWAS for Resistance to the Three SCN HG Types

In this study, a total of 40 SNPs were identified as potential SNP markers associated with SCN resistance (Supplementary Tables 5–7) based on the LOD values from the MLM models in GAPIT3 and Tassel 5, after Bonferroni correction. Combining results from the six models (GLM, MLM, SUPER, MLMM, FarmCPU, and BLINK) in GAPIT3, three models (SMR, GLM, and MLM) in TASSEL 5, and t-tests among the three association panels (all.set, Q1, and Q2), 6, 11, and 4 SNPs were significantly associated with resistance to HG Type 0, 2.5.7, and 1.2.3.5.6.7, respectively (Table 2). Among them, one SNP, ss715639339, at 12,175,377 bp on Pv09 was associated with the resistance to both SCN HG Types 0 and 2.5.7 (Table 2).

We did not conduct LD analysis for all SNPs in this study. However, the LD heatmaps were drawn, using Haploview for seven genome regions with the eight SNP markers significantly associated with resistance to either SCN HG Type 0, 2.5.7, or 1.2.3.5.6.7 (Supplementary Figure 8), where two LLR genes were also included: Phvul.006G104700 and Phvul.010G018300. The Phvul.006G104700 gene is located on Pv04 in the same LD block as an SNP marker SS715640464 at a distance of only 8.98 Kbp (Supplementary Figure 8A) for HG Type 0 resistance. The gene Phvul.010G018300 is located on Pv10 at a distance of 39.9 Kbp from ss715640509 associated with HG Type 1.2.3.5.6.7 resistance (Supplementary Figure 8E, bottom left).



Candidate Genes for SCN Resistance

A total of 20 significant GWAS-derived SNPs were selected as markers associated with the resistance to the three SCN HG Types, 0, 2.5.7, and 1.2.3.5.6.7 (Table 2). Candidate gene models were searched within 10, 30, and 50 kb, flanking each of these SNPs. A total of 125, 83, 33, 19, and 8 genes were found at a distance of 50, 30, 10, 5, and 1 Kb, respectively, from the 20 SNPs (Supplementary Table 8) based on the annotations of the common bean genome reference Pvulgaris v1.0_218. Among the 125 genes, five gene models, Phvul.001G158800, Phvul.002G072100, Phvul.006G160700, Phvul.007G080900, and Phvul.009G223200, contained an SNP marker, ss715647960, ss715641893, ss715647109, ss715649511, and ss715645642, respectively, on chromosomes Pv01, Pv02, Pv06, Pv07, and Pv09 (Table 3). Whether these five gene models are related to SCN resistance needs further study.


Table 3. Candidate genes for SCN resistance in common bean.
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The Leucine-Rich Repeat (LRR) gene model Phvul.004G099300 (disease resistance family protein/LRR family protein), located at 33,316,658–33,320,257 bp on Pv04, based on the common bean genome reference Pvulgaris v1.0_218, is located near the SNP marker ss715640464 (distance of 8.98 Kbp), associated with SCN HG Type 0 resistance. Another LRR gene, Phvul.010G018300 (LRR protein kinase family protein) at 2,832,211–2,839,756 bp on Pv10 is close to the SNP marker ss715640509 (distance of 39.9 Kbp). In addition, one NAC-domain gene, Phvul.006G023100 (NAC-domain containing protein 42), is located at 10,522,343–10,526,782 bp on Pv06 was close (~24 Kbp) to the SNP marker ss715650114 (Table 3). Whether the two LRR genes and the NAC-domain gene are related to SCN resistance needs further evaluation.



Genomic Prediction of SCN Resistance


Genomic Prediction With Different Ratios of a Training Set to a Testing Set

In this study, GP was performed using six different ratios of training/testing sets, 19:1, 9:1, 4:1, 7:3, and 1:1, expressed as 5, 10, 20, 30, 40, and 50% of a testing set in all.set, containing the 315 common bean accessions for HG Type 0 resistance or 276 accessions for HG Types 2.5.7 and 1.2.3.5.6.7 resistance. The actual sizes of the [training set/testing set] were 299/16, 283/32, 252/63, 220/95, 189/126, and 158/157 for HG Type 0, and 262/14, 248/28, 221/55, 193/83, 166/110, and 138/138 for HG Types 2.5.7 and 1.2.3.5.6.7. The GEBVs and r- values between GEBVs and observed values in the testing set were estimated by six GP models (rrBLUP, gBLUP, Bayes A, Bayes B, BL, and BRR) in cross-prediction for resistance to the three HG Types, 0, 2.5.7, and 1.2.3.5.6.7, using (1) all 4,654 SNPs and (2) 20 associated SNP markers (20 GWAS-derived SNP markers). There were six ratios between training and testing sets, six models, two SNP sets, and three SCN HG types to make a total of 216 combinations. Each combination was run 100 times to calculate GP statistical parameters and r-values. The average r-value (rȲ100) and its SE from the 100 runs for each combination are listed in Supplementary Table 9 and the 216 averaged r-values (rȲ100) displayed in charts drawn in MS Excel 2016, grouped by the six sets (5, 10, 20, 30, 40, and 50%) of testing set percentages (Supplementary Figure 9). The r-distribution charts were created by an R-package for the 216 combinations grouped by percentages of a testing set; the r-distributions of the 36 combinations estimated by rrBLUP model are listed in Figure 6. The 108 averaged r-values (rȲ100) (half of all 216 combinations) for the all.set are listed in Table 4.
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FIGURE 6. Genomic prediction of six different testing set percentages from 5 to 50% in cross-prediction for resistance to three SCN HG Types, 0, 1.2.3.5,6,7, and 2.5.7 using all 4,654 SNPs (left three groups as all.HG0, all.HG123567, and all.HG257), and 20 associated SNP markers (m.HG0, m.HG123567, and m.HG257) estimated by rrBLUP model.



Table 4. Prediction accuracy (PA) for SCN resistance to three HG Types with six different testing sets (percentages) using all 4,654 SNPs with six genomic prediction models.
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The six sets of 5, 10, 20, 30, 40, and 50% of testing set percentages had similar, although not identical averaged r-values across five models except gBLUP with slightly lower r-values (Table 4, Figure 4, Supplementary Figure 9, Supplementary Table 9). The r-value, averaged over six models, was 0.39 for HG Type 0, 0.33 for HG Type 2.5.7, and 0.27 for HG Type 1.2.3.5.6.7. They were 0.40 for HG Type 0,0.35 for HG Type 2.5.7, and 0.31 for HG Type 1.2.3.5.6.7 when averaged from five models, except gBLUP, when using all 4,654 SNPs (Table 4, Supplementary Table 9). This observation suggested that it may be feasible to do GS for SCN resistance in common bean with one of the six sets. The r-value increased to 0.46,0.38, and 0.41, averaged over the six models, and 0.51,0.41, and 0.46, averaged over the five models (except gBLUP) when using only the 20 SNP markers (Supplementary Table 9, Supplementary Figure 9), suggesting that GWAS-derived SNP markers can be used in GS. From Figure 6, the 5% test set had the largest variance, and the 50% test set had the smallest. The PA decreased when the size of the testing set increased. Likewise, the SE values decreased when the test sets increased from 5 to 50% (Supplementary Table 9), indicating that the larger the testing set, the less variable the r-values. However, a small decrease of the r-value was observed as well in most cases when the training/test ratio was 40% or higher.



Genomic Prediction With Different SNP Numbers

Genomic prediction was performed with nine different SNP number sets (20, 50, 100, 200, 400, 800, 1,600, and all 4,654 SNPs, plus the 20 GWAS-derived SNP markers) in cross-predictions for resistance to three HG Types, using five GP models: rrBLUP, Bayes A, Bayes B, BL, and BRR. There were 135 combinations for GP analysis, consisting of nine SNP sets, five GP models, and three SCN HG Types. Each combination was run 100 times to calculate GP statistical parameters and r-values. The average r-value (rȲ100) and its SE from the 100 runs for each combination are presented in the Supplementary Table 10, Supplementary Figure 10. The 27 averaged r-values (rȲ100) estimated by rrBLUP are presented in Table 5. The 54 r-distribution charts created by ggplots in R-package for r-values, estimated by Bayes A and rrBLUP models, are shown in Figure 7.


Table 5. Genomic prediction of nine different SNP number sets from 20 SNPs to all 4,654 SNPs in cross-prediction for resistance to SCN HG Types 0, HG Type 2.5.7, and HG Type 1.2.3.5.6.7 using rrBLUP.
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FIGURE 7. Genomic prediction of nine different SNP numbers from 20 SNPs to all 4,654 SNPs in cross-prediction for resistance to three SCN HG Types, 0, 2.5.7, and 1.2.3.5.6.7 using Bayes A model (left three groups) and rrBLUP model (right three groups).


The nine SNP sets had an averaged r-value 0.38 for HG Type 0,0.31 for HG Type 2.5.7, and 0.33 for HG Type 1.2.3.5.6.7 (Table 5, Figure 7, Supplementary Figure 10). The r-values were somewhat decreased a little when 100 or less SNPs were used for HG Type 0 resistance, 200 or less SNPs were used for HG Type 2.5.7 resistance, but did not decrease for HG Type 1.2.3.5.6.7 resistance, indicating that sets of more than 200 SNPs can be used for GS. The set of the 20 SNP markers had the highest averaged r-values in all five models for the three HG Type resistances (Figure 7), indicating that the 20 associated SNP markers can be used to do GS for SCN resistance selection as well.



Genomic Selection in Three Association Panels

Genomic prediction was performed in the three association panels (all.set, Q1, and Q2) with six different testing set sizes from 5 to 50% in cross-prediction for resistance to the three HG Types, using the rrBLUP model (54 combinations). Each combination was run 100 times to estimate GEBVs and r-values. The average r-value (rȲ100) and its SE from the 100 runs for each combination are listed in Supplementary Table 11, and the r-charts are shown in Supplementary Figure 11.

For the HG Type 0 resistance, all r-values are similar among the three sets (all.set, Q1, and Q2) across six testing sets with averaged 0.41, 0.41, and 0.38, respectively (Supplementary Table 11, top). For HG Type 2.5.7 and 1.2.3.5.6.7 resistance, all.set and Q1 had similar r-values, but Q2 had much lower r-values (Supplementary Figure 11). The 5% of the “Testing set” had the largest variability, and the 50% had the lowest SE value, and PA decreased when the “Testing set” percentage increased (Supplementary Table 11).



Genomic Prediction Comparisons Among All SNPs, SNP Markers, and the Random SNP Set

Genomic prediction was performed for three SNP sets (all 4,654 SNPs, 20 GWAS-derived SNP markers, and 20 random SNPs) in cross-prediction for resistance to three HG Types, using eight GP models (rrBLUP, gBLUP, Bayes A, Bayes B, BL, BRR, RF, and SVM) (72 combinations). Each combination was run 100 times to estimate GEBVs and r-values. The average r-value (rȲ100) and SE from the 100 runs for each combination are presented in Supplementary Table 12, and the r-charts are also showed in Supplementary Figure 12.

The set of 20 GWAS-derived SNP markers had the highest r-values across the eight models for resistance to either HG Type 0, 2.5.6, or 1.2.3.5.6.7, suggesting that the GWAS-derived SNP markers will be more effective for GS than the random 20-SNP sets (Supplementary Table 12, Supplementary Figure 12). The set of “random 20 SNPs” had the lowest r-values, suggesting that using more SNPs would increase the selection effectiveness in GS.



Genomic Prediction Using Different Models

Eight GP models (rrBLUP, gBLUP, Bayes A, Bayes B, BL, BRR, RF, and SVM) were used to conduct GP for resistance to the three HG Types. The five GP models (rrBLUP, Bayes A, Bayes B, BL, and BRR) had similar r-values, but the gBLUP model had the lowest r-values for resistance to either HG Type 0, 2.5.7, or 1.2.3.5.6.7 (Supplementary Figure 13C).

Based on the results from six different testing sets (percentages) in 315 common bean accessions (Table 4, Supplementary Table 9), the six GP models (rrBLUP, gBLUP, Bayes A, Bayes B, BL, and BRR) had similar averaged PA (0.41, 0.31, 0.40, 0.39, 0.41, and 0.41) for resistance to HG Type 0; lower but similar PA (0.34, 0.26, 0.36, 0.33, 0.35, and 0.36) for HG Type 2.5.7 resistance; and the lowest PA (0.33, 0.10, 0.30, 0.30, 0.29, and 0.33) for HG Type 1.2.3.5.6.7 resistance. When the set of 20 significant SNP markers was used, the averaged PA of the six models increased for resistance to all of the three HG Types (Supplementary Table 9, bottom half).

Based on the results from the nine different SNP number sets from 20 SNPs to all 4,654 SNPs in cross-prediction for resistance to the three HG Types (Supplementary Table 10, Supplementary Figure 11), the five GP models (rrBLUP, Bayes A, Bayes B, BL, and BRR) had averaged PA, 0.38, 0.38, 0.36, 0.38, and 0.38, respectively, for resistance to HG Type 0;0.31, 0.35, 0.31, 0.34, and 0.35 for HG Type 2.5.7 resistance; and 0.33, 0.34, 0.30, 0.34, and 0.34 for HG Type 1.2.3.5.6.7 resistance.

Based on the three SNP sets (all 4,654 SNPs, 20 significant SNP markers, and 20 random SNPs) used in cross-prediction, the eight GP models, rrBLUP, gBLUP, Bayes A, Bayes B, BL, BRR, RF, and SVM, had averaged PA values of 0.38, 0.20, 0.41, 0.35, 0.42, 0.40, 0.35, and 0.39, respectively, for resistance to HG Type 0;0.31, 0.20, 0.34, 0.28, 0.34, 0.34, 0.29, and 0.32 for HG Type 2.5.7 resistance; and 0.36, 0.11, 0.37, 0.32, 0.38, 0.39, 0.33, and 0.30 for HG Type 1.2.3.5.6.7 resistance (Supplementary Table 12, Supplementary Figure 12).

Overall, sets of 400 SNPs or more for GP had similar GS efficiency (r-value) for resistance to either HG Type 0, 2.5.7, or 1.2.3.5.6.7. The set of 20 significant SNP markers for GP had the highest r-value for GP (Supplementary Figure 13A). The six sets of different sizes from 5 to 50% had similar r-values (Supplementary Figure 13B). Except for the gBLUP model, which had a lower r-value for GP, all other seven models had similar PA (Supplementary Figure 13C). The averaged r-values were 0.40 for HG Type 0 resistance, 0.34 for HG Type 2.5.7, and 0.32 for HG Type 1.2.3.5.6.7 (Supplementary Figure 13D), indicating that we can use one of the seven GP models to conduct GS. Each model provided similar selection efficiency for SCN resistance.



Genomic Heritability (GH)

In this study, the GH was estimated by the rrBLUP model for resistance to the three SCN HG Types, 0, 2.5.7, and 1.2.3.5.6.7 (Supplementary Table 13, Supplementary Figure 14). As we did for GP estimations, the GH was estimated, using six different ratios of the training set: the testing set 19:1, 9:1, 4:1, 7:3, and 1:1, as 5, 10, 20, 30, 40, and 50% of the testing set in the GWAS panel with (1) all 4,654 SNPs (top in both Supplementary Table 13, Supplementary Figure 14), (2) 20 GWAS-derived SNP markers (middle), and (3) nine different SNP number sets from 20 SNPs to all 4,654 SNPs (bottom) in cross-prediction. The averaged GH was 22.4, 12.1, and 5.4% for three HG Types, respectively, in all 4,654 SNPs; 28.1, 22.1, and 6.1% in 20 SNP markers; and 13.7, 10.5, and 3.2% in the nine different SNP number sets from 20 SNPs to all 4,654 SNPs in cross-prediction. The results showed that GH was highest for resistance to HG Type 0, middle for HG Type 2.5.7, and lowest for HG Type 1.2.3.5.6.7, and the GWAS-derived 20 SNP marker set had higher GH (Supplementary Table 13).




Genetic Diversity Analysis for the SCN-Resistant Germplasm Accessions

There were 47 resistant accessions with FI < 20.0 for resistance to HG Type 0 (Supplementary Table 1). Among the 47 accessions, 10 had FI > 30.0 for resistance to HG Type 2.5.7, although they had FI values <20.0 for resistance to both HG Type 0 and 1.2.3.5.6.7. These 10 accessions were not recognized as broadly resistant lines and were dropped from further genetic diversity analysis. Among the 37 accessions, 27 accessions were originally collected from Mexico, two from Colombia, three from Costa Rica, two from Ecuador, one from Guatemala, and two from Peru (Table 1) indicating that the SCN resistance was mainly distributed among Mesoamerican accessions in this study.

The 37 accessions formed two clusters as I and II (Figure 8, Table 1). Group I consisted of 27 accessions, which were mainly from Mexico, plus two from Colombia, one from Costa Rica, and one from Guatemala. All of the 27 accessions also belonged to Cluster Q1, based on the population structure and genetic analyses of all 315 accessions. Group II had 10 accessions, including four from Mexico, two from Costa Rica, two from Ecuador, and two from Peru (Figure 8, Table 1). Among the 10 accessions in II, seven belonged to Q2, with a membership coefficient >70%, and three to Q1 or Q1(2) with a membership coefficient of 30%. The latter three accessions, PI430204, PI346960, and PI345576, had Q1 membership coefficients > 66% based on the population structure and genetic analysis in all 315 accessions. In this phylogenetic tree of the 37 accessions (Figure 8), the three accessions, PI430204, PI346960, and PI345576, were clustered to group II but diverged from the cluster. The three accessions plus PI417657 more likely belonged to a subpopulation between clusters I and II, indicating the four accessions combined genetic backgrounds of both clusters (I and II) and the two subpopulations of common bean based on STRUCTURE 2.3.4 analysis.
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FIGURE 8. The phylogenetic tree created by the Maximum Likelihood (ML) method from MEGA 7 in 37 common bean germplasm accessions that were resistant to all three SCN HG Types 0, 2.5.7, and 1.2.3.5.6.7.





DISCUSSION


Genetic Diversity and Population Structure

In this study, the common bean population structure was examined among 315 common bean germplasm accessions belonging to the USDA P. vulgaris core collection, using the Markov Chain Monte Carlo iterations in STRUCTURE 2.3.4. The 315 accessions can be divided into two larger populations (Q1 and Q2 clusters) or into three subpopulations (G1 to G3 plus admixture) (Figure 2, Supplementary Figure 3, Supplementary Table 1).

Based on the two broader populations (Q1 and Q2) in the core collection, Q1 was the larger cluster with 77% (241/315) of accessions and consisted of germplasm mainly from Mexico (145), Guatemala (25), Colombia (20), Costa Rica (13), Nicaragua (12), El Salvador (11), and Honduras (7), with 60, 10, 8, 5, 5, 5, and 3%, respectively (Supplementary Table 14). Q2 consisted of germplasm mainly from Mexico (15), Colombia (15), Peru (14), and Ecuador (11), with 22, 22, 21, and 16%, respectively (Supplementary Table 14). Most of the germplasm accessions from Central America, including Nicaragua (92.3%), Mexico (89.0%), Guatemala (83.3%), El Salvador (84.6%), Costa Rica (76.5%), and Honduras (77.8%) belonged to Q1; most accessions from South America, including Bolivia (only one accession), Peru (82.4%), and Ecuador (68.8%) belonged to Q2; and Colombia accessions belonged to both Q1 and Q2 with 57.1% to Q1 and 42.9% to Q2 (Supplementary Table 13).

Common bean consists of two geographic, diverged gene pools, namely the Andean and Middle American pools (Gepts and Bliss, 1985; Gepts et al., 1986, 2019; Koenig and Gepts, 1989; Koinange and Gepts, 1992; Beebe et al., 1997, 2000; Blair et al., 2009, 2012; Kwak and Gepts, 2009; Bitocchi et al., 2012, 2013; McClean et al., 2012; Schmutz et al., 2014; Campa et al., 2018; Kuzay et al., 2020). The analysis confirmed the presence of two populations (two clusters) among these 315 accessions but notes that the germplasm accessions from Nicaragua, Mexico, Guatemala, El Salvador, Costa Rica, Honduras, Colombia, Ecuador, and Peru include the members of both clusters (populations), indicating that both gene pools existed in these countries.

Based on the three clusters (populations G1 to G3) in the 315 accessions, G1 had accessions mainly from Mexico (32 accessions), Colombia (13), Costa Rica (12), Nicaragua (11), and El Salvador (8), with 33, 13, 12, 11, 10, and 8%, respectively (Supplementary Table 13). G2 consisted of the accessions mainly from Mexico (111) and Guatemala (10), with 80 and 7%, respectively (Supplementary Table 13). G3 came from Mexico (15), Columbia (15), Peru (13), and Ecuador (11), with 23, 22, 20, and 17%, respectively (Supplementary Table 13). Besides, 14 accessions (4%) of the panel were admixed (Supplementary Table 13). For each country, most of the germplasm accessions from the United States (only one accession), Nicaragua (84.6%), Costa Rica (70.6%), El Salvador (61.5%), and Honduras (55.6%) belonged to G1. Most Mexico accessions (68%) belonged to G2; and most accessions from Peru (77%), Ecuador (69%), and Bolivia (only one accession) belonged to G3. The accessions from Guatemala and Colombia belonged to three populations (Q1, Q2, and Q3); 23% of accessions from Guatemala were admixed (Supplementary Table 13). The three Q populations matched those in the report by Kuzay et al. (2020) when K = 3 (Supplementary Table 1). Furthermore, nearly half of the resistant accessions in this core collection belonged to the Middle American gene pool and the Durango ecogeographic race within this gene pool, although some resistant accessions were also identified in race Mesoamerica of the Middle American gene pool and races Nueva Granada and Peru of the Andean gene pool (Supplementary Table 15). Based on these results, we used the three Q-matrices for GWAS in all.set of the 315 accessions to identify SNP markers associated with SCN resistance in this study.



Genome-Wide Association Study and SNP Marker Identification for SCN Resistance

In this GWAS study, six, 11, and four SNPs were identified to be associated with resistance to HG Types, 0, 2.5.7, and 1.2.3.5.6.7, respectively (Table 2). The six SNPs for HG Type 0 resistance were newly identified markers for resistance to HG Type 0 (race 6) based on their location on chromosomes (Table 2). However, in the region of the two markers, ss715647158 and ss715649511 on Pv07, Jain et al. (2019) also reported an SNP marker ss715648793 (Supplementary Table 16) in the region, further validating a QTL in this region for HG Type 0 resistance. The SNP marker, ss715647549, was significantly associated with HG Type 0 resistance in two association panels, all.set, and Q1 (Table 2), and Jain et al. (2019) also reported six SNPs nearby (Supplementary Table 16), suggesting that there is a QTL on Pv11 for resistance to HG Type 0.Near ss715640464on Pv04 (distance of 8.98 Kbp), a gene model Phvul.004G104700 of the disease resistance family protein/LRR family protein was found (Table 3) in the same LD region (Figure 8), suggesting that Phvul.004G104700 may be associated with the HG Type 0 resistance, but this observation needs to be validated.

For the 11 SNPs with resistance to HG Type 2.5.7, three are located on Pv01, two on Pv02, one on Pv03, one on Pv07, three on Pv09, and one on Pv11 (Table 2). The 11 SNPs are newly identified markers for resistance to HG Type 2.5.7. However, at the ss715639285 region on Pv02 and the ss715645642 region on Pv09, Jain et al. (2019) reported associated SNP markers for HG Type 0 resistance (Supplementary Table 16) and Wen et al. (2019) reported a close SNP marker on Pv09 for resistance to HG Type 2.5.7 resistance (Supplementary Table 16), suggesting that there are QTLs in the regions for SCN resistance. Further studies are needed to validate the broad resistance to multiple HG Types associated with these SNP markers.

The four SNPs with resistance to HG Type 1.2.3.5.6.7 were located on Pv03, 06, 10, and 11 (Table 2), and they are newly identified in this study. However, close to the ss715647109 region on Pv06, Jain et al. (2019) reported an SNP marker, ss715645673, associated with HG Type 0 resistance (Supplementary Table 16), indicating there may be a QTL in the region, but whether the QTL is associated with resistance to the two different HG Types needs to be further validated. Another SNP, ss715639563 at 46,491,205 bp on Pv11 for HG Type 1.2.3.5.6.7 resistance (Table 2), was close (distance ~1.84 Mbp) to ss715647549 at 44,651,807 bp, suggesting a QTL existed in the region, but whether this QTL is associated with resistance to both HG Types needs further study. However, based on the LD analysis (Supplementary Figure 8F, bottom right), the two SNPs, ss715647109 and ss715647549, are located in two different LD regions, suggesting that there are different genes or alleles for resistance to HG Type 0 and 2.5.7.

One SNP, ss715639339 at 12,175,377 bp on Pv09 was associated with both HG Type 0 and HG Type 2.5.7 resistance in two association panels, all.set, and Q1 (Table 2). Another SNP, ss715640389, at 12,154,448 bp on Pv09 was associated with resistance to HG Type 2.5.7 (Table 2). The two SNPs are very close to each other (within 20.929 Kbp) and located in the same LD region (Supplementary Figure 8C), suggesting that a QTL exists for SCN resistance, but further studies are needed to determine whether the QTL is associated with resistance to the two different HG Types.

So far, there are only two GWAS reports for SCN resistance in common beans (Jain et al., 2019; Wen et al., 2019). Wen et al. (2019) conducted GWAS in 363 accessions of the USDA common bean core set for resistance to SCN HG types 2.5.7 and 1.2.3.5.6.7, using 84,416 SNPs obtained with GBS. They found five SNPs on Pv01 and one on Pv09, associated with resistance to HG Type 2.5.7, and only one SNP on Pv07, associated with HG Type 1.2.3.5.6.7 resistance. The five SNP markers with resistance to HG Type 2.5.7 were located at 10,061,925 bp, 18,388,378 bp, 18,388,392 bp, 18,388,403 bp, and 18,388,408 bp on Pv01 of the P. vulgaris G19833 Pvulgaris v1.0 reference sequence (Schmutz et al., 2014), with P-value from 1.02 × 10−6 to 4.94 × 10−6, and another one on Pv09 at 35,068,146 bp with P-value 1.80 × 10−6. The SNP marker for resistance to HG Type 1.2.3.5.6.7 was located at 44,761,605bp on Pv07. We used the SCN phenotypic data from the report by Wen et al. (2019), but a different set of SNPs in BARCBean6K_3 BeadChips (Song et al., 2015) to redo the GWAS analysis. We did not identify the same SNP markers but identified the SNP markers in the same regions for resistance to SCN HG Type 2.5.7, but not for HG Type 1.2.3.5.6.7 resistance (Table 2, Supplementary Tables 6, 7). The two SNPs, ss715640034 and ss715639810, located at 18,874,808 bp and 20,450,707 bp on Pv01 and two SNPs, ss715645642 and SS71549401 located at 33,052,539 bp and 33,956,905 bp on Pv09 (Table 6) were located in similar regions reported by Wen et al. (2019), suggesting that there are QTLs for HG Type 2.5.7 resistance in these regions.

Jain et al. (2019) conducted GWAS in 317 accessions of USDA common bean core collection with SCN HG Type 0 and found 14 significant SNP markers on Pv 04, 05, 06, 07, 08, 10, and 11 in the Middle American subpopulation (179 accessions) and 23 SNP markers on Pv 01, 02, 07, 08, 09, and 11 for the Andean subpopulation (138 accessions). However, we could not find any of the 37 SNPs with LOD values greater than the significant threshold values of 4.97 in all.set, 4.84 in Q1, and 4.52 in Q2 for the resistance to HG Type 0, 2.5.7, or 1.2.3.5.6.7, respectively (Supplementary Table 16). Nevertheless, 11 of the 37 SNPs had at least one LOD value >3.0 from GAPIT3 or TASSEL 5 and, also, a LOD score > 3.0 in t-tests for resistance to the population of HG Type 0 (Supplementary Table 17a). We did not retain them as significant associated SNP markers because each of the 11 SNPs did not have LOD values greater than the significant threshold, even <3.0 in any MLM model, although they may be associated with the resistance to HG Type 0 with a minor effect (Supplementary Table 17a). In addition, we observed nine and 10 SNPs with LOD values >3.0 in one or more models and t-tests as well (Supplementary Tables 17b,c), suggesting these SNPs have minor effects for resistance to either HG Type 2.5.7 or 1.2.3.5.6.7.



Candidate Gene Model

Wen et al. (2019) reported three gene models, PHAVU_001G248000g (amino acid transporter), PHAVU_001G247900g (α-SNAP protein), and PHAVU_001G247700g (wound inducible protein 12), located at 50,653,407–50,655,828 bp, 50,646,068–50,650,097 bp, and 50,629,261–50,630,123 bp respectively, on Pv01 of common beans to be associated with resistance to HG Type 2.5.7, which corresponded to three gene models in the rhg1 region of soybean chr18 with 91%, 94%, and 88% identities. However, Wen et al. (2019) did not report any associated SNP marker in a 50 Mbp region of chromosome Pv01; the closest gene model was located at 18,388,408 bp, which was 32 Mbp distance away from the three genes. The data of resistance to SCN HG Type 2.5.7 from Wen et al. (2019) did not confirm the rhg1 in soybean existed in common beans for their study. Jain et al. (2019) also reported several candidate genes on Pvulgaris v1.0 Pv01 and Pv08, which had high similarity to the three genes of rhg1 of soybean for SCN resistance, but they did not report any significant SNP marker located in the candidate gene regions, which were associated with the resistance to HG Type 0. Thus, their study could not confirm either that there is rhg1 or Rhg4 resistance in common beans. From the study, an SNP marker, ss715645939, was associated with HG Type 2.5.7, which was located at 48,772,176 bp on Pvulgaris v1.0 Pv01, at a distance of around 1.9 Mbp from the three rhg1 paralog genes in common beans (Supplementary Table 6). The low LOD values of the SNP marker (LOD < 4 in all six MLM models and 5.0 in GLM and 5.12 in SMR, Supplementary Table 6) cast doubt about resistance to SCN HG Types at this location.

From this study, two LRR gene models, Phvul.004G099300 and Phvul.010G018300 were identified as candidates for SCN resistance. Phvul.004G099300 (disease resistance family protein/LRR family protein) at 33,316,658–33,320,257 bp on Pv04 was associated with HG Type 0 resistance, and Phvul.010G018300 (LRR protein kinase family protein) at 2,832,211–2,839,756 on Pv10 was associated with resistance to HG Type 1.2.3.5.6.7 (Table 3). However, the LRR gene in the rhg1 region on chr 18 in soybean was not involved in SCN resistance (Mitchum, 2016). Further studies are needed to validate whether the two genes are responsible for the SCN resistance in common beans.



Genomic Prediction

Genomic prediction accuracy, using the Pearson's correlation coefficient (r) between the GEBV and the observed values, has been the main parameter to measure the performance of GS (Jarquin et al., 2014, 2016; Zhang J. P. et al., 2016; Qin et al., 2019; Ravelombola et al., 2019, 2020, 2021; Wen et al., 2019; Ali et al., 2020; Keller et al., 2020). The PA is affected by several factors, such as the trait itself with its heritability, marker number, and the marker associated with the trait, and is also affected by GS models, marker density, the level of LD, QTL number, the population size, and the relationship between training population and testing population (Jarquin et al., 2016; Ali et al., 2020; Keller et al., 2020). In this study, five scenarios were tested for genomic PA: (1) different ratios of the training set and the testing set (validation set), (2) different SNP numbers, (3) three association panels, (4) the use of GWAS-derived significant SNP markers, and (5) different GP models for resistance to three SCN HG Types.

In this study, GP was performed, using six different ratios of the training set: the testing set 19:1, 9:1, 4:1, 7:3, and 1:1, as 5, 10, 20, 30, 40, and 50% of the testing set in the panel. The six tests showed similar PA (averaged r-values). A small decrease of the r-value was observed in most cases with testing sets of 40% or higher. But the 5% “Testing set” (19:1 in the training set: the testing set) had the largest variance, and 50% had the smallest. The averaged r-values decreased from 5 to 50% (Table 4, Supplementary Tables 9, 11, and Supplementary Figures 6, 9). The study showed that 10, 20, and 30% of the testing set size (as the same 9:1, 4:1, and 7:3 of the training set: the testing set) are good to be used in GS for HG Type resistance in common beans. Keller et al. (2020) reported that the training set of <30% could reduce PA due to an insufficiently sized training set that resulted in overfitting of the model; they also reported that a training set > 80% can lead to large variation between cross-validations due to an excessively small validation set. The results showed similar trends but 10% of the testing set size (i.e., training set size = 90%) was acceptable to GS. Ravelombola et al. (2021) reported that the average GS accuracy was similarly based on the r-values at 2-fold [training set: testing set (validation set) = 1:1], 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, and 8-fold cross-validation for growth habit, flowering time, and a grain yield in a multi-parent advanced generation intercross (MAGIC) cowpea population under drought condition, but a slightly higher averaged r-value was observed in 7-fold cross-validation for 100-seed weight, perhaps associated with the higher heritability of seed weight (Nienhuis and Singh, 1988).

In this study, GP was also performed with nine different SNP number sets from 20 to all 4,654 SNPs in cross-prediction for resistance to three HG Types, using five GP models: rrBLUP, Bayes A, Bayes B, BL, and BRR (Table 5). PA decreased when 100 or less SNPs were used for HG Type 0 resistance and when 200 or less SNPs were used for HG Type 2.5.7 resistance, but PA did not decrease for HG Type 1.2.3.5.6.7 resistance (Table 5, Figure 7, Supplementary Table 10, Supplementary Figure 10). Overall, the results suggest that > 200 SNPs should be used for GS. Wen et al. (2019) reported the average PA estimated by cross-validation was 0.52 and 0.41 for SCN HG Type 2.5.7 and HG Type 1.2.3.5.6.7, respectively, when 5,000 SNPs or more were used and showed a decrease when 1,000 SNPs were used. In most of the reports, the smaller the number of SNPs used, the lower the PA was (Jarquin et al., 2014, 2016; Zhang J. P. et al., 2016; Wen et al., 2019; Ali et al., 2020). Zhang J. P. et al. (2016) estimated PA (r-value) of seed size based on 309 soybean accessions and reported r = 0.85 when 2,000 SNPs or 31,045 SNPs were included; r = 0.8 when 1,000 SNPs or 500 SNPs were used.

In this study, using GWAS-derived SNP markers led to the highest GP accuracy for resistance to all three SCN HG Types (Supplementary Tables 9, 12, Supplementary Figure 12). Ali et al. (2020) estimated the prediction accuracy of various GS models on yield and yield-related traits in wheat; they reported that the GWAS-derived markers improved PA in most cases. Zhang J. P. et al. (2016) conducted GWAS and identified 48 SNPs on 12 chromosomes associated with soybean seed size. Based on GWAS, they reported that the r-values ranged from 0.64 to 0.74 when 5, 10, and 15 of the 48 SNP markers were used, which were 25% higher than those calculated from the same number of randomly selected SNPs. Qin et al. (2019) reported that the average correlation coefficient (r) among 15 amino acids between the observed values (each amino acid content) and the GEBVs predicted ranged from 0.18 to 0.61 when all 23,279 SNPs were used, from 0.45 to 0.68 when 231 SNP markers, associated with one or more amino acid from GWAS were used; and 0.33 to 0.54 when only the associated SNP markers with the specific amino acid content were used, using RR-BLUP in rrBLUP software. Spindel et al. (2016) developed a GS model (GS + de novo GWAS) that combines RR-BLUP with GWAS-derived-markers, which were fitted as fixed effects on the RR-BLUP training data and found that this new model outperformed other models, RR-BLUP, Bayesian LASSO (BL), Reproducing Kernel Hilbert Spaces (RKHS) and RF, and multiple linear regression (MLR) for a variety of traits in multiple environments. Thus, using GWAS-derived SNP markers to perform GS is an approach combining MAS and GS that can be used in the real-world breeding program, although the predictive ability may be biased, using SNP markers from GWAS to predict the GEBVs in the same GWAS panel. The real GP will be lower if conducting predictions in other panels with different individuals. We have tested many traits in several crops and find it is a practical approach to do genome breeding, using GWAS-derived SNP markers (Qin et al., 2019; Ravelombola et al., 2019, 2020, 2021). Therefore, an approach combining MAS and GS through GEBVs, using associated SNP markers (Spindel et al., 2016; Zhang J. P. et al., 2016; Qin et al., 2019; Ravelombola et al., 2019, 2020, 2021; Ali et al., 2020) will be a good choice to do molecular breeding for SCN resistance in common beans and, also, for other quantitative traits in other plant species.

In addition, GA is affected by the trait self, such as heritability. The GH has been estimated and reported in animals and plants such as heifers (Nawaz et al., 2018), soybean (Xavier and Rainey, 2020), and safflower (Zhao et al., 2021). de los Campos et al. (2015) developed whole-genome regression methods to estimate the GH, which was defined as the proportion of variance of a trait that can be explained (in the population) by linear regression on a set of markers. In this study, the GH was also estimated by the rrBLUP model for resistance to the three SCN HG Types, 0, 2.5.7, and 1.2.3.5.6.7 (Supplementary Table 13, Supplementary Figure 14), as we did for GP estimations. The results indicated that the higher GH, the higher GP, similar as reported by Xavier and Rainey (2020) for yield and related traits in soybeans.



Utility of Common Bean Resistance Accessions

From this study, 15 out of 315 (4.8%) common bean accessions were resistant to SCN, with FI ranging from 4.8 to 10; 62 (19.7%) accessions were moderately resistant (10 < FI < 30) for HG Type 0 (race 6). The 15 resistant accessions were PI343950, PI313630, PI313328, PI201329, PI201354, PI313445, PI313440, PI313444, PI319684, PI417616, PI313501, PI325614, PI430206, PI313733, and PI269209, which will be preferred sources for resistance to HG Type 0 (race 6).

To select common bean accessions with resistance to multiple SCN HG Types, we combined the data of the SCN resistance to HG Types, 2.5.7 and 1.2.3.5.6.7 from the Wen et al. (2019) report and the data. We then selected 37 accessions, having broad resistance with FI < 20 to both HG Types, 0 and 1.2.3.5.6.7, and FI < 30 to HG Type 2.5.7 (Table 1). The genetic diversity of the 37 accessions showed similar to the genetic organization of the entire 315 accession collections (Figure 8, Table 1). Most of the resistant accessions belonged to the ecogeographic race Durango of the Middle American gene pool, although other gene pools or races also contained SCN resistance. The accessions with the highest resistance to multiple HG Types (with FI < 12 to the three HG Types) were PI201329, PI201354, PI313445, PI325642 (all race Durango), PI313733 (Andean admixed), and PI417616 (admixed) (Table 1, Supplementary Table 1).

These resistant accessions can be used in common bean breeding programs as parents to develop new cultivars with resistance to multiple SCN HG Types. In this study, we observed that the SCN resistance commonly existed in common bean accessions. There were 15 out of 315 (4.8%) common bean accessions resistant to HG Type 0 (race 6) with FI < 10 (Supplementary Table 1). Based on the report by Wen et al. (2019), 19 out of 363 accessions (5.2%) were resistant to HG Type 2.5.7, and 160 out of 363 (44.1%) resistant to HG Type 1.2.3.5.6.7 with FI < 10.

Interestingly, there were much more common bean lines resistant to HG Type 1.2.3.5.6.7 than HG Type 2.5.7 and HG Type 0. This contrasts to the SCN resistance in soybean, which has fewer lines resistant to HG 1.2.3.5.6.7 as compared with HG Type 2.5.7, and much fewer lines as compared with HG Type 0 because a population of HG Type 1.2.3.5.6.7 generally has broader virulence than a population of HG Type 2.5.7 or HG Type 0. Although the FI on the HG Type indicator lines of the two SCN populations used by Wen et al. (2019) was not reported, it is possible that the mechanisms of SCN resistance differed between soybeans and common beans. If this is true, the different and broad-spectrum SCN resistance in common beans potentially provides excellent sources of SCN resistance to soybeans. SCN has been the most damaging pest in soybeans. Only a few sources available for resistance to multiple HG Types, particularly for resistance to HG Type 2.5.7 and 1.2.3.5.6.7, but none of them has been successfully deployed in commercial soybean cultivars. After the discovery of the SCN resistance genes in common beans, it will be possible to transfer the genes from common beans to soybeans through a transgenic approach.




CONCLUSION

In this study, 15 accessions of the USDA common bean core collection were observed for the resistance to SCN HG Type 0 with FI at 4.8 to 9.4; six SNP markers, located on chromosomes Pv 04, 06, 07, 07, 09, and 11, respectively, were significantly associated with the resistance to this SCN HG Type 0. GWAS was also conducted for resistance to HG Type 2.5.7 and HG Type 1.2.3.5.6.7 based on published phenotypic data and the genotypic data from the BARCBean6K_3 chip. Eleven SNPs were associated with HG Type 2.5.7 resistance on chromosomes Pv01, 02, 03, 07, 09, and 11, and four SNPs with HG Type 1.2.3.5.6.7 resistance on chromosomes Pv 03, 06, 10, and 11. A gene model of the disease resistance family protein/LRR protein family, Phvul.004G104700, was close to the SNP marker ss715640464 at a distance of 8.98 Kbp in the same LD region of chromosome Pv04, suggesting that Phvul.004G104700 may be a candidate gene for the HG Type 0 resistance. GP was performed for resistance to three HG Types, using eight GP models (rrBLUP, gBLUP, Bayes A, Bayes B, BL, BRR, RF, and SVM), with BL showing the most promising results in terms of PA. The results showed that 400 SNPs or more had similar GS efficiency for resistance to either HG Type 0, 2.5.7, or 1.2.3.5.6.7, and the set of 20 significant SNP markers had the highest PA for GP. The six sets of different testing set sizes from 5 to 50% had similar r-values. Except for gBLUP (lower PA), all other seven models had similar PA. The averaged r-values were 0.40 for HG Type 0 resistance, 0.34 for HG Type 2.5.7, and 0.32 for HG Type 1.2.3.5.6.7. This study provides basic information for breeders to develop SCN-resistant common bean cultivars, using the USDA core germplasm accessions through MAS and GS in common beans.
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Achieving food security for an ever-increasing human population requires faster development of improved varieties. To this end, assessment of genetic gain for key traits is important to inform breeding processes. Despite the improvements made to increase production and productivity of cassava in Uganda at research level, there has been limited effort to quantify associated genetic gains. Accordingly, a study was conducted in Uganda to assess whether or not genetic improvement was evident in selected cassava traits using cassava varieties that were released from 1940 to 2019. Thirty-two varieties developed during this period, were evaluated simultaneously in three major cassava production zones; central (Namulonge), eastern (Serere), and northern (Loro). Best linear unbiased predictors (BLUPs) of the genotypic value for each clone were obtained across environments and regressed on order of release year to estimate annual genetic gains. We observed that genetic trends were mostly quadratic. On average, cassava mosaic disease (CMD) resistance increased by 1.9% per year, while annual genetic improvements in harvest index (0.0%) and fresh root yield (−5 kg per ha or −0.03% per ha) were non-substantial. For cassava brown streak disease (CBSD) resistance breeding which was only initiated in 2003, average annual genetic gains for CBSD foliar and CBSD root necrosis resistances were 2.3% and 1.5%, respectively. It’s evident that cassava breeding has largely focused on protecting yield against diseases. This underpins the need for simultaneous improvement of cassava for disease resistance and high yield for the crop to meet its current and futuristic demands for food and industry.

Keywords: cassava breeding, cassava brown streak disease, cassava mosaic disease, yield related traits, genetic progress


INTRODUCTION

Cassava (Manihot esculenta Crantz) is a major staple crop in the tropics (Food and Agriculture Organization of the United Nations (FAOSTAT), 2019) owing to its transformative potential to spur economic growth, rural development and food security (Otekunrin and Sawicka, 2019). Indeed, over 60% of the world’s cassava is produced in Africa (Food and Agriculture Organization of the United Nations (FAOSTAT), 2019), where its roots are processed into various forms (Shittu et al., 2016) to feed millions of people on a daily basis (Prakash, 2018). Within sub-Saharan Africa (SSA), cassava is recognized as a choice crop for climate change adaptation, as it performs reasonably well under prolonged droughts and marginal soils (Orek et al., 2020). It is for these reasons that cassava features predominantly in strategic plans for agricultural development of most SSA countries.

It suffices to note that cassava breeding efforts in Africa only began around 1930s (Storey and Nichols, 1938). During then, cassava mosaic disease (CMD) was a major breeding objective, as it had attained epidemic status on the continent (Legg and Thresh, 2000). Accordingly, pioneer cassava breeding efforts were initiated at Amani Research Station, Tanzania, to combat CMD. That breeding work involved interspecific hybridizations which led to the development and dissemination of cassava clones that were resistant to both CMD and cassava bacterial blight (Ortiz and Nassar, 2007).

The successful development of CMD resistant clones at Amani spurred an Africa-wide cassava research program that was instated at the International Institute of Tropical Agriculture (IITA) in Nigeria by 1971 (Hahn et al., 1980). Selected germplasm from Latin America, Asia and East Africa, along with cultivars from West Africa were collected to commence systematic genetic improvement of cassava at IITA (Hahn et al., 1980). Through that work, several elite genotypes with multiple resistances to prevalent pests and diseases and good culinary qualities were developed and disseminated to national breeding programs in Africa (Manyong et al., 2000).

In Uganda, CMD resistant varieties sourced from Tanzania formed a major part of the cassava production system between 1940s and 1980s (Otim-Nape et al., 2001), with clones such as Magana, Nyaraboke, Alado-Alado, Njure-Red, and Bamunanika predominating production in that period (Otim-Nape et al., 2001). It is should be noted that systematic cassava improvement in Uganda only started in the 1980s when a second wave of CMD caused by coinfection of African Cassava Mosaic Virus (ACMV) and the East African Cassava Mosaic Virus Uganda (EACMV-UG) emerged (Gibson et al., 1996; Patil and Fauquet, 2009). Subsequently, elite cassava clones combining yield and resistance to CMD were sourced from IITA and evaluated in Uganda to select those with durable CMD resistance. Through this process, some outstanding varieties including NASE 1, NASE 2, and NASE 3 were identified and promoted for production in the early 1990s (Ssemakula et al., 2000).

Released varieties were meant to be used for two main food products: “boiled or fried roots” that predominates central and western Uganda, and “flour-based meal” that predominates the eastern and northern parts of the country. As such, emphasis was initially placed on development of varieties characterized by high fresh root yield and dry matter content, multiple resistance to pests and diseases, starch quality, and low hydrogen cyanide (Ssemakula et al., 2000).

However, with the outbreak of cassava brown streak disease (CBSD) in early 2000s (Alicai et al., 2007), considerable efforts were diverted toward breeding for CBSD resistance, as the disease had then attained epidemic status and caused immense yield losses (Kawuki et al., 2016). CBSD damages the starch bearing part of cassava rendering it unfit for consumption, thereby causing huge economic losses and food insecurity (Hillocks et al., 2001). In fact, from the time when CBSD attained epidemic status in Uganda, cassava production in the country declined drastically from 4.9 million tons (MT) in the 2000s to the current 2.6 MT (Food and Agriculture Organization of the United Nations (FAOSTAT), 2019).

Another notable change in the 2010s, was the consideration of gender and integration of preferred end-user quality traits in cassava breeding operations (Esuma et al., 2019; Iragaba et al., 2019). Currently, cassava breeding in Uganda is designed to enhance key traits that contribute toward increased resilience, nutrition and productivity for the benefit of stakeholders involved in the production-processing-marketing-consumption continuum.

Through these breeding efforts, 21 cassava varieties have been released between 1993 and 2015, and several other elite clones developed using genomic selection (Ozimati et al., 2019). Despite the improvements made to increase production and productivity of cassava in Uganda at research level, there has been limited effort to quantify associated genetic gains. Quantifying such gains would guide cassava breeding processes, especially now when the rapidly increasing population demands faster development and deployment of improved varieties. Therefore, the objective of this study was to determine the rate of genetic gain per year for cassava traits that have been selected for between 1940 and 2019 in Uganda.



MATERIALS AND METHODS


Plant Material

A total of 32 cassava varieties were used for this study (Table 1) and these were divided into four categories. Category one comprised local varieties; these arose from selections from Amani Research Program in Tanzania and were deployed for cultivation in Uganda between 1940s and1980s. Category two comprised varieties introduced from IITA and released in Uganda in the 1990s to combat CMD. Category three comprised a combination of varieties from IITA and Uganda; these were majorly developed for CMD resistance in the 2000s. Lastly, category four comprised varieties and elite clones developed in the 2010s to combat CBSD epidemic. All varieties were sourced from the Root Crops Research Program at the National Crops Resources Research Institute (NaCRRI) in Uganda, and had been maintained in Ngetta (northern Uganda), which is known to have low pressure of CBSD (Pariyo et al., 2015; Alicai et al., 2019). Sourcing planting materials from low disease pressure sites was important to ensure high vigor and uniform establishment.


TABLE 1. Summary of attributes and origin of varieties used for genetic gain assessment.
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Description of Trial Environments

All varieties were evaluated simultaneously at three environments representing major cassava agro-ecologies in Uganda, and this was done during the period April 2019 to May 2020. These environments were: Namulonge (0.5232°N, 32.6158°E), Serere (033°26′48.0″E, 01°32′22.6″N), and Loro (32°28′E, 2°12′N). Namulonge is located in the Lake Victoria crescent at an altitude of 1163 m above sea level (asl), and is characterized by reddish sandy-clay loam soils (Fungo et al., 2011). Serere is located in the semi-arid zones of eastern Uganda at an altitude of 1085 m asl with sandy loamy soils (Isabirye et al., 2004). Loro, on the other hand, has an altitude of 1063 m asl is also characterized by sandy loamy soils (Isabirye et al., 2004). Namulonge and Serere were specifically chosen because they are known to have high disease pressure for CMD and CBSD as well as high whitefly (vector) populations (Alicai et al., 2019). Loro was considered a suitable site for yield assessment owing to low disease pressure and vector populations for CBSD (Pariyo et al., 2015). The rainfall distribution at the three trial sites is bimodal with peaks in March to May and August to October, and mean annual precipitation ranges between 500 and 2800 mm, while temperature ranges between 150C and 300C (Nsubuga et al., 2014).



Trial Design and Management

Trials at each site were planted in a randomized complete block design with two replications. Each clone was planted in five rows of six plants at 1 x 1 m spacing, making a plot size of 20 m2 with 30 plants. Adjacent plots were separated by 2-meter alleys to limit vegetative competition between varieties. Planting was done during the first growing season of 2019 (April) to ensure adequate soil moisture for sprouting. At 2 months after planting (MAP), six plants per plot were side-grafted with scions from highly infected TME 204, a standard CBSD susceptible check, to augment disease pressure for CBSD (Wagaba et al., 2013) at the three environments. All trials were conducted under standard agronomic practices for cassava (IITA, 1990).



Data Collection

Data on disease incidence and severity for CMD and CBSD were collected on each plant in a plot at 3 and 6 MAP. CMD severity was assessed on a scale of 1–5; where 1 = no visible disease symptoms, 2 = mild chlorotic pattern on entire leaflets or mild distortion at base of leaflets, rest of leaflets appearing green and healthy, 3 = strong mosaic pattern on entire leaf, and narrowing and distortion of lower one-third of leaflets, 4 = severe mosaic, distortion of two-thirds of leaflets and general reduction of leaf size, and 5 = severe mosaic, distortion of four-fifths or more of leaflets, twisted and misshapen leaves (IITA, 1990). Similarly, CBSD foliar severity (CBSDfs) was scored on scale of 1–5, where 1 = no apparent symptoms, 2 = slight foliar chlorosis but with no stem lesions, 3 = pronounced foliar chlorosis and mild stem lesions with no die back, 4 = severe foliar chlorosis and severe stem lesions with no die back, and 5 = defoliation, severe stem lesions and die back (Gondwe et al., 2003).

At 12 MAP, trials were harvested to enable assessment of yield and other root attributes. All twelve plants within the net plot were harvested and partitioned into roots and above-ground biomass. Fresh root weight (FRW) and above-ground biomass were separately measured (kg plot–1) using a hanging weighing scale of 200 kg capacity. Harvest index (HI) was calculated as the ratio of FRW to total plant biomass as described by Kawano et al. (1978). Fresh root yield (FRY) (tones ha–1) was estimated by extrapolation of net plot root yields (Tumuhimbise et al., 2014). Root dry matter content (DMC) was determined by oven-drying of 100 g fresh samples at 80oC for 48 h, as described by Kawano et al. (1987). Lastly, data on cassava brown streak disease root necrosis incidence (CBSDri), and severity (CBSDrs) was recorded on all harvested roots/plot. Data on CBSDrs was collected using a standard scale of 1–5; where 1 = no observable necrosis, 2 = ≤ 5% of root necrotic, 3 = 6 to 25% of root necrotic, 4 = 26 to 50% of root necrotic with mild root constriction, and while 5 showed greater than 50% of root necrosis with severe root constriction (Gondwe et al., 2003).



Data Analysis

For all measured traits, associated variance components were estimated by restricted maximum likelihood (Spilke et al., 2005). Effects of replicate nested in environment, variety, environment and variety by environment interaction were considered random, following the model below that was fitted using the lmer function in lme4 package (Bates et al., 2015) in R (R Core Team, 2019).
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where, Yijk = phenotypic value; μ overall mean; (Rj)Ek = random effect of replicate j nested in kth environment such that Rj ∼ N(0, σ2j); Vi = random effect of the ith variety with Vi ∼ N(0, σ2i); Ek = random effect of kth environment with Ek ∼ N(0, σ2k); VxEik = random interaction effect of ith variety with kth environment such that VxEik∼ N(0, σ2ik); and eijk random residual that is assumed to be normally distributed with mean zero and variance σ2. Respective broad sense heritability (H2)for each trait across environments was computed as:
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Where, [image: image] the variance component for variety; [image: image] = the variance for variety by environment interaction; [image: image] = the error variance; n = the number of environments; and r = the number of replications. Accordingly, best linear unbiased predictors (BLUPs) for each variety were extracted using the ranef function in lme4 package (Bates et al., 2015). Eventually, BLUPs were used to perform correlation analyses, compute selection index and estimate annual genetic gains for evaluated traits, as they provide better estimates of genotype performance for unbalanced datasets than fixed clone effects (Piepho et al., 2008).

A weight-free rank summation index (RSI) (Hallauer et al., 1988; Badu-Apraku et al., 2013) was used to rank variety performances based on nine traits: FRY, HI, DMC, CMDs, cassava mosaic disease incidence (CMDi), CBSDfi, CBSDfs, CBSDri, and CBSDrs. To estimate genetic gains, BLUPs were assigned to the year when the variety was released i.e., varieties specifically released in 1940, 1993, 1999, 2003, 2011, 2015, and the current candidate varieties of 2019. Because released years were unevenly distributed, traits were regressed on order of release year i.e., 1, 2, 3, 4, 5, 6, and 7 representing 1940, 1993, 1999, 2003, 2011, 2015, and 2019, respectively. Effects of order of release year were tested for linear and quadratic responses of evaluated traits by orthogonal polynomial contrasts to determine the model that would best fit the set of data for a specific trait.

Absolute gain for linear relationships was obtained following the statistical model: y = a+bx,where; y is dependent variable; x = independent variable (order of released year); a = intercept; and b regression slope, which is the absolute genetic gain per released order (de Felipe et al., 2016). The slope was thereafter divided by the number of years for the respective breeding period to determine the annual genetic gain. Relative gain was obtained by dividing the absolute annual gain by mean trait performance of oldest released year that served as the check.

For quadratic relationships, absolute annual gain was calculated as the slope between two released orders i.e., between 1 (1940) and 2 (1993), 2 (1993) and 3 (1999), and 3 (1999) and 4 (2003), etc divided by the number of years for the respective breeding period. Relative gain was obtained by dividing the absolute annual gain by mean trait performance of older released year for each specific breeding period. Thus genetic gains were assessed sequentially in phases and as an average.



RESULTS


Trait Heritabilities

Diseases (CMD and CBSD) and yield traits (DMC, HI, and FRYD) were differently affected by environment and genotypic effects (Table 2). For example, variety effects explained up to 96.4% of the total variance for CMD severity, while < 20% of total variance could be attributed to varieties for HI, DMC, and FRY. Indeed, highest heritability was registered for CMD (H2 = 0.96) and lowest registered for harvest index (H2 = 0.43). Overall, modest-high heritabilities i.e., H2 > 0.4 were observed for all evaluated traits (Table 2).


TABLE 2. Percentage of the total variance attributed to variety, environment and variety by environment interaction for evaluated traits.
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Performance of Varieties Based on Rank Summation Index

Based on RSI, the top performers were mostly candidate clones (UG120024, UG120193, UG120183, UG120198, and UG110164), and varieties officially released in 2011 (NASE 15), 1999 (NASE 4), 2015 (NAROCASS 1 and NAROCASS 2) and NASE 1 (1993) (Table 3). On the other hand, worst performers mostly comprised of popular local varieties (Magana, Nyaraboke, Bamunanika and Njure Red), and varieties released in 1993 (NASE 2 and NASE 3) or 2011 (NASE 13 and NASE 14). Both local varieties and varieties released in 1990s exhibited higher CMD and CBSD susceptibility compared to 2019 candidate clones or varieties released in 2015 (Tables 3, 4). Although varieties released in 2011 were generally resistant to CMD (incidence of ≤ 2.2%), they were susceptible to CBSD (severity ≥ 2 and incidence ≥ 41%). Candidate clones exhibited high tolerance/resistance to CMD and CBSD as well as high DMC (Tables 3, 4).


TABLE 3. Overall performance of clones based on rank summation index.
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TABLE 4. Means for cassava traits selected for between 1940 and 2019 in Uganda.
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Genetic Gains for Disease Resistance and Yield Related Traits

Cassava mosaic disease severity correlated negatively and significantly with order of release year (r = −0.9, P < 0.001) (Table 5). However, there was a negative non-significant correlation between CMD severity and CBSD foliar severity (r = −0.36, P = 0.13), and between CMD severity and CBSD root necrosis severity (r = −0.40, P = 0.08). CMD severity reduced from mean severity score of 3.5 (varieties released in1940) to 1.3 (candidate clones of 2019), attaining an average annual genetic gain of 1.9% (Table 6). Highest annual gains were registered for 1993 to 1999 (5.2%) and 1999 to 2003 (8.1%). However, CMD susceptibility increased by 4.5% per year from 2015 to 2019.


TABLE 5. Pearson’s correlation coefficients among selected cassava traits evaluated in cassava varieties released between 1940 and 2019 in Uganda.

[image: Table 5]

TABLE 6. Genetic gains for cassava traits selected for between 1940 and 2019 in Uganda.
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For CBSD, we observed negative significant correlations between order of release year and CBSD foliar severity (r = −0.74, P < 0.001). Similar observations were made between order of release year and CBSD root necrosis severity (r = −0.63, P < 0.01) (Table 5). CBSD foliar severity correlated positively and significantly with CBSD root necrosis severity (r = 0.67, P < 0.01). CBSD foliar severity reduced from symptom severity score of 2.1 in 2003 to 1.3 in 2019 and thus attaining an average annual genetic gain of 2.3% (Table 6). Highest annual gains were recorded for 2015 to 20.19 (4.1% per year). Similarly, CBSD root necrosis severity reduced from root necrosis score of 2.1 in 2003 to root necrosis score of 1.4 in 2019 and thus attaining an average annual genetic gain of 1.5%.

Much as order of release year correlated positively and significantly with dry matter content (r = 0.40, P = 0.02), we observed small, positive, nonsignificant correlations between order of release year and harvest index (r = −0.11, P = 0.53), plus fresh root yield (r = 0.07, P = 0.73). Fresh root yield correlated positively and significantly with harvest index (r = 0.58, P < 0.001). From 1940 to 2019, root dry matter content increased linearly from 37.6 to 39.4% with a genetic gain of 0.1% per year. Fresh root yield increased from 17.1 tons per ha in 1940 to 25.5 tons per ha in 1999 with an average annual gain of 0.06%. However, fresh root yield reduced from 25.6 tons/ha in 2003 to 18.6 tons/ha in 2019 at a rate of 0.12% per year (Table 6). Meanwhile, there were no genetic gains for harvest index between 1940 and 2019 (Figure 1).
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FIGURE 1. Changes in yield and disease severity for 32 varieties released and/or developed between 1940 and 2019 in Uganda. (A) Cassava mosaic disease severity at 6 months after planting (CMDs). (B) Dry matter content (DMC). (C) Cassava brown streak disease foliar severity at 6 months after planting (CBSDfs). (D) Cassava brown streak disease root necrosis severity at 12 months after planting (CBSDrs). (E) Harvest index (HI). (F) Fresh root yield (FRY). CBSD resistance breeding was initiated in fourth released year (2003).




DISCUSSION

Development and deployment of nutritious, stress-resilient, and high yielding cassava varieties requires identification and introgression of desirable alleles. As part of this process, routine assessment of genetic gain for key traits is necessary to identify gaps and quantify progress made toward attainment of prior defined breeding targets. Among the various methods for genetic gain assessment, growing released varieties in a common set of environments and regressing their trait means on year of release has gained popularity, as germplasm from recurrent selection programs is rarely available in breeding programs (Rutkoski, 2019). Accordingly, in this study, cassava varieties developed in Uganda between 1940 and 2019, were evaluated in 2019 to get insights into annual genetic gains. This was the first attempt to estimate genetic gain for selected cassava traits in Uganda.

Significant genotype variances were observed for all evaluated traits and thus, positively confirming the appreciable genetic variability in the evaluated clones and varieties (Ssemakula et al., 2000). The high heritabilities observed for disease traits are comparable to heritability estimates by Okul et al. (2018) and suggest that Namulonge (central Uganda) and Serere (eastern Uganda) are areas of high disease pressure for CMD and CBSD. Consistency in variety or clone rankings for CMD resistance could imply durability of resistance in the tested genotypes. Indeed, local and varieties released in 1990s consistently registered higher CMD susceptibility when compared to recent elite clones or varieties released in 2015 (Table 3). However, variety or clone rankings for CBSD resistance were not consistent across environments, possibly because there could be different cassava brown streak virus strains that are resident in test environments. Cassava brown streak viruses [cassava brown streak virus (CBSV) and Uganda cassava brown streak virus (UCBSV)] have been reported to evolve rapidly, a phenomenon that could influence virulence (Ndunguru et al., 2015; Alicai et al., 2016) and thus amplify genotype by environment interactions (Pariyo et al., 2015; Okul et al., 2018). These findings further underpin the need for systematic evaluation and screening for CBSD in locations that are truly hotpots so as to discern resistant from susceptible clones.

Generally, candidate varieties and recently released varieties exhibited higher disease resistance (Tables 3, 4). Indeed, some of the candidate varieties e.g., UG120156 and UG120024 have also been reported by Okul et al. (2018) to exhibit high CBSD resistance. One possible explanation for this is that these candidate clones and/or varieties were selected for dual resistances to CMD and CBSD, which was not the case with varieties released before 2011. An exceptional clone was NASE 4, a variety released in 1999, which ranked among the top 10 performers; its ability to maintain superior and stable performance over a wide range of environments could explain this trend (Adriko et al., 2011).

Local varieties such as Magana (popular in eastern region), Nyaraboke (popular in mid-western region), Bamunanika (popular in central region) and Njure Red (popular in central region), were among the worst performers. These varieties showed high susceptibility to both CMD and CBSD (Tables 3, 4). It is important to note that these local varieties were among the first CMD resistant clones developed in 1930s in Amani (Tanzania) and introduced into Uganda in the 1940s for cultivation (Legg and Thresh, 2000). These clones were deployed for production in 1950s and formed a major part of the cassava production system in Uganda until the 1980s (Otim-Nape et al., 2001), when a second wave of CMD caused by co-infection of African Cassava Mosaic Virus (ACMV) and the recombinant strain of the East African Cassava Mosaic Virus (EACMV-UG) emerged (Patil and Fauquet, 2009). The breakdown of CMD resistance in local varieties and varieties released in early 1990s (Table 3) is likely due to the long exposure to viruses or synergistic infections from the different cassava mosaic germiniviruses (CMGs).

Following the CBSD outbreak in Uganda in the early 2000s (Alicai et al., 2007), efforts were initiated to develop and release varieties that combine both CMD and CBSD resistance. The first batch of these varieties were officially released in 2011, all in an effort to limit spread and damage inflicted by CBSD. Notable of these were: NASE 14, NASE 15, NASE 16, NASE 18, and NASE 19. However, in the present study, these varieties maintained CMD resistance, but succumbed to CBSD, as exhibited in their respective CBSD foliar incidence (Table 4). Given that this assessment was done 8 years after these varieties were released, it is likely that the high root necrosis severity scores (Tables 3, 4) are a reflection of increased virus load accumulating in the vegetative tissues during this propagation period (Shirima et al., 2019). Similar observations were made by Mukiibi et al. (2018) and Okul et al. (2018), who reported that NASE 14 (released in 2011) registered high CBSD foliar and root incidence and severity after 6 years of release. This situation may be attributed to changes in the composition of virus species and/or virulence that overwhelms host defense systems and cause resistance breakdown or degeneration (Shirima et al., 2019). The clonal nature of cassava propagation amplifies this problem.

Correlation analyses were performed to assess relationships between order of release year and traits evaluated (Table 5). The significant linear relationships between order of release year and CMD resistance plus dry matter content suggest that breeding efforts between 1940 and 2019 were successful in developing CMD resistant genotypes with high dry matter content. Significant negative correlations between order of release year and CBSD resistance also suggest that breeding efforts undertaken between 2003 and 2019 majorly focused on development and/or release of CBSD resistant varieties. The small nonsignificant correlations between order of release year and yield-related traits (FRY and HI) are indicative of preferential selection and release of genotypes with more emphasis placed on disease resistances as compared yield.

Direct selection for disease resistance without similar efforts devoted to yield-traits could explain the non-significant positive correlations between CBSD resistance with FRY or HI. On the other hand, high significant positive correlation between CBSD foliar and CBSD root necrosis severity, could imply that both traits were directly selected for, as witnessed by their respective reductions across years of release. Negative nonsignificant correlations between CBSD resistance and CMD resistance between 2003 and 2019, could suggest that high levels of CMD resistance had been attained at the time when selection for CBSD resistance was initiated, and therefore, most of the clones were tolerant to CMD, but had not attained similar levels of resistance for CBSD.

Based on regression analyses, CMD severity reduced by an average of 1.9% per year between the period 1940 and 2019. This genetic gain estimate is higher than that provided by Okechukwu and Dixon (2008), who reported 0.65% genetic gain per year for CMD resistance among IITA clones developed in Nigeria between 1970 and 2000. The highly significant genetic gain per year for CMD resistance could be explained in three ways. Firstly, breeding efforts targeting CMD resistance have been ongoing since 1930s (Legg and Thresh, 2000), which is sufficient time for increasing the frequency of resistance alleles in the breeding population through recurrent selection (Hallauer et al., 1988). Secondly, CMD resistance is largely governed by additive genetic effects (Hahn et al., 1980; Wolfe et al., 2016; Rabbi et al., 2020), which makes it amenable to genetic gains from recurrent selection. Thirdly, that deployed CMD resistance was effective against the prevalent cassava mosaic germiniviruses. Indeed, latest findings by Mukiibi et al. (2018) have showed that both single and coinfection of ACMV and EACMV-UG do exist in Uganda. The 4.5% increase in CMD susceptibility between 2015 and 2019 may be attributed to tradeoffs during selection for combined resistance to CBSD and CMD or use of CBSD resistant parents that are deficient in CMD resistance.

Much as research efforts to combat CBSD began in early 2000s when the disease had attained epidemic status in Uganda (Alicai et al., 2007), some varieties like NASE 1 that were released in 1993, exhibited high CBSD tolerance (Table 3). This finding could indicate that CBSD resistance alleles were present in IITA germplasm, from which NASE 1 was derived. Since 2003 when systematic CBSD resistance improvement began, there were average genetic gains of 2.3% per year for CBSD foliar resistance, and 1.5% per year for CBSD root necrosis resistance (Table 6). These genetic gains for CBSD resistance within such a relatively short timeframe could be attributed to the concerted and systematic approaches taken to harness and utilize available genetic resources in cassava breeding (Abaca et al., 2012; Kaweesi et al., 2014; Pariyo et al., 2015; Kawuki et al., 2016; Okul et al., 2018; Ozimati et al., 2018). Predominance of additive gene effects for CBSD resistance (Kulembeka et al., 2012; Chipeta et al., 2018), which can be exploited through recurrent selection, have equally enabled consolidation of gains.

Between 1940 and 2019, generally 5 kg per ha per year were lost for fresh root yield and no genetic gains in harvest index were observed; equally low genetic gains were recorded for dry matter content (0.1% per year) (Table 6). This is contrary to findings from earlier studies by Okechukwu and Dixon (2008), and Ceballos et al. (2020), who reported annual genetic gains of 1.2% and 1.0% for fresh root yield in Nigeria and Thailand, respectively. Differences in selection strategies customized to address local needs in Uganda, Nigeria and Thailand could explain this variation. For example, breeding programs in South East Asia have for long, mainly focused on developing cassava clones with high yield and root quality traits such as starch (Ceballos et al., 2020). Similarly, cassava breeding programs in West Africa (Nigeria) have focused on development of cassava clones that combine high fresh root yield, root quality and CMD resistance (Manyong et al., 2000). In Uganda, however, critical traits selected for include; dual resistance to CMD and CBSD, high yield and desirable root quality (Kawuki et al., 2016). Certainly, selection for several traits limits genetic progress as it leads to compromising tradeoffs amongst target traits. For example, before CBSD emerged in Uganda, fresh root yield increased from 17.1 tons in 1940 to 25.6 tons in 2003 (Table 4). However, when CBSD attained epidemic status in the early 2000s, fresh root yield reduced from 25.6 tons in 2003 to 18.6 tons in 2019. Another good example is the sharp contrast between fresh root yield and CBSD resistance observed in clones UG120024 and UG120156 (Table 3).



CONCLUSION

The study described herein was conducted to estimate annual genetic gains for critical cassava traits that have been selected for between 1940 and 2019 in Uganda. Based on the generated datasets, this study revealed that there was significant annual genetic improvement of cassava for resistance to CMD and CBSD. Findings from the present study also demonstrated that the annual rate of genetic gain for cassava yield in Uganda is not sufficient to achieve the desired output necessary to reach the cassava production demand predicted for 2050. This underpins the urgent need to incorporate simultaneous selection for disease resistance and high yield for the crop to meet its current and futuristic demands for food and industry.
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Wheat leaf rust (also known as brown rust), caused by the fungal pathogen Puccinia triticina Erikss. (Pt), is one by far the most troublesome wheat disease worldwide. The exploitation of resistance genes has long been considered as the most effective and sustainable method to control leaf rust in wheat production. Previously the leaf rust resistance gene Lr65 has been mapped to the distal end of chromosome arm 2AS linked to molecular marker Xbarc212. In this study, Lr65 was delimited to a 0.8 cM interval between flanking markers Alt-64 and AltID-11, by employing two larger segregating populations obtained from crosses of the resistant parent Altgold Rotkorn (ARK) with the susceptible parents Xuezao and Chinese Spring (CS), respectively. 24 individuals from 622 F2 plants of crosses between ARK and CS were obtained that showed the recombination between Lr65 gene and the flanking markers Alt-64 and AltID-11. With the aid of the CS reference genome sequence (IWGSC RefSeq v1.0), one SSR marker was developed between the interval matched to the Lr65-flanking marker and a high-resolution genetic linkage map was constructed. The Lr65 was finally located to a region corresponding to 60.11 Kb of the CS reference genome. The high-resolution genetic linkage map founded a solid foundation for the map-based cloning of Lr65 and the co-segregating marker will facilitate the marker-assisted selection (MAS) of the target gene.

Keywords: Altgold Rotkorn, Lr65, leaf rust resistance, fine mapping, marker-assisted selection


INTRODUCTION

Virtually anywhere wheat is cultivated, its production is seriously constrained by fungal pathogens, and most significantly by single or multiple of the three species of rust (Hovmøller et al., 2010), i.e., leaf rust (Puccinia triticina); stem rust (Puccinia graminis f. sp. tritici); and stripe rust (Puccinia striiformis f. sp. tritici). Among these, leaf rust is considered potentially the most disruptive disease due to its more frequency and widespread occurrence in all wheat-growing locations of the world (Roelfs et al., 1992; Bolton et al., 2008; Huerta-Espino et al., 2011). Leaf rust can cause a 15% production reduction and heavy infection can lead to losses of up to 40% (Knott, 1989; McMullen et al., 2008). Over the past decades, outbreaks of rust diseases have occurred in various regions of China, resulting in severe wheat yield reduction (Chen et al., 2018). Although leaf rust can be controlled through foliar fungicide applications, the most effective and eco-friendly way to control the disease is based on improved varieties containing resistance genes (Keller et al., 2008). However, one of the most frustrating issues in disease resistance breeding is the failure of resistance genes, due to the evolving nature of plant pathogens resulting in new virulent races that can cause disease in formerly resistant wheat varieties. Therefore, it is necessary to search for new diverse effective resistance genes that can be used in wheat breeding programs.

To date, more than 80 leaf rust resistance genes (Lr) have been identified (Singh et al., 2013; Qureshi et al., 2018; Kumar et al., 2021). Roughly half of these genes are from wild relatives of wheat, while the remainder are from cultivated wheat (Marais et al., 2005; Naik et al., 2015; Rani et al., 2020). Wild relatives of wheat provide a huge gene pool of agronomy utility, including genes for rust resistance (Narang et al., 2019). The D genome donor of wheat, Aegilops tauschii, has been a rich source of resistance genes (Gill et al., 2019). Leaf rust resistance genes Lr21, Lr32, and Lr39 have been transferred from Ae. tauschii into bread wheat (Raupp et al., 2001; Huang et al., 2003; Thomas et al., 2010). Tetraploid wheat is another important origin of disease resistance (Singh et al., 2017). Lr14a, Lr23, and Lr53 were derived from durum wheat or wild emmer wheat and were used in common wheat breeding (McIntosh et al., 1995; Marais et al., 2005).

Spelt wheat (Triticum spelta) is an ancient crop that has been cultivated since 5000 BC (Xie et al., 2015). It is still a minor crop used for bread and fodder in Europe and North America today (Campbell, 1997). Spelt wheat has the same AABBDD genome as common wheat and their hybrids are fertile, facilitating the transfer of desirable genes to common wheat. In addition to genetic variation in protein concentration (Gomez-Becerra et al., 2010), lipid and mineral nutrient contents (Ruibal-Mendieta et al., 2002; Zhao et al., 2009), spelt wheat also shows excellent resistance to wheat rusts. Examples are the wheat yellow rust resistance gene Yr5 gene, derived from spelt and localized on the long arm of chromosome 2B (Sun et al., 2002; Yan et al., 2003), and the Lr44 gene in the Spelt variety 7831, located chromosome 1B (Dyck and Sykes, 1994).

Molecular markers have been used extensively in wheat breeding, principally for genetic mapping, marker-assisted selection (MAS), and positional gene cloning (Jost et al., 2020). With the evolution of sequencing technology, marker development has shifted to the sequencing era (Paux et al., 2012). The release of the annotated genome sequence of Chinese Spring (CS) have greatly improved our understanding of the wheat genome and facilitated the efficiency of marker development in wheat (Li et al., 2020).

The spelt wheat Altgold Rotkorn (ARK), a Swiss variety (Pedigree: Oberkulmer/Sandmeier), was first released in 1952. Wang et al. (2010) identified a leaf rust resistance gene LrAlt in Altgold and localized it to the distal end of the short arm of chromosome 2A. Mohler et al. (2012) reported the characterization and mapping of the same leaf rust resistance gene LrARK0; in ARK. Since LrAlt and LrARK0; were from the same germplasm and located at the same position, they were designated as Lr65 (Mohler et al., 2012). In this study, we performed fine mapping of Lr65 gene by exploring the CS reference genome. Our analysis located Lr65 gene to a 60.11 Kb region on the IWGSC Ref-Seq v1.0 and identified one most likely candidate gene for Lr65 in Altgold by comparing genome resequencing data between resistant and susceptible parents. In addition, co-segregating molecular markers were developed for MAS of the target gene.



MATERIALS AND METHODS


Plant and Pathogen Materials

Altgold, a spelt wheat cultivar with high resistance to leaf rust, was crossed with two susceptible common wheat lines “Xuezao” and “CS”, and two F2 segregating populations (Xuezao/Altgold and CS/Altgold) were constructed. These two populations were used for the genetic analysis and mapping of leaf rust resistance gene. In all experiments, a susceptible common wheat line of Xuezao was used as a comparison to check for successful inoculation. The P. triticina isolate PHT (provided by Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China) was used for the inoculation. PHT was avirulent on Altgold and virulent on Xuezao and CS. The conidia were propagated in the greenhouse on the susceptible plants.



Plant Growth and Pathogen Infection

The parental plants of Altgold, Xuezao and CS and F2 populations were tested for leaf rust resistance at seedling stage. The inoculations were initiated when the first leaves were fully unfolded, by spraying 1% Tween-20 aqueous solution as surfactant and then brushing conidia from the susceptible seedlings with sporulating leaf rusts onto the seedlings to be tested. The inoculated seedlings were incubated in dark plastic-covered boxes for 48 h at 15°C and 100% relative humidity and then transferred to greenhouse. 10–14 days after inoculation, infection types (ITs) were scored on a scale of 0–4 (0 = hypersensitive flecks, 1 = small uredinia with necrosis, 2 = moderate size pustules with chlorosis, 3 = moderate-large size uredinia without necrosis or chlorosis, and 4 = large uredinia lacking necrosis or chlorosis) (Stakman et al., 1962). ITs 0–2 represent resistance and ITs 3–4 represent susceptibility.



DNA Extraction and Quantification

DNA was extracted from seedlings of the F2 populations and parents Altgold (resistant parent) as well as Xuezao and CS (susceptible parents) using the CTAB method (Maroof et al., 1994). DNA samples were quantified using a NanoDrop One spectrophotometer instrument (Nanodrop Technologies) and diluted to a concentration of 30 ng/μl.



Resequencing of Resistant Parent Altgold

To obtain genomic variations between Altgold and CS, we performed whole-genome resequencing of Altgold. Altgold’s whole genome sequencing was performed using the Illumina HiSeq2500 sequencing platform for double-end sequencing. The library construction and sequencing were performed by Beijing Novogene company. The read length of the paired-end sequencing library was 150 bp, the raw sequencing data were processed according to GATK’s best practices workflow (Van der Auwera et al., 2013).



Molecular Marker Development

Lr65 gene had already been mapped distal to marker Xbarc212 on chromosome arm 2AS (Wang et al., 2010). Simple sequence repeats (SSRs) were developed based on the CS reference genome sequence distal to the Xbarc212 locus. Meanwhile, InDels with insert/deletion size > 3bp were selected from the target interval between Altgold re-sequencing and CS reference genome sequence alignment database for further marker design. InDel polymerase chain reaction (PCR) primers were designed using Primer3Plus1, with amplicon sizes ranging from 100 to 500 bp. BatchPrimer3 v1.02 was used to develop SSR markers.



Polymerase Chain Reaction Amplification and Visualization

Polymerase chain reaction amplification was performed in a 10 μL reaction volume containing 6 μL of 2 × Tag PCR StarMix with loading dye, 35–120 ng/mL DNA 2 μL, 1 μL of primer (mix of forward and reverse primers, 2 mM) and 1 μL of ddH2O. The thermal profile consists of an initial denaturation step at 94°C for 5 min, followed by 35 cycles of 94°C for 30 s (denaturation), 50–61°C (depending on the annealing temperature of the specific primer) for 30 s, 72°C for 30 s (primer extension), and a terminal extension at 72°C for 10 min, stored at 4°C. The PCR products were separated by 10% non-denaturing polyacrylamide gel electrophoresis (acrylamide: bisacrylamide = 39:1), and gels were visualized with silver nitrate staining (Bassam et al., 1991).



Linkage Analysis and Map Construction

A chi-square analysis was performed on the leaf rust test data to confirm the goodness of fit of the observed ratios from the F2 populations to the theoretical expected values. The χ2 analysis was executed in Microsoft Excel (version 2010) using the Bchitest^ function to calculate χ2 and p-values. The polymorphic markers tested between resistant and susceptible parents were used to genotype 2144 F2 plants. The phenotypic data of disease responses were used for linkage analysis in combination with PCR amplification results. The localization of markers and the target gene is fulfilled based on recombination between markers genotype data and resistance/susceptibility phenotype data. Genetic distances were calculated in centiMorgan (cM).



Physical Mapping and Gene Annotation

The sequences of the two closest flanking markers linked to Lr65 were used as lookups for a searches of the IWGSC RefSeq v1.0 to define the physical interval covering Lr65 locus on CS chromosome 2AS. The gene annotation for the target interval was retrieved from the IWGSC RefSeq v1.0 annotation3.



Genomic Comparison Among Multiple Wheat Varieties

The sequence information was obtained from the Triticeae Multi-omics Center4 to obtain sequence information of annotated genes in candidate intervals, and then using the wheat 10 + genome5 (Walkowiak et al., 2020) for sequence alignment between the genomes of 15 wheat varieties.



RESULTS


Genetic Analysis of the Leaf Rust Resistance Gene Lr65 in Two Segregating Populations

At the seedling stage, the parental lines Xuezao and CS demonstrated a clear susceptible response to the leaf rust isolate PHT with an infection type (IT) score of 3, while Altgold showed a high-level resistant response with an IT score of 0 (Figures 1A,B). The F1 plants and F2 populations of Xuezao/Altgold and CS/Altgold were examined for the responses to the inoculation of the Pt isolate PHT at the seedling stage as well, along with the parents. The F1 plants showed the same approximate immune infection type as the resistant parent Altgold, indicating the complete dominance of the resistance (Figures 1A,B). Of the 1522 F2 plants screened from the Xuezao/Altgold cross, 1130 were resistant and 392 susceptible, fitting the ratio of 3:1 (χ23:1 = 0.46, p > 0.05). In the F2 population derived from cross CS/Altgold, 454 plants were resistant and 168 susceptible (χ23:1 = 1.33, p > 0.05). The segregation of these two populations confirm that the leaf rust resistance in Altgold is controlled by a single dominant gene (Table 1), which is most likely the gene Lr65 (previously known as LrAlt or LrARK0) (Wang et al., 2010; Mohler et al., 2012).
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FIGURE 1. Phenotype of seedling responses after inoculation with Pt race PHT. (A) Altgold (ARK), Xuezao (Xz), F1 (Xz/Altgold), and typical resistant and susceptible F2 individuals. (B) Altgold (ARK), CS, F1 (CS/Altgold) and resistant and susceptible F2 of individuals.



TABLE 1. Segregation for leaf rust resistance in the Xuezao/Altgold and CS/Altgold F2 population.
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Marker Discovery and Molecular Mapping

Since Lr65 gene has been located on the terminus of the short arm of chromosome 2A and the closest marker to Lr65 is Xbarc212 (Figure 2A) (Wang et al., 2010; Mohler et al., 2012). To further increase the map resolution in the Lr65 region, new markers were developed using various genomic resources. 88 SSR primers were developed based on CS chromosome 2AS reference genome sequence (RefSeq v1.0) and tested on the two parents (Altgold and Xuezao). Four polymorphic markers (Alt-14, Alt-21, Alt-24, and Alt-64) were identified (Table 2). A total of 1522 Xuezao/Altgold F2 plants were genotyped with these four markers, and 47 plants were identified with recombination between the marker loci and the resistance gene. Linkage analysis indicated that the closest marker to Lr65 was Alt-64 with a genetic distance of 0.5 cM. All four markers were on the proximal side to Lr65 and closer than Xbarc212 (Figure 2B).
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FIGURE 2. Comparison of genetic linkage maps of Lr65 on chromosome 2AS and the corresponding physical location on Chinese Spring RefSeq v1.0. (A) Previous map of Wang et al. (2010). (B) The map of Lr65 in current study based on Xuezao/Altgold F2 population, genetic distances were indicated in cM on the right-hand side. (C) The map of Lr65 in current study based on CS/Altgold F2 population, genetic distances are indicated in cM on the right-hand side. (D) The physical location of markers of Lr65 on the chromosome 2AS of Chinese Spring RefSeq v1.0. The physical distances were shown on the right in Mb.



TABLE 2. The primer sequences used in this study.
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To obtain markers on the other side of Lr65, we compared the resequencing data of Altgold with the CS reference in the target region, which corresponds to the most distal 1.16 Mb interval of chromosome 2AS in CS RefSeq v1.0. Based on the Indel variations between the two parents, we designed eighteen Indel markers, two (AltID-10 and AltID-11) of which were tested polymorphic between the parents (Table 2). These two Indel markers and previously developed SSR markers (Alt-21 and Alt-64) were used to genotype 622 F2 plants of the cross CS/Altgold. A genetic linkage map spanning 2.6 cM was constructed using these four markers (Figure 2C). In this map, Lr65 gene is delimited to a genetic interval of 0.8 cM, flanked by markers Alt-64 and AltID-11, with AltID-11 0.2cM distal to Lr65 and Alt-64 0.6cM to Lr65 on the proximal side.

When we matched the sequences of Alt-64 and AltID-11 with the genome sequence of CS (IWGSC v1.0), we found that the two markers were spanning an area of about 0.34 Mb (555551–891823) on CS chromosome 2AS (Figure 2D). Based on Altgold’s re-sequencing data matching this 0.34 Mb interval, 11 SSR primers were designed and one more polymorphic marker Alt-92 was found between Altgold and CS (Table 1). After tested among the 24 recombinants previously obtained by screening with the flanking markers Alt-21, Alt-64 and AltID-10, AltID-11, two recombinants were identified between Alt-92 and Lr65. These results showed that the Lr65 locus was located between the markers AltID-11 and Alt-92 (Figure 3).
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FIGURE 3. Fine mapping of Lr65 and two annotated genes in the target interval on the Chinese spring reference genome. The phenotypes and genotypes of six F2 recombinants are displayed. The code and phenotype of each individual were put on the left and right sides, respectively. Black, white and gray blocks represent the genomic regions of Altgold, CS, and heterozygotes, respectively.




Physical Mapping and Gene Annotation of the Lr65 Target Interval

In order to physically locate Lr65-linking markers, the sequences of all markers which were anchored in the high-resolution gene map were aligned to the CS reference genome sequence. The relative physical positions of these markers were generally consistent with the genetic linkage map (Figure 2). The closest flanking markers AltID-11 and Alt-92 of Lr65 delimitated a 60.11 Kb (555,551–615,668) interval in the CS Reference Genome (RefSeq v1.0). This region encompasses two annotated protein-coding genes, TraesCS2A02G001400 and TraesCS2A02G001500, according to the IWGSC RefSeq v1.0 annotation6 (see text foot note 3) (Figure 3). The two annotated genes were put on NCBI7 to predict their protein structures, we found that TraesCS2A02G001400 encodes a protein similar to that found in intracellular human pathogens with a conserved regions of internalin_A super family and TraesCS2A02G001500 encodes a typical disease resistance protein (R protein) with a NB-ARC domain at the N-terminal end and three contiguous LRR at the C-terminal end (Supplementary Figure 1 and Table 3). One 3 bp Indel and one SNP were found in the coding sequence of TraesCS2A02G001500 (Figure 4 and Supplementary Figure 3), indicating that these differences may lead to different protein functions, while there is no difference in sequence of TraesCS2A02G001400 between Altgold and CS (Supplementary Figure 2). Therefore, TraesCS2A02G001500 is most likely the candidate gene of Lr65.


TABLE 3. Candidate genes in the most distal 60.11kb region of 2AS.
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FIGURE 4. Structure of the annotated gene TraesCS2A02G001500 displaying nucleotide and amino acid sequence polymorphisms between the resistant and susceptible parents. Introns and exons are indicated by lines and orange boxes, respectively. Blue and red color characters indicate alleles of resistant and susceptible parents, respectively. Numbers in parentheses represent the positions of nucleotide and amino acid sequences relative to ATG and M. – Indicates a sequence deletion.




Comparison Among the Genomes of Multiple Wheat Cultivars

To validate the consistency of collinearity within candidate intervals in multiple wheat varieties, the wheat 10 + genome8 (Walkowiak et al., 2020) was used for comparison between genomes of additional wheat materials. Six wheat varieties (CS_RefSeq1.0, ArinaLrFor, Jagger, Julius, Norin61, Spelt) were identified in which both genes in the candidate interval were matched to chromosome arm 2AS, while three varieties were found matched to the same scaffold (Paragon_scaffold, Weebill_ scaffold, and Cadenza_scaffold). The number of genes in these nine wheat varieties was consistent within the candidate interval, and the order of these two genes in these varieties was the same as in CS, with only one reversed (Cadenza_scaffold) (Figure 5). This indicates that the number of genes in the candidate region is uniform in multiple wheat varieties.
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FIGURE 5. Candidate interval of two genes TraesCS2A02G001400 and TraesCS2A02G001500 compared among nine wheat varieties. The left side indicates the position of the gene on the chromosome and the right side is the wheat variety name.




Development of the Diagnostic Marker of Lr65

Based on the 3-bp Indel in TraesCS2A02G001500 between Altgold and CS, marker 1500-1 was developed and validated on Altgold, Xuezao, and CS and the key recombinants (A25, A211, A321, and A523) (Table 2 and Figure 6). The test result indicated marker 1500-1 was co-segregating with Lr65 gene (Figure 3).
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FIGURE 6. Verification of Lr65’s diagnostic marker 1500-1. Nos. 1–3 are Altgold, Xuezao and CS. Nos. 4–7 are recombinants A523, A25, A321, and A211, respectively. M is marker.


In order to confirm the usefulness of this Lr65 co-segregating marker in breeding, we tested marker 1500-1 on other 18 different Chinese wheat cultivars, we found that the PCR product size of marker 1500-1 in Altgold containing Lr65 was unique and not detected in the other cultivars (Supplementary Figure 4); therefore, marker 1500-1 is diagnostic for selection of Lr65 gene. Then we screened the marker 1500-1 in two other populations of F1 progenies of crosses “Xuexao/Altgold//Shiyou 20” and “Xuexao/Altgold//Zhongmai 1062” and found that the marker was 100% associated with the leaf rust resistance (Figure 7 and Supplementary Figure 4). Since the resistant plants were the results of combining of Lr65 with the susceptible alleles of Shiyou 20 and Zhongmai 1062, these plants all showed the heterozygous banding of marker 1500-1.
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FIGURE 7. Marker-assisted selection of Lr65 with diagnostic marker 1500-1. (A) Selection of Lr65 in “Xuexao/Altgold//Shiyou 20” population. 1: a resistant progeny of Xuexao/Altgold, 2: Shiyou20, 3–14: the resistant plants among the progenies. (B) Selection of Lr65 in “Xuexao/Altgold//Zhongmai 1062” population. 1: a resistant progeny of Xuexao/Altgold, 2: Zhongmai1062, 3–14: the resistant plants among the progenies. M is marker.




DISCUSSION

In addition to Lr65, four wheat leaf rust resistance genes was located on the short arm of chromosome 2A, including Lr17, Lr37, and Lr45 (McIntosh et al., 2008; Prasad et al., 2020). Lr11 was previously located on chromosome 2AS (Soliman et al., 1964), but recent studies have shown that Lr11 is located distal to chromosome 2DS (Darino et al., 2015). The gene Lr17 has two resistance alleles, Lr17a and Lr17b (Dyck and Kerber, 1977; Singh et al., 2001). Lr17a was flanked by marker Xgwm614 (distal) and Xgwm407 (proximal), while marker Xgwm636 was distal to Xgwm614 (Bremenkamp-Barrett et al., 2008). Lr65 (LrAlt) is mapped distal to Xgwm636 (Wang et al., 2010). Gene Lr37 is located within a fragment of Ae. ventricosa (Tausch) Cess. chromosome 2NS translocated to bread wheat chromosome 2AS, and genetic mapping analysis showed that the 2NS translocation replaced about half of the short arm of chromosome 2A (Helguera et al., 2003). The gene Lr45 is from rye chromosome 2R translocated to wheat chromosome 2A (Zhang et al., 2006). According to the above information, we conclude that Lr65 is a unique leaf rust resistance gene.

Previously Lr65 was mapped distal to the closest marker Xbarc212 on wheat chromosome 2AS (Wang et al., 2010; Mohler et al., 2012). In this study, using two large F2 segregating populations of crosses Xuezao/Altgold and CS/Altgold, we fine mapped Lr65 and narrow down it between markers AltID-11 and Alt-92, corresponding to the 60.11 Kb (555,551–615,668) interval according to the CS Reference Genome.

The gene fine mapping involved developing more polymorphic markers covering the genetic interval of the target gene. With the release of whole genome Reference sequence of CS, development of polymorphic markers associated with a target gene is becoming easier. The process of fine mapping of Lr65 illustrates the effectiveness of the reference genome information and the resequencing data of the specific parental lines for the guided development of markers to target genes. Our work also demonstrate the advantage of using different crosses in the genetic mapping. Even though additional closer markers to Lr65 were found using the Xuezao/Altgold F2 population, all were on one side to the target gene. When we changed to the CS/Altgold population, the target gene was successfully delimitated by flanking markers and narrow down to a shorter interval.

In the 60.11-Kb interval that contains Lr65 locus on CS 2AS, there are two protein-coding genes annotated, TraesCS2A02G001400 and TraesCS2A02G001500, according to the IWGSC RefSeq v1.0 annotation (see text foot note 3). Sequence analysis showed no difference in TraesCS2A02G001400 between the resistant and susceptible parents (Altgold, CS and Xuezao). However, we found two sequence variations (one 3-bp Indel and one SNP) between Altgold and CS in the coding region of TraesCS2A02G001500. One marker was developed to tag the 3-bp Indel variation between the parents and found to be co-segregating with Lr65. TraesCS2A02G001500 was predicted to encode a protein with nucleotide binding sites and multiple leucine-rich repeats (NBS-LRR), the typical structures of disease resistance genes (R genes). Many cloned wheat rusts resistance genes are found to encode NBS-LRR proteins, including leaf rust resistance genes (Lr1, Lr10, Lr21, and Lr22) (Feuillet et al., 2003; Huang et al., 2003; Hiebert et al., 2007; Qiu et al., 2007), stripe rust resistance genes (Yr5 and Yr10) (McGrann et al., 2014; Yuan et al., 2018), and stem rust resistance genes (Sr22, Sr33, Sr35, Sr45, and Sr50) (Saintenac et al., 2013; Periyannan et al., 2014; Casey et al., 2016; Saur et al., 2019; Md Hatta et al., 2020). Our results suggest that TraesCS2A02G001500 might be the candidate gene of Lr65. The works to verify the disease resistance function of the Altgold allele of TraesCS2A02G001500 are underway. However, there is still a chance that the sequence corresponding to Lr65 is absent in CS genomic sequence. If so, we need to construct a genomic library of Altgold and to clone Lr65 by physical mapping of contigs. The closest flanking and co-segregating markers developed in our present study will greatly aid the map-based cloning of Lr65.

Spelt is genetically distant from common wheat and with a high degree of genetic variation unexploited (Würschum et al., 2017; Akel et al., 2018). Lr65 was first identified in spelt wheat and not being widely used in common wheat breeding. In addition to the resistance to the Chinese isolate PHT as in this study, Lr65 was resistant to many Australia and Germany P. triticina isolates (Mohler et al., 2012). Utilization of Lr65 will help to diversify the resistance genes in common wheat breeding and help to protect wheat production. However, due to the evolution of new virulent pathogen isolates, major disease resistance genes are prone to lose their effectiveness when deployed alone. Mohler et al. (2012) had reported the existence of virulent pathotypes for Lr65. The Lr65 gene was recommended to be used in combination with other resistance genes for the protection against leaf rust. The co-segregating marker we developed in present study would be helpful to pyramid Lr65 with other resistance genes.
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Cassava production and productivity in Eastern, Central, and Southern Africa are ravaged by cassava brown streak disease (CBSD), causing yield losses of up to 100% when susceptible varieties are grown. Efforts to develop CBSD-resistant clones are underway. However, the methods for screening CBSD resistance currently vary between breeders and pathologists, with the limited empirical data to support their choices. In this study, we used the empirical CBSD foliar and root necrosis data from two breeding populations, termed cycle zero (C0) and cycle one (C1), to assess and compare the effectiveness of the CBSD screening methods of breeders vs. pathologists. On the one hand, the estimates of broad-sense heritability (H2) for the CBSD root necrosis assessment of breeder ranged from 0.15 to 0.87, while for the assessment method of pathologists, H2 varied from 0.00 to 0.71 in C0 clones. On the other hand, the marker-based heritability estimates (h2) for C0 ranged from 0.00 to 0.70 for the assessment method of breeders and from 0.00 to 0.63 for the assessment method of pathologists. For cycle one (C1) population, where both foliar and root necrosis data were analyzed for clones assessed at clonal evaluation trials (CETs) and advanced yield trials (AYTs), H2 varied from 0.10 to 0.59 for the assessment method of breeders, while the H2 values ranged from 0.09 to 0.35 for the CBSD computation method of pathologists. In general, higher correlations were recorded for foliar severity from the assessment method of breeders (r = 0.4, p ≤ 0.01 for CBSD3s and r = 0.37, p ≤ 0.01 for CBSD6s) in C1 clones evaluated at both clonal and advanced breeding stages than from the approach of pathologists. Ranking of top 10 C1 clones by their indexed best linear unbiased predictors (BLUPs) for CBSD foliar and root necrosis showed four overlapping clones between clonal and advanced selection stages for the method of breeders; meanwhile, only a clone featured in both clonal and advanced selection stages from the CBSD assessment method of pathologists. Overall, the CBSD assessment method of breeders was more effective than the assessment method of pathologists, and thus, it justifies its continued use in CBSD resistance breeding.
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INTRODUCTION

The human population in the next 30 years is projected to increase by 25%, from the current world population of ~7.5 billion to 10 billion people. The highest rate of this growth is expected to arise from sub-Saharan Africa (SSA; Hickey et al., 2017). Consequently, there is an urgent need to match this rapid growth in the human population with a concomitant increase in food production. Cassava (Manihot esculenta Crantz), a climate-resilient food staple in SSA, is a suitable crop to meet the projected calorie demand since more than half of the global production is in Africa (FAOSTAT, 2019).

Unfortunately, the average on-farm yield of cassava in Africa is low, stagnating at 12 tons/ha compared with 20 tons/ha estimated for Asian and Latin American countries (Malik et al., 2020). The biotic factors, such as cassava brown streak disease (CBSD), cassava mosaic disease (CMD), cassava bacterial blight, and whitefly vector, are the key obstacles to optimal cassava production and productivity in Africa (Maruthi et al., 2005; Mware et al., 2009; Patil and Fauquet, 2009; Patil et al., 2015). In the case of East Africa, the CBSD is currently the most devastating constraint for cassava production, causing yield losses of up to 100% in highly susceptible varieties (Alicai et al., 2007; Legg et al., 2011; Hillocks and Maruthi, 2015). Typical cassava plants infected with CBSD present characteristic yellowing along the veins, compromising the photosynthetic capacity of leaves, brown streaks on stems, and corky necrosis in the edible root parenchyma, and rendering the roots unusable for food or feed (Hillocks, 2004; Patil et al., 2015; Hillocks et al., 2016).

The severity and incidence of foliar and root CBSD symptoms form the basis of CBSD resistance screening. Currently, a scale of 1–5 is used to independently assess CBSD severity on foliar and roots; these assessments are commonly performed at 3 (CBSD3s) and 6 (CBSD6s) months for foliar and at 12 (CBSDRs) months at harvest for root necrosis (Hillocks, 2004; Kaweesi et al., 2014; Okul et al., 2018). The scores for the foliar severity assessment are as follows: 1 = no symptom, 2 = slight foliar chlorotic leaf mottle with no stem lesions, 3 = foliar chlorotic leaf mottle and blotches with mild stem lesions, 4 = foliar chlorotic leaf mottle and blotches with well-pronounced stem lesions, but no dieback, and 5 = defoliation with stem lesions and dieback. The scores for the root necrosis assessment are as follows: 1 = no necrosis, 2 = mild necrotic lesions (1–10%), 3 = pronounced necrotic lesions (11–25%), 4 = severe necrotic lesion (26–50%), and 5 = very severe necrotic lesions (>50%).

Although the CBSD symptom expressions are common to both breeders and pathologists, there is an apparent discrepancy in the data processing for decision support. For example, pathologists compute plot scores by averaging all severity scores ≥2, i.e., they exclude the CBSD severity scores of 1 when deriving plot mean for foliar and root symptoms (Ogwok et al., 2012; Odipio et al., 2014; Wagaba et al., 2017). On the other hand, breeders compute the averages of CBSD foliar and root severity using all the recorded observations, i.e., they do not exclude the CBSD scores of 1 (Kawuki et al., 2016, 2019; Okul et al., 2018). Essentially, the average values obtained from the CBSD assessments of pathologists or breeders are the different traits used for decision support.

In our efforts to optimize the cassava breeding operations tailored toward increased genetic gains, there is a need to assess the precision and relationship between the CBSD assessment methods. A key metric used to assess trait reliability is heritability, which measures the ratio of genetic variance to phenotypic variance (broad-sense heritability) or the ratio of additive genetic variance to phenotypic variance (narrow-sense heritability) (Bernardo, 2003). Accordingly, the data sets presented in this study aimed at answering the following research questions: (a) What proportion of total genetic and additive genetic variances are captured by the CBSD assessment methods of breeders and pathologists? and (b) To what extent do the CBSD assessment methods of breeders and pathologists select and advance the same clones?



MATERIALS AND METHODS


Test Clones and CBSD Field Evaluations

The clones used in this study comprised genomic selection cycle zero (C0) and cycle one (C1) populations developed by the cassava breeding program of National Crops Resources Research Institute (NaCRRI). The data for C0 clones presented in this study were collected from clonal evaluation trials (CETs), while C1 clones were evaluated in both CETs and advanced yield trials (AYTs). The first set of CETs from C0, herein referred to as CETs-1, were evaluated at seven sites during first (April–May) and second (September–October) planting seasons in 2015. The first and second plantings generally depict the onset of rains. In Uganda, our first and second rains typically appear in February–March and September–October, respectively. The trial sites represent some of the key cassava production and consumption zones in Uganda. In these multilocational trials, a total of 155 C0 clones from a genomic selection training population of 427 genotypes were evaluated (Ozimati et al., 2018). Each trial was established in an augmented design with five checks (i.e., UG110008, UG110014, UG110015, UG110016, and UG110017) and replicated —five to six times in single-row plots of 10 plants spaced at 1 × 1 m between and within rows.

On the other hand, the C1 population presented in this study was generated from crosses made among 100 progenitors, a subset of the 155 C0 clones. In 2015–2016, we started with a seedling evaluation of ~5,000 genotypes for C1, from which 735 clones were evaluated in CET (2016–2017), herein referred to as CETs-2 at two locations (i.e., Namulonge and Serere). The CETs-2 were also planted in an augmented design with three checks, namely, UG110015, UG110017, and UG110134 in single-row plots of 10 plants spaced at 1 × 1 m between and within rows. During harvest in August 2017, a subset of 50 C1 clones were selected, based on the yield performance and response to CBSD as well as CMD from the CETs-2, and established in AYTs at three locations (i.e., Arua, Serere, and Namulonge). At each location, the trials were established in randomized complete block design, with a plot size of 6 × 6 m, replicated twice. For all trials, the plots were separated by 2-m alleys.

Since the plant-based foliar CBSD data collected at 3 (CBSD3s) and 6 (CBSD6s) months after planting (MAP) were only available for C1 clones assessed at CETs-2 and AYTs, we derived the mean foliar CBSD values for the assessment methods of breeders and pathologists for this population. To compute the plot means for foliar CBSD severity for the two disease assessment methods, plant-based diseases scored on a scale of 1–5 were used. In this case, score 1 = no foliar symptom expressions, 2 = mild symptoms (1–10%), 3 = pronounced chlorotic mottle and mild stem lesions (11–25%), 4 = foliar chlorotic leaf mottle and blotches with pronounced stem lesions (26–50%), and 5 = defoliation with stem lesions and dieback (>50%) (Hillocks and Thresh, 2000).

At harvest, which coincided with 12 MAP for both C0 and C1 populations, all plants per plot were uprooted, and roots were also assessed individually for CBSD necrosis using the scale of 1–5, where 1 = no necrosis, 2 = mild necrotic lesions (1–10%), 3 = pronounced necrotic lesions (11–25%), 4 = severe necrotic lesions (26–50%) with mild root constrictions, and 5 = very severe necrotic lesions (>50%) with severe root constrictions (Hillocks and Thresh, 2000; Kaweesi et al., 2014). We further processed the root necrosis data to match the mean CBSD severity computation methods of breeders and plant pathologists, i.e., all root severity scores were averaged for the assessment method of breeders, while only the root severity scores ≥2 were averaged for the CBSD assessment method of pathologists.



Genotyping of the Clones

DNA was extracted from ~100 mg of fresh young leaves from each of the 155 C0 clones. DNA extractions were performed using QIAGEN DNeasy, Texas, USA extraction kits and quantified using Picogreen® to ensure that the required concentrations for sequencing were obtained. Consequently, DNA samples were genotyped using the genotyping-by-sequencing method as described by Elshire et al. (2011). Removing the single nucleotide polymorphic (SNP) markers by filtering and imputation methods has been described in an earlier study (Hamblin and Rabbi, 2014; Wolfe et al., 2016, 2017). Ultimately, we had a total of 25,383 SNP markers, which were filtered at minor allele frequency (MAF) ≥0.01 for the estimation of SNP-based heritability for each of the C0 clones.



Statistical Analyses

To estimate the broad-sense heritability for each CBSD assessment method, i.e., breeders vs. pathologists for C0 clones, we fitted the linear mixed model for each trial using the lme4 package for the R statistical computing software (R Development Core Team, 2008) as follows:
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where yijk was the response of ith clone from jth block in the kth plot, μ represented the fixed trial mean, b and c represented a vector of random block and clone effects, respectively, and e was the random residual term. The variance components to compute the broad-sense heritability (H2) were extracted from the model described earlier. The plot-based broad-sense heritability estimates for root necrosis for the two CBSD assessment methods across 14 CETs-1 (i.e., location–season combinations) were then computed as follows:
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where [image: image] was the clone variance, [image: image] was the variance due to blocks, and [image: image] was the model residual variance.

To obtain the genomic estimated breeding values and the additive genetic variance for the two methods from CETs-1, we fitted a single-step genomic best linear unbiased predictor (G-BLUP) model as follows:

[image: image]

where yijk was the response of jth genotype in the ith block recorded for kth plot, μ and w were the fixed grand mean and block effects, respectively, gj represented the random genotype effect, assuming gj ~ N(0, G[image: image]) with [image: image] representing the variance due to genotypic effects while G represented the covariance structure among clones based on the marker data, and e was the random model residual effect, assumed to be normally distributed as [image: image] ~ N (0, [image: image]) with [image: image] as the residual variance. We extracted the variance components from the G-BLUP model and estimated the narrow-sense heritability (h2 SNP-heritability) using the formula as follows:
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where [image: image] was the additive genetic variance and [image: image] was the model residual variance.

Furthermore, we examined how many top 10 ranked clones at CETs-2 were featured among the best 10 clones at AYTs for the two CBSD assessment methods from C1 population. To do this, the data sets from each of the two trial stages (i.e., CETs-2 and AYTs) were combined across sites, followed by fitting a multilocational linear mixed model as described below for each trial stage. For the CETs-2, we fitted a multilocational model described as follows:
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where the grand mean μ and the main effect of the ith environment (l) were considered fixed, while the jth genotype (g), the kth block (b) nested within the ith environment (l), the interaction of the jth genotype (g) by ith environment (gl), and the residual term (ε) were considered random. The variance components were extracted for the estimation of broad-sense heritability, using the formula described above for CETs-1.

Similarly, we fitted a multilocational linear mixed model for C1 AYTs, where the grand mean and location were considered fixed, while clones, replicates nested within trial, genotype-by-environment interactions, and residual terms were considered random. Accordingly, the variance components were extracted to compute the plot-based broad-sense heritability estimates for foliar and root necrosis for the two CBSD assessment methods.

The raw phenotypic means and BLUP values for foliar CBSD severity as well as root necrosis of C1 clones were extracted for both CETs-2 and AYTs from the models fitted and used to compute Pearson's correlation coefficients for 50 C1 clones that featured in both CETs-2 and AYTs for each of the CBSD assessment methods. Furthermore, we computed selection index (SI) from BLUPs and raw phenotypic means of the three traits across sites, with the traits having equal economic weights as follows:
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where CBSD3s, CBSD6s, and CBSDRs were the CBSD severities assessed at 3, 6, and 12 MAP, respectively.

Finally, we used the indexed BLUP values of the three traits for the 50 clones that appeared at both CETs-2 and AYTs for ranking the top 10 clones at each trial stage. The purpose of ranking was to compare the number of 10 top clones that overlapped at CETs-2 and AYTs for each of the CBSD averaging methods.




RESULTS


Broad-Sense and SNP-Heritability Estimates

The broad-sense heritability (H2) estimates for the CBSD root severity assessment method of breeders ranged from 0.15 in Arua 2015A trial to 0.87 in Namulonge 2015A trial (Table 1). On the other hand, H2 estimates for the assessment method of pathologists ranged from 0.00 in Arua 2015A trial to 0.71 in Namulonge 2015A and B trials (Table 1). Meanwhile, the narrow-sense heritability (h2) estimates, also referred to as SNP-based heritability, for the assessment method of breeders ranged from 0.00 in Arua 2015A trial to 0.72 in Namulonge 2015A trial (Table 1). Similarly, h2 for the assessment method of pathologists varied from 0.00 in Arua 2015A trial to 0.63 in Serere 2015A trial. Overall, the average broad-sense and narrow-sense heritability estimates across trials were higher for the CBSD assessment method of breeders (H2 = 0.56 and h2 = 0.36) than for the CBSD assessment approach of pathologists (H2 = 0.49 and h2 = 0.25) (Table 1).


Table 1. Broad and narrow-sense heritability estimates associated with breeder's and pathologist's CBSD root severity assessment methods.
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For C1 population, the broad-sense heritability estimates for foliar and root necrosis from both CETs-2 and AYTs are presented in Figure 1. We also observed higher H2 values for the CBSD assessment method of breeders compared with the CBSD assessment method of pathologists for both CET and AYT evaluation stages. For example, at CET, H2 at 3 months was 0.48 for the method of breeders and 0.38 for the method of pathologists. At 6 months, H2 was 0.47 for the method of breeders and 0.21 for the computation of pathologists. Based on the root necrosis data at harvest, the broad-sense heritability values were 0.44 and 0.35 for the methods of breeders and pathologists, respectively. Similarly, the higher broad-sense heritability estimates of 0.42 and 0.56 were recorded for the combined data from AYTs for the method of breeders compared with the estimates of 0.41 and 0.09 recorded for the computations of pathologists for CBSD3s and CBSD6s, respectively (Figure 1).
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FIGURE 1. The broad-sense heritability estimates (H2) for the three disease traits (cassava brown streak disease severity assessed at 3-months after planting [CBSD3s], cassava brown streak disease severity assessed at 6-months after planting [CBSD6s], cassava brown streak disease root severity assessed at 12-months after planting [CBSDRs]) for clonal evaluation trials (CETs-2) and advanced yield trials (AYTs) for the two mean CBSD computation methods.




Relationship Between BLUP Values of the 50 Clones Evaluated at CETs-2 and AYTs for Mean CBSD Assessment Methods

In general, we recorded higher Pearson's correlation coefficients from the foliar CBSD assessment method of breeders than the approach of pathologists, using both BLUP estimates and raw phenotypic means across locations (Table 2). On the one hand, the highest correlation coefficient value (r = 0.40, p ≤ 0.01) was observed for CBSD3s from the assessment method of breeders. On the other hand, low and statistically nonsignificant correlation coefficients were recorded for root necrosis and indexed trait values for both the CBSD assessment methods (Table 2). The correlation values for root necrosis and indexed trait values varied from 0.02 to 0.21. Overall, for all three disease traits and their indexed values, the CBSD computation method of breeders had higher correlation coefficients than the approach of the CBSD assessment of pathologists (Table 2).


Table 2. Pearson correlation coefficients of the 50 clones evaluated at CETs-2 and AYTs.
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Ranking of 50 Clones in CETs-2 and AYTs Using Indexed BLUPs Values for the Two CBSD Averaging Methods

We ranked the 50 clones from C1, CETs-2, and AYTs by their indexed BLUP values of CBSD3s, CBSD6s, and CBSDRs for the two CBSD assessment methods (Table 3). Based on ranking of the top 10 clones, four clones (i.e., UG15F190P001, UG15F170P507, UG15F079P011, and UG15F176P502) evaluated in CETs-2 and AYTs overlapped among the top 10 ranked clones for the mean CBSD assessment method of breeders, whereas only one clone (UG15F190P001), overlapped between CETs-2 and AYTs evaluated among the top 10 ranked clones (Table 3).


Table 3. Ranking of top 10 C1 clones by their indexed BLUPs values for the two CBSDs.
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DISCUSSION

On recognizing the CBSD epidemic in Uganda in the early 2000s, concerted research efforts were initiated to understand the diversity of viruses causing CBSD (Mbanzibwa et al., 2011; Alicai et al., 2016; Ateka et al., 2017; Mbewe et al., 2017), their transmission by the whitefly vector, Bemisia tabaci (Maruthi et al., 2005; Omongo et al., 2012; Mugerwa et al., 2018; Ally et al., 2019), and sourcing for resistant genetic materials for breeding (Kanju et al., 2007; Kawuki et al., 2016). More recently, transgenic approaches have also been explored to combat CBSD, but with no officially released genetically transformed plant under cultivation in Uganda to date (Patil et al., 2011; Yadav et al., 2011; Wagaba et al., 2017). Collectively, these research interventions have contributed to our increased understanding and management of CBSD.

A discrepancy remains in the methodologies of CBSD resistance screening, which continues to be refined (Kawuki et al., 2019). In general, in screening for CBSD resistance, plant pathologists assess clone performance based on average foliar infected plants and/or roots, i.e., exclude scores of 1 (Ogwok et al., 2012; Odipio et al., 2014). On the other hand, breeders assess clone performance based on average foliar infected plants and/or roots without excluding the severity scores of 1, i.e., no data are excluded (Kanju et al., 2007; Okul et al., 2018; Kawuki et al., 2019; Ozimati et al., 2019). Certainly, the methods have varying sampling sizes, hence introducing sampling errors or biases. This study aimed at comparing the two CBSD severity assessment methods based on the heritability estimates and the relative ranking of clones at different trial stages.


Heritability Estimates of CBSD Foliar and Root Necrosis for the Two Assessment Methods

According to Bernardo (2003), the broad- and narrow-sense heritability estimates are critical for selection decisions. The comparison of heritability estimates across CETs-1 revealed higher heritability estimates for the method of breeders for CBSD root severity assessment than that for the method of pathologists, with the highest plot-based broad-sense (H2 = 0.87) and narrow-sense (h2 = 0.72) heritability estimates recorded for Namulonge trial in 2015A. In a recent study by Kawuki et al. (2019), a minimum number of 30 roots per plot were recommended to obtain the meaningful assessment of CBSD root necrosis. A notable difference between the CBSD assessment methods of breeders and pathologists is that the former uses sample sizes larger (i.e., includes all roots to obtain plot mean) than the latter (i.e., excludes roots with a severity score of 1). Averaging all root scores per plot possibly explains the higher precision and heritability estimates observed for the CBSD assessment of breeders compared with that for the approach of pathologists with the exclusion of roots scores of 1 (i.e., no necrosis). In the same study by Kawuki et al. (2019), the lowest standard error from five CBSD root necrosis assessment methods were associated with trials at Namulonge, supporting early studies qualifying Namulonge as a hot spot for CBSD screening (Kaweesi et al., 2014; Okul et al., 2018). It is not surprising that Namulonge presented the highest heritability estimates in this study, supporting it as a hot spot for CBSD screening. Efforts are currently in place to improve the CBSD phenotyping at the hot spot in Namulonge by the use of imaging technology, which is considered a robust and less subjective screening method. As stated by Bernardo (2003), heritability is an important function in the genetic study of metric character, because it reflects the predictive accuracy and reliability of the phenotypic values. Thus, the highest heritability estimates (i.e., broad sense and narrow sense) for both foliar and CBSD root necrosis recorded from the computation of breeders support the use of this method for efficient selection of CBSD-resistant clones.



