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Editorial on the Research Topic

Advances in Breeding for Quantitative Disease Resistance

In plant breeding and genetics, traits are frequently classified into qualitative and quantitative.
A qualitative trait is generally controlled by one or a few genes, whereas a quantitative trait is
controlled by several genes. The effect of each of the alleles responsible for a quantitative trait
is typically small when compared to the effect of the environment, making the inference of an
individual genotype difficult to establish. Genetic bases of quantitative traits are characterized by
a continuous distribution of phenotypes and detected by quantitative trait loci (QTL) analysis and
genome-wide association studies (GWAS). In the world of disease resistance, quantitative disease
resistance (QDR) has been reported in a large number of crops, and molecular markers tightly
linked to quantitative resistance loci (QRL) controlling QDR.

Quantitative disease resistance is expressed when host plants exhibit a reduced disease reaction
but not complete resistance. It is widely recognized that QDR provides long term host defense
toward the disease, probably due to multiple genes requiring mutation for resistance breakdown
as opposed to single genes as in the case of gene-for-gene resistance. However, QDR has
been a longstanding challenge in the development of cultivars with durable resistance and
new techniques such as GWAS could complement QTL mapping results. Emerging genetic,
metabolomics, genomics, phenomics, machine learning, and synthetic biology tools could speed-up
the development of new plant cultivars having quantitative disease resistance.

A collection of reports was assembled to represent achievements in understanding and
improving QDR. New technologies provide avenues for measuring QDR in plant breeding
populations, and new insights on plant-pathogen interactions provide new alternatives for studying
QDR. Researchers around the world have made progress toward the goal of achieving QDR,
and new tools technologies and knowledge to increase food productivity and sustainability using
precision breeding to boost QDR.

The objective of this Research Topic was to collate articles updating the status of breeding
for QDR. The interest was to provide an updated view of the science of breeding for
QDR as well as the tools that have become available in the development of QDR. We
received a total of 37 submissions, of which 27 were accepted into the collection. A group
of 50 authors contributed to the collection. Among the accepted submissions, the following
eight topics were covered: QTL mapping (5 articles), fine mapping (1 articles), genome-wide
association (8 articles), genomic selection (4 articles), marker development (2 articles), pathogen-
environment-genotype (2 articles), breeding and pre-breeding (3 articles), and reviews (2 articles).
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QTL MAPPING

This collection reported the use of novel genetic populations for
the exploration of QTL in mapping, breeding and pre-breeding
populations. Karandeni-Dewage et al. screened a doubled haploid
(DH) population derived from the secondary genepool of
Brassica napus with the aim of introgressing resistance to
Pyrenopeziza brassicae, the authors identified four QTLs that had
moderate to large allelic effects. Similarly, Yu et al. studied a DH
population for mapping resistance to clubroot disease, caused by
the fungal pathogen, Plasmodiophora brassicae and used Brassica
rapa as a source for resistance. The authors found gene-for-
gene interaction with various pathotypes and identified two QTL
associated with resistance.

Several QTL analysis papers in wheat diseases were published.
Wu et al. studied partial resistance to five fungal isolates
representing Fusarium solani, F. avenaceum, F. acuminatum, F.
proliferatum and F. graminearum in field pea. The authors used
a mapping population between resistant and susceptible parents
and found multiple stable QTL for resistance while screening
for the various Fusarium isolates. Wang et al. identified and
validated stable QTL conferring adult-plant resistance to stripe
rust (Puccinia striiformis f. sp. tritici), found in the Chinese
landrace ”Gaoxianguangtoumai.” In particular, QTL QYr.GX-
2AS was found to be present only in low frequency (5.3%)
among 325 Chinese landraces. Roy et al., studied QTL for
resistance to spot blotch in wheat. They used two bi-parental
mapping populations and found several QTL having low to
moderate effects.

FINE MAPPING

A significant contribution by Zhang et al. was published. Their
paper focused on fine mapping of the leaf rust resistance gene
Lr65 in the spelt wheat cultivar “Altgold.” The authors delimited
Lr65–a 0.8 cM interval and provided one simple sequence repeat
marker and a high-resolution map, further reducing the region
to 60.11Kb in size.

GENOME-WIDE ASSOCIATION ANALYSIS

Liu et al. used a set of 240 Chinese elite cultivars genotyped
using a 90K single nucleotide polymorphism (SNP) array
with the aim of finding signals associated with Fusarium
seedling blight resistance. The authors found six stable QTL
accounting 4.8–7.5% of the phenotypic variation. The authors
also report four Kompetitive allele specific PCR (KASP)
markers to enable marker assisted selection in wheat breeding
programs. Rashid et al. used a panel of 396 tropical adapted
(Asian environments) maize lines genotyped with 296 k SNPs
using genotyping by sequencing (GBS) approach to screen for
Charcoal rot resistance (Macrophomina phaseolina). The authors
found 19 SNPs with significant associations and developed
two F2 : 3 populations to validate the signals. Two QTL co-
located with two of the SNP and haplotypes detected. The
authors reported that many of the signals found overlap with
previously reported QTL for Gibberella stalk rot resistance, thus

increasing the opportunity to develop resistance to multiple
stalk rots.

Mekonnen et al. studied Septoria tritici blotch (Zymoseptoria
titici) in wheat and used a set of 178 bread wheat genotypes
to screen for adult plant resistance and agronomic traits
for 2 years. The association panel was genotyped using
GBS and this resulted in 7 k polymorphic SNPs. Significant
marker-trait associations were found in 27% of the marker
pairs, suggesting 33 putative QTL with 5 QTL reported
as novel. The putative QTL explained 2.7–13.2% of total
phenotypic variation.

Kaur et al. deployed 89 backcross introgression lines
between Triticum durum × Aegilops speltoides and
evaluated them for spot blotch resistance, caused by
Bipolaris sorokiniana for four consecutive years. The
authors identified five QTLs linked to spot blotch.
In particular, QTL Q.Sb.pau-5B was validated in this
study, serving as a future diagnostic marker for spot
blotch resistance.

Li, Y., et al. used a set of 89 bottle gourd [Lagenaria siceraria
(Mol.)] Standl. accessions with the aim of finding significant
associationsfor resistance to Fusarium wilt. The study genotyped
the panel with 5 k SNPs and revealed a total of 10 SNPs
detected in at least two environments. Aoun et al. identified
64 marker trait associations (MTA) for leaf rust (Puccinia
triticina), 46 MTAs for stripe rust (Puccinia striiformis f. sp.
tritici) and 260 MTAs for stem rust (Puccinia graminis f. sp.
tritici) resistance in an elite durum wheat association panel
genotyped with a 90 k SNP array. None of the signals for
stripe rust found here corresponded to existing designations
of resistance genes. In contrast, two and four of the signals
for leaf rust and stem rust overlapped with known resistance
genes, respectively.

A significant contribution by Ruan et al. can be found in
this collection. In this paper, the authors aimed at finding useful
fusarium head blight (FHB, Fusarium graminearum Schwabe
[teleomorph: Gibberella zeae (Schwein.) Petch]) resistance in
durum wheat. The researchers used 186 diverse durum wheat
lines, comprised of elite Canadian cultivars, breeding lines and
experimental durum wheat lines with FHB resistance. The
authors found 31 QTL across all durum wheat chromosomes
and one stable QTL of large effect. Also, three haplotypes of the
QTL Fhb1 were identified. This large number of signals provides
a treasure trove of resources for improving FHB resistance,
including durable FHB resistance.

Using a core collection from the United States Department of
Agriculture, Shi et al. detected signals and implementing genomic
selection toward soybean cyst nematode (SCN, Heterodera
glycines) resistance in common bean (Phaseolus vulgaris L.).
The authors used 315 accessions from the core collection
and screened for SCN. The core set was genotyped with
Infinium BeadChips, consisting of 4 k SNPs. A total of 15
accessions were found as resistant and 11 MTA were found.
Additionally, the authors applied genome-wide prediction
models and reported moderate accuracies for resistance to SCN,
indicating the feasibility of using this framework when improving
SCN resistance.
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GENOMIC SELECTION

A significant study carried out by Merrick et al. was published.
The authors conducted research to optimize GS models related
to both major and minor genes for resistance to stripe rust
(Puccinia striiformis Westend. f. sp. tritici Erikss.) of wheat.
The authors used two types of training populations composed
of 2,630 breeding lines and 475 diversity panel lines, both
groups were phenotyped for 4 years. Model comparisons were
also conducted using major gene markers and genome-wide
markers as fixed effects. Using 50 replications and a five-fold
cross-validation, the models were then compared to marker-
assisted selection (MAS). The authors found that GS had higher
accuracies than MAS (0.72) for disease severity. In contrast,
GS and major gene models did not outperform the base GS
model. Different combinations of traits, population types and
years resulted in increases in accuracy as well via the inclusion
of major markers in the validation sets. As well, adding fixed
effects under low prediction scenarios increased GS accuracy
when using significant GWASmarkers. This study is a significant
step in the implementation of breeding efforts for improvement
of QDR.

One noteworthy contribution was provided by Larkin et al.
The authors used GS for forward prediction and compared naïve
GS models (no covariates) and multi-trait GS (MTGS) models
by predicting F4 : 7 lines for FHB resistance traits, deoxynivalenol
(DON) accumulation and other traits in soft red winter wheat.
They compared predictions with phenotypic performance over
2 years of selection based on selection accuracy and response
to selection. The models correctly selected up to 70.1% of elite
individuals, compared to 33% with phenotypic selection. The
authors also measured realized response to selection for the
various traits and found GS models were at least comparable
to phenotypic selection for FHB. This study provides a way
forward for the implementation of GS toward breeding for QDR
in wheat.

Huster et al. conducted GWAS on a diversity panel of
149 snap bean pure lines and evaluated them for Fusarium
root rot and multiple root morphological traits. The authors
found five SNPs for disease severity and two for biomass, with
multiple biochemical functions indicated. Genomic estimated
breeding values (GEBV) were estimated across all bean lines and
their correlations estimated for the development of GS models.
Although low accuracies were found based on correlations,
some overlap was found among lines with high GEBV and root
rot resistance.

A notable submission was provided by Mphahlele et al. in the
search for quantitative resistance to Leptocybe invasa gall wasp
and fungal stem diseases such as Botryosphaeria dothidea and
Teratosphaeria zuluensis. The authors deployed the Eucalyptus
grandis EUChip60K SNP chip, a subset of 964 trees from 93 half-
sib families genotyped with 14,347 SNPs. Single-step genomic
best linear unbiased predictors (ssGBLUP) were used to predict
parameters in the trial. The authors found a high positive genetic
correlation with gall wasp tolerance moderate expected gains for
traits such as diameter growth and gall wasp. This study may set
future strategies for the improvement of Eucalyptus using GS.

MARKER DEVELOPMENT

Peach gummosis has been reportedly caused by Botryosphaeria
Fusicoccumaesculi), Botryosphaeria rhodina (anamorph
Lasiodiplodia theobromae), and Botryosphaeria obtuse
(anamorph Diplodiaseriata). In their study, Li, X., et al.
used a previously identified QTL from a biparental population
and integrated it with a GWAS and comparative transcriptome
sequencing across 195 accessions and 145 k SNPs. The authors
found five SNPs linked with gummosis disease resistance and
located six candidate genes in the vicinity of significant SNPs.
The authors also identified two highly resistant accessions as
potential sources for breeding. Cucumber vein yellowing virus
(CVYV) does not exhibit single gene resistance in cucumber
and is transmitted by the whitefly (Bemisia tabaci). Due to the
lack of tightly linked molecular markers, breeding for CVYV
is challenging.

A study conducted by Kahveci et al. revealed that, via the
use of genomics and bulk segregant analysis, KASP markers
were developed for resistance to CVYV in an F2 mapping
population and commercial lines. The authors also conducted
variant analysis to generate SNP-based markers, and this resulted
in a 101 kb-fine mapped region with eight putative candidate
genes. Thus, the study provided crucial information and tools
necessary to breed for CVYV resistance in the future.

PATHOGEN-ENVIRONMENT-GENOTYPE

In a study to understand the influence of elevated temperatures
on resistance against phoma stem canker (Leptosphaeria
maculans) in oilseed rape, Noel et al. investigated effects
of temperature on individuals with and without race-specific
resistance (R) genes and quantitative resistance. The experiments
involved field sites and inoculation assays under controlled
conditions and found that high maximum temperatures in June
increased canker severity while this impact was reduced in
genotypes with quantitative resistance but no R genes. This study
suggested that the impact of high temperature is significantly
reduced when quantitative resistance is present. The authors
point out that there is genetic variation available to improve
disease resistance under this condition. However, sustained high
temperatures reduce the efficacy of QDR—amajor concern in the
face of global warming/climate change.

In Ozimati et al., the authors evaluated empirical and
root necrosis data to determine the effectiveness of screening
for Cassava brown streak disease (CBSD) in two breeding
populations differing in selection cycles. The study aimed at
comparing the assessments in these screening methods when
the assessment was conducted by plant breeders vs. pathologists.
The study found that broad-sense and marker-based heritability
estimates differed widely from assessments within the two
groups, with breeders resulting in a slightly higher upper limit.

BREEDING AND PRE-BREEDING

Emebiri et al. reported efforts on pre-emptive breeding for
Karnal bunt in wheat. Karnal bunt caused by the fungus, Tilletia
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indicaMitra [syn. Neovossia indica (Mitra) Mundkur], is a major
threat to food security, due to its use as a non-tariff trade
barrier by several wheat-importing countries. The cultivation of
resistant varieties remains the most cost-effective approach to
manage the disease, but in countries that are free of the disease,
genetic improvement is difficult due to quarantine restrictions.
Using GWAS, the authors identified six DArTseq markers linked
with resistance to Karnal bunt, each marker explained up to
29.5% of phenotypic variation. Using GS, the authors reported
accuracies of up to 0.56, depending on whether the GS model
included knownQTL or used genome-widemarkers. The authors
conducted further research to identify elite parents with Karnal
bunt resistance, leading to the identification of one ideal genotype
with suitable agronomic traits.

The study in Awata et al. aimed at using backcross populations
at the BC3F2 generation to identify progeny resistant to
maize lethal necrosis (MLN) developed using marker-assisted
backcrossing. The research group used SNP basedmarkers linked
to six QTL for resistance through screening 2,400 BC3F2 lines
using a KASP platform. The authors found 56 BC3F2 lines that
had major resistance for MLN and confirmation experiments in
the field resulted in 19 lines with high levels of MLN resistance.
These validated KASP markers linked to the two major QTL
which will serve to speed up breeding.

Ballén-Taborda et al. used wild relatives of peanut to conduct
marker-assisted backcrossing of two loci controlling resistance
to peanut root-knot nematode (PRKN, Meloidogyne arenaria)
from Arachis stenosperma. The study performed four cycles
of backcrossing while utilizing SNP analysis for foreground
selection. A population of 271 BC3F1 lines was genotyped
to determine introgression level across the peanut genome.
The results indicate that PRKN resistance was validated in
BC3F3 lines with seed size characteristics maintained. The study
concluded that it is the introgression of both loci validated from
A. stenosperma that confer the resistance. The work will represent
a significant step in breeding for PRKN resistance into elite
peanut cultivars.

REVIEWS

Soares et al. reviewed current progress in the improvement of
disease resistance toMycosphaerella fijiensisMorelet [anamorph:
Pseudocercospora fijiensis (Morelet) Deighton] in bananas (Musa
spp.). With the use of pre-established exclusion and inclusion
criteria, the paper is a systematic review of papers collected using
six scientific journal databases analyzing 3,070 published studies,
identifying 24 relevant to the Musa-M. fijiensis pathosystem.
Relevant articles found revealed that variable response to sigatoka
exists among resistant and susceptible cultivars. In the case ofM.
acuminata wild diploids, resistance genes exist, and these have
served as parental for new generations of improved diploids and
introgression into elite cultivars. One of the highlights of the
review indicates that the sequencing of the resistance genes in the
M. acuminata genome still require functional validation across
multiple omics data layers. Previously reported resistance genes
have been involved in primary disease resistance pathways, such

as jasmonic acid and ethylene signaling. Gene-based markers
have been reported in Musa and are applicable for MAS. This
review is a comprehensive panorama of the immune response
found in theMusa-P. fijiensis pathosystem and summarizes some
of the avenues available for breeders to undertake efforts to
develop resistant cultivars.

Manze et al. provided an overview of genetic gain yield and
virus resistance in Cassava over the last eight decades in Uganda.
This study used 32 Cassava varieties released between 1940 and
2019 and conducted side-by-side multilocation trials in Uganda.
Although disease resistance increased at an average up to 2.3%
per year, fresh root yield and harvest index genetic gains have
been non-significant. The authors reported some of the progress
made in Cassava breeding, as well as some of the challenges
that have yet to be solved, highlighting that breeding has mainly
focused on protecting cassava against diseases while agronomic
performance has not received sufficient attention.

FINAL REMARKS

Papers published in this Research Topic highlight progress made
in classical and modern breeding for QDR, a trait that used to
be evaluated solely based on visual symptom rating. It is known
that QDR occurs probably in all pathosystems and is caused by
the presence of multiple loci distributed across the whole genome
of plants. The effect of each loci varies ranging from small to
large and can be affected by environmental factors and plant
growth stages as reported in this Topic. Additionally, quantitative
disease loci (QDL) appears to be independent from the presence
of qualitative resistance; thus, it is possible that breeding for
QDRmay not necessarily include genes for qualitative resistance.
With the use of QTL and GWAS approaches, QDR can be
analyzed by bi- or multi-parental QTL mapping and/or GWAS
on diversity panels to identify QRLs in host plant genome
that are closely associated with QDR. Dissecting QRLs could
allow to isolate genes responsible for QDR. From breeding
perspective, QRLs can be used for MAS to effectively develop
new cultivars with durable resistance to pathogens of interest.
The implementation of new tools (e.g., genomic selection) that
enable accurate selection of large numbers of marker haplotypes
simultaneously is a promising avenue for the accumulation of
favorable alleles contributing to QDR. However, detecting and
managing Genotype x Environment interaction in breeding for
QDR continues to be a challenge.
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Durum wheat is an economically important crop for Canadian farmers. Fusarium head
blight (FHB) is one of the most destructive diseases that threatens durum production in
Canada. FHB reduces yield and end-use quality and most commonly contaminates the
grain with the fungal mycotoxin deoxynivalenol, also known as DON. Serious outbreaks
of FHB can occur in durum wheat in Canada, and combining genetic resistance with
fungicide application is a cost effective approach to control this disease. However, there
is limited variation for genetic resistance to FHB in elite Canadian durum cultivars. To
explore and identify useful genetic FHB resistance variation for the improvement of
Canadian durum wheat, we assembled an association mapping (AM) panel of diverse
durum germplasms and performed genome wide association analysis (GWAS). Thirty-
one quantitative trait loci (QTL) across all 14 chromosomes were significantly associated
with FHB resistance. On 3BS, a stable QTL with a larger effect for resistance was located
close to the centromere of 3BS. Three haplotypes of Fhb1 QTL were identified, with an
emmer wheat haplotype contributing to disease susceptibility. The large number of QTL
identified here can provide a rich resource to improve FHB resistance in commercially
grown durum wheat. Among the 31 QTL most were associated with plant height
and/or flower time. QTL 1A.1, 1A.2, 3B.2, 5A.1, 6A.1, 7A.3 were associated with
FHB resistance and not associated or only weakly associated with flowering time nor
plant height. These QTL have features that would make them good targets for FHB
resistance breeding.

Keywords: resistance, QTL, GWAS, Fusarium head blight, durum
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INTRODUCTION

Fusarium head blight (FHB), also known as scab and mainly
caused by Fusarium graminearum Schwabe [teleomorph:
Gibberella zeae (Schwein.) Petch] (Bai and Shaner, 1994;
McMullen et al., 1997), is a devastating fungal disease of small-
grain cereals including durum and common wheat and barley,
resulting in severe yield and quality losses (Gilbert and Tekauz,
2000; McMullen et al., 2012). Moreover, as food for humans and
feed for animals, FHB infected grain also creates health risks due
to contamination with mycotoxins. This is a particular concern
for durum wheat, as its main purpose is for human consumption
(Bai and Shaner, 2004; Zhao et al., 2018; Haile et al., 2019; He
et al., 2019). Canada is the largest producer and exporter of
durum wheat supplying more than a half of the world’s total
exported durum (International Grains Council, 2020). Since
the early 1990s, FHB has become the major disease threatening
durum production in Canada and has caused major economic
losses for producers (Gilbert and Tekauz, 2000). In 2016, a severe
FHB epidemic caused 65% of the common wheat and 36% of
the durum wheat to be downgraded in Saskatchewan, Canada,
with an estimated economic loss of $1 billion (Canadian Grain
Commission, 2017). It is therefore a priority to develop durum
wheat with desirable FHB resistance to protect it from losses.

Currently, the combination of agronomic and chemical
control along with genetic resistance is the most effective means
to manage FHB (Gilbert and Haber, 2013; Prat et al., 2014).
Genetic resistance is preferred due to its lower cost, higher
efficacy, and environmental benefit (Prat et al., 2014). Genetic
resistance to FHB in wheat is quantitative in expression due
to control by multiple minor genes. FHB resistance is also
significantly affected by environment (Bai and Shaner, 2004;
Buerstmayr et al., 2009, 2019), thus having lower to moderate
heritability (Van Sanford et al., 2001). Therefore, when visual
assessment of FHB is performed in the field, lines must be
tested in multiple independent environments with intensive
phenotyping to reliably identify QTL for resistance.

Developmental traits including flower time, plant height,
spike morphology, and anther extrusion/or retention are
often reported for their relationship with FHB resistance
(Mesterhazy, 1995; Gervais et al., 2003; Srinivasachary et al.,
2009; Skinnes et al., 2010; Lv et al., 2014; Buerstmayr and
Buerstmayr, 2016). Plant height and disease resistance mostly
show a significantly negative correlation (Mesterhazy, 1995;
Srinivasachary et al., 2009; Buerstmayr and Buerstmayr, 2016).
Pleiotropic effects, tightly linked genes and disease escape have all
been hypothesized as feasible mechanisms for resistance related
to these developmental traits.

Fusarium head blight resistance can be categorized into three
main types or components: (1) type I – resistance to initial
infection measured by the incidence of disease in the presence of
natural or augmented artificial inoculum (e.g., spray inoculation);
(2) type II – resistance to fungal spread measured by the severity
of disease; and (3) type III – resistance to the accumulation
of the toxin deoxynivalenol (DON) in infected spikes (Miller
et al., 1985; Mesterhazy, 1995; Bai and Shaner, 2004). Till
now, more than 556 QTL contributing to FHB resistance have

been identified on all 21 chromosomes of hexaploid wheat
(Buerstmayr et al., 2009; Liu et al., 2009; Löffler et al., 2009;
Venske et al., 2019). These QTL can be refined largely into 56
clusters by meta-QTL analysis (Venske et al., 2019). In spite
of the relatively large number of identified QTL for FHB, only
three QTL, Fhb1 on chromosome arm 3BS (Anderson et al.,
2001; Liu et al., 2006), Qfhs.ifa-5A on 5AS (Fhb5) (Buerstmayr
et al., 2002; Somers et al., 2003; Steiner et al., 2019a) and Fhb2
on 6BS (Anderson et al., 2001; Cuthbert et al., 2007) have
been validated. All of these resistance loci originate from the
Chinese cultivar Sumai 3, which displays among the highest levels
of FHB resistance observed (Buerstmayr et al., 2009). Fhb1 is
the best validated, and most frequently studied and deployed
resistance QTL (Buerstmayr et al., 2019). It is currently the only
resistance QTL confirmed to be present in several new FHB
North American and European varieties with strong resistance
(Hao et al., 2019). Fhb1 is reported primarily as conferring strong
Type II resistance, and accounting for 20–60% of phenotypic
variation in breeding populations (Miedaner and Korzun, 2012).
Fhb1 was recently claimed to be cloned by three research groups
as two different candidate genes (Rawat et al., 2016; Li et al., 2019;
Su et al., 2019) with conflicting interpretations, leaving room for
independent validation.

Compared to the large amount of genetic variation for FHB
resistance reported in common wheat, durum wheat has limited
sources of resistance (Oliver et al., 2008; Prat et al., 2014; Steiner
et al., 2019b). Tetraploid sources of FHB resistance that have
been identified include the Canadian durum cultivar Strongfield
(Somers et al., 2006), experimental line DT696 (Sari et al.,
2018), T. carthlicum (Somers et al., 2006; Oliver et al., 2008;
Sari et al., 2018), T. dicoccoides (Ruan et al., 2012), T. dicoccum
(Buerstmayr et al., 2012; Zhang et al., 2014), and Tunisian
durum landraces (Ghavami et al., 2011; Huhn et al., 2012).
Among these findings, the most stable and consistent QTL were
identified on chromosomes 2B, 3A, 3B, and 5A (Prat et al., 2014;
Haile et al., 2019).

As hexaploid wheat has significantly more sources of FHB
resistance, introgression of resistance from hexaploid into durum
wheat is one possible way to expand the durum resistance
gene pool. Previous attempts to introgress FHB resistance from
Sumai 3 into durum were largely unsuccessful (Prat et al., 2017).
However, several recent successes have been reported with Fhb1
from Sumai 3 (Giancaspro et al., 2016; Prat et al., 2017) as well as
a non-Sumai 3-related FHB resistance sources (Chu et al., 2011;
Zhao et al., 2018). Despite these partial successes, no commercial
durum cultivars with QTL from these non-adapted sources have
been released due to the lengthy breeding process, linkage drag
or suppression of resistance in durum backgrounds. Because of
these challenges, utilizing the FHB resistance already present
in durum cultivars is gaining favor as a promising approach
to bring durum wheat cultivars with improved resistance to
market more quickly. Durum cultivars with an improved level of
FHB resistance have been developed and released by the North
Dakota durum breeding program using this strategy (Zhang
et al., 2014). With the same approach, recent durum cultivars,
including Brigade (Clarke et al., 2009) and Transcend (Singh
et al., 2012) with a better level of FHB resistance have also been
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successfully developed and released by Canadian durum breeding
programs selecting for reduced symptoms in FHB nurseries.
Regardless of this initial success, there is still a need to know and
identify additional native sources of resistance as well as more
exotic sources. Understanding the association of FHB resistance
with developmental traits, flowering time and plant height is also
important for recommending which resistance loci may be most
relevant to a particular breeding program.

Genome wide association studies (GWAS) are a promising
way to detect FHB resistance QTL present in diverse genetic
sources. Only a few GWAS have been conducted on FHB
resistance, including winter wheat (Wang et al., 2017), elite
Chinese wheat (Zhu et al., 2020), durum breeding panels (Steiner
et al., 2019b) and type II FHB resistance durum diversity panels
(Ghavami et al., 2011). In this study, we aimed to use GWAS to
explore FHB resistance of domestic durum cultivars and breeding
material as well as exotic sources of resistance, including Sumai 3
and emmer wheat introgression lines. With GWAS in multiple
environments, we aimed to: 1) explore and characterize FHB
resistance QTL in durum wheat from the domestic as well as
exotic sources, and 2) identify resistance QTL that colocalize with
flowering time and plant height.

MATERIALS AND METHODS

Plant Materials
In total, 186 diverse durum wheat (Triticum turgidum L.
ssp. Durum (Desf.) Husn.) lines were selected to constitute
a durum association mapping (AM) panel targeted to
improve FHB resistance in durum wheat. This panel was
primarily composed of durum from Canada, including elite
Canadian cultivars, advanced breeding lines, recently developed
germplasm from Canadian breeding programs and from research
projects (Supplementary Table 1). Experimental durum lines
representing exotic FHB resistance and germplasm from
global collections made up the remainder of the AM panel
(Supplementary Table 1).

Phenotyping
Lines of the durum AM panel were evaluated for FHB infection in
Morden and Brandon, MB, Canada in 2015 to 2017 with artificial
inoculation and Indian Head, SK, Canada in 2015 and 2016 with
natural infection. At both Morden and Brandon, FHB nurseries,
corn spawn inoculum of Fusarium graminearum was used. Corn
spawn consisted of grains that were inoculated with a mixture of
two F. graminearum isolates, a 3-acetyl-deoxynivalenol (3ADON,
M9-07-01) and a 15-acetyl-deoxynivalenol (15ADON, M1-07-
02) isolate, after which colonized kernels were air dried. In
Morden, approximately 2–3 weeks prior to heading, the corn
spawn inoculum was spread at 8 g per single meter row
with two applications at weekly intervals. Plots were irrigated
three times per week using Cadman Irrigation travelers with
Briggs booms. At Brandon, the corn spawn inoculum was
applied between the rows at a rate of 40 g/m 6 weeks after
planting, with a second application performed at the same
rate 2 weeks after the first. Plots were irrigated three times

per week with a mist irrigation system to create favorable
conditions for F. graminearum infection. In Indian Head, FHB
was achieved solely by natural disease infection. FHB incidence
(INC, percentage of spikes showing symptoms) and severity (SEV,
average percentage of spike with visual symptoms of infection)
were estimated with visual assessment. FHB index (IND) was
calculated with the formula: (INC× SEV)/100. Plant height (HT)
and days to anthesis (DTA) were also recorded for Morden plots.

Genotyping
Genomic DNA of the durum AM panel was extracted from
freeze-dried fresh leaf tissue of seedlings with a CTAB based
protocol carried out on an automated AutoGen DNA isolation
system (AutoGen, Holliston, MA). DNA was quantified with
a Quant-iTTM PicoGreen R© dsDNA Assay Kit (Thermo Fisher
Scientific Inc., Bartlesville, OK, United States) and diluted to
50 ng/µL for SNP array genotyping. Genotyping of DNA was
performed with the Illumina iSelect 90K SNP array (Wang et al.,
2014) according to the manufacturer protocol (Illumina). SNP
arrays were scanned with an Illumina HiScan. Raw intensity
files from the HiScan were imported into GenomeStudio Version
2013 (polyploid clustering module v1.0.0, Illumina). SNP calling
was performed with the method described by Wang et al.
(2014) with 3 cluster steps of the cluster algorithm DBSCAN
then OPTICS. All SNPs were subsequently visually checked,
and incorrectly clustered SNPs or SNPs with more than 4
clusters were manually removed. Finally, SNPs with minor allele
frequency (MAF) below 0.05, and missing genotypes higher than
15% were filtered out. This resulted in a total of 6900 high quality
polymorphic SNPs of which 5933 markers were anchored to the
wheat consensus map (Wang et al., 2014) for the downstream
genome wide association analysis.

Statistical Analysis
Statistical analysis was performed with R 3.4.2 (R Core Team,
2017) with the lme4 package (Bates et al., 2015). Phenotypic
traits from each disease nursery site across multiple years were
fitted with the linear mixed model (Bates et al., 2015). The
model is implemented as: Piy = µ + Gi + Ey + (GiXEy) + Eiy,
where, Piy are the values of the tested phenotypic trait, µ

is the population mean, Gi is the effect of genotypes, Ey is
the effect of environments (here, by Year), Eiy is the residual,
where i is the genotype, y is the year. The restricted maximum
likelihood (REML) method within lme4 (Bates et al., 2015) was
used to estimate the variance components of each trait. The
broad sense heritability (H2) was estimated with the equation

H2
=

δ2
G

δ2
G+

δ2
GXE
y +

δ2
e
p

across multiple years in each disease nursery

site, where: δ2
G is the genotypic variance, δ2

GXE is the variance of
interaction between genotype and year, δ2

e is the error variance,
y is the number years, and p is the total number of replications
in all tested years. The least squares means were used for trait
correlation and association mapping analysis. The correlation
coefficients of disease response, plant height and days to anthesis
across multiple years and multiple sites were calculated with
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the Pearson correlation test and visualized with the R package
“corrplot” (Wei and Simko, 2017).

Linkage Disequilibrium, Population
Structure, and Kinship Analysis
Linkage disequilibrium (LD) was estimated by correlation
coefficient analysis and used the squared correlation coefficients
(r2) for all 5933 anchored SNP markers implemented in Tassel
v.5.5.0 (Bradbury et al., 2007). The r2 values of unlinked genetic
markers (defined as genetic distance > 30 cM) were square-root
transformed into a normal distribution. The baseline (or critical)
r2 value, a value that suggested LD was likely caused by genetic
linkage, was determined by taking the 95% percentile of this
distribution (Breseghello and Sorrells, 2006). The scatter plot of r2

versus genetic distance (cM) was fitted using a non-linear model
described by Remington et al. (2001) that was implemented in
software PopLDdecay (Zhang et al., 2019).

Population structure of the durum AM panel was determined
with STRUCTURE v2.3.4 (Pritchard et al., 2000) with a pruned
SNP marker dataset that was generated with the LD (linkage
disequilibrium)-based pruning approach implemented in the
software PLINK (Purcell et al., 2007). A total of 2306 pruned
markers with LD (r2) ≤ 0.2 were used for population structure
analysis. STRUCTURE analysis was performed with a 50000
burn-in length and 100000 Markov chain Monte Carlo (MCMC)
iterations from K = 2 to K = 12 (K, specialized clusters of the AM
panel). Fifteen independent STRUCTURE runs were conducted
for each specialized K. The optimal cluster (K) was determined
by the 1K method (Evanno et al., 2005), implemented in
the software Structure Harvester (Earl and vonHoldt, 2012).
Independent runs of the optimal K were summarized using
CLUMMP v1.1.2 software (Jakobsson and Rosenberg, 2007). The
CLUMMP generated Q matrix was used to graph the population
structure using Structure Plot software (Ramasamy et al., 2014)
and perform downstream GWAS analysis. A phylogenetic tree
was built with the neighbor-joining (NJ) method in MEGA6
(Tamura et al., 2013) and visualized with Figtree v1.4.41. Principal
component analysis (PCA) was performed with R package
Genome Association and Prediction Integrated Tools (GAPIT)
(Lipka et al., 2012; Tang et al., 2016).

Genome-Wide Association Study
Association mapping was performed on the durum association
panel using the phenotypic data collected from the multiple
nurseries in multiple years, including HT, DTA, INC, SEV and
IND. Association mapping was performed using 5933 mapped
SNPs that had a MAF> 0.05 using both Tassel v5.5.50 (Bradbury
et al., 2007) and GAPIT (Lipka et al., 2012; Tang et al.,
2016). Different association models were tested in both software
packages, and QQ-plots generated from all the models were
compared to select the model that best controls false positives
and negatives. All the data presented here were generated in
TASSEL using a mixed linear model (MLM) incorporating the
STRUCTURE (Q) matrix as a fixed factor and the kinship (K)
matrix as a random factor (Q + K MLM). To be considered
a QTL in this dataset, we selected SNPs that were significant

1http://tree.bio.ed.ac.uk/software/figtree/

(p< 0.05, marker-wise) in at least four of the tested environments
for FHB resistance or two for plant height and flower time,
and with at least one environment with a highly significant
response (p < 0.001). Significant SNPs on the same linkage
group were grouped into a QTL region if markers were linked
with LD> 0.2.

RESULTS

Population Structure and Linkage
Disequilibrium (LD) Analysis
STRUCTURE analysis, principal component analysis (PCA)
and NJ-phylogenetic tree analysis were all used to determine
clustering of lines within the durum AM panel, and two
subpopulations were consistently indicated, as shown by different
colors in Figure 1. Subpopulation 1 (shown as green in
Figure 1 and Supplementary Table 1) contained 124 lines,
and consisted of a large proportion of Canadian cultivars
and inbred lines including the older cultivar Kyle, more
recent cultivars Strongfield and currently most popular cultivars
as Brigade, Transcend and CDC Credence. Subpopulation 2
included 62 lines (shown in red in Figure 1 and Supplementary
Table 1), consisting of the founder landrace Pelissier and
the majority of lines from Austria. All of the inbreeding
lines derived from introgression of FHB resistance genes from
Sumai 3 into European durum wheat cultivars were contained
in subpopulation 2, as were the majority of T. dicoccoides
introgression lines. The baseline critical threshold r2 value
of LD was identified as 0.2, corresponding to a genetic
distance around 3.0 cM from the whole genome analysis
(Supplementary Figure 1).

Phenotypic Analysis
Mean values (across years) of FHB INC, SEV, IND, DTA
and HT of lines from the durum AM panel at Brandon,
Morden, and Indian Head, were summarized in Supplementary
Table 1. Across environments, FHB INC tended to be higher
than SEV (Figure 2) which is reflected in the overall means
(Table 1). The lowest INC was observed at Indian Head in
2016, the location with the lowest severities in both 2015 and
2016. Moderate SEV were observed at Brandon in 2016 and
2017. Generally, a large differential in FHB INC and SEV
was observed as indicated by the range for each environment
in Table 1, except Indian Head where the maximum severity
of disease was less than 100%. Plant height showed a larger
range with the average shortest 55 cm and the highest
148 cm while DTA was observed in a range of 13 days
in 2017 and 20 days in 2015 (Table 1 and Supplementary
Figure 2). For both INC and SEV, moderate to high broad
sense heritability was observed with the two sites under
artificial inoculation showing lower heritability than the natural
infection site (Table 1). HT showed the highest heritability,
while DTA had the lowest heritability (Table 1). For FHB
INC and SEV, moderate to high correlations were observed in
all tested environments (years and sites). Generally, both HT
and DTA had very significant negative correlations with INC
and SEV (Figure 3). Analysis of variance (ANOVA) revealed
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FIGURE 1 | Population structure analysis of the durum association mapping (AM panel). (A) Principal component analysis (PCA). (B) Phylogenetic tree constructed
with Neighbor Joining (NJ) method, green color and red color represented subpopulations 1 and 2 inferred from Structure analysis. (C) Population structure analysis
with K = 2 of the AM panel. Green color, subpopulation 1 and red color subpopulation 2.

that genotypic effects were significant for all phenotypic traits
(P < 0.001, Supplementary Table 2).

GWAS Analysis of FHB Resistance, HT
and DTA
With GWAS analysis, 31 genomic regions were significantly
associated with FHB resistance traits (Figures 4, 5). The quantile-
quantile (QQ) plots (Supplementary Figure 3) showed that, for
the majority of traits, an appropriate model was fitted for the
GWAS test. The GWAS results were summarized in Table 2 and
Supplementary Table 3. SNPs located within the same region
were grouped into QTL, and Table 2 shows the QTL names
and physical location of the associated SNPs based on their
location on the IWGSC Chinese Spring (CS) reference 1.0 (CS
Ref 1.0; International Wheat Genome Sequencing Consortium
[IWGSC], 2018). For each significant QTL, the lowest –log10 (p-
value) is shown for each environment and trait tested whenever
the p-value is less than p = 0.05. As shown in Table 2, there
was significant variation in detection of QTL across all of the
environments, and more detection of INC than SEV across
the environments. The majority of the FHB resistance QTL
colocalized with DTA and/or HT.

A major QTL, 1B.1, was found between 544 and 580 Mb on
1B (Figure 5 and Table 2). It was significant for INC, SEV and
IND, and explained as much as 20% of the phenotypic variation
(Table 2 and Supplementary Table 3). The QTL 1A.3 was located
in the syntenic region of 1B.1, between 503 and 580 Mb (Figure 5
and Table 2), and it was also significant for IND and INC though
present in fewer environments and with lower significance than
1B.1 (Table 2). 1B.1 colocated with significant HT and DTA QTL,
while 1A.3 was significant for DTA.

Another major QTL was at 30–31 Mb on 2AS, termed 2A.1
(Figure 5 and Table 2). This QTL was significant for INC,
IND and SEV, as well as being associated with HT and DTA
(Figures 4, 5, Tables 2, and Supplementary Table 3). It was
one of the more stable QTL detected, being present for INC
in all environments. Another significant QTL, 2B.1, was located
between 8.6 and 22 Mb and was associated with all tested
traits and explained up to 15% phenotypic variation (Table 2
and Supplementary Table 3). QTL 2A.2 was also stable, and
detected for INC in seven, IND in eight and SEV in five
environments (Supplementary Table 3). It was located from 138
to 142 Mb, and was consistently associated with DTA (Table 2
and Supplementary Table 3). QTL 2A.2 explained up to 10%
of phenotypic variation (Table 2). On group 5, the QTL 5A.1
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FIGURE 2 | Distribution of FHB resistance of the durum association mapping panel (AM) in field trials at (A) Morden, MB; (B) Brandon, MB; and (C) Indian Head, SK.
INC: incidence (%), percentage of spikes showing symptoms; SEV: severity (%), percentage of spike area infected. 15, 16 and 17: years 2015, 2016, and 2017.

in the region between 585 and 591 Mb of 5A had a relatively
stable effect for INC in both Brandon, MB, and Indian Head, SK
(Figures 4, 5 and Table 2). It was detected at a low level for HT

in one environment. 5B.2 was located from 577 to 691 Mb on
5BL (Table 2). It explained up to 9.6% of phenotypic variation,
and was most stable for INC in Brandon and Morden. This
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TABLE 1 | Mean, range and heritability of the durum association mapping panel
(AM) for FHB incidence, FHB severity, plant height (cm), and days to anthesis
(DTA) for the individual trial in Morden, Brandon, and Indian Head across the
2015–2017 trial series, and across sites between Modern and Brandon.