Comparing Pearson's Correlation Coefficients for BLUP Estimates of Clone in CETs-2 and AYTs for the Two CBSD Assessments Methods

The best linear unbiased predictor (BLUP) pioneered by C.R. Henderson (Piepho et al., 2008) as a procedure for genetic estimation was first used for practical dairy breeding. The BLUP procedure allows for a more accurate estimation of genetic merit of traits in the unbalanced data while accounting for the differences in the amount of data available for each genotype (Bernardo, 2003). In general, the correlation coefficients of BLUP values for CBSD traits of clones that were filtered from CETs-2 (C1) to AYTs (C1) were low to moderate (r = 0.02–0.40). However, these correlation coefficients were higher and significant (p ≤ 0.01) for the mean foliar CBSD computation of breeders than the method of pathologists for clones that made it from CETs-2 to AYTs. Ozimati et al. (2019) previously reported a high genetic correlation of 0.70 for root necrosis between measurements at seedling vs. at clonal evaluations. In this study, the low correlation observed between BLUPs values at CETs-2 and AYTs for root necrosis could be due to degeneration. Recycling the clones for more than three planting seasons has been reported to cause resistance degeneration due to the buildup of the virus population (Shirima et al., 2017). In fact, to date, no clones have been reported to be immune in the conventional breeding pipeline, except for the recent sources of immunity reported from Latin American germplasm (Sheat et al., 2019). One approach of selecting and advancing clones in face of degeneration due to the virus buildup would be to complement the symptom-based screening with the measurements of virus titer, especially when advancing clones from the mid-to-late stages of selection, i.e., from CET stage onward. However, the high cost per assay is a major limitation to the use of quantitative PCR (q-PCR) for virus screening of a large number of clones, as at CET (i.e., over 600 genotypes; Ogwok et al., 2012; Kaweesi et al., 2014; Okul et al., 2018). Through international collaboration with Plant Virus Department, Leibniz Institute DSMZ-German Collection of Microorganism and Cell Culture, Braunschweig, Germany, a cheap and rapid assay is being developed to enable the screening of large entries. Nonetheless, the higher correlation coefficients observed between the BLUP values of clones in CETs-2 and AYTs for mean CBSD computation of breeders than for the approach of pathologists support the use of the assessment methods of breeders for a more effective selection of resistant clones.



Ranking of Clones by Their Indexed BLUPs for the Two CBSD Averaging Methods

In a recent study by Kawuki et al. (2019), to evaluate the alternative methods for assessing CBSD root necrosis, 256 clones were ranked using their BLUPs for five CBSD assessment methods. The comparison of the top 15 resistant clones ranked across the CBSD assessment methods showed one overlapping clone for all the five CBSD root necrosis assessment methods (Kawuki et al., 2019). In this study, ranking of the top 10 resistant clones from CETs-2 and AYTs revealed four clones featuring at both evaluation stages for the CBSD assessment method of breeders compared with only a single clone that overlapped for the approach of pathologists. Four clones overlapping at CETs-2 and AYTs for breeders mean CBSD computation relative to a single clone for pathologists assessment method, further supports the use of breeders-derived phenotypes to guide selection decisions.




CONCLUSION

This study provides insights into CBSD necrosis assessment as performed by the methods of breeders and pathologists that remarkably differ in how the mean severities are computed. Based on the heritability estimates and the number of clones that were filtered, it was evident that computing mean CBSD for the entire number of roots from a plot was more reliable compared with cases where roots with severity scores of 1 were excluded.
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Wheat (Triticum aestivum L.) is the most widely grown cereal crop in the world and is staple food to half the world’s population. The current world population is expected to reach 9.8 billion people by 2050, but food production is not expected to keep pace with demand in developing countries. Significant opportunities exist for traditional grain exporters to produce and export greater amounts of wheat to fill the gap. Karnal bunt, however, is a major threat, due to its use as a non-tariff trade barrier by several wheat-importing countries. The cultivation of resistant varieties remains the most cost-effective approach to manage the disease, but in countries that are free of the disease, genetic improvement is difficult due to quarantine restrictions. Here we report a study on pre-emptive breeding designed to identify linked molecular markers, evaluate the prospects of genomic selection as a tool, and prioritise wheat genotypes suitable for use as parents. In a genome-wide association (GWAS) study, we identified six DArTseq markers significantly linked to Karnal bunt resistance, which explained between 7.6 and 29.5% of the observed phenotypic variation. The accuracy of genomic prediction was estimated to vary between 0.53 and 0.56, depending on whether it is based solely on the identified Quantitative trait loci (QTL) markers or the use of genome-wide markers. As genotypes used as parents would be required to possess good yield and phenology, further research was conducted to assess the agronomic value of Karnal bunt resistant germplasm from the International Maize and Wheat Improvement Center (CIMMYT). We identified an ideal genotype, ZVS13_385, which possessed similar agronomic attributes to the highly successful Australian wheat variety, Mace. It is phenotypically resistant to Karnal bunt infection (<1% infection) and carried all the favourable alleles detected for resistance in this study. The identification of a genotype combining Karnal bunt resistance with adaptive agronomic traits overcomes the concerns of breeders regarding yield penalty in the absence of the disease.

Keywords: Karnal bunt resistance, Tilletia indica, wheat, Triticum aestivum, genome-wide association study, GWAS, genomic prediction, grain yield


INTRODUCTION

Wheat (Triticum aestivum L.) is the most widely grown cereal crop on the planet, a staple of the world economy, supplying one fifth of calories consumed by people each day (Anonymous, 2020). The current world population of about 7.7 billion is expected to increase and reach 9.8 billion people by 2050. To accommodate the increased demand for food, annual cereal production will need to rise by about 60–70% from the current level of 2.8 billion tonnes. For various reasons, however, production is not expected to keep pace with demand in developing countries, and their net imports of cereals are projected to more than double from 135 million metric tonnes in 2008/2009 to 300 million metric tonnes in 2050 (Food Agriculture Organization 2009). This gap can be bridged by increased imports, and significant opportunities exist for traditional grain exporters, including Australia, to produce and export greater amounts of wheat over the next few decades (Linehan et al., 2012). Karnal bunt, a disease caused by the fungus Tilletia indica Mitra [syn. Neovossia indica (Mitra) Mundkur], is a threat to grain export (Joshi et al., 1983), due to its use as a non-tariff trade barrier by several wheat-importing countries (Beattie and Biggerstaff, 1999). The disease has minimal impact on wheat grain yield (Warham, 1986; Murray and Brennan, 1998) but the infected grains exude an unpleasant, rotten fish odour due to a chemical (trimethylamine) produced by the fungal spores (Mitra, 1935). Trimethylamine is associated with multiple diseases in humans, including renal disorders, cancer, obesity, and cardiovascular diseases (Chhibber-Goel et al., 2016).

Control of this disease is difficult because teliospores of the fungus are resistant to physical and chemical factors (Fuentes-Dávila et al., 2018), the fungus causes local infections (Fuentes-Davila, 1996), and teliospores may remain dormant for more than 32 months (Babadoost et al., 2004). The cultivation of resistant varieties remains the most cost-effective approach to manage the threat of incursions into countries free of the disease (Singh et al., 2007; Emebiri et al., 2019a). Sources of resistance have been identified in the wild relative of wheat, Aegilops tauschii (Chhuneja et al., 2008), and in synthetic hexaploid wheat (Mujeeb-Kazi et al., 2006), but resistance in common wheat is limited (Fuentes-Dávila and Rajaram, 1994), and as such, progress in breeding resistant varieties has remained modest. In most wheat-exporting countries that are free of the disease, there are no breeding efforts due to cost burdens and the low return on investments, which in the absence of an incursion, is zero (White et al., 2016). Availability of molecular markers closely linked to resistance genes could be incentivising, as it has the potential to improve selection (Singh et al., 2012; Emebiri et al., 2019b), but efforts in the past have also been modest. Quantitative trait loci (QTL) associated with Karnal bunt resistance in common wheat have been identified in the past (Nelson et al., 1998; Singh et al., 2003; Singh et al., 2007, 2012; Kumar et al., 2007, 2015; Kaur et al., 2016), but these studies were based on a small number of restriction fragment length polymorphisms (RFLP) and PCR-based simple sequence repeats (SSRs). Recently, the use of high-density single nucleotide polymorphism (SNP) arrays in genome-wide association studies (GWAS) have been reported (Brar et al., 2018; Emebiri et al., 2019b; Gupta et al., 2019; Singh et al., 2020), which offers new opportunities for marker-assisted selection (MAS). However, the focus of many plant breeders has now shifted from the use of MAS to the application of genomic selection.

Genomic selection, first introduced by Meuwissen et al. (2001), would be an attractive tool for pre-emptive breeding against exotic pathogens, as it would reduce the challenges of phenotyping (Poland and Rutkoski, 2016). Genomic selection is a two-stage process in which whole-genome markers are used to predict genomic estimated breeding value (GEBV) of individuals in a population, and then selection decisions are made on the basis of these GEBVs (Meuwissen et al., 2001). In the best-case scenario, breeders can select the best performing genotypes from the population for use in their crossing block, without the need to phenotype the plants themselves. The potential for genomic selection has yet to be evaluated for Karnal bunt resistance in common wheat. The prediction accuracy depends on the trait’s heritability, and for Karnal bunt resistance, the estimates are quite high (ranging from 0.75 to 0.91) (Brar et al., 2018; Emebiri et al., 2019a; Gupta et al., 2019; Singh et al., 2020) due to the well-established protocol for disease screening (Fuentes-Dávila et al., 1995).

The International Maize and Wheat Improvement Center (CIMMYT), Mexico, develops novel common wheat germplasm carrying Karnal bunt resistance genes (Singh et al., 2016). Some of the lines were derived from crosses that include Munal#1 (now released as Super 172) and synthetic hexaploids (Mujeeb-Kazi et al., 2006) as parents, and some were developed from backcrosses to commercial varieties, such as Batavia, and Pastor. The lines are important pre-emptive breeding tools to prevent the spread of this quarantined disease into countries that are currently disease-free. However, many other variables are involved in grower uptake of new varieties, with grain yield as the ultimate determinant of which variety the farmer will grow in any given season. In the absence of a disease pressure, genetic resistance may in fact become a liability (yield penalty), as demonstrated in numerous studies (Brown, 2002; Ning et al., 2017). Sharp et al. (2002), for instance, observed that while the Wsm1 gene in wheat provided the most effective resistance to wheat streak mosaic virus, a mean yield reduction of 21% occurred in the absence of the virus. The wheat stem rust resistance gene, Sr26, has a 9% yield penalty (Brown, 2002), and the barley (Hordeum vulgare) mlo resistance gene has a 4.2% yield penalty (Jorgensen, 1992). This is because genetic resistance is an on-going process, and plants expend metabolic energy that might otherwise be converted to yield. In the absence of the pathogen, existence of a yield penalty for Karnal bunt resistance will outweight the value of the resistance gene (Oliver et al., 2014; Ning et al., 2017), and breeders will be further discouraged from adopting and using improved germplasm in their programmes for fear of upsetting the established phenology and yield profiles.

The key to pre-emptive breeding would be to provide breeders with a package of molecular markers and resistance genes in genetic backgrounds that will not upset established yield and phenology profiles, as there is no point selecting less susceptible varieties if there is an opportunity cost of lower yield without disease. In this paper, we report a research on pre-emptive breeding for Karnal bunt resistance designed to identify linked molecular markers, assess prospects of genomic selection as a tool, and prioritise wheat genotypes suitable for use as parents. To identify such genotypes, we performed field experiments over two years to compare their agronomic values with those of reference, commercial varieties.



MATERIALS AND METHODS


Plant Materials

The germplasm materials consisted of 242 genotypes, made up of 177 bread wheat varieties, 8 durum wheat, 11 triticale, and 46 Karnal bunt-resistant germplasm lines (KBRL). The KBRL were developed at the CIMMYT, and imported into Australia through the CIMMYT-Australia-ICARDA Germplasm Evaluation (CAIGE) suite of projects.1 The wheat varieties represent parents used in breeding programmes, historical varieties, and current commercial varieties that are still being cultivated. These were mainly bred in Australia, but some originated from the United States, Brazil, Canada, China, Mexico, New Zealand, and India, providing a global resource for genetic analysis. The bread wheat lines include Super172 (synonym Munal-#1), used as the resistant check, and the highly susceptible Indian wheat variety WL-711 (synonym WL-711-0IND) used as a susceptible check. The names of the varieties, year of release and pedigrees are listed in Supplememntary Table 1.



Disease Phenotyping

Phenotypic data on Karnal bunt resistance collected from Australian wheat varieties and CIMMYT advanced breeding lines were used. The data for the Australian varieties were derived from field experiments (Emebiri et al., 2019a) conducted during three consecutive cropping seasons (2014–2015, 2015–2016, and 2016–2017), at the Norman E. Borlaug Experimental Station, the CIMMYT, Obregon. The data on CIMMYT breeding lines, collected over three planting dates, were kindly provided by Dr. Ravi P. Singh as part of the materials delivered through CAIGE project. In these data, Karnal bunt resistance was calculated as the percentage of infected grains in each ear (Fuentes-Dávila and Rajaram, 1994), but to rate the genotypes consistently across data sets, those with infection levels of 0–2.5% were rated as resistant, 2.6–5% as moderately resistant, 5.1–10% as moderately susceptible and greater than 10% as susceptible (Gaudet et al., 2001).



Genotyping

Genomic DNA was isolated from the leaves of individual lines as described in Tan et al. (2015) and genotyped using DArT-Seq technology (Diversity Arrays Technology Pty Ltd., Australia). The polymorphisms were scored as binary data (0/1), indicating the presence/absence of SNP in the genome of each sample. The DArTseq data were filtered for quality, first by removing duplicates and monomorphic markers; then by retaining markers on the basis of CallRate (≥0.95), reproducibility (≥0.95), minor allele frequency (≥0.05), and percent missing data (≤15%). The final molecular marker data set comprised of 8,012 loci scored on 177 hexaploid genotypes. All heterozygotes were treated as missing data, and the corresponding values were imputed using the Random Forest regression method in R package (Stekhoven and Bühlmann, 2012).



Genetic Structure and Linkage Disequlibrium

Genetic structure was analysed using algorithms implemented in the adegenet package (Jombart, 2008). First, we ran the snapclust function to select the optimal number of genetic groups, based on a statistical measure of goodness of fit, the Bayesian Information Criterion (BIC). Then, a discriminant analysis of principal components (DAPC) was applied, which combined PCA with discriminant analysis to maximise between-group differences while minimising the within-group variation (Jombart et al., 2010).

Linkage disequilibrium (LD) (statistical association between allelic variants) was calculated in plink v1.9 (Purcell et al., 2007) as the squared correlation coefficient (r2) between alleles at pairs of loci within each chromosome. The analyses were carried out with a molecular data set that was thinned down evenly across the genome to a window size of 8 kb. The decay of LD over genetic distance was examined by plotting the pair-wise LD against distance, and fitting a decay curve, established by square root transformation of the predicted LD values calculated according to Andreescu et al. (2007). The background r2 value was calculated as the 95th percentile of all LD values between markers located on different chromosomes, assumed to unlinked (Breseghello and Sorrells, 2006).



Genome-Wide Association Analysis

Genome-wide analyses were performed with the R package, lmem.gwaser (Gutierrez et al., 2016), according to the Kinship model, which had a lambda value of 1.03. It can be described as follow:
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where y is the observed phenotype, x is the molecular marker score matrix, β is the vector of marker allelic effects, z is an incidence matrix, u is a vector of random polygene background effects with Var(u) being 2KVG (K = Kinship coefficients and VG = genetic variance), and ε is a vector of random experimental error.

We adjusted observed P-value for multiple testing using two methods: the method of Li and Ji (2005), which is based on the effective number of independent tests (alpha level of 0.05) and the false discovery rate (FDR) method of Benjamini and Hochberg (1995). The method of Li and Ji (2005) was implemented in the lmem.gwaser package but FDR was calculated in the R function, p.adjust(). Allelic effects and proportion of phenotypic variance (R2-values) explained by significant markers were derived from simple linear regression analyses, with R2 = SSreg/SStot, where SSreg is the regression sum of squares and SStot is the total sum of squares.



Physical Mapping

Significant markers were assigned to physical positions in megabase pairs (Mbp) by nucleotide BLAST (BLASTN) search (E-value threshold = 1E-5) against the IWGSC RefSeq v1.0 Chinese Spring assembly,2 using the marker sequence for query. High-confidence candidate genes closely matching the marker sequence were obtained in a window size of estimated LD each side of the marker. The results were further refined with the JBrowse tool (Buels et al., 2016) to identify nearby wheat expressed sequence tags (wEST), and this allowed assigning the markers to physical bin positions on the deletion maps of the Chinese Spring cultivar.



Prediction of Karnal Bunt Resistance

Two scenarios were considered for genomic prediction: (1) the use of only the markers identified in GWAS analysis (QGBLUP), analogous to marker-assisted selection strategy and (2) the use of genome-wide markers to predict the performance of individuals for which genotypic data is available, but not the phenotypes. The analysis was carried out using the genomic best linear unbiased prediction (GBLUP) model (Meuwissen et al., 2001), in which the G-matrix was calculated using either the six significant markers identified in GWAS, or the genome-wide markers, depending on the approach. In both cases, accuracies were determined from a fivefold cross-validation scheme, in which 80% of the genotypes were randomly assigned to a training set (TRN) and the remaining 20% to a testing set (TSN). This was repeated 100 times, and for each repeat, the individuals in the TRN and TSN set were randomly re-sampled, the phenotypes of individuals in the TST set were masked, and then predicted based on the TRN set. Genomic prediction accuracy was calculated as the Pearson’s correlation between the actual and the predicted phenotypes of the lines in the TSN set.



Agronomic Assessment

Field experiments were carried out in 2015 and 2016 cropping seasons to assess the agronomic value of Karnal bunt-resistant lines. For this study, 37 of the Karnal bunt resistant lines from CIMMYT were used. Seven commercial wheat varieties were included as reference genotypes. These included Super172 (syn. Munal#1), Axe, Mace, Rosella, Scout, Suntop, and Waagan. Axe was released in 2007 and is a very early maturing wheat that is suited for short growing seasons, while Mace, released in 2008, has broad adaptation, with consistently high yield under a wide range of conditions. Rosella is a widely adapted winter wheat used for dual-purpose grazing, while Suntop was released in 2011 as a main season line, with high and stable yields from low to high yield potential areas. Both Scout and Waagan were released in 2009. Scout is a mid-season maturity variety with low screenings and high test weight, and Waagan is a very early maturing spring wheat, with high yield potential in medium/low rainfall environments.

The experiments were conducted at the Wagga Wagga Agricultural Institute, Wagga Wagga NSW, Australia (latitude –35.05° S, longitude 147.35° E), on a site with well-drained, sandy clay loam soil with a greyish brown colour. The experiments were arrayed in a row-column, p-rep design (Cullis Brian et al., 2006), with experimental units (plots) measuring 7.5 m2 in area (six rows with 30 cm spacing, 6 m long, trimmed to 5 m prior to harvest). Plots were sown with a tractor-mounted Seeder, at a rate of 60-g seeds per plot. All experiments were fertilised at the time of sowing with monoammonium phosphate at the rate of 100 kg/ha, and standard operational procedures (irrigation, weed, pest/disease control) were applied.



Statistical Analysis of Agronomic Data

Data on the following agronomic traits were collected: emergence counts (number of plants per plot), flowering date (50% awn emergence), plant height (height from soil to tip of the awns), NDVI (at anthesis using the GreenSeeker) and grain yield (weight of the uncleaned seed weight from machine harvests per plot). At harvest, the uncleaned grains (300 g) were subsampled and used to collect data on grain size (1,000 grain weight) and grain plumpness (grains retained over a 2.5 mm sieve).

A two stage approach was used for data analysis. In the first stage, each trait within an experiment/year was analysed separately to account for design factors and spatial field variation. This was performed using a mixed linear model framework with spatial corrections for field heterogeneity as implemented in the R package, SpATS (Rodríguez-Álvarez et al., 2018). The analytical model included data on seedling emergence (count) per plot as a fixed component to adjust for differences in plant density. SpATS uses two-dimensional smoothing surfaces with penalised splines to model the spatial trends within the field and obtain estimates of predicted means. In the second stage, adjusted means for the 2 years were jointly modelled to generate variance components, and a genotype × trait matrix, which was analysed according to the genotype plus genotype-by-environment method, as implemented in GGEBiplotGUI (Frutos et al., 2014). Graphical displays of the output were aided by the R package, ggplot2 (Ginestet, 2011).



RESULTS


Phenotypic Variation

Broad-sense heritability of Karnal bunt resistance, calculated as the ratio of genotypic to phenotypic variance components, was 0.83 ± 0.02, and for narrow-sense heritability, calculated using a marker-based approach (Covarrubias-Pazaran, 2016), the estimate was relatively high at 0.61 ± 0.14. These estimates indicated a large contribution of genetic factors to Karnal bunt resistance in the wheat accessions. The average percentage infection in the wheat accessions was 17.5%, with a range of 0.4–51.8%. There were 10 resistant lines, that is, genotypes with seed infection levels of 0–2.5%. These included seven KBRL and three cultivated varieties. Sixteen of the accessions were moderately resistant (% KB infection > 2.5–5%), 46 were moderately susceptible (>5–10%) and 105 were susceptible (%KB infection > 10%).



Genetic Structure

Genetic structure analysis was performed to determine whether the composition of wheat accessions was structured, that is, differentiated into clusters of closely related individuals, and which individuals belong to which clusters. Graph of BIC values showed a minimum value at K = 4, and this was determined to be the optimal number of genetic clusters in the wheat accessions (Figure 1A). The DAPC analysis showed clear separation of the accessions into four genetic clusters (Figure 1B), with sample sizes ranging from 11 to 79. It was noteworthy that the CIMMYT-derived Karnal bunt resistant lines cluster together in Pop3 (n = 46), and along with varieties such as Seri-M82, Pastor, Genaro-F81, and Veery5, they were separate from the other wheat genotypes. Seri-M82 and Genaro-F81 are semi-dwarf, historical wheat varieties from CIMMYT, and Pastor is derived from a cross involving Ser-M82 as a parent. The genotypes in Pop1 (n = 41) and Pop2 (n = 11) were Australian-bred wheat varieties, and those in Pop4 (N = 79) were a mixture of global wheat genotypes. They include Australian varieties such as Axe, Drysdale and EGA-Burke, the Indian variety WL-711, Canadian varieties such as AC-Domain and its progeny, AC-Snowbird, the Chinese variety, Chuan-Mai-18, the Brazilian variety, Carazinho and the USA variety, Angus.
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FIGURE 1. Population structure in the panel of 177 wheat accessions used for the study. Panel (A) is the optimal number of clusters identified with the find.cluster function in adegenet (Jombart, 2008). Panel (B) is the DAPC results, showing relative positions of individuals and genetic clusters in the discriminant space (inset is the PCA eigenvalues).


Linkage disequilibrium (statistical association between allelic variants) and its decay rate were examined using pair-wise combinations of markers genotyped across the 21 wheat chromosomes. The estimate of background LD, calculated from r2 values of unlinked markers was 0.15, which agrees with the value commonly reported for wheat (Joukhadar et al., 2020). This value intersected the LD decay line at 62.5 Kbp (Figure 2), and this represents the extent of LD in the population used for this study. It represents the mapping resolution of any QTL detected and was used as the confidence interval.
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FIGURE 2. Plot of average linkage disequilibrium (LD) values (r2) against inter-marker distances over a short (100 kbp) distance to visualise LD decay. The decay curve is the square root transformation of predicted LD values according to Andreescu et al. (2007). The horizontal and vertical dotted lines indicate the baseline r2 threshold value, and the extent of LD decay, respectively.




QTL Identification

There was an evident association between genetic groups and Karnal bunt resistance in the population, as majority of the lines in Pop3 were resistant, and separate from the other groups in the DAPC space (Figure 1B). This association of population group with resistance was statistically significant, as determined from a chi-square test of independence (X2 = 54.81, P-value < 0.001), hence, corrective measures were applied to adjust for the potential bias in declaring QTL identification.

A Kinship-corrected GWAS analysis identified six markers that were significantly associated with Karnal bunt resistance, after controlling for multiple testing using both the genome-wide threshold and FDR criteria (Table 1 and Figure 3A). We compared different mixed models and found the kinship model as the most effective to correct for population structure, as it produced the lowest genomic inflation factor (lambda, λgc = 1.03), and the observed P-values showed little deviations from the expected (Figure 3B). Surprisingly, all the significant markers were in the A and B genomes, and physically localised to the long arms of chromosomes 1A, 2A, 3B, 4A, 5A, and 6B (Table 1). The markers explained a large proportion (7.6–29.5%) of the variation in Karnal bunt resistance, and when favourable alleles were considered, genotypes with a high number of beneficial alleles were completely resistant to Karnal bunt infection (Figure 3C).


TABLE 1. Summary of significant markers detected in association mapping of Karnal bunt resistance in common wheat.
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FIGURE 3. (A) Circular Manhattan plot from genome-wide scan with a mixed linear model. The red line is the significance threshold; (B) QQ plots from genome-wide scan. The late separation between observed and expected P-values in the upper left section represents the significant associations; and (C) Relationship between number of favourable alleles and Karnal bunt resistance in the wheat accessions.




Genomic Prediction

There was no difference in prediction accuracy between the QGBLUP approach and the whole-genome prediction (GBLUP) approach (Figure 4). In the QGBLUP approach, the prediction ability for Karnal bunt resistance averaged 0.53 ± 0.003, and in the alternate approach of whole genome marker prediction, the accuracy averaged 0.56 ± 0.01. In effect, genomic prediction using a few, trait-specific markers produced accuracies that compared favourably with those from whole-genome markers.
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FIGURE 4. Prediction accuracy of models for Karnal bunt resistance, using markers detected in GWAS analysis (QTL), and genome-wide markers (WG).




Agronomic Profiles

In the agronomic experiments, estimates of trait heritability, independent of year and heterogeneous field conditions, were consistently high across traits (Table 2), indicating strong genotypic main effects. The adjusted trait means were analysed using the GGE biplot method to allow visual examination of genotype performance across multiple traits, and identification of superior individuals. The biplot captured 87.7% of total variability in the data (Figure 5) and is therefore appropriate for visualising the relationships among traits. All traits were equally important, as indicated by the relative length of their vectors. The biplot showed that grain yield was positively related to growth duration and biomass production (acute angles), negatively related to plant height (obtuse angle), and independent of grain size (near right angles). When the “which-won-where” function was used to partition the data into a two-dimensional polygon view, the agronomic traits were grouped into three major sectors (Figure 5A): phenology (flowering time/plant height), grain yield (grain yield/NDVI), and grain size (1,000-kernel weight/grain plumpness). Vertex genotypes in each sector are considered the best/worst for traits within the sector (Yan and Rajcan, 2002). Thus, the late-maturing variety, Rosella, was placed at the apex of the phenology sector, while early maturing varieties, Waagan and Axe, were placed at the vertex of the grain yield sector (Figure 5A). These varieties were positioned opposite to the plant height vector, which is consistent with the negative relationship between plant height and grain yield. Of the CIMMYT-derived accessions, ZWB12-124 and ZWB12_147, had the best agronomic values for grain size/plumpness, while ZWB12_158 and ZWB12_30 were the worst for plant height (Figure 5A). The mean trait value for all genotypes are presented in Table 2 to validate the interpretations.


TABLE 2. Spatially adjusted means of check varieties and CIMMYT-derived, Karnal bunt resistant germplasm.
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FIGURE 5. GGE biplot of a genotype × trait matrix averaged over two years, using trait-focussed SVP, and Double-Centred GE with scaling by standard deviation. (A) Polygon plot of “which won where.” The numbers refer to individual wheat accessions (see Table 1), and abbreviations are given for trait names. Flt, flowering time; Gyld, Grain yield; NDVI, Normalised difference vegetative index; Tkw, Thousand kernel weight; Plht, Plant height. (B) Ranking the accessions in relation to the “ideal” genotype.


The GGE biplot can also be used to visualise genotype ranking against the “ideal.” The “ideal” is defined as a genotype that combines all favourable attributes, and in Figure 5B, the arrow indicates where the ideal genotype should be. Accordingly, the ideal genotype is expected to be high yielding, early maturing and below average in plant height. A performance line passing through the origin is used as a reference, and a genotype closer to the “ideal” is considered more desirable than those further away. As shown in Figure 5B, Waagan, followed by Mace and Axe are the more desirable of the check varieties, while Rosella and Suntop were far from the ideal genotype. Of the Karnal bunt-resistant accessions, ZVS13-385 and ZWB12-62 were the closest to the ideal genotype (Figure 5B). In particular, the genotype ZVS13-385 was placed within the same concentric ring as Mace, which meant it had similar agronomic attributes. This is relevant information, as Mace is one of the most widely grown varieties in Australia. DNA analysis showed that ZVS13-385 possessed all six of the favourable alleles identified for Karnal bunt resistance, and therefore would be suitable as a parent for transferring resistance into commercially acceptable backgrounds.



DISCUSSION

In the first part of this study, we sought to dissect the genetic basis of Karnal bunt resistance, as the information is essential for confirming resistance sources, identifying those most suitable as donor parental lines, and designing strategies to accelerate transfer of resistance into commercial cultivars. We identified six DArTseq markers, which explained between 7.6 and 29.5% of the observed phenotypic variation and were located at chromosome positions previously reported in the literature (Bishnoi et al., 2020). When BLASTN search was conducted against the IWGSC RefSeq v1.0 Chinese Spring assembly, the most frequently identified putative candidate gene at the QTLs encoded the F-box domain containing proteins. The F-box proteins are a large superfamily that play pivotal roles in host-pathogen interactions through targeting substrates into the degradation machinery (Cao et al., 2008).

The knowledge that Karnal bunt resistance is mediated by multiple genes is supported by previous studies, but this introduces another dimension to the difficulties of breeding for resistance in the absence of the pathogens (Emebiri et al., 2019b). The multi-gene control implies that marker-assisted selection by pyramiding or stacking of favourable alleles may not be successful (Langridge and Waugh, 2019), because interactions among QTL/genes and environmental factors can make substantial contributions to variation in complex traits such as disease susceptibility (Carlborg and Haley, 2004). As suggested in Emebiri et al. (2019b), new and innovative strategies will be required, and in this study, we assessed the potentials of the method of genomic prediction as a pre-emptive breeding tool. For developing the prediction model, we compared the traditional use of whole-genome markers against the use of a few significant markers identified by GWAS and found the prediction abilities to be comparable (Figure 4). This was not surprising, as genomic prediction accuracy is highly dependent on the LD between the genotyped markers and actual causative variants (de Los Campos et al., 2013). The use of significant trait-specific markers was expected to improve genomic prediction, and in fact, prior marker selection has been suggested as a strategy to increase reliability of the genomic estimated breeding values (Brøndum et al., 2015). Rutkoski et al. (2012) reported that in wheat, genomic predictions based on QTL targeted markers for fusarium head blight resistance (deoxynivalenol) alone were higher than predictions based on genome-wide markers. Other researchers have also found higher prediction abilities of the MAS approach over whole-genome prediction (Slavov et al., 2014; Zhao et al., 2014; Boeven et al., 2016), but Gaikpa et al. (2020) found the opposite to be the case. Similarly, while some researchers have found that use of trait-specific markers as fixed factors increased accuracy of genomic prediction (e.g., Daetwyler et al., 2014), others have observed no difference (e.g., Rice and Lipka, 2019). Invariably, this will vary with trait, and the performance of such a prediction model should be explored on a trait-by-trait basis prior to its implementation in a breeding programme (Rice and Lipka, 2019). Karnal bunt resistance in this population showed high heritability (0.83 ± 0.02), hence marker-based prediction accuracies were almost comparable to genome-wide prediction accuracies. This may not be the case in different populations, but the possibility of using a few significant markers for genomic prediction would augur well for pre-emptive breeding against Karnal bunt infection in countries that are free of the disease, where phenotyping would be difficult and the costs for high-density genotyping can be limiting. This is a subject that requires further investigation, as large-scale studies are showing that, in a high LD crop like wheat, high-density genomic coverage has minimal impact on the genomic predictabilities (Juliana et al., 2019).

The identification of parental lines combining Karnal bunt resistance with adaptive agronomic traits is key to pre-emptive breeding, as it addresses breeder’s concerns regarding yield penalty in the absence of the disease. Plant breeders use the GGE biplot technique for prioritising genotypes for use as parents in varietal improvement as the regular stability analysis does not provide information on the relative ranking of entries with reference to an ideal genotype (Yan and Kang, 2003). The current research carried out a comprehensive examination of Karnal bunt resistant germplasm from CIMMYT and has identified an ideal genotype, ZVS13_385 (TAM200/PASTOR//TOBA97/3/HEILO), which showed agronomic similarity to the highly successful Australian wheat variety, Mace (Moffat et al., 2015; Table 2; Figure 5B). Furthermore, ZVS13_385 is phenotypically resistant to Karnal bunt infection (<1% infection), and possessed all favourable alleles detected for major and minor QTL linked to resistance. This means that it could be used directly as a cultivated variety, or as an ideal genotype for use in the crossing block. We conclude that the identification of a genotype combining Karnal bunt resistance with adaptive agronomic traits negates the concerns of breeders regarding yield penalty in the absence of the disease. Using mathematical modelling, Vyska et al. (2016) showed that even when disease outbreak is uncertain, growing resistant varieties is an optimal strategy for crop protection as it reduces the probability of an outbreak occurring. We add that wide availability of Karnal bunt resistant lines may encourage countries to relax the zero-tolerance regulation that currently exists for Karnal bunt, which is quite costly to implement (Babadoost, 2000; Vocke et al., 2010).
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Disease resistance in plants is mostly quantitative, with both major and minor genes controlling resistance. This research aimed to optimize genomic selection (GS) models for use in breeding programs that are needed to select both major and minor genes for resistance. In this study, stripe rust (Puccinia striiformis Westend. f. sp. tritici Erikss.) of wheat (Triticum aestivum L.) was used as a model for quantitative disease resistance. The quantitative nature of stripe rust is usually phenotyped with two disease traits, infection type (IT) and disease severity (SEV). We compared two types of training populations composed of 2,630 breeding lines (BLs) phenotyped in single-plot trials from 4 years (2016–2020) and 475 diversity panel (DP) lines from 4 years (2013–2016), both across two locations. We also compared the accuracy of models using four different major gene markers and genome-wide association study (GWAS) markers as fixed effects. The prediction models used 31,975 markers that are replicated 50 times using a 5-fold cross-validation. We then compared GS models using a marker-assisted selection (MAS) to compare the prediction accuracy of the markers alone and in combination. GS models had higher accuracies than MAS and reached an accuracy of 0.72 for disease SEV. The major gene and GWAS markers had only a small to nil increase in the prediction accuracy more than the base GS model, with the highest accuracy increase of 0.03 for the major markers and 0.06 for the GWAS markers. There was a statistical increase in the accuracy using the disease SEV trait, BLs, population type, and combining years. There was also a statistical increase in the accuracy using the major markers in the validation sets as the mean accuracy decreased. The inclusion of fixed effects in low prediction scenarios increased the accuracy up to 0.06 for GS models using significant GWAS markers. Our results indicate that GS can accurately predict quantitative disease resistance in the presence of major and minor genes.

Keywords: genomic selection, fixed-effect, disease resistance, stripe rust, genome-wide associate studies, rrBLUP


INTRODUCTION

Plant breeding programs select and improve both qualitative and quantitative traits. Qualitative traits are controlled by a few large-effect genes that are readily detectable and follow a Mendelian inheritance (Chen, 2013). In contrast, quantitative traits are controlled by several small-effect genes that are difficult to distinguish and controlled by quantitative trait loci (QTL; Bernardo, 2008). The genetic control of a trait determines the types of selection that will be most effective for improvement. However, disease resistance can be either a qualitative or a quantitative trait, and, therefore, the most effective method of improvement varies (Poland and Rutkoski, 2016). Breeding for disease resistance is a major goal for most breeding programs due to the effect of the disease on yield and quality performance.

Breeding for qualitative disease resistance is controlled by one or two large-effect alleles, called resistance (R) genes and further referred to as major genes (Agrios, 2005). Qualitative disease resistance generally follows a race-specific resistance and quickly degrades due to the rapid evolution of new pathogen races (Chen, 2005). Major gene pyramiding can reduce the possibility of major genes by combining multiple major genes to provide a more durable resistance to multiple pathogen races into a single line. Pyramiding is implemented through a marker-assisted selection (MAS) and has been an effective method for various crops (Wang et al., 2001, 2017; Pietrusińska et al., 2011; Bai et al., 2012; Jiang et al., 2012; Liu et al., 2016b; Singh et al., 2017). Successful implementation of major genes relies on identifying the useful sources of the genes, finding the linked markers, confirming the effect in different genetic backgrounds, and finally, deploying said major genes (Bernardo, 2008). Major gene implementation is further complicated when it comes to selecting multiple major genes simultaneously for gene pyramiding. A large population is needed to screen and select the lines with more than one gene in early generations while still maintaining enough lines to select for other traits in later generations (Poland and Rutkoski, 2016). The difficulty can be further attributed to unfavorable linkage and multiple major gene sources (Bernardo, 2008).

Breeding for quantitative resistance conferred by minor-effect genes or a combination of minor and major genes tends to produce a more durable resistance in breeding lines (BLs) because it relies on multi-resistant alleles. Breeding for quantitative resistance requires multiple breeding cycles to improve resistance gradually (Poland and Rutkoski, 2016). The breeding method for quantitative resistance is similar to the methodology used for other complex traits such as grain yield (Rutkoski et al., 2014; Poland and Rutkoski, 2016; González-Camacho et al., 2018). Similar to qualitative resistance, selecting for quantitative resistance can be completed throughout the breeding process, but disease resistance is commonly completed in earlier generations to select for other traits further in the program. Therefore, selecting for quantitative resistance in earlier generations can be difficult due to the lack of replication and environments. However, selecting for resistance in later generations reduces genetic gain due to the selection for other traits (Poland and Rutkoski, 2016). Both methods, therefore, reduce the effectiveness of breeding quantitative resistance. One such trait that displays both qualitative and quantitative resistance is stripe rust, also called yellow rust (Yr), caused by Puccinia striiformis Westend. f. sp. tritici Erikss.

Stripe rust is one of the most devastating diseases of wheat (Triticum aestivum L.) and is highly destructive in the western USA (Chen, 2005; González-Camacho et al., 2018; Liu et al., 2019). Stripe rust can cause more than 90% yield losses in fields planted with susceptible cultivars (Liu et al., 2020). The use of resistance varieties and the applications of fungicide are the primary methods to control stripe rust (Chen and Line, 1995; Liu et al., 2020). Stripe rust resistance is categorized into qualitative all-stage resistance (ASR) and quantitative adult-plant resistance (APR).

All-stage resistance is conferred by race-specific genes that are inherited qualitatively with a life span of ~3.5 years per gene (Case et al., 2014; Chen and Kang, 2017). There are more than 300 identified QTL conferring resistance to stripe rust (Wang and Chen, 2017). The identification of a large number of major genes shows numerous resistance alleles available for breeding purposes in various varieties and populations. Previously, major genes Yr5 and Yr15 have been shown to be effective against all races of the stripe rust pathogen in the USA (Wang and Chen, 2017). However, virulence to Yr5 has been demonstrated in a few countries not including the USA (Wellings et al., 2009; Zhang et al., 2020; Kharouf et al., 2021; Tekin et al., 2021). Virulence to Yr15 has only been documented in Afghanistan (Gerechter-Amitai et al., 1989). The virulence to these genes demonstrates the need to not rely on any single major gene to provide resistance in a cultivar.

Adult-plant resistance is usually a non-race-specific quantitative resistance that is associated with durable resistance with some genes being effective for more than 60 years (Chen, 2013). APR is often affected by temperature and also can be referred to as high-temperature adult-plant (HTAP) resistance, which is often controlled by more than one gene mainly with additive effect (Chen and Line, 1995; Chen et al., 1995; Liu et al., 2019). HTAP resistance is influenced by the temperature and age of the plants. As the temperature increases, the plant becomes more resistant, and rust development slows down (Chen, 2005). However, to confirm HTAP, greenhouse studies with different temperature ranges need to be conducted (Chen, 2005). HTAP resistance and APR are conferred by different loci with varying effects and often display partial resistance, making them difficult to incorporate into new cultivars (Chen and Line, 1995; Liu et al., 2019). Consequently, APR or HTAP resistance must be improved over multiple selection cycles as mentioned previously (Rutkoski et al., 2014; Poland and Rutkoski, 2016; González-Camacho et al., 2018). APR is generally expressed in the later stages of wheat, whereas ASR is expressed throughout the lifecycle of the plant (Wang and Chen, 2017). Therefore, it is difficult to identify APR genes due to the masking of their effect by ASR genes. The masking of ASR genes and the quantitative nature of APR genes result in much of the APR resistance in a population being uncharacterized. It is recommended to combine both ASR and APR genes to take advantage of both types of resistance limitations (Wang and Chen, 2017). The lack of ASR durability coupled with the challenge in identifying and breeding APR creates a unique opportunity for genomic selection (GS). In addition, major ASR genes are known to interact with APR and including them in GS models as fixed effect have increased prediction accuracy (Bernardo, 2014; Rutkoski et al., 2014; Arruda et al., 2016).

In many crops, the difficulty in selecting for qualitative and quantitative disease resistance (similar to stripe rust) creates an opportunity for GS to integrate quantitative resistance by accounting for small-effect alleles in the presence of large-effect major genes without the development and analysis of mapping populations and techniques (Poland and Rutkoski, 2016). The goal of this study was to determine the most accurate GS method to select for disease resistance in the presence of both major and minor genes. Wheat stripe rust was used as an example as most plant breeders try to capture the additive effects of both ASR and APR simultaneously. The identified GS approaches will be a valuable tool for breeders to facilitate cultivar and parental selection for accumulating favorable alleles for disease resistance in the presence of major and minor resistance genes (Rutkoski et al., 2014; Michel et al., 2017).



MATERIALS AND METHODS


Phenotypic Data

Two training populations were used to compare the inclusion of fixed-effect markers in populations with different frequencies of stripe rust genes. The first training population consists of F3 : 5 and double-haploid soft white winter wheat BLs developed by the Washington State University (WSU) winter wheat breeding program. The BL population was evaluated for stripe rust in the unreplicated single-plot trials in Pullman and Lind, Washington planted in 2016, 2017, 2018, and 2020 growing seasons (Table 1). Due to the unreplicated nature of the single-plot trails, each trial consisted of unique lines, which resulted in a total of 2,630 lines for all years and locations. The year 2019 was not included due to the lack of adequate disease SEV in our trials. The BL population was previously selected for stripe rust resistance in headrow plots the year previous to unreplicated trials. Susceptible BLs in headrow plots were culled and not included in the BL population, which represents a prior selected, closely related BL population with similar pedigree sources of stripe rust resistance. The second training population consists of diverse association mapping panel [diversity panel (DP)] trials evaluated in unreplicated trials in Central Ferry and Pullman, Washington from 2013 to 2016 with the same 475 lines represented in each trial (Table 1). The mapping panel consists of varieties and BLs from at least six soft white winter wheat breeding programs in the Pacific Northwest (PNW) and represents diverse backgrounds with the potential sources of stripe rust resistance.


Table 1. Training populations for stripe rust IT and SEV in Central Ferry, Lind, and Pullman, WA, USA from 2013 to 2020.

[image: Table 1]

The measured disease traits were stripe rust IT and SEV. The recordings of these traits were dependent on natural infection and stripe rust incidence at the time of observation and were not previously inoculated. Some trials had three observations for stripe rust and were identified with sequential numbers. The first recording was taken soon after the emergence of a flag leaf, the second was taken again after anthesis, and the third was taken in the early milk stage. The trials with only one observation were recorded right after anthesis for responses in the adult plant stage as stripe rust was not present in the field during earlier growth stages. IT was recorded based on a 0–9 scale (Line and Qayoum, 1992). SEV was recorded as the percentage of the leaf-infected area using the modified Cobb Scale (Peterson et al., 1948). Table 1 summarizes environments, years, genotyped individuals, and the measurements taken for each trial during which stripe rust was recorded. However, due to the nature of APR being effective in the adult stage and the fact that not all trials had multiple recordings, only the last observation for each trial was used to measure the disease traits for APR.

To account for differences in disease pressure under different environments, a two-step adjusted mean method by which a linear model was implemented to adjust both IT and SEV means within and across environments was used. Then, a mixed linear model was used to calculate genomic estimated breeding values (GEBVs; Ward et al., 2019). Means from the stripe rust data collected in the unreplicated trials were adjusted using the residuals calculated for the unreplicated genotypes in individual environments and across environments using the modified augmented complete block design (ACBD) model (Federer, 1956; Goldman, 2019). The adjustments were made according to the method implemented in Merrick and Carter (2021), with the full model across environments as follows:

[image: image]

where Yij is the trait of interest, either IT or SEV; Blocki is the fixed effect of the ith block and kth trial; Checkj is the fixed effect of the jth replicated check cultivar; Envk is the fixed effect of the kth trial; and εijk denote the residual errors.

Heritability on a genotype-difference basis for broad-sense heritability was calculated using the variance components from the models implemented in Merrick and Carter (2021) and using the best linear unbiased predictors for both individual environments and across environments with the formula:
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where [image: image] and [image: image] are the genotype variance and mean variance of the BLUPs, respectively (Cullis et al., 2006). In general, the broad-sense heritability measurement is not suitable for an unreplicated, unbalanced multi-environment trial, and, therefore, narrow-sense heritability was not calculated (Schmidt et al., 2019).



Genotypic Data

Lines were genotyped using genotyping-by-sequencing (GBS; Elshire et al., 2011) through the North Carolina State Genomics Sciences Laboratory in Raleigh, NC, USA, using the restriction enzymes MspI and PstI (Poland et al., 2012). Genomic DNA was isolated from seedlings in the one-leaf to three-leaf stage using Qiagen BioSprint 96 Plant kits and the Qiagen BioSprint 96 workstation (Qiagen, Germantown, MD, USA). DNA libraries were prepared following the protocol of DNA digestion with PstI and MspI restriction enzymes (Poland et al., 2012). Genotyping-by-sequencing (GBS; Elshire et al., 2011) was conducted at North Carolina State University Genomic Sciences Laboratory with either an Illumina HiSeq 2500 or a NovaSeq 6000. DNA library barcode adapters, DNA library analysis, and sequence single-nucleotide polymorphism (SNP) calling were provided by the USDA Eastern Regional Small Grains Genotyping Laboratory (Raleigh, NC, USA). Sequences were aligned to the Chinese Spring International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v1.0 (Appels et al., 2018), using the Burrows–Wheeler Aligner (BWA) 0.7.17 (Li and Durbin, 2009). Genetic markers with more than 20% missing data, a minor allelic frequency of <5%, and the markers that were monomorphic were removed. Markers were then imputed using Beagle version 5.0 and filtered once more for markers less than a 5% minor allelic frequency (Browning et al., 2018). A total of 31,975 SNP markers for the 475 unique DP lines and 2,630 BLs were obtained from GBS. Principal components for the markers were calculated using the function “prcomp,” and a biplot with k-mean clusters was created using the function “autoplot” in R (R Core Team, 2018). Cluster number for k-means was calculated according to the elbow method using a screen plot with the identification of the optimal number of clusters when the total intracluster variation was minimized.

Major rust-resistant genes observed to be common in the WSU breeding population are Yr10, Yr17, Lr68, and Qyr.wpg-1B.1, and molecular marker data for these genes were included as fixed effects in our GS models. All winter wheat lines were genotyped using Kompetitive Allele Specific PCR (KASP®) assay for Yr17, Lr68, and Qyr.wpg-1B.1 in the WSU winter wheat breeding laboratory. The Yr17 gene (Helguera et al., 2003) was screened using the KASP marker developed by Milus et al. (2015). The Lr68 leaf rust resistance gene (Herrera-Foessel et al., 2012) was screened using the KASP marker developed by Rasheed et al. (2016). Although leaf rust resistance is not commonly selected in the US PNW breeding programs, this gene was found in a large proportion of BLs, and thus was hypothesized that it might have been selected congruently with stripe rust resistance. The APR QTL Qyr.wpg-1B.1 reported on chromosome 1B by Naruoka et al. (2015) was screened using the marker IWB12603 (Mu et al., 2020). The KASP assays were performed using PACETM Genotyping Master Mix (3CR Bioscience, Essex, UK) following the instructions of the manufacturer, and endpoint genotyping was conducted on fluorescence using a Lightcycler 480 Instrument II (Roche, Indianpolis, IN, USA). The previously reported ASR gene Yr10 (Frick et al., 1998) was screened with a microsatellite marker Xpsp3000 developed by Bariana et al. (2002). The microsatellite marker Xpsp3000 was run using PCR products, which were separated on an ABI3730XL DNA fragment analyzer (Applied Biosystems, Waltham, MA, USA), and alleles were scored with the GeneMarkerv4.0 software (SoftGenetics, State College, PA, USA), in collaboration with the USDA Western Regional Small Grains Genotyping Laboratory in Pullman, Washington.



Genome-Wide Association Model

In addition to the inclusion of molecular markers for major rust-resistant genes as fixed effects, the markers identified through genome-wide association studies (GWASs) were included through de novo GWAS. This method is further referred to as GWAS-assisted GS (GWAS-GS). The GWAS-GS was implemented according to McGowan et al. (2020). Briefly, a proper cross-validation using GWAS was conducted using BLINK in the genome association and prediction integrated tool (Liu et al., 2016a; Tang et al., 2016; Huang et al., 2019; GAPIT) with three principal components fitted as fixed effects on the training population only. Three principal components were used because they were previously observed to be most reliable in accounting for a population structure for yield and agronomic traits in winter wheat for the same populations (Lozada et al., 2017). In accordance to advice put forward by Rice and Lipka (2019), the first method of GWAS-GS included only significant markers based on a Bonferonni cutoff of 0.05 (GWAS_B). Due to our cross-validation scheme, different significant markers for GWAS_B were identified in each cross-validation, year, and population. Therefore, significant markers were not presented. For the remaining GWAS-GS methods, the markers were ordered by the degree of statistical significance based on the values of p from the smallest to largest. We compared the inclusion of the top 5, 10, 25, 50, and 100 most significant markers as fixed effects (GWAS_5, GWAS_10, GWAS_25, GWAS_50, and GWAS_100).



Prediction Models


Marker-Assisted Selection Model

Single and multiple regression models were used as MAS models to compare major rust-resistant markers and the predictive ability of de novo GWAS markers alone and in combination. The fixed-effect multiple regression model is described as follows:
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where yi is the observed phenotypic value of the ith individual, μ is the mean, Xi is the genotype of the marker i, βi is the effect of the ith marker, and εi is the residual error term.



GS Model

rrBLUP was used as the base GS model and was implemented using the package “rrBLUP” (Endelman, 2011). rrBLUP was used as the base model due to the nonplacement of the ridge regression penalty implemented by rrBLUP on the fixed effects, allowing a large effect on the model. Further, rrBLUP has shown to outperform other models when integrating fixed effects into the models and in predicting disease resistance (Rutkoski et al., 2014; Arruda et al., 2016; Poland and Rutkoski, 2016; Muleta et al., 2017). The basic rrBLUP model is described as follows (Rice and Lipka, 2019):
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where yi is the observed phenotypic value of the ith individual, μ is the mean, xik is the genotype of the kth marker and ith individual, p is the total number of markers, βk is the estimated random marker effect of the kth marker, and εi is the residual error term.



GS Model With Fixed Effects

To evaluate the effect of major and de novo GWAS markers on the prediction accuracy of GS models, we used the rrBLUP model as described (Rice and Lipka, 2019):
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where yi is the observed phenotypic value of the ith individual, μ is the mean, xij is the jth marker of the ith individual, m is the number of markers included as fixed-effect covariates, αj is the fixed additive effect of the jth marker, xik is the genotype of the kth marker and ith individual, p is the total number of markers, βk is the estimated random marker effect of the kth marker, and εi is the residual error term.




Prediction Accuracy and Schemes

The prediction accuracy for the GS was reported using Pearson correlation coefficients, and a prediction bias was reported using a root mean square error (RMSE) between GEBVs and their respective adjusted means using the function “cor” in R (R Core Team, 2018). The effect of fixed-effect markers on prediction accuracy was assessed using a 5-fold cross-validation scheme and independent validation sets for IT and SEV in the DP and BL training populations. The two populations were used to compare the effects of the significant markers in populations with different genetic relatedness, frequency of markers, and sources of resistant pedigrees. GS models were conducted with 5-fold cross-validation by including 80% of the samples in the training population and predicting the GEBVs of the remaining 20% (Lozada and Carter, 2019). One replicate consists of the five model iterations, where the population is split into five different groups. This was completed 50 times. As mentioned previously for the GWAS-GS, the GWAS was conducted on 80% of the lines, and then the markers are included in the GS model to predict the remaining 20% of the lines. Independent validation sets were then performed on a yearly basis by combining the two training populations and environments together per year. This allows the evaluation of models in a realistic breeding situation in which we combine all available data to build a training population.

The training populations were evaluated for cross-validations on a yearly basis and over combined years and trials. We assessed each year independently using cross-validations. We then created prediction models starting with the earliest trial and then a new model with the addition of each subsequent trial to evaluate a genotype-by-environment interaction, continuous training of a prediction model, and the effect of different races of P. striiformis f. sp. tritici. Independent validation sets were first conducted using continuous training. For example, the earliest year, i.e., 2013, was used to predict the following year, i.e., 2014. The years were then combined to predict the following year, i.e., 2013 and 2014 to predict 2015, and this process was continued until the years 2013–2018 were used to predict 2020. Using this scenario, the first 3 years, 2013–2015, consisted of the DP lines alone, and therefore, each year consisted of the same lines. With the inclusion of the years 2016–2020, unique lines from the BL were added each year due to the fact that each trial in the BL consisted of unique lines only phenotyped in a single trial as mentioned previously.

All GS and MAS models and scenarios were analyzed using WSU's Kamiak high performance computing cluster (Kamiak, 2021). Model and year comparisons were evaluated by using a Tukey's honestly significant difference (HSD) test implemented in the “agricolae” package in R (R Core Team, 2018; de Mendiburu and de Mendiburu, 2019). The comparison of models was then plotted for a visual comparison using “ggplot2” in R (Wickham, 2011; R Core Team, 2018).




RESULTS


Phenotypic Data

Stripe rust phenotyping was dependent on natural infection. Therefore, it is important to evaluate GS models in different years to account for environments with little to no variation in stripe rust SEV and pathogen race changes. Overall, the maximum IT and SEV were relatively high for each scale, indicating the presence of adequate stripe rust SEV in each trial (Table 2). The BL had relatively high coefficient of variations (CVs) for each trial. However, the heritability was very high, ranging from 0.60 to 0.96 across traits and trials, indicating adequate screening trials for stripe rust. Further, the phenotypic correlations between IT and SEV were relatively high in the DP, ranging from 0.67 in 2013 to 0.88 in 2015 (Table 3). The phenotypic correlation in the BL between IT and SEV was similarly high, ranging from 0.70 in 2016 to 0.86 in 2018.


Table 2. Stripe rust IT and disease SEV heritability (H2) and trial statistics for unadjusted phenotypes in the DP and BL training population phenotypes from 2013 to 2016 and 2016 to 2020.
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Table 3. Phenotypic correlations between IT and disease SEV.
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The inclusion of multiple environments creates a challenge for GS models due to the genotype–environment interaction (GEI). There were significant differences between the majority of years for each population and trait (Figures 1A–D). The ranges for both IT and SEV were large, indicating both resistant and nonresistant varieties within the populations. The mean IT and SEV were also lower in the BL compared to the DP (Figures 1A–D; Table 2). In comparison to the DP, the BL population consisted of a larger proportion of resistant cultivars, which was expected as these had previously been selected under field conditions. SEV displayed a large concentration of values near zero, specifically in the year 2018 (Figure 1D). Significant differences of each year indicate an environmental effect that needs to be accounted for within the prediction models.


[image: Figure 1]
FIGURE 1. Comparison of infection type (IT) and disease severity (SEV) over years in the diversity panel (DP) lines and breeding lines (BL) training populations using least significant differences. Models labeled with the same letter are not significantly different (p = 0.05). (A) Infection type for the diversity panel over years. (B) Disease severity for the diversity panel over years. (C) Infection type for the breeding lines over years. (D) Disease severity for the breeding lines over years.


In addition to GEI, stripe rust races may change from year to year, which creates an opportunity for major genes to be overcome by virulent races. The USDA stripe rust lab records race frequencies and virulence each year (https://striperust.wsu.edu/races/data/). The major stripe rust races for each year was either PSTv-37 or PSTv-52 with the exception of 2017 and 2020, which had large frequencies for PSTv-37 (Supplementary Table 1). The other races with higher frequencies included PSTv-39, PSTv-322, PSTv-48, PSTv-79, PSTv-11, and PSTv-73. Therefore, the difference in race change was not a major factor in prediction scenarios.



Genotypic Data

The major rust genes present in the WSU winter wheat breeding program germplasm are Yr10, Yr17, Lr68, and Qyr.wpg-1B. The frequency of genotypes, as determined by the previously described molecular markers for each of these genes, is presented in Table 4. Similar frequencies in both populations were observed for the homozygous resistant allele for Lr68 with 50 and 46% in the DP and BL, respectively. The frequency of the marker for Yr10 and IWB12603 was much higher in the DP than in the BL with Yr10 having a relatively high frequency of 53% in the DP. However, the homozygous resistant allele for Yr17 was much higher in the BL (38%) than in the DP (19%). There was also a wide combination of homozygous resistant alleles within each population (Figure 2).


Table 4. Frequency of rust-resistant genotypesa in both the breeding line (BL) and diversity panel (DP) line populations.
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FIGURE 2. Heat map and hierarchical clustering for lines in the diversity panel (DP) lines and breeding lines (BL) populations for the major rust markers: IWB12603(Qyr.wpg-1B.1), KASP(Lr68), Xpsp3000(Yr10), and KASP(Yr17). Genotype: 0, homozygous wild-type allele; 1, heterozygous with both alleles present; 2, homozygous resistant allele.


The principal component biplot using the GBS SNP markers over the combined DP and BL training populations accounted for only 9.1% of the total genetic variation, indicating a large population structure (Figure 3). PC1 explained 5.4% of the variation, and PC2 explained 3.7% of the variation. The biplot revealed three main clusters over the combined populations using k-means clustering. A majority of lines in both the DP and BL were included in the first cluster with 355 and 2,107 lines, respectively. The second cluster also displayed a mixture of DP lines and BLs with 108 and 219 lines, respectively. Finally, the third cluster included mainly BLs with 12 lines in the DP and 304 lines from the BL.
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FIGURE 3. Principal component (PC) biplot and k-means clustering of single-nucleotide polymorphism (SNP) genotyped-by-sequencing (GBS) markers from the diversity panel (DP) lines and breeding lines (BL) training populations.




Cross-Validations


Major Markers

Multiple comparisons for accuracy and RMSE between the inclusion of each major molecular marker for the known rust-resistant genes individually and in combination (ALL_M) were completed for both populations in and across the years for IT and SEV (Supplementary Tables 2, 3). The markers for major rust genes were included as fixed effects and compared to the base rrBLUP model and MAS models with the markers as variables alone (Figures 4, 5; Supplementary Tables 4, 5). Within individual years in the BL, the rrBLUP base model reached a high accuracy of 0.65 in 2018 and 2020 for IT and 0.68 in 2018 for SEV. The effects of the major markers varied from year to year, but the marker for Yr17 showed an increase in the prediction accuracy for every year except in 2018 for IT (Supplementary Table 2) and in 2018 and across 2016–2018 and 2016–2020 for SEV (Supplementary Table 3). A majority of markers had relatively low prediction accuracies for MAS with the exception of the Yr17 marker that reached an accuracy of 0.05 and 0.42 for IT and SEV, respectively (Supplementary Tables 4, 5). When all markers were combined, similar accuracies were attained and compared to the time of inclusion of only the Yr17 marker in both the rrBLUP model and MAS models. The remainder of major rust gene markers with the exception of Lr68 increased the accuracy within specific years but had less consistency than the Yr17 marker for. The largest differences from the rrBLUP model within a single year in the BL were seen in 2016 for GS models (Supplementary Figure 1). In 2016, the combination of both Yr10 and Yr17 markers increased the accuracy by 0.06 for SEV. Yr17 and the combination of markers only slightly increased the accuracy across environments with an increase in IT of 0.01 (Supplementary Figure 2). Additionally, the RMSE was similar between all markers and rrBLUP for both traits (Supplementary Figure 3; Supplementary Tables 2, 3). However, for MAS, RMSE was higher than all GS models. In MAS models, the RMSE was lower for Yr17, and ALL_M, compared to another marker, with SEV having a much higher error than IT for the majority of years. The individual years of 2018 and 2020 displayed a higher RMSE compared to the other individual years and combined years (Supplementary Figure 3; Supplementary Tables 4, 5).
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FIGURE 4. Difference in prediction accuracy from the base rrBLUP model for major markers in genomic selection (GS) and marker-assisted selection (MAS) using cross-validations in the BLs phenotyped from 2016 to 2020. Adjustments: ALL_M, IWB12603(Qyr.wpg-1B.1), KASP(Lr68), Xpsp3000(Yr10), and KASP(Yr17) combined.
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FIGURE 5. Difference in prediction accuracy from the base rrBLUP model for major markers in GS and MAS using cross-validations in the diversity panel (DP) lines phenotyped from 2013 to 2016. Adjustments: ALL_M, IWB12603(Qyr.wpg-1B.1), KASP(Lr68), Xpsp3000(Yr10), and KASP(Yr17) combined.


Within individual years in the DP, the rrBLUP base model reached an accuracy of 0.55 for IT (Supplementary Table 2) and 0.64 for SEV in 2013 (Supplementary Table 3). Across years, IT reached 0.56 in 2013–2016 (Supplementary Table 2) and SEV reached 0.69 in 2013–2014 (Supplementary Table 3). In the DP, the major rust markers had a less effect on the prediction accuracy, with Yr10 being the only marker that increased the accuracy from the base rrBLUP model and at a maximum of 0.01. For MAS, the combination of markers resulted in the least reduction of accuracy with a maximum reduction of 0.10 in 2015 for IT (Supplementary Table 4) and 0.07 in 2016 for SEV (Supplementary Table 5). Markers for Yr10 and IWB12603 also had the largest effect on MAS models. The largest differences from the rrBLUP model within a single year in the DP were seen in 2015 for GS models (Supplementary Figure 4). In 2015, the Yr10 marker increased the accuracy by 0.01. There were no increases in the accuracy across any combination of environments in the DP. The results for RMSE were similar to the BL, with SEV having a much higher RMSE for each model than IT (Supplementary Tables 2, 3). Further, within SEV for MAS, Lr68 had a higher RMSE compared to the other markers. Yr17 did not display a lower RMSE than the other markers, with Yr10 and ALL_M displaying the lowest RMSE in MAS (Supplementary Figure 5; Supplementary Tables 4, 5).



De novo GWAS Markers

The de novo GWAS markers increased the prediction accuracy in individual years and across years in the BL, but not in the DP. Only the GWAS_B, GWAS_5, and GWAS_10 sets increased the accuracy with GWAS_25, GWAS_50, and GWAS_100 decreasing the prediction accuracy (Figures 6, 7). The largest increase in IT was for GWAS_5 in 2018 with an increase of 0.02 for both IT and SEV (Supplementary Tables 1, 2; Supplementary Figure 6). Across years, GWAS_10 had the largest increase of 0.02 in 2016–2018 for SEV (Supplementary Table 3; Supplementary Figure 7). The MAS for the de novo GWAS markers had larger decreases in MAS compared to the major markers in both the DP and BL (Supplementary Tables 4, 5). The larger GWAS sets (GWAS_25, GWAS_50, and GWAS_100) consistently had lower prediction accuracies than the other GWAS sets and the major rust gene markers. GWAS_B using significant markers showed the similar accuracies to GWAS_5, displaying no advantage compared to arbitrarily including markers based on the value of p. The GWAS-GS models displayed a higher RMSE for both GS and MAS in both population and traits compared to the major markers (Supplementary Figures 8, 9). The GWAS_100 sets displayed the highest RMSE out of all models in the cross-validation scenarios with an RMSE of 43.02 (Supplementary Table 5).
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FIGURE 6. Difference in prediction accuracy from the base rrBLUP model for de novo genome-wide association study (GWAS) markers in GS and MAS using cross-validations in the BLs phenotyped from 2016 to 2020. Adjustments: GWAS_B, genome-wide association study assisted GS (GWAS-GS) with Bonferonni significant markers; GWAS_5, GWAS-GS with the top five significant markers; GWAS_10, GWAS-GS with the top 10 significant markers; GWAS_25, GWAS-GS with the top 25 significant markers; GWAS_50, GWAS-GS with the top 50 significant markers; GWAS_100, GWAS-GS with the top 100 significant markers.
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FIGURE 7. Difference in prediction accuracy from the base rrBLUP model for de novo GWAS markers in GS and MAS using cross-validations in the diversity panel (DP) lines phenotyped from 2013 to 2016. Adjustments: GWAS_B, GWAS-GS with Bonferonni significant markers; GWAS_5, GWAS-GS with the top five significant markers; GWAS_10, GWAS-GS with the top 10 significant markers; GWAS_25, GWAS-GS with the top 25 significant markers; GWAS_50, GWAS-GS with the top 50 significant markers; GWAS_100, GWAS-GS with the top 100 significant markers.





Validation Sets


Major Markers

The validation sets were conducted by combining both training populations and years and predicting the following year as a forward prediction. In doing so, the validation sets were evaluated to demonstrate real-world breeding scenarios wherein all available information was used to create predictions. The first 3 years, 2013–2015, consisted exclusively of the DP, and from 2016 forward, the BL was included due to the availability of training populations. The validation sets resulted in the highest accuracy of all prediction scenarios using the rrBLUP base model, and all major markers reached an accuracy of 0.72 in the SEV for predicting 2014 using the 2013 data (Figures 8, 9; Supplementary Tables 6, 7). For the same year, the major markers with the exception of Yr10 resulted in an increase of the accuracy by 0.01. The major rust markers either performed the same or increased the accuracy for the majority of validation GS predictions.
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FIGURE 8. Difference in prediction accuracy from the base rrBLUP model for major markers in GS and MAS in the validation set using the diversity panel (DP) lines and breeding lines (BL) phenotyped from 2013 to predict 2020. Adjustments: ALL_M, IWB12603(Qyr.wpg-1B.1), KASP(Lr68), Xpsp3000(Yr10), and KASP(Yr17) combined.
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FIGURE 9. Difference in prediction accuracy from the base rrBLUP model for de novo GWAS markers in GS and MAS in the validation set using the diversity panel (DP) lines and breeding lines (BL) phenotyped from 2013 to predict 2020. Adjustments: GWAS_B, GWAS-GS with Bonferonni significant markers; GWAS_5, GWAS-GS with the top five significant markers; GWAS_10, GWAS-GS with the top 10 significant markers; GWAS_25, GWAS-GS with the top 25 significant markers; GWAS_50, GWAS-GS with the top 50 significant markers; GWAS_100, GWAS-GS with the top 100 significant markers.


As a number of environments and years were added to the population, the general prediction accuracy decreased presumably due to the prediction of multiple environments within a year and the inclusion of different training populations. However, as the accuracy decreased for the base rrBLUP model, the effect of fixed markers increased. The largest increase in both cross-validations and validation sets occurred using 2013–2017 to predict 2018, resulting in MAS models using Yr17 and all markers with an increase of 0.17 and 0.16, respectively, for IT and 0.13 and 0.10, respectively, for SEV (Supplementary Tables 8, 9; Supplementary Figure 10). The validation sets were the only prediction scenarios in which MAS performed better than GS models. However, this was not the case for all MAS models, with most major markers showing similar decreases in the accuracy compared to cross-validations. Additionally, the RMSE was similar to cross-validations with low values for GS models compared to MAS across all markers (Supplementary Figure 11). Further, for SEV, an RMSE for MAS decreased with the addition of years.



De novo GWAS Markers

The de novo GWAS marker sets also increased the accuracy when more environments were included. The increase in the prediction accuracy was not seen in the previous validation sets as seen for the molecular markers for major rust genes. The de novo GWAS markers had the largest prediction accuracies in the last two validation sets with GWAS_5 having an accuracy of 0.33 for IT and GWAS having an accuracy of 0.38 for SEV using 2013–2017 to predict 2018 (Supplementary Tables 6, 7). In the last validation set, GWAS had the largest prediction accuracy of 0.55 for IT. Similarly, the smaller GWAS sets had the highest prediction accuracy. In contrast to the cross-validations, the larger GWAS sets did not have a drastic decrease with GWAS_100, and actually had the same prediction accuracy as the base rrBLUP for IT and an increase of 0.01 for SEV in using 2013–2018 to predict 2020 (Supplementary Tables 6, 7). The de novo GWAS marker sets had the largest increases in overall scenarios with GWAS_5 having an increase of 0.19 with MAS for IT (Supplementary Tables 8, 9; Supplementary Figure 12). Further, MAS for GWAS_100 displayed a much higher RMSE with the highest value for all scenarios reaching an RMSE of 381.71 using 2013–2015 to predict 2016 (Supplementary Figure 13; Supplementary Table 9). This prediction scenario was the only scenario using only the DP lines to predict BLs. However, all of the other GS-GWAS sets had an RMSE similar to the major markers for GS and MAS.




Overall Differences

When comparing the different models over all years within each population, we found that the marker for Yr17 and the combination of all markers had the largest prediction accuracies. However, the increase was only statistically significant in the BL population and in the validation sets. There was no statistical increase in the prediction accuracy in the DP. The largest mean accuracy in any population was the major rust markers and base rrBLUP for SEV in the DP with an accuracy of 0.64 across all years (Table 5). There was also a statistical increase in the prediction accuracy as we increased the combination of years over both IT and SEV training populations with the accuracies of 0.57 and 0.63 for IT and SEV, respectively when years 1–4 were combined (Table 6).


Table 5. Comparison of genomic selection models accuracy and pairwise comparisons for stripe rust IT and disease severity (SEV) for PNW winter wheat DP lines and BLs phenotyped from 2013 to 2020 in Central Ferry, Lind, and Pullman, WA, USA over all individual population cross-validation sets and combined validation sets.
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Table 6. Comparison of the number of years in the training populations on overall GS model accuracy and pairwise comparisons for stripe rust infection type (IT) and disease severity (SEV) for PNW winter wheat over both the DP lines and BLs phenotyped from 2013 to 2020 in Central Ferry, Lind, and Pullman, WA, USA in the cross-validation sets.
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DISCUSSION


GS for Disease Resistance

The development of resistant cultivars is the most effective and economical method for controlling diseases such as stripe rust (Chen and Kang, 2017). Due to the challenges of breeding for both quantitative and qualitative disease resistance, it is recommended to combine them. In addition to the challenges for breeding both major gene qualitative disease resistance and minor gene quantitative resistance are also the common challenges of implementing and integrating any major gene or QTL into new cultivars. These difficulties include inconsistent effects of the QTL due to inconsistent QTL segregations in mapping populations, QTL interaction with genetic background, and QTL interaction with the environment (Bernardo, 2008). However, in addition to the common challenges, qualitative resistance also faces the disadvantage of new virulent races of a pathogen that can overcome major gene resistance (Chen and Kang, 2017). Breeding for minor gene quantitative resistance tends to produce a more durable resistance in BLs because it relies on multiple small-effect alleles. Similar to other agronomic traits, breeding for quantitative resistance requires multiple breeding cycles to gradually improve resistance (Poland and Rutkoski, 2016). The lack of qualitative resistance durability coupled with the challenge in identifying and breeding for quantitative resistance creates a unique opportunity for GS to identify quantitative resistance by accounting for minor-effect genes in the presence of large-effect major genes.

The goal of this study was to identify the best GS method for disease resistance in the presence of both major and minor genes. In our study, we used stripe rust as an example of the disease with both major and minor resistant genes. Previous studies on the GS of stripe rust showed promising prediction accuracies. Muleta et al. (2017) showed that accuracy increased with population size and marker density and reached up to 0.80. Ornella et al. (2012) reported accuracies in The International Maize and Wheat Improvement Center (CIMMYT) wheat populations of values greater than 0.50 for stripe rust, but showed a lower accuracy when compared to stem rust. In our study, the prediction accuracy for both IT and SEV reached an accuracy of up to 0.67 and 0.69 in cross-validations, respectively. Further, IT and SEV reached the accuracies of up to 0.66 and 0.72 in validation sets, respectively. In comparison to other rust diseases, Rutkoski et al. (2014, 2015) showed promising results to predict stem rust with the accuracies of up to 0.50. Overall, our study showed high prediction accuracies in comparison to most rust prediction studies, and further displayed the feasibility for accurately predicting disease resistance in the presence of major and minor resistant genes.



Major Markers

When major genes are present, a large portion of the genetic variance for a trait may be due to the unknown QTL with minor effects (Bernardo, 2014). The other minor-effect QTL will not necessarily be integrated when major genes are integrated into cultivars. The lack of integration can be attributed to not being able to use MAS and the difficulties outlined previously in pyramiding major-effect genes. In contrast, GS simultaneously models all QTL (Meuwissen et al., 2001). However, the use of GS models such as rrBLUP will underestimate the effect of the major QTL. Therefore, the inclusion of the major-effect QTL as fixed effects can increase accuracy. According to Bernardo (2014), major genes should be used in prediction models when only a few major genes are present, and each gene accounts for more than 10% of the variation.

In this study, the major gene in both populations was Yr17. In the BL, Yr17 accounted for up to 0.40 prediction accuracy when used in MAS, and therefore accounts for a large amount of variation. The moderate accuracy of Yr17 supports that even with the degradation of the ASR for Yr17, it still provides resistance for APR as indicated in Liu et al. (2018). The other major rust genes present in the BL would be considered as minor-effect genes with a near-zero prediction accuracy within MAS or, in the case of the marker for Yr10, only produced an accuracy greater than 0.10 in a few prediction scenarios. The higher accuracy in the BL for Yr17 also shows a lower RMSE compared to the other markers. However, within the DP, all of the markers with the exception of Lr68 produced accuracies greater than 0.20, with IWB12603 reaching 0.34 and Yr10 reaching the highest accuracies for MAS within cross-validations of 0.42, and could be considered as major-effect markers. Additionally, the higher accuracy for Yr10 was coupled with a lower RMSE than the other markers.

Even with the moderate accuracies of the major rust markers in MAS, we observed only a slight increase in the prediction accuracy when the major markers were included in our GS models, and relatively a lower RMSE than the MAS. The major markers only increased the prediction accuracy at a maximum of 0.06 within the cross-validation scenarios and 0.03 within the validation sets. Interestingly, the validation sets resulted in the highest accuracy of all scenarios with 0.72 for the base GS model and the inclusion of the major markers when predicting SEV in 2014 using 2013 with the small RMSE values for all markers. These results are in direct contrast to previous studies showing a higher accuracy in cross-validations (Lozada and Carter, 2019; Merrick and Carter, 2021). Validation sets are a more realistic approach for GS because it is comparable to how GS would be implemented in breeding programs (Lozada and Carter, 2019). However, the major markers only increased the prediction accuracy as the overall prediction accuracy decreased. For example, using 2013–2017 to predict 2018, all of the major markers increased the prediction accuracy, but the base prediction was only 0.27, and the markers increased the accuracy by 0.03 maximum in all scenarios. Further, the major markers had much larger increases in the MAS scenarios with a maximum increase of 0.17, but resulted in a higher RMSE. Therefore, the inclusion of the major markers provides an advantage in the more realistic validation sets when the base GS model has poor predictive ability.

In the context of GS models and breeding programs, a small increase in the prediction accuracy would be considered negligible in realistic breeding scenarios. The results in our study are in contrast to previous studies showing that the major markers had a large increase in prediction accuracies in GS models for other diseases such as stem rust (Rutkoski et al., 2014) and Fusarium head blight (Arruda et al., 2016). One hypothesis for the lack of increase in the prediction accuracy may be due to GS models accounting for a majority of variation in both the major- and minor-effect markers for disease resistance, or the major-effect markers may be accounted for in the models of the GBS markers. However, the ridge regression penalty reduces the effect of large-effect markers, hence the additional variation would need to be accounted for by other small-effect markers (Rice and Lipka, 2019). Additionally, the lack of increase in the prediction accuracy may be due to the major markers not accounting for enough phenotypic variation. Due to the reduction in the effect of the major markers, Bernardo (2014) suggested implementing markers that account for more than 10% of the variation as mentioned previously. This theory may be disproved by the major markers that display a moderate accuracy in MAS models. However, this may be the case for Lr68, which displayed a minimal effect in both MAS models and GS models.

Further, the lack of increase in the prediction accuracy may be beneficial in demonstrating that other uncharacterized resistant QTL can still provide a large amount of disease resistance within the populations either alone or in conjunction with major genes. In this case, our results would be beneficial in confirming the presence of minor-effect QTL for quantitative resistance and provide a more durable resistance within the training populations. Therefore, we can conclude that genotyping and selecting major genes for disease resistance may not be necessary when the breeding programs can use more cost-effective genome-wide markers to implement GS with more consistent results.



De novo GWAS Markers

Frequently, the major markers for disease resistance are either unknown or have an uncharacterized effect within the populations. Therefore, GWAS can be performed to characterize disease-resistant QTL within a population, and the significant markers can be used as fixed-effect covariates (Rice and Lipka, 2019). In Zhang et al. (2014), publicly available GWAS markers were integrated into prediction models but only increased the accuracy by 0.01, similar to our results. In contrast, we used de novo GWAS markers dependent on the training population. This approach has been used for FHB in which Arruda et al. (2016) demonstrated an increase in the accuracy of up to 0.14. These results were also demonstrated in Spindel et al. (2016), in which de novo GWAS markers implemented into GS increased the accuracies more than 0.10 in rice (Oryza sativa L.). However, in our study, the de novo GWAS markers only marginally increased the accuracy, or in the case of implementing more than 25 markers, decreased accuracy in the majority of cross-validation scenarios and an increased RMSE. A reduction in the prediction accuracy and an increase of RMSE with a larger set of de novo GWAS markers may be attributed to an increase in the bias of the model and an increase of RMSE due to overfitting as seen in Raymond et al. (2018) or due to the difficulty experienced by the model to simultaneously estimate all of the fixed effects (Bernardo, 2014). A reduction in the prediction accuracy was also shown in Rice and Lipka (2019).

Another hypothesis may be stated for why the de novo GWAS markers failed to increase the prediction accuracy due to the inclusion of false positives within GWAS models. To mitigate this, we included a GWAS-GS model that only included significant markers based on a Bonferroni correction of 0.05. However, this model failed to self-differentiate from another smaller set of GWAS-GS models. The lack of reduction was mainly seen in our cross-validation sets. Within cross-validation, the training population is divided. The division of the training populations may be one cause of the lack of increase of the prediction accuracy. The smaller validation fold within a cross-validation may have a weak association with the markers found in the larger training folds, as hinted at by Rice and Lipka (2019). The weak association theory may be supported by the contrasting results seen in the validation sets.

Similar to the inclusion of the major markers in the cross-validations, the validation sets showed an increase in the prediction accuracy when the de novo GWAS markers were included and displayed the largest increases from GS models. The GWAS model with significant markers only (GWAS_B) displayed the largest increase of 0.06 in the SEV. Once again, this increased prediction accuracy was observed as the prediction accuracy of the base GS model decreased. This occurrence in both the major and de novo GWAS markers demonstrates the ability to increase and maintain a high accuracy as the GS model fails in predicting lines. Therefore, we can conclude that even though fixed-effect markers may not increase the accuracy in typical cross-validation scenarios, they are beneficial in more realistic validation set approaches similar to the major markers.

However, similar to the major markers, increased prediction accuracy with the inclusion of de novo GWAS markers was very small relative to the high accuracy for most scenarios. Further, small sets of de novo GWAS markers were similar in consistency to the major markers. Therefore, there is little benefit in characterizing major-effect disease resistance markers for GS over implementing the GWAS-GS methods that would use the same sets of markers like GS models.



Training Population and Environment

We compared the effect of the major and de novo GWAS markers in different training populations that are commonly used in breeding programs. The frequency and source of both major disease- and minor disease-resistant genes vary. For instance, the BL population consists of WSU BLs that have been selected for resistance, specifically for P. striiformis f. sp. tritici races in Washington, and therefore has a high level of resistance throughout the population. In comparison, the DP consists of varieties from various breeding programs in the PNW. The sources of resistance in the varieties are more similar within the BL than in the DP, with the DP containing major genes different from the major markers chosen in this study common in the WSU germplasm or selected for resistance to races not present in eastern Washington.

The differences in the frequency of major genes were observed in the major rust markers used in this study. In the BL, the Yr17 marker showed an increase in the prediction accuracy for GS models and a relatively high accuracy in MAS models compared to the other markers. However, this was not consistently seen in the DP. The inconsistent effect of Yr17 in different training populations may be due to the higher frequency of Yr17 in the BL compared to the DP. This may also be supported by the higher accuracies for Yr10 and IWB12603 in the DP compared to the BL, and both of these rust genes have a higher frequency in the DP than in the BL. Our study showed that regardless of the frequency of the rust-resistant genotypes, there was only a small to nil increase in the prediction accuracy. Therefore, GS would be more accurate than MAS regardless of the frequency of the known rust-resistant genotypes in a breeding program due to the ability to account for both major disease and minor disease-resistant genes.

In addition to different frequencies of major genes, the general composition of the training populations can affect GS prediction accuracy (Asoro et al., 2011). The composition of the training population affects the accuracy due to both population structure and genetic relatedness (Habier et al., 2007; Asoro et al., 2011; Mirdita et al., 2015). We compared the population structure in our models by plotting principal components and identified three clusters indicating distinct subpopulations. In addition, the population structure was not taken into account in our GS models. However, we can see the effect of genetic relatedness and population in both our cross-validation and validation sets. The BL had a statistically higher mean accuracy for both IT and SEV than the DP in cross-validations, which could be attributed to the closer genetic relatedness of the population and sources of resistance as mentioned previously. A higher prediction accuracy for the BL is advantageous for breeding programs because they can use their existing breeding trials for GS without screening a DP outside their breeding program. In the validation sets, we see an initial increase in the accuracy due to the DP being the only population in the training populations, but as we added in BLs, the accuracy decreased. The accuracy was reduced when the DP predicted the BL, but eventually increased as more BLs were introduced into the training population. The decrease in validation sets can also be attributed to GEI (Michel et al., 2016; Huang et al., 2018; Lozada and Carter, 2019, 2020; Haile et al., 2020).

Further, GEI is important for qualitative disease resistance. Race-specific qualitative resistance is dependent on the race in the environment and thus can lead to larger environmental effects (Poland and Rutkoski, 2016). In contrast, GEI has a much smaller effect on minor-gene quantitative resistance due to the lack of a gene-for-gene interaction. In our study, the most frequent races were similar from year to year, and therefore may not be a significant factor in the differing prediction accuracy.

In this study, disease resistance screening was dependent on the natural occurrence of stripe rust for disease pressure, and therefore the overall effect of the environment is important. Additionally, diseases such as stripe rust are affected by several environmental factors, including moisture, temperature, and wind. Further, disease SEV is affected by the other aspects of the disease triangle, disease inoculum, and a susceptible host to induce disease development (Chen, 2005). Disease development and the quality of the phenotypic data obtained from the unreplicated trials may also explain the differences in the prediction accuracy from year to year, especially in the DP in which the same lines are phenotyped every year. Meanwhile, BLs are only phenotyped in a single year, and therefore the difference from 1 year to the next can be either disease incidence as in the DP or the changes occurred due to differing levels of resistance within BLs. In addition, we see an increase in the prediction accuracy for both the cross-validation and validation sets as we increase the number of environments within our training population. The increase in accuracy may be accounted for by the inclusion of GEI within our phenotypic adjustments and GS models as reported in previous studies, as well as the general high heritability for disease resistance (Crossa et al., 2014; Jarquín et al., 2014; Haile et al., 2020; Merrick and Carter, 2021). Overall, our GS models accurately predicted disease resistance in different training populations and environments, and therefore will be an important strategy for selecting for disease resistance.



Applications in Breeding

Genome selection is beneficial for complex traits and can outperform phenotypic selection and MAS for low heritable traits. However, there may be little benefit in using GS for selection purposes for highly heritable traits such as disease resistance (Poland and Rutkoski, 2016). In the case of highly heritable traits, GS can still outperform phenotypic selection and MAS in terms of gain per unit time when implemented in the early stages of the breeding cycle (Bernardo and Yu, 2007; Rutkoski et al., 2011). In our study, a high prediction accuracy would allow an increase in genetic gain by decreasing the cycle time of the breeding program and rapidly accumulating favorable alleles for disease resistance (Rutkoski et al., 2011).

Even though phenotypic selection has been successfully implemented for disease resistance, without controlled experiments, one cannot determine whether the resistance is quantitative or qualitative. Therefore, we cannot conclude whether the resistance will be durable in the long term. Alternatively, we can implement MAS to select qualitative and quantitative disease resistance within the BLs to bypass the need for controlled experiments. However, as seen in our study, MAS does not account for all of the resistance within the lines in either of the training populations, as shown by a decrease in the prediction accuracy for MAS models. MAS also has limitations when it comes to pyramiding multiple markers, as discussed previously, and is a form of tandem selection (Bernardo, 2014). In contrast, GS is a form of selection index and has been shown to be superior to tandem selection (Hazel and Lush, 1942). Using GS, we can select for the accumulation of all-resistant QTL to take advantage of the quantitative and qualitative resistant genes within a population, even when they are uncharacterized. Furthermore, by using fixed effects, we can select the lines that have a major marker of interest (Poland and Rutkoski, 2016). Therefore, GS will have a place in selecting for both quantitative and qualitative disease resistance.

Another advantage in implementing GS is by reducing both genotyping and phenotyping within a breeding program. GS can remove the need for genotyping for major and minor genes for selection purposes. This is further supported by the similar accuracies between major and de novo GWAS markers. By utilizing genome-wide markers, we can not only implement GS or GWAS-GS but also utilize the markers for additional traits, thus making the genome-wide markers more cost-effective (Poland and Rutkoski, 2016). Likewise, with the help of GS, breeding programs can reduce the need for phenotypic screening in disease nurseries in multiple locations and free up resources for screening more lines and increase genetic gain (Poland and Rutkoski, 2016).

Furthermore, the challenges introduced by the environment mentioned previously provide another advantage in using GS for disease resistance. GS models will help select cultivars with durable quantitative resistance with the accumulation of favorable alleles and select for disease resistance in environments not conducive to disease incidence needed for phenotypic selection. Overall, the high accuracy of GS models in our study displays the ability to predict durable disease resistance and account for uncharacterized minor-effect QTL in the presence of known major genes.




CONCLUSIONS

This study showed the ability to accurately predict disease resistance using major and minor genes. The small to nil increase in the prediction accuracy for the major markers indicates the need for a careful selection of the major markers that account for a large variation in the training and test populations. Further, a comparison of the number of de novo GWAS markers shows that a small number of de novo GWAS markers should be used instead of a large set of markers to keep from overfitting the model. Additionally, fixed-effect markers may not provide a benefit in scenarios with already high prediction accuracy. However, in prediction scenarios with low accuracies such as in more realistic validation sets, the inclusion of both major markers and de novo GWAS helps to account for a variation in case of the failure of the base GS models. Moreover, we can increase the accuracy with the inclusion of additional environments and by using the populations that are genetically related such as the BL. Overall, there were no disadvantages in the inclusion of the major or de novo GWAS markers. The lack of increase of the prediction accuracy with the inclusion of fixed effects coupled with a large decrease in the accuracy using MAS indicates the presence of minor-effect QTL for quantitative resistance and thus durable resistance within the training populations. This study showed the ability to predict disease resistance and accumulate favorable alleles for durable disease resistance in the presence of major and minor resistance genes.
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Cucumber is a widely grown vegetable crop plant and a host to many different plant pathogens. Cucumber vein yellowing virus (CVYV) causes economic losses on cucumber crops in Mediterranean countries and in some part of India such as West Bengal and in African countries such as Sudan. CVYV is an RNA potyvirus transmitted mechanically and by whitefly (Bemisia tabaci) in a semipersistent manner. Control of this virus is heavily dependent on the management of the insect vector and breeding virus-resistant lines. DNA markers have been used widely in conventional plant breeding programs via marker-assisted selection (MAS). However, very few resistance sources against CVYV in cucumber exist, and also the lack of tightly linked molecular markers to these sources restricts the rapid generation of resistant lines. In this work, we used genomics coupled with the bulked segregant analysis method and generated the MAS-friendly Kompetitive allele specific PCR (KASP) markers suitable for CsCvy-1 selection in cucumber breeding using a segregating F2 mapping population and commercial plant lines. Variant analysis was performed to generate single-nucleotide polymorphism (SNP)-based markers for mapping the population and genotyping the commercial lines. We fine-mapped the region by generating new markers down to 101 kb with eight genes. We provided SNP data for this interval, which could be useful for breeding programs and cloning the candidate genes.

Keywords: CVYV, cucumber, marker assisted selection, kompetitive allele-specific PCR genotyping, plant breeding


INTRODUCTION

Cucumber plants, Cucumis sativus, have been cultivated as a vegetable crop across the globe for centuries (Tatlioglu, 1993). The fruit is consumed as fresh or industrialized product, and the major producing countries are China (7,033,8971 tons), Turkey (1,916,645 tons), Russia (1,626,360 tons), Ukraine (1,034,170 tons), and Iran [871,692 tons (FAO, 2019)]. As an important vegetable, cucumber is challenged by many different fungal, oomycete, bacterial, and viral pathogens (Kong et al., 2015; Słomnicka et al., 2018; Bandamaravuri et al., 2020).

One of the most devastating viral pathogens is Cucumber vein yellowing virus (CVYV), which belongs to the Potyviridae family (Lecoq et al., 2000), has an RNA genome (Janssen et al., 2005), is transmitted mechanically and by whitefly, Bemisia tabaci, in a semipersistent manner (Mansour and Al-Musa, 1993), and infects a number of cucurbit species (Gil-Salas et al., 2011). The occurrence and heavy crop losses due to CVYV infection in the open fields and under protected cucumber crops have been reported in the Mediterranean countries from Israel to Portugal (Cohen and Nitzany, 1960; Louro et al., 2004). The main symptoms of CVYV on the cucumber include vein clearing followed by vein yellowing on the youngest leaves (Cohen and Nitzany, 1960), the occasional occurrence of yellow/green mosaics on the fruit (Cuadrado et al., 2007), and eventual general necrosis of the entire infected plant (Cohen and Nitzany, 1960). Mechanical transmission of the virus allows the use of cucumber as a test and indicative plant for multiplication.

Cucumber vein yellowing virus has been classified as a quarantine viral pathogen in the EPPO A2 Action List (https://www.eppo.int/ACTIVITIES/plant_quarantine/A2_list). Control of this virus relies heavily on the application of integrated pest management (IPM) practices that incorporate the ecosystem-based strategies, including cultural practices, biological and chemical control of the vector, and the use of resistant varieties (Horowitz et al., 2011). Sanitation, use of certified virus-free seedlings, and eradicating diseased plants parts are common practices for controlling viral plant pathogens (Hilje et al., 2001; Nazarov et al., 2020). Although chemical pesticides have been used to control the whitefly insect vector, concerns to human health, occurrence of insecticide resistance, and damage to the environment led to a search for alternative measures (Sani et al., 2020). Use of microbial biological control agents (MBCA), such as entomopathogenic fungi (Faria and Wraight, 2001; Sani et al., 2020), use of barrier or trap crops (Zhang et al., 2020), and use of beneficial insects, such as predators or parasitoids (Moreno-Ripoll et al., 2014), have been considered.

The RNA-guided genome editing using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 has been also used to generate virus-resistant crops (Liu and Fan, 2014). For example, Chandrasekaran et al. (2016) used Cas9/sgRNA constructs to target the recessive eukaryotic translation initiation factor 4E (eIF4E) gene in cucumber. They reported that the homozygous T3 lines showed immunity to CVYV (Chandrasekaran et al., 2016) indicating the possibility of alternative new methods for CVYV control. Planting cultivars resistant to the whitefly and/or to the virus is one of the most important control measures in the CVYV management. In a study to identify cucumber lines resistant to whitefly, Novaes et al. (2020) screened 60 genotypes and found that accessions IAC-1214, IAC-1201, Campeiro, Japonês, IAC-1311, Kyria, and IAC-1175 displayed some low levels of attractiveness to these insects and suggested they could be included in the breeding programs to develop whitefly-resistant cucumber lines.

Genetics of resistance to CVYV have been investigated by several groups (Picó et al., 2003). A Spanish landrace of short cucumber, C. sat-10, was found to be monogenic and displaying dominant resistance to CVYV (Picó et al., 2008). Similarly, a cucumber cultivar named Kyoto-3-feet originating from Japan has been reported to be resistant to CVYV (Martín-Hernández and Picó, 2021); however, detailed information on the nature of these resistance mechanisms is not available. Cucumber hybrid lines resistant to CVYV exist in the commercial market; however, currently all the work for selecting resistant lines relies on traditional pathotesting efforts. Recently, Pujol et al. (2019) described their elegant study on the resistant accession CE0749, a CVYV-resistant long Dutch-type cucumber. They used genomics and bulked segregant analysis (BSA) (Michelmore et al., 1991) and fine-mapped a locus containing the gene CsCvy-1 locus in a 625 kb region with 24 candidate genes (Pujol et al., 2019).

Here, we described our investigations on the identification of DNA markers for fine mapping CsCvy-1 using genomics and BSA. We used both segregating F2 populations and the available commercial F1 hybrids, mapped the locus down to 101 kb with eight genes, and provided single-nucleotide polymorphism (SNP) data for the interval, which could be useful for plant breeding programs.



MATERIALS AND METHODS


Plant Lines and Mapping Populations

An F2 mapping population, generated from a cross between a susceptible (YT-189-1) and a resistant (YT-MLN-33) cucumber inbred lines (Yüksel Tohum A.S., Antalya, Turkey), was used in the phenotyping and genotyping experiments. F3 families were raised by selfing the selected lines and used to determine the genotype of the F2 lines.



Virus Isolate and Pathology Methods

The CVYV isolate used in this study was obtained from DSMZ (Braunschweig, Germany) and propagated in susceptible cucumber plants (Cucumis sativus, line YT-189-1). Virus inoculum was prepared by homogenizing 1 g infected leaves in 4 ml 0.01 M phosphate buffer (pH 7.0) containing 0.2% sodium sulfate and 0.2% diethyldithiocarbamic acid (DIECA, Sigma-Aldrich, St. Louis, MO, United States). After adding 600-mesh carborundum and active carbon, cotyledons of cucumber plants (parental lines, F1, and F3 generations), which were at the cotyledon to one-true-leaf stages, were mechanically inoculated. A second inoculation was performed 3 days after the first one to eliminate escapees. The inoculated cucumber seedlings were then kept in a growth chamber with temperature control set at 30/25°C (day/night) with a 16 h light/8 h dark photoperiod for 3 weeks and observed every 2 days. First symptoms were observed 5–7 days postinoculation (dpi), but became obvious after 12–15 dpi. After 3 weeks, no further symptom developments were observed; thus, 15 dpi was selected to be the optimal time for symptom evaluation. Plants showing clear symptoms including mosaic and vein yellowing on leaves were rated as susceptible, whereas those with no symptoms or a very light vein discoloration on only the oldest ones were accepted as resistant. A minimum of 20 plants was used per treatment.



DNA Extraction and Genome Sequencing

Young leaves were collected from parental and F2 lines. Plant genomic DNA was isolated using the Wizard Magnetic Kit (Promega, Madison, WI, United States) following the instructions of manufacturer. DNA was extracted from each individual plant lines, and a gel electrophoresis was performed to determine whether high molecular weight DNAs were isolated. The resistant and susceptible bulks were generated from 20 resistant and 20 susceptible F2 individuals, respectively, as described in earlier studies (Devran et al., 2015, 2018). Genomic DNA library and sequencing have been carried out by the University of Exeter Sequencing Service after quality check of DNAs, generating 2 ×150 bp paired-end read data for each parent line and bulked (resistant and susceptible) pools with Illumina HiSeq 2500 (Illumina, Inc. San Diego, CA, USA).



Analysis of Genomic Sequences

As previously described (Devran et al., 2018), we took the NGS analysis approach where the raw reads were trimmed using BBDuk (filter = 27, trimk = 27; https://sourceforge.net/projects/bbmap/) to remove Illumina adapters and to quality trim both ends to Q12. Subsequently, trimmed sequences from parental lines and the bulks were mapped onto the available reference cucumber genome (V2 and V3) using BBMap (https://sourceforge.net/projects/bbmap/), and the alignment data were converted to the BAM format (Li et al., 2009). As the CsCvy-1 locus was previously mapped onto chromosome 5 (Pujol et al., 2019), the data from the interval on chromosome 5: 7,000,000–7,850,000 were extracted using SAMtools (Li et al., 2009). The variant detection has been performed using BCFtools (Li et al., 2009) and a publicly available custom script (https://github.com/davidjstudholme/SNPsFromPileups) as previously described; (Yemataw et al., 2018). Integrative Genomics Viewer (IGV) was used to visualize the alignment results (Robinson et al., 2011).



Converting Single Nucleotide Variants to PCR-Based Markers

Several of the SNPs within the interval were converted to Kompetitive Allele Specific PCR markers (KASP) by taking 100 bases either side of the SNP. KASP primers were developed using the LGC's primer picker software, Middlesex, United Kingdom. The PCRs were performed in a total volume of 15 μl that included DNA (10 ng; 5 μl), KASP Assay Mix (0.2 μl), KASP Master Mix (7.5 μl), and distilled water (2.3 μl). The KASP assay reactions were performed using the LightCycler® 480 II (Roche) using 61–55°C touchdown protocol (https://biosearch-cdn.azureedge.net/assetsv6/KASP-thermal-cycling-conditions-all-protocols.pdf). The fluorescence signal was measured for 2 min at 25°C using a FluOstar Omega Microplate Reader (BMG LABTECH, Ortenberg, Germany).



Confirming Interval and Identifying Marker-Assisted Selection (MAS)-Friendly Markers

As the CsCvy-1 locus had been previously mapped (Pujol et al., 2019), we used some of the published KASP markers including CVYV-184, CVYV-187, CVYV-188, CVYV-190, and CVYV-122 in this work. Published and newly generated KASP markers were first tested on parents to confirm the identified polymorphisms and then 120 segregating F2 lines. Marker genotyping data and the viral disease phenotyping data were used to confirm the CsCvy-1 interval. As we developed new markers (Supplementary Table 1) to narrow the interval down, we also tested these markers with the commercial F1 hybrid lines, which were obtained from the relevant companies. As F2 lines are a segregating population, markers discovered using F2s may not be a reliable MAS-friendly marker. Therefore, we used F1 hybrid lines to narrow the interval further down and identify the MAS-friendly markers.



Genomic Sequences and Accession Numbers

Cucumber reference genome sequences ChineseLong 9930 v2 are at http://cucurbitgenomics.org/organism/2 ChineseLong 9930 v3 at (https://ftp.ncbi.nlm.nih.gov/genomes/genbank/plant/Cucumis_sativus/latest_assembly_versions/GCA_000004075.3_Cucumber_9930_V3/). The raw sequence reads aligning to the interval have been deposited in the Sequence Read Archive (SRA) and are accessible via BioProject accession PRJNA713378.




RESULTS


Resistance to CVYV Segregates as a Single Locus

A cross was generated between the susceptible C. sativus inbred line YT-189-1 and the resistant inbred line, YT-MLN-33. The F1 hybrid showed resistance to CVYV, indicating that resistance was dominant. The F1 was selfed to generate segregating F2 populations. A total of 120 F2 lines were taken to F3 level, and 20 F3 lines descending from each F2s were inoculated with the virus to determine accurately the phenotype of the mapping population. Disease symptoms, including mosaics and vein yellowing, were obvious on the leaves of susceptible plants at 15 dpi (Figure 1). The segregation ratio observed in this bioassay was 92:28 (resistant:susceptible, 3:1; with Chi-square = 0.05 and p ≤ 0.05), suggesting that a single locus was providing resistance to CVYV in this cross and allowing the subsequent analysis.


[image: Figure 1]
FIGURE 1. Healthy and Cucumber vein yellowing virus (CVYV)-infected cucumber leaves. Cucumber plants were mechanically inoculated at the cotyledon to one-true-leaf stages. A second inoculation was performed 3 days after the first one. The inoculated cucumber seedlings were then kept in a growth chamber with temperature control set at 30/25°C (day/night) with a 16 h light/8 h dark photoperiod for 3 weeks and observed every 2 days. The plants were evaluated for symptom development at 15 days after the first inoculation (dpi). Control plants were treated with buffer without virus in a similar manner. (A) Leaf of an uninoculated control plant, (B) leaf of a Cucumber vein yellowing virus (CVYV)-inoculated-resistant plant, and (C) leaf of a CVYV-inoculated-susceptible plant.




Linkage to CsCvy-1 Locus

We used a next-generation sequencing (NGS)-based BSA approach whereby we generated bulks from DNA isolated from 20 resistant and susceptible F2 lines. We generated 150-bp paired-end Illumina HiSeq2500 sequencing data from the two parents and bulks (resistant and susceptible). A total of 390 million reads for each parent and 391 million reads for each bulk were generated. We then mapped these reads onto to the cucumber reference genome sequence (GenBank: GCA_000004075.3). However, during the course of our work, a locus designated CsCvy-1 mapped on chromosome 5 was published using BSA approach (Pujol et al., 2019). This prompted us to check whether we were mapping the same region even though we were using different breeding lines. We used published CVYV-184, CVYV-187, CVYV-188, CVYV-190, and CVYV-122 KASP markers (Pujol et al., 2019) to determine whether the resistance locus in our parental line YT-MLN-33 is linked to CsCvy-1. Our mapping data showed a clear linkage (Table 1, Supplementary Figure 1), and therefore we concentrated on chromosome 5. As we had already performed an SNP analysis using the then-available version of the reference genome sequence (GCA_000004075.2), we developed several KASP markers and mapped the CsCvy-1 locus in our segregating mapping population. To make our work comparable with the published data, we then mapped our clean NGS reads onto the updated reference genome sequence (GCA_000004075.3), concentrated on a region between SNP10218, identified in this work, and the published CVYV122 marker (Supplementary Table 2). Several of the published markers were not polymorphic for the parental lines we used, e.g., CVYV-173, CVYV-174, CVYV-175, and CVYV 176.


Table 1. Molecular markers used to define the interval for CsCvy-1 locus and the critical recombinant F2 lines.
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Narrowing the Interval Using Nucleotide Variants

As our ultimate aim was to identify a marker that is tightly linked to CsCvy-1, we wanted to narrow the interval and generate further markers to identify an MAS-friendly marker. Using NGS data from parents and bulks, we mined the data on chromosome 5: 10,218,000–11,370,000 (ChineseLong 9930 ASM407v2, Supplementary Figure 1). KASP markers were then designed and used for mapping to narrow the interval. A total of 13 new KASP markers were generated, and the locus was mapped down to a 327-kb interval between the markers 10,317 and 10,644 K using the available F2 lines (Supplementary Table 2). As the version-three reference genome sequence became available, we also used this version and mined the data on chromosome 5: 7,000,000–7,850,000 (GCA_000004075.3, Supplementary Figure 2) for SNPs. A total of 436 SNPs have been detected (Supplementary Table 3). It should be noted here that although markers developed in this work using the GCA_000004075.V2 reference map to the region, several of the newly developed ones, especially toward the marker CVYV-122, were missing when the GCA_000004075.V3 reference was used. This may have been due to misassembly of the region as there was a 394 kb was missing in the GCA_000004075.3 genome (Figure 2).


[image: Figure 2]
FIGURE 2. Pairwise sequence alignment of CsCvy-1 interval in reference genomes version two and three (GCA_000004075.2 and GCA_000004075.3). Sequences were aligned using Progressive Mauve (Darling et al., 2004).




Commercial Varieties Help Narrowing the Interval

Although we had enough number of markers to map the locus further, the number of F2 lines to bring the interval down was not sufficient to identify further recombinants. We then obtained seeds of more than 20 commercial cucumber varieties with claimed CVYV phenotype and confirmed their phenotype by testing them with the CVYV isolate. Their DNAs were screened with our newly developed markers, and we narrowed down the locus to a 101-kb interval between the markers 10,317 and 10,418 K (Supplementary Table 4, Table 2). This finding suggests that the polymorphism identified in this work has been maintained across different varieties that have been used in the commercial breeding programs. In addition, the identified polymorphisms within the interval could be used in a breeding program by checking the existence of polymorphisms in the lines used.


Table 2. Molecular markers used to define the interval for CsCvy-1 locus using F1 hybrids.

[image: Table 2]



The CsCvy-1 Interval Contains Genes That May Play a Role in Defense

CsCvy-1 locus mapped by Pujol et al. (2019) contained 24 genes. However, as we mapped the interval down to 101 kb, we used the annotations of the cucumber reference genome (GCA_000004075.3) to identify genes within the interval. The CsCvy-1 locus in our mapping interval contains eight predicted genes (Table 3). Although CsaV3_5G011160 encodes a cytochrome P450-like protein, CsaV3_5G011170, CsaV3_5G011190, and CsaV3_5G011230 encode unknown proteins. However, CsaV3_5G011180 encodes a serine/arginine repetitive matrix protein 2 isoform X2, CsaV3_5G011220 encodes an endo-1,4-beta-xylanase, and two genes, CsaV3_5G011200 and CsaV3_5G011210, both encode RNA-dependent RNA polymerase 1-like (RDR1-like) proteins. Interestingly, the deletion in the intragenic region of the RDR1 reported in this interval (Pujol et al., 2019) has been maintained in the resistant inbred line we used.


Table 3. Genes within the CsCvy-1 interval in the Chinese Long cucumber genome.
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DISCUSSION

Here, we present genetic evidence that a single dominant locus CsCvy-1 confers resistance to CVYV infection in our inbred lines, consistent with a recent report (Pujol et al., 2019). Our genomic and molecular investigations using an F2 mapping population and also commercial resistant and susceptible varieties enabled us to map this locus down to 101-kb interval in which eight genes reside. Use of genomics allowed the identification of SNPs that could be used in breeding programs.

The plant immune system has the ability to recognize extracellular or intracellular molecules derived from plant pathogens and generate a defense response to restrict the pathogen growth or replication (Wang et al., 2008; Tör et al., 2009; Steinbrenner et al., 2015). Map-based studies usually involve the phenotyping and genotyping of a large number of individual plants in a segregating population. Using this approach, genes conferring resistance to fungal, oomycete, bacterial, and viral pathogens have been mapped, and many of them have been cloned (Tai et al., 1999; Borhan et al., 2008; Kim et al., 2017; Chen et al., 2021).

Linkage analysis plays a significant role in the cloning genes or generating markers tightly linked to the locus of interest using map-based approach. When we started this investigation, there was no published data on the chromosomal location of the gene conferring resistance to CVYV. During our SNP analysis, Pujol et al. (2019) published their work on the mapping of CsCvy-1 in cucumber using genomic approach. We used relevant markers from this published work; however, several of them were not polymorphic in our parental lines, indicating the importance of generating SNP data from the lines used in generating mapping populations. After establishing the linkage between the resistance source in our material and the CsCvy-1, it was obvious that we were mapping the same locus, and thus we zoomed into the region.

We used genomics and BSA previously to clone genes (Woods-Tör et al., 2018) and to generate MAS-friendly molecular markers (Devran et al., 2018) that are tightly linked to the gene of interest. Our experience shows that although the use of reference genomes helps the identification of variants in the region of interest, different versions of reference genome assemblies produced different results in the SNP analysis. It was the case in this study where we initially used version 2 (GCA_000004075.2) as the reference and generated markers for our mapping work. Although all the markers generated from version 2 mapped the gene, several of them were missing when version 3 (GCA_000004075.3) were used, indicating the importance of mapping for confirmation and using more than one available reference genome.

High number of individual lines in a map-based study help identify the recombinant lines, which enables narrowing the interval. It can be easy to generate large number of F2 lines from plants, such as Arabidopsis thaliana (Tör et al., 2002). However, in plants such as cucumber, it may not be possible to achieve large number of F2s. In this work, we relied on 120 F2 lines to narrow the interval down to a 327 kb. Considering the breeding efforts where many characters are collected in a “pure” line, during which many crosses are carried out and many recombination events take place, for an MAS-friendly marker, the interval needs to be very small so that the likelihood of a recombination event between the marker and the gene of interest is almost zero. Bearing this in mind, we used the commercial cucumber F1 hybrids in our phenotyping and genotyping assays and reduced the interval down to 101 kb with eight genes.

Resistance to plant pathogens could be provided by membrane-bound proteins, such as receptor-like proteins (RLPs) (Wang et al., 2008) or receptor-like kinases (RLKs) (Roux et al., 2011; Zhang et al., 2013) or by the cytoplasmic nucleotide-binding, leucine-rich repeat (NLR) immune receptors (Adachi et al., 2019). There were no classic RLP, RLK, or NLR-type genes in the 101-kb CsCvy-1 interval. Pujol et al. (2019) looked into the small variants and structural variation in the locus and argued that CsaV3_5G011180 encoding for serine/arginine repetitive matrix protein (SARMP) could be a possible candidate. In addition, Pujol et al. (2019) postulated that CsaV3_5G011200 and CsaV3_5G011210 encoding RDRs 1a and 1b had the most appealing modifications in the locus and discussed the role of RDRs in RNA silencing pathways. Leibman et al. (2018) carried out detailed investigations into the RDR1-like genes in cucumber and reported the presence of four putative RDR1-family genes. They then investigated the expression of these RDR1-like genes and their role in defense against different viruses, including Zucchini yellow mosaic virus (ZYMV), CMV, and CVYV and showed that the level of RDR1-like gene expression varied according to the virus used (Leibman et al., 2018).

The NLR-type disease resistance genes in Arabidopsis have been reported to be clustered in the genome (Holub, 2007), and some of them function together and could be in head-to-head orientation, termed paired NLRs (Saucet et al., 2015). Further detailed studies indicated that one of them could function as a pathogen sensor, and the other member as signaling executor (Van de Weyer et al., 2019). Here, we have RDR1a and RDR1b in the interval right next to each other, functioning “like an R-gene” (Leibman et al., 2018), but it is not totally clear from expression studies whether they function together as some genetic investigations are needed. It is tempting to speculate that RDR1a and RDR1b are the most suitable candidate genes for the CVYV resistance.

Our strategy to use genomics and BSA to identify SNPs and generate molecular markers that could be employed in the selection of CsCvy-1 enabled us to screen several markers and narrowed the interval down. These SNPS and markers could be used to identify polymorphism in different backgrounds in any breeding program to select CsCvy-1. Subsequent experiments could be designed to silence both RDR1 and RDR2 genes individually and together in the same background to reveal their dependence onto each other and their contribution to CVYV defense.
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Septoria tritici blotch, caused by the fungus Zymoseptoria titici, poses serious and persistent challenges to wheat cultivation in Ethiopia and worldwide. Deploying resistant cultivars is a major component of controlling septoria tritici blotch (STB). Thus, the objective of this study was to elucidate the genomic architecture of STB resistance in an association panel of 178 bread wheat genotypes. The association panel was phenotyped for STB resistance, phenology, yield, and yield-related traits in three locations for 2 years. The panel was also genotyped for single nucleotide polymorphism (SNP) markers using the genotyping-by-sequencing (GBS) method, and a total of 7,776 polymorphic SNPs were used in the subsequent analyses. Marker-trait associations were also computed using a genome association and prediction integrated tool (GAPIT). The study then found that the broad-sense heritability for STB resistance ranged from 0.58 to 0.97 and 0.72 to 0.81 at the individual and across-environment levels, respectively, indicating the presence of STB resistance alleles in the association panel. Population structure and principal component analyses detected two sub-groups with greater degrees of admixture. A linkage disequilibrium (LD) analysis in 338,125 marker pairs also detected the existence of significant (p ≤ 0.01) linkage in 27.6% of the marker pairs. Specifically, in all chromosomes, the LD between SNPs declined within 2.26–105.62 Mbp, with an overall mean of 31.44 Mbp. Furthermore, the association analysis identified 53 loci that were significantly (false discovery rate, FDR, <0.05) associated with STB resistance, further pointing to 33 putative quantitative trait loci (QTLs). Most of these shared similar chromosomes with already published Septoria resistance genes, which were distributed across chromosomes 1B, 1D, 2A, 2B, 2D, 3A,3 B, 3D, 4A, 5A, 5B, 6A, 7A, 7B, and 7D. However, five of the putative QTLs identified on chromosomes 1A, 5D, and 6B appeared to be novel. Dissecting the detected loci on IWGSC RefSeq Annotation v2.1 revealed the existence of disease resistance-associated genes in the identified QTL regions that are involved in plant defense responses. These putative QTLs explained 2.7–13.2% of the total phenotypic variation. Seven of the QTLs (R2 = 2.7–10.8%) for STB resistance also co-localized with marker-trait associations (MTAs) for agronomic traits. Overall, this analysis reported on putative QTLs for adult plant resistance to STB and some important agronomic traits. The reported and novel QTLs have been identified previously, indicating the potential to improve STB resistance by pyramiding QTLs by marker-assisted selection.

Keywords: genome-wide association study, linkage disequilibrium, population structure, quantitative trait locus, septoria tritici blotch, wheat, Zymoseptoria titici


INTRODUCTION

Common wheat (Triticum aestivum L.) is the most widely cultivated and the major staple food crop in the world consumed by human, providing almost 20% of the total calories and 21% of protein demand globally (Arzani and Ashraf, 2017; International Wheat Genome Sequencing Consortium (IWGSC), 2018; Ramadas et al., 2019). By 2050, the world's human population is projected to reach nine billion, and we will need to increase wheat production by 70% to feed this projected growth (FAO, 2009; Ray et al., 2013; Marcussen et al., 2014). Hence, boosting the wheat harvest is very pertinent to achieve zero-hunger by 2050.

Septoria tritici blotch, caused by the fungus Zymoseptoria tritici (anamorph: Septoria tritici), is an ever-existing bottleneck to wheat cultivation worldwide (Dalvand et al., 2018; Odilbekov et al., 2019), accounting for 30–54% of global wheat yield loss annually (Eyal and Levy, 1987). Septoria tritici blotch (STB) is also a major threat to wheat production in Ethiopia (Getinet et al., 1990; Takele et al., 2015; Kidane et al., 2017; Mekonnen et al., 2019, 2020), causing up to 82% of yield loss in the worst seasons (Getinet et al., 1990; Mengistu et al., 1991; Ayele et al., 2008).

The deployment of genetic resistance is the most durable, economical, and environmentally friendly method to manage crop diseases like STB (Ghaneie et al., 2011; Mekonnen et al., 2019; Odilbekov et al., 2019). In particular, qualitative and quantitative types of resistance to STB have been reported in wheat (Arraiano and Brown, 2006; Arraiano et al., 2009). The former refers to a condition where one or few major Stb genes provide resistance to specific Z. tritici isolates (Brown et al., 2015). Quantitative resistance, on the other hand, results from the expression of many genes with minor effects and is generally not specific to isolates. As such, quantitative resistance is the most effective, durable, and preferred method to manage rapidly evolving wheat pathogens such as Z. tritici (Long et al., 2019).

The resistance-breeding method used in Ethiopia is mainly conventional, making the crop-improvement program very slow and inefficient. Nowadays, the advent and application of modern genomic tools have revolutionized crop breeding by facilitating the precise identification, mapping, and introgression of genomic regions controlling useful agronomic traits, such as resistance, into new cultivars. To account for this, a genome-wide association study (GWAS) is a powerful approach to elucidating the genomic architecture of many traits (Long et al., 2019). The development of high-throughput sequencing and bioinformatics technologies (Huang et al., 2017) has also enabled GWAS to scan single nucleotide polymorphisms (SNPs) associated with desirable traits at the whole-genome scale (Rafalski, 2010).

Genome-wide association studies have been successfully applied to many crop species (Xiao et al., 2017) such as maize (Rashid et al., 2018), rice (Huang et al., 2017), wheat (Kidane et al., 2017; Long et al., 2019; Cheng et al., 2020), and sorghum (Girma et al., 2019). In particular, this study design has been used in wheat to analyze several traits such as resistance to stripe rust (Long et al., 2019; Yao et al., 2019; Cheng et al., 2020), stem rust (Edae et al., 2015; Kankwatsa et al., 2017), Septoria tritici blotch (Kidane et al., 2017; Odilbekov et al., 2019), drought tolerance (Mathew et al., 2019), and other phenological characteristics, plus yield and yield-related traits (Jamil et al., 2019; Wang et al., 2019; Ward et al., 2019). While Ethiopia is the largest producer of wheat in sub-Saharan Africa, little is known about the resistance Ethiopian wheat cultivars have to STB, even though it is the most important disease economically. Thus, the objectives of this study were: (1) to determine the population structure, family relatedness, and level of linkage disequilibrium of the tested bread wheat association panel; (2) to elucidate the genomic architecture of adult plant resistance to STB; (3) to identify the SNP loci underlying yield, yield-related, and phonological traits in Ethiopian cultivars that could be useful in wheat breeding programs.



MATERIALS AND METHODS


Association Mapping Panel

This study used an association panel of 180 bread wheat (Triticum aestivum L.) genotypes (Supplementary Table 1), of which 167 were obtained from the International Maize and Wheat Improvement Center (CIMMYT-Mexico) and 13 were commercial cultivars grown in Ethiopia. The 167 CIMMYT genotypes included 49 from the International Bread Wheat Screening Nursery (IBWSN), 56 from the International Septoria Observation Nursery (ISEPON), 14 from the High Rain Wheat Yield Trial (HRWYT), 34 from the High Rainfall Wheat Screening Nursery (HRWSN), 5 from an adaptation trial, 6 from the National Variety Trials (NVT), and the remaining 3 genotypes were from a preliminary variety trial (PVT).



Multi-Environment Trials

Field evaluations were carried out under natural STB infestation during the 2015 and 2016 main cropping seasons across three STB hotspots: the Holetta Agricultural Research Center (HARC) (9° 3'N/38° 30'E), Bekoji Agricultural Research Subcenter (7° 32'N/39° 15'E), and Kulumsa Agricultural Research Center (KARC) (8° 02'N/ 39° 15'E). The experimental design was an alpha lattice with two replications, six incomplete blocks, and 30 entries per sub-block per replication. The trial was sown by hand, with each entry planted in four rows of a 2.5-m length, 20-cm spacing between rows, and 40 cm between entries. The susceptible cv. “Lakech” was planted as a spreader row along the length of the blocks to create adequate disease pressure. The spaces between the blocks and replications were 1.5 m long. A seeding rate of 150 kg ha−1 and fertilizer rates of 100 and 75 kg ha−1 of N and P2O5, respectively, were used in all the experiments. Weeding was performed by hand three times each season.



STB Evaluation

Septoria tritici blotch disease severity (SDS) was estimated visually plot-wise by considering the percentage of necrotic leaf area (NLA) on the four uppermost infected leaves of 10–20 plants (Eyal and Levy, 1987) at three growth stages, namely, heading (SDH), medium milk (SDMM), and at maturity (SDM), using a double-digit 00–99 scoring scale (Eyal and Levy, 1987). The first digit (0–9) represented blotch development in terms of plant height (for instance, 5 if the disease reached the middle (50%) of the plant height, 8 for reaching the flag leaf, and 9 for reaching the spike), while the second digit stood for the disease severity as a percentage but in terms of 0–9 (1 = 10%, 2 = 20%, and 9 = 90 %). For each stage, Septoria disease severity percentage (SDS%) was computed from the 00–99 score using the following formula as described by Sharma and Duveiller (2007):
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where D1 and D2 are the first and the second digits of the double-digit scores, respectively. The SDS values range from 0 to 100, where 0 indicates complete resistance and 100 indicates complete susceptibility (Kidane et al., 2017).

In addition, the Septoria progress coefficient (SPC) developed by Eyal and Ziv (1974) was computed to indicate the position of pycnidia relative to plant height according to the following equation:

[image: image]

where SDH (Septoria disease height) is the maximum height (cm) above ground at which the pycnidia of the pathogen could be found on the plant at the maturity stage and PH is the average height of the genotype from the ground to the tip of its awn. The SPC coefficient indicates the position of pycnidia relative to plant height, regardless of pycnidial coverage, and allows for the comparison of the infection placements on cultivars with different plant statures. Furthermore, SPC values ranged from 0 to 1, where SPC = 0 means that there was no disease, while SPC =1 means that pycnidia were produced at the top of the plant (Eyal and Levy, 1987).



Other Agronomic Data Scoring

The phenotypic data that were recorded were heading date (HD, days to 50% heading), flowering date (FD = days to 50% flowering), grain-filling duration (GFD), maturity date (MD = days to 90% maturity), grain yield, hectoliter weight (HLW = kilograms per 100 liters of wheat), thousand-kernel weight (TKW = weight of 1,000 kernels, in grams), plant height (PH), number of spikelets per spike (SPS), number of kernels per spikelet (NKPS), and number of kernels per spike (NKS). These yield data were taken from the four rows of each plot and converted to kilograms per hectare (kg ha−1) at 12.5% moisture content using plot size as a factor. Plant height measurement was also carried out at physiological maturity from five randomly selected and tagged plants from the middle rows of each entry.



DNA Extraction and Genotyping by Sequencing

The wheat plants of the association panel were grown at the National Agricultural Biotechnology Research Center, Holetta under greenhouse conditions. The 2-week-old leaf samples were then collected into 96 deep-well sample collection plates, oven-dried overnight at 50°C, and sent to Integrated Genotyping Service and Support (IGSS) located at the Biosciences Eastern and Central Africa (BecA-ILRI) Hub in Nairobi, Kenya for high-density genotyping by Diversity Arrays Technology sequencing (DArTseq™ technology). Furthermore, DNA extraction was carried out using the Nucleomag Plant Genomic DNA extraction kit (Macherey-Nagel GmbH & Co. KG, Duren, Germany). Afterward, extracted DNA quality and quantity were checked on a Thermo Scientific™ NanoDrop™ 2000 Spectrophotometers (Thermo Scientific™, USA) and on 0.8% agarose gels. As a result, the extracted genomic DNA concentration ranged from 50 to 100 ng/μl. Whole-genome profiling was also carried out using the genotyping-by-sequencing (GBS) platform as described by Elshire et al. (2011). This method involved library construction following the DArTSeq complexity reduction method via the digestion of genomic DNA using ApeKI [a type II restriction endonuclease that recognizes a degenerate 5-bp sequence (GCWGC, where W is A or T)] and the ligation of barcoded adapters, which was also followed by the PCR amplification of adapter-ligated fragments. The libraries were then sequenced using single-read sequencing runs for 77 bases. The next-generation sequencing of the GBS library was also carried out using an Illumina HiSeq 2500 lane (Illumina, San Diego, CA, United States) following the protocol of the manufacturer.



Quality Control and SNP Calling

The technical quality of the sequencing was checked using a Sequencing Analysis Viewer. DArTSeq markers were scored using the DArTsoft14 software implemented in the KDCompute plug-in system developed by Diversity Arrays Technology (2017) (http://www.kddart.org/kdcompute.html) based on their alignment with the reference genome of the Chinese Spring Wheat RefSeq v1.0 [International Wheat Genome Sequencing Consortium (IWGSC), 2018], which was obtained from the International Wheat Genome Sequencing Consortium database (https://urgi.versailles.inra.fr/download/iwgsc/) at a minimum base identity of 90% and e-value of 5e-10. Two types of markers were scored, namely, SilicoDArT markers and SNP markers, which were both scored in a binary fashion (1/0), indicating the presence or absence of a marker in the genomic representation of each sample as described by Akbari et al. (2006). Marker quality was also maintained by removing monomorphic markers and those with lower call rates (>30% missing) and MAFs (minor allele frequencies) <5% using the ArTSoft14 software.



Statistical Data Analysis


Phenotypic Data Analysis

We conducted an ANOVA for each location in each year using the SAS software version 9.2 (SAS Institute Inc., 2008) by considering genotype and the block as fixed and random factors, respectively. In an individual environment, the observed phenotypic response of the ith genotype in the jth replication and lth sub-block was computed using the following model:
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where yijl = the observed phenotype, μ = the grand mean, gi = fixed effect of the ith genotype, γj = effect of the jth replication, bl(j) = random effect of the lth block nested within the jth replication, and εijl = random error term.

The ANOVA of all seasons and locations was executed by considering genotype as a fixed effect and the block, location, and year as random effects according to the following model:
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where Yijklm = observed response of genotype m, replication k of block l of location j and year i; μ = grand mean; gm = fixed effect of genotype m; rijk = effect of replication k in location j and year i; yij = random effect of year i at location j that is ~ normally and independently distributed (NID) (0, [image: image]); ej = random effect of location j that is ~ NID (0, [image: image]); bijkl = random effect of block l nested with replication k in location j and year i that is ~ NID (0, [image: image]); (gy)im = random effect of the interaction between genotype m and year i that is ~ NID (0, [image: image]); (ge)jm = random effect of the interaction between genotype m and location j that is ~ NID (0, [image: image]); (ye)ij = random effect of the interaction between year i and location j that is ~ NID (0, [image: image]); (yeg)ijm = random effect of the three-way interaction of genotype m in location j and year i that is ~ NID (0, [image: image]); εijklm= random residual effect that is ~ NID (0, [image: image]).

The variance components were also computed. The broad-sense heritability (H2) within an environment was estimated for the traits from an ANOVA using the following formula:

[image: image]

The broad-sense heritabilities across the environments were also estimated by the formula:
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where δ2 g is the genotypic variance, σ2gy is the genotype-by-year interaction variance, σ2ge is the genotype-by-location interaction variance, σ2gye is the genotype-by-year-by-location interaction variance, δ2e is the location variance, and l, r, and y represent the numbers of locations, replicates, and years, respectively. The percentage of heritability was categorized as low (<30%), moderate (30–60%), or high (≥60%) as described by Robinson et al. (1949). The relationship between agronomic traits was also determined by Pearson's correlation using the SAS software version 9.2 (SAS Institute Inc., 2008).



Population Structure Analysis

A population stratification of the association panel was visualized by principal component analysis (PCA) using the KDCompute plug in system version 1.0.1 (https://kdcompute.seqart.net/kdcompute/plugins). Population admixture patterns were also determined using a Bayesian model-based clustering algorithm implemented in the STRUCTURE software v.2.3.4 (Pritchard et al., 2000). The STRUCTURE program was run with the admixture model, correlated allele frequencies, a burn-in period of 10,000, and 50,000 Markov Chain Monte Carlo (MCMC) replications after a burn in for hypothetical subpopulations K from 1 to 10 with 10 iterations. The optimum K value was predicted based on a study by Evanno et al. (2005) using STRUCTURE HARVESTER ver. 0.6.92 (Earl and von Holdt, 2012). A bar plot for the optimum K was determined using Clumpak beta version (Kopelman et al., 2015).




Genome-Wide Association Study

The association mapping of phenotypic traits with genome-wide scanned SNPs was conducted using the Genome Association and Prediction Integrated Tools (GAPIT) package (Lipka et al., 2012) in the R software (R Core Team, 2013). This GWAS was carried out for four Septoria disease traits, namely, SDSH, SDSMM, SDSM, and SPC, and some important agronomic traits such as the days to 50% heading (DH), days to 50% flowering (DF), grain filling duration (GFD), days to 90% maturity (DM), grain yield, thousand-kernel weight (TKW), and plant height (PH) in each individual environment; the study design also used the means across all environments [the best linear unbiased estimate (BLUE) values]. The analysis involved a total of 7,776 robust SNPs with a call rate of >70% and MAF of >5%. Missing SNP data were imputed using optimal impute ver. 1.0.0 in the KDcompute_plugin system based on the KNN imputation method. The marker distribution on each chromosome was determined using LD measure in R2 ver.0.2.2 of the KDcompute_plugin. Pairwise LD measures (r2 and P-value) between markers on each chromosome were also computed using TASSEL Ver. 5 (Bradbury et al., 2007). A genome-wide LD decay scatter plot was then produced by plotting the r2 values against physical distance (bp) using the GAPIT software. Finally, r2 = 0.2 was considered as a cutoff point for no LD between pairs of markers.

The GWAS was conducted using the fixed and random model circulating probability unification (FarmCPU) algorithm (Liu et al., 2016) implemented in the GAPIT R package (2.0) (Tang et al., 2016). The algorithm uses both fixed-effect and random-effect models iteratively to control spurious marker-trait associations due to population structure and family relatedness (Lipka et al., 2012). Furthermore, a kinship (K) matrix was computed using the method of VanRaden (2008). Principal components describing the population stratification were computed using R/GAPIT and iteratively added to the fixed part of the model. Quantile–quantile (Q–Q) plots generated from –log10 p-values were assessed visually to determine how well the model accounted for population structure and family relatedness among the study samples. Statistically significant marker-trait associations were declared using a false discovery rate (FDR)-adjusted p < 0.05 as implemented in GAPIT. Furthermore, the Bonferroni correction rate at a significance threshold of p < 0.15 or –log10 (p-values) = 4.71 was also included in the analysis for comparison. Both the Q–Q and Manhattan plots were visualized using the R package qqman (Turner, 2014). The high-confidence candidate genes within the identified resistance-associated regions were also extracted from the recently released IWGSC RefSeq Annotation v2.1 available on the URGI Seq repository (https://wheat-urgi.versailles.inrae.fr/Seq-Repository/Annotations).




RESULTS


Phenotypic Data Analysis


Adult Plant Responses to STB and Broad-Sense Heritability

The genotype effect was significant (p < 0.0001) for STB resistance at all the growth stages in all the test environments. Genotypic variance (σ2g) was the major contributor to STB resistance variability among the tested wheat genotypes. The Septoria disease severity traits also showed pseudo-normal distributions (Figure 1), indicating the quantitative nature of STB resistance in the tested wheat genotypes (Kidane et al., 2017). The analysis revealed that the STB infestation showed seasonal fluctuations, but that was still higher during the 2015 growing season (Table 1). Moreover, the disease severity showed an increasing trend from heading to the maturity stage. In each environment, mean SDS values at the heading and mid-maturity stages ranged from 18.2 to 31.2% and 21.7 to 37.6%, respectively, while the highest severity values were registered at Holetta in 2015. The mean disease severity at maturity and its vertical progress varied from 30 to 50.8% and 0.41 to 0.69, respectively, while they were the highest at Bekoji in the 2015 growing season. The lowest Septoria severity was recorded at Kulumsa in 2016. The broad-sense heritability for Septoria resistance in each environment ranged from moderate (H2 = 0.58) to high (H2 = 0.99) (Table 2).


[image: Figure 1]
FIGURE 1. Frequency distribution of some SDS traits. The combined data were from three locations and over 2 years field evaluation of 180 wheat genotypes. The right and left ends of the graphs indicate the highest and lowest affection classes, respectively. The combined Septoria disease severity at heading, mid-maturity, and maturity stages followed a normal distribution. The severity values increased from heading to mid-maturity, and then to maturity stages. Combined Septoria progress coefficient showed pseudo-normal distribution, confirming the quantitative nature of STB resistance in the tested wheat material. The x-axis represents the BLUE value of the study genotype.



Table 1. Descriptive statistics of SDS values in bread wheat genotypes evaluated in three locations in Ethiopia during the 2015 and 2016 growing seasons.
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Table 2. Genotypic variance (σ2g) and heritability in the broad sense (H2) for phenotypic traits in 180 bread wheat genotypes in six different environments in Ethiopia.
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The combined ANOVA revealed that the effect of genotype, year, location, and their two- (genotype × year, genotype × location, and year × location) and three-way interactions (genotype × year × location) were significant for SDS traits except for the Septoria progress coefficient, where the effect of year was not significant (Table 3). The analysis of pooled data revealed that genotypic variance (σ2g) was the highest for all the SDS parameters except SDSMM, where environmental effect was the highest (Table 4). The broad-sense heritabilities of Septoria resistance traits showed that they were highly heritable (H2 = 72– 81%) (Table 4) (Robinson et al., 1949). The phenotypic and genotypic coefficients of variation for SDS traits ranged from 32.4 (SPC) to 68.3% (SDSH) and 22.5 (SPC) to 41.4% (SDSM), respectively. At 5% selection intensity, the genetic advance for SDS traits ranged from 0.31 (SPC) to 35.23 (SDSM), while the magnitude of the expected genetic gains as a percent of the mean varied from 53.69% (SPC) to 102.38% for SDSH (Table 4).


Table 3. Combined analysis of variance for Septoria disease severity traits across three locations in Ethiopia over years 2015 and 2016.
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Table 4. Variance component estimates for SDS, H2 (broad sense), genotypic coefficient of variance (GCV), phenotypic coefficient of variance (PCV), genetic advance (GA), and genetic advance as percent of the mean (GAM) based on pooled data from the six environments.
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Over all the environments, the average SDS of the individual wheat genotypes ranged from 5.3 to 39.8% at heading, 8.2 to 48.5% at mid-maturity, and 10.6 to 65.3% at maturity (Supplementary Table 2). The average SPC of the individual environments ranged from 0.37 to 0.79. The most resistant genotype at all the growth stages was G174, while G104 (39.8%), G76 (48.5%), and G127 (65.3%) were the most susceptible genotypes at the heading, mid-maturity, and maturity stages, respectively (Supplementary Table 2). A comparative severity analysis with the standard checkKing-bird (G40) and the mean performance of the released varieties also confirmed the presence of superior STB-resistant genotypes among the tested materials. Of the 180 tested genotypes, 56 (31%) at heading, 75 (42%) at mid-maturity, and 105 (59%) at maturity had numerically superior STB resistance compared with King-bird (Supplementary Table 2).

The top 5% best genotypes at maturity had 47.6–71% greater resistances than King-bird and 11.9–74.4 % greater resistances compared with the mean performances of the released varieties (Table 5).


Table 5. Comparison of the mean performances of 5% of the genotypes selected for Septoria tritici blotch (STB) resistance with King-bird, a recently released variety, and with the mean performances of 13 released varieties.
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Pearson's correlation analysis of the means over all environments revealed that STB resistance traits were significantly negatively associated with important agronomic traits. Except for SPC, all the SDS traits showed non-significant and negligible negative correlations (r < −0.3) with plant height. Disease traits also showed little to negative associations with HD, FD, GFD, NKPS, and NKS. However, a significant weak negative association (−0.25 to −0.48) was observed between SDS traits and MD, grain yield, HLW, and TKW (Table 6).


Table 6. Correlation analyses among Septoria resistance traits and some agronomic traits in 180 bread wheat genotypes based on the pooled data from 2 years of field trials in Ethiopia.
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SNP Statistics

The Illumina HiSeq 2500 (Illumina, San Diego, CA, United States) sequencing failed to generate SNP data for two genotypes (9 and 95); hence, a total of 178 bread wheat genotypes were successfully DArTSeq genotyped. Initially, a total of 35, 672 SNPs were discovered, of which 31,052 (87%) were mapped to known chromosomal positions on the reference used and 828 (2%) of the sequences were mapped to unknown chromosomes in the reference. In contrast, approximately 11% (3,792) of the SNPs did not align to any of the chromosomes of the wheat reference genome. Furthermore, the discovered DArTSeq SNPs were not evenly distributed among the sub-genomes, with the A, B, and D genomes accounting for 10,317, 10,979, and 9,756 SNPs, respectively (Supplementary Figure 1). Among the 21 wheat chromosomes, the highest (2,065) and the lowest (833) numbers of SNPs were mapped to chromosomes 7D and 4D, respectively (Supplementary Figure 1), and on average, each chromosome harbored about 1,479 SNPs. Maintaining SNPs with higher call rate (>70%) and MAF >0.05 resulted in 7,776 SNP markers, among which 87.3% had a known chromosome position in the wheat reference genome. Among the filtered SNPs, 2,410 were distributed on the A genome, 2,872 were distributed on the B genome, and 1,506 were distributed on the D genome. The remaining 988 SNPs were assigned to a hypothetical chromosome “0” for the sake of analysis. Hence, 7,776 SNPs were used in downstream analyses, which included principal component analysis (PCA), population clustering, population structure, LD, and GWAS.




Population Structure Analysis

The STRUCTURE analysis indicated two sub-populations in the association panel (Figure 2A), where ~43% (76) of the genotypes were assigned to cluster one and 57% (101) were assigned to cluster two. Additionally, the Clumpak result detected a greater degree of genetic admixture between the two sub-populations (Figure 2B), where all the individual genotypes shared alleles inherited from both subgroups (Figure 2C), thus confirming the presence of close relationships among the study materials. Furthermore, the PCA results also suggested the presence of two sub-populations (Figure 3). The first two principal components explained 65% (PC1 = 50% and PC2 = 15%) of the total variance contained in the data (Figure 3). With this, a scree plot, which was used to display the proportion of variation captured by each of the 10 principal components, also showed that the first two principal components (PC1 and PC2) explained the highest proportion of the total variation in the panel (Figure 4A). Figure 4B represents the 3D plots of the first three principal components to depict the samples' relationship in space, the analysis also confirmed the presence of kinship in the association panel (Figure 4C), suggesting the importance of using a powerful statistical GWAS model that accounts for the population structure and familial relatedness in the association study.
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FIGURE 2. Population structure of the 178 bread wheat genotypes representing eight populations. (A) Best delta K value estimated using the method of Evanno et al. (2005), and the pick at k = 2 indicates the number of subpopulations in our collection, (B) Population structure plot and SP1 and SP2 represents subpopulations 1 and 2, respectively, (C) Estimated population structure for K = 2 according to the breeding materials. The different (blue and orange) co lures represent genetic groups or sub-populations designated by Structure Harvester: the x-axis represents individual samples and y-axis represents the proportion of ancestry to each cluster. Population abbreviations are: IBWSN, International Bread Wheat Screening Nursery; ISEPTON, International Septoria Observation Nursery; HRWYT, High Rain Wheat Yield Trial; HRWSN, High Rain Wheat Screening Nursery; ADAPT, Adaptation t1ial; NVT, National Verification Trial, and PVT, Preliminary Verification.
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FIGURE 3. Population structure analysis of the 178 bread wheat genotypes based on principal component analysis clustering as revealed by the first two principal components. Samples coded with the same color belong to same population. Cluster (A) composed of 33 (18.54%) genotypes while Cluster (B) possessed 145 (81.46%) of the genotypes.
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FIGURE 4. Principal component and familiar relatedness analyses of 178 bread wheat genotypes based on 7,776 genome-wide scanned, high-quality SNPs. (A) A screen plot displaying the first 10 principal components with their corresponding fraction of variation explained, (B) 3D plots of the first three principal components to depict the samples' relationship in space, and (C) Heat map showing the kinship analysis. The kinship values showed a normal distribution (turquoise curve), and orange and red colors represent weak and high kinship relations in the panel, respectively. The resulted clustering tree is indicated outside of the matrix.



Linkage Disequilibrium (LD) Analysis

The linkage disequilibrium of alleles at different loci varied considerably across each chromosome and among chromosomes and sub-genomes (Table 7). There was a total of 338,125 marker pairs with average LD values of r2 = 0.11, with 97,723 (27.6%) pairs showing significant linkage at p ≤ 0.01 (Table 7). In particular, the B genome harbored the highest (143,600 or 42.5%) number of marker pairs, followed by the A genome with 119,225 (35.5%) of the marker pairs (Table 7). In contrast, the D genome harbored the lowest number (75,300 or 22.3%) of the marker pairs. Relatively, however, the SNPs on the B genome showed the strongest LD, with a mean value of r2 = 0.1187. Over all the chromosomes, the LD between SNPs declined to r2 = 0.2 within a physical distance of 31.44 Mbp; this ranged from 2.26 to 105.6 Mbp by chromosome. The weakest and strongest LD values were observed between the marker pairs on chromosomes 4D (r2 = 0.0251) and 2D (r2 = 0.211), respectively (Table 7). The physical distance (bp) at which the LD decayed to the critical r2 (0.2) value was used to determine the confidence interval for declaring the distinct QTL for each chromosome. Significant SNP markers from the same chromosome were also assigned to the same QTL if the distance between the significant markers was less than the critical physical distance.


Table 7. Summary of linkage disequilibrium analyses among marker pairs and the number of significant marker pairs per chromosome and genome.
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Genome-Wide Association Study


STB Resistance

The GWAS identified 53 SNPs that were significantly (FDR <0.05) associated with STB resistance at any growth stage. The report, however, only included the marker-trait associations (MTAs) that surpassed a Bonferroni-correction significance threshold of 0.15. Supplementary Table 3 presents the complete output of the GWAS results for STB resistance at the heading, mid-maturity, and maturity stages and for the Septoria progress coefficient. This table also reports allele identity, marker position, MAF, p-values, FDR-corrected q values, and the additive effects of the identified MTAs. The Q–Q plots demonstrating how well the used GWAS model accounted for population structure and kinship for STB resistance analysis are also presented in Supplementary Figure 2.

Among the 53 identified MTAs, 3 did not have chromosomal positions on the bread-wheat physical map (Supplementary Table 4). Ten (18.9%) of the MTAs conferred STB resistance at heading, 4 (7.6%) were effective at mid-maturity, 4 (7.6%) were effective at the maturity stage, and 35 (66.9%) of the MTAs were associated with a resistance to disease development as plant height increased (Supplementary Table 4). The percentage of phenotypic variance explained by the markers varied considerably, from 2.7% for the SDS measured at maturity at Bekojiin in 2016 to 13.2% for the severity data measured at the mid-maturity stage at the same location in 2015 (Supplementary Table 4). The proportion of phenotypic variation (R2) explained by SDS MTAs at heading ranged from 2.9% for the allele 1195254|F|0-31:C>T-31:C>T on chromosome 3A to 11.1% for 1087857|F|0-41:T>C-41:T>C on chromosome 7D (Supplementary Table 4). Likewise, the R2 for MTAs for SDS at mid-maturity, maturity, and SPC ranged from 8.6 to 13, 2.7 to 2.7, and 6 to 10.8%, respectively (Supplementary Table 4).

The combined measure of SDS at the heading, mid-maturity, and maturity stages did not provide any significant associations at the used threshold. However, the combined measure of SPC identified eight MTAs at the stringent Bonferroni significance threshold on chromosomes 1B, 2D, 3A, 3B, 3D, 6B, 7B, and 7D, with one MTA that was unmapped on the bread wheat physical map (Supplementary Table 4, Supplementary Figure 3). The GWA scan for SDS at the individual-environment level identified considerable (45) MTAs conferring resistance to STB at different growth stages (Supplementary Table 4, Supplementary Figures 4, 5). The analysis for disease data measured in 2015 at Holetta identified six MTAs for STB resistance at heading on chromosomes 1D, 2A, 3A, 3D, 5A, and 7D, four MTAs effective for STB resistance at the mid-maturity stage on chromosomes 1B, 3D, and 7B, with one MTA with an unknown position on the bread wheat physical map at Holetta, and nine MTAs for SPC (six at Holetta and three at Kulumsa) on chromosomes 1A, 1B, 1D, 2B, 3A, 3D, and 7B (Supplementary Table 4, Supplementary Figure 4). However, no MTA was observed for SDS data measured at the maturity stage in the same year. Likewise, the association analysis for SDS data measured in 2016 identified 26 MTAs: 4 for STB resistance at heading at Bekoji on chromosomes 3A, 3D, and 7A, with 1 MTA with an unknown position on the bread wheat physical map, 4 for maturity stage resistance on chromosomes 1D, 4A, 6A, and 7D at the same location, 18 MTAs for SPC, which were mapped to chromosomes 1A, 1B, 2B, 2D, 3B, 5B, 5D, 6A, 6B, 7A, and 7D plus 1 MTA with an unknown position on the bread wheat physical map (Supplementary Table 4, Supplementary Figure 5).

Putative QTL for STB resistance were identified by combining the MTAs based on their genomic positions using a window of physical distance (in Mbp) determined through a pair-wise LD analysis of the genome-wide scanned SNPs. Supplementary Figure 6 presents a scatter plot of the genome-wise pairwise LD r2 values between the SNPs on each chromosome against inter-marker physical distance. The MTAs falling on the same linkage group within the physical distance for LD decay specific for that chromosome were assigned to the same putative QTL. Hence, based on the LD criteria, the 53 markers were assigned to 33 putative QTLs (Table 8, Figure 5).


Table 8. Summary of the putative QTLs identified across bread wheat chromosomes for STB resistance.
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FIGURE 5. Genomic positions of detected putative QTLs effective for STB resistance. Significant DArTSeq SNPs are presented according to their physical positions on chromosomes in millions base pairs. The putative QTLs identified in this study for the MTAs are indicated on the right sides of the bars. Underlined MTAs (marked in pink) on the right sides of the chromosomes could be potentially novel loci in this study.


The association analysis for STB resistance at heading in the individual environments identified nine putative QTL localized on chromosomes 1D (qSTB.07), 2A (qSTB.08), 3A (qSTB.16 and qSTB.17), 3D (qSTB.20 and qSTB.21), 5A (qSTB.23), 7A (qSTB.30), and 7D (qSTB.33) (Table 8, Figure 5). The combined measure of the SDS at the mid-maturity stage did not reveal any QTL. However, measuring the same trait in 2015 at Holetta identified three putative QTLs on chromosomes 1B (qSTB.04), 3D (qSTB.21), and 7B (qSTB.31) (Table 8) that were effective for STB resistance at the mid-maturity stage. Likewise, the SDS measured at maturity in 2016 at Bekoji provided four putative QTLs on chromosomes 1D (qSTB.05), 4A (qSTB.22), 6A (qSTB.27), and 7D (qSTB.32) (Table 8, Figure 5). However, the same phenotype measured across all environments did not provide any putative QTLs effective for STB resistance.

We identified seven QTLs for the SPC in the analysis of means over all the six environments: qSTB11 on 2D; qSTB15 on 3A; qSTB19 on 3B; qSTB21 on 3D; qSTB28 on 6B; qSTB31 on 7B; qSTB32 on 7D. These seven QTL modeled 9.7 to 13% of the phenotypic variation. Three of these QTLs (qSTB.11 on 2D, qSTB.14 on 3A, and qSTB.19 on 3D) were not significant in the analyses of the six environments; two (qSTB.28 and qSTB.32) were significant in one of the environments; the other two (qSTB.21 and qSTB.31) were significant in two environments (Table 8, Figure 5). Measuring the same trait in 2015 identified seven putative QTLs on chromosomes 1A (qSTB.01), 1B (qSTB.04), 1D (qSTB.06), 2B (qSTB.10), 3A (qSTB.17), 3D (qSTB.21), and 7B (qSTB.31) (Table 8, Figure 5). Similarly, the association analysis for the SPC data measured during 2016 identified effective putative QTLs on chromosomes 1A (qSTB.01 and qSTB.03), 1B (qSTB.04), 2B (qSTB.09), 2D (qSTB.12-14), 3B (qSTB.18), 5B (qSTB.24 and qSTB.25), 5D (qSTB.26), 6A (qSTB.27), 6B (qSTB.28), 7A (qSTB.29), and 7D (qSTB.32 and qSTB.33) (Table 8, Figure 5).

The functional association of the identified QTLs for STB resistance was further investigated by annotating genes found in the QTL regions on the recently released IWGSC RefSeq Annotation v2. The analysis resulted in several disease resistance-associated genes involved in plant defense systems (Supplementary Table 7). For instance, the high-confidence candidate genes TraesCS1A02G279300 on 1A, TraesCS1B02G332400 on 1B, TraesCS1D02G001700 on 1D, and TraesCS2A02G297500 on 2A are highly involved in systemic acquired resistance (SAR), which refers to the long-lasting, broad-spectrum resistance of plants to pathogen infections. Specifically, the high-confidence gene detected near qSTB.08 on chromosome 2A (TraesCS2A02G297500) controls mitogen-activated protein kinase (MAPK) cascades, which are involved in signaling multiple defense responses of plants against pathogen attacks (Meng and Zhang, 2013).




MTAs for Agronomic Traits

The combined measures of the agronomic traits, such as days to heading, days to flowering, days to maturity, grain-filling duration, grain yield, and 1,000-kernel weight, did not provide any MTAs at the stringent Bonferroni significance threshold used except for plant height, which resulted in one MTA on chromosome 7A at the 514.43 Mbp position (Supplementary Table 6). However, the dissections of these traits in the individual environments in separate years identified considerable MTAs at the significance threshold utilized (Supplementary Figure 7). In particular, a GWA scan for days to heading in 2015 at Holetta provided six MTAs on chromosomes 1A, 5A, 5B, 6A, 6B, and 7B (Supplementary Table 6). The same trait measured in 2016 at Kulumsa identified three significant (FDR <0.05) SNPs on chromosomes 2B, 5D, and 6A (Supplementary Table 6). Additionally, the total phenotypic variance explained by the SNPs for this trait ranged from 8.5% for the allele 987806|F|0-16:A>G-16:A>G on chromosome 5D at 77.02 Mbp to 24.1% for the SNP1204551|F|0-57:C>T-57:C>T positioned on chromosome 1A at 499.84 Mbp (Supplementary Table 6).

The GWA scan for days to flowering in the individual environments identified six MTAs for the data measured in 2015 at Holetta on chromosomes 1A, 5A, 5B, 6A, 6B, and 7B (Supplementary Table 6, Supplementary Figure 8). The detected markers could explain 22.8–25% of the total phenotypic variation for days to flowering, while the SNP markers 1000134|F|0-15:T>C-15:T>C on chromosome 6B and 1204551|F|0-57:C>T-57:C>T on chromosome 1A accounted for the lowest and highest phenotypic variations in days to flowering in the association panel, respectively (Supplementary Table 6). Likewise, the association analysis for the days to maturity data measured in 2016 at Bekoji identified 15 MTAs pointing to nine putative QTLs on 1A, 2A, 3A, 3B, 5B, 6D, and 7A (Supplementary Table 6, Supplementary Figure 9). Three of these significant SNPs, however, were not mapped on the bread wheat physical map. The detected markers explained 11.6–15.6% of the total phenotypic variation for days to maturity, while the lowest and highest values were reported for the SNPs 2278215|F|0-18:A>G-18:A>G on 2A and for 7332831|F|0-9:T>C-9:T>C on 1A, respectively (Supplementary Table 6).

Moreover, a GWA scan on grain-filling duration data measured in 2016 revealed 15 MTAs, among which 11 were identified from the data collected at Holetta on chromosomes 1B, 2B, 3A, 3B, 6D, and 7D, plus 1 MTA with an unknown position on the bread wheat physical map (Supplementary Figure 9). Four of the significant associations for this trait were obtained from data measured at Kulumsa on chromosomes 2B, 3B, 5B, and one MTA with an unknown chromosomal position on the bread wheat genome. The total phenotypic variation for GFD explained by the SNPs ranged from.5% for the allele on chromosome 3B (5325155|F|0-26:G>T-26:G>T) to 7.9% for the SNP marker on 3A at 250.82 Mbp (5325155|F|0-26:G>T-26:G>T) (Supplementary Table 6).

The association analysis for pooled plant height data identified 1 MTA on chromosome 7A (Supplementary Figure 9) and 24 for the data measured in the individual environments (Supplementary Table 6). The plant height data measured in 2015 at Bekoji resulted in 4 MTAs on chromosomes 1A, 5A,7A, and 7B and 10 MTAs for Kulumsa on chromosomes 1B, 2A, 5B, 5D, 6B, and 7D (Supplementary Figures 7, 8). The same trait measured in 2016 at Kulumsa provided 10 MTAs on chromosomes 3B, 5A, 5B, 6B, 6D, and 7D, with 2 MTAs that were unmapped on the bread wheat physical map (Supplementary Table 6, Supplementary Figure 9). The identified SNPs accounted for 3.3–12.3% of the total variation in plant height, and the SNP marker on 6B (SNP 2276919|F|0-10:G>T-10:G>T) at 521.99 Mbp had the largest effect (Supplementary Table 6).

The study revealed that grain yield and yield-related attributes measured over all the environments did not provide any significant SNPs. However, their association analysis based on mean values in the individual environments identified numerous MTAs. The grain yield measured in 2015 at Kulumsa identified 10 significant MTAs on chromosomes 1A, 3A, 3D, 4A, 5A, 5D, and 7D, with one SNP that was not mapped in the bread wheat genome (Supplementary Table 6, Supplementary Figure 8). Similarly, a GWA scan for TKW measured in 2016 at Kulumsa provided one MTA pointing to a putative QTL on 7D at 79.52 Mbp (Supplementary Table 6, Supplementary Figure 9). Furthermore, the total phenotypic variations explained by the significant SNPs for yield and yield-related traits varied considerably based on traits and markers, with the lowest being 0.5% for grain yield on 3D (1045011|F|0-60:T>A-60:T>A) and the highest being 15.7% for TKW on 7D (4262368|F|0-28:A>G-28:A>G) (Supplementary Table 6).

The analysis revealed that some putative QTLs identified by SDS data overlapped with those determined for agronomic data. For instance, the putative QTL determined for plant height measured in 2016 at Kulumsa on chromosome 6B was co-mapped with qSTB.28, which was identified for combined SPC. Similarly, the putative QTL identified on 7B for plant height measured at Bekoji in 2015 was co-mapped with qSTB.31, which was also identified for combined SPC. In addition, the putative QTLs mapped on chromosome 7D for plant height measured in 2015 and 2016 at Kulumsa and for GFD and TKW data measured in 2016 at Holetta and Kulumsa, respectively, were co-mapped with qSTB.32, which was identified for the SDS data measured at the maturity stage at Bekoji and for pooled SPC data.




DISCUSSION

The phenotypic evaluation revealed significant genetic variability for STB resistance among the tested wheat genotypes, thus confirming the availability of relevant alleles for future breeding and improvement. The observed high broad-sense heritabilities within the individual environments (H2 = 0.58–0.99) and across the environments (H2 = 0.72–81) indicated a strong genetic signal in the data, which can be used for improving STB resistance through selection. Similarly, a high broad-sense heritability (H2 = 0.78) for STB resistance was reported for European bread wheat varieties in Germany (Muqaddasi et al., 2019) and Tunisia (H2 = 0.55) (Berraies et al., 2014). The present field evaluation results confirmed that STB infestation is significantly influenced by year, location, and all interaction effects, thus confirming the importance of multiple locations and years for germplasm evaluations at disease hotspots to identify durable and stable STB-resistant genotypes.

The correlation analysis revealed that Septoria disease ratings had negligible negative correlations with plant height, indicating that tallness only had a weak contribution for reducing STB infections (Muqaddasi et al., 2019). The lack of or slight negative correlations of SDS traits with the agronomic traits HD, FD, GFD, NKPS, and NKS and the moderately negative correlation with MD indicate that genotypes with late phenology could escape STB with slightly reduced infection. Moreover, the significant negative correlations of STB infection with yield and yield-related traits such as HLW, TKW, and KN could most likely be due to the fact that the infection of the flag and second leaves at the grain-filing stage could significantly influence the photosynthesis process, and, thus, result in reduced grain yield. Negative associations of SDS with days to flowering, days to maturity, number of seeds per spike, and thousand-grain weights were also reported for Ethiopian durum wheat (Kidane et al., 2017).

The STRUCTURE and principal component analyses revealed population stratifications and admixtures, suggesting the need to use a powerful statistical model in the association analysis that controls for spurious marker-trait associations. The analyses suggested two sub-groups in the population. The very powerful statistical model used in the analysis, FarmCPU, sufficiently accounted for population stratification, familial relatedness, and marker effects, which consequently reduced the confounding effects that could result in false-positive MTAs. This was confirmed by visualizing the Q–Q and Manhattan plots. Similar indistinct population stratifications, higher admixtures, and weak population sub-structuring were reported among 371 European wheat genotypes based on 35k and 90k SNP marker arrays (Muqaddasi et al., 2019).

Like previous reports, this study confirmed the unequal distribution of the SNP markers among wheat genomes, where most were harbored by the A (10,317) and B genomes (10,979), while fewer SNPs (9,756) were harbored by the D genome (Berkman et al., 2013; Edae et al., 2015; Rahimi et al., 2019). This variation most likely resulted from the evolutionary and domestication history of the crop (Dvorak et al., 2006; Jordan et al., 2015), where the D genome had less time to accumulate mutations.

These analyses revealed that the LD between the markers and genes contributing to STB resistance declined to r2 <0 within a physical distance of 1.26–105.61 Mbp in all the chromosomes, with an overall mean of 31.44 Mbp. This is much lower than the average physical distance (69.1 Mbp) for LD decay in Ethiopian durum wheat at the critical threshold of r2 = 0.2 (Alemu et al., 2021). The marker distances at which the LD decayed across the older sub-genomes (A and B) were relatively lower than those for the D sub-genome, most likely because of the long evolutionary history of the A and B genomes as compared with the D genome. Furthermore, the LD between alleles can decay because of a number of factors such as selection, recombination, the mating system, genetic drift, mutation, and/or population relatedness (Stich and Melchinger, 2010). Hence, it is likely that the shorter selection history of the D sub-genome did not allow linkage breakdown due to the recombination that occurs between SNPs located at longer physical distances.

The GWAS analysis identified 53 MTAs pointing to 33 QTL for STB resistance and 82 MTAs for agronomic traits where markers had a FDR p ≤ 0.05 and a Bonferroni correction significance threshold of 0.15. The number of SDS MTAs identified in this study was significantly lower than that in the findings of Rahimi et al. (2019), who reported 313–394 MTAs for an Iranian bread wheat association panel. However, this number was still substantially higher than that in the report of Kidane et al. (2017), who identified 35 significant associations for an Ethiopian durum wheat panel. Only seven QTLs for SPC were identified in an analysis of the mean over environments, while none was detected for SDS. Kidane et al. (2017) also reported no QTLs for SDS in an analysis of means.

More QTL were noted in the analysis of data from individual environments, although none was detected in more than four of the six environments and 24 of the 33 were detected in just one environment. The failure to detect QTL effects over environments could be due to the seasonal specificity of QTL effects, disease pressure, or the use of a very stringent FDR level that controls type I errors but leads to increased type II errors, e.g., declaring a QTL not significant when it actually is. The 2015 growing season at Holetta was characterized by extended and heavy rainfall that resulted in the highest STB natural infestations across all the growth stages. Additionally, in this growing season, 12 individual QTLs were detected (five for SPC and seven for SDS), 3 of which affected both SPC and SDS. In contrast, the heavy rainfall and prolonged moisture experienced at Bekoji in 2016 produced the highest SDS, while 12 QTLs were detected, of which 6 were for SPC, 4 for SDS, and 2 that affected both traits, using the data that were obtained. Therefore, climatic conditions, such as persistent crop moisture and prolonged heavy rain, favor the successful infection and spread of the disease throughout the crop canopy (Fones and Gurr, 2015). Furthermore, no QTLs for SDS were detected for Kulumsa in either year. Although a total of 11 QTLs for SPC were detected in the same environment, none was repeated over the years. The different climatic conditions may have caused the later onset of the disease in both growing seasons. However, one QTL, qSTB.21, had the most repeatable effect and was significant for SPC overall for both SPC in two environments SDS at the heading and mid-maturity stages in 2015 at Holetta.

In this study, the GWA scan on SDS data measured at heading at Holetta in 2015 and at Bekoji in 2016 identified putative QTLs on chromosomes 1D, 2A, 3A, 3D, 5A, 7A, and 7D. Moreover, the association analysis for SDS at the mid-maturity stage at Holetta in 2015 reported three effective putative QTLs on chromosomes 1B, 3D, and 7B, which have not been reported for this trait so far. Likewise, dissecting the disease data measured at the maturity stage identified putative QTLs on chromosomes 1D, 4A, 6A, and 7D. Moreover, the GWA scan for SPC identified putative QTLs on chromosomes 1A, 1B, 1D, 2B, 2D, 3A, 3B, 3D, 5B, 5D, 6A, 6B,7A, 7B, and 7D.

Although the different mapping methods, marker systems, and populations used can make it difficult to compare QTL positions from different studies, some of the QTLs detected in this analysis coincided with the mapping positions of previously reported major STB resistance genes. Hence, the putative QTL on 1B (qSTB.04) may represent Stb2 (Liu et al., 2013) and/or Stb11 (Chartrain et al., 2009), the QTLs on 1D (qSTB.05–07) may represent Stb10 (Chartrain et al., 2005), the QTL on 2B may represent Stb9 (Chartrain et al., 2009), the QTLs on 3A (qSTB.15–17) may represent Stb6 (Brading et al., 2002) and/or StbSm3 (Cuthbert, 2011), the QTLs on 3B may represent Stb14 (Cowling, 2006), the QTLs on 3D may represent Stb16q (Tabib Ghaffary et al., 2012), the QTL on 4A may represent Stb7 (McCartney et al., 2003) or Stb12 (Chartrain et al., 2005), the QTLs on 5A may represent Stb17 (Tabib Ghaffary et al., 2012), the QTLs on 5B may represent Stb1 (Adhikari et al., 2004a), the QTL on 6A may represent Stb15 (Arraiano et al., 2007), the QTLs on 7A may represent Stb3 (Goodwin and Thompson, 2011) or TmStb1 (Jing et al., 2008), the QTL on 7B may represent Stb8 (Adhikari et al., 2003) or Stb13 (Cowling, 2006), and the putative QTLs on 7D may represent Stb4 (Adhikari et al., 2004b) or Stb5 (Arraiano et al., 2001). Similar to the results of this study, Kollers et al. (2013) also reported significant MTAs for STB resistance on chromosomes 2A and 2D. The present result also agrees with Muqaddasi et al. (2019), who reported an adult-plant-stage STB resistance QTL on chromosome 4A.

The identification of defense-related candidate genes, such as TraesCS1A02G279300, TraesCS1B02G332400, TraesCS1D02G278400, TraesCS2B02G233600, TraesCS2A02G297500, TraesCS2D02G497400, TraesCS2D02G506300, and TraesCS4A02G341300, in the vicinity of the significant markers indicates the possible functional association of the detected QTL regions in plant defense systems against pathogen infections. For instance, the translations of the genes found in qSTB.02 (TraesCS1A02G279300) and qSTB.04 (TraesCS1B02G332400) on chromosomes 1A and 1B, respectively, are involved in the jasmonic- acid and ethylene-dependent systemic-acquired resistance of plants to pathogen infections. This systemic acquired resistance (SAR) is a broad-spectrum, long-lasting resistance acquired after the initial localized infection of plants by pathogens (Lawton et al., 1995). Furthermore, the gene TraesCS2A02G297500 found in qSTB.08 on chromosome 2A controls MAPK cascades, which are involved in signaling multiple defense responses, including the biosynthesis/signaling of plant stress/defense hormones, reactive oxygen species (ROS) generation, stomatal closure, defense gene activation, phytoalexin biosynthesis, cell wall strengthening, and hypersensitive response (HR) cell death. Moreover, most of the genes in proximity to the detected significant markers are inferred to be involved in salicylic acid (SA) biosynthesis, with SA being an important plant hormone that is best known for mediating host responses upon pathogen infection (Lefevere et al., 2020).

In this study, we discovered some STB resistance QTL that appear to be novel. These include the putative QTLs on chromosomes 1A (qSTB.01-3), 5D (qSTB.26), and 6B (qSTB.28) that explained >5% of the genetic variations, suggesting their relevance for wheat resistance breeding against STB. To the best knowledge of the authors, none of the known major STB resistance genes published in existing literature have been mapped to these regions of the wheat chromosomes; therefore, these QTLs could be considered novel.

Moreover, the study revealed that some of the putative STB resistance QTLs were co-located with QTL for agronomic traits. For instance, the putative QTLs derived from plant height measured in 2016 at Kulumsa on chromosome 6B (R2 = 11.36) and in 2015 at Bekoji on chromosome 7B (R2 = 8.88) were co-mapped with qSTB.28 and qSTB.31, which were identified for combined SPC. Likewise, the putative QTLs mapped on chromosome 7D for grain-filling duration (R2 = 4.69) and 1,000-kernel weight measured in 2016 (R2 = 0.54) at Holetta and Kulumsa, respectively, were co-mapped with qSTB.32, which was identified for the SDS data measured at the maturity stage at Bekoji and for the pooled SPC data. Furthermore, STB is the most destructive foliar disease in Ethiopia. Hence, the infection of the flag and second leaves, which contributes most to photosynthetic assimilates at the grain-filling stage (King et al., 1983; Muqaddasi et al., 2019), can result in the substantial loss of grain weight and yield. This is consistent with the findings of Kidane et al. (2017), who reported the co-mapping of putative QTLs for 1,000-kernel weight with SDS data. Moreover, the putative QTL on chromosome 1A identified for grain yield measured at Kulumsa in 2015 (R2 = 0.79) was co-mapped with qSTB.03, which was identified for the SPC measured in the same environment. It is, therefore, expected that the vertical progression rate of the disease could affect grain yield by influencing grain filling and the number of seeds produced per spike.

In this study, most of the QTLs identified for agronomic and phenological traits did not overlap with those detected for SDS traits, likely because of the lack of common genetic effects for STB resistance and these traits. Many of the correlations of STB traits with agronomic traits were non-significant and had negligible to weak negative coefficients, indicating that the traits were independent. However, some level of co-localization was observed for the putative QTL for days to heading and days to flowering measured at Holetta in 2015 on chromosome 6B (R2 = 22.82), with the putative QTL qSTB.28 on 6B being identified for the SPC measured at Bekoji in 2016 and for the pooled data.



CONCLUSIONS

In this study, the genetic architecture of adult-plant resistance to STB was explored in bread wheat using high-density, genome-wide SNP markers and multi environment-derived phenotype data. The analysis revealed that the association panel possessed considerable STB resistance alleles that could be deployed to improve wheat resistance to the prevailing Z. tritici populations in Ethiopia. Several genotypes with better resistance than the moderately resistant check King-bird were identified. Furthermore, the GWAS identified 33 putative QTLs, which were associated with 53 SNPs. Most (24) of the QTLs were detected in just one environment, suggesting the presence of resistance gene/genes effective against location-specific Z. tritici races. The detected QTLs also explained 2.7–13.2% of the total phenotypic variance for STB resistance. Several disease resistance-associated gene/s were also identified in the proximity of the detected SNPs, which can be targeted in efforts to understand the actual causative genes at the associated loci. Additionally, most of the detected putative QTLs shared similar chromosomal positions with previously reported genes and QTLs. Among these detected alleles, five were potentially novel, accounting for >5% of STB resistance. However, the effects of these QTLs need to be validated before being deployed in MAS. Finally, we conclude that the identified stably resistant wheat genotypes and the identified QTLs can be deployed in wheat breeding programs for the development of durable and broad-spectrum-resistant varieties against Z. tritici.
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Root rot is a major constraint to snap bean (Phaseolus vulgaris) production in the United States and around the world. Genetic resistance is needed to effectively control root rot disease because cultural control methods are ineffective, and the pathogen will be present at the end of one season of production on previously clean land. A diversity panel of 149 snap bean pure lines was evaluated for resistance to Fusarium root rot in Oregon. Morphological traits potentially associated with root rot resistance, such as aboveground biomass, adventitious roots, taproot diameter, basal root diameter, deepest root angle, shallowest root angle, root angle average, root angle difference, and root angle geometric mean were evaluated and correlated to disease severity. A genome wide association study (GWAS) using the Fixed and random model Circulating Probability Unification (FarmCPU) statistical method, identified five associated single nucleotide polymorphisms (SNPs) for disease severity and two SNPs for biomass. The SNPs were found on Pv03, Pv07, Pv08, Pv10, and Pv11. One candidate gene for disease reaction near a SNP on Pv03 codes for a peroxidase, and two candidates associated with biomass SNPs were a 2-alkenal reductase gene cluster on Pv10 and a Pentatricopeptide repeat domain on Pv11. Bean lines utilized in the study were ranked by genomic estimated breeding values (GEBV) for disease severity, biomass, and the root architecture traits, and the observed and predicted values had high to moderate correlations. Cross validation of genomic predictions showed slightly lower correlational accuracy. Bean lines with the highest GEBV were among the most resistant, but did not necessarily rank at the very top numerically. This study provides information on the relationship of root architecture traits to root rot disease reaction. Snap bean lines with genetic merit for genomic selection were identified and may be utilized in future breeding efforts.

Keywords: common bean, disease resistance, genome wide association studies, genomic prediction, best linear unbiased prediction, root morphology, genomic selection


INTRODUCTION

Root rot is a serious disease that affects common beans (Phaseolus vulgaris) wherever they are grown. It has been and continues to be a primary yield limitation in both snap and dry bean production. Root rot is a broad term that can refer to infection by a variety of pathogens or complexes thereof (Abawi et al., 1985). The most serious and widespread causal pathogen, Fusarium solani f. sp. phaseoli, has been reported to cause yield losses of up to 84% in the United States (Schneider et al., 2001). This organism is the primary, although not necessarily exclusive, root rot pathogen in Oregon snap bean fields. There is currently no satisfactory management technique to control root rot in snap beans with cultural and chemical methods having met with limited success (Burke and Miller, 1983). The best cultural option available to control root rot is crop rotation but the four-to-five-year interval that is required is impractical for most farmers. With so few options, genetic resistance is of paramount importance. The benefits of resistance extend beyond mitigating disease. Without functional root systems, it is impossible to select for other traits, such as abiotic stress and nutrient use efficiency that are needed to combat climate change and adapt to agricultural intensification.

Most prior genetic analyses of F. solani root rot resistance have been conducted with biparental dry bean populations (Supplementary Table 1). Many were conducted with RAPD marker systems that are difficult to rectify with contemporary SNP-based maps (Chowdhury et al., 2002; Román-Avilés and Kelly, 2005; Navarro et al., 2008; Schneider et al., 2001). SNPs have become the preferred marker for linkage and association mapping because of their abundance, repeatability and reference to physical location within the genome (Blair et al., 2013; Cortés et al., 2011). Unlike others who focused exclusively on dry beans, Navarro et al. (2008) and Hagerty et al. (2015) used snap x dry bean populations to map QTL for root rot resistance. In all cases, resistance was inherited quantitatively with one to 15 QTL explaining from five to 53% of total phenotypic variance. Where reported, heritabilities have ranged from 10 to 99%, with the majority being in the low to moderate range. One genome wide association study (GWAS) has been conducted in dry bean for resistance to F. solani root rot. This study identified SNP associations in Andean and Middle American diversity panels (Zitnick-Anderson et al., 2020). They found sixteen unique SNP associations in an Andean diversity panel on Pv01, Pv02, Pv03, Pv04, Pv07, Pv08, Pv09, and Pv11, and seven unique SNP associations in a Middle American panel on Pv01, Pv03, Pv04, Pv07, and Pv08 (Zitnick-Anderson et al., 2020). Further GWAS studies have been conducted on root rot caused by Pythium spp., Pythium ultimum, Fusarium oxysporum and Rhizoctonia solani in dry bean (Oladzad et al., 2019; Dramadri et al., 2020; Diaz L. M. et al., 2021; Paulino et al., 2021). With F. solani, the studies listed in Supplementary Table 1 have not found major QTL associated with resistance and the general consensus is that resistance is conditioned by several to many genes with small individual effect.

There is evidence that the genetic background of snap beans has unique characteristics which warrants examination on its own (Wallace et al., 2018). In particular, the genetic background of snap beans is highly mixed between the Andean and Middle American gene pools with unknown effects on the interactions of genes. Moreover, snap beans have been selected for succulent, low fiber pods mostly in isolation from dry beans since their assimilation by Europeans starting in the 1500’s and this time frame may have been sufficient for unique resistance traits to evolve within snap beans.

The traditional GWAS model is a mixed linear model with a correction for kinship and population structure that adequately controls type I statistical errors. Last-generation GWAS models, such as FarmCPU, have improved sensitivity and statistical power with similar control of type I statistical errors and much improved control of type II statistical errors (Liu et al., 2016; López-Hernández and Cortés, 2019). Work on last-generation GWAS models (FarmCPU, BLINK, and SUPER) indicates that they are comparable and complement with each other when used in parallel, although subtle differences have been found, such as non-redundant results (FarmCPU) or a greater number of associated SNPs (BLINK) in a study of heat stress in common bean (López-Hernández and Cortés, 2019). Both BLINK and FarmCPU iteratively utilize a random and fixed model and may have an advantage over SUPER in having a lower type II statistical error rate (López-Hernández and Cortés, 2019).

Marker assisted selection (MAS) have been most successfully applied to traits conditioned by major genes, or in some cases, major QTL (Assefa et al., 2019) and specifically in breeding programs to introgress disease resistance. Over 40 SCAR or SRAP markers linked to resistance to 11 pathogens are available in common bean (BIC, 2021b). Only two of these are for root pathogens (Fusarium oxysporum and Pythium ultimatum), where resistance is conditioned by major genes. Some studies on F. solani resistance indicate that the markers that were discovered may be useful in breeding for resistance. However, there is little evidence of their application in breeding programs. The underlying reason for this is probably the polygenic nature of F. solani resistance. MAS has not proven to be very effective for such traits. Genomic selection (GS) is emerging in common bean as a technique that allows selection of quantitative traits without the labor-intensive approach that traditional MAS would require (Assefa et al., 2019). GS models generally use many markers distributed across the genome, and as a result, are more effective than traditional MAS in selection for traits with many genes with small effect. GS has been applied to common bean for root rot (Diaz L. M. et al., 2021) as well as to agronomic traits (Keller et al., 2020), cooking time (Diaz S. et al., 2021), and nematode resistance (Wen et al., 2019; Shi et al., 2021) to discover genotypes with the best breeding values for recombination schemes, but deployment in breeding programs is only beginning.

Differing models for genomic selection are similar in their predictive accuracy. One study of maize traits found that rrBLUP had a slightly higher predictive accuracy in comparison to four other genomic prediction models (Riedelsheimer et al., 2012). Other research into genomic selection models in barley and wheat found no differences, but a study of loblolly pine found rrBLUP lacking when applied to oligogenic traits with a few major genes (Heslot et al., 2012; Resende et al., 2012).

The purpose of this research was to improve the understanding of the genetics underlying resistance to F. solani sp. phaseoli in snap beans under field conditions typically found in a major snap bean growing region of the United States. As the genetic background of snap beans is unique, this is an important gap that needs investigation separate from previous dry bean studies of Fusarium root rot genetic architecture. To achieve this goal, three research focus areas were identified: (1) Analysis of root and plant morphological traits in a diversity panel of snap beans as related to root rot resistance or susceptibility, (2) GWAS on root rot resistance in a diversity panel of snap beans, and (3) Genomic prediction of cultivars to identify lines with superior breeding potential based on the totality of all marker effects in order to better capture minor allelic effects that may be missed by GWAS.



MATERIALS AND METHODS


Study Site and Experimental Design

In this study, 149 pure lines of the Common Bean Coordinated Agricultural Project (BeanCAP) Snap Bean Diversity Panel (SBDP; see data availability statement for details on this panel) were evaluated for resistance to root rot, which primarily consists of F. solani in Oregon. This diversity panel contains pure line examples of both centers of domestication with a representative cross section of historical and contemporary snap beans, but no wild materials. About 83% of the lines in the SBDP are of Andean center of domestication with the remainder being of Mesoamerican derivation (Wallace et al., 2018). They can be further classified into eight groups based on Structure analysis, with some lines having genetic contributions from as many as seven groups. Since snap beans have undergone a high level of intermixing relative to dry beans between the centers of domestication (Wallace et al., 2018), more than 50% of the snap beans in the panel contain some genetic background from both centers of domestication.

Strongly root rot susceptible (‘Seabiscuit’, ‘Shade’, and ‘Zodiac’) and strongly resistant (‘Black Valentine’, ‘Impact’, and ‘Widusa’) cultivars were included. The OSU cultivars included in the panel were bred and selected on the research farm under constant root rot pressure, and as a result, have high levels of resistance, and consistently grouped with the most resistant lines in the diversity panel. Additionally, the panel included ‘FR-266’, an experimental snap bean line bred in the Pacific Northwest for F. solani root rot resistance (Silbernagel, 1987). This line has been used in biparental mapping population studies of root rot resistance (Schneider et al., 2001). It has been a check in our root rot breeding nursery trials, where it shows moderate levels of resistance. The complete panel was used, except for ‘BBL 274’, which was unavailable for planting. In late spring of 2014 and 2015, four replicates of the SBDP were planted at the Oregon State University Vegetable Research Farm. The Vegetable Research Farm is located in Corvallis, Oregon on Chehalis silty clay loam soil at latitude N44.571209, longitude W123.243261 at 77 masl. The studies took place in our root rot “purgatory plot” that had been planted continually with snap beans for over 25 years in an effort to build a heavy pathogen population and increase disease pressure for more effective screening. In monitoring of bean root pathogens present at the Vegetable Research Farm, we have always found F. solani to be the primary pathogen (see Cirak and Myers, 2021 for latest assay). To further encourage heavy and uniform disease pressure, the trials were well irrigated (2.5 cm of water weekly by solid set sprinklers) in the beginning of each season, as high soil moisture levels aid in infection. After pod set, irrigation was reduced to increase abiotic stress levels. The late season irrigation schedules were determined based on weather conditions.

The trials were planted with a modified randomized complete block design with the field divided into four replicated blocks on a north-south axis. This method of blocking was chosen as the size of this experiment exceeded previous years’ plantings and extended into soil that may have had a lower level of disease pressure. Due to their unique characteristics and need for a trellis system, the pole beans were planted in a separate four block randomization at the west end of the field. The plots were 3.0 m long, planted in a single row at a density of 50 seeds per plot. Rows were spaced 75 cm apart. A border row of OSU5446, a root rot susceptible experimental line, was planted on the north and south edges of the field, as well as 1.5 m end plots on the east and west ends of each row to minimize edge effects. Planting dates were 10 June in 2014 and 21 May in 2015. The seed was treated with captan pre-emergent fungicide (Bonide Products Inc.) prior to planting to improve germination and emergence uniformity and reduce differences in stand among lines.



Field Evaluation

Data collection began when the earliest lines were at 50% buckskin pod stage (when half the pods per bush have lost their chlorophyll and have taken on a flexible, leathery texture). Each plot was evaluated at this uniform phenological stage. A Shovelomics protocol (Lynch and Brown, 2001, 2013) was used to perform evaluations. The SBDP was evaluated for several morphological traits including taproot diameter, largest basal root diameter, deepest and shallowest basal root angles, and aboveground biomass to investigate correlations between plant structure and disease resistance. Five consecutive plants from the center of the plot were dug with a 30 cm radius of soil around the roots, and carefully shaken and washed to remove the soil without damaging the roots. The five plants were evaluated on a 1–5 (1 = least and 5 = most biomass) scale as a single unit for aboveground biomass (Supplementary Figure 1). A subsample of two randomly selected plants from the original five were evaluated independently for taproot diameter, largest basal root diameter, deepest basal root angle, shallowest basal root angle, adventitious roots (1–3 scale; 1 = few, 3 = many roots), and disease severity (1–5 scale; Table 1). In evaluating disease severity of F. solani, nearly all researchers have used 1–5 or 1–9 visual rating scales (Azzam, 1956; Baggett et al., 1965; Abawi, 1990; Hagerty et al., 2015; BIC, 2021a). Taproot and largest basal root diameter were recorded with digital calipers. The measurements were taken 1 cm. below where the root emerged from the hypocotyl. The deepest (closest to the taproot) and shallowest (closest to the soil line) basal root angles were measured by laying the specimen on a cutting board marked with protractor angle increments (Supplementary Figure 2).


TABLE 1. Scale for rating Fusarium solani root rot symptoms in the BeanCAP Snap Bean Diversity Panel grown at the Oregon State University Vegetable Research Farm for a genome wide association study.

[image: Table 1]Root angle difference, root angle average, and root angle geometric mean were calculated from deepest and shallowest root measurements. Root angle difference was the shallowest root angle subtracted from the deepest root angle. This conveys the span of the soil profile accessed by the plant. Root angle average is the mean of the deepest and shallowest root angles and expresses the general orientation of the roots, from zero to 90°. Root angle geometric mean is the geometric mean of the root angle average and the root angle difference and was formulated to provide a single value that integrated soil profile span and root orientation.



Statistical Analysis of Field Trials

To characterize the variation observed in the 2014 and 2015 trials, the following statistical approach was used. First, homogeneity of variances across years was examined using PROC GLIMMIX (SAS version 9.3: SAS institute, Cary, NC) using the model [Trait] = Variety Rep(Year) Year Variety∗Year with Year treated as a random effect and the Covtest option to test for homogeneity of variances. Variances from 2014 and 2015 demonstrated homogeneity, and both years of data were combined into a single analysis. Second, normality by year was examined using PROC GLM with the model [Trait] = Rep Variety. Third, a mixed model analysis of variables with years combined was performed using PROC GLM with the model [Trait] = Variety Year Rep(Year) Year∗Variety with Year, Rep(Year) and Year∗Variety treated as random effects. As the two individual plants measured from each plot were intended to capture information on a plot-mean basis rather than an individual plant basis, mean scores for each plot were used.



Multiple Correlation Analysis Among Traits

To evaluate whether root morphological traits and disease severity were positively or negatively associated, a Pearson’s correlation coefficient analysis was performed in SAS 9.3 on the least square means of the phenotypic data for disease severity, aboveground biomass, adventitious roots, basal root diameter, taproot diameter, shallowest root angle, deepest root angle, root angle difference, root angle average, and root angle geometric mean. Least square means were generated from combined data from the 2014 and 2015 trials when ANOVAs were conducted as described above. Correlations were generated for all pairwise combinations of traits.



Genotyping

The genotypic dataset consisted of 10,607 SNPs generated by using two Illumina iSelect 6K Gene Chip sets (BARCBEAN6K_1 and BARCBEAN6K_2) (Song et al., 2015). These BeadChips were designed following sequencing a diverse set of 17 dry bean cultivars with 10 from the Mesoamerican and seven from the Andean centers of domestication. SNPs with 50% or greater missing data were discarded (Song et al., 2015). Remaining missing genotypes were imputed using fastPHASE, which uses the Hidden Markov Model to indicate the cluster membership of haplotypes (Scheet and Stephens, 2006). Genotypic data for the ‘Panama’ genotype was unavailable and was excluded from the GWAS and BLUP analysis.



Heritability

Narrow sense and broad sense heritability are essentially equivalent in a highly inbred crop such as common bean. With complete homozygosity, it can be assumed that there are no dominance effects present. In the absence of dominance effects, variance among inbred lines, or Var(G), provides an estimate of additive genetic variance or Var(A), rendering the two equations equivalent (Hallauer et al., 2010). Additive x additive epistasis may inflate estimates of narrow sense heritability, but is typically minimal in a diploid crop such as common bean. The formula:

[image: image]

was used to determine heritability, where [image: image] is the estimated genotypic variance component, [image: image] is the estimated genotype by environment interaction variance component, [image: image] is the estimated experimental error variance, e is the number of environments, and r is the number of replications per environment. Heritability for each trait was calculated using SAS code developed by Holland et al. (2003). Mixed model analysis (PROC MIXED, SAS 9.3) was used to obtain variance components. Variance components were estimated using the restricted maximum likelihood (REML) method. All model components were treated as random effects. Heritability was calculated on a line mean basis.



Genome-Wide Association Study

The entire SNP dataset was utilized for GWAS analysis. The phenotypic data used for GWAS was a single value for each trait, averaged across four reps and two years. Due to the incongruity of a pole bean plant architecture for biomass measurements, pole type beans were removed from the biomass analysis leaving 139 genotypes (lines) for this analysis. All other traits were measured with the full set of genotypes.

The FarmCPU statistical method was performed in version 4.0.2 of the R software environment (Liu et al., 2016). To derive SNP R2 values, FarmCPU was run within GAPIT (version 3) with the added code, Random.model = TRUE. The SNP data was formatted in Microsoft Excel and was filtered for a minor allele frequency (MAF) of 0.05 within R.

The principal component analysis (PCA) was conducted in TASSEL, version 5.2.73.1 Principal components one to five accounted for 22, 33, 41, 48, and 52% of the variation, respectively. Based on the widely accepted criterion of principal components accounting for between 25 and 50% of the variation (Oladzad et al., 2019; Zitnick-Anderson et al., 2020), the choice of principal components was narrowed to between two and four. To further narrow the choice of principal components, QQ plots were examined for fit around the null distribution to make the final selection of two principal components (Supplementary Figure 3). Linkage Disequilibrium (LD) heat maps for individual chromosomes were also generated in TASSEL using the full matrix in lieu of the sliding window.

Two different thresholds were examined for a cutoff of significance in the Manhattan plots. The more conservative threshold was a Bonferroni cutoff that utilized the effective marker number of 2,411 as determined by the SimpleM method (Gao et al., 2010). This generated an alpha 0.05 threshold of 4.68 as expressed as a negative log value. In addition, a 10,000 bootstrap threshold was generated for an alpha of 0.05 (Mamidi et al., 2014). This bootstrap identified a threshold of 4.51 negative log.



Candidate Gene Search

Associated SNP positions were located in the common bean genome as shown in the Phytozome JBrowse genome browser (Phytozome, version 12.1; P. vulgaris genome, version 2.1). Using conservative estimates of linkage disequilibrium in common bean (Soltani et al., 2018; Oladzad et al., 2019) and in consideration of the fact that no wild materials are included in our panel, we chose to bracket a region of ±100 kb in our search for candidate genes. Each gene model within the bracketed region was researched for its potential role in disease resistance or biomass.



Genomic Prediction

Genomic estimated breeding values were calculated by adding the fixed effect BLUE value for a given trait to the random effect BLUP value for a given bean line and trait as determined by the rrBLUP R package (Endelman, 2011). rrBLUP is equivalent to gBLUP when QTLs are many, there are no major QTLs and QTLs are evenly distributed across the genome (Bernardo, 2020). They differ in that rrBLUP calculates SNP effects from a set of related individuals whereas gBLUP uses markers to estimate relatedness among individuals. Genomic prediction utilized the entire SNP dataset.

To evaluate the predictive power of the rrBLUP calculations, cross validation was performed by randomly splitting all the genotypes within this study into a training set and validation set. The models evaluated used ratios of training set to validation set of 60:40, 70:30, 80:20, and 90:10%. Random partitioning into training and validation sets with the training set used in rrBLUP to predict the phenotype of the validation set was iterated 10,000 times (utilizing all SNPs) with 10 repetitions at each level for each trait from which the mean predictive accuracy (r) was determined. Correlations between observed and predicted values using the entire population (100%) in both the rrBLUP calculations and the cross validated rrBLUP calculations were determined in R using a Pearson correlation coefficient.

Associated SNPs from the GWAS analysis were not added to the rrBLUP model as fixed effects (Spindel et al., 2016) because of the relatively low R2 values of variance explained by associated SNPs but we did investigate the effect of number of SNPs retained in the model on prediction accuracy. SNPs were sorted from lowest to highest P value. From these, nine subsets (in addition to the full set) were created. The full SNP sets had 7,082 for biomass and 8,032 for all other traits (number of SNPs retained after filtering for MAF < 0.05). These were reduced in an exponential manner (3,541, 1,770, 885, 442, 221, 120, 55, 28, and 14 SNPs for biomass and 4,018, 2,009, 1004, 502, 251, 126, 63, 32, and 16 for all other traits) to create the subsets. Each subset contained the most highly significant SNPs identified by GWAS. For each subset, the correlation of observed with predicted values was computed in rrBLUP.



RESULTS


ANOVA

Means and standard errors for the traits measured in the BeanCAP SBDP are shown in Table 2. Histograms (Supplementary Figure 4) based on LSMeans showed traits to be approximately normal in distribution except for biomass. Biomass was unimodal but right skewed for LSMeans. The lines making up the BeanCAP SBDP exhibited large differences for all of the traits evaluated. Mean squares for the ANOVA model were highly significant for all traits evaluated (Table 3). Mean squares for lines were either significant or highly significant for all traits evaluated, with lower significance levels corresponding to the root angle measurements and the traits derived thereof. Mean squares for replicate were either significant or highly significant, except for the derived trait root angle difference. The mean square for year was significant for taproot diameter, basal root diameter, shallowest root angle, deepest root angle, root angle average, and root angle geometric mean. It was not significant for any other traits. In no cases were years highly significant. Year by line interaction was significant for disease, basal root diameter, deepest root angle, and root angle geometric mean. It was highly significant for aboveground biomass and adventitious roots (Table 3).


TABLE 2. Means and standard error (SE) (N = 16), and narrow sense heritability (h2) and 95% confidence intervals for heritability for Fusarium solani root rot symptoms (disease severity), plant biomass and root parameters of lines grown in the BeanCAP Snap Bean Diversity Panel at the Oregon State University Vegetable Research Farm in 2014 and 2015.
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TABLE 3. Degrees of freedom, mean squares, and significance level for model, year, bean line, replicate within year, and year by line interaction from an analysis of variance for traits associated with Fusarium solani disease reaction and plant and root parameters evaluated in trials at the Oregon State University Vegetable Research farm near Corvallis, of the BeanCAP Snap Bean Diversity Panel in 2014 and 2015.
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Multiple Correlation Analysis Among Traits

Disease severity was negatively correlated with aboveground biomass, basal root diameter, and taproot diameter (Table 4), and positively correlated with adventitious roots, shallowest root angle, and deepest root angle. Aboveground biomass, basal root diameter and taproot diameter were highly positively correlated (Table 4). Aboveground biomass and taproot diameter were negatively correlated with shallowest and deepest root angle. Basal root diameter showed the same negative relationship with shallowest root angle but did not have a significant correlation with deepest root angle. Shallowest and deepest root angles were positively correlated with each other.


TABLE 4. Pearson multiple correlation coefficients1 for Least Square Means of the BeanCAP Snap Bean Diversity Panel evaluated for Fusarium solani disease and plant and root traits at the Oregon State University Vegetable Research Farm near Corvallis in 2014 and 2015.
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Heritability

A range of heritabilities was observed for the different traits measured (Table 2). Aboveground biomass and disease severity had the highest heritability with h2 = 0.75 and 0.74, respectively. The root angle traits had the lowest heritability, ranging from h2 = 0.32 for root angle difference to h2 = 0.41 for root angle average.



Genome-Wide Association Study

GWAS assumes normality (Goh and Yap, 2009). The disease severity and biomass datasets were normally distributed based on QQ plots of residuals generated from an ANOVA analysis of years, reps, and genotypes. The tap root diameter and basal root diameter datasets were also normally distributed for residuals after a square root transformation. Adventitious roots, short root angle, and deep root angle could not be made to conform to normality for their residuals. A GWAS analysis was conducted on all datasets, including square root transformed tap root diameter and basal root diameter. GWAS analysis of tap root diameter, basal root diameter, adventitious roots, short root angle, and deep root angle did not generate any significant SNP associations with a two PCA FarmCPU model.

A biplot of the first two PC axes (Supplementary Figure 3) revealed a clinal gradient along PCA 1 for center of domestication, with those lines clearly from the Mesoamerican center of domestication having strong positive scores and those with Andean background ranging from positive to negative scores. PCA 2 primarily separated European-bred small sieve cultivars from blue lake and pole bean types, but without discernable differentiation for Andean background cultivars. These results generally match our findings with Structure analysis (Wallace et al., 2018).

Five SNPs were associated with disease severity on chromosomes Pv03, Pv07, Pv08, and Pv10 with two SNPs on Pv10 (Table 5 and Figure 1). SNPs ss715639797, ss715649485, and ss715646318 on Pv08 and Pv10 were identified through a Bonferroni threshold. A further two SNPs, ss715647578 and ss715646526, were identified on Pv03 and Pv07 through a bootstrap analysis. The phenotypic variation (R2) explained by SNPs indicated a low contribution to disease resistance by each SNP ranging in value from 0.9 to 10.8% with the highest value for ss715647578 on Pv03 and the lowest value for ss715646526 on Pv07. The effect of allelic substitution was negative for three SNPs and positive for two (Table 5). Effect was relatively small with a cumulative effect of altering disease severity score by 0.5. Two SNPs were associated with biomass on chromosomes Pv10 and Pv11 (Table 5 and Figure 1). SNPs ss715649390 and ss715645486 on Pv10 and Pv11, respectively, were identified through a Bonferroni threshold. No further SNPs were identified through a bootstrap analysis. The R2 values were 11.3% for ss715645486 and 14.8% for ss715649390, and the former had an allelic substitution effect of -0.12 while the latter had a relatively larger effect of -0.18 (Table 5). The cumulative effect of these two SNPs would be to shift the five-point scale by 0.3.


TABLE 5. SS identification numbers of the SNP, chromosome, position, negative log p-value, minor allele frequency (MAF), proportion of total phenotypic variation explained by the SNP (R2), allelic effect, chromosomal location and number of gene models found within a 200 kb window proximal and distal to the SNP for significant associations found from genome wide association study of Fusarium solani root rot disease severity and biomass in the BeanCAP Snap Bean Diversity Panel grown at the Oregon State University Vegetable Research Farm in 2014 and 2015.
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FIGURE 1. Manhattan and corresponding Q-Q plots from a GWAS analysis of disease severity (A) and biomass (B) in the BeanCAP Snap Bean Diversity Panel evaluated in 2 years for Fusarium solani reaction at the Oregon State University Vegetable Research Farm. The Bonferroni cutoff based on effective marker number (-log10 4.68, α = 0.05) is shown as a solid line. For the Q-Q plots, the null distribution is shown as a red line.


Within a 100 kb window upstream and downstream of these SNPs, a total of 123 gene models were found across the seven regions with an average of 18 per region (Table 5). One candidate gene (peroxidase) was identified as potentially involved in disease resistance (Table 6). A total of four candidate genes were identified as potentially involved in biomass and abiotic stress tolerance, including a pentatricopeptide repeat domain and three tandem 2-alkenal reductase genes models (Table 6). Two of the three 2-alkenal reductase gene models were outside of the 100 kb window, but are included here because they were adjacent to one within the window.


TABLE 6. Putative candidate genes within 350 kb of the associated SNP for Fusarium solani root rot disease severity and plant biomass identified by genome wide association study using the BeanCAP snap bean diversity panel grown at the Oregon State University Vegetable Research Farm near Corvallis.

[image: Table 6]Based on a threshold of D’ or R2 ≥ 0.80 and P ≤ 0.01, regions of LD were identified around some significant SNPs. D’ identified extremely large blocks of LD that were on the order of 1.9–36.0 Mb for disease severity whereas R2 provided a much more conservative estimate, ranging from 150 to 679 kb (Supplementary Table 2). The LD heat map and table indicated that SNPs on Pv03, Pv07, and Pv10 for disease severity, and Pv10 for biomass were within blocks of LD (Figure 2). These ranged from 150 to 679 kb in size. The other SNPs were in LD blocks using D’ as a criterion, but not with R2 (Supplementary Table 2).
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FIGURE 2. Linkage disequilibrium (LD) heat map of common bean chromosomes Pv03, 07, 08, 10, and 11 showing all possible pairwise comparisons of SNPs arranged along the chromosome. R2 values are displayed above and right of the diagonal and corresponding probabilities below and left of the diagonal. Color scales show corresponding R2 and probabilities where red for each would indicate strong and highly significant LD. SNPs associated with disease severity (black ∗) or biomass (yellow ∗) are indicated along the diagonal.


An ANOVA analysis of the trait-SNP associations supported the results of the GWAS analysis (Supplementary Figure 5). The results were uniform for years with no significant differences between years. The box plot trend supported the trait-SNP association for SNP ss715639797 with P = 0.08. The other SNPs for disease were significant with P < 0.05. The only exception was SNP ss715646526 which was not significant, and the box plots did not show any particular trend, and this was true for individual years. For biomass, ss715649390 was highly significant whereas ss715645486 was not, but it does show a trend.



Genomic Prediction

GEBV rankings represent the general trends seen in the phenotypic data but with numerous crossovers in ranking due to the information from relatives reflected in GEBV calculations (Table 7). This can be seen in the ranking of disease severity, which has ‘Impact’, ‘Black Valentine’, ‘Widusa’, ‘NY6020-5’, and ‘Romano Gold’ as the top five most resistant lines in the phenotypic data set (data not shown) but the GEBV calculations show ‘Widusa’, ‘Impact’, ‘Double Dutch White’, ‘Booster’, and ‘Stringless French Filet’ as having the best GEBV for disease resistance (Table 7). When compared to the PCA biplot (Supplementary Figure 3), lines with the highest GEBV rankings for disease severity come from both Mesoamerican and Andean centers and provide evidence that population structure is not influencing choice of significant SNP associations.


TABLE 7. Genomic estimated breeding values (GEBV) calculated from BLUPs and BLUEs for the 10 highest and 10 lowest ranked lines in the BeanCAP Snap Bean Diversity Panel for Fusarium solani root rot disease severity, plant biomass, tap root, basal root diameter, adventitious roots, deepest and shallowest root angle.

[image: Table 7]Predicted and observed values for all traits resulted in high to moderate correlations (r) for disease severity, biomass, and the five root architecture traits (Figure 3 and Supplementary Table 3; 100% column in histograms and row in table). Ten thousand iterations of a cross validation with four training-testing models and replicated 10 times for each trait-model combination produced moderate to low correlations for predictive ability. The correlations that were highest under training and validation were those for disease severity, biomass and deep root angle. As size of the training population increased, mean correlation remained essentially flat (adventitious roots, basal root diameter), showed a linear increase (biomass, disease severity, and taproot diameter), or fluctuated (deep and shallow root angles). Variation about the mean of r was greatest at the 90% level (Figure 3 and Supplementary Table 3). Overall, standard deviations were smallest for the model with 70% training population although for biomass, 60 or 70% training models were very similar, as were 70 and 80% training models for basal root diameter. Cross-validation predictions generally were 20–40% lower than correlation among predicted and observed of the entire population. Disease severity, deep root angle and shallow root angle showed the smallest differences.
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FIGURE 3. Correlation of predicted and observed values for training vs. testing populations at four ratios (60:40, 70:30, 80:20, and 90:10%) and compared with observed vs. predicted for the entire population (100%) of the BeanCAP Snap Bean Diversity Panel for Fusarium solani root rot disease severity and plant and root traits. Correlation coefficients were generated by rrBLUP using 10 K iterations and 10 repetitions per trait-level combination. (A) Adventitious roots, (B) Biomass, (C) Basal stem diameter, (D) Disease severity, (E) Deep root angle, (F) Shallow root angle, and (G) Taproot diameter.


Number of SNPs retained in the model affected predictive ability. Correlation coefficients were generally lowest for the fewest significant SNPs and increased as SNPs were added to the model (Figure 4), but in most cases plateaued before declining with use of the full SNP set. The traits separated into two groups with disease severity and biomass showing relatively high correlations, and the root traits exhibiting moderate to moderately high correlations over SNP subsets. For disease severity, r > 0.90 was obtained with 126 SNPs, while for biomass r > 0.90 was obtained with 221 SNPs. Disease severity exhibited a decrease in r from 0.91 to 0.78 when transitioning from 4,018 to the full SNP set, and for biomass, the decrease was from 0.93 to 0.90. For root traits, most did not reach a maximum r until 2,009 or 4,018 SNPs were used with r ranging from 0.72 to 0.84. In all cases except for adventitious roots and deep root angle, r decreased for the full SNP set compared to half the SNPs used in the model (Figure 4).
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FIGURE 4. Effect of number of SNPs on predictive accuracy for Fusarium root rot disease severity and root traits of a snap bean diversity panel. SNPs were first filtered for MAF < 0.05, then sorted from smallest to largest P value and arranged in nine subsets approximately doubling in size with each step. Full set of SNPs for biomass was 7,082 while for all other traits totaled 8,036. Number of SNPs is plotted on a logarithmic (base 10) scale.




DISCUSSION

Our ANOVA results showed significant year x line interaction for disease severity (P ≤ 0.05), biomass (P ≤ 0.001), adventitious roots (P ≤ 0.001), basal root diameter (P ≤ 0.05), deepest root angle (P ≤ 0.05), and root angle geometric mean (P ≤ 0.05), but no statistical significance for the remaining traits. The significant interactions for disease severity and biomass appeared to be due to differences in magnitude rather than changes in rank years as shown by moderate but highly significant correlations between years based on Spearman rank correlation (data not shown). The pattern exhibited by the replicates for disease score differed in 2014 and 2015, most likely due to differences in order of evaluation. In 2014, lines in all reps were evaluated when reaching the desired physiological stage but in 2015, reps were evaluated sequentially. In 2014, spatial variation in reps was important with the two inner reps showing more disease than the outer reps. In 2015, disease severity increased over time. Coefficient of variation (CV) was relatively low at 15 and 23 for disease severity and biomass, respectively, with other traits similar to biomass, except shallow root angle, which was had a CV of 68. The high disease pressure and consistent watering likely contributed to this uniformity across years and a low CV. Although our study could not exclude every environmental factor present in an outdoor field, these environmental factors may be both confounding but also offer the possibility of capturing complex interactions between genes and the environment that could be important to disease manifestation in a grower’s field.

Our shovelomics methodology provides a valuable window into the disease process. Our analysis showed that root angle and disease severity are positively correlated suggesting that susceptible lines had root systems oriented at a deeper angle than resistant lines (Table 4). Similar to our findings, Snapp et al. (2003) found that more lateral roots of larger diameter were associated with Fusarium root rot resistance. In their research on nutrient foraging, Lynch and Brown (2001) emphasized that a plant with exclusively deep root angles is exploring a smaller amount of soil than a plant with either a shallow or a range of root angles. The beans with shallower root systems may have been able to access a greater soil volume. Another possible explanation for the effect observed in this study is that the upper layer of soil had superior drainage, which reduced infection by root rot. There may be a tradeoff between disease resistance and drought tolerance with regard to root angle. Drought tolerant plants will likely have roots exploring greater depths of soil.

The negative correlation of disease severity with aboveground biomass, basal root diameter, and taproot diameter, indicated that resistant cultivars had greater aboveground biomass and larger root diameter than susceptible cultivars (Table 4). The positive correlation of disease severity with adventitious roots, shallowest root angle and deepest root angle indicated that cultivars with fewer adventitious roots and shallower root angles were associated with less disease. For aboveground biomass, basal root diameter and taproot diameter, the highly positive correlation indicated that the magnitude of the three size measurements maintained a constant relationship across lines. Aboveground biomass and taproot diameter were negatively correlated with shallowest and deepest root angle, meaning that larger plants had shallower root systems. Positively correlated shallowest and deepest root angles indicated that regardless of the orientation of the root system, the span of the soil profile that it accessed remained constant.

Disease severity, biomass, and adventitious roots had higher heritability than the other shovelomics traits, such as root angle measurements. The heritability value for disease resistance is within the range of values measured by most previous researchers. Hagerty et al. (2015) obtained h2 of ∼0.20 and Mukankusi et al. (2011) reported heritability of 0.38–0.45 for root rot resistance. In contrast, Kamfwa et al. (2013) found higher heritabilities of 0.86–0.99. The heritability for aboveground biomass found in this study also corresponds to previously reported values. Shenkut and Brick (2003) found a range from 0.60 to 0.70. Navarro et al. (2008) reported values of 0.77–0.91 for heritability of biomass, based on measurements of dry weight, which implies that our categorical rating system did not greatly inflate heritability values. The high heritability values imply that simple selection strategies on these traits would be effective.

The high heritabilities of disease severity and biomass are consistent with the high correlational accuracy of these two traits in genomic prediction and the significant results in GWAS. These two traits were also negatively correlated with a high statistical significance (Table 4) indicating the possibility that disease stressed plants were generating less biomass. Nevertheless, these traits are not entirely overlapping and the negative correlation may be partly coincidental and not causal because GWAS analysis identified distinct SNP markers for disease severity and biomass.

The lack of GWAS results for five of seven traits is notable. There may be confounding factors associated with measuring traits under disease pressure. As noted already, the other traits had lower heritabilities that may also explain the difference. Moreover, the Bonferroni and bootstrap thresholds utilized in this study are very conservative. Additionally, increasing the population size and/or number of SNPs would have led to greater precision and a greater likelihood of detecting significant associations.

The SNPs identified by our GWAS analysis did not clearly overlap with any previously identified SNP from GWAS analysis or biparental analysis of root rot organisms (Hagerty et al., 2015; Oladzad et al., 2019; Dramadri et al., 2020; Zitnick-Anderson et al., 2020). We identified one candidate gene related to plant defense within the immediate vicinity of an associated SNP (Table 6). Peroxidases are involved in the final steps of the biochemical pathway leading to lignification, which directly interferes with pathogen invasion (Ray et al., 1998).

From our studies and those of others (Hagerty et al., 2015; Nakedde et al., 2016; Wang et al., 2018; Zitnick-Anderson et al., 2020), there is strong evidence that F. solani resistance in common bean is polygenic with many genes with small effect being involved. One interesting finding is the lack of commonality of resistance QTL among the different studies where genome location can be compared. This would support the idea of polygenic resistance based on genes that are not considered classical resistance genes. Given the level of resistance in some lines in our diversity panel, it is possible to achieve relatively high levels of resistance with the right gene combination, which appears to confer broad-spectrum resistance to different Fusarium isolates. While virulence may vary among isolates, there does not appear to be a pathogen race structure. As a case in point, the resistance in FR-266 was relatively effective to Fusarium isolates endemic to Michigan (Schneider et al., 2001; Snapp et al., 2003), whereas we found this genotype to be moderately resistant against our field isolates in Oregon, implying that Oregon isolates were more virulent. However, in both cases, resistance was quantitative with no clear major QTL.

Where host and pathogen are coevolving under antagonist selection, the prediction is resistance genes would evolve in concert and tend accumulate in large haplotype blocks in low recombining genomic regions (Ravinet et al., 2017). Our findings lend support to that idea in that of the five SNPs associated with disease severity, four were located in low-recombination, gene-sparse pericentric regions and only one was located distally on Pv10 in a high-recombination region (Table 5). Both SNPs associated with biomass were in high-recombination regions located proximally on their respective chromosomes.

Linkage disequilibrium heatmaps (Figure 2 and Supplementary Table 2) provide a more detailed examination of low recombination blocks in relations to chromosomal location, and are in partial agreement with low recombination regions identified in Table 5. Visually, Figure 2 aligns with categories in Table 5. One discrepancy between Table 5 and Supplementary Table 2 was for the SNP associated with disease severity on Pv08, where the SNP clearly resides in a region of low recombination (based on physical vs. cM biplots in Schmutz et al., 2014), however, an LD block for this region was essentially non-existent based on an R2 cutoff of 0.80. The heatmap (Figure 2) does show moderate to high LD in this region. The second discrepancy was for a SNP on Pv10 associated with biomass. This SNP is located proximally, but had a sizable LD block of 421 kb. Pv10 is acrocentric and the SNP is located in the short arm, which have reduced recombination (see Supplementary Figure 13 in Schmutz et al., 2014).

A further implication of the location of most resistance associated SNPs in low recombination regions is that marker assisted selection would be at best, inefficient and at worst, ineffective because of the large non-recombinant blocks of genes. This provides further support for prioritizing genomic selection over QTL mapping and marker assisted selection of individual QTL.

The biomass candidate genes were identified through their known effects on biomass but also their effects on abiotic stress tolerance because disease pressure can induce drought stress in affected bean plants through the loss of their roots to disease. A pentatricopeptide repeat (PPR) domain candidate gene was found in the vicinity of SNP ss715645486. PPR domains have been implicated in an increase of biomass in a study of Paulownia trees (Cao et al., 2020), and are also implicated in drought stress tolerance (Jiang et al., 2015). The three tandem duplicate genes of 2-alkenal reductase in the vicinity of SNP ss715649390 are also implicated in increased biomass and improved drought tolerance in a study of transgenic tobacco plants (Xi et al., 2015).

Are there tradeoffs between Fusarium resistance and abiotic stress tolerances? Burke and Miller (1983) extensively analyzed the interactions of Fusarium root rot with various cultural practices that can affect the development of disease. Their findings were that anything that constricts the root system (such as cold soils and compaction) will exacerbate disease development. Intermittent drought stress combined with these factors restricting root growth will further increase disease pressure. Excess soil moisture even if it is intermittent and of short duration will prevent oxygen diffusion to the roots and further inhibits root growth. High population densities also tend to increase root rot. Previously bred Fusarium root rot resistant dry bean cultivars tended to tolerate cold soils, drought and compaction better than susceptible cultivars, but in waterlogged soils, resistance was defeated. In the present study, there does not appear to be a tradeoff among these traits with one exception: the correlation of shallow root angle with disease resistance, which might lead to less drought tolerant plants. Correlation is not causation so this supposition would need to be tested and could be carried out by subjecting the snap bean diversity panel to drought as well as other forms of abiotic stress. On the other hand, nutrient use efficiency, especially for phosphorous (P), is associated with shallow root systems (Lynch and Brown, 2001). Breeding for P use efficiency would not likely impact root rot resistance and vice versa.

The multiple associated SNPs detected for disease severity with low R2 values and their non-overlap with numerous SNPs detected for root rot in other studies strongly suggests that root rot resistance is highly polygenic in nature with numerous loci of low effect. This further supports the notion that genomic selection, which fully utilizes all SNPs, may be a better method to breed for root rot disease resistance in snap bean than identifying a small number of loci in GWAS and applying marker assisted selection to those loci.

Optimum ratio of training to testing populations for achieving the highest repeatable predictive ability was 70:30% training:validation for most traits. This level is within the range of what has been found for other studies of genomic prediction in common bean (Keller et al., 2020; Diaz L. M. et al., 2021; Diaz S. et al., 2021; Shi et al., 2021). At 90% training population, the highest average predictabilities as measured by r were achieved, but standard deviations were much larger, leading to less certainty in whether a prediction was accurate. Shi et al. (2021) reported that training sets >80% can lead to large variation associated with too small a validation set.

In evaluating the influence of the number of SNPs on prediction accuracy, it was curious that for most traits, the full set of SNPs used in our model had lower predictive accuracy compared to a reduced number of SNPs. Studies in bean and other crops have generally shown a positive correlation between number of SNPs and predictive accuracy (Spindel et al., 2016; Liu et al., 2018; Wen et al., 2019; Keller et al., 2020; Thistlethwaite et al., 2020; Arenas et al., 2021; Shi et al., 2021). These studies do differ in how many SNPs were used and in how they were selected for each subset, but the overall trends were similar. Some studies have observed decreases in predictive accuracy at various SNP levels. Thistlethwaite et al. (2020) observed a drop at around 10,000 SNPs before rising again. Arenas et al. (2021) observed a dip at around 1,000–1,500 SNPs for four traits. In our study, disease severity and biomass could be modeled with a high degree of accuracy (r > 0.90) with relatively few (126–221) SNPs. In contrast, root traits were best modeled with one-half to one-quarter of the full SNP data set. Other studies have shown that genomic prediction models that incorporate GWAS can improve accuracy in breeding programs (Spindel et al., 2016). Shi et al. (2021) found the highest predictive accuracy when 20 SNPs derived from GWAS were used. Our selection of 14 (biomass) and 16 (disease severity) most highly significant SNPs had among the lowest predictive accuracies. Our results reinforce the idea that resistance to Fusarium root rot is polygenic and requires many genes to achieve the highest levels of resistance.

One of the important questions in GWAS has been how to account for the “missing heritability” in such studies (Manolio et al., 2009). Relative to the heritability estimates based on phenotypic and genotypic variances, the amount of variation explained by significant SNP associations is small, and the cumulative effect of all associations in the model does not always approximate classical measures of heritability. This is particularly true where QTL have small individual effect. In the present study, the h2 estimate based on genotypic and phenotypic variances was relatively high 0.74 for disease severity and 0.75 for biomass (Table 2) while the cumulative R2 for the SNPs associated with these traits ranged from 0.26 to 0.31. This implies that either h2 is overestimated, or that GWAS may be missing medium- and low-effect associations. Relaxing our cutoff for identifying SNP associations could lead to the identification of additional associations, but increasing number of genotypes and/or markers would provide the greatest possibility of accurately detecting additional associations.

One piece of the missing heritability may be conditioned by genetic variability in the phenolic/flavonoid biosynthetic pathway. Flavonoids and phenolics have been shown to possess antimicrobial properties which have been associated with resistance to root rots (Hagerty et al., 2015; Cirak and Myers, 2021). One line (‘Cherokee’) from those with the highest rank for GEBV for disease severity had colored seeds and flowers, while none of the lowest ranked lines were colored (Table 7 and Supplementary Table 1 in Kleintop et al., 2016). The SBDP has been evaluated for total phenolic content (TPC) of pods (Kleintop et al., 2016), which can serve as a proxy for phenolics and flavonoids distributed in other plant parts. The 10 lines with lowest GEBV values for disease severity had relatively higher TPC than did the 10 lines with the highest GEBV (mean of 0.52 vs. 0.40 mg g–1 FW gallic acid equivalents). Disease severity and GEBV for disease severity were negatively correlated with TPC (r = -0.18, P = 0.03 and r = -0.23, P = 0.005, respectively). Myers et al. (2019) conducted a GWAS for TPC in pods of the SBDP and when we compared those results to the current findings, we did not find any overlap in regions of significant SNPs for disease severity or biomass. These results are compatible with the idea that phenolics do play a role in root rot resistance although it is not a major one.

To achieve acceptable processing quality, most contemporary snap bean cultivars are white-seeded, which eliminates anthocyanins and flavonols from the pods. If we had found a strong relationship between TPC and disease severity, those associations with pigment production would not be useful in a breeding program. Although lines varied for total TPC, all but one was white-seeded (preventing anthocyanin accumulation in the pods) and thus do not present barriers to use in a breeding program for root rot resistance.

In common bean, geographic origin and population structure have been shown to be an important influence on genetic variation in wild and landrace beans (Blair et al., 2012; Cortés et al., 2018). With the BeanCAP snap bean diversity panel, we do not expect associations that might be related to demography since snap bean origins are not associated with a particular place. However, snap beans do appear to have been secondarily derived from dry beans, and indirectly from the two centers of domestication, possibly with several independent events, and have retained some genetic signature of their origins (Wallace et al., 2018). Derivation has been followed by substantial admixing, which has reduced distinct associations with centers of domestication and has produced more of a clinal variation across the diversity panel. Population structure could result in spurious marker – trait associations; however, structure was accounted for in the FarmCPU model, and we did not see any pattern between disease severity GEBVs and location on the PCA biplot.

This research builds on prior work on Fusarium root rot resistance in common bean and will give snap bean breeders additional tools to dissect and manipulate resistance to Fusarium root rot in snap beans. The heritabilities give information on the expected gain from selection that could be achieved. The correlations among disease and root traits provide valuable information on the root architecture necessary to develop resistant lines. The GWAS analysis provides additional markers to a growing number associated with resistance. The genomic predictions identify individual lines with genetic merit worth pursuing by utilizing the totality of marker effects. Future research could include a more detailed investigation root trait associations with biotic and abiotic stress tolerance, combine snap bean data with dry bean for a meta-GWAS, and development of a MAGIC population (Cavanagh et al., 2008) to facilitate recombination of SNP associations into a common snap bean background.
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Charcoal rot is a post-flowering stalk rot (PFSR) disease of maize caused by the fungal pathogen, Macrophomina phaseolina. It is a serious concern for smallholder maize cultivation, due to significant yield loss and plant lodging at harvest, and this disease is expected to surge with climate change effects like drought and high soil temperature. For identification and validation of genomic variants associated with charcoal rot resistance, a genome-wide association study (GWAS) was conducted on CIMMYT Asia association mapping panel comprising 396 tropical-adapted lines, especially to Asian environments. The panel was phenotyped for disease severity across two locations with high disease prevalence in India. A subset of 296,497 high-quality SNPs filtered from genotyping by sequencing was correcting for population structure and kinship matrices for single locus mixed linear model (MLM) of GWAS analysis. A total of 19 SNPs were identified to be associated with charcoal rot resistance with P-value ranging from 5.88 × 10−06 to 4.80 × 10−05. Haplotype regression analysis identified 21 significant haplotypes for the trait with Bonferroni corrected P ≤ 0.05. For validating the associated variants and identifying novel QTLs, QTL mapping was conducted using two F2:3 populations. Two QTLs with overlapping physical intervals, qMSR6 and qFMSR6 on chromosome 6, identified from two different mapping populations and contributed by two different resistant parents, were co-located with the SNPs and haplotypes identified at 103.51 Mb on chromosome 6. Similarly, several SNPs/haplotypes identified on chromosomes 3, 6 and 8 were also found to be physically co-located within QTL intervals detected in one of the two mapping populations. The study also noted that several SNPs/haplotypes for resistance to charcoal rot were located within physical intervals of previously reported QTLs for Gibberella stalk rot resistance, which opens up a new possibility for common disease resistance mechanisms for multiple stalk rots.

Keywords: GWAS–genome-wide association study, linkage (QTL) mapping, haplotype analysis, charcoal rot, maize


INTRODUCTION

Maize is cultivated on more than 180 million hectares (M ha) globally, contributing ~50% [1,117 million metric tons (MMTs)] to the global grain production (Prasanna, 2018). Asian countries have shown rapid progress in maize production and productivity and are the second largest maize producers in the world with 31% share in global maize production (Zaidi et al., 2018). China produced nearly 260.95 MMT of maize by cultivating the maize area of 41.30 M ha during 2019 (FAO., 2021). The second prime maize producing country among Asian countries is India with an estimated maize area of ~9.03 M ha in 2019 with the maize production of 27.72 M Mt at a productivity of 3.07 t/ha (FAO., 2021). In Asia, a large portion of maize (~70% of total volume) is used by the feed industry (Prasanna, 2018), and the maize demand is always increasing due to the rise in population and socio-economic growth (Shiferaw et al., 2011). Apart from feed, maize is increasingly used in industries especially in food processing industry for making additives and sweeteners (Prasanna, 2018).

Despite the substantial growth rates in terms of cultivated maize area, production, and productivity in the last few years, maize in the south and southeast Asia is largely (80%) grown as a rainfed crop that is prone to the vagaries of monsoon rains, in addition to a number of biotic and abiotic stresses in this region (Zaidi et al., 2018). Abiotic stresses like drought, heat, and waterlogging are the main stresses that have a high impact on yield loss. Compounded with these, diseases have a huge impact on grain yield, as observed in most of the countries in Asia. The most common and economically important diseases in the region are soil-borne diseases like post-flowering stalk rots (PFSR) and banded leaf and sheath blight (BLSB) and foliar diseases like Turcicum leaf blight (TLB), downy mildews (DM), common rust, and polysora rust. Due to the impact of climate change effects, maize stalk rots and ear rots are reported to become more severe and widespread (Prasanna et al., 2021). Stalk rots in maize are caused by many fungi and bacteria, most of which occur commonly in the fields and behave opportunistically by infecting senescing, injured, and stressed plants (Jackson-Ziems et al., 2014). Stalk rots caused by fungi are Fusarium stalk rot (FSR), Gibberella stalk rot (GSR), late wilt, Anthracnose stalk rot (ASR), Diplodia stalk rot (DSR), and charcoal rot (CR).

Macrophomina phaseolina (Tassi) Goid., which causes charcoal rot of maize, is economically one of the most important pathogens that have a wide host range, affecting more than 500 species of plants. Microsclerotia of M. phaseolina survive in the soil, and the infected plant remains serve as a basic source of infection for the crops. They are ubiquitous under raised soil temperature and low moisture conditions, and in moisture-less soil, they can exist for more than 10 months (Khan, 2007). Charcoal rot symptoms are distinguished by the appearance of a large number of minute black sclerotia on vascular bundles and inside the rind of the stalk, resulting in grayish black stalk color. Symptoms of charcoal rot are observed after plant reproductive growth, when the fungus spreads into the lower internode of the stalk causing soft stalk, premature drying of stalk, and lodging of plants (Khokhar et al., 2014), and hence, the economic impact of the disease is high. Disease severity is exacerbated by low soil moisture, and higher soil and air temperature (Smith and Wyllie, 1999), which are serious constraints faced under smallholder farming conditions in climate-vulnerable environments. It is distributed worldwide in the tropics and subtropics, as well as in the US northern, central, and southern regions (Wyllie, 1988). It is a serious biotic concern in Asian countries like China, India, Indonesia, Pakistan, Philippines, Thailand, and Vietnam (Sharma et al., 1993). Yield loss due to charcoal rot was estimated to be 25–32.2% in India (Kumar et al., 1996) and recorded as high as 63.5% in All India Coordinated Research Program trials (Maize AICRP., 2014). These losses can be avoided by the deployment of resistant cultivars, as chemical control to soil-borne diseases has been reported as largely ineffective, and it increases the cultivation cost of resource-constrained farmers, apart from having hazardous effects on the environment.

Resistance to CR is shown to be a polygenic trait, with additive and non-additive gene action, with significant environmental interaction (Singh and Kaiser, 1991; Krishna et al., 2013, Mir et al., 2018). Incorporating resistance to diseases like charcoal rot, which are quantitatively inherited and have significant environmental interaction, in the breeding schemes to enhance genetic gains over time, necessitates the use of all modern breeding tools and strategies. Molecular technologies are used to accelerate the breeding for disease resistance by the possibility to expand the size of breeding populations, thereby increasing selection intensity, without increasing phenotyping requirements. Genotypic information can be used to select germplasm at the early stages of selection, and the capability to increase this phenotypically untested layer will allow the total number of genotypes within a breeding program to be expanded (Cooper et al., 2014). Linkage mapping can be used to identify quantitative trait loci (QTLs), which, in turn, are the tools for selection of loci of interest in breeding crosses and hence act as a proxy to the actual trait. Among the different PFSR, QTL mapping studies have been reported for resistance to stalk rots like GSR and ASR in maize. Three moderate to major QTLs have been identified, and one among them has been fine mapped for resistance to GSR caused by Fusarium graminearum (Yang, 2010; Zhang et al., 2012; Ma et al., 2017). A major QTL for ASR (caused by Colletotrichum graminicola) was cloned and found to belong to a nucleotide-binding site-leucine-rich repeat (NBS-LRR) gene class on the long arm of chromosome 4 (Jung et al., 1994; Abad et al., 2006; Broglie et al., 2011). Molecular mapping studies for charcoal rot resistance in maize have not been reported yet, which may be attributed to several factors like limited availability of disease-resistant sources, complex nature of the disease, and possible co-infection with other stalk rot pathogens under natural conditions leading to low repeatability in trials. However, QTLs for resistance to charcoal rot caused by M. phaseolina have been reported in crops like sorghum (Mahmoud et al., 2018), soybean (da Silva et al., 2019), and sesame (Wang et al., 2017). Keeping in view the increasing incidences of charcoal rot of maize in South Asia and gap in knowledge on the genomic regions conferring resistance to the trait, we conducted this study to discover trait markers through genome-wide association mapping and haplotype analysis using CIMMYT Asia association mapping (CAAM) panel. The genomic regions associated with charcoal rot resistance identified were validated using QTL mapping in two mapping populations, apart from identifying population-specific QTLs. Validated regions/markers will be further studied in breeding populations for possible deployment in the breeding pipelines.



MATERIALS AND METHODS


Plant Material

A set of 396 lines from the CAAM panel that were developed and adapted in Asian environments, involving inbred lines with tolerance to abiotic stresses like drought, high temperature, and excess moisture, besides quality protein maize (QPM) lines, and inbred lines derived from downy mildew-resistant populations in Asia, was used in genome-wide association study (GWAS). The CAAM panel included lines that are adapted to tropical, subtropical, lowland, mid-altitude, and highland environments and was classified into early maturing, intermediate maturing, and late maturing based on growing degree days (GDD). Most of the lines had yellow/orange kernel color, with very few lines had white kernel color (Supplementary Table 1).

Two biparental F2:3 families were formed to perform linkage mapping analysis for the validation of GWAS results. The first population (MSR) derived from a cross between a charcoal rot-resistant female parent CML495 and a susceptible male parent CML474 comprised 190 F2:3 families. CML495 is an elite lowland adapted, late inbred line with white kernel color. The second population (FMSR) derived from a cross between a resistant female parent WLS-F36-4-2-2-B-1-B*9 (now released as CML578) and a susceptible male parent CML474 comprised 257 F3 families. The common susceptible parent CML474 is an Asia-lowland adapted early line used as the early generation tester for heterotic group A.



Phenotypic Evaluation
 
Screening Sites

The CAAM panel was evaluated under artificial inoculation conditions for charcoal rot at two hot spot locations: Borlaug Institute for South Asia (BISA) farm, Ludhiana, Punjab, India (30°55′ N, 75°54′ E; 229 masl; 750–800 mm/year rainfall) during the wet season of 2013 and International Crop Research Institute for Semi-Arid Tropics (ICRISAT) farm, Hyderabad, Telangana, India (17.53° N; 78.27° E.; 545 masl; 784 mm/year average rainfall) during the dry season of 2013 and 2014. For linkage mapping, F2:3 families of two mapping populations, MSR and FMSR, were evaluated for charcoal rot at ICRISAT farm, Hyderabad, during the dry season of 2017 and 2018, respectively. All disease evaluation trials were planted in alpha lattice design with two replications of a single row. The row length was 2 m with a spacing of 0.20 m between plant to plant and 0.75 m between row to row. Standard agricultural practices were maintained throughout the cropping season.



Inoculum Preparation and Inoculation Technique

Toothpick method was followed for artificial inoculation of the trials (Lal and Singh, 1984). In this method, mass multiplication of M. phaseolina for artificial inoculation was done on wooden toothpicks by the method proposed by Jardine and Leslie (1992), with slight modifications. For inoculum multiplication, wooden toothpicks were saturated in tap water for 12–15 h followed by air drying. Dried toothpicks (~250) were packed in 250 ml glass bottles with 50 ml distilled water and were autoclaved at 15 lbs and 121°C for 15 min. After sterilization, excess water was poured out of the glass bottles and potato dextrose broth (PDB) was added, followed by autoclaving at the same temperature and pressure regime. After cooling, freshly subcultured fungi were inoculated into the bottles under aseptic conditions and incubated at 25°C till the toothpicks were covered up with fungal growth (~15 days).

At the tassel emergence stage of the plants, colonized toothpicks were inserted into the stalks. This was attained by drilling a hole of 4–5 cm at 45° angle in the second internode (first elongated node) with an iron needle having a wooden handle, where the toothpicks were introduced into the hole.



Disease Scoring

Disease scores were taken after 45–50 days of inoculation by splitting the stalk of the inoculated plants. Longitudinally divided stalks were individually scored on disease severity on a 1–9 scale (Payak and Sharma, 1983), where a score of 1 = 25% infection of the inoculated node; 2 = 26–50% of infection in the inoculated node; 3 = 51–75% of infection in the inoculated node; 4 = 76–100% of infection in the inoculated node; 5 = lesser than 50% of infection in the adjacent node, 6 = more than 50% of infection in the adjacent node; 7 = infection in more than three nodes; 8 = infection in more than four nodes; and 9 = infection in five nodes or plant lodging due to disease. Disease scores 1–2 were rated as highly resistant (HR), 2.1–4 were rated as resistant (R), 4.1–6 were rated as moderately resistant (MR), and >6.1 were rated as susceptible (S). In each row, at least 10 plants were inoculated, and each inoculated plant was scored to obtain a mean disease score for the plot.



Phenotypic Data Analysis

Descriptive statistics like mean, skewness, kurtosis, and genetic correlation were estimated using Meta-R (Alvarado et al., 2015). The CR disease data were skewed toward susceptibility in the CAAM panel. Best linear unbiased prediction (BLUPs) was obtained using the software Meta−6.0 across year data analysis, and the single year data were used for GWAS and QTL mapping analysis, respectively. The linear models are implemented in lmer from package lme4 of R (R Core Team 2013) using REML to calculate BLUPs and estimate variance components. Broad-sense heritability of the combined analysis across years was estimated as H2 = [image: image] /([image: image] + [image: image]/e + [image: image]/er), where [image: image], [image: image], and [image: image] are the genotypic, genotype-by-year interaction, and error variance components, respectively, and e and r are the number of years and number of replicates within each year included in the corresponding analysis, respectively.



DNA Isolation and Genotyping of CAAM Panel

Genomic DNA of the maize lines in the association mapping panel was isolated from leaves of 3–4-week-old seedlings (CIMMYT., 2001). Genotyping of the panel was performed at the Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA, for single-nucleotide polymorphism (SNP) using genotyping by sequencing method (GBS). Genomic DNA was digested with the restriction enzyme ApeKI. The GBS libraries were constructed in 96-plex and sequenced in Ilumina HiSeq 2000 (Elshire et al., 2011), and SNP calling was performed using TASSEL GBS pipeline (Glaubitz et al., 2014), where the GBS 2.7 sequences were used to anchor reads to the Maize B73 RefGen_v2 reference genome (www.maizegdb.org). Imputation was performed using FILLIN method in TASSEL 5.0, using GBS 2.7 haplotype files from Panzea (www.panzea.org) made from 8,000-site windows, as described in Swarts et al. (2014). The partially imputed GBS SNP data that had 955,690 genotypic data points (SNPs) across all the chromosomes were based on an algorithm that explores the closest neighbor in a small SNP window across the whole genome, permitting 5% mismatch (Romay et al., 2013). GWAS was conducted using 296,497 SNPs that were generated with the filtration criteria of call rate ≥ 0.7 and minor allele frequency (MAF) ≥ 0.05.



GWAS and Haplotype Regression

Methods studied for GWAS analysis were naïve model, where genotypic data were used without correction (G-test); general linear model (GLM), where genotypic data were corrected for structure (Q) using 10 principal components (G + Q-test); and single locus mixed linear model (MLM), where genotypic data were corrected for both structure and kinship (K) (G + Q + K) to avoid spurious associations. Additive models were used for G-test and GLM, and mixed model single locus (EMMAX) (Kang et al., 2010) was used for MLM for association studies in SVS version 8.6.0 (Golden Helix, Inc., Bozeman, MT, www. goldenhelix.com). The mixed association mapping model used was Y = SNP*β + PC*α + K *μ + ε, where Y = response of the dependent variable (MSR Score), SNP = SNP marker (fixed effects), PC = principal component coordinate from the PCA (fixed effects), K = kinship matrix (random effects), α = vector of PC, β and μ = vectors of SNP and K, respectively, and ε = the error. A kinship matrix was estimated from identity-by-state distances matrix as executed in SVS version 8.6.0, where IBS distance = (no. of markers IBS2) + 0.5 × (no. of markers IBS1) no. of non-missing markers, where IBS1 and IBS2 are the states in which the two inbred lines share one or two alleles at a marker (Bishop and Williamson, 1990). Linkage disequilibrium (LD) was estimated on adjacent pairwise r2-values between adjacent SNPs among the SNPs from the GBS data and physical distances between those SNPs as described in Rashid et al. (2020). Manhattan and quantile–quantile plots were created using the association results. P-value threshold was estimated by using genome-wide LD between SNPs and the effective number of independent markers. Markers that were in approximate linkage equilibrium with each other were determined based on SNP pruning with LD r2 threshold of 0.1 to select a subset of markers representing linkage blocks, and the suggestive-value threshold to control the genome-wide error rate was 5.16 × 10−5 (Mao et al., 2015; Cui et al., 2016). SNPs with P ≤ 0.01 in GWAS of CAAM panel were selected for haplotype detection and trait regression. Expectation maximization (EM) algorithm (Excoffier and Slatkin, 1995) with 50 EM iterations, EM convergence tolerance of 0.0001, and a frequency threshold of 0.01 were used to estimate haplotype frequency as applied in SVS version 8.6.0. Block defining algorithm (Gabriel et al., 2002) was used to identify haplotype blocks to minimize historical recombination. Regression analysis was carried out with the haplotype blocks identified on the MSR BLUP values based on stepwise regression with forward elimination.



Linkage Map Construction and Quantitative Trait Loci Mapping

Genomic DNA of the F2:3 lines of mapping population was extracted from the 3–4 weeks old seedlings. Markers were selected across the genome from the Illumina Goldengate assay for the QTL mapping study, apart from a few GWAS-identified SNPs. The lines were genotyped with KASP assays developed from random and GWAS-identified SNP markers at LGC Genomics, London. Based on parental line polymorphism, MSR mapping population was genotyped with a set of 125 markers, and the second population, FMSR, was genotyped with a set of 166 SNPs. Linkage map was constructed using QTL IciMapping version 3.4 software using the twin criterion of more than 3.0 LOD and a maximum distance of 40 cm between two loci. The QTLs were identified for BLUPs of the disease score using inclusive composite interval mapping (ICIM) as implemented in QTL IciMapping version 3.4. The walking step in QTL scanning was 1 cm, and a likelihood odds (LOD) threshold of 3.138 and 3.460 was used to declare QTL in MSR and FMSR populations, respectively, which was based upon 1,000 times permutations analysis. QTL statistics were also reported for those in which the LOD score exceeded 2.5. The sign of the additive effect of each QTL was used to identify the origin of the favorable allele.