Sites Traits Year Mean Max Min H2

Morden FHB incidence 2015 83.0 100 15 0.82

2016 90.3 100 10

2017 89.3 100 0

Overall 87.5 100 0

FHB severity 2015 63.9 100 10 0.86

2016 66.8 100 10

2017 67.3 100 0

Overall 66.0 100 0

Plant height 2015 94.9 135 55 0.94

2016 99.6 148 62

2017 92.4 136 55

overall 96.6 148 55

Day to anthesis 2015 59.1 72 52 0.56

2016 62.7 73 54

2017 67.6 76 63

Overall 63.3 76 52

Brandon FHB incidence 2015 84.8 100 0 0.86

2016 85.0 100 0

2017 76.2 100 0

Overall 82.0 100 0

FHB severity 2015 70.7 100 0 0.77

2016 42.3 100 0

2017 39.2 100 0

Overall 50.7 100 0

Morden and
Brandon

FHB incidence 84.0 100 0 0.72

FHB severity 58.4 100 0 0.67

Indian Head FHB incidence 2015 70.6 100 0 0.60

2016 33.1 100 0

Overall 51.6 100 0

FHB severity 2015 9.5 40 0 0.59

2016 22.7 60 0

Overall 16.1 60 0

Maximum (Max) and minimum (Min) values observed for traits, broad sense
heritability coefficient (H2).

QTL was also associated with DTA, and minor effects were
observed on IND and SEV, including at Indian Head (Figure 4
and Table 2).

Three QTL were identified on chromosome 3B (Figure 5).
The 3B.1 QTL was located around 3.7 Mb. It was identified
in significant levels for INC, IND and SEV, and explained as
much as 20.8% of phenotypic variation (Table 2). The QTL
also affected HT with a very large effect on DTA. A stable
QTL, designated 3B.3, was located on chromosome 3B at 141–
233 Mb (Table 2). This QTL affected up to 9% of phenotypic
variation, and also conferred a very stable effect on HT and
smaller effect on DTA (Table 2). The third 3B QTL, 3B.2, was
located around 9.8 Mb (Table 2), approximately 1 Mb from
Fhb1 in common wheat (Rawat et al., 2016; Li et al., 2019; Su
et al., 2019). It had no observable effect on HT or DTA, but also

had a quite minor effect, explaining at most 7.7% of phenotypic
variation (Table 2). Though this QTL was less stable, because
of the location of 3B.2 in the region of Fhb1 and because of the
importance of this gene to FHB resistance in common wheat, we
chose to further characterize the QTL in the durum AM panel.
Pedigree information and genotypes of 3B.2 identified three
different haplotypes for the significant marker, BS00079522_51,
which were defined as tSumai3, tNative and tEmmer types
(Supplementary Table 4). The tSumai 3 haplotype was derived
from the introgression of Fhb1 from Sumai 3 into durum wheat
(Supplementary Table 4). All Canadian cultivars shared the
tNative haplotype, and the tEmmer haplotype was found in
durum wheat introgressed from Td161 and a few durum wheat
experimental lines from Austria (Supplementary Table 4). Allele
effect analysis identified that the tEmmer type of 3B.2 conferred
an effect that increased disease susceptibility (Figure 6).

There were a small number of QTL that did not co-locate
with DTA or HT QTL. These include 1A.1, 1A.2, 6A.1, and
7A.3. The QTL 1A.1, located near the distal end of the short
arm of chromosome 1A within a region from 13 to 20 Mb, was
only significant for INC. Also on 1A was 1A.2, which mapped
to 366 Mb on chromosome 1AL. It was detected in seven of
the eight different environments, though not consistently across
INC, IND and SEV, and a minor association with HT was also
identified in one environment at this locus (Figure 4, Table 2,
and Supplementary Table 3). 6A.1 was positioned at 12–23 Mb
on 6AS. It had a significant effect on FHB, explaining up to
16% of phenotypic variation. This QTL also had a very minor
effect for both HT and DTA with each only observed in a single
environment. The 7A.3 QTL located to the distal region of 7A,
around 671 Mb, had an effect on INC, SEV and IND, with no QTL
for height or DTA found in this region (Figure 4 and Table 2).
This QTL was detected only in Brandon and Morden field sites,
and explained up to 9.6% phenotypic variation (Table 2).

DISCUSSION

Phenotypic Data Analysis
The moderate to high heritability observed for FHB resistant
traits in multiple environments in the durum AM panel indicated
a large part of the phenotypic variation was contributed by
genetic variation. The positive correlation between plant height
and days to anthesis indicated that the genetic control of
plant height and flowering time was partially shared (Table 1;
Langer et al., 2014). The high proportion of disease susceptibility
we observed in the field tests supports literature emphasizing
the limited tetraploid wheat resources with a high level of
FHB resistance (Oliver et al., 2008). The observed significantly
negative correlations between FHB resistance and plant height
and days to anthesis also agreed with previous findings
summarized by Prat et al. (2014) and Steiner et al. (2017). Because
the significant negative correlations between both DTA and HT
and FHB traits ranged from −0.24∗∗∗ to −0.60∗∗∗ and −0.18∗
to −0.42∗∗∗, respectively, there is considerable scope to shift
this negative relationships (i.e., to have DTA more consistently
around −0.24 and the correlation with HT toward −0.18). By
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FIGURE 3 | Pearson correlation analysis of fusarium head blight resistance related traits. INC, Incidence (%), FHB incidence, percentage of spikes showing
symptoms; SEV, severity (%), percentage of spike area infected; HT, plant height (cM); and DTA, day to anthesis. MD, Morden, MB; BD, Brandon, MB; IH, Indian
Head, SK; 15, 16, and 17, field trials in year 2015, 2016 and 2017. Correlation coefficients were shown in upper triangle. Levels of significance claimed at *P < 0.05;
**p < 0.005, ***p < 0.0001.

adopting strategies to stratify experimental genotypes into groups
by both days to anthesis and plant height, it may be possible
to recombine earlier to flower and shorter plants with reduced
FHB symptoms. The correlation will not be broken but it can
be shifted so that earlier maturing and shorter genotypes can be
recombined with reduced FHB symptoms. Using this strategy,
the negative relationship between plant height and FHB traits has
been shifted by recombining semi-dwarf stature with a moderate
level of resistance in hexaploid wheat cultivars such as Carberry
(DePauw et al., 2011) and AAC Brandon (Cuthbert et al., 2017),
both of which became widely adopted by producers. Adopting
this strategy in durum wheat genetic enhancement could prove
equally effective.

Genetic Architecture of FHB Resistance
in the Durum AM Panel and Its
Association With Flower Time and Plant
Height
Compared to common wheat, durum wheat has limited genetic
variation, and less effort has been committed to improve durum
resistance to FHB (Buerstmayr et al., 2009, 2019; Prat et al., 2014,
2017). Within the current study, we identified a large number of
QTL associated with FHB resistance with GWAS analysis from
multiple environments and sources, broadening the resistance
gene pool in durum wheat. The minor effect of these multiple
QTL reinforces what is already known about the polygenic nature
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FIGURE 4 | Manhattan plots displaying genome wide marker-trait association analysis for FHB incidence (INC), index (IND) and severity (SEV) at (A) Morden, MB
from the years 2015 to 2017; (B) Brandon, MB for years 2015 to 2017; (C) Indian Head, SK from 2015 to 2016 (with natural infection); and for (D) plant height (HT)
and day to anthesis (DTA) at Morden, MB for 2015 to 2017 trials.

of FHB resistance, but also reveals the necessity of combining
genes from multiple sources (Buerstmayr et al., 2009, 2019;
Liu et al., 2009).

The major and most consistent FHB QTL found in previous
studies is the hexaploid wheat Sumai 3 derived Fhb1, located on
3BS around 7.6–13.9 Mb (Anderson et al., 2001; Liu et al., 2006).
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FIGURE 5 | The reference genotype–phenotype map. A reference genotype–phenotype map with the most significant trait-associated markers in each chromosome
aligned to the reference sequence of common wheat (International Wheat Genome Sequencing Consortium [IWGSC], 2018). MB, Morden, MB; BD, Brandon, MB;
IH, Indian Head, SK. FHB incidence (INC), severity (SEV), index (IND), plant height (HT), and days to anthesis (DTA).

Frontiers in Plant Science | www.frontiersin.org 10 December 2020 | Volume 11 | Article 59206421

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-592064
D

ecem
ber22,2020

Tim
e:14:31

#
11

R
uan

etal.
FH

B
R

esistance
in

D
urum

W
heat

TABLE 2 | Quantitative trait loci names, physical positions, associated traits, explained phenotypic variance and significance of association with Fusarium head blight incidence (INC), index (IND), severity (SEV), days to
anthesis (DTA), and plant height (HT) identified from durum association mapping panel across environments.
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1A.1 13.4–20.9 0.3 1.2 0.3 0.8 0.2 0.5 0.9 1.8 1.8 2.4 0.0 0.0 3.2 2.9 0.8 1.5 0.2 1.0 0.8 0.3 2.7 0.8 1.0 2.3 0.1 1.4 0.2 0.4 3.4 0.9 8.1

1A.2 366 0.0 0.4 0.3 0.2 0.3 1.9 3.6 0.9 2.1 2.1 0.5 0.7 2.1 1.5 3.4 1.9 2.6 0.5 0.4 1.4 1.8 1.7 3.2 1.2 2.5 0.5 0.2 1.2 1.9 2.0 8.6

1A.3 503–580 2.3 1.9 2.6 1.3 1.8 0.4 0.2 3.2 1.4 0.2 1.7 2.2 1.6 1.1 0.8 3.0 1.8 0.4 0.6 1.6 1.9 1.8 0.7 3.4 1.5 0.2 0.6 0.4 1.7 1.4 7.8

1B.1 544–581 1.9 0.2 4.9 0.0 1.6 1.4 2.7 4.3 3.2 1.6 1.7 0.5 4.4 7.9 1.6 1.9 0.3 1.5 1.8 0.2 3.0 2.1 2.1 2.6 1.0 1.4 0.2 0.0 5.2 1.5 20.3

1B.2 662–668 1.0 0.3 0.0 2.0 1.6 0.6 0.6 1.9 1.8 0.4 1.2 0.3 1.0 1.5 0.8 3.6 3.4 1.2 1.2 2.1 1.3 2.2 0.9 1.8 4.0 1.1 0.2 2.4 1.0 1.8 8.0

2A.1 30–31 2.6 3.4 0.6 3.0 2.0 2.6 2.8 3.5 1.4 2.0 2.6 3.3 3.7 1.8 2.6 2.5 1.2 0.5 1.8 1.7 3.3 2.9 1.9 3.7 2.2 0.4 1.1 0.2 1.7 2.2 9.0

2A.2 138–142 1.9 2.3 3.0 0.7 0.4 1.0 2.2 2.3 3.1 2.6 3.4 3.9 1.9 0.8 3.6 2.1 3.3 2.0 1.6 3.4 1.7 2.5 3.0 1.9 2.3 0.8 0.6 1.6 0.7 2.2 10.1

2A.3 713–717 0.2 2.4 3.3 4.7 1.8 0.6 3.9 2.3 1.5 1.8 0.3 0.3 0.1 1.9 1.6 0.6 0.3 0.1 0.1 0.9 0.7 1.1 2.6 0.7 0.6 0.3 0.7 0.7 1.2 1.7 9.5

2A.4 762–769 1.8 2.2 0.7 1.5 4.0 2.1 2.7 2.4 1.8 2.6 2.6 0.3 3.4 5.2 2.3 1.7 2.5 1.3 2.4 0.6 3.5 3.3 2.6 2.1 2.0 1.3 0.7 0.2 3.8 3.2 12.9

2B.1 8.6–22 3.0 2.6 4.3 3.2 3.2 1.7 1.8 4.3 2.0 0.3 1.9 2.8 3.6 6.0 2.0 3.7 1.7 0.3 1.8 0.3 2.3 2.6 2.7 2.2 0.0 1.1 1.0 0.2 3.5 2.6 15.1

2B.2 92–102 0.0 0.8 0.8 0.7 1.7 1.6 3.3 2.1 2.9 0.7 0.9 0.2 4.7 8.1 2.2 1.2 0.4 0.6 1.0 0.7 3.5 1.8 3.2 2.2 1.0 1.2 0.3 0.7 5.5 1.5 20.8

2B.3 717–781 0.4 1.5 3.3 0.4 0.9 1.8 3.1 3.0 2.0 1.8 1.8 1.4 1.6 2.6 2.5 1.6 1.6 1.6 1.8 0.9 1.9 2.8 3.1 1.8 1.9 1.0 1.7 0.4 1.6 3.3 7.9

3A.1 9.6–13 1.6 0.3 2.9 0.6 1.7 2.2 6.2 1.5 1.7 2.2 1.4 0.5 4.6 5.4 4.6 1.6 3.3 1.5 1.7 0.4 2.9 2.0 4.6 2.1 2.5 1.7 1.3 2.0 3.2 2.4 15.4

3A.2 512–556 0.3 0.3 0.6 3.8 4.5 2.6 4.1 2.0 1.6 1.0 2.8 0.5 2.5 4.8 2.3 1.4 1.4 0.5 3.7 0.6 1.5 4.0 2.6 0.8 1.3 0.6 1.8 0.2 2.8 3.9 11.9

3B.1 3.7 1.4 0.8 4.0 0.9 1.4 2.3 4.1 3.2 2.9 2.5 0.8 0.1 3.1 8.1 3.4 1.1 1.8 0.8 0.5 0.2 3.2 2.7 3.5 1.1 1.4 0.6 0.5 0.3 4.5 2.6 20.8

3B.2 9.8 1.0 0.8 1.2 0.7 0.4 0.8 1.6 0.4 1.1 3.2 1.4 0.2 0.6 0.2 1.7 1.6 1.5 0.8 1.5 1.1 0.6 0.6 1.8 0.8 0.5 0.0 0.2 2.0 0.2 0.6 7.7

3B.3 148–233 0.0 1.4 2.2 4.5 3.5 2.9 3.0 2.3 1.7 2.1 2.5 0.1 3.8 1.8 2.5 2.9 1.5 1.4 3.2 0.1 3.7 2.4 2.6 2.6 0.8 1.8 2.3 0.0 2.5 2.3 9.2

4A.1 664–737 1.7 0.9 4.9 3.5 2.8 3.3 4.5 3.4 3.8 0.6 0.6 0.7 5.5 11.8 2.1 0.8 1.5 0.6 0.1 0.8 3.8 3.0 3.4 2.2 1.6 1.6 1.6 0.4 7.2 3.3 31.8

4B.1 3.8 0.9 1.5 0.4 0.7 1.0 1.3 2.5 4.0 0.6 4.3 0.3 2.0 3.2 2.0 2.4 1.9 0.3 2.3 0.3 1.0 2.8 3.3 1.7 1.5 0.3 1.3 0.5 0.6 1.8 3.4 10.5

4B.2 197–347 0.4 1.5 0.3 0.1 0.6 0.3 1.3 1.9 3.7 1.2 0.7 0.2 1.8 1.9 0.5 0.9 2.2 1.4 0.7 0.1 1.8 2.6 0.6 1.0 1.6 1.3 2.0 0.1 1.1 2.7 7.3

4B.3 673 0.0 0.4 2.0 2.7 0.6 1.8 1.5 2.5 2.3 2.2 3.1 3.1 2.0 3.0 2.3 1.8 2.4 2.2 3.0 3.1 2.6 4.2 2.4 2.5 2.7 1.4 3.2 2.2 1.8 3.8 8.8

5A.1 585–591 0.4 0.6 0.4 1.7 1.1 0.5 3.8 1.2 2.0 4.3 2.6 2.7 0.5 0.3 3.5 1.9 1.5 1.5 3.5 1.7 1.1 0.3 3.6 2.2 1.1 0.9 2.2 0.6 0.8 0.2 8.8

5B.1 19.5 0.2 1.5 4.6 1.0 0.9 2.0 6.6 2.8 2.1 5.2 0.8 1.0 1.1 2.6 4.2 1.0 0.6 2.5 0.9 1.0 1.3 1.4 5.0 0.7 0.1 1.4 1.6 0.4 1.3 1.5 14.5

5B.2 577–691 1.5 2.1 1.3 0.1 1.4 0.7 1.2 2.8 1.7 1.3 1.2 3.1 2.9 3.7 1.5 2.1 1.4 0.1 2.1 2.5 2.5 1.7 0.4 1.1 0.0 0.1 1.8 1.5 2.8 1.5 9.6

6A.1 12–23 0.7 1.3 1.4 0.3 1.5 1.3 2.7 2.4 3.2 0.6 2.4 0.6 5.8 6.3 2.4 2.6 2.4 0.2 1.4 0.5 3.8 3.4 2.1 3.3 2.9 0.5 1.4 2.2 4.0 3.4 15.7

6A.2 601–694 1.7 1.8 1.9 0.1 0.5 2.5 4.1 3.5 1.6 1.7 0.4 0.6 5.2 6.4 2.2 0.9 2.2 3.8 1.0 0.8 2.6 3.7 2.0 1.5 2.6 3.3 1.7 1.5 1.9 4.2 16.0

6B.1 585–707 1.8 1.8 1.9 0.5 0.2 0.4 4.0 3.0 1.4 2.2 0.0 0.3 5.0 4.1 2.5 1.0 0.2 2.5 0.2 0.1 3.5 1.1 2.5 0.5 0.5 1.1 0.1 0.1 4.0 0.9 12.2

7A.1 7.5–12 2.0 0.5 0.8 1.8 0.9 3.1 1.4 2.0 3.7 2.7 1.4 1.4 2.7 5.5 3.6 1.6 2.1 0.6 1.5 1.1 1.9 2.0 4.0 1.4 0.2 1.8 1.0 0.1 2.7 1.9 11.1

7A.2 102–113 1.5 2.1 2.6 1.1 0.3 1.4 5.1 3.3 3.7 2.7 0.7 0.5 5.4 5.2 4.7 1.6 0.5 0.9 0.5 0.0 4.5 2.8 5.0 0.5 0.0 0.3 0.4 0.0 3.8 3.4 13.5

7A.3 671 0.2 0.3 0.2 0.5 0.3 0.2 3.9 0.6 1.8 2.7 0.7 0.2 2.1 1.7 3.0 1.9 1.8 0.8 1.1 0.4 2.3 0.4 3.0 1.9 2.5 0.3 0.8 0.5 2.0 0.4 9.6

7B.1 610–658 1.7 0.1 6.0 0.4 1.6 1.1 5.2 4.0 2.5 3.6 0.9 1.5 1.9 4.7 4.0 2.0 2.6 1.4 1.0 1.7 1.9 1.8 4.0 0.7 2.9 2.1 0.1 1.1 1.7 1.6 12.9

The highest –log10 (p-value) of the markers from the QTL is given across all traits measured from the field trials performed in Brandon (BD), Morden (MD), and Indian Head (IH) in the years 2015, 2016 and 2017. –log10
(p) > 3 are in bold, values above the stringent Bonferroni significance threshold are underlined, and values below –log10 (p) = 1.3 are not shown.
Physical position (Mb): physical location of SNP markers in the QTL from Chinese Spring assembly (International Wheat Genome Sequencing Consortium [IWGSC], 2018).
Max R2: highest value for explained phenotypic variation for the marker across the traits and environments tested, expressed as%.
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FIGURE 6 | Haplotype effects (mean values across years in each site) of Fhb1 (3BS.2) QTL on (A) FHB incidence (Inc); (B) FHB severity (Sev); and (C) FHB index
(Ind). Three types of haplotype were identified and defined as tEmmer, tNative and tSumai3. Site: BD, Brandon, MB; IH, Indian Head, SK; and MD, Morden, MB.
Y-axis, effects of haplotype on disease susceptibility, larger number indicates that haplotype increases disease susceptibility.

Introgression of Fhb1 into durum wheat has been challenging,
with one possible reason being the unstable expression in
a durum genetic background (Zhao et al., 2018). Recently,
Prat et al. (2017) successfully introgressed Fhb1 into durum
wheat, and some of those introgression lines are part of this
AM panel. A QTL was found in the same region as Fhb1
in this study, designated 3B.2. This QTL was detected in
limited environments with a minor effect. QTL 3B.2 had three
distinct haplotypes (Supplementary Table 4), and compared
to haplotypes of Sumai 3 (tSumai 3) and Canadian cultivars
(tNative), the haplotype from the experimental lines derived from
emmer wheat Td161 (tEmmer) conferred disease susceptibility
(Supplementary Table 4). This finding confirms previous
findings that the Fhb1 region from Td161 contributed to disease
susceptibility when compared to the susceptible durum wheat
Floradur (Buerstmayr et al., 2012). The resistance haplotype
found in the GWAS study by Steiner et al. (2019b) corresponds
to the tNative haplotype presented in this study. The tNative
haplotype is the only haplotype found in the Canadian and
American cultivars presented in both studies, while both the
tNative and tEmmer haplotypes exist in durum wheat from
Austria, CIMMYT, ICARDA, Italy and Morocco (Steiner et al.,
2019b). Altogether, these findings indicate that one of the
two non-Sumai 3 Fhb1 region haplotypes found in tetraploid
wheat contributed to disease susceptibility when compared to
the other. Further characterizing the region with additional
markers is needed to help resolve the source of the alleles

and further understand the effects of the three haplotypes
identified in this study.

Two additional 3B QTL were found significantly associated
with all of the traits, 3B.1 in the telomeric region of 3BS,
and 3B.3 in the centromeric region of the short arm (3BSc).
Recently, Wu et al. (2019) reported a QTL positioned at 2.0 Mb
on the reference sequence from elite Chinese common wheat
germplasm, almost the same region as the 3B.1 identified in this
durum AM panel study. The 3B.3 QTL was one of the most
stable QTL identified, with a larger effect on FHB resistance
than other QTL in this AM panel. Notably, the resistant 3BSc
haplotypes were identified in the durum wheat lines that also
had Fhb1 introgressed from Sumai 3 by Prat et al. (2017). The
location of 3B.3 corresponds to the 3BSc region QTL previously
reported as important to FHB resistance, particularly in Canadian
elite germplasm, where 3BSc conferred a larger effect than Fhb1
(McCartney et al., 2007). Also in agreement with findings from
McCartney et al. (2007), the 3BSc QTL conferred a large effect
on both plant height and DTA in elite Canadian wheat. Further
research is needed to explore effects of Fhb1, 3B.1 and 3BSc in
durum wheat.

QTL With No or Weak Association With
Flowering Time and Height
The common association between plant height, flowering time
and FHB resistance was illustrated in this study. Of the 31 FHB
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QTL regions identified, all but five also had strong associations
with plant height and/or flowering time. The relatively small
effects of these QTL compared to other QTLs detected in
this study may be related to the strong influence of flowering
time on FHB resistance, potentially overinflating the effects of
the QTL for FHB resistance due to the timing of flowering.
Due to the progression of the FHB symptoms over time, the
correlation between days to anthesis and disease development are
confounded by the length of time for disease development. Due
to cost constraints, disease rating was not evaluated over a time
course to control for this effect, and thus we cannot exclude the
observed correlation between FHB resistance and DTA may be
caused by these confounding effects.

Fusarium head blight resistance QTL that are not associated
with height or flowering time are much more appealing targets,
as the negative influence of taller plants and complicated
relationship with flowering time can be avoided. The targeted
breeding of these QTL for resistance that do not carry extra
undesirable traits will have the most likely success. The most
favorable of these QTL may be 3B.2, but the QTL 1A.1,
1A.2, 6A.1, and 7A.3 with no association or weak association
with DTA and HT are also desirable candidates. The 1A.1
QTL was located in the same region as the major QTL
previously reported on the distal part of 1AS (summarized
by Buerstmayr et al., 2009; Liu et al., 2009; Venske et al.,
2019). Jiang et al. (2007a,b) located an FHB SEV QTL from
the Chinese wheat line CJ9306 to position 27.2 Mb, and
GWAS by Zhu et al. (2020) similarly identified an FHB QTL
for IND from Chinese elite germplasm in the same region.
A recent study by Sari et al. (2018) of T. carthlicum cv.
Blackbird identified an important FHB QTL for INC, SEV and
IND in the region of 1AS that agrees well with the 1A.1.
The 1A.2 QTL colocalized with a QTL positioned at around
350 Mb for FHB severity and DON identified in Chinese elite
germplasm (Wu et al., 2019) and for FHB resistance based on
point inoculation in CIMMYT line C615 (Yi et al., 2018). In
our study, we found this QTL was also associated with FHB
incidence, index and severity. Within the AM panel of our
study, although the resistance allele of 1A.1 was not found
in Canadian cultivars, the 1A.2 occurred in several current
Canadian cultivars with improved FHB resistance, including
CDC Precision (Pozniak and Clarke, 2017b) and Brigade (Clarke
et al., 2009; Supplementary Table 3).

The 6A.1 QTL’s large effect on FHB resistance makes it
appealing despite a small undesirable influence on DTA and HT.
No major QTL clusters have been reported in a similar region as
6A.1, though Yi et al. (2018) reported a minor QTL in this region
detected from a susceptible wheat line in one environment, and
Lu et al. (2013) identified a minor QTL in the proximal 6A
region for both FHB resistance and plant height. Because the 6A.1
resistance haplotype is present in a large number of Canadian
durum wheat cultivars, including Brigade (Clarke et al., 2009),
Transcend (Singh et al., 2012), CDC Credence (Sari et al., 2018)
and CDC Precision (Pozniak and Clarke, 2017b; Supplementary
Table 3), it should be possible for Canadian breeding programs to
build on this resistance, though the effect of the QTL in Canadian
elite durum cultivars remains to be validated.

The 7A.3 QTL, located at 671 Mb, with its relatively large
effects on all FHB resistant traits without being associated with
plant height or flowering time also make it another good target
for breeding FHB resistance. Previous research identified a major
QTL for type II resistance based on point inoculation in the
vicinity of 7A.3 through the physical mapping of the SSRs
gwm276 and gwm262 to positions of 642.9 and 681.4 Mb (Semagn
et al., 2007; Buerstmayr et al., 2009). Wu et al. (2019) also
reported a QTL affecting DON accumulation in the same region
of elite Chinese germplasm, while Sari et al. (2018) reported QTL
for SEV and IND in the same region from the durum wheat
inbred line DT696.

From the durum AM panel in our study, 2A.2 located
in the same region as a native durum FHB resistance QTL
in previous research in cultivars Ben by Zhang et al. (2014)
and Joppa by Zhao et al. (2018). In addition, the QTL 2A.2
was also found consistently associated with DTA, suggesting it
plays a role in controlling flowering. In this durum AM panel,
the resistance haplotype of 2A.2 was found in DT696 (Sari
et al., 2018), an adapted source of FHB resistance in durum
wheat, as well as several Canadian cultivars with improved
FHB resistance derived from this line, including Brigade (Clarke
et al., 2009), Transcend (Singh et al., 2012) CDC Credence (Sari
et al., 2018), and CDC Precision (Pozniak and Clarke, 2017b;
Supplementary Table 3). Despite its association with DTA, the
effectiveness of the 2A.2 in native durum cultivars from Canada
and United States make it another good target to breed durum
wheat with improved FHB resistance.

QTL Co-located With Flowering Genes
The majority of the QTL identified from this AM panel were
found associated with flowering time and/or plant height. As
mentioned previously, the Notably, three QTL pairs, including
1A.3 and 1B.1, 2A.1 and 2B.1, and 5A.1 and 5B.2, were found
in syntenic regions of the A/B genome that harbor known
orthologous gene pairs controlling flower time. 1A.3 was in a
similar region of a major QTL found in United States winter
wheat cultivar NC-Neuse (Petersen et al., 2016, 2017). The
FLOWERING LOCUS T3-A1 (TaFT3-A1) gene that promotes
flowering was found physically mapped around 528.1 Mb of
1A in CS Ref 1.0 (Zikhali et al., 2017; International Wheat
Genome Sequencing Consortium [IWGSC], 2018), which is close
to the region of 1A.3. The major QTL 1B.1 located to the region
coinciding with a QTL of FHB resistance from the European
winter wheat Arina (Semagn et al., 2007; Buerstmayr et al., 2009;
Liu et al., 2009), as well as loci controlling DTA identified in
the recent durum wheat GWAS by Steiner et al. (2019b). This
QTL conferred a stable and large effect for INC, SEV, HT and
DTA. Recently, the photoperiod gene FLOWERING LOCUS T3-
B1 (TaFT3-B1) that promotes flowering time, was physically
identified at position 581 Mb of 1B (Zikhali et al., 2017), the same
region as 1B.1. The 1B.1 and 1A.3 QTL occur in syntenic region
of the genome, indicating the orthologous gene pair, TaFT3-
B1 and TaFT3-A1, as candidate genes underling the QTL effect
in these regions.

The 2A.1 QTL conferred main effects for INC, IND, DTA and
HT, physically positioned to around 27–31 Mb on chromosome
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2A. This location is very near to the photoperiod gene Ppd1A,
which has an important role in controlling flowering time and
height, indicating 2A.1 as candidate gene controlling the QTL.
Giancaspro et al. (2016) found a similar QTL positioned at
10 Mb on 2AS for FHB resistance in durum wheat, derived from
the introgression of FHB resistance from Sumai 3, but with no
report on its association with plant height. Gadaleta et al. (2019)
identified a wall-associated receptor-like kinase (WAK2) in this
region as the candidate gene for FHB resistance. Our study found
a 2B QTL, designated 2B.1 that colocalizes with Ppd1B located
in a syntenic region of 2A.1. This QTL contributed to INC, SEV,
IND, DTA and HT. Thus, our findings support the Ppd loci on
2AS and 2BS as candidate genes responsible for the observed
effects, although further studies with well stratified plant height
and FHB rating DTA are required in order to explore the factors
underlying these QTL.

Both the QTL 5A.1 on 5AL and 5B.2 on 5BL occur in syntenic
regions that harbor orthologs of the well-known vernalization
genes VRNA1 (at 585.1 Mb) and VRNB1 (at 613.0 Mb). 5A.1
and 5B.2 both conferred a stable effect for INC and IND, and
while 5B.2 also had a large effect of on DTA, 5A.1 had no effect
on DTA and only a minor effect on HT in one environment.
Sari et al. (2018) reported a major FHB resistance QTL from
the Canadian durum wheat line DT696 in the same region as
5A.1, also finding no DTA or HT QTL in this region. Xu et al.
(2020) found QTL located in the same regions as 5A.1 and 5B.2
in common wheat that controlled anther extrusion, heading time
and FHB resistance. There is potential that these vernalization
genes are responsible for the FHB resistance coming from these
regions, and that the VRNA1 gene has just a minor effect on
flowering time in durum wheat. The resistance haplotype of
5A.1 was found in Canadian durum cultivars including Brigade
(Clarke et al., 2009) and CDC Alloy (Pozniak and Clarke, 2017a;
Supplementary Table 3). Because of the presence of the resistant
haplotype in current durum cultivars, and the minor effect on
flowering time, we believe the VRNA1 region QTL from this
study and Sari et al. (2018) is a good target to improve FHB
resistance in durum wheat. However, there is still need for further
research to explore the mechanism of colocalization between
the vernalization genes and FHB resistance and their effect on
flowering in durum.

CONCLUSION

With genome wide association analysis we identified 31 QTL
for FHB resistance. This confirms the quantitative nature and
polygenic control of the FHB resistance and also signifies that
this durum AM panel contains a large amount of genetic
variation for FHB resistance loci. These QTL capture a large
amount of the major QTL reported for hexaploid and tetraploid
wheat which should facilitate improving FHB resistance in
durum wheat. Five QTL found primarily for FHB resistance,
including 1A.1, 1A.2, 5A.1, 6A.1, and 7A.3, could be used as
initial targets to improve resistance in durum wheat without
detrimental effects. Although 2A.2 is associated with DTA, the
resistant haplotype exists in several Canadian and United States

cultivars with improved FHB resistance, and we think that
due to its adaption to durum cultivars in North America it
is also a good target. The majority of these QTL identified
were associated with plant height and/or flowering time,
indicating that phenology, flowering and height genes formed
a complex network affecting FHB resistance in durum wheat.
Prior knowledge of the haplotypes of these genes in breeding
materials will provide an informed approach to stack these
genes and give breeders the ability to design a better strategy
to use these sources to improve FHB resistance. However,
more research is needed to identify the mechanism of the
trait associations, and truly determine whether pleiotropic
effects of same gene, linkage drag of resistant genes, and/or
disease escape due to flowering time and plant height are in
effect. Only by completely understanding these relationships,
can a better strategy, from genetic, genomics and breeding
perspectives be developed to significantly increase FHB resistance
in durum wheat. Finally, considering the attributes of QTL
identified in this study, including the large number of minor
effects, the varied expression across environments, and the
complex interaction with flowering time and height, we suggest
intercrossing the multiple sources of resistance. Then the progeny
should be selected using a multi-trait based, high-throughput
marker assisted selection approach that incorporates resistance,
flowering time and height loci, in combination with intensive
phenotyping, with the genotypes grouped by days to flower
and plant height, across multiple target environments, as the
most promising approach to develop durum wheat with a better
level of resistance.
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Eucalyptus grandis is one of the most important species for hardwood plantation
forestry around the world. At present, its commercial deployment is in decline because
of pests and pathogens such as Leptocybe invasa gall wasp (Lepto), and often co-
occurring fungal stem diseases such as Botryosphaeria dothidea and Teratosphaeria
zuluensis (BotryoTera). This study analyzed Lepto, BotryoTera, and stem diameter
growth in an E. grandis multi-environmental, genetic trial. The study was established
in three subtropical environments. Diameter growth and BotryoTera incidence scores
were assessed on 3,334 trees, and Lepto incidence was assessed on 4,463 trees
from 95 half-sib families. Using the Eucalyptus EUChip60K SNP chip, a subset of 964
trees from 93 half-sib families were genotyped with 14,347 informative SNP markers.
We employed single-step genomic BLUP (ssGBLUP) to estimate genetic parameters in
the genetic trial. Diameter and Lepto tolerance showed a positive genetic correlation
(0.78), while BotryoTera tolerance had a negative genetic correlation with diameter
growth (−0.38). The expected genetic gains for diameter growth and Lepto and
BotryoTera tolerance were 12.4, 10, and −3.4%, respectively. We propose a genomic
selection breeding strategy for E. grandis that addresses some of the present population
structure problems.

Keywords: ssGBLUP, genetic correlation, Eucalyptus grandis, Leptocybe invasa, Botryosphaeria dothidea,
Teratosphaeria zuluensis

INTRODUCTION

Fast-growing plantation forests are essential to the pulp, paper, and timber industries and the
emerging biorefinery and biomaterials industries (Perlack et al., 2005; Cetinkol et al., 2012; Devappa
et al., 2015; Stafford et al., 2020). The sustainability of many of these industries is dependent
on woody biomass from plantation-grown Eucalyptus trees. Eucalyptus species are adaptable,
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fast-growing, generally resilient to pests and pathogens, and have
the desired wood qualities for diverse wood products (Malan,
1993; Stafford et al., 2020). Volume growth and wood density are
essential measures for forest plantation productivity (Raymond,
2002). However, pest and pathogen challenges have increased
in severity in the past decades, posing a significant risk to
Eucalyptus plantation forestry productivity and sustainability
in subtropical regions (Wingfield et al., 2015). How to ensure
continued genetic gains for volume growth in the presence of
severe pest and pathogen challenges has become an essential
question for plantation species such as Eucalyptus grandis.

Leptocybe invasa Fisher & La Salle is one of the most
damaging insect pests of Eucalyptus species that affects growth
by forming galls on leaves and leaf petioles. The insect is native
to Queensland, Australia, known as the Blue Gum Chalcid
wasp (Hymenoptera: Eupholidea). It has spread across the
globe, infesting a wide range of commercially grown Eucalyptus
species and their hybrids, resulting in severe losses in young
plantations and nursery seedlings (Mendel et al., 2004; Nyeko
et al., 2010; Chang et al., 2012; da Silva et al., 2020). First
reported in the Mediterranean Basin and the Middle East in
2000 (Viggiani et al., 2000; Mendel et al., 2004), L. invasa
subsequently spread throughout countries in Africa, America,
and Asia (Nyeko, 2005; Wiley and Skelly, 2008; Prabhu, 2010;
Zhu et al., 2012). Two parasitoid species of L. invasa from
Australia, Quadrastichus mendeli and Selitrichodes kryceri, were
deployed as biological controls to manage severe infestation levels
in Eucalyptus plantations in Israel (Kim et al., 2008). Tracking the
introduction of L. invasa in South Africa, Q. mendeli was recently
discovered, and the biological control potential of L. invasa
in South African Eucalyptus plantations was investigated (Bush
et al., 2018). Another recently discovered parasitoid species of
L. invasa from Australia, S. neseri, was described and investigated
for its parasitism rates in South Africa, ranging from 9.7 to 71.8%
(Dittrich-Schroder et al., 2014).

Resistance-linked DNA markers for molecular breeding is
an alternative strategy to manage pest challenges. Towards this,
simple sequence repeat (SSR) markers have been identified that
jointly explained 3–37% of the variation of resistance in E. grandis
and were validated in E. tereticornis explaining 24–48% of the
variation of resistance (Zhang et al., 2018). Due to the significant
variation that exists within and between Eucalyptus species, there
is opportunity to breed for L. invasa tolerance (Mendel et al.,
2004; Thu et al., 2009; Durand et al., 2011; Sangtongpraow
et al., 2011; Dittrich-Schroder et al., 2012; Nugnes et al., 2015;
Zheng et al., 2016). A recent genome-wide association study in
an E. grandis breeding population identified candidate genomic
regions on chromosomes 3, 7, and 8 that contained putative
candidate genes for tolerance. These candidate genomic regions
explained ∼17.6% of the total phenotypic variation of L. invasa
tolerance (Mhoswa et al., 2020).

Teratosphaeria zuluensis, a fungal pathogen that causes
stem canker, previously known as Coniothyrium canker, is a
devastating stem disease of Eucalyptus species and is one of
the most severe pathogens of plantation-grown Eucalyptus spp.
(Wingfield et al., 1996; Crous et al., 2009; Aylward et al., 2019).
It was first recognized in South Africa in 1989 and described

in 1996 (Wingfield et al., 1996). T. zuluensis has been reported
on Eucalyptus spp. in Malawi, Mozambique and Zambia (Jimu
et al., 2015), Hawaii (Cortinas et al., 2004), Ethiopia (Gezahgne
et al., 2003), and Argentina and Vietnam (Gezahgne et al., 2004b).
Infections from T. zuluensis results in necrotic spots on green
branches and the main stem, giving a “cat-eye” appearance that
develops into large cankers on susceptible trees. T. zuluensis
infection reduces wood quality by penetrating the cambium
to form black kino filled pockets and may lead to tree death
(Wingfield et al., 1996; Gezahgne et al., 2003).

Botryosphaeria dothidea is also a devastating fungal pathogen
of eucalypt species affecting the stem. B. dothidea is known to
have endophytic characteristics with instances of opportunistic
latent infections (Smith et al., 1996; Slippers et al., 2009).
Species of the Botryosphaeriaceae family infect plants via natural
apertures (Bihon et al., 2011) and wounding (Epstein et al., 2008).
B. dothidea infection results in longitudinal cracks that penetrate
the bark into the xylem forming kino pockets in the wood,
and stem cankers and tip dieback (Smith et al., 1994). It infects
eucalypts in many countries including the Congo (Roux et al.,
2000), Australia (Burgess et al., 2019), South Africa (Smith et al.,
1994), Ethiopia (Gezahgne et al., 2004a), Venezuela (Mohali et al.,
2007), Colombia (Rodas et al., 2009), Uruguay (Perez et al., 2008),
and China (Chen et al., 2011). Field assessment of the two fungal
stem pathogens has revealed that the symptoms of B. dothidea
and T. zuluensis can be present separately or concurrently at
varying levels on trees in the population in the form of a fungal
stem disease complex.

In general, tree breeding strategies use pedigree information
to estimate genetic merit, often in trials with large numbers
of individuals in open-pollinated families. The availability of a
reference genome sequence of E. grandis (Myburg et al., 2014)
and the development of a robust single-nucleotide polymorphism
(SNP, EUChip60K) chip for high-throughput genotyping in
multiple eucalypt species (Silva-Junior et al., 2015) have created
opportunities for implementing new breeding strategies based on
the genomic prediction of breeding values. While conventional
pedigree relationships represent the average proportion of shared
alleles, SNP markers can track Mendelian segregation patterns
enabling the detection of unknown (cryptic) relationships and
more precise estimation of known relationships (Habier et al.,
2007; Hayes et al., 2009; Hill and Weir, 2010). However,
the genotyping of all individuals in large open-pollinated tree
breeding populations would be prohibitively expensive. Single-
step genomic (ssG)BLUP analysis is an attractive alternative
that blends the known pedigree of the entire population with
the genomic relationship matrix of a subset of genotyped
individuals (Legarra et al., 2009; Misztal et al., 2009; Aguilar et al.,
2010; Christensen and Lund, 2010). Thereby, ssGBLUP analysis
extends the benefits of applying of genomic selection to non-
genotyped individuals (Legarra et al., 2014), therefore allowing
for multivariate and univariate analysis (Guo et al., 2014) in
livestock (Lourenco et al., 2015; Ma et al., 2015) and forest trees
(Ratcliffe et al., 2017; Klapste et al., 2018, 2020; Cappa et al., 2019).

Improving forest plantation productivity requires recurrent
selection of multiple traits, such as growth, wood quality, and
tolerance to pests and pathogens. A multivariate analysis involves
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estimating genetic correlations between traits to understand their
correlated responses (Burdon, 1977). The correlated phenotypes
of growth and pest and disease traits are attributable to shared
genetic factors (pleiotropy) and/or linked genetic factors (linkage
disequilibrium) and their interrelationships with environment
factors (Falconer and Mackay, 1996). Being able to partition these
components will help improve breeding strategies for correlated
traits (Chen and Lubberstedt, 2010).

In this study, we measured breeding trials of E. grandis
composed of trees from three half-sib pedigree linked generations
and some unrelated families for diameter growth at breast
height, tolerance to stem disease caused by the co-occurrence of
B. dothidea and T. zuluensis (BotryoTera), and tolerance to leaf
gall caused by L. invasa (Lepto). The study aimed to obtain genetic
parameters and genetic gains for growth, pest, and pathogen
tolerance in this multi-generation breeding trial comparing
ABLUP (pedigree-based BLUP analysis) and ssGBLUP models.
We further investigated the additive genetic correlations and
genotype-by-environmental (G × E) interactions of diameter
growth and tolerance to Lepto and BotryoTera. Based on the
results, we discuss the utility of genomic selection in E. grandis
for simultaneous improvement of growth and tolerance to the gall
wasp and fungal stem disease.