RESULTS


Phenotypic Evaluation for Charcoal Rot Resistance

The CAAM panel consisting of 396 inbred lines was screened for charcoal rot resistance across three locations/years in India. The panel showed elevated disease severity, with a maximum score of 9.00 on a scale of 1.00–9.00 during all 3 years at two locations. Minimum disease scores of 2.10, 2.00, and 3.77 were observed at BISA, Ludhiana and Hyderabad, during years 1 and 2, respectively. The average disease score across locations was 7.21, which was skewed toward susceptibility. Broad-sense heritability (h2) was moderate to high (0.54–0.67) across single location with significant genotypic variance (P ≤ 0.001). QTL mapping population, MSR, evaluated at Hyderabad showed a trial mean of 5.62, with minimum and maximum disease scores of 3.76 and 7.79, respectively. The second mapping population, FMSR, showed an average trial mean of 6.21, with minimum and maximum scores of 3.42 and 8.90, respectively. Heritability estimates of MSR and FMSR trials were high, with 0.65 in MSR and 0.71 in FMSR population (Table 1). The response of both mapping populations showed continuous distribution for CR disease severity ranging from disease resistant or tolerant to susceptible reaction (Supplementary Figure 1). BLUPs were estimated to further conduct GWAS for charcoal rot resistance in association mapping panel and linkage mapping analysis.


Table 1. Summary statistics of CIMMYT Asia association mapping panel evaluated at three environments and two F2:3 linkage mapping populations evaluated during the dry season of 2017 and 2018.

[image: Table 1]



GWAS for Resistance to Charcoal Rot

From high density imputed 955K GBS genotypic data, a subset of 296,497 SNPs fulfilling the criteria of call rate ≥0.7 and MAF ≥ 0.05 was used for conducting GWAS analysis. The quantile–quantile (QQ) plot with observed against expected –log10 P-value revealed that highest genomic inflation was observed in Naïve or G-test association model, followed by general linear model (GLM) or G+Q model, where genomic inflation was controlled with population structure using first 10 principal components (PCs). However, mixed linear model (MLM) or G + Q+K model corrected for both population structure (Q) and kinship (K) sighted minimum genomic inflation as noticed in the QQ plots (Figure 1). Therefore, highly significant associations for charcoal rot resistance in the CAAM panel were determined based on MLM analysis. The narrow-sense heritability for charcoal rot resistance due to the associated SNPs was found to be 0.53. The total number of SNPs identified to be linked with charcoal rot resistance was 19 with P-value ranging from 5.88 × 10−06 to 4.80 × 10−05 (Figure 1). The most significant association detected for resistance to charcoal rot was with SNP S5_48504604 on chromosome 5, which showed the lowest P-value, followed by SNP S10_117560618 on chromosome 10. Among the 19 SNPs detected, groups of SNPs located at close physical co-ordinates were found on chromosome 5 (S5_19528704, S5_19528705), chromosome 6 (S6_103513337 and S6_103513378), and chromosome 8 (S8_165726551, S8_165726553, S8_165726556, and S8_165726574) (Table 2). Based on the physical position of the significant SNPs with respect to B73 version 2 of the reference genome (http://ensembl.gramene.org/Zea_mays), the significant SNPs identified in GWAS were associated with 12 genes, several of which had functional domains involved in resistance to biotic stresses.


[image: Figure 1]
FIGURE 1. (A) Inflation depicted by Q–Q plots of observed vs. expected –log10 (P-values) plots for charcoal rot using the naïve association model (G-test), GLM (G + Q), and MLM (G + Q + K); G = genotype (fixed), Q = 10 principal components (fixed), K = kinship matrix (random) for CAAM panel. (B) Highly significant SNPs identified from MLM model using Manhattan plot, plotted with the individual SNPs on the X-axis and –log10 P-value of each SNP on the Y-axis. The horizontal line showed the cutoff P-value, and the vertical line represents the identified QTLs and haplotype blocks in these regions for charcoal resistance.



Table 2. Significantly associated single-nucleotide polymorphisms (SNPs) along with the predicted gene model and their function detected by genome-wide association studies in CIMMYT association mapping panel for charcoal rot resistance.
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Haplotype Detection and Regression Analysis

Two hundred and eighty-nine SNPs (with P ≤ 10−3) that were identified in GWAS analysis were used to construct 44 haplotype blocks across 10 chromosomes, which were used in haplotype regression (HTR) analysis on estimated BLUP values. HTR analysis identified 21 haplotypes with Bonferroni P ≤ 0.05, which explained 3.22–6.48% of phenotypic variance. Haplotype blocks for charcoal rot resistance were identified on chromosomes 1, 2, 3, 5, 6, 8, and 9, formed with 2–8 SNPs (Table 3). Hap_8.1 on chromosome 8 formed by two SNPs, S8_151908973 and S8_151908983, showed the highest significance (Bonferroni P-value 7.73 × 10−05), followed by the Hap_5.2 on chromosome 5 (P-value 5.11 × 10−06 and Bonferroni P-value 2.24 × 10−04) (Table 3).


Table 3. Significant haplotypes identified in the CAAM panel for resistance to charcoal rot using haplotype regression.
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Linkage Mapping for Charcoal Resistance

Two biparental mapping populations phenotyped for charcoal rot at Hyderabad, India, were used for QTL mapping and validation of the genomic regions identified through GWAS and HTR analysis. By genotyping the MSR and FMSR populations with 125 and 166 markers, respectively, linkage maps were constructed. The average marker densities for MSR and FMSR populations were 7.09 and 5.59 cm, respectively, across the 10 chromosomes. Inclusive composite interval mapping in MSR mapping population identified two QTLs on chromosomes 6 and 8 (Figure 2), and two other QTLs were detected on chromosomes 3 and 4 at the lower default LOD threshold of 2.5. QTL qMSR8 on chromosome bin 8.06–07 between markers PZA01964_29 and PHM4757_14 had the largest effect, which explained 13.86% of the phenotypic variation. Resistant alleles were contributed by the resistant parent CML495 for all the QTLs identified in MSR population. In the FMSR mapping population, no QTLs were detected at the LOD threshold of 3.460, and two QTLs were identified on chromosomes 6 and 7 (Figure 2) at a lower default threshold of 2.5. QTL qFMSR6 on chromosome bin 6.03–04 between the markers PZA01029_1 and S6_103513510 showed the largest effect explaining 6.56% of the phenotypic variance (Table 4). For the two QTLs, resistant alleles were contributed by the resistant parent (WLS-F36-4-2-2-B-1-B*9). QTLs qMSR6 and qFMSR6, identified on chromosome 6, were found to be overlapping based on the physical coordinates, and this region was identified in both GWAS and HTR analysis also. QTLs detected in the two mapping populations predominantly showed dominant effects; however, two QTLs detected in MSR mapping population showed additive effects for charcoal rot resistance.


[image: Figure 2]
FIGURE 2. Plot of LOD scores from quantitative trait loci (QTL) analysis for charcoal rot resistance across 10 maize chromosomes in two F2: 3 biparental populations, (A) MSR and (B) FMSR. MSR and FMSR populations were evaluated under artificial inoculation conditions by Macrophomina phaseolina. The horizontal line represents the threshold LOD value of 2.5.



Table 4. Quantitative trait loci (QTL) detected on different chromosomes by inclusive composite interval mapping analysis for resistance to charcoal rot in two F2:3 biparental mapping populations.
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DISCUSSION

Post-flowering stalk rots are complex diseases, due to collective infection with multiple soil-borne pathogens, intensified by abiotic stresses like drought and further compounded by secondary infections. Charcoal rot, caused by soil-borne pathogen M. phaseolina, is an important component of the PFSRs and its management methods include cultural practices, fungicide application, biological control, and resistant varieties. A comprehensive understanding of the host plant resistance is necessary to develop and deploy elite, stress-resistant varieties with little yield reduction in the presence of biotic stresses. As there are no reported studies on resistance to charcoal rot resistance in maize, we undertook this study to discover and validate genomic regions controlling this trait. A GWAS was conducted using a mapping panel that included tropical/subtropical inbred lines from CIMMYT breeding programs in Asia, Mexico, Kenya, Zimbabwe, and Colombia that are also acclimatized to the Asian tropics. The CAAM panel was previously used to study traits like resistance to sorghum downy mildew (Rashid et al., 2018), northern leaf corn blight (Rashid et al., 2020), and root traits under drought conditions (Zaidi et al., 2016) in Asian environments. Phenotypic evaluation of CAAM panel for charcoal rot at Hyderabad and Ludhiana, revealed that the panel was skewed toward susceptibility, possibly because both these locations had ideal environment for pathogen infection and spread, and the artificial inoculation using the toothpick method reduced the chances of escapes. The toothpick method has been widely used for artificial inoculation of stalk rots due to its simplicity and low cost (Tesso et al., 2009). In this study, we used linkage mapping apart from GWAS to study the genomic regions conferring resistance to charcoal rot. The high disease score mean in the AM panel compared with the mapping populations showed that the allele frequency of the resistant alleles might be lesser in the AM panel, whereas in the mapping populations such alleles contributed by the resistant parents were segregating in the populations, and hence higher allele frequency and lesser disease incidence.

Linkage mapping targets genetic recombination generated in artificially controlled crosses and offers huge advantages in terms of QTL detection power. However, it has the disadvantages of low mapping resolution, allele sampling, and speed. Unlike linkage mapping, GWAS makes use of the ancestral recombination events in a natural population to analyze marker-phenotype relations (Rafalski, 2002). It has the advantage of increased mapping resolution and speed but could have a lesser power of mapping (Korte and Farlow, 2013). Whereas, QTL mapping in biparental populations segregating for the relevant alleles at the associated/linked locus may be used in the validation of trait association (Rafalski, 2010), it also identifies novel QTLs not identified in GWAS, if the alleles are rare in the AM panel and/or the allelic phase differs across population structure groups (Famoso et al., 2011). To complement the GWAS analysis carried out in the Asia-adapted AM panel, two mapping populations, MSR and FMSR, with a common susceptible parent were used for linkage mapping to identify novel QTLs and for the validation of detected marker associations. A common susceptible early maturing parent, CML474, was used in both the mapping populations because it is highly susceptible to this disease and is being used as a tester for early maturity heterotic pool A. Markers spread across the genome were used for the QTL mapping study, along with some GWAS-identified SNP-based markers. There was no prior information on the status of the QTLs present in either of the parents. We conducted inclusive composite interval mapping to detect trait QTLs that were contributed by either of the parents. The QTLs identified that were co-located with the SNPs identified in GWAS were considered as validated in independent studies. The GWAS-SNPs that were not co-located within QTL intervals were not considered as unvalidated, as they might just not be segregating in the parental combinations studied.

Two QTLs were detected with PVE ranging from 5.65 to 13.86% in one of the populations. Apart from these, three QTLs were detected at a lower threshold from the two populations. The results indicated that phenotypic variation for charcoal rot resistance in the two populations was explained largely by minor to moderate effect alleles. This is in accordance with QTL studies of a number of complex traits in maize. Out of the two QTLs identified in MSR populations, qMSR6 was found to overlap, based on physical co-ordinates, with qFMSR6, a minor QTL identified at a lower threshold of 2.5 in the FMSR population. This assumes immense significance as it is not very common to observe stable QTLs for complex traits contributed by unrelated parental lines in different experiments. Among the genomic regions identified in GWAS, two SNPs on chromosome 6.03 (S6_103513337, S6_103513378) co-located with these QTLs were detected in linkage mapping. The trait-associated SNPs were located in the gene GRMZM2G122172, having the functional domain of aldehyde dehydrogenase (ALDH) family 2 member C4 (Carbon 4). Studies showed that ALDH upregulation is a common target of stress response pathway activation in plants, where ALDH responds to abiotic stresses leading to altered expression under exposure to stresses like drought (Bartels and Sunkar, 2005, Kotchoni et al., 2006). This function implies direct significance under charcoal rot infection, as the disease severity is directly related to drought stress. Also, studies have shown that ALDH gene from Chinese wild grapevine enhanced resistance to mildew pathogens and salt stress in Arabidopsis (Wen et al., 2012). Thus, this region can be considered as a region of interest for charcoal resistance and calls for further studies on dissection of the QTL and possible use in breeding populations. Another haplotype block, Hap_6.1 located at 95.93 Mb, was also identified within the QTL interval of qMSR6 identified in MSR mapping population.

On chromosome bin 8.06, four SNPs, S8_165726556, S8_165726551, S8_165726574, and S8_165726553, were identified, which co-located with the largest QTL identified in this study, qMSR8, located in the physical interval of 151.45 to 166.98 Mb on chromosome 8. Haplotype regression analysis identified two significant haplotypes (Hap_8.1 and Hap_8.2) for this trait within this QTL interval. In published studies on resistance to GSR, a major QTL Rgsr8.1 was also fine mapped to 2.04 Mb interval between 164.69 and 166.72 Mb, with two candidate resistant genes, one of which was an auxin-responsive element and the other encoding a disease resistance protein (Chen et al., 2017). Also, co-incident with Hap_8.1, Ma et al. (2017) identified a QTL for resistance to GSR at physical position between 146.4 and 158.9 Mb. It is interesting to note that our study identified and validated a genomic region contributing for resistance to charcoal rot, which also houses QTLs for resistance to another stalk rot pathogen, Fusarium graminearum, causing GSR. Apart from this, chromosomal bin 8.05–8.06 is known to harbor genes for resistance to multiple biotic stresses and is considered as one of the “complex, important and interesting” genomic regions in terms of maize disease resistance (Chung et al., 2010). Similar to this region on chromosome 8, trait-associated SNPs were identified on other chromosomes too that were located within previously mapped QTL intervals for GSR. Hap_3.4 was located within the QTL interval of minor QTL qMSR3 on chromosomal bin 3.09 at 220.73 Mb, where Ma et al. (2017) identified a QTL between 217.9 and 225.6 Mb for GSR resistance. In the same study, a major QTL qRfg3, at a physical position of 176.8–209.9 Mb, was detected across three field trials on chromosome bin 3.6/07 explaining 10.7–19.4% phenotypic variance for GSR resistance. The haplotype regression analysis for charcoal rot in this study identified Hap_ 3.3 on chromosome bin 3.07 at a physical position of 202.11 Mb, which fell within the QTL interval of QTL qRfg3. Ma et al. (2017) also identified a QTL on chromosome 5 between 49.9 and 152.0 Mb for GSR resistance, which also housed Hap_5.2 located at a physical co-ordinate of 68.42 Mb in this study. Further studies on gene characterization at these loci for both these diseases will be required to understand if common resistance mechanisms operate toward resistance to multiple stalk rot pathogens.

Several significant trait-associated SNPs identified in the GWAS were located within genes with functional domains related to biotic and abiotic stress tolerance, immune response, metabolism, plant development, and maturity (Table 2). Two SNPs, S5_19528704 and S5_19528705 identified for charcoal resistance and located in the same chromosomal bin as a QTL identified for GSR resistance on chromosome 5.02-5.04 (Pè et al., 1993) were located within the predicted gene GRMZM2G178767 that codes for a Zea mays Dof zinc-finger protein DOF5.7, which is implicated in abiotic and biotic stress tolerance in plants (Guo et al., 2009, Sakamoto et al., 2004). Zinc-finger domain is present in a well-known class of plant-resistant proteins, NBS-LRR, that are involved in effector-triggered immune response (Gupta et al., 2012). Zinc-finger-based WRKY transcription factor (TF) plays a broad and pivotal role in plant immune responses (Eulgem et al., 2007). Another significant SNP, S3_2125663, was located in the gene GRMZM2G170047 that potentially codes for cytochrome P450, which is known to boost disease resistance. Cytochrome P450s are membrane-bound enzymes that can accomplish oxidation–reduction reactions (Morant et al., 2003) and are involved in plant defense and secondary metabolite synthesis in classical xenobiotic detoxification pathway (Schuler and Werck-Reichhart, 2003). It was also reported to play a major role in resistance to Fusarium head blight disease caused by Fusarium graminearum in wheat (Walter et al., 2008; Walter and Doohan, 2011). Similarly, the gene GRMZM2G168337, which houses SNP S4_167190764, was implicated in the synthesis of Nicastrin, which was found to be upregulated in maize after inoculation with southern corn rust (Wang et al., 2012). A gene where a charcoal rot-associated SNP S7_156114994 was located is GRMZM2G465999, which is a type of lectin S-receptor-like serine/threonine-protein kinase. Plant kinases constitute a diverse protein superfamily, which is capable of recognizing and interacting with specific carbohydrate structures either from invading microorganisms or deformed plant cell wall structures, and plant lectin motifs are used constantly to combat against pathogens and predators during plant defense (Lannoo and Van Damme, 2014). Gene GRMZM2G050647 associated with SNP S10_115937334 codes for exocyst complex component SEC5, which plays a role in plant–pathogen interaction. Exocyst complex is a conserved multiprotein complex that has eight subunits that are used in pathogen defense against hemi-biotrophic pathogens like Phytophthora infestans and Pseudomonas syringae, and some exocyst subunits can act as a susceptibility factor for necrotrophic pathogens like Botrytis cinerea. (Du et al., 2018). In Arabidopsis, Exo70B mutants showed lesion-mimic cell death mediated by salicylic acid accumulation (Kulich et al., 2013).



CONCLUSION

The genetic architecture of charcoal rot resistance was dissected through association and linkage mapping. Nineteen SNPs were found to be highly significant for charcoal rot resistance in GWAS analysis, and haplotype regression identified 21 haplotypes, of which Hap_8.1 at 151.90 Mb on chromosome 8 was shown to have the most significant effect on the trait. Inclusive composite interval mapping in two F2:3 mapping populations detected QTLs on chromosomes 6 and 8 with PVE ranging from 5.65 to 13.86%. QTLs on chromosome bin 6.03, with a flanking marker at 103.51 Mb, were detected in both the linkage mapping populations, albeit at a lower threshold in one of the populations. SNPs/haplotypes in this QTL interval were identified in the GWAS and haplotype regression studies also. Similarly, the SNPs and haplotype detected on chromosome 8 were also validated in QTL mapping in one mapping population. These haplotypes on chromosomes 6 and 8 can be further analyzed in breeding populations for the possible deployment of trait markers for charcoal rot resistance. Several significant SNPs and haplotypes identified in this study were found to be located within published QTL intervals for GSR resistance. To our understanding, this study is the first report for mapping and validating genomic regions for charcoal rot resistance in maize.
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The Chinese wheat landrace “Gaoxianguangtoumai” (GX) has exhibited a high level of adult-plant resistance (APR) to stripe rust in the field for more than a decade. To reveal the genetic background for APR to stripe rust in GX, a set of 249 F6:8 (F6, F7, and F8) recombinant inbred lines (RILs) was developed from a cross between GX and the susceptible cultivar “Taichung 29.” The parents and RILs were evaluated for disease severity at the adult-plant stage in the field by artificial inoculation with the currently predominant Chinese Puccinia striiformis f. sp. tritici races during three cropping seasons and genotyped using the Wheat 55K single-nucleotide polymorphism (SNP) array to construct a genetic map with 1,871 SNP markers finally. Two stable APR quantitative trait loci (QTL), QYr.GX-2AS and QYr.GX-7DS in GX, were detected on chromosomes 2AS and 7DS, which explained 15.5–27.0% and 11.5–13.5% of the total phenotypic variation, respectively. Compared with published Yr genes and QTL, QYr.GX-7DS and Yr18 may be the same, whereas QYr.GX-2AS is likely to be novel. Haplotype analysis revealed that QYr.GX-2AS is likely to be rare which presents in 5.3% of the 325 surveyed Chinese wheat landraces. By analyzing a heterogeneous inbred family (HIF) population from a residual heterozygous plant in an F8 generation of RIL, QYr.GX-2AS was further flanked by KP2A_36.85 and KP2A_38.22 with a physical distance of about 1.37Mb and co-segregated with the KP2A_37.09. Furthermore, three tightly linked Kompetitive allele-specific PCR (KASP) markers were highly polymorphic among 109 Chinese wheat cultivars. The results of this study can be used in wheat breeding for improving resistance to stripe rust.

Keywords: adult-plant resistance, QTL, stripe rust, Chinese wheat landrace, genetic mapping, heterogeneous inbred family


INTRODUCTION

Stripe rust (yellow rust), caused by Puccinia striiformis f. sp. tritici (Pst), is among the most harmful and widespread obligate pathogens of common wheat (Triticum aestivum L.) worldwide (Knott, 1989; Wellings, 2011). In China, stripe rust prevailed for several times in large wheat-growing areas and this caused serious yield losses (Zeng and Luo, 2006; Chen et al., 2014; Han and Kang, 2018). Since the 1950s, four severe epidemics of wheat stripe rust have occurred in China in 1950, 1964, 1990, and 2002, resulting in yield losses of 6.0, 3.2, 1.8, and 1.4 million tonnes, respectively (Li and Zeng, 2000; Wan et al., 2004). The main cause of the outbreaks is the emergence of new virulent races that overcome the widely deployed resistance genes (Chen and Kang, 2017). At present, new virulent Pst race CYR34 appears and overcomes the widely deployed Yr genes. In the meantime, the simplification of Yr genes in commercial wheat cultivars have not changed yet though a lot of cultivars are used in wheat production. The most efficient and economical method of controlling the disease is the use of genetic resistance (Liu et al., 2017; Wang et al., 2019). Continuous improvement in the resistance of wheat cultivars to cope with evolving races of Pst is a high priority to control stripe rust (Manickavelu et al., 2016).

To date, more than 300 genes or quantitative trait loci (QTL) for stripe rust resistance on the 21 wheat chromosomes have been reported (Rosewarne et al., 2013; McIntosh et al., 2019). In general, these resistance genes and QTL can be classified into two major classes: all-stage resistance (ASR) and adult-plant resistance (APR). ASR usually confers complete resistance during all growth stages and is simple to select during breeding. However, most ASR genes are race specific and encode nucleotide-binding and leucine-rich repeat (NLR) proteins, and therefore are effective against only a subset of Pst races. With regard to the dynamic rust pathogen populations of the virulent races, only a small number of the characterized ASR genes, such as Yr5 (Marchal et al., 2018) and Yr15 (Klymiuk et al., 2018), are still widely effective against currently dominant Pst race groups in China (Sharma-Poudyal et al., 2013; Wu et al., 2018).

In contrast, APR is effective starting at adult-plant growth stages and typically provides a degree of partial resistance. Although a few APR genes are race-specific (Milus et al., 2015), a greater proportion of APR genes including Yr18 (Krattinger et al., 2009), Yr29 (William et al., 2003), Yr30 (Hayden et al., 2004), and Yr46 (Moore et al., 2015) is non-race-specific and provides durable resistance to Pst. Of the three APR genes cloned to date, Yr18 encodes a putative ATP-binding cassette transporter (Krattinger et al., 2009), Yr36 encodes a kinase domain and a lipid-binding domain (Fu et al., 2009), and Yr46 encodes a predicted hexose transporter (Moore et al., 2015). These genes represent different protein families compared with classical ASR genes (the NLR family) and provide unique mechanisms effective against a broader range of pathogens. As an example, Yr18 has been globally used as a component of durable rust resistance in breeding programs and no evolution of increased virulence has been observed for almost 100years (Krattinger et al., 2009). To achieve a high degree of durable resistance, combining multiple APR genes into the same background has been considered as an important strategy for improvement of stripe rust resistance in wheat breeding.

Chinese wheat landraces are farmer-developed and maintained as traditional cultivars in China. These landraces harbor rich genetic diversity for stripe rust resistance. Numerous stripe rust genes or QTL have been identified, such as Yr1 (Bansal et al., 2009), Yr18 (Krattinger et al., 2009), Yr81 (Gessese et al., 2019), YrYL (Wu et al., 2016a), YrBai (Ma et al., 2015), Yrqbc (Cao et al., 2020), QYr.caas-5AL (Lan et al., 2010), QYr.cau-6DL (Zhang et al., 2017), QYr.cau-2AL (Wang et al., 2019a), QYr.GTM-5DL (Wu et al., 2020), and QYr.AYH-5BL (Long et al., 2021). Recently, our research program evaluated more than 1,000 Chinese wheat landrace accessions collected from all 10 agro-ecological zones (Zhou et al., 2017) for responses to stripe rust in the greenhouse and the field under inoculation with selected Chinese predominant races of Pst (Cheng et al., 2019; Long et al., 2019; Yao et al., 2019, 2020; Ye et al., 2019; Wang et al., 2021). Many resistant accessions of Chinese wheat landraces continually display APR to stripe rust in the field, providing a novel resistance resource for the breeding of wheat cultivars with durable resistance to stripe rust. Therefore, it is necessary and important to identify and develop new durable high-level APR resistance genes against stripe rust.

Gaoxianguangtoumai (GX) is a spring wheat landrace from Sichuan Province in southwest China, which is a regional center for oversummering and overwintering of the stripe rust pathogen. This landrace has exhibited a high degree of APR to stripe rust in the field for more than a decade, but little information is available on the genetic basis of resistance in this landrace. The objectives of the present study were to (1) identify the QTL conferring APR to stripe rust in a recombinant inbred line (RIL) population developed from the cross between GX and a susceptible cultivar, “Taichung 29” (TC 29, 2) validate and mendelize the novel QTL in a heterogeneous inbred family (HIF) population, and (3) develop tightly linked Kompetitive allele-specific PCR (KASP) markers for use in marker-assisted selection in breeding programs.



MATERIALS AND METHODS


Plant Materials and Races

The Chinese wheat landrace GX (accession number ZM7854 in National Germplasm Bank, China (NGBC) and AS1579 in Triticeae Research Institute, Sichuan Agricultural University) originating from Gao County, a county of Sichuan Province (28°26′N, 104°31′E). Because of high level of resistance to stripe rust for more than a decade, GX was crossed (as the female parent) with the highly stripe rust susceptible wheat cultivar TC 29. In total, 249 F6:8 (F6, F7, and F8) RILs derived from an individual F1 plant were developed by single-seed descent. A KASP marker, KP2A_36.85 which was located around the peak of QYr.GX-2AS, was used to identify heterozygous lines from an F8 generation of RIL. Through a single heterozygous plant was selected and selfed (Tuinstra et al., 1997), a HIF population of 130 individuals was generated for validating the QYr.GX-2AS. The scheme for developing the genetic populations was showed in Supplementary Figure S1. A collection of 325 Chinese wheat landraces was genotyped with the 55K single-nucleotide polymorphism (SNP) array and further was used for marker haplotype analysis (Zhou et al., 2017). A panel of 109 Sichuan wheat cultivars was used to determine the polymorphism of markers tightly linked with QYr.GX-2AS. The highly stripe rust susceptible wheat cultivars “Mingxian 169,” “SY95-71,” and “Avocet S” (AvS) were used as susceptible controls in seedling and adult-plant tests throughout the study. Here, SY95-71 is a spring wheat line, selected from hexaploid triticale/wheat followed by backcrossing with wheat (Eronga 83/Fan6∥Fan6; Shu et al., 1999). The line has been widely used in China as a highly susceptible stripe rust spreader genotype or susceptible control. The Pst races (comprising CYR32, CYR33, CYR34, G22-14, Su11-4, Su11-5, and Su11-7; Wu et al., 2016b; Huang et al., 2018) were kindly provided by the Plant Protection Institute of the Gansu Academy of Agricultural Sciences, Gansu, China.



Evaluation of Resistance to Stripe Rust

Seedling tests to evaluate the stripe rust resistance of GX and TC 29 were conducted in a greenhouse using two prevalent Chinese Pst races (CYR32 and CYR34). Five plants of each line were sown in a plastic pot filled with nutrient soil and grown in a controlled environment in the greenhouse. Seedlings were inoculated at the two-leaf stage with each Pst race in accordance with the protocol of Hickey et al. (2012). Inoculated plants were placed in a dew chamber at 10°C and 100% relative humidity for 24h in the dark, and then moved to separate growth chambers at 15–16°C with 12–14h of light daily. When the susceptible control “Mingxian 169” showed full sporulation, the infection type (IT) on the second leaf (approximately 15–18days after inoculation) was scored using a 0–9 scale (Line and Qayoum, 1992). Plants with IT scores of 1 to 6 were considered resistant, whereas plants with IT scores of 7–9 were considered susceptible.

Assessments of adult-plant stripe rust responses were conducted at the Chongzhou Experimental Station (30°33′N, 103°39′E), Sichuan Agricultural University, Chengdu, China. The F6:8 RILs population and the parental lines were evaluated for APR to stripe rust during the 2017–2018, 2018–2019, and 2019–2020 growing seasons (referred to as CZ2018, CZ2019, and CZ2020, respectively). The HIF population of 130 individuals was evaluated for APR to stripe rust during the 2020–2021. The phenotype data of HIF population were used for Chi-Squared analysis (3:1 ratio) and genetic mapping. In all tests, 20 seeds of each line were planted in rows 2m in length and spaced 30cm apart, with individual plants spaced 10cm apart. The susceptible cultivar TC 29 was planted in every 20th row as a susceptible control. To provide inoculum for infection, the susceptible cultivars SY95-71 and AvS were planted around the perimeter of the experimental area as spreaders. Artificial inoculation was conducted using a mixture of currently predominant Pst races in China (comprising CYR32, CYR33, CYR34, G22-14, Su11-4, Su11-5, and Su11-7). Stripe rust response was first recorded by scoring the IT and disease severity (DS) when the susceptible checks SY95-71 and AvS showed more than 80% DS and was followed by two additional evaluations at 7day intervals (i.e., three evaluations in total) for three randomly selected individual plants. The IT was recorded based on the 0–9 scale of Line and Qayoum (1992). The DS was scored as the percentage infected leaf area (0, 5, 10, 20, 40, 60, 80%, or 100%) in accordance with the Chinese National Standard, GB/T 15797-2011. The final DS (FDS) was used for phenotypic analysis.



Genotyping, Linkage Map Construction, and QTL Analysis

Genomic DNA was extracted from a single plant for each line of the wheat materials using the cetyltrimethylammonium bromide method (Stewart and Via, 1993). The two parents (GX and TC 29) and the 117 RILs were genotyped using the Axiom® Wheat 55K SNP array (53,036 markers) by the China Golden Marker Biotechnology Company Ltd. (Beijing, China). Monomorphic and SNP loci with a minor allele frequency less than 0.3 were excluded with further analysis (Ma et al., 2019). Polymorphic SNP markers were used to remove redundant markers in the binning step using the BIN function, with the parameters missing rate=20% and distortion value=0.01, implemented in QTL IciMapping v4.2 (Wang et al., 2019b). The binned markers were used for linkage map construction using the Kosambi mapping function (Kosambi, 1944) with JoinMap v4.0 (Van Ooijen, 2006). Mapping of QTL was performed using QTL IciMapping v4.2 based on inclusive composite interval mapping with the preset parameters Step=1cM, value of p for entering variables (PIN)=0.001, and logarithm of the odds (LOD)=2.5.

To determine the effects of the QTL, the RILs were divided into four groups based on the presence/absence of the most closely linked flanking markers of QYr.GX-2AS and QYr.GX-7DS. In addition, the epistatic interactions between QYr.GX-2AS and QYr.GX-7DS were identified in RILs using QTL IciMapping v4.2 based on inclusive composite interval mapping of digenic epistatic QTL (ICIM-EPI) functionality with the preset parameters Step=1cM, value of p for entering variables (PIN)=0.0001, and LOD=5.



Haplotype Analysis

Haplotype analysis was performed to identify haplotype variants for QYr.GX-2AS in a collection of 325 Chinese wheat landrace accessions (Zhou et al., 2017; Ye et al., 2019). The informative markers linked to QYr.GX-2AS were screened using the Wheat 55K or Wheat 660K SNP arrays in accordance with the method described by Long et al. (2021). The SNP genotype data and the phenotype data (FDS) were obtained from recently published studies (Cheng et al., 2019; Long et al., 2019; Yao et al., 2019, 2020; Ye et al., 2019; Wang et al., 2021). Haplotype variants were detected using Haploview v4.2.1 The haplotypes detected in at least 10 accessions were considered to be major haplotypes. Boxplots were generated to display the average FDS of accessions carrying the different haplotypes. Haplotype data were combined with provenance information to examine the geographic distribution of the superior haplotypes in the 10 major agro-ecological production zones of Chinese wheat landraces.



Exome Capture Sequencing, Development of KASP Markers, and Genetic Mapping

Genomic DNA of the resistant parent GX was sequenced using the wheat exome capture sequencing protocol described by Dong et al. (2020). The raw sequence data have been submitted to GenBank under Bioproject no. PRJNA734801. The sequence variants were identified using the variant calling pipeline GATK4 (Heldenbrand et al., 2019). After QTL mapping, random SNPs in the target region to QYr.GX-2AS from the Wheat 55K array and exome capture sequencing were selected and converted to KASP markers using the PolyMarker online tool (Ramirez-Gonzalez et al., 2015). The specific KASP markers were used to screen the parents and a paired of NIL (selected from HIF population with a common genetic background but differing in QYr.GX-2AS) to confirm polymorphism before genotyping in the HIF population. The KASP assays were performed in 96-well format as 10μl reactions containing 2μl of 50–100ng genomic DNA, 5μl of HiGeno 2× Probe Mix B, 0.24μM of each forward primer, 0.6μM of the common reverse primer, and double distilled water to make up the volume to 10μl. Each PCR was conducted using the BIO-RAD CFX96 qPCR system. Thermocycling was performed with a touchdown protocol: 95°C for 10min; 95°C for 20s and 61°C (−0.6°C per cycle) for 40s for 10cycles; and 95°C for 20s and 55°C for 40s for 38cycles. Data analysis was performed manually using BIO-RAD CFX96 Manager 3.1.

The polymorphic KASP markers were used for validating the QYr.GX-2AS in the HIF population of 130 individuals. Linkage analysis was performed using JoinMap v4.0 (Kyazma BV, Wageningen, Netherlands; Van Ooijen, 2006) with a LOD threshold of 3.0. The Kosambi map function (Kosambi, 1944) was used to convert the recombination fractions to centi-Morgans. The linkage map was drawn using Mapdraw v2.1 (Liu and Meng, 2003). Three tightly linked markers for QYr.GX-2AS were further assessed in 109 wheat cultivars grown in Sichuan for checking the usefulness of the newly developed KASP markers for marker-assisted selected.



Data Analyses

Best linear unbiased prediction (BLUP) values for each RIL, ANOVA, Pearson’s correlation coefficients, and broad-sense heritability (H2) estimates were calculated using the “AOV” tool implemented in QTL IciMapping v4.22 (Wang et al., 2019b). The Chi-squared (χ2) test with Excel 2016 was used to evaluate the goodness-of-fit for phenotype data of RILs population (1:1 ratio and 3:1 ratio) and HIF population (3:1 ratio). Student’s t-tests (p<0.05 and 0.01) were conducted with SPSS Statistics v17.0 (IBM Corp., Armonk, NY, United States) to evaluate the significance of differences between the two groups.




RESULTS


Stripe Rust Response of the Parents and RILs

Plants of GX were susceptible (IT=8) to CYR32 and CYR34 at the seedling stage (Figure 1A) but exhibited strong resistance (IT=3, FDS<10%) to mixed Pst races (comprising CYR32, CYR33, CYR34, G22-14, Su11-4, Su11-5, and Su11-7) at the adult-plant stage in three crop seasons from 2018 to 2020 (Figures 1B, 2; Supplementary Table S1), indicating that GX has effective APR to these prevalent Chinese Pst races. In all three environments, the average FDS of RILs for GX×TC 29 was 12.5–15.7% in the field tests, and the distributions were skewed toward resistance (Figure 2). A total of 200 homozygous resistant lines (IT ≤6) were consistently observed in the 249 RILs in all three field trials, and 142 lines of them showed high resistance similar to GX (IT ≤3). In addition, 25 homozygous susceptible lines (IT ≥7) were consistently observed in all three field trials. According to the homozygous phenotypes, the distribution of F6:8 families was not fit the expected ratios for a single gene (1:1 ratio; χ2=136.11, p<0.001) and two genes (3:1 ratio; χ2=23.15, p<0.001). The result indicated that the high level of resistance in GX was controlled by multiple genes (Figures 1C, 2; Supplementary Table S1). Broad-sense heritability (H2) was 96.7% for FDS in all tests (Table 1). Correlation coefficients (R2) for FDS of the RILs among the different environments were significant (p<0.01) and ranged from 0.82 to 0.95 (Supplementary Table S2).
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FIGURE 1. Stripe rust response of the resistant parent Gaoxianguangtoumai (GX) and susceptible parent Taichung 29 (TC 29) with CYR34 at the seedling stage (A) and mixture Pst at the adult-plant stage (B); Stripe rust response of the randomly selected recombinant inbred lines (RILs) of lines in the field (C).
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FIGURE 2. Frequency distributions of the final disease severity (FDS) for the recombinant inbred lines (RILs) population derived from Gaoxianguangtoumai (GX)×Taichung 29 (TC 29) at Chongzhou in 2018 (A), 2019 (B), 2020 (C), and best linear unbiased prediction (BLUP) values (D).




TABLE 1. The summary of final disease severity (FDS) data for the recombinant inbred lines (RILs) population from the Gaoxianguangtoumai (GX)×Taichung 29 (TC 29) recorded in the fields at Chongzhou in 2018–2020.
[image: Table1]



Linkage Map Construction and QTL Analysis

A total of 1,871 markers were used to construct the linkage map which spanning a total length 2,799.12cM for the GX×TC 29 population (Supplementary Table S3). The A, B, and D genomes included 681 (36.40%), 669 (35.76%), and 521 (27.85%) markers covering lengths of 911.04, 855.71, and 1,032.37cM with average marker intervals of 1.34, 1.28, and 1.98cM, respectively (Supplementary Table S3).

Two high quality QTL, conferring APR to Pst races, was screened through further analysis (Table 2; Figures 3A,B). The most significant QTL, designated QYr.GX-2AS, was mapped to the short arm of chromosome 2AS and explained 15.5–27.0% phenotypic variation (Table 2; Figure 3A). The other QTL, designated QYr.GX-7DS and explaining 11.5–13.5% phenotypic variation, was located on the short arm of chromosome 7D where this gene overlaps with Yr18 (Krattinger et al., 2009). The genetic distances analysis showed SNP markers cssfr5 and AX-110502471 flanking QYr.GX-7DS were 3.1cM and 5.4cM, respectively (Table 2; Figure 3B). Results indicated that it was highly likely that QYr.GX-7DS corresponded to Yr18.



TABLE 2. Quantitative trait loci (QTL) for stripe rust resistance detected in the recombinant inbred lines (RILs) population from the Gaoxianguangtoumai (GX)×Taichung 29 (TC 29) using final disease severity (FDS) data across three environments and best linear unbiased prediction (BLUP) values.
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FIGURE 3. QTL conferring adult plant stripe rust resistance detected by inclusive composite interval mapping (ICIM) in the recombinant inbred lines (RILs) population from Gaoxianguangtoumai (GX)×Taichung 29 (TC 29). Graphical displays of QTL (A) QYr.GX-2AS and (B) QYr.GX-7DS detected on chromosome 2A and 7D based on the final disease severity (FDS) from three field trials and best linear unbiased prediction (BLUP) data. The box plots for final disease severity (FDS) based on the best linear unbiased prediction (BLUP) data associated with the two loci (QYr.GX-2AS and Yr18) and their combination in the Gaoxianguangtoumai (GX)×Taichung 29 (TC 29) recombinant inbred lines (RILs) population (C). *indicate significant at P=0.05; **indicate significant at P=0.01.


Clearly, the RILs that carried one of the QTL showed a lower FDS than those without any QTL (average FDS=63.4%; Figure 3C). The RILs carrying only QYr.GX-7DS showed 14.8% of the average FDS, whereas average FDS of lines with only QYr.GX-2AS was 9.3%. The lines with two QTL had the highest resistance level (average FDS=7.06%; Figure 3C), similar to that of GX. In addition, the epistatic interaction between QYr.GX-2AS and QYr.GX-7DS could be significantly detected in two field trials and Busing the ICIM-EPI functionality of the QTL IciMapping v4.2 (Supplementary Table S4). These results indicated that the high-level resistance in GX was contributed by these two QTL through additive and epistatic interactions, where QYr.GX-2AS provided relatively stronger resistance to Pst races than QYr.GX-7DS.



Haplotype Analysis of QYr.GX-2AS

To assess the distribution of QYr.GX-2AS among 325 Chinese wheat landraces, the favorable haplotype was identified by haplotype analysis and seven SNP markers tightly linked to QYr.GX-2AS were screened from the Wheat 55K or 660K SNP arrays (Figures 4A–C). Eight major haplotypes (n>10) were detected in the panel (Figures 4A,B). GX and 15 other accessions clustered with Hap1 (Supplementary Table S5), which showed a frequency of about 5.3% in the total population (Figure 4A). Almost all accessions carrying Hap1, except one from Henan, were collected from Sichuan. The accessions carrying Hap1 showed 18.4% of the average FDS and thus were more strongly resistant to stripe rust than those accessions carrying other haplotypes (Hap2=37.2%, Hap3=24.1%, Hap4=47.7%, Hap5=21.5%, Hap6=39.0%, Hap7=27.0%, and Hap8=47.6%; Figure 4C). The above results suggested that Hap 1 was the favorable haplotype of QYr.GX-2AS and relatively rare in Chinese wheat landraces.
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FIGURE 4. Haplotype analysis of QYr.GX-2AS associated with stripe rust resistance in 325 Chinese wheat landraces. (A) LD heat map surrounding QYr.GX-2AS. The number on the right shows the distribution frequency of eight haplotypes in these Chinese wheat landraces. (B) Boxplot displays the mean final disease severity of the accessions carrying different haplotypes. (C) Frequencies of resistance allele of QYr.GX-2AS in Chinese wheat landraces in 10 major agro-ecological production zones of China.




Validation and Mapping of QYr.GX-2AS

QYr.GX-2AS was further mapped finely using newly KASP markers developed from SNPs screened by exome capture sequencing and the Wheat 55K array. Eleven markers were confirmed to be polymorphic between GX and TC 29 (Supplementary Table S6). Combined with the KASP marker KP2A_36.85 for QYr.GX-2AS and the marker cssfr5 for Yr18, the HIF population of 130 individuals with a single locus QYr.GX-2AS was developed from a heterozygous plant (IT=4) in the F8 generation of RILs (Supplementary Figure S1). No significant phenotypic differences were observed in the HIF population, except for APR to stripe rust (Figure 5A). With regard to stripe rust response in the field test, the HIF population could be clearly classifiable into 97 resistant (IT=3–4) and 33 susceptible (IT=8–9) individuals, which fits the expected ratio (3:1) for a single Mendelian factor (chi-square goodness-of-fit test, χ2=0.01, p=0.92; Supplementary Table S7). Using the newly developed 11 KASP markers (Supplementary Table S7) to construct the genetic map, QYr.GX-2AS was screened in 1.37Mb interval between the KASP marker KP2A_36.85 and KP2A_38.22 and co-segregated with the KP2A_37.09 (Figure 5B).
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FIGURE 5. Stripe rust response of the near-isogenic lines with mixture Pst at the adult-plant stage in the field (A), genetic map of chromosomes 2AS showing locations of stripe rust resistance genes QYr.GX-2AS based on the heterogeneous inbred family (HIF) population (B), predicted genes in IWGSC RefSeq v1.1, highlight in black showed non-synonymous variants between Gaoxianguangtoumai (GX) and Chinese Spring in the exon regions (C).




Validation of KASP Markers for Marker-Assisted Selection

The molecular identification of 109 Chinese wheat cultivars was tested with three KASP markers KP2A_36.85 (G/A), KP2A_37.09 (A/C), and KP2A_38.22 (G/A; Supplementary Figure S2; Supplementary Table S8), which suggested that most of the cultivars could be amplified susceptible-specific alleles and showed 85.3, 99.1, and 95.4% polymorphism, respectively (Supplementary Table S8). Based on the above results, three KASP markers were valuable to apply QYr.GX-2AS in wheat breeding by marker-assisted selection.




DISCUSSION

It is the highest priorities to develop durable resistance to Pst races in wheat breeding during the past decade (Chen, 2013). A large number of genes or QTL that confer various degrees of APR to stripe rust have been identified (Chen, 2013), but most only have minor effects on stripe rust response and are therefore difficult to use in breeding. Thus, the identification of new high quality Yr genes or QTL with APR is useful in wheat breeding. The Chinese wheat landrace GX has displayed a high degree of APR to stripe rust in the field for more than a decade in southwest China. Two QTLs conferring APR to Pst races tested were identified in GX, tentatively named as QYr.GX-2AS and QYr.GX-7DS, and mapped on chromosome2AS and 7DS, respectively. In addition, the QYr.GX-2AS had a large effect in the reduction of stripe rust severity at adult-plant stages, which would be expected to have a great potential to pyramid this QTL with other Yr gene/QTL to develop wheat cultivars with high-level and durable resistance to Pst races.

QTL analysis is a useful procedure to reveal possible multiple loci when analyzing complex genetic traits, such as APR to stripe rust, in resistant germplasm. However, this procedure only allows approximate mapping of the QTL (Tanksley and Hewitt, 1988) owing to the heterogeneity in genetic backgrounds. The confidence interval of many QTL spans a considerable genetic distance and, as a result, molecular markers for these QTL may not be reliably used in marker-assisted selection. As a strategy for accurate mapping of QTL in genetic analysis, HIF populations that allow the conversion of a quantitative trait into a Mendelian factor have been widely used for fine mapping and cloning of many important QTL in wheat, such as Yr18 (Krattinger et al., 2009), Yr36 (Fu et al., 2009), Fhb1 (Su et al., 2019), and Fhb7 (Wang et al., 2020). In the present research, a HIF population targeting QYr.GX-2AS was developed based on the method of heterogeneous inbred family analysis (Tuinstra et al., 1997). Members of this population were unambiguously classified as either resistant or susceptible and fitted the expected ratio (3:1) for a single Mendelian factor; thus, accurate mapping of the locus was possible. Analysis of the HIF population revealed that QYr.GX-2AS, flanked by KP2A_36.85 and KP2A_38.22, was located in the interval 36.85Mb to 38.22Mb on chromosome 2AS. One KASP marker co-segregating with the targeted locus was successfully developed for marker-assisted selection.

Several genes that confer resistance to stripe rust have been identified on wheat chromosome 2AS, including Yr17 (Bariana and Mcintosh, 1993), Yr56 (Bansal and Bariana 2014), Yr69 (Hou et al., 2016), YrR61 (Hao et al., 2011), and YrSph (Chen et al., 2012; Figure 6 and Supplementary Table S9). The genes Yr17, Yr69, and YrSph confer ASR to stripe rust. Although recent studies suggest that Yr17 also confers APR to stripe rust in the field, QYr.GX-2AS is likely to differ from Yr17 because accessions of the Chinese wheat landrace GX that lack the 2N alien segment carry Yr17. Yr56 is a major gene conferring APR to stripe rust that was identified in the Australian durum wheat cultivar “Wollaroi.” Yr56 is flanked by Xsun167 (wPt-4,197) and Xsun168 (wPt-9104; Bansal and Bariana 2014), which corresponds to the “Chinese Spring” physical map region between 8.35Mb and 14.28Mb. YrR61, corresponding to the major-effect QTL QYr.uga-2AS_26R61 conferring APR to stripe rust, was identified from the soft red winter wheat cultivar “Pioneer” and is flanked by the markers Xbarc124 (3.78Mb) and Xgwm359 (28.20Mb; Hao et al., 2011). Clearly, both Yr56 and YrR61 are located distant from QYr.GX-2AS. In addition, at least 20 QTL have been reported on chromosome 2AS, and most of them are located at a QTL hot-spot region in the distal end of 2AS (<30Mb; Figure 6). For example, the QTL QYr.tam-2AS_TAM 111 (Basnet et al., 2014) confer ASR to stripe rust. QYr.ufs-2A (Agenbag et al., 2012), QYrst.orr-2AS_Stephens (Vazquez et al., 2012), and QYr.sun-2A_Kukri (Bariana et al., 2010) were all flanked by the basis of a common DArT marker XwPt-0003, which were nearly with the QYrva.vt-2AS_VA00W-38 (Christopher et al., 2013) corresponds to the “Chinese Spring” physical map region 29.94Mb. QYrtb.orz-2AS (Vazquez et al., 2015) and QYr.inra_2AS.1_Recital (Dedryver et al., 2009) were located in 2AS close to marker Xcfd36 (about 16.63Mb) which are homeologous to the Yr17 introgression. The QYr.ucw-2AS_PI610750 (Lowe et al., 2011), contributed by the synthetic derivative PI610750, is flanked by the XwPt-3896 (13.14Mb) and Xwmc177 (33.70Mb). QYr.inra-2A_CampRemy from Camp Remy (Mallard et al., 2005) is located by the Xgwm382a and Xgwm359 (about 28.20Mb). QYrzv.swust-2AS (Zhou et al., 2021) flanked by IWB7877 and IWB72720 is derived from the wild emmer wheat (T. dicoccoides) accession Zavitan, corresponding to the “Chinese Spring” physical map region between 5.25Mb and 5.33Mb. Similarly, the other QTL identified by GWAS is located in different regions from QYr.GX-2AS on chromosome 2AS, expect for a minor locus QYr.wsu-2A.1_IWA2526 (about 36.63Mb). Hence, the large-effect QTL QYr.GX-2AS identified in the present study is unlikely to be the previously reported QTL. Anyway, the most powerful evidence still is gene sequencing on the target region after cloning QYr.GX-2AS.
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FIGURE 6. Comparison of QYr.GX-2AS with previously identified genes/QTL (from biparental population) for resistance to stripe rust based on the reference genome of bread wheat (IWGSC, RefSeq v1.0).


According to gene annotation information in IWGSC RefSeq v1.1, 16 predicted genes are located in the candidate region for QYr.GX-2AS (Figure 5C; Supplementary Table S10). None of these genes is a classic NBS-LRR resistance gene. In addition, no annotations accorded with the protein types encoded by the APR genes Yr18 (ABC transporter), Yr36 (kinase-START), and Yr48 (hexose transporter), implying that the candidate gene for QYr.GX-2AS might differ from known stripe rust resistance genes. Combined with exon sequencing data, eight predicted genes showed non-synonymous variants between GX and “Chinese Spring” in exon regions, including a RING/U-box, ascorbate peroxidase, glycosyltransferases, and F-box family protein, that may be involved in disease resistance. For confirmation of the candidate gene and cloning of QYr.GX-2AS, fine mapping to narrow the candidate interval will be performed using a large HIF population in future work.
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Many studies have evaluated the effectiveness of genomic selection (GS) using cross-validation within training populations; however, few have looked at its performance for forward prediction within a breeding program. The objectives for this study were to compare the performance of naïve GS (NGS) models without covariates and multi-trait GS (MTGS) models by predicting two years of F4:7 advanced breeding lines for three Fusarium head blight (FHB) resistance traits, deoxynivalenol (DON) accumulation, Fusarium damaged kernels (FDK), and severity (SEV) in soft red winter wheat and comparing predictions with phenotypic performance over two years of selection based on selection accuracy and response to selection. On average, for DON, the NGS model correctly selected 69.2% of elite genotypes, while the MTGS model correctly selected 70.1% of elite genotypes compared with 33.0% based on phenotypic selection from the advanced generation. During the 2018 breeding cycle, GS models had the greatest response to selection for DON, FDK, and SEV compared with phenotypic selection. The MTGS model performed better than NGS during the 2019 breeding cycle for all three traits, whereas NGS outperformed MTGS during the 2018 breeding cycle for all traits except for SEV. Overall, GS models were comparable, if not better than phenotypic selection for FHB resistance traits. This is particularly helpful when adverse environmental conditions prohibit accurate phenotyping. This study also shows that MTGS models can be effective for forward prediction when there are strong correlations between traits of interest and covariates in both training and validation populations.
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INTRODUCTION

Resistance to the disease Fusarium head blight (FHB) is important in wheat (Triticum aestivum L.) production, particularly in the Southeastern US. Fusarium head blight is a fungal disease caused by Fusarium graminearum and incurs nearly US$4.2 billion in losses annually (Wilson et al., 2017). The F. graminearum pathogen produces the mycotoxin deoxynivalenol (DON), which is harmful for humans and animals that consume infected grain (FDA, 2010; Sobrova et al., 2010).

Traditionally, wheat breeders have primarily relied on phenotypic selection within their breeding programs to advance breeding material. However, phenotypic selection has its limitations, especially with low-heritability traits of interest that are difficult to phenotype. Difficulties with phenotyping are also compounded by genotype × environment interactions that can lead to differential responses between genotypes across environments, reducing the accuracy of selections. Alternatives to phenotypic selection include marker assisted selection (MAS) and genomic selection (GS). Marker assisted selection can be effective for qualitative traits controlled by one or two genes or quantitative traits that are controlled by large-effect quantitative trait loci (QTL) (Xu and Crouch, 2008). However, MAS is less effective for complex quantitative traits controlled by many small-effect QTL (Bernardo and Yu, 2007; Heffner et al., 2009). Genomic selection is an effective alternative to both phenotypic selection and MAS, in that it incorporates allelic effects across the entire genome, making it ideal for quantitative traits. Genomic selection can also reduce the time within a breeding cycle, as two rounds of GS can be performed compared to one cycle of phenotypic selection allowing for greater genetic gain over time (Bernardo and Yu, 2007; Heffner et al., 2009; Asoro et al., 2013; Rutkoski et al., 2015).

Genomic selection was first applied to animal breeding, particularly in the dairy industry, but it has since been adapted by plant breeders over the last decade (Meuwissen et al., 2001; Heffner et al., 2009). Genomic selection uses a training population (TP), a panel of lines that have been phenotyped for a trait of interest and genotyped using whole-genome sequencing, to train a genomic prediction model. The genomic prediction model then uses relatedness between all genotypes to obtain genome-estimated breeding values (GEBVs) for breeding lines, otherwise known as the validation population (VP), that have only been genotyped. The breeder can then make selections based on the GEBVs for a trait of interest (Meuwissen et al., 2001).

Most studies involving GS have focused on increasing prediction accuracy by manipulating the TP and subsequently evaluating model performance through cross-validation within the TP (Habier et al., 2007; Heffner et al., 2009; Jannink et al., 2010; Combs and Bernardo, 2013; Akdemir et al., 2015; Isidro et al., 2015; Larkin et al., 2019). Many have also investigated the genomic prediction model used for GS analysis (Heslot et al., 2012). While these methods are valuable, few have researched the effectiveness of applying GS in breeding programs for forward prediction of breeding lines (Bernardo, 2016). However, when investigated, many have seen mixed results regarding prediction accuracy of forward prediction, compared to cross-validated prediction accuracy within TPs (Asoro et al., 2013; Combs and Bernardo, 2013; Massman et al., 2013; Michel et al., 2017; Belamkar et al., 2018; Calvert et al., 2020). Additionally, there are few, if any, studies that focus on forward prediction for FHB resistance in wheat as opposed to grain yield (GY) (Michel et al., 2016, 2017; Belamkar et al., 2018; Calvert et al., 2020).

In an evaluation of GS in the Kansas State University wheat breeding program, GS was used to predict GY in a TP where the prediction accuracy was between r = 0.31 and r = 0.47. However, when the TP was used for forward prediction, the highest prediction accuracy between the GEBVs for GY in the preliminary yield trials (PYTs) and the actual phenotypic results for GY was r = −0.16 (Calvert et al., 2020). This trend was also observed in an evaluation of the University of Nebraska wheat breeding program, where GY data from PYTs from three years were used to predict the performance of a fourth year. When no lines for the fourth year were included in the TP, prediction accuracies for GY were between r = 0.22 and r = 0.26. However, as more lines from the fourth year were included in the TP, the prediction accuracy of GY for the remaining lines in the fourth year increased to between r = 0.37 and r = 0.52, when 90% of the lines from the fourth year were included in the TP (Belamkar et al., 2018). Phenotypic selection and GS were also compared in terms of selection accuracy between the PYT and advanced yield trial generations. Genomic selection outperformed phenotypic selection during the 2012 and 2015 seasons, where Nebraska experienced severe drought and disease stress. Even still, prediction accuracies were low, indicating that prediction accuracy is not the best indicator of GS success for forward prediction (Belamkar et al., 2018). Another study using forward prediction for GY in wheat adapted to central Europe found that the use of GS (r = 0.39) to select high performing lines for multiple-environment trials was far better than phenotypic selection (r = 0.21) (Michel et al., 2017).

In addition to traditional GS, researchers have begun investigating the efficacy of multi-trait GS (MTGS). Multi-trait GS uses mixed models that incorporate secondary traits that are genetically correlated with a trait of interest as covariates to improve the prediction accuracy for the trait of interest (Calus and Veerkamp, 2011; Jia and Jannink, 2012; Covarrubias-Pazaran et al., 2018). Multi-trait GS can improve prediction accuracies for low-heritability traits when high-heritability secondary traits are used as covariates (Calus and Veerkamp, 2011; Guo et al., 2014; Jia et al., 2018). Many studies have evaluated MTGS models for cross-validation, particularly for GY in wheat using high-throughput phenotyping traits (Rutkoski et al., 2016; Sun et al., 2017; Crain et al., 2018; Lozada and Carter, 2019; Guo et al., 2020). Others have evaluated resistance traits related to FHB in wheat using phenological traits, such as heading date (HD) and plant height (PH), or other FHB resistance traits as covariates (Rutkoski et al., 2012; Schulthess et al., 2018; Steiner et al., 2019; Larkin et al., 2020; Moreno-Amores et al., 2020). Few have evaluated the use of MTGS for forward prediction. One study used high-throughput phenotyping traits as a covariate in a MTGS model for forward prediction of GY in wheat, though the prediction accuracy was unfavorable unless a large TP was used (Calvert et al., 2020). Therefore, our aim is to validate the use of MTGS models compared to naïve GS (NGS) models to predict FHB resistance in wheat, using secondary FHB resistance traits regularly collected throughout the season within a breeding program based on results from Larkin et al. (2020).

The University of Arkansas soft red winter wheat (SRWW) breeding program makes over 800 unique crosses per year. Progenies are then tested over the following 10 seasons prior to releasing a new cultivar (Mason et al., 2018). Breeding lines are not evaluated for FHB resistance traits until the F4:7 advanced (ADV) and F4:8 elite (ARE) trials, where they are evaluated in misted and inoculated FHB disease nurseries at two locations in a RCBD design with two replications. Selections are made based on three FHB resistance traits: type II resistance, which is resistance to the spread of FHB within a spike, otherwise known as severity (SEV) (Schroeder and Christensen, 1963); type III resistance, or resistance to Fusarium damaged kernels (FDK) (Argyris et al., 2003; Goral et al., 2019); and type IV resistance, or resistance to DON accumulation (Mesterhazy, 1995).

Some elite lines are also grown in regional statewide variety testing trials, as well as the USDA-ARS Uniform Eastern (UE) and Southern nurseries (US), Southeastern University Grains (Sungrains) cooperative nurseries, and foundation seed increases. The UE and US nurseries include approximately 36 elite breeding lines from public and private SRWW breeding programs in the Southern and Eastern US, grown between 22 and 36 locations with between one and three replications per location annually (Boyles et al., 2019). The Sungrains cooperative consists of Southeastern US SRWW breeding programs that performs regional testing within the Southeastern US (Harrison et al., 2017; Johnson et al., 2017; Mason et al., 2018; Boyles et al., 2019). Select breeding lines from the ADV and ARE are grown in these regional Sungrains nurseries.

In theory, GS can improve selection accuracy in the early generations of the breeding program for FHB resistance traits while also reducing time and resources spent for phenotyping. In this study, we evaluated the selection accuracy of GS from the advanced through elite generations and compared to phenotypic selection through forward prediction using NGS and MTGS models. The three goals for this study were to: (1) compare NGS and MTGS with phenotypic selection for three FHB resistance traits, including DON, FDK, and SEV for new breeding lines that have not been phenotyped at the advanced generations; (2) compare the selection accuracy between NGS, MTGS, and phenotypic selection between the advanced and elite generations of the University of Arkansas SRWW breeding program; and (3) compare the response to selection between NGS, MTGS, and phenotypic selection between the advanced and elite generations of the University of Arkansas SRWW breeding program.



MATERIALS AND METHODS


Plant Materials


Breeding Materials

Two generations of the ADV trials, 2017–2018 and 2018–2019, consisting of F4:7 breeding lines from the University of Arkansas wheat breeding program and doubled haploid (DH) lines developed through the Sungrains cooperative, were used as VPs to predict three FHB traits, DON, FDK, and SEV. Approximately 20% of breeding lines from the ADV18 and ADV19 yield trials were selected and advanced to the ARE19 and ARE20 yield trials for the 2018–2019 and 2019–2020 growing seasons, respectively. Genotypes were advanced based on both GS and phenotypic selection (Table 1).


TABLE 1. Description of the number of genotypes, composition, and experimental design of two generations of F4:7 advanced nurseries (ADV), and F4:8 elite nurseries (ARE), as well as the initial training population (TP18_FHB) used to predict three Fusarium head blight (FHB) resistance traits, including deoxynivalenol (DON) accumulation, Fusarium damaged kernels (FDK), and severity (SEV).
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Training Populations

A population of 355 SRWW genotypes was used as the initial 2018 TP (TP18_FHB) for this study to predict GEBVs for DON, FDK, and SEV in the ADV18 trial. The population consisted of 187 genotypes from the University of Arkansas, 87 from Louisiana State University, 40 from North Carolina State University, 38 from the University of Georgia, and one genotype each from Syngenta AG, Pioneer Hi-Bred International, Inc., and Virginia Polytechnic Institute and State University (Larkin et al., 2020). The 2019 TP (TP19_FHB) for the three FHB traits consisted of the 355 genotypes from TP18_FHB, as well as the 104 genotypes from the ADV18 trial.



Experimental Design and Trait Measurements

Winter wheat is planted during the fall and harvested during the late spring in the southern United States, therefore the growing season spans two years. The TP18_FHB genotypes were evaluated for three FHB resistance traits, including DON, FDK, and SEV, over four seasons between 2014 and 2017 at two locations, at the Milo J. Shult Agricultural Research and Extension Center in Fayetteville, AR, United States (FAY) and the Newport Research and Extension Center near Newport, AR, USA (NPT). The data collection and experimental design methods were outlined in Larkin et al. (2020), as TP18_FHB was the same population used in their study.

The AVD18, ADV19, and ARE19 FHB nurseries for the 2017–2018 and 2018–2019 growing seasons were grown at two locations, FAY and NPT, in a randomized complete block design (RCBD) with two replications per location using the same methods described with respect to the TP18_FHB and TP19_FHB populations in Larkin et al. (2020). This was also the case for the ARE20 FHB nursery; however, it was only grown in NPT during the 2019–2020 season due to poor growing conditions in FAY. Data were also collected for HD, PH, DON, FDK, and SEV for the FHB nurseries using methods described in Larkin et al. (2020).



Phenotypic Data Analyses

Phenotypic data was analyzed using a single stage mixed linear model within the PROC MIXED procedure in SAS 9.4 to obtain adjusted means for HD, PH, DON, FDK, and SEV (SAS Institute Inc., Cary, NC, United States). The following model was fit to the phenotypic data:
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where yijk is the observed phenotype, μ is the population mean, genotypei is the fixed effect of the ith genotype, rep(env)jk is the random effect of the jth replication nested within the kth location-year (or location) (env), envk is the random effect of the kth location-year (or location), (genotype × env)ik is the random effect of the interaction between genotype and location-year (or location), and εijk is the residual error term, where εijk ∼ N(0,Iσ2ε), where I is an identity matrix and σ2ε is the residual error variance.

Phenotypic Pearson correlations were calculated between DON, FDK, HD, PH, and SEV within TP18_FHB and TP19_FHB as well as the ADV and ARE FHB nurseries using the multivariate function in JMP Pro 15.2.0 software (SAS Institute Inc., Cary, NC). Entry mean-based broad-sense heritability (H2) was calculated for each trait using the following equation:
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where σ2genotype is the genotypic variance, σ2genotype × env is the variance of the interaction between genotype and location-year, nenv is the number of location-years where the trait was evaluated, σ2ε is the residual error variance, and nrep is the number of replications within each location-year. Variance components were obtained from the single stage mixed linear model described above for each trait using the PROC MIXED procedure in SAS 9.4. Narrow-sense heritability (h2) was calculated using the “marker_h2” function within the “heritability” package in R v4.0.3 software for TP19_FHB due to a lack of shared genotypes within the TP (Kruijer et al., 2015; R Core Team, 2020). The analysis used a genome relationship matrix obtained from the “A.mat” function within the “rrBLUP” package in Rv4.0.3 software using the marker set described below as well as the abovementioned phenotypic data (Endelman, 2011; Endelman and Jannink, 2012; R Core Team, 2020).



Genotyping by Sequencing

All genotypes were genotyped using genotyping by sequencing (GBS) using methods described in Larkin et al. (2020). Single nucleotide polymorphism (SNP) calling was performed using the TASSEL 5.0 GBSv2 pipeline using 64 base tag length and a minimum tag count of five (Bradbury et al., 2007). Reads were aligned to the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v1.0 “Chinese Spring” wheat reference sequence (Appels et al., 2018) using the Burrows-Wheeler aligner version 0.7.17 (Li and Durbin, 2009).

Raw SNP data generated from the TASSEL pipeline were filtered using PLINK software (Purcell et al., 2007) to remove taxa with more than 85% missing data and heterozygosity greater than 30%. Genotypic data were then filtered to select for biallelic SNPs with minor allelic frequency of greater than five percent, less than 20% missing data, and heterozygosity less than or equal to 10%. Missing marker data were then imputed using BEAGLE software, based on windows encompassing the entire chromosome (Browning et al., 2018). Markers were again filtered after imputation to select SNP markers with minor allele frequency greater than five percent and heterozygosity of less than equal to 10% using PLINK software. Markers aligning to unassembled contigs were also removed for a final genotypic dataset of 5,202 SNP markers.

Principal component analyses were performed within each of the TPs to evaluate the genetic relationships between subpopulations using the PCA function in TASSEL 5.0. These relationships between the first three principal components were visualized for each TP using the “scatterplot3d” package in R v4.0.3 software (Ligges et al., 2018; R Core Team, 2020).



Genomic Selection

Two different models were tested for both TPs to obtain GEBVs for DON, FDK, and SEV for the ADV18 and ADV19 trials. The first model was a naïve genomic BLUP (GBLUP) model with no covariates (NGS). The second model was a MTGS GBLUP model where DON was predicted using FDK and HD as covariates, FDK was predicted using DON and SEV as covariates, and SEV was predicted using FDK and PH as covariates. The optimal covariate combinations for the MTGS models were determined in Larkin et al. (2020) for the FHB traits.


Cross Validation

Mean prediction accuracies between the NGS and MTGS models for each TP were obtained using a five-fold cross-validation analysis performed using the Genomic Selection function in TASSEL 5.0 (Bradbury et al., 2007). The GBLUP model used for the analyses is described as follows:
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where u is a vector of genotype effects, which is assumed to have a normal distribution [image: image], where G is the genomic relationship matrix, obtained using the Kinship function within TASSEL 5.0, which uses the same methodology as the “rrBLUP” package in R (Endelman, 2011; Endelman and Jannink, 2012), and [image: image] is the variance of the individual genotype effects; β is a vector of fixed effects; X is a design matrix relating fixed effects to phenotypic observations (y); Z is a design matrix relating random effects to phenotypic observations; and εi is the residual error at the ith locus, which is assumed to have a normal distribution [image: image], where I is the identity matrix and σ2ε is the residual error variance. The GEBV from the GBLUP model is equivalent to the sum of all allele effects of a genotype from the ridge regression BLUP (RR-BLUP) model (VanRaden, 2008; Endelman, 2011).

The five-fold cross-validation approach randomly divided the TP into five equal sized groups. Four of the five groups were then used as the TP to train the GBLUP model to calculate GEBVs for the fifth group, serving as the VP, where the phenotypic values were set as missing. In the case of the MTGS models, the phenotypic data for the covariate traits were used as a fixed effect in the model. The GEBVs calculated for the VP were compared to the actual phenotypic values using a Pearson correlation. The five-fold cross-validation process was repeated over 100 iterations for a total of 500 iterations. The mean prediction accuracies between the NGS and MTGS models were compared between both TPs using a generalized linear mixed model (GLMM) and Fisher’s LSD with an α of 0.05, implemented in PROC GLIMMIX in SAS 9.4. Mean prediction accuracy comparisons between the NGS and MTGS models for each TP were visualized using the “yarrr” package in R v4.0.3 (Phillips, 2017; R Core Team, 2020).



Forward Prediction

Both TPs were then used to obtain predictions for their respective VPs using the NGS and MTGS GBLUP models associated with each trait. For example, TP18_FHB was used to calculate GEBVs for DON, FDK, and SEV for the ADV18 trial using the NGS and MTGS models (Table 2).


TABLE 2. Descriptive statistics, Pearson phenotypic correlations, and heritabilities (H2) for adjusted means for two training populations, two advanced F4:7 nurseries, and two elite F4:8 nurseries for three Fusarium head blight (FHB) resistance traits, including deoxynivalenol (DON), Fusarium damaged kernels (FDK), and severity (SEV) as well as heading date (HD) and plant height (PH).

[image: Table 2]Once GEBVs for each trait for each model were obtained, GEBVs were compared to the adjusted mean of the trait of interest for each genotype in the following generation using a Pearson correlation using the multivariate function in JMP 15.2.0 software. For example, GEBVs for DON obtained for ADV18 were compared to the adjusted mean DON for each genotype across the ADV18 and ARE19 generations. This serves as a form of prediction accuracy for the respective model and TP. A scatterplot visualizing the comparison between GEBVs and adjusted means across years for each genotype, as well as individual genotypes advanced to the next generation, was created using the “ggplot2” package in R v4.0.3 for each model for each TP (Wickham et al., 2016; R Core Team, 2020). Selection accuracy was also determined as the percentage of genotypes advanced to the ARE generation that were above average based on GEBVs from the NGS or MTGS models as well as above average based on phenotypic values.

Response to selection was also compared between the NGS and MTGS models and phenotypic selection, based on the adjusted means from the ADV generations for FHB traits, using a selection pressure of 50%. The response to selection formula is as follows:
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where H2 was the broad-sense heritability calculated as above, and S is the selection differential, calculated as S = μSelected−μUnselected where μSelected is the mean of the phenotypic data for the top 50% of genotypes selected for genotypes in the ARE generations using either phenotypic selection, NGS, or MTGS, and μUnselected is the mean of the full unselected population of the genotypes in the ARE generation of the breeding cycle (Falconer and McKay, 1996; Arruda et al., 2016b; Lozada et al., 2020).



RESULTS


Variation in Fusarium Head Blight Resistance Traits

Both FHB TPs as well as the ADV and ARE FHB trials had significant variation for all five traits. The ADV18 FHB trial had the highest mean DON and FDK, but it also had the lowest mean SEV. The ARE20 FHB trial had the lowest mean DON and FDK, likely due to stronger genetic resistance (Table 2). All trials also had significant correlations between the three FHB traits. Correlations between DON and HD were consistently positive, however, the correlations were not significant with smaller population sizes, while DON was significantly correlated with PH only in ADV19. There were generally negative correlations between FDK and PH apart from ADV19, however, the significance of the correlations between FDK and PH were not significant with smaller population sizes. There were strong negative correlations between SEV and HD and PH for nearly all trials, however, they were not significant for smaller populations. High heritability was also observed for all three FHB traits in addition to HD and PH (Table 2).



Population Structure

Genotyping by sequencing identified 5,202 SNPs across the entire wheat genome after filtering and imputation. The number of SNP markers were unevenly distributed between genomes, where the B genome had the largest number of markers (2,315), followed by the A (2,210) and D (677) genomes, which was consistent with other studies using GBS SNPs (Arruda et al., 2016a; Larkin et al., 2020). The chromosome with the largest number of SNPs was 3B at 477, while the chromosome with the smallest number was 4D (38). The proportion of heterozygosity within the dataset was 2.5% and the average minor allele frequency was 21.6%.

The PCA of the initial TP18_FHB population showed two primary clusters within the population. Genotypes from all breeding programs appeared in both clusters, although there was evidence of sub-clustering by breeding program within the two main clusters. This clustering has also been observed in other studies using SRWW populations adapted to the Southeastern US and is hypothesized to result from the large number of linked SNPs called between lines with and without a translocation from Triticum timopheevii Zhuk., which harbors stem rust (Puccinia graminis f. sp. tritici) and powdery mildew (Blumeria graminis f. sp. tritici) resistance genes Sr36 and Pm6 (Nyquist, 1962; Benson et al., 2012; Sarinelli et al., 2019; Larkin et al., 2020). The population structure was generally low, where the first three principal components only accounted for 5.23, 3.99, and 3.42% of the total genetic variation (Figure 1). There was no noticeable differentiation between the TP18_FHB population and ADV18 and the TP19_FHB population and ADV19 (Supplementary Figures 1A,B).
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FIGURE 1. Population structure of 355 soft red winter wheat genotypes using 5,202 single nucleotide polymorphism (SNP) markers. This population represents the training population used to predict three Fusarium head blight (FHB) resistance traits including deoxynivalenol (DON) concentration, Fusarium damaged kernels (FDK), and severity (SEV) (TP18_FHB) for the 2018 advanced Fusarium head blight trial (ADV18). Colors represent the origin of the genotypes. AR, developed at the University of Arkansas, Fayetteville; GA, developed at the University of Georgia, Athens; LA, developed at Louisiana State University, Baton Rouge; NC, developed at North Carolina State University, Raleigh; Pioneer, developed by Pioneer Hi-Bred International; Syngenta, developed by Syngenta and AgriPro; and VA, developed by Virginia Polytechnic Institute and State University, Blacksburg; PC, principal component.




Cross Validation

Between both TPs, the MTGS models had significantly higher prediction accuracies compared to NGS models for DON, FDK, and SEV (Figure 2). Prediction accuracies for DON decreased between TP18_FHB and TP19_FHB while prediction accuracies for FDK and SEV increased. The decrease in prediction accuracy for DON was likely a result of background population structure within TP19_FHB between genotypes from the TP18_FHB population, which does not contain genotypes with Fhb1, and ADV18 which does contain genotypes with Fhb1 (Supplementary Figure 1A). The trait with the highest mean prediction accuracies among the NGS models for TP18_FHB was DON, with a mean accuracy of 0.61, while the trait with the highest prediction accuracy for TP19_FHB was SEV (r = 0.61). The trait with the second highest mean prediction accuracy among the NGS models for TP18_FHB was SEV (r = 0.54) while DON and FDK had the same mean prediction accuracy for TP19_FHB (r = 0.49). Fusarium damaged kernels had the lowest mean prediction accuracy among the NGS models for TP18_FHB (r = 0.45). The ranking of traits between the MTGS models was not consistent with the NGS models or between TPs. Severity had the highest prediction accuracy in TP18_FHB (r = 0.76), followed by FDK (r = 0.74) and DON (r = 0.72). With TP19_FHB, DON also had the MTGS model with the lowest mean prediction accuracy (r = 0.66), while FDK and SEV had mean prediction accuracies of 0.74 (Figure 2).
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FIGURE 2. Pirate plots comparing the mean prediction accuracies between multi-trait genomic selection (MTGS) models with naïve genomic selection (NGS) models for three Fusarium head blight resistance traits (FHB), deoxynivalenol (DON) concentration, Fusarium damaged kernels (FDK), and severity (SEV) in soft red winter wheat across two training populations (TPs): (A) TP18_FHB, TP used to predict three FHB resistance traits for the 2018 advanced F4:7 generation (ADV18); (B) TP19_FHB, TP used to predict three FHB resistance traits for the 2019 advanced F4:7 generation (ADV19), consisting of all genotypes from TP18_FHB and ADV18. The x-axis represents the combination of FHB resistance traits and GS model used to predict each trait. The y-axis represents the mean prediction accuracy across 100 iterations of fivefold cross-validation in the form of a Pearson correlation coefficient (r) between the predicted genome-estimated breeding value (GEBV) and the actual phenotypic value for the validation populations. Individual points represent the Pearson correlation from each fold of each iteration of cross-validation for a total of 500 data points. The lines within each plot represent the mean and 95% confidence intervals for prediction accuracy. The curves represent the smoothed densities of the data.




Forward Prediction

When TP18_FHB was used to predict DON, FDK, and SEV for ADV18, there were significant correlations between the GEBVs calculated from the NGS and MTGS models and phenotypes for all FHB resistance traits. The strength of both correlations decreased for all methods when compared with phenotypic data from ARE19, with the exception for the MTGS model for SEV, where the correlation increased to r = 0.60 compared with r = 0.57 (Table 3). Both NGS and MTGS models had higher selection accuracies compared to phenotypic selection from ADV18 DON data (52.9%), where the NGS model correctly selected 82.4% of genotypes in ARE19, while the MTGS model correctly selected 70.6% (Table 3 and Figures 3A,B). The NGS (R = −0.37 μg g–1) model had the highest response to selection for DON compared to the NGS model (R = −0.23 μg g–1) and phenotypic selection (R = 0.20 μg g−1) (Table 3).


TABLE 3. Comparison of three selection methods, phenotypic selection based on three FHB resistance traits using two training populations (TP), deoxynivalenol (DON) concentration, Fusarium damaged kernels (FDK), and severity (SEV) from the advanced trials (ADV), naïve genomic selection (NGS), and multi-trait genomic selection (MTGS), based on correlations between genome estimated breeding values and the adjusted means from following generations, response to selection, and selection accuracy of genotypes in the final generation.
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FIGURE 3. Scatter plots between genome-estimated breeding values (GEBVs) for three Fusarium head blight (FHB) resistance traits in soft red winter wheat from two different genomic selection models (GS), including naïve models without covariates (NGS) and multi-trait GS models with covariates (MTGS), and adjusted means for deoxynivalenol (DON) concentration, Fusarium damaged kernels (FDK), and severity (SEV) across two generations, F4:7 advanced from 2017 to 2018 (ADV18) and F4:8 elite from 2018 to 2019 (ARE19): (A) predictions for DON in ADV18 using a NGS model, (B) predictions for DON using a MTGS model, (C) predictions for FDK from ADV18 using a NGS model, (D) predictions for FDK using a MTGS model, (E) predictions for SEV in ADV18 using a NGS model, (F) predictions for SEV using a MTGS model. The x-axis represents adjusted mean for DON, FDK, or SEV across the ADV and ARE generations. The y-axis represents the GEBVs calculated for DON, FDK, or SEV from the NGS or MTGS models. Different colored data points represent genotypes that were advanced to the next generation. The solid vertical line represents the mean of the adjusted means for the respective FHB resistance trait from the ADV generation, while the vertical dashed line represents the mean of the adjusted means for the respective FHB resistance trait from the ARE generations. The solid horizontal line represents the mean of GEBVs for the respective FHB resistance trait calculated from the NGS or MTGS models. The r label represents the Pearson correlation between GEBVs and adjusted means.


When predicting FDK for ADV18, the MTGS model had the strongest correlations with the ADV18 FDK data as well as the FDK adjusted means from ARE19. The NGS (R = −4.09%) model again had the highest response to selection than the MTGS (R = −2.83%) model and phenotypic selection (R = −1.59%) for FDK (Table 3). The MTGS and NGS models had the same selection accuracy for FDK (70.6%) where both models outperformed phenotypic selection based on adjusted means for FDK from ADV18 (58.8%) (Table 3 and Figures 3C,D).

The MTGS model had stronger correlations between GEBVs for SEV and adjusted means for SEV from ADV18 and ARE19 than the NGS model (Table 3). The MTGS model also had the strongest response to selection (R = −2.29%) and selection accuracy (47.1%) compared with the NGS model, where R = −0.82% and selection accuracy was 41.2%. The NGS model underperformed phenotypic selection for both response to selection (R = −1.49%) and selection accuracy (52.9%), with the MTGS model only underperforming phenotypic selection for selection accuracy (Table 3 and Figures 3E,F).

When using TP19_FHB to predict FHB resistance traits for ADV19, the correlations between GEBVs from the MTGS models and phenotypic results from AVD19 were stronger than TP18_FHB for all three traits. Correlations between GEBVs from the MTGS models were stronger than TP18_FHB when compared with adjusted means from ARE20 for DON and FDK (Table 3). Response to selection for TP19_FHB was different from TP18_FHB in that phenotypic selection outperformed the GS models for DON and SEV, whereas the MTGS model had a stronger response to selection than the NGS model and phenotypic selection for FDK (Table 3). Selection accuracies did change between TPs, as the MTGS model (69.6%) outperformed both phenotypic selection (13.0%) and the NGS model (56.5%) for DON for TP19_FHB (Table 3 and Figures 4A,B). Unlike the results for TP18_FHB, both GS models had far lower selection accuracies than phenotypic selection (91.3%), although the MTGS model (60.9%) was better than the NGS model (34.8%) (Table 3 and Figures 4C,D). Selection accuracy for SEV also changed, where the MTGS model had the same selection accuracy as phenotypic selection (82.6%) while also outperforming the NGS model (60.9%) (Table 3 and Figures 4E,F).
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FIGURE 4. Scatter plots between genome-estimated breeding values (GEBVs) for three Fusarium head blight (FHB) resistance traits in soft red winter wheat from two different genomic selection models (GS), including naïve models without covariates (NGS) and multi-trait GS models with covariates (MTGS), and adjusted means for deoxynivalenol (DON) concentration, Fusarium damaged kernels (FDK), and severity (SEV) across two generations, F4:7 advanced from 2018 to 2019 (ADV19) and F4:8 elite from 2019 to 2020 (ARE20): (A) predictions for DON in ADV19 using a NGS model, (B) predictions for DON using a MTGS model, (C) predictions for FDK from ADV19 using a NGS model, (D) predictions for FDK using a MTGS model, (E) predictions for SEV in ADV18 using a NGS model, (F) predictions for SEV using a MTGS model. The x-axis represents adjusted mean for DON, FDK, or SEV across the ADV and ARE generations. The y-axis represents the GEBVs calculated for DON, FDK, or SEV from the NGS or MTGS models. Different colored data points represent genotypes that were advanced to the next generation. The solid vertical line represents the mean of the adjusted means for the respective FHB resistance trait from the ADV generation, while the vertical dashed line represents the mean of the adjusted means for the respective FHB resistance trait from the ARE generations. The solid horizontal line represents the mean of GEBVs for the respective FHB resistance trait calculated from the NGS or MTGS models. The r label represents the Pearson correlation between GEBVs and adjusted means.




DISCUSSION

Genomic selection is a valuable tool for plant breeders, and many studies have shown the vast realm of possibilities for its application (Heffner et al., 2009; Sorrells, 2015; Larkin et al., 2019). The primary goal for GS is to increase genetic gain for a trait of interest within a breeding program through the reduction of time within a breeding cycle and by improving selection accuracy (Schaeffer, 2006; Bernardo and Yu, 2007; Heffner et al., 2009; Asoro et al., 2013; Rutkoski et al., 2015). While most research in GS has focused on optimizing TPs to increase model predictive ability, less have focused on the implementation of GS into breeding programs in the form of forward selection (Bernardo, 2016). In our study, we chose to focus on forward prediction using NGS and MTGS models and compared their performance, based on selection accuracy and response to selection, to phenotypic selection for economically important traits, such as FHB resistance.


Prediction Accuracy of Training Populations

In our study, we saw that MTGS models consistently had significantly higher prediction accuracies for DON, FDK, and SEV in every TP compared to NGS. These results were consistent with previous studies involving MTGS for FHB resistance traits (Schulthess et al., 2018; Larkin et al., 2020; Moreno-Amores et al., 2020). This follows the general trend for MTGS, where covariate traits sharing a strong correlation with a trait of interest can improve prediction accuracies for said trait of interest (Calus and Veerkamp, 2011; Jia and Jannink, 2012; Schulthess et al., 2016; Lozada and Carter, 2019; Ward et al., 2019).

Regarding the correlations between FHB resistance traits, it is interesting to note that HD was consistently negatively correlated with SEV, and yet positively correlated with DON. The negative correlation between SEV and HD has been observed in many different studies (Gervais et al., 2003; Paillard et al., 2004; Schmolke et al., 2005; Larkin et al., 2020; Moreno-Amores et al., 2020). This is because wheat genotypes that flower earlier are exposed to more favorable conditions for FHB infection, such as higher humidity and rainfall during the early growing season, versus the later part of the growing season (Buerstmayr et al., 2019). However, while positive correlations have been observed between HD and DON in other studies, less is known about this association (Liu et al., 2012; Agnes et al., 2014; Larkin et al., 2020). Agnes et al. (2014) suggested that this positive correlation was related to additional fungal growth after the soft dough stage (Feekes 11.2). Several groups have also identified QTL associated with both DON and HD (Schmolke et al., 2005; Lin et al., 2008; Agnes et al., 2014). Agnes et al. (2014) specifically identified such a QTL on chromosome 7B, which was co-located with the vernalization response gene Vrn-B3. Even so, like most FHB resistance traits and HD, we believe that this association is variable and environmentally dependent (Buerstmayr et al., 2019), as we saw correlations between DON and HD ranging between r = 0.01 and r = 0.31 (Table 2).

We also updated our TPs for each generation by adding phenotypic data for genotypes from the previous generation into the following year’s TP. Other studies have found that updating TPs helped to prevent the deviation in genetic relationships between the TP and VP as new germplasm was added and advanced through the breeding program (Meuwissen, 2009; Clark et al., 2012; Lorenz et al., 2012; Lorenz and Smith, 2015; Neyhart et al., 2017). Studies have also shown that larger TP sizes can have higher prediction accuracies as well, particularly when working with more diverse populations where new germplasm is continually added to the breeding program (Heffner et al., 2011; Mujibi et al., 2011; Heslot et al., 2012; Poland et al., 2012; Isidro et al., 2015; Norman et al., 2018). We also observed this trend for FDK and SEV between TP18_FHB and TP19_FHB; however, we did not observe this trend for DON, where prediction accuracy decreased when additional genotypes were added from ADV18. This can likely be attributed to less variation and a lower heritability for DON within ADV18. Genotypes within ADV18 also had the FHB resistance alleles for Fhb1, which could have increased background population structure within TP19_FHB.



Forward Prediction

Much like the results from the cross-validation analyses of the TPs, the MTGS models had stronger correlations between their calculated GEBVs and phenotypic results from their respective VPs for FHB resistance traits, aligning with other studies involving MTGS models (Jia and Jannink, 2012; Schulthess et al., 2016; Lozada and Carter, 2019; Ward et al., 2019; Larkin et al., 2020). This was clearly observed with TP18_FHB, when correlations between MTGS GEBVs and ADV18 phenotypic results were compared with correlations between NGS GEBVs and ADV18 phenotypic results for all three traits. The prediction accuracy advantage of the MTGS model was also observed with correlations between GEBVs and ARE19 phenotypic results for FDK and SEV when compared with NGS.

Our range in prediction accuracy for the NGS models were between r = 0.08 and r = 0.45 while the range of our MTGS models was between r = 0.10 and r = 0.83. These prediction accuracies were within the range of prediction accuracies observed for FHB resistance traits in previous studies (Rutkoski et al., 2012; Arruda et al., 2015, 2016a; Larkin et al., 2020). However, the observation of lower prediction accuracies under specific circumstances was consistent with other studies with forward prediction for GY (Belamkar et al., 2018; Calvert et al., 2020). In an evaluation of forward prediction in the Kansas State University wheat breeding program, the highest prediction accuracy between the GEBVs for GY in the preliminary yield trials (PYTs) and the actual phenotypic results for GY was r = −0.16 (Calvert et al., 2020). The same study also used high-throughput phenotyping traits as covariates in a MTGS model for forward prediction of GY in wheat, however, the prediction accuracy was unfavorable unless a large TP was used (Calvert et al., 2020). This contrasts with our results where the use of other FHB resistance or agronomic traits as covariates significantly improved prediction accuracy for both TPs.

The MTGS model was also superior to phenotypic selection based on ADV18 phenotypic data for all three traits; however, this advantage disappeared when implementing the models trained with TP19_FHB. This is likely because genotypes in ADV19 had a much higher prevalence of resistance alleles for Fhb1 compared with TP19_FHB, therefore the TP failed to account for this major source of genetic resistance to FHB in the VP. This highlights the importance of the TP being able to account for population structure existing within the VP, otherwise prediction accuracies can be lower. Such a result was foreshadowed with the lower prediction accuracies from the cross-validation for TP19_FHB, where no genotypes from the initial TP18_FHB contained resistance alleles for Fhb1, while only a small portion of genotypes from ADV18 contained the resistance alleles. A more detailed description of major and minor FHB resistance QTL present within TP18_FHB can be found in Larkin et al. (2020).

Response to selection was measured as the difference between the mean of the top 50% of breeding lines in the ARE generation, selected based on GEBVs and adjusted means of FHB resistance traits for the ADV population, compared with the mean of the full ARE population. Other studies have shown that GS could not have as high of a response to selection as phenotypic selection; however, our method of excluding phenotypic data from the ADV genotypes from the selection dataset allowed for greater independence from bias toward the phenotypic selection method (Lozada et al., 2019). In terms of response to selection, both GS models were superior to phenotypic selection for DON and FDK, and the MTGS model for SEV, when using the TP18_FHB to predict ADV18. Much like the results for prediction accuracy, this strong advantage was not observed when using the TP19_FHB to predict ADV19, except for the MTGS model for FDK, likely due to the same reasons described above. There have been no extensive forward prediction studies for FHB resistance traits in wheat. Regardless, the fact that phenotypic selection did not significantly outperform the MTGS model across years or traits indicates that MTGS models may be a good supplement, if not substitute for phenotypic selection, particularly during years when it is difficult to phenotype.

When comparing GS models with phenotypic selection for FHB resistance traits based on selection accuracy, the NGS and MTGS models had higher selection accuracies for DON using TP18_FHB, and the MTGS model was equal to phenotypic selection using TP19_FHB. Both the MTGS and NGS models were equally more accurate than phenotypic selection for FDK with TP18_FHB. Additionally, the MTGS model was equal in performance with phenotypic selection for SEV in TP19_FHB. It has been mentioned that prediction accuracy does not necessarily correlate with selection accuracy for forward prediction (Belamkar et al., 2018).



CONCLUSION

This study showed that both NGS and MTGS could be successfully implemented into a SRWW breeding program, while using other agronomic and disease traits as covariates with reasonable accuracy compared to phenotypic selection and again asserted its value as a tool for plant breeders. We also found that MTGS models performed significantly better than NGS models in terms of both cross-validation within TPs as well as forward prediction of untested genotypes for economically important traits, such as FHB resistance traits. This was particularly evident when there was a strong correlation between the trait of interest and the covariate trait. This is one of the first studies to show that MTGS could be effectively implemented for forward prediction within a wheat breeding program. This is also the first study to extensively investigate the use of forward prediction when breeding for FHB resistance in wheat. We found that GS could serve as a suitable, albeit imperfect, alternative to phenotypic selection when implemented during years where environmental conditions prohibit accurate phenotypic selection, particularly when experiencing late freezing events or extensive lodging.

Prior to implementing GS into their own breeding programs, breeders must consider the genetic relationships between their prospective TPs and the breeding lines they hope to use as their VP. In the case of MTGS, breeders must also consider the correlations between their traits of interest and secondary traits used as covariates, as these correlations can differ between the TP and VP. For example, there could be a strong correlation between DON and HD in the TP but there could be a weak correlation between the two traits in the VP, therefore the MTGS model might not be more accurate than a NGS model. Inversely, there could be a strong correlation between traits in the VP while there is a weak correlation between traits in the TP, therefore MTGS could be more accurate than expected when forward prediction is implemented.



DATA AVAILABILITY STATEMENT

The data presented in the study are deposited in the FigShare repository, accession numbers https://doi.org/10.6084/m9.figshare.16685902.v1, https://doi.org/10.6084/m9.figshare.16685701.v2, https://doi.org/10.6084/m9.figshare.16685797.v1, https://doi.org/10.6084/m9.figshare.16685722.v1, and https://doi.org/10.6084/m9.figshare.16685707.v1.



AUTHOR CONTRIBUTIONS

DL and RM conceived and designed the experiments. DL performed data analyses, conducted the experiments, and wrote the manuscript. DM and AH collected data from the disease nurseries. RM, BW, AH, DM, and GB-G edited the manuscript. GB-G and BW conducted genotyping and generated hapmaps. All authors contributed to the article and approved the submitted version.



FUNDING

This work was supported by the USDA-ARS, under Agreement no. USDA-ARS 59-0206-7-005, a cooperative project with the U.S. Wheat and Barley Scab Initiative (USWBSI), the Agriculture and Food Research Initiative (AFRI) of the USDA National Institute of Food and Agriculture (NIFA) Grant 2017-67007-25939 (Wheat-CAP) and in collaboration with SunGrains. Individual state commodity boards also supported this project.



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2021.715314/full#supplementary-material



REFERENCES

Agnes, S. H., Szabolcs, L. K., Monika, V., Laszlo, P., Janos, P., Csaba, L., et al. (2014). Differential influence of QTL linked to Fusarium head blight, Fusarium-damaged kernel, deoxynivalenol contents and associated morphological traits in a Frontana-derived wheat population. Euphytica 200, 9–26. doi: 10.1007/s10681-014-1124-2

Akdemir, D., Sanchez, J. I., and Jannink, J. L. (2015). Optimization of genomic selection training populations with a genetic algorithm. Genet. Sel. Evol. 47:38. doi: 10.1186/s12711-015-0116-6

Appels, R., Eversole, K., Feuillet, C., Keller, B., Rogers, J., Stein, N., et al. (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191. doi: 10.1126/science.aar7191

Argyris, J., Van Sanford, D., and TeKrony, D. (2003). Fusarium graminearum infection during wheat seed development and its effect on seed quality. Crop Sci. 43, 1782–1788. doi: 10.2135/cropsci2003.1782

Arruda, M. P., Brown, P. J., Lipka, A. E., Krill, A. M., Thurber, C., and Kolb, F. L. (2015). Genomic selection for predicting Fusarium head blight resistance in a wheat breeding program. Plant Genome 8:12. doi: 10.3835/plantgenome2015.01.0003

Arruda, M. P., Brown, P., Brown-Guedira, G., Krill, A. M., Thurber, C., Merrill, K. R., et al. (2016a). Genome-wide association mapping of Fusarium head blight resistance in wheat using genotyping-by-sequencing. Plant Genome 9, 1–14. doi: 10.3835/plantgenome2015.04.0028

Arruda, M. P., Lipka, A. E., Brown, P. J., Krill, A. M., Thurber, C., Brown-Guedira, G., et al. (2016b). Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat (Triticum aestivum L.). Mol. Breed. 36:84. doi: 10.1007/s11032-016-0508-5

Asoro, F. G., Newell, M. A., Beavis, W. D., Scott, M. P., Tinker, N. A., and Jannink, J. L. (2013). Genomic, marker-assisted, and pedigree-BLUP selection methods for beta-glucan concentration in elite oat. Crop Sci. 53, 1894–1906. doi: 10.2135/cropsci2012.09.0526

Belamkar, V., Guttieri, M. J., Hussain, W., Jarquin, D., El-basyoni, I., Poland, J., et al. (2018). Genomic selection in preliminary yield trials in a winter wheat breeding program. G3 8, 2735–2747. doi: 10.1534/g3.118.200415

Benson, J., Brown-Guedira, G., Murphy, J. P., and Sneller, C. (2012). Population structure, linkage disequilibrium, and genetic diversity in soft winter wheat enriched for Fusarium head blight resistance. Plant Genome 5, 71–80. doi: 10.3835/plantgenome2011.11.0027

Bernardo, R. (2016). Bandwagons I, too, have known. Theor. Appl. Genet. 129, 2323–2332. doi: 10.1007/s00122-016-2772-5

Bernardo, R., and Yu, J. M. (2007). Prospects for genomewide selection for quantitative traits in maize. Crop Sci. 47, 1082–1090. doi: 10.2135/cropsci2006.11.0690

Boyles, R. E., Marshall, D. S., and Bockelman, H. E. (2019). Yield data from the uniform southern soft red winter wheat nursery emphasize importance of selection location and environment for cultivar development. Crop Sci. 59, 1887–1898. doi: 10.2135/cropsci2018.11.0685

Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., and Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635. doi: 10.1093/bioinformatics/btm308

Browning, B. L., Zhou, Y., and Browning, S. R. (2018). A one-penny imputed genome from next-generation reference panels. Am. J. Hum. Genet. 103, 338–348. doi: 10.1016/j.ajhg.2018.07.015

Buerstmayr, M., Steiner, B., and Buerstmayr, H. (2019). Breeding for Fusarium head blight resistance in wheat-progress and challenges. Plant Breed. 139, 429–454. doi: 10.1111/pbr.12797

Calus, M. P. L., and Veerkamp, R. F. (2011). Accuracy of multi-trait genomic selection using different methods. Genet. Sel. Evol. 43:26. doi: 10.1186/1297-9686-43-26

Calvert, M., Evers, B., Wang, X., Fritz, A., and Poland, J. (2020). Breeding program optimization for genomic selection in winter wheat. bioRxiv [Preprint] doi: 10.1101/2020.10.07.330415

Clark, S. A., Hickey, J. M., Daetwyler, H. D., and van der Werf, J. H. J. (2012). The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes. Genet. Sel. Evol. 44:4. doi: 10.1186/1297-9686-44-4

Combs, E., and Bernardo, R. (2013). Accuracy of genomewide selection for different traits with constant population size, heritability, and number of markers. Plant Genome 6:7. doi: 10.3835/plantgenome2012.11.0030

Covarrubias-Pazaran, G., Schlautman, B., Diaz-Garcia, L., Grygleski, E., Polashock, J., Johnson-Cicalese, J., et al. (2018). Multivariate GBLUP improves accuracy of genomic selection for yield and fruit weight in biparental populations of Vaccinium macrocarpon ait. Front. Plant Sci. 9:1310. doi: 10.3389/fpls.2018.01310

Crain, J., Mondal, S., Rutkoski, J., Singh, R. P., and Poland, J. (2018). Combining high-throughput phenotyping and genomic information to increase prediction and selection accuracy in wheat breeding. Plant Genome 11:170043. doi: 10.3835/plantgenome2017.05.0043

Endelman, J. B. (2011). Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4, 250–255. doi: 10.3835/plantgenome2011.08.0024

Endelman, J. B., and Jannink, J. L. (2012). Shrinkage estimation of the realized relationship matrix. G3 2, 1405–1413. doi: 10.1534/g3.112.004259

Falconer, D. S., and McKay, T. F. C. (1996). Introduction to Quantitative Genetics, 4th Edn. Harlow: Longmans Green.

FDA (2010). Guidance for Industry and FDA: Advisory Levels for Deoxynivalenol (DON) in Finished Wheat Products for Human Consumption and Grains and Grain By-Products used for Animal Feed. Silver Spring, MD: FDA.

Gervais, L., Dedryver, F., Morlais, J. Y., Bodusseau, V., Negre, S., Bilous, M., et al. (2003). Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor. Appl. Genet. 106, 961–970. doi: 10.1007/s00122-002-1160-5

Goral, T., Wisniewska, H., Ochodzki, P., Nielsen, L. K., Walentyn-Goral, D., and Stepien, L. (2019). Relationship between Fusarium head blight, kernel damage, concentration of Fusarium biomass, and Fusarium toxins in grain of winter wheat inoculated with Fusarium culmorum. Toxins 11:2. doi: 10.3390/toxins11010002

Guo, G., Zhao, F. P., Wang, Y. C., Zhang, Y., Du, L. X., and Su, G. S. (2014). Comparison of single-trait and multiple-trait genomic prediction models. BMC Genet. 15:30. doi: 10.1186/1471-2156-15-30

Guo, J., Khan, J., Pradhan, S., Shahi, D., Khan, N., Avci, M., et al. (2020). Multi-trait genomic prediction of yield-related traits in US soft wheat under variable water regimes. Genes 11:1270. doi: 10.3390/genes11111270

Habier, D., Fernando, R. L., and Dekkers, J. C. M. (2007). The impact of genetic relationship information on genome-assisted breeding values. Genetics 177, 2389–2397. doi: 10.1534/genetics.107.081190

Harrison, S. A., Babar, M. A., Barnett, R. D., Blount, A. R., Johnson, J. W., Mergoum, M., et al. (2017). ‘LA05006’, a dual-purpose oat for louisiana and other southeastern regions of the USA. J. Plant Regist. 11, 89–94. doi: 10.3198/jpr2016.08.0040crc

Heffner, E. L., Jannink, J. L., Iwata, H., Souza, E., and Sorrells, M. E. (2011). Genomic selection accuracy for grain quality traits in biparental wheat populations. Crop Sci. 51, 2597–2606. doi: 10.2135/cropsci2011.05.0253

Heffner, E. L., Sorrells, M. E., and Jannink, J. L. (2009). Genomic selection for crop improvement. Crop Sci. 49, 1–12. doi: 10.2135/cropsci2008.08.0512

Heslot, N., Yang, H. P., Sorrells, M. E., and Jannink, J. L. (2012). Genomic selection in plant breeding: a comparison of models. Crop Sci. 52, 146–160. doi: 10.2135/cropsci2011.06.0297

Isidro, J., Jannink, J. L., Akdemir, D., Poland, J., Heslot, N., and Sorrells, M. E. (2015). Training set optimization under population structure in genomic selection. Theor. Appl. Genet. 128, 145–158. doi: 10.1007/s00122-014-2418-4

Jannink, J. L., Lorenz, A. J., and Iwata, H. (2010). Genomic selection in plant breeding: from theory to practice. Brief. Funct. Genomics 9, 166–177. doi: 10.1093/bfgp/elq001

Jia, H. Y., Zhou, J. Y., Xue, S. L., Li, G. Q., Yan, H. S., Ran, C. F., et al. (2018). A journey to understand wheat Fusarium head blight resistance in the Chinese wheat landrace Wangshuibai. Crop J. 6, 48–59. doi: 10.1016/j.cj.2017.09.006

Jia, Y., and Jannink, J. L. (2012). Multiple-trait genomic selection methods increase genetic value prediction accuracy. Genetics 192, 1513–1522. doi: 10.1534/genetics.112.144246

Johnson, J. W., Chen, Z., Buck, J. W., Buntin, G. D., Babar, M. A., Mason, R. E., et al. (2017). ‘GA 03564-12E6’: a high-yielding soft red winter wheat cultivar adapted to georgia and the southeastern regions of the United States. J. Plant Regist. 11, 159–164. doi: 10.3198/jpr2016.07.0036crc

Kruijer, W., Boer, M. P., Malosetti, M., Flood, P. J., Engel, B., Kooke, R., et al. (2015). Marker-based estimation of heritability in immortal populations. Genetics 199, 379–393. doi: 10.1534/genetics.114.167916

Larkin, D. L., Holder, A. L., Mason, R. E., Moon, D. E., Brown-Guedira, G., Price, P. P., et al. (2020). Genome-wide analysis and prediction of Fusarium head blight resistance in soft red winter wheat. Crop Sci. 60, 2882–2900. doi: 10.1002/csc2.20273

Larkin, D. L., Lozada, D. N., and Mason, R. E. (2019). Genomic selection-considerations for successful implementation in wheat breeding programs. Agronomy 9:479. doi: 10.3390/agronomy9090479

Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760. doi: 10.1093/bioinformatics/btp324

Ligges, U., Maechler, M., Schnackenberg, S., and Ligges, M. U. (2018). Package ‘scatterplot3d’. Recuperado de https://cran. rproject. org/web/packages/scatterplot3d/scatterplot3d. pdf.

Lin, F., Xue, S. L., Tian, D. G., Li, C. J., Cao, Y., Zhang, Z. Z., et al. (2008). Mapping chromosomal regions affecting flowering time in a spring wheat RIL population. Euphytica 164, 769–777. doi: 10.1007/s10681-008-9724-3

Liu, S. Y., Christopher, M. D., Griffey, C. A., Hall, M. D., Gundrum, P. G., and Brooks, W. S. (2012). Molecular characterization of resistance to Fusarium head blight in U.S. soft red winter wheat breeding line VA00W-38. Crop Sci. 52, 2283–2292. doi: 10.2135/cropsci2012.03.0144

Lorenz, A. J., and Smith, K. P. (2015). Adding genetically distant individuals to training populations reduces genomic prediction accuracy in barley. Crop Sci. 55, 2657–2667. doi: 10.2135/cropsci2014.12.0827

Lorenz, A. J., Smith, K. P., and Jannink, J. L. (2012). Potential and optimization of genomic selection for Fusarium head blight resistance in six-row barley. Crop Sci. 52, 1609–1621. doi: 10.2135/cropsci2011.09.0503

Lozada, D. N., and Carter, A. H. (2019). Accuracy of single and multi-trait genomic prediction models for grain yield in US Pacific northwest winter wheat. Crop Breed. Genet. Genomics 1:e190012. doi: 10.20900/cbgg20190012

Lozada, D. N., Mason, R. E., Sarinelli, J. M., and Brown-Guedira, G. (2019). Accuracy of genomic selection for grain yield and agronomic traits in soft red winter wheat. BMC Genet. 20:82. doi: 10.1186/s12863-019-0785-1

Lozada, D. N., Ward, B. P., and Carter, A. H. (2020). Gains through selection for grain yield in a winter wheat breeding program. PLoS One 15:e0221603. doi: 10.1371/journal.pone.0221603

Mason, R. E., Johnson, J. W., Mergoum, M., Miller, R. G., Moon, D. E., Carlin, J. F., et al. (2018). ‘AR11LE24, a soft red winter wheat adapted to the mid-south region of the USA. J. Plant Regist. 12, 357–361. doi: 10.3198/jpr2017.09.0060crc

Massman, J. M., Jung, H. J. G., and Bernardo, R. (2013). Genomewide selection versus marker-assisted recurrent selection to improve grain yield and stover-quality traits for cellulosic ethanol in maize. Crop Sci. 53, 58–66. doi: 10.2135/cropsci2012.02.0112

Mesterhazy, A. (1995). Types and components of resistance to Fusarium head blight of wheat. Plant Breed. 114, 377–386. doi: 10.1111/j.1439-0523.1995.tb00816.x

Meuwissen, T. H. E. (2009). Accuracy of breeding values of ‘unrelated’ individuals predicted by dense SNP genotyping. Genet. Sel. Evol. 41:35. doi: 10.1186/1297-9686-41-35

Meuwissen, T. H. E., Hayes, B. J., and Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829. doi: 10.1093/genetics/157.4.1819

Michel, S., Ametz, C., Gungor, H., Akgol, B., Epure, D., Grausgruber, H., et al. (2017). Genomic assisted selection for enhancing line breeding: merging genomic and phenotypic selection in winter wheat breeding programs with preliminary yield trials. Theor. Appl. Genet. 130, 363–376. doi: 10.1007/s00122-016-2818-8

Michel, S., Ametz, C., Gungor, H., Epure, D., Grausgruber, H., Loschenberger, F., et al. (2016). Genomic selection across multiple breeding cycles in applied bread wheat breeding. Theor. Appl. Genet. 129, 1179–1189. doi: 10.1007/s00122-016-2694-2

Moreno-Amores, J., Michel, S., Miedaner, T., Longin, C. F. H., and Buerstmayr, H. (2020). Genomic predictions for Fusarium head blight resistance in a diverse durum wheat panel: an effective incorporation of plant height and heading date as covariates. Euphytica 216:19. doi: 10.1007/s10681-019-2551-x

Mujibi, F. D. N., Nkrumah, J. D., Durunna, O. N., Stothard, P., Mah, J., Wang, Z., et al. (2011). Accuracy of genomic breeding values for residual feed intake in crossbred beef cattle. J. Anim. Sci. 89, 3353–3361. doi: 10.2527/jas.2010-3361

Neyhart, J. L., Tiede, T., Lorenz, A. J., and Smith, K. P. (2017). Evaluating methods of updating training data in long-term genomewide selection. G3 7, 1499–1510. doi: 10.1534/g3.117.040550

Norman, A., Taylor, J., Edwards, J., and Kuchel, H. (2018). Optimising genomic selection in wheat: effect of marker density, population size and population structure on prediction accuracy. G3 8, 2889–2899. doi: 10.1534/g3.118.200311

Nyquist, W. (1962). Differential fertilization in the inheritance of stem rust resistance in hybrids involving a common wheat strain derived from Triticum timopheevi. Genetics 47:1109. doi: 10.1093/genetics/47.8.1109

Paillard, S., Schnurbusch, T., Tiwari, R., Messmer, M., Winzeler, M., Keller, B., et al. (2004). QTL analysis of resistance to Fusarium head blight in Swiss winter wheat (Triticum aestivum L.). Theor. Appl. Genet. 109, 323–332. doi: 10.1007/s00122-004-1628-6

Phillips, N. D. (2017). Yarrr! The pirate’s guide to R. APS Obs. 30, 151–163.

Poland, J., Endelman, J., Dawson, J., Rutkoski, J., Wu, S. Y., Manes, Y., et al. (2012). Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5, 103–113. doi: 10.3835/plantgenome2012.06.0006

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., et al. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575. doi: 10.1086/519795

R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Rutkoski, J., Benson, J., Jia, Y., Brown-Guedira, G., Jannink, J. L., and Sorrells, M. (2012). Evaluation of genomic prediction methods for Fusarium head blight resistance in wheat. Plant Genome 5, 51–61. doi: 10.3835/plantgenome2012.02.0001

Rutkoski, J., Poland, J., Mondal, S., Autrique, E., Perez, L. G., Crossa, J., et al. (2016). Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3 6, 2799–2808. doi: 10.1534/g3.116.032888

Rutkoski, J., Singh, R. P., Huerta-Espino, J., Bhavani, S., Poland, J., Jannink, J. L., et al. (2015). Genetic gain from phenotypic and genomic selection for quantitative resistance to stem rust of wheat. Plant Genome 8:10. doi: 10.3835/plantgenome2014.10.0074

Sarinelli, J. M., Murphy, J. P., Tyagi, P., Holland, J. B., Johnson, J. W., Mergoum, M., et al. (2019). Training population selection and use of fixed effects to optimize genomic predictions in a historical USA winter wheat panel. Theor. Appl. Genet. 132, 1247–1261. doi: 10.1007/s00122-019-03276-6

Schaeffer, L. R. (2006). Strategy for applying genome-wide selection in dairy cattle. J. Anim. Breed. Genet. 123, 218–223. doi: 10.1111/j.1439-0388.2006.00595.x

Schmolke, M., Zimmermann, G., Buerstmayr, H., Schweizer, G., Miedaner, T., Korzun, V., et al. (2005). Molecular mapping of Fusarium head blight resistance in the winter wheat population Dream/Lynx. Theor. Appl. Genet. 111, 747–756. doi: 10.1007/s00122-005-2060-2

Schroeder, H. W., and Christensen, J. J. (1963). Factors affecting resistance Of wheat to scab caused by Gibberella Zeae. Phytopathology 53, 831–838.

Schulthess, A. W., Wang, Y., Miedaner, T., Wilde, P., Reif, J. C., and Zhao, Y. S. (2016). Multiple-trait- and selection indices-genomic predictions for grain yield and protein content in rye for feeding purposes. Theor. Appl. Genet. 129, 273–287. doi: 10.1007/s00122-015-2626-6

Schulthess, A. W., Zhao, Y. S., Longin, C. F. H., and Reif, J. C. (2018). Advantages and limitations of multiple-trait genomic prediction for Fusarium head blight severity in hybrid wheat (Triticum aestivum L.). Theor. Appl. Genet. 131, 685–701. doi: 10.1007/s00122-017-3029-7

Sobrova, P., Adam, V., Vasatkova, A., Beklova, M., Zeman, L., and Kizek, R. (2010). Deoxynivalenol and its toxicity. Interdiscip. Toxicol. 3, 94–99. doi: 10.2478/v10102-010-0019-x

Sorrells, M. E. (2015). “Genomic selection in plants: empirical results and implications for wheat breeding,” in Advances in Wheat Genetics: From Genome to Field, eds Y. Ogihara, S. Takumi, and H. Handa (Tokyo: Springer), 401–409. doi: 10.1007/978-4-431-55675-6_45

Steiner, B., Michel, S., Maccaferri, M., Lemmens, M., Tuberosa, R., and Buerstmayr, H. (2019). Exploring and exploiting the genetic variation of Fusarium head blight resistance for genomic-assisted breeding in the elite durum wheat gene pool. Theor. Appl. Genet. 132, 969–988. doi: 10.1007/s00122-018-3253-9

Sun, J., Rutkoski, J. E., Poland, J. A., Crossa, J., Jannink, J. L., and Sorrells, M. E. (2017). Multitrait, random regression, or simple repeatability model in high-throughput phenotyping data improve genomic prediction for wheat grain yield. Plant Genome 10:12. doi: 10.3835/plantgenome2016.11.0111

VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. J. Dairy Sci. 91, 4414–4423. doi: 10.3168/jds.2007-0980

Ward, B. P., Brown-Guedira, G., Tyagi, P., Kolb, F. L., Van Sanford, D. A., Sneller, C. H., et al. (2019). Multienvironment and multitrait genomic selection models in unbalanced early-generation wheat yield trials. Crop Sci. 59, 491–507. doi: 10.2135/cropsci2018.03.0189

Wickham, H., Chang, W., and Wickham, M. H. (2016). Package ‘ggplot2’. Create elegant data visualisations using the grammar of graphics. Version 2, 1–189.

Wilson, W., McKee, G., Nganje, W., Dahl, B., and Bangsund, D. (2017). Economic Impact of USWBSI’s Scab Initiative to Reduce FHB. Fargo, ND: North Dakota State University.

Xu, Y. B., and Crouch, J. H. (2008). Marker-assisted selection in plant breeding: from publications to practice. Crop Sci. 48, 391–407. doi: 10.2135/cropsci2007.04.0191


Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Larkin, Mason, Moon, Holder, Ward and Brown-Guedira. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.











	 
	ORIGINAL RESEARCH
published: 17 November 2021
doi: 10.3389/fpls.2021.777494





[image: image]

Investigation and Genome-Wide Association Analysis of Fusarium Seedling Blight Resistance in Chinese Elite Wheat Lines

Yike Liu1,2, Guang Zhu1, Zhangwang Zhu1, Lin Chen1, Hongli Niu3,4, Weijie He1, Hanwen Tong1, Jinghan Song1, Yuqing Zhang1, Dongfang Ma2,3,4* and Chunbao Gao1,2*

1Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Engineering and Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, China

2Center of Wheat, Wheat Disease Biology Research Station for Central China, Wuhan, China

3Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China

4Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China

Edited by:
Jianjun Chen, University of Florida, United States

Reviewed by:
Mohsen Mohammadi, Purdue University, United States
Shengjie Liu, Northwest A&F University, China

*Correspondence: Dongfang Ma, madongfang1984@163.com; Chunbao Gao, gcbgybwj@163.com

Specialty section: This article was submitted to Plant Breeding, a section of the journal Frontiers in Plant Science

Received: 15 September 2021
Accepted: 18 October 2021
Published: 17 November 2021

Citation: Liu Y, Zhu G, Zhu Z, Chen L, Niu H, He W, Tong H, Song J, Zhang Y, Ma D and Gao C (2021) Investigation and Genome-Wide Association Analysis of Fusarium Seedling Blight Resistance in Chinese Elite Wheat Lines. Front. Plant Sci. 12:777494. doi: 10.3389/fpls.2021.777494

Fusarium seedling blight (FSB) is an important disease of wheat occurring as part of the Fusarium disease complex consisting also of Fusarium head blight (FHB). 240 Chinese elite cultivars and lines were evaluated in greenhouse experiments for FSB resistance and genotyped using the wheat 90 K single nucleotide polymorphism arrays. Among them, 23 accessions had an average lesion length of less than 0.6 cm, exhibiting potential for breeding for FSB resistance in wheat. Jingfumai 1 and Yangmai 11 had a relatively high resistance to both FSB and FHB simultaneously. Six relatively stable quantitative trait loci (QTLs) were detected on chromosome arms 1DL, 3AS, 3BL, 6BL, 7AL, and Un using the mixed linear model approach, interpreting 4.83–7.53% of phenotypic variation. There was a negative correlation between the average FSB lesion length and the BLUE FHB index with a low coefficient, and resistance to both diseases appeared to be conferred by different QTLs across the same population. Four KASP markers were detected on 1DL, 3AS, 3BL, and 6BL in QTLs to facilitate marker-assisted selection. Combined with transcriptome data analysis, eight defense-related genes were considered as candidates for mapping QTLs. The resistant elite germplasm, mapped QTLs, and KASP markers developed in this study are useful resources for enhancing Fusarium seedling blight in wheat breeding.