MATERIALS AND METHODS

Breeding History and Phenotyping of the
Study Population
Eucalyptus grandis W. Hill ex Maiden was introduced to
South Africa in the early 1900s and included various government
breeding populations as a timber resource for the mining
industry. Private breeding programs only started in the early
1970s, initiated from government landrace breeding populations.
Breeding objectives for these landrace breeding populations
gradually shifted to target traits for pulp and paper products
rather than timber production in successive generations and trial
series (Figure 1). We had access to seed from two first-generation
selections from the 2nd trial series in this study population, with
32 selections from the 3rd trial series as our third-generation
families and 28 selections from the 4th trial series as our fourth-
generation families (Supplementary Table 1). Also included
in the study was 33 unrelated (no pedigree link) families as
controls, with seed sourced in the early 1990s from selections
in Swaziland. The 93 half-sib pedigree linked families and the
33 unrelated control families were planted across three sites
Mtunzini, Kwambonambi, and Nyalazi in KwaZulu Natal, a sub-
tropical region in South Africa (Figure 2 and Supplementary
Table 1). Families from the different generations were planted
together in the three trial sites. The experimental design was
a randomized complete block planted at single tree plots at 15
replicates per family. Field tolerance to Lepto was assessed at age
1 using a four-scale incidence score in which trees with a score of
4 shows no evidence of an attack on the leaf midrib or petiole, a
score of 3 shows evidence of an attack on the leaf midrib or petiole
without galls, and a score of 2 indicates trees with an attack on the
leaf midrib or petiole with galls. Trees with a score of 1 present a

lethal outcome from an attack on the leaf midrib or petiole with
galls (Figure 3). Field tolerance to BotryoTera was assessed at
age 3 using an incidence score in which a score of 6 represents
trees with no spots/cracks or redness and trees with a score 5
show symptoms of T. zuluensis spots with redness, whereas trees
with a score of 4 have B. dothidea cracks with redness. Trees
with a score of 3 shows symptoms with T. zuluensis spots and
B. dothidea cracks with redness, and a score of 2 represents trees
with heavy T. zuluensis spots, and B. dothidea cracks with redness,
and a score of 1 represents trees with heavy T. zuluensis spots and
B. dothidea cracks with redness and cankers (Figure 4). Diameter
growth at breast height (1.3 m over-bark) was measured at age 4.

Genotyping of the Study Population
DNA was extracted from leaves using the NucleoSpin DNA
extraction kit (Machery-Nagel, Germany). The Eucalyptus
(EUChip60K) SNP chip as described by Silva-Junior (Silva-Junior
et al., 2015) available from GeneSeek (Neogen, Lansing, MI,
United States) was used to genotype 964 trees across the families
and trials (Supplementary Table 1). Of the 95 families in the
trials, 93 contained a subset of 964 genotyped trees ranging from
2 to 24 trees per family. The two second-generation families
were not genotyped. An average of four trees per family were
genotyped of the unrelated families. For the third generation, 15
trees per family were genotyped, while in the fourth generation,
14 per family were genotyped. Of the 64,639 markers on the
SNP chip (Silva-Junior et al., 2015), there are a total of 14,347
informative SNP markers with GenTrain score ranging from
0.37 to 0.93. Retained markers had a call rate of above 90%
and a minor allele frequency above 0.05. The SNP genotypes
frequencies of the 14,347 markers were AA (0.307), GG (0.283),
AG (0.270), CC (0.068), AC (0.065), and 0.007 missing. The
number of SNP markers distributed on linkage groups ranged
from 1018 (Chromosome 1) to 1877 (Chromosome 10). The SNP
marker frequencies and distribution analysis were performed
with the synbreed 0.10-2 R package (Wimmer et al., 2012) and the
imputing of the missing SNP data based on allelic distribution,
assuming Hardy–Weinberg equilibrium.

Statistical Analyses
Mixed Model Analysis
Linear mixed models were fit to estimate variance components
and solve mixed model equations to obtain solutions for fixed and
random effects. The matrix notation for the linear mixed models
used is as follows:

y = Xβ+ Zu+ ε (1)

where y is a vector of phenotypes, X is the design matrix for the

fixed effects (site), β is the vector of the fixed effect coefficients
(intercept site), Z is an incidence matrix for the random effects
of individual trees, u is the vector of random effect coefficients
(genotype, genotype by site interaction, replication effect nested
in site effect), and ε is the vector of residual effect coefficients. The
expectations of y, u, and e are E

(
y
)
= Xβ , E (µ) = N

(
0, σ2

u
)
,

and E (ε) = 0 and the variances are Var
(
y
)
= V = ZGZ′ + R,

Var (ε) = R = N(0, Iσ2
e ), and Var (u) = G = Aσ2

u, respectively,
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FIGURE 1 | Historical overview of E. grandis breeding in South Africa, including a transition from government to private breeding and introduction of major pest and
pathogens. The trial series timeline, as well as the generational timeline, are shown. Selection strategies are noted for each trial series, shifting from timber to pulp
and paper related traits, as well as pest and disease tolerance. Selection refers to the selection of phenotyped individuals based on their breeding values, whereas
evaluation refers to the selection of individuals based on visual screening without breeding values.

where A is the relationship matrix of the random effects, σ2
ε is

the variance associated with the residuals, and σ2
u is the variance

associated with the random effects. The assumptions of residual
matrix R was relaxed to have a heterogeneous error variance

across the environments. Similarly, the assumption of the G
matrix was relaxed to model full G× E and heterogeneous genetic
variances at each site (s + 1 variance parameters), where s is the
number of environments (Isik et al., 2017). Empirical breeding
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FIGURE 2 | Geographical representation of the trial sites in the KwaZulu Natal province, South Africa. The region has a sub-tropical climate. The distance (straight
line) between Mtunzini and Nyalazi is 112 km. The details of the environmental conditions are in Supplementary Table 1. Darker shades of green indicate nature
reserves.

value prediction for the half-sibs was performed by solving the
mixed model equations.[

X′X X′Z
Z′X Z′Z+A−1λ

] [
β

u

]
=

[
X′y
Z′y

]
(2)

where A−1 is the inverted additive genetic relationship matrix
derived from the pedigree and λ =

σ2
e

σ2
u

is the shrinkage factor.
The genomic relationship matrix G from the genotyped trees was
computed as described in VanRaden (2008):

G=
(Z−P) (Z−P)′

2
∑

pi
(
1−pi

) (3)

where Z and P are two matrices of dimension n (individuals)× p
(markers). The base pair calls were transformed into gene content
values of the minor alleles at each SNP loci in each individual
in matrix Z, with elements −1 (homozygote major allele), 0
(heterozygote), and 1 (homozygote minor allele). The frequencies
of the genotypes were 0.584, 0.338, and 0.078, respectively. The
allele frequencies in matrix P are presented as 2(pi−0.5), where pi
is the observed allele frequency at the marker i for all individuals.

The 2
∑

pi
(
1−pi

)
is the variance of alleles summed across all the

loci. A ssGBLUP model was fitted using a blended relationship
(H) matrix, incorporating the (G) matrix of genotyped trees that
are linked to the non-genotyped trees by the half-sib pedigree (A)
matrix (Legarra et al., 2009; Aguilar et al., 2010; Christensen and
Lund, 2010).

The H matrix used in the ssGBLUP was formulated as follows:
where u is a vector of genetic effects with variances Var (u) =
Aσ2

u. Within the genetic effects (u), there are non-genotyped and
(u1) and genotyped (u2) individuals partitioned in the A matrix
as:

A=
[
A11 A12
A21 A22

]
(4)

where A11 is the relationship matrix of non-genotyped
individuals, A22 is the relationship matrix for the genotyped
individuals, and A12 and its transpose A21 are the covariances
between the genotyped non-genotyped individuals. We then
replaced the u2 genetic effects with the pedigree relationship of
A22 with their G matrix as constructed in Eq. 3. The relationship
between the non-genotyped and (u1) and genotyped (u2)
individuals in A12 and A21 is then adjusted by the G matrix via
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FIGURE 3 | Symptoms and incidence scores of Leptocybe invasa (Lepto). (A) Score 4 – No evidence of an attack on the leaf midrib or petiole, (B) Score 3 –
Evidence of attack on the leaf midrib or petiole without galls (indicated by red arrows), (C) Score 2 – Evidence of attack on the leaf midrib or petiole with galls, and
(D) Score 1 – Evidence of a lethal outcome of an attack on the leaf midrib or petiole with galls.

the pedigree relationship of all other individuals in the H matrix
(Legarra et al., 2009):

H=
[

A11+A12A−1
22 (G−A22)A−1

22 A21 A12A−1
22 G

GA−1
22 A21 G

]
(5)

The upper left corner of the H matrix is the variance of the u1
individuals, with Var (u1) = [A11A12A−1

22 (G−A22)A−1
22 A21]σ

2
A,

and Var (u2) = Gσ2
A and Cov (u1, u2) = A12A−1

22 Gσ2
A. The

inverse of the H matrix is:

H−1
= A−1

+

[
0 0
0 G−1

−A−1
22

]
(6)

Variance components from the ABLUP and ssGBLUP were
estimated along with the heritability for diameter growth and
Lepto and BotryoTera tolerance across and within the three sites.

Multivariate Analysis
A multivariate linear mixed model was fitted to estimate additive
genetic correlations between three pairs of traits as described in
Isik et al. (2017), following the multivariate model general design:

yn×d=Xn×(p+1)β(p+1)×d+Zn×rur×d+εn×d (7)

where n is the number of rows of individuals and d is the
number of dependent variables (traits). The design matrix X
has the dimensions n = (p1), where p is the number of fixed
estimators, which are replication nested in location for the traits,
and the additional column is added for the intercept. β is the
matrix of coefficients of fixed predictor effects to be estimated
with dimensions

(
p1
)
= d. The rows of β correspond to predictor

variables, and the columns are response variables. The design
matrix of Z has dimensions n = r, where r is the number of
random effects (individual trees) per trait, and u is a r = d matrix
of the random effects.

The G and R variance–covariance matrices of the multivariate
model were designed with the variances for the three traits on
the diagonal and the covariances between the traits on the off-
diagonals:

G = A⊗

 σ2
A11 σA12 σA13

σA21 σ2
A22 σA23

σA31 σA32 σ2
A33

 (8)

R = Im ⊗

 σ2
ε11 σε12 σε13

σε21 σ2
ε22 σε23

σε31 σε32 σ2
ε33

 (9)
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FIGURE 4 | Symptoms and incidence scores for Botryosphaeria/Teratosphaeria stem disease complex (BotryoTera). (A) A score of 6 represents trees with no
spots/cracks or redness. (B) A score of 5 represents trees with T. zuluensis spots with redness. (C) A score of 4 is given for trees with B. dothidea cracks with
redness. (D) A score of 3 shows a tree with T. zuluensis spots and B. dothidea cracks with redness. (E) A score of 2 represents trees with heavy T. zuluensis spots
and B. dothidea cracks with redness. (F) A score of 1 represents trees with heavy T. zuluensis spots and B. dothidea cracks with redness and cankers.

where the G matrix is the direct product of the A matrix
(pedigree relationship) for the ABLUP model and substituted
with the H matrix for the ssGBLUP model with an unstructured,
heterogeneous variance and covariance structure, where each
environment has a unique genetic variance, and each pair of the
environments has a unique covariance, with an s (s1) 2 variance
parameter (Isik et al., 2017). The R matrix is the direct product
of the identity matrix (Im) with m dimensions, m is the number
of genotypes with variance σ2

ε1for diameter growth, σ2
ε2 for

BotryoTera, and σ2
ε3 for Lepto and their covariances nested within.

The construction of the expected additive (A matrix) and
the realized genomic (G) was calculated using the package
synbreed 0.10-2 (Wimmer et al., 2012) in the R environment
v3.5.3. The blended genetic relationships and its inverse were

obtained using scripts according to Isik et al. (2017). All the
statistical models were performed using ASReml software v4.1
(Gilmour et al., 2015).

Expected Direct and Indirect Genetic Gains
The direct genetic gains for diameter growth and Lepto and
BotryoTera tolerance were calculated from the ABLUP and
ssGBLUP models breeding value predictions. The selection
differential was based on the top 10% of individuals for direct
selection. The indirect responses of the remaining traits were
calculated based on the ranking of the direct selections. The
percentage expected genetic gains were calculated as the fraction
of the selection differential over the population mean.
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RESULTS

Genetic Parameters
To assess the increased accuracy of the ssGBLUP model,
we compared the heritability estimates from ssGBLUP with
those from ABLUP analysis. The ssGBLUP model generally
produced lower heritability estimates compared to the ABLUP
model for the three sites (Table 1). The exception was the
heritability estimates for BotryoTera tolerance in Kwambonambi
and Nyalazi, which were higher for ssGBLUP (0.45 vs. 0.29
and 0.11 vs. 0.08, respectively). Overall, the Kwambonambi site
produced the highest heritability values ranging from 0.29 to
0.63 (ABLUP) and from 0.45 to 0.70 (ssGBLUP) across the
traits (Table 1). In contrast, the heritability estimates for Lepto
tolerance from the ABLUP and ssGBLUP models were the highest
at 0.71 and second highest at 0.38, respectively, in Nyalazi, while
the estimates for diameter growth and BotryoTera tolerance at the
Nyalazi site were reasonably low, ranging from 0.07 to 0.11 for the
ABLUP and ssGBLUP models, respectively (Table 1). The overall
heritability estimates across sites were higher for the ABLUP
model with Lepto tolerance moderately high at 0.54, diameter

TABLE 1 | Site-specific variance components and genetic parameters estimated
using the ABLUP and ssGBLUP mixed models for diameter growth, BotryoTera
and Lepto tolerance.

σ2
u (se) σ2

e (se) h2(se)

Diameter

ABLUP

Mtunzini 6.655 (0.281) 2.360 (0.655) 0.36 (0.092)

Kwambonambi 13.193 (0.662) 8.250 (1.945) 0.64 (0.129)

Nyalazi 11.928 (0.547) 0.884 (0.579) 0.07 (0.048)

ssGBLUP

Mtunzini 6.670 (0.277) 1.620 (0.504) 0.24 (0.072)

Kwambonambi 13.592 (0.682) 7.852 (1.487) 0.58 (0.092)

Nyalazi 11.958 (0.552) 0.779 (0.582) 0.07 (0.048)

BotryoTera

ABLUP

Mtunzini 1.450 (0.055) 0.424 (0.115) 0.29 (0.0752)

Kwambonambi 2.334 (0.099) 0.115 (0.203) 0.30 (0.0823)

Nyalazi 1.411 (0.059) 0.109 (0.056) 0.08 (0.0393)

ssGBLUP

Mtunzini 1.447 (0.053) 0.222 (0.077) 0.15 (0.052)

Kwambonambi 2.404 (0.110) 1.088 (0.227) 0.45 (0.083)

Nyalazi 1.418 (0.060) 0.154 (0.073) 0.11 (0.051)

Lepto

ABLUP

Mtunzini 0.454 (0.017) 0.161 (0.039) 0.36 (0.080)

Kwambonambi 0.762 (0.035) 0.524 (0.105) 0.70 (0.118)

Nyalazi 0.764 (0.037) 0.542 (0.112) 0.71 (0.125)

ssGBLUP

Mtunzini 0.452 (0.016) 0.110 (0.026) 0.24 (0.055)

Kwambonambi 0.770 (0.033) 0.538 (0.070) 0.70 (0.072)

Nyalazi 0.744 (0.031) 0.281 (0.049) 0.38 (0.059)

The residual variance
(
σ2

e
)
, additive genetic variance

(
σ2

u
)
, narrow-sense heritability

(h2), and their standard errors (se) are shown.

growth at 0.33, and BotryoTera tolerance at 0.23 (Table 2).
The heritability estimates with the ssGBLUP across sites were
lower with Lepto tolerance at 0.36, diameter growth at 0.25, and
BotryoTera tolerance at 0.23 (Table 2). The heritability estimates
for ssGBLUP may be more accurate due to the blended pedigree
relationship matrix increased precision.

ssGBLUP Additive and Type-B Genetic
Correlations
The additive genetic correlations of diameter growth and Lepto
tolerance estimated with the ssGBLUP model was high at 0.78
(Table 3, Eq. 7). In contrast, the additive genetic correlation
of diameter growth and BotryoTera tolerance was moderate at
−0.38. The additive genetic correlation for BotryoTera and Lepto
tolerance was also moderate at −0.47 (Table 3). These results
suggest that tandem improvement of diameter growth and Lepto
tolerance is possible, but they predict a negative response in
BotryoTera tolerance, which presents a challenge to breeders.
The overall Type-B genetic correlation (Eq. 7) was high, ranging
from 0.77 to 0.81 for the three traits associated with small
standard errors (Table 4), suggesting low G × E interactions
across the sites.

Trait Performance Across Site and
Generations
Diameter growth and the Lepto incidence scores resembled
a normal distribution (Supplementary Figure 1). BotryoTera
incidence scores had a high frequency of score 6, representing

TABLE 2 | Overall variance components and genetic parameters across the three
sites for solving ABLUP and ssGBLUP mixed models for diameter growth,
BotryoTera, and Lepto tolerance.

σ2
u (se) σ2

e (se) h2(se)

ABLUP

Diameter 10.581 (0.314) 3.450 (0.720) 0.33 (0.063)

BotryoTera 1.732 (0.044) 0.407 (0.092) 0.24 (0.051)

Lepto 0.659 (0.021) 0.357 (0.059) 0.54 (0.077)

ssGBLUP

Diameter 10.729 (0.313) 2.733 (0.469) 0.26 (0.040)

BotryoTera 1.755 (0.046) 0.396 (0.071) 0.23 (0.038)

Lepto 0.655 (0.017) 0.238 (0.024) 0.36 (0.032)

The residual variance
(
σ2

e
)
, additive genetic variance

(
σ2

u
)
, narrow-sense heritability

(h2), and its standard error (se) are presented.

TABLE 3 | Additive genetic correlations (rg) of diameter growth, BotryoTera, and
Lepto tolerance based on ABLUP and ssGBLUP models with standard errors in
the parenthesis.

BotryoTera Lepto

ABLUP

Diameter −0.46 (0.116) 0.81 (0.054)

BotryoTera −0.47 (0.111)

ssGBLUP

Diameter −0.38 (0.106) 0.78 (0.055)

BotryoTera −0.47 (0.089)
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TABLE 4 | Overall Type-B genetic correlation (rB) across sites for diameter
growth, BotryoTera, and Lepto tolerance based on ABLUP and ssGBLUP models
with standard errors in the parenthesis.

rB (se)

ABLUP

Diameter 0.90 (0.096)

BotryoTera 0.99 (0.000)

Lepto 0.88 (0.055)

ssGBLUP

Diameter 0.80 (0.140)

BotryoTera 0.81 (0.147)

Lepto 0.77 (0.072)

uninfected stems, and Kwambonambi has a high frequency of
score 3 (Supplementary Figure 1). The latter may be ascribed to
the second-generation families’ higher susceptibility (Figure 5B
and Supplementary Figure 2). The Kwambonambi site had the
lowest mean BotryoTera tolerance compared to the Nyalazi and
Mtunzini (Figure 5E). The average diameter growth improved
by 3.2% from the third to the fourth generation (Figure 5A),
whereas Lepto tolerance improved by 3.6% (Figure 5C). The
improvement in diameter growth is driven by recurrent selection
over the generations with Lepto tolerance benefiting from

its strong additive genetic correlation with diameter growth
(Table 3). There was a 13.3% improvement of BotryoTera
tolerance from the second to the third generation; however, it was
unchanged from the third to the fourth generation (Figure 5B).
The apparent absence in genetic gain for BotryoTera tolerance
from the third to the fourth generation is in part due to the
moderately negative genetic correlation with diameter growth
(Table 3). The above results suggest that a revised breeding
strategy is needed to improve the three traits simultaneously.

Correlated Response Based on
ssGBLUP Breeding Values
The direct genetic gains estimated for diameter growth and Lepto
tolerance were 12.4% and 24.7%, respectively, with BotryoTera at
9.8% (Table 5). There is an indirect loss of 3.4% in BotryoTera
tolerance and a gain of 10.0% in Lepto tolerance when selecting
for diameter growth. Direct selection for BotryoTera tolerance
would result in an expected indirect loss of 5.6% for diameter
growth and 6.5% for Lepto tolerance. However, direct selection
of Lepto tolerance would result in an expected gain of 6.0%
for diameter growth and loss of 3.8% in BotryoTera tolerance
(Table 5). Together, these results illustrate the challenge of
achieving genetic gains for all three of these traits and the need
for customized breeding strategies to deal with this challenge.

FIGURE 5 | Marginal trait means with error bars indicating the 95% confidence interval. (A) Mean diameter growth (cm) for families in the three sites. (B) The mean
Lepto tolerance score for families in the three sites. (C) The mean BotryoTera tolerance score for families in the three sites. (D) Mean diameter growth (cm) for
families in the three generations. (E) The mean Lepto tolerance score for families in the three generations. (F) The mean BotryoTera tolerance score for families in the
three generations. Student t-test was performed to assess the significant difference between the means, p < 0.05 (*) and p < 0.001 (***).
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TABLE 5 | Expected genetic gains (%) based on the top 10% selected individuals
in the population for diameter growth, BotryoTera, Lepto tolerance, and the
indirect response in the expected genetic gains of the paired traits.

Diameter BotryoTera Lepto

ABLUP

Direct response 15.1 8.9 32.2

Indirect response Diameter 15.1 −3.5 9.9

BotryoTera −6.1 9.3 −8.0

Lepto 5.9 −1.9 26.4

ssGBLUP

Direct response 12.4 9.8 24.7

Indirect response Diameter 12.4 −3.4 10.0

BotryoTera −5.6 10.1 −6.5

Lepto 6.0 −3.8 20.9

The bold diagonals are the direct response with the off-diagonal as the
indirect responses.

DISCUSSION

Pest and pathogens are significant risk factors in forest
plantations (Wingfield et al., 2015). These risk factors are
highlighted in African agroforestry systems affecting indigenous
and natural forests (Graziosi et al., 2020). Mitigation of these
risk factors will require recognizing the parallels and synergies
in management methods between pest and pathogen studies
(Jactel et al., 2020) and integrating system genetic and systems
biology (Naidoo et al., 2019) particularly in this genomic era
(Naidoo et al., 2014). The continued improvement of economic
traits such as volume growth, density, and pulp yield in the
context of pest and pathogen challenges is vital. Here, we
combined phenotypic data for a large half-sib breeding trial
with genotypic data for a subset of siblings in a single-step
genomic BLUP approach to estimate genetic parameters and
response to selection for diameter growth and BotryoTera
and Lepto tolerance in E. grandis breeding population. We
also proposed a practical genomic selection breeding strategy
that is likely to improve all three traits in E. grandis.
One of the study strengths was the availability of replicated
trials with BotryoTera infections and Lepto infestation across
all three sites.

Furthermore, the study benefited from planting pedigree-
linked families from three successive generations in the same
space and time. Therefore, the trials provided an opportunity
to evaluate the outcomes of three different artificial selection
regimes applied in successive generations. A limitation was
the inability to score B. dothidea and T. zuluensis infections
separately, which we mitigated by developing a combined
phenotypic score (Figure 3). Diameter growth and BotryoTera
and Lepto tolerance had moderate heritability estimates (0.25–
0.36, Table 2). Diameter growth and Lepto tolerance had a
strong positive additive genetic correlation. However, both were
negatively correlated with BotryoTera tolerance, though the
correlations were not strong. This presents a challenge to achieve
genetic gains in all three traits simultaneously.

Genetic Parameters for Diameter Growth
and Lepto and BotryoTera Tolerance
Coefficients of relationship from pedigree data are expectations
and do not represent the actual genome shared between
relatives, estimated from various allelic frequency parameters
(Forni et al., 2011). Forest trees with deep full-sib pedigrees
have estimated coefficients of relationship that are much
closer to the actual genetic relationships (Batholome et al.,
2016; Chen et al., 2018). However, more precise coefficients
of relationship are estimated using DNA markers such
as SNPs (Habier et al., 2007; Hayes et al., 2009). When
expected genetic relationships are combined with the
genome estimated relationships, this precision can be
extrapolated to the A matrix with the blended H matrix
used in ssGBLUP analyses (Legarra et al., 2009; Aguilar et al.,
2010). Half-sib pedigree relationships do not include cryptic
genetic relationships in the population, in some instances
leading to biased estimation of additive genetic variances
(Ratcliffe et al., 2017).

In this study, we generally observed lower heritability
estimates from ssGBLUP compared to ABLUP (Table 2).
Lower additive genetic correlation estimates were also observed
for ssGBLUP compared to ABLUP (Table 3). Luo et al.
(2014) presented heritability estimates of Lepto tolerance in
E. camaldulensis and E. tereticornis breeding populations in
China of 0.54 and 0.52, respectively. da Silva et al. (2020),
also presented heritability estimated from multiple Eucalyptus
species ranging from 0.27 to 0.68, with E. grandis at 0.58. These
heritability estimates are similar to what we obtained in our study
at 0.54 for E. grandis (Table 2). The Lepto tolerance scores in the
study by Luo et al. (2014) were based on the proportion of the
canopy affected, with a score of 0 indicating no symptoms on the
canopy and a score of 4 meaning greater than 75% of the canopy
affected (Thu et al., 2009).

In contrast, our scoring system was not based on canopy
proportions, but rather the severity of gall formation with
a score of 4 indicating no evidence of gall formation and
a score of 1 indicating lethal outcome from gall formation
in both mid-ribs and petioles of the leaves (Figure 3). Luo
et al. (2014) reported a moderately negative genetic correlation
between tree height (at 9 months) and Lepto susceptibility in
E. camaldulensis at −0.33 and for E. tereticornis at −0.47.
Due to the inverted scores used in our study, we report
a positive genetic correlation (0.78) with diameter growth
at 48 months (Table 3). These results suggest that vigorous
tree growth is positively related to tolerance to L. invasa.
Plant growth regulators are well-characterized phytohormones
involved in influencing plant development and abiotic stress
responses (Wani et al., 2016) and pest tolerance (Harun-or-
Rashid and Chung, 2017). There is evidence to suggest that
the microbiome of the maternal environment may affect the
performance of their progeny and tolerance to pathogens
in E. grandis (Vivas et al., 2017). A study to characterize
the relationship of maternal and/or progeny microbiomes,
phytohormones, and their interactions, on superior tree growth
and health, is warranted.
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Genotype-by-Environment Interaction
and Trait Performance
The mean annual precipitation of the three sites in the
subtropical region of South Africa decreases from South to North,
tracking the increase in the mean annual temperature maximum
(Figure 2). Therefore, Nyalazi in the North is on average warmer
and drier compared to Mtunzini in the South, which is on
average colder and wetter, whereas Kwambonambi has mid-
ranged environmental conditions (Supplementary Table 1). The
pairwise Type-B genetic correlation for diameter growth and
Lepto and BotryoTera tolerance across the sites ranged from
0.77 to 0.81 (Table 4), indicating low G × E interaction.
The Nyalazi trial was surrounded by a commercial stand of
E. grandis × E. camaldulensis (G × C) clone that was highly
susceptible to L. invasa. The G × C hybrid genotype has been
shown in the literature to be susceptible to L. invasa (Thu et al.,
2009; Luo et al., 2014). The G × C clone planted in the Nyalazi
site had an increased infestation of L. invasa translating into the
high frequency of Lepto tolerance score 2 in the trial and much
lower frequency of Lepto tolerance score 3 and 4 (Supplementary
Figure 1). In Mtunzini, there was also an increased frequency of
Lepto score 2; however, the trial was surrounded by a tolerant
E. grandis × E. urophylla (G × U) clone (Supplementary
Figure 1). There are above-average actively growing shoots
in Mtunzini due to its favorable environmental conditions
(Supplementary Table 1). These actively growing shoots are
targets for L. invasa infestation. The heritability estimates of Lepto
tolerance in Mtunzini and Nyalazi were adjusted lower from 0.35
to 0.24 and 0.71 to 0.38, respectively, by the ssGBLUP model
(Table 1). It is not clear why the heritability correction in Nyalazi
was so significant compared to that in Mtunzini.

In Kwambonambi, the mid-range environmental conditions
to Mtunzini and Nyalazi, which was also surrounded by
a tolerant G × U clone, Lepto tolerance showed similar
heritability estimates between ABLUP (0.69) and ssGBLUP (0.70)
and for diameter growth ABLUP (0.63) and ssGBLUP (0.58)
(Table 1). The similar heritability estimates in Kwambonambi
of diameter growth and Lepto tolerance may result from
their relatively high positive additive genetic correlation. The
estimated marginal means for diameter growth and Lepto
tolerance in Kwambonambi further support this relationship
(Figures 5D,F).

There is an increased incidence of BotryoTera tolerance score
3 in Kwambonambi (Supplementary Figure 1), resulting from
the increased susceptibility from the second-generation families
(Supplementary Figure 2). BotryoTera appeared as a fungal
stem disease in the mid- to late 1990s, which means that
the first-generation parents (second-generation families) were
selected in the absence of the BotryoTera disease explaining
the higher susceptibility of the second generation families. The
environmental conditions at the Kwambonambi site are optimal
for diameter growth, and, due to the negative correlation with
BotryoTera tolerance, there was high susceptibility to BotryoTera
in Kwambonambi (Figure 5E). Diameter growth and Lepto and
BotryoTera tolerance in the Kwambonambi site, which is the mid-
range of Nyalazi and Mtunzini environmental conditions, seem

to reflect the trait performances, corresponding to their additive
genetic correlation.

Generational Performance for Diameter
Growth and Lepto and BotryoTera
Tolerance
Recurrent selection in tree breeding ensures the gradual
improvement of target economic traits over generations. Such
efforts are under threat from pest and pathogen pressures as well
as climate change (Wingfield et al., 2015). Reversing the decline
of E. grandis in the subtropical region of South Africa due to
L. invasa gall wasp and the co-occurrence of B. dothidea and
T. zuluensis fungal stem disease is vital. BotryoTera fungal stem
disease was discovered and described in South Africa in the early
to mid-1990s (Smith et al., 1994; Wingfield et al., 1996). This
meant that selections or evaluations in the government landrace
breeding populations did not involve BotryoTera tolerance until
the first generation in the 2nd trial series and onwards in the
private breeding population (Figure 1), evidenced by the high
BotryoTera incidence score 3 (Supplementary Figure 2) of the
second-generation families in particular in the Kwambonambi
site (Supplementary Figure 1). Evaluation for BotryoTera
tolerance in the second generation resulted in the increased
tolerance in the third generation and maintained in the fourth
generation (Figure 5B). When looking at the high frequency
of BotryoTera score 6 in Supplementary Figures 1, 2, it does
suggest that the evaluation strategy has had a limited role to
play in improving BotryoTera tolerance, because this trait seems
to have plateaued in the last generations. The limitation of the
evaluation strategy for BotryoTera tolerance is that selection was
only performed within families already selected for diameter
growth and further compounded by the fact that BotryoTera
tolerance is negatively correlated with diameter growth.

Leptocybe invasa was reported in South Africa in 2007 (Neser
et al., 2007), coinciding with the third generation tested in the 4th
trial series (Figure 1). Leptocybe appeared when the trial series
was at age 5. The canopies were already inaccessible for scoring
and selecting Lepto tolerance for the fourth generation (Figure 1).
The indirect improvement of Lepto tolerance from the third to
the fourth generation is due to the strong positive additive genetic
correlation with diameter growth (Figure 5C). This study showed
that the recurrent selection strategy successfully improved
diameter growth and indirectly improved Lepto tolerance, with
limited impact on BotryoTera tolerance.

Proposed Selection Strategies for
Diameter Growth and Lepto and
BotryoTera Tolerance
Eucalypts, including E. grandis, are currently experiencing
a decline, mainly due to pest and pathogen pressures for
commercial deployment and breeding populations such as
Puccinia psidii (Silva et al., 2013), L. invasa (da Silva et al., 2020),
T. zuluensis (Wingfield et al., 1996; Aylward et al., 2019), and
B. dothidea (Smith et al., 1996; Marsberg et al., 2017). This study
offers opportunities to revise historical evaluation and selection
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strategies to improve diameter growth and BotryoTera and Lepto
tolerance. Testing all these pedigree-linked E. grandis generations
in the same space and time has highlighted the successes and
challenges of traditional evaluation and selection strategies and
their direct and indirect impact on economic traits over the
generations as new pests and pathogens emerge. First, pests and
pathogens may appear during a growth stage within a breeding
cycle when trees cannot be effectively scored and selected.
Second, pests and pathogens affect different parts of the tree,
young leaves (early in the growth cycles), and stem (later in the
growth cycles); therefore, the correct timing of scoring is crucial.
Third, although present, pests and pathogens may differ in their
infestation and infection severity due to many factors, leading
to highly varying levels of challenge and incomplete expression
of tolerance or susceptibility. Fourth, the emergence of pests
and pathogens sometimes may reveal inadequacies of already
established selection strategies, thereby requiring revision, as is
the case for BotryoTera.

A multivariate approach to deal with these challenges requires
an understanding of the traits additive genetic correlations.
Such a strategy would require turning over a generation in
which all three traits were measured on each tree to estimate
their between- and within-family breeding values. The challenge
with field trials is that there are often difficulties to score pest
and pathogen tolerance accurately, as discussed. Breeders may
adopt a multivariate approach to primarily select for diameter
growth and indirectly for Lepto tolerance and then only consider

selecting BotryoTera tolerant individuals from high ranked
families (Figure 6A).

Circumventing field trials and the inconsistency of pest
infestations or pathogen infections, tree breeders may consider
a proposed serial selection strategy with genomic selection and
controlled pollination in potted trials (Figure 6B). This approach
would require the integration of nursery and field phenotypes
to develop a more accurate GS model. Such an approach was
demonstrated in Populus deltoids for tree height to accelerating
its breeding strategies (Alves et al., 2020). The proposed GS
approach in this involves challenging potted families with
L. invasa and scoring Lepto tolerance 6 months after potting
and then advancing the most tolerant individuals across families
for BotryoTera tolerance scoring at 12 months after potting.
The best individuals from the top Lepto and BotryoTera tolerant
families are then cloned to validate the pest and pathogen
tolerance (Set A).

Meanwhile, the second set of ramets from the same clones
(Set B) is planted in field trials to validate the expected correlated
diameter growth response, while the third set of ramets (Set C)
are subjected to flower induction to produce control-pollinated
next-generation families. The clonal phenotypic data can be
used together with genome-wide genotyping to train a genomic
selection model for implementation (pink arrows in Figure 6B).
Genomic estimated breeding values and genomic relationship
matrices will inform the control pollination (diallel in the potted
orchard) (Munoz et al., 2014; Li et al., 2019). This approach

FIGURE 6 | Proposed breeding strategies to improve diameter growth under pest and pathogen pressures. (A) Traditional field-based multivariate selection strategy
whereby diameter growth (genetically correlated with Lepto tolerance) is the target trait. BotryoTera tolerance selections are made within top-ranked diameter growth
families to produce open-pollinated (OP) families for the next generation. (B) Proposed non-field-based serial selection strategy in which Lepto tolerance and
BotryoTera tolerance are scored after successive (6 and 12 months) controlled infestation and inoculations, respectively. Candidate seedlings from within these
tolerant families are cloned and used for flower induction (Set C) and generation of CP families for the next generation. Another set of candidate clones is used to
validate the Lepto and BotryoTera tolerance (Set A). The third set is then planted in field clonal trials for diameter growth (Set B). Accurate phenotypes from the clonal
material and genome-wide genotyping of the clones create an opportunity to train a genomic selection model that can reduce (pink arrows) the need for expensive
pest and disease phenotyping in the next generation.
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should increase the selection intensity and reduce the need for
costly controlled pest and pathogen challenges, thereby fast-
tracking clonal tests and producing next-generation control-
pollinated (CP) seedlings (with breeding value predictions for
all three traits) to improve gains per unit time over what
can be achieved in a traditional open-pollinated (OP) field
testing approach.

CONCLUSION

Diameter growth and pest and pathogen tolerance are essential
components of sustainable plantation forestry. Therefore, a
multivariate selection approach informed by their additive
genetic correlations is key to improving genetic gains in these
traits simultaneously. This study shows that evaluation and
selection strategies implemented for E. grandis over the past
three generations have succeeded in improving diameter growth
and indirectly Lepto tolerance, while limited gain was achieved
for BotryoTera tolerance. We proposed an alternative to the
traditional field-based multivariate strategy, which has many
challenges mainly limited by the reliability of assessing pest
infestations and pathogen infections in the field. The proposed
serial genomic selection strategy involves controlled infestations
with Lepto and inoculations with BotryoTera of cloned families
in pots to achieve validated and accurate tolerance scores
and diameter growth measurements from clonal field trials.
This approach will ensure a reliable multivariate genomic
selection training and development to exploit the additive
genetic correlations void phenotyping challenges with field
trials. The proposed genomic selection strategy, possibly via
ssGBLUP (Misztal et al., 2013), would be a feasible approach to
improve diameter growth and Lepto and BotryoTera tolerance in
E. grandis.
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Spot blotch (SB) disease causes significant yield loss in wheat production in the warm
and humid regions of the eastern Gangetic plains (EGP) of South Asia (SA). Most of the
cultivated varieties in the eastern part of SA are affected by SB under favorable climatic
conditions. To understand the nature of SB resistance and map the underlying resistant
loci effective in SA, two bi-parental mapping populations were evaluated for 3 years,
i.e., 2013–2015 for the BARTAI × CIANO T79 population (denoted as BC) and 2014–
2016 for the CASCABEL × CIANO T79 population (CC), at Varanasi, Uttar Pradesh,
India. DArTSeq genotyping-by-sequencing (GBS) platform was used for genotyping
of the populations. Distribution of disease reaction of genotypes in both populations
was continuous, revealing the quantitative nature of resistance. Significant “genotype,”
“year,” and “genotype × year” interactions for SB were observed. Linkage map with the
genome coverage of 8,598.3 and 9,024.7 cM in the BC and CC population, respectively,
was observed. Two quantitative trait loci (QTLs) were detected on chromosomes 1A
and 4D in the BC population with an average contribution of 4.01 and 12.23% of
the total phenotypic variation (PV), respectively. Seven stable QTLs were detected on
chromosomes 1B, 5A, 5B, 6A, 7A, and 7B in the CC population explaining 2.89–10.32%
of PV and collectively 39.91% of the total PV. The QTL detected at the distal end of 5A
chromosome contributed 10.32% of the total PV. The QTLs on 6A and 7B in CC could
be new, and the one on 5B may represent the Sb2 gene. These QTLs could be used in
SB resistance cultivar development for SA.

Keywords: Bipolaris sorokiniana, SNPs, bi-parental mapping, DArTSeq, wheat QTLs for SB resistance

INTRODUCTION

Spot blotch (SB) disease caused by Cochliobolus sativus (Ito and Kuribayashi) Drechsler ex Dastur
[anamorph Bipolaris sorokiniana (Sacc.) Shoemaker] is considered a significant disease of wheat
(Triticum aestivum L.) in South Asia (SA) (Gupta et al., 2018). High temperature and humidity
favor the disease development in the warmer wheat growing areas of the eastern Gangetic plains
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(EGP), particularly in Bangladesh (Siddique et al., 2006), Nepal
(Sharma et al., 2007b), and eastern India (Joshi et al., 2007a).
The long-established practice of rice–wheat cropping system
in the EGP delays the sowing of wheat crop that provides a
congenial humid and warm environment for the SB development
in the later stages of crop growth. Average yield loss due to SB
ranges from 15 to 20%, but under favorable environment, up
to 87% yield loss has been observed in susceptible genotypes
(Hetzler et al., 1991). Delayed seeding of wheat in the EGP
resulted on an average loss of 30% yield due to complex foliar
blights, especially SB (Duveiller et al., 2005). Trait association
analysis revealed that days to heading (DH) and plant height
(PH) often showed a negative correlation with SB severity
(Singh et al., 2015). Several attempts have been made including
cultural practices and chemical application to control SB, but
none of them was completely successful. Integrated disease
management using host resistance, chemical control, and cultural
practices is considered most effective in managing the disease
(Joshi and Chand, 2002).

Except for a recent attempt (Kumar et al., 2019), no host
immunity has been observed for SB, and the best released
cultivars are only partially resistant. SB resistance is under
polygenic control, with quantitative trait loci (QTL) of various
phenotypic effects; hence, the progress of cultivar development is
relatively slow. Genetic studies for SB resistance have identified
multiple QTLs, of which four with major effects have been
nominated, i.e., Sb1 through Sb4. The Sb1 is located on
chromosome 7DS flanked by the markers Xgwm1220 and
Xgwm295, being co-located with the leaf rust resistance locus
Lr34 having pleiotropic effects on resistance to yellow rust
(Yr57), powdery mildew (Pm8), and leaf tip necrosis (Ltn+)
(Lillemo et al., 2013). The Sb2 (Qsb.bhu-5B) has been mapped on
chromosome 5BL flanked by the simple sequence repeat (SSR)
markers Xgwm639 and Xgwm1043 (Kumar et al., 2015). The
third gene, Sb3, was mapped on chromosome 3BS (Lu et al.,
2016), being in the same region where two previously reported
QTLs Qsb.bhu 3B and Qsb.cim 3B reside. Recently, the Sb4
gene has been mapped on the long arm of chromosome 4B,
where 21 putative genes were predicted (Zhang et al., 2020).
QTLs with minor effects are also important for SB resistance
since stacking such QTLs significantly reduced SB severity (Singh
et al., 2018). Multiple minor QTLs have been mapped on 1A,
1B, 1D, 2B, 2D, 3A, 3B, 4A, 5A, 5B, 6A, and 7A (Gurung
et al., 2014; Zhu et al., 2014; Singh et al., 2016; Bainsla et al.,
2020).

Germplasm development for SB resistance started in the
1980s, which led to the identification of several wheat genotypes
with variable resistance like Saar, Yangmai 6, Shanghai 4, M3,
Chirya 1, Chirya 3, Chirya 7, and SYN1 (Ibeagha et al., 2005).
Looking at the growing incidence of SB in SA, CIMMYT
developed a special nursery in 2009 for SA named CSISA-
SB, under the Cereal System Initiative for South Asia (CSISA)
project. The purpose was to share CIMMYT breeding lines
with SB resistance and good agronomic performance with the
researchers of other countries and to test the nursery over
various locations. This nursery was renamed Helminthosporium
Leaf Blight Screening Nursery (HLBSN) in 2015 and distributed

beyond SA to South American and African countries like Brazil,
Bolivia, Paraguay, and Zambia, where SB is of major concern.
The SB screening platform of CIMMYT in Mexico is located
at Agua Fria, where the climate is similar to SA, providing
strong support in the selection of SB-resistant genotypes for SA
(Singh et al., 2015).

In SA, the Varanasi center of India has been identified as
one of the most suitable sites for the evaluation of SB; it has a
close similarity with the climatic conditions of Bhairahawa and
Rampur of Nepal (Joshi et al., 2007a). Previously, four bi-parental
mapping populations were evaluated at Agua Fria, Mexico, and
their underlying QTLs have been identified (Singh et al., 2018;
He et al., 2020). In the present study, we evaluated two of those
four mapping populations at Varanasi, India, to determine the
resistant QTLs effective under the SA environment.

MATERIALS AND METHODS

Plant Materials
Two SB-resistant lines BARTAI (BABAX/LR 42//BABAX/3/ERA
F 2000) and CASCABEL (SOKOLL//W15.92/WEEBILL1)
identified in the previous experiments were crossed with a
common susceptible parent CIANO T79 (BUCKY/(SIB)MAYA-
74/4/BLUEBIRD//HD-832.5.5/OLESEN/3/CIANO-
67/PENJAMO-62) to develop two bi-parental mapping
populations (Singh et al., 2018; He et al., 2020).
Recombinant inbred lines (RILs) were generated following
the single seed descent method from F2 generation of
the cross BARTAI × CIANO T79 (BC population) and
CASCABEL × CIANO T79 (CC population) at CIMMYT,
Mexico. Field experiments were conducted using a total of
231 RILs of BC and 226 RILs of CC in F2:7 generation along
with the parents constituting the populations, and genotypes
Chirya 3 and Sonalika were included as resistant and susceptible
check, respectively.

Field Experiments
Field evaluation was carried out at the experimental station
of Banaras Hindu University (BHU, 25.2◦N, 83.0◦E), Varanasi,
India, in the years 2012–2013 (denoted as 2013), 2013–2014
(2014), and 2014–2015 (2015) for the BC population, and
in the years 2013–2014 (2014), 2014–2015 (2015), and 2015–
2016 (2016) for the CC population. Sowing was done in
December, under late sown conditions to expose the crop to high
temperature and humidity at the later stage of crop growth, which
favors SB disease development. The experiments were conducted
in a randomized complete block design with two replications,
where each entry was sown in 2-m double rows spaced 25 cm
apart, with a plant-to-plant distance of 5 cm.

Inoculation Method and SB Assessment
The pure culture of B. sorokiniana (isolate HD 3069/MCC
1572) was maintained using potato dextrose agar (PDA) medium
(Chand et al., 2003). The pathogen was mass multiplied on
previously soaked and autoclaved sorghum grains, which was
kept under room temperature for at least 6 weeks. Spore
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suspension culture was prepared at a concentration of 1 × 104

spores ml−1. To create an artificial epiphytotic condition, the
spore suspension was inoculated at the heading stage [Zadok’s
growth stage (GS) 55] in the evening time. Light irrigation
was given after inoculation to maintain high humidity for
disease development.

Disease scoring was done for three subsequent growth stages
at the beginning of anthesis (GS 63), after completion of anthesis
(GS 69), and late milking (GS 77) using a double-digit (00–
99) scale as prescribed by Saari and Prescott (1975). The first
digit (D1) measured disease progress in PH and the second digit
(D2) measured the disease severity in terms of the proportion
of infected leaf area. The percentage of disease severity for each
score was measured as:

Severity(%) = (D1/9) × (D2/9) × 100

Area under disease progress curve (AUDPC) was calculated using
percent of severity estimations corresponding to disease rating as:

AUDPC =
n∑
1

[{(Y i + Y i + 1)/2} × {t(i + 1) − ti}]

where
Yi = disease level at the time ti.
Y(i+1) = disease level at time ti+1.
ti+1 – ti = time difference in days between two disease scores.
n = number of readings.
Area under disease progress curve average of two replications

in a single year and mean AUDPC across all 3 years were used for
QTL analysis. DH and PH were also measured to determine their
association with SB.

Statistical Analysis
Analysis of variance (ANOVA) and Pearson correlation
coefficients were calculated using statistical software OPSTAT1.
Marker-based narrow sense heritability was calculated with the
“heritability” package of R (Kruijer et al., 2015).

Genotyping and Linkage Analysis
Genomic DNA was isolated using the cetyltrimethylammonium
bromide (CTAB) method from each entry including the parental
lines of respective populations. Genotyping was carried out
using the DArTSeq genotyping-by-sequencing (GBS) platform
(Li et al., 2015) at the Genetic Analysis Service for Agriculture
(SAGA) in Guadalajara, Mexico. Several gene-based markers
and D-genome-specific single-nucleotide polymorphism (SNP)
markers using “Kompetitive allele-specific PCR” (KASP) were
also used. QTL analysis was carried out using an integrated
software package ICIMapping version 4.1 (Meng et al., 2015).
Monomorphic markers, markers with missing value >20%, and
minor allele frequency <30% were removed from QTL analysis.
Chromosome anchoring was done for each marker as per the
GBS map described by Li et al. (2015). Linkage groups (LGs)
were constructed using the MAP function in the ICIMapping

1http://14.139.232.166/opstat/

software version 4.1, with the LOD threshold set at 15 and the
rest parameters at default.

Quantitative trait loci mapping was performed using the
BIP function of ICIMapping, where interval mapping was first
carried out to identify significant QTLs and after that inclusive
composite interval mapping was performed to identify more
robust QTLs. QTL mapping was also carried out after adjusting
for DH and PH. Adjusted mean was calculated by the software
Multi-Environment Trial Analysis with R (META-R) version 6.0
using DH and PH as cofactors. A QTL was considered significant
when it exceeded the LOD threshold of 3.4 (1,000 permutations at
α = 0.05) for BC and LOD of 3.6 for CC populations in at least one
environment. However, QTL with an LOD value of 2.5 or above
appearing in more than one environment was also considered as
significant. To draw the LGs and LOD curve, software MapChart
v. 2.3 (Voorrips, 2002) was used.

RESULTS

Phenotyping for SB Resistance
Significant genetic variation was observed for SB among the
genotypes in both the BC and CC populations. Effects of
climatic fluctuations across years on SB development were
revealed by significant variation in “year” and “genotype × year”
interaction effects; however, for the CC population, the latter
effect was non-significant (Table 1). Disease pressure was
maximum in the year 2014 and least in 2015 for both populations.
A similar trend was also observed for Sonalika and Chirya 3,
the susceptible and resistant checks, respectively. Continuous
distribution of genotypes for SB resistance in different years and
their mean were observed (Figure 1). Transgressive segregants
for resistance and susceptibility were obtained in both the
populations. Twenty-three resistant transgressive segregants
were found in the BC population, out of which seven
genotypes performed better than the resistant check Chirya 3,
whereas in the CC population, 55 genotypes showed higher

TABLE 1 | Analysis of variance and heritability estimates of spot blotch resistance
in BARTAI × CIANOT79 (BC) and CASCABEL × CIANOT79 (CC) populations.

Source of
variation

DF Mean
squares

F calculated Significance Heritability

BC population

Year 2 13,488.82 5,748.176 <0.0001

Rep (year) 3 2.34 2.46 NS

Genotype 230 58.91 2.784 <0.0001 0.61

Year× genotype 460 21.15 21.162 <0.0001

Pooled error 690 0.95

CC Population

Year 2 103.37 58.033 <0.01

Rep (year) 3 1.78 1.78 NS

Genotype 225 28.58 126.553 0.0001 0.73

Year× genotype 450 0.22 0.226 NS

Pooled error 675 1.00

NS, non-significant.
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FIGURE 1 | Frequency distribution of AUDPC scores in the BC population in the year 2013 (A), 2014 (B), 2015 (C), and mean (D) and CC population in the year
2014 (E), 2015 (F), 2016 (G), and mean (H). AUDPC score of parents BARTAI, CASCABEL, and CIANO T79 is denoted as B, CA, and C.

resistant than CASCABEL, out of which 10 genotypes were
better than Chirya 3.

Moderate heritability estimates for SB in BC (0.61) and
CC (0.73) were recorded (Table 1). DH and PH were mostly
negatively correlated with SB. PH was found to be more
closely associated with SB than DH as exhibited in the
significantly negative association across all the environments in
both populations (Table 2).

Genotyping and Linkage Analysis
Out of 18,000 GBS markers scored in both populations, 3,174
and 3,197 high-quality non-redundant markers in BC and
CC populations, respectively, were screened out for linkage
analysis and QTL mapping (Supplementary Tables 1, 2). Both
populations contained 21 large LGs representing all the 21 wheat
chromosomes, as well as a few fragmented LGs that were not used
in subsequent analysis. The linkage map of the BC population
covered 8,598.3 cM with an average distance of 2.71 cM between
markers, while in the CC population, 9024.21 cM was covered
with an average distance of 2.82 cM between markers. All
chromosomes were in good coverage with the least length of
199.22 cM for 1D in the BC population and 223.69 cM for
4D in the CC population. The coverage for chromosomes of A
and B sub-genome was better than that of D genome in both
populations (Supplementary Tables 1, 2).

TABLE 2 | Pearson correlation coefficient analysis of spot blotch resistance with
days to heading and plant height in BARTAI × CIANOT79 (BC) and
CASCABEL × CIANOT79 (CC) populations.

Year 2013 2014 2015

BC population

Days to heading −0.430** 0.033NS
−0.111NS

Plant height −0.432** −0.344** −0.230**

CC population

Year 2014 2015 2016

Days to heading −0.096NS
−0.194** −0.121NS

Plant height −0.296** −0.299** −0.334**

**P < 0.001; NSnon-significant.

QTL Identification for SB Resistance
The QTL with the largest phenotypic variation explained (PVE)
in the BC population was detected on chromosome 4D, with
a mean PVE of 12.23% (Table 3). This QTL was found to be
associated with PH. Another QTL was detected on chromosome
1A with the mean phenotypic effect of 4%. Two additional QTLs
with minor effects were detected on 4D in 2013 and 5B in 2015
(Table 3 and Figure 2). All the resistance alleles of the QTLs in
BC population were contributed by the resistant parent BARTAI.
When PH was used as a covariate, the effect of the QTL reduced;
in addition, few other QTLs on 4B, 5B, and 6B chromosomes were
detected (Supplementary Table 3).

Seven QTLs were detected in the CC population, altogether
explaining 39.91% of phenotypic variation (PV). The QTLs were
detected on six chromosomes (1B, 5A, 5B, 6A, 7A, and 7B) with
the mean PVE ranging from 2.89 to 10.32%. The resistance alleles
of QTLs on 1B, 5A (proximal), 7A, and 7B were contributed
by CIANO T79, whereas those of QTLs on 5A (distal), 5B,
and 6A were contributed by CASCABEL. Out of 55 resistant
transgressive segregants, 40 were carrying at least one QTL
contributed by CIANO T79. The major QTL was detected on the
distal end of chromosome 5A with a PV ranging from 8.93 to
12.62% in 2015 and 2014, respectively, with a mean PV of 10.32%.
The effect of QTLs in the reduction of AUDPC appeared to be
additive in nature (Figure 3).

DISCUSSION

Due to global warming and climate change, wheat production
is predicted to be adversely affected (Rosyara et al., 2010).
Higher temperature combined with rains during the grain
filling stages increases the chances of SB in EGP, resulting in
significant yield losses. Since the vulnerability of the wheat
crop to SB increases when temperature exceeds 26◦C at post-
anthesis stage (Chaurasia et al., 2000), sowing in this study
was delayed, exposing the populations under higher disease
pressure. Joishi et al. (2002) reported that the resistance is
independent of plant growth stage as there is appearance of
substantial proportion of resistance in tall and dwarf progenies
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TABLE 3 | Quantitative trait loci (QTLs) identified for SB in the BARTAI × CIANO T79 (BC) and CASCABEL × CIANO T79 (CC) populations and their associated QTLs in literature.

Chromosome Position (cM) Left markerb Right marker LODc 2013d 2014 2015 Mean Source of resistance Associated QTLs in literature

BARTAI × CIANO T 79 (BC)

1A 153.79–155.61 4989967 1026215 2.86 2.31 – 3.97 4.01 BARTAI Zhu et al., 2014

4Da 70.49–90.31 BS00036421_51 1119387 6.40 10.45 9.53 – 12.23 BARTAI Singh et al., 2018; He et al., 2020

4D 112.48–131.93 12002205 1072422 3.46 4.49 – – – BARTAI

5B 135.84–138.59 9724385 2267710 2.59 – – 4.75 – BARTAI Jamil et al., 2018; He et al., 2020

Percentage of accumulated phenotypic variation 16.24

CASCABEL × CIANO T 79 (CC)

1B 261.53–263.82 1168776 1037914 3.11 3.11 2.90 2.79 2.89 CIANO T79 Singh et al., 2018; Bainsla et al., 2020; He
et al., 2020

5Aa 331.49–332.06 1067537 2257572 7.72 12.62 8.93 11.26 10.32 CASCABEL Ayana et al., 2018; Singh et al., 2018; Bainsla
et al., 2020; He et al., 2020

5A 472.56–481.59 1218172 1683258 4.51 4.59 4.13 5.71 5.89 CIANO T79

5B 522.08–525.15 3958735 1137742 2.74 5.32 5.77 4.02 5.56 CASCABEL Kumar et al., 2009, 2010, 2015; Jamil et al.,
2018; He et al., 2020

6A 5.08–61.14 1125980 100193832 3.10 5.79 5.24 6.48 5.70 CASCABEL

7A 328.34–367.52 1126352 1208614 3.74 5.45 5.32 5.19 5.27 CIANO T79

7B 134.52–173.55 1125523 1007745 2.82 4.56 4.18 4.31 4.28 CIANO T79 Singh et al., 2016; Ayana et al., 2018; Singh
et al., 2018

Percentage of accumulated phenotypic variation 39.91

aNumber used to distinguish QTLs exceeded the LOD threshold of 3.4 for BC and 3.6 for CC population.
bSequence information of the markers is available in Supplementary Table 4.
cLOD values of QTLs in the mean population were used.
dPercentage of phenotypic variation explained (PVE) is provided; QTLs in bold remained significant after the ICIM algorithm.
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FIGURE 2 | QTL profiles for SB in BC population on chromosomes 1A (A) and 4D (B), and in CC population on chromosomes 1B (C), 5A (D), 5B (E), 6A (F), 7A
(G), and 7B (H). Genetic distance in cM is presented in the left side of each chromosome. A LOD threshold of 2.5 is indicated by the vertical dashed line.

obtained from resistant tall × susceptible dwarf and in early
and late progenies from resistant tall × susceptible early cross,
respectively. However, to avoid the influence of growth stages
on the disease appearance, scoring was done at different growth
stages. The present observation on the negative correlation of DH
and PH with SB has shown similarity with the previous reports
from Agua Fria (Singh et al., 2018) and SA (Singh et al., 2016).
Negative association of DH and PH with SB implies the selection
of late and tall genotypes for better SB resistance, but such
cultivars are not suitable for high rainfall and warmer regions like
EGP of SA (Joshi et al., 2007b). Fortunately, this association has
been broken, and several early maturing SB resistance cultivars
have been identified for warm climatic conditions of SA (Sharma
et al., 2004; Joshi et al., 2007b).

All experiments in the current study exhibited a typical
quantitative inheritance of SB resistance with strong
genotype × environment (G × E) interactions, which has
also been reported in earlier studies constituting Indian
germplasm, CIMMYT derivatives, and Afghan landraces
(Kumar et al., 2016; Singh et al., 2018; Bainsla et al., 2020). Strong
G × E interaction has always been a concern for plant breeders
as it influences varietal adaptation across the environments.
QTL × environment interaction, a component of G × E
interaction, affects the efficiency of marker-assisted selection.
Identification of QTLs across the location and year helps
breeders in design and implementation of breeding strategies

for the improvement of complex traits for adaptation in specific
or mega environment. Veldboom and Lee (1996) reported
that QTLs identified in the mean and across the environment
are of major importance. In our study, two stable QTLs on
chromosomes 1A and 4D were detected in the BC population,
with the latter explaining major PVs. In a previous report,
when the same population was evaluated at CIMMYT’s Agua
Fria station, a QTL on 4D chromosome was mapped at the
same chromosomal region but was significant only in 1 year,
having a PVE of 3.6% (Singh et al., 2018), implying a stronger
influence of PH on SB resistance in SA. The QTL on 1A was
not found in Singh et al. (2018) and thus might be specific
only to SA environments. In a previous study, Zhu et al. (2014)
identified a QTL on 1A, being close to the QTL identified in
the present study.

A QTL on chromosome 5A delimited by the flanking markers
1067537–2257572 was significant in all 3 years explaining major
PV in CC population. The same QTL was identified in the
previous studies at Agua Fria but with higher phenotypic effects
that reduced significantly when adjusted for PH and DH (Singh
et al., 2018; He et al., 2020). In the current study, the QTL
was identified 47.0 cM distance away from the vernalization
locus Vrn-A1; also, the effect of QTL remained significant in
all the 3 years when DH and PH were used as covariates. The
allele vrn-A1 responsible for late maturity was associated with
SB resistance, escaping the disease due to delayed phenology.
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FIGURE 3 | Effects of QTL combinations in reducing AUDPC in the BC (A)
and CC (B) population.

However, the possibility of the presence of a SB resistance QTL in
close proximity of Vrn-A1 cannot be excluded (Singh et al., 2018;
He et al., 2020) due to remnant effects of the QTL after adjusting
for DH. Similarly, Bainsla et al. (2020) reported a marker 0.8 Mb
away from Vrn-A1 that is responsible for SB resistance. Likewise,
Zhu et al. (2014) mapped a SB resistance QTL QSb.cim-5A at
30.3 cM away from Vrn-A1. The strong marker trait association
would be useful for the selection of SB resistance QTL based on
Vrn-A1.

The QTL identified on 5B chromosome in the CC population
was also reported earlier when evaluated at Agua Fria (He et al.,
2020). However, in the present study, the contribution of this
QTL was lower than the previous report, ranging from 4.02
to 5.77% in different years of evaluation. Comparing the QTL
position using the sequences of flanking markers through BLAST
to the IWGSC RefSeq v1.0 genome sequence of Chinese Spring
(CS), the position of this QTL coincides with the previously
identified Sb2 gene (He et al., 2020). The presence of Sb2 was
reported in resistant genotypes Yangmai 6 (Kumar et al., 2009),
Ning8201 (Kumar et al., 2010) and CASCABEL (He et al.,
2020). Additionally, this gene has been detected in an Afghan
population (Bainsla et al., 2020), CIMMYT germplasm (Jamil
et al., 2018), and a diverse germplasm panel with global origin
(Gurung et al., 2014), suggesting that Sb2 has been selected by
breeders of different continents due to its positive effects on SB
resistance. Recently, Tsn1 on 5BL was identified as a sensitivity
gene for the pathogen carrying the corresponding virulent gene
ToxA (Friesen et al., 2018). It was suggested that Tsn1 gene is the
susceptibility gene of Sb2 (Friesen et al., 2018), but He et al. (2020)

proposed that the two genes might be different. A recent study of
Indian B. sorokiniana population indicated that about 70% of the
isolates carried ToxA (Navathe et al., 2019). The presence of ToxA
in Mexican B. sorokiniana isolates (Wu et al., 2021) indicates
the similarity in virulence factors of pathogenic population in
Mexico and SA that reflects why the selections in Agua Fria are
effective for SA.

Three QTLs on 6A, 7A, and 7B in the CC population were
identified only in SA. Anchoring the flanking markers of the 6A
and 7B QTLs in the CS reference genome indicated that they
both reside at the distal end of their respective chromosomes.
Earlier, SB resistance QTL was mapped on 6A (Sharma et al.,
2007a) and 7B (Singh et al., 2016; Ayana et al., 2018) but at
different positions, implying that those mapped in the current
study might be new. However, the QTL on 7A might not be new,
since QTLs with similar confidence intervals were reported in
the KATH × CIANO T79 population (Singh et al., 2018), in a
CIMMYT wheat panel (Jamil et al., 2018), as well as in the Afghan
landrace collection (Bainsla et al., 2020).

The pathotype diversity of B. sorokiniana and some climatic
difference among SA and Mexico environments possibly play a
significant role in the identification of effective QTLs. In our
study, QTLs specific to SA were detected in both populations,
providing an opportunity for breeding SB resistance cultivars in
SA. In CC, an average of 27.2% reduction in SB was observed
when the 5A and 5B QTLs were combined, compared to a 42.3%
reduction of SB at Agua Fria (He et al., 2020). Detection of
QTLs on 5A and Sb2 at both SA and Agua Fria indicated the
potentiality of these genes in resistance breeding for SA, but their
lower phenotypic effects for SB in SA environment indicates the
role of other QTLs, like those on 4D, 6A, and 7A. Furthermore,
validation of these QTLs and markers over multiple locations and
years will provide not only more insight into the SB resistance
in SA but also more robust markers for the development of
SB-resistant cultivars targeting SA.
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Leaf rust, caused by Puccinia triticina (Pt), stripe rust caused by Puccinia striiformis f.
sp. tritici (Pst), and stem rust caused by Puccinia graminis f. sp. tritici (Pgt) are major
diseases to wheat production globally. Host resistance is the most suitable approach
to manage these fungal pathogens. We investigated the phenotypic and genotypic
structure of resistance to leaf rust, stem rust, and stripe rust pathogen races at the
seedling stage in a collection of advanced durum wheat breeding lines and cultivars
adapted to Upper Mid-West region of the United States. Phenotypic evaluation showed
that the majority of the durum wheat genotypes were susceptible to Pt isolates adapted
to durum wheat, whereas all the genotypes were resistant to common wheat type-Pt
isolate. The majority of genotypes were resistant to stripe rust and stem rust pathogen
races. The durum panel genotyped using Illumina iSelect 90 K wheat SNP assay
was used for genome-wide association mapping (GWAS). The GWAS revealed 64
marker-trait associations (MTAs) representing six leaf rust resistance loci located on
chromosome arms 2AS, 2AL, 5BS, 6AL, and 6BL. Two of these loci were identified
at the positions of Lr52 and Lr64 genes, whereas the remaining loci are most likely
novel. A total of 46 MTAs corresponding to four loci located on chromosome arms
1BS, 5BL, and 7BL were associated with stripe rust response. None of these loci
correspond to designated stripe rust resistance genes. For stem rust, a total of 260
MTAs, representing 22 loci were identified on chromosome arms 1BL, 2BL, 3AL, 3BL,
4AL, 5AL, 5BL, 6AS, 6AL, 6BL, and 7BL. Four of these loci were located at the positions
of known genes/alleles (Sr7b, Sr8155B1, Sr13a, and Sr13b). The discovery of known
and novel rust resistance genes and their linked SNPs will help diversify rust resistance
in durum wheat.

Keywords: leaf rust, stripe rust, stem rust, durum wheat, resistance, association mapping, molecular markers

INTRODUCTION

Durum wheat [2n = 4x = 28, AABB, Triticum turgidum L. Var. durum (Desf.)] is the second most
cultivated wheat crop. It accounts for about 8% of the world’s total wheat production (Mengistu
and Pè, 2016) and is mainly produced in the Mediterranean region, Eastern Europe, and North
America (Royo et al., 2009). Annual worldwide durum wheat production is estimated to be around
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36 million tons (Magallanes-López et al., 2017), with
approximately, 2.5 million tons produced in the United States.
North Dakota’s production of durum wheat accounts for over
50% of total U.S. production (NASS, 2018). Leaf rust, stripe rust
and stem are major fungal diseases threatening durum wheat
production globally. Rust resistance is the most environmentally
and economically feasible approach for managing these diseases.
Therefore, the development and deployment of rust resistant
cultivars is a major goal of wheat breeding programs worldwide.

Tetraploid durum wheat has historically been more resistant
to leaf rust than hexaploid common wheat (T. aestivum L.)
(Singh et al., 2004; Herrera-Foessel et al., 2006). However, during
the last 20 years, new durum-type Pt races have emerged and
caused leaf rust epidemics in several durum wheat producing
regions (Singh et al., 2004; Goyeau et al., 2012; Mishra et al.,
2015; Aoun et al., 2016). Virulent Pt isolates have not been
found yet in North Dakota, however, a highly virulent race
(BBBQJ) was reported in California and Kansas, United States
(Kolmer, 2013, 2015a). This poses a threat to the major durum-
producing regions of the USA and Canada. Pt-isolates from
durum wheat are often avirulent to most leaf rust resistance
(Lr) genes in common wheat (Huerta-Espino and Roelfs,
1992; Ordoñez and Kolmer, 2007a). The durum wheat type-
Pt isolates from several durum wheat producing countries
have similar phenotypic reactions on ‘Thatcher’ wheat near-
isogenic lines and similar or identical SSR and SNP genotypes,
suggesting a common origin (Ordoñez and Kolmer, 2007a,b;
Aoun et al., 2020; Kolmer et al., 2020). Other Pt-isolates
collected on tetraploid wheat in Ethiopia (designated as race
EEEEE) are avirulent to Thatcher wheat and have a unique
molecular genotype compared to all other Pt-isolates collected
from durum wheat and common wheat globally (Ordoñez and
Kolmer, 2007a,b; Kolmer and Acevedo, 2016; Aoun et al., 2020;
Kolmer et al., 2020).

A total of 79 Lr genes have been identified in wheat,
only 20 of them are known to be present in durum wheat
(Desiderio et al., 2014; Qureshi et al., 2018). In response to
leaf rust epidemics in many durum producing countries, a
number of Lr genes were identified in this crop including
Lr3a, Lr14a, Lr27+Lr31, Lr61, Lr79, and LrCamayo (Herrera-
Foessel et al., 2007, 2008a,b; Huerta-Espino et al., 2009;
Qureshi et al., 2018). Other not yet cataloged Lr genes
were also detected in durum wheat landraces and cultivars
(Loladze et al., 2014; Aoun et al., 2016, 2017, 2019; Kthiri
et al., 2018, 2019). However, due to continuous virulence
evolution of Pt isolates on many of the identified Lr genes,
diversifying the genetic basis for leaf rust resistance in durum
wheat is a priority.

Stripe rust is another major disease of wheat worldwide
(Chen, 2005). Aggressive Pst races adapted to high temperatures
have emerged and spread into most wheat producing regions
(Milus et al., 2009). Over 80 stripe rust resistance (Yr) genes
have been designated in wheat (McIntosh et al., 2013, 2017,
Gessese et al., 2019). The Yr genes that were derived from
tetraploid wheat (T. turgidum L. ssp) include Yr7, Yr15,
Yr24/Yr26, Yr30, Yr35, Yr36, YrH52, Yr53, Yr64, and Yr65
(McFadden, 1939; Macer, 1966; McIntosh and Lagudah, 2000;

Peng et al., 2000; Ma et al., 2001; Marais et al., 2005; Uauy
et al., 2005; Xu et al., 2013; Cheng et al., 2014). However,
most of the Yr genes identified in wheat are race specific
and have become ineffective against the rapidly evolving
pathogen (Chen, 2013; McIntosh et al., 2013; Rosewarne et al.,
2013). Therefore, identification and pyramiding of new genes
is needed for more effective management of this rapidly
evolving pathogen.

Stem rust has historically threatened common wheat and
durum wheat production. The Ug99 race group that appeared
in East Africa overcame several widely used wheat stem rust
resistance (Sr) genes (Jin et al., 2007; Singh et al., 2011).
More than 70 cataloged Sr genes have been characterized in
durum and common wheat. Only 31 genes are still effective
against at least one race of the 13 Ug99 variants (Rouse
et al., 2011, 2014; Singh et al., 2011, 2015). Approximately half
of these genes were introgressed into wheat from secondary
and tertiary gene pools (Rouse et al., 2014; Singh et al.,
2015) and only a few genes have been identified in durum
wheat Designated Sr genes that have be reported in tetraploid
wheat include Sr2, Sr7a, Sr8b, Sr8155B1, Sr9d, Sr9e, Sr9g,
Sr11, Sr12, Sr13a, Sr13b, Sr14, and Sr17 (Jin et al., 2007;
Singh et al., 2015; Nirmala et al., 2017; Saini et al., 2018;
Zhang et al., 2017).

In North American durum wheat cultivars, resistance to the
Ug99 lineage is mainly due to Sr13, of which the Sr13a allele
was first identified in Khapstein, a hexaploid wheat derivative of
cultivated emmer wheat (T. turgidum L. ssp. dicoccum, 2n = 4x
= 28, AABB) cv. Khapli (Knott, 1962; Jin et al., 2007; Klindworth
et al., 2007; Zhang et al., 2017). Sr9e is also another Sr gene
frequently deployed in durum wheat (Olivera et al., 2012; Saini
et al., 2018). Nirmala et al. (2017) recently identified a possible Sr8
allele, designated as Sr8155B1, in the durum wheat line ‘8155-B1.’
Sr8155B1 is effective to a variant of the Ug99 race TTKST but not
to race TTKSK (Nirmala et al., 2017). However, the frequency
of this allele in durum wheat cultivars is not yet determined.
Besides the Ug99 race group, additional Pgt-races with broad
virulence spectra have also emerged during the last decade
including TRTTF, JRCQC, and TKTTF. These races do not
belong to the Ug99 lineage and pose serious threat to common
wheat and durum production (Olivera et al., 2012, 2015). Among
these races, TRTTF and JRCQC were reported to be virulent to
the major known components of stem rust resistance in North
American durum cultivars Sr13 and Sr9e (Olivera et al., 2012).
However, according to Zhang et al. (2017), Sr13a is effective
to both JRCQC and TRTTF, and Sr13b is effective to TRTTF,
but not JRCQC. Identifying and characterizing new sources
of stem rust resistance in durum wheat is needed to manage
future outbreaks.

This study was designed: (1) to determine levels of leaf rust,
stem rust, and stripe rust resistance in a large collection of elite
durum wheat lines at seedling stage, (2) to determine the genetic
architecture of rust resistance loci using GWAS and Infinium
90K wheat SNP assay (3) to detect novel seedling resistance (all-
stage resistance) loci to Pt, Pst, and Pgt races that could be used
in breeding programs, and (4) to identify SNPs associated with
seedling rust resistance loci for marker assisted breeding.

Frontiers in Plant Science | www.frontiersin.org 2 April 2021 | Volume 12 | Article 64073954

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-640739 April 5, 2021 Time: 10:22 # 3

Aoun et al. Rust Resistance in Durum Wheat

MATERIALS AND METHODS

Plant Materials
A collection of 248 durum wheat genotypes was used in
this study. The collection represented advanced breeding lines
evaluated in the North Dakota State University’s (NDSU)
Uniform Regional Durum Nursery (URDN) from 1997 to 2014
(for more details, see Johnson et al., 2019; Supplementary
Table 1). These genotypes were regularly evaluated for agronomic
and quality traits over the years in multiple environments. Thus,
this plant material represents the core of the NDSU’s durum
breeding program.

Leaf Rust Phenotyping
The durum wheat collection was screened at the seedling stage
with six Pt isolates (Supplementary Table 1). Five of these
isolates (TUN 20-1, ETH 13D17-1, MEX10, ETH 63-1, and
MOR 33-1) were durum wheat type isolates, while ALK-ND
is a common wheat type isolate from North Dakota. The
virulence/avirulence phenotypes of the Pt isolates were based on
the infection types (ITs) of 20 Thatcher near-isogenic lines (NILs)
at seedling stage as described by Long and Kolmer (1989). The
Tunisian (TUN 20-1) and Moroccan (MOR 33-1) isolates were
both of race BBBSJ (virulent to the Lr genes LrB, Lr10, Lr14a,
Lr14b, and Lr20). The Mexican isolate MEX10 was of race BBBQJ
(virulent to the Lr genes LrB, Lr10, Lr14b, and Lr20). The two
Ethiopian isolates ETH 63-1 and ETH 13D17-1 designated as race
EEEEE are avirulent on the Thatcher wheat. The common wheat
type isolate ALK-ND, designated as race MBDSS was isolated
from the durum wheat cultivar ‘Alkabo’ (PI 642020) in North
Dakota and is virulent to the Lr genes Lr1, Lr3a, Lr3bg, Lr10,
Lr14a, Lr14b, Lr17, Lr20, and LrB.

The phenotyping using isolates EEEEE_ETH 63-1,
BBBSJ_MOR 33-1, and MBDSS_ALK-ND was performed
at the biosafety level-2 facility at the Agricultural Experiment
Station Greenhouse Complex, Fargo, ND, United States using a
randomized complete block design (RCBD) with two replicates.
In each replicate five-to-seven plants/line were tested and the
common wheat cultivar Thatcher and the leaf rust susceptible
durum line ‘RL6089’ were included twice as checks in each of the
50-cell trays. For each experiment, two replicates of Thatcher NIL
differentials were included to confirm the virulence phenotype
of Pt-isolates. Seedling growth conditions, inoculum increase
and preparation, inoculation, and greenhouse conditions under
which the inoculated plants were kept until disease phenotyping
were as described by Aoun et al. (2019).

The screening experiments with the remaining three isolates
EEEEE_ETH 13D17-1, BBBQJ_MEX10, and BBBSJ_TUN 20-1
were done at the U.S. Department of Agriculture- Agricultural
Research Service (USDA–ARS), Cereal Disease Laboratory
(CDL) in Saint Paul, MN, United States. The seedling tests
using these three isolates were performed in a single replicate
with five-to-seven plants/line. The common wheat Thatcher and
the durum line RL6089 were included as checks. The detailed
protocols of plant growing conditions and inoculation were
described in Kolmer and Hughes (2013).

Leaf rust ITs were taken 12–14 days after inoculation on
the second leaf using a 0–4 scale (Long and Kolmer, 1989;
McIntosh et al., 1995) where IT of ‘0’ = no visible symptoms,
IT of ‘;’ = hypersensitive flecks, IT of ‘1’ = small uredinia with
necrosis, IT of ‘2’ = small-to medium-size uredinia surrounded
by chlorosis, IT of ‘3’ = medium-size uredinia with no chlorosis
or necrosis, and IT of ‘4’ = large uredinia with no necrosis or
chlorosis. Larger and smaller uredinia than expected for each
IT were designated with ‘+’ and ‘–‘, respectively. Seedling plants
exhibiting ITs of 0–2+ and ‘X’ (a mixture of resistant and
susceptible reactions evenly distributed on the leaf surface) were
considered resistant, whereas seedling plants with ITs of 3–4 were
considered susceptible (Long and Kolmer, 1989; McIntosh et al.,
1995). In situations where multiple ITs were observed on the
same leaf surface, the plant reaction was recorded as the most
predominant IT followed by the least predominant IT.

Stripe Rust Phenotyping
Three Pst races (PSTv-37, PSTv-41, and PSTv-52) collected from
common wheat in North Dakota (Supplementary Table 2) were
used to screen the durum genotypes. These three Pst races are
the only ones currently present in North Dakota. PSTv-37 has
been the most widely distributed race across the United States
(Wan et al., 2016) and has a virulence/avirulence phenotype of
Yr6, 7, 8, 9, 17, 27, 43, 44, Tr1, Exp2/Yr1, 5, 10, 15, 24, 32, SP,
76. The race PSTv-52 that has been widely distributed in the
United States1 has a virulence/avirulence profile of Yr6, 7, 8, 9,
17, 27, 43, 44, Exp2/Yr1, 5, 10, 15, 24, 32, SP, Tr1, 76. The race
PSTv-41 is considered the most virulent race in ND and has a
virulence/avirulence profile of Yr6, 7, 8, 9, 10, 17, 24, 27, 32, 43,
44, Tr1, Exp2/Yr1, 5, 15, SP, 76.

To screen for stripe rust, three separate experiments (one
experiment/Pst race) with the same set of durum genotypes
(n = 248) were planted at the Fargo Agricultural Experiment
Station Greenhouse Complex, ND, United States. In each
experiment, five-to-seven seeds/genotype were planted in 50-
well trays. The susceptible cultivar ‘Avocet’ was included twice
in each tray as check. To confirm the race identity, a set of
18 differential lines containing each a single Yr gene (Wan and
Chen, 2014) was included alongside each single-race experiment.
The seedlings were grown in a rust-free greenhouse at 22◦C/18◦C
(day/night) and 16 h photoperiod. When the second leaves were
fully expanded, the plants were spray inoculated with fresh rust
urediniospores suspended in Soltrol-170 oil (Phillips Petroleum,
Bartlesville, OK, United States) at a concentration of 0.01 g/mL.
After the Soltrol-170 oil dried on the leaf surface, the inoculated
plants were incubated in a dark dew chamber at 10◦C with 100%
relative humidity for 24 h. The seedlings were later transferred
to a rust-free incubated growth chamber at 17◦C/8◦C (day/night)
and 16 h photoperiod. The seedling ITs were recoded 16–18 days
post-inoculation on a scale of 0–9 (Line and Qayoum, 1992).
IT of ‘0’ = no visible signs or symptoms, IT of ‘1’ = necrotic
or chlorotic flecks with no sporulation; IT of ‘2’ = necrotic
and/or chlorotic blotches or stripes with no sporulation; IT of
‘3’ = necrotic and/or chlorotic blotches or stripes with only a

1http://striperust.wsu.edu
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trace of sporulation; IT of ‘4,’ ‘5,’ and ‘6’ corresponds to necrotic
and/or chlorotic blotches or stripes with light, intermediate,
and moderate sporulation, respectively; and IT of ‘7,’ ‘8,’ and
‘9’ corresponds to abundant sporulation with necrotic and/or
chlorotic stripes or blotches, chlorosis around the sporulation
area, and no chlorosis or necrosis, respectively. ITs from 0 to
3 were considered resistant responses, ITs from 4 to 6 were
considered intermediate responses and ITs from 7 to 9 were
considered susceptible responses.

Stem Rust Phenotyping
The durum wheat genotypes were tested at seedling stage with six
African Pgt races TTKSK (isolate 04KEN156/04; Jin and Singh,
2006), TTKST (06KEN19v3; Jin et al., 2008), TTKTT (14KEN58-
1; Newcomb et al., 2016), TKTTF (13ETH18-1; Olivera et al.,
2015), TRTTF (06YEM34-1; Olivera et al., 2012), and JRCQC
(09ETH08-3; Olivera et al., 2012) (Supplementary Table 3). The
durum lines were phenotyped in the biosafety level-3 facility
at the USDA-ARS CDL in St. Paul, MN, United States. The
lines were planted in two replicates corresponding to different
experiments with different planting and inoculation dates. Five
seedlings per line were planted per replicate for all six Pgt races.
The inoculum preparation, inoculation, greenhouse conditions,
and disease screening were as described by Hundie et al. (2019).
In brief, the urediniospores stored at –80◦C were heat shocked
at 45◦C for 15 min. For inoculation, gelatin capsules including
14 mg spores were suspended in 0.75 ml mineral oil (Sotrol
170, Phillips Petroleum, Borger, TX, United States) and sprayed
onto the plant primary leaves of 240 wheat seedling plants
corresponding to 48 wheat lines. After the Soltrol-170 oil dried on
the leaf surface, the inoculated plants were placed in a humidity
chamber in the dark for 14-to-16 h at 22◦C, then exposed to high
pressure sodium vapor lamps for 3–4 h. The plants were then
transferred to the greenhouse and kept at temperature of 19–
22◦C and 16 h photoperiod for 10–12 days. The seedling ITs were
scored using the Stakman 0–4 scale (Stakman et al., 1962). Plants
with ITs of 0–2+3 were considered resistant and those with IT of
3–4 were considered susceptible.

Phenotypic Data Analysis
For statistical analysis, the 0–4 scale for leaf rust and stem
rust screening was converted to a linearized 0–9 scale (Zhang
et al., 2014) where plants with ITs of 0–6 were classified as
resistant and those with ITs of 7–9 were considered susceptible.
For further analysis, the mean of replicates per trait were used.
Pairwise Pearson’s correlations between traits were calculated and
plotted using the ‘corrplot’ package (Wei and Simko, 2013) in the
software R 3.4.1 (R Core Team, 2016). Correlation values were
considered significantly different from zero at P-value ≤ 0.05.

Genotyping
The durum collection was genotyped as described by Johnson
et al. (2019) using the Illumina iSelect 90K wheat SNP assay
(Wang et al., 2014). The 90K wheat SNP assay generated 17,377
polymorphic SNPs. Markers which were in common with those
included in the tetraploid wheat consensus map (Maccaferri et al.,
2015) were kept for further analysis (Supplementary Table 4).