Keywords: common wheat, Fusarium seedling blight, Fusarium head blight, GWAS, QTL


INTRODUCTION

Fusarium seedling blight (FSB) and Fusarium head blight (FHB), primarily caused by Fusarium pathogens, refer to are economically devastating diseases in wheat (Triticum aestivum L.) as well as other small grain cereals across the world (Bai and Shaner, 2004; Li X. et al., 2010; Ren et al., 2016). Fusarium seedling blight can cause extensive damage to growing seedlings or foot rot later during the growing season, leading to reduced emergence and crop establishment and consequently yield losses in wheat (Wiese, 1987; Antalová et al., 2020). Moreover, FSB can provide a pathogen source for following FHB infection, creating reddish scabby spikes (Haigh et al., 2009; Li X. et al., 2010). Due to the global climate change and tillage management, FSB and FHB usually reach epidemic levels, causing huge yield losses across millions of hectares in global wheat production regions (Cheng et al., 2015; Liu et al., 2016). In addition, both FSB and FHB produce various mycotoxins during infection, with high toxicity, posing a threat to people as well as livestock (Pestka and Smolinski, 2005; Liu et al., 2012).

China is the largest producer and consumer of wheat (Shi and Ling, 2018). Cultivars play a major role in national wheat production, and developing and using resistant cultivars can confer protection to Fusarium pathogens. The analysis of the probable association between FSB and FHB can help develop new strategies to combat the Fusarium disease complex. Twelve Polish spring wheat cultivars and 18 spring wheat accessions from CIMMYT were examined for resistance to FSB and FHB by applying a highly aggressive fungal isolate, and no correlation was found between the two resistance types (Wisniewska and Busko, 2005). No significant correlation was also detected between FSB infection and FHB index and between FSB infection and DON content in a Wuhan/Nyubai doubled haploid (DH) wheat population (Somers et al., 2003; Tamburic-Ilincic et al., 2009). In subsequent research, QTLs for Fusarium resistance at seedling and spike stages were different, but further verification was required for various wheat populations (Tamburic-Ilincic et al., 2009). Comparatively, there have also been reports concerning the positive association between FSB and FHB resistance (Mesterhazy, 1987; Wu et al., 2005; Shin et al., 2014). Mesterhazy (1987) found a significant correlation between FSB and FHB resistance, and the most resistant genotypes at the seedling stage could yield the FHB resistant material with a large probability. By inoculation of wheat coleoptiles with Fusarium graminearum isolates, Wu et al. (2005) found a significant correlation between FSB and FHB resistance in the same genotype in the field. Using the clip-dipping inoculation method, Shin et al. (2014) found the remarkable correlation between the lesion length and Type II FHB resistance and suggested that the method for the evaluation of FSB resistance may provide a simple and feasible way for the early screening of FHB resistance in wheat.

Using linkage analysis, quite a few QTLs associated with FHB resistance were detected in 21 wheat chromosomes reported (Buerstmayr et al., 2009; Ma et al., 2020), with 7 FHB genes (Fhb1-Fhb7) being formally cataloged (Zhu et al., 2020). But FSB has not received much attention so far, and there have been very few studies on the QTLs for FSB resistance. A QTL on chromosome 5B controlling FSB resistance was identified in a DH population, and its linked marker WMC75 interpreted 13.8% of the phenotypic variation (Tamburic-Ilincic et al., 2009). Single major QTLs for FSB resistance, caused by Microdochium nivale and Microdochium majus, were detected on the chromosomes 1AL and 2BS, respectively (Ren et al., 2016).

Genome-wide association studies (GWAS) on the basis of linkage disequilibrium (LD) offer several advantages over linkage mapping, which has gained success in the analysis of different quantitative characteristics in wheat (Sapkota et al., 2019; Hu et al., 2020). For example, using 166 elite wheat varieties from Yellow and Huai River Valleys Wheat District in China, 120 common loci were detected for their associations with grain yield, among which 78 were potentially new (Li et al., 2019). In our previous studies, five QTLs were identified for their consistent associations with FHB resistance in a natural population, among which the QTLs on 5AS, 5AL, and 7DS were possibly new (Zhu et al., 2020). However, GWAS to identify FSB in wheat has not been reported yet, and the molecular mechanisms for FSB remain poorly understood.

In the present study, we evaluated FSB resistance in Chinese elite wheat lines and then performed GWAS and QTL analyses. The study aimed to (1) identify wheat germplasms with FSB resistance that could be used as resistance donors in breeding and confirm the relationship between FSB and FHB resistance caused by Fusarium pathogens, (2) uncover novel FSB-resistant loci that could be used in molecular marker-assisted breeding. The findings provide an insight into the genetics of FSB response in Chinese cultivars, and the developed markers associated with the mapped QTLs may be used for breeding FSB resistance wheat.



MATERIALS AND METHODS


Plant Materials

A total of 240 common wheat cultivars or elite lines (Supplementary Table 1) were selected as the natural population to evaluate FSB resistance and perform GWAS analysis, as described in our previous study (Zhu et al., 2020). The population included 229 elite wheat cultivars (lines) developed in the main wheat-growing areas of China, covering 12 provinces with five agroecological systems, and could represent the current situation of breeding in China. The remaining 11 genotypes belonged to CIMMYT (10) and Australian (1). Seeds were harvested in the Wuhan Nanhu farm of Hubei Academy of Agricultural Sciences (N 30.28°, E 114.19°) during the cropping seasons in 2018–2019.



Phenotyping

Wheat coleoptiles at the seedling stage were inoculated with conidiospores using the previously described method (Li X. et al., 2010; Cheng et al., 2015) with minor alterations. For seedling inoculation, the concentration of the macroconidia suspension for the aggressive isolate F. graminearum Huanggang 1 (Zhu et al., 2020) was regulated to 5 × 105 spores/mL with sterilized distilled water. Forty full wheat seeds per cultivars (lines) were disinfected using 0.1% HgCl2 for 1 min and then rinsed twice using sterilized distilled water. Sterilized seeds were placed on wet filter paper in Petri dishes and incubated at 20°C in the dark for 2 days. Then 20 seeds with steady growth were picked, transferred to a sterilized germination box (length, width, and height of 11.5, 11.5, and 9.8 cm, respectively) with three layers of wet filter papers, and kept in the dark at 20°C for 1 day. Top coleoptiles (2–3 mm) were dissected, and a 3-μL aliquot of the macroconidial suspension was injected into the slant side of the dissected seedlings. Inoculated seedlings were stored in the germination box in the dark at 20°C, in dark as previously mentioned. The brown lesions of diseased seedlings were measured at 7 day post inoculation, and the lesion length was determined as previously described (Li X. et al., 2010). For each genotype, 20 wheat seedlings were examined each time, and the average value was used for subsequent analysis. The experiments were performed independently with triple replications.



Statistical Analysis

The t-tests, as well as Pearson’s correlation analysis for independent samples, were conducted using IBM SPSS Statistics version 19.0 (IBM Corporation, Armonk, NY, United States). Histograms showing the distribution of the lesion length (cm) of 240 cultivars (lines) were made for each replicate with a script executed in R version 3.5.1.1



Genotyping

Illumina 90 K SNP array genotyping was performed on 240 wheat accessions (Wang et al., 2014). Calling and filtering for SNPs, kinship, and population structure analysis have all been all elaborately explained in the previous research (Zhu et al., 2020). A total of 19,803 with MAF of >5 and <20% missing data of 22,922 polymorphic SNPS were employed for subsequent analysis (Zhu et al., 2020). Population structure analysis was performed via ADMIXTURE.2 The population fell into three subgroups, basically based on geographic origin and pedigree (Zhu et al., 2020).



Genome-Wide Association Studies for Fusarium Seedling Blight Resistance

Associations between genotypic and phenotypic data were analyzed in Tassel v5.0. A kinship (K) + PCA model was used to perform the MLM analysis for controlling the background variation and eliminating spurious marker-trait associations (MTAs). R2 exhibiting the variation explained by SNP was documented (Bradbury et al., 2007). SNPs with an adjusted-log10 (P-value) of ≥3.0 were considered associated with FSB resistance. The remarkable loci in a minimum of two repetitions detected in the research were stable QTLs. Remarkable SNP markers in one linkage disequilibrium on the same chromosome represented one locus.



Kompetitive Allele-Specific PCR Assay

The SNP markers remarkably associated with FSB resistance were identified using GWAS and transformed into Kompetitive Allele-Specific PCR (KASP) markers to facilitate their application in MAS. The SNP contextual sequences were obtained at GrainGenes3 and the primers were designed by PolyMarker4 or the primer premier 5.0 (PREMIER Biosoft International, Palo Alto, CA, United States). Amplification was performed initially at 95°C for 15 min, 10 cycles of touchdown PCR (at 95°C for 20 s; an initial touchdown at 65°C, followed by a reduction of −1°C per cycle for 25 s), and the final 30 additional cycles for annealing (95°C for 10 s; 60°C for 60 s). Fluorescence signals were inspected under the multifunctional microplate reader PHERAstarPlus (BMG LABTECH, Ortenberg, Germany) and determined via KlusterCaller (LGC Genomics, Teddington, United Kingdom).



Candidate Gene Analysis

To identify the candidate genes associated with typical SNPs, physical positions of markers before the chromosome name were introduced into Ensembl,5 and genes within a 2 Mb distance from typical SNPs were detected to assess their candidacy for FSB resistance. The transcript IDs of all these genes were obtained from wheat sequences (Alaux et al., 2018). We used another publicly available database, expVIP,6 to obtain the expression profiles of all these genes in wheat seedling coleoptile organs infected by Fusarium spp. (Ma et al., 2014; Powell et al., 2017). To visualize the expression profiles, heat maps were drawn using TBtools (Chen et al., 2018) from differently expressed genes, with the absolute value of log2 fold change of ≥1 or ≤–1 at either time point. Up-regulated genes in resistant varieties associated with disease resistance annotated by RefSeq Annotation v1.1 (Appels et al., 2018) were identified as candidate genes. The candidate genes were further used for searing the sequences with high similarity via NCBI, combined with a basic local alignment search tool (BLAST).7




RESULTS


The Evaluation of Fusarium Seedling Blight Resistance

The assessment of FSB resistance in 240 wheat accessions showed a lesion length within the range of 0.075–2.896, with a normal distribution in three replications (Table 1 and Figure 1). Pearson’s correlation coefficients among three replications ranged from 0.535 to 0.577 with a significant difference (P < 0.01), and the average values were significantly associated with repeats, with correlation coefficients of 0.826, 0.857, and 0.828 for each repeat (Table 1). Further analysis indicated that 23 accessions, including the elite cultivars Zhoumai 17, Yanzhan 4110, Yunong 035, Jimai 38, Yumai 69, Jingfumai 1, Zhoumai 16, Yannong 24, and Yangmai 11 showed an average lesion length of less than 0.6, with a potential for breeding for FSB resistance in wheat. There were 105, 71, 29, and 12 accessions showing the average lesion lengths within the ranges of 0.6–1.0, 1.01–1.40, 1.41–1.80, and >1.80, respectively. Representative accessions with different grades of resistance to FSB are represented in Table 2.


TABLE 1. Descriptive statistics and correlation coefficients of Fusarium seeding blight and Fusarium head blight of 240 wheat cultivars (lines).
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FIGURE 1. Frequency distribution of Fusarium seeding blight of 240 wheat cultivars (lines). (A) FSB_Rep1; (B) FSB_Rep2; (C) FSB_Rep3; and (D) FSB_mean.



TABLE 2. Materials with different resistance levels to Fusarium seedling blight (FSB) (only representative materials are shown).
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The Correlation Between Fusarium Seedling Blight and Fusarium Head Blight

Correlation coefficients were determined based on FSB infection values in the research and BLUE values of FHB indices, calculated within 4 years, according to the results of our previous study (Zhu et al., 2020) using the same population. The average FSB lesion length was negatively correlated with the BLUE FHB index across the population, although a low coefficient of R = –0.263 was determined (Table 1). The most notable cultivar Sumai3 and its derivative Ning7840 with a high FHB resistance showed quite low resistance to FSB in this assay. Conversely, the FHB susceptible cultivars Zhengyumai 9987 and Zhoumai 17 (Zhu et al., 2020) showed relatively high resistance to FSB. However, some accessions such as Jingfumai 1 and Yangmai 11 had relatively high resistance to both FSB and FHB simultaneously (Zhu et al., 2020).



Marker-Trait Association Analysis

Six QTLs on chromosome arms 1DL, 3AS, 3BL, 6BL, 7AL, and Un, designated as Qfsb.hbaas-1DL, Qfsb.hbaas-3AS, Qfsb.hbaas-3BL, Qfsb.hbaas-6BL, Qfsb.hbaas-7AL, and Qfsb.hbaas-un, respectively, were significant in a minimum of two repetitions, interpreting phenotypic variation of 4.83–7.53% (Table 3 and Figure 2). Representative significant markers for these QTLs were IWB41243, IWB64668, IWB3107, IWA3221, IWB41907, and IWB36312, respectively. For the goal of identifying minor QTL, this study was underpowered because of small population size which results in not seeing high signals.


TABLE 3. Loci significantly associated with FSB resistance in at least two environments in the 240 wheat cultivars (lines) using the mixed linear model (MLM) model in Tassel v5.0.
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FIGURE 2. Manhattan plots from genome-wide association scan for Fusarium seedling blight (FSB) severities among 240 wheat accessions in (A) FSB_Rep1, (B) FSB_Rep2, (C) FSB_Rep3, and (D) FSB_mean. Dashed red horizontal line is the significant threshold level.


Of the 240 genotypes, 12, 180, 130, 204, 220, and 217 possessed the resistance alleles Qfsb.hbaas-1DL, Qfsb.hbaas-3AS, Qfsb.hbaas-3BL, Qfsb.hbaas-6BL, Qfsb.hbaas-7AL, and Qfsb.hbaas-un, respectively, on the basis of marker analysis (Table 4 and Supplementary Table 1). The mean FSB lesion length in accessions with favorable Qfsb.hbaas-1DL alleles was 21.4% shorter than with unfavorable alleles. Discrepancies between Qfsb.hbaas-6BL and Qfsb.hbaas-7AL were much greater (31.7 and 36.3%, respectively). In Qfsb.hbaas-3AS, Qfsb.hbaas-3BL, and Qfsb.hbaas-un, the FSB lesion lengths were reduced by 17.4, 13.8, and 8.8%, respectively (Table 4).


TABLE 4. T-tests for differences in Fusarium seedling blight between two groups of wheat accessions with contrasting resistance or susceptibility alleles for quantitative trait loci (QTL) on chromosomes 1D, 3A, 3B, 6B, 7A, and Un.
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The Relationship Between the Fusarium Seedling Blight Lesion Length and the Number of Favorable Alleles

To examine the pyramiding effects of favorable alleles of various QTLs, we analyzed the number of favorable alleles in 6 mapped loci per accession. Favorable alleles were 0–5. Linear regression (r2 = 0.872) revealed the correlation between disease severity and the number of favorable alleles (Figure 3 and Supplementary Table 2). Accessions including a larger number of favorable alleles, such as Zhoumai16 (5), Xikemai4 (4), and Zhoumai17 (4), exhibited strong FSB resistance. Conversely, Yang 07–15, with no favorable alleles, exhibited low FSB resistance (Supplementary Table 1).
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FIGURE 3. Relationship between the number of favorable quantitative trait locis (QTLs) and the mean FSB severity. Lesion length indicates the FSB severity.




Development of Kompetitive Allele-Specific PCR Markers for Quantitative Trait Locis Underlying Resistance to Fusarium Seedling Blight

The SNPs (IWB41243, IWB64668, IWB3107, and IWA3221), associated with Qfsb.hbaas-1DL, Qfsb.hbaas-3AS, Qfsb.hbaas-3BL, and Qfsb.hbaas-6BL, respectively, were successfully used to develop KASP markers (Table 5). All 240 wheat accessions were genotyped by these KASP markers. The results demonstrated that the genotypes from the KASP test were identical to the chip assay with low-frequency oscillations (2.5, 5.0, 3.3, and 3.8% for each marker, respectively).


TABLE 5. Primer sequences of single nucleotide polymorphism (SNP) markers for validation in wheat lines by Kompetitive Allele-Specific PCR (KASP) assay.
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The Prediction of Candidate Genes

A total of 291 candidate genes were located within the candidate regions. Combined with transcriptome data from public databases (Ma et al., 2014; Powell et al., 2017), 57 genes were differently expressed in wheat seedling coleoptile organs after infection by Fusarium spp. (Figure 4 and Supplementary Table 3). Among them, eight unique annotated genes involved in plant disease resistance were considered as candidates for mapping QTLs (Table 6). Two genes encoding the disease resistance protein RPM1 and receptor-like protein kinase were identified as candidates for Qfsb.hbaas-1DL. A gene encoding L-type lectin receptor kinase might contribute to FSB resistance for Qfsb.hbaas-3AS. A gene encoding MADS-box protein was considered as a candidate for Qfsb.hbaas-6BL. For Qfsb.hbaas-7AL, a gene encoding NAC domain-containing protein was identified. Three genes encoding serine/threonine kinase-like protein, HCBT-like defense response protein, and subtilisin-like protease might contribute to FSB resistance for Qfsb.hbaas-un.
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FIGURE 4. Clustering heatmap for differentially expressed genes infected by Fusarium spp. compared to those in the mock. S-NIL1-Fp 3 days, susceptible isolines infected by Fusarium spp. after 3 days; S-NIL1-Fp 5 days, susceptible isolines infected by Fusarium spp. after 5 days; R-NIL1-Fp 3 days, resistant isolines infected by Fusarium spp. after 3 days; R-NIL1-Fp 5 days, resistant isolines infected by Fusarium spp. after 3 days; Chara-Fp 36 h, wheat culture “Chara” infected by Fusarium spp. after 36 h.



TABLE 6. Candidate genes for Fusarium seeding blight resistance.
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DISCUSSION

Breeding the cultivars with resistance to FSB and FHB offers an efficient way to control complex diseases and decrease yield losses or mycotoxin occurrence in agricultural products. Combining the two resistance traits in one elite wheat cultivar is challenging due to its exposure to regulated independent genetic loci and also the restricted size of resistant germplasm in the natural environment (Tamburic-Ilincic et al., 2009). In this study, 229 elite Chinese wheat cultivars and lines, which represent the genetic diversity in newly assembled accessions in China (Jia et al., 2020), were investigated. A total of 54 cultivars reached the maximum annual acreage of 1 × 105 ha during 2000–2016, and quite a few cultivars such as Liangxing 99, Zhoumai 18, Jimai 22, Zhoumai 22, Zhengmai 9023, and Aikang 58, have been used as founder parents in breeding programs (Jia et al., 2020). Among them, 23 accessions showed a relatively high-level resistance with an average lesion length of less than 0.6 cm, exhibiting the potential for breeding for FSB resistance in wheat. Despite the negative correlation between FSB infection and FHB index in the population (Table 1), combined with our previous research results (Zhu et al., 2020), we also found that some cultivars such as Jingfumai 1 and Yangmai 11 had relatively great resistance to both FSB and FHB simultaneously. Jingfumai 1 and Yangmai 11 both bred in the Middle and Lower Yangtze River Valleys were red-grained spring wheat and high resistant to pre-harvest sprouting. The spike length of the two lines was 8.0 and 8.4 cm, and the spikelet number was 18.3 and 17.2, respectively. The research conformed to the findings reported by Ren et al. (2015), who found that the FSB-resistant cultivar Petrus was simultaneously resistant to FHB. These lines were good parent candidates for future crosses in breeding for Fusarium seedling resistance and head blight resistance in wheat.

The correlation analysis between FSB and FHB resistance has been reported in previous studies (Mesterhazy, 1987; Gosman et al., 2005; Ruckenbauer et al., 2001; Tamburic-Ilincic et al., 2009; Shin et al., 2014). Few studies revealed a positive association between FSB and FHB resistance. Shin et al. (2014) reported the significant correlation coefficients between the lesion lengths and Type II resistance to FSB and FHB, but the number of samples was not very large and only 29 Korean winter wheat cultivars were chosen in trials. The CIMMYT spring wheat line LSP2 was proved to have a high susceptibility to FSB and resistance to FHB, caused by Fusarium spp. (Ren et al., 2016). The widely planted British winter wheat cultivar Rialto was highly resistant to FSB, caused by Microdochium spp., while some reports revealed its high susceptibility to FHB (Srinivasachary et al., 2008). Some wheat cultivars, including Chinese local cultivars Wangshuibai and Sumai3, were highly resistant to FHB, and high susceptibility to FSB was also found (Mesterhazy, 1987; Wu et al., 2005; Li X. et al., 2010). Using Sumai3 and Falat as the cultivars resistant and susceptible to FHB, respectively, Sorahinobar et al. (2016) observed little correspondence between wheat seedling tolerance to F. graminearum crude extract and resistance to FHB. In both our previous (Zhu et al., 2020) and present studies, Sumai3 showed an FSB-susceptible reaction while exhibiting FHB resistance in response to Fusarium spp. Negative correlations, albeit low, between FSB and FHB resistance were observed in the present study. These results also agreed with the findings published by Bruins et al. (1993); Ruckenbauer et al. (2001), Gosman et al. (2005), and Tamburic-Ilincic et al. (2009), who discovered that greenhouse experiments in seedling cannot be used when selecting for FHB resistance.

Two transgenic wheat lines expressing two anti-fungal peptides exhibited enhanced resistance to FSB and FHB, while FHB resistance could be detected in the other five lines (Liu et al., 2012). Transgenic wheat overexpressing an A. thaliana NPR1 gene could increase the severity of FSB, although FHB resistance increased simultaneously (Gao et al., 2013). Li X. et al. (2010) firstly reported a close association between FHB and FSB resistance in wheat using distinct molecular profiles for disease-associated gene expression and suggested that there may be two resistance mechanisms in wheat spikes and seedlings in response to FHB pathogens. Some studies have also shown different QTLs for resistance to FSB and FHB (Tamburic-Ilincic et al., 2009; Ren et al., 2016). In our previous study, five QTL on chromosome arms 1AS, 2DL, 5AS, 5AL, and 7DS were associated with FHB resistance, explaining 5.4–10.3% of phenotypic variation (Zhu et al., 2020). Using the same population, we identified six entirely different QTL on chromosome arms 1DL, 3AS, 3BL, 6BL, 7AL, and Un, interpreting phenotypic variation of 4.83–7.53% (Table 3 and Figure 2). Different regions suggested the differences in QTLs for resistance to FSB and FHB and resistance to FSB and FHB is probably independent. Thus, due to gene recombination, a few accessions in this research exhibited Fusarium resistance in seedling and head.

There might be two main reasons why discrepant alterations in genes or QTLs could be associated with resistance to both FSB and FHB. The first reason is the infection time; FSB infection occurs during the seedling growth, whereas FHB infection occurs during the flowering stage. It is well known that different genes can be involved in the resistance of host plants to one disease in various stages of plant development (Li H. B. et al., 2010). The second reason is the infection of different organs by the two diseases. Miedaner (1997) put forward the idea that complex interactions can occur between the resistance to diseases across different plant growth stages, plant organs, or host genotypes. We suggested that the mechanisms and genes involved in resistance to Fusarium during seedling growth and spike formation are possibly different, and separate screening is essential to evaluate the resistance to FSB and FHB, caused by Fusarium in breeding programs.

The discovery of novel genes or QTLs is a constant challenge and extremely important in wheat breeding. Many QTLs associated with FHB resistance have been detected (Zhu et al., 2020), whereas there have been very few studies on QTLs for resistance to FSB. Using a Wuhan/Nyubai doubled haploid (DH) wheat population, merely one QTL, controlling FSB resistance, detected on chromosome 5B and marker WMC75, could interpret 13.8% phenotypic variation in the trait (Tamburic-Ilincic et al., 2009). Using the Rialto/LSP2 DH population, a single major QTL conferring FSB resistance to Microdochium majus was found on the chromosome 1AL in all four experiments, accounting for 32.5–56.6% of the phenotypic variation; a significant QTL conferring FSB resistance to Microdochium nivale was discovered on chromosomes 2BS and explained 29.3–55.0% of the phenotypic variation (Ren et al., 2016). In this research, we detected six QTLs on chromosome arms 1DL, 3AS, 3BL, 6BL, 7AL, and Un that were significant for resistance to FSB and previously uncharacterized in wheat, and therefore they were likely to be novel QTLs for FSB resistance. The average lesion length dramatically decreased when the number of favorable alleles increased (Figure 3). This finding suggested the prospective role of these QTLs in FSB resistance. But some QTls such as Qfsb.hbaas-1D and Qfsb.hbaas-7A have very tiny minor allele frequencies, they may not be real signals. To validate the real effects of these 6 mapped QTLs, typical significant markers should be examined using various bi-parental and natural populations.

Combined with the analysis of transcriptome data, we identified eight unique annotated genes involved in plant disease resistance in wheat in IWGSC RefSeq v1.1, which were linked to the six QTLs (Table 6). The RPM1 is a CC-NB-LRR protein that conferred resistance against Pseudomonas syringae pv. maculicola 1 (Mackey et al., 2002; Su et al., 2017), and TaRPM1 might play a key part in the wheat innate immune response to the infection caused by the powdery mildew pathogen (Nie and Ji, 2019). Receptor-like protein kinases, which are the largest gene family in plants, play essential roles in combating infection caused by pathogens (Liu et al., 2017). TaCRK2, a novel receptor-like kinase gene, plays a positive role in resistance to leaf rust in wheat through the regulation of the HR cell death process induced by P. triticina (Gu et al., 2020). L-type lectin receptor kinases are omnipresent in plants and play an important role in the initiation of innate immunity (Wang and Bouwmeester, 2017). An L-type lectin receptor kinase in Haynaldia villosa conferred powdery mildew resistance in wheat (Wang et al., 2018). Moreover, MIKC-type MADS-box genes exhibited new expression patterns in response to biotic stress (Schilling et al., 2020). The NAC protein constituting the most important plant transcription factors could enhance resistance to Fusarium head blight, as well as stripe rust (Ning et al., 2010; Perochon et al., 2019). Serine/threonine kinase, one of the largest protein kinase gene families, could confer resistance to powdery mildew and stripe rust in wheat (Cao et al., 2011; Gou et al., 2015). HCBT-like defense response protein, which was rapidly and transiently expressed after being induced by the pathogen, plays an essential role in fungal pathogen resistance (Brooks et al., 2002). The subtilisin-like protease is associated with pathogenicity in fungi and plays an important role in resistance to leaf rust in wheat (Fan et al., 2016).
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Plasmodiophora brassicae causes clubroot disease in brassica crops worldwide. Brassica rapa, a progenitor of Brassica napus (canola), possesses important sources for resistance to clubroot. A doubled haploid (DH) population consisting of 84 DH lines were developed from a Backcross2 (BC2) plant through an interspecific cross of B. rapa turnip cv. ECD01 (resistant, R) with canola line DH16516 (susceptible, S) and then backcrossed with DH16516 as the recurrent parent. The DH lines and their parental lines were tested for resistance to four major pathotypes (3A, 3D, 3H, and 5X) of P. brassicae identified from canola. The R:S segregation ratio for pathotype 3A was 1:3, and 3:1 for pathotypes 3D, 3H, and 5X. From genotyping by sequencing (GBS), a total of 355.3 M short reads were obtained from the 84 DH lines, ranging from 0.81 to 11.67 M sequences per line. The short reads were aligned into the A-genome of B. napus “Darmor-bzh” version 4.1 with a total of 260 non-redundant single-nucleotide polymorphism (SNP) sites. Two quantitative trait loci (QTLs), Rcr10ECD01 and Rcr9ECD01, were detected for the pathotypes in chromosomes A03 and A08, respectively. Rcr10ECD01 and Rcr9ECD01 were responsible for resistance to 3A, 3D, and 3H, while only one QTL, Rcr9ECD01, was responsible for resistance to pathotype 5X. The logarithm of the odds (LOD) values, phenotypic variation explained (PVE), additive (Add) values, and confidence interval (CI) from the estimated QTL position varied with QTL, with a range of 5.2–12.2 for LOD, 16.2–43.3% for PVE, 14.3–25.4 for Add, and 1.5–12.0 cM for CI. The presence of the QTLs on the chromosomes was confirmed through the identification of the percentage of polymorphic variants using bulked-segregant analysis. There was one gene encoding a disease resistance protein and 24 genes encoding proteins with function related to plant defense response in the Rcr10ECD01 target region. In the Rcr9ECD01 region, two genes encoded disease resistance proteins and 10 genes encoded with defense-related function. The target regions for Rcr10ECD01 and Rcr9ECD01 in B. napus were homologous to the 11.0–16.0 Mb interval of chromosome A03 and the 12.0–14.5 Mb interval of A08 in B. rapa “Chiifu” reference genome, respectively.

Keywords: Brassica napus, Brassica rapa, Plasmodiophora brassicae, clubroot, genotyping by sequencing, ECD01, resistance, pathotype


INTRODUCTION

Brassica species are grown for the production of edible oil and vegetables. The genomic relationships among the main species of brassica crops were explained by the “triangle of U” (Morinaga, 1934; Nagaharu and Nagaharu, 1935); Brassica rapa (genome represented as AA; n = 10), Brassica nigra (BB; n = 8), and Brassica oleracea (CC; n = 9) are diploid species, and Brassica napus (AACC; n = 19), Brassica juncea (AABB; n = 18), and Brassica carinata (BBCC; n = 17) are amphidiploid species resulting from hybridization between pairs of the diploid species.

Clubroot, caused by the obligate soil-borne pathogen Plasmodiophora brassicae Woronin, is an important disease in brassica crops worldwide. The pathogen belongs to the infrakingdom Rhizaria, a diverse group of amoeboid microbes (Nikolaev et al., 2004). Root infection by P. brassicae results in the formation of characteristic clubs, also known as “galls,” on the roots of host plants. These abnormal growths restrict the flow of water and nutrients to the plant, resulting in above-ground symptoms that include stunting, yellowing, premature senescence, and reduction in both seed yield and quality (Pageau et al., 2006). B. napus (oilseed rape/canola) is an important crop for edible oil production worldwide. Clubroot was first identified in canola fields on the Canadian Prairies in 2003 but has spread rapidly to pose a serious threat to canola production in Canada.

Strains of P. brassicae collected in Canada have been classified into more than 30 pathotypes based on the reactions on the Canadian Clubroot Differential (CCD) set (Strelkov et al., 2018; Hollman et al., 2021). Among the pathotypes, 3H was the most prevalent original pathotype, 5X was the first new pathotype that was aggressive on the first generation of Canadian clubroot-resistant cultivars, and 3A and 3D are currently the predominate new pathotypes in Alberta (Dakouri et al., 2021). The pathogen can survive in soil as resting spores for a long period, so it is difficult to manage using cultural practices or chemical treatments (Voorrips, 1995). Genetic resistance can be an effective strategy for clubroot management, but the sources available for resistance to clubroot in B. napus are very limited. Strong resistance was identified in its progenitor species, B. rapa, especially in European turnip, B. rapa subsp. rapifera, which was reviewed by Hirai (2006). The resistance to clubroot available from European turnips has been transferred into Chinese cabbage (B. rapa) (Piao et al., 2009). Introgression of traits from turnip into B. napus is possible via interspecific crosses, so turnip has been a valuable source for resistance to clubroot in canola. Clubroot resistance (CR) from turnip cultivar “Debra” has been transferred into B. napus cultivars of swede (Lammerink, 1970) and from turnip cultivar “Waaslander” (also known as ECD04) into forage (Johnston, 1974) and oilseed lines of B. napus (Gowers, 1982).

Genetic mapping of CR genes is an important step toward breeding for resistance to clubroot. To date, more than 20 genes or quantitative trait locus (QTLs) have been mapped to six chromosomes of the A-genome in B. rapa through biparental mapping methods. Crr2 and PbBa1.1 were located on A01 (Suwabe et al., 2003; Chen et al., 2013); CRc and Rcr8 were located on A02 (Sakamoto et al., 2008; Yu et al., 2017); Bra.CR.a, Bra.CR.c, Crr3, CRa, CRb, CRbkato, CRd, CRk, PbBa3.1, PbBa3.2, PbBa3.3, Rcr1, Rcr2, Rcr4, and Rcr5 were located on A03 (Matsumoto et al., 1998; Hirai et al., 2004; Piao et al., 2004; Sakamoto et al., 2008; Chen et al., 2013; Chu et al., 2014; Pang et al., 2014; Yu et al., 2016, 2017; Huang et al., 2017, 2019; Hirani et al., 2018); Crr4 were located on A06 (Suwabe et al., 2003); qBrCR38-1 were located on A07 (Zhu et al., 2019); Crr1, CRs, PbBa8.1, Bra.CR.b, Rcr3, Rcr9/Rcr9wa, and qBrCR38-2 were located on A08 (Suwabe et al., 2006; Chen et al., 2013; Yu et al., 2017; Hirani et al., 2018; Laila et al., 2019; Zhu et al., 2019; Karim et al., 2020). Three genes, Crr1, CRa, and CRbkato, have been cloned, all of which encode toll-interleukin-1 receptor, nucleotide binding site, and leucine-rich repeat (TIR-NBS-LRR, TNL) proteins (Ueno et al., 2012; Hatakeyama et al., 2013, 2017). The identification of CR genes has been also carried out in B. oleracea (Lee et al., 2016; Dakouri et al., 2018; Peng et al., 2018), B. nigra (Chang et al., 2019), and B. napus (Manzanares-Dauleux et al., 2000; Werner et al., 2008; Fredua-Agyeman and Rahman, 2016; Hasan and Rahman, 2016; Botero-Ramírez et al., 2020).

Brassica rapa turnip cv. “Debra” was used as the donor for developing CR in swede cultivars (Lammerink, 1970). “Debra” was included in the European clubroot differential (ECD) set as differential line ECD01 (Buczacki et al., 1975; Diederichsen et al., 2009). CRb, a CR gene identified in a Chinese cabbage cv. “CR Shinki” and two CR genes in Chinese cabbage cv. “CR Kanko,” CRk and CRc, were derived from ECD01 (Piao et al., 2004) and “Debra” (Sakamoto et al., 2008), respectively. Two other CR genes, BraA.CR.a (A03) and BraA.CR.b (A08), were also identified from ECD01 (Hirani et al., 2018). Finally, ECD01 was resistant to all of the Canadian pathotypes of P. brassicae described by Strelkov et al. (2018) (Yu F, unpublished data), which makes it a valuable source of genes for CR canola in Canada.

In this study, an interspecific cross of ECD01 × B. napus line DH16516 was made, and the resulting F1 progeny were backcrossed with DH16516 to produce BC1. Continuing backcross was made by crossing the BC1 with DH16516 to produce Backcross2 (BC2). A doubled haploid (DH) population consisting of 84 DH lines from a single BC2 plant was developed. Genotyping by sequencing (GBS) analysis of the A-genome of B. napus was used to (1) characterize the genome-wide DNA variants in the DH lines, (2) detect QTLs associated with resistance to the most important pathotypes of P. brassicae on the Canadian Prairies, and (3) identify putative candidate genes for each QTL.



MATERIALS AND METHODS


Plant Materials

A seed of ECD01, a turnip (B. rapa) cultivar carrying genes for CR, was provided by Nutrien Ag Solutions (Saskatoon, SK, Canada). DH16516 is a spring-type, clubroot-susceptible, DH canola-quality line of B. napus developed by Dr. Séguin-Swartz at Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada (SRDC, AAFC), Saskatoon, SK, Canada. ECD01 was crossed to DH16516 (pollen donor) to produce F1 progeny. Backcrosses with DH16516 (recurrent parent) were performed to produce the BC1 and BC2 populations. A BC2 plant with resistance to pathotype 5X was chosen as the donor for microspore culture. In total, 84 DH lines were developed by Haplotech Inc. (Winnipeg, Canada) through a fee-for-service contract. Seed from three plants of each DH line was increased in a greenhouse at SRDC for study.



Evaluation of Resistance to Clubroot

Clubroot strains collected in canola fields in Alberta were characterized based on pathotype and provided by Dr. S. E. Strelkov at the University of Alberta, Canada. The method and experimental design used in this study were as described by Suwabe et al. (2003). Plants were tested for resistance to four pathotypes of P. brassicae (strain F.3-14 for pathotype 3A, F.1-14 for 3D, P. 41-14 for 3H, and LG02 for 5X). Fresh and clean clubbed roots harvested at 4–5 weeks after inoculation of each strain were cut into smaller pieces with scissors, macerated in distilled water for 1–2 h, and blended in a blender at high speed for 2 min. After filtering through eight layers of sterile cheesecloth, resting spores extracted from the clubbed roots were adjusted to a concentration of 1.0 × 107 resting spores/ml in distilled water for plant inoculation.

Seeds of the DH population were sown into Sunshine #3 soilless mix (Sun Gro Horticulture Canada Ltd., Seba Beach, AB, Canada) with Osmocote (Everris NA Inc., Dublin, OH, United States) in 32 pot inserts held by trays (The HC Companies, Twinsburg, OH, United States). Approximately 4 L of water was added to each tray to soak the soilless mix overnight. Seven days after planting, inoculation was performed by adding 15 ml of inoculum (1 × 107 spores/ml) into each pot with 6–9 seedlings of each line. The inoculated plants were grown in a growth chamber set at 22/18°C day/night temperature with a 16-h photoperiod. The canola cultivar “45H29” (resistant to pathotype 3H) and the parental lines (ECD01 and DH16516) were included as controls. Six weeks after inoculation, plants were pulled and the roots were examined for clubroot symptoms.

Clubroot severity was evaluated on a 0–3 scale, where 0 indicates no clubbing, 1 indicates a few small clubs, 2 indicates moderate clubbing, and 3 indicates severe clubbing. A disease severity index (DSI) was calculated for each line using the method of Horiuchi and Hori (1980):
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Correlation coefficients of severity among the DH families to four pathotypes of P. brassicae were calculated in Microsoft Excel function “Correl” using the equation:
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Significance was determined using t-tests (Iversen and Gergen, 1997). Each line with a resistance response (DSI ≤ 30%) in the initial study was reassessed two more times. Each of these repetitions provided a similar result in most cases. For those lines with inconsistent results, the highest DSI among the three repetitions of the assessment was considered to be the most accurate and was used to characterize the resistance response of the line. DH lines with DSI ≤ 30% were classified as R and those lines with DSI >30% as S lines.

The F1 plants were tested with pathotype 3H, and the BC2 donor plant was only tested with 5X for several reasons. First, the clubroot reaction of a single plant can be assessed for only one pathotype. Second, pathotype 3H was the predominant pathotype in Canada when we obtained the F1 progeny and performed the selection for CR. Similarly, at that time when the donor plant from BC2 was chosen for microspore culture, pathotype 5X was the only new pathotype that had been identified. Third, only a few seeds of F1 were obtained due to difficulties in the interspecific cross, so it was not possible to test multiple pathotypes in the F1 progeny.



DNA Sequencing and Alignment of Reads to a Reference Genome

DNA was extracted from young leaves of each of the 84 DH lines and parental lines following the DNeasy Plant Mini Handbook from QIAGEN. GBS of the 84 DNA samples and two replications of the parental cultivar ECD01 were performed on an Illumina platform with pair-end sequencing at BGI Americas Corp (Cambridge, MA, United States). Two replications of cv. ECD01 were performed to increase the sequencing depth for this parental line to provide a more accurate call of the genotype at each single-nucleotide polymorphism (SNP) site in the DH population. DH16516 is an important B. napus canola recipient line for introgression of CR at AAFC, Saskatoon, so whole-genome sequencing of the line had already been performed at Plant Biotechnology Centre (Saskatoon, SK, Canada) as part of the generation of a new reference genome (unpublished data). The short reads from the whole-genome sequencing data were used for this study. The program SeqMan NGen 15 (DNASTAR, Madison, WI, United States) was used for short read assembly. ‘‘Whole genome DNA-Seq/Genotyping’’ assembly workflow, ‘‘Reference based assembly-normal workflows’’ assembly type, and ‘‘Automatic Mer size, Automatic Minimum match percentage, High Layout stringency and Medium SNP filtering stringency’’ assembly options were chosen. Short reads from each of the 84 DH samples, parental DH16516, and the combined two replicates of ECD01 were aligned to B. napus reference genome for cv. ‘‘Darmor-bzh’’ version 41.



Identification of Variants, Variant Filtering, Construction of Linkage Map, and Quantitative Trait Locus Mapping

Identification of variants (SNPs and InDels) in the DNA sequences of each BC2 DH sample relative to the reference genome of B. napus “Darmor-bzh” was performed using SeqMan Pro 15 (DNASTAR, Madison, WI, United States), but only SNPs were used for further study. Comparison of the variants among the 84 BC2 DH samples was carried out using Qseq 15 (DNASTAR).

Genotyping by sequencing-SNP sites were named based on the reference genome (DM: “Darmor-bzh”), the A-genome chromosome (A01–A10), and the position on the reference chromosome sequence. An SNP site was called in a given sample at following criteria: depth >5, Q > 30, and SNP percentage >50%. Since the recipient parent DH16516 and the 84 DH lines were DH lines, all SNP sites should theoretically be homozygous. After filtering, heterozygous genotypes in the parental line DH16516 and the DH lines and monomorphic phenotypes between the parents or among the 84 individuals were removed.

The remaining SNP sites after filtering were further analyzed using JoinMap 4.1 (Kyazma B.V.,Ln.v.A. Wageningen, Netherlands; Van Ooijen, 2011). SNP alleles from the resistant parent (ECD01) were scored as “B,” and those from the susceptible parent (DH16516) as “A.” Marker orders and positions in the genetic map were determined using maximum likelihood in the Kosambi’s model with a minimum logarithm of the odds (LOD) values of 10. Only SNP sites that could be assigned into the 10 chromosomes of the A-genome at LOD scores of 10.0 were kept. The set of filtered SNP sites obtained was used for binning of redundant markers, construction of linkage map, and mapping of QTLs for resistance to clubroot using the QTL IciMapping Inclusive Composite Interval Mapping (ICIM) method (Meng et al., 2015). A linkage map was drawn using MapChart 2.1 (Droevendaalsesteeg 4, Wageningen, Netherlands; Voorrips, 2002) based on the genetic location determined with QTL IciMapping. The LOD score threshold was set using a 1,000-permutation test with a type I error of 0.05 for QTL declaration. The QTL effects were estimated as phenotypic variation explained (PVE) and additive (Add) values by each QTL.



Identification of Genes in the Target Regions of the B. napus “Darmor-bzh” Reference Genome

Gene annotation was analyzed using Blast2GO (Conesa et al., 2005) using coding sequences (CDS) of the genes in each of the QTL target regions from 1 Mb upstream to 1 Mb downstream of the SNP markers in the peak regions as determined by IciMapping. Genes related to disease resistance and defense responses were identified using Blast2GO information of the gene description and gene ontology. The most probable Arabidopsis homolog corresponding to each disease resistance gene and the class of disease resistance proteins were obtained using the CDS of the disease resistance gene in the B. napus by Blast search at www.arabidopsis.org.



Mapping of the Quantitative Trait Loci With Bulked Segregant Analysis

Bulked segregant analysis (BSA) has been used to detect molecular markers linked to traits of interest, such as disease resistance (Michelmore et al., 1991). In BSA, bulks of plants with contrasting phenotypes are generated. Our previous studies showed that a gene could be genetically mapped by identifying the percentage of polymorphic variants (PPV) in a genome using BSA (Yu et al., 2016; Dakouri et al., 2018; Huang et al., 2019; Karim et al., 2020).

Doubled haploid lines were selected to form a R bulk and a S bulk based on their phenotypes using SNP marker-assisted selection. GBS data from the R and S bulks were aligned onto the B. napus reference genome separately using SeqMan NGen 15 (DNASTAR). Mapping of the QTLs was performed using the PPV method described by Yu et al. (2016) and Dakouri et al. (2018).



Search for the Syntenic Regions of Identified Quantitative Trait Loci in B. rapa “Chiifu” Reference Genome

The B. rapa reference genome version 3.0 (Zhang et al., 2018) was downloaded from https://brassicadb.org/brad/downloadOverview.php. DNA sequences of the QTL target regions from the A-genome of B. napus were aligned into the B. rapa genome using MegAlign Pro 15 with MAUVE (DNASTAR).




RESULTS


Resistance to Clubroot in the Parental Lines and the Backcross2 Doubled Haploid Population

The clubroot reaction of the parental lines (ECD01 and DH16516), controls, and the DH population was assessed against pathotypes 3A, 3D, 3H, and 5X (Table 1). As expected, ECD01 was highly resistant to all pathotypes (0% DSI), DH16516 was highly susceptible (100% DSI), and “45H29” was resistant to pathotype 3H only (Figure 1 and Table 1). The F1 plants from the interspecific crosses of DH16516 × ECD01 were highly resistant to pathotype 3H (0% DSI), which was the predominate pathotype in Canada before the emergence of the 3A, 3D, and 5X. Clubroot severity in response to inoculation with each pathotype in the DH population could be divided into two classes: resistant (R) lines with DSI ≤ 30% and susceptible (S) lines with DSI > 30% (Figure 2). The segregation ratio of R and S was calculated, and the goodness-of-fit was tested with a χ2 test using Microsoft Excel software. Of the four pathotypes, segregation of R and S best fit a 1:3 ratio for pathotype 3A and a 3:1 ratio for pathotypes 3D, 3H, and 5X. These results indicated that resistance to pathotype 3A was controlled by two genes in complementary action, and resistance to pathotypes 3D, 3H, and 5X was controlled by two genes in duplicate action.


TABLE 1. Genetic analysis of resistance of the parental lines (DH16516, ECD01), controls (cv. “45H29”), and the inoculation of doubled haploid (DH) population derived from BC2 with four pathotypes of Plasmodiophora brassicae based on the clubroot severity (disease severity index, DSI) of each line (Resistant, R, DSI ≤ 30; Susceptible, S, DSI > 30).
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FIGURE 1. Plant phenotypes and clubroot response at 5 weeks after inoculation in the parental lines (Debra and DH16516) and a control cultivar (45H29) to inoculation with four pathotypes (3A, 3D, 3H, and 5X) of Plasmodiophora brassicae under controlled conditions. The bars represent 5 cm in length.
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FIGURE 2. Distribution of clubroot severity (disease severity index, DSI) following inoculation with four pathotypes (3A, 3D, 3H, and 5X) of P. brassicae in a doubled haploid (DH) population derived from a BC2 plant of Brassica rapa ECD01 crossed with B. napus DH16516. Colors in each stacked column represent the proportion of the lines with a DSI value within that decile (= 10% range).


Correlation coefficients among the DSI values for the pathotypes ranged from 0.55 to 0.81, but all were significant at P < 0.01 (Table 2). This indicated that the genes for resistance to the different pathotypes were likely controlled by the same genes or tightly linked genes.


TABLE 2. Correlation coefficients for clubroot severity after inoculation of DH population derived from BC2 of DH16516 × ECD01 for resistance to four pathotypes of P. brassicae.
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Alignment of DNA Short Reads Into the B. napus Genome

Since CR in the DH population originated from the A-genome of B. rapa cv. ECD01, only A-genome DNA sequences in the reference genome B. napus “Darmor” version 4.1 were used for alignment of DNA short reads and discovery of DNA variants (SNPs and InDels). Approximately 219.9 million (M) short reads were obtained from whole-genome sequencing from DH16516, and 53.1% of the reads were assembled into the reference A-genome; 13.8 M sequences were obtained from GBS of ECD01, and 70.9% were assembled into the reference A-genome. A total of 355.3 M short reads from 84 DH lines were obtained, ranging from 0.81 to 11.67 M sequences per line (Supplementary Figure 1). The mean number of reads aligned into the reference genome from each line was 2.3 M (range 0.46–5.22 M, Supplementary Figure 1), and 54.7% were assembled into the reference A-genome.



Identification of Polymorphic Single-Nucleotide Polymorphism Sites and Quantitative Trait Locus Analysis

After the initial filtering, 429 polymorphic SNP sites were left and were distributed to 9 of 10 chromosomes of the reference genome of “Darmor-bzh” (Supplementary Table 1). No polymorphic markers were identified from chromosome A06. There was no correlation between chromosome size and the number of SNP markers identified (r = −0.092) in the population. To remove redundant markers, the 429 SNP sites were further filtered using the binning function in IciMapping, which left only 260 non-redundant SNP sites (Table 3). A genetic map of the nine chromosomes of the A-genome was constructed from the distributed SNP sites (Supplementary Figure 2). The length of each chromosome ranged from 0 (chromosome A06) to 471.8 cM (A01), with an average length of 85.3 cM. Chromosome A01 was much longer than the other linkage groups. The number of SNP sites per chromosome ranged from 0 (A06) to 152 (A01), with a mean of 26 SNPs per chromosome. The SNP interval of each chromosome ranged from 0.8 to 4.8 cM, with a mean of 3.3 cM (Supplementary Table 1).


TABLE 3. QTL position, phenotypic variation explained (PVE), additive (Add), the logarithm of the odds (LOD), and confidence interval (CI) for the QTLs originating from Brassica rapa ECD01 for resistance to four pathotypes of P. brassicae (permutations = 1,000).
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Mapping of the QTLs was performed using the linkage map (Supplementary Figure 1) and trait values for resistance to each pathotype (3A, 3D, 3H, and 5X). Two QTLs were identified: a QTL designated as Rcr10ECD01 on A03, with a peak at the SNP markers DM_A03_12570715 and DM_A03_10873502, and a QTL designated as Rcr9ECD01 (Figure 3), located near the previously identified genes Rcr9 and Rcr9wa (Yu et al., 2017; Karim et al., 2020) on A08, with a peak at DM_A08_10325589 and DM_A08_10529713 (Table 3). Resistance to pathotypes 3A, 3D, and 3H was associated with the two QTLs (Rcr10ECD01 and Rcr9ECD01), but resistance to 5X was only associated with Rcr9ECD01 (Table 3). LOD, PVE, Add values, and CI from the estimated QTL position varied between the QTLs, ranging from 5.2 to 12.2 for LOD, 16.2 to 43.3% for PVE, 14.6 to 25.4 for Add, and 1.5 to 12 cM for CI (Table 3). The values of Add for the two QTLs were positive, indicating that the resistant loci were derived from the resistant parent ECD01.


[image: image]

FIGURE 3. Two QTLs were detected: Rcr10ECD01 on chromosome A03 and Rcr9ECD01 on A08.




Identification of Disease Resistance Genes and Genes Related to Plant Defense Response

Searches for candidate genes for Rcr10ECD01 and Rcr9ECD01 that encoded disease resistance proteins and defense-related genes were performed using CDS of the reference genome in the target region including 1 Mb up- and downstream of the left and right markers (Table 3).

Rcr10ECD01, which was responsible for resistance to pathotypes 3A, 3D, and 3H, was mapped into chromosome A03, with a peak at SNP markers DM_A03_10873502 and DM_A03_12570715 (Table 3). There are 676 genes in this 3.7 Mb region (Supplementary Table 3). Among the genes, one gene (BnaA03g25330D) encoded a disease resistance protein (Table 4), and 24 genes encoded proteins with functions related to plant defense response (Supplementary Table 3). BnaA03g25330D is homologous to the Arabidopsis gene AT5G22690, which encoded a TNL protein (Table 4).


TABLE 4. A list of genes encoding proteins associated with plant disease resistance through BLAST2GO and Blast searches with CDS in the QTL target regions at https://www.arabidopsis.org/Blast/index.jsp.
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Rcr9ECD01, which was responsible for resistance to all four pathotypes, was mapped into chromosome A08, with a peak at SNP markers DM_A08_10325589 and DM_A08_10529713. There were 338 genes in this 2.2 Mb region (Table 4 and Supplementary Table 3). Two genes (BnaA08g10100D and BnaA08g11840D) encoded disease resistance proteins, and BnaA08g10100D was homologous to the previously cloned resistance gene Crr1. BnaA08g10100D and BnaA08g11840D were homologous to the Arabidopsis genes AT5G11250 and AT4G33300, respectively. AT5G11250 encodes an atypical TNL protein and AT4G33300 encodes a member of the activated disease resistance 1 family nucleotide-binding leucine-rich repeat immune receptors (Table 4). Also, this region contained 10 genes that encoded proteins with defense-related functions (Supplementary Table 3).



Confirming the Quantitative Trait Locus Intervals With Bulked Segregant Analysis

Of the 84 DH lines, 19 lines were resistant to almost all the pathotypes. They all carried alleles from the resistant parent ECD01 (SNP genotype “B”) with Rcr10ECD01 (DM_A03_10873502 and DM_A03_12570715) and Rcr9ECD01 (DM_A08_10325589 and DM_A08_10529713). Also, 17 lines were susceptible to almost all the pathotypes and all of them carried alleles from the susceptible parent line DH16516 (SNP genotype “A”) for the two QTLs. As a result, the R bulk was formed from the 19 R DH lines, while the S bulk was formed from the 17 S DH lines for the BSA (Supplementary Table 4).

A total of 93.5 M short reads from the R bulk and 69.4 M short reads from the S bulk were aligned into the B. napus reference genome. A PPV peak (25–30%) occurred within the physical interval 9–14 Mb on chromosome A03 and the other peak (25–36%) within the physical interval 9–12 Mb on chromosome A08 (Figure 4), which indicated that Rcr10ECD01 and Rcr9ECD01 resided in the intervals of chromosomes A03 and A08, respectively. This result is consistent with that from the above QTL analysis.
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FIGURE 4. Distribution of polymorphic variants (%): One peak for Rcr10ECD01 on chromosome A03 and the other for Rcr9ECD01 on A08 were identified through bulk segregant analysis with the mapping method of the percentage of polymorphic variants described by Yu et al. (2016) and Dakouri et al. (2018).




Search for the Syntenic Regions of the Quantitative Trait Loci in the B. rapa “Chiifu” Reference Genome

Most of the genes or QTLs for CR in Brassica species containing the A-genome that have been identified were from B. rapa. In this study, the DH population was developed with introgression of QTLs from B. rapa, so the QTL target regions of chromosome A03 and A08 of B. napus were compared with those of B. rapa.

The B. rapa reference genome “Chiifu” version 3.0 is the most recent version available for the “Chiifu” reference genome (Zhang et al., 2018). The 3.7 Mb region from 9.8 to 13.5 Mb of B. napus chromosome A03, which included a fragment of the markers DM_A03_10873502 and DM_A03_12570715 for Rcr10ECD01, was homologous to the region 11.0–16 Mb of “Chiifu” A03 (Figure 5). Rcr9ECD01, located on the 2.2 Mb length from 9.3 to 11.5 Mb of B. napus chromosome A08, which included SNP markers DM_A08_10325589 and DM_A08_10529713, was homologous to the region 12.0–14.5 Mb of A08 in B. rapa “Chiifu” (Figure 5).
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FIGURE 5. Maps of the Rcr10ECD01 and Rcr9ECD01 target regions in A03 and A08 of B. napus “Darmor” and the homologous regions of the B. rapa reference genome “Chiifu” version 3.0. Different colors represent the sequenced region of the B. rapa reference genome “Chiifu” version 3.0.





DISCUSSION

Clubroot has the potential to become an important constraint to canola production on the Canadian Prairies. Pathotype 3H was (and likely still is) the predominant pathotype in the Prairie region, pathotype 5X was the first new pathotype identified as virulent on resistant canola cultivars such as “45H29,” and 3A and 3D have become the most prevalent among the new virulent pathotypes (Hollman et al., 2021). Therefore, these four pathotypes were selected for this study.

Two QTLs for resistance to the four pathotypes of P. brassicae derived from B. rapa ECD01 were transferred to, identified, and mapped in a DH population of B. napus. The DH population was segregated in a 1:3 (R:S) ratio for resistance to pathotype 3A. This indicated that resistance to pathotype 3A was controlled by two genes in complementary action. The segregation ratio for resistance to pathotype 3H was 3:1, which was also the most likely fit for pathotypes 3D and 5X. This indicated that resistance to all three pathotypes in the DH population was controlled by two genes in duplicate action. Two QTLs, Rcr10ECD01 and Rcr9ECD01, for resistance to pathotypes 3A, 3D, and 3H were identified, which was consistent with the genetic analysis of phenotype ratios. However, only one QTL, Rcr9ECD01, was identified for resistance to 5X, although the segregation ratio was close to 3:1. This inconsistency merits further investigation.

In general, strong resistance to clubroot pathotypes is controlled by single dominant genes such as Rcr1–Rcr7 (Chu et al., 2014; Yu et al., 2016; Huang et al., 2017, 2019; Yu et al., 2017; Dakouri et al., 2018; Chang et al., 2019; Karim et al., 2020). Two genes in duplicate action (Rcr8 on chromosome A02 and Rcr9 on chromosome A08 from B. rapa line T19) that conferred resistance to pathotype 5X were reported previously (Yu et al., 2017). Similarly, a previous study indicated that neither Crr1 nor Crr2 on their own conferred resistance to Japanese strain “Wakayama-01” of P. brassica; resistance was only expressed when resistance alleles were present at both loci (Suwabe et al., 2003). In this study, the QTL for resistance to pathotype 3A derived from ECD01 may behave similarly to Crr1 and Crr2.

The number of SNP sites per chromosome is usually correlated with chromosome size in mapping populations (Yu et al., 2016) but was not correlated in this study. This unusual result likely occurred because the BC2 donor plant used for microspore culture carried a large fragment of chromosome A01 originating from ECD01 but smaller fragments of the other chromosomes from ECD01.

In this study, the target region for Rcr10ECD01 was defined as 9.8–13.5 Mb of B. napus chromosome A03 using QTL analysis. A similar interval (9–14 Mb) for Rcr10ECD01 was obtained using the identification of the PPV with BSA. The region for Rcr10ECD01 in B. napus was homologous to the 11.0–16.0 Mb region of A03 in the B. rapa “Chiifu” version 3.0. This was a distinct genetic region from Rcr1, Rcr2, Rcr4, and Rcr5 for resistance to pathotypes of P. brassicae (Figure 4). The genes Rcr1, Rcr2, and Rcr4, which confer resistance to pathotypes of P. brassica, have previously been mapped into chromosome A03 of B. rapa “Chiifu” version 3.0 at ∼25 Mb region (Chu et al., 2014; Yu et al., 2016; Huang et al., 2017), while Rcr5 was also mapped at ∼24 Mb region in that chromosome (Huang et al., 2019; Figure 4). Rcr1, Rcr2, and Rcr4 were subsequently co-localized with the cloned CR genes CRa/CRbkato (Ueno et al., 2012; Hatakeyama et al., 2017), while Rcr5 was located in a region close to CRa/CRbkato. In addition, resistance genes Rcr1, Rcr2, Rcr4, and Rcr5 were identified for resistance to pathotype 3H, not for 3A, 3D, or 5X. Several CR genes or QTLs, such as PbBa3.2 (Chen et al., 2013), CRd (Pang et al., 2018), Crr3 (Hirai et al., 2004), and CRk (Sakamoto et al., 2008) for resistance to clubroot strains collected from Japan and China, have been mapped into the regions different from CRa/CRbkato. Similarly, BraA.CR.c for resistance was mapped into chromosome A03 in turnip cvs. ECD01, ECD02, and ECD04 (Hirani et al., 2018). The relationship of Rcr10ECD01 to these previously identified genes needs to be determined. Also, CRb was identified in a Chinese cabbage cv. “CR Shinki” was originally derived from ECD01 for resistance to P. brassica strains collected in South Korea (Piao et al., 2004). It was located in a genetic region close to CRa/CRbkato. However, no QTL in the CRb region was identified in this study.

A QTL, identified and designated as Rcr9ECD01 (because it was mapped into the genetic region of Rcr9 and was originally derived from B. rapa cv. ECD01), conferred resistance to all four pathotypes (3A, 3D, 3H, and 5X) assessed in this study. Rcr9ECD01 was located on the 2.2 Mb length from 9.3 to 11.5 Mb of B. napus chromosome A08 using QTL analysis. The Rcr9ECD01 interval was confirmed through the identification of PPV with BSA, located in the physical interval 9–12 Mb. The region of Rcr9ECD01 in B. napus corresponded to 12.0–14.5 Mb of A08 in B. rapa “Chiifu” version 3.0 (Figure 4).

Previously, our laboratory had identified Rcr9 for resistance to pathotype 5X in B. rapa breeding line T19, which originated from German turnip cv. “Pluto” (Yu et al., 2017). The proposed position of Rcr9 spanned a large interval (6.48 Mb) of chromosome A08, including the genome region of Rcr3 and Rcr9ECD01. However, several breeding lines that carried Rcr9 were resistant to 5X, but not to 3A, 3D (Yu, unpublished), and 3H (Yu et al., 2017). This difference in phenotype indicated that Rcr9 differed from Rcr9ECD01. Another resistance gene, designated as Rcr9wa, has also been identified from a turnip differential line in the ECD. It originated from cv. “Waaslander” (ECD04), provided resistance to pathotype 5X, and was mapped into the same region as Rcr9 (Karim et al., 2020). Rcr9wa was mapped based on flanking markers into 12.3–12.6 Mb of chromosome A08 (smaller interval than Rcr9). In addition, another resistance gene originated from cv. “Waaslander” and conferred resistance to pathotype 3H, designated as Rcr3, has been mapped into chromosome A08, flanked by SNP markers in position 11.3–11.6 Mb in the B. rapa “Chiifu” reference genome version 3.0 (Karim et al., 2020). The position of Rcr3 was separated from Rcr9ECD01 (Figure 4). Also, gene BraA.CR.b for resistance to pathotype 3H was previously identified from the turnip differentials ECD01, ECD02, ECD03, and ECD04 and mapped into chromosome A08 (Hirani et al., 2018), but no information on the genome region corresponding to the B. rapa “Chiifu” reference genome version 3.0 was provided. Several genes for resistance to collections of P. brassicae from Japan and China, including Crr1 (Suwabe et al., 2003), CRs (Laila et al., 2019), PbBa8.1 (Chen et al., 2013), and qBrCR38-2 (Zhu et al., 2019), have also been mapped into chromosome A08. The cloned CR gene Crr1 was highly homologous to Bra020861 in the B. rapa reference genome version 1.5 and to BraA08g014480 in the B. rapa reference genome version 3.0, which is located in the Rcr9ECD01 genomic region. However, breeding lines carrying Crr1 gene did not show resistance to the strains of P. brassica used in this study (Yu, unpublished). Therefore, Rcr9ECD01 is unlikely the same as Crr1. The relationship of Rcr9ECD01 with CRs (Laila et al., 2019), PbBa8.1 (Chen et al., 2013), and qBrCR38-2 needs to be determined.

CRc was identified in the Chinese cabbage cv. “CR Kanko” derived from “Debra,” which was located into chromosome A02 (Sakamoto et al., 2008). However, this gene was not found in the DH population used for this study.

Analysis of QTLs has been used for the identification of several major genes for resistance to clubroot (Yu et al., 2017). A QTL that can be consistently detected with a PVE of >10% of trait value can be designated as the main effect QTL or major QTL (Wang et al., 2019). In this study, QTLs Rcr10ECD01 and Rcr9ECD01 were identified with 16.2 to 43.3% PVE. Rcr10ECD01 was identified based on the response to inoculation with pathotypes 3A, 3D, and 3H. Rcr9ECD01 was identified based on the response to inoculation with all of the pathotypes used in this study. Therefore, both Rcr10ECD01 and Rcr9ECD01 appear to be major QTLs. The presence of the two major QTLs was also confirmed through BSA, which is consistent with the result obtained from the QTL analysis.

Clubroot severity in the DH lines in response to inoculation with the individual pathotypes was highly correlated, which indicated that resistance to these pathotypes was likely controlled by the same gene or tightly linked genes. However, the identification of QTLs in this study was based on relatively rough gene mapping, so it could not be determined if resistance to the pathotypes was controlled by a single gene or tightly linked genes. More detailed studies are in progress.
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Crop wild species are increasingly important for crop improvement. Peanut (Arachis hypogaea L.) wild relatives comprise a diverse genetic pool that is being used to broaden its narrow genetic base. Peanut is an allotetraploid species extremely susceptible to peanut root-knot nematode (PRKN) Meloidogyne arenaria. Current resistant cultivars rely on a single introgression for PRKN resistance incorporated from the wild relative Arachis cardenasii, which could be overcome as a result of the emergence of virulent nematode populations. Therefore, new sources of resistance may be needed. Near-immunity has been found in the peanut wild relative Arachis stenosperma. The two loci controlling the resistance, present on chromosomes A02 and A09, have been validated in tetraploid lines and have been shown to reduce nematode reproduction by up to 98%. To incorporate these new resistance QTL into cultivated peanut, we used a marker-assisted backcrossing approach, using PRKN A. stenosperma-derived resistant lines as donor parents. Four cycles of backcrossing were completed, and SNP assays linked to the QTL were used for foreground selection. In each backcross generation seed weight, length, and width were measured, and based on a statistical analysis we observed that only one generation of backcrossing was required to recover the elite peanut’s seed size. A populating of 271 BC3F1 lines was genome-wide genotyped to characterize the introgressions across the genome. Phenotypic information for leaf spot incidence and domestication traits (seed size, fertility, plant architecture, and flower color) were recorded. Correlations between the wild introgressions in different chromosomes and the phenotypic data allowed us to identify candidate regions controlling these domestication traits. Finally, PRKN resistance was validated in BC3F3 lines. We observed that the QTL in A02 and/or large introgression in A09 are needed for resistance. This present work represents an important step toward the development of new high-yielding and nematode-resistant peanut cultivars.

Keywords: wild crop relatives, Arachis, peanut, root-knot nematode, Meloidogyne arenaria, marker-assisted backcrossing, domestication


INTRODUCTION

Arachis hypogaea L., with a common name of peanut or groundnut, is an important oil, food, and fodder crop cultivated worldwide with an annual production of 66.3 million tons and grown on 34.1 Mha (FAOSTAT, 2021). Peanut is an allotetraploid species (AABB, 2n = 4x = 40), with a recent and unique polypoid origin, which occurred 5 to 10 thousand years ago (Bertioli et al., 2019, 2020). This narrow genetic base and limited gene flow with its genetically diverse diploid wild relatives resulted in a lack of strong resistance alleles for pests and diseases in the primary gene pool. One important pest is the peanut root-knot nematode (PRKN) (Meloidogyne arenaria) (Holbrook and Stalker, 2003). It causes yield losses greater than 50% in infested fields, and at times, 100% losses in heavily infested areas of fields have been reported (Dickson and De Waele, 2005; Timper et al., 2018). In the United States, M. arenaria is the most damaging nematode for peanut (Timper et al., 2018). Chemical control is one option, but is costly, hazardous to human health, and can damage the environment (Oka, 2020). Crop rotation is also effective, but with susceptible cultivars, the constraints on the frequency at which peanut can be grown reduce agronomic and financial sustainability. The use of high-yielding and nematode-resistant cultivars in combination with rotation is the most efficient and effective way to control nematode populations and maintain yield while reducing the use of nematicides.

Strong resistance to many pests and diseases is limited in the A. hypogaea primary gene pool (Stalker, 2017), which imposes constraints for crop improvement using cultivated germplasm (Nelson et al., 1989; Noe et al., 1992). Yet, the wild relatives comprise a diverse genetic pool that has the potential to broaden a peanut’s genetic base and to improve its performance under pest/disease pressure (Stalker, 2017). Previously, successful transfer of root-knot nematode resistance into cultivated peanut was accomplished through backcrossing schemes involving a synthetic allotetraploid (Simpson and Starr, 2001). This resistance is derived from introgression of a large segment on chromosome A09 from the wild species Arachis cardenasii (Nagy et al., 2010; Chu et al., 2016), and is present in several commercial cultivars (Georgia-14N, TifNV-High O/L, Tifguard, NemaTAM, and Webb) (Simpson et al., 2003, 2013; Holbrook et al., 2008, 2017; Branch and Brenneman, 2015). Although this resistance has been durable thus far, occasional resistance breakdown has been reported (Holbrook CC, personal communication). Therefore, it is important to incorporate new sources of resistance to reduce the risk of selection of a virulent population of M. arenaria and to guarantee continued protection of the peanut crop from losses due to PRKN.

The peanut wild relative Arachis stenosperma PI666100/V10309 has been described as highly resistant to peanut root-knot nematode (Proite et al., 2008). Previously, three quantitative trait loci (QTL) (on chromosomes A02, A04, and A09) were identified in the diploid genome of Arachis stenosperma (Leal-Bertioli et al., 2016). Later, segments of both chromosomes A02 and A09, that provide near immunity, were mapped using a segregating population derived from a cross between A. hypogaea and the synthetic allotetraploid BatSten1 (Bertioli et al., 2021a), and validated in a tetraploid background (Ballén-Taborda et al., 2019, 2021). The main objective of this study was to incorporate PRKN resistance QTL from A. stenosperma into elite peanut. To accomplish this goal, a marker-assisted backcross breeding approach was employed and BatSten1 was used as the donor parent. Four cycles of backcrossing were completed with genetic foreground and background selection and phenotypic characterization were performed in each generation. Correlations between the wild introgressions across the genome and the phenotypic data allowed us to identify candidate regions controlling traits measured in the BC3F1 population.

This work is key to developing new high-yielding peanut cultivars with a new and strong resistance against the peanut root-knot nematode. Additionally, single nucleotide polymorphism (SNP) markers tightly linked to the QTL are described to facilitate the introgression of A. stenosperma resistance into different elite recipient lines. In the near future, we expect to release advanced introgression lines that incorporate strong PRKN resistance with attached molecular information, that can be used directly in breeding programs in areas where PRKN is a constraint for peanut cultivation.



MATERIALS AND METHODS


Plant Materials

The synthetic allotetraploid BatSten1 PI 695418 {[Arachis batizocoi PI298639/K9484 x A. stenosperma PI666100/V10309](2n = 4x = 40)} (Bertioli et al., 2021a) was used to introgress the nematode resistance QTL from A. stenosperma into tetraploid peanut. An F2 population was created by selfing an F1 derived from a cross between A. hypogaea cv. Runner IAC-886 (herein called Runner-886) and BatSten1, and then used for QTL mapping (Ballén-Taborda et al., 2019). From this population, four superior F2 lines (F2-7, F2-13, F2-34, and F2-73) were selected based on (1) better vigor, as visually more leaf biomass; (2) good agronomic traits; (3) late leaf spot (LLS) and PRKN resistance; (4) harboring QTL in A02 and A09 for nematode resistance per molecular genotyping. Six F2-derived F3 (F2:3) homozygous progeny from F2:3-7 and F2:3-34, with validated resistance to PRKN (Ballén-Taborda et al., 2021), were used as initial donor parents in a backcrossing scheme (Figure 1, red boxes). For incorporation of resistance from A. stenosperma into peanut, we used three susceptible recurrent parents, which are TifGP-2, 5-646-10, and 13-1014. For pyramiding resistances from both wild species A. stenosperma and A. cardenasii, we used two resistant lines, which are 13-2113 and 13-1125. (1) TifGP-2 is a breeding line with good yield and grade, and normal oleic content (Holbrook et al., 2012); (2) 5-646-10 is derived from the cross Florida-07 x Tifguard, with good yield and grade, and high oleic/linoleic fatty acid ratio (Holbrook, CC, unpublished data); (3) 13-1014 is derived from [C1805-617-1 (Florida-07 x Tifguard) x GA-06G], with high oleic/linoleic fatty acid ratio (Holbrook, CC, unpublished data); (4) 13-2113 is derived from [C1805-2-9-16 (Florida-07 x Tifguard) x TifGP-2], a high oleic/linoleic fatty acid ratio, that was included in the second cycle only (Holbrook, CC, unpublished data); (5) 13-1125 breeding line was included in the fourth cycle only (Holbrook, CC, unpublished data) (Figure 1, blue boxes).
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FIGURE 1. Schematic of the marker-assisted backcrossing scheme for incorporation of peanut root-knot nematode resistance from the wild species A. stenosperma V10309 into peanut breeding lines from Tifton, GA. Superior F2-derived F3 lines (Ballén-Taborda et al., 2019) were selected as donor parents (DP, red boxes). Recurrent parents (RP, blue boxes) included TifGP-2, 5-646-10, 13-1014, 13-2113, and 13-1125. In each cycle, KASP genotyping was performed to identify lines carrying resistance loci in chromosomes A02 and A09 (Marker-assisted selection – MAS) (green checkmark) (Supplementary Tables 1, 2, gray-shaded markers). BCnFn progeny from each cycle were used as male parents for the next (orange boxes). All BCnFns were genotyped for seed size (weight, length, and width) (seed symbol). BC2F1s were genome-wide genotyped and phenotyped for PRKN resistance for validation (green circle and nematode symbol) (Ballén-Taborda et al., 2021) and pollen viability was studied (pollen symbol). BC3F1s were subjected to genome-wide genotyping for characterization of introgressions (green circle) and phenotyped for leaf spot incidence, fertility, architecture, and flower color (indicated by leaf spot, brown arrow, architecture, and flower symbols, respectively). BC3F2s were phenotyped for leaf spot incidence, architecture, branching, and extra leaves (indicated by leaf spots, architecture, branching, and leaves symbols, respectively). BC3F3s were phenotyped for PRKN resistance and KASP genotyped (green checkmark and nematode symbol). Self-pollination is represented by ⊗.




Marker-Assisted Breeding

A marker-assisted backcrossing (MABC) approach was used to incorporate PRKN resistance from A. stenosperma into cultivated peanut. Four cycles of backcrossing were performed in two different locations: Athens, GA and Tifton, GA under greenhouse conditions. In the first, second, and third cycles, 16 SNP markers linked to the QTL in A02 and A09 (Leal-Bertioli et al., 2016) were used for foreground selection (Supplementary Table 1, gray-shaded markers). For the fourth cycle, 10 new markers were used to finely target these chromosome segments based on high-throughput genotyping of backcross (BC) lines (Ballén-Taborda et al., 2021) (Supplementary Table 2, gray-shaded markers). 60 additional SNPs markers were also developed and are available here for genotypic selection in breeding programs (Supplementary Tables 1, 2, not shaded markers). Progeny from each cycle that harbored segments associated with PRKN resistance were used as male parents for the next backcross cycle (Figure 1, orange boxes). BC4F1s were germinated for seed increase.

Kompetitive Allele-Specific PCR assays (KASP, LGC Biosearch Technologies, Hoddesdon, United Kingdom)1 assays were used for the selection of PRKN resistance alleles. For KASP reactions, genomic DNA was isolated from a small section of the peanut cotyledon opposite to the embryo (seed chip, ∼50-100 mg). DNA was extracted using the DNeasy Plant Mini Kit (QIAGEN, Hilden, DE) according to the manufacturer’s instructions. Each KASP marker consisted of three primers per SNP position (two allele-specific and one common flanking primer). Primers were designed using the web-based program BatchPrimer32 (USDA-ARS, Albany, CA, United States) (You et al., 2008) with the “Allele-specific primers and allele flanking primers” option. Parameters used were 60–120 bp in fragment size, GC content of 30–80%, and Tm between 58 and 60°. KASP primer assay mix per SNP position consisted of 12 ul (100 uM) of each allele-specific primer, 30 ul (100 uM) of the flanking primer, and 46 ul of H2O. Single KASP reactions (5 ul) consisted of 2.5 ul of KASP 2x Master Mix (Low Rox 5000 V4.0), 0.07 ul of KASP primer assay mix, 1.93 ul of water, and 0.5 ul of DNA (10 ng/ul). Two replicates per primer per sample were included in each reaction, as well as no-template controls (NTCs). A C100 touch Thermal Cycler (BIO-RAD, Hercules, CA, United States) was used with the following conditions: 94°C for 15 min; 8 cycles of 94°C for 20 s and touchdown starting at 61°C for 1 min (dropping 6° per cycle); 31 cycles of 94°C for 10 s and 55°C for 1 min; 9 cycles of 94°C for 20 s, and 57°C for 1 min; 4°C hold. Fluorescence was read with a LightCycler® 480 Instrument II (Roche Life Science, Switzerland) and analyzed using the LightCycler® 480 Software (v.1.5.1.62) (Roche Life Science, Switzerland). Finally, data were exported into Microsoft Excel for analysis.



Genome-Wide Genotyping of BC3F1s

Genomic DNA of 271 BC3F1 lines and controls (BatSten1, Runner-886, 5-646-10, 13-1014, TifGP-2, Tifguard, and Tifrunner) were extracted from lyophilized leaves using the DNeasy 96 Plant Kit (QIAGEN, Hilden, DE, United States) according to the manufacturer’s instructions. DNAs were genotyped with the Axiom_Arachis2 SNP array (Clevenger et al., 2018; Korani et al., 2019). Genotypic data was extracted and processed using the Axiom™ Analysis Suite software (v.4.0.3.3) (ThermoFisher Scientific, Waltham, MA, United States). Output was analyzed using custom shell scripts (see below) and resulting data were visualized as a color map in Microsoft Excel. The physical positions of the A-genome markers were determined according to the position of their orthologs in the A. duranensis pseudomolecules and the K-genome markers based on the A. ipaensis pseudomolecules (Bertioli et al., 2016).

The strategy to identify polymorphic SNP markers included two main steps. First, a set of polymorphic SNP markers between parental genotypes (BatSten1 ≠ Runner-886) was extracted. Original genotyping calls were replaced by numbers (“1” for BatSten, “2” for Runner-886, and “3” for a different genotype). Second, SNPs present in the genetic map previously identified (A. stenosperma-specific and A. batizocoi-specific markers) (Ballén-Taborda et al., 2019) were retrieved (Supplementary Script 1). Genotypic data were used to perform the principal component analysis (PCA) using the “dist” function in R.



Peanut Root-Knot Nematode Resistance Validation Using BC3F3s

BC3F3 segregating lines from five BC3F1 families and controls were evaluated for PRKN resistance to further validate the QTL in A02 and/or A09 (Table 1). The experiment included 72 BC3F3 lines, which were selected based on the genotypic information of the BC3F1 generation, by focusing on high cultivar genome recovery (89.1–95.9%) and with superior field performance (data not shown) of the BC3F2 generation during summer 2020. Selected lines included two BC3F3 lineages with the A02-QTL, two with the A09-QTL, one with both A02-QTL and A09-QTL, and one with a large A09-QTL. The synthetic allotetraploid BatSten1 and the cultivar A. hypogea TifNV-High O/L (Holbrook et al., 2017) were used as resistant controls and A. hypogea 5-646-10 and 13-1014 as susceptible controls. To confirm the presence of the QTL, BC3F3s and controls were genotyped using KASP markers (as described in the “Marker-assisted breeding” section). Six KASP markers targeting the bottom of A02 (A02-83,464,195, A02-92,077,207, and A02-92,983,792) and A09 (A09-16,516,448, A09-112309,231 and A09-114,515,959) (Supplementary Table 2) were used. Additionally, Axiom_Arachis2 SNP array genotyping was performed for genome-wide characterization, and data were filtered as described above.


TABLE 1. Average and standard deviation for GI/g and eggs/g measured in BC3F3 lines, resistant, and susceptible controls using a pot bioassay.
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Peanut root-knot nematode (PRKN) populations were cultured and extracted from eggplant (Solanum melongena) to be used as inoculum for bioassays. Second stage juveniles (J2s) were collected from infected roots in a mist chamber every 2–3 days over a week and stored at 10°C until inoculation. Peanut seeds were grown in nursery pots filled with steam-sterilized sandy soil in the greenhouse. Bioassay was performed under greenhouse conditions, in a randomized complete block design with 12 replicates per genotype. Furthermore, 40-day-old plants were inoculated with 6,000 J2s by adding the inoculum in two 2-cm deep holes at the base of the plant. Two months later, plants were uprooted, rinsed to remove soil, assessed for galling, and weighed. Eggs were extracted from roots using 0.5% NaOCl and counted (Hussey and Barker, 1973; Holbrook et al., 2003). Two different traits were measured: (1) galling index (GI), where 0 = no galls, 1 = 1-2 galls, 2 = 3-10 galls, 3 = 11-30 galls, 4 = 31-100 galls and 5 = more than 100 galls (Taylor and Sasser, 1978) and (2) number of eggs. Galling index and number of eggs per root weight (GI/g and eggs/g) were used for resistance assessment. A highly resistant plant was defined as such when the reproduction of nematodes was less than 20% of the reproduction in a susceptible plant (Taylor and Sasser, 1978).



Phenotypic Characterization


Seed Size

In each cycle of backcrossing, 11 BC1F1, 30 BC2F1, 253 BC3F1, 101 BC3F2 and 25 BC4F1 seeds were phenotyped for weight (g), length (mm, longest point) and width (mm, widest point) prior to planting. For controls (A. stenosperma V10309; A. batizocoi K9484; BatSten1; A. hypogaea genotypes, 5-646-10, 13-1014, TifGP-2 and Runner-886), 10 individual seeds were measured (Table 2).


TABLE 2. Average and standard deviation for seed weight, length, and width measured in BCnFn lines, diploid wild species, induced allotetraploid BatSten1, and cultivated controls.
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Pollen Viability (BC2F1s)

Pollen viability (PV) was evaluated for the BC2F1s and controls (Table 3). Flowers were collected early morning (between 8:00 and 10:00 am) and stained with acetocarmine (Heslop-Harrison, 1992). Stained pollen grains were observed and counted under a microscope (40X). Pollen viability from 10 individual flowers (reps) per genotype was assessed as the percentage of stained pollen grains (Gaaliche et al., 2013).


TABLE 3. Average and standard deviation for pollen viability (%) and the number of pods quantified in BC2F1s lines and controls.
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Leaf Spot Incidence, Fertility, Architecture, and Flower Color (BC3F1s)

While the BC3F1s were growing in the greenhouse, segregation for different traits was noticed, including foliar disease incidence, fertility (number of pegs), plant architecture, and flower color (Figures 2A–C). Single plant measurements were recorded. Leaf spot incidence was scored as a categorical variable as: “yes” (1) for A. hypogaea phenotype (susceptible) or “no” (0) for the resistant phenotype (Figure 2A). A total number of pegs was counted for assessment of fertility. Plant architecture or growth habit was scored from 1 to 4, with 1 being erect and 4 for prostrate growth habit (Figure 2B) (Pittman, 1995). Lastly, flower color was scored visually as orange (1) for A. hypogaea phenotype versus yellow (0) for the wild phenotype (Figure 2C).
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FIGURE 2. Phenotypic characterization of advanced backcross population. Leaf spot incidence for BC3F1s and BC3F2s [“yes” (1) or “no” (0)] (A); architecture for BC3F1s and BC3F2s (scores: 1 – erect, 2 and 3 – intermediate, 4 – prostrate, and 5 – dwarf phenotype observed only for BC3F2 generation) (Pittman, 1995) (B); flower color for BC3F1s (scores: Orange – 1 or yellow – 0) (C); variation in branching for BC3F2s (scores: 1 – high, 2 – intermediate and 3 – normal) (D); 1–3 extra leaves in leaflets for BC3F2s (score 0) (E). “*” indicates A. hypogaea phenotype in all the cases.




Leaf Spot Incidence, Architecture, Branching, and Extra Leaves (BC3F2s)

A group of 101 BC3F2 plants from 12 BC3F1 families with a high recurrent parent (A. hypogaea) genome recovery (88.3–97.3%) were selected to create a group of lines carrying different sizes of introgressions in A02 and A09 for future gene cloning experiments. KASP assays targeting ten SNPs at A02-QTL and A09-QTL (Supplementary Table 2, gray-shaded markers) were used to confirm the presence of the QTL. While the plants were growing, several traits were recorded: leaf spot incidence and plant architecture were scored as above, in addition, a score of 5 for dwarf phenotype was included (Figures 2A,B). Branching was scored from an abnormal number of branches (high) (1) to intermediate (2) to normal A. hypogea phenotype (3) (see Figure 2D). Finally, extra leaves in leaflets were observed and scored as 1 for A. hypogaea and 0 for the presence of at least one extra leaf (Figure 2E).




Association Analysis Using the BC3F1 Population

Association between genome-wide genotypic data of BC3F1 lines and phenotypic data of seed weight, length and width, leaf spot incidence, fertility, architecture, and flower color were used to identify candidate wild introgressions that could be controlling these traits. For seed size, leaf spot incidence, fertility, and architecture a Pearson correlation was performed. Flower color was analyzed using a mixed linear model (MLM) in Tassel (v.5) (Ithaca, NY, United States) (Bradbury et al., 2007). A Manhattan plot was created in R using the “qqman” package (Turner, 2014) and thresholds calculated using the “CalcThreshold” package with the Bonferroni method (Hamazaki and Iwata, 2020).



Statistical Analysis

Phenotypic data for seed weight, length and width, pollen viability, and nematode resistance bioassay were analyzed using the package R. A Shapiro-Wilk test was used to test for normal distribution. Non-parametric Kruskal-Wallis one-way analysis of variance (Kruskal and Wallis, 1952) was used to evaluate differences at a 5% level of significance (P < 0.05). For the seed weight, length, and width (transformed to Log10 when needed) the Welch t-test was used to perform pair-wise comparisons between wild accessions, cultivated genotypes, and backcross generations. Additionally, the non-parametric Skillings-Mack test (Chatfield and Mander, 2009) was used to evaluate significant differences for the RCBD nematode bioassay (P < 0.05). Further analysis included the Wilcoxon signed-rank test for pairwise comparisons using false discovery rate (FDR) correction to group samples by significant similarity (P < 0.05).




RESULTS


Marker-Assisted Breeding

Four generations of MABC for introgression of PRKN resistance from A. stenosperma were completed in two locations, Athens, GA, and Tifton, GA under greenhouse conditions (Figure 1). KASP genotyping was performed using 16 (for first, second and third cycles) and 10 SNP markers (fourth cycle) (Supplementary Tables 1, 2, gray-shaded markers). For the first cycle of backcrosses, 38 cross combinations were used, with 19 F2:3 plants as donor male parents and two cultivated peanut female parents, namely, TifGP-2 and 5-646-10. In this cycle, 1,008 potential BC1F1 seeds were harvested, and based on KASP genotyping, 17 were selected for harboring the nematode resistance segments in A02 and A09 (Supplementary Table 3).

For the second cycle, 14 cross combinations were made with four cultivated peanut female parents, TifGP-2, 5-646-10, 13-1014 and 13-2113, and 11 BC1F1 male parents. Here, 61 potential BC2F1 seeds were obtained and genotyped with KASP markers. A total of 21 were selected as they harbored resistance segments in A02 and A09 PRKN resistance QTL (Supplementary Table 4).

For the third cycle of backcrossing, a total of 21 cross combinations were made using 5-646-10 and 13-1014 as female parents and 21 BC2F1 male parents selected the previous year, six of which were shown to be resistant to PRKN (Ballén-Taborda et al., 2021). This resulted in 397 potential BC3F1 seeds (Supplementary Table 5), that were genotypically characterized in two different ways. First, 81 BC3F1 seeds were randomly selected and evaluated for the presence of resistance segments using the KASP assays. From this group, 52 BC3F1s harbored the segments in A02 and A09 from A. stenosperma (Supplementary Table 5). Second, 271 BC3F1s were genome-wide genotyped (see next section).

For the fourth cycle, six cross combinations were used with 5-646-10, 13-1014, and 13-1125 as females and two BC3F2 male parents harboring A02 and A09 loci. Here, 27 potential BC4F1 seeds were obtained and genotyped with KASP markers. A total of 25 were confirmed to harbor PRKN resistance chromosome segments at the bottom of both A02 and A09 (Supplementary Table 6). Three of them could have combined both sources of resistance in A02 from A. stenosperma and A09 from A. cardenasii present in parent 13-1125.



Genome-Wide Genotyping of BC3F1s

To characterize the wild introgressions in the BC3F1 population, 271 lines and controls were genotyped with the Axiom_Arachis2 SNP array. A total of 930 informative polymorphic SNP markers, previously identified and assigned to A and B subgenomes (Ballén-Taborda et al., 2019), were recovered. Among these, 527 markers were located in A-subgenome (A. stenosperma-specific markers) and 403 to B/K-subgenome (A. batizocoi-specific markers). Of the 271 genotyped lines, 253 (93.4%) were true progeny from hybridization and 18 (6.6%) were products of self-pollination (Supplementary Table 7).

Examples of Axiom clustering plots of SNPs linked to QTL in A02 (Supplementary Figures 1A,B) and A09 (Supplementary Figures 1C–E) show the distribution of BC3F1 lines and controls. Red clusters (A02 SNPs) and blue clusters (A09 SNPs) comprise genotypes without the A. stenosperma-derived allele. A. stenosperma was genotyped with the alternate allele. Yellow clusters indicate the backcross lines with incorporated PRKN resistance from A. stenosperma.

The principal component analysis (PCA) performed on the genotyping data, allowed us to observe that the BC3F1s have recovered a high percentage of the A. hypogaea genome. Backcross lines showed a recurrent parent genome recovery between 80.2 and 98.8%, while still carrying between 1.1 and 19.1% of the wild donor genome (Supplementary Figure 2). Additionally, to visualize the distribution of the backcross population according to the proportion of wild introgression (%) in each chromosome, the data was displayed in violin plots. These plots allowed us to observe that the lines were harboring more wild alleles in the A-subgenome than in B-subgenome, especially in chromosomes A02 and A09 where foreground selection was applied during the backcrossing process (Figure 3 and Supplementary Table 7).
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FIGURE 3. Violin plots for the proportion of wild genome (%) (y-axis) in each of the 10 A- and 10 B-subgenome chromosomes (x-axis) for the 271 BC3F1 lines. Black dots indicate each individual BC3F1, and red dots indicate the mean.




Peanut Root-Knot Nematode Resistance Validation Using BC3F3s

To validate the PRKN resistance controlled by QTL in A02 and/or A09, 72 BC3F3 segregating lines, and resistant and susceptible controls were evaluated using a greenhouse pot nematode bioassay and genotyped with both KASP and Affymetrix to confirm the presence of the QTL. Specifically, Affymetrix was completed for genome-wide characterization. Galling index (GI) and number of eggs in relation to root weight (GI/g and eggs/g) allowed us to assess the resistance to M. arenaria within the backcross lines (Table 1).

Resistant controls (BatSten1 and TifNV-High O/L) and susceptible genotypes (5-646-10 and 13-1014) exhibited the expected phenotype. BatSten1 and TifNV-High O/L showed strong resistance, with no or low gall/egg production. In contrast, for 5-646-10 and 13-1014, GI/g fluctuated between 0.31 ± 0.26 and 0.42 ± 0.11 and eggs/g varied between 579.18 ± 855.26 and 1268.64 ± 1046.49 (Figure 4, Table 1 and Supplementary Table 8). BC3F3 lines showed significant differences for GI/g and eggs/g (Kruskal-Wallis, Skillings-Mack and Wilcoxon tests, P < 0.05). Since the BC3F3s were still recombining and segregating for PRKN QTL, to better summarize the results, the lines were grouped according to the segments they were carrying as follows: • Group 1: bottom A02 (A02) (A. stenosperma allele at A02-83,464,195, A02-92,077,207 and A02-92,983,792 → 81.0 – 93.8 Mb); • Group 2: bottom A09 (A09) (A. stenosperma allele at A09-112,309,231 and A09-114,515,959 → 104.6 – 119.8 Mb); • Group 3: large A09 (A09+) (A. stenosperma allele at A09-16,516,448, A09-112,309,231 and A09-114,515,959 → 3.4 – 118.7 Mb); and • Group 4: Both bottom small A02 (A. stenosperma allele at A02-92,077,207 and A02-92,983,792 → 91.6 – 93.8 Mb) and bottom A09 (A02- and A09). According to this grouping, all the backcross materials belonging to groups 1, 3, and 4 exhibited high levels of resistance to PRKN. No or few galls (0.01 ± 0.03–0.17 ± 0.20) and low egg production (0.00 ± 0.00–36.30 ± 83.17) was observed in the infected roots. For groups 3 and 4 galls were observed in the roots, but the production of eggs was inhibited. In contrast, lines in group 2 were susceptible to PRKN by having GI/g and eggs/g values of 0.26 ± 0.19 and 1050.62 ± 1005.38, respectively (Figure 4). For more details of GI/g and eggs/g values for the BC3F3 lines, see Table 1 and Supplementary Table 8.
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FIGURE 4. Boxplot diagrams for Galling index per gram of root (GI/g) (A) and Number of eggs per gram of root (eggs/g) (B) of BC3F3 lines, resistant controls Batsten1 and A. hypogea TifNV-High O/L, and susceptible controls 5-646-10 and 13-1014. BC3F3 lines were grouped according to the A. stenosperma alleles that they are carrying as: • Group 1: bottom A02 (A02) (A. stenosperma allele at A02-83,464,195, A02-92,077,207, and A02-92,983,792); • Group 2: bottom A09 (A09) (A. stenosperma allele at A09-112,309,231 and A09-114,515,959); • Group 3: large A09 (A09+) (A. stenosperma allele at A09-16,516,448, A09-112,309,231 and A09-114,515,959); and • Group 4: Both bottom small A02 (A. stenosperma allele at A02-92,077,207 and A02-92,983,792) and bottom A09 (A02- and A09). The top of the figure indicates the introgression in A02 and A09 from A. stenosperma in blue and SNP markers as black horizontal lines. For TifNV-High O/L, resistance from A. cardenasii is colored in gray. The numbers at the top of the bars indicate the mean ± SD. The numbers above the groups indicate the number of lines included in each group. Complete pedigree in Supplementary Table 8. Black bars across boxes indicate the median and red dot the mean. BC3F3s in salmon color and controls in teal color.




Phenotypic Characterization

A wide variation of morphological and agronomic traits was observed in the backcross populations (BC3F1s and BC3F2s), including seed size, pollen viability, leaf spot incidence, fertility (number of pegs), plant architecture, flower color, branching, and extra leaves (Figure 2). Association analysis between phenotypic information and wild introgressions in the BC3F1 population was performed to identify candidate regions associated with these traits.


Seed Size

Seed weight (g), length (mm) and width (mm) measurements were recorded for 11 BC1F1, 30 BC2F1, 253 BC3F1, 101 BC3F2 and 25 BC4F1 seeds prior to planting, along with wild and cultivated controls. Significant differences were observed between the control genotypes according to the Kruskal-Wallis test and the Wilcoxon Test (P < 0.05), where wild genotypes have significantly smaller and lighter seeds as compared with seed dimensions of cultivated genotypes (Figure 5A, Table 2, and Supplementary Table 9). There was a clear recovery in seed size as early as BC1. According to the Welch t-test, the wild accessions (A. stenosperma V10309, A. batizocoi K9484, and BatSten1) differed significantly from the cultivated genotypes (A. hypogaea 5-646-10, 13-1014, TifGP-2 and Runner-886) and the backcross generations (BC1F1, BC2F1, BC3F1, BC3F2, and BC4F1) for weight, length, and width (P < 0.05). When comparing seed measurements of cultivated genotypes with each of the BC generations and between BC generations, in most of the cases there were no significant differences in seed size (P < 0.05 and P < 0.01) (Welch t-test matrix in Supplementary Table 9). Between the BC lines seed size exhibited variation, and on average the seed weight fluctuated from 0.66 g (BC3F1s) and 0.72 g (BC2F1s and BC3F2s), but having weight as high as 1.47 g when compared to the cultivated controls that exhibited similar seed weight of 0.74 g (Runner-886) and 0.84 g (13-1014), with the highest being 1.03 g. In this study, we presented data for the weight (Figure 5A), a similar tendency was observed for length and width (Table 2 and Supplementary Table 9). Based on the Pearson correlations performed between the seed weight, length, and width and the genotypic data for the BC3F1s potential A. hypogaea loci associated with large seed size were identified in chromosomes A03, B01, and B08 (Supplementary Figures 3A–C and Supplementary Table 10).
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FIGURE 5. Violin plots for the distribution of seed weight (g) (y-axis) for wild controls, several backcross generations (BC1F1s, BC2F1s, BC3F1s, BC3F2s, and BC4F1s) and cultivated genotypes (x-axis); Black dots indicate each individual line and red dot the mean (A). Photo of seeds of diploid species (A. stenosperma and A. batizocoi), synthetic allotetraploid BatSten1, cultivated genotypes (Runner-886, 5-646-10, 13-1014, TifGP-2), and seeds from BC3F1 lines (B). Groups of 15 seeds are presented. Recurrent parent (RP) indicated in parenthesis for each BC3F1 line. Complete pedigree in Supplementary Table 7. The same trend for length (mm) and width (mm) was observed (Supplementary Table 9). Refer to Table 2 for average, SD, and statistical analysis for controls.




Pollen Viability (BC2F1s)

Pollen viability (PV) of wild accessions A. stenosperma, A. batizocoi, the induced allotetraploid BatSten1, recurrent parents 5-646-10 and 13-1014 and 9 BC2F1 lines was evaluated to estimate differences in viability within BC lines. Individuals showed varying degrees of pollen viability, ranging from 65.6 to 94.9% (Table 3). In control genotypes, PV varied from 71.7 to 94.9% and in the BC2F1s, it fluctuated from 65.6 to 89.8%. Although significant differences were observed between the genotypes according to the Kruskal-Wallis test and the Wilcoxon Test (P < 0.05), no grouping trend was observed. In summary, high pollen viability in the cultivated genotypes (5-646-10 and 13-1014), A. stenosperma, and some BC2F1s were observed, and lower pollen viability was observed for BatSten1, A. batizocoi, and other BC2F1s (Supplementary Figure 4). A low correlation between pollen viability and the number of produced pods per plant was observed (–0.007, p < 0.05).



Leaf Spot Incidence, Fertility, Architecture, and Flower Color (BC3F1s)

For the BC3F1 population that included 253 lines, segregation for leaf spot incidence, fertility, architecture, and flower color was noticed while growing in the greenhouse in a randomized position (Figures 2A–C). 150 lines exhibited signs of leaf spot, while 103 did not (Supplementary Figure 5A). Pearson correlation performed between phenotypic and genotypic data allowed us to identify two candidate loci in chromosomes A06 and B02 that could be associated with resistance to leaf spot (Supplementary Figure 3D) and are now being tested using BC3F2 progeny (data not shown). The number of pegs was counted as an indication of fertility. The distribution of the data showed that the majority of the lines had a similar number of pegs as the recurrent parents 5-646-10 and 13-1014, with an average of 13.15 ± 7.83 total number of pegs (Supplementary Figure 5B). For this trait, A. hypogaea loci in chromosomes A02 and A09 could be associated with fewer pegs (Supplementary Figure 3E). For architecture, around two-thirds of the lines had the cultivated growth habit phenotype (163) and one-third of the lines were exhibiting an erect growth habit (84) (six were too small to be scored) (Figure 2B and Supplementary Figure 5C). According to the association analysis, SNPs in chromosomes A01 and B08 could be associated with changes in plant architecture (Supplementary Figure 3F). Most lines exhibited orange flowers (245) while eight had the yellow color, a common trait within Arachis wild species (Supplementary Figure 5D). After running the mixed linear model in Tassel, introgression on the top of chromosome A05 (7.92–8.62 Mb) was found to be associated with the change in flower color from orange to yellow. In this study, four markers were found to be linked with this trait (A05-7,919,003, A05-7,958,564, A05-8,040,921, A05-8,621,849) (Supplementary Figure 6).



Leaf Spot Incidence, Architecture, Branching, and Extra Leaves (BC3F2s)

Segregation for leaf spot incidence, architecture, branching, and extra leaves was also noticed among the 101 BC3F2 lines (two of them were too small to be scored) (Supplementary Table 11). 38 lines had leaf spots and 61 did not (Supplementary Figure 5E). Around half of the lines had the cultivated growth habit phenotype (51), some exhibiting an erect phenotype (41) and a few with a dwarf phenotype (7) (Supplementary Figure 5F). Most lines showed the peanut phenotype of normal branching (79 with score 3) and some presented a high number of stems (20 with score 1 or 2) (Supplementary Figure 5G). Finally, at least one extra leaflet was observed in 70 plants (score 0) and 31 did not display this unexpected phenotype (score 1) (Supplementary Figure 5H).





DISCUSSION

Crop wild relatives (CWR) have become an important source to reintroduce genetic diversity for crop improvement (Dempewolf et al., 2017). For peanut breeding, diploid wild relatives comprise a diverse genetic pool that is being used to broaden peanut’s genetic base (Stalker, 2017). Transferring wild beneficial alleles requires an additional step of developing peanut compatible wild-derived synthetic allotetraploids (Suassuna et al., 2020). To incorporate root-knot nematode resistance from A. cardenasii, synthetic allotetraploids were successfully developed and used (Simpson et al., 1993; Simpson and Starr, 2001). The introgression in A09 controlling PRKN resistance (Nagy et al., 2010; Chu et al., 2016) is present in several commercial cultivars (Simpson et al., 2003, 2013; Holbrook et al., 2008, 2017; Branch and Brenneman, 2015) and has provided a strong resistance over the years. Since the resistance to PRKN is controlled by a single source, there is a risk of virulent nematode populations developing. Therefore, the incorporation of new alleles is essential to provide stronger and more durable resistance against PRKN.

One of the peanut wild relatives A. stenosperma PI666100/V10309 has been confirmed to be resistant to peanut root-knot nematode, M. arenaria (Proite et al., 2008), and genes involved in plant defense against this pathogen have been described (Proite et al., 2007; Guimarães et al., 2010; Mota et al., 2018; Araujo et al., 2021). The present work reports the successful incorporation of two new and strong PRKN resistance loci from A. stenosperma previously mapped and validated (Leal-Bertioli et al., 2016; Ballén-Taborda et al., 2019, 2021). Here, marker-assisted backcross breeding was employed to complete four cycles, and genetic and phenotypic characterization was performed (Figure 1). As pyramiding of major R-genes has been proven to be valuable to extend durability and effectiveness of major genes (Pilet-Nayel et al., 2017), in the fourth cycle the elite breeding line 13-1125 harboring nematode resistance from A. cardenasii was included as a female parent (Holbrook, CC, unpublished data). Based on KASP genotyping, three BC lines could have pyramided both sources of resistance in A02 from A. stenosperma and A09 from A. cardenasii (Supplementary Tables 6, 12, highlighted in green).

A population of 253 true third backcross lines were subjected to genome-wide genotyping and phenotypically characterized for association analysis. These lines originally selected for PRKN resistance had wild introgressions between 1.1 and 19.1% across the genome. Having a high percentage of the wild genome would indicate that additional cycles of backcrossing are needed to assure maximum elite genome representation; therefore, we completed the fourth cycle. However, segregation for several phenotypic attributes (seed size, pollen viability, leaf spot incidence, fertility, architecture, flower color, branching, and extra leaves) was observed, which indicated that wild introgressions in different chromosomes could be controlling these traits and are worth further study. The whole BC3 population has been carried forward not only to develop nematode-resistant cultivars but additionally to study resistances to other pests and diseases and to develop a CSSL-like population that would be useful for precise mapping of QTL.

Based on the data of agronomic and morphological traits measured in several generations, most lines exhibited elite peanut traits and were similar to recurrent parental breeding lines. First, seed size in each generation of introgression was examined. This was done to observe the seed size recovery as we progressed through our MABC scheme, as seed size is an important trait associated with germination, vigor, and yield, and is important for the peanut industry and market (Singh et al., 1998). For the backcross lines, our measurements showed that seed size was not progressively increased as the wild genome representation was reduced in each generation. On the contrary, we observed that only one backcross generation was required to recover the elite peanut’s large seeds and that in later generations the average seed size did not change significantly (Figure 5B). We also observed that larger and heavier seeds were produced by some BC lines, by having seed weight as high as 1.47 g compared to the cultivated controls that exhibited 1.03 g as the heaviest seed. Similar behavior was observed for length and width. An explanation for the transgressive segregation in seed size could be due to the presence of wild alleles that are contributing to larger seed size, as reported before in interspecific peanut progenies (Fonceka et al., 2012a; Suassuna et al., 2015). Although the correlation analysis showed candidate regions in chromosomes A03, B01, and B08, this requires further validation as these have not been reported previously.

Results for pollen viability measured in the BC2 generation agreed with that of Leal-Bertioli et al. (2015) as cultivated peanut genotypes and A. stenosperma showed a high pollen viability (average of 91.9%) and most of the BC2F1 lines had lower numbers (average of 79.2%) reflecting the genetic distance of the parental genotypes. Our results showed little variation regardless of the genotype, which suggests that pollen viability is not a key contributor to the production of seeds within the backcross lines (Leal-Bertioli et al., 2015). This was also corroborated by the low correlation between pollen staining and pod production (–0.007, P < 0.05). The correlation analysis on the BC3 generation, also allowed us to identify candidate introgressions for leaf spot reduction in chromosomes A06 and B02. For flower color, the region at the top of chromosome A05 (7.92 – 8.62 Mbp) associated with the yellow color trait is consistent with previous reports, and a result of homologous recombination (Fonceka et al., 2012b; Bertioli et al., 2019).

Although most of the BC lines had domesticated features, we also observed some variation in fertility (number of pegs), plant architecture, branching, and extra leaves. Further analyses will be required to fully understand the candidate wild introgressions that are controlling these traits. Finally, in the case of extra leaflets, this is a phenotype that has been described as a novel heterozygous trait that continues to segregate even after several generations of selfing (Branch et al., 2020).


Validation of Nematode Resistance

In this study, resistance to PRKN was successfully validated in a set of BC3F3 lines. The bottom of A02 (81.0 – 93.8 Mb) (Figure 4, group 1) provided strong resistance as previously described and validated (Leal-Bertioli et al., 2016; Ballén-Taborda et al., 2019, 2021). In the case of the QTL in chromosome A09, we observed that the small introgression at the bottom (104.6 – 119.8 Mb) was insufficient to stop nematode development (group 2) and that a larger segment at the top-bottom of A09 (3.4 – 118.7 Mb) was required to provide resistance, especially for preventing eggs production (group 3). It is possible that the presence of wild alleles in A04 associated with susceptibility in group 2 could be acting against resistance as previously described (Ballén-Taborda et al., 2019). When the plants were harboring both bottom small A02 (91.6 – 93.8 Mb) and bottom A09 (104.6 – 119.8 Mb) (group 4) we would expect to observe inhibition of both galls and egg production since A02 was present; however, galls were present in the roots. Field testing is in progress to test the stability of the resistance and for allele fixation through selfing.



Implications for Breeding for Disease Resistance

Genetic maps, quantitative trait loci (QTL), and marker-phenotype associations have been reported for numerous crops and traits (Collard and Mackill, 2008). Despite this, examples of QTL incorporation in plant breeding programs are lower than expected (Bernardo, 2016). This work represents a successful example of QTL introgression from a wild relative into an elite peanut despite the genetic incompatibilities. This provides an alternative to the only source of root-knot resistance currently deployed in the peanut crop, derived from A. cardenasii (Simpson and Starr, 2001).

The population of advanced peanut backcross lines that we have developed during this work has wild chromosome segments through much of the genome, distributed in different ways in different lines. They are being tested and advanced in several locations, and the best performing lines are being selected for germplasm release. The PRKN resistance alleles have been successfully validated and DNA markers are now available to facilitate the marker-assisted selection. Furthermore, because of the diverse wild chromosome segments in this population, we also anticipate that it has other disease resistances and traits of value to the peanut crop. We anticipate that, over time, these backcrossed lines will impact peanut production by delivering several new traits to the peanut crop, similar to the case of North Carolina peanut lines with A. cardenasii segments that have provided resistance to late leaf spot, rust, and web blotch in numerous countries around the world (Bertioli et al., 2021b).
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Fusarium root rot, caused by a complex of Fusarium spp., is a major disease of field pea (Pisum sativum). The development of genetic resistance is the most promising approach to manage the disease, but no pea germplasm has been identified that is completely resistant to root rot. The aim of this study was to detect quantitative trait loci (QTL) conferring partial resistance to root rot and wilting, caused by five fungal isolates representing Fusarium solani, F. avenaceum, F. acuminatum, F. proliferatum, and F. graminearum. Evaluation of the root rot-tolerant cultivar “00-2067” and susceptible cultivar “Reward” was carried out with the five species. There was a significant difference (p < 0.001) between the mean root rot values of the two cultivars inoculated with the F. avenaceum (F4A) and F. graminearum (FG2) isolates. Therefore, in the QTL study, the F8 recombinant inbred line (RIL) population derived from “Reward” × “00-2067” was inoculated in the greenhouse (4 ×) with only F4A and FG2. The parents and F8 population were genotyped using 13.2K single nucleotide polymorphisms (SNPs) and 222 simple sequence repeat (SSR) markers. A significant genotypic effect (p < 0.05) and high heritability (79% to 92.1%) were observed for disease severity, vigor, and plant height following inoculation with F4A and FG2. Significant correlation coefficients were detected among and within all traits. This suggested that a high proportion of the genetic variance was transmitted from the parents to the progeny. However, no significant QTL (LOD > 3) were detected for the RILs inoculated with F4A. In the case of the RILs inoculated with FG2, 5 QTL for root rot severity and 3 QTL each for vigor and plant height were detected. The most stable QTL for plant height (Hgt-Ps3.1) was detected on Chrom5/LGIII. The two most stable QTL for partial resistance to FG2, Fg-Ps4.1, and Fg-Ps4.2 were located in a 15.1-cM and 11.2-cM genomic region, respectively, on Chrom4/LGIV. The most stable QTL for vigor (Vig-Ps4.1) was found in the same region. Twenty-five major and moderate effect digenic epistatic interactions were detected. The identified region on chrom4/LGIV could be important for resistance breeding and marker development.

Keywords: Pisum sativum L., recombinant inbred lines (RIL), conidia suspension, SNP and SSR markers, linkage map construction and QTL mapping


INTRODUCTION

Globally, root rot is estimated to cause yield reductions of 10–30% in pulse crops, but losses can be as high as 100% in crops with severe infections under ideal environmental conditions (Oyarzun, 1993; Schneider et al., 2001; Schwartz et al., 2005; Cichy et al., 2007). As such, root rot is one of the most devastating diseases of field pea and other pulse crops in Canada and worldwide (Hwang and Chang, 1989; Feng et al., 2010; Chatterton et al., 2015, 2019; Gossen et al., 2016; Chang et al., 2017; Safarieskandari et al., 2020; Wu et al., 2021). The causal organisms of the pea root rot complex (PRRC) are soil-borne fungal and fungal-like organisms that include Fusarium spp., Aphanomyces euteiches, Pythium spp., Phytophthora spp., Rhizoctonia spp., Didymella spp. (formerly Mycosphaerella spp.), and Ascochyta spp. (Fletcher et al., 1991; Kaiser, 1992; Hwang et al., 1994; Xue et al., 1998; Bailey et al., 2003; Chang et al., 2005, 2013, 2014, 2017; Tyler, 2007; Díaz Arias et al., 2011).

Given their abundance and wide host range, the vast majority of the PRRC organisms are Fusarium species, although these may exhibit variable virulence toward different hosts. The various species identified in the Canadian prairies include F. solani, F. avenaceum, F. oxysporum, F. graminearum, F. culmorum, F. acuminatum, F. redolens, F. sambucinum var. coeruleum, F. equiseti, F. poae, F. sporotrichioides, and F. tabacinum (Kraft and Pfleger, 2001; Fernandez, 2007; Fernandez et al., 2008; Feng et al., 2010; Chittem et al., 2015; Wu et al., 2017; Chang et al., 2018; Zitnick-Anderson et al., 2018). Among these, F. avenaceum, F. solani, and F. oxysporum were reported to be the primary species causing significant Fusarium root rot (FRR) in the major field pea cultivation regions in Canada and worldwide (Kraft, 1981; Kraft and Pfleger, 2001; Wille et al., 2020).

The Fusarium graminearum species complex (FGSC) includes the major pathogens causing Fusarium head blight (FHB) of wheat, barley, oats, and other small grain cereals (O’Donnell et al., 2008). On cereal hosts, FGSC produces various mycotoxins known as trichothecenes [e.g., deoxynivalenol (DON), nivalenol (NIV), zearalenone (ZEN), and fumonisin B1 (FB1)], which are detrimental to human and animal health when ingested (van der Lee et al., 2015). While F. graminearum mainly affects cereals, this pathogen has been isolated from field pea in Canada, the USA, and Lithuania (Feng et al., 2010; Chittem et al., 2015; Rasiukevičiūtė et al., 2019). Rasiukevičiūtė et al. (2019) reported that field pea was the non-cereal crop most susceptible to F. graminearum compared with faba bean, fodder beet, oilseed rape, potato, and sugar beet.

At present, there are no sources of complete resistance to PRRC in field pea. Furthermore, higher global temperatures and excessive soil moisture associated with climate change have led to the increased incidence and severity of many plant diseases (Chakraborty et al., 2000; Dorrance et al., 2003; Gautam et al., 2013; Elad and Pertot, 2014). While tillage was reported to be beneficial to the soil environment, it did not suppress the development of FRR in field pea (Bailey et al., 1992). Seedling data and depth were reported to affect FRR in lentil (Hwang et al., 2000), but not in field pea (Chang et al., 2013). Crop rotations longer than 4 years are recommended for the management of root rot, but these are not always practical (Hwang and Chang, 1989; Bainard et al., 2017). Fungicidal seed treatments were reported to increase emergence and reduce root rot severity in the early growth stages of pea (Xue et al., 2000; Wu et al., 2019), with Apron Maxx (fludioxonil, metalayxyl-M and S-isomer), prothioconazole, fluopyram, and penthiopyrad, suppressing FRR in greenhouse and field experiments (Avenot and Michailides, 2010; Chang et al., 2013). However, some fungicides can also affect Rhizobia, leading to reductions in nodulation and nitrogen fixation (Chang et al., 2013), and their use is not environmentally friendly.

Genetic resistance offers the most promising way to control FRR and wilt in pea. However, there is no complete resistance to FRR in field pea, and only a few studies have reported QTL associated with partial resistance to this disease (Feng et al., 2011; McPhee et al., 2012; Coyne et al., 2015, 2019). Coyne et al. (2015, 2019) identified the major QTL for partial resistance to F. solani, Fsp-Ps2.1, to be on LGII (Chromosome 6), while four minor QTL were found on LGIII, IV, VI, and VII (Chromosomes 5, 4, 1, and 7, respectively). These QTL explained 44.4–53.4% of the total variance for resistance (Coyne et al., 2019). McPhee et al. (2012) detected one major QTL on LGIV (Chromosome 4) and two minor QTL on LGIII (Chromosome 5) to be associated with partial resistance to F. oxysporum race 2. The major QTL identified by McPhee et al. (2012), Fnw4.1, explained 68–80% of the phenotypic variance. Feng et al. (2011) identified one QTL controlling resistance to F. avenaceum on LGVII (Chromosome 7) in a rough map generated with 14 SSRs. The QTL identified in most of these studies had very large confidence intervals due to the limited number of markers used. The low marker density makes it difficult to apply the identified markers in pea breeding.

On the Canadian prairies, cereals are grown in tight rotations with canola, while the cultivation of field pea and other pulses is increasing (Bekkering, 2013; Gill, 2018). Boom-and-bust-type cycles of root rot diseases were highly correlated with crop rotation practices (Govaerts et al., 2007; Su et al., 2021). Therefore, the order of cultivation of crops in a rotation is important. The increased incidence and severity of FRR in field pea make the study of the genetic resistance to different Fusarium spp. an important research objective.

Therefore, the objectives of this study were to: (1) evaluate the partially resistant pea cultivar “00-2067” for resistance to different Fusarium spp. recovered from surveys for root rot in Alberta, Canada; (2) map the QTL associated with partial resistance to FRR using a segregating recombinant inbred line (RIL) pea population genotyped by Wu et al. (2021) and the most virulent of the Fusarium isolates; and (3) determine the stability of the QTL, accounting for disease severity, vigor, and plant height.



MATERIALS AND METHODS


Plant Materials

One-hundred thirty-five RILs used by Wu et al. (2021) for mapping the QTLs associated with partial resistance to Aphanomyces root rot were included in this study. In brief, the Aphanomyces root rot-resistant pea parent “00-2067” developed by Dr. J. Kraft and V. A. Coffman at the Irrigated Agriculture Research and Extension Center in Prosser, WA, United States (Conner et al., 2013; Wu et al., 2021), was used in genetic crosses with the susceptible parent “Reward” (Bing et al., 2006) to produce F1 plants, which were then used to develop an F8 RIL population (Supplementary Figure 1) by the single-seed descent (SSD) method (Brim, 1966).