Additionally, a diagnostic marker for the presence of either
Sr13 allele (Zhang et al., 2017), a linked marker to Sr8155B1
(Nirmala et al., 2017), and three dCAPS markers used to
discriminate Sr13a and Sr13b were also used to genotype
the durum wheat collection. The durum wheat collection
was genotyped using derived cleaved amplified polymorphic
sequence (dCAPS) markers for Sr13 and its three alleles R1
(Sr13a-R1), R2 (Sr13b), and R3 (Sr13a-R3). Markers dCAPS_Sr13
(Zhang et al., 2017), dCAPS_Sr13_R1cut, dCAPS_Sr13_R2nocut,
and dCAPS_Sr13_R3nocut were used to identify Sr13, Sr13a-R1,
Sr13b, Sr13a-R3, respectively (Supplementary Table 5). Sr13a-
R1 and Sr13a-R3 correspond to the two resistant haplotypes
of Sr13a: R1 and R3 (Zhang et al., 2017). The dCAPs markers
used to discriminate among the two Sr13 alleles were designed
based on the sequence information of the resistant haplotypes
of Sr13 in Zhang et al. (2017). The primer sequences of Sr13
gene/alleles, the restriction enzymes (RE), and the resulting PCR
product sizes after RE digestion are described in Supplementary
Table 5. The Kompetitive Allele Specific PCR (KASP) marker
(KASP_6AS_IWB10558) was used to postulate the presence of
the gene Sr8155B1 (Nirmala et al., 2017). Heterozygotes were
converted into missing data. Polymorphic markers with >10%
missing data and minor allele frequency (MAF) < 3% were
excluded from further analysis.

Linkage Disequilibrium and Population
Structure
Linkage disequilibrium (LD) was performed using JMP
Genomics 8.1 software (SAS Institute Inc, 2004) as described
by Aoun et al. (2016). The LD estimates for intrachromosomal
markers were calculated as the squared correlation coefficient
(R2) for each of the marker pairs. The genome-wide LD decay
was estimated by plotting LD estimates (R2) from all 14 durum
wheat chromosomes against the corresponding pairwise genetic
distances in cM. The genetic positions of the markers were
according to the durum wheat consensus map of Maccaferri et al.
(2015). Smoothing spline fit was applied to LD decay plot.

The principal component analysis (PCA) was used to examine
the population structure (Q matrix). SNPs with LD (R2) ≤ 0.2
were used to estimate the Q matrix. The identity-by-state
(IBS) matrix or Kinship matrix (K matrix) that represents the
proportion of shared alleles for all pairwise comparisons between
genotypes was also estimated. The K and Q matrices were
estimated using JMP Genomics 8.1 software.

Genome-Wide Association Analysis
For each trait, mixed linear model for genome-wide association
analyses were performed using JMP Genomics 8.1 software. Five
regression models were tested to identify the best model per trait
from which MTAs will be derived. The tested models include
(i) naïve, (ii) kinship, (iii) kinship plus population structure
(first two PCs), (iv) kinship plus population structure (first three
PCs), and (v) kinship plus population structure (first four PCs).
The K and the Q matrices were included in the genome-wide
association analysis model to reduce the chance of false-positive
MTAs. Each of the markers was fitted into the regression equation
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FIGURE 1 | Distributions of the seedling responses of the durum wheat genotypes to Puccinia triticina isolates BBBSJ_TUN 20-1, EEEEE_ETH 13D17-1,
EEEEE_ETH 63-1, BBBSJ_MOR 33-1, BBBQJ_MEX10, and MBDSS_ALK-ND. X-axis corresponds to linearized Stakman scale (0-to-9).

to generate a P-value. The best association mapping model (of
the five tested regression models) was selected based on the
Bayesian Information Criterion (BIC), where the lowest BIC
value corresponded to the best model (Ghosh et al., 2006; Zhang
et al., 2010). For each trait, the marker P-values of the selected
model were used to calculate the P-value of the false positive
discovery rate (FDR) (Benjamini and Yekutieli, 2001). MTAs
were considered significant at P-value of FDR ≤ 0.05. The
LD estimates between significant markers and marker genetic
positions on the tetraploid consensus map (Maccaferri et al.,
2015) were used to group MTAs from the GWAS into the
same or different underlying loci. Each locus was represented
by the most significant SNP marker. The physical and genetic
position of the most significant marker per locus and any markers
from the literature used for comparative mapping was based
on the durum wheat cv. Svevo genome v1 (Maccaferri et al.,
2019) and the tetraploid consensus map (Maccaferri et al., 2015),
respectively. In the case of multiple identified loci on the same
chromosome, the loci were ordered according to their most
significant SNP genetic positions on the tetraploid consensus
map of Maccaferri et al. (2015).

RESULTS

Phenotypic Data
Leaf Rust
All the durum wheat genotypes were resistant to the common
wheat type isolate MBDSS_ALK-ND. For the Pt durum wheat

type isolates, the percentage of susceptible lines varied depending
on the isolate (Supplementary Table 1). For instance, 10% of the
genotypes were susceptible to the Ethiopian isolate EEEEE_ETH
63-1, while 28% of the genotypes showed susceptibility to
the Ethiopian isolate EEEEE_13D17-1. The distribution of the
ITs to EEEEE_13D17-1 was bimodal, where two ITs were
observed. A total of 72% of the genotypes exhibited a mesothetic
reaction (IT = ‘3+;’), while the remaining genotypes showed
IT = ‘3+’. The plant reactions to EEEEE_ETH 63-1 ranged
between ‘;’ and 3+. Even though the two Ethiopian isolates
had similar race designation EEEEE (avirulent to the common
wheat cv. Thatcher), they carried different virulence/avirulence
phenotypes to the durum genotypes in our study (Figure 1 and
Supplementary Table 1).

In contrast to the Ethiopian isolates, the percentages of
susceptible genotypes to durum wheat type isolates from
Morocco, Tunisia, and Mexico were much higher. For
instance, all the durum genotypes were susceptible to isolate
BBBQJ_MEX10. Similarly, 74 and 98% of the genotypes were
susceptible to isolates BBBSJ_TUN 20-1 and BBBSJ_MOR
33-1, respectively. The most resistant lines to race BBBSJ_MOR
33-1 had IT of ’23,’ whereas the most resistant lines to race
BBBSJ_TUN 20-1 had IT of ‘;’suggesting that these two isolates
of the same race (based on Thatcher wheat differentials) carried
different virulence/avirulence profiles to durum wheat (Figure 1
and Supplementary Table 1).

The top four durum wheat cultivars grown in ND in 2019
were Joppa (PI 673106, 30.2%), Divide (PI 642021, 21.2%),
Alkabo (PI 642020, 7.8%), and Carpio (PI 670039, 6.1%)
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FIGURE 2 | Distributions of the seedling responses of the durum wheat genotypes to Puccinia striiformis f. sp. tritici races PSTv-37, PSTv-41, and PSTv-52.

(USDA, NASS, North Dakota Field Office, 2019). All of these
cultivars were resistant to EEEEE_ETH 13D17-1, EEEEE_ETH
63-1, and MBDSS_ALK-ND but susceptible to the Mexican
isolate BBBQJ_MEX10. Joppa showed intermediate IT to
BBBSJ_TUN 20-1 (IT = ‘23’) and to BBBSJ_MOR 33-1
(IT = ‘32+

′

). Divide was resistant to BBBSJ_TUN 20-1, whereas
Alkabo and Carpio were susceptible to this Tunisian isolate.
Divide was resistant to BBBSJ_MOR 33-1, while Alkabo and
Carpio were susceptible to this isolate (Supplementary Table 1).

Stripe Rust
A total of 69% of the durum wheat genotypes were resistant
to races PSTv-37 and PSTv-52, while 67% of the lines were
resistant to race PSTv-41. The ITs to the three Pst races ranged
between 1 and 9. The cultivars Divide, Alkabo, Carpio were
resistant to all the three Pst races. Joppa was resistant to
races PSTv-37 and PSTv-41 but not to PSTv-52 (Figure 2 and
Supplementary Table 2).

Stem Rust
About 81–99% of the genotypes were resistant to the three Ug99-
lineage races TTKSK, TTKST, and TTKTT. For race TTKSK, the
ITs ranged from 1 to 3+ with most of the lines showing IT of ‘2−’.
The ITs to races TTKST and TTKTT ranged between 0; and 33+
with most of the genotypes showing IT = ‘0;’. For race TKTTF,
only the breeding line ‘D07726’ showed a susceptible IT, while the
remaining genotypes showed resistant ITs that ranged between
‘0;’ and ‘2’ with the most frequent resistant IT = ‘0;’ (Figure 3
and Supplementary Table 3).

All the durum wheat genotypes showed resistant ITs to race
TRTTF ranging between ‘0;’ and ‘2.’ Like races TTKST, TTKTT,
and TKTTF, the most frequent resistant IT to race TRTTF
was ‘0;’. Even though, 99–100% of the durum genotypes were
resistant to race TTKST, TTKTT, TKTTF, and TRTTF, there
were phenotypic variations within the resistant ITs (Figure 3
and Supplementary Table 3) appropriate to conduct further
analysis (e.g., GWAS). Of all the Pgt races used for screening,
race JRCQC was the most virulent race on the durum wheat
collection, with 44% of the genotypes showing susceptibility. The
resistant ITs to JRCQC ranged from ‘1;’ to ‘2+3’ with most of
the resistant genotypes showing ITs of ‘22+’ to ‘2+3’ (Figure 3
and Supplementary Table 3). The durum cultivars Carpio and
Alkabo showed resistance to all Pgt-races. Divide was resistant to

all races except TTKSK and JRCQC, while Joppa was resistant to
all races except TTKSK (Supplementary Table 3).

Phenotypic Data Correlations
For correlation analyses, we considered only traits with
phenotypic variations (Figure 4). Pearson’s correlation between
linearized ITs showed a significant correlation (r = 0.8,
P-value ≤ 0.05) between the durum genotype responses to
the Ethiopian Pt races EEEEE_ETH 63-1 and EEEEE_13D17-1.
However, there were no significant correlations between the ITs
to BBBSJ_TUN 20-1 and the ITs to both Ethiopian isolates of race
EEEEE. There were strong significant correlations between ITs to
the three Pst races that ranged between 0.8 and 0.9. For Pgt races,
we observed significant correlations (r = 0.7–0.9, P-value≤ 0.05)
between ITs to races TTKST, TTKTT, TKTTF, and TRTTF. ITs
to TTKSK and JRCQC were not significantly correlated with ITs
to any of the remaining four Pgt-races. There was no correlation
between ITs to TTKSK and JRCQC. We found no significant
correlations between ITs to different rust pathogens, suggesting
that different genetic loci confer resistance to leaf rust, stripe rust,
and stem rust in this durum wheat collection (Figure 4).

Marker Properties and Linkage
Disequilibrium Analysis
After marker filtering, 10,891 SNPs included in the tetraploid
wheat consensus map with MAF ≥ 3% and missing data
points ≤ 10% were used for further analysis. Of the 10,891
SNPs, there were 4,779 (43.9%) SNPs on the genome A and
6,112 (56.1%) SNPs on the genome B. Additional four diagnostic
dCAPS markers for Sr13 gene/alleles and a single KASP marker
for Sr8155B1 gene were included. The genome-wide linkage
disequilibrium (LD) dropped by half to 0.33 within 2.5 cM on
average (Figure 5). Therefore, MTAs from the GWAS within
2.5 cM on average and with LD (R2) ≥ 0.3 were considered
underlying the same locus. In addition, we considered the
pairwise LD (R2 cutoff = 0.3) between significant markers on the
same chromosome arm to identify the loci.

Kinship Analysis, Population Structure,
and Regression Model Selection for
GWAS
For the identity-by-state matrix or kinship matrix (K matrix),
there were some hotspots (red color in the heat map) between
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FIGURE 3 | Distributions of the seedling responses of the durum wheat genotypes to Puccinia graminis f. sp. tritici races TTKSK, TTKST, TTKTT, TKTTF, TRTTF, and
JRCQC. X- axis corresponds to the linearized Stakman scale (0-to-9).

some of the durum genotypes (Supplementary Figure 1). This
suggests intermediate familial relatedness between genotypes
as described by Johnson et al. (2019). The PCA showed that
the first two, three, four, and 10 PCs explained a cumulative
variance of 9.4, 13.2, 16.5, and 31.4% of variation, respectively.
The genotypes were clustered into three groups (Johnson et al.,
2019) with majority of the lines grouped within the same
cluster (Supplementary Figure 2). This is expected because
the genotypes are from the same breeding program. Based on
BIC values, mixed linear models that include both Q and K
matrices were used for the GWAS for most traits. For traits
associated with responses to Pgt races TTKST and TKTTF, the
best GWAS regression models included the K matrix but not the
Q matrix (Table 1).

Marker–Trait Associations
Association Analysis for Leaf Rust Response
The GWAS based on the linearized ITs to the three Pt isolates
BBBSJ_TUN 20-1, EEEEE_ETH 13D14-1, and EEEEE_ETH 63-
1 identified 64 significant SNPs (MTAs) at FDR ≤ 0.05. Based
on the LD between significant markers, these MTAs represented
six loci located on chromosome arms 2AS, 2AL, 5BS, 6AL,
and 6BL. The most significant marker/locus explained 6–31%
of phenotypic variation (Table 2, Figure 6, and Supplementary
Table 6). Chromosome arms 5BS and 6BL carried most of

the MTAs. Therefore, the pairwise LD between the significant
markers on each of these chromosome arms were presented in
Supplementary Figure 3 that was used to determine the number
of loci on chromosomes 5BS and 6BL.

On chromosome arm 2AS, the large-effect loci, QLrdu.2AS
(Tag SNP: IWB10489, 67.5 cM, 61 Mbp) was associated with
response to the Ethiopian isolates EEEEE_ETH 13D14-1 and
EEEEE_ETH 63-1. On chromosome arm 2AL, QLrdu.2AL
(IWB38096, 197.6 cM) was associated with response to race
BBBSJ_TUN 20-1. On chromosome arm 5BS, two loci were
associated with response to BBBSJ_TUN 20-1 and designated
as QLrdu.5BS-1 (IWB47425) and QLrdu.5BS-2 (IWB26157).
QLrdu.5BS-1 explained higher phenotypic variation compared
to QLrdu.5BS-2. These two loci spanned a genomic region
from 2.0 to 35.8 cM corresponding to 4–21 Mbp on Svevo
physical map (Maccaferri et al., 2019). On chromosome arm
6AL, a small-effect locus, QLrdu.6AL (IWB24755, 129.4 cM,
612 Mbp) was associated with response to EEEEE_ETH 63-
1. An additional locus on chromosome arm 6BL, QLrdu.6BL
(IWB52926, 154.6 cM, 696 Mbp) was also associated with
response to EEEEE_ETH 63-1. All the leaf rust resistance
loci identified in this study were race/isolate specific, except
QLrdu.2AS that was associated with two Ethiopian isolates
(Table 2, Figure 6, and Supplementary Table 6).

The postulation of the six Lr loci in each genotype in this
germplasm was based on the most significant marker per locus

Frontiers in Plant Science | www.frontiersin.org 7 April 2021 | Volume 12 | Article 64073959

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-640739 April 5, 2021 Time: 10:22 # 8

Aoun et al. Rust Resistance in Durum Wheat

FIGURE 4 | Correlation between durum wheat line infection types to leaf rust, stem rust, and stripe rust pathogen races. Cells with significant correlations at
P-value < 0.05 were in blue color.

and is presented in Supplementary Table 1. We found that all
genotypes carry at least one of the identified loci in this study
except lines D06707, D06710, D091721, and D97780. A total
of 91% of the genotypes carry QLrdu.6AL and QLrdu.6BL,
whereas 88% of the genotypes carry QLrdu.2AS, QLrdu.6AL, and
QLrdu.6BL. Nine genotypes carry all the six identified loci in
this study including Plaza (PI 613619), D98015, D98016, D01279,
D011238, D03004, D05547, D101558, and D101650.

Association Analysis for Stripe Rust Response
The GWAS to the three Pst isolates PSTv-37, PSTv-52, and PSTv-
41 identified 46 significant MTAs, corresponding to four loci
located on chromosome arms 1BS, 5BL, and 7BL. The most
significant SNP/locus explained 6–19% of phenotypic variation
(Table 3, Figure 7, and Supplementary Table 7). Most of the
MTAs were on chromosome arms 5BL and 7BL. Therefore,
the pairwise LD between the significant markers on each of
these chromosome arms were presented in Supplementary
Figure 4 that was used to determine the number of loci on
each chromosome.

On chromosome arm 1BS, QYrdu.1BS (Tag SNP: IWB31649,
33 cM, 89 Mbp) was associated with response to race PSTv-
52. On chromosome 5BL, two loci were detected. QYrdu.5BL-1
(IWA6271, 187.1 cM, 682 Mbp) was associated with response to
the three Pst races, whereas QYrdu.5BL-2 (IWB64287, 193.4 cM,

691 Mbp) was associated with response to race PSTv-41. On
chromosome 7BL, QYrdu.7BL (IWB10533, 187.5 cM, 697 Mbp)
was associated with response to the three Pst races and explained
most of the phenotypic variations. Two of the four identified
stripe rust resistance loci in this study, QYrdu.5BL-1 and
QYrdu.7BL were associated with response to the three Pst-races,
whereas the reaming QYrdu.1BS and QYrdu.5BL-2 were race
specific (Table 3, Figure 7, and Supplementary Table 7).

The postulation of the four Yr loci in each genotype in this
germplasm was based on the most significant marker per locus
and is presented in Supplementary Table 2. All genotypes carry
at least one of the identified Yr loci in this study. A total of 78%
of the genotypes carry QYrdu.5BL-1 and QYrdu.5BL-2, whereas
52% of the genotypes carry QYrdu.5BL-1 and QYrdu.5BL-2 and
QYrdu.7BL. Twenty-six genotypes carry all the four Yr loci
identified in this study.

Association Analysis for Stem Rust Response
The GWAS detected 260 significant markers (MTAs), underlying
22 putative loci that were associated with stem rust response to
the six Pgt races (TTKSK, TTKST, TTKTT, TKTTF, TRTTF, and
JRCQC) (Table 4, Figure 8, and Supplementary Table 8). The
highest number of MTAs were on chromosome arms 6AS (98
MTAs, three loci), 6AL (129 MTAs, three loci), 5AL (12 MTAs,
three loci), and 6BL (seven MTAs, three loci). The pairwise LD
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FIGURE 5 | Scatter plot demonstrating linkage disequilibrium (LD) decay across the 14 durum wheat chromosomes for the 248 durum wheat genotypes. The LD
estimate (R2) for pairs of SNPs was plotted against the corresponding genetic distance in centimorgan (cM) based on the tetraploid consensus map of Maccaferri
et al. (2015). The dashed lines represent the LD decay that dropped by half at around 2.5 cM in average.

TABLE 1 | Bayesian Information Criterion of association mapping models for each trait.

Rust trait Races/isolates Naive Kinship 2PCs + Kinshipa 3PCs + Kinshipb 4 PCs + Kinshipc

Leaf rust BBBSJ _TUN 20-1 1206.9 1195.9 1183.5 1180.6 1175.6d

EEEEE_ETH 13D17-1 683.5 672.4 671.1 661 658

EEEEE_ETH 63-1 1088.5 1077.5 1074.1 1057.6 1049.3

Stripe rust PSTv-41 1204.8 1193.8 1180.9 1124 1173.3

PSTv-52 1158.3 1063.2 1131.1 1123.8 1120.5

PSTv-37 1180.6 1169.6 1159.2 1152.3 1150.8

Stem rust TTKSK 1023.2 935.4 935.3 955.7 955.7

TTKST 948.5 752.9 893.9 869.3 867.6

TTKTT 957.6 752.9 749.7 752.9 889.3

TKTTF 796.5 666.5 702.5 686.4 685.0

TRTTF 663.9 652.8 611.5 600.7 599.7

JRCQC 1002 864.2 863.4 863.2 853.2

a2PC, population structure matrix (Q matrix) based on the first two principal components explaining 9.4% of variation.
b3PC, population structure matrix (Q matrix) based on the first three principal components explaining 13.2% of variation.
c4PC, population structure matrix (Q matrix) based on the first four principal components explaining 16.5% of variation.
dNumbers in bold indicate the lowest Bayesian Information Criterion that corresponds to the best regression model for each trait. The best model was used to investigate
marker-trait associations.

between the significant markers on each of these chromosome
arms were presented in Supplementary Figure 5 and were used
to determine the number of loci per chromosome. Other MTAs
were identified on chromosomes 3AL (three MTAs, two loci),
4AL (four MTAs, a single locus), 5BL (two MTAs, two loci), and
7BL (two MTAs, a single locus). Each of the chromosome arms
1BL, 2BL, and 3BL carried a single MTA. Of the 22 identified loci,
seven loci, QSrdu.2BL, QSrdu.4AL, QSrdu.5AL-1, QSrdu.6AS-1,

QSrdu.6AL-2, QSrdu.6AL-3, and QSrdu.6BL-3, were the most
important loci in this study as they explained high phenotypic
variations and/or associated with response to multiple Pgt races.
These seven large-effect loci (highlighted in bold in Table 4)
are the most robust Sr loci and were well represented in this
germplasm (MAF ≥ 19%).

The most important large-effect locus identified on the
distal end of chromosome arm 6AS was QSrdu.6AS-1 (58–80
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MTAs, Tag-SNP: IWB10558, 0.2 cM, 2 Mbp) that was associated
with response to races TTKST, TTKTT, TKTTF, and TRTTF
but not to race TTKSK and JRCQC. KASP_6AS_IWB10558
linked to the gene Sr8155B1 was among the most significant
markers in this locus. In addition, KASP_6AS_IWB10558 was
in high LD with other significant markers in QSrdu.6AS-1
(Table 4, Supplementary Table 8, and Supplementary Figure 5)
suggesting that the latter locus is indeed Sr8155B1. Two
additional small-effect loci on chromosome 6AS and proximal to
QSrdu.6AS-1 were identified. QSrdu.6AS-2 (IWB67075, 34.9 cM,
50 Mbp) was associated with response to race TTKST, whereas
QSrdu.6AS-3 (IWA7295, 45.9 cM, 86 Mbp) was associated with
response to both races TTKST and TTKTT (Table 4, Figure 8,
and Supplementary Table 8).

Two large-effect loci appeared on chromosome arm 6AL.
QSrdu.6AL-2 (Tag-SNP: IWB69393, 128.9 cM, 612 Mbp) was
associated with response to race TTKSK, while QSrdu.6AL-3
(Tag-SNP: IWB41394, 129.4 cM, 613 Mbp) was associated with
response to race JRCQC. An additional small-effect locus on
chromosome 6AL, QSrdu.6AL-1 (Tag-SNP: IWB31531, 122.1 cM,
600 Mbp) was associated with response to race TKTTF. Even
though, QSrdu.6AL-2 and QSrdu.6AL-3 were close based on their
genetic positions (on tetraploid consensus map) and physical
positions (Svevo genome v1), significant markers in these two
loci were not in strong LD (R2 = 0.14, Supplementary Figure 5).
QSrdu.6AL-2 and QSrdu.6AL-3 appeared to be associated with
Sr13 gene/alleles. This is because Sr13 diagnostic marker
(dCAPS_Sr13) was among the most significant markers for race
TTKSK and in LD with other significant SNPs in QSrdu.6AL-
2. Sr13 allele markers, dCAPS_Sr13_R1cut (identifying Sr13a-R1
allele) and dCAPS_Sr13_R2nocut (identifying Sr13 R2 allele or
Sr13b) were among significant markers for race JRCQC and in
LD with significant SNPs in QSrdu.6AL-3 (Table 4, Figure 8, and
Supplementary Table 8).

The major allele (‘T’) of IWB41394 that is the most significant
SNP in QSrdu.6AL-3 and present in 62 % of the durum
genotypes was associated with susceptibility to race JRCQC.
On the other hand, the most significant marker in QSrdu.6AL-
3 was Sr13b marker dCAPS_Sr13_R2nocut. The latter showed
that 58% of the durum lines carry Sr13b associated with
susceptibility to race JRCQC. Therefore, it is likely that the
‘T’ allele of IWB41394 is associated with Sr13b. Overall, in
90.3% of the genotypes, there was agreement between marker
dCAPS_Sr13_R2nocut and marker IWB41394 in postulating
Sr13b allele (Supplementary Table 9).

On chromosome arm 4AL, QSrdu.4AL (Tag-SNP: IWA4651,
162.4 cM, 719 Mbp) was another large-effect locus identified for
response to race JRCQC. On chromosome arm 5AL, three loci
were identified. QSrdu.5AL-1 (IWB62132, 136.3 cM, 532 Mbp)
was associated with response to multiple races TTKST, TTKTT,
TRTTF, and TKTTF and explained 10–20% of phenotypic
variation. In addition, two small-effect loci on chromosome 5AL,
QSrdu.5AL-2 (IWB2075, 183.0 cM, 623 Mbp) and QSrdu.5AL-
3 (IWB14445, 197.7 cM, 640 Mbp) were associated with
response to race TKTTF. On chromosome arm 6BL, QSrdu.6BL-
1 (IWB21973, 103.7 cM, 622 Mbp) and QSrdu.6BL-2 (IWB5378,
146.0 cM, 682 Mbp) was associated with response to race TRTTF
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FIGURE 6 | Manhattan plots showing P-values for single-nucleotide polymorphism (SNP) markers associated with response to leaf rust in durum wheat genotypes
to the three durum wheat type isolates BBBSJ_TUN 20-1, EEEEE_ETH 13D14-1, and EEEEE_ETH 63-1. The horizontal dashed red line indicates significance level
at P-value ≤ 0.001. The horizontal dotted black line indicates significance level at FDR ≤ 0.05.

and TTKSK, respectively. QSrdu.6BL-3 (IWB46893, 155.1 cM,
693 Mbp) was associated with responses to races TTKSK
and JRCQC. The major allele of the most significant marker
in QSrdu.6BL-3, IWB46893, was associated with resistance to
TTKSK but with susceptibility to JRCQC.

On chromosome arm 5BL, two small-effect loci were
identified: QSrdu.5BL-1 (IWB9652, 181.5 cM, 675 Mbp) and
QSrdu.5BL-2 (IWB64287, 193.4 cM, 691 Mbp). Interestingly,
IWB64287 was also associated with response to Pst-race PSTv-
41 (Tables 3, 4). This suggests that this locus on 5BL at 691
Mbp is associated with response to both stripe rust and stem
rust and the allele ‘C’ of marker IWB64287 provides resistance
to both rust pathogens. Few MTAs were identified on each
of the chromosomes 1BL, 2BL, 3AL, 3BL, and 7BL and most
of these associations had minor effects on disease response
(6–12%), except QSrdu.2BL (IWB48212, 193.6 cM, 789 Mbp)
that explained relatively higher phenotypic variations (9–21%) to
races TTKST, TTKTT, TKTTF, and TRTTF. Of the 22 identified
loci for stem rust, five (QSrdu.1BL, QSrdu.2BL, QSrdu.5AL-1,
QSrdu.6AS-1, and QSrdu.6BL-3) were associated with response

to more than one race while the remaining loci were race specific
(Table 4, Figure 8, and Supplementary Table 8).

Frequencies of Sr8155B1, Sr13, and Sr7b in the
Durum Wheat Genotypes and Their Marker
Accuracies
Gene postulation for Sr8155B1, Sr13 alleles, and QSrdu.4AL
in each of the durum wheat genotypes is presented
in Supplementary Tables 3, 5. Both phenotypic data
(Supplementary Table 3) and marker data (Supplementary
Table 9) were used to postulate the gene combinations
present in each of the durum wheat genotypes. For
the genotypic data, the markers dCAPS_Sr13, dCAPS
_Sr13_R1cut, dCAPS_Sr13_R2nocut, dCAPS_Sr13_R3nocut,
KASP_6AS_IWB10558, and IWA4651 were used to postulate
Sr13a-R1, Sr13b, Sr13a-R3, Sr8155B1, and QSrdu.4AL
(designated in this study as Sr7b), respectively. We found
that 81, 79, and 64% of the durum wheat genotypes carry Sr13,
Sr8155B1, and Sr7b, respectively. A single breeding line (D07726)
does not carry any of these genes.
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A total of 61% of the durum genotypes carry an Sr13 allele
and Sr8155B1, whereas 50% of the durum collection carry an Sr13
allele and Sr7b. We found that 54% of the durum genotypes have
a least Sr8155B1 and Sr7b and 40% of the genotypes have the three
genes Sr13, Sr8155B1, and Sr7b. Based on Sr13 allele markers,
Sr13 functional alleles Sr13a-R1, Sr13b, and Sr13a-R3 were
identified in the durum genotypes. Sr13b was the most common
allele, being present in 56% of the durum genotypes. Sr13a-R1
and Sr13a-R3 were less frequent and occurred in only 17 and 7%
of the durum accessions, respectively (Supplementary Table 9).

Because gene postulation for these three genes was possible
based only on the phenotype, we determined the accuracies
of markers dCAPS_Sr13, IWB69393, KASP_6AS_IWB10558,
and IWA4651. For the gene Sr13, the accuracy for dCAPS_Sr13
and IWB69393 was 100 and 95% (3% false positives and
2% false negatives), respectively. For Sr8155B1, the marker
KASP_6AS_IWB10558 had an accuracy of 99.6% (0.4% false
positives), whereas for Sr7b, the marker IWA4651 had an
accuracy of 98.8% (1.2% false positives). The postulation
of the remaining three large-effect Sr loci in each genotype
(Supplementary Table 3) showed that 30 genotypes
carry Sr8155B1, Sr13, Sr7b, QSrdu.2BL, QSrdu.5AL-1, and
QSrdu.6BL-3.

DISCUSSION

Leaf Rust Resistance in Durum Wheat
Genotypes
All the durum genotypes were resistant to the common wheat
type race MBDSS that is widely distributed in the wheat growing
regions of the United States (Kolmer and Hughes, 2014). This
agrees with previous studies indicating that Pt-isolates from
common wheat are generally avirulent on durum wheat (Singh,
1991; Huerta-Espino and Roelfs, 1992; Ordoñez and Kolmer,
2007a; Aoun et al., 2016). Herrera-Foessel et al. (2014) reported
that most of the CIMMYT durum wheat germplasm carry Lr72
that is effective against common wheat type races. Thus, Lr72
could be also present in the durum wheat genotypes in this study.
Many of the genotypes in our study were susceptible to Mexican,
Moroccan, Tunisian, and Ethiopian durum wheat type isolates.
None of the durum genotypes were resistant to the Pt-Mexican
race BBBQJ. The latter is similar to a race collected on durum
wheat in California (Kolmer, 2013) and on hard red winter wheat
in Kansas (Kolmer, 2015b). Even though Pt-race BBBQJ is not yet
present in North Dakota, introgression of leaf rust resistance to
this race in the NDSU durum wheat lines will help the growers in
tackling in future challenges. For instance, previously identified
Lr genes like those identified in CIMMYT germplasm (Herrera-
Foessel et al., 2007, 2008a,b; Huerta-Espino et al., 2009) and in
the USDA–National Small Grains Collection (NSGC) of durum
wheat (Aoun et al., 2016, 2017, 2019) could be used to enhance
leaf rust resistance to race BBBQJ in the NDSU durum wheat
germplasm. The Ethiopian isolates of race EEEEE were virulent
to only 10–28% of the durum genotypes. Even though, the two
Ethiopian isolates in this study carry the same race (EEEEE)
on Thatcher wheat differentials, there were differences in their
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FIGURE 7 | Manhattan plots showing P-values for single-nucleotide polymorphism (SNP) markers associated with response to stripe rust in durum wheat genotypes
to the three Pst isolates PSTv-37, PSTv-52, and PSTv-41. The horizontal dashed red line indicates significance level at P-value ≤ 0.001. The horizontal dotted black
line indicates significance level at FDR ≤ 0.05.

virulence profiles on durum wheat genotypes in our study. These
results agree with Aoun et al. (2020) observations showing that
different virulence phenotypes were found within a collection of
isolates of race EEEEE based on a set of durum wheat differentials.

Comparative mapping between the identified six all-stage leaf
rust resistance loci in this study and designated wheat Lr genes
showed that any of the two loci on chromosome 5BS could be
Lr52 that was previously identified in the durum wheat cultivar
Wallaroi (Singh et al., 2010). Similarly, QLrdu.6AL is most
likely Lr64 that originated from wild emmer wheat (Triticum
dicoccoides) (Dyck, 1994; McIntosh et al., 2009; Kolmer et al.,
2019). The remaining loci did not map close to known Lr genes
and thus could be novel. Comparison of the map locations
suggests that QLrdu.2AS (67.5 cM, 61 Mbp) is likely the same
locus which was earlier found associated with leaf rust response
in durum wheat and tagged by the SSR marker wmc522 (63.6 cM,
58 Mbp) (Maccaferri et al., 2010). The nine genotypes that carry
all the six identified Lr loci in this study are useful to keep these
resistance sources in future released varieties.

Stripe Rust Resistance in Durum Wheat
Genotypes
Many of the durum wheat genotypes (67–69%) in this study were
resistant to the three U.S. Pst races (PSTv-37, PSTv-52, and PSTv-
41). A previous study that screened a worldwide collection of
elite durum wheat lines to six US and Italian Pst-races (including
PSTv-37) showed that only 7.8–31.5% of the genotypes were
resistant (Liu et al., 2017). This suggests that the durum wheat
collection in this study had undergo selection to accumulate
potentially useful loci for stripe rust resistance to the North
American Pst races. The durum wheat responses to these three
Pst- races used in this study were highly correlated, showing
that the NDSU durum genotypes had a broad spectrum of stripe
rust resistance.

With rapid and dangerous shifts in Pst populations globally
(Solh et al., 2012), our study will help durum wheat breeding
programs by providing new stripe rust resistance sources. We
identified four loci associated with all-stage stripe rust resistance
that did not correspond to any designated stripe rust resistance
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TABLE 4 | Summary of stem rust resistance loci in the durum wheat genotypes.

Svevo genome v1j

Pgt race Locusa Num.
SNPs/locusb

Tag-SNPc Chr.d SNP
allelese

SNP major
allele

SNP minor
allele

MAFf Position
(cM)g

–Log10

(P-value)
R2h pFDRi Start End

TTKSK QSrdu.3AL-2 1 IWB72044 3A A/G A G 0.05 177.9 3.85 0.06 1.64E-02 736,648,215 736,64,8115

TTKSK QSrdu.3BL 1 IWB49397 3B T/G T G 0.05 77.1 7.61 0.12 4.73E-06 370,964,536 370,964,636

TTKSK QSrdu.5BL-1 1 IWB9652 5B T/C C T 0.08 181.5 3.28 0.05 5.42E-02 674,697,988 674,698,088

TTKSK QSrdu.5BL-2 1 IWB64287 5B A/C C A 0.07 193.4 3.36 0.05 4.58E-02 691,154,062 691,153,962

TTKSK QSrdu.6AL-2 92 IWB69393/
dCAPS_Sr13

6A T/C T C 0.19 128.9 19.92 0.32 6.57E-17 611,710,729 611,710,829

TTKSK QSrdu.6BL-2 6 IWB5378 6B T/G G T 0.05 146.0 7.61 0.12 4.73E-06 682,240,129 682,240,229

TTKSK QSrdu.6BL-3 1 IWB46893 6B A/G G A 0.38 155.1 3.46 0.05 3.65E-02 693,337,728 693,337,628

TTKST QSrdu.1BL 1 IWB50554 1B A/G G A 0.11 27.6 5.66 0.09 3.28E-04 NA NA

TTKST QSrdu.2BL 1 IWB48212 2B A/C A C 0.20 193.6 12.77 0.20 4.11E-11 789,417,490 789,417,417

TTKST QSrdu.5AL-1 1 IWB62132 5A T/G G T 0.21 136.3 11.84 0.18 3.25E-10 532,077,979 532,077,878

TTKST QSrdu.6AS-1 80 IWB10558/
KASP_6AS_IWB10558

6A T/C C T 0.20 0.2 14.71 0.23 1.26E-11 1,590,026 1,590,126

TTKST QSrdu.6AS-2 3 IWB67075 6A A/G A G 0.09 34.9 3.41 0.05 4.99E-02 50,134,208 50,134,274

TTKST QSrdu.6AS-3 1 IWA7295 6A T/G T G 0.03 45.9 3.67 0.05 2.76E-02 86,025,214 86,025,359

TTKTT QSrdu.1BL 1 IWB50554 1B A/G G A 0.11 27.6 5.28 0.08 7.78E-04 NA NA

TTKTT QSrdu.2BL 1 IWB48212 2B A/C A C 0.20 193.6 13.49 0.21 7.67E-12 789,417,490 789,417,417

TTKTT QSrdu.3AL-1 2 IWB36155 3A T/C T C 0.04 90.4 3.91 0.06 1.45E-02 572,456,904 572,456,785

TTKTT QSrdu.5AL-1 1 IWB62132 5A T/G G T 0.21 136.3 12.61 0.20 5.60E-11 532,077,979 532,077,878

TTKTT QSrdu.6AS-1 80 IWA5416/ KASP_6AS_
IWB10558

6A T/C T C 0.21 0.2 16.62 0.26 2.62E-13 1,198,024 1,197,947

TTKTT QSrdu.6AS-3 10 IWA7295 6A T/G T G 0.03 45.9 4.21 0.06 8.39E-03 86,025,214 86,025,359

TKTTF QSrdu.2BL 1 IWB48212 2B A/C A C 0.20 193.6 8.36 0.13 1.40E-06 789,417,490 789,417,417

TKTTF QSrdu.5AL-1 1 IWB62132 5A T/G G T 0.21 136.3 6.42 0.10 6.58E-05 532,077,979 532,077,878

TKTTF QSrdu.5AL-2 10 IWB2075 5A A/G A G 0.03 183.0 4.72 0.07 2.61E-03 623,114,829 623,114,760

TKTTF QSrdu.5AL-3 1 IWB14445 5A T/G G T 0.04 197.7 3.60 0.05 3.04E-02 640,125,144 640,125,045

TKTTF QSrdu.6AS-1 74 IWB60233/
KASP_6AS_ IWB10558

6A T/C T C 0.12 0.9 10.83 0.19 1.60E-07 3,721,352 3,721,450

TKTTF QSrdu.6AL-1 3 IWB31531 6A A/G A G 0.08 122.1 3.75 0.06 2.21E-02 600,285,732 600,285,802

TRTTF QSrdu.2BL 1 IWB48212 2B A/C A C 0.20 193.6 5.69 0.09 5.84E-04 789,417,490 789,417,417

TRTTF QSrdu.5AL-1 1 IWB62132 5A T/G G T 0.21 136.3 7.40 0.12 1.09E-04 532,077,979 532,077,878

TRTTF QSrdu.6AS-1 58 IWB53754/
KASP_6AS_ IWB10558

6A A/G G A 0.21 0.2 8.34 0.13 3.58E-05 1,202,823 1,202,923

TRTTF QSrdu.6BL-1 5 IWB21973 6B A/G A G 0.16 103.7 4.84 0.08 2.78E-03 621,527,086 621,527,186

TRTTF QSrdu.7BL 2 IWB17567 7B T/G G T 0.05 147.0 4.40 0.07 7.19E-03 675,357,404 675,357,554

JRCQC QSrdu.4AL 4 IWA4651 4A A/G A G 0.33 162.4 7.20 0.11 1.70E-04 718,619,698 718,619,565

(Continued)
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genes. At the same time, some of the loci identified in this
study were mapped close to not yet characterized stripe rust
resistance quantitative trait loci (QTL) in the literature. For
instance, QYrdu.1BS (IWB31649, 33.0 cM) was located close to
previously identified locus Yrdurum-1BS.1 (34.1–40.1 cM) that
was associated with stripe rust response in a worldwide collection
of elite durum wheat (Liu et al., 2017). Similarly, the QYrdu.5BL-
1 (IWA6271, 187.1 cM, 682 Mbp) was mapped close to the stripe
rust resistance QTL, QYr.usw-5B (IWA7066, 179.6 cM, 674 Mbp,
Lin et al., 2018) that was earlier detected in the durum wheat
line W9262-260D3 (Kyle∗2/Biodur). The position of QYrdu.7BL
(IWB10533, 187.5 cM, 697 Mbp) also overlaps with that of
Yrdurum-7BL (184.5–190.5 cM) that was associated with stripe
rust response at seedling stage in elite durum wheat genotypes
(Liu et al., 2017). At the similar location, Lin et al. (2018)
also identified QYr.usw-7B (181.1 cM, 694 Mbp) in the durum
wheat line W9262-260D3 (Kyle∗2/Biodur) to Canadian isolates at
seedling stage and to Mexican races at adult-plant stage. Further
research warrants to characterize the four stripe rust resistance
loci detected in this study and study their relationship with those
previously identified in the literature. The 26 genotypes that carry
all the four Yr loci identified in this study are excellent sources
to introgress these stripe rust resistance sources in future durum
wheat varieties.

Stem Rust Resistance in Durum Wheat
Genotypes
The majority of durum wheat genotypes were resistant to
the three Ug99-lineage races TTKSK, TTKST, and TTKTT.
Interestingly, 19% of the genotypes were susceptible to race
TTKSK while only 1% of the genotypes were susceptible to the
other two Ug-99 lineage races TTKST and TTKTT. This suggests
that these durum advanced breeding lines carry stem rust
resistance gene(s)/allele(s), such as Sr8155B1, that are effective
against TTKST and TTKTT but ineffective against TTKSK.
Therefore, a combination of multiple Sr genes in the newly
developed durum wheat cultivars is recommended for effective
resistance to different races of the Ug99 lineage. Similarly, only
one line was susceptible to the Digalu race (TKTTF) (Olivera
et al., 2015). The durum genotypes were all resistant to race
TRTTF. In contrast to TRTTF, race JRCQC that is adapted to
durum wheat (Hundie et al., 2019) in Ethiopia was the most
virulent race on the durum genotypes in our study. This suggests
that Sr genes/alleles effective to races TTKSK, TTKST, TTKTT,
TKTTF, and TRTTF do not provide resistance to JRCQC. Olivera
et al. (2015) showed that races JRCQC, TRTTF, and TKTTF are
phylogenetically different from Ug99-lineage races. Therefore, Sr
genes effective to each of these race lineages could be different.
This implies that a combination of diverse Sr genes should be
implemented in newly released cultivars.

The durum wheat genotypes in this study showed higher levels
of stem rust resistance compared to germplasm collections used
in previous studies. For example, in a durum wheat collection
from different durum wheat-growing regions in Mediterranean
countries, the Southwestern United States, and Mexico, 42.1,
18.6, and 52.5% of the tested accessions were susceptible to
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FIGURE 8 | Manhattan plots showing P-values for single-nucleotide polymorphism (SNP) markers associated with response to stem rust in durum wheat genotypes
to the three Pgt races TTKSK, TTKST, TTKTT, TKTTF, TRTTF, and JRCQC. The horizontal dashed red line indicates significance level at P-value ≤ 0.001. The
horizontal dotted black line indicates significance level at FDR ≤ 0.05.

TTKSK, TRTTF, and JRCQC, respectively (Letta et al., 2014). In
another study (Chao et al., 2017), most of the USDA– NSGC
of durum wheat collection comprised of landraces, breeding
lines, and cultivars were found susceptible to TTKSK (81.6%),
TRTTF (72.1%), and JRCQC (90.6%). This shows that the NDSU
breeding program selected for stem rust resistance to most of the
Pgt-races used in this study. It was reported that resistance to the
Ug99 lineage in the North American durum cultivars is mainly
due to Sr13 alleles that were first identified in durum wheat and
was then transferred to hexaploid wheat (Knott, 1990). However,
in our study we observed variations in the ITs to the Pgt-races. For
instance, the most common resistant IT to races TTKST, TTKTT,
TKTTF, TRTTF (IT = 0), indicative of Sr8155B1, was much lower
compared to the most common resistant infection type to TTKSK
(IT = 2–) and JRCQC (IT = 22+). This suggests that stem rust
genetic architecture in this durum wheat collection is much more
complex and multiple genes/alleles could be identified in this
durum germplasm. In this germplasm, we found that 40% of
the durum genotypes carry Sr13, Sr8155B1, and Sr7b and 30
genotypes (12%) carry large-effect loci identified in this study
including Sr8155B1, Sr13a/Sr13b, Sr7b, QSrdu.2BL, QSrdu.5AL-
1, and QSrdu.6BL-3. This gene/loci combination is critical to keep
in future released durum wheat varieties. The remaining 15 Sr
loci that explained low phenotypic variation or associated with
relatively low MAF need to be first validated before being used in
breeding programs.

Comparative mapping showed that out of the 22 identified
all-stage stem rust resistance loci in this study, four loci
corresponded to cataloged Sr genes/alleles. In addition, eight loci
in this study were mapped close to previously detected stem rust
resistance QTL that were not yet cataloged in wheat. QSrdu.1BL
was also found close to the DArT marker wPt-1876 (26.3 cM)

that was associated with stem rust response in durum wheat
(Letta et al., 2014). The locus QSrdu.2BL (IWB48212, 193.6 cM,
789 Mbp) was mapped close to SSR marker wmc356 (788 Mbp)
that has been found associated with stem rust response in
durum wheat (Letta et al., 2014). Within the genomic regions of
QSrdu.3AL-1 (IWB36155, 90.4 cM, 572 Mbp) and QSrdu.3AL-2
(IWB72044, 177.9 cM, 737 Mbp), Letta et al. (2013) identified
two stem rust resistance loci in durum wheat tagged with the
SSR marker wmc428 (93.8 cM, 589 Mbp) and DArt marker (wPt-
8203, 178.3 cM). The locus QSrdu.4AL (IWA4651, 162.4 cM,
719 Mbp) that was associated with response to race JRCQC was
close to the mapping position of Sr7 locus (McIntosh et al., 1995;
Saini et al., 2018) and it is likely Sr7b. We found that 64% of
the durum genotypes carry Sr7b and it is important to keep
it in future released varieties, especially that only few known
genes confer resistance to race JRCQC. Within the genomic
region of QSrdu.4AL (Sr7b), Letta et al. (2014) identified a
locus tagged with the SSR marker barc78 (161.7 cM, 656 Mbp)
associated with response to race JRCQC at seedling stage in
elite durum wheat panel. In the same durum wheat panel, Letta
et al. (2013) identified two MTAs on chromosome arm 4AL
tagged by the DArT markers wPt-9196 (157.7 cM) and wPt-0798
(161.7 cM) associated with stem rust response at adult-plant stage
in field trials in Ethiopia. Proximal to the genomic region of
QSrdu.5AL-1, a MTA represented with the SSR marker gwm1570
(134.5 cM) was associated with stem rust seedling response in
durum wheat (Letta et al., 2014). Similarly, the genomic region
near QSrdu.5AL-2 and QSrdu.5AL-3 were found to carry two
stem rust resistance loci tagged with markers gwm126 (191.2 cM)
and gwm291 (205.0 cM) in durum wheat in field trials in Ethiopia
(Letta et al., 2013). On chromosome 5BL and at a close genomic
region to QSrdu.5BL-2, Letta et al. (2014) detected a GWAS hit
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tagged by DArt marker wPt-0566 (191.6 cM) associated with stem
rust seedling response in durum wheat (Letta et al., 2014).

The locus QSrdu.6AS-1 (KASP_6AS_IWB10558, 0.2 cM,
2 Mbp) that was associated with resistance to race TTKST,
TTKTT, TKTTF, and TRTTF was identified in the region of
Sr8155B1. This gene was first identified in the durum wheat line
8155-B1 and known to confer resistance against race TTKST
(Nirmala et al., 2017). The gene Sr8155B1 was later reported in
the durum wheat cultivar ‘Lebsock’ and provided resistance to
race TRTTF (Saini et al., 2018). In our study, we observed that
Sr8155B1 provides resistance to additional Pgt-races TTKTT and
TKTTF. In agreement with Nirmala et al. (2017), we found that
this gene is common in the Midwestern durum wheat with 79%
of the breeding lines and cultivars carrying this gene. Based on
Sr13 diagnostic markers, QSrdu.6AL-2 and QSrdu.6AL-3 were
found to be associated with Sr13 gene/alleles. Sr13 is known to
be common in North American and CIMMYT durum wheat
cultivars (Jin, 2005; Singh et al., 2015) and is present in 84%
of this durum wheat germplasm. Sr13a that confers resistance
to JRCQC is present in only 17% of the durum genotypes in
this study. However, 66% of the genotypes were resistant to
JRCQC. This is most likely explained by the presence of other
genes conferring resistance to JRCQC, e.g., Sr7b. Sr13 gene/allele
CAPS markers used in this study are difficult to be used in high-
throughput genotyping for marker assisted selection. Therefore,
the most significant SNPs in QSrdu.6AL-2 (e.g., IWB69393) and
QSrdu.6AL-3 (e.g., IWB41394) can be converted into KASP or
thermal asymmetric reverse PCR (STARP) markers to postulate
the presence of Sr13 gene and Sr13b allele, respectively.

The locus QSrdu.7BL (IWB17567, 147.0 cM, 675 Mbp) that
was associated with response to race TRTTF is mapped close
to the gene Sr17. The gene Sr17 has been reported in tetraploid
wheat and synthetic bread wheat (Bansal et al., 2008). However,
race TRTTF is virulent to Sr17, therefore QSrdu.7BL is likely
linked to Sr17 or a new allele of Sr17. Close to the genomic
region of QSrdu.7BL, Letta et al. (2013) also reported a stem
rust resistance locus in durum wheat tagged by DArt marker
wPt-8615 (154.0 cM).

CONCLUSION

We investigated the levels of all-stage resistance in durum wheat
genotypes adapted to the Midwest region of the U.S. against six
Pt-races, three Pst-races, and six Pgt-races. Many of the durum
wheat breeding lines and cultivars were susceptible to durum
wheat type Pt isolates, whereas all lines were resistant to the
common wheat type Pt isolate. In contrast to leaf rust, many of
the durum wheat genotypes has high levels of resistance to most
stripe rust and stem rust pathogen races. Association mapping
revealed six leaf rust resistance loci located on chromosomes 2AS,
2AL, 5BS, 6AL, and 6BL. Two of the loci are likely Lr52 and
Lr64, while the remaining four loci are most likely novel. Except
QLrdu.2AS, the identified leaf rust resistance loci were race

specific. For stripe rust, four loci were detected on chromosome
arms 1BS, 5BL, and 7BL. All of these loci did not correspond
to cataloged Yr genes. The loci QYrdu.5BL-1 and QYrdu.7BL
were associated with response to the three U.S. Pst-races used
in this study. For stem rust, 22 resistance loci were detected
on chromosomes 1BL, 2BL, 3AL, 3BL, 4AL, 5AL, 5BL, 6AS,
6AL, 6BL, and 7BL. Seven of these Sr loci had large effect and
high frequencies in this germplasm, thus important to keep
in future released durum wheat varieties. Our results showed
the presence of known Sr genes Sr8155B1, Sr13, and Sr7b that
were found together in 40% of this durum wheat germplasm.
Seventeen Sr loci from this study are not yet cataloged and need
to be validated and further characterized. Five of the identified
stem rust resistance loci (QSrdu.1BL, QSrdu.2BL, QSrdu.5AL-1,
QSrdu.6AS-1, and QSrdu.6BL-3) were associated with response
to more than one race. The novel resistance loci identified in this
study will enhance breeding for rust resistance in durum wheat.
Because it is relatively easy to make crosses between tetraploid
wheat and hexaploid wheat, new rust resistance genes identified
in this durum wheat germplasm could also be transferred to
common wheat. The SNP markers associated with the large-
effect all-stage rust resistance genes/loci in this study can be
converted to KASP or STARP markers for use in marker assisted
breeding. The presence of gene pyramiding that is already present
in this germplasm would be very valuable for breeding for
rust resistance.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories
and accession number(s) can be found in the article/
Supplementary Material.

AUTHOR CONTRIBUTIONS

MA and EE conceived and designed the experiments. MA, MR,
and JK conducted the experiments. MA and AK analyzed the
data. EE provided the resources. MA wrote the manuscript. All
authors revised the manuscript.

FUNDING

This work was funded by the North Dakota Wheat Commission,
ND, United States.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpls.2021.
640739/full#supplementary-material

Frontiers in Plant Science | www.frontiersin.org 17 April 2021 | Volume 12 | Article 64073969

https://www.frontiersin.org/articles/10.3389/fpls.2021.640739/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2021.640739/full#supplementary-material
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-640739 April 5, 2021 Time: 10:22 # 18

Aoun et al. Rust Resistance in Durum Wheat

REFERENCES
Aoun, M., Breiland, M., Turner, K. M., Loladze, A., Chao, S., Xu, S. S., et al. (2016).

Genome-wide association mapping of leaf rust response in a durum wheat
worldwide germplasm collection. Plant Genome 9, 1–24. doi: 10.9734/ajob/
2017/38120

Aoun, M., Kolmer, J. A., Breiland, M., Richards, J., Brueggeman, R. S., Szabo,
L. J., et al. (2020). Genotyping-by-sequencing for the study of genetic diversity
in Puccinia triticina. Plant Dis. 104, 752–760. doi: 10.1094/pdis-09-19-
1890-re

Aoun, M., Kolmer, J. A., Rouse, M. N., Chao, S., Bulbula, W. D., Elias, E. M.,
et al. (2017). Inheritance and bulked segregant analysis of leaf rust and stem
rust resistance in durum wheat genotypes. Phytopathology 107, 1496–1506.
doi: 10.1094/phyto-12-16-0444-r

Aoun, M., Kolmer, J. A., Rouse, M. N., Elias, E. M., Breiland, M., Bulbula, W. D.,
et al. (2019). Mapping of novel leaf rust and stem rust resistance genes in the
Portuguese durum wheat landrace PI 192051. G3 Genes Genomes Genet. 9,
2535–2547. doi: 10.1534/g3.119.400292

Bansal, U. K., Bossolini, E., Miah, H., Keller, B., Park, R. F., and Bariana, H. S.
(2008). Genetic mapping of seedling and adult plant stem rust resistance in two
European winter wheat cultivars. Euphytica 164, 821–828. doi: 10.1007/s10681-
008-9736-z

Benjamini, Y., and Yekutieli, D. (2001). The control of the false discovery rate in
multiple testing under dependency. Ann. Stat. 29, 1165–1188.

Chao, S., Rouse, M. N., Acevedo, M., Szabo-Hever, A., Bockelman, H., Bonman,
J. M., et al. (2017). Evaluation of genetic diversity and host resistance to stem
rust in USDA NSGC durum wheat accessions. Plant Genome 10, 1–13.

Chen, X. (2005). Epidemiology and control of stripe rust (Puccinia striiformis f. sp.
tritici) on wheat. Can. J. Plant Pathol. 27, 314–337.

Chen, X. (2013). High-temperature adult-plant resistance, key for sustainable
control of stripe rust. Am. J. Plant Sci. 4, 608–627. doi: 10.4236/ajps.2013.
43080

Cheng, P., Xu, L. S., Wang, M. N., See, D. R., and Chen, X. M. (2014). Molecular
mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid
derivatives of durum wheat accessions PI 331260 and PI 480016. Theor. Appl.
Genet. 127, 2267–2277. doi: 10.1007/s00122-014-2378-8

Desiderio, F., Guerra, D., Mastrangelo, A. M., Rubiales, D., Pasquini, M., Simeone,
R., et al. (2014). “Genetic basis of resistance to leaf rust in tetraploid wheats,” in
Proceedings of the International Symposium on Genetics and Breeding of Durum
Wheat, Vol. 110, eds E. Porceddu, A. B. Damania, and C. O. Qualset (Bari:
CIHEAM), 447–452.

Dyck, P. L. (1994). The transfer of leaf rust resistance from Triticum turgidum ssp.
dicoccoides to hexaploid wheat. Can. J. Plant Sci. 74, 671–673. doi: 10.4141/
cjps94-121

Gessese, M., Bariana, H., Wong, D., Hayden, M., and Bansal, U. (2019).
Molecular mapping of stripe rust resistance gene Yr81 in a common wheat
landrace Aus27430. Plant Dis. 103, 1166–1171. doi: 10.1094/pdis-06-18-
1055-re

Ghosh, J. K., Delampady, M., and Samanta, T. (2006). An Introduction to Bayesian
Analysis: Theory and Methods. New York, NY: Springer-Verlag.

Goyeau, H., Berder, J., Czerepak, C., Gautier, A., Lanen, C., and Lannou, C. (2012).
Low diversity and fast evolution in the population of Puccinia triticina causing
durum wheat leaf rust in France from 1999 to 2009, as revealed by an adapted
differential set. Plant Pathol. 61, 761–772. doi: 10.1111/j.1365-3059.2011.
02554.x

Herrera-Foessel, S., Singh, R. P., Huerta-Espino, J., Crossa, J., Yuen, J., and Djurle,
A. (2006). Effect of leaf rust on grain yield and yield traits of durum wheats with
race-specific and slow-rusting resistance to leaf rust. Plant Dis. 90, 1065–1072.
doi: 10.1094/pd-90-1065

Herrera-Foessel, S. A., Huerta-Espino, J., Calvo-Salazar, V., Lan, C. X., and Singh,
R. P. (2014). Lr72 confers resistance to leaf rust in durum wheat cultivar Atil
C2000. Plant Dis. 98, 631–635. doi: 10.1094/pdis-07-13-0741-re

Herrera-Foessel, S. A., Singh, R. P., Huerta-Espino, J., William, H. M., Djurle,
A., and Yuen, J. (2008a). Molecular mapping of a leaf rust resistance gene on
the short arm of chromosome 6B of durum wheat. Plant Dis. 92, 1650–1654.
doi: 10.1094/pdis-92-12-1650

Herrera-Foessel, S. A., Singh, R. P., Huerta-Espino, J., William, H. M., Garcia,
V., Djurle, A., et al. (2008b). Identification and molecular characterization of

leaf rust resistance gene Lr14a in durum wheat. Plant Dis. 92, 469–473. doi:
10.1094/pdis-92-3-0469

Herrera-Foessel, S. A., Singh, R. P., Huerta-Espino, J., William, M., Rosewarne, G.,
Djurle, A., et al. (2007). Identification and mapping of Lr3 and a linked leaf
rust resistance gene in durum wheat. Crop Sci. 47, 1459–1466. doi: 10.2135/
cropsci2006.10.0663

Huerta-Espino, J., and Roelfs, A. (1992). Leaf rust on durum wheats. Vortr.
Pflanzenzuchtg. 24, 100–102.

Huerta-Espino, J., Singh, R. P., Herrera-Foessel, S. A., Perez-Lopez, J. B., and
Figueroa-Lopez, P. (2009). First detection of virulence in Puccinia triticina to
resistance genes Lr27+ Lr31 present in durum wheat in Mexico. Plant Dis. 93,
110–110. doi: 10.1094/pdis-93-1-0110c

Hundie, B., Girma, B., Tadesse, Z., Edae, E., Olivera, P., Abera, E. H., et al. (2019).
Characterization of Ethiopian wheat germplasm for resistance to four Puccinia
graminis f. sp. tritici races facilitated by single-race nurseries. Plant Dis. 103,
2359–2366. doi: 10.1094/pdis-07-18-1243-re

Jin, Y. (2005). Races of Puccinia graminis identified in United States during 2003.
Plant Dis. 89, 1125–1127. doi: 10.1094/pd-89-1125

Jin, Y., and Singh, R. P. (2006). Resistance in U.S. wheat to recent Eastern African
isolates of Puccinia graminis f. sp. tritici with virulence to resistance gene Sr31.
Plant Dis. 90, 476–480. doi: 10.1094/pd-90-0476

Jin, Y., Singh, R. P., Ward, R. W., Wanyera, R., Kinyua, M., Njau, P., et al. (2007).
Characterization of seedling infection types and adult plant infection responses
of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Plant
Dis. 91, 1096–1099. doi: 10.1094/pdis-91-9-1096

Jin, Y., Szabo, L. J., Pretorius, Z. A., Singh, R. P., Ward, R., and Fetch, T. Jr. (2008).
Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia
graminis f. sp. tritici. Plant Dis. 92, 923–926. doi: 10.1094/pdis-92-6-0923

Johnson, M., Kumar, A., Oladzadabbasabadi, A., Salsman, E., Aoun, M., Manthey,
F., et al. (2019). Association mapping for 24 traits related to protein content,
gluten strength, color, cooking and milling quality using balanced and
unbalanced data in durum wheat [Triticum Turgidum L. var. Durum (Desf.)].
Front. Genet. 10:717. doi: 10.3389/fgene.2019.00717

Klindworth, D. L., Miller, J. D., Jin, Y., and Xu, S. S. (2007). Chromosomal locations
of genes for stem rust resistance in monogenic lines derived from tetraploid
wheat accession ST464. Crop Sci. 47, 1441–1450. doi: 10.2135/cropsci2006.05.
0345

Knott, D. R. (1962). The inheritance of rust resistance: IX. The inheritance of
resistance to races 15B and 56 of stem rust in the wheat variety Khapstein. Can.
J. Plant Sci. 42, 415–419. doi: 10.4141/cjps62-068

Knott, D. R. (1990). Near-isogenic lines of wheat carrying genes for
stem rust resistance. Crop Sci. 30, 901–905. doi: 10.2135/cropsci1990.
0011183x003000040029x

Kolmer, J. (2013). Leaf rust of wheat: pathogen biology, variation and host
resistance. Forests 4, 70–84. doi: 10.3390/f4010070

Kolmer, J. A. (2015a). First report of a wheat leaf rust (Puccinia triticina)
phenotype with high virulence to durum wheat in the great plains region of
the United States. Plant Dis. 99:156. doi: 10.1094/pdis-06-14-0667-pdn

Kolmer, J. A. (2015b). Leaf rust resistance in wheat line RL6062 is an allele at the
Lr3 locus. Crop Sci. 55, 2186–2190. doi: 10.2135/cropsci2015.01.0031

Kolmer, J. A., and Acevedo, M. (2016). Genetically divergent types of the wheat
leaf fungus Puccinia triticina in Ethiopia, a center of tetraploid wheat diversity.
Phytopathology 106, 380–385. doi: 10.1094/phyto-10-15-0247-r

Kolmer, J. A., Bernardo, A., Bai, G., Hayden, M. J., and Anderson, J. A. (2019).
Thatcher wheat line RL6149 carries Lr64 and a second leaf rust resistance
gene on chromosome 1DS. Theor. Appl. Genet. 132, 2809–2814. doi: 10.1007/
s00122-019-03389-y

Kolmer, J. A., Herman, A., Ordoñez, M. E., German, S., Morgounov, A., Pretorius,
Z., et al. (2020). Endemic and panglobal genetic groups, and divergence of host-
associated forms in worldwide collections of the wheat leaf rust fungus Puccinia
triticina as determined by genotyping by sequencing. Heredity 124, 397–409.
doi: 10.1038/s41437-019-0288-x

Kolmer, J. A., and Hughes, M. E. (2013). Physiologic specialization of Puccinia
triticina on wheat in the United States in 2011. Plant Dis. 97, 1103–1108.
doi: 10.1094/PDIS-11-12-1068-SR

Kolmer, J. A., and Hughes, M. E. (2014). Physiologic specialization of Puccinia
triticina on wheat in the United States in 2012. Plant Dis. 98, 1145–1150.
doi: 10.1094/pdis-12-13-1267-sr

Frontiers in Plant Science | www.frontiersin.org 18 April 2021 | Volume 12 | Article 64073970

https://doi.org/10.9734/ajob/2017/38120
https://doi.org/10.9734/ajob/2017/38120
https://doi.org/10.1094/pdis-09-19-1890-re
https://doi.org/10.1094/pdis-09-19-1890-re
https://doi.org/10.1094/phyto-12-16-0444-r
https://doi.org/10.1534/g3.119.400292
https://doi.org/10.1007/s10681-008-9736-z
https://doi.org/10.1007/s10681-008-9736-z
https://doi.org/10.4236/ajps.2013.43080
https://doi.org/10.4236/ajps.2013.43080
https://doi.org/10.1007/s00122-014-2378-8
https://doi.org/10.4141/cjps94-121
https://doi.org/10.4141/cjps94-121
https://doi.org/10.1094/pdis-06-18-1055-re
https://doi.org/10.1094/pdis-06-18-1055-re
https://doi.org/10.1111/j.1365-3059.2011.02554.x
https://doi.org/10.1111/j.1365-3059.2011.02554.x
https://doi.org/10.1094/pd-90-1065
https://doi.org/10.1094/pdis-07-13-0741-re
https://doi.org/10.1094/pdis-92-12-1650
https://doi.org/10.1094/pdis-92-3-0469
https://doi.org/10.1094/pdis-92-3-0469
https://doi.org/10.2135/cropsci2006.10.0663
https://doi.org/10.2135/cropsci2006.10.0663
https://doi.org/10.1094/pdis-93-1-0110c
https://doi.org/10.1094/pdis-07-18-1243-re
https://doi.org/10.1094/pd-89-1125
https://doi.org/10.1094/pd-90-0476
https://doi.org/10.1094/pdis-91-9-1096
https://doi.org/10.1094/pdis-92-6-0923
https://doi.org/10.3389/fgene.2019.00717
https://doi.org/10.2135/cropsci2006.05.0345
https://doi.org/10.2135/cropsci2006.05.0345
https://doi.org/10.4141/cjps62-068
https://doi.org/10.2135/cropsci1990.0011183x003000040029x
https://doi.org/10.2135/cropsci1990.0011183x003000040029x
https://doi.org/10.3390/f4010070
https://doi.org/10.1094/pdis-06-14-0667-pdn
https://doi.org/10.2135/cropsci2015.01.0031
https://doi.org/10.1094/phyto-10-15-0247-r
https://doi.org/10.1007/s00122-019-03389-y
https://doi.org/10.1007/s00122-019-03389-y
https://doi.org/10.1038/s41437-019-0288-x
https://doi.org/10.1094/PDIS-11-12-1068-SR
https://doi.org/10.1094/pdis-12-13-1267-sr
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-640739 April 5, 2021 Time: 10:22 # 19

Aoun et al. Rust Resistance in Durum Wheat

Kthiri, D., Loladze, A., MacLachlan, P. R., N’Diaye, A., Walkowiak, S., Nilsen, K.,
et al. (2018). Characterization and mapping of leaf rust resistance in four durum
wheat cultivars. PLoS One 13:e0197317. doi: 10.1371/journal.pone.0197317

Kthiri, D., Loladze, A., N’Diaye, A., Nilsen, K. T., Walkowiak, S., Dreisigacker,
S., et al. (2019). Mapping of genetic loci conferring resistance to leaf rust
from three globally resistant durum wheat sources. Front. Plant Sci. 10:1247.
doi: 10.3389/fpls.2019.01247

Letta, T., Maccaferri, M., Badebo, A., Ammar, K., Ricci, A., Crossa, J., et al. (2013).
Searching for novel sources of field resistance to Ug99 and Ethiopian stem
rust races in durum wheat via association mapping. Theor. Appl. Genet. 126,
1237–1256. doi: 10.1007/s00122-013-2050-8

Letta, T., Olivera, P., Maccaferri, M., Jin, Y., Ammar, K., Badebo, A., et al. (2014).
Association mapping reveals novel stem rust resistance loci in durum wheat at
the seedling stage. Plant Genome 7, 1–13.

Lin, X., N’Diaye, A., Walkowiak, S., Nilsen, K. T., Cory, A. T., Haile, J., et al. (2018).
Genetic analysis of resistance to stripe rust in durum wheat (Triticum turgidum
L. var. durum). PLoS One 13:e0203283. doi: 10.1371/journal.pone.0203283

Line, R. F., and Qayoum, A. (1992). Virulence, Aggressiveness, Evolution, and
Distribution of Races of Puccinia striiformis (The Cause of Stripe Rust of Wheat)
in North America, 1968-87. Technical Bulletin No. 1788. Washington, DC:
United States Department of Agriculture.

Liu, W., Maccaferri, M., Bulli, P., Rynearson, S., Tuberosa, R., Chen, X., et al.
(2017). Genome-wide association mapping for seedling and field resistance to
Puccinia striiformis f. sp. tritici in elite durum wheat. Theor. Appl. Genet. 130,
649–667. doi: 10.1007/s00122-016-2841-9

Loladze, A., Kthiri, D., Pozniak, C., and Ammar, K. (2014). Genetic analysis of leaf
rust resistance in six durum wheat genotypes. Phytopathology 104, 1322–1328.
doi: 10.1094/phyto-03-14-0065-r

Long, D. L., and Kolmer, J. A. (1989). A North American system of nomenclature
for Puccinia recondita f.sp. tritici. Phytopathology 79, 525–529.

Ma, J. X., Zhou, R. H., Dong, Y. S., Wang, L. F., Wang, X. M., and Jia, J. Z. (2001).
Molecular mapping and detection of the yellow rust resistance gene Yr26 in
wheat transferred from Triticum turgidum L. using microsatellite markers.
Euphytica 120, 219–226.

Maccaferri, M., Harris, N. S., Twardziok, S. O., Pasam, R. K., Gundlach, H.,
Spannagl, M., et al. (2019). Durum wheat genome highlights past domestication
signatures and future improvement targets. Nat. Genet. 51, 885–895.

Maccaferri, M., Ricci, A., Salvi, S., Milner, S. G., Noli, E., Martelli, P. L., et al. (2015).
A high-density, SNP-based consensus map of tetraploid wheat as a bridge to
integrate durum and bread wheat genomics and breeding. Plant Biotechnol. J.
13, 648–663. doi: 10.1111/pbi.12288

Maccaferri, M., Sanguineti, M. C., Mantovani, P., Demontis, A., Massi, A., Ammar,
K., et al. (2010). Association mapping of leaf rust response in durum wheat. Mol.
Breed. 26, 189–228. doi: 10.1007/s11032-009-9353-0

Macer, R. C. F. (1966). “The formal and monosomic genetic analysis of stripe
rust (Puccinia striiformis) resistance in wheat,” in Proceedings of the 2nd
International Wheat Genetics Symposium. (Suppl. 2) 19–24 August 1963, ed. J.
MacKey (Lund: Hereditas), 127–142.

Magallanes-López, A. M., Ammar, K., Morales-Dorantes, A., González-Santoyo,
H., Crossa, J., and Guzmán, C. (2017). Grain quality traits of commercial
durum wheat varieties and their relationships with drought stress and glutenins
composition. J. Cereal Sci. 75, 1–9. doi: 10.1016/j.jcs.2017.03.005

Marais, G. F., Pretorius, Z. A., Wellings, C. R., McCallum, B., and Marais, A. S.
(2005). Leaf rust and stripe rust resistance genes transferred to common wheat
from Triticum dicoccoides. Euphytica 143, 115–123. doi: 10.1007/s10681-005-
2911-6

McFadden, E. S. (1939). Brown necrosis, a discoloration associated with rust
infection in certain rust resistance wheats. J. Agric. Res. 58, 805–819.

McIntosh, R. A., Dubcovsky, J., Rogers, W. J., Morris, C., Appels, R., et al. (2009).
Catalogue of Gene Symbols for Wheat. 2009 Supplement. KOMUGI Wheat
Genetic Resources Database, Yokohama, Japan. Available online at: https://
shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp (accessed September
8, 2019).

McIntosh, R. A., Dubcovsky, J., Rogers, W. J., Morris, C., and Xia, X. C. (2017).
Catalogue of Gene Symbols for Wheat: 2017 Supplement. Available online
at: https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf
(accessed 25 June 2019).

McIntosh, R. A., and Lagudah, E. S. (2000). Cytogenetical studies in wheat. XVIII.
Gene Yr24 for resistance to stripe rust. Plant Breed. 119, 81–93. doi: 10.1046/j.
1439-0523.2000.00449.x

McIntosh, R. A., Wellings, C. R., and Park, R. F. (1995). Wheat Rusts: An Atlas of
Resistance Genes. Melbourne, Vic: CSIRO Publishing, 199.

McIntosh, R. A., Yamazaki, Y., Dubcovsky, J., Rogers, J., Morris, C., Appels, R., et al.
(2013). Catalogue of Gene Symbols for Wheat. Available online at: https://shigen.
nig.ac.jp/wheat/komugi/genes/macgene/2013/GeneSymbol.pdf (accessed July
20, 2018).

Mengistu, D. K., and Pè, M. E. (2016). Revisiting the ignored Ethiopian
durum wheat (Triticum turgidum var. durum) landraces for genetic diversity
exploitation in future wheat breeding programs. J. Plant Breed. Crop Sci. 8,
45–59. doi: 10.5897/jpbcs2015.0542

Milus, E. A., Kristensen, K., and Hovmøller, M. S. (2009). Evidence for increased
aggressiveness in a recent widespread strain of Puccinia striiformis f.sp. tritici
causing stripe rust of wheat. Phytopathology 99, 89–94. doi: 10.1094/phyto-99-
1-0089

Mishra, A. N., Kaushal, K., Dubey, V. G., and Prasad, S. V. (2015). Diverse sources
of resistance to leaf rust in durum wheat. Indian J. Genet. Plant Breed. 75,
336–340. doi: 10.5958/0975-6906.2015.00053.x

NASS (2018). National Agricultural Statistics Service. Available online at: https:
//www.nass.usda.gov (accessed September 8, 2018).

Newcomb, M., Olivera, P. D., Rouse, M. N., Szabo, L. J., Johnson, J., Gale, S.,
et al. (2016). Kenyan isolates of Puccinia graminis f. sp. tritici from 2008 to
2014: virulence to SrTmp in the Ug99 race group and implications for breeding
programs. Phytopathology 106, 729–736. doi: 10.1094/phyto-12-15-0337-r

Nirmala, J., Saini, J., Newcomb, M., Olivera, P., Gale, S., Klindworth, D., et al.
(2017). Discovery of a novel stem rust resistance allele in durum wheat that
exhibits differential reactions to Ug99 isolates. G3 Genes Genomes Genet. 7,
3481–3490. doi: 10.1534/g3.117.300209

Olivera, P., Newcomb, M., Szabo, L. J., Rouse, M., Johnson, J., Gale, S., et al.
(2015). Phenotypic and genotypic characterization of race TKTTF of Puccinia
graminis f. sp. tritici that caused a wheat stem rust epidemic in southern
Ethiopia in 2013–14. Phytopathology 105, 917–928. doi: 10.1094/phyto-11-14-
0302-fi

Olivera, P. D., Jin, Y., Rouse, M., Badebo, A., Fetch, T. Jr., Singh, R. P., et al. (2012).
Races of Puccinia graminis f. sp. tritici with combined virulence to Sr13 and
Sr9e in a field stem rust screening nursery in Ethiopia. Plant Dis. 96, 623–628.
doi: 10.1094/pdis-09-11-0793

Ordoñez, M. E., and Kolmer, J. A. (2007a). Virulence phenotypes of a worldwide
collection of Puccinia triticina from durum wheat. Phytopathology 97, 344–351.
doi: 10.1094/phyto-97-3-0344

Ordoñez, M. E., and Kolmer, J. A. (2007b). Simple sequence repeat diversity of a
worldwide collection of Puccinia triticina from durum wheat. Phytopathology
97, 574–583. doi: 10.1094/phyto-97-5-0574

Peng, J. H., Fahima, T., Röder, M. S., Huang, Q. Y., Dahan, A., Li, Y. C., et al.
(2000). High-density molecular map of chromosome region harboring stripe-
rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum
dicoccoides. Genetica 109, 199–210.

Qureshi, N., Bariana, H., Kumran, V. V., Muruga, S., Forrest, K. L., Hayden, M. J.,
et al. (2018). A new leaf rust resistance gene Lr79 mapped in chromosome 3BL
from the durum wheat landrace Aus26582. Theor. Appl. Genet. 131, 1091–1098.
doi: 10.1007/s00122-018-3060-3

R Core Team (2016). R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing.

Rosewarne, G. M., Herrera-Foessel, S. A., Singh, R. P., Huerta-Espino, J., Lan, C. X.,
and He, Z. H. (2013). Quantitative trait loci of stripe rust resistance in wheat.
Theor. Appl. Genet. 126, 2427–2449.

Rouse, M. N., Nirmala, J., Jin, Y., Chao, S., Fetch, T. G., Pretorius, Z. A., et al. (2014).
Characterization of Sr9h, a wheat stem rust resistance allele effective to Ug99.
Theor. Appl. Genet. 127, 1681–1688. doi: 10.1007/s00122-014-2330-y

Rouse, M. N., Wanyera, R., Njau, P., and Jin, Y. (2011). Sources of resistance
to stem rust race Ug99 in spring wheat germplasm. Plant Dis. 95, 762–766.
doi: 10.1094/pdis-12-10-0940

Royo, C., Elias, E., and Manthey, F. (2009). “Durum wheat breeding,” in Cereals.
Handbook of Plant Breeding, Vol. 3, ed. M. Carena (New York, NY: Springer),
doi: 10.1007/978-0-387-72297-9_6

Frontiers in Plant Science | www.frontiersin.org 19 April 2021 | Volume 12 | Article 64073971

https://doi.org/10.1371/journal.pone.0197317
https://doi.org/10.3389/fpls.2019.01247
https://doi.org/10.1007/s00122-013-2050-8
https://doi.org/10.1371/journal.pone.0203283
https://doi.org/10.1007/s00122-016-2841-9
https://doi.org/10.1094/phyto-03-14-0065-r
https://doi.org/10.1111/pbi.12288
https://doi.org/10.1007/s11032-009-9353-0
https://doi.org/10.1016/j.jcs.2017.03.005
https://doi.org/10.1007/s10681-005-2911-6
https://doi.org/10.1007/s10681-005-2911-6
https://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp
https://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp
https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf
https://doi.org/10.1046/j.1439-0523.2000.00449.x
https://doi.org/10.1046/j.1439-0523.2000.00449.x
https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/2013/GeneSymbol.pdf
https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/2013/GeneSymbol.pdf
https://doi.org/10.5897/jpbcs2015.0542
https://doi.org/10.1094/phyto-99-1-0089
https://doi.org/10.1094/phyto-99-1-0089
https://doi.org/10.5958/0975-6906.2015.00053.x
https://www.nass.usda.gov
https://www.nass.usda.gov
https://doi.org/10.1094/phyto-12-15-0337-r
https://doi.org/10.1534/g3.117.300209
https://doi.org/10.1094/phyto-11-14-0302-fi
https://doi.org/10.1094/phyto-11-14-0302-fi
https://doi.org/10.1094/pdis-09-11-0793
https://doi.org/10.1094/phyto-97-3-0344
https://doi.org/10.1094/phyto-97-5-0574
https://doi.org/10.1007/s00122-018-3060-3
https://doi.org/10.1007/s00122-014-2330-y
https://doi.org/10.1094/pdis-12-10-0940
https://doi.org/10.1007/978-0-387-72297-9_6
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-640739 April 5, 2021 Time: 10:22 # 20

Aoun et al. Rust Resistance in Durum Wheat

Saini, J., Faris, J. D., Zhang, Q., Rouse, M. N., Jin, Y., Long, Y., et al. (2018).
Identification, mapping, and marker development of stem rust resistance genes
in durum wheat ‘Lebsock’. Mol. Breed. 38:77.

SAS Institute Inc (2004). SAS/ETS 9.1 User’s Guide. Cary, NC: SAS
Institute Inc.

Singh, B., Bansal, U. K., Forrest, K. L., Hayden, M. J., Hare, R. A., and Bariana,
H. S. (2010). Inheritance and chromosome location of leaf rust resistance in
durum wheat cultivar Wollaroi. Euphytica 175, 351–355. doi: 10.1007/s10681-
010-0179-y

Singh, R. (1991). Pathogenic variations of Puccinia recondita f. sp. tritici in wheat-
growing areas of Mexico during 1988 and 1989. Plant Dis. 75, 790–794.

Singh, R. P., Hodson, D. P., Huerta-Espino, J., Jin, Y., Bhavani, S., Njau, P., et al.
(2011). The emergence of Ug99 races of the stem rust fungus is a threat to world
wheat production. Annu. Rev. Phytopathol. 49, 465–481. doi: 10.1146/annurev-
phyto-072910-095423

Singh, R. P., Hodson, D. P., Jin, Y., Lagudah, E. S., Ayliffe, M. A.,
Bhavani, S., et al. (2015). Emergence and spread of new races of wheat
stem rust fungus: continued threat to food security and prospects of
genetic control. Phytopathology 105, 872–884. doi: 10.1094/phyto-01-15-00
30-fi

Singh, R. P., Huerta-Espino, J., Pfeiffer, W., and Figueroa-Lopez, P. (2004).
Occurrence and impact of a new leaf rust race on durum wheat in northwestern
Mexico from 2001 to 2003. Plant Dis. 88, 703–708. doi: 10.1094/pdis.2004.88.7.
703

Solh, M., Nazari, K., Tadesse, W., and Wellings, C. R. (2012). “The growing threat
of stripe rust worldwide,” in Proceedings of the Borlaug Global Rust Initiative
(BGRI) Conference, Beijing, 1–4.

Stakman, E. C., Stewart, D. M., and Loegering, W. Q. (1962). Identification
of Physiologic Races of Puccinia graminis var. tritici. US Department
of Agriculture Agricultural Research Service E-617. Washington DC:
United States Department of Agriculture.

Uauy, C., Brevis, J. C., Chen, X., Khan, I., Jackson, L., Chicaiza, O., et al. (2005).
High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from
Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content
locus Gpc-B1. Theor. Appl. Genet. 112, 97–105. doi: 10.1007/s00122-005-
0109-x

USDA, NASS, North Dakota Field Office (2019). Available online at: https://
ndwheat.com/uploads/10/whtvr19.pdf (accessed June 20, 2020).

Wan, A., Chen, X., and Yuen, J. (2016). Races of Puccinia striiformis f. sp. tritici in
the United States in 2011 and 2012 and comparison with races in 2010. Plant
Dis. 100, 966–975. doi: 10.1094/pdis-10-15-1122-re

Wan, A. M., and Chen, X. M. (2014). Virulence characterization of Puccinia
striiformis f. sp. tritici using a new set of Yr single-gene line differentials in the
United States in 2010. Plant Dis. 98, 1534–1542. doi: 10.1094/pdis-01-14-0071-
re

Wang, S., Wong, D., Forrest, K., Allen, A., Chao, S., Huang, B. E., et al. (2014).
Characterization of polyploid wheat genomic diversity using a high-density 90
000 single nucleotide polymorphism array. Plant Biotechnol. J. 12, 787–796.
doi: 10.1111/pbi.12183

Wei, T., and Simko, V. (2013). corrplot: Visualization of a Correlation Matrix. R
Package Version 0.73 230:11.

Xu, L. S., Wang, M. N., Cheng, P., Kang, Z. S., Hulbert, S. H., and Chen, X. M.
(2013). Molecular mapping of Yr53, a new gene for stripe rust resistance in
durum wheat accession PI 480148 and its transfer to common wheat. Theor.
Appl. Genet. 126, 523–533. doi: 10.1007/s00122-012-1998-0

Zhang, D., Bowden, R. L., Yu, J., Carver, B. F., and Bai, G. (2014). Association
analysis of stem rust resistance in US Winter Wheat. PLoS One 9:e103747.
doi: 10.1371/journal.pone.0103747

Zhang, W., Chen, S., Abate, Z., Nirmala, J., Rouse, M. N., and Dubcovsky, J. (2017).
Identification and characterization of Sr13, a tetraploid wheat gene that confers
resistance to the Ug99 stem rust race group. Proc. Natl. Acad. Sci. U.S.A. 114,
E9483–E9492.