Fusarium Isolates

Five single-spore isolates (SSI), S4C (F. solani), F4A (F. avenaceum), F037 (F. acuminatum), F039 (F. proliferatum), and FG2 (F. graminearum), representing the Fusarium species most frequently recovered from symptomatic pea plants in root rot surveys in Alberta, were used to screen the parental cultivars “00-2067” and “Reward.” Briefly, to obtain the SSIs, surface-sterilized pieces of root tissue with disease lesions were placed on potato dextrose agar (PDA) and incubated at 25°C for 2–3 days and then transferred to the peptone-pentachloronitrobenzene (PCNB) medium for further selection. Mycelial tips of the fungal isolates were cut from selected colonies under a stereomicroscope (Zeiss Axio Scope A1, Carl Zeiss Canada Ltd., Canada), and the water agar (WA) procedure was used to obtain SSI (Zitnick-Anderson et al., 2020). The species designation of each of the SSIs was confirmed based on morphology and evaluation with the PCR primer sets ITS4/ITS5 and EF-1/EF-2, while isolate virulence was confirmed by fulfilling Koch’s postulates (Feng et al., 2010; Chen et al., 2014; Zhou et al., 2014; Wu et al., 2017; Chang et al., 2018; Zitnick-Anderson et al., 2018).



Inoculum Production

Conidial suspensions of the five isolates were generated following Son et al. (2013). Pure cultures of each Fusarium spp. were grown in Petri dishes on PDA under darkness at room temperature for 4–6 weeks. Sterile-distilled water was added to each Petri dish, and the surface of each colony was gently scraped with a sterile inoculation needle to dislodge the spores (and hyphal fragments), with the resulting suspension decanted into 250-ml Erlenmeyer flasks, containing a 100-ml autoclaved CMC medium (1.5% carboxymethyl cellulose, 0.1% yeast extract, 0.05% MgSO4⋅7H2O, 0.1% NH4NO3, 0.1% KH2PO4, 100-ml H2O). The flasks were covered in aluminum foil to block light and incubated on a rotary shaker at room temperature for 2 weeks. The suspension was centrifuged to collect conidia. The concentration of conidia was estimated with a hemocytometer and adjusted to a final concentration of 2 × 106 spores ml–1 with sterile-deionized water.



Screening of Recombinant Inbred Line Parents With Five Fusarium Species

Plastic cups (9-cm diameter and 10.5-cm depth) were filled with a sterilized potting mixture (Cell-TechTM, Monsanto, Winnipeg, MB, Canada). In the greenhouse tests with each SSI (S4C, F4A, F037, F039, and FG2), the roots of seven 5-day-old seedlings of the partially resistant parent “00-2067” and the susceptible parent “Reward” were immersed in the conidial suspension for 15 min and transplanted into the soilless mixture in a cup. An aliquot (1 ml) of conidial suspension was pipetted onto the roots before they were covered with the potting mix. The plants were kept in a greenhouse at 20–25°C/15–18°C day/night and a 16-h photoperiod with daily watering to maintain the potting mix at saturation conditions conducive for FRR development. Each experiment was repeated two times. After 3 weeks, disease severity was estimated for the parental cultivars on a scale of 0–4, where: 0 = completely healthy; 1 = brown or black spots on the main root; 2 = lesions covering the main root, but the rootlets still healthy; 3 = lesions spread to the entire root system; and 4 = root totally dead (Figures 1a,c).
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FIGURE 1. Disease reaction of the parents (a) and scales used to rate disease severity (c) and vigor (b).




Disease Assessment of Recombinant Inbred Line Population Under Controlled Conditions

The most virulent of the Fusarium isolates was used as inoculum to screen the 135 RIL population and parents under greenhouse conditions. The inoculation and the maintenance of the plants were as described above. The pots were arranged in a randomized complete block design (RCBD) with four replicates. The greenhouse experiment was repeated four times. After 3 weeks, plant height (cm) was measured from the base of the stem to the top leaf. Plant vigor was evaluated as a measure of the wilting severity on a scale of 0–4 (4 = plant completely healthy; 3 = thin stem and short height; 2 = brown lesions on stem and yellowing of leaf tips; 1= wilting on stems and leaves; 0 = plant completely dead) (Figure 1b). The plants were then carefully uprooted, washed under standing water, and assessed for disease severity as described above.



Statistical Analysis of Phenotypic Data

ANOVA was conducted using R software (R Core Team, 2019) for disease severity, vigor, and plant height in four greenhouse environments. The mean and least square mean (LSM) of all traits were calculated for single environments and total data using the package “lsmeans” (Lenth, 2016) in R. To estimate random effects, the best linear unbiased predictors (BLUPs) and heritability were also calculated using the package “Phenotype” (Zhao, 2020) in R. Correlation analysis was conducted within each trait (all variables including means for single environments, LSM, and BLUPs for total data) and among traits (including disease severity, vigor, and plant height) using the package “PerformanceAnalytics” (Peterson et al., 2019) in R, displaying the correlation coefficient, frequency distribution, and dot plot. The P-value of the Shapiro–Wilk test was used to determine the normality for each variable using R (R Core Team, 2019).



Genotyping With Single Nucleotide Polymorphisms and Simple Sequence Repeat Markers

The 13.2K SNP markers and 222 SSR markers, the parents, and the RIL population genotyped by Wu et al. (2021) were used in this study. In brief, SNP genotyping was carried out at TraitGenetics GmbH, Gatersleben, Germany, using an SNP array developed from gene-encoding sequences, which are distributed uniformly across the pea genome (Tayeh et al., 2015). The SSR markers were obtained from Loridon et al. (2005). In the case of the SSR markers, the PCR assays, thermal cycling conditions, and genotyping using an ABI PRISM 3730 x l DNA analyzer (Applied Biosystems, Foster City, CA, United States) were as described by Wu et al. (2021). Filtering of the SNP and SSR was carried out to retain highly polymorphic markers and RIL individuals with > 95% genotyping data, as well as markers that exhibited the expected 1:1 segregation ratio.



Linkage Map Construction

Linkage analysis was carried out using the filtered SNP and SSR markers, following Wu et al. (2021). This involved the generation of a draft linkage map using the minimum spanning tree map (MSTMap) (Wu et al., 2008) and then refined by MAPMAKER/EXP 3.0 (Lincoln et al., 1992). The Kosambi map function (Kosambi, 1944) was used to calculate the genetic distances (in cM) between the markers. The map construction was carried out with MapChart v. 2.32 (Voorrips, 2002) using the Kosambi map function, of which the linkage groups were assigned to chromosomes based on the consensus SNP map of pea developed by Tayeh et al. (2015). The sequences of the SNP markers flanking the QTLs associated with partial resistance to FRR caused by F. graminearum were used in BlastN (E-value ≤ E-20) searches of the Pulse Crop Database1 to determine their possible functions.



Quantitative Trait Loci Analysis

Additive-effect QTL analysis was first carried out using the genotypic and phenotypic data (disease severity, vigor, and plant height) from the RILs inoculated with F. graminearum (FG2). This was then repeated for the RILs inoculated with F. avenaceum (F4A). The analysis was conducted using means for the four single greenhouse experiments, LSM, and BLUPs of the total data by Composite Interval Mapping (CIM) using WinQTL Cartographer v2.5 (Wang et al., 2012). The program was set at 1-cM walking speed; forward and backward regression method; window size, 10 cM; five background cofactors; 1,000 permutations, and p < 0.05 (Wang et al., 2012). The LOD score threshold was set at 3 for QTL detection. The confidence interval for each QTL was defined by the consensus region bordered by the four environments.

The QTL names were defined according to the QTL detection studies by Coyne et al. (2015, 2019), where the name of the Fusarium isolate was indicated, followed by “Ps” = Pisum sativum, the first number = the pea linkage group (Tayeh et al., 2015), and the second number = the serial number of the QTL on the linkage group; for example, “Fg-Ps4.1” represents the QTL for disease severity caused by F. graminearum located on linkage group IV of the pea genome. The chromosomes and pseudomolecules were named in accordance with Neumann et al. (2002) and Kreplak et al. (2019), respectively. A similar nomenclature was adopted for vigor (e.g., Vig-Ps2.1) and plant height (e.g., Hgt-Ps2.1).

Quantitative trait loci identified in at least two of the four environments were classified as stable. The percentage of variation (R2) was determined for each QTL. Furthermore, QTL with R2 > 10%, 5–10%, and <5% were arbitrarily classified as major-, moderate-, or minor-effect QTL, respectively. The origins of favorable alleles for individual traits were assigned to different parents, following Wu et al. (2021). Pairwise epistatic interactions were estimated with IciMapping V.4.1 using the ICIM-EPI method (Meng et al., 2015). The significance threshold for major, moderate, and minor was arbitrarily set at R2 > 15%, 7.5–15%, and <7.5%, respectively. Epistatic-effect QTL were named with the prefix “E,” followed by the QTL name and a serial number (e.g., E.FG-Ps1, E.Vig-Ps1, and E.Hgt-Ps1).




RESULTS


Preliminary Root Rot Assessment in Parents Against Five Fusarium spp.

Between the parental cultivars, “00-2067” developed lower root rot severity than “Reward” in response to each of the five isolates (Supplementary Table 1), confirming that “00-2067” was tolerant, while “Reward” was susceptible. There were significant differences (p < 0.001) between the mean root rot values of the tolerant parent “00-2067” and the susceptible parent “Reward”, following inoculation with F. graminearum isolate FG2 (Figure 1a) and F. avenaceum isolate F4A, while no significant differences were detected following inoculation with the F. solani, F. acuminatum, and F. proliferatum isolates S4C, F037, and F039, respectively (Supplementary Table 1). Therefore, FG2 and F4A were selected to screen the 135 F8 RIL population for QTL identification associated with resistance to FRR.



ANOVA for Disease Severity, Vigor, and Plant Height

The mean root rot severity, vigor, and plant height of the RIL population inoculated with FG2 and F4A are presented in Tables 1, 2. ANOVA indicated that the genotypic effect of disease severity, vigor, and plant height was significant (p < 0.001) (Supplementary Tables 2a,b). This suggested that a high proportion of genetic variance was transmitted from parental cultivars to the progenies. Heritability values of 92 and 86% for disease severity and vigor were obtained for plants inoculated with FG2 and F4A, respectively, while heritability values for plant height ranged from 79 to 91% (Supplementary Tables 2a,b). The G × E interactions were significant for disease severity, vigor, and plant height for F4A but not for FG2, while differences among the four greenhouse experiments were significant for both FG2 and F4A (p < 0.001) (Supplementary Tables 2a,b).


TABLE 1. A statistical summary of phenotypic data for the parental pea cultivars, “00-2067” and “Reward”, and an RIL population inoculated with Fusarium graminearum isolate FG2, in four greenhouse experiments, as well as the pooled and the best linear unbiased predictors (BLUPs).
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TABLE 2. A statistical summary of phenotypic data for the parental pea cultivars, “00-2067” and “Reward”, and an RIL population inoculated with Fusarium avenaceum isolate F4A, in four greenhouse experiments, as well as the pooled and the best linear unbiased predictors (BLUPs) of the greenhouse experiments.
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Root Rot, Vigor, and Plant Height of Parents and the Recombinant Inbred Line Population Inoculated With FG2

Estimated disease severity values (±SE) on the parental cultivar “00-2067” inoculated with FG2 were 1.5 ± 0.7, 1.3 ± 0.6, 2 ± 1.2 and 1.5 ± 0.7 for the four greenhouse experiments, 1.6 ± 0.8 for LSM and 1.2 for the BLUPs. This was comparable with the estimated mean of 1.1 ± 0.4 obtained in the preliminary screening of the parents (Table 1 and Supplementary Table 1). On the other hand, the estimated disease severity values (±SE) for “Reward” were 3.3 ± 0.5, 3.3 ± 0.5, 3.5 ± 0.6, and 3.0 ± 0.0 for the four greenhouse experiments, 3.3 ± 0.5 for LSM and 4.1 for the BLUPs; these values were also comparable to the estimated mean of 3.3 ± 0.4 obtained in the preliminary screening (Table 1 and Supplementary Table 1). A t-test indicated a significant difference between the parents for disease severity in all four experiments. Frequency distribution (Figure 2A) indicated that the disease severity data of the RILs in the four experiments were continuous, but only DSGH3 and DSGHC followed a normal distribution based on the Shapiro–Wilk test (Table 1). High correlation coefficients, ranging from 68 to 99%, were found for disease severity among the single experiments, pooled, and BLUPs (Figure 2A). The differences in vigor between the parents inoculated with FG2 were significant, except for VGH4. The parental cultivar, “00-2067” had estimated means (±SE) of 4.0 ± 0.0, 4.0 ± 0.0, 3.0 ± 1.2 and 3.5 ± 0.7 for the four greenhouse experiments and 3.6 ± 0.8 for the pooled data. In the case of “Reward”, the estimated means (±SE) were 2.0 ± 0.8, 2.5 ± 0.6, 1.5 ± 0.6 and 2.7 ± 0.6 for the four greenhouse experiments and 2.2 ± 0.7 for the pooled data. The BLUPs for the parental cultivars “00-2067” and “Reward” were 4.2 and 1.6, respectively (Table 1). The Shapiro–Wilk test indicated that the RIL population vigor data for the four greenhouse experiments did not follow a normal distribution, except for VGHC (Figure 2B). A significant correlation (0.34 < r < 0.96, p < 0.001) existed among the single experiments, pooled, and BLUPs for vigor (Figure 2B). The height of “00-2067” plants inoculated with FG2 was greater than plants of “Reward” for the means in the single environments, LSM, and BLUPs, although the differences were not significant based on a t-test. The estimated means in single conditions, LSM, and BLUP for plant height (±SE) of “00-2067” were 234.5 ± 54.6 cm, 157.3 ± 50.6 cm, 155.5 ± 59.5 cm, 159.7 ± 6.7 cm, 176.7 ± 56.6 cm and 158.9 cm, respectively. For “Reward”, the plant heights were 177.5 ± 36.1 cm, 120.7 ± 31.5 cm, 129.5 ± 26. cm, 178.5 ± 34.6 cm, 151.5 ± 36.9 cm, and 100.8 cm, respectively. The frequency distribution of plant height of the RIL population for all six variables was not normal and slightly skewed (Table 1 and Figure 2C). A high correlation (0.42 < r < 0.95, p < 0.001) was found for plant height among the single experiments, pooled, and BLUPs data (Figure 2C).
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FIGURE 2. Correlation analysis of estimated mean of four single greenhouse experiments, BLUPs, and combined total data for (A) root rot severity, (B) vigor, and (C) height of pea inoculated with FG2, illustrating the significant correlation among all variables for each trait. The bar graphs indicate the frequency distributions across the diagonal. The correlation coefficients with a significance level (* indicates p < 0.05; ** indicates p < 0.01; *** indicates p < 0.001) and scatter plots between pairs are shown above and below the diagonal, respectively.


Collectively, the correlation analysis among traits indicated that root rot caused by FG2 was negatively correlated with vigor and plant height. High correlation coefficients were detected between disease severity and vigor in all conditions (–0.65 < r < –0.90, p < 0.001), indicating the adverse effect of FG2 on root and aboveground growth. Plant height showed low to moderate correlation with disease severity (–0.22 < r < –0.35, p < 0.05) and vigor (0.19 < r < 0.38, p < 0.05).



Root Rot, Vigor, and Plant Height of Parents and the RIL Population Inoculated With F4A

The estimated means (±SE) of disease severity for “00-2067” were 1.0 ± 0.0, 1.0 ± 0.8, 1.3 ± 0.5, 1.0 ± 0.0, 1.1 ± 0.4, and 1.0, while, for “Reward”, they were 3.3 ± 0.5, 3.3 ± 0.5, 3.5 ± 0.6, 3.0 ± 0.0, 3.3 ± 0.4, and 3.0 for DSGH1, DSGH2, DSGH3, DSGH4, LSM of pooled data, and BLUPs, respectively (Table 2). These values were comparable to the estimated means (±SE) of 1.8 ± 0.5 and 2.8 ± 0.2 for disease severity obtained in the preliminary screening of the parents (Table 2 and Supplementary Table 1). t-tests indicated significant differences between estimated means of the parental cultivars “00-2067” and “Reward” inoculated with F4A. The Shapiro–Wilk test indicated that only the root rot data of the RIL population for DSGH4 and DSGH Pooled followed a normal distribution (Table 2), although the data for the four greenhouse experiments were continuous (Figure 3A). The correlation coefficient between the experiments ranged from 0.44 to 0.93 (p < 0.001) (Figure 3A). Based on the t-tests, the parental cultivar “00-2067” inoculated with F4A had significantly greater vigor than “Reward.” The estimated vigor values (±SE) for “00-2067” were 4.0 ± 0.0, 3.7 ± 0.5, 3.5 ± 0.6, and 4 ± 0 for the four individual greenhouse experiments, 3.8 ± 0.5 for LSM for the pooled data and 4.0 for BULPs of the pooled greenhouse experiments (Table 2). The estimated vigor values (±SE) for “Reward” were 1.7 ± 0.5, 2.0 ± 1.4, 1.2 ± 1.5, and 2.5 ± 0.6 for the individual greenhouse experiments, 1.9 ± 1.1 for LSM, and 1.9 for the BULPs of the pooled greenhouse experiments. All vigor variables for the RIL population were continuous with slight left skewness (–0.4∼–0.9) (Figure 3B). Additionally, the data did not follow a normal distribution based on the Shapiro–Wilk test (Table 2). The correlation coefficient between the experiments ranged from 0.54 to 0.98 (p < 0.001) (Figure 3B).
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FIGURE 3. Correlation analysis among three pea root rot disease-related traits of (A) root rot severity, (B) vigor, and (C) plant height for all six variables, including the estimated mean of four single greenhouse studies, combined total data, and BLUPs (e.g., panels ds1, ds2, ds3, ds4, dsc, and dsB for disease severity) inoculated with F4A. The bar graphs indicate the frequency distributions across the diagonal. The correlation coefficients with a significance level (* indicates p < 0.05; ** indicates p < 0.01; *** indicates p < 0.001) and scatter plots between pairs are shown above and below the diagonal, respectively.


In contrast to vigor, the difference in plant height of the parental cultivars inoculated with F4A was not significant based on the t-test. The estimated plant height for “00-2067” for the individual experiments, LSM, and BLUP was 210.8 ± 128.2 cm, 174.5 ± 104.8 cm, 159.5 ± 13.5 cm, 210.0 ± 53.1 cm, 188.7 ± 82.8 cm, and 208.0 cm, respectively. The estimated plant height for “Reward” was 118.3 ± 100.2 cm, 193.5 ± 104.5 cm, 125. ± 98.9 cm, and 194.0 ± 38.4 cm for the individual experiments, 157.7 ± 88.5 cm for LSM and 133.1 cm for the BLUP. The frequency distribution for the RIL population was continuous and slightly skewed to the right. In addition, HGH2, HGH3, HGH Pooled, and HGH BLUPs followed a normal distribution (Table 2 and Figure 3C). Plant height variables were also significantly correlated (0.28 < r < 0.97, p < 0.01) (Figure 3C).

The correlation among the traits for plants inoculated with F4A was similar to that of plants inoculated with FG2. Disease severity was highly correlated with vigor (–0.88 < r < –0.95, p < 0.001) and with plant height (–0.48 < r < –0.63, p < 0.001). Plant height was positively correlated with vigor (0.57 < r < 0.62, p < 0.001).



Genetic Map Construction and Quantitative Trait Loci Analysis

Linkage grouping, the distribution of markers, map length, and marker density of 2999 (2978 SNP + 21 SSR) retained markers were as described by Wu et al. (2021). The marker distribution in this study was compared with the seven chromosomes of pea as determined by Neumann et al. (2002), linkage groups as determined by Tayeh et al. (2015), and pseudomolecules of pea (Kreplak et al., 2019). The genetic map spanned 1704.1 cM and contained an average marker density of 1.8 markers/cM (Wu et al., 2021). The QTL analysis was conducted with 1,422 unique markers, which represented 10.5% of the markers used for genotyping (Wu et al., 2021).



Additive-Effect Quantitative Trait Loci Analysis

No significant QTL (LOD > 3.0) for disease severity, vigor, and plant height were detected for the RILs inoculated with F. avenaceum isolate F4A. As such, no QTL likelihood profiles are shown. In the case of RILs inoculated with F. graminearum isolate FG2, a total of 11 QTL were detected for the three parameters and six variables (i.e., GH1, GH2, GH3, GH4, LSM, and BLUPs) by the CIM using Win QTL Cartographer v2.5 (Wang et al., 2012; Table 3). Five of the 11 QTL were identified for disease severity, whereas three QTL each were detected for vigor and plant height. The QTL had LOD scores ranging from 3.0 to 14.4 and the percentage of phenotypic variation (R2) values ranging from 4.05 to 36.35% (Table 3). Based on the R2 values, two, six, and three of the QTL were considered major, moderate, or minor effect, respectively. Six of the 11 QTL were identified in two or more environments and hence could be considered stable, while the remaining five QTL were detected in single experiments and hence could be considered unstable.


TABLE 3. A summary of the QTL associated with Fusarium root rot severity, vigor, and plant height in 128 F8-derived recombinant inbred pea lines from the cross between the cultivars “Reward” × “00-2067” under greenhouse (GH) conditions.
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The most stable QTL for partial resistance to F. graminearum isolate FG2, Fg-Ps4.1, and Fg-Ps4.2 were located in the middle of Chrom4/LGIV at positions 59.3–74.4 cM and 74.0–85.2 cM, respectively (Figure 4B). The 15.1-cM and 11.2-cM genomic regions delimiting these two QTL were flanked by the SNP markers PsCam048871_31524_450 and PsCam001381_1152_437 and the SSR marker AA239 and SNP marker PsCam057281_37909_2940, respectively (Figure 4B). Both Fg-Ps4.1 and Fg-Ps4.2 exhibited a moderate effect, with the percentage variance ranging from 9.1 to 15.4% (Table 3). Two other moderate-effect but unstable QTLs, Fg-Ps3.1 (located on the bottom segment (307.9–316.5 cM) of Chrom5/LGIII and with flanking markers of AA5 and PsCam036163_21311_1095) and Fg-Ps3.2 (located distal to Fg-Ps3.1 and with flanking markers PsCam036163_21311_1095 and PsCam042783_26826_1395) explained 9.62–9.88% of the total variance (Figure 4A). Another unstable QTL, Fg-Ps5.1 [detected on the top part (0.9–9.2 cM) of Chrom3/LGV and flanked by the SNP markers PsCam059449_39630_321 and PsCam011153_7569_125] explained 14.2% of the total variance in greenhouse Experiment 1 (Figure 4C). Four of the QTL for disease severity (with the exception of Fg-Ps5.1) had a negative additive effect, indicating that genomic regions for resistance in Fg-Ps4.1, Fg-Ps4.2, Fg-Ps3.1, and Fg-Ps3.2 originated from “00-2067,” while Fg-ps5.1 derived its resistance from “Reward” (Table 3).
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FIGURE 4. Identified QTL and the linkage map of pea LG III (Chrom 5), IV (Chrom 4), and V (Chrom 3) associated with partial resistance to Fusarium graminearum in an F8 RIL derived from “Reward” × “002067.” The LOD scores are indicated on the x-axis, while the genetic distances (in cM) are indicated on the y-axis. (A) Two minor-effect QTL, Fg-Ps3.1 and Fg-Ps3.2, on LG III (Chrom5) were detected in greenhouse Experiments 1 and 4, respectively. (B) Two stable, moderate-effect QTL, Fg-Ps4.1 and Fg-Ps4.2, were located on LG IV (Chrom4) and identified in greenhouse Experiments 1 and 2 and 3 and 4, respectively. (C) Another moderate-effect QTL, Fg-Ps5.1, on LG V (Chrom5) was detected only in greenhouse Experiment 1.


The stability of the QTL for vigor was in the order Vig-Ps4.1 on Chrom4/LGIV (GH1, GH2, and GH4, R2 = 9.19 to 13.5%) > Vig-Ps3.2 (GH2 and GH3, R2 = 9.53% to 12.13%) > Vig-Ps3.1 (GH4, R2 = 4.05%) both on Chrom5/LGIII (Table 3). The QTL Vig-Ps4.1 was located on Chrom4/LGIV from 58.0 cM to 73.2 cm between the SNP marker PsCam000712_620_237 and the SSR marker AA239 (Figure 5B). Vig-Ps3.2, which was located 307.8-316.5 cM on the bottom of Chrom5/LGIII, was flanked by the SSR marker AA5 and the SNP marker PsCam036163_21311_1095; Vig-Ps3.1, which was located on the top segment (67.1–70.5 cM) of the same chromosome or linkage group, was flanked by the SNP marker PsCam013763_9362_423 and the SSR marker AD270 (Figure 5). The two stable QTL, Vig-Ps4.1 and Vig-Ps3.2, had a positive additive effect, indicating that the alleles for vigor originated from “00-2067.” In contrast, Vig-Ps3.1 has a negative additive effect, indicating that the alleles originated from “Reward” (Table 3).
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FIGURE 5. The QTL likelihood profile and the linkage map of pea LG III (Chrom5) and IV (Chrom 4) for vigor in an F8 RIL of the cross “Reward” × “002067.” The LOD scores are indicated on the x-axis, while the genetic distances (in cM) are indicated on the y-axis. (A) Minor-effect QTL Vig-Ps3.1 on LG III (Chrom5) was detected for vigor only in greenhouse Experiment 4. Another QTL Vig-Ps3.2 was identified multiple times in greenhouse Experiments 2 and 3, as well as in the BLUPs and pooled data. (B) One minor-moderate-effect QTL, Vig-Ps4.1, was identified on LG IV (Chrom 4) greenhouse Experiments 1, 2, and 5, as well as the pooled data and BLUPs.


In the case of plant height, the most stable QTL, Hgt-Ps3.1, was detected in three of the four experiments (GH1, GH2, and GH4; R2 = 9.94–36.35%). This QTL was located on the bottom segment of Chrom5/LGIII (Figure 6) and was flanked by the SNP marker PsCam020937_11699_2576 and the SSR marker AA5 (Figure 6A). The second most stable QTL, Hgt-Ps7.2, was detected across two (GH2 and GH4) of four greenhouse experiments (R2 = 7.04–20.04%). These QTL were located 142.3–168.0 cM on Chrom7/LGVII and were flanked by the SNP markers PsCam002756_2184_427 and PsCam045262_28962_162 (Table 3 and Figure 6B). Hgt-Ps7.1, which was flanked by the SNP markers PsCam035831_20992_561 and PsCam021891_12310_347 (81.2–115.3 cM) (Figure 6B), was detected in only one environment (GH1) on the same chromosome (R2 = 13.63–14.06). The additive effect was negative for Hgt-Ps3.1, but positive for Hgt-Ps7.1 and Hgt-Ps7.2 (Table 3). This suggested that the QTL for height on Chrom5/LGIII was derived from “Reward”, while the QTL on Chrom7/LGVII originated from “00-2067.”


[image: image]

FIGURE 6. The QTL likelihood profile and the linkage map of Peas III (Chrom5) and VII (Chrom7) for plant height in an F8 RIL of the cross “Reward” × “002067.” The LOD scores are indicated on the x-axis, while the genetic distances (in cM) are indicated on the y-axis. (A) One stable QTL, Hgt-Ps3.1 on LGIII (Chrom5), was detected by all variables except greenhouse Experiment 3, with a minor to major effect. (B) Two QTL were detected on LGVII (Chrom7); the minor-major-effect QTL Hgt-Ps7.1 was detected in greenhouse Experiment 1, as well as in the pooled data and BLUPs, while the moderate-effect QTL Hgt-Ps7.2 was detected in greenhouse Experiments 2 and 4 and the pooled data.




Epistatic Quantitative Trait Loci Analyses

Two hundred eight putative digenic epistatic pairs were identified using all variables for disease severity, vigor, and plant height. These comprised 65 (12-24) for disease severity, 57 (10–21) for vigor, and 86 (15–28) for plant height. The 208 putative digenic interactions consisted of one major epistatic effect (PVE ≥ 15%), 13 moderate epistatic effects (7.5% ≤ PVE ≤ 15%), and 194 minor epistatic effects (PVE ≤ 7.5%). BLUPs for disease severity, vigor, and plant height detected 20, 18, and 21 putative digenic interactions, respectively. Within the 59 digenic interactions among BLUPs of all traits, epistatic analysis identified one major QTL pair, three moderate QTL pairs, and 55 minor QTL pairs (Table 4). In contrast, LSM of the pooled data detected 23 digenic interactions for disease severity, 14 for vigor, and 19 for plant height. The total 56 pairs included seven moderate epistatic-effect QTLs and 49 minor-effect QTLs.


TABLE 4. A summary of the major and moderate digenic epistatic interactions (QTL × QTL) detected for Fusarium root rot severity, vigor, and plant height in four greenhouse experiments with pea.

[image: Table 4]
Twenty-five digenic epistatic interactions with major and moderate effects were identified by 33 flanking markers, of which 10 epistatic-effect QTL with 14 flanking markers were linked to three additive-effect QTL (Fg-Ps3.1, Fg-Ps3.2, and Vig-Ps3.1). The remaining 15 epistatic QTL were not related to any of the additive-effect QTL (Table 4). Eight of the 10 epistatic-effect QTL were linked to Fg-Ps3.2, including the most significant QTL pairs, E.Hgt-Ps1 (R2 = 31.2%), followed by E.Hgt-Ps7 (R2 = 19.1%) and E.Hgt-Ps4 (R2 = 13.5%). The fourth was E.Hgt-Ps3 (R2 = 13.5%), which was linked to Fg-Ps3.2 and Vig-Ps3.1. Only E.Fg-Ps7 and E.Vig-Ps7 were linked to Fg-Ps3.1, showing moderate epistatic effect (R2 = 9.5% and R2 = 12.6%, respectively).



Candidate Genes

The QTL associated with partial resistance to F. graminearum on Chrom5/LGIII and Chrom4/LGVI flanked four and 74 candidate genes, respectively (Supplementary Table 3). Fifteen of the 74 genes were related to plant defense mechanisms. These included UDP formation and transportation, the integral component of membrane proteins, histone-lysine N-methyltransferase, phospholipid transport, actin cytoskeleton, calcium-ion binding, methyltransferase, UBQ-conjugating enzyme/RWD, AP-4 adaptor complex, oxidoreductase, acyl group transferases, hydrolases, G protein-coupled receptors, and protein involved in phosphorylation and proteolysis. Some of the genes were involved in pathways related to plant defense mechanisms. Psat4g125440 is involved in cellulose biosynthesis, while Psat4g111280, Psat4g110800, Psat4g108480, and Psat4g102720 are involved in protein ubiquitination.




DISCUSSION

Commercial farming in Canada is characterized by short rotations of cereal crops with canola and, to a limited extent, pulse crops. Disease surveys in Canada have identified Fusarium species as the most frequently isolated fungi from all crops surveyed for root rot severity (Chang, unpublished data). Fusarium poae was predominant in FHB-infected kernels, followed by F. graminearum; other Fusarium species were less common in infected kernels (Banik et al., 2019; Xue et al., 2019; Ziesman et al., 2019). The predominant Fusarium spp. isolated from the infected roots of field pea were F. avenaceum, F. solani, and F. oxysporum (Kraft, 1981; Kraft and Pfleger, 2001; Feng et al., 2010; Chittem et al., 2015; Rasiukevičiūtė et al., 2019). Fusarium species, especially F. acuminatum, have been reported to cause root rot of canola (Li et al., 2007; Chen et al., 2014).

Increasingly, F. graminearum has become a major problem across cereal-growing regions worldwide. For example, in Manitoba, Canada, from 1937 to 1942, F. graminearum was present in <0.5% of 1,448, 262, 865, and 519 samples, respectively, of wheat, durum, barley, and oats tested, compared with 16.4–39.9% for F. poae and 13.5–29.5% for F. acuminatum (Gordon, 1944). In contrast, in Saskatchewan, Canada, from 2014 to 2018, F. graminearum represented 23.4–55.4% (mean, 39.1% over 5 years) of all the Fusarium species isolated from 1,812 wheat, 71 durum, 596 barley, and 177 oat samples (Olson et al., 2019). The increased frequency or shift to F. graminearum has also been reported in the US, China, Brazil, Argentina, Paraguay, Uruguay, and Africa (Savary et al., 2019). Unfortunately, damage to pulse crops by F. graminearum has not received enough attention compared with FHB of cereals. However, the available data suggest that, among pulse crops, field pea is most susceptible to F. graminearum (Clarkson, 1978; Chongo et al., 2001; Goswami et al., 2008; Bilgi et al., 2011; Foroud et al., 2014; Rasiukevičiūtė et al., 2019).

In a previous study, the pea cultivar “00-2067” was found to possess partial resistance to Aphanomyces root rot, while the cultivar “Reward” was susceptible (Wu et al., 2021). In this study, we screened the cultivars “00-2067” and “Reward” to determine their reaction to five isolates representing F. solani, F. avenaceum, F. acuminatum, F. proliferatum, and F. graminearum. The cultivar “00-2067” was partially resistant to all five species, which suggests that it might be tolerant to many pathogens of the pea root rot complex. The difference in disease severity between the mean root rot values of the two cultivars was significant (p < 0.001) only for the isolates representing F. avenaceum and F. graminearum. Therefore, the F8 RIL population derived from “Reward” × “00-2067” was screened with F4A (F. avenaceum) and FG2 (F. graminearum) for the detection of partial resistance to the two Fusarium species. The greenhouse experiments were repeated four times to determine the G × E interaction for all traits. In addition, the best linear unbiased predictors (BLUPs) and LSM were applied to minimize environmental effects (Wang et al., 2018). The LSM identified six QTL, while BLUPs identified five QTL, suggesting that the LSM and BLUPs of the pooled data had comparable efficiency to detect important QTL.

Transgressive segregation was found for disease severity in the RILs inoculated with FG2 and F4A. This suggested that different resistance loci derived from the parental cultivars might have contributed to the stronger resistance observed in some of the RILs. Some transgressive RILs, such as X1303-19-3-1, X1303-21-3-1, X1303-26-2-1, X1304-21-3-1, and X1304-22-3-2, had lower disease severity in response to FG2 and higher vigor in all four environments compared with “00-2067.” In response to F4A, the RIL X1303-29-4-1 showed greater resistance and vigor compared with “00-2067.” Transgressive segregation was reported in other studies of resistance to Fusarium and Aphanomyces root rot in field pea (Feng et al., 2011; McPhee et al., 2012; Coyne et al., 2015, 2019; Nakedde et al., 2016; Wu et al., 2021). These transgressive lines will be valuable resources for developing commercial pea cultivars with improved resistance to F. graminearum and F. avenaceum and other pathogens of the pea root rot complex.

The average marker density of 1.8 marker/cM in this study was much greater than what has been reported in previous studies of pea with PCR-based markers, while the total map length (1704.9 cM) was comparable. Feng et al. (2011) constructed a linkage map of 53 cM with 14 SSR markers and obtained a marker density of 0.26 marker/cM. McPhee et al. (2012) constructed a linkage map of total length 1,716 cM with 278 PCR-based markers and reported a marker density of 0.16 marker/cm. Similarly, Coyne et al. (2015) used 178 PCR-based markers to construct a linkage map of 1,323 cM and obtained a marker density of 0.13 marker/cM. More recently, Coyne et al. (2019) have applied 914 SNP markers to construct a linkage map of total length 1,073 cM and reported a marker density of 0.85 marker/cM. A marker density of 3.5 marker/cM and total map length of 843 cM were obtained when 18 pea lines were genotyped with the same SNP array set used in this study (Desgroux et al., 2016).

In this study, 11 QTL accounting for disease severity, vigor, and plant height were identified. The major QTL for disease resistance were located on Chrom4/LGIV, while two minor QTL were detected on Chrom5/LGIII and one QTL on Chrom3/LGV. These QTL were coincident with the QTL detected for resistance to Aphanomyces root rot (Wu et al., 2021). The major QTL (R2 = 68–80%) identified by McPhee et al. (2012) for resistance to F. oxysporum were also located on Chrom4/LGIV, while three minor QTL (R2 = 2.8–5.4%) were located on Chrom5/LGIII. Despite identifying the same chromosomes, the similarity of the location of the QTL cannot be confirmed, given the different markers used in the two studies. However, the coincidence of the QTL is not surprising, since very few partially resistant pea cultivars are used in breeding programs across the world. Feng et al. (2011) reported that the major QTL for root rot severity caused by F. avenaceum were located on Chrom7/LGVII. Coyne et al. (2015, 2019) reported that the major QTL for resistance to F. solani were located on Chrom6/LGII, while several minor QTL were located on Chrom5/LGIII, Chrom4/LGIV, Chrom6/II, and Chrom7/LGVII.

Significant QTL × QTL interactions were found between the minor QTL for disease severity and plant height but not for vigor. An interaction of the major QTL for disease severity, vigor, and height was not observed. Wu et al. (2021) reported that the same genomic regions controlled disease severity and vigor, while plant height was a poor measure of Aphanomyces root rot severity in pea. Coyne et al. (2019) treated plant height as a direct disease-related trait. In contrast, Desgroux et al. (2016) considered plant height as an agronomic trait. The reduced epistatic interaction might be due to a reduction in the detected number of additive-effect QTL from 27 in Wu et al. (2021) to 11 in the current study.

To the best of our knowledge, no genetic studies have been carried out to determine the genomic regions associated with the partial resistance of field pea to F. graminearum. The use of high-density SNP markers and SSR anchor markers contributed to the construction of a fine linkage map and the identification of two stable QTL located on Chrom4/LGIV associated with partial resistance to F. graminearum. The identified QTL showed broad resistance to F. graminearum, F. solani, F. avenaceum, F. acuminatum, and F. proliferatum, as well as to A. euteiches. This study, together with our previous report (Wu et al., 2021), suggests that “00-2067” and the transgressive RILs with lower disease severity can be used to develop pea cultivars with improved root rot resistance.
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Use of host resistance is the most economical and environmentally safe way to control light leaf spot disease of oilseed rape (Brassica napus). The causal organism of light leaf spot, Pyrenopeziza brassicae, is one of the most economically damaging pathogens of oilseed rape in the United Kingdom and it is considered to have a high potential to evolve due to its mixed reproduction system and airborne ascospores. This necessitates diverse sources of host resistance, which are inadequate at present to minimize yield losses caused by this disease. To address this, we screened a doubled haploid (DH) population of oilseed rape, derived from a secondary gene pool (ancestral genomes) of B. napus for the introgression of resistance against P. brassicae. DH lines were phenotyped using controlled-environment and glasshouse experiments with P. brassicae populations obtained from three different geographic locations in the United Kingdom. Selected DH lines with different levels of resistance were further studied in a controlled-environment experiment using both visual (scanning electron microscope – SEM) and molecular (quantitative PCR) assessment methods to understand the mode/s of host resistance. There was a clear phenotypic variation for resistance against P. brassicae in this DH population. Quantitative trait locus (QTL) analysis identified four QTLs with moderate to large effects, which were located on linkage groups C1, C6, and C9. Of these, the QTL on the linkage group C1 appeared to have a major effect on limiting P. brassicae asexual sporulation. Study of the sub-cuticular growth phase of P. brassicae using qPCR and SEM showed that the pathogen was able to infect and colonise both resistant and susceptible Q DH lines and control B. napus cultivars. However, the rate of increase of pathogen biomass was significantly smaller in resistant lines, suggesting that the resistance segregating in this DH population limits colonisation/sporulation by the pathogen rather than eliminating the pathogen. Resistance QTLs identified in this study provide a useful resource for breeding cultivar resistance for effective control of light leaf spot and form a starting point for functional identification of the genes controlling resistance against P. brassicae that can contribute to our knowledge on mechanisms of partial resistance of crops against pathogens.
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INTRODUCTION

Host plant resistance against pathogens is an important characteristic in agricultural crops. In general, resistance against pathogens is described under two broad categories: complete/qualitative resistance and incomplete/quantitative resistance (Roux et al., 2014; French et al., 2016). Of these two categories, quantitative disease resistance (QDR) is preferred as a broad-spectrum, durable source of resistance (Poland et al., 2009; French et al., 2016). Development of genetic linkage maps with DNA-based markers and quantitative trait loci (QTLs) mapping by exploiting the marker-trait associations have proved to be effective in breeding for plant disease resistance (Poland et al., 2009; St. Clair, 2010). Further dissection of resistance loci and characterisation of underlying genes can improve understanding of the mechanisms of QDR against plant pathogens (French et al., 2016), especially for those with complex host-pathogen interactions (e.g., extracellular pathogens) where the operation of host resistance does not eliminate the pathogen.

Light leaf spot (LLS), caused by ascomycete extracellular fungal pathogen Pyrenopeziza brassicae Sutton and Rawlinson (anamorph Cylindrosporium concentricum Grev.) (Rawlinson et al., 1978) is one of the most widespread diseases of oilseed rape (Brassica napus L.) in the United Kingdom, causing major yield losses (CropMonitor, 2016). The pathogen affects most aerial parts of the plant, including leaves, stems, flowers, and seed pods, resulting in reduction of leaf photosynthetic area, reduced plant vigour, and further yield loss through pod shatter (Boys et al., 2007). According to recent reports, P. brassicae can cause up to 30% yield reduction (AHDB, 2021). However, earlier studies have reported yield losses as great as 50% under severe epidemics (Rawlinson et al., 1978). Current recommendations for managing LLS risks include application of fungicides, growing cultivars with good field resistance, and crop sanitary practices, such as ploughing crop debris, delaying of the sowing date, and separation of oilseed rape crops in space and time (AHDB, 2021). In practice, the effectiveness of fungicide control methods depends on several factors, including fungicide application timings, weather, and shifts in P. brassicae populations toward fungicide insensitivity. Additionally, fungicide applications may not always be an economically viable solution for farmers. Despite crop sanitary practices, cruciferous vegetables, weeds species, and volunteer oilseed rape plants that occur from pod shatter during harvest can provide a pathway for the pathogen to transfer between cropping seasons due to the cross-infectivity of P. brassicae between oilseed rape and other Brassica species (Maddock et al., 1981; Evans et al., 2003). Therefore, it is necessary to put more emphasis on host resistance in LLS management practices and produce cultivars that have a greater economic return to sustain the production of oilseed rape, which is the third largest arable crop in the United Kingdom (DEFRA, 2020). The development of oilseed rape cultivars with good levels of field resistance against P. brassicae can provide economical means of disease control, especially for farmers with small to medium-sized arable farming areas.

Even though the average LLS resistance rating of oilseed rape cultivars has increased in recent years1, frequent recent epidemics of LLS indicate that the currently available cultivar resistance is inadequate to achieve successful control of this disease (CropMonitor, 2016). There has been little knowledge on the genetic basis of host resistance against P. brassicae (Karandeni Dewage et al., 2021) with only three published studies on mapping qualitative or quantitative resistance genes (Pilet et al., 1998; Bradburne et al., 1999; Boys et al., 2012). Moreover, sexual reproduction of P. brassicae could lead to the development of new virulent strains, rendering the resistance genes ineffective (Boys et al., 2007; Karandeni Dewage et al., 2018). Therefore, diversification of the resistance sources is essential to achieve effective and prolonged control of LLS through host resistance. Improvement of cultivar resistance through selective breeding requires sufficient genetic diversity to be present within the current gene pool. Nevertheless, continuous selection of plant material for specific traits can cause genetic bottlenecks, resulting in reduced genetic diversity in the primary gene pool (Doebley et al., 2006). Narrow gene pools can make crop species more vulnerable to emerging pests and pathogens and reduce the potential for improving crop productivity (Hyten et al., 2006). In such cases, genetic variations present in external gene pools provide plant breeders with an opportunity to improve crop cultivars by incorporating various traits for which there is insufficient diversity in the primary gene pools (Boyd et al., 2013).

Oilseed rape has been known for its narrow genetic diversity caused by strong selection for various traits in its breeding history (Snowdon and Iniguez Luy, 2012). For example, the process of developing modern double-low cultivars (low seed glucosinolate and low erucic acid contents) is considered to have caused genetic bottlenecks in current B. napus gene pools. However, being a natural hybrid between B. rapa and B. oleracea (Chalhoub et al., 2014), the compatibility between these two ancestral species (secondary gene pool) of B. napus enables introgression of new sources of resistance from these external gene pools into cultivated B. napus. Compared to B. napus, B. rapa, and B. oleracea are considered to have higher genetic diversity and they have proved to be effective in providing new resistance genes against other important pathogens of oilseed rape (Neik et al., 2017; Robin et al., 2017; Katche et al., 2019). Experimental work described in this article has focused on analysing a doubled haploid (DH) population of oilseed rape, derived from the ancestral genomes of B. napus, as a potential source of resistance against the LLS pathogen P. brassicae and understanding the operation of host resistance against this pathogen.



MATERIALS AND METHODS


Plant Material

A progeny of DH lines (Q population consisting of a total of 92 lines) derived from an F1 cross between synthetic B. napus (B. oleracea atlantica X B. rapa oleifera “29”) and oilseed rape cv. Tapidor (European winter-type cultivar with a strict vernalisation requirement and low seed erucic acid and low glucosinolate content) (Mithen and Magrath, 1992; Smooker et al., 2011) was used in this study. Additionally, oilseed rape cultivars Canberra [UK Agriculture and Horticulture Development Board (AHDB) recommended list (RL) resistance rating 7 (2007/08), resistant], Cuillin [RL resistance rating 8 (2014/15), resistant], Marathon [RL resistance rating 5 (2016/17), susceptible], Bristol [RL resistance rating 2 (1996/97), susceptible], Imola (characteristic black flecking resistance phenotype against P. brassicae infection, Boys et al., 2012), and Tapidor and B. rapa oleifera “29” (A-genome parent of synthetic B. napus) were included in the phenotyping experiments. The AHDB RL ratings (resistance rating for LLS on 1–9 scale, where nine is most resistant), which are available for commercial cultivars, were taken from the most recent records available (given in parentheses next to the RL rating).



Phenotyping of Resistance Against Pyrenopeziza brassicae in the Q Doubled Haploid Population

The Q DH population was assessed for its resistance against P. brassicae in three separate experiments to represent different P. brassicae populations (mixture of isolates collected from diseased leaves from oilseed rape crops) and different environmental conditions. These consisted of two glasshouse experiments (GH) and one controlled-environment (CE) experiment. Each experiment included appropriate resistant/susceptible control cultivars. The numbers of Q DH lines and resistant/susceptible control cultivars included in each of the three phenotyping experiments are given in Table 1. Different P. brassicae populations that originated from England or Scotland were used in the three experiments (Table 1). Pyrenopeziza brassicae conidial suspensions were prepared by selecting diseased oilseed rape leaves with clear LLS symptoms and incubating them at 4°C for 5 days in sealed polyethylene bags with a layer of dampened paper towel to increase humidity to induce sporulation. Leaves were then washed with sterile distilled water to produce conidial inoculum. Conidial suspensions were filtered through sterile Miracloth (Calbiochem, United States), and the concentration of each spore suspension was measured using a haemocytometer. Spore concentration was adjusted with sterile distilled water to 105 spores/ml for the glasshouse experiments and 104 spores/ml for the CE experiment and suspensions were stored at –20°C until needed.


TABLE 1. Summary of phenotyping experiments used to assess resistance against Pyrenopeziza brassicae in the Brassica napus Q doubled haploid (DH) population.
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Glasshouse experiments were arranged in an alpha design generated using an alpha design generator (Parsad et al., 2007) as it was not possible to assess all the lines/cvs in one experiment due to space limitations. Q DH lines were divided into small batches and assessed at different occasions within each glasshouse experiment (four and three batches in the first and second glasshouse experiment, respectively). Resistant/susceptible control cultivars and a Q DH line (Q12) were repeated on each occasion in GH1 and GH2 to monitor the uniformity of experimental conditions. Plants were grown in 9 cm diameter pots until they reached growth stage 1,4–1,5 (plants have five true leaves) (Sylvester-Bradley et al., 1984). Five replicate plants were included for each Q DH line and control cultivar. At growth stages 1,4–1,5, plants were spray-inoculated with P. brassicae conidial suspensions using a 50 ml travel spray bottle (Boots, United Kingdom) until all the leaves were evenly and fully covered with fine droplets of the spore suspension. After inoculation, plants were covered with a polyethylene cover for 48 h to maintain high humidity to facilitate spore germination and infection. Glasshouse conditions were maintained at 16°C/14°C day/night temperatures with natural daylight and supplemented by a 12 h photoperiod. At 24 days post-inoculation (dpi), plants were destructively harvested by cutting at the stem base above the compost surface, individually placed in polyethylene bags with a dampened paper towel, and incubated at 4°C for 5 days to induce sporulation. The disease assessment was made by visually estimating the percentage leaf area covered with P. brassicae acervuli (sporulation). The presence or absence of a necrotic response was also recorded for each plant.

In the CE experiment, plants were first grown in 7 cm diameter pots and maintained in a glasshouse at 20°C for 3 weeks. Four replicate plants were included for each Q DH line and the control cultivar. At growth stages 1,4–1,5, plants were spray-inoculated using an aerosol sprayer (Chrom Atomiser, Camlab; Cambridge, United Kingdom) until drops ran off the leaves. After inoculation, plants were individually covered with polyethylene bags (26 cm × 38 cm) to maintain high humidity to facilitate spore germination and infection and kept in a CE room at 16°C with a 12 h photoperiod. Bags were removed 48 h after inoculation and were replaced 14 days later for the final week before disease assessment. LLS severity on each plant was assessed by visually estimating the percentage leaf area covered with P. brassicae acervuli.



Statistical Analysis and Mapping of Quantitative Trait Locus for Resistance Against Pyrenopeziza brassicae

Light leaf spot severity data (% leaf area covered with P. brassicae sporulation) were subjected to ANOVA using GENSTAT statistical software for Windows (Payne et al., 2011). Arcsine transformation of the percentage of leaf area with sporulation was made with an arcsine formula in Excel before ANOVA was done, so that the variance was more homogeneous across treatments and measurements were normally distributed. For each glasshouse experiment, data generated by the alpha design experiments were combined and the effect of experiment was analysed as a factor in the ANOVA using control cultivars and Q DH lines, which were included in each experiment (batch). For analysis of the relationships between LLS severities measured in each of the three phenotyping experiments, simple linear regression analyses were done using calculated means for different Q DH lines and cultivars.

The linkage map and marker data for the Q DH population have been described previously (Smooker et al., 2011). The genetic linkage map of the Q DH population comprised of 358 simple sequence repeats (SSR) markers over 19 linkage groups with a total genetic distance of 1,381 cm. QTL mapping was implemented with QTL cartographer version 2.5 (Wang et al., 2012) using quantitative disease severity (% leaf area with P. brassicae sporulation) data within each individual experiment and across all three experiments using combined data. Initial genome scans for marker-trait associations were done using single marker analysis to identify possible QTLs. The results obtained from single marker analysis were further refined using interval mapping (IM) (Haley and Knott, 1992). Genome-wide QTL threshold was determined by permutation analysis using 1,000 iterations corresponding to a significance level of α = 0.10. Support interval for each QTL was determined based on the decrease in 1.5-logarithm of the odds (LOD) on either side of the LOD maximum (Silva et al., 2012). Since IM may be affected by the skewed distribution of phenotype data, QTL positions and the effects were confirmed with transformed data. The binary (categorical) phenotype data for necrosis obtained from the two glasshouse experiments (presence or absence of a necrotic response) were analysed using the non-parametric Kruskal–Wallis test. QTLs detected by IM were visualised on the linkage map of the Q DH population using MapChart software (version 2.32) (Voorrips, 2002) with manual editing.



Assessment of the Sub-Cuticular Growth Phase of Pyrenopeziza brassicae in Q Doubled Haploid Lines

Four Q DH lines (Q04, Q38, Q69, and Q83), based on the amount of P. brassicae sporulation and presence of a necrotic response observed in phenotyping experiments, and oilseed rape cultivars Bristol and Imola were selected. Plants were grown in 9 cm diameter pots under controlled-environment conditions (FITOCLIMA D1200, ARALAB, Rio de Mouro, Portugal) with a 12 h photoperiod, 60% relative humidity, and 20°C/18°C day/night temperatures, respectively. Plants were arranged in a randomised complete block design generated using Experimental Design Generator and Randomiser (EDGAR) (Brown, 2004). At growth stage 1,4–1,5 (five leaves unfolded) (Sylvester-Bradley et al., 1984), plants were point-inoculated at four “marked” points on adaxial surfaces of each of the fourth and fifth true leaves using sterilised Whatman no. 1 filter papers (cut into c.0.8 mm × 0.8 mm squares) immersed in a P. brassicae conidial suspension (105 spores/ml). After inoculation, plants were covered with a polyethylene cover for 48 h to maintain high humidity. Inoculated plants were maintained in the controlled environment cabinet with a 12 h photoperiod, 60% relative humidity, and 16°C/14°C day/night temperatures, respectively.

Plants were sampled at 0, 3, 7, 14, and 24 dpi, and the fourth and fifth true leaves were used for the analysis of sub-cuticular growth of P. brassicae using quantitative PCR (qPCR) with species-specific primers (Karolewski et al., 2006) and scanning electron microscopy (SEM), respectively. For qPCR analysis, the fourth true leaf to appear was removed from each plant and 2 cm diameter leaf discs were cut from each inoculation point. Leaf discs were individually placed in 2 ml tubes, frozen at –20°C, and freeze-dried. Samples were processed in a Fastprep machine (MP Biomedicals, United Kingdom) with three metal beads (3 mm diameter) until leaf discs were ground to a fine powder. DNA extraction and quantification of P. brassicae DNA was done according to the method described in Boys et al. (2012) with minor modifications (DNA samples were diluted to a final concentration of 20 ng/μl and five standards, each containing known quantities of P. brassicae DNA ranging from 1 pg to 10 ng, were used in qPCR). Quantitative PCR data were analysed by simple linear regression of P. brassicae DNA content against the days post-inoculation (dpi). Since the amount of P. brassicae DNA in leaf tissues showed an exponential increase with time after inoculation, data were transformed by taking the common logarithm (log10) of the original measurements. A position and parallelism regression analysis was used to analyse the differences in the increase in the amount of P. brassicae DNA over time between the six lines/cultivars included in this experiment. All the analyses were done using GENSTAT statistical software for Windows (Payne et al., 2011).

Scanning electron microscope (SEM) analysis of leaf samples of the Q DH lines collected at different time points after inoculation was done using the Bioimaging facility at Rothamsted Research, Harpenden, United Kingdom.2 Pieces of leaves (c. 4 mm × 4 mm) were obtained from the inoculation points using a sterile blade and were prepared according to standard operating procedures of the SEM instrument (JEOL JSM-6360, JEOL Ltd., United Kingdom) at Rothamsted Research for examination and recording images.




RESULTS


Phenotyping of Resistance Against Pyrenopeziza brassicae in the Q Doubled Haploid Population

The ANOVA indicated a significant effect of genotypes (p < 0.01) on the LLS severity. The effect of the batch experiment was not significant within GH1 and GH2 (p > 0.69, Supplementary Table 1). Distribution of resistance against P. brassicae, measured using % leaf area covered with pathogen sporulation, among Q DH lines is illustrated in Figure 1. The phenotype distribution showed positive skew toward resistance in all three experiments. Significant positive correlations were observed between the experiments (Supplementary Table 2; p < 0.01), indicating consistency in disease scoring methodology across experiments. The correlation was particularly good between the two glasshouse experiments, and the overall LLS severity in these two experiments appeared to be greater [ranging from 0 to 83% and from 0 to 63% leaf area affected in the first (GH1) and second (GH2) glasshouse experiments, respectively] compared to that of the CE experiment (ranging from 0 to 46%). Some of the Q DH lines had disease severities smaller than or equal to those of the resistant control cultivars (cvs Imola and Cuillin) in GH1 and GH2 experiments, and most of the Q DH lines had disease severities smaller/equal to those of the resistant control (cv. Canberra) in the CE experiment. Thirty-nine lines in GH1 and 27 lines in GH2 showed no significant difference from the disease severity observed on cv. Imola (0.9 and 0% leaf area with sporulation in GH1 and GH2, respectively) (p < 0.05). The two parental lines included in the GH1 experiment differed significantly in LLS severity (p < 0.05). Of these, the A-genome parent of the synthetic B. napus, B. rapa oleifera “29” showed an average of 32.5% leaf area with sporulation, which is similar to that of cv. Cuillin. In contrast, cv. Tapidor showed extreme susceptibility to P. brassicae with an average of 83% leaf area with sporulation.
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FIGURE 1. Frequency distribution of light leaf spot severity (% leaf area affected) in the Q doubled haploid (DH) population in three phenotyping experiments. (A) Glasshouse experiment 1 (GH1), (B) glasshouse experiment 2 (GH2), (C) controlled-environment experiment (CE). Arrows indicate the position of parental lines [B. rapa olifera “29” (B. rapa) and Tapidor (T)] and the resistant [Imola (I), Cuillin (Cu), and Canberra (Ca)] or susceptible [Bristol (Br), Charger (Ch), and Marathon (M)] control Brassica napus cultivars in the phenotypic distribution.


In addition to the varying numbers of P. brassicae acervuli that appeared with or without lesion formation, some of the Q DH lines showed a necrotic response against P. brassicae that started to appear c. 10–14 dpi (Figures 2A–C). These responses were mainly observed on the leaf veins, midribs, and along petioles, and elsewhere on the leaf lamina (leaf blade). This was similar to the necrosis observed on cv. Imola (Figure 2D) that is known to contain a major-gene locus for resistance against P. brassicae. However, cv. Imola was consistent in producing zero to very little (>1% area affected) sporulation (mainly confined to leaf veins, the midrib, and petioles) in different experiments, whereas the Q DH lines with necrosis showed a great variation in sporulation. For example, some of the Q DH lines appeared to have large numbers of acervuli in the presence of a less intense necrotic response. Some lines showed limited sporulation confined only to the leaf veins and the midribs (Figure 2E). Necrotic flecking on the leaf lamina appeared in concentric rings (Figure 2F) which resembled concentric ring-like sporulation patterns characteristic of susceptible interactions (Figure 2G). In the GH1 experiment, 41 out of 77 lines produced a necrotic response, whereas in GH2 experiment, 46 out of 70 lines produced necrosis. Of these, six lines that had necrosis in GH1 did not produce necrosis in GH2, and nine lines that did not have necrosis in GH1 produced necrosis in GH2. Comparisons of the LLS severities between Q DH lines with or without a necrotic response using qualitative assessments (presence or absence) made in GH1 and GH2 experiments are illustrated in Figure 3. According to Shapiro-Wilk W statistics, LLS severity distributions showed deviation from normality (p < 0.05) in both groups. The difference in the median values of % leaf area covered with acervuli between Q DH lines with or without a necrotic response was statistically significant in GH1 (p < 0.01) and GH2 (p < 0.05) experiments.
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FIGURE 2. Necrotic responses observed in different B. napus lines from the Q DH population. (A) Q88, (B) Q60, (C) Q83, (D) cv. Imola, (E) Q64 with necrosis and occasional acervuli on the midrib, (F) Q33 with necrosis on leaf lamina in concentric rings, (G) susceptible line Q38 with concentric ring-like sporulation patterns characteristic of Pyrenopeziza brassicae.
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FIGURE 3. Box plots comparing light leaf spot severity of Q DH lines with or without the presence of black necrotic flecking observed in two glasshouse experiments. (A) GH1, (B) GH2. Q DH lines inoculated with P. brassicae appeared to have a variation in the light leaf spot severity (% leaf area with sporulation) with or without the presence of necrosis. In each plot, the centre lines crossing the boxes denote median values, box edges represent the lower 25% and the upper 75% quartiles, x denotes the mean value and error bars represent minimum and maximum values. There was a significant difference in the median light leaf spot severity values between the two groups (*p < 0.05; **p < 0.01).




Mapping of Quantitative Trait Locus for Resistance Against Pyrenopeziza brassicae

Single marker analysis, which was used as the initial approach for the genetic mapping of the resistance against P. brassicae, indicated several loci with significant marker-trait associations. IM analysis within individual experiments identified four QTLs for resistance against P. brassicae across three linkage groups in the genetic linkage map for the Q DH population. Summary of the QTLs detected in each experiment, including maximum values of LOD scores, QTL positions, the percentage of phenotypic variance explained, and the estimate of QTL effects, is given in Table 2. Identification of QTL positions and effects were compared between transformed and untransformed data. This indicated similar results except for one QTL maximum on linkage group A10 for which the LOD score was less than the significant threshold with untransformed data. This QTL was removed from further analysis. One major QTL exceeding the LOD threshold was detected in the GH1 experiment located on the linkage group C6 (maximum LOD at 31.5 cM), accounting for 33.8% of the phenotypic variance. In comparison, three and two QTLs were detected in GH2 and CE experiments, respectively. The QTLs identified in the GH2 experiment were located on the linkage groups C1 (maximum LOD at 30.3 cM), C6 (maximum LOD at 31.5 cM), and C9 (maximum LOD at 57.0 cM), accounting for between 24.31 and 52.74% phenotypic variance. The two QTLs detected in the CE experiment included a major QTL located on the linkage group C1 (maximum LOD at 30.3 cM), accounting for 69.37% of the variance identified, and a QTL with a relatively small effect on the linkage group C6 (maximum LOD at 49.0 cM), accounting for 20.23% of the variance identified. Comparing the QTLs identified within different experiments (Figure 4), one of the QTLs on linkage group C6 was detected in both GH1 and GH2 experiments, and the QTL on linkage group C1 was detected in both GH2 and the CE experiments. For the GH1 experiment, a putative QTL co-located with the QTL on linkage group C1 identified in GH2 and CE experiments was detected with a LOD score of 3.1 that was just below the significance threshold (LOD = 3.3). QTL analysis for the combined data across all three experiments detected three QTLs co-located with those identified within individual experiments. These included QTLs located on the linkage groups C1 (maximum LOD at 30.4 cM), C6 (maximum LOD at 31.4 cM), and C9 (maximum LOD at 56.8 cm) (Figure 4), accounting for 37.31, 37.22, and 22.83% of phenotypic variance, respectively.


TABLE 2. Quantitative trait loci (QTLs) detected across three phenotyping experiments for resistance against P. brassicae in the B. napus Q DH population.

[image: Table 2]
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FIGURE 4. Quantitative trait loci (QTLs) for resistance against P. brassicae in the B. napus Q DH population detected using three phenotyping experiments. Phenotyping of the Q DH population was done using two glasshouse experiments (GH1 and GH2) and a CE experiment with each involving different P. brassicae populations. Four QTLs were identified across three linkage groups, C1, C6, and C9 using QTL analysis within individual experiments. Combined data across all three experiments identified three QTLs (labelled “All”) co-locating with those identified within individual experiments. On the left, QTL positions are marked with LOD support intervals and flanking markers for each QTL are indicated by bold, italicised letters on the linkage maps.


Second QTL analysis was done for GH1 and GH2 experiments by taking sub-populations of Q DH lines based on the presence or absence of necrosis with the intention of distinguishing QTL effects related to these two phenotype groups. According to the results, only the QTL identified on linkage group C1 remained significant in GH2 for the sub-population of Q DH lines without necrosis. The QTL on the linkage group C9 was also retained, with a small decrease in the LOD score. The same phenomenon was observed in GH1, where the putative QTL maximum on the linkage group C1 was detected with the sub-population of Q DH lines without necrosis. Therefore, it is possible that the QTLs on the linkage groups C1 and C9 contribute to the reduced sporulation without necrosis. QTL mapping of the sub-population of DH lines with necrosis retained the QTL maximum on linkage group C6 with slightly reduced LOD scores for both GH1 and GH2, while showing a considerable loss of QTL maxima on the linkage group C1. The overall phenotypic variance in the sub-population of DH lines with necrosis may be attributed to the combined effects of QTLs (i.e., those related to reduced sporulation and necrosis). Considering the QTL maxima identified in the sub-population, it can be suggested that the QTL on the linkage group C6 contributes more toward the phenotypic variance in the group of DH lines with necrosis. However, no significant interactions with marker data exceeding the QTL threshold were detected for the binary data on necrosis.



Assessment of the Sub-Cuticular Growth Phase of Pyrenopeziza brassicae in Q Doubled Haploid Lines

Using the results obtained in the three phenotyping experiments (GH1, GH2, and CE), four Q DH lines were selected to represent differences in the amounts of sporulation and the necrosis observed. These included Q83 with an average of <1% leaf area affected with sporulation in the presence of necrosis, Q4 with <5% leaf area with sporulation in the presence of necrosis, Q69 with <2% leaf area with sporulation without necrosis, and Q38 with >59% of leaf area with sporulation without necrosis. Imola and Bristol were the resistant and susceptible control cultivars, respectively. Analysis of P. brassicae DNA content in leaf discs taken from the points of inoculation showed a significant increase between 0 and 24 dpi in all the lines and cultivars. There were significant differences between lines/cultivars (p < 0.05). Position and parallelism regression analysis indicated three distinct groups based on the difference in the increase in P. brassicae DNA over time: group 1 contained Q38, group 2 consisted of Q04, Q83, Q69, and cv. Bristol, and group 3 contained cv. Imola (Figure 5). Line Q38, which developed large numbers of P. brassicae acervuli in all three phenotyping experiments (GH1, GH2, and CE), had the greatest amount of P. brassicae DNA and the greatest rate of increase over time. Cultivar Imola had significantly less P. brassicae DNA than the rest of the lines/cultivars and the amount of DNA increased over time at a slower rate.
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FIGURE 5. Change with time in amount of P. brassicae DNA in selected B. napus Q DH lines and control cultivars. In a controlled-environment experiment, four Q DH lines differing in resistance and oilseed rape cultivars Bristol and Imola were point-inoculated with a P. brassicae conidial suspension. Amounts of P. brassicae DNA in leaf samples taken from the points of inoculation between 0 and 24 dpi were quantified using qPCR. Position and parallelism regression analysis was used to analyse the difference in the increase of DNA with time between the six lines/cultivars. Data were best fitted by three regression lines and there were three distinct groups based on the difference in the increase of DNA with time: group 1 contained Q38 (y = 0.09x + 0.67), group 2 consisted of Q04, Q83, Q69, and cv. Bristol (y = 0.07x + 0.53) and group 3 contained cv. Imola (y = 0.04x + 0.53).


Scanning electron micrographs also indicated that P. brassicae was capable of infecting and colonising all the lines selected in this experiment even though the extent of sub-cuticular hyphal growth varied among them (Figure 6). Lines Q83, Q4, and Q69 had hyphae growing more prominently along the leaf veins at early time points (i.e., 3–7 dpi). In addition, sub-cuticular hyphal growth on these lines appeared to follow the branching patterns of the main and lateral veins. This observation was consistent with the patterns of necrosis and acervuli production on the resistant lines. As the pathogen colonisation progressed with time (i.e., 14 dpi), the hyphae appeared to spread out onto the leaf lamina to a certain extent and more fungal biomass could be observed on the leaf lamina at c. 24 dpi. In addition, epidermal cell collapse associated with hyphae was observed on the Q DH lines with necrosis. In contrast, extensive hyphal growth could be observed on both the leaf veins and leaf lamina of the susceptible line Q38 from 7 dpi with more hyphae branching out from leaf veins onto the leaf lamina.
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FIGURE 6. Scanning electron micrographs of leaf discs taken from B. napus Q DH lines point-inoculated with P. brassicae conidia in a controlled environment experiment. (A) Q83 at 7 dpi, (B) Q4 at 7 dpi, (C) Q38 at 7 dpi, (D) Q04 at 7 dpi showing P. brassicae hyphae following leaf vein (v) branching patterns, (E) epidermal cell collapse (x) on Q83 associated with P. brassicae hyphae, (F) Q4 at 24 dpi. Arrows indicate P. brassicae hyphae growing in sub-cuticular spaces of leaf vein and leaf lamina tissues.





DISCUSSION

This article reports identification of new QTLs for resistance against P. brassicae derived from a B. napus secondary gene pool (ancestral genomes). Results from the phenotypic and genetic analysis of host resistance against P. brassicae provided good evidence for the segregation of resistance against P. brassicae in the Q DH population. Q DH lines differed from each other in their ability to limit P. brassicae asexual sporulation. There were significant differences in the % leaf area covered with sporulation between different lines. Reduced P. brassicae sporulation appeared to be present with or without a necrotic response and there was a significant difference between the two groups in the median values of % leaf area covered with acervuli. The concentric ring-like arrangement of the necrotic spots on the leaf lamina may indicate that P. brassicae asexual sporulation, which occurs in concentric rings in susceptible responses (Karandeni Dewage et al., 2018), is prevented by operation of the host resistance in these lines. This suggests that host recognition occurs at a late stage (c. 10–14 dpi) of P. brassicae colonisation, possibly during the asexual sporulation phase. However, the variation in amount of sporulation, observed between Q DH lines that gave a necrotic response upon pathogen recognition, suggests that there may be a background resistance or other resistance genes segregating in this population that affect the overall level of resistance to the pathogen.

Of the parental lines, neither the synthetic B. napus nor the C sub-genome parent of the synthetic B. napus (Brassica oleracea altantica) were available to test in our experiments. However, in the GH1 experiment, we were able to include B. rapa olifera “29” (A sub-genome parent of the synthetic B. napus) and cv. Tapidor, which showed moderate to high percentage leaf area with P. brassicae asexual sporulation without a necrotic response. According to these observations, it can be speculated that most of the favourable alleles for resistant QTLs were likely to have been contributed by C sub-genome parent via synthetic B. napus. The Q DH population is known to have an asymmetric distribution of marker polymorphisms between the A and C sub-genomes with allelic diversity diverted more toward the C sub-genome (Smooker et al., 2011). This seems to be true for the segregation of resistance against P. brassicae in the Q DH population, considering the distribution of QTLs on the C sub-genome.

In three phenotyping experiments, four QTLs were identified with moderate to large QTL effects. Linkage groups C1 and C6 appeared to have co-locating QTL stable across GH2/CE and GH1/GH2 experiments, respectively. Of these, the QTL on the linkage group C1 appeared to have a major effect on limiting P. brassicae asexual sporulation. QTL analysis is considered as the initial step toward marker-assisted selection (MAS) in plant breeding, and for a particular QTL to be effective in a plant breeding programme, it is important to confirm the repeatability and the efficiency of the QTLs in different environments (Collard et al., 2005). Accurate identification of QTL depends on the quality of the phenotyping data and the robustness of the linkage map. A significant positive correlation of the phenotype data between the different experiments indicated consistency in disease scoring methodology across experiments. However, it should be noted that the relatively small population size used in this study probably resulted in false negatives, particularly in detecting QTLs with relatively small effects, along with possible over-estimation of the QTL effects.

There seem to be several QTLs contributing to the overall phenotypic variation. QTL-mediated resistance associated with reduced P. brassicae sporulation or leaf necrosis is probably controlled by different B. napus resistance loci. However, no significant QTL was detected when the binary data for necrosis were used as a phenotype, which could have been due to the genetic complexity of this phenotype. All the experiments were done with P. brassicae populations (mixtures of isolates) and some of the lines that had necrosis in GH1 did not produce necrosis in GH2 and vice versa. It is possible that there were different pathogen races or effectors recognised by the host. Furthermore, there seemed to be differences in the intensity of black flecking observed in different lines, indicating that the expression of this necrosis phenotype may be affected by other QTLs for resistance, or that this could be a component of a network of host responses. When we separate the DH lines based on the presence or absence of necrosis, the lines with necrosis contain phenotypic variation attributed to the combined effect of different loci, whereas the effect of necrosis is eliminated from the lines without necrosis. This may provide a possible genetic explanation for the significantly smaller median LLS severity values observed in the group of DH lines that showed necrosis compared to the group without necrosis.

Similar phenotype classes for resistance against P. brassicae have been explained by Bradburne et al. (1999) in a DH population of B. napus. Bradburne et al. (1999) reported two major genes for resistance against P. brassicae. Linkage analysis positioned the gene corresponding to “no asexual sporulation” (PBR1) on linkage group A1 and the gene responsible for “dark necrotic flecking” (PBR2) on linkage group C6. The QTL on linkage group C6 has been localised toward the centre of the linkage group in both Bradburne et al. (1999) and the present study. There is a possibility that both the studies refer to the same resistance locus. However, the linkage map published by Bradburne et al. (1999) contains limited information with only two restriction fragment length polymorphism (RFLP) markers on C6. There are no common markers between the two studies, which are necessary to create a consensus map between different populations to enable the comparison of QTLs across different studies. Therefore, it is difficult to draw a conclusion with the information currently available. Regarding the work reported by Pilet et al. (1998) on quantitative resistance against P. brassicae, QTLs were detected mostly on the A sub-genome (linkage groups A2, A6, A7, and A9) and one QTL was detected on the C sub-genome (linkage group C4), whereas the present study identified QTLs on linkage groups C1, C6, and C9.

Using a DH population derived from the material described by Bradburne et al. (1999) and Boys et al. (2012) reported a single locus for resistance corresponding to the black flecking phenotype (PBR2) that mapped to the bottom end of chrA1. The second major gene (PBR1, corresponding to the absence of asexual sporulation) reported by Bradburne et al. (1999) was not identified and it has been suggested that PBR1 might have been lost during the breeding process. In the present study, we have identified DH lines with little to no sporulation without necrosis. These lines can be used to further dissect the genetic basis of this resistant phenotype by developing a larger mapping population for fine-scale mapping. Availability of Brassica napus genomic resources offers new possibilities for the identification of host resistance genes and provides molecular tools to assist in marker-assisted selection (MAS) for disease resistance. There are a few B. napus genome sequences published, including the genome sequence of cv. Tapidor (Chalhoub et al., 2014; Bayer et al., 2017; Sun et al., 2017), which is one of the parental lines of the Q DH population. Sequencing of the flanking markers can be used to identify the corresponding genomic regions of the QTL on the B. napus genome, facilitating the identification of candidate resistance genes.

The Q DH population segregates for vernalisation and winter hardiness (Smooker et al., 2011), making it difficult to assess some of the lines directly in winter oilseed rape field experiments in the United Kingdom. Therefore, we chose to phenotype the Q DH population under controlled-environment and glasshouse conditions to enable the identification of different components of resistance without being affected by other characters segregating in this population. Instead of using single-spore isolates, plants were inoculated with a different P. brassicae population in each experiment, representing natural inoculum. In a separate study that assessed resistance against P. brassicae in different B. napus genotypes, selected Q DH lines have shown more resistance compared to that of commercial oilseed rape cultivars. In addition, the resistance in those lines appeared to be less sensitive toward the increasing virulence of P. brassicae isolates (Karandeni Dewage et al., 2021). This agrees with the stability of the resistance in Q DH lines across different P. brassicae populations observed in the present study. Host resistance QTLs that are stable across different P. brassicae populations are of particular importance to oilseed rape breeders.

Our results suggest that the resistance segregating in this DH population limits colonisation/sporulation by the pathogen rather than eliminating the pathogen. Pyrenopeziza brassicae was able to infect and colonise both resistant and susceptible Q DH lines and control cultivars with a significantly smaller rate of increase of pathogen biomass in resistant lines than that in susceptible lines. According to the qPCR data, three resistant Q DH lines were in the same group as cv. Bristol that had a significantly greater number of P. brassicae acervuli in phenotyping experiments. This also supports the suggestion that there may be resistance operating during the time of P. brassicae asexual sporulation. According to SEM, hyphal growth was more prominent along the leaf veins of resistant lines, especially at early time points. According to Boys et al. (2012), the amount of P. brassicae DNA was significantly greater in leaf vein/midrib tissues than elsewhere in the leaves of cv. Imola when samples were taken from the points of inoculation. This suggests that the pathogen was able to colonise more of leaf vein/midrib tissues than tissues of interveinal regions. It can be assumed that abundant vascular bundles in leaf veins provide the pathogen with more access to resources and hence support the extracellular colonisation of leaf veins, midribs, and petioles. This may also explain the presence of the black flecking phenotype, mainly along the leaf veins, midrib, or petioles, and the production of occasional acervuli along with these tissues in the case of resistant cultivars. There have been similar reports of other endophytic fungi with more affinity toward leaf vein/petiole colonisation (Photita et al., 2001; Toofanee and Dulymamode, 2002).

Even though LLS is considered as a major disease problem of oilseed rape in the UK with many epidemics since 1970s, little is known about this pathosystem in contrast to that of other important diseases, such as phoma stem canker (Boys et al., 2007; Karandeni Dewage et al., 2018). So far, there have been only two published studies on genetic mapping of major-gene-mediated resistance (Bradburne et al., 1999; Boys et al., 2012) and one study reporting quantitative resistance against P. brassicae in B. napus (Pilet et al., 1998). Therefore, new studies on qualitative and quantitative resistance against P. brassicae are invaluable to combat LLS to sustain oilseed rape production in the United Kingdom.

Quantitative trait locus mapping can be used to determine QTL effects, interactions between resistance genes, race-specificity of resistance, etc., providing insights into resistance against pathogens that has complex inheritance (Young, 1996; St. Clair, 2010). Even though QDR has been studied in several pathosystems, underlying molecular mechanisms of QDR are not well understood, with few studies reporting functional characterisation of resistance QTL. In this study, we were able to do detailed phenotyping of the resistance against P. brassicae originating from the ancestral brassica species and allocate the observed variation into its genetic components. Resistant lines identified can serve as pre-breeding material and the QTLs that are stable across different experiments could be utilised in MAS in oilseed rape breeding programmes to improve cultivar resistance against P. brassicae with further resolution of resistance QTLs. Associated markers can be used as a starting point for functional identification of the genes controlling resistance against P. brassicae that can contribute to our knowledge on mechanisms of partial resistance/QDR of crops against pathogens.
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Peach gummosis is one of the most widespread and destructive diseases. It causes growth stunting, yield loss, branch, trunk, and tree death, and is becoming a restrictive factor in healthy and sustainable development of peach production. Although a locus has been identified based on bi-parental quantitative trait locus (QTL) mapping, selection of gummosis-resistant cultivars remains challenging due to the lack of resistant parents and of the complexity of an inducing factor. In this study, an integrated approach of genome-wide association study (GWAS) and comparative transcriptome was used to elucidate the genetic architecture associated with the disease using 195 accessions and 145,456 genome-wide single nucleotide polymorphisms (SNPs). The broad-sense and narrow-sense heritabilities were estimated using 2-year phenotypic data and genotypic data, which gave high values of 70 and 73%, respectively. Evaluation of population structure by neighbor-joining and principal components analysis (PCA) clustered all accessions into three major groups and six subgroups, mainly according to fruit shape, hairy vs. glabrous fruit skin, pedigree, geographic origin, and domestication history. Five SNPs were found to be significantly associated with gummosis disease resistance, of which SNPrs285957, located on chromosome6 across 28 Mb, was detected by both the BLINK and the FarmCPU model. Six candidate genes flanked by or harboring the significant SNPs, previously implicated in biotic stress tolerance, were significantly associated with this resistance. Two highly resistant accessions were identified with low disease severity, which could be potential sources of resistance genes for breeding. Our results provide a fresh insight into the genetic control of peach gummosis disease.

Keywords: peach, gummosis disease, QTLs, genome-wide association study, candidate genes


INTRODUCTION

Peach [Prunus persica (L.) Batsch] is one of the most economically important deciduous fruit from the Rosaceae family (Li et al., 2013). It originated in northwest China, and has spread throughout China and the rest of the world because of its greater adaptability (Faust and Timon, 1995; Yu et al., 2018). But, the short-life syndrome due to gummosis is a long-lasting problem in the warm and moist climate regions.

Gummosis is a nonspecific disease response to pathogen infection, mechanical injury, drought and cold stress, or insect attack. It is characterized by a gum exudation from tree trunks, branches, and fruits in several fruit species, such as peach (Britton and Hendrix, 1982), almond (Popović et al., 2021), apricot (Liu et al., 2015), sweet cherry (Zhang L. et al., 2019), and in citrus (Fan et al., 2011). Gummosis in peach was first reported in central Georgia in 1974 (Weaver, 1974). The gum exudation on trunks, scaffold limbs, and branches significantly supresses tree growth and fruit yield of susceptible peach varieties. It is one of the most destructive peach diseases in the south of China (Fan et al., 2011) and the southeastern United States (Weaver, 1974; Britton and Hendrix, 1982). Based on the conidial morphology, cultural characteristics, and nucleotide sequences, three Botryosphaeria fungi species were reported to be the main pathogens causing the peach gummosis disease: Botryosphaeria dothidea (anamorph Fusicoccumaesculi), Botryosphaeria rhodina (anamorph Lasiodiplodia theobromae), and Botryosphaeria obtuse (anamorph Diplodiaseriata) (Weaver, 1974). Of these, Botryosphaeria dothidea is the most common cause of the disease in a large number of hosts worldwide (Britton and Hendrix, 1982; Mancero-Castillo et al., 2018), while Lasiodiplodia theobromae has proven to be the most virulent, causing the largest lesions and most copious gummosis in China (Fan et al., 2011).

Previous studies on controlling peach gummosis disease have mainly involved chemical and biological controls with very limited efficacy. Therefore, the use and the breeding of gummosis resistance cultivars are the most cost-effective, environment-friendly, and healthy approach for long-term management of the disease (Beckman et al., 2011). As previously reported, although most peaches and nectarines are susceptible to gummosis disease to some degree, highly resistant genotypes also exist (Beckman and Reilly, 2005). However, using these resistant genotypes in breeding programs via conventional breeding methods remains a challenge due to the large plant size, self-compatibility, low genetic diversity, and the most restrictive factors, including the long juvenile periods and breeding cycles (Li et al., 2013; Aranzana et al., 2019). In addition, phenotypic variation of peach gummosis is always affected by several factors, such as wounding, pathogen infection, temperature, or humidity. As far as the genetic factor is concerned, a dominant allele for peach fungus gummosis resistance has been found in almond based on F1 and BC1F1 population. Segregation and mapping analyses located the peach fungal gummosis resistance locus on chimeric linkage groups 6–8 near the leaf color locus (Mancero-Castillo et al., 2018). Furthermore, being the center of origin of peach, China has a huge population of wild relatives and landraces with high genetic diversity (Li et al., 2013; Micheletti et al., 2015). These genetic resources always exhibit specific phenotypes of resistance and fruit quality but are rarely used in modern peach breeding programs. For example, P. davidiana carries resistance genes against the peach green aphid and can be used for aphid-resistant breeding (Li et al., 2019). It will be, therefore, helpful to perform extensive work with large-scale germplasm to elucidate the genetic mechanism controlling the severity of peach gummosis disease.

Next-generation sequencing technologies have not only promoted the development of genetics and genomics tools, but also greatly improved the understanding of the genetic basis of important agronomic traits. Based on RNA-seq technology, a large number of differentially expressed genes have been identified, which has enabled the elucidation of the molecular mechanism of plant-pathogen interaction of peach fungal gummosis after the infection (Gao et al., 2016). These genes have been found to be mainly involved in the process of cellular defense and metabolism of carbohydrates, the phenylpropanoid biosynthesis and metabolism pathway, anthocyanin biosynthetic pathway, and the ethylene and jasmonic biosynthetic pathways (Gao et al., 2016). Recently, the reactive oxygen species (ROS) production-scavenging system has been reported to play a crucial role in plant-pathogen interaction and in the development of gummosis caused by Lasiodiplodia theobromae (Zhang et al., 2020).

Genotyping by sequencing (GBS) is a method that combines the enzyme-based complexity reduction and the second-generation sequencing technology for marker discovery, with and without the reference genomes (Elshire et al., 2011). Despite the high rate of missing values in the GBS data, the advantages of simultaneous discovery of abundant single nucleotide polymorphisms (SNPs) at low cost, reduced the ascertainment bias compared with array-based markers, and a relatively easy automation still make it an efficient approach to detect polymorphisms and to identify various loci controlling traits both by biparental quantitative trait locus (QTL) mapping and by genome-wide association study (GWAS) (Elshire et al., 2011; Poland and Rife, 2012; Jarquín et al., 2014; Arruda et al., 2016; Minamikawa et al., 2018). A large number of studies on GWAS that were integrated with GBS have been reported in multiple plant species (Arruda et al., 2016; Cao et al., 2016, 2019; Guo et al., 2019; Siddique et al., 2019). By combing GBS-based QTL mapping with GWAS, 117 significant SNPs across the genome were identified to be associated with P. capsici root rot resistance in pepper (Siddique et al., 2019). Similarly, the genetic determinants of grape berry-related traits, including grape skin color, berry development period, berry weight, berry flesh texture, and berry flavor, were identified by performing GWAS with 179 grape accessions and 32,311 SNP markers derived from GBS analysis (Guo et al., 2019). Another example of GBS-based GWAS is where the candidate genes of 12 agronomic traits and selected domestication traits, including fruit shape, fruit color, fruit hairy, fruit weight, sorbitol, and catechin content, have been identified (Cao et al., 2016, 2019). Thus, keeping the above in view, an integrated approach of GWAS and comparative transcriptome was used in the present study. Here, the gummosis disease was scored in the large-scale peach core germplasm accessions, grown in the experimental field over the period of 2 years. The plant resources were selected from the previous genetic diversity study (Li et al., 2013). A group of highly resistant accessions, especially the traditional landraces, were identified. These are potentially resistant parents to enrich the gene pool in modern peach breeding programs. The GWAS, combined with RNA-seq, was used to identify the associated SNP markers and candidate genes. The aim was to gain insights into the genetic basis of this complex trait and to apply the results in a peach genomic selection breeding program.



MATERIALS AND METHODS


Plant Materials and Growth Conditions

A set of 195 peach accessions originating from 19 provinces and autonomous regions in China and United States, Italy, New Zealand, and Japan was selected (Supplementary Table 1). All trees were grafted on “MaoTao” rootstock and planted in the peach experimental trial fields of Shanghai Academy of Agricultural Sciences, Shanghai (N30°55′3.18″-E121°27′14.44″) during the March month of the year 2016. This region in China is characterized by high temperature and high humidity as the annual average temperature and humidity reach up to 17°C and 80%, respectively. The tree plants were managed under uniform conditions of irrigation, fertilization, and pest and disease control. Two accessions “Nan Shan Tian Tao” and “Sunfre” were additionally grown in two different locations as replications for resistance validation.



Evaluation of Lesions and Statistical Analysis of Gummosis Disease Score

The severity of peach gummosis was investigated in the end of the years 2018 and 2019. The score (0, 1, 3, 5, 7, and 9) for each tree was based on the number and area of gumming lesions on the trunks and limbs, a standard evaluation criterion adopted by the modern Chinese peach industry technology community. The minimum score of 0 refers to no visible symptoms or lesions on the whole tree, and the maximum 9 indicates a very severe infection on limbs and the main trunk. The scoring was as follows: 1, only 1–2 lesions with a diameter of the spots less than 3 cm identified on trunks or main limbs; 3, the lesion was from 1 or 2 spots covering an area of up to 25% of the whole plant with the gum spots not clearly distinguishable; 5, the total lesion area was 25–50% of the whole plant with the gum spots not clearly distinguishable; 7, the total lesion area covered from 50 to 75% of the whole plant with the gum spots not clearly distinguishable; and 9 when the total lesion area was more than 75% of the whole plant (Supplementary Figure 1). Those with mean scores of both years as stable to 1 or less were designated as high resistant, and those scores lower than or equal to 3 as middle resistant, and those greater than 3 were designated as susceptible.

The severity of disease was also compared in different peach groups (Supplementary Table 1) divided according to geographic origin and four phenotypes, including fruit pubescence (peach/nectarine), fruit shape (round/flat), fruit flesh color (red/yellow/white), and blossoming time (very early/early/middle/late). The statistical analyses, including means, standard errors (SE), and the minimum and maximum values, were calculated using Graphpad Prism 8 software (Graphpad Software Inc., San Diego, California). Pearson correlation coefficients between the severity score of gummosis disease and geographic origin and four phenotypes were analyzed with the same software. The statistical significance was set at the p < 0.001 level. Ordinary one-way ANOVA and unpaired t-test (for fruit shape and hairy fruit skin) were used for paired and multiple comparisons, respectively.



Estimation of Best Linear Unbiased Prediction Values

Best linear unbiased prediction (BLUP) values were extracted from the 2-year (2018–2019) phenotypic data for gummosis disease using the linear mixed model in R-package lme4 based on the following equation:
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where Yij is the vector of severity observation for each accession in each year, μ is the overall mean values for all individuals, Ai is the random effect of the ith individual accession (i = 1,……, 195), yj is the random effect of the jth year (j = 2018 and 2019), and e is the residual error. Extraction of the random effects (accessions) in the model used the “ranef” function. The estimated BLUP values were used as phenotype values in the GWAS. In the equation, the ratio of the individuals’ (accessions’) variance in the total variance was used as estimated heritability (general heritability). The total variance was the sum variance of accessions, years, and e, that is the same as observations variance.



DNA Extraction, Re-sequencing, and Single Nucleotide Polymorphism Discovery

Young leaves with no disease from each accession were collected and frozen at -80°C. Total genomic DNA was isolated from 0.1-g tissue using the DNeasy 96 Plant Mini Kit (Qiagen, CA, United States) following the manufacturer’s protocol. The libraries with an insert size of 500 bp were constructed and sequenced by Novogene Bioinformatics Technology Co., Ltd. (Beijing, China) using an Illumina HiSeq X Ten platform (Illumina, San Diego, CA) based on a paired-end mode, which resulted in sequenced fragments of 150 bp read length. The sequencing depth of each accession was greater than 10.33-fold with an average genome coverage of 98.14%. The raw sequencing data and SNP calling were analyzed using SAMTOOLS software (Li et al., 2009). The SNPs were filtered under the quality control parameter to remove those with more than a 7% individual missing rate and a minor allele frequency (MAF) that is lower than 0.05, according to the user manual of Beagle software 3.3.2.



Estimation of Population Structure, Genetics Parameters, and Genome-Wide Linkage Disequilibrium

The narrow sense of heritability of gummosis disease was estimated by GAPIT3 based on a mixed linear model using whole of the marker data. Principal Component Analysis (PCA) and Neighbor Joining (NJ)-tree analysis were performed to find the clustered group and the genetic distance using GAPIT3 software (Wang and Zhang, 2021) for understanding the population structure. Eigen values and matrices were extracted as dimensionality reduction vectors from all genotype information. The first two PCs with major genetic variance were used to indicate population stratification. The clustered kinship was used to plot the NJ tree. To estimate the rate of linkage disequilibrium decay, r2 values between each loci genotype were calculated using PopLD decay, which is a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files (Zhang C. et al., 2019). A window size, with averaged 300 kb across the whole genome, was used to calculate average r2 values.

The genetic diversity indices for different populations, including observed heterozygosity (Ho), inbreeding coefficient (Fis), nucleotide diversity (π), and hapotypes, were calculated using the POPULATION program in the stacks package with a custom Perl script. Paired F-statistics values (Fst) (Weir and Cockerham, 1984) were calculated to measure the difference between populations using the same aforementioned program. Analysis of molecular variance (AMOVA) was used to partition the genetic variation into inter- and intra- gene pool diversities using Arlequin version 3.5.1 with 1,000,000 markov chain and 100,000 burning steps (Excoffier and Lischer, 2010).



Genome-Wide Association Study

Gummosis disease severity data from 195 peach accessions were used for GWAS based on mixed linear model (MLM) (Segura et al., 2012), fixed and random model circulating probability unification (FarmCPU) (Liu et al., 2016), and Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK) (Huang et al., 2019) using GAPIT 3 in R (Wang and Zhang, 2021). The first three principal components were used as covariates for the population structure and familial relatedness calculation, while the kinship matrix was used to eliminate GWAS false positive. The individual relationships were estimated by using the VanRaden method in the GAPIT3 software (VanRaden, 2008). In each step, the variances were estimated by generalized least-square (GLS), and the P-values estimated using the F-test. All R scripts for converting data format, estimating phenotype BLUP, and plotting pairwise correlation of LD were coded by our research group, and GWAS programs were performed with default parameters in the GAPIT3 software (Wang and Zhang, 2021). The estimated BLUP values were used as phenotype values in GWAS with the cutoff threshold set as 0.01 and the Bonferroni correction (0.01/total number of markers) to filter the significant markers.



Estimation of Linkage Disequilibrium Block in the Gummosis Disease-Associated Region and Candidate Genes Identification and Their Annotation

A 100-kb region flanking the significant SNPs associated with gummosis disease and located within the high LD regions was investigated based on the peach genome v2.0 to identify the annotated genes. The annotated gene sequences of the peach genome v2.0 assembly were retrieved from GDR1 to identify the target genes for the corresponding associated regions. Pair-wise LD between markers was calculated as the squared correlation coefficient (r2) of alleles using the R package LD heatmap (Shin et al., 2006). We used r2 > 0.6 to filter the candidate regions.



RNA-Seq of the Branch Tissue After Pathogen Inoculation

The 1-year-old branches of the susceptible cultivar “Huyou018” were inoculated with Botryosphaeria dothidea. The pathogen was isolated from our own germplasm. The inoculation method was based on a previous study by Gao et al. (2016). The tissue measuring 0.5 cm in a diameter was cut from the lesion area and frozen at -80° C for RNA extraction at 0, 48, 60, 72, and 84 h after inoculation. Total RNA extraction and first-strand complementary DNA (cDNA) synthesis were carried out according to Li’s method (Li X.W. et al., 2015). The sequencing libraries were generated using the NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (NEB, United States) following the manufacturer’s recommendations. Reference genome and gene model annotation files were downloaded from the genome website.2 The mapped reads of each sample were assembled by StringTie (v1.3.3b) using a reference-based approach (Pertea et al., 2015). A quantification of gene expression level feature Counts v1.5.0-p3 was used to count the read numbers mapped to each gene. The FPKM of each gene was then calculated based on the length of the gene and reads count mapped to that gene. DESeq2 R package (Love et al., 2014) was used for differential gene expression analysis of pair-wise stages using a model with the negative binomial distribution. The P-values were adjusted using the Benjamini and Hochberg’s approach to controlling the false discovery rate. Genes with an adjusted P-value < 0.05 found by DESeq2 were assigned as differentially expressed. For each sampling stage, three biological replicates were combined for further DEG analysis.




RESULTS


Phenotypic Evaluation of Peach Gummosis Disease and Its Heritability

The average gummosis disease value score from the 2-year dataset displayed continuous normal distribution ranging from 0 to 9. The average disease score value for each accession was highly consistent across the period of 2 years (r2 = 0.726). The estimated BLUP value also had a normal distribution (Figure 1). The results demonstrated the existence of a group of accessions highly resistant to gummosis disease. In 92 (47.6%) accessions, the severity of the disease increased over time from 2018 to 2019. In nine accessions, only one to two lesions were found on the entire trunk and branches with a gummosis disease score value of 1, indicating high resistance. Two highly resistant accessions “Nan Shan Tian Tao” and “Sunfre” were grown and validated in two field locations. In 2019, 52 accessions had a gummosis disease score under or equal to 3. A total of 134 accessions had a score greater than 3. Of these 31 accessions, including the well-known traditional landraces from several geographic locations, especially north China (“Shenzhou Bai Tao,” “Feicheng Hong Li 6,” “Feicheng Bai Li 10,” and “Taiyuan Shui Mi”) had very severe disease symptoms ranging from 7 to 9.
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FIGURE 1. The density distribution of peach gummosis in 195 peach accessions. Disease scale of 0–9 was used, where 0 and 1 represent highly resistant and 9, highly susceptible accessions. The red density distribution is the phenotypic data obtained from 2018; green is the density distribution of the phenotypic data obtained from 2019, and blue represents the density distribution of the best linear unbiased predictions (BLUPs) expressed as estimated breeding values.


Among the different peach groups, no significant correlation was observed between gummosis disease and the hairy fruit skin (r2 = 0.0004), fruit flesh color (r2 = 0.0004), fruit shape (r2 = 0.002), geographic origin and domestication history (r2 = 0.0006), and blossoming date (r2 = 0.001). However, the disease severity score in different peach groups separated by geographic origin and domestication history was significantly different. The mean disease severity score of landraces from South China was lower than that of improved accessions from South China and landraces from North China. The mean score in the nectarine group was relatively higher than that in the peach group (Supplementary Figure 2). The broad-sense heritability estimated by multiple years phenotypic data was approximately 70% (Table 1). The narrow-sense heritability estimated by whole genome DNA markers was 73% (Figure 2).


TABLE 1. Variance components, standard deviations of the variance components, and broad-sense heritability of peach gummosis disease evaluated over 2 years in 195 peach accessions.

[image: Table 1]


[image: image]

FIGURE 2. Narrow-sense heritability of the resistance of peach gummosis disease calculated by whole genome SNP markers. “Genetic” and “Residual” means estimated genetic and residual variance in the mixed linear model. The optimum compression information indicates the optimal algorithm to calculate the group kinship matrix, the optimal clustering algorithm, the optimal number of groups in the compress mixed linear model. “-2 LL” is the abbreviation of -2 multiply likelihood value, which means the level of model fitting.




Single Nucleotide Polymorphism Discovery

A total of 1.35 TB of sequence data was generated for the 195 peach genotypes, including 864.45 million reads. The sequencing coverage of at least 1 X was 79.46%. The Q30 ratio, Q20 ratio, and GC content were 85.19, 93.78, and 37.51%, respectively. High-quality reads were aligned with the Prunus persica Whole Genome Assembly v2.0 & Annotation v2.1.3 A total of 9,486,722 SNPs were initially obtained for these genotypes from the SAMTOOLs utility calling (Li et al., 2009). After removing those SNPs with a MAF lower than 0.05 and the missing value higher than 0.07, the remaining set of 145,608 high-quality SNPs was used for further analysis. Among the 145,608 SNPs, 145,456 SNPs (99%) covered all eight chromosomes. The largest number of high-quality SNPs was found on Chromosome 1 (30,358 SNPs), followed by Chromosome 6 (20,173 SNPs); whereas, the smallest number of SNPs was found on Chromosome 8 (13,718 SNPs). The distribution of SNPs on each chromosome was largely consistent with the physical length of the corresponding chromosome.



Population Structure, Genetic Diversity, and Linkage Disequilibrium

The observed heterozygosity per individual ranged from 0.068 to 0.332 with a mean of 0.19 (Supplementary Table 2). The highest value was observed for accession “Hu Zhen 43,” while the lowest value was observed for the traditional Prunus. Ferganensis, “Mo Yu 8.” The average value of observed heterozygosity of all SNPs was 0.25. The highest value was observed on Chromosome 4 (0.23), and the lowest value was observed on Chromosome 5 (0.15) (Supplementary Table 4 and Supplementary Figure 3).

The geographical origin of the selected accessions could be located at three different continents and 19 provinces in China (Figure 3A). A phylogenetic dendrogram using the neighbor-joining method clustered 195 accessions into three major groups, mainly according to fruit shape, hairy vs. glabrous fruit skin, pedigree, geographical origin, and domestication history (Figure 3B, Supplementary Table 1, and Supplementary Figure 4). The first major group was composed of 79 accessions and further divided into three subgroups. The first subgroup G1-1 was marked as the flat peach group, with 10/12 accessions being flat peaches. The accessions of the other two subgroups were closely related to the founder “Shanghai Shui Mi” used in peach breeding programs of China and Japan. One of the most famous cultivars, “Yu Lu,” clustered with the primitive cultivars originating from Shanghai, and most of the Japanese cultivars clustered with “Bai Hua Shui Mi.” The second major group had 30 cultivars and was marked as the traditional landrace group, which included those cultivars carrying special traits, such as red flesh, extremely firm texture, and extremely low chilling requirement. The third major group was composed of 86 accessions and was further divided into two subgroups. The first subgroup G3-1 included 18 peaches and 38 nectarines. In this study, 84% (38/45) of nectarines were clustered in this group. It is noticeable that most of the accessions in this subgroup were characterized as early or very early blossoming. The second subgroup, G3-2, included 27 peaches and three nectarines, and was mainly composed of the accessions with early maturity time. Based on the phylogenetic dendrogram, first approximation of population structure was obtained by using PCA for the complete set of SNPs (Figure 3C). The first two principal components explained 43.46% of the total genotypic diversity. The stratification pattern was highly consistent with NJ hierarchical clustering. All 145,456 SNP markers were employed to estimate the LD extent across the three major groups. The average value of r2 was 0.269 in G1, 0.133 in G2, and 0.218 in G3. The LD value decreased with distance between the markers in all groups. The level of LD value in G1 was higher than that in G2 and G3. The average value of r2 dropped below 0.2 at around 30 kb in G2 and 150 kb in G3 (Figure 3D).


[image: image]

FIGURE 3. (A) The geographic location of the origins of each accession in China and worldwide. (B) Phylogenetic dendrogram constructed by the neighbor-joining method. The accession name is represented by the accession code, which is coincident with Supplementary Table 1. (C) Principal component analysis (PCA) of accessions, with the proportion of variance explained by each PC indicated in parenthesis. Dots of different color indicate different cluster groups. (D) Linkage disequilibrium measures (r2) against physical distance between pairs of SNP markers for the three major groups.


Based on the population structure, the genetic variation among three major groups was estimated. The result showed that G2, which was a landrace group, had the highest values of Fis, π, and haplotype diversity, while the observed heterogosity value of G2 seemed significantly lower than that of the other groups. The statistical analysis of haplotypes showed that the number of haplotypes and unique haplotypes of G3 was higher than that of G1 and G2 (Table 2). The AMOVA revealed that 12.86% of the total variation was found among groups, while the rest of the variation (87.14%) was within groups (Table 3). The pairwise genetic differentiation (Fst) was highest (0.0909) between G1 and G2 and the lowest (0.0494) between G2 and G3.


TABLE 2. The genetic diversity estimated of three major group.
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TABLE 3. Analysis of molecular variance of the genetic differentiation among and within three major groups of 195 accessions.
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Genome-Wide Association Study for Gummosis Disease

Three statistical models were used for GWAS to detect the associated genomic regions with gummosis disease using 145,456 SNP markers and the estimated BLUP values. No significant locus was identified by the MLM model. Five SNPs on five chromosomes were identified as significantly associated with peach gummosis disease (Figure 4, Table 4, and Supplementary Figure 5). Three SNPs were detected by FarmCPU and three by BLINK. Among the five SNPs, rs285957 at about 28 Mb on Chromosome 6 was simultaneously detected both by FarmCPU and BLINK methods with the allelic effect of 0.64. The phenotypic variation explained by a single SNP varied from 6.28 to 19.85%, and from 6.98 to 17.94% based on FarmCPU and BLINK, respectively. The variance explained by the SNP rs285975 was different under the two models. There were significant phenotypic differences caused by four SNPs in the different genotypes. The BLUP value of allele “T” at rs22118_C/T, rs142398_C/T, and rs285957_T/G was significantly higher than that of allele “C” and “G,” especially at rs22118. The value of allele “A” at rs191998 was higher than for “T” (Figure 5). It is noticeable that the nine highly resistant accessions carried the same genotype “GG” at rs285957.
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FIGURE 4. Distribution of SNPs on the eight chromosomes. Tracks 1, 2, and 3 represent results from three statistical analysis models used for genome-wide association study (GWAS) of peach gummosis disease. Track 4 represents filtered SNPs on the eight peach chromosomes. The red dotted-line indicates the significance threshold (-log10 P = 6). The red asterisks represent the significant SNP.



TABLE 4. A summary of significant SNPs consistently associated with gummosis disease in peach accessions.
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FIGURE 5. The boxplots show the comparison of the phenotypic performance illustrated by the BLUP value for different genotypes of the five significant SNPs. For each graph, X axis indicates the different genotypes of SNP rs22118 (A), rs96598 (B), rs142398 (C), rs191998 (D), and rs285957 (E). Y axis indicates the BLUP value.




Analysis of Differentially Expressed Genes Related to Gummosis Disease at Different Pathogen Inoculation Stages

The fifteen transcriptome sequencing profiles (5 sampling times × 3 replications) generated a total of 124.91 Gb high-quality data with Phred Quality score or Q30 of 93.43%. The total clean reads for each sample ranged from 43.19 to 70.43 million (Supplementary Table 4). The proportion of total mapped reads to the peach reference genome v2.0 accounted for 96.02–97.43%. Of these, the properly mapped reads accounted only 88.31–92.98%. The highest number of DEGs was observed during the first 48 h after inoculation, including the up- and downregulation of 6,451 and 6,592 genes, respectively. The lowest number of DEGs was observed in 72 vs. 84 h after inoculation, including the up- and downregulation of 2,924 and 2,212 genes, respectively.

The functional annotation of DEGs discovered was performed using gene ontology (GO) functional classification and enrichment analyses. The results showed that three biological process (BP) and six molecular function (MF) terms enriched within 48 h after inoculation, including a response to biotic stimulus (GO:0009607). We also identified a considerable number of DEGs from the functional groups of carbohydrate metabolic process (GO:0005975) in “48 vs. 60 h” and “60 vs. 72 h” comparison (Supplementary Table 5). KEGG Pathway enrichment analysis of the DEGs obtained from pairwise comparisons showed that most DEGs were involved in two pathways “Cysteine and methionine metabolism” and “Ribosome” among 0 vs. 48 h. The other three pathways “Flavonoid biosynthesis,” “plant-pathogen interaction,” and “plant hormone signal transduction,” which might be highly correlated with pathogen infection, were also significantly enriched (Supplementary Table 6).



Linkage Disequilibrium Block in the Gummosis Disease-Associated Genomic Regions and Predicted Candidate Genes

The linkage disequilibrium (LD) pattern around each identified significant gummosis disease associated SNPs was evaluated by calculating the squared allele-frequency correlation between each pair of these SNPs. The candidate genes for disease resistance/susceptibility were then searched in the genomic regions flanking the associated SNPs. LD analysis revealed a high pairwise correlation among SNPs within two candidate genes (PRUPE.2G084800 and PRUPE.6G315800) on Chromosomes 2 and 6, respectively. The putative gene on Chromosome 2 harboring the significant SNP rs96598 is PRUPE.2G084800 encoding galactose oxidase. The other gene located at the 2 kb upstream region in the same chromosome is a transcriptional activator PRUPE.2G084700. It has shown a higher expression level than PRUPE.2G084800 (Supplementary Figure 6). Upon pathogen infection, these two genes showed significant upregulation from 0 to 72 h and then were downregulated. The significant SNP rs285957 located on Chromosome 6 was found in PRUPE.6G315800 encoding a Dna J domain, which plays an important role in plant biotic stress in Arabidopsis (Wang et al., 2014). The transcript of PRUPE.6G315800 decreased after pathogen infection and then increased from 60 to 84 h (Figure 6). The third associated SNP rs142398 located on Chromosome 3 was found within the coding region of a leucine-rich repeat receptor-like protein kinase (LRR-RLK) PRUPE.3G116000. Pathogen infection dramatically downregulated the expression level of PRUPE.3G116000 from 0 to 48 h. The log2Fold Change of the transcript level of PRUPE.3G116000 was reduced 3.96 times at 48 h after inoculation compared to 0 h (Supplementary Figure 7). The associated SNP rs191998 on Chromosome 4 was located within the putative gene PRUPE.4G201700, which showed an expression pattern similar to PRUPE.3G116000. The functional annotation of PRUPE.4G201700 identified it as a histone H2A.1-like protein (Supplementary Figure 8). Additionally, two UDP-glucosyl transferase genes (UGTs, PRUPE.1G169100, and PRUPE.1G169200) were found to be located at the 20 and 31 kb region downstream of the significant SNP rs22118 on Chromosome 1. However, the pairwise correlation was extremely low within the 25 kb region around the significant SNP (Supplementary Figure 9). The expression of the two genes significantly increased on pathogen inoculation until 72 h, which were similar to PRUPE.2G084700 and PRUPE.2G084800.
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FIGURE 6. Significant associations and candidate genes on Chromosome 6, underlying peach gummosis disease. (A) Manhattan plots showing the significance of SNP rs285957 at the chromosome-wide level. The vertical blue lines indicate the position of the significant locus identified by three different models. The annotated candidate genes and the gene structure are represented below the plot. (B) Pairwise correlation of LD (r2) between significant SNPs along the highlighted genomic region. (C) Relative expression of Prupe.6G315800 obtained by comparative RNA-Seq profile during the inoculation of “Huyou018.”





DISCUSSION

Gummosis disease is one of the most destructive diseases causing severe loss to peach industry worldwide. At present, no orchard management or fungicide effectively controls the disease in the peach field (Beckman et al., 2011). The absence of resistance cultivars to be used as parents and the poorly understood genetic mechanisms of gummosis disease are the major challenges for breeding the resistant cultivars. In addition, the best solution for breeding a resistant cultivar should be coupled with high fruit quality and not just the root stock, as, even if the rootstock is resistant, the cultivars grafted on the rootstock remain susceptible. In the present study, we investigated large-scale germplasm resources, including improved cultivars and traditional landraces, to identify resistant cultivars for parental selection for future breeding programs. Integrating multiple approaches, including multi-model GWAS and RNA-seq, five novel genetic loci associated with gummosis disease were identified. Four genetic loci with SNPs located on Chromosomes 1, 3, 6, and 4 were found to have a significant impact (P-value < Bonferroni threshold) on the disease severity. The candidate genes harboring the significant SNPs (rs142398, rs285957, and rs191998) were mainly identified and validated by comparative RNA-seq. The functional annotation showed that these genes were highly related to disease response, which further indicates the reliability of our results.


Phenotypic Variation and the Selection of Resistant Sources

Gummosis is a complex disease as it is reported to be affected by multiple external factors, such as age of the tree, pruning methods, orchard management, temperature humidity, as well as the pathogenic type, plant regulators, and the cultivar itself. By comparing the disease severity of plants in the years of 2018 and 2019, we confirmed the results of Mancero-Castillo that the severity of gumming increases with the age of the tree (Mancero-Castillo et al., 2018). Then, to explain the proportion of phenotypic variance determined by genetic factors, we firstly evaluated the heritability of gummosis disease. The high heritability estimated for peach gummosis disease based on multi-years phenotypic data and genome-wide SNP data is strong evidence that the phenotypic variation of the disease is largely due to genetic effect. This, moreover, indicated the possibility of breeding for resistant cultivar to gummosis disease by introducing resistant parents in the breeding program. Also, because of the high heritability and the significant correlation reported among gum exudates, disease severity, and tissue necrosis (Mancero-Castillo et al., 2018), we mainly evaluated the severity of gummosis disease according to the area of the wound lesion on trunks and branches in the same field, but not according to the pathogen inoculation. Our phenotypic results of 195 germplasm sources showed that most accessions were moderately or highly susceptible to gummosis. Nine Prunus persica accessions were highly resistant, of which two accessions showed consistency in resistance across different growing conditions. This result is congruent with the previous reports, where the majority of the peach genotypes were susceptible and no sources of complete resistance were identified even though the available peach genetic resources show the presence of resistant genotypes upon investigation in the field after pathogen infection (Beckman and Reilly, 2005; Beckman et al., 2011). One of the resistant cultivars, “Nan Shan Tian Tao,” is a landrace originating from Shenzhen, southern China, a place with high humidity and temperature (the annual average temperature and humidity ranges up to 25 and 68.5%). This cultivar also exhibited high gummosis resistance in Jiaxing, Zhejiang. The resistance of “Sunfre” was validated by growing in two different locations with “3 plus 6” replications in total. Our previous research on 8-year-old trees of “Sunfre,” grown in different experimental fields, also exhibited high resistance to gummosis disease with strong tree vigor and smooth clean trunk (Supplementary Figure 10). The consistent and stable resistance of these two cultivars made them more reliable selections as breeding materials. Although a genetic source for resistance to peach fungal gummosis has been reported from the P. dulcis cultivar “Tardy Nonpareil,” which is an almond cultivar (Mancero-Castillo et al., 2018), but it may be simpler and more efficient to choose some famous landraces of Prunus persica for intraspecific cross so as to introduce specific alleles, increasing the genetic diversity, and selecting resistant progenies. Accessions with low disease severity will not only be the ideal materials for breeding superior resistant cultivars but also for identifying disease resistance and related genes in future genetic studies.

Several research groups have reported gummosis disease severity in various peach cultivars. However, there are less comparative studies in different peach groups. Zhao et al. (1996) reported that the severity of the disease was lowest in nectarine groups and highest in the flat peach group. Although we did not identify significant differences on gummosis severity in the groups based on hairy fruit skin, blossom time, and fruit flesh color, a major difference was observed in the groups divided by geographic origin. For example the lowest gummosis disease score was observed in the South China landrace group, and the highest gummosis disease score was observed in the North China landrace group. This result was further confirmed by comparing the disease severity among different subgroups clustered using the neighbor-joining method with genome-wide SNP markers (Supplementary Figure 2). Subgroup G1-2, which contains most of the primitive landraces and offsprings originating from Shanghai, was more resistant than the other subgroups. Shanghai is in Southeast China and has high temperatures and humidity during summer. The monthly average temperature and humidity from June to September range from 23.3 to 28.9°C, and 8 to 85%, respectively. It is known as the origin of flavorful honey peach and elite commercial cultivars worldwide. The result that peach genotypes originating from the Shanghai region showed high resistance to gummosis disease, therefore, indicates toward a selective adaption to climate during acclimation or evolutionary history. The pedigree of modern cultivars is another reason for resistant gene inheritance. For instance, the symptoms in “Early Red 2,” an offspring of “Sunfre” were mild compared to “Huyou” nectarines, derived from “Mayfire,” which had severe disease symptoms (Supplementary Table 7).



Population Structure and Genetic Diversity

Population structure obtained from Neighbor-Joining algorithm and PCA was highly consistent and has clustered the accessions according to the domestication history, pedigree, geographic origin, fruit shape, fruit hairy skin, and blossome time. The traditional landraces were clearly separated from the improved accessions, which, as per the previous reports, were obtained by SSR markers and by the GBS-based SNP array (Li et al., 2013; Micheletti et al., 2015; Cao et al., 2019). Because the accessions originating from Shanghai or developed from “Shanghai Shui Mi” are derived from the same parents, they were grouped together in G1. It is remarkable that the two traditional honey peach (“Yu Lu” and “Bai Hua Shui Mi”), which might have been introduced from Shanghai showed close clustering with the primitive landraces from Shanghai. Henceforth, they are not only the ancestors for the elite cultivars in modern peach breeding programs, but also the most popular cultivars in the fresh-eating market due to the favorable aroma, juicy, melting texture, and high sweetness.

The genetic diversity indices provided useful information on genetic diversity of each population. The high level of genetic diversity within groups and a low level of diversity among groups may be due to gene flow and artificial selection (Eltaher et al., 2018). The low observed heterozygosity and the highest value of Fis, π, and haplotype diversity among landraces of G2 can be strong indications that there are no gene flow from landrace in the current breeding program. However, the higher observed heterozygosity and lower genetic diversity among accessions of G1 and G3 may be due to artificial selection of favorable morphological traits and narrow genetic bottleneck because most accessions in these two groups were improved cultivars with desirable traits, such as glabous fruit skin, strong aroma, sweetness, and low acidity. Some accessions have been frequently used as crossing materials (Li et al., 2019). Considering the above results, the understanding of genetic and phenotypic diversity of G2 will be very helpful for introducing new alleles and enlarging the genetic diversity for creative cultivar selection in the future.



Genome-Wide Association Study Model Selection and Quantitative Trait Locus Identification

Optimal statistical models are needed to accurately evaluate the associations between markers and phenotypes. On comparing the results of three statistical models, no significant SNPs were detected by MLM, which is known as a single locus marker testing model for association study. Many studies have shown that multiple loci markers testing models, such as FarmCPU and BLINK, are more powerful for detection of real association signals and have been integrated into GAPIT3 R packages (Wang and Zhang, 2021). These utilize different testing models to select pseudo QTNs as fixed effect in the final estimated model. FarmCPU uses a set of markers associated with a causal gene as a cofactor instead of kinship to avoid overfitting and eliminates confusion between kinship and testing markers iteratively (Liu et al., 2016). The BLINK eliminates the requirement of FarmCPU, which demands that the quantitative trait nucleotides (QTNs) should be evenly distributed in the genome (Huang et al., 2019). The simulation study has shown that the BLINK model is more powerful than the FarmCPU (Wang and Zhang, 2021). In this study, we compared the results from these two multiple loci models (FarmCPU and BLINK) and selected all significant markers from both models as candidate loci for gummosis disease resistance.