Zhang, Z., Ersoz, E., Lai, C. Q., Todhunter, R. J., Tiwari, H. K., Gore, M. A., et al.
(2010). Mixed linear model approach adapted for genome-wide association
studies. Nat. Genet. 42, 355–360. doi: 10.1038/ng.546

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Aoun, Rouse, Kolmer, Kumar and Elias. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 20 April 2021 | Volume 12 | Article 64073972

https://doi.org/10.1007/s10681-010-0179-y
https://doi.org/10.1007/s10681-010-0179-y
https://doi.org/10.1146/annurev-phyto-072910-095423
https://doi.org/10.1146/annurev-phyto-072910-095423
https://doi.org/10.1094/phyto-01-15-0030-fi
https://doi.org/10.1094/phyto-01-15-0030-fi
https://doi.org/10.1094/pdis.2004.88.7.703
https://doi.org/10.1094/pdis.2004.88.7.703
https://doi.org/10.1007/s00122-005-0109-x
https://doi.org/10.1007/s00122-005-0109-x
https://ndwheat.com/uploads/10/whtvr19.pdf
https://ndwheat.com/uploads/10/whtvr19.pdf
https://doi.org/10.1094/pdis-10-15-1122-re
https://doi.org/10.1094/pdis-01-14-0071-re
https://doi.org/10.1094/pdis-01-14-0071-re
https://doi.org/10.1111/pbi.12183
https://doi.org/10.1007/s00122-012-1998-0
https://doi.org/10.1371/journal.pone.0103747
https://doi.org/10.1038/ng.546
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


SYSTEMATIC REVIEW
published: 21 April 2021

doi: 10.3389/fpls.2021.657916

Frontiers in Plant Science | www.frontiersin.org 1 April 2021 | Volume 12 | Article 657916

Edited by:

Anna Maria Mastrangelo,

Council for Agricultural and

Economics Research (CREA), Italy

Reviewed by:

Fernando Martinez,

Sevilla University, Spain

Karl Kunert,

University of Pretoria, South Africa

*Correspondence:

Edson P. Amorim

edson.amorim@embrapa.br

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Plant Breeding,

a section of the journal

Frontiers in Plant Science

Received: 24 January 2021

Accepted: 19 March 2021

Published: 21 April 2021

Citation:

Soares JMS, Rocha AJ,

Nascimento FS, Santos AS,

Miller RNG, Ferreira CF, Haddad F,

Amorim VBO and Amorim EP (2021)

Genetic Improvement for Resistance

to Black Sigatoka in Bananas: A

Systematic Review.

Front. Plant Sci. 12:657916.

doi: 10.3389/fpls.2021.657916

Genetic Improvement for Resistance
to Black Sigatoka in Bananas: A
Systematic Review
Julianna M. S. Soares 1†, Anelita J. Rocha 1†, Fernanda S. Nascimento 1,

Adriadna S. Santos 2, Robert N. G. Miller 3, Cláudia F. Ferreira 4, Fernando Haddad 4,

Vanusia B. O. Amorim 4 and Edson P. Amorim 4*

1Department of Biological Sciences, Feira de Santana State University, Feira de Santana, Brazil, 2 Secretariat of Education of

the State of Bahia, Salvador, Brazil, 3Department of Cell Biology, University of Brasília, Brasília, Brazil, 4 Embrapa Mandioca e
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Bananas are an important staple food crop in tropical and subtropical regions in Asia,

sub-Saharan Africa, and Central and South America. The plant is affected by numerous

diseases, with the fungal leaf disease black Sigatoka, caused byMycosphaerella fijiensis

Morelet [anamorph: Pseudocercospora fijiensis (Morelet) Deighton], considered one of

the most economically important phytosanitary problem. Although the development

of resistant cultivars is recognized as most effective method for long term control of

the disease, the majority of today’s cultivars are susceptible. In order to gain insights

into this pathosystem, this first systematic literature review on the topic is presented.

Utilizing six databases (PubMed Central, Web of Science, Google Academic, Springer,

CAPES and Scopus Journals) searches were performed using pre-established inclusion

and exclusion criteria. From a total of 3,070 published studies examined, 24 were

relevant with regard to the Musa-P. fijiensis pathosystem. Relevant papers highlighted

that resistant and susceptible cultivars clearly respond differently to infection by this

pathogen. M. acuminata wild diploids such as Calcutta 4 and other diploid cultivars

can harbor sources of resistance genes, serving as parentals for the generation of

improved diploids and subsequent gene introgression in new cultivars. From the

sequenced reference genome of Musa acuminata, although the function of many genes

in the genome still require validation, on the basis of transcriptome, proteome and

biochemical data, numerous candidate genes and molecules have been identified for

further evaluation through genetic transformation and gene editing approaches. Genes

identified in the resistance response have included those associated with jasmonic acid

and ethylene signaling, transcription factors, phenylpropanoid pathways, antioxidants

and pathogenesis-related proteins. Papers in this study also revealed gene-derived

markers in Musa applicable for downstream application in marker assisted selection.

The information gathered in this review furthers understanding of the immune response

inMusa to the pathogen P. fijiensis and is relevant for genetic improvement programs for

bananas and plantains for control of black Sigatoka.
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INTRODUCTION

Bananas and plantains (Musa spp.) are important commodity
fruit crops in terms of trade and consumption, and represent
the fourth most important staple food worldwide (Weber et al.,
2017). World production in 2018 was ∼154.5 million tons, of

which 74% were bananas and 26% plantains, grown over a total

area of 11.3 million hectares (FAOSTAT, 2021).
Although bananas originated in Southwest Asia and the

Western Pacific region, popularity and economic importance
occurred following introduction to Africa, Latin and Central
America and the South Pacific (Valmayor, 2001; De Langhe
et al., 2009). The vast majority of banana and plantain cultivars

originated from hybrids of the two wild diploid species, Musa
acuminata Colla (genome A) and M. balbisiana Colla (genome

B). Such crossings resulted in a series of diploids, triploids and
tetraploids, with genomic groups classified as AA, AB, AAA,
AAB, ABB, AABB, AAAB, and ABBB (Simmonds and Shepherd,

1955).
Banana and plantain production are affected by various

pests and diseases, including bacterial wilt (Addy et al., 2016),
nematodes (Seenivasan, 2017), Fusarium wilt (Dita et al.,
2018; Arinaitwe et al., 2019) and yellow and black Sigatoka
diseases (Ferreira et al., 2004; Timm et al., 2016). Black
Sigatoka, caused by the fungus Mycosphaerella fijiensis Morelet
[anamorph: Pseudocercospora fijiensis (Morelet) Deighton], can
result in considerable negative economic impact, affecting both
bananas and plantains across all global growing regions. Whilst
chemical control is considered efficient, problems can arise
from indiscriminate use, where this approach is detrimental to
human health and the environment. Agrochemical-based control
is also expensive (Churchill, 2011), with data indicating ∼US$
1,000/ha spent on disease control annually in large plantations,
corresponding to up to 30% of the total production costs
(Churchill, 2011; Alakonya et al., 2018). Another important
factor to be considered with dependency on agrochemicals is
the possible medium- and long-term selection for pathogen
strains acquiring resistance to fungicides, potentially reducing
effectiveness (Churchill, 2011; Chong, 2016; Friesen, 2016;
Rodríguez-García et al., 2016; Oiram-Filho et al., 2019).

Rain splash of asexual conidia and airborne dispersal of
sexual ascospores enable effective spread of P. fijiensis (Churchill,
2011; Rodríguez-García et al., 2016; Alakonya et al., 2018).
The onset of the first symptoms of the disease typically occurs
between 7 and 14 days after contamination, depending on local
environmental conditions. Following fungal penetration of leaf
stomata, colonization of intercellular spaces and subsequent
necrotic damage then decrease the photosynthetic capacity of the
plant, reducing the quantity and quality of fruits (Churchill, 2011;
Alakonya et al., 2018; Cruz-Martín et al., 2018).

Whilst increased understanding of the genetic structure
of pathogen populations and their evolution are important
components to consider in strategies for Musa genetic
improvement and management of the disease (Churchill,
2011), the identification at the molecular level of host genes
related to resistance to P. fijiensis will advance improvement of
banana through both assisted selection and genetic engineering

(Mendoza-Rodríguez, 2014). Our understanding of the innate
immune system in plants has advanced considerably in recent
years, with challenge by pathogen molecules known to activate
host receptor proteins for pathogen recognition. In a first layer
of the immune response, referred to as pathogen-associated
molecular pattern (PAMP)-triggered immunity (PTI), or non-
host resistance, host cell surface pattern recognition receptors
(PRRs) (Dangl and Jones, 2001; Monaghan and Zipfel, 2012)
recognize conserved pathogen-associated molecular patterns
(PAMPs) (Jones and Dangl, 2006; Boutrot and Zipfel, 2017)
such as bacterial flagellin and fungal cell wall chitin (Felix
et al., 1999; Wan et al., 2004; Thomma et al., 2011; Zipfel, 2014;
Gong et al., 2020). Plant PRRs, which include receptor-like
kinases (RLKs) and receptor-like proteins (RLPs), generally
contain extracellular domains with a capacity for ligand binding,
transmembrane domains and intracellular domains (Zipfel,
2014). Activation of PRRs following PAMP recognition will
trigger intracellular signaling and plant defense responses
to block pathogen advance in the host. These include reactive
oxygen species (ROS), mitogen-activated protein kinase (MAPK)
cascades and Ca2+ signaling influx (Chisholm et al., 2006; Dangl
et al., 2013; Li et al., 2016). Race-specific pathogen effector
proteins, or avirulence (Avr) proteins, when secreted into the
host cell by evolving pathogens, by contrast, can suppress PTI
and result in an effector-triggered susceptibility (ETS) with
subsequent disease (Jones and Dangl, 2006; Boller and Felix,
2009). In a second layer of the plant immunity defense response,
intracellular nucleotide-binding and leucine-rich repeat domain
intracellular resistance receptors (NLRs) recognize directly
or indirectly evolved pathogen effectors, activating effector-
triggered Immunity (ETI) (Jones and Dangl, 2006). As a more
intense response, this again involves calcium ion signaling and
ROS, together with transcriptional reprogramming, changes in
levels of plant hormones salicylic acid (SA) and jasmonic acid
(JA) (Creelman and Mullet, 1995), and the accumulation of
pathogenesis-related (PR) proteins (Gururani et al., 2012). Such
a suite of responses can also involve the signature hypersensitive
response, comprising a programmed and localized host cell
death at the site of infection (Jones and Dangl, 2006; Coll et al.,
2011; Cui et al., 2015), effectively limiting pathogen advance.
Subsequent systemic acquired resistance (SAR) can also occur,
conferring a broad spectrum response in the host that heightens
resistance to any subsequent pathogen attack (Dong, 2001; Spoel
and Dong, 2012).

The pathosystemMusa spp. x P. fijiensis is complex, given the
characteristics of the polyploid host and the morphophysiology
of the hemibiotrophic fungus. To date, there have been few
studies on the biology of this hemibiotroph and the mode
of action of genes involved in the host-pathogen interaction
(Cavalcante et al., 2011; Torres et al., 2012; Mendoza-Rodríguez,
2014; Arango-Isaza et al., 2016). Similarly, although the genus
Musa has been relatively widely studied with regard to molecular
marker development and analysis of genetic diversity, with
whole genome sequences also developed in recent years for
M. acuminata and related species, detailed investigation and
validation of gene function in immune responses in different
Musa-pathogen interactions remains limited (Sun et al., 2009;
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Li et al., 2012; Wang et al., 2012; Bai et al., 2013; Castañeda
et al., 2017). With regard toMusa-Pseudocercospora interactions,
candidate gene discovery has broadly been undertaken through
analysis of gene analogs and through transcriptomics approaches
(Miller et al., 2008, 2011; Emediato et al., 2009, 2013; Portal et al.,
2011; D’ Hont et al., 2012; Passos et al., 2012, 2013; Sulliman et al.,
2012; Timm et al., 2016).

Systematic literature reviews are analyses that gather and
critically evaluate compiled data from previously published
scientific investigations. Such an approach for synthesis of
findings is widely employed inmedical fields, enabling, in a single
document, relevant information to be gathered on a specific
topic, for example on a disease or active ingredient in medicines
and potential side effects (Falcomer et al., 2019; Jones et al., 2020).
For Musa spp., there have only been two studies using such a
strategy, with focus on plant physiology associated with water
deficit and on fruit consumption preferences (Santos et al., 2018;
Falcomer et al., 2019).

Accumulation of knowledge on host genetics and genomics,
resistance and defense mechanisms, together with information
on methods and tools employed in development of resistance
to black Sigatoka, is relevant for genetic improvement strategies
for development of resistant cultivars. This systematic review
synthesizes relevant literature published in the last 10 years
on genetic improvement of banana with a focus on black
Sigatoka, to answer the following question: what are the strategies
adopted in genetic improvement that aim to reduce the impact
of black Sigatoka on banana plants? To our knowledge, this
is the first systematic review applied to the Musa spp. x P.
fijiensis pathosystem.

MATERIALS AND METHODS

The systematic review was conducted using the software StArt
(State of the Art through Systematic Review) Beta version. 3.0.3,
developed at the Federal University of São Carlos (UFSCar) to
assist in systematic reviewing (Santos et al., 2018). The software
is freely available at http://lapes.dc.ufscar.br/tools/start_tool.
This review consisted of three fundamental steps, summarized
in Figure 1.

Planning
In this step, a defined protocol was followed according to the
following information: article title, authors, objective, keywords,
research questions, research sources, inclusion/exclusion criteria
and definition of study type (https://doi.org/10.5281/zenodo.
4437073). The questions raised in this review are listed inTable 1.

Execution
In order to answer the question of our research, “which strategies
were adopted in genetic breeding to reduce the impact of
black Sigatoka in bananas?” a research strategy of Population
Intervention Comparison Outcome (PICOS), was used (de Costa
Santos et al., 2007). This strategy guides what the research
question really needs to specify avoiding a less biased answer
(Wright et al., 2007). For it’s elaboration, these following
questions should be answered:

P–What is the research problem or who are
the individuals populations?

I–What will be done, or which treatment or intervention
or exposure?

C–Will any action intervention alternative treatment, or in
parallel, be carried out?

O–What is the expected result or outcome?
S–What is the type of study?
The PICOS strategy used in this systematic review is shown

in Table 2.
Searches were conducted in selected databases: CAPES

journals (https://www.periodicos.capes.gov.br), PubMed Central
(https://www.ncbi.nlm.nih.gov/pmc), Google Scholar (https://
scholar.google.com.br), Springer (https://link.springer.com),
Web of Science (http://apps.isiknowledge.com) and Scopus
(https://www.scopus.com). The selected files were imported
in BIBITEX and MEDILINE format compatible with StArt.
Automated searches were made from the themes located in
titles, keywords and summaries. Additional articles of relevance
that were not identified automatically were subsequently
added manually. For all databases, the same search string was
employed, with connectors such as “or” and “and” used to group
synonymous keywords and the main topics. The String employed
was as follows: Musa spp. and bananas or plantains and black
Sigatoka or Mycosphaerella fijiensis or Pseudocercospora fijiensis
and genetic resistance and markers and genes.

Summarization
This step comprised the elaboration of graphs, tables and a word
cloud to summarize the systematic review. All articles that were
selected during the selection and extraction phase were based on
the following inclusion criteria: articles that contained the search
string terms in the title, abstract or keywords; and articles that
answered the protocol questions (Table 1). Criteria for exclusion
were as follows: theses, dissertations, manuals, reports, book
chapters, review articles, articles published in annals of events
and studies without any clear contribution.

During the selection stage, articles imported into the software
StArt were classified as accepted, rejected, or excluded due to
duplication. In the extraction phase, a second selection was
made considering only the articles that were accepted in the
initial selection stage. During this phase, it was possible to
delete duplicates, accept articles or reject those that were not in
accordance with the objectives of the work, based on reading the
articles in full, as well as on the inclusion and exclusion criteria. A
PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) checklist is presented for download at https://
doi.org/10.5281/zenodo.4659141.

RESULTS

Database Searches
Aiming to reduce bias risks we opted to insert only articles
with scientific and statistical data and also those which really
considered our main and secondary questions whose conclusions
were reliable. Regarding the specific evaluation of risk and
bias tools used in clinical studies that were not yet adapted
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FIGURE 1 | General systematic literature review flowchart [Adapted from Santos et al. (2018)].

TABLE 1 | List of questions raised in the review.

Questions

1. Which countries carried out most studies on the genetic improvement of banana related to black Sigatoka?

2. Which institutions/bodies work with this theme?

3. Which are the most studied Musa genotypes and varieties?

4. In terms of commercial cultivars, which are resistant and which are susceptible to P. fijiensis?

5. What types of trials are proposed in the studies?

6. Which genes are reported to be associated with resistance to black Sigatoka?

7. What are the biotechnological techniques employed in the studies?

8. What are the structural, genetic and molecular mechanisms involved in Musa defense responses responsible for conferring resistance to black Sigatoka?

for use in other areas of knowledge also related to meta-
analysis, were used. A PRISMA checklist was also used which
is used strategically in systematic reviews aiming transparency
and quality in the elaboration and publication of this review.
Therefore, we guarantee that there is no bias risks in our review
since all the PRISMA parameters were followed accordingly,
guaranteeing reproducibility and reliability.

Electronic database searches using StArt resulted in the
selection of 3,070 articles, published between January 2010 and
December 2020. PubMed Central contributed with the largest
number for this systematic review, corresponding to 1,786
papers, or 58% of the total.Web of Science contributed with 1,130
papers, representing 37% of those initially selected, followed by
Google Academic (102), Springer (47), CAPES Journal (4) and
Scopus (3). Although papers were selected using the search string,
most were subsequently excluded from the study, as they were not
related to the topic, and/or falling within the exclusion criteria.
Two articles were also added manually (Figure 2).

During the initial evaluation of articles based on title and
abstract, 2,070 articles did not meet the inclusion criteria.
Together with 142 articles that were duplicated, these were all
excluded from the systematic review. In the extraction stage,
of the 228 remaining articles, 24 were accepted for analysis in

the review from the criteria established for inclusion, as these
answered the questions proposed in the initial protocol. For
consultation purposes, these are stored in a free digital library at
the following link: https://doi.org/10.5281/zenodo.

A word cloud was generated during the extraction phase of
the database search based on the frequency of keywords in the
selected articles (n= 228). Highest frequencies of keywords in the
articles were observed for black Sigatoka,Mycosphaerella fijiensis,
Musa spp., disease and genetic resistance (Figure 3).

Study Locations
Most of the research work included in this systematic review
was conducted in only three countries, namely Cuba (21%),
Brazil (18%) and Colombia (17%). Belonging to the American
continent, these represented the source of ∼67% of the total 24
articles examined (Figure 4A). Articles from Africa, Europe and
Asia represented 17, 13, and 4%, respectively (Figure 4B).

Sources of Resistance and Study
Environment
Cultivars and genotypes that are resistant, moderately resistant
or susceptible to black Sigatoka were the object of study across
the selected articles (Table 3). As summarized in Figure 5, most
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TABLE 2 | Definition of the PICO terms of strategy for the question in the research used in this research.

Description Abbreviation Components of the question

Population P Banana plants (Musa spp.) with black Sigatoka

Interest/intervention I Genetic breeding methods used to control the disease.

Comparison C Lack of breeding methods or any other method of management or control of the

disease, which does not involve genetic breeding (cultural, chemical, biological or

other methods of control and management of the disease).

Outcome O Resistance or tolerance to black Sigatoka (basal or complete resistance)

Type of

study

S Scientific articles with experimental studies.

FIGURE 2 | Prisma diagram for the screening process of articles selected in this review.

genotypes were diploid AA genome members, representing
46% of those studied, 28% were AAA triploids, 13% AAB
genome triploids, 13% AAAB genome tetraploids, and 1%
were AB genome diploids. Genotypes most widely employed
in studies with P. fijiensis were identified as: M. acuminata
Calcutta 4, Grande Naine and Williams. Although the majority
of the resistant or moderately resistant genotypes were AA
diploids, resistance was also reported across AAA, AAB, and
AAAB members.

With regard to the study environment, most of the
studies were conducted on plant material in vitro (46%),
followed by greenhouse (23%), field-based (15%) and glasshouse
environments (13%) (Figure 6). In vitro work encompassed
laboratory activities such as propagation of plants for testing,

molecular analysis and fungal multiplication. Field work focused
on analysis of agronomic characters, evaluation of resistance
and other complementary analyses, such as consumer acceptance
of resistant cultivars. In relation to greenhouse experiments,
different pathogen inoculation approaches were utilized during
evaluation of levels of resistance of different banana genotypes to
P. fijiensis (Alvarado-Capó et al., 2003; Leiva-Mora et al., 2010).

Methodologies Employed
With regard to the main methodologies employed,
gene expression analysis was addressed in 38% of the
selected publications, followed by enzyme analysis (17%),
symptomatology analysis (13%), transgenic development (13%),
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FIGURE 3 | Word cloud based on the frequency of selected article keywords

during the extraction phase of the systematic review into genetic improvement

of banana for resistance to black Sigatoka.

FIGURE 4 | Summary pie charts for the published data from the last 10 years

recognized in the systematic review into genetic improvement of banana for

resistance to black Sigatoka. (A) Principal countries publishing data on

resistance of Musa spp. to black Sigatoka. (B) Main continents to publish data

on resistance of Musa spp. to black Sigatoka.

agronomic characterization (8%), Musa hybridization (8%) and
characterization with molecular markers (4%) (Figure 7).

Leaf disease symptom evaluation employed grading scales
that were proposed by Alvarado-Capó et al. (2003) and
Stover (1972), as modified by Gauhl (1989). Three publications
employing transgenic approaches were also identified in the
study. Vishnevetsky et al. (2011) focused on the development
of a transformation system for banana for pathogen control,
with expression of the ThEn - 42 endochitinase gene from
Trichoderma harzianum, together with a stybene synthase (StSy)
gene resulting in transgenic events with improved tolerance
to Sigatoka. Onyilo et al. (2018) conducted pathogen gene
silencing approaches targeting mitogen-activated protein kinase
pathogen genes Fus3 and Slt2, which are reported to be
essential for pathogenicity. Portal et al. (2012) verified a green
fluorescent protein-transformed Mycosphaerella fijiensis strain
on susceptible banana “Grande Naine” and resistant “Yangambi
km 5” plants, demonstrating that mutation events in P. fijiensis
can increase virulence. In relation to agronomic characterization,
two articles evaluated growth and production performance of
genotypes resistant to black Sigatoka (Nowakunda et al., 2015;
Weber et al., 2017). Enzymatic activity was also addressed in
four publications that reported host enzyme actions during plant-
pathogen interaction (Table 4). In two articles,Musa interspecific
hybridization was also used to assess resistance development to
black Sigatoka in progenies (Barekye et al., 2011; Tumuhimbise
et al., 2018). Regarding molecular markers, one article addressed
the development of microsatellite markers as a resource forMusa
genetic improvement for resistance (Passos et al., 2012).

Musa Gene Expression Analysis During
Interaction With P. fijiensis
Overall, eight articles (38%) investigated gene expression during
the Musa x P. fijiensis interaction. Several candidate genes
expressed differentially potentially involved in defense responses
were identified in the selected articles (Supplementary Table 1).
Of the genes identified in this systematic review, 18% are
classified as an unassigned function, that is, the functions of
these genes have yet to be discovered. The other genes are
related to jasmonic acid signaling (14%), ethylene signaling
(13%), primary metabolism (8%), secondary metabolism
(8%), transcription factors (7%), via phenylpropanoid
pathways (6%), antioxidants (6%), carbohydrate metabolism
(5%), proteins related to pathogenesis (2%), among others
(Figure 8) (Supplementary Table 1). In total, six different
methods were used to inoculate the plants, with differences
mainly in the form of application of spores on the leaf
(brush or spray) and in relation to the concentration
of spores, with values ranging from 1 × 103 to 1 × 106

(Supplementary Table 1).

Enzymatic Activity
A total of 10% (n = 4) of the articles were related
to analysis of enzyme activity in plants infected with
P. fijiensis (Figure 7). In these publications, increased
activity following inoculation was shown for the enzymes
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TABLE 3 | Musa spp. genotypes most employed in published data recognized in

the systematic review into genetic improvement of banana for resistance to black

Sigatoka.

Musa genotype Genomic group Classification

Calcutta 4 AA Resistant

Orito AA Resistant

Birmanie AA Resistant

Krasan Saichon AA Resistant

Tuu Gia AA Resistant

Zebrina AA Resistant

N◦ 118 AA Resistant

DH-Pahang AA Resistant

Pisang Lilin AA Moderately resistant

028003-01 AA Moderately resistant

Buitenzorg AA Moderately resistant

Khi Maeo AA Moderately resistant

M53 AA Moderately resistant

Malaccensis 1 AA Moderately resistant

Malaccensis 2 AA Moderately resistant

Malbut AA Moderately resistant

Mambee Thu AA Moderately resistant

Microcarpa AA Moderately resistant

Niyarma Yik AA Moderately resistant

PA Rayong AA Moderately resistant

Pisang Madu AA Moderately resistant

Pisang Cici AA Moderately resistant

Pisang Jaran AA Moderately resistant

Pisang Jari Buaya AA Moderately resistant

Pisang Lidi AA Moderately resistant

Pisang Pipit AA Moderately resistant

Pisang Rojo Uter AA Moderately resistant

Pisang Tongat AA Moderately resistant

SF-751 AA Moderately resistant

Tjau Lagada AA Moderately resistant

Akondro Mainty AA Susceptible

Khai Nai On AA Susceptible

Pisang Berlin AA Susceptible

Tong Dok Mak AA Susceptible

IAC 1 AB Susceptible

Yangambi Km5 AAA Resistant

Kiwangaazi (M9) AAA Resistant

Grande naine AAA Susceptible

Williams AAA Susceptible

Filipino AAA Susceptible

Gross Michel AAA Susceptible

Guineo de seda AAA Susceptible

Guineo de Jardim AAA Susceptible

Guineo mulato AAA Susceptible

Guineo morado AAA Susceptible

Nakitembe AAA Susceptible

Limeño AAB Resistant

NAROBan1 AAB Resistant

NAROBan2 AAB Resistant

(Continued)

TABLE 3 | Continued

Musa genotype Genomic group Classification

NAROBan3 AAB Resistant

NAROBan4 AAB Resistant

Thap Maeo AAB Resistant

Maqueño AAB Susceptible

Dominico AAB Susceptible

Dominico gigante AAB Susceptible

Dominico negro AAB Susceptible

Dominico-Hartón AAB Susceptible

Barraganete AAB Susceptible

PV42-68 AAAB Resistant

Pacovan Ken AAAB Resistant

BRS Vitória AAAB Resistant

BRS Japira AAAB Resistant

BRS Preciosa AAAB Resistant

BRS Garantida AAAB Resistant

BRS Tropical AAAB Resistant

BRS Platina AAAB Resistant

BRS Maravilha AAAB Resistant

FHIA 02 AAAB Resistant

FHIA 18 AAAB Resistant

peroxidase (POX), phenylalanine ammonia lyase (PAL),
β-1, 3-glucanase (GLU) and chitinase (CHI), superoxide
dismutase (SOD), ascorbate peroxidase (APX), with elevated
H2O2 production after infection and pathogen advance also
shown (Table 4). In general, enzyme activity was investigated
through comparison of resistant and susceptible genotypes
after inoculation with P. fijiensis. One exception was the
publication by Cruz-Martín et al. (2018), where enzymatic
activity in Musa was analyzed in response to a strain of
Bacillus pumilus.

DISCUSSION

Database Searches
This review gathered articles published from January 2010 to
December 2020 containing information related to studies on
the genetic improvement of Musa spp. for resistance to P.
fijiensis. Only articles that answered the questions established
in the initial protocol were selected, with emphasis on genetic
improvement of bananas and plantains. For this reason, first
reports of the disease, articles on the genetic diversity of
P. fijiensis, and strategies for disease management were not
considered in the study. In addition, literature reviews were
excluded in order to avoid underestimation of data, as data
could theoretically be repeated when considering that the reviews
published cite a large number of articles that are already present
in our systematic review. In addition, we opted for articles that
performed experimental analyses.
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FIGURE 5 | Genotype frequency of Musa spp. employed in published data

recognized in the systematic review into genetic improvement of banana for

resistance to black Sigatoka.

FIGURE 6 | Study environment frequency.

FIGURE 7 | Frequency of methodologies utilized in the selected publications

recognized in the systematic review in of genetic improvement of banana for

resistance to black Sigatoka.

Study Locations
Latin America accounts for 25% of the world’s banana production
and 80% of banana exports (FAOSTAT, 2021). Although Brazil is
ranked fourth in terms of global banana production, production
in the country is destined almost entirely to internal markets.

Brazil and Cuba stand out in this study with the largest
number of studies conducted within the objectives of this review.
These countries, in addition to having adequate climates for
the development of P. fijiensis, both employ irrigation systems
for banana and plantain cultivation, potentially creating an
environment favorable to the fungus. With the exception of
certain high-altitude regions (> 1,500m) (Costa Rica, Guatemala
and Mexico), studies have shown that Central America has a
natural rain scenario climate which is suitable for the persistence
of P. fijiensis. In Latin America, Costa Rica is considered the
second largest exporter of commercial bananas. Here, however,
the black Sigatoka index is high, with fungicides applied up to
45 times a year in heavily infested areas (Yonow et al., 2019).
In the main banana export cultivation areas of South America
(Northern Colombia, Ecuador and Peru), the climate is less prone
to the development of P. fijiensis when compared to Central
America (Yonow et al., 2019). Here too, however, the number
of fungicide cycles has increased considerably, particularly in
Ecuador. This is likely due to reduced sensitivity of P. fijiensis
populations to the widely employed fungicides (Jimenez et al.,
2007). A study by Bebber (2019) on climate change related to
black Sigatoka showed that in banana cultivation areas in Latin
America and the Caribbean, the risk of infection has increased
by a median of 44.2% since 1960. This is likely due to increased
humidity and temperatures more favorable to the development of
the pathogen. Although increased banana production and global
trade have also probably facilitated the establishment and spread
of black Sigatoka, climate change has made these regions more
conducive to pathogen infection of plants (Bebber, 2019).

Musa Breeding and Black Sigatoka
Resistant Cultivars
The development of black Sigatoka resistant cultivars has been
the focus of numerous breeding programs worldwide, with
a number employing biotechnology as a support tool. The
main banana breeding programs mentioned in the review are
located in Africa, Asia and the Americas. In Africa, these
comprise the International Institute of Tropical Agriculture
(IITA), the National Research Organization (NARO), the Center
Africain de Recherches sur Bananiers et Plantains (CARBAP)
and the Center National de Recherche Agronomique (CNRA).
In Asia, breeding programs are conducted at the National
Banana Research Center (NRCB), the Indonesian Fruits Research
Institute (ITFRI) and the Chinese Academy of Tropical
Agricultural Sciences (CATAS). In the Americas, the Brazilian
Agricultural Research Corporation (EMBRAPA), the Honduras
Foundation for Agricultural Research (FHIA) and the Center
de Coopération Internationale en Recherche Agronomique pour
le Développement (CIRAD) are active in Musa improvement.
These programs have made significant progress to date in
breeding for resistance to black Sigatoka. The FHIA program
developed a number of genotypes resistant to P. fijiensis that
are now grown in different countries around the world, such
as Uganda, Tanzania, Ghana, Kenya and Nigeria. In addition,
these genotypes have also been employed in breeding programs
at IITA, EMBRAPA, CIRAD, and CARBAP (Tenkouano and
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TABLE 4 | Enzyme activities in Musa spp. during interaction with Pseudocercospora fijiensis in the selected publications recognized in the systematic review into genetic

improvement of banana for resistance to black Sigatoka.

References Enzymatic activity in musa spp. Function

Cruz-Martín et al., 2018 APX - Ascorbate peroxidase Antioxidant

CHI – Chitinase GLU - β-1, 3-glucanase Degradation of invading pathogen cell wall polysaccharides

PAL - phenylalanine ammonia lyase Synthesis of plant defense compounds, such as phytoalexins

POX – Phenol peroxidase Synthesis of lignin

SOD - Superoxide dismutase Oxidative stress due to increased production of H2O2

Torres et al., 2012 CHI – Chitinase GLU - β-1, 3-glucanase Degradation of invading pathogen cell wall polysaccharides

PAL - phenylalanine ammonia lyase Synthesis of plant defense compounds, such as phytoalexins

H2O2 – Peroxidase Activates the plant’s defense system

Mendoza-Rodríguez et al., 2017 H2O2 – Peroxidase Activates the plant’s defense system

Rodriguez et al., 2020 H2O2 – Peroxidase Activates the plant’s defense system

FIGURE 8 | Frequency of analyzed Musa genes according to predicted function in the selected publications recognized in the systematic review of genetic

improvement of banana for resistance to black Sigatoka.

Swennen, 2004). IITA, together with NARO-Uganda, have
also developed several East African cooking banana hybrids,
known as NARITAs, which are high yielding and resistant
to Black Sigatoka, with the most promising varieties now
released to farmers (Ortiz, 2015). Hybrid plantains developed
by IITA and considered resistant to P. fijiensis, known as
PITAs, as well as resistant cooking hybrids, known as BITAs,
are also available in countries such as Ghana, Ivory Coast,
Cameroon, Uganda andNigeria (Tenkouano and Swennen, 2004;
Tenkouano et al., 2011). The EMBRAPA breeding program has
also developed hybrid bananas that are currently being evaluated
for resistance to P. fijiensis in Nigeria and Uganda by IITA,
countries where bananas and plantains represent the principal
food base (Amorim et al., 2021). Several hybrids developed
by EMBRAPA also form the basis of banana production in
Northern Brazil, a region widely affected by black Sigatoka.

Cultivars included in an ongoing adoption process by Brazilian
producers include BRS Platina, a Prata-type, together with
BRS Princesa, a Silk-type hybrid, which are both resistant to
black Sigatoka, and Fusarium oxysporum f. sp. cubense race
1. In addition to the above, CIRAD and CARBAP also have
advanced breeding programs that have also developed banana
hybrids resistant to P. fijiensis through conventional strategies.
These programs employ colchicine to duplicate chromosomes
and aim to develop new cultivars rather than improving
available germplasm (Tomepke et al., 2004). CARBAP maintains
the largest collection of Musa spp. in the world, with more
than 700 varieties from various geographic regions, and more
than 150 banana cultivars (group AAB) susceptible to black
Sigatoka (Mourichon et al., 1997; Tomekpe et al., 2011). All
of these breeding programs use crossing methods to obtain
resistant materials.
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Sources of Resistance
Black Sigatoka seriously affects dessert banana cultivars such
as those of the Cavendish subgroup. One of the possible
reasons for this susceptibility may lie in the monoculture
format adopted for this subgroup, which theoretically may
provide a favorable environment both for the emergence of
resistance to fungicides within the pathogen population, as well
as individuals with different virulence and/or aggressiveness
characteristics (Churchill, 2011). A second reason is due
to the type of host response to the pathogen. Although a
reaction of the plant to attack by the pathogen has been
recognized, the magnitude and development over time is
regarded as insufficient to stop the progress of the fungus
(Churchill, 2011; Torres et al., 2012; Cruz-Martín et al.,
2018). For these reasons, one of the main recommended
alternatives to fungicide-based approaches for the control
of black Sigatoka is through the replacement of susceptible
cultivars, such as those within the Cavendish subgroup,
with agronomically appropriate resistant cultivars (Churchill,
2011).

In the present study, cultivars were reported with different
levels of resistance, being classified as resistant, moderately
resistant or susceptible to black Sigatoka. Among the most widely
employed genotypes in the selected publications, the resistant
M. acuminata wild diploid Calcutta 4, widely employed in
breeding programs, and the susceptible triploid Grande Naine
(Cavendish), used in commercial plantations for export and
local consumption, both stand out in terms of frequency. Wild
diploid M. acuminata bananas possess AA genomes and can
harbor important sources of resistance genes for the genetic
improvement of triploid cultivars (Timm et al., 2016). Studies
into gene expression in Calcutta 4 have served as an approach
to reveal candidate genes for resistance to the disease and
to elucidate the mechanisms of resistance involved in the
hypersensitivity response (Arango-Isaza et al., 2016; Timm et al.,
2016; Mendoza-Rodríguez et al., 2017). In addition to Calcutta
4, other diploids resistant and moderately resistant to P. fijiensis
include: Krasan Saichon, Zebrina, Birmanie, No. 118, Tuu Gia,
PA Rayong, Pisang Cici, Malaccensis 1, 028003-01, Microcarpa,
Pisang Lidi, Pisang Lilin, and Malbut. These have served as
parentals for generation of improved diploids for subsequent
introgression of genes in new cultivars (Nascimento et al., 2020).

Among the cultivars resistant to P. fijiensis mentioned in
this review, BRS Maravilha, BRS Platina, FHIA-02, FHIA-18,
and Galil 18 have adequate size and high yield potential, and
represent alternatives to the traditional Prata subgroup. BRS
Princesa, BRS Tropical and Caipira have also been promoted as
alternatives to Silk bananas, with the cultivar Buccaneiro also an
alternative to susceptible cultivars of the Gros Michel subgroup
and appropriate for irrigated agrosystems (Weber et al., 2017).

The cultivar BRS Preciosa can also replace the commercial
varieties Prata and Pacovan, without jeopardizing acceptability
(Garruti et al., 2012; Amorim et al., 2021). In our review,
we did not identify options of resistance to black Sigatoka
in any cultivars of the Cavendish subgroup. Banana genetic
improvement programs have, however, been focused on this

objective, with EMBRAPA, CIRAD and FHIA working on the
development of pathogen resistant genotypes with similar fruit
quality to Cavendish subgroup bananas.

Host Immune Responses to P. fijiensis
The identification of physical and chemical barriers related
to banana defense has been the object of study to understand
the mechanism of resistance to P. fijiensis. Lignification,
together with production of phytoanticipins, phenols,
phenylphenalenones, peroxidases, PAL (phenylalanine ammonia
lyase), β-1,3 glucanase, and hydrogen peroxide all increase
during incompatible interactions (Hoss et al., 2000; Otálvaro
et al., 2007; Cruz-Cruz et al., 2010; Cavalcante et al., 2011; Torres
et al., 2012; Sanchez-García et al., 2013; Hidalgo et al., 2016;
Alakonya et al., 2018).

The sequencing of the reference genome of the diploid species
Musa acuminata DH Pahang is an important resource for
Musa improvement and has advanced understanding of banana
evolution. In this study, numerous genes were identified that
encode proteins potentially related to conserved components of
PTI and ETI in monocots (D’ Hont et al., 2012).

Analysis of gene expression is important for the identification
of genes involved in plant-pathogen interactions. The genes
C4H (cinnamate-4-hydroxylase), CHS (chalcone synthase), IRL
(isoflavone reductase) and PAL (phenylalanine ammonia) are all
related to the phenylpropanoid pathway. In the selected studies in
this systematic review, these genes displayed similar up-regulated
expression profiles in infected Calcutta 4 in contrast to an absence
of such expression modulation in the susceptible cultivars
Grande Naine (Mendoza-Rodríguez et al., 2018) and Williams
(Alvarez et al., 2013), which presupposes recognition of the
pathogen in Calcutta 4 and the appropriate expression of defense
responses. The regulation of genes related to phytohormone
defense responses is not entirely resolved in Musa spp. (Portal
et al., 2011), although signaling associated with jasmonic acid
(JA), salicylic acid (AS) and ethylene (ET) also participate in
defense responses against pathogens. A total of 24 genes in the
selected articles were related to signal transduction regulated by
plant hormones, such as JA and ET (Supplementary Table 1).
All genes related to the JA signaling pathway were found to
be overexpressed in Calcutta 4 after inoculation with P. fijiensis
(Rodriguez et al., 2020), whereas in the susceptible cultivar
Williams, the activation of JA and ET defense responses was
marginal, slow or non-existent, indicating potential suppression
by pathogen effectors (Rodriguez et al., 2020). Pathogenesis-
related proteins (PR) are induced in host plants after pathogen
infection. PR-4 has been shown to have antifungal activity,
disrupting cell polarity and binding to chitin in the cell wall of the
fungus (Bormann et al., 1999; Portal et al., 2011). PR-10 exhibits
ribonuclease and antifungal activity against pathogens in Arachis
hypogaea, Jatropha curcas, and Crocus sativus (Chadha and Das,
2006; Gómez-Gómez et al., 2011; Agarwal et al., 2013). Here, in
Calcutta 4, increased expression of genes encoding pathogenesis-
related proteins PR-4 and PR-10 were found during interaction
with P. fijiensis (Portal et al., 2011; Rodriguez et al., 2016). In
a study by Mendoza-Rodríguez et al. (2018), gene expression in
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the incompatible interaction in Calcutta 4 also reported positive
regulation of the PSI gene (primary metabolism), TRX (an
antioxidant) and SAMS (methyl cycle), suggesting roles in the
defense response. In their work, negative regulation of genes
from the phenylpropanoid pathway were also active in Grande
Naine during initial phases of infection by P. fijiensis. Despite the
advances in studies to date, further functional analyses of genes
are warranted to validate use as candidate genes for resistance in
susceptible banana cultivars (Timm et al., 2016). It is clear that
there is no standardized protocol for studies of gene expression
in banana during interaction with P. fijensis, which may be a
contributing factor to differences in results obtained.