Remarkably, at present, there is only one publication on QTL mapping of peach gummosis disease, which identified a locus Botd8 on chimeric linkage groups 6–8 from “UF Sharp” × (FG × TNP1260), with the effect on gumming rates ranging from an average of 0.5 ± 0.2 for resistant to 3.4 ± 0.2 for the susceptible trees (Mancero-Castillo et al., 2018). Here, we identified a total of five quantitative resistance loci affecting gummosis disease by multiple GWAS resolution. All five significant SNPs-harboring genomic loci distributed on five chromosomes (1, 2, 3, 4, and 6) are novel and provided high variance explanation. The large allele effect on phenotypic value is a good indication for detecting the favorable resistance alleles in the current population as well as for future populations. The higher number of QTLs identified by GWAS might be due to higher genetic diversity of our germplasm since most accessions were selected based on the previous study of 658 oriental and occidental cultivars (Li et al., 2013). In addition, comparing with previous linkage mapping study using bi-parental populations, GWAS gave high mapping resolution to narrow down the chromosomal region of candidate QTLs and predict causal genes (Zhang et al., 2016). However, the SNPs found in our study have not yet been validated in multiple bi-parental populations or natural populations, especially elite parents. This means that there is need for validating the SNPs either using KASP or other convenient and effective tool in training populations to identify favorable alleles that can be selected in future marker-assisted parent selection (MAPS) or marker-assisted seedling selection (MASS) breeding programs.



Identification of Gummosis Disease Resistance Loci and Candidate Genes

Several studies have reported that peach has large LD extent, spanning from around 25–50 kb due to its self-compatibility with limited genetic diversity to be used in peach breeding (Li et al., 2013; Micheletti et al., 2015; Cao et al., 2016). In our study, the LD extent seems to be highly dependent on different groups as it ranged from 30 kb (in G2) to 150 kb in G3. This study is similar to the previous reports (Li et al., 2013; Micheletti et al., 2015; Thurow et al., 2020). However, the LD extent detected for G1 was relatively larger than for G2 and G3. This may be because most accessions in this group have originated from Shanghai or derived from “Shanghai ShuiMi.” With the above view in mind, candidate genes within a conservative window size of approximately 100 kb were searched, and their LD level was analyzed. The SNP rs285927 located in a Dna J domain was identified using both FarmCPU and BLINK models. This is a protein, also known as heat-shock protein 40, which belongs to the family of conserved co-chaperones for HSP70s. Plant J-domain proteins have been shown to have diverse functions in stress responses. For example, silencing a soybean type-III nuclear body-localized DnaJ protein GmHSP40.1 enhanced the susceptibility of soybean plants to soybean mosaic virus (Liu and Whitham, 2013). Similarly, the overexpression of tomato chloroplast-targeted DnaJ protein (LeCDJ2) enhanced the tolerance to drought stress and resistance to Pseudomonas solanacearum in transgenic tobacco (Wang et al., 2014). However, virulence effector HopI 1, a chloroplast-targeted class-III J protein from Pseudomonas syringae, has been shown to suppress both salicylic acid accumulation and host defense responses in Arabidopsis (Jelenska et al., 2007). The comparative transcriptome analysis in this study identified 39 differentially expressed genes that were annotated as Dna J domains. Of these, PRUPE.6G315800 was co-localized at the same region, where significant SNP rs285957 was detected by GWAS. Moreover, its transcript level also decreased significantly after pathogen inoculation. To further ascertain the function of the DnaJ domain gene family in peach, genome-wide identification and characterization combined with transcript analysis and subcellular localization are necessary. Additionally, another putative gene, PRUPE.6G315700, encoding the calmodulin-binding-like protein (CBP), which is related to disease resistance against Pseudomonas syringae in Arabidopsis and tomato, was found at the 7 kb upsteam of the significant SNP locus (rs285957) (Chiasson et al., 2005). In peach, it has been reported that exogenous CaCl2 treatment can increase the content of Ca2+ in shoots, prevent the degradation of cell wall polysaccharides, maintain the stability and integrity of cell wall, and, finally, reduce the severity of gummosis disease (Li M.J. et al., 2015).

The candidate gene PRUPE.3G116000 harboring the significant SNP rs142398 on Chromosome 3 is the LRR-RLK gene, which belongs to a large gene family of receptor-like protein kinases and actively participates in regulating growth, development, signal transduction, immunity, and stress responses in plants (Liu et al., 2017; Sun et al., 2017). By performing GBS-based bi-parental QTL mapping and GWAS, clusters of candidate nucleotide-binding site-leucine-rich repeat (NBS-LRR) and receptor-like kinase (RLK) were predicted within the QTL region, which was highly associated with P. capsici root rot resistance in pepper (Siddique et al., 2019). In peach, 258 LRR-RLKs genes have been found (Sun et al., 2017). Here, we identified a total of 11 SNPs within PRUPE.3G116000 using genome sequencing data. However, the correlation between the significant SNP (rs142398) and the other SNPs in the LD block around the gummosis disease-associated genomic region was lower. For this reason, the targeted region was traced in the peach genome v2 in GDR.4 As a result, ten SNPs on the IRSC Peach 9K and 18 K SNP array located in the coding region of PRUPE.3G116000 were found. It is worth noting that the haplotype block constructed with the peach IRSC 9 K SNP array by Stijn (Vanderzande et al., 2019) was not found in this region. This indicates that it may not be a conserved gene but a highly diverse region resulting from recombination, selection, or domestication. Therefore, use of multi bi-parental populations or BSA is required to further analyze the association of PRUPE.3G116000 with peach gummosis disease.

The UDP-glycosyl transferases are a multigenic and highly divergent superfamily of enzymes that are widely found in all living organisms. In plants, many UGTs play important roles in plant defense to biotic and abiotic stresses by glycosylating acceptor molecules, such as anthocyanidins, flavanols, flavonoids, saponins, sterols, terpenoids, phenylpropanoids, and plant hormones, or by detoxifying and deactivating xenobiotics as a pivotal role in plant-pathogen interactions. In wheat and barley, several UGT genes have been reported to enhance their resistance against Fusariumhead blight by glycosylating the deoxynivalenol (DON), produced by Fusarium fungus to the less toxic D3G, such as the barley HvUGT13248 and HvUGT-10W1 (Xing et al., 2016) and the wheat TaUGT3 (Xing et al., 2016) and TaUGT6 (He et al., 2020). In peach, 168 UGT genes have been identified and clustered into 16 groups based on the phylogenetic analysis (Wu et al., 2017). Using the RNA-seq technique, six UGTs (ppa005290 mg, ppa023599 mg, ppa012496 mg, ppa005161 mg, ppa025073 mg, and ppa016033 mg), which are mainly involved in the biosynthesis of anthocyanidins and other flavonoids, has been shown to be upregulated by pathogen infection. The tissue around the wounded area changed from green to red and accumulated anthocyanin during disease infection (Gao et al., 2016). It is worth noting that PRUPE.1G169100 is identical to the ppa005161 identified in peach genome v1 by Gao et al. (2016). In our study, two UGTs located around the significant SNP rs22118 were remarkably upregulated by pathogen infection. They have been previously reported to belong to the same cluster and as homologous with UGT75D1, UGT84A1, UGT74F2, and UGT74F2, playing a critical role in Pseudomonas syringae resistance and involved in salicylic acid glycosylation in Arabidopsis (Boachon et al., 2013; Thompson et al., 2016). UGT glycosylation is a critical step in forming glycosylated linalool, which has been reported to have a defensive function in several plant species such as against rice bacterial blight induced by Xanthomonas Oryzae PV. Oryzae (Xoo) (Antony et al., 2010), citrus canker induced by Xanthomonas citri subsp. citri (Xcc) (Takehiko et al., 2017) and antibacterial and antifungal activities to Xcc and Penicillium italicum in Ponkan mandarin (Shiduku et al., 2013). In peach, PpUGT85A2 catalyzes the glycosylation of linalool, and the overexpression of this gene increases the production of linalyl-β-d-glucoside (Wu et al., 2019). Here, we did not evaluate the content of anthocyanin or glycosylated linalool in the shoots of different peach cultivars. Although the regulation of anthocyanin biosynthesis and terpene synthase genes by UGTs was not investigated, this research provides a new insight into resistance to peach gummosis disease to understand its defense system.




CONCLUSION

The present study is the first to identify multiple genetic factors involved in peach gummosis using GWAS by using a substantial number of peach germplasm accessions. Two highly resistant accessions were detected in the germplasm, which will be useful plant material for resistant cultivar selection in peach breeding programs. Strong evidence was provided on its high heritability both by genotypic and phenotypic data for peach gummosis disease. This indicates that the phenotypic variation of this complex trait is largely determined by genetic control. By integrating the GWAS and RNA-seq analysis, four candidate genes harboring the significant SNPs on chromosomes 2, 3, 4, and 6 and showing significant differential expression were identified. This study enhances our knowledge of the genetic basis of resistance to peach gummosis disease. The associated markers and resistant plant sources can assist a precise breeding to develop breeders in developing higher resistant cultivars to the disease at a faster rate.
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Cultivar resistance is an important tool in controlling pathogen-related diseases in agricultural crops. As temperatures increase due to global warming, temperature-resilient disease resistance will play an important role in crop protection. However, the mechanisms behind the temperature-sensitivity of the disease resistance response are poorly understood in crop species and little is known about the effect of elevated temperatures on quantitative disease resistance. Here, we investigated the effect of temperature increase on the quantitative resistance of Brassica napus against Leptosphaeria maculans. Field experiments and controlled environment inoculation assays were done to determine the influence of temperature on R gene-mediated and quantitative resistance against L. maculans; of specific interest was the impact of high summer temperatures on the severity of phoma stem canker. Field experiments were run for three consecutive growing seasons at various sites in England and France using twelve winter oilseed rape breeding lines or cultivars with or without R genes and/or quantitative resistance. Stem inoculation assays were done under controlled environment conditions with four cultivars/breeding lines, using avirulent and virulent L. maculans isolates, to determine if an increase in ambient temperature reduces the efficacy of the resistance. High maximum June temperature was found to be related to phoma stem canker severity. No temperature effect on stem canker severity was found for the cultivar ES Astrid (with only quantitative resistance with no known R genes). However, in the controlled environmental conditions, the cultivar ES Astrid had significantly smaller amounts of necrotic tissue at 20°C than at 25°C. This suggests that, under a sustained temperature of 25°C, the efficacy of quantitative resistance is reduced. Findings from this study show that temperature-resilient quantitative resistance is currently available in some oilseed cultivars and that efficacy of quantitative resistance is maintained at increased temperature but not when these elevated temperatures are sustained for a long period.

Keywords: phoma stem canker, quantitative resistance, climate change, oilseed rape, temperature-sensitivity


INTRODUCTION

The plant immune system consists of two branches: a primary basal defense response known as the pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), and a specific effector-triggered immune (ETI) response. PTI recognizes conserved molecules common to classes of microbes while ETI recognizes and responds to effectors produced by pathogens adapted to overcome PTI. Jones and Dangl (2006) originally proposed a Zigzag model to explain the strength and evolution of PTI and ETI; whereas PTI depends on the perception of PAMPs by pattern recognition receptors (PRRs), ETI involves effector recognition by nucleotide-binding leucine-rich repeat receptors (NLRs). Since this model was proposed, advances have been made in understanding plant immunity, revealing its limitations (Pritchard and Birch, 2014). It has recently become clear that PTI and ETI influence one another to generate a comprehensive immune response (Yuan et al., 2021). Further issues arose from the confusion over the classification of resistance against apoplastic pathogens, such as Leptosphaeria maculans, as PTI or ETI (Jones and Dangl, 2006; Thomma et al., 2011; Stotz et al., 2014). The classification of effector-triggered defense (ETD) as another form of resistance, in addition to ETI and PTI, was first proposed by Stotz et al. (2014). ETD replaces ETI when extracellular apoplastic pathogens are encountered. Involving different receptors (ETI is triggered by intracellular NLRs), ETD differs from ETI in several aspects. The ETD response is delayed relative to ETI, which is often associated with fast, hypersensitive host cell death. Furthermore, with ETD, the pathogen is not killed and may resume growth following the onset of host senescence, or if the host resistance response is otherwise compromised (Stotz et al., 2014). All these plant immune and defensive mechanisms are influenced by temperature changes (Cheng et al., 2013).

Increased temperature has been linked to more severe phoma stem canker in winter oilseed rape crops. Previous studies have agreed that in seasons experiencing elevated temperatures and increased rainfall, the efficacy of R genes is negatively influenced, and the stem canker severity is greater (Huang et al., 2006, 2018; Evans et al., 2008). Cotyledon assays showed clear differences between R genes in their resilience to maintain efficacy under elevated temperatures. Less is known about how these R genes respond individually to temperature in crops. Some work has been done in determining which months are most significant in affecting phoma severity; Huang et al. (2018) found phoma leaf spotting and stem canker severity to be linked to October and June average temperatures, respectively. This severity analysis did not explore the impact of maximum monthly temperatures. There is some evidence that maximum temperature may influence canker severity. A multiple linear regression analysis on 40 winter oilseed rape field experimental datasets by Evans et al. (2008) indicated that the mean maximum daily temperature and total rainfall (between 15 July and 26 September) produced the best prediction of the start date of the phoma leaf spotting epidemic, which is used to time the spraying of fungicides in autumn in the United Kingdom for all sites and growing seasons included. Maximum daily temperature and rainfall are important in stage one of the model described by Evans et al. (2008) relating to the date of leaf spotting in autumn. This study relates to stages two and three of the model (date of canker appearance in spring; severity of canker before harvest); for these stages, only temperature and host resistance are important. June is known to be a critical period in the development of the phoma stem canker; the most severe stage of the disease, the crown canker, occurs from May to July (West et al., 2001).

Conclusions drawn from investigations into the response of quantitative resistance at increased temperatures are somewhat conflicting. Huang et al. (2009) found, by analyzing stem cross-sections, the efficacy of quantitative resistance to be reduced when a cultivar with good quantitative resistance was exposed to an elevated temperature of 25°C compared to 15°C. While more severe cankers were observed on the cultivar with “little” quantitative resistance at 15°C, no significant difference between the two cultivars in stem canker severity at the higher temperature was observed, suggesting that temperature modifies the response of quantitative resistance to L. maculans. An experiment by Hubbard and Peng (2018) subjected L. maculans-inoculated Brassica napus cultivars with quantitative resistance to a temperature regime designed to mimic a heatwave, increasing to 32°C daytime temperature for 7 h before decreasing to 18°C for 7 h overnight. No difference in disease severity was found compared to plants grown at a moderate temperature regime of 22°C daytime/16°C overnight; suggesting that quantitative resistance can maintain efficacy at increased temperatures. It remains poorly understood how temperature affects the operation of quantitative resistance.

Here we aimed to determine how quantitative resistance and different R genes impacted the severity of the phoma stem canker of winter oilseed rape cultivars/breeding lines in field conditions, specifically in relation to the June maximum temperature. Second, we examined the effect of elevated temperature on the quantitative resistance response in stems during the colonization of stem tissues of the host B. napus by the pathogen L. maculans to develop stem canker.



MATERIALS AND METHODS


Winter Oilseed Rape Field Experiments

A selection of B. napus breeding lines and cultivars with “good” or “little” quantitative resistance and major resistance (R) genes Rlm4, Rlm7, or LepR3 were used in the field and controlled environment (CE) experiments. Field disease data and weather data were then analyzed to investigate the relationships between canker severity in different cultivars/breeding lines and maximum monthly temperatures throughout the growing seasons. The field experiments were run for three growing seasons (2016/17, 2017/18, and 2018/19) in England and France. There were two sites in 2016/17; Impington, Cambridgeshire, United Kingdom (lat. 52.253824°, long. 0.125801°) (the previous crop was wheat) and Châteauroux, France (lat. 46.5319°, long. 1.3758°) (the previous crop was wheat). There were two sites in 2017/18; Wisbech, Cambridgeshire, United Kingdom (lat. 52.695707°, long. 0.081937458) (the previous crop was pea) and Châteauroux, France (lat. 46.5319°, long. 1.3758°). However, the crop failed to establish at Châteauroux due to severe flea beetle damage. There were two sites in the United Kingdom in 2018/19: Callow, Herefordshire (lat. 51.994688°, long. −2.756194°) (the previous crop was wheat) and Wisbech, Cambridgeshire (lat. 52.619527°, long. 0.16128927°) (the previous crop was pea).

A total of 12 winter oilseed rape cultivars/breeding lines were selected for field experiments (Table 1). The rationale for the choice of genotypes was to include current cultivars/breeding lines with “good” or “little” quantitative resistance and R genes Rlm4, Rlm7, or LepR3. Current United Kingdom cultivars and breeding lines were included in the study to determine if temperature-resilient characteristics are present in commercially available oilseed rape cultivars. Seven of the cultivars/breeding lines have R genes with a “good” quantitative resistance background; DK Exception (Rlm7), Breeding line A (Rlm7), Adriana (Rlm4), Jet Neuf (Rlm4), Breeding line C (Rlm4), Breeding line E (LepR3), and Breeding line F (LepR3). Three of the cultivars/breeding lines have R genes and “little” quantitative resistance backgrounds; Breeding line B (Rlm7), Breeding line D (Rlm4), and Breeding line G (LepR3). Cultivar ES Astrid contains no known R genes but has a quantitative resistance background. Cultivar Incentive, which has no known R genes and “little” quantitative resistance, was used as a susceptible control. Breeding line C was not included in the first year as it was selected to replace a cultivar that did not establish in the first year of trials due to poor germination of the seed lot. The field experiments were arranged in randomized block designs with two or three replicates. Seeds were sown between late August and early September, at a density of 45 seeds/m2 in France and 55 seeds/m2 in the UK. Plots were 6 m2 for Châteauroux, France (2016/17, 2017/18), Impington (2016/17), and Wisbech, England (2017/18), and 8.6 m2 for Wisbech, England (2018/19) and Callow, England (2018/19).


TABLE 1. Winter oilseed rape cultivars and breeding lines tested in field experiments in 2016/17, 2017/18, and 2018/19 and a controlled environment (CE) experiment.
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Frequency of Avirulent Alleles in L. maculans Populations

To determine the frequencies in the field experiment areas of virulent and avirulent alleles of L. maculans toward the R genes Rlm4, Rlm7, and LepR3, cultivar Drakkar with no R genes and no quantitative resistance was used for sampling L. maculans populations. Leaves of Drakkar with phoma leaf spot lesions were taken from Impington in autumn 2015 and Wisbech in autumn 2016 and 2017. L. maculans isolates from single pycnidia were obtained as described by Huang et al. (2018). Eight avirulent alleles of different effector genes in each L. maculans isolate were identified by inoculating the isolate onto cotyledons of a differential set of cultivars/lines carrying known Rlm genes (Huang et al., 2018).



Phoma Stem Canker Severity Assessment on Different Cultivars and Breeding Lines

The severity of phoma stem canker was assessed in July, prior to harvest, and 15 plants were randomly pulled from each plot. The stems were cut at the base, immediately above the root collar and the area of necrotic tissue caused by phoma stem canker in the cross-section was scored using a scale from 0 to 6 (Pilet et al., 1998; Delourme et al., 2008); scale 0 = no affected tissue; scale 1 = 1–5% area affected; scale 2 = 6–25% area affected; scale 3 = 26–50% area affected; scale 4 = 51–75% area affected; scale 5 = 76–100% area affected, plant alive, and 6 = 100% area affected, stem broken or plant dead.



Weather Data at Field Sites

The monthly average maximum temperature and total rainfall data were obtained for the five field site locations to assess their effects on phoma stem canker severity. Weather data were obtained from the NASA Langley Research Centre Atmospheric Science Data Centre Surface Meteorological and Solar Energy (SSE) web portal supported by the NASA LaRC POWER Project1. The average maximum monthly temperature for six months (from September to July) and maximum June temperature were used for analysis to investigate the effect of increased environmental temperatures.



Effects of Temperature on the Growth Rate of Different L. maculans Isolates

The growth of L. maculans isolates in vitro was assessed at both 20°C and 25°C to ensure any differences in phenotype were not caused by differences in pathogen growth rate. The growth rates of L. maculans isolates v23.1.3 (Av1-4-5-6-7; avirulent against Rlm4) and v23.11.9 (Av1-5-6-7; virulent against Rlm4) were compared at 20 and 25°C; both isolates were derived from a single cross (Balesdent et al., 2001). Mycelial disk inoculum was placed in the center of 9 cm diameter Petri dishes of V8 agar amended with penicillin (20 mg L–1 filter sterilized) and streptomycin (40 mg L–1 filter sterilized). These were then stored for 24 h in darkness at 20°C before transfer to the CE chamber for further growth. Six replicate Petri dishes were prepared per treatment. Photographs were taken daily over a 5-day period using a NEX-5R camera (Sony) with a 40.4–49 mm lens. Photos were taken from a fixed height and under controlled lighting to reduce image distortion and give color consistency between treatments. Image J software was used to trace the circumference of the isolated colony in each image using the freehand tool. This method was used to provide more accurate results than measuring colony radius with a ruler as isolates of L. maculans often grow with an irregular margin rather than a perfect circular perimeter. The dark orange V8 agar provided a clear contrast to the white mycelia allowing the areas of fungal growth to be clearly identified.



Plant Growth and Stem Inoculation for Controlled Environment Assay

The effect of temperature on the quantitative disease resistance and the role of R genes during the second symptomless stage of colonization was investigated by the inoculation of the stem bases of B. napus young plants with L. maculans isolates. Cultivars/breeding lines possessing four different combinations of resistance genotypes were selected; susceptible background with no R genes (Breeding line H); “good” quantitative resistance background with no known R genes (ES Astrid); susceptible background with Rlm4 (Breeding line D), and “good” quantitative resistance background with Rlm4 (Jet Neuf) (Table 1). Two isolates of L. maculans were used for inoculation; one avirulent and the other virulent against Rlm4; v23.1.3 (AvrLm4), and v23.11.9 (avrLm4), respectively. Plants were treated with the virulent L. maculans isolate to remove any resistance response caused by major R gene interactions. Thus, any differences in resistance response observed in these plants were due to differences in the quantitative resistance background. For each of the four treatments (inoculation with avirulent isolate at 20°C, inoculation with avirulent isolate at 25°C, inoculation with virulent isolate at 20°C, and inoculation with virulent isolate at 25°C), 15 plants of each cultivar/breeding line were subdivided into three sub-blocks of five, which were arranged randomly between four trays each containing 15 plants (three sub-blocks). Plants were grown in a 1:1 ratio of MiracleGro and John Innes No 3 compost, in 6 cm × 6 cm wide and 8 cm deep pots, inside CE cabinets at a constant temperature of 20°C (12-h light/12-h dark). Light intensity at plant height was measured to be 320 μmol/m2/s. Plants were divided into two groups 24 h prior to inoculation; half were transferred to 25°C, the rest remaining at 20°C. Plants were inoculated after 6-weeks of growth in the CE cabinets by placing a 1 cm2 square piece of sponge cloth soaked in 107 ml–1 conidial suspension over a 1 cm cut in the stem, then wrapping with Parafilm to secure it in place.



Image-Based Canker Severity Assessment and Measurement of Plant Health

Assessment of plant health and canker severity was done at 6-weeks post-inoculation. To assess plant health, the following measurements were taken for each plant; leaf number, plant height (stem base to the tip of the longest leaf), and stem thickness (measured with a digital caliper). To assess stem canker severity, 1 cm long pieces of the stem were cut at 1 cm below the inoculation site and photographed as previously described. Photos were then batch-cropped into fifteen photos of stem pieces, each measuring 815 pixels × 815 pixels, to improve accuracy before statistical analysis. These were then analyzed with Image J (Schneider et al., 2012) to determine the percentage area of the necrotic tissue discolored by the disease to assess the severity of the stem canker (Figure 1). Saturation was adjusted for each image to ensure the cross-section of the stem was fully covered in the analysis. Healthy tissue was identified through setting the color threshold parameters, in HSB (hue, saturation, brightness) mode to brightness min 82, hue min 42. Settings for necrotic discolored tissue were brightness max 81 and hue max 41. The Analyze Measure function was then used to measure the pixels in the filtered areas.
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FIGURE 1. Image-based canker severity assessment workflow. Photos of stem pieces for each treatment were cropped to isolate each of the individual stems to allow more in-depth statistical analysis. (A) The saturation threshold level was adjusted for each individual image to ensure the cross-sectional area was totally masked, as shown in red on the right-hand side. (B) Brightness and hue threshold filters were applied, identifying necrotic tissue (shown in red on the left) and healthy green tissue (shown in red on the right).




Statistical Analysis

The statistical analyses of the data were all done using GenStat statistical software (VSN International, 2020). ANOVA was done to test the effects of cultivars/breeding lines with R gene resistance, “good” quantitative resistance, R gene resistance with “good” quantitative resistance, or susceptible background on stem canker severity score. ANOVA was also done to test the effects of oilseed rape cultivar/breeding line and temperature on plant height, leaf number, and stem diameter of the oilseed rape cultivars and breeding lines tested. The post hoc test with Fisher’s least significant difference (LSD) calculated at P = 0.05 was used to separate the difference between means of treatments. Correlation analysis for canker severity score against mean monthly maximum temperature was done to identify the month with the greatest temperature effect on phoma stem canker severity score. Then, the relationship between the stem canker severity score and the highest maximum temperature recorded in June was analyzed using linear regression. Differences between cultivars/breeding lines were tested using comparative analysis of position and parallelism of linear regression (i.e., linear regression with groups).




RESULTS


Frequency of Avirulent Alleles in L. maculans Isolates

The proportions of the avirulent alleles of AvrLm1, AvrLm2, AvrLm3, AvrLm4, AvrLm5, AvrLm6, AvrLm7, and AvrLm9 were assessed in L. maculans isolates obtained from leaf lesions taken from experimental locations in Impington (autumn 2015) and Wisbech (autumn 2016 and 2017). The frequency of isolates with AvrLm7 in Wisbech decreased in 2017/18 (74.3%) compared to 2015/16 and 2016/17 (100%) (Figure 2) and would be expected to decrease further during 2018/19. Thus, cultivars/breeding lines with Rlm7 would be expected to have good resistance against phoma stem canker in the first year; that would deteriorate during the second and third year of the field experiments as the avrLm7 races increased in frequency. Most of the isolates tested were found to have the virulent alleles avrLm1 (87.5% for Impington 2015/16, 100% for Wisbech 2016/17, and 77.1% for Wisbech 2017/18) and avrLm4 (75% for Impington 2015/16, 87.8% for Wisbech 2016/17, and 85.7% for Wisbech 2017/18) which confer virulence to resistance genes Rlm1 or Rlm4, respectively. Since the effector gene AvrLm1 is recognized by the resistance genes Rlm1 and LepR3, cultivars/breeding lines containing LepR3 would be expected to show severe phoma stem canker at these sites. Similarly, cultivars/breeding lines containing Rlm4 would also be expected to be susceptible as the effector gene AvrLm4-7 is recognized by the resistance gene Rlm4 (Pilet et al., 1998).
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FIGURE 2. Frequency of avirulent alleles in Leptosphaeria maculans isolates taken from field locations in Wisbech and Impington, United Kingdom. To determine the frequencies of virulent/avirulent alleles of L. maculans present in the field experiment areas toward the R genes Rlm4, Rlm7, and LepR3, cultivar Drakkar with no R genes and no quantitative resistance was used for sampling L. maculans populations. Leaves of Drakkar with phoma leaf spot lesions were taken from Impington in autumn 2015 and Wisbech in autumn 2016 and 2017 for obtaining L. maculans isolates. Avirulent alleles of different effector genes (Avr) genes in each L. maculans isolate were identified by inoculating the isolate onto cotyledons of a differential set of cultivars/breeding lines carrying known Rlm genes (Huang et al., 2018).




Phoma Stem Canker Severity on Different Cultivars and Breeding Lines

The phoma stem canker severity scores for the twelve winter oilseed rape breeding lines/cultivars with different combinations of R genes and/or quantitative resistance included in the field experiments in England and France were analyzed. Figure 3 shows the distribution of phoma canker severity scores between cultivars/breeding lines. The cultivar Incentive (“little” quantitative resistance, no known R genes) had the greatest canker severity (mean severity score = 3.88), two times greater than that of the cultivar ES Astrid (with quantitative resistance only). Breeding line G (“little” quantitative resistance and LepR3) had the smallest average severity score (0.82). The greatest variance in stem canker severity was observed in cultivar DK Exception (“good” quantitative resistance and Rlm7) and the smallest in Breeding line D (“little” quantitative resistance and Rlm4).
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FIGURE 3. Distribution of phoma canker severity scores for winter oilseed rape cultivars/breeding lines with different R genes and/or quantitative resistance. Cultivars/breeding lines were grown at five locations over three growing seasons (Chateauroux, France, 2016/17; Impington, United Kingdom, 2016/17; Wisbech, United Kingdom, 2017/18 and 2018/19; and Callow, Herefordshire, United Kingdom, 2018/19). Each box-plot shows the mean (cross) and median (line) scores for each cultivar/breeding line. Upper and lower box boundaries denote the 25th and 75th percentiles and whiskers indicate the minimum and maximum severity scores. Basal stem canker severity (Scale 0–6; Lô-Pelzer et al., 2009) was scored on fifteen plant stems randomly sampled from each plot. Colors represent the different R genes in cultivars/breeding lines; pink is LepR3, green Rlm7, blue Rlm4, and black no known R gene. Shaded boxes denote cultivars with higher levels of quantitative resistance as indicated by breeders. Average scores sharing the same letter are not statistically different (P < 0.05) in multiple comparisons using Fisher’s least significant difference (LSD) test.


Cultivars/breeding lines with the same R gene and “good” or “little” categorization of quantitative resistance were grouped together to allow cross-comparison (Table 2), and the material containing the same R genes is color-coded in Figure 3. Fisher’s least significant comparison test was done to test for significant differences between R genes and quantitative resistance in average stem canker severity. Large differences were seen in R gene effects in cultivars/breeding lines with “little” quantitative resistance; cultivars/breeding lines with Rlm7, Rlm4, LepR3, or no known R gene were all significantly different from each other. However, in cultivars/breeding lines with quantitative resistance, there were no R gene effects. No significant differences were found for Rlm7 and LepR3 cultivars/breeding lines between those with “good” and “little” quantitative resistance. However, for cultivars/breeding lines with Rlm4 and cultivars/breeding lines with no known R gene, significant differences were found between those with “good” and “little” quantitative resistance. In both cases, those with “good” quantitative resistance had a significantly smaller score. Quantitative resistance had the largest protective effect against stem canker caused by L. maculans in the absence of R genes.


TABLE 2. Fisher’s least significance comparison of average canker severity scores for 12 winter oilseed rape cultivars/breeding lines grouped by single R gene and quantitative resistance.
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Effect of June Temperature on Canker Severity in Cultivars and Breeding Lines Varying in R Gene-Mediated and/or Quantitative Resistance

An initial correlation analysis for the canker severity score and mean monthly maximum temperature was done to identify the month with the greatest temperature effect on phoma stem canker severity score. June was found to have the greatest influence, with a correlation coefficient of r = 0.33 (Supplementary Table 1). The regression analysis of the relationship between the greatest recorded June temperature and phoma stem canker severity score in cropping years 2016/17, 2018/19, and 2018/19 showed that there were differences between genotypes (Figure 4). The highest maximum June temperature was 35.97°C in Chateauroux, France (June 22, 2017) and the lowest maximum June temperature was 23.59°C in Wisbech (June 25, 2018).
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FIGURE 4. Relationship between phoma stem canker severity of winter oilseed rape cultivars/breeding lines and maximum June temperature. Twelve cultivars/breeding lines (see Table 1) were grown in 2–3 replicate blocks over three growing seasons at five locations in Chateauroux, France (2016/17); Impington, Cambridgeshire, United Kingdom (2016/17); Wisbech, Cambridgeshire, United Kingdom (2017/18 and 2018/19); and Callow, Herefordshire, United Kingdom (2018/19). Basal stem canker severity (Scale 0–6; Lô-Pelzer et al., 2009) was scored on 15 plant stems randomly sampled from each plot.


Groups 1 and 2 (cultivars/breeding lines with Rlm7 and with “good” or “little” quantitative resistance) both had a positive correlation between the maximum June temperature and phoma stem canker severity. This correlation was stronger in the cultivars/breeding lines with “little” quantitative resistance (R2 = 0.85, P < 0.025) than that for the cultivars/breeding lines with “good” quantitative resistance (R2 = 0.52, P < 0.01). Groups 3 and 4 (cultivars/breeding lines with Rlm4, and “good” or “little” quantitative resistance) showed a much weaker relationship of phoma stem canker severity with maximum June temperature (R2 = 0.31, P < 0.01 and R2 = 0.26, P > 0.05 respectively). With quantitative resistance, a positive correlation was observed, but with “little” quantitative resistance (Breeding line D), there was no significant correlation. Group 5 (LepR3 with “good” quantitative resistance) (Breeding lines E and F) and group 6 (LepR3 and “little” quantitative resistance) (Breeding line G) followed a similar trend to groups 1 and 2; both showed a positive correlation between phoma stem canker score and maximum June temperature, with a stronger correlation in cultivars/breeding lines with “little” quantitative resistance (R2 = 0.86, P < 0.025) than those with “good” quantitative resistance (R2 = 0.29, P < 0.05). Group 7 (cultivar ES Astrid with “good” quantitative resistance and no known R genes) showed no significant correlation between the canker severity score and maximum June temperature (R2 = 0.034). Group 8 (cultivar Incentive with no known R genes and “little” quantitative resistance) showed a negative correlation (R2 = 0.65, P < 0.05) with reduced phoma stem canker severity at the higher temperatures. Analysis of position and parallelism based on cultivar/breeding line R genes compared groups with R genes against susceptible cultivar Incentive. Cultivars/breeding lines with Rlm7 (P < 0.01) and LepR3 (P < 0.05) both had significantly different slopes, but those cultivars/breeding lines with Rlm4 did not (P = 0.061). The intercept was found to be significantly different from Incentive for all cultivars/breeding lines; Rlm7 (P < 0.001), Rlm4 (P < 0.05), and LepR3 (P < 0.01).



Effects of Temperature on the Growth Rate of L. maculans Isolates in Culture

The two L. maculans isolates used in this study, v23.1.3 and v23.11.9, were grown at 20 and 25°C under CE conditions and measured every 24 h for 5 days to determine the effect of temperature on their growth (Figure 5). The growth rates of both isolates were not affected by temperature. The perimeters of the v23.1.3 cultures were slightly larger at 25°C than at 20°C, whereas the perimeters of the v23.11.9 cultures were marginally larger at 20°C. However, neither of these differences were significant.
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FIGURE 5. Effects of temperature on the radial growth rates of L. maculans isolates v23.1.3 and v23.11.9 at 20 and 25°C. Mycelial disks were transferred from fungal colonies onto V8 media Petri dishes incubated at a constant temperature of 20 or 25°C in darkness. Photographs were taken daily at regular time points for 5 days. The area of fungal growth was analyzed using Image J. An ANOVA showed that temperature had not significantly affected radial growth rate for v23.1.3 (P = 0.322) or v23.11.9 (P = 0.971). Error bars indicate the standard error of the mean (5 df).




Effects of Temperature on Phoma Stem Canker Severity in B. napus With Quantitative and/or R Gene-Mediated Resistance Under Controlled Environment Conditions

The effect of increased temperature, from 20 to 25°C, on canker severity for four winter oilseed rape cultivars/breeding lines with different resistance profiles was determined, 6 weeks following inoculation with L. maculans isolates avirulent (v23.1.3) or virulent (v23.11.9) against Rlm4 (Figure 6). Rlm4 was chosen as the R gene in this study as significant differences between cultivars/breeding lines with “little” and “good” quantitative resistance had previously been observed in the field experiment (Table 2). As expected, canker severity was greater when the different plant genotypes were inoculated with the virulent (Figure 6B) rather than the avirulent isolate (Figure 6A). Cultivar Jet Neuf (“good” quantitative resistance and Rlm4) showed the smallest canker severity at both temperatures when inoculated with the avirulent rather than the virulent isolate. No significant difference was seen between the two temperatures for the inoculation with the avirulent L. maculans isolate v23.1.3 (11.3 and 24.6% necrosis for 20 and 25°C, respectively); however, the virulent isolate produced significantly greater amounts of necrosis at 25°C (54.1%) compared to 20°C (37.1%). Cultivar ES Astrid (“good” quantitative resistance, no known R genes) performed well against isolate v23.1.3 at 20°C with an average necrotic area of 31.8%. However, this cultivar resistance lost efficacy at 25°C, with over twice as much necrotic tissue area (83.7%). When inoculated with the virulent isolate v23.11.9, a significant difference was also seen between the temperatures (63.7 and 84.8% necrotic tissue for 20 and 25°C, respectively). Breeding line D (“little” quantitative resistance and Rlm4) also showed a significant difference between the two temperatures when inoculated with the avirulent v23.1.3 isolate (46.3 and 60.3% necrotic tissue area at 20 and 25°C, respectively). When inoculated with the virulent isolate, this temperature effect was reversed, with a statistically significantly greater necrotic tissue area (90.7%) found at 20°C, compared to 69.4% at 25°C. Breeding line H (“little” quantitative resistance, no known R genes) did not exhibit any significant temperature effect, although for both isolates the canker severity was slightly less at the higher temperature. When inoculated with the isolate v23.1.3, the necrotic tissue area was 66 and 58.4% at 20 and 25°C, respectively. When inoculated with the isolate v23.11.9, it was 94.7 and 83.3% at 20 and 25°C, respectively. Both differences were not significant.
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FIGURE 6. Canker severity in four winter oilseed rape cultivars/breeding lines at 20 or 25°C. Stems of 6-week-old plants were inoculated with L. maculans isolates v23.1.3 (AvrLm4) (A) or v23.11.9 (avrLm4) (B) by wrapping a sponge soaked in 107 mL– 1 conidial suspension over a 1 cm cut in the stem with Parafilm. Pieces 1 cm long of the stem were cut 1 cm above the inoculation site and photographed at 6 weeks post-inoculation. The mean percentage area of necrotic tissue in stem pieces was calculated from the area of tissue discolored by the disease and the total area analyzed using ImageJ. A total of 15 plants per treatment for each cultivar/breeding line were assessed. Error bars indicate the standard error of the mean (14 df). Average scores sharing the same letter are not statistically different (P < 0.05) in multiple comparisons using Fisher’s LSD test.




Effects of Temperature on Plant Growth Parameters of the Oilseed Rape Cultivars and Breeding Lines Tested

Plant health assessments showed very little difference between the temperatures of 20°C and 25°C (Table 3). Although some differences were seen in stem diameter, these were not significant except for cultivar ES Astrid with a larger stem diameter at 20°C. However, this difference did not affect the image analysis of stem canker because percentages of the area that were necrotic were determined. Cultivar ES Astrid grew better at 20°C than at 25°C; plants grew taller and had more leaves, but these differences were not significant. Breeding line D grew taller at 25°C than 20°C, significantly when inoculated with isolate v23.11.9; however, significantly more leaves were produced at 20°C when inoculated with this isolate. Breeding line H grew significantly taller at 25°C than at 20°C when inoculated with isolate v23.11.9.


TABLE 3. Effect of increased temperature from 20 to 25°C on average plant height, leaf number, and total stem diameter of four winter oilseed rape cultivars/breeding lines, inoculated with v23.1.3 or v23.11.9 isolates of Leptosphaeria maculans.

[image: Table 3]




DISCUSSION


Weather Influences Phoma Stem Canker Severity in Genotypes With Different R Genes and/or QR

This study confirmed the findings of previous work on the effect of temperature on phoma stem canker severity. While the average June temperature showed a correlation with phoma stem canker severity, a stronger positive relationship was observed for the maximum June temperature recorded and phoma stem canker severity score. This new observation supports the suggestion that more cultivars will require temperature-resilience to perform successfully in years experiencing high June temperatures, as these are predicted to increase with climate change (Evans et al., 2008; Pullens et al., 2019).

Cultivars/breeding lines with the R genes Rlm7, Rlm4, and LepR3 responded differently in terms of phoma canker severity to the maximum June temperature. Cultivars/breeding lines with Rlm7 showed a positive correlation with canker severity increasing with temperature. An alternative explanation could be that L. maculans isolates differed between the sites that were tested. Virulent isolates containing avrLm7 alleles were present in France; the field site Châteauroux experienced the highest maximum June temperature. It is therefore possible that L. maculans races, rather than a temperature-sensitive Rlm7 affected phoma stem canker severity. A recent study of the Avr frequencies present in 30 L. maculans isolates sampled in Le Rheu, France found 63% had virulence against Rlm7 (Bousset et al., 2020). Cultivars/breeding lines with LepR3 had the smallest average canker score, but it also showed a positive relationship with the maximum June temperature.

Breeding line D (“little” quantitative resistance and Rlm4) had the second-largest average canker severity; this genotype showed an insignificant correlation between maximum June temperature and canker severity. This could be due to Rlm4 not being a temperature-sensitive R gene; alternatively, a significant proportion of L. maculans isolates with virulence against Rlm4 at the experiment sites, as shown in Figure 2, may have an effect. Analysis of L. maculans populations from 13 sites, 11 of which were in the United Kingdom, by Huang et al. (2018) found mean frequencies of AvrLm4 to be 41%, less than that of AvrLm7 which was 100%. Within the 30 L. maculans isolates sampled in Le Rheu, France, 100% were found to show virulence against Rlm4 (Bousset et al., 2020). This suggests that Rlm4 gene-mediated resistance would be rendered at least partially ineffective, explaining the greater canker severity observed in Breeding line D. However, genotypes with Rlm4 and quantitative resistance had more severe stem canker severity scores at a higher temperature, suggesting that races were “not the end of this story”. Collectively, this suggests that more research is needed on the sampling of isolates from experimental fields together with the characterization of their Avr gene profiles.



Lower Temperatures Are More Conducive to Canker Development for Susceptible Cultivars and Breeding Lines

A significant negative correlation of phoma canker severity in field experiments with maximum June temperature was seen for cultivar Incentive, which lacks both known R genes and quantitative resistance (Figure 4). Susceptible Breeding line H plants also had a greater amount of necrosis in the stem at 20°C compared to 25°C in the CE experiment, although this difference was not significant when tested separately for each L. maculans isolate tested. Together, it may be a result of a greater temperature optimum for PTI. Increased temperatures (23–32°C) have been reported to enhance PAMP signaling in Arabidopsis thaliana; on the contrary, ETI has a lower temperature optimum of 10–23°C (Cheng et al., 2013).



R Genes Operate in the Stems of Young Plants Under Controlled Environment Conditions

Results from the field experiments suggested that R genes are operating alongside quantitative resistance in June to influence the phoma stem canker severity. Through inoculating stems of young plants, any resistance brought about by R genes operating in the leaves was circumvented in stems in the CE experiment. As a control, axenic growth of L. maculans was monitored at 20 and 25°C, but no difference in radial growth rate was observed (Figure 5), which is not inconsistent with previous publications (Newbery et al., 2020). While the subtle environmental changes like temperature may influence molecular processes in organisms, it is also rational to assume that organisms can compensate for such changes at least over a certain range. The similar growth rates of L. maculans at 20 and 25°C reflect this dynamic range and fit with naturally occurring temperatures in June. Data in Table 3 demonstrated that any observed difference in symptom development under both temperature regimes did not result from different growth rates. Furthermore, it has previously been shown that L. maculans can cause disease at both 20 and 25°C (Huang et al., 2006).

The L. maculans isolate avirulent to Rlm4 was found to cause significantly less necrotic tissue in stems of a cultivar with Rlm4 grown at 20°C than that grown at 25°C. This suggests that Rlm4 has a protective or suppressive effect against the pathogen growth in the stems of young plants. Previous work showed that R genes operate in the leaves of young plants during the autumn to prevent leaf spotting (Rimmer and van den Berg, 1992; Fitt et al., 2006). To confirm this hypothesis, more stem inoculation experiments should be done using near-isogenic lines with or without individual R genes. However, little work has been done on the operation of R genes in stems. There is a need to test more cultivars with different R genes using stem inoculation, ideally to test near-isogenic lines with or without single R genes.



Quantitative Resistance May Protect R Gene-Mediated Resistance at High Temperatures

Results of field experiments suggested that quantitative resistance may act to reduce the effect of increasing maximum June temperature on the phoma stem canker severity when combined with R genes. This correlation between the maximum June temperature and phoma stem canker severity was weaker for Rlm7 and LepR3 cultivars/breeding lines with quantitative resistance compared to those with “little” quantitative resistance. When quantitative resistance was present in a cultivar/breeding line (e.g., ES Astrid) with no known R genes, no relationship with maximum June temperature was seen. These findings suggested that quantitative resistance shows temperature-resilience in crops and can buffer a plant resistance response against high temperature, maintaining the efficacy of the plant resistance. However, in the CE stem inoculation experiments, cultivars ES Astrid (with “good” quantitative resistance) and Jet Neuf (Rlm4 with “good” quantitative resistance) were both found to have a significantly smaller amount of necrotic tissue at 20°C than at 25°C. This suggests that, under a sustained temperature of 25°C, the efficacy of quantitative resistance is reduced. This finding is consistent with previous publications on the temperature sensitivity of quantitative resistance under CE conditions (Huang et al., 2009). One possible explanation for the difference in the performance of cultivar ES Astrid between the field and CE experiments could be the period in which the plant is exposed to elevated temperatures. This finding is supported by CE experiments that mimicked heat waves occurring in Canadian Prairies; gradual increases in temperature from a 7-h night-time period at 18°C to reach a 7-h daytime of 32°C did not change quantitative resistance against L. maculans, suggesting that quantitative resistance maintains its efficacy when the increased temperature is not sustained for a long period (Hubbard and Peng, 2018). While quantitative resistance appears to provide a mechanism to reduce the effect of elevated temperature, this may be rendered ineffective if this higher temperature is sustained over a long period.

Although cultivars/breeding lines were classified as having quantitative resistance or not, the resistance mechanisms of different cultivars/breeding lines with quantitative resistance may be completely different. Furthermore, other differences in the genetic backgrounds of these cultivars/breeding lines may also influence their response to the environment and impact the severity of phoma stem canker. Thus, there are clear limitations to this study. Nevertheless, in the absence of a set of oilseed rape lines differing only in their quantitative resistance trait loci, this set of genotypes provides a good choice for investigating the effect of temperature on the quantitative resistance response.

It is not known if increased levels of quantitative resistance are linked with a reduction in fitness. A review by Brown (2002) on yield penalties of disease resistance in crops suggested that plants with good quantitative resistance could suffer from a fitness penalty. The evidence behind this proposal came from the observations of Vanderplank (1984) that quantitative resistance can be lost due to masking by single R genes or if not exposed to the pathogen. Quantitative resistance genes could be linked to genes involved in yield, resulting in linkage drag if these resistance genes were to be introgressed. More research is needed in this area to fully understand any potential trade-offs in important traits, such as yield, that may be linked to greater levels of quantitative resistance in oilseed against phoma stem canker.




CONCLUSION

Results from field experiments suggest that temperature-resilient quantitative resistance is currently available in some oilseed cultivars. For example, ES Astrid (“good” quantitative resistance, no known R genes) showed no significant correlation between canker severity score and maximum June temperature. However, ES Astrid had significantly smaller amounts of necrotic tissue at 20°C than at 25°C when inoculated with both virulent and avirulent L. maculans isolates under CE conditions. We suggest that the efficacy of quantitative resistance is maintained at increased temperature but not when these elevated temperatures are sustained for long periods of time under CE conditions.

The effectiveness of Rlm4 mediated resistance in the stem also appears to be reduced when plants are subjected to a prolonged elevated temperature of 25°C. Significantly more necrotic tissue was found at 25°C than 20°C after Breeding line D (“little” quantitative resistance and Rlm4) was inoculated with an avirulent L. maculans isolate. The reverse was seen when the same line was inoculated with a virulent L. maculans isolate. However, in Jet Neuf (“good” quantitative resistance and Rlm4) there was no significant difference in the amount of necrotic tissue between the two temperatures, when inoculated with an avirulent isolate. Therefore, in years experiencing warmer summers, as have been predicted to result from climate change in the United Kingdom, a combination of temperature-resilient R genes and a good quantitative resistance background will be required to protect oilseed crops from phoma stem canker.

Furthermore, the results of the CE experiments show that both quantitative resistance and R gene resistance operate in the stem by either preventing or suppressing the growth of L. maculans, subsequently reducing stem canker severity. This is important to growers as yields can be significantly reduced by phoma stem canker developing in the summer months. There may be scope to reduce this damage in the future by assessing new cultivars to determine their level of stem resistance and ability to maintain resistance at elevated temperature, using stem base inoculation methods in CE assays. However, it would be advised that the temperatures in these assays would be set to simulate the types of heatwaves forecast to become more common as global warming advances. Temperatures should be set to fall at night rather than maintain a constant temperature throughout.

From this study, it could be suggested that Rlm4 is a weaker, yet more temperature-resilient, R gene compared to Rlm7 and LepR3. For cultivars/breeding lines with Rlm4, significant differences were found between those with “good” and “little” quantitative resistance. However, it must be remembered that high frequencies of virulent isolates with avrLm4 alleles were found in two of the field experiment locations. Cultivars/breeding lines with Rlm4, with “good” or “little” quantitative resistance, showed a much weaker relationship of phoma stem canker severity with maximum June temperature compared to cultivars and breeding lines with Rlm7 and LepR3.
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Questions

1. Which countries carried out most studies on the genetic improvement of banana related to black Sigatoka?
2. Which institutions/bodies work with this theme?

3. Which are the most studied Musa genotypes and varieties?

4. In terms of commercial cultivars, which are resistant and which are susceptible to P fiensis?

5. What types of trials are proposed in the studies?

6. Which genes are reported to be associated with resistance to black Sigatoka®?

7. What are the biotechnological techniques employed in the studies?

8. What are the structural, genetic and molecular mechanisms involved in Musa defense responses responsible for conferring resistance to biack Sigatoka?
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Source Disease Grain Flowering Plant

rating yield

date

(tha=1) (days)

o°genetic 1.14
o?residual 0.14
Heritability 0.94
SE heritability 0.08
Adjusted genotype means

Axe S 4.75
Mace S 5.11
Rosella S 5.04
Scout S 5.56
Suntop S 5.26
Super172 R 4.92
Waagan S 5.45
ZVS13_312 MR 5.35
ZVS13_316  MS 4.84
Z2VS13.385 R 4.69
ZVS13_404 MS 5.156
ZVS13_406 MR 4.46
2VS13_441  MS 4.79
ZWB10_44 R 5.09
ZWB10_76 MR 5.36
ZWB11_163 MS 4.73
ZWB11_172 R 5.07
ZWB11_95 MR 5.57
ZWB12_103 MS 5.33
ZWB12_121 MS 4.75
ZWB12_122 MS 5.16
ZWB12_123 MS 4.71
ZWB12_124 MS 4.93
ZWB12_14 R 4.97
ZWB12_147 MS 4.65
ZWB12_1568 MS 4.73
ZWB12_16 S 5.14
ZWB12_168 S 5.13
ZWB12_18 MR 4.57
ZWB12_187 MR 5.56
ZWB12_189 MS 4.82
ZWB12_194 MS 4.79
ZWB12_202 S 4.89
ZWB12_219 MS 4.75
ZWB12_24 MS 4.91
ZWB12_29 MS 5.31
ZWB12_30 R 5.17
ZWB12_31 MR 5.32
ZWB12_4 MR 5.20
ZWB12_42 MS 5.25
ZWB12_62 MR 4.80
ZWB12_63 MS 4.73
ZWB12_67 MS 5.156

ZWB12_86 MS 5.27

22.51
4.18
0.92
0.11

128.64
128.75
135.14
129.65
130.28
130.34
128.54
130.31
129.95
128.34
129.13
128.54
129.29
128.96
129.40
129.06
130.97
130.55
128.96
128.68
129.22
129.68
128.26
129.23
128.43
128.72
128.40
130.14
128.84
130.75
127.85
128.63
128.75
130.45
129.47
130.32
129.73
129.60
129.48
128.84
129.33
129.11
129.40
128.11

height
(cm)

68.44
12.56
0.92
0.11

85.72
91.28
97.26
92.28
94.08
94.66
86.36
93.75
91.07
89.51
97.73
89.66
99.56
94.61
99.08
99.98
97.13
94.10
94.81
94.32
95.93
92.15
88.84
96.78
96.26
101.65
93.55
93.86
92.68
99.05
97.52
94.78
94.30
96.43
98.90
95.10
100.39
98.16
95.07
91.86
91.24
94.99
94.55
95.54

1,000
Kernel
weight

(@)

42.47
2.84
0.97
0.04

43.90
41.90
38.02
44.76
41.78
45.11
41.06
47.87
47.44
43.93
44.57
49.69
44.67
46.44
47.03
49.49
45.16
4415
51.79
47.88
47.63
52.55
52.70
48.14
51.82
47.69
46.60
49.10
49.05
48.18
43.74
48.26
50.25
44.21
47.51
49.92
50.20
51.10
48.22
48.29
45.91
46.19
46.79
51.17

NDVI

0.00
0.00
0.87
0.16

0.57
0.57
0.51
0.58
0.60
0.59
0.57
0.59
0.61
0.57
0.60
0.59
0.61
0.58
0.60
0.60
0.57
0.58
0.59
0.60
0.63
0.58
0.57
0.61
0.61
0.59
0.58
0.58
0.58
0.62
0.60
0.59
0.55
0.52
0.60
0.61
0.59
0.60
0.59
0.60
0.59
0.58
0.58
0.60

Plump
grains
(%)

17.96

5.343
0.87
0.16

91.83
89.83
85.17
91.72
84.34
89.02
90.39
91.02
91.68
89.94
90.96
88.86
92.24
90.29
89.76
91.83
91.37
90.54
91.94
91419
89.61
93.66
93.69
91.46
93.46
92.88
92.34
93.11
93.02
91.03
90.55
92.55
94.61
88.04
92.98
91.83
90.88
93.32
90.91
92.47
90.12
89.93
90.96
93.19
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Peak Chr. Physical Deletion P-value FDR- Allelic R-squared
marker position bin value effect (%)
(Mb)
2282741 1A 481.52 1AL1-0.17- 2.08E-05 3.33E- 1.10 26.91
0.61 02
1249729 2A 723.62 C-2AL1- 1.45E-04 1.16E- 0.92 7.58
0.85 01
1037716 3B 618.02 3BL10- 7.64E-07 6.12E- -1.04 29.47
0.50-0.63 03
993727 4A 719.43 4AL4-0.80- 4.44E-05 5.08E- -1.038 26.31
1.00 02
1128414 5A 618.27 5AL17- 6.07E-06 2.43E- -1.06 27.87
0.78-0.87 02
989877 6B 683.23 6BL5-0.40- 3.06E-04 1.88E- 0.26 8.09
1.00 01

Nominal P-values were adjusted using the false discovery rate (FDR) method
of Benjamini and Hochberg (1995); the explained variation (R-squared) and
allelic effects attributable to each marker were derived from simple linear regres-
sion analyses.
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SN Pedigree MLN1 MLN2 MLN3 MLN4 AUDPC

1 (CKDHLO186 * 2/KS23-6):B-1019 > 1,033 21 2.1 25 30 69.6
2 (CKDHLO106 * 2/KS523-5):B-1110 >1,016 21 2.1 20 30 69.5
3 (CKDHLO106 * 2/KS523-5):B-1110 > 1,016 21 2.1 20 30 703
4 (CML511 * 2/KS23-6):-1083 > 1,008 24 2.1 25 30 734
5 (CML511 * 2/KS23-6):B-1083 > 1,008 21 27 30 30 822
6 (CML511 * 2/KS23-6):B-1083 > 1,008 21 22 25 35 76.7
7 (CML511 * 2/KS23-6):B-1083 > 1,008 21 27 25 35 778
8 (CML511 * 2/KS23-6):B-1154 > 1,087 21 22 25 35 81.6
9 (CML511 * 2/KS23-6):B-1154 > 1,087 21 27 25 35 828
10 (CML444 * 2/KS23-6):B-1118 > 1,008 26 36 35 40 803
1 (CML444 * 2/KS23-6):B-1118 > 1,008 21 3.1 30 40 789
12 (CML511 * 2/KS23-6):B-1083 > 1,008 21 22 30 40 85.4
13 (CML511 * 2/KS23-6):-1083 > 1,008 21 22 30 40 816
14 (CML511 * 2/KS23-6):B-1083 > 1,008 21 22 30 40 100.1
15 (CML511 * 2/KS23-6):B-1154 > 1,087 241 32 30 40 88.6
16 (CML511 * 2/KS23-6):B-1154 > 1,037 21 32 30 40 814
17 (CML511 * 2/KS23-6):B-1154 > 1,087 21 26 30 40 852
18 (CML511 * 2/KS23-6):B-1154 > 1,087 21 27 30 40 865
19 (CML511 * 2/KS23-6):-1083 > 1,008 24 22 30 45 852
Mean 347 4.60 500 6.03 133.28
LSD (6%) 0.40 074 055 0.73 16.87
oV % 6.80 8.17 598 7.18 581
H 0.94 0.95 0.99 0.98 097
n 032 0.39 0.45 052 0.58

The mean MLN scores and AUDPC were obtained under artificial MLN infections in Naivasha during 2018 cropping season. MLNT, MLN2, MLNG, and MLN4 were 1st, 2nd, 3rd,
and 4th MLN severity scores.
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SN Parent SNP1: Chr3_146363360

Chr3_146250249 (crm
(T/G)
1 CML548 GG T
2 CKDHLO106 GG T
3 CML444 GG T
4 CML511 GG T
5 CML547 GG T
6 CML566 GG T
7 CML5T0 GG T
8 CML539 GG T
9 CKDHLO186 GG T
10 KS23-6 (MLN T (<]

resistance donor)

T = favorable allele for SNP1 and C = favorable allele for SNP2.
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Assay code

BO051_FAM
BO051_HEX
B0051_COm
B0054_FAm
BO054_HEX
BO054_COm
BO0056_FAM
BO056_HEX
B0056_COm
BO057_FAm
BO057_HEX
B0057_COm
BO06O_FAM
BO0BO_HEX
BO060_COm
BO0G5_FAM
B0065_HEX
B0065_COm

Primer name

$3_44062810_FAM
$3_44062810_HEX
$3_44062810_COm
$3_146966676_FAm
53_146966676_HEX
$3_146966676_C0m
$3_146250249_FAm
$3_146250249_HEX
$3_146250249_COm
$3_146363360_FAm
$3_146363360_HEX
$3_146363360_COm
$6_21007530_FAm
$6_21007530_HEX
$6_21007530_COm
$6_157568432_FAm
$6_157568432_HEX
$6_157568432_COm

Primer sequence

‘gaaggtgaccaagticatgotATCCGCCTTATTGCCGGY
‘gaaggtoggagtoaacggattATCCGCCTTATTGCCGGa
AGGATTAACGACGGGAAGGT
gaaggtgaccaagicatgetGTCCTGCTGCTGGAGCG
‘gaaggioggagtoaacggatGTCCTGCTGCTGGAGCGE
GTAGGCGTCCCGGATGAT
gaaggtgaccaagticatgotCTACCCATCOGOCTGCT
‘gaaggtoggagtoaacggattCTACCCATCCGCCTGCTg
CACCTGGCACGGAGAGAAG
‘gaaggtgaccaagicatgotACCAGGACAGGTATCTAACGCE
gaaggtoggagtoaacggatiACCAGGACAGGTATCTAACGCH
CGTACCAGGTCTGAGGACAA
gaaggtgaccaaglicatgctGCAAAAATCACAGCCGATCg
gaaggicggagtcaacggat GCAAMAATCACAGCCGATCa
CCCGGGCCTAAAGCCTAATAG
‘gaaggtgaccaagicatgotGOATAGAAATAAATGAGACAAGGY
933901099a0!CaACIGAGCATAGAAATAAAATGAGACAAGG
ATCCATGTTGTCCCTCCGTA

Remarks

Polymorphic, linked to QTL with minor effects

Polymorphic, linked to QTL with minor effects

Polymorphic, linked to QTL with major effects

Polymorphic, linked to QTL with major effects

Polymorphic, linked to QTL with minor effects

Polymorphic, linked to QTL with minor effects
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SN Geno. Pedigree MLN1 MLN2 MLN3 MLN4. AUDPC

1 BOLO2 (CKDHLO186 * 2/KS23-6):B-1019 > 1,033 25 25 24 3.4 69.6
2 BOLOS (CKDHLO106 * 2/KS523-5):8-1110 > 1,016 28 36 2.1 32 69.5
3 BOL16 (CML511 * 2/KS23-6):8-1083 > 1,008 28 36 25 32 703
4 BCLO3 (CKDHLO106 * 2/KS523-5)8-1110 > 1,016 30 39 23 33 73.4
5 BOL18 (CML511 * 2/KS23-6):B-1083 > 1,008 28 41 34 34 822
6 BOL20 (CML511 * 2/KS23-6):B-1083 > 1,008 29 40 26 37 76.7
7 BOL17 (CML511 * 2/KS23-6):B-1083 > 1,008 30 37 28 39 778
8 BOL27 (CML511 * 2/KS23-6):8-1154 > 1,087 30 44 3.1 39 816
9 BOL31 (CML511 * 2/KS23-6):8-1154 > 1,037 29 43 29 40 828
10 BOL33 (CML511 * 2/KS23-6):B-1154 > 1,087 29 41 29 40 80.3
1 Check KS23-6 (Donor parent) 29 45 30 3.1 818
12 Check CKDHLO106 (Recurrent parent) 33 50 48 57 1166
13 Check CML511 (Recurrent parent) 36 5.1 55 66 1345

Mean 32 46 5.1 6.0 133.3

LSD (0.05) 06 12 0.9 12 227

V% 18 146 103 121 9.9

Min mean 18 24 2.1 3.1 69.5

Max mean 39 65 8.1 88 2127

MLN severity scores taken on a scale of 1-9, where 1-4 is resistant to moderate resistant, MLN, 1t score of MLN severity taken 21 days from date of frst inoculation; MLN2, 2nd
score of MLN severity taken 7 days after the first score; MLN, 3rd score of MLN severit recorded 14 days after the first score; MNL4, 4th score of MLN severty taken 21 days
from the first score; AUDPC, area under disease progress curve calculated from the four MLN scores; LSD (0.05), Fisher's protected least significant difference at 5% level; and.
CV%, coefficient of variabilty measures in percent.
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Trait Mean

squares
MULNT 04
MLN2 14
MLN3 16
MLN4 2.1

F-value

F-prob.

0.024

0.008
<0.001
<0.001
<0.001

0.84
0.87
091
0.88
0.90

o%

0.92
323
3.49
484
1886.10

MLN1, Tst score of MLN severity taken 21 days from date of first inoculation; MLN2,
2nd score of MLN severity taken 7 days after the first score; MLNS, 3rd score of MLN
severity recorded 14 days after the first score; MNL4, 4th score of MLN severity taken
21 days from the first score; AUDPC, area under disease progress curve calculated
from the four MLN scores; H? broad sense heritabilty; o%, genotypic variance; and o’
error variance; the Degree of freedom = 61 for each trait.
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SN Population Bi-parental cross. SN Population Biparental cross.

1 Pop1 KS23-6 x CMLS67 1 Pop11 KS23-6 x CML547

2 Pop2 KS23-6 x CML568 12 Pop12 KS23-6 x CML566

3 Pop3 KS23-6 x CML442 13 Pop13. KS23-6 x CML569

4 Pop4. KS23-6 x CML537 14 Pop14 KS23-6 x CML570

5 Pop5 KS23-6 x CML548 15 Pop15 KS23-6 x CKLO5017
6 Pop6 KS23-6 x CML572 16 Pop16 KS23-6 x CKLO5019
7 Pop7 KS23-6 x CKDHLO106 17 Pop17 KS23-6 x CML539

8 Pops KS23-6 x CKDHL0323 18 Pop18. KS23-6 x CML540

9 Popg KS23-6 x CML444 19 Pop19 KS23-6 x CKDHLO186
10 Pop10 KS23-6 x CML511 20 KS23-6"

“Donor parent for resistance to MLN.
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Pedigree

(CKDHLO106 * 2/KS523-5):8-1110 > 1,016
(CKDHLO186 * 2/KS23-6):8-1019 > 1,033
(CKDHLO186 * 2/KS23-6):8-1019 > 1,033
(CKDHLO106 * 2/KS523-5):B-1110 > 1,040
(CKDHLO106 * 2/KS523-5):B-1110 > 1,040
(CKDHLO106 * 2/KS523-5):8-1110 > 1,040
(CKDHLO106 * 2/KS523-5)B-1110 > 1,016
(CKDHLO106 * 2/KS523-5)B-1110 > 1,016
CKDHLO106

(CKDHLO106 * 2/KS523-5):B-1110 > 1,016
CML444

(CML444 * 2/KS23-6):8-1118 > 1,008
(CML444 * 2/KS23-6):B-1118 > 1,008
(CML444 * 2/KS23-6):B-1118 > 1,008
(CML511 * 2/KS23-6):8-1154 > 1,087
(CML511 * 2/KS23-6):8-1083 > 1,008
(CML511 * 2/KS23-6):8-1083 > 1,008
(CML511 * 2/KS23-6):8-1154 > 1,087
(CML511 * 2/KS23-6):B-1154 > 1,041
(CML511 * 2/KS23-6):B-1083 > 1,008
(CML511 * 2/KS23-6):8-1154 > 1,037
(CML511 * 2/KS23-6):8-1083 > 1,008
(CML511 * 2/KS23-6):8-1154 > 1,037
(CML511 * 2/KS23-6):8-1154 > 1,087
(CML511 * 2/KS23-6):8-1083 > 1,008
(CML511 * 2/KS23-6):8-1154 > 1,037
(CML511 * 2/KS23-6):B-1083 > 1,008
(CML511 * 2/KS23-6):8-1083 > 1,008
KS23-6

(CML511 * 2/KS23-6):B-1083 > 1,008
(CML511 * 2/KS23-6):8-1083 > 1,008

SN

32
33
34
35
36
a7
38
39
40
41
a2
43
44
45
46
a7
48
49
50

52
53
54
55
56
57
58
59
60
61
62

Pedigree

(CML511 * 2/KS23-6):8-1154 > 1,087
(CML511 * 2/KS23-6):8-1154 > 1,087
(CML511 * 2/KS23-6):8-1154 > 1,087
(CML511 * 2/KS23-6):8-1083 > 1,008
(CML511 * 2/KS23-6):8-1154 > 1,087
(CML511 * 2/KS23-6):8-1083 > 1,008
(CML511 * 2/KS23-6):8-1083 > 1,008
(CML511 * 2/KS23-6):B-1154 > 1,087
CMLS11

(CML511 * 2/KS23-6):8-1154 > 1,087
(CML547 * 2/KS23-6):8-1092 > 1,019
(CML547 * 2/KS23-6):8-1092 > 1,019
(CML547 * 2/KS23-6):8-1092 > 1,019
(CML547 * 2/KS23-6):8-1028 > 1,008
(CML547 * 2/KS23-6):8-1092 > 1,019
(CML547 * 2/KS23-6):8-1028 > 1,008
(CML547 * 2/KS23-6):8-1028 > 1,008
(CML547 * 2/KS23-6):8-1092 > 1,019
(CML547 * 2/KS23-6):8-1028 > 1,008
(CML547 * 2/KS23-6):8-1028 > 1,008
(CML547 * 2/KS23-6):8-1028 > 1,008
(CML547 * 2/KS23-6):8-1028 > 1,008
(CML547 * 2/KS23-6):8-1092 > 1,019
(CML547 * 2/KS23-6):8-1028 > 1,008
KS23-6

(CML547 * 2/KS23-6):8-1092 > 1,019
CMLs47

(CML547 * 2/KS23-6):8-1028 > 1,008
(CML547 * 2/KS23-6):8-1028 > 1,008
(CML547 * 2/KS23-6):8-1092 > 1,019
(CML547 * 2/KS23-6):8-1028 > 1,008
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Rust trait Races/isolates

Leaf rust BBBSJ _TUN 20-1
EEEEE_ETH 13D17-1
EEEEE_ETH 63-1

Stripe rust

Stem rust

PSTv-41
PSTv-52
PSTv-37
TTKSK
TTKST
TTKTT
TKTTF
TRTTF
JRCQC

Naive

1206.9
683.5
1088.5
1204.8
1158.3
1180.6
1023.2
948.5
957.6
796.5
663.9
1002

Kinship

1195.9
672.4
1077.5
1193.8
1063.2
1169.6
935.4
752.9
752.9
666.5
652.8
864.2

2PCs + Kinship?

1183.5
671.1
10741
1180.9
11311
1169.2
935.3
893.9
749.7
702.5
611.5
863.4

3PCs + Kinship®

1180.6
661
1057.6

1124

1123.8

11562.3
955.7
869.3
752.9
686.4
600.7
863.2

4 PCs + Kinship®

1175.64
658
1049.3
1173.3
1120.5
1150.8
955.7
867.6
889.3
685.0
599.7
853.2

a2PC, population structure matrix (Q matrix) based on the first two principal components explaining 9.4% of variation.
53PC, population structure matrix (Q matrix) based on the first three principal components explaining 13.2% of variation.
C4PC, population structure matrix (Q matrix) based on the first four principal components explaining 16.5% of variation.

dNumbers in bold indicate the lowest Bayesian Information Criterion that corresponds to the best regression model for each trait. The best model was used to investigate

marker-trait associations.
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Svevo genome vii

P, triticina race Locus Num. Tag-SNP?  Chr.c SNP SNP major SNP minor MAF® Position -Logi0 R29 pFDRM Start End
SNPs/locus? alleles® allele allele (cM)f (P-value)

BBBSJ_TUN 20-1 QLrdu.2AL 1 IWB38096 2A T/C T C 0.16 197.6 13.1 0.22 1.5E-10 NA NA
BBBSJ_TUN 20-1 QLrdu.5BS-1 26 IWB47425 5B A/C A C 0.16 2.0 15.8 0.25 1.8E-12 5,077,659 5,077,759
BBBSJ_TUN 20-1 QLrdu.5BS-2 19 WB26157 5B A/G G A 0.06 16.7 5:2 0.08 2.3E-03 21,105,871 21,105,971
EEEEE_ETH 13D14-1 QLrdu.2AS 2 IWB10489 2A T/C C T 0.08 675 20.3 0.31  5.0E-17 61,159,123 61,159,023
EEEEE_ETH 63-1 QLrdu.2AS 2 IWB10489 2A T/C C T 0.08 67.5 16.5 0.26 3.6E-13 61,159,123 61,159,023
EEEEE_ETH 63-1 QLrdu.6AL 1 IWB24755 6A T/C C T 0.03 129.4 5:2 0.09 1.7E-02 612,235,063 612,235,163
EEEEE_ETH 63-1 QLrdu.6BL 13 IWB52926 6B AG G T 0.04 154.6 7.8 0.13 6.4E-05 695,708,680 695,708,580

aDetails on all significant SNPs/locus were described in Supplementary Table 6.
bSignificant single-nucleotide polymorphism (SNP) with smallest marker-trait association P values per locus.

®Chromosome arm of the locus.

dAlleles of the most significant marker in the loci. The underlined allele is the allele associated with resistance.
®Minor allele frequency of the most significant SNF/locus.
TSNP position based on the tetraploid consensus map of Maccaferri et al. (2015).

9The proportion of phenotypic variation explained by the most significant SNP in the locus.

'hP—value of the false discovery rate of the most significant SNP in the locus.
'Physical position of SNP sequence based on the durum wheat genome sequence of Svevo available on International Wheat Genome Sequencing Consortium (Maccaferri et al., 2019).
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The loci in bold represent the most important stem rust resistance loci identified i this study.
®Details on all significant SNPs/locus were described in Supplementary Table 7.
°Significant single-nucleotide polymorphism (SNP) with smallest marker-rait association P values per locus.

#Chromosome arm of the focus.

SNP major
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° lleles of the most significant marker in the locus. The underined allfe s the allele associated with resistance.
"Minor alfe frequency of the most significant SNP/locus.
9SNP position based on the tetraploid consensus map of Maccaeri ot al. (2015).
" The proportion of phenotypic variation explained by the most signiicant SNP in the locus.

'P-value of the faise discovery rate of the most sigaificant SN in the focus.
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Physical position (Mb): physical location of SNP markers in the QTL from Chinese Spring assembly (International Wheat Genome Sequencing Consortium [IWGSC], 2018).

Max R2: highest value for explained phenotypic variation for the marker across the traits and environments tested, expressed as%.





OPS/images/fpls-12-638969/cross.jpg
3,

i





OPS/images/fpls-12-638969/fpls-12-638969-e000.jpg
y=XB+Zu+e

(e8]





OPS/images/fpls-11-592064/fpls-11-592064-i001.jpg





OPS/images/fpls-11-592064/fpls-11-592064-i002.jpg
2
Aoxe





OPS/images/fpls-11-592064/fpls-11-592064-i003.jpg





OPS/xhtml/Nav.xhtml




Contents





		Cover



		Advances in breeding for quantitative disease resistance



		Editorial: Advances in Breeding for Quantitative Disease Resistance



		QTL Mapping



		Fine Mapping



		Genome-Wide Association Analysis



		Genomic Selection



		Marker Development



		Pathogen-Environment-Genotype



		Breeding and Pre-Breeding



		Reviews



		Final Remarks



		Author Contributions



		Acknowledgments









		Characterization of the Genetic Architecture for Fusarium Head Blight Resistance in Durum Wheat: The Complex Association of Resistance, Flowering Time, and Height Genes



		INTRODUCTION



		MATERIALS AND METHODS



		Plant Materials



		Phenotyping



		Genotyping



		Statistical Analysis



		Linkage Disequilibrium, Population Structure, and Kinship Analysis



		Genome-Wide Association Study









		RESULTS



		Population Structure and Linkage Disequilibrium (LD) Analysis



		Phenotypic Analysis



		GWAS Analysis of FHB Resistance, HT and DTA









		DISCUSSION



		Phenotypic Data Analysis



		Genetic Architecture of FHB Resistance in the Durum AM Panel and Its Association With Flower Time and Plant Height



		QTL With No or Weak Association With Flowering Time and Height



		QTL Co-located With Flowering Genes









		CONCLUSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		ACKNOWLEDGMENTS



		SUPPLEMENTARY MATERIAL



		FOOTNOTES



		REFERENCES









		Genomic Breeding for Diameter Growth and Tolerance to Leptocybe Gall Wasp and Botryosphaeria/Teratosphaeria Fungal Disease Complex in Eucalyptus grandis



		INTRODUCTION



		MATERIALS AND METHODS



		Breeding History and Phenotyping of the Study Population



		Genotyping of the Study Population



		Statistical Analyses



		Mixed Model Analysis



		Multivariate Analysis



		Expected Direct and Indirect Genetic Gains















		RESULTS



		Genetic Parameters



		ssGBLUP Additive and Type-B Genetic Correlations



		Trait Performance Across Site and Generations



		Correlated Response Based on ssGBLUP Breeding Values









		DISCUSSION



		Genetic Parameters for Diameter Growth and Lepto and BotryoTera Tolerance



		Genotype-by-Environment Interaction and Trait Performance



		Generational Performance for Diameter Growth and Lepto and BotryoTera Tolerance



		Proposed Selection Strategies for Diameter Growth and Lepto and BotryoTera Tolerance









		CONCLUSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		ACKNOWLEDGMENTS



		SUPPLEMENTARY MATERIAL



		REFERENCES









		Dissecting Quantitative Trait Loci for Spot Blotch Resistance in South Asia Using Two Wheat Recombinant Inbred Line Populations



		INTRODUCTION



		MATERIALS AND METHODS



		Plant Materials



		Field Experiments



		Inoculation Method and SB Assessment



		Statistical Analysis



		Genotyping and Linkage Analysis









		RESULTS



		Phenotyping for SB Resistance



		Genotyping and Linkage Analysis



		QTL Identification for SB Resistance









		DISCUSSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		SUPPLEMENTARY MATERIAL



		FOOTNOTES



		REFERENCES









		Genome-Wide Association Studies Reveal All-Stage Rust Resistance Loci in Elite Durum Wheat Genotypes



		INTRODUCTION



		MATERIALS AND METHODS



		Plant Materials



		Leaf Rust Phenotyping



		Stripe Rust Phenotyping



		Stem Rust Phenotyping



		Phenotypic Data Analysis



		Genotyping



		Linkage Disequilibrium and Population Structure



		Genome-Wide Association Analysis









		RESULTS



		Phenotypic Data



		Leaf Rust



		Stripe Rust



		Stem Rust



		Phenotypic Data Correlations









		Marker Properties and Linkage Disequilibrium Analysis



		Kinship Analysis, Population Structure, and Regression Model Selection for GWAS



		Marker–Trait Associations



		Association Analysis for Leaf Rust Response



		Association Analysis for Stripe Rust Response



		Association Analysis for Stem Rust Response



		Frequencies of Sr8155B1, Sr13, and Sr7b in the Durum Wheat Genotypes and Their Marker Accuracies















		DISCUSSION



		Leaf Rust Resistance in Durum Wheat Genotypes



		Stripe Rust Resistance in Durum Wheat Genotypes



		Stem Rust Resistance in Durum Wheat Genotypes









		CONCLUSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		SUPPLEMENTARY MATERIAL



		FOOTNOTES



		REFERENCES









		Genetic Improvement for Resistance to Black Sigatoka in Bananas: A Systematic Review



		Introduction



		Materials and Methods



		Planning



		Execution



		Summarization









		Results



		Database Searches



		Study Locations



		Sources of Resistance and Study Environment



		Methodologies Employed



		Musa Gene Expression Analysis During Interaction With P. fijiensis



		Enzymatic Activity









		Discussion



		Database Searches



		Study Locations



		Musa Breeding and Black Sigatoka Resistant Cultivars



		Sources of Resistance



		Host Immune Responses to P. fijiensis



		Study Environments



		Principal Techniques Employed









		Limitations of the Review and Future Research



		Conclusion



		Data Availability Statement



		Author Contributions



		Funding



		Acknowledgments



		Supplementary Material



		References









		Introgression of Maize Lethal Necrosis Resistance Quantitative Trait Loci Into Susceptible Maize Populations and Validation of the Resistance Under Field Conditions in Naivasha, Kenya



		Introduction



		Materials and Methods



		Genetic Materials



		Development of Bi-Parental Backcross Populations



		Genotyping and Marker-Trait Association Analysis



		Phenotypic Evaluation of Backcross Populations



		Artificial MLN Inoculation



		Marker-Trait Association Analysis















		Results



		Screening of Parental Lines



		Genotyping of BC3F2 Populations for Resistance to MLN



		Phenotypic Evaluation of BC3F2 Populations for Resistance to MLN



		Validation of Marker Effects on Phenotypic Variations









		Discussion



		Conclusion



		Data Availability Statement



		Author Contributions



		Funding



		Acknowledgments



		Supplementary Material



		Footnotes



		References









		Novel Genomic Regions of Fusarium Wilt Resistance in Bottle Gourd [Lagenaria siceraria (Mol.) Standl.] Discovered in Genome-Wide Association Study



		INTRODUCTION



		MATERIALS AND METHODS



		Plant Materials



		Inoculation System of FW Resistance in Bottle Gourd



		Disease Assessment and Statistical Analysis



		SNP Genotyping, LD, and Population Structure



		Genome-Wide Association Analysis and LD Block Construction



		Validation of Candidate Genes









		RESULTS



		Identification of a F. oxysporum f. sp. lagenariae Race



		Phenotypic Analysis of FW Resistance in the Natural Population



		SNP Marker Analysis



		Model Comparison for Correlation Analysis



		Genome-Wide Association Analysis



		Prediction of Candidate Genes for FW Resistance









		DISCUSSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		SUPPLEMENTARY MATERIAL



		FOOTNOTES



		REFERENCES









		Characterization and Mapping of Spot Blotch in Triticum durum–Aegilops speltoides Introgression Lines Using SNP Markers



		INTRODUCTION



		MATERIALS AND METHODS



		Plant Genetic Material



		Screening for SB Resistance



		Statistical Analysis



		Genotyping



		QTL Mapping Using QTL IciMapping



		Postulation of Candidate Genes



		Validation of the Identified QTLs and Markers









		RESULTS



		Phenotypic Evaluation of DSBILs



		QTL Mapping



		Allelic Effect of Identified QTLs



		Postulation of Candidate Genes



		Validation of the Identified QTLs and Markers









		DISCUSSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		SUPPLEMENTARY MATERIAL



		FOOTNOTES



		REFERENCES









		Genome-Wide Association Study and Genomic Prediction for Soybean Cyst Nematode Resistance in USDA Common Bean (Phaseolus vulgaris) Core Collection



		Introduction



		Materials and Methods



		Plant Materials



		Soybean Cyst Nematode Resistance Phenotyping



		Phenotypic Data Analysis



		Genotyping



		Genetic Diversity and Population Structure Analysis



		Association Analysis



		Candidate Gene Prediction



		Genomic Prediction of SCN Resistance









		Results



		Soybean Cyst Nematode Resistance Evaluation



		Genetic Diversity and Population Structure Analysis



		Association Analysis



		Genome-Wide Association Study for Resistance to SCN HG Type 0



		Genome-Wide Association Study for Resistance to SCN HG Type 2.5.7



		Genome-Wide Association Study for Resistance to SCN HG Type 1.2.3.5.6.7



		Combining GWAS for Resistance to the Three SCN HG Types



		Candidate Genes for SCN Resistance



		Genomic Prediction of SCN Resistance



		Genomic Prediction With Different Ratios of a Training Set to a Testing Set



		Genomic Prediction With Different SNP Numbers



		Genomic Selection in Three Association Panels



		Genomic Prediction Comparisons Among All SNPs, SNP Markers, and the Random SNP Set



		Genomic Prediction Using Different Models



		Genomic Heritability (GH)









		Genetic Diversity Analysis for the SCN-Resistant Germplasm Accessions









		Discussion



		Genetic Diversity and Population Structure



		Genome-Wide Association Study and SNP Marker Identification for SCN Resistance



		Candidate Gene Model



		Genomic Prediction



		Utility of Common Bean Resistance Accessions









		Conclusion



		Data Availability Statement



		Author Contributions



		Funding



		Acknowledgments



		Supplementary Material



		References









		Genetic Gains for Yield and Virus Disease Resistance of Cassava Varieties Developed Over the Last Eight Decades in Uganda



		INTRODUCTION



		MATERIALS AND METHODS



		Plant Material



		Description of Trial Environments



		Trial Design and Management



		Data Collection



		Data Analysis









		RESULTS



		Trait Heritabilities



		Performance of Varieties Based on Rank Summation Index



		Genetic Gains for Disease Resistance and Yield Related Traits









		DISCUSSION



		CONCLUSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		ACKNOWLEDGMENTS



		SUPPLEMENTARY MATERIAL



		REFERENCES









		Fine Mapping of the Leaf Rust Resistance Gene Lr65 in Spelt Wheat ‘Altgold’



		INTRODUCTION



		MATERIALS AND METHODS



		Plant and Pathogen Materials



		Plant Growth and Pathogen Infection



		DNA Extraction and Quantification



		Resequencing of Resistant Parent Altgold



		Molecular Marker Development



		Polymerase Chain Reaction Amplification and Visualization



		Linkage Analysis and Map Construction



		Physical Mapping and Gene Annotation



		Genomic Comparison Among Multiple Wheat Varieties









		RESULTS



		Genetic Analysis of the Leaf Rust Resistance Gene Lr65 in Two Segregating Populations



		Marker Discovery and Molecular Mapping



		Physical Mapping and Gene Annotation of the Lr65 Target Interval



		Comparison Among the Genomes of Multiple Wheat Cultivars



		Development of the Diagnostic Marker of Lr65









		DISCUSSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		ACKNOWLEDGMENTS



		SUPPLEMENTARY MATERIAL



		FOOTNOTES



		REFERENCES









		Outlook of Cassava Brown Streak Disease Assessment: Perspectives of the Screening Methods of Breeders and Pathologists



		Introduction



		Materials and Methods



		Test Clones and CBSD Field Evaluations



		Genotyping of the Clones



		Statistical Analyses









		Results



		Broad-Sense and SNP-Heritability Estimates



		Relationship Between BLUP Values of the 50 Clones Evaluated at CETs-2 and AYTs for Mean CBSD Assessment Methods



		Ranking of 50 Clones in CETs-2 and AYTs Using Indexed BLUPs Values for the Two CBSD Averaging Methods









		Discussion



		Heritability Estimates of CBSD Foliar and Root Necrosis for the Two Assessment Methods



		Comparing Pearson's Correlation Coefficients for BLUP Estimates of Clone in CETs-2 and AYTs for the Two CBSD Assessments Methods



		Ranking of Clones by Their Indexed BLUPs for the Two CBSD Averaging Methods









		Conclusion



		Data Availability Statement



		Author Contributions



		Funding



		Acknowledgments



		Supplementary Material



		References









		Pre-emptive Breeding Against Karnal Bunt Infection in Common Wheat: Combining Genomic and Agronomic Information to Identify Suitable Parents



		INTRODUCTION



		MATERIALS AND METHODS



		Plant Materials



		Disease Phenotyping



		Genotyping



		Genetic Structure and Linkage Disequlibrium



		Genome-Wide Association Analysis



		Physical Mapping



		Prediction of Karnal Bunt Resistance



		Agronomic Assessment



		Statistical Analysis of Agronomic Data









		RESULTS



		Phenotypic Variation



		Genetic Structure



		QTL Identification



		Genomic Prediction



		Agronomic Profiles









		DISCUSSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		ACKNOWLEDGMENTS



		SUPPLEMENTARY MATERIAL



		FOOTNOTES



		REFERENCES









		Breeding With Major and Minor Genes: Genomic Selection for Quantitative Disease Resistance



		Introduction



		Materials and Methods



		Phenotypic Data



		Genotypic Data



		Genome-Wide Association Model



		Prediction Models



		Marker-Assisted Selection Model



		GS Model



		GS Model With Fixed Effects









		Prediction Accuracy and Schemes









		Results



		Phenotypic Data



		Genotypic Data



		Cross-Validations



		Major Markers



		De novo GWAS Markers









		Validation Sets



		Major Markers



		De novo GWAS Markers









		Overall Differences









		Discussion



		GS for Disease Resistance



		Major Markers



		De novo GWAS Markers



		Training Population and Environment



		Applications in Breeding









		Conclusions



		Data Availability Statement



		Author Contributions



		Funding



		Acknowledgments



		Supplementary Material



		References









		Genomic-Assisted Marker Development Suitable for CsCvy-1 Selection in Cucumber Breeding



		Introduction



		Materials and Methods



		Plant Lines and Mapping Populations



		Virus Isolate and Pathology Methods



		DNA Extraction and Genome Sequencing



		Analysis of Genomic Sequences



		Converting Single Nucleotide Variants to PCR-Based Markers



		Confirming Interval and Identifying Marker-Assisted Selection (MAS)-Friendly Markers



		Genomic Sequences and Accession Numbers









		Results



		Resistance to CVYV Segregates as a Single Locus



		Linkage to CsCvy-1 Locus



		Narrowing the Interval Using Nucleotide Variants



		Commercial Varieties Help Narrowing the Interval



		The CsCvy-1 Interval Contains Genes That May Play a Role in Defense









		Discussion



		Data Availability Statement



		Author Contributions



		Funding



		Supplementary Material



		References









		Genome-Wide Association Study Reveals Novel Genetic Loci for Quantitative Resistance to Septoria Tritici Blotch in Wheat (Triticum aestivum L.)



		Introduction



		Materials and Methods



		Association Mapping Panel



		Multi-Environment Trials



		STB Evaluation



		Other Agronomic Data Scoring



		DNA Extraction and Genotyping by Sequencing



		Quality Control and SNP Calling



		Statistical Data Analysis



		Phenotypic Data Analysis



		Population Structure Analysis









		Genome-Wide Association Study









		Results



		Phenotypic Data Analysis



		Adult Plant Responses to STB and Broad-Sense Heritability



		SNP Statistics









		Population Structure Analysis



		Linkage Disequilibrium (LD) Analysis









		Genome-Wide Association Study



		STB Resistance









		MTAs for Agronomic Traits









		Discussion



		Conclusions



		Data Availability Statement



		Author's Note



		Author Contributions



		Funding



		Acknowledgments



		Supplementary Material



		Abbreviations



		References









		Associated SNPs, Heritabilities, Trait Correlations, and Genomic Breeding Values for Resistance in Snap Beans (Phaseolus vulgaris L.) to Root Rot Caused by Fusarium solani (Mart.) f. sp. phaseoli (Burkholder)



		INTRODUCTION



		MATERIALS AND METHODS



		Study Site and Experimental Design



		Field Evaluation



		Statistical Analysis of Field Trials



		Multiple Correlation Analysis Among Traits



		Genotyping



		Heritability



		Genome-Wide Association Study



		Candidate Gene Search



		Genomic Prediction









		RESULTS



		ANOVA



		Multiple Correlation Analysis Among Traits



		Heritability



		Genome-Wide Association Study



		Genomic Prediction









		DISCUSSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		ACKNOWLEDGMENTS



		SUPPLEMENTARY MATERIAL



		FOOTNOTES



		REFERENCES









		Identification and Validation of Genomic Regions Associated With Charcoal Rot Resistance in Tropical Maize by Genome-Wide Association and Linkage Mapping



		Introduction



		Materials and Methods



		Plant Material



		Phenotypic Evaluation



		Screening Sites



		Inoculum Preparation and Inoculation Technique



		Disease Scoring



		Phenotypic Data Analysis



		DNA Isolation and Genotyping of CAAM Panel



		GWAS and Haplotype Regression



		Linkage Map Construction and Quantitative Trait Loci Mapping















		Results



		Phenotypic Evaluation for Charcoal Rot Resistance



		GWAS for Resistance to Charcoal Rot



		Haplotype Detection and Regression Analysis



		Linkage Mapping for Charcoal Resistance









		Discussion



		Conclusion



		Data Availability Statement



		Author Contributions



		Acknowledgments



		Supplementary Material



		References









		Molecular Mapping and Analysis of an Excellent Quantitative Trait Loci Conferring Adult-Plant Resistance to Stripe Rust in Chinese Wheat Landrace Gaoxianguangtoumai



		Introduction



		Materials and Methods



		Plant Materials and Races



		Evaluation of Resistance to Stripe Rust



		Genotyping, Linkage Map Construction, and QTL Analysis



		Haplotype Analysis



		Exome Capture Sequencing, Development of KASP Markers, and Genetic Mapping



		Data Analyses









		Results



		Stripe Rust Response of the Parents and RILs



		Linkage Map Construction and QTL Analysis



		Haplotype Analysis of QYr.GX-2AS



		Validation and Mapping of QYr.GX-2AS



		Validation of KASP Markers for Marker-Assisted Selection









		Discussion



		Data Availability Statement



		Author Contributions



		Funding



		Acknowledgments



		Supplementary Material



		Footnotes



		References









		Predicting Fusarium Head Blight Resistance for Advanced Trials in a Soft Red Winter Wheat Breeding Program With Genomic Selection



		INTRODUCTION



		MATERIALS AND METHODS



		Plant Materials



		Breeding Materials



		Training Populations









		Experimental Design and Trait Measurements



		Phenotypic Data Analyses



		Genotyping by Sequencing



		Genomic Selection



		Cross Validation



		Forward Prediction















		RESULTS



		Variation in Fusarium Head Blight Resistance Traits



		Population Structure



		Cross Validation



		Forward Prediction









		DISCUSSION



		Prediction Accuracy of Training Populations



		Forward Prediction









		CONCLUSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		SUPPLEMENTARY MATERIAL



		REFERENCES









		Investigation and Genome-Wide Association Analysis of Fusarium Seedling Blight Resistance in Chinese Elite Wheat Lines



		INTRODUCTION



		MATERIALS AND METHODS



		Plant Materials



		Phenotyping



		Statistical Analysis



		Genotyping



		Genome-Wide Association Studies for Fusarium Seedling Blight Resistance



		Kompetitive Allele-Specific PCR Assay



		Candidate Gene Analysis









		RESULTS



		The Evaluation of Fusarium Seedling Blight Resistance



		The Correlation Between Fusarium Seedling Blight and Fusarium Head Blight



		Marker-Trait Association Analysis



		The Relationship Between the Fusarium Seedling Blight Lesion Length and the Number of Favorable Alleles



		Development of Kompetitive Allele-Specific PCR Markers for Quantitative Trait Locis Underlying Resistance to Fusarium Seedling Blight



		The Prediction of Candidate Genes









		DISCUSSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		SUPPLEMENTARY MATERIAL



		FOOTNOTES



		REFERENCES









		Identification of Two Major QTLs in Brassica napus Lines With Introgressed Clubroot Resistance From Turnip Cultivar ECD01



		INTRODUCTION



		MATERIALS AND METHODS



		Plant Materials



		Evaluation of Resistance to Clubroot



		DNA Sequencing and Alignment of Reads to a Reference Genome



		Identification of Variants, Variant Filtering, Construction of Linkage Map, and Quantitative Trait Locus Mapping



		Identification of Genes in the Target Regions of the B. napus “Darmor-bzh” Reference Genome



		Mapping of the Quantitative Trait Loci With Bulked Segregant Analysis



		Search for the Syntenic Regions of Identified Quantitative Trait Loci in B. rapa “Chiifu” Reference Genome









		RESULTS



		Resistance to Clubroot in the Parental Lines and the Backcross2 Doubled Haploid Population



		Alignment of DNA Short Reads Into the B. napus Genome



		Identification of Polymorphic Single-Nucleotide Polymorphism Sites and Quantitative Trait Locus Analysis



		Identification of Disease Resistance Genes and Genes Related to Plant Defense Response



		Confirming the Quantitative Trait Locus Intervals With Bulked Segregant Analysis



		Search for the Syntenic Regions of the Quantitative Trait Loci in the B. rapa “Chiifu” Reference Genome









		DISCUSSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		ACKNOWLEDGMENTS



		SUPPLEMENTARY MATERIAL



		FOOTNOTES



		REFERENCES









		Development and Genetic Characterization of Peanut Advanced Backcross Lines That Incorporate Root-Knot Nematode Resistance From Arachis stenosperma



		INTRODUCTION



		MATERIALS AND METHODS



		Plant Materials



		Marker-Assisted Breeding



		Genome-Wide Genotyping of BC3F1s



		Peanut Root-Knot Nematode Resistance Validation Using BC3F3s



		Phenotypic Characterization



		Seed Size



		Pollen Viability (BC2F1s)



		Leaf Spot Incidence, Fertility, Architecture, and Flower Color (BC3F1s)



		Leaf Spot Incidence, Architecture, Branching, and Extra Leaves (BC3F2s)









		Association Analysis Using the BC3F1 Population



		Statistical Analysis









		RESULTS



		Marker-Assisted Breeding



		Genome-Wide Genotyping of BC3F1s



		Peanut Root-Knot Nematode Resistance Validation Using BC3F3s



		Phenotypic Characterization



		Seed Size



		Pollen Viability (BC2F1s)



		Leaf Spot Incidence, Fertility, Architecture, and Flower Color (BC3F1s)



		Leaf Spot Incidence, Architecture, Branching, and Extra Leaves (BC3F2s)















		DISCUSSION



		Validation of Nematode Resistance



		Implications for Breeding for Disease Resistance









		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		ACKNOWLEDGMENTS



		SUPPLEMENTARY MATERIAL



		FOOTNOTES



		References









		Identification of Quantitative Trait Loci Associated With Partial Resistance to Fusarium Root Rot and Wilt Caused by Fusarium graminearum in Field Pea



		INTRODUCTION



		MATERIALS AND METHODS



		Plant Materials



		Fusarium Isolates



		Inoculum Production



		Screening of Recombinant Inbred Line Parents With Five Fusarium Species



		Disease Assessment of Recombinant Inbred Line Population Under Controlled Conditions



		Statistical Analysis of Phenotypic Data



		Genotyping With Single Nucleotide Polymorphisms and Simple Sequence Repeat Markers



		Linkage Map Construction



		Quantitative Trait Loci Analysis









		RESULTS



		Preliminary Root Rot Assessment in Parents Against Five Fusarium spp.



		ANOVA for Disease Severity, Vigor, and Plant Height



		Root Rot, Vigor, and Plant Height of Parents and the Recombinant Inbred Line Population Inoculated With FG2



		Root Rot, Vigor, and Plant Height of Parents and the RIL Population Inoculated With F4A



		Genetic Map Construction and Quantitative Trait Loci Analysis



		Additive-Effect Quantitative Trait Loci Analysis



		Epistatic Quantitative Trait Loci Analyses



		Candidate Genes









		DISCUSSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		SUPPLEMENTARY MATERIAL



		FOOTNOTES



		REFERENCES









		Quantitative Trait Locus Mapping for Resistance Against Pyrenopeziza brassicae Derived From a Brassica napus Secondary Gene Pool



		INTRODUCTION



		MATERIALS AND METHODS



		Plant Material



		Phenotyping of Resistance Against Pyrenopeziza brassicae in the Q Doubled Haploid Population



		Statistical Analysis and Mapping of Quantitative Trait Locus for Resistance Against Pyrenopeziza brassicae



		Assessment of the Sub-Cuticular Growth Phase of Pyrenopeziza brassicae in Q Doubled Haploid Lines









		RESULTS



		Phenotyping of Resistance Against Pyrenopeziza brassicae in the Q Doubled Haploid Population



		Mapping of Quantitative Trait Locus for Resistance Against Pyrenopeziza brassicae



		Assessment of the Sub-Cuticular Growth Phase of Pyrenopeziza brassicae in Q Doubled Haploid Lines









		DISCUSSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		ACKNOWLEDGMENTS



		SUPPLEMENTARY MATERIAL



		FOOTNOTES



		REFERENCES









		Single Nucleotide Polymorphism Detection for Peach Gummosis Disease Resistance by Genome-Wide Association Study



		INTRODUCTION



		MATERIALS AND METHODS



		Plant Materials and Growth Conditions



		Evaluation of Lesions and Statistical Analysis of Gummosis Disease Score



		Estimation of Best Linear Unbiased Prediction Values



		DNA Extraction, Re-sequencing, and Single Nucleotide Polymorphism Discovery



		Estimation of Population Structure, Genetics Parameters, and Genome-Wide Linkage Disequilibrium



		Genome-Wide Association Study



		Estimation of Linkage Disequilibrium Block in the Gummosis Disease-Associated Region and Candidate Genes Identification and Their Annotation



		RNA-Seq of the Branch Tissue After Pathogen Inoculation









		RESULTS



		Phenotypic Evaluation of Peach Gummosis Disease and Its Heritability



		Single Nucleotide Polymorphism Discovery



		Population Structure, Genetic Diversity, and Linkage Disequilibrium



		Genome-Wide Association Study for Gummosis Disease



		Analysis of Differentially Expressed Genes Related to Gummosis Disease at Different Pathogen Inoculation Stages



		Linkage Disequilibrium Block in the Gummosis Disease-Associated Genomic Regions and Predicted Candidate Genes









		DISCUSSION



		Phenotypic Variation and the Selection of Resistant Sources



		Population Structure and Genetic Diversity



		Genome-Wide Association Study Model Selection and Quantitative Trait Locus Identification



		Identification of Gummosis Disease Resistance Loci and Candidate Genes









		CONCLUSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		SUPPLEMENTARY MATERIAL



		FOOTNOTES



		REFERENCES









		Influence of Elevated Temperatures on Resistance Against Phoma Stem Canker in Oilseed Rape



		INTRODUCTION



		MATERIALS AND METHODS



		Winter Oilseed Rape Field Experiments



		Frequency of Avirulent Alleles in L. maculans Populations



		Phoma Stem Canker Severity Assessment on Different Cultivars and Breeding Lines



		Weather Data at Field Sites



		Effects of Temperature on the Growth Rate of Different L. maculans Isolates



		Plant Growth and Stem Inoculation for Controlled Environment Assay



		Image-Based Canker Severity Assessment and Measurement of Plant Health



		Statistical Analysis









		RESULTS



		Frequency of Avirulent Alleles in L. maculans Isolates



		Phoma Stem Canker Severity on Different Cultivars and Breeding Lines



		Effect of June Temperature on Canker Severity in Cultivars and Breeding Lines Varying in R Gene-Mediated and/or Quantitative Resistance



		Effects of Temperature on the Growth Rate of L. maculans Isolates in Culture



		Effects of Temperature on Phoma Stem Canker Severity in B. napus With Quantitative and/or R Gene-Mediated Resistance Under Controlled Environment Conditions



		Effects of Temperature on Plant Growth Parameters of the Oilseed Rape Cultivars and Breeding Lines Tested









		DISCUSSION



		Weather Influences Phoma Stem Canker Severity in Genotypes With Different R Genes and/or QR



		Lower Temperatures Are More Conducive to Canker Development for Susceptible Cultivars and Breeding Lines



		R Genes Operate in the Stems of Young Plants Under Controlled Environment Conditions



		Quantitative Resistance May Protect R Gene-Mediated Resistance at High Temperatures









		CONCLUSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		ACKNOWLEDGMENTS



		SUPPLEMENTARY MATERIAL



		FOOTNOTES



		REFERENCES























OPS/images/fpls-11-592064/fpls-11-592064-g002.jpg
1251

0.100-

0.075 -

density

density

0.050-

0.025-

0.100-

0.075-

0.050-

0.000-

25 50 75
Response (%)

25 50 75
Response (%)

100

100

Traits

I:I MD15_INC
D MD15_SEV

MD16_INC

[ ]
- MD16_SEV
[ ]
L]

MD17_INC
MD17_SEV

Traits

I:I IH15_INC
IH15_SEV
IH16_INC
I:I IH16_SEV

density

125-

0.100-
Traits
0.075- |:| BD15_INC
D BD15_SEV
BD16_INC
BD16_SEV
0.050 -
BD17_INC
BD17_SEV
0.025-
0.000-

0 25 50 75 100
Response (%)





OPS/images/fpls-11-592064/fpls-11-592064-g003.jpg
BD1 5_| NC - 0.89**% 0.78**% 0.57***.0.64**10.37** 0.43*** 0.45*** 0.64*** 0.42*** 0.48*** 0.31***L.0.25***.0.44**% 0.48*** 0.49*** 0.66*** 0.36***.0.28***.0.26*** 0.70*** 0.6 3**
BD1 5_8 EV - 0.74**%0.55***.0.55**.0.38*** 0.53*** 0.58*** 0.61*** 0.55*** 0.55*** 0.36***.0.26***.0.49**% 0.47*** 0.59*** 0.64*** 0.51***.0.31***.0.34** 0.69*** 0.70**
IH15_INC - . . 0.61**10.63**10.280.43**0.52**| 0.60**|0.41** 0.44**0.30**10.25*10.37**1 0.44***| 0.46** 0.63** 0.37**1.0.26**1-0.22"*|0.59*** 0.60**"
IH15 SEV- . . . 10.45+*40.33**4 0.25*%0.42*4 0.37**% 0.43*4 0.43*% 0.32**" -0.16" [0.35"*10.28"4 0.37** 0.43*" 0.35*%-0.20**|-0.20**| 0.39"*" 0.48™**
MD15_DTA- . . . . 0.32**10.24**10.39"10.47**1-0.22*10.36**1-0.19™ 0.19**|0.29**10.30**10.40**10.50*10.23*10.23** 0.15* |0.55**10.58*""
MD15_HT - - . E -0.18" |-0.23**[0.36*"40.34**10.34*"40.26**] 0.03 |0.67**%0.24**10.26*40.37**10.45" 0.14 |0.34*0.38**10.48"*"
MD15_INC - - . - O] 01 & 0.56"*40.62***0.56**0.52*** 0.34**10.38**.0.28"*1 0.57*** 0.54** 0.60*** 0.48**.0.32**0.27**1 0.57*** 0.50"*"
MD15_SEV- . . . - - [] . 0.44%*0.52" 0.49"0.36** -0.17* [0.35"0.42** 0.65**7 0.56***| 0.64**10.23**10.27**1 0.58"* 0.71"*"
BD16_INC-. . . . - . - 0.51**%0.50*0.28**10.48*4.0.48**1 0.65*** 0.61* 0.77** 0.42**10.47**%.0.38**40.76*** 0.66**"
BD16_SEV- - - - - [] - - . . 0.68**%0.55"*.0.38**10.47*10.41*" 0.58**40.55**" 0.63**1.0.38***.0.37** 0.47** 0.57**"
IH16_INC - . . . . . ! . - . . 0.58**%.0.27**10.45*0.37** 0.50** 0.56*** 0.56**4.0.36**0.35"4 0.48"** 0.57**"
IH16_SEV - D D D O[] E D . . -0.21**10.30**1 0.24* 0.41*" 0.35" 0.44*.0.28" -0.16" | 0.34"* 0.41"*
MD16_DTA- ] D O | O] o - [] . - @ [] 0.03 10.60**%0.47**40.37**1 -0.11 |0.39** 0.17* [0.32**4.0.23**
MD16_HT - - . - . D . . . . . o :0.36%".0.42*"4.0.45"".0.49*" 0.19**| 0.48".0.54*.0.62*"
MD16_INC - - . - D ] . - . - 7 [] . 0.72**0.62**4 0.33**10.32*+*.0.34**0.65**0.55**"
MD16_SEV - . . . - ] . . . . . . . . . 0.63**0.51%*10.38**10.37**10.71*4 0.70**"
BD17_INC-. . . . . - . . . . D . . . . 0.57*%.0.40*.0.30** 0.76**40.70**"
BD17_SEV- | 4 . El ] - . . - . . . L] . D - . :0.25%*.0.31*+10.44* 0.61**"
MD17_DTA- D D OO0 O ] . - . _ ] ! . . D 0.25*0.45*4.0.36***
vo17_HT- [ || O | O | O | - . OO - ] . ] 0.38"40.41*
wor_ne-[[IEI 2B DB EEBEEE D DR R R 084
wrsv AN ENEEEEEE - EREEEE
i i i i i i i i i i i i i i i i i i i i
N2 /\v(o{\\ NN RN 2N £
Orf)/ ,\9_)/‘2\\9)/ o7 07 “ o N\ '\Q)/Q:{O/ "o 7 ,\Q)/O'\Q’/\Q)/ o K8 A7 (\/o'<\ ’
PP IR PEPITPPPRE IRPEITPPPEPPRE NN

corr





OPS/images/fpls-11-592064/cross.jpg
3,

i





OPS/images/fpls-11-592064/fpls-11-592064-g001.jpg
pc2

z /
+ ‘ /
i /4
» . 4 /
@ ® / ”
o= //
. g s

L4 -
@ . —
.

. "
. \
’.. ; * \\\
e . -,
.
. * — N
oy N\
: ' e o “
. ——
- e? .

% o . ® L]

" . "o .

'h.‘ . o** ——
o> * * — -
o 3 & v o e ‘ s
P . , o *

. - ] e

LR o"o’o. o
. e+
. il f !
@ ’ o
& ’ N
. ..o 77 | \ \
L
1_
[
[
[
0.2
O -






OPS/images/fpls-11-592064/fpls-11-592064-g006.jpg
20+

20-

207

tEmmer
tNative
tSumai3

Haplotype
[ J
A
|

1 1 1
5 0 5

(%) pu| uo adAjo|deH jo 103

1 1 1
Xp] o {¢]

(%) Ae@S uo adAjoideH jo 10843

1 1 1
5 0 5

(9%) ou| uo adAyo|deH Jo 10843

IH MD

Site

BD

IH MD

Site

BD





OPS/images/fpls-11-592064/fpls-11-592064-i000.jpg
rel

5 3
2+ JXE.
xE

2 3

T





OPS/images/fpls-11-592064/fpls-11-592064-g004.jpg
A

~logo(p)

—log1o(p)

—log1o(p)

~logio(p)

© MDIS_INC ® MDIS_IND ® MDIS_SEV ® MDI6_INC ® MDI6_IND ® MDI6 SEV * MDI7_INC ® MDI7_IND ® MDI7 SEV

Chromosome

© BDIS_INC ® BDIS_IND * BDIS SEV © BDI6_INC ® BDI6_IND © BDIG_ SEV * BDI7INC ® BDI7IND ® BDI7 SEV

Chromosome

© IHISINC @ IHIS_IND ® IHIS SEV ® IHIG_INC ® [HI6_IND © IHI6 SEV

Chromosome

® MDIS_DTA ® MDI6_DTA ® MDI7_ DTA ® MDIS_HT e MDI6_ HT e MDI17 HT

Chromosome





OPS/images/fpls-11-592064/fpls-11-592064-g005.jpg
H

2B

BD_INC
BD_IND
BD SEV
IH_INC

|

3B

4B

5B

IH_IND
IH SEV
MD_ DTA
MD_ HT

6B

7A

7B
@ MD _INC

@ MD_IND
@® MD SEV





OPS/images/fpls-13-890002/crossmark.jpg
©

2

i

|





OPS/images/fpls-12-638969/fpls-12-638969-t002.jpg
ABLUP
Diameter
BotryoTera
Lepto
ssGBLUP
Diameter
BotryoTera
Lepto

o2 (se)

10.581 (0.314)
1.732 (0.044)
0.659 (0.021)

10.729 (0.313)
1.755 (0.046)
0.655 (0.017)

o2 (se)

3.450 (0.720)
0.407 (0.092)
0.357 (0.059)

2.733 (0.469)
0.396 (0.071)
0.238 (0.024)

h2(se)

0.33 (0.063)
0.24 (0.051)
0.54 (0.077)

0.26 (0.040)
0.23 (0.038)
0.36 (0.032)

The residual variance (o2), additive genetic variance( of), narrow-sense heritability
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Nyalazi 0.764 (0.037) 0.542 (0.112) 0.71 (0.125)
ssGBLUP

Mtunzini 0.452 (0.016) 0.110 (0.026) 0.24 (0.055)
Kwambonambi 0.770 (0.083) 0.538 (0.070) 0.70 (0.072)
Nyalazi 0.744 (0.031) 0.281 (0.049) 0.38 (0.059)

The residual variance (o2), additive genetic variance (o3), narrow-sense heritability
(h?), and their standard errors (se) are shown.
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Year

BC population
Days to heading
Plant height

CC population
Year

Days to heading
Plant height

2013

—0.430"
—0.432**

2014
—0.006"NS
—0.296*

“*P < 0.001; NSnon-significant.

2014

0.033NS
—0.344*

2015
—0.194*
—0.299*

2015

—-0.111NS
—0.230"*

2016
—0.121N8
—0.334*
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Chromosome Position (cM) Left marker® Right marker LOD® 20134 2014 2015 Mean Source of resistance Associated QTLs in literature

BARTAI x CIANO T 79 (BC)

1A 153.79-155.61 4989967 1026215 2.86 2.31 - 3.97 4.01 BARTAI Zhu et al., 2014

4D8 70.49-90.31 BS00036421_51 1119387 6.40 10.45 9.53 - 12.23 BARTAI Singh et al., 2018; He et al., 2020

4D 112.48-131.93 12002205 1072422 3.46 4.49 - - - BARTAI

5B 135.84-138.59 9724385 2267710 2.59 - - 4.75 - BARTAI Jamil et al., 2018; He et al., 2020

Percentage of accumulated phenotypic variation 16.24

CASCABEL x CIANO T 79 (CC)

1B 261.53-263.82 1168776 1037914 3.11 3.1 2.90 2.79 2.89 CIANO T79 Singh et al., 2018; Bainsla et al., 2020; He
etal., 2020

5A% 331.49-332.06 1067537 2257572 7.72 12.62 8.93 11.26 10.32 CASCABEL Ayana et al., 2018; Singh et al., 2018; Bainsla
et al., 2020; He et al., 2020

5A 472.56-481.59 1218172 1683258 4.51 4.59 4.13 5.71 5.89 CIANO T79

5B 522.08-525.15 3958735 1137742 2.74 5.32 5.7 4.02 5.56 CASCABEL Kumar et al., 2009, 2010, 2015; Jamil et al.,
2018; He et al., 2020

6A 5.08-61.14 1125980 100193832 3.10 5.79 5.24 6.48 5.70 CASCABEL

A 328.34-367.52 1126352 1208614 3.74 5.45 5.32 5.19 5.27 CIANO T79

7B 134.52-173.55 1125523 1007745 2.82 4.56 418 4.31 4.28 CIANO T79 Singh et al., 2016; Ayana et al., 2018; Singh
etal, 2018

Percentage of accumulated phenotypic variation 39.91

aNumber used to distinguish QTLs exceeded the LOD threshold of 3.4 for BC and 3.6 for CC population.

bSequence information of the markers is available in Supplementary Table 4.
®L OD values of QTLs in the mean population were used.
dPercentage of phenotypic variation explained (PVE) is provided; QTLs in bold remained significant after the ICIM algorithm.
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Source of DF Mean F calculated Significance Heritability
variation squares

BC population

Year 2 13,488.82 5,748.176 <0.0001

Rep (year) 3 2.34 2.46 NS

Genotype 230 58.91 2.784 <0.0001 0.61
Year x genotype 460 2115 21.162 <0.0001

Pooled error 690 0.95
CC Population

Year 2 103.37 58.033 <0.01

Rep (year) 3 1.78 1.78 NS

Genotype 225 28.58 126.553 0.0001 0.73
Year x genotype 450 0.22 0.226 NS

Pooled error 675 1.00

NS, non-significant.
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Mid 1990°’s: Emergence
of the co-occurring B.
dothidea and T.
Zuluensis fungal stem
disease complex causing
the decline of E. grandis
planting in the sub-
tropical regions.

2007: Introduction of L.
invasa into South Africa
resulting in the further
decline of E. grandis
planting in the sub-
tropical regions.

1897 — 1970

Government breeding programme:
Landrace population with breeding strategy
focusing on timber production for the mining
industry.

1st trial series: 1971 — 1983
PO seedlings

Private breeding programme: Breeding
strategy focusing on timber, pulp and paper
production. Target traits: selection for
diameter growth and evaluation of tree form.

2"d trial series: 1988 — 1993
15t Gen seedlings

Private breeding programme: Breeding
strategy focusing on timber, pulp and paper
production. Target traits: selection for
diameter growth and evaluation of tree form.

3rd trial series: 1994 — 2001
2d Gen seedlings

Private breeding programme: Breeding
strategy focusing on pulp and paper
production. Target traits: selection for
diameter growth and evaluation of tree form
and fungal stem disease.

4th trial series: 2002 — 2010
39 Gen seedlings

Private breeding programme: Breeding
strategy focusing on pulp and paper
production. Target traits: selection for
diameter growth and evaluation of tree form
and fungal stem disease.

5th series: 2012 — 2020
4th Gen seedlings

Private breeding programme: Breeding
strategy focusing on pulp and paper
production. Target traits: selection for
diameter growth and evaluation of tree form
and fungal stem disease.
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Trial? Trait Summary statistics Correlations

Mean Min Max Range SD H?® DON¢® FDK SEV HD¢

FHB_TP18 DON 10.53 0.08 92.80 92.72 11.35 0.74 - — — —

FDK 32.49 0.00 100.00 100.00 29.93 0.79 0.40"* - - —

SEV 27.88 0.00 100.00 100.00 25.78 0.82 0.32%** 073  — —

HD 94.69 74.00 118.00 44.00 10.19 0.90 025"  —0.05™"  —0.10* -

PHe 90.27 56.46 121.87 65.40 10.06 0.91 0.01ns —0.29"*  —0.36"* .34
FHB_TP19 DON 14.26 6.15 37.50 31.35 4.59 0.60 - - - -

FDK 38.22 6.00 92.12 86.12 14.86 0.68 0.45"* - - -

SEV 28.67 3.75 91.71 87.96 12.97 0.93 0.12* 055"  — =

HD 97.91 86.76 116.50 29.74 8.30 0.92 Oige 0.027  —0.54" =

PH 90.40 7112 113.03 41.91 6.96 0.74 0.00m —=0.29%% (.31 0.16*
ADV18 DON 16.64 3.60 51.50 47.90 7.60 0.62 = - - =

FDK 39.32 2.00 75.00 73.00 16.29 0.77 0.62*** - - =

SEV 15.44 0.00 85.00 85.00 14.88 0.38 0.27** 054 — —

HD 112.22 108.00 117.00 9.00 2.16 0.90 0.28* —0.10"  —0.34" —

PH 89.46 68.58 119.38 50.80 8.53 0.71 —0.05" —0.22* —0.18" 0.25*
ADV19 DON 10.09 0.12 74.50 74.38 10.08 0.61 - — — -

FDK 31.01 0.00 98.00 98.00 23.94 0.83 0.86™* - - -

SEV 25.60 0.00 95.00 95.00 25.54 0.45 0.76"* 0.86™  — -

HD 102.38 97.00 109.00 12.00 2.35 0.81 0.10m —0.04"  —0.17" -

PH 81.20 63.50 101.60 38.10 7.16 0.74 0.29"** 0.09m 0.01" 0.35%*
ARE19 DON 8.51 0.59 64.10 63.51 8.32 0.50 = = = =

FDK 27.04 1.00 95.00 94.00 21.06 0.71 0.84*** = = =

SEV 23.55 0.00 90.00 90.00 22.87 0.43 0.74** 086"  — =

HD 102.20 98.00 108.00 10.00 2.27 0.84 0.01ns —0.28" (.28 —

PH 80.06 53.34 93.98 40.64 7.14 0.76 0.21"s —0.12™ Q.18 0.41*
ARE20 DON 7.30 0.99 19.30 18.31 3.95 0.78 - - - -

FDK 15.21 2.00 60.00 58.00 12.49 0.84 0.78"* — — -

SEV 16.83 0.00 60.00 60.00 13.11 0.76 0.65"** 0.827  — -

HD 99.49 94.00 111.00 17.00 3.39 0.76 0.09nst 0.09™  —0.08" -

PH 89.69 76.20 101.60 25.40 6.20 0.87 0.01ns —0.05™  —0.11"s 0.48™

aTR training population; ADV, F4.7 advanced FHB trial; ARE, Fy.g elite FHB trial.

bBroad-sense heritability for FHB_TP18, ADV18, ADV19, ARE19, and ARE20 calculated using entry-mean based heritability. Narrow-sense heritability was
calculated for FHB_TP19.

CDON was recorded in wg g~", whereas FDK and SEV were recorded in percentage.

dHeading date was recorded as day of year after 1st of January, when 50% of the heads were emerged from the flag leaf.

ePlant height was recorded in inches from the surface of the soil to the tip of the head minus awns if present, but reported in centimeters here.

*Significant at the 0.05 probability level.

**Significant at the 0.01 probability level.

**Significant at the 0.001 probability level.

Tns, nonsignificant at the 0.05 probability level.
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Trial? Generation® Conventional DH lines Total Location(s) Rep(s) Design®

lines
TP18_FHB - 355 - 355 9 2 RCBD
ADV18 F4:7/DH 64 40 104 2 2 RCBD
ADV19 F4:7/DH 50 70 120 2 2 RCBD
ARE19 F4:8/DH 16 6 22 2 2 RCBD
ARE20 F4:8/DH 12 11 23 1 2 RCBD

aTrial types and the years each were grown. TP18_FHB was grown over four years between 2013-2014 and 2016-2017; 18, 2017-2018; 19, 2018-2019; 20, 2019~
2020.

bBreeding trials consisted of conventionally bred genotypes as well as doubled haploid (DH) genotypes.

®RCBD, randomized complete block design.
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Gene ID

TraesCS1D02G388800
TraesCS1D02G381800
TraesCS3A02G169600
TraesCS6B02G391800
TraesCS7A02G549000
TraesCSU02G041800
TraesCSU02G041700
TraesCSU02G039600

Chr, chromosome.

Chr?

1D
1D
3A
6B
7A
Un
Un
Un

Position? (Mb)

460.85
457.07
177.70
666.77
723.26
34.16
34.14
32.13

Predicted function® Identity (%)
Disease resistance protein RPM1 99.40
Receptor-like protein kinase 100
L-type lectin receptor kinase 98.82
MADS-box protein 99.36
NAC domain-containing protein 90.58
Serine/threonine kinase-like protein 83.01
HCBT-like defense response protein 92.54
Subtilisin-like protease 87.27

bGene annotations were referred to IWGSC Ref Seq annotation v1.1 (IWGSC, http://www.wheatgenome.org/).

CThe sequences of T. aestivum gene were blasted in the NCBI (http.://www.ncbi.nlm.nih.gov/), databases to identify putative gene functions.

Orthologous gene

LOC109754777
LOC109748921
LOC109777203
LOC119321270
LOC109760823
LOC109786647
LOC109754238
LOC109786891
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QTL

Qfsb.hbaas-1D

Qfsb.hbaas-3A

Qfsb.hbaas-3B

Qfsb.hbaas-6B

Primer

P41243A
P41243B
P41243C
PG4668A
P64668B
P64668C
P3107A
P3107B
P3107C
P3221A
P3221B
P3221C

Sequence (5'-3')

CCACCTTTCAACTCGCTCA
CCACCTTTCAACTCGCTCG
CTCACTTCTTCTAGAACAAATCGAA
TGCAATCTTGGACAAACATCAT
TGCAATCTTGGACAAACATCAG
GTGCTTTGTCAACAACAGATGC
GGTCGCATCAGGAAGAGCA
GGTCGCATCAGGAAGAGCG
TTCTTCCCTTTACAGACTCTTCAGC
GTTTTTGTGGCTGCGGGT
GTTTTTGTGGCTGCGGGC
TTCTTCCCTTTACAGACTCTTCAGC

A Primer labeled with FAM: GAAGGTGACCAAGTTCATGCT.
B Primer labeled with HEX: GAAGGTCGGAGTCAACGGATT.
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Mean of lesion Number Representative cultivars (lines)

length (cm)

<0.60 23 Zhengyumai 9987, Zhoumai 17, Yanzhan 4110, Yunong 035, Lianmai 2, Xikemai 4, Yumai 70-36, Zhongmai 1, Yan 2415, Luohan 2,
Luomai 21, Jimai 38, Yumai 69, Jingfumai 1, Zhoumai 16, Yannong 24, and Yangmai 11

0.60-1.00 105 Xinmai 20, SYN1, Kenong 199, Zhongyu 10, Yangmai 22, Ningmai 13, Chuanmai 42, Zhengmai 366, Xinong 9871, Yangmai 13,
Liangxing 99, Xinong 979, Jimai 22, Ocoroni, Mianmai 37, Xiaoyan 22, Yangmai 17, Ningmai 9, Hengguan 35, and Emai 27

1.01-1.40 71 Lantian 18, Jingdong 17, Emai 23, Yangmai 12, Xinmai 11, Mayoor, and Huaimai 20
Zhongmai 9, Zhengmai 9023, Jimai 20, Ningdong 10, 04 Zhong 36, Aikang 58, Chuanmai 50, Wuhan 1, Zhenmai 168, Ningchun 43,
Jingmai 103, Lumai 21, Ningmai 16, Pingan 6, and Emai 580

1.41-1.80 29 Yumai 48, Emai 12, Een 6, Chuanmai 51, Yangmai 16, Lantian 23, Ningdong 11, Yangmai 158, Ningmai 8, Emai 18, Lunxuan 987,
Xiangmai 25, Jingdong 8, and Xiaoyan 6

>1.80 12 Xinong 88, Jingzhou 66, Ningmai 11, Ning 7840, Zhongnong 2, Xiangmai 55, Jining 16, Een 5, Een 1, Sumai 3, and Gamenya
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T-TEST Correlations

Mean Min Max SD Std Error FSB_Rep1 FSB_Rep2 FSB_Rep3 FSB_Mean
FSB_Rep1 1.159 0.139 2.769 0.478 0.031
FSB_Rep2 0.946 0.075 2.896 0.531 0.034 0.535"
FSB_Rep3 1.052 0.165 2735 0.437 0.028 0.545™ 0.577*
FSB_Mean 1.049 0.346 2.510 0.404 0.026 0.826** 0.857** 0.828**
BLUE of FHB? 46.66 5.00 89.00 16.571 1.070 -0.239** -0.160* -0.273* -0.263**

**Significant at P < 0.01.
*Significant at P < 0.05.
@Data from our previous study (Zhu et al., 2020).
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TP Trait

TP18_FHB DON

FDK

SEV

TP19_FHB DON

FDK

SEV

Method

PS
NGS
MTGS
PS
NGS
MTGS
PS
NGS
MTGS
PS
NGS
MTGS
PS
NGS
MTGS
PS
NGS
MTGS

r ADV?

0.22"
0.53"
0.41%
0.70"
0.29"
0.57*
0.17
0.71%
0.18"
0.83"
DieE
0.67*

r AREP

—0.01"st
0.19"
0.10"
0.14ns
0.38"
0.42"
0.54*
0.16"
0.60*
0.51*
0.37™
0.45*
0.67**
0.45*
0.64**
0.78"*
0.08"
0.12™

Selection differential

0.40
—0.73
—0.46
—2.24
—5.77
—3.99
—3.46
—1.90
—5.33
—-1.32
—0.67
—0.96
—4.07
—3.21
—4.57
—5.86

0.50
—0.18

Response to selection

0.20
—0.37
—0.23
—1.59
—4.09
—2.83
—1.49
—0.82
—2.29
—1.03
—0.53
—0.75
—3.42
—2.70
—3.84
—4.45

0.38
—0.13

Selection accuracy

52.9
82.4
70.6
58.8
70.6
70.6
52.9
41.2
4741
13.0
56.5
69.6
91.3
34.8
60.9
82.6
60.9
82.6

aPearson correlation coefficient between GEBV's and phenotypic data from the ADV population used as a validation population (VP).
b Pearson correlations coefficient between GEBVs and adjusted means for phenotypic data from the elite (ARE) generation.
*Significant at the 0.05 probability level.
**Significant at the 0.01 probability level.

**Significant at the 0.001 probability level.
Tns, nonsignificant at the 0.05 probability level.
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QTL Present/Absent Number Rep1 Rep2 Rep3 Mean

Qfsb.hbaas-1D Present 12 1.02a 0.57a 0.78a 0.79a
Absent 223 1.15a 0.95b 1.06b 1.06b
Qfsb.hbaas-3A Present 180 1.07A 0.89A 1.03a 1.00A
Absent 58 1.39B 1.11B 1.14a 1.21B
Qfsb.hbaas-3B Present 130 1.06A 0.84A 0.94A 0.94A
Absent 108 1.26B 1.06B 1.17B 1.16B
Qfsb.hbaas-6B Present 204 1.08A 0.88A 1.00A 0.99A
Absent 31 1.56B 1.40B 1.41B 1.45B
Qfsb.hbaas-7A Present 220 1.10A 0.89A 1.02A 1.00A
Absent 15 1.69B 1.48B 1.54B 1.57B
Qfsb.hbaas-un Present 217 1.16a 0.92a 1.05a 1.04a
Absent 19 1.16a 1.14a 1.14a 1.14a

#The QTL present superior effect (present) or inferior effect (absent), A and B
represent significant at P < 0.01, a and b represent significant at P < 0.05.
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QTL

Qfsh.hbaas-1DL
Qfsb.hbaas-3AS
Qfsb.hbaas-3BL
Qfsh.hbaas-6BL
Qfsh.hbaas-7AL
Qfsb.hbaas-un

Marker?

IWB41243
IWB64668
WB3107
IWA3221
IWB41907
IWB36312

Variant?

AG
TG
G/A
cT
G/A
AC

Chr®

1DL
3AS
3BL
6BL
TAL
Un

Position (Mb)¢

458.9
176.6
723.0
668.0
7241
322

Environment

Rep2/Mean
Rep1/Mean
Rep1/Mean
Rep1/Rep3/Mean
Rep1/Mean
Rep2, Mean

P-value

6.36E-04/7.37E-04

4.57 E-04/8.16 E-04

3.24 E-04/2.14 E-04
6.34E-04/6.39E-04/1.21 E-04
5.86 E-05/6.99 E-05

2.51 E-04/9.40 E-05

R2 (%)e

5.74/5.33
5.12/4.83
5.47/6.29
5.07/5.20/6.50
7.00/7.53
6.18/6.74

4Representative markers showing the strongest association with the FSB resistance locus.

bFavorable allele is underlined.

¢Chr, chromosome.

9physical positions based on the Chinese Spring reference genome sequences from the International Wheat Genome Sequencing Consortium (IWGSC,
http.//www.wheatgenome.org).
¢Percentage of phenotypic variance explained.
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Gene ID

CsaV3_5G011160
CsaV3_5G011170
CsaV3_56G011180
CsaV3_5G011190
CsaV3_6G011200
CsaV3_6G011210
CsaV3_5G011220
CsaV/3_5G011230

Putative function

Cytochrome P450-like protein
Unknown protein

Serine/arginine repetitive matrix protein 2 isoform X2
Unknown protein

RNA-dependent RNA polymerase 1-like
RNA-dependent RNA polymerase 1-like
Endo-1,4-beta-xylanase

Unknown protein
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Fi 10270 10290 10317 CsCvy-1" 10418 184*** 10644 10950 122+
hybrids*

Civan Rr Rr Rr R §S Sss Sss ss ss
Quinton 8§ 88 88 SS 88 ss RR 88 88
Botanik Rr Rr Rr ss 88 ss RR  Rr Rr
Kitir 88 88 88 ss 88 ss RR 88 88
5223 SS SS 88 SS 88 ss RR SS ss
Quato SS 88 8§  SS 88  ss RR S8 ss
Kybele Rr Rr Rr SS ss sS RR SS SS

*These were selected from more than 21 readily available varieties on the market.
**Phenotype information has been obtained from the web sites of companies, which sell
these varisties to growers and confired by pathotesting.

***These markers were from Pujol et al. (2019).

**The phenotype was not confimed by using offspring to determine whether it is
homozygous or heterozygous.

RR, Homozygous resistant; R, Heterozygous resistant; SS, Homozygous susceptible.
Recombination is shown in bold,
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Fplines* 10218 10317  CsCvy-1 10644 10950  122**

58 Rr Rr Rr Sss ss Rr
59 RR RR RR Rr Rr Rr
65 Rr Rr Rr RR RR Rr
80 Rr RR RR RR RR RR
108 Rr Rr RR RR RR RR

*F lines were generated from the cross between the resistant and the susceptible
cultivars. S, homozygous for susceptible parent allele; RR, homozygous for resistant
parent alele; RS, heterozygous. Recombinants are shown in bold.

This marker is from Pujol et al. (2019).
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Genotype (short) Type Pollen viability (%) Number of pods

A. stenosperma V10309 Diploid wild species 94.90 + 1.23 (b) 107
A. batizocoi K9484 Diploid wild species 71.69 £+ 11.45 (cd) 260
BatSten1 Induced allotetraploid 7561 £ 11.01 (¢ 172
A. hypogaea 5-646-10 Cultivated (Recurrent parent) 93.63 + 1.17 (ab) 120
A. hypogaea 13-1014 Cultivated (Recurrent parent) 90.24 +2.78 (ef) 95
BCoF1:C2633-2_3(16) Backcross line — BCoF4 92.10 £ 3.46 (ae) 60
BCoF¢_BRD_C0049_Seed1 (BCoF_Seed1) Backcross line — BCoF4 86.62 + 5.60 (fg) 109
BCoF¢_BRD_C0049_Seed?2 (BCoF1_Seed?) Backcross line — BCoF4 79.50 + 4.81 (c) 48
BCoF1_BRD_C0049_Seed7 (BCoF1_Seed7) Backcross line — BC»F4 80.84 £+ 7.05 (cg) 5

BCoF¢_BRD_C0049_Seed8 (BCoF4_Seed8) Backcross line — BCoF4 65.08 £ 6.05 (d) 47
BCoF¢_BRD_C0050_Seed9 (BCoF4_Seed9) Backcross line — BCoF4 75.27 £5.19 (c) 103
BC,F{_BRD_C0055_Seed15 (BCoF1_Seed15) Backcross line — BC,F4 Not evaluated 49
BC,F¢_BRD_C0055_Seed17 (BCoF1_Seed17) Backcross line — BCoF4 65.58 £9.14 (d) 107
BC,F¢_BRD_C0057_Seed28 (BCoF1_Seed28) Backcross line — BCoF4 89.81 £2.29 (ef) 260
BCoF1_BRD_C0058_Seed33 (BCoF1_Seed33) Backcross line — BCoF4 77.90 £+ 3.68 (c) 172

Pollen viability (%) — Percentage of viable pollen grains. The pollen viability (%) column with the same letter does not differ significantly (P < 0.05). Number of pods — Total
number of pods per plant. The correlation between Pollen viability (%) and the Number of pods was —0.007 (P < 0.05).





OPS/images/fpls-12-713667/math_3.gif





OPS/images/fpls-12-785358/fpls-12-785358-t002.jpg
Genotype

Type

Weight (g) min - max
(Avg + SD)

Length (mm) min - max
(Avg + SD)

Width (mm) min - max
(Avg + SD)

A. stenosperma V10309
A. batizocoi K9484
BatSten1

A. hypogaea 5-646-10
A. hypogaea 13-1014
A. hypogaea TifGP-2

A. hypogaea Runner-886
BCiFys

BCyFqs

BCsFqs

BCsFos

BC4Fqs

Diploid wild species

Diploid wild species

Induced allotetraploid
Cultivated (Recurrent parent)
Cultivated (Recurrent parent)
Cultivated (Recurrent parent)
Cultivated control
Backceross lines

Backcross lines

Backcross lines

Backcross lines

Backcross lines

0.16-0.19 (0.17 £ 0.01 b)
0.14-0.31 (0.22 £ 0.05 ©)
0.13-0.20 (0.17 & 0.03 b)
0.67-1.03(0.81 £0.10 a)
0.58-0.97 (0.84 £ 0.11 @)
0.59-0.91 (0.75 £ 0.12 a)
0.51-0.94 (0.74 £ 0.17 a)
0.29 - 1.46 (0.68 + 0.34)
0.25-1.47 (0.72 £ 0.24)
0.09 - 1.31 (0.66 + 0.25)
0.40-1.17 (0.72 £ 0.16)
0.42 - 0.97 (0.69 + 0.13)

Minimum and maximum values for controls and BCF4 seeds are presented.
Weight, length, and width for controls with the same letter do not differ significantly (P < 0.05). Min-max (avg £ SD), minimum — maximum (average + standard deviation)
values are presented. N, number of seeds. Full data is in Supplementary Table 9.

11.10 - 13.39 (11.86 + 0.64 d)
11.26 - 14.70 (12.95 £ 1.21 )
11.18 - 14.45 (12.52 £ 0.92 €)
14.30 - 20.22 (17.21 £ 1.87 ab)
15.30 - 20.19 (18.04 + 1.62 a)
14.23 -17.66 (16.48 + 1.22 bc)
12.61-17.77 (15.07 £ 1.70 ©)

11.01 - 21.46 (156.66 £ 2.15)
9.22 -20.83 (15.60 + 2.30)

138.47 - 22.05 (16.94 £ 1.93)
12.95-17.33 (16.83 £ 1.09)

4.983-5.57 (6.21 £0.21 ¢)
5.01-6.37 (6.70 + 0.43 d)
4.34 -5.41 (6.05 +£0.33 ¢)

9.71-11.20(10.43 £ 0.51 ab)

8.50 - 11.54 (10.64 + 0.89 a)
9.06 -10.89 (9.81 + 0.63 b)
(

8.40-11.26 (10.283 + 1.01 ab)

7.48-13.91 (9.87 + 1.34)
3.71-13.42 (9.51 + 2.04)

8.19-12.57 (10.11 + 0.94)
7.96-12.32 (10.23 + 1.06)

10
10
10
10
10
10
10
11
30
253
101
25
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Genotype (short)

BatSten1

A. hypogaea TifNV-High O/L (TifNV-O/L)

A. hypogaea 5-646-10 (5-646-10)

A. hypogaea 13-1014 (13-1014)
14_BC3zF3:C2633-2_3(16) S14_B (BCsF3_14_B)
170_BC3F3_BRD_C0050_Seed9_S77_A (BC3F3_170_A)
133_BCsF3_RBS_sd20_S3_01 (BCsF3_133)
135_BCsF3_RBS_sd20_S3_03 (BCsF3_135)
202_BCsF3_RBS_sd14_S1_B (BCzF3_202_B)

203_BCgF3_RBS_sd14_S2_A (BC3F3_203_A)

Type

Resistant control
Resistant control**
Susceptible control
Susceptible control
Backcross line - BCzF3
Backcross line - BC3F3
Backcross line - BCzF3
Backcross line - BCzF3
Backcross line - BCzF3

Backcross line - BC3F3

PRKN resistance segment*

All segments

Bottom A02 (A02)
Bottom A02 (A02)
Bottom AQ09 (A09)
Bottom A09 (A09)

Bottom Small AO2 (A02-) and
Bottom AQ09 (A09)

Large AO9 (A09+)

Gl/g (avg + SD)

0.00 + 0.00 (d)
0.03 + 0.08 (cd)
0.31 + 0.26 (ab)
0.42 +£0.11 (b)
0.00 =+ 0.00 (cd)
0.02 + 0.04 (cd)
0.35 + 0.18 (ab)
0.25+0.17 (a)
0.13 £ 0.19 (ac)

0.09 & 0.13 (ac)

Eggs/g (avg + SD)

0.00 + 0.00 (b)

6.66 + 17.43 (b)
579.18 + 855.26 (ac)
1268.64 + 1046.49 (a)
30.71 + 75.23 ()
11.89 + 25.08 (b)
1411.04 + 1076.60 (a)
946.29 + 888.79 (a)
34.92 + 73.71 (bo)

9.87 £ 27.91 (b)

avg + SD, average + standard deviation. Gl/g, galling index per gram of root. Eggs/g, number of eggs per gram of root. Columns with the same letter do not differ
significantly (P < 0.05). Full data in Supplementary Table 8. *Resistance was derived from A. stenosperma, based on genotyping by Axiom_Arachis2 SNP array.

** Resistance was derived from A. cardenasii.
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Trait Year1 Year2 Year3 VYeard4 Year1-2 Yeari1-3 Yeari-4

T 052d  043f 057a 054c  0.49% 0.56b 057a
SEV.  053f 056e 061b 059 0.58d 0.62a 0.63a

Models labeled with the same letter are not significantly different (P-vaiue = 0.05).
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Trait Pop
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DoP
Vs
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DP
vs

Modeis labeled with the same letter are ot significantly different (o = 0.05). Adjustments: ALL_M: WB12603(Qyzwpg-18.1), KASP (Lr68),

nBLUP

0.58b
0.53ab.
0.48d
0.59b
0.64ab
0.54bc

Yri7

0.5%
0.53ab
0.49b
0.6ab
0.64ab
0.55a

Yr1o

0.58b

0.53a
0.49cd
0.59ab

0.64a
0.54abc

IWB12603

0.58b
0.52b
0.48d
0.59b
0.63b
0.54abc

Lr68

0.68b
0.53ab

0.48d

0.59b
0.64ab
0.54abc

All_M

0.59a

0.52b
0.49ab

0.6a
0.64ab
0.55ab

GWAS B

0.57¢c
0.47¢
0.5a
0.57cd
0.6c
0.54cd

GWAS_5

0.57¢c
0.47¢c
0.49bc
0.58¢c

0.6c
0.54d

GWAS_10

0.56d

0.44d

0.48d

0.56d

0.57d
0.54cd

GWAS_25

0.54e
0.42e
0.45¢
0.55¢
0.54e
0.52¢

GWAS_50

0.52f
0.41f
0.44f
0.53f
0.54f
0.52e

GWAS_100

051g
04g

0.43g
0.529
0539
0.52¢

Xpsp3000(Yr10), and KASP (¥/17) combined; GWAS_B, genome-wide association assisted

genomic selection (GWAS-GS) with Bonferonni significant markers; GWAS_5, GWAS-GS with the top 5 significant markers; GWAS_10, GWAS-GS with the top 10 significant markers; GWAS_25, GWAS-GS with the top 25 significant
markers; GWAS_50, GWAS-GS with the top 50 significant markers; GWAS_100, GWAS-GS with the top 100 significant markers.
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8L KASP (V/17)

BL IWB12603 (Qyrwpg-1B.1)
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BL XpspB000 (¥710)
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182
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1,008
2244
53
333
1,255
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1,209
2,172

1
247

Frequency

0.756

0.06
0.19
0.61
0.03
0.36
0.38
0.12
0.50
0.46

0.01
053
057

0.06
0.38
0.85
0.02
0.13
0.48
0.06
0.46
0.83

0.00
017

2Genotype: Allefe 0: homozygous wild-type allele; Allele 1: heterozygous with both allefes present; Allele 2: homozygous resistant allele.

ONumber, number of lines.
©NA, Data were not available.

Major race
effectiveness

PSTv-322
PSTv-48
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NA®

NA
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Population Year 1 Year 2 Year 3 Year 4 Year 1-2 Year 1-3 Year 1-4

DP 0.79 0.67 0.88 0.82 0.76 0.85 0.86
BL 0.70 0.80 0.86 0.85 0.76 0.83 0.83

Phenotypic correlations between IT and disease SEV for Pacilic Northwest (PNW) winter wheat within both the diversity panel (DF) lines and breeding lines (BL) phenotyped from 2013
to 2020 in Central Ferry, Lind, and Pullman, WA, USA.
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Population® Year Trials Locations Lines® IT1e SEV 14 T2 SEV2 IT3 SEV3

DP 2013 2 2 475 X X X X X X
DP 2014 2 2 474 X X X X X X
DP 20156 2 2 474 X X X X X X
oP 2016 1 1 474 X X X X X X
DP 2013-2014 4 4 475 X X X X X X
DP 2013-2015 6 6 475 X X X X X X
DP 2013-2016 T 7 475 X X X X X X
BL 2016 2 2 304 X X X

BL 2017 4 2 728 X X X X X X
BL 2018 3 2 1,239 X X X X X X
BL 2020 1 1 373 X X

BL 2016-2017 6 4 1,029 X X X X X X
BL 2016-2018 9 6 2,262 X X X X X X
BL 2016-2020 10 7 2,630 X X X X X X

“DP, Diversity panel; BLs, Breeding lines.
©Lines, Unique lines in the training population.
IT, Infection type.

9ISEV, Disease severity.

X, Indicates measurement recorded.
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Pathotype 3A 3D
3A 1.00

3D 0.64** 1.00
3H 0.65™* 0.81**
5X 0.55™* 0.55%

**Significance level at P < 0.01.

3H

1.00
0.68™

5X

1.00
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Patho DSls No. of DH lines P-value of ratio
type

ECDO1 DH16516 F; 45H29 Total R S 11 3:1 1:3
3A 0 100 - 100 82 27 55 0.001 0.001 0.100
3D 0 100 - 100 80 49 31 0.001 0.005 0.001
3H 0 100 0 0 82 61 21 0.001 0.90 0.001
5X 0 100 - 100 84 52 32 0.001 0.006 0.001
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QTL

Q.Sh.pau-2A

Q.Sb.pau-2B

Q.Sh.pau-3B

Q.Sb.pau-5B

Q.Sh.pau-6A

SNP

S2A_755774702

S2B_673595704

S3B_104700839

S5B_703858864

S6A_131743987

Chr

2A

2B

3B

5B

6A

GenelD

TraesCS2A01G546600
TraesCS2A01G546700
TraesCS2A01G546800
TraesCS2A01G547400
TraesCS2A01G547600
TraesCS2A01G547800
TraesCS2A01G547900
TraesCS2B01G476400
TraesCS2B01G476500
TraesCS2B01G476600
TraesCS2B01G476700
TraesCS2B01G476800
TraesCS2B01G476900
TraesCS3B01G127000
TraesCS3B01G127100
TraesCS5B01G553200
TraesCS5B071G553300
TraesCS5B071G553400
TraesCS5B071G553500
TraesCS5B01G553700
TraesCS5B071G553900
TraesCS5B01G554000
TraesCS5B01G554100
TraesCS5B01G554200
TraesCS5B01G554300
TraesCS5B01G554500
TraesCS6A01G 149500
TraesCS6A01G 149600

Dist. (kb)

439.059
435.192
418.040
81.978
37.854
5.678
—11.024
425.139
353.761
—32.658
—112.168
-116.776
—329.070
375.807
—269.633
370.394
361.335
358.507
329.318
214.322
1.689
—214.708
—232.540
—250.728
—276.340
—368.461
297.870
—436.076

Gene annotation

Cytochrome P450 family protein, expressed

Cysteine proteinase

Zinc finger MYM-type-like protein

FBD, F-box and Leucine Rich Repeat domains protein

Cytochrome P450, putative

Auxin response factor

Zinc finger CCCH domain-containing protein 32

Senescence-associated family protein (DUF581)

Senescence-associated family protein (DUF581)

Senescence-associated family protein (DUF581)

Senescence-associated family protein (DUF581)

Senescence-associated family protein (DUF581)
( )

Senescence-associated family protein (DUF581
Protein FAR1-RELATED SEQUENCE 3

IQ domain-containing protein

F-box family protein

F-box domain containing protein

F-box and associated interaction domains protein
F-box domain containing protein, expressed
F-box family protein

F-box family protein

ATP-dependent Clp protease ATP-binding subunit
F-box family protein

Disease resistance protein RPM1

Disease resistance protein (NBS-LRR class) family
AlG2-like (Avirulence induced gene) family protein
Ubiquitin family protein

Uricase

Distance from SNP (Dist.) represents distance of start site of gene to SNP linked with QTL, where (+) sign indicates that the gene was found downstream of the SNP and
(—) sign indicates that the gene was found upstream.
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QTL

Q.Sh.pau-2A

Q.Sb.pau-2B

Q.Sb.pau-3B

Q.Sb.pau-5B

Q.Sh.pau-6A

Marker

S2A_755774702

S2B_673595704

S3B_104700872

S5B_703858864

S6A_131743987

Chr

2A

2B

3B

5B

6A

Pos (Mb)

755.77

673.60

104.70

703.86

131.74

GS

HDS

AUDPC

HDS

AUDPC

HDS

DS

FS

Env

BLUEs
BLUPs
BLUEs
BLUPs
BLUEs
BLUPs
BLUEs
BLUPs
BLUEs
BLUPs
BLUEs
BLUPs
BLUEs
BLUPs

LOD

3.12
3.18
3.04
3.16
4.09
5.02
4.33
4.58
3.22
3.82
3.32
3.23
3.07
3.08

PVE (%)

18.44
18.77
16.03
16.98
21.27
25.56
23.27
25.27
17.86
20.43
19.48
18.97
16.38
16.42

Add

—8.24
—5.73
160.96
149.57
11.81
10.35
—128.66
—113.13
—8.62
—7.79
—6.06
—3.36
7.59
3.42

Chr, chromosome; Pos Mb, position in million bases; GS, growth stage; Env, environment; LOD, logarithm of odds; PVE, phenotypic variation explained; Add, additive
effect; BLUEs, best linear unbiased estimates;, BLUPs, best linear unbiased predictions; FS, flowering stage; DS, dough stage;, HDS, hard dough stage; AUDPC, area
under disease progression curve.
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Env Stage RP Check Population

PDW274 Raj4015 Range Median Mean SD Ccv Skew. Kurt.

BLUEs FS 14.50 38.00 00.25-39.00 11.25 12.71 8.42 0.66 0.96 0.54
DS 62.00 70.25 08.75-70.50 42.50 41.02 13.83 0.34 —0.20 —0.86

HDS 77.75 89.00 35.00-83.75 72.25 69.17 10.76 0.16 —-1.07 0.93
AUDPC 1081.25 1337.50 302.50-1228.75 828.75 819.55 213.24 0.26 —0.23 —0.73

BLUPs FS 13.61 24.20 07.18-24.65 12.14 12.81 3.79 0.30 0.96 0.56
DS 52.92 57.58 22.82-57.73 41.90 41.09 7.76 0.19 —0.21 —0.83

HDS 75.00 82.81 45.32-79.17 71.18 69.06 7.43 0.11 —-1.09 1.01
AUDPC 985.25 1147.62 491.81-1078.71 825.26 819.86 134.52 0.16 —0.24 —0.70

RR recurrent parent; CV, coefficient of variation; Skew., skewness; Kurt., kurtosis; Env, environment; BLUEs, best linear unbiased estimates; BLUPSs, best linear unbiased
predictions; FS, flowering stage; DS, dough stage; HDS, hard dough stage; AUDPC, area under disease progression curve.
Donor parent Aegilops speltoides (#pau3809) showed score 00 across all stages.
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Putative chr Mapposition (bp) No.of Flanking Markers Phenotype_Location_Year R
atL MTAs

Position®  Left/Right Position**
(Mbp) (Mbp)
4STB.O1 1A 366278319 1 36628 9766808|F0-10:A>G-10:A>G /1087379[F0-64:G>A-64:G>A 37457  SPC_Kulumsa_2016 691
aSTB.02 1A 474702875 1 47456 4409931F|0-10:T>C-10:T>C/2263809[F|0-17:G>C-17:G>C 47571 SPC_Kulumsa_2015 921
qgSTB.03 1A 566369413 1 565.20 987669|F|0-11:T>G-11:T>G/1863565(F|0-7:G>A-7:G>A 566.56 SPC_Kulumsa_2016 5.98
aSTB.O4 18 558661443-587138312 4 556,11  3948637[FI0-11:A>G-11:A>G/1276419FI0-62:A>C-52:A>C 587.28  SPCandSDSat 5.98-9.67
mid-maturity
qSTB.0S 1D 3324483 h 295 2248863|F|0-53:G>T-53:G>T/1863120|F|0-61:T>C-61:T>C 4.82 SDSM_Bekoji_2016 273
4STB.06 1D 375056648 1 36325 1217216]F0-11:G>C-11:6>C/1119123[F[0-11:C>G-11:C>G 377.58  SPC_Holetta 2015 966
qSTB.07 1D 463434850 1 462.07 1034027|F|0-63:C>G-63:C>G/1398976|F|0-52:G>C-52:G>C 464.86 SDSH_Holetta_2015 10.44
aSTB.08 2A 514858369 1 51383 1181149]F0-28:G>A-28:G>A/1102718/FI0-68:C>A68:C>A 2169 SDSH_Holetta 2015 10.63
4STB.09 28 243083729 1 237.98  100665389|F0-10:A>G-10:A>G/3064852/F0-14:G>A-14:G>A 24949 SPC_Kulumsa_2016 663
GSTB.10 28 700740191 1 698.10  1127049]F|0-20:T>C-20:T>C/12207 15[FI0-13:A>G-13:A>G 701.09  SPC_Holetta_ 2015 984
GSTB.A1 20 288602370 1 216560  8025021F[0-19:G>T-19:G> T/1107980|F[0-6:T>C-6:T>C 331.55  SPC_Combined 968
aSTB.A2 20 450991087 1 44324 2262159]F|0-55:C>A-66:C>A/991014[F[0-5:G>C-5:G>C 461.85  SPC_Bekoj_2016 735
aSTB.A3 2D 593032041 1 501.60  2251911[F0-18:A>G-13:A>G/1078056[F|0-40:C> T-40:C> T 50454  SPC_Bekoj_2016 601
GSTB.A4 20 598728762 1 59556 6324627|F|0-45:G>C-45:G>C/2246647FI0-7:T>C-7:T>C 50873  SPC_Kulumsa_2016 7.35
GSTB.1S 3A 8862385 1 874 2256311[F0-9:C>G-9:C>G/1088933|F|0-37:C>T-37:C> T 1287 SPC_Combined a82
aSTB.16 3A 208418249 1 16144 12470406/F|0-23:A> G-23:A>G/092022/F|0-0:G>A-9:G>A 20204 SDSH_Bekoj_2016 292
4STBAT 3A 710771071 2 71034 989196|FI0-7:A>T-7:A> T/4989102]FI0-40:G>A-40:G> A 71104 SDSH_Holetta_2015 292
SPC_Holetta_2015
aSTB.18 38 17785833 1 1741 1244651FI0-19:A>G-19:A>G/098652|F(0-18:C> T-18:C> T 1845  SPC_Kulumsa 2016 607
GSTB.19 38 59645976 1 5958 1263871[F|0-58:G>A-58:G>A/1110047|F0-39:T>C-39:.T>C 6087  SPC_Combined a7s
4STB.20 3D 42679365 1 4263 981546[F0-30:T>C-39:T>C/4911094[FI0-6:T>C-6:T>C 4594 SDSH_Bekoji 2016 3.48
aSTB.21 3D 593664469 5 508.66  1102020[F[0-37:G>A-87:G>A/992091|F0-53:G>C-63:G>C 59502  SDSH_Holetta 2015, 267~
SDSMM_Holeta_2015, 13.01
SPG_Holetta_2015,
SPC_Kulumsa_2015 and
SPG_Combined
aSTB.22 A 619375783 1 619.16  2263956F|0-45:T>C-45:T>C/094022[F|0-52:G>C-52:G>C 620.75  SDSM_Bekoj_2016 27
aSTB.23 5A 683350748 1 68596  3938163[F|0-43:T>C-43:T>C/2278701|FI0-87:A>T-37:A>T 689.42  SDSH_Holetta_2015 1044
GSTB.24 58 487460716 1 487.44  1696148|F|0-16:0>G-16:C>G/2281586/F|0-67:A>G-67:A>G 491.07  SPC_Kulumsa_2016 692
aSTB.25 58 538706298 1 53831  5582250[F|0-47:T>C-47:T>C/1097026[F|0-40:C>A-40:C>A 539.08  SPC_Bekoj_2016 692
aSTB.26 5D 541603929 1 539.15  1696148F|0-16:C>G-16:C>G/6038202[FI0-6:C> T-6:C>T 54168  SPC_Kulumsa_2016 6.13
GSTB.27 A 607427728-609480220 2 607.43  2328288[F|0-13:G>C-13:6>C/1231806/F[0-18:G>C-13:G>C 60828  SPC_Kulumsa_2016 and 2.72-6.01
SPC_Kulumsa_2016
GSTB.28 68 708272196 2 70698 995556|F|0-65:0>T-65:C>T/1091608|FI0-30:0>G-30:0>G: 70802 SPC_Combined and 6.13-9.91
SPC_Bokoji_2016
aSTB.29 7A 116530515 1 11612 3064815[F0-27:A>G-27:A>G/1151957[F|0-24:T>G-24.T>G 12328  SPC_Kulumsa 2016 726
4STB.30 7A 690877106-601722567 2 68871  3064770[F0-20:G>A-20:G>A/3532952F|0-38:G>A-38:G>A 60086  SPC_Bekoj_2016 and 302-7.26
SDSH_Bekoji 2016
aSTB31 78 686089852 4 686.00  3023327|F|0-28:G>A-28:G> A7340828[F0-11:C>G-11:C>G 687.06  SDSMM_Holeta 2015, 871-971
SPC_Holetta_2015,
SPC_Kulumsa_2015 and
SPC_Combined
aSTB.32 [0} 21667638-63471279 3 1892 1072451[F|0-9:C>T-9:C>T/981671[F0-20:G>C-20:G>C 6424 SDSM_Bekoj_2016, 267~
SPC_Combined and 10.79
SPC_Bekoji_2016
aSTB33 ) 528000507-531439751 2 52649  1004225(F|0-30:G>A-30:G> A/5579572/FI0-19:G>A-19:G> A 54062  SPC_Bekoj_2016 and 663
SDSH_Holetta_2015 11.09

QTL, quantitative trait locus; Chr, chromosome; MTAs, marker-trait associations; Position", position (Mbp) of the left flanking marker; Position*, position (Mbp) of the right flanking marker; Phenotype_Location_year, Septoria disease
severity measured at indivicual or across location levels (Holetta, Bekoji, and Kulumsa) in 2015 and 2016; 2, percentage of the total phenotypic variance explained by the identified putative QTL; SDSH, Septoria disease severity at
heading; SDSMM, Septoria disease severity at mid-maturity; SDSM, Septoria disease severity at maturity; SPC, Septoria progress coefficient.
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Experiment? Linkage group® QTL position (cM)¢ Support interval (cM)d Peak LOD R2 (%) Additive effect QTL significancef

GH1 Co6 315 29.3-32.9 3.4 33.8 10.98 -
GH2 C1 30.3 30.3-31.8 5.5 52.74 12.03 .
C6 31.5 29.6-32.9 3.5 34.59 9.15 -
C9 57.0 56.2-58.6 4.1 24.31 7.54 .
CE C1 30.3 30.1-30.5 7.4 69.37 12.21 =
C6 49.0 47.6-49.9 3.3 20.23 -4.77 -

aDH population was phenotyped in two glasshouse experiments (GH1 and GH2) and a controlled-environment experiment (CE), and QTL was determined within each
individual experiment. A summary of the phenotyping experiments is given in Table 1.

b/ inkage groups are labelled according to the standard chromosome/linkage group nomenclature of B. napus (A1-A10 and C1-C9) agreed by the Multinational Brassica
Genome Project (MBGP) Steering Committee (http.//www.brassica.info/resource/maps/Ig-assignments.php).

CFlanking markers for each QTL have been indicated in Figure 4.

d1.0D-1.5 support interval, which has a confidence interval close to 95%, is given for each of the QTL detected.

€% phenotypic variance explained by the QTL.

fSignificance based on individual marker-trait association. Significance at the 1, 0.1, and 0.01% levels are indicated by **, *** and **** respectively.
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HD FD MD GFD Yield HLW TKW PH NKPS NKs

SDSH —-0.04™ —-0.05™ -0.19" -0.21* -0.43" -0.32" —0.42" =0.1™ —-0.19" -0.19"
SDSMM —0.1™ -0.1™ -0.25* —0.24* —0.48" -0.33* -0.51* —-0.08™ -0.25" -0.21*
SDSM —0.21* -0.22" -0.36"" -0.26" —0.47" -0.32 —0.44" —0.06™ -0.16" —0.14"
SPC -0.16" —0.14" -0.20" -0.22" —0.38" —-0.26" —0.44" -0.21* -0.12" —0.17

HD, heading date; FD, flowering date; MD, maturity date; GFD, grain-filing duration; HLW, hectoliter weight; TKW, thousand-kemel weight; PH, plent height; NKPS, number of kemels
per spikelet; NKS, number of kemels per spike; SDSH, Septoria disease severiy at heacing; SDSMM, Septoria disease severity at mid maturity stage; SDSM, Septoria disease severity
at maturity; SPC, Septoria progress coefficient.

**, very highly significant (o < 0.0001); ** = highly significant; *, significant; ns, non-significant at the , 5% significance level; (-}, negative correlation. The magnitude of the correlation
coefficient indicates the strength of the correlation.






OPS/images/fpls-13-786189/fpls-13-786189-t001.jpg
Experiment Number of Q DH Control cultivarsP Origin of Pyrenopeziza Inoculum concentration Light leaf spot severity (%

lines? brassicae inoculum® (spores/ml) leaf area affected) (range)
Glasshouse 1 (GH1) 84 Marathon (S), Bristol (S), Cuillin (R), ~ Morley, Norfolk, England 1% 10° 0-83%
Imola (R), Tapidor, Brassica rapa
oleifera “29”
Glasshouse 2 (GH2) 78 Bristol (S), Charger (S), Imola (R) Aberdeen, Scotland 1 x 108 0-63%
Controlled environment 89 Canberra (R) Harpenden, Hertfordshire, 1x 104 0-46%
(CE) England

aQ DH population consists of 92 lines in total. From GH1 and GH2, 77 and 70 lines were taken into the final data analysis, respectively. Therefore, there were 70 lines in
common between the three experiments.

PEach experiment included resistant (R)/susceptible (S) control cultivars. Additionally, GH1 experiment included two of the parental lines of the Q DH population; B. rapa
oleifera “29” (A-genome parent of the synthetic B. napus) and cv. Tapidor.

®Plants were inoculated with P. brassicae populations (conidial suspensions collected from diseased leaves from oilseed rape crops in England or Scotland).
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Comparative advantage Comparative advantage

for STB resistance for STB resistance
(% over) (% over)
Genotypes Mean of King-bird MRV Genotypes Mean of King-bird MRV*
selected selected
genotypes genotypes
Septoria disease severity at heading (%) Septoria disease severity at maturity (%)
G174 525 70.95 744 G174 106 74.26 71.83
G153 582 67.81 71.63 G144 1421 65.49 62.24
Gl44 587 67.53 71.38 <] 15.28 63 59.51
G150 607 66.39 70.38 G153 1695 61.25 576
G151 8.45 53.22 58.78 G156 18.73 545 50.21
G141 89 50.72 5657 G133 18.83 5425 49.94
G133 89 50.72 56.57 G151 19.04 53.75 494
a3 9.32 48.44 5456 G155 19.45 52.75 483
G156 9.47 47.58 5381 Go7 19.66 52.26 41.75
King-bird 18.06 - 1188 King-bird 4115 - -9.43
MRV* 20.49 13.48 - MRV 37.61 862 -
Septoria disease severity at mid-maturity (%) Septoria progress coefficient
G174 8.18 70.4 72.74 G174 031 5044 45.59
G153 1056 61.83 64.86 G144 035 4451 39.09
G144 14.15 48.79 5285 G133 0.37 40.82 35.03
a3 14.46 47.68 5183 a3 0.7 4031 34.48
G151 1528 447 49,08 G155 0.37 403 34.46
G155 1575 43.02 47.54 G151 038 38.97 33.01
Go2 1631 40.97 4565 G154 0.39 3803 31.97
G150 16.36 40.79 45.48 [c4 0.39 37.76 31.68
a8t 17.03 38.87 4325 a47 04 36.88 30.71
King-bird 27,63 - 793 King-bird 0.62 - 978
MRV* 30,01 -8561 - MRV* 057 891 -

“MRV, mean of 13 selected released varieties. Negative values for comparative advantage indicate less STB resistance (inferior performance) of the genotype.
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Trait o2g o?gy o?gl o2gyl oe H2 Gev PCV GA GAM

SDSH 81.97" REE 14.7% 34.63" TR.TTw 0.73 40.07 68.26 23.14 102.38
SDSMM 97.67* 29.86"* 18.78* 40.46"* 132.82** 0.72 32.62 59.01 26.36 86.99
SDSM 248.24 142,61 5.04* 156.32"* 12213 0.75 a1.41 60.83 35.23 93.09
SPC 0.02*** 0.01** -0.01** 0.01* 0.01* 0.81 2251 32.37 0.31 53.69

g, genotypic variance estimate; o’gL, genotype x year interaction variance estimate; 6?gL, genotype x location interaction variance estimate; o®gyl, genotype x year x location
interactions variance estimate; a%e, residual variance estimate; **, very highly significant at p < 0.0001; *, significant at p < 0.05; ns, non-significant at the p = 0.05 significance level;
SDSH, Septoria disease severity at heading; SDSMM, Septoria disease severity at mid maturity stage; SDSM, Septoria disease severity at maturity; SPC, Septoria progress coefficient.
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Source of variation DF Mean squares

SDSH SDSMM SDSM SPC
Genotype 179 699.53"** 874.84* 1650.20"** 0.12**
Replication 1 662.48" 35.41™ 5498.56"* 087
Year 1 29489.27* 44295.09* 64059.86** 0.01"
Location 2 5267.27** 2734.03 " 24849.65™* 4.57"
Incomplete block (nested) 5 1468.79"* 2167.8** 2055.71* 031
Genotype'year 179 310.41% 392.86™" 1008.41** 0.06"*
Genotype‘location 358 207.74** 288.83"* 17291 0.02***
Year*location 2 1987.73** 358.46™ 10452.82*** 378"
Genotype*Year*Location 358 148.97** 213.74* 152.76" 0.02***

SDSH, Septoria disease severity at heading; SDSMM, Septoria disease severity at mic-maturity stage; SDSM, Septoria disease severity at maturity; SPC, Septoria progress coefficient;
** very highly significant at p < 0.0001; *, significant at p < 0.05; ns, non-significant at the p = 0.05 significance level; DFs, degrees of freedom.
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Gene model Chromosome

HG_10001024
HG_10001026
HG_10001028
HG_10001029
HG_10001030"
HG_10001031
HG_10001032
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HG_10001035
HG_10001037
HG_10001040
HG_10001041
HG_10001042*
HG_10001043
HG_10001044
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*potential candidate genes for FW resistance.

Start (bp)

13,370,905
13,403,689
13,411,513
13,422,565
13,426,782
13,435,260
13,440,450
13,447,396
13,453,903
13,467,477
13,491,070
13,494,064
13,495,614
13,505,538
13,610,514
12,064,283
12,073,500
12,254,943
12,274,175
12,346,824
12,379,221
12,423,049

End (bp)

13,396,585
13,406,203
13,414,862
13,425,196
13,427,351
13,440,011
13,443,769
13,453,363
13,460,368
13,475,348
13,493,857
13,495,437
13,600,201
13,506,317
13,520,956
12,065,568
12,084,249
12,255,467
12,283,744
12,347,511
12,379,829
12,429,778

Gene Ontology biological process descriptions

Chloroplastic/mitochondrial isoform X1
NA
Mitochondrial dicarboxylate/tricarboxylate transporter
Tubulin alpha-3 chain
Ethylene-responsive transcription factor
Importin
Importin-5
Chloroplastic isoform X1
Indole-3-acetaldehyde oxidase-like isoform X1
Indole-3-acetaldehyde oxidase-like
NADH-cytochrome b5 reductase 1-like isoform X3
Chloroplastic-like isoform X1
GDSL esterase
Protein YLS9-like
La-related protein 1A
Probable carboxylesterase 15
Protein TRANSPARENT TESTA 12-like
Hypothetical protein
Hypothetical protein
Hypothetical protein
Zinc-finger homeodomain protein-like
CDPK-related kinase 1-like isoform X1
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Holetta-2015 (E1) Bekoji-2015 (E2) Kulumsa-2015 (E3) Holetta-2016 (E4) Bekoji-2016 (E5) Kulumsa-2016 (E6)

Trait o%g H2 o2g H2 o%g H2 o%g H2 o2g H o%g H2
SDSH 84451 090  21266™ 090 8944 061 4256 078 7941 096 4467 095
SDSMM  485.36™* 0.94 255.28"* 0.86 38.7 0.58 9223 0.90 88.63 0.98 66.48"* 0.95
SDSM  516.40"* 089 27544 076  331.16™ 088 127.99™ 099 10524™ 097 8659 094
SPC 0.04 0.88 0.01** 0.70 0.02 0.87 0.01 0.62 0.01" 0.83 0.00" 0.67

o2g, genotypic variance; H2, heritability in the broad sense (H?]

jery highly significant (b < 0.0007); “sn”

on-significant at the , 5% significance level.
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Marker Chromosome Positive Allelic 2019DI 2020DI aDI
—log1oP R? (%) —log1oP R? (%) —log1oP R? (%)
BGReSe_14212 9 13,476,930 AG 2.10 9.76 2.08 8.82
BGReSe_14202 9 13,457,203 AG 2.81 14.14 2.49 13.90 2.46 10.49
BGReSe_12911 8 11,449,774 AG 2.36 10.14 2.16 10.31 2.10 10.33
BGReSe_12338 8 6,378,304 C/T 2.23 15.03 212 12.87
BGReSe_5941 4 12,071,538 C/T 242 13.60 2.03 9.88
BGReSe_5382 3 28,668,323 AG 2.35 15.40 2.14 12.25
BGReSe_2569 2 15,601,788 AG 214 16.19 2.03 15.38
BGReSe_2108 2 12,417,989 AG 2.37 12.60 2.32 11.03 2.02 11.28
BGReSe_1042 1 14,684,871 C/T 2.55 11.06 2.49 12.83 2.19 12.30
BGReSe_818 1 12,140,445 C/T 2.25 12.26 2.02 12.84
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Trait Environment Mean Range sD Pr>F Trait Environment Mean Range sD Pr>F

SDSH E1 (HARC2015) 3123 7284 888 SDSM  Ef (HARC 2015) 469 9568 2407
E2 (Bekoji 2015) 2448 6358 68 E2 (Bekoji 2015) 5077 7716 1905
E3(Kuumsa2015) 2847 4074 800 E8(Kuumsa2015) 8238 7099 944
E4 (HARC 2016) 2000 8981 488 E4 (HARC 2016) 3307 6544 18
E5 (Bekoji 2016) 1936 4471 908 E5 (Bekoji 2016) 3428 5556  10.41
E6 (Kulumsa 2016) 18.16 38.89 6.87 - E6 (Kulumsa 2016) 30.04 46.94 9.61 e

SDSMM  Ef (HARC 2015) 376 272 227 SPC E1 (HARC 2015) 065 0.87 02
E2 (Bekoji 2015) 3456 7407 172 E2 (Bekoji 2015) 069 074 012
E3(Kuumsa2016) 8213 4951 82 8 (Kuumsa2015)  0.41 060 0.09
E4 (HARC 2016) 2713 5895 520 E4 (HARC 2016) 06 062 0.09
E5 (Bekoji 2016) 256 4703 951 E5 (Bokoji 2016) 058 0561 0.12
E6(Kuumsa2016) 2173 3951 835 E6 (Kuumsa2016) 058 0.46 008

SDSH, Septoria disease severity at heacing; SDSMM, Septoria disease severity at mic- maturity; SDSM, Septoria disease severity at maturity; SPC, Septoria progress coeffcient; SD,
standard deviation; ***, very highly significant (p < 0.0001); “sn", non-significant at the a, 5% significance level.
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Chr. Chromosome Number of Density of PIC

length (Mb) SNP SNP (kb/SNP)
chri 28.39 674 42.11 0.10
chr2 29.76 631 4717 0.14
chr3 30.34 563 53.90 0.13
chr4 32.30 637 50.70 0.11
chrs 35.14 553 63.55 0.12
chr6 26.83 399 67.25 0.12
chr7 23.92 389 61.49 0.13
chr8 23.22 505 45.98 0.10
chr9 19.99 370 54.03 0.12
chr10 26.30 400 65.75 0.10

chri 21.15 209 101.18 0.12
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Trial Maximum Minimum Mean SD CV (%)

DI2019 0.95 0.06 046 0.22 48.77
DI2020 0.94 0.11 055 022 41.21
Mean 0.94 0.11 0.50 0.21 4229

Heritability (%)

87.19

SD, standard deviation; CV (%), coefficient of variation.
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Identified Trait Environment* QTL1 Left Marker QTL 1 Right marker QTL 1 LG QTL 2 position Left Marker QTL 2 Right marker QTL 2 R? (%) Linked
epistatic-effect QTL position additive-effect
QTL
E.FG2-Ps1 Fusarium GH Expt 1 130 PsCam055659 PsCam038445_23479 315 AA5 PsCam036163_213 95  Fg-Ps3.1
root rof _36655_1042 _407 11_1095
E.FG2-Ps2 Fusarium GH Expt 1 345 PsCam004460_ PsCam042783_2682 175 PsCam001246_105 PsCam005487_415 78  Fg-Ps3.2
root rof 3351_975 6_1395 0_252 1.529
E.FG2-Ps3 Fusarium GH Expt 2 240 PsCam052149_ PsCam005624_424 175 PsCam005343_405 PsCam035416_2060 124 -
root rof 34531_162 5_1053 2_245 3.89
E.FG2-Ps4 Fusarium GH Expt 2 135 PsCam007018_ PsCam006445_480 220 PsCam035416_206 PsCam042923_269 101 -
root rof 5220_1401 0_1399 03_89 60_468
E.FG2-Ps5 Fusarium GH Expt 3 160 PsCam005343_ PsCam035416_2060 220 PsCam035416_206 PsCam042923_269 9.0 -
root rof 4052_245 3.89 03_89 60_468
E.FG2-Ps6 Fusarium Pooled GH 170 PsCam005343_ PsCam035416_2060 215 PsCam035416_206 PsCam042923_ 92 =
root rof Expts 4052_245 3.89 03_89 26960_468
E.FG2-Ps7 Fusarium BLUPs GH 170 PsCam005343_ PsCam035416_2060 215 PsCam035416_206 PsCam042923_ 105 -
root rof Expts 4052_245 3.89 03_89 26960_468
E.FG2-Ps8 Fusarium BLUPS GH 245 PsCam042923_ AB68 90 PsCam005789_43 PSGAPA 78 =
root ro Expts 26960_468 53_36
E.Vig-Ps1 Vigor GH Expt 1 175 PsCam005343_ PsCam035416_206 375 PsCam019069_113 PsCam048824_3147 11.2 =
4052_245 03_89 10_393 7_2784
E.Vig-Ps2 Vigor GH Expt 2 55 PsCam037897_ PsCam057553_38 170 PsCam005343_ PsCam035416_2060 10.0 -
22954 2120 137_135 4052_245 3.89
E.Vig-Ps3 Vigor GH Expt 2 170 PsCam005343_ PsCam035416_206 215 PsCam035416_206 PsCam042923_269 121 -
4052_245 03_89 03_89 60_468
E.Vig-Ps4 Vigor GH Expt 4 55 PsCam037897_ PsCam057553_381 190 PsCam005343_405 PsCam035416_206 85 -
22954 2120 37_135 2.245 03_89
E.Vig-Ps5 Vigor GH Expt 4 195 PsCam005343_ PsCam035416_20 215 PsCam035416_206 PsCam042923_269 87 -
4052_245 603_89 03_89 60_468
E.Vig-Ps6 Vigor GH Expt 4 185 PsCam005343_ PsCam035416_2060 50 PsCam017623_1085 PsCam000168_14 96 -
4052_245 3.89 8_46 5_1509
E.Vig-Ps7 Vigor Pooled GH 220 PsCam035416_ PsCam042923_269 315 AA5 PsCam036163_2131 12.6  Fg-Ps3.1
Expt 20603_89 60_468 1.1095
E.Vig-Ps8 Vigor Pooled GH 390 PsCam029411_ PsCam042665_267 85 PsCam005789_435 PSGAPA1 78 -
Expt 17551_1348 15_153 3_36
E.Vig-Ps9 Vigor Pooled GH 215 PsCam035416_ PsCam042923_269 85 PsCam042529_2658 PsCam037575_226 10.0 -
Expt 20603_89 60_468 4_303 53_1339
E.Vig-Ps10 Vigor BLUPs GH 85 PsCam050501_ PsCam036791_219 170 PsCam005343_405 PsCam035416_206 98 -
Expt 330791023 14_640 2_245 03_89
E.Hgt-Ps1 Plan GH Expt 1 340 PsCam004460_ PsCam042783_268 345 PsCam004460_ PsCam042783_2682 31.2 Fg-Ps32
heigh 3351_975 26_1395 3351_975 6_1395
E.Hgt-Ps2 Plan GH Expt 1 340 PsCam004460_ PsCam042783_268 60 PsCam001066_9 PsCam056652_3743 9.9  Fg-Ps3.2
heigh 3351_975 26_1395 09_911 0_307
E.Hgt-Ps3 Plan GH Expt 2 70 PsCam004460_ PsCam042783_2682 345 PsCam004460_3 PsCam042783_2682 13.2  Vig-Ps3.7andFg-
heigh 3351_975 6_1395 351_975 6_1395 Ps3.2
E.Hgt-Ps4 Plan Pooled GH 340 PsCam042923_ AB68 335 PsCam004460_ PsCam042783_268 1356 Fg-Ps3.2
heigh Expt 26960_468 3351_975 26_1395
E.Hgt-Ps5 Plan Pooled GH 340 PsCam004460_ PsCam042783_268 25 PsCam054029_35 PsCam037549_226 89  Fg-Ps32
heigh Expt 3351_975 26_1395 722_104 28_1642
E.Hgt-Ps6 Plan Pooled GH 340 PsCam004460_ PsCam042783_268 60 PsCam001066_9 PsCam056652_37 89  Fg-Ps3.2
heigh Expt 3351_975 26_1395 09_911 430_307
E.Hgt-Ps7 Plan BLUPs GH 340 PsCam004460_ PsCam042783_268 345 PsCam004460_33 PsCam042783_268 19.1  Fg-Ps3.2
heigh Expt 3351_975 26_1395 51_975 26_1395

*GH, greenhouse; Expt, experiment.
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Identified Trait Environment LG Analysis Chrom?/LG?  Peak (cM) Confidence Left Marker Right marker LOD Additive R2(%)
QTL (Present interval(cM)
study)
Fg-Ps3.1 Root rot severity GH Expt 1 4 Chrom5/LGlll 311.9 307.9-316.5 AA5 PsCam036163_21311_1095 39  -0.2409 9.88
Fg-Ps3.2 Root rot severity GH Expt 4 4 Chrom5/LGlll 338.2 334.9-341.4 PsCam036163_21311_1095 PsCam042783_26826_1395 3.5 -0.2153 9.62
Fg-Ps4.1 Root rot severity GH Expt 1 3] Chrom4/LGIV 717 63.7-74.4 PsCam050913_33466_1250 PsCam048871_31524_450 3.0 -0.2121 9.10
Root rot severity GH Expt 2 5 Chrom4/LGIV 61.3 59.3-69.2 PsCam001381_1152_437 PsCam042375_26443_3427 3.8 -0.2229 10.57
Fg-Ps4.2 Root rot severity GH Expt 3 B Chrom4/LGIV 80.2 74.0-85.2 AA239 PsCam057281_37909_2940 59  -0.2344 11.26
Root rot severity GH Expt 4 5 Chrom4/LGIV 80.2 75.4-85.2 AA239 PsCam057281_37909_2940 4.1 -0.2526 13.17
Root rot severity Pooled 5 Chrom4/LGIV 79.2 75.4-85.2 AA239 PsCam057281_37909_2940 5.1 -0.2492 1544
Root rot severity BLUPs 5 Chrom4/LGIV 79.2 75.4-85.2 AA239 PsCam057281_37909_2940 3.7  -0.3838 10.02
Fg-Ps5.1 Root rot severity GH Expt 1 ¥ Chrom3/LGV B:2 0.9-9.2 PsCam059449_39630_321 PsCam011153_7569_125 (5] 0.3036  14.22
Vig-Ps3.1 Vigor GH Expt 4 4 Chrom5/LGlIII 68.9 67.1-70.5 PsCam013763_9362_423 AD270 49 -0.1423 4.05
Vig-Ps3.2 Vigor GH Expt 2 4 Chrom5/LGlII 312.0 307.8-316.8 AA5 PsCam036163_21311_1095 3.0 0.1910 9.53
Vigor GH Expt 3 4 Chrom5/LGlII 316.1 310.4-320.4 AA5 PsCam036163_21311_1095 3.3 0.25682  11.22
Vigor Pooled 4 Chrom5/LGlll 312.6 310.4-316.5 AA5 PsCam036163_21311_1095 4.6 0.1938  12.13
Vigor BLUPs 4 Chrom5/LGlII 3128 307.5-316.5 AA5 PsCam036163_21311_1095 4.2 0.3736  11.92
Vig-Ps4.1 Vigor GH Expt 1 ] Chrom4/LGIV 68.0 63.5-69.9 PsCam050913_33466_1250 PsCam042375_26443 3427 4.4 0.2728  13.50
Vigor GH Expt 2 o] Chrom4/LGIV 60.3 58.0-70.7 PsCam000712_620_237 PsCam042375_26443 3427 3.2 0.2060  10.42
Vigor GH Expt 4 5 Chrom4/LGIV 715 70.5-73.2 PsCam042375_26443_3427  AA239 45 0.2437 9.19
Vigor Pooled 5 Chrom4/LGIV 61.3 58.8-63.5 PsCam000712_620_237 PsCam057555_38139_296 4.4 0.1868  11.59
Vigor BLUPs 5 Chrom4/LGIV 61.3 59.3-63.5 PsCam001381_1152_437 PsCam057555_38139_296 3.8 0.3474  10.51
Hgt-Ps3.1 Heigh GH Expt 1 4 Chrom5/LGlI 288.6 288.3-291.7 PsCam020937_11699_2576  AAS 144 6231 36.35
Heigh GH Expt 2 4 Chrom5/LGlI 287.6 286.8-293.7 PsCam020937_11699_2576  AAS 4.7 -33.90 12.90
Heigh GH Expt 4 4 Chrom5/LGlI 287.6 286.8-295.2 PsCam020937_11699_2576  AAS 3.3 -27.27 9.94
Heigh Pooled 4 Chrom5/LGll 287.6 286.8-292.4 PsCam020937_11699_2576  AAS 6.2 -33.24  20.96
Heigh BLUPs 4 Chrom5/LGlI 287.6 286.8-291.4 PsCam020937_11699_2576  AAS 9.4 -71.63 2397
Hgt-Ps7.1 Heigh GH Expt 1 9 Chrom7/LGVII 92.2 85.3-102.1 PsCam039854_24711_656 PsCam046792_30096_853 10.1 46.60 20.04
Heigh Pooled 9 Chrom7/LGVII 92.2 84.5-115.3 PsCam056683_37453_248 PsCam021891_12310_347 4.9 28.68 13.54
Heigh BLUPs 9 Chrom7/LGVII 92.2 81.2-102.5 PsCam035831_20992_561 PsCam042171_26273_1937 4.5 52.40 7.04
Hgt-Ps7.2 Heigh GH Expt 2 9 Chrom7/LGVII 154.8 143.8-167.5 PsCam002756_2184_427 PsCam045262_28962_162 5.1 34.63 13.63
Heigh GH Expt 4 9 Chrom7/LGVII 144.3 142.3-151.9 PsCam002756_2184_427 PsCam011213_7616_1104 4.4 2 13.85
Heigh Pooled 9 Chrom7/LGVII 187.7 148.8-168.0 AB91 PsCam045262_28962_162 4.4 27.87 14.06

“Pea chromosomes named according to Neumann et al. (2002) and B Pea linkage groups named according to Tayeh et al. (2015).
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Trait Abbrev/Experiment Parental cultivar RIL population
‘00-20672 ‘Reward’? T-test (P) RILs? Skewness Kurtosis Shapiro-test (P)

Root rot severity DSGH1 1.0+£00 3.3+05 5.30E-05 22408 0.2 ] 7.77E:0B
Root rot severity DSGH2 1.0+£0.8 334+05 1.66E-03 28+08 0.3 0.6 1.35E-04
Root rot severity DSGH3 1.3+05 354+06 5.30E-04 251408 0.0 -1.0 2.86E-06
Root rot severity DSGH4 1.0+£0 3.0+00 1.36E-03 24+£09 0.0 B 1.38E-02
Root rot severity DSGHPooled 11+04 3.3+04 2.63E-13 24 +0.7 0.0 -0.6 1.20E-01
Root rot severity DSGHBLUPS 1.0 3.0 23+09 0.1 —1.0 8.07E-05
Vigor VGH1 4.0+0.0 1.7+ 05 5.26E-05 26411 0.5 -0.6 5.96E-08
Vigor VGH2 37405 20+14 2.92E-02 264 1.1 -0.9 0.1 0.00E + 00
Vigor VGH3 35406 12415 1.56E-02 24412 -0.5 -0.7 0.00E + 00
Vigor VGH4 4.0+0.0 25408 1.01E-03 254 1.1 -04 -1.0 1.79E-07
Vigor VGHPooled 884+08 184 1.1 1.06E-07 25408 0.5 -0.6 9.89E-06
Vigor VGHBLUPS 4.0 1.8 26+1 -0.6 -0.3 5.96E-08
Plant height HGHA1 210.8 +£128.2 118.3 £ 100.2 1.49E-01 196.8 £ 87.9 oz 0.6 1.35E-03
Plant height HGH2 174.5 £104.8 193.5 + 104.5 4.03E-01 194.5 £ 88.5 0.6 1.3 9.74E-02
Plant height HGH3 159.5 + 13.5 125.0 +£ 98.9 2.58E-01 171.8 £ 80 0.4 0.3 3.76E-01
Plant height HGH4 210.0 &+ 53.1 194.0 + 38.4 3.00E-01 180.8 + 80.1 0.7 0.7 8.17E-03
Plant height HGHPooled 188.7 £ 82.8 167.7 £ 88.5 1.54E-01 185.2 £ 64 0.6 0.5 9.79E-02
Plant height HGHBLUPS 208.0 1338.1 186.6 + 122.6 0.6 1.0 5.72E-02

aThe estimated means of parental cultivars, “Reward” and “00-2067", as well as RILs, are shown along with plus/minus stand error (SE).
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Trait Abbrev/Experiment Parental cultivar RIL population
‘00-20672 ‘Reward’? T-test (P) RILs? Skewness Kurtosis Shapiro-test (P)

Root rot severity DSGH1 15 £07 3:8 £0:5 1.1E-02 20+0.7 -0.1 -0.7 1.6E-03
Root rot severity DSGH2 1.3+0.6 3.3+£05 2.6E-03 19407 0.2 .6 1.5E-02
Root rot severity DSGH3 20+12 35+06 3.0E-02 22407 0.0 0.2 6.0E-02
Root rot severity DSGH4 1.56+07 3.0+0.0 1.3E-02 21+0.7 0.1 -0.3 3.7E-02
Root rot severity DSGHPooled 1.6+0.8 33+£05 4.6E-07 20+06 0.1 -0.7 6.2E-02
Root rot severity DSGHBLUPS 1.2 41 - 20+1.2 -0.1 -0.8 4.6E-02
Vigor VGH1 4.0+0.0 20408 1.5E-02 3.0+08 -0.3 0.7 0.0E 4+ 00
Vigor VGH2 4.0+0.0 25 4086 3.5E-08 30407 -0.3 0.2 9.6E-06
Vigor VGH3 30+12 1.56+0.6 3.0E-02 2.7 £0.7 0.2 0.2 5.1E-06
Vigor VGH4 3.5+0.7 2.7+0.6 1.2E-01 28+0.8 -0.4 0.6 1.1E-03
Vigor VGHPooled 36+08 22407 6.0E-05 28405 0.0 0.5 1.1E-01
Vigor VGHBLUPS 4.2 1.6 - 29+141 -0.1 -04 5.1E-02
Plant height HGHA1 234.5 + 54.6 177.5 + 36.1 1.3E-01 217.6 £96.3 1.0 0.7 0.0E + 00
Plant height HGH2 1567.3 + 50.6 120.7 £ 31.5 1.6E-01 2315+ 874 0.7 0.2 5.6E-05
Plant height HGH3 166.5 + 59.5 129.5 + 26.0 2.3E-01 1545 £ 84.4 1.0 1.1 8.0E-06
Plant height HGH4 189.7 £ 6.7 178.5 + 34.6 2.0R-01 184.6 £ 83.9 0.6 0.5 5.5E-02
Plant height HGHPooled 176.7 + 56.6 161.5 + 36.9 5.1E-02 197.5 £ 68.8 1.1 1.2 0.0E 4 00
Plant height HGHBLUPS 1568.9 100.8 197.3 £1355 1.0 0.6 0.0E 4+ 00

aThe estimated means of parental cultivars, “Reward” and “00-2067,” as well as RILs, are shown along with plus/minus stand error (SE).
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Biomass Adventitious Basal root Taproot Shallowest = Deepest root Root angle Root angle Root angle
roots diameter diameter root angle angle difference average geometric
mean
Disease severity —0.35"* 0.26** —0.27* —0.40"* 0.37*** 0.32*** —0.02"s 0.42*** 0.19*
Biomass 0.13™ 0.21* 0.19* —0.37*** -0.18* 0.14" —0.33*** —0.04™
Adventitious roots -0.09™ —0.24* 0.03™ 0.13™ 0.09™ 0.10™ 0.13™
Basal root diameter 037 017" —0.05" 0.10™ —-0.13™ 0.03™
Taproot diameter —0.23* —0.46*** —0.23** —0.43** —0.39"**
Shallowest root angle 0.34* —0.563** 0.80*** 0.00™
Deepest root angle 0.62** 0.83"* 0.93
Root angle difference 0.08™ 0.84**
Root angle average 0.69"*

1 Probability > | r| under Ho: Rho = 0. * = significant at P < 0.05; ** = significant at P < 0.01; and *** = significant at P < 0.0001. ™ = not significant.
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Source of variation d.f. Disease severity Aboveground biomass Adventitious roots Taproot diameter Basal root diameter
Disease, plant, and primary root traits

Model 301 0.80"* 2.40 1.00* 0.77*

0.58"*
Year 1 2.03" 10.80™ 13.04"8 21.51* 22.46*
Line 147 1. .Dgre By 1,330+ 0.89"* 0.62%*
Rep(Year) 6 AT 4,977 3.66"* 2.58%* 1,99+
Year*Line 147 0.32* 0.92" 0.48"* 0.43" 0.33*
R? 0.55 0.58 0.54 0.42 0.44
cv 15.4 23.4 27.1 26.6 24.2

Source of variation d.f. Shallowest root angle Deepest root angle Root angle difference Root angle average Root angle geometric mean

Derived root traits

Model 301 186.4™* 210.0 240.07 138.0"* 103.8"*
Year 1 5455.4* 5101.0* 6.2 5276.6* 1242.2*
Line 147 200.6* 233.2* 285.2* 145.4" 118.6*
Rep(Year) 6 494.0" 418.5* 241.4" 395.8 165.7*
Year’Line 147 123.8™ 145.0* 196.2" 85.2"8 79.2*
R? 0.35 0.38 0.32 0.38 0.36
Cv 68.1 19.4 33.0 24.3 22.0

Shown at the bottom of the table are R? values and coefficient of variation values. R? is the regression coefficient for fit to the general linear model. ns = not significant;
* = significant at P < 0.05; *** = significant at P < 0.001.
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Trait Mean!' SE(mean) h?2  95% Confidence

interval (h?)
Disease severity 3.10 0.01 0.74 (0.66-0.82)
Aboveground Biomass 3.28 0.02 0.75 (0.67-0.83)
Adventitious Roots 1.98 0.02 0.64 (0.52-0.76)
Taproot Diameter (cm) 2.27 0.02 0.51 (0.35-0.67)
Basal Root Diameter (cm) 2.08 0.02 0.47 (0.29-0.64)
Shallowest Root Angle 16.14 0.30 0.38 (0.18-0.58)
Deepest Root Angle 55.68 0.31 0.38 (0.18-0.58)
Root Angle Average 39.55 0.36 0.41 (0.22-0.60)
Root Angle Difference 35.91 0.25 0.32 (0.10-0.54)
Root Angle Geometric Mean ~ 36.10 0.23 0.33 (0.12-0.55)

" Disease severity rated on a 1-5 scale where 1 is resistant and 5 is susceptible;
Biomass rated on a 1-5 scale where 1 is the least and 5 the most biomass accumu-
lation; Adventitious roots rated on a 1 — 3 scale where 3 = most adventitious roots;
and root angle measurements are in degrees from 0° to 90° where 0° represents
a horizontal position.





OPS/images/fpls-12-624156/math_1.gif
H=c'gi[a’g+(a’e/1)]





OPS/images/fpls-12-697615/fpls-12-697615-t001.jpg
Root rot rating scale description

Clean white root

Few external red or brown lesions

Some external lesions, but root still firm and white inside
Some external lesions, red discoloration of pith, but root is firm
Significant external infection, red to brown pith

Spongy brown lesions are present

Root is soft and rotten

Root is very rotten, falling off

Root is absent, plant ends in rotten stump
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Isolate Jet Neuf ES Astrid

Breeding line D Breeding line H

20°C 25°C 20°C 25°C 20°C 25°C 20°C 25°C

v23.1.3 Height (cm) 30.4 29.3 26.3 252 33.4 350 271 279
Leaf number 6.3 6.4 4.9 4.8 5.9 5.6 7.4 6.9
Stem diameter (mm) 4.2 4.4 4.3 3.6 4.6 4.9 5.4 5.3

v23.11.9 Height (cm) 27.9 28.3 265 255 30.2* 34.6 23.1* 29.8
Leaf number 5.3 5.7 5.1 4.8 6.0 5.3 =9 7.6
Stem diameter (mm) 4.3 3.8 41 4.2 4.7 5.0 4.4 4.9

To compare the differences between variables for v23.1.3, use least significant differences (at P < 0.05) for between heights = 2.014; for between leaf numbers = 0.576 and

for between stem diameters = 0.467. To compare the differences between variables for v23.11.9, use least significant differences (P < 0.05) for between heights = 2.558;
for between leaf numbers = 0.632 and for between stem diameters = 0.598. *Significant at P < 0.05.
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R gene Quantitative resistance* R gene mean

“Little” “Good”
Rim7 1.53b 1.36b 1.421
Rim4 2.66¢ 1.57b 1.830
LepR3 0.82a 1.20ab 1.072
None 3.39d 1.66b 2.520
Quantitative resistance mean 2.074 1.433

*Average scores sharing the same letter were not statistically different at P < 0.05
in multiple comparisons with Fisher’s least significant difference (LSD) test. Values
in bold are overall means for genotypes with R gene-mediated or quantitative
resistance.
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HG Type 4654SNP  1600SNP  800SNP  400SNP  200SNP  100SNP  50SNP  20SNP  20SNP.marker  Average

HG Type 0 0.41 0.38 0.44 0.42 045 033 0.22 027 0.52 0.38
HG Type 257 035 034 032 034 0.30 0.28 0.22 021 0.40 031
HG Type 123567 0.34 0.34 0.30 0.34 0.33 0.32 031 0.34 0.39 0.33
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R-gene resistance ‘Good’ quantitative ‘Little’ quantitative

resistance resistance

RIm7 Group 1 DK Exception', Group 2 Breeding line B’
Breeding line A

RIm4 Group 3 Adriana’, Jet Group 4 Breeding line D'-2
Neuf"2, Breeding line C'*

LepR3 Group 5 Breeding line E',  Group 6 Breeding line G'
Breeding line F'

None Group 7 ES Astrid’-2 Group 8 Incentive!,

Breeding line H?

There were 12 cultivars/breeding lines in the field experiment and 4
cultivars/breeding lines in the CE experiment (one breeding line is different; hence
the 13 cultivars/breeding lines in the table).

Cultivars/breeding lines were categorized into eight groups, depending on their
combination of R-gene and/or quantitative resistance.

Numbers in superscript refer to experiments in which the cultivar/breeding
line was used; winter oilseed rape field experiments (1) and CE temperature-
sensitivity assay (2).

Breeding lines A, B, C, D, E, F, G, and H are from NPZ and Jet Neuf is an NPZ
cultivar. DK Exception is from DEKALB, Incentive is from DSV, Adriana is from
Limagrain and ES Astrid is from Euralis.

*Breeding line C was not included in the first year of field experiments.
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GP model r-value in HG Type 0 r-value in HG Type 2.5.7 r-value in HG Type 1.2.3.5.6.7

5% 10% 20% 30% 40% 50% Average 5% 10% 20% 30% 40% 50% Average 5% 10% 20% 30% 40% 50% Average

mBLUP 044 041 041 041 040 037 041 033 036 035 032 033 032 034 030 036 034 033 033 033 033
gBLUP 038 031 030 029 028 027 031 025 031 027 026 024 023 026 011 011 012 010 008 008 0.10
BayesA 041 039 039 042 039 039 040 033 040 037 036 035 034 036 031 031 030 030 029 029 030
BayesB 040 040 038 040 037 036 039 034 035 033 035 033 031 033 032 030 030 031 029 028 030
BL 043 043 043 040 038 0.38 041 0.37 033 035 0.37 035 034 035 027 034 028 028 027 028 029
BRR 0.44 041 040 041 039 038 041 038 036 038 035 034 032 036 031 035 034 034 031 031 033
Average  0.42 039 0.39 0.39 0.37 0.36 0.39 0.33 035 0.34 0.34 032 031 033 027 030 028 028 026 026 0.27
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—log(P-value) using GAPIT 3

Blink FarmCPU MLM

10.31
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1.11
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MLMM SUPER
1.08 0.79
270 236
3.31 1.19
2.75 5.26
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Line_ID* Line Country 2Q_cluster 2_group HG_Type 0_FI HG_Type HG_Type

25.7Fl 123567 Fl

PI313615b_Colombia_Q1_0.987.0013*  PI313615  Colombia Q1 | 14.80

PI313630b_Colombia_Q1_1.0 PI313630  Colombia Q1 1 9.15

PI309845_Costa Rica_Q1_1.0 PI309845  CostaRica Q1 | 1166 2819 4.49
PI343950_Guatemala_Q1_1_0 PI343950  Guatemala Q1 1 8.10

PI449410_Mexico_Q1_1.0 PI449410  Mexico at | 1454

PI313328b_Mexico_Q1_1_0 PI313328  Mexico at 1 7.02

PI201329_Mexico_Q1_1.0 PI201320  Mexico at | 506 1057 224
PI201354_Mexico_Q1_1.0 PI201354  Mexico at 1 7.19 3.08 037
PI417667_Mexico_Q1_1.0 PI417667  Mexico at 1 1.71 2423 16.82
PI313440_Mexico_Q1_1.0 PI313440  Mexico at 1 592 881 172
PI313445_Mexico_Q1_1_0 PI313445  Mexico at | 674 0.44 0.1
PI313444_Mexico_Q1_1.0 PI313444  Mexico at 1 7.08 16.74 1028
PI325630_Mexico_Q1_1.0 PI325630  Mexico at 1 15.73 926 336
PI417616_Mexico_Q1_1.0 PI417616  Mexico at 1 6.46 396 729
PI313473_Mexico_Q1_1_0 PI313473  Mexico at | 1038

PI203920_Mexico_Q1_1_0 PI203920  Mexico at 1 19.41 2555 1271
PI313501_Mexico_Q1_1_0 PI313501  Mexico at | 833 2379 056
PI325642_Mexico_Q1_1.0 PI325642  Mexico at 1 122 1013 374
PI313512_Mexico_Q1_1.0 PI313612  Mexico at 1 1295 144 7.48
PI201296_Mexico_Q1_1_0 PI201296  Mexico at 1 14.41 1278 1.87
PI313490_Mexico_Q1_1.0 PI313490  Mexico at 1 1925 27.75 224
PI325653_Mexico_Q1_1.0 PI325653  Mexico at 1 1621 3.96 15
PI417739_Mexico_Q1_1_0 PI417739  Mexico at 1 19.76 1322 112
PI430206_Mexico_Q1_1.0 PI430206  Mexico at | 9.40 12.33 01
PI313820_Mexico_Q1_0.989_0.011 PI313820  Mexico at | 11.08

PI313425_Mexico_Q1_1.0 PI313425  Mexico at | 15.09

PI417657_Mexico_Q1_0.89_0.11 PI417657  Mexico 1 1456 2203 393
PI430204_Mexico_Q1_0.692_0.308 PI430204  Mexico [0) 13.89 144 4.49
PI346960_Mexico_Q1_0.661_0.339 PI346960  Mexico QiR [0) 1430 12.33 129
PI345576_Costa Rica_Q1.0.672.0.328 ~ PI345576  CostaRica  Q1(2) [0) 11.06 15.86 056
PI241794_Ecuador_Q2_0.119_0.881 PI241794  Ecuador 2 I 1455 207 15.89
PI415936_Ecuador_Q2_0.027_0.973 PI415936  Ecuador @2 [ 10.73 13.66 12.34
PI209498_Costa Rica 0200190981 ~ PI209498  CostaRica Q2 I 1147 2819 17.01
PI313733_Mexico_Q2_0_1 PI313733  Mexico @2 I 478 573 4.49
PI325731_Mexico_Q2_0_1 PI325731  Mexico @2 I 1758

PI316030b_Peru_02_0_1 PI316030  Peru @2 I 1351

PI293355_Peru_Q2_0_1 PI203355  Peru @ I 18.04 2731 10.09

aLine_ID consists of Pl accession, original country, one of the two clusters Q1 or Q2, the Q1 probability, and Q2 probabilty. For example, PI313615b_Colombia_Q1_0.987_0.013, where
the Pl accession is PI313615b, which is grouped into Q1 cluster with probabilty of 0.987 and has 0.013 probability to Q2.
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Model

FarmCPU
FarmCPU
FarmCPU
BLINK
BLINK
BLINK

SNP ID

rs22118
rs191998
rs285957

rs96598
rs142398
rs285957

Chromosome

o W N O~ =

Position

13,801,843
12,480,256
28,139,324
13,388,877
9,810,975

28,139,324

P-value

9.95E-10
5.46E-08
9.16E-11
7.73E-09
3.20E-09
8.27E-11

MAF

0.061538
0.092308
0.294872
0.464103
0.089744
0.294872

FDR

7.24E-05
0.002648813

1.33E-05
0.000375161
0.000233144

1.20E-05

Allelic effect

1.113248981
-0.732419028
0.640842547

NA

NA

NA

Variance explained

19.85
19.038
6.28
6.98
17.94
17.41

FDR in the head row refers to “FDR. Adjusted P-values.”





OPS/images/fpls-12-624156/fpls-12-624156-g004.gif
SUPERVIGS0

RNES






OPS/images/fpls-12-671323/math_2.gif





OPS/images/fpls-12-763618/fpls-12-763618-t003.jpg
Source of

d.f. Sum of Variance Percentage of P-value
variation squares components variation
Among groups 2 479,575 1,885 12.86 0.001
Within groups 387 4,944,323 12,776 87.14 0.001
Total 389 5,423,898

14,661
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Group ID No. of individual Obs het Fis b4 No. of haplotype No. of unique haplotype Haplotype diversity
G1 79 0.3653 0 0.2852 13,175,146 161,332 0.2852
G2 30 0.2418 0.2544 0.3256 5,003,220 161,607 0.3255
G3 86 0.3533 0 0.3024 14,342,564 166,600 0.3024

Obs Het represented observed heterozygosity. Fis indicated inbreeding coefficient. w indicated nucleotide diversity.
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Standard deviation 1.72589
Variance 2.9787
Number of observations 195

Heritability 0.70

Years
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3
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0.99049
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4.2324
1,389
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No. Gene ID Start position of the gene? Length of gene (bp) Gene annotation Conservative regions
1 TraesCS2A02G001400 562911 2915 found in the intracellular human pathogen internalin_A super family
2 TraesCS2A02G001500 580888 4532 Disease resistance protein NB-ARC and LRR

aGene ID and positions were fetched from the URGI website (https://urgi.versailles.inra.fr/) and as per IWGSC gene annotation v1.0.





OPS/images/fpls-12-666921/fpls-12-666921-t002.jpg
Marker Forward primer (5'-3') Reverse primer (5'-3') Marker type Product size (bp) Physical position (bp)
Start End

AltID-10 CATCACTTTTGTCTCATCCA CTATAACCCTGGCCCTTTAATA Indel 163 517281 517434
AlID-11 AGAGGCTATGGATTGGAGTAG CGCCATTAATGTCCATATCA Indel 249 555551 555800
Alt-92 GTCCCTCTACAGTTCCATCC GTGAAAACCATGTTGCAAAG SSR 206 615668 615874
Alt-64 AATCACATCACCCGACTCT CGATTTCTACCTTTCTGGACT SSR 173 891823 891996
Alt-21 GTAAAATAGAGGAGGGGTGAA CATGTTAGAAGGGATAGAGAGG SSR 144 1166351 1166495
Alt-24 ACCCAATGCACTTGTACTCTAT CTGGTGAATGGATGAAACA SSR 135 1227798 1227933
Alt-14 GCGAACAGAAAGAAAGAAAG CCTAGACAGCACACATCTTGTA SSR 152 1309861 1310013
1500-1 ATTCCATTGCCGGTCTATCTT GCACCTCCTTTTTIGTTGTTG Indel 108 583323 583431

Xbarc-2122 GGCAACTGGAGTGATATAAATACCG CAGGAAGGGAGGAGAACAGAGG SSR 185 1582751 1582936

aThe marker Xbarc212 was used in a previous study (Wang et al., 2010).
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Number of seedling plants

Cross Population Resistant Susceptible Total x 2 @:1)

Xuezao/Altgold Fy 1130 392 1522 x2 =0.46, p = 0.49
CS/Altgold Fs 454 168 622 x2=1.33,p=0.24
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Breeding period

Absolute annual gain

Relative annual gain (%)

From To No. of years CMDs DMC CBSDfs CBSDrs FRY CMD DMC CBSDfs CBSDrs FRY
1940 1993 53 —0.02 0.004 0.004 0.004 2.6 kg —-0.57 0.01 0.22 0.22 0.02
1993 1999 6 —-0.12 0.033 0.010 0.010 20 kg —5.20 0.09 0.50 0.56 0.10
1999 2003 4 —-0.13 0.050 0.000 0.000 15 kg -8.10 0.14 0.00 0.00 0.06
2003 2011 8 —0.03 0.025 —0.010 —0.008 0.0 kg —1.80 0.06 —0.48 —0.38 0.00
2011 2015 4 0.00 0.050 —0.050 —0.033 —30 kg 0.00 0.13 —2.30 —-1.10 —0.13
2015 2019 4 0.05 0.050 —0.070 —0.047 —38 kg 4.50 0.14 —4.10 -3.10 —0.21
Average genetic gain —0.04 0.035 —0.04 —0.03 -5 kg —1.90 0.10 —2.30 —1.50 —0.038
Adjusted R? linear 0.63 0.16 0.14 0.02 0.02

Adjusted R° quadratic 0.85 0.10 0.41 0.18 0.079

CMDs, cassava mosaic disease severity at 6 months; DMC, dry matter content; CBSDfs, cassava brown streak disease foliar severity at 6 months after planting; CBSDrs,
cassava brown streak disease root severity at 12 months after planting; FRY, fresh root yield: R2, coefficient of determination of the relationship between order of release
year and the changes in traits over the years. Average annual gains (absolute and relative) for resistance to CBSD were computed using estimates from 2003 to 2019
because selection for the trait only began in 2003. There were no genetic gains for harvest index between 1940 and 2019. With the exception of DMC where genetic gains
were estimated using slope of linear regression, annual genetic gains for all other traits were estimated using the slope between two released orders from the quadratic
graphs, because the quadratic model provided higher R? values.
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Population  QTL  Ch Ch bin Position, Marker interval Physical Physical LOD PVE Total Additive effect Dominanteffect D/A  Gene action

em position position (%)  PVE%
(B73.v2) (RM)
™)
MSR aMSR3 3 3.09 101 PZA03391_1-ZA00316_10 219,859,020 223513630 3.1 572 2354 ~0.1724 0,007 -004 A
aMSR4 4 4.02-4.03 15 PHM3963_33-PHM259_7 5459,125  14,326036 277 6.49 -0.143 ~0.1522 1.0 D
qMSR6 6 6.02-6.03 17 PHM12904_7-S6_103513378 88,691,499 103,513,378 3.26 5.65 -0.1685 0.0012 -0.01 A
qMSR8 8 8.06-8.07 59 PZAO1964_20-PHM4757_14 166,084,405 151,452567 6.42 13.86 -0.2651 —0.0721 027 PD
FMSR GFMSR6 6 6.03-6.04 26 PZAO1029_1-S6_103513510 114,031,392 103513510 3.208 6.56  10.48 ~02115 ~0.0393 0.185 D
aFMSR7 7 7.08 37 PZA02643_1-PZA03166_1 128365318 137,632,654 3228 6.51 -0.2068 00357 -0.17 D

Ch, chromosome; LOD, likelihood odds; PVE, phenotypic variation explained; A, additive effect; D, dominant effect; PD, partially dominant.
The QTLs represented in bold show QTLs that had LOD scores above the LOD threshold based on 1,000 permutations, and the ones in normal fonts are the ones that were above LOD threshold of 2.5.
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DMC CMDs CBSDfs CBSDrs HI FRY

CMD6s —0.21 1

CBSDfs —0.29 —0.36 1

CBSDrs —-0.17 —0.40 0.7 1

HI -0.21 0.07 0.03 —0.34 1

FRY 0.06 —0.08 017 0.22 0.58"* 1

Order of release year  0.40°  -0.9** -0.74** -0.63" -0.11 0.07

CMD6s, cassava mosaic disease severity at 6 months after planting, CBSDfs,
cassava brown streak disease severity at 6 months after planting; CBSDrs, cassava
brown streak disease root necrosis severity at 12 months after planting; DMC, dry
matter content; Hl, harvest index; FRY, fresh root yield; *P < 0.05, P < 0.01;
**P < 0.001. Correlations including CBSDfs and CBSDrs were performed using
varieties or clones developed between 2003 and 2019 because selection for CBSD
resistance began in 2003. Two sets of correlations were performed: (1) between
evaluated traits and order of release year, and (2) amongst the evaluated traits
across the released years.
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$1_245219474, 81_245219477,
$1.245221215, S1_245221351,
$1_245221353, $1_245221363

$1.259778254, $1_259778269

$1.268948971, S1_268948972,
$1_268948974, S1_268948981

$1_290819006, S1_290819008
$2_212365693, 52_212365694

$3_148298879, S3_148298896,
$3_148298906, S3_148299049

$3_168367332, S3_168367335,
$3_168367337
83202114642, S3_202114844
$3_220734668, S3_220734677
85_19528704, S5_19528705,
$6_19590454
$5_68423958, S5_68423980
'§5_194559008, §5_194560001,

86_194560045, 55_194560047,
$6_194560048

$6_95934506, S6_95934536
$6_103513337, S6_103513340,
$6_103513378, S6_103513510
$8_151908973, S8_151908983
S$8_161523161, S8_161523199,
58_161523202, $8_161523204,
'$8_161523205, $8_161523207,
$8_161523208, S8_161523210
89_24597525, S9_24597528,
$9_24697631, S9_24597534
$9_34173064, S9_34173069,
$9_34173103
'§9_137258399, S9_137268400,
$89_137258402

$9_137258446, S9_137258482

P-Value

0.000394055

0.000434489

3.49E-05

0.000289606

8.31E-06
0.000543506
0.000180157

0.00063713

0.000666384
0.000547048
4.59E-05

5.11E-06

0.001015383

0.000332882

0.00017213

1.76E-06
0.000271353

4.96E-05

0.000811075

0.00067319

0.000291508

Ch, chromosome, PVE, Phenotypic varinace explained, FDR, False discovery rate.

PVE%

4.4725128

414338

4.6008192

4.3917062

5.8851488
3.8516348
4.3758201

3.7499107

32229271
3.3326993
6.3666231

58413714

32534765

3.5967653

4.3611641

6.4890618
41801244

4.5250142

4.3479104

3.4234421

4.0121756

Bonferroni P-value

0.017338434

0.019117509

0.001537657

0.012742613

0.000365777
0.023914282
0.007926917

0.02363372

0.029320889
0.024070091
0.002019445

0.000224844

0.044676862

0.014646826

0.00767371

7.73E-05
0.011939611

0.002180251

0.013687318

0.025220351

0.012826349

FDR

0.001238

0.001275

0.000384

0.001274

0.000122
0.001407
0.000991

0.001477

0.001486
0.001337
0.000404

0.000112

0.002127

0.001127

0.001082

7.73E-05
0.001327

0.000363

0.001141

0.001327

0.001166

Favorable alleles

TCGG

CCCAAG

ATCC

GA
AG
GCCG

CGG

GC
CA

AATTA

GT

CGGG

GT
GACTCTCT

CTTG

GGC

GTG

TA





OPS/images/fpls-12-651992/fpls-12-651992-t004.jpg
Year of release No of Varieties

1940
1993
1999
2003
2011
2015
2019

o N oW W w N

CMDs

3.5+02
23+0.3
1.6+0.6
1.4+02
1.1+0.02
1.1+ 041
1.3+ 01

DMC

37611
37.4+04
359 +0.6
38.5+£0.3
39.8 +£0.6
38.8 £ 0.1
39.5+1.3

HI

0.37 £0.03
0.40 £ 0.003
0.45 £ 0.01
0.38 £ 0.01
0.30 £0.02
0.40 &+ 0.07
0.30 £0.02

FRY

171 +£35
20.9+85
265+ 7.4
256+ 7.1
2.7 =25
17.5 £ 8.1
18.6+1.8

CBSDfs

1.8+0.2
2.0+0.3
21+02
21+02
22402
1.7 = 0.5
1.3+ 0.1

CBSDrs

1.8+0.3
1.8+04
1.8+0.3
2.1+041
2.940.2
1.6+0.0
1.4+£02

CMDs, cassava mosaic disease severity; DMC, dry matter content; Hl, harvest index; FRY, fresh root yield; CBSDfs, cassava brown streak disease foliar severity; CBSDrs,

cassava brown streak disease root severity.
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Marker Ch P-Value PVE% Favorable Predicted gene Gene name/best  Plants Reported References
allele  model matching function
ortholog
548504604 5 588x10°% 563 ¢ - - - -
10117560618 10 1.42x 10-% 53 A GRMZM2GO72513  OSJNBa0088K19.7-Rice -
like
protein
10144684808 10 129 x 10°% 522 G GRVMZM2G136895  Zeamays Arabidopsis, other  Cell wall Itai et al., 2003;
Beta-D-xylosidase  plants modification, fruit  Minic et al., 2004;
4 development Liao et al., 2012
$9_1004787 9 1.44x10°% 6517 G GRMZM2G500051 - - -
$8.165726556 8 1.68x 107 509 C  GRVZM2G414696 - - -
$10_115937334 10 197 x 10-% 5,01 A GRMZM2G0S0647  Exocystcomplex —Arabidopsis, other Plant-pathogen  Duetal, 2018
component SEC5  plants interaction
519528704 5 211x10°% 497 G GRMZM2G178767  Zeamays Dof Plants Abiotic stress,  Sakamoto et al.,
zinc-finger protein biotic stress 2004; Guoet al.,
DOF5.7 2009
519528705 5 2.19x 10°% 4.95 A
S4_167190764 4 237 x 107 4.92 A GRVMZM2G168337  Zeamays Arabidopsis, maize Promotes Wang et al,, 2012;
Nicastrin maturation and Smolarkiewicz
proper trafficking et al., 2014
of complex
components and
substrate
recognition, biotic
stress.
8165726551 8 238 x10°% 491 C  GRVZM2G414696 - - - -
S$1.52605386 1 285x10-% 482 T - = = - =
$1.200489143 1 290 x10-% 481 T GRVZM2GSS7458 - - - -
$6.163106367 6 307 x 10-%5 4.78 A AC2063123_FGT008 - - - -
8165726574 8 3.98x10°% 465 A GRMZM2GA14696 - - - -
$3.2125663 3 431x10°% 461 T GRMZM2G170047  Zeamays Maize, wheat, Oxidation- Morant et al.,
Cytochrome P450  barley reduction reaction,  2003; Irmisch
7T1A26 defense etal., 2015;
mechanism, Gunupuru et al.,
secondary 2018
metabolite
synthesis,
Fusarium head
blight
S7_156114994 7 434 x10°% 461 G GRMZM2G465999  Zeamays G-ype  Plants Biotic and abiotic  Lannoo and Van
lectin stress tolerance,  Damme, 2014
Sreceptorlike plant defense
serine/threonine-
protein kinase
8120
6103513378 6 4.62x 10°% 457 G GRMZM2G122172  Aldehyde Plants Abiotic and biotic  Wen et al., 2012;
dehydrogenase stresses tolerance  Brocker et al.,
family 2 member 2013
c4
6103513337 6 473 x10°% 4.56 A
8165726553 8 4.80 x 107  4.56 A GRMZM2G414696 - - -

Ch, chromosome, PVE, Phenotypic varinace explained.
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Genotype

Alado Alado
Bao

Omo
Bamunanika
Njure Red
Nyaraboke
Magana
NASE 1
NASE 2
NASE 3
NASE 4
NASE 5
NASE 6
NASE 9
NASE 11
NASE 12
NASE 13
NASE 14
NASE 15
NASE 16
NASE 18
NASE 19
NAROCASS 1
NAROCASS 2
UG120193
UG120024
UG110164
UG120183
uG120124
UG120156
UG120198
UG110166

Year of release

1940
1940
1940
1940
1940
1940
1940
1993
1993
1993
1999
1999
1999
2003
2003
2003
2011
2011
2011
2011
2011
2011
2015
2015
2019
2019
2019
2019
2019
2019
2019
2019

CMDi

29
28
32
25
30
31
27
26
21
23
12
24
13
19
20

i
o N

SN =N

© o™

16
17
2
11
22
14

CMDs

30
31
29
27
32
28
24
25
22
23
9
26
15
19

o

a W =+ o b

Ly x "
N o ™t o 9w

5
12
21
13

CBSDfs

10
6
9

21

29

30

23

11

26

22

15

17

31

28

14

27

32

24

13

18

25

19

16
8

A= 00 O W

—
NS

20

CBSDfi

12
6
8
17
28
31
26
11
22
20
19
18
27
25
14
30
32
29
13
16
24
21
15
10
3

N © =+ O8N

23

CBSDrs

CBSDri

5
17
27
29
11
7
19
1
26
24
6
21
20
23
22
15
32
31
16
28
30
25
10
14
8
3
13
4
18
12
2
9

DMC

31
30
g
21
13
23
i
18
24
26
28
25
27
19
10
20
5
15
6
17
e
il
16
14
2
3
22
4
29
8
1
32

HI

12
20
23
6
8
28
28
5
13
24
2
1
9
22
4
19
30
32
20
18
15
14
3
25
16
9
6
16
31
26
27
11

FRY

21
18
12
11
20
32
30
25
8
27
5
2
26
13
1
23
10
24
4
6
14
15
3
31
7
28
9
16
22
28
19
17

RsI

154
176
172
187
181
219
205
123
183
211
100
157
184
183
130
163
194
192
98
132
148
140
102
127
79
69
105
80
141
132
98
147

Rank

18
22
21
27
23
32
30
9
24
31
6
19
26
24
11
20
29
28
4
12
17
14
7
10
2
1
8
3
15
12
4
16

CMDi, cassava mosaic disease incidence at 6 months after planting; CMDs, cassava mosaic disease severity at 6 months after planting; CBSDfi, cassava brown streak
disease foliar incidence at 6 months after planting; CBSDfs, cassava brown streak disease foliar severity at 6 months after planting; CBSDri, cassava brown streak disease
root incidence at 12 months after planting; CBSDrs, cassava brown streak disease root severity at 12 months after planting; DMC, root dry matter content; HI, Harvest
index; FRY, Fresh root yield; RSI, rank summation index. BLUPs for disease traits (CMD and CBSD) based only on data from Namulonge and Serere owing to low disease
pressure at Loro. Genotypes were ranked based on their BLUP values for each trait.
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Location/year

ICRISAT-13
ICRISAT-14
BISA-13
Across
MSR-MP
FMSR-MP

P < 0.001.

Mean

7.7
717
6.71
725
5.62
6.21

Min

2.00
3.77
2.10
451
3.76
3.42

Max

9.00
9.00
9.00
9.00
7.79
8.90

Phenotypic variance

257
1.46
1.23
073
059
084

Error variance

1.67
1.35
1.01
1.89
0.42
0.49

Genotypic variance

173"
0.79"
0.73*

G x E variance

0.00016**

Heritability

0.67
0.54
0.59
057
0.65
071
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Source of variation CMDi

Replicate/Environment 0.0
Variety 95.4
Environment 0.4
Variety*Environment 3.1
Residual 1.1
Genotype/Genotype*Environment 30.8
Broad-sense heritability (H2) 0.95

CMDs

0.5
96.4
0.0
2.7
0.4
35.7
0.96

CBSDfi

11.4

33.9

436
7.6
35
4.4
0.75

CBSDfs

1.2
35.2
39.2
10.8
3.6
3.2

0.70

CBSDri

0.0
45.7
221
21.9
10.3

21

0.59

CBSDrs

6.1
36.5
12.3
30.4
14.7

142

0.44

DMC

4.3
18.2
60.3
11.5

5.7

1.6

0.51

HI

0.0
5.8
86.7
3.5
4.0
1.6
0.43

FRY

11.8

13.6

63.0
6.1
5.5
22
0.53

CMDi, cassava mosaic disease incidence at 6 months after planting; CMDs, cassava mosaic disease severity at 6 months after planting; CBSDfi, cassava brown streak
disease foliar incidence at 6 months after planting; CBSDfs, cassava brown streak disease foliar severity at 6 months after planting; CBSDri, cassava brown streak disease
root incidence at 12 months after planting; CBSDrs, cassava brown streak disease root severity at 12 months after planting; DMC, root dry matter content; HI, Harvest
index; FRY, Fresh root yield. Analysis based on data collected in 2019 at three sites; Namulonge (central region), Serere (eastern region) and Loro (northern region).
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Code Variety Remarks Status Year Special attributes at development and release

1 NASE 1 Introduced from IITA as TMS 60142 Released 1993 CMDt, high DMC, and low HCN

2 NASE 2 Introduced from IITA as TMS 30337 Released 1993 CMDt, good LR, and low HCN

3 NASE 3 Introduced from IITA as TMS 30572 Released 1993 CMDt, CBSDt, good LR, and low HCN

4 NASE 4 Introduction from IITA Released 1999 CMDr and low HCN

5 NASE 5 Introduction from IITA Released 1999 CMDt and low HCN

6 NASE 6 Introduced from IITA as TMS 4 (2) 1425 Released 1999 CMDr and low HCN

7 NASE 9 Introduced from IITA as 30555-17 Released 2003 CMDt, CBSDs, and low HCN

8 NASE 11 Introduced from IITA as 92/NA-2 Released 2003 CMDt, CBSDs, good LR, LUS, and low HCN

9 NASE 12 MH95/0414 Released 2003 CMDr, CBSDs, low HCN, and desirable CQ

10 NASE 13 MH97/2961 Released 2011 CMDr, CBSDs, high DMC, low HCN, and desirable CQ
11 NASE 14 MM96/4271 Released 2011 CMDr, CBSDt, high DMC, low HCN, and desirable CQ
12 NASE 15 Derivative of TME14 Released 2011 CMDr, CBSDt, high DMC, low HCN, and desirable CQ
13 NASE 16 Derivative of Bamunanika Released 2011 CMDr, CBSDs, high DMC, low HCN, and desirable CQ
14 NASE 18 Derivative of TME14 Released 2011 CMDr, CBSDt, high DMC, low HCN, and desirable CQ
15 NASE 19 Derivative of TME14 Released 2011 CMDr, CBSDt, high DMC, low HCN, and desirable CQ
16 NAROCASS 1 NDL90/34HS Released 2015 CMDr, CBSDt, high DMC, low HCN, and desirable CQ
17 NAROCASS 2 Introduced from Tanzania as MM06130 Released 2015 CMDr, CBSDt, high DMC, and desirable CQ

18 uG120124 MM96/4271//MH04/2767 Candidate 2019 CMDr, CBSDt, high DMC, and low HCN

18 UG110166 Introduction from Tanzania Candidate 2019 CMDr, CBSDt, high DMC, and low HCN

20 UG120024 NASE 14/UG110043 Candidate 2019 CMDr, CBSDt, high DMC, and low HCN

21 UG120156 Introduction from Tanzania Candidate 2019 CMDr, CBSDt, high DMC, low HCN, and high RWF

22 UG120183 Introduction from Tanzania Candidate 2019 CMDr, CBSDt, high DMC, and low HCN

23 UG120198 Introduction from Tanzania Candidate 2019 CMDr, CBSDt, high DMC, and low HCN

24 UG120193 Introduction from Tanzania Candidate 2019 CMDr, CBSDt, high DMC, low HCN, and high RWF

25 uG110164 Introduction from Tanzania Candidate 2019 CMDr, CBSDt, high DMC, and low HCN

26 Magana Introduction from Tanzania Landrace 1940 CMDt, quality flour and brew (popular in eastern Uganda)
27 Njure Red Introduction from Tanzania Landrace 1940 CMDt, soft when boiled or fried (popular in central Uganda)
28 Alado Alado Introduction from Tanzania Landrace 1940 CMDt, quality flour and brew (popular in northern Uganda)
29 Bamunanika Introduction from Tanzania Landrace 1940 CMDt, soft when boiled or fried (popular in central Uganda)
30 Bao Introduction from Tanzania Landrace 1940 CMDt, quality flour and brew (popular in northern Uganda)
31 Omo Introduction from Tanzania Landrace 1940 CMDt, EM, sweet, quality flour and brew (popular in west Nile)
32 Nyaraboke Introduction from Tanzania Landrace 1940 CMDt, soft when boiled or fried (popular in mid-western Uganda)

IITA, International Institute of Tropical Agriculture; CMDX, tolerant to cassava mosaic disease; CMDr, resistant to cassava mosaic disease; CBSDt, tolerant to cassava brown
streak disease;, CBSDs, susceptible to cassava brown streak disease; DMC, dry matter content; RWF, resistant to whitefly;, LR, leaf retention; LUS, long underground
storage; CQ, culinary qualities; HCN, hydrogen cyanide; EM, early maturity. The candidate varieties (2019) have high CMD resistance, high DMC and high tolerance to

CBSD.
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Disease severity Biomass Tap root diameter Basal root diameter Adventitious roots Deep root angle Shallow root angle

Accession  GEBV'  Accession  GEBV?Z  Accession  GEBV Accession  GEBV Accession  GEBV®  Accession  GEBV* Accession  GEBV*
(mm) (mm)
Widusa 2.61 Oregon 2065  4.32 Widusa 271 Goldrush 2.28 Widusa 1.7 Booster 48.8 Oregon Giant ~ 11.51
Pole

Impact 2.64 Idaho Refugee 4.15 Trail of Tears 2.66 Oregon91G  2.27 Serin 1.71 Oregon 2065  48.88 Roma Il 11.68

Dutch Double  2.68 Corbett 4.04 Fortex 2.65 Gold Mine 2.26 Pole Blue Lake 1.72 Banga 49.08 Fortex 11.99

White Refugee S7

Booster 2.72 Gina 4 Pole Blue Lake 2.62 Profit 2.26 Dutch Double  1.74 Pole Blue Lake 49.09 Ebro 12.02

s7 White

Stringless 2.73 Ebro 397 Booster 2.66 Stringless 2.24 Impact 1.74 Serin 49.26 Magnum 12.05

French Filet French Filet

Selecta 2.74 Tapia 3.92 EZ Pick 2.54 Oregon 5630  2.22 Kylian 1.76 Astun 49.3 Tapia 12.11

Pole Blue Lake 2.78 NY6020-5 3.89 Impact 2.54 Eagle 222 Koala 1.76 EZ pick 49.36 Astun 12.6

Oregon 2065  2.79 Coloma 3.89 Pole Blue Lake 2.53 Gina 2.22 Polder 1.77 Celtic 49.44 Idaho Refugee 12.96

Pole Blue Lake 2.79 Unidor 3.87 Paloma 251 Carson 2.21 Renegade 1.77 Stayton 49.46 Romano 118 13.01

S7

Cherokee 281 Calgreen 3.82 Hayden 25 Summit 2.21 Pix 1.78 Redon 49.67 Cyclone 13.01

Shade 3.45 Brio 2.68 US Refugee #5 2.05 Redon 1.96 NY6020-5 2.2 Benton 59.87 Benton 18.51

Espada 3.45 Minuette 267 Charon 2.04 EZ Pick 1.94 Medinah 22 Castano 59.89 Warrior 18.66

Spartacus 3.46 Paulista 2.66 Opus 2.04 Banga 1.93 Landmark 22 Brio 59.91 Festina 18.68

Matador 3.49 Festina 2.65 Strike 2.04 Idaho Refugee 1.93 Benton 2.24 Shade 60.04 Zeus 18.68

Warrior 3.5 Matador 2.64 Mercury 2.04 Booster 1.93 Coloma 229 Summit 60.1 Matador 18.72

Titan 3.53 Palati 2.64 Dusky 2.03 Blue Peter Pole 1.91 FR-266 2.32 Carlo 60.38 Palati 18.77

Benton 3.53 Flavorsweet 2.63 Castano 2.02 Corbett 1.89 Oregon Giant ~ 2.34 Provider 60.56 Benchmark 18.88
Refugee Pole

Hercules 3.53 Dusky 2.51 Landmark 2,01 Kentucky 1.87 US Refugee #5 2.43 Stallion 60.82 Dusky 19.04
Wonder

Festina 3.54 Speedy 24 Idaho Refugee 1.97 McCaslan No.  1.86 Idaho Refugee 2.55 Valentino 61.39 Castano 19.22
42

Seabiscuit 3.58 Embassy 232 Corbett 1.93 Trail of Tears 1.86 Corbett 26 Grenoble 61.41 Roller 19.37

Refugee Refugee

1Disease severity rated on a 1-5 scale where 1 is resistant and 5 is susceptible. 2Rated on a 1-5 scale where 1 is the least and 5 the most biomass accumulation. 3Rated on a 1-3 scale where 3 = most adventitious roots.
“4Degrees from 0° to 90° where 0° represents a horizontal position.
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Chrom.  SNP position Distance!

bp
Pv03? 12,661,037 74,361
Pv10 5,677,538 76,042
102,406
125,106
Pv11 766,814 72,566

P. vulgaris gene
model

Phvul.003G078600.1
Phvul.010G039100
Phvul.010G039200
Phvul.010G039300
Phvul.011G010900

Start End

bp
12,584,313 12,586,676
5,753,580 5,758,499
5,779,944 5,784,500
5,802,644 5,808,058
839,380 841,056

Gene function

Peroxidase

2-alkenal reductase
2-alkenal reductase
2-alkenal reductase

Pentatricopeptide
repeat domain
(PPR_3)

References

Ray et al., 1998
Xietal, 2015
Xietal., 2015
Xi et al., 2015

Jiang et al., 2015;
Cao et al., 2020

1 Distance between SNP and nearest end of candidate gene. 2QTN on Pv03 associated with disease severity while those on Pv10 and Pv11 are associated with biomass.
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Trait

Disease
Disease
Disease
Biomass
Disease
Disease
Biomass

SS ID No.

5715647578
$5715646526
$s715639797
$5715649390
55715649485
$5715646318
55715645486

Chromosome

PvO3
PvO7
PvO8
Pv10
Pv10
Pv10
Pvi11

Position (bp)

12,661,037
34,296,485
32,951,182
5,677,538
7,910,750
40,686,027
766,814

-log P.

4.58
4.51
5.24
4.89
4.85
5.75
5.35

MAF

0.09
0.37
0.23
0.37
0.14
0.39
0.22

R2

10.8
0.9
6.2

14.8
7.3
5.6

1.3

Effect

—0.15
0.09
—0.13
—0.12
—0.13
0,14
—0.18

Chromosomal location?

pericentric
pericentric
pericentric
proximal
pericentric
distal
proximal

No. gene models

11
21
7
11
12
35
26

1 Pericentric location of a SNP is associated with low rates of recombination while proximal and distal locations are in regions of high recombination. Placement based on
Supplementary Figures of physical vs. linkage map distances in Schmutz et al. (2014).
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Breeder's

CETs-2

UG15F190P001*
UG16F262P513
UG15F170P507*
UG15F176P004
UG15F201P517
UG15F079PO011*
UG15F176P502*
UG15F017P003
UG15F209P001
UG15F302P513

AYTs

UG15F190P001
UG15F079P011
UG15F140P003
UG15F196P004
UG15F176P502
UG15F177P016
UG15F044P009
UG15F170P507
UG15F222P038
UG15F312P003

Pathologist's

CETs-2 AYTs
UG15F262P513  UGT5F265P001
UGHSF190P001*  UGT5F312P003
UG1SFO17P003  UGTSF190P001
UGHSF177P016  UG15F249P007
UG1SFI70P507  UGSFO47PO10
UG15F306P028  UG15F044P009
UG1SF176P004  UG5F169P507
UGH5F222P038  UGT5F158P005
UG1SF361P510  UG15F140P001
UGH5F154P005  UGT5F196P004

CETs-2, clonal evaluation trial (C1); AYTs, advanced yield trials.
*Overlapping clones at CET and AYT.
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BLUPs Raw phenotype

Traits. Breeder'’s Pathologist's Breeder'’s Pathologist's
CBSD3s 0.40"* 0.29" 0.37* 0.197
CBSD6s 037" 0.207 0.36" 0.26"
CBSDRs 0.02" 0.03™ 0.05™ 0.117
Sl 0.20" 0.06™ 0.21™ 0.09™

*, **Significant correlation at p < 0.05 and 0.01, respectively.

ns, non-significant correlations coefficients; CBSD3s, cassava brown streak disease
severity scored 3 months after planting; CBSD6s, cassava brown streak disease severity
scored 6 months after planting; CBSDRS, cassava brown streak disease root severity
scored at 12-months harvest; S., selection index velues for the three cassava brown
streak traits; BLUPs, best linear unbiased predictors for clones.
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SD, standard deviation; CV, coefficient of variation; and H2, broad-sense heritabilty.
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Trial location Seasons Co clones Broad-sense heritability Narrow-sense heritability

Breeder's Pathologist's Breeder's Pathologist's
Mityana 2015A 115 0.39 051 010 0.04
Mityana 20158 105 0.62 0.64 0.49 022
Arua 2015A 149 015 000 000 000
Arua 20158 11 0.64 047 039 034
Kasese 20154 116 026 006 021 006
Kasese 20158 138 0.54 057 051 0.34
Kigumba 20154 147 0.49 061 025 009
Kigumba 20158 116 056 054 013 005
Namulonge 2015A 150 087 or 072 031
Namulonge 20158 18 079 071 055 045
Serere 20154 123 0.68 064 064 063
Serere 20158 112 071 058 070 056
Lira 2015A 149 047 044 025 022
Lira 20158 108 0.67 048 054 027
Mean Heritabilty 056 049 039 025

2015A and 20158, refers to the first (April-May) and second (Aug-Sept) planting seasons.
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