Enzymes related to the defense response to P. fijiensis have
been identified at different time points during infection and
colonization. Raised enzymatic activities have been reported to
occur earlier in certain resistant genotypes than in susceptible
cultivars. As an example, Calcutta 4 showed a rapid induction
of several defense-related enzymes, with peroxidase (POX),
phenylalanine ammonia lyase (PAL), β-1, 3-glucanase (GLU)
and well as the production of hydrogen peroxide (H2O2)
during the first 72 h after inoculation, when compared to cv.
Williams (Torres et al., 2012). H2O2 has been postulated to
perform multiple functions in plant defense, with this reactive
oxygen species involved in the rapid defense response of the
plant identified as a hypersensitivity response (HR) (Awwad
et al., 2019). One study has reported the accumulation of
H2O2 associated with hypersensitivity reactions in Calcutta 4,
enabling the rapid response in containing the development of
the pathogen (Cavalcante et al., 2011). The enzymes POD and
SOD are closely associated to oxidative stress responses caused
by an increase in H2O2. As such, increased activities in these
enzymes, in addition to other antioxidant enzymes such as
APX, have been described during incompatible responses (Cruz-
Martín et al., 2018; Awwad et al., 2019). As the first enzyme
in the phenylpropanoid pathway, the role of PAL in conversion
of precursors in lignin biosynthesis has been well-elucidated.
In relation to banana, however, its’ role in the production
of secondary metabolites such as phenylphenalenones and
phytoanticipins, with potential activity against P. fijiensis, is
poorly resolved (Hidalgo et al., 2009; Cruz-Cruz et al., 2010;
Torres et al., 2012).

Study Environments
In relation to study environment, in vitro studies were conducted
in a considerable proportion of the selected articles (45%). These
comprised laboratory experiments investigating gene expression,
enzymatic activity analysis, and gene function validation through
transgenic approaches. Greenhouse studies corresponded to 24%
of the articles, with focus on bioassays for evaluation of gene
expression in Musa leaf tissues following inoculation with P.
fijiensis. Field studies, which corresponded to only 16% of
the articles, mostly focused on agronomic characterization and
acceptance of resistant cultivars, with the exception of Barekye
et al. (2011), who evaluated the contribution of diploid and
tetraploid genotypes to triploid progenies, and Nascimento et al.
(2020), who phenotyped 31 diploid accessions of Embrapa’s
germplasm collection for resistance.

Principal Techniques Employed
Evaluation of symptoms was described in 13% of the articles,
with scales employed for measurement of black Sigatoka
symptoms based on the quantification of percentage leaf area
with characteristic lesions. In the selected articles, two different
scales were cited: Fouré (1985), Alvarado-Capó et al. (2003) and
Stover (1972), modified by Gauhl (1989). The main difference
between the evaluation scales is that the former presents five
evaluation stages for black Sigatoka in the greenhouse, whilst
the latter describes six stages which can be used both in the
greenhouse and in the field.

Amongst the techniques, one single study assessed surgical
defoliation as a strategy for reducing disease severity (Jiménez
and Brioso, 2018).

Transgenic approaches were also employed in 13% in the
selected articles. Transformation protocols based on the use of
fluorescent markers were employed with the pathogen to better
understand the infection process in susceptible and resistant
banana germplasm (Portal et al., 2012). Gene silencing strategies
were also applied to determine gene function in the pathogen
in relation to virulence (Onyilo et al., 2018). Vishnevetsky
et al. (2011) developed a transformation system for improved
tolerance to Sigatoka, with focus on endochitinase and stybene
synthase candidate genes for resistance.

Hybridization and agronomic characterization represented
only 9% of the frequency of the selected articles. The
generation of banana triploids using this technique requires an
understanding of the influence of the progenitors on potential
resistance to black Sigatoka, as well as agronomic characteristics
of the progenies generated (Barekye et al., 2011). Evaluation of
growth and production of banana genotypes with resistance to
P. fijiensis in comparison with cultivars susceptible to the disease
was also carried out (Weber et al., 2017).

Among the biotechnological techniques employed, molecular
markers such as gene-derived microsatellite markers have
also been developed (Passos et al., 2012). These markers are
appropriate for use in molecular genotyping and marker-assisted
selection (MAS) in order to accelerate strategies for Musa
genetic improvement.

LIMITATIONS OF THE REVIEW AND
FUTURE RESEARCH

As this systematic review was highly specific to the Musa x
P. fijiensis interaction with regard to genetic improvement for
resistance, the number of studies was limited to only 24 articles
suitable for inclusion. This indicates not only the need for further
studies with this focus, but also that research trends may be
focused more on other methods of controlling black Sigatoka in
banana, such as those based on the use of fungicides or cultural
control strategies for disease management.

Nevertheless, we strengthen as our closing remarks, that
the banana genetic breeding for black Sigatoka based in the
development of resistant cultivars through different methods is
an efficient tool in the integrated management of the disease. It
is possible, through genetic breeding to obtain basal, quatitative
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resistance, since complete resistance has not yet been reported
for the Musa x P. fijiensis pathosystem due to its complexity,
especially as to selection of resistance genes with higher effect,
and this is common for most agricultural crops (Kushalappa
et al., 2016; Pilet-Nayel et al., 2017; Nascimento et al., 2020).
Therefore, decreasing the symptoms of black Sigatoka obtained
with limitations in the development of the pathogen in the
tissues combined with cultural practices that aim reduction of the
inoculum in the cultivated area is the best strategy for mitigating
the impacts of the disease.

Banana possesses numerous characteristics that make genetic
improvement a laborious and complex task. Despite this,
breeding programs maintain a sustainable global banana
agribusiness through the development of cultivars resistant
to the main diseases of the crop. The process is inevitably
slow, as Musa is a long cycle species that requires years for
precise agronomic analysis of a new genotype to be completed.
Agronomic studies combined with genetic studies employing
biotechnological tools do, however, provide essential information
for continuous genetic improvement.

The information contained in the literature on genes involved
in the interaction between Musa x P. fijensis is still relatively
scarce, with the need for further focus on this pathosystem.
Future advances in this direction will no doubt contribute to the
elucidation of important processes occurring during this plant-
pathogen interaction. In the short term, priorities for future
studies are summarized below:

- In terms of accurate disease assessment, appropriate symptom
scales are required that consider both greenhouse and
field assessment, as symptomology can differ between
these environments.

- Standardized inoculation protocols are recommended
for the rapid screening of plants for resistance in
greenhouse environments.

- Standardized protocols for analysis of gene expression in
Musa during interaction with P. fijiensis are recommended, to
reduce differences due to methodologies in results obtained by
different research groups.

- The sources of resistance in Musa germplasm highlighted
in the results are relevant for conventional breeding for
development of disease resistant cultivars. No options for
resistance to black Sigatoka were identified in any cultivars
within the subgroup Cavendish.

- The development of a Musa x P. fijiensis interaction model
at the molecular level is warranted, that infers how resistant
genotype such as M. acuminata Calcutta 4 recognize the
pathogen and develop a resistance response, as well as what
types of weapons the pathogen launches to succeed in infection
against susceptible genotypes.

- Gene editing based on CRISPR/Cas9 has been a recent major
advance that can pave the way for large scale functional
genomics, enabling validation and modification of candidate
genes associated with characteristics such as resistance to
biotic stresses (pathogens and pests) and tolerance to abiotic
stresses (temperatures and extreme droughts). Although
this approach has not yet been applied to the Musa-P.

fijiensis pathosystem, it offers considerable potential for the
development of banana varieties with multiple and durable
resistance and tolerance (Tripathi et al., 2019, 2020).

CONCLUSION

Invaluable tools and resources have been developed in recent
years to further understand the interaction between Musa
and P. fijiensis. These include reference genome sequences,
bioinformatic tools, transcriptomic, proteomic, enzymatic, and
histochemical data that have enabled identification of genes,
proteins and intracellular events activated during pathogen
invasion and host defense responses. Although breeding
programs have developed hybrids resistant to P. fijiensis, the
continued identification of additional sources of resistance is
necessary, considering that resistance offeredmay have only a low
durability, given the high variability of this fungus and potential
appearance of aggressive pathogen variants.

The data collected in this systematic review highlight the
considerable information accumulated in the last 10 years that
is applicable for improvement of Musa for resistance to black
Sigatoka. The M. acuminata genotype Calcutta 4 has been
widely studied and can be a target for breeding programs
and future studies. Certain questions can also be raised in
relation to specific datasets highlighted here, such as which
genes identified through expression studies as candidates for
disease resistance are appropriate for transgenic or genetic
editing systems, or which molecular markers are applicable
in marker-assisted selection. The functional characterization of
genes and proteins will advance understanding of function of
these potential targets in the host, facilitating the development
of novel disease control strategies.
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Introgression of Maize Lethal 
Necrosis Resistance Quantitative 
Trait Loci Into Susceptible Maize 
Populations and Validation of the 
Resistance Under Field Conditions in 
Naivasha, Kenya
Luka A. O. Awata 1, Beatrice E. Ifie 2, Eric Danquah 2, MacDonald Bright Jumbo 3*, 
L. Mahabaleswara Suresh 4, Manje Gowda 4, Philip W. Marchelo-Dragga 5, 
Michael Scott Olsen 4, Oluwaseyi Shorinola 6,7, Nasser Kouadio Yao 6, Prasanna 
M. Boddupalli 4 and Pangirayi B. Tongoona 2*

1 Directorate of Research, Ministry of Agriculture and Food Security, Juba, South Sudan, 2 West Africa Centre for Crop 
Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana, 3 International Crops 
Research Institute for the Semi-Arid Tropics (ICRISAT), Bulawayo, Zimbabwe, 4 International Maize and Wheat Improvement 
Center (CIMMYT), World Agroforestry Centre (ICRAF), Nairobi, Kenya, 5 Department of Agricultural Sciences, College of 
Natural Resources and Environmental Studies, University of Juba, Juba, South Sudan, 6 Biosciences eastern and central 
Africa (BecA) Hub, International Livestock Research Institute (ILRI), Nairobi, Kenya, 7 John Innes Centre, Norwich, United 
Kingdom

Maize lethal necrosis (MLN), resulting from co-infection by maize chlorotic mottle virus 
(MCMV) and sugarcane mosaic virus (SCMV) can cause up to 100% yield losses in maize 
in Africa under serious disease conditions. Maize improvement through conventional 
backcross (BC) takes many generations but can significantly be shortened when molecular 
tools are utilized in the breeding process. We used a donor parent (KS23-6) to transfer 
quantitative trait loci (QTL) for resistance to MLN into nine adapted but MLN susceptible 
lines. Nurseries were established in Kiboko, Kenya during 2015–2017 seasons and BC3F2 
progeny were developed using marker assisted backcrossing (MABC) approach. Six 
single nucleotide polymorphism (SNP) markers linked to QTL for resistance to MLN were 
used to genotype 2,400 BC3F2 lines using Kompetitive Allele Specific PCR (KASP) platform. 
We detected that two of the six QTL had major effects for resistance to MLN under artificial 
inoculation field conditions in 56 candidate BC3F2 lines. To confirm whether these two 
QTL are reproducible under different field conditions, the 56 BC3F2 lines including their 
parents were evaluated in replicated trials for two seasons under artificial MLN inoculations 
in Naivasha, Kenya in 2018. Strong association of genotype with phenotype was detected. 
Consequently, 19 superior BC3F2 lines with favorable alleles and showing improved levels 
of resistance to MLN under artificial field inoculation were identified. These elite lines 
represent superior genetic resources for improvement of maize hybrids for resistance to 
MLN. However, 20 BC3F2 lines were fixed for both KASP markers but were susceptible 
to MLN under field conditions, which could suggest weak linkage between the KASP 
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INTRODUCTION

Maize is the major food crop in Sub-Saharan Africa, however, 
its productivity remains low due to various production constraints 
such as biotic and abiotic factors. Recently, maize lethal necrosis 
(MLN) has emerged as one of the most deadly maize diseases 
in the region with high yield losses. MLN is caused by co-infection 
of maize plants by Maize chlorotic mottle virus (MCMV) in 
combination with any of the cereal viruses in the family 
Potyviridae, such as Sugarcane mosaic virus (SCMV), Maize 
dwarf mosaic virus (MDMV), or Wheat streak mosaic virus 
(WSMV). In east Africa, it has been established that it is mostly 
SCMV in combination with MCMV causing MLN. MLN disease 
causing viruses are transmitted by vectors such as thrips and 
beetles for MCMV (Nault et al., 1978), and aphids for potyviruses 
such as SCMV and MDMV (Brandes, 1920; Pemberton and 
Charpentier, 1969). MLN can cause losses in maize ranging 
from 30 to 100% depending on disease pressure (Gowda et  al., 
2018; Awata et  al., 2019). Elite maize lines used in countries 
like South Sudan and others are highly susceptible to MLN 
and farmers risk losing their crops and money if MLN is not 
controlled. Therefore, efforts to develop high yielding varieties 
with resistance to MLN are urgently required. Breeding for 
host resistance can provide added advantage to farmers in terms 
of costs as compared to spraying against the vectors using 
chemicals, which is expensive and results in pollution to the 
environment. Conventional backcrossing is a routine breeding 
approach used for introgression of novel genes into the genetic 
backgrounds of adapted but susceptible germplasm but requires 
8–10 generations to develop lines with desired characteristics. 
Studies to identify genomic regions associated with MLN resistance 
using linkage mapping revealed three major quantitative trait 
loci (QTL) on chromosomes 3, 6, and 9 that were consistently 
detected in at least two populations (Gowda et  al., 2018) with 
recessive genetic effects. Introgression of genes for MLN resistance 
into the adapted lines using molecular markers is a quick option 
for fast-tracking development of varieties with resistance to 
MLN. Marker assisted backcrossing (MABC) has been widely 
used in improvement of maize for traits of economic importance 
including resistance to diseases (Lübberstedt et  al., 2006; 
Muthusamy et al., 2014; Feng et al., 2015; Rasheed et al., 2016). 
Therefore, use of MABC can be used to speed up identification 
of fixed QTL conferring resistance to MLN into the backgrounds 
of adapted but susceptible maize lines. Kompetitive allele specific 
PCR (KASP) markers, developed by LGC Genomics (Teddington, 
United  Kingdom),1 is a PCR-based homogeneous fluorescent 
single nucleotide polymorphism (SNP) genotyping system. It 
has the power to detect single nucleotide polymorphism at a 

1 www.lgcgenomics.com

specific locus using dual Fluorescent Resonance Energy Transfer 
(FRET; Semagn et  al., 2014). KASP has high throughput, low 
cost, and more roboust than other genotyping assays such as 
Restriction Fragment Length Polymorphism (RFLP), Randomly 
Amplified Polymorphic DNA (RAPD), and Amplified Fragment 
Length Polymorphism (AFLP), which require longer time and 
have higher cost per sample. KASP technology has been utilized 
on various crops including wheat (Rasheed et  al., 2016) and 
cordgrass (Graves et  al., 2016). The objectives of this study 
were: (i) introgression of MLN resistance from a resistant source 
into adapted but susceptible elite maize lines using the KASP 
method; (ii) validate the effect of the introgressed QTL for 
resistance to MLN in lines evaluated under MLN artificial 
inoculation in the field; and (iii) identify resistant lines for 
future breeding.

MATERIALS AND METHODS

Genetic Materials
Genetic materials were provided by CIMMYT Global Maize 
Program and consisted of two maize categories: (i) MLN 
resistant donor line (KS23-6) developed by Kasetsart University 
in Thailand, which is a yellow maize line and considered 
suitable parent for maize improvement in Africa because of 
its tropical adaptation; (ii) 19 elite but MLN susceptible white 
CIMMYT lines, with diverse tropical backgrounds and each 
line belonging to one of the two heterotic groups (A and 
B) and are commonly used for hybrid development in the 
region including South Sudan due to their high yield 
performance and resistance to major foliar diseases 
(Supplementary Appendix 1).

Development of Bi-Parental Backcross 
Populations
Crossing blocks to develop backcross (BC) populations were 
established at CIMMYT in Kiboko, between July 2015 and 
2017 cropping seasons. Kiboko is located within the dry-mid 
altitude environment at 370 75'E and 20 15'S, and 975 masl 
in Makueni County, Kenya, with mean temperature ranging 
from 14.3 to 35.1°C (Ziyomo and Bernardo, 2013; Odiyo 
et  al., 2014). The first crossing block was set up in April 
2015 and bi-parental populations were formed by crossing 
KS23-6 as pollen donor to the 19 selected elite but MLN 
susceptible lines (Awata et  al., 2018). Adequate moisture was 
supplied through drip irrigation and standard agronomic 
practices and nursery management were applied. A nursery 
to develop backcross populations was established in October 
2015, where 19 F1 populations were grown in single-row 
plots of 4.0  m spaced at 0.75  ×  0.25  m (Table  1).  

markers and target genes. The validated two major QTL can be utilized to speed up the 
breeding process but additional loci need to be identified between the KASP markers 
and the resistance genes to strengthen the linkage.

Keywords: maize, backcross, kompetitive allele specific PCR, alleles, maize lethal necrosis, introgression
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Larger population size was required so that both major QTL 
associated with resistance to MLN could be detected (Bouchez 
et  al., 2002; Hospital, 2003; Vales et  al., 2005; Ribaut and 
Ragot, 2007). Therefore, 10 F1 individual plants (females) were 
tagged per population and each backcrossed to its recurrent 
parent (males), hence BC1F1 populations were developed 
(Brown and Caligari, 2008; Acquaah, 2012). The BC1F1 progeny 
were planted in March 2016. About 60 agronomically healthy 
BC1F1 individuals (females) were labeled within each population 
and backcrossed to their respective recurrent parents (males), 
to generate BC2F1. The BC2F1 populations were planted in 
the nursery in August 2016 and about 60 clean plants in 
each population were tagged and backcrossed to the recurrent 
parents where BC3F1 populations were generated. The BC3F1 
populations were planted in January 2017 and tissue samples 
were collected from this nursery and sent to LGC in 
United  Kingdom and genotyped with 100 markers for MLN 
and 250–300 individuals per population were selected based 
on the marker information received from LGC. The selected 
250–300 individuals for each population were manually self-
pollinated and BC3F2 seeds obtained (Table  2). The BC3F2 
populations were eventually used for genotyping during the 
subsequent seasons and for trials in Naivasha during field 
evaluation under MLN artificial inoculation.

Genotyping and Marker-Trait Association 
Analysis
In the present study, we  used 19 SNP markers linked to two 
major QTL associated with resistance to MLN on chromosomes 
3 and 6 developed by CIMMYT from two association mapping 
(AM) panels of diverse tropical/subtropical maize lines 
(Supplementary Table S1). The two markers explained 33.8% 
of the phenotypic variance for MLN resistance in the two 
panels (Gowda et  al., 2015). These SNPs were used to design 
21 KASP primers for resistance to MLN at BecA-ILRI Hub 
Laboratory, with three primers for each SNP; two allele-specific 
forward primers (5'-3') and one common reverse primer (3'-5'; 
Supplementary Appendix 2).

The 20 parent lines were planted in tray pots filled with 
sterile soil in a screen house in July 2017. Two seeds were 
sown per pot with four replicates and each pot was considered 

an entry so that a total of 80 entries were generated. No 
fertilizer was applied and soil moisture was maintained using 
irrigation. Leaf samples were collected from each entry 
14 days after seedling emergence. Trays were carried aseptically 
onto the bench in the laboratory to avoid contamination. 
About 8–10 leaf disks per plant were collected from tips 
of the youngest leaves of each entry using a leaf puncher 
and placed in a 1.2  ml Eppendorf tube (F and S Scientific 
Ltd., Kenya) arranged in a 96-well plate placed in an ice 
bucket. At least 94 wells were filled with samples, while 
two more were filled with no treatment control (NTC) 
using ddH20.

DNA extraction procedures were based on Cetyl Trimethyl 
Ammonium Bromide (CTAB) protocols developed by BecA-
ILRI Hub Laboratory with some modifications. After sampling, 
leaf samples were frozen in liquid nitrogen for 2–5  min 
and ground into fine powder using Geno/Grinder 
(SPEXSamplePrep(R) 2000, 2 Dalston Gardens Stanmore, HA7 
1BQ, United  Kingdom). Genomic DNA was extracted from 
the fine powder samples following the CTAB protocols. DNA 
concentration was measured using a spectrophotometer 
(NanoDrop 8000 Spectrophotometer, Thermo Fisher Scientific, 
Wilmington, DE, United  States) and was adjusted to 50  ng/μl 
using Nuclease-free water (Patterson et  al., 2017). DNA 
samples of poor quality were discarded and therefore, only 
samples with high DNA quality were retained and used in 
this study. Extracted genomic DNA samples were clearly 
labeled and stored at −20°C until further use (Kusza et  al., 
2018). The 21 primers generated above were screened for 
polymorphism to MLN resistance using the 20 parent lines 
(one resistant donor and 19 susceptible lines) described 
earlier. Genotypic analyses were conducted using KASP 
platform established in BecA-ILRI Hub Laboratory in 
Nairobi, Kenya.

Kompetitive allele specific PCR assays refer to a 
combination of three SNP-specific primers (two forward 
and one common reverse), while master mix contained 
FRET cassettes, free nucleotides, and enzyme components. 
These materials are required for running the PCR therefore, 
they should be  secured before initiating any PCR process. 
Correct combination of assays and master mix is 
vital  for  obtaining good PCR output and KASP results.  

TABLE 1 | List of 19 bi-parental crosses generated and used to develop BC3F2 lines genotyped for resistance to MLN using two polymorphic SNP markers linked to 
major QTL for resistance to MLN in BecA-ILRI Hub Lab in July 2017.

SN Population Bi-parental cross SN Population Biparental cross

1 Pop1 KS23-6 × CML567 11 Pop11 KS23-6 × CML547
2 Pop2 KS23-6 × CML568 12 Pop12 KS23-6 × CML566
3 Pop3 KS23-6 × CML442 13 Pop13 KS23-6 × CML569
4 Pop4 KS23-6 × CML537 14 Pop14 KS23-6 × CML570
5 Pop5 KS23-6 × CML548 15 Pop15 KS23-6 × CKL05017
6 Pop6 KS23-6 × CML572 16 Pop16 KS23-6 × CKL05019
7 Pop7 KS23-6 × CKDHL0106 17 Pop17 KS23-6 × CML539
8 Pop8 KS23-6 × CKDHL0323 18 Pop18 KS23-6 × CML540
9 Pop9 KS23-6 × CML444 19 Pop19 KS23-6 × CKDHL0186
10 Pop10 KS23-6 × CML511 20 KS23-6*

*Donor parent for resistance to MLN.
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In the present study, both SNP specific KASP Assays and 
KASP master mix (2xKASP) were ordered from LGC 
Genomics (LGC Group, Queens Road, Teddington, 
Middlesex, TW11 0LY, United  Kingdom; see Footnote 1). 
Each assay was supplied in a single 2D barcoded tube 
with the allele-specific forward primers differing in their 
tail sequences: allele-1 tail was labeled with fluorescein 
amide (FAM) oligo-sequence; allele-2 tail contained 
Hexachloro-flourescein (HEX) oligo-sequence (Rasheed 
et  al., 2016; Patil et  al., 2017; Patterson et  al., 2017). 
KASP master mix was composed of universal FRET cassette 
dyes (FAM and HEX), ROX™ passive reference dye, 
KASPTaq™ DNA polymerase, free nucleotides, and MgCl2 
in an optimized buffer solution. On arrival, the assays 
and the mix were stored at −20°C until further use. The 
SNP-specific KASP assays (primers) and universal KASP 
master mix (2xPCR) obtained above were used to constitute 
KASP reaction mix. Universal KASP master mix was readily 
obtained from the supplier as described earlier. The reaction 
mix was constituted in a 100  μl volume as follows:

FAM (forward primer) = 12 μl

HEX (forward primer) = 12 μl
Common primer = 30 μl
Water (ddH20) = 46 μl
Total = 100 μl

Volume of each of KASP master mix and Assay mix  
required for KASP reaction was aliquoted into new 1.5  ml  
Eppendorf tube using a pipette as follow:

KASP master mix = 2.5 μl × N × 1.5
Assay mix = 0.07 μl × N × 1.5

where N  =  number of wells to be  filled per reaction, 
1.5  =  error factor. The KASP master mix and Assay mix were 
then combined into a common volume to constitute a KASP 
genotyping reaction mix (cocktail). A volume of KASP genotyping 
reaction mix was aliquoted in each reaction well of a four-
quadrant 384-well plate (one quadrant  =  96 wells) as below:

KASP reaction mix = 2.5 μl

DNA sample = 2.5 μl
Total KASP reaction mix per well = 5.0 μl

Assays were put in wells in a 96-well plate where two last 
wells were stamped with sterile water as NTCs. KASP reaction 
plate was sealed with optically clear seal and centrifuged at 
3,500  rpm for 10–15  s. The template was then amplified using 
KASP thermal cycling reaction in a FRET-capable plate reader 
(qPCR) instrument (GeneAmp® PCR System 9700, Roche 
Molecular Systems, Inc., United States). Unlike other traditional 
thermal cyclers where three thermal regimes are required, only 
two temperature steps were used for KASP thermal cycling. 
In the first step, KASP activation and DNA denaturation was 

TABLE 2 | List of selected BC3F2 lines including resistant and susceptible parents evaluated for two seasons under artificial inoculations for resistance to MLN in 
Naivasha in 2018.

SN Pedigree SN Pedigree

1 (CKDHL0106 * 2/KS523-5):B-1110 > 1,016 32 (CML511 * 2/KS23-6):B-1154 > 1,037
2 (CKDHL0186 * 2/KS23-6):B-1019 > 1,033 33 (CML511 * 2/KS23-6):B-1154 > 1,037
3 (CKDHL0186 * 2/KS23-6):B-1019 > 1,033 34 (CML511 * 2/KS23-6):B-1154 > 1,037
4 (CKDHL0106 * 2/KS523-5):B-1110 > 1,040 35 (CML511 * 2/KS23-6):B-1083 > 1,008
5 (CKDHL0106 * 2/KS523-5):B-1110 > 1,040 36 (CML511 * 2/KS23-6):B-1154 > 1,037
6 (CKDHL0106 * 2/KS523-5):B-1110 > 1,040 37 (CML511 * 2/KS23-6):B-1083 > 1,008
7 (CKDHL0106 * 2/KS523-5):B-1110 > 1,016 38 (CML511 * 2/KS23-6):B-1083 > 1,008
8 (CKDHL0106 * 2/KS523-5):B-1110 > 1,016 39 (CML511 * 2/KS23-6):B-1154 > 1,037
9 CKDHL0106 40 CML511
10 (CKDHL0106 * 2/KS523-5):B-1110 > 1,016 41 (CML511 * 2/KS23-6):B-1154 > 1,037
11 CML444 42 (CML547 * 2/KS23-6):B-1092 > 1,019
12 (CML444 * 2/KS23-6):B-1118 > 1,008 43 (CML547 * 2/KS23-6):B-1092 > 1,019
13 (CML444 * 2/KS23-6):B-1118 > 1,008 44 (CML547 * 2/KS23-6):B-1092 > 1,019
14 (CML444 * 2/KS23-6):B-1118 > 1,008 45 (CML547 * 2/KS23-6):B-1028 > 1,008
15 (CML511 * 2/KS23-6):B-1154 > 1,037 46 (CML547 * 2/KS23-6):B-1092 > 1,019
16 (CML511 * 2/KS23-6):B-1083 > 1,008 47 (CML547 * 2/KS23-6):B-1028 > 1,008
17 (CML511 * 2/KS23-6):B-1083 > 1,008 48 (CML547 * 2/KS23-6):B-1028 > 1,008
19 (CML511 * 2/KS23-6):B-1154 > 1,037 49 (CML547 * 2/KS23-6):B-1092 > 1,019
20 (CML511 * 2/KS23-6):B-1154 > 1,041 50 (CML547 * 2/KS23-6):B-1028 > 1,008
21 (CML511 * 2/KS23-6):B-1083 > 1,008 51 (CML547 * 2/KS23-6):B-1028 > 1,008
22 (CML511 * 2/KS23-6):B-1154 > 1,037 52 (CML547 * 2/KS23-6):B-1028 > 1,008
23 (CML511 * 2/KS23-6):B-1083 > 1,008 53 (CML547 * 2/KS23-6):B-1028 > 1,008
24 (CML511 * 2/KS23-6):B-1154 > 1,037 54 (CML547 * 2/KS23-6):B-1092 > 1,019
25 (CML511 * 2/KS23-6):B-1154 > 1,037 55 (CML547 * 2/KS23-6):B-1028 > 1,008
26 (CML511 * 2/KS23-6):B-1083 > 1,008 56 KS23-6
27 (CML511 * 2/KS23-6):B-1154 > 1,037 57 (CML547 * 2/KS23-6):B-1092 > 1,019
28 (CML511 * 2/KS23-6):B-1083 > 1,008 58 CML547
29 (CML511 * 2/KS23-6):B-1083 > 1,008 59 (CML547 * 2/KS23-6):B-1028 > 1,008
30 KS23-6 60 (CML547 * 2/KS23-6):B-1028 > 1,008
31 (CML511 * 2/KS23-6):B-1083 > 1,008 61 (CML547 * 2/KS23-6):B-1092 > 1,019
31 (CML511 * 2/KS23-6):B-1083 > 1,008 62 (CML547 * 2/KS23-6):B-1028 > 1,008
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completed in one cycle and at higher temperature (94°C) in 
15  min. Step  2 involved two cycle regimes: Annealing and 
elongation completed in 10  cycles and at lower temperatures 
of 61–55°C in 60  s; and the last step required 26  cycles where 
DNA denaturation occurred at 94°C in 20  s; while annealing 
and elongation occurred at 55°C in 60 s. Sample amplifications 
were performed for 30, 35, and 40  cycles. Running the PCR 
for more than two cycles was necessary to provide an opportunity 
to select a cycle with the best and clearest clustering of samples 
for further genotyping (Rasheed et  al., 2016; Patil et  al., 2017). 
After KASP reactions were complete, plates were read using 
fluorescence plate reader BMG FLUOstar Omega software (LGC, 
Queens Road, Teddington, Middlesex, TW11 0LY, 
United  Kingdom). Data was then displayed as cluster plots 
where FAM values were plotted on the x-axis, HEX values 
plotted and on y-axis and heterozygous values clustered on 
the diagonal (Figure  1). KASP reactions with NTCs were 
plotted at the origin (represented by black dots) since they 
did not generate any fluorescence. Each data point on the 
cluster plot represented the fluorescence signal of individual 
DNA samples. Based on the plate readings, two SNP markers 
(S3_146250249 and S3_146363360) associated with major QTL 
for resistance to MLN (Table  3) showed polymorphisms in 
the parents, hence were used for genotyping of the 
backcross populations.

Seeds of BC3F2 progeny obtained from the nine populations 
were planted in a nursery in Kiboko in July 2017. Leaf samples 
were collected from 250 to 300 healthy individual BC3F2 plants 
per population 15–20  days after seedling emergence. The leaf 
sampling techniques followed the procedures adopted by 

BecA-ILRI Hub Laboratory for field sample collection. Each 
96-well plate was labeled and only 94 wells were filled with 
samples, while two wells were the NTCs as described earlier. 
Tubes were securely closed with perforated strip caps. To 
enhance moisture reduction and drying of the leaf samples, 
a 50  g bag of silica gel (Grade 4) obtained from BecA-ILRI 
Hub Laboratory was put on top of each 8 × 12 strip tubes 
in a plate, covered and securely tied with a rubber band, then 
packaged in a zip-tight polythene bag. Samples were transported 
to BecA-ILRI Laboratory in Nairobi within 12–24 h and stored 
at room temperature on the bench until DNA extraction was 
initiated. Genomic DNA extraction and genotyping followed 

FIGURE 1 | Schematic illustration of kompetitive allele specific PCR (KASP) cluster plots showing segregation of bi-parental backcross (BC) populations for alleles 
for resistance and susceptibility to maize lethal necrosis (MLN). Fluorescein amide (FAM) alleles for resistance to MLN are clustered on x-axis, while susceptible 
Hexachloro-flourescein (HEX) alleles are on y-axis.

TABLE 3 | Segregation of nine recurrent parents and a donor parent genotyped 
for resistance to MLN using two SNP markers.

SN Parent SNP1: 
Chr3_146250249 

(T/G)

Chr3_146363360 
(C/T)

1 CML548 G:G T:T
2 CKDHL0106 G:G T:T
3 CML444 G:G T:T
4 CML511 G:G T:T
5 CML547 G:G T:T
6 CML566 G:G T:T
7 CML570 G:G T:T
8 CML539 G:G T:T
9 CKDHL0186 G:G T:T
10 KS23-6 (MLN 

resistance donor)
T:T C:C

T = favorable allele for SNP1 and C = favorable allele for SNP2.
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the same protocol as described for parental screening. The 
two SNP markers identified above were used for the genotyping 
using Omega software. Fifty-seven BC3F2 progeny carrying the 
two markers were identified through the genotyping.

Data from Omega software were imported into KlusterCaller 
software (LGC Genomics, Queens Road, Teddington, Middlesex, 
TW11 0LY, United Kingdom) and cluster plots were normalized 
using ROX (passive reference dye) then called into X:X, X:Y, 
and Y:Y alleles depending on the corresponding genotype. 
Results were then exported onto Excel 2016 version, following 
96-well plate format and calls were converted into specific 
alleles where X:X represented homozygous alleles for FAM, 
Y:Y represented homozygous alleles for HEX, and X:Y represented 
segregating (heterozygous) alleles (FAM/HEX; Graves et  al., 
2016; Kusza et  al., 2018). The KASP analysis revealed that six 
of the SNP primers were polymorphic and could clearly 
discriminate between resistance alleles of donor parent (KS23-6) 
and the susceptibility alleles of the recipient parents (Table  4). 
The remaining 15 SNPs were monomorphic and could not 
differentiate between the resistant and susceptible parents. 
Previous reports confirm that two out of the six polymorphic 
SNPs are linked to major QTLs for resistance to MLN, while 
the remaining four markers are also for resistance but with 
minor effects (Gowda et  al., 2015, 2018). As a result, only 
the two major SNPs (S3_146250249 and S3_146363360) were 
retained and used as markers for genotyping of the 
BC3F2 populations.

Phenotypic Evaluation of Backcross 
Populations
The 57 BC3F2 lines selected from the molecular analysis for 
this study, including four checks (one MLN resistant and three 
MLN susceptible) and their parents were evaluated for two 
seasons in 2018 to validate the effects of the two markers for 
resistance to MLN under MLN artificial inoculation in the 
field. The two markers, located approximately 0.62 cM (113111 nt)  

apart on chromosome 3, were putatively identified in different 
populations using genome-wide association studies (Gowda 
et al., 2015). Experiments were conducted in Naivasha, Kenya 
(36°26E; 0°43S; 1896 masl; 677  mm rainfall; and 24.9°C; 
Ziyomo and Bernardo, 2013; Odiyo et  al., 2014). To reduce 
soil borne diseases and pest infections, seeds were treated 
with Apron Star WS seed treatment chemical at the rate 
of 20 g/kg of seed. Recommended fertilizer rates were adopted 
and applied in two separate regimes (Izge and Dugje, 2011). 
The trial was laid out in an alpha lattice design with two 
replications, and a one-row plot of 3.0  m, with spacing of 
0.75  m between rows and 0.3  m between plants. Two seeds 
were planted per hill and thinned to one plant per hill 
3  weeks post emergence, resulting in a total of 10 plants 
per row. Standard agronomic practices were maintained 
(Gowda et  al., 2015; Mahuku et  al., 2015).

Artificial MLN Inoculation
Infected leaf samples collected from the field were cut into 
small pieces and ground using a mortar and pestle in a grinding 
buffer of 1:10 dilution ratio (10  ml potassium-phosphate, pH 
7.0) as described by Gowda et  al. (2015) and Mahuku et  al. 
(2015). The resulting sap extract was centrifuged for 2  min 
at 12,000  rpm. Celite powder was added to the decanted sap 
extract at the rate of 0.02  g/ml. A susceptible hybrid was 
inoculated by rubbing sap extract onto the leaves at the two 
leaf stage and infected maize plants grown in separate, sealed 
greenhouses that were maintained for each of SCMV and 
MCMV inoculum production. Three weeks before inoculation 
of the experimental materials, ELISA test was conducted on 
random samples of leaves from the plants infected with SCMV 
and MCMV, respectively, to confirm presence and purity of 
the inoculum (Gowda et  al., 2018). Separate extracts from the 
SCMV and MCMV infected plants were prepared at the ratio 
of one part of leaf sample: 20 parts of phosphate buffer. The 
two extracts were then mixed to form MLN inoculum at the 
ratio of four parts of SCMV: one part MCMV (weight/weight; 

TABLE 4 | List of six polymorphic KAPS primers validated for resistance to MLN using 20 parent lines including a resistant donor parent.

Assay code Primer name Primer sequence Remarks

B0051_FAm S3_44062810_FAm gaaggtgaccaagttcatgctATCCGCCTTATTGCCGGg
B0051_HEX S3_44062810_HEX gaaggtcggagtcaacggattATCCGCCTTATTGCCGGa Polymorphic, linked to QTL with minor effects
B0051_COm S3_44062810_COm AGGATTAACGACGGGAAGGT
B0054_FAm S3_146966676_FAm gaaggtgaccaagttcatgctGTCCTGCTGCTGGAGCGt
B0054_HEX S3_146966676_HEX gaaggtcggagtcaacggattGTCCTGCTGCTGGAGCGc Polymorphic, linked to QTL with minor effects
B0054_COm S3_146966676_COm GTAGGCGTCCCGGATGAT
B0056_FAm S3_146250249_FAm gaaggtgaccaagttcatgctCTACCCATCCGCCTGCTt
B0056_HEX S3_146250249_HEX gaaggtcggagtcaacggattCTACCCATCCGCCTGCTg Polymorphic, linked to QTL with major effects
B0056_COm S3_146250249_COm CACCTGGCACGGAGAGAAG
B0057_FAm S3_146363360_FAm gaaggtgaccaagttcatgctACCAGGACAGGTATCTAACGCc
B0057_HEX S3_146363360_HEX gaaggtcggagtcaacggattACCAGGACAGGTATCTAACGCt Polymorphic, linked to QTL with major effects
B0057_COm S3_146363360_COm CGTACCAGGTCTGAGCACAA
B0060_FAm S6_21007530_FAm gaaggtgaccaagttcatgctGCAAAAATCACAGCCGATCg
B0060_HEX S6_21007530_HEX gaaggtcggagtcaacggattGCAAAAATCACAGCCGATCa Polymorphic, linked to QTL with minor effects
B0060_COm S6_21007530_COm CCGGGCCTAAAGCCTAATAC
B0065_FAm S6_157568432_FAm gaaggtgaccaagttcatgctGCATAGAAATAAAATGAGACAAGGg
B0065_HEX S6_157568432_HEX gaaggtcggagtcaacggattGCATAGAAATAAAATGAGACAAGGt Polymorphic, linked to QTL with minor effects
B0065_COm S6_157568432_COm ATCCATGTTGTCCCTCCGTA

93

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Awata et al. Maize Lethal Necrosis Resistance Introgression

Frontiers in Plant Science | www.frontiersin.org 7 May 2021 | Volume 12 | Article 649308

Gowda et al., 2015). In order to keep uniform disease pressure, 
plants were inoculated using a motorized, backpack mist blower 
(Solo 423 mist Blower, 12  L capacity) with an open nozzle 
(2-in diameter) delivering inoculum spray at a pressure of 
10 kg/cm2 (Gowda et al., 2015). Two inoculations were applied 
at 4th and 5th week after planting (Gowda et al., 2018). Spreader 
rows of susceptible maize hybrid (H614) were also planted as 
border rows along the experiment to enhance disease spread 
and intensity (Tivoli et al., 2006). Nitrogen (Urea) and Phosphorus 
(DAP) fertilizers were applied as described by Makumbi et  al. 
(2015). Drip irrigation was used to provide moisture and all 
other agronomic practices relating to maize production were 
followed according to CIMMYT procedures for field practices.

A quantitative scale of 1–9 introduced by Reddy and Singh 
(1984) was used for recording data on MLN severity, where 
1  =  resistant (no symptoms); 2  =  resistant to moderately 
resistant (isolated plants with very few lesions in the lower 
canopy); 3  =  moderately resistant (1–5 leaves with symptoms 
in the lower canopy); 4  =  moderately resistant to moderate 
(most or all plants with one or more leaves affected in the 
lower canopy); 5  =  moderate (most or all plants with many 
leaves affected on plant, few leaves affected in the mid canopy); 
6  =  moderate to moderately susceptible (numerous lesions 
on most leaves in the mid canopy, limited defoliation in lower 
canopy); 7  =  moderately susceptible (same as six, but limited 
defoliation in mid canopy and severe defoliation in lower 
canopy); 8  =  moderately susceptible to susceptible (severe 
defoliation in mid canopy and limited defoliation in upper 
canopy); and 9  =  susceptible (complete plant necrosis; Ngugi 
et  al., 2002; Meyer and Pataky, 2010). The scale of 1–9 was 
considered more convenient (in terms of recording and time) 
compared to 1–5 because: 1  =  1; 1.5  =  2; 2  =  3; 2.5  =  4; 
3  =  5; 3.5  =  6; 4  =  7; 4.5  =  8; and 5  =  9. Disease severity 
was recorded four times, beginning 21  days from the date 
of first inoculation (Mahuku et  al., 2015; Mezzalama, 2015; 
Gowda et  al., 2018).

Disease severity data were first tested for independence, 
normal distribution and constant variance (GenStat ver 12.0). 
ANOVA was performed using the restricted maximum likelihood 
(REML) model established in SAS 9.4 (SAS institute Inc, 2016), 
based on lattice incomplete block analysis as follows:
 Y g r b eijk i j kj ijk= + + + +m

where Yijk is the disease severity of the ith genotype in the 
jth replication of the kth incomplete block, μ is the population 
mean, gi is the genetic effect of the ith genotype, rj is the 
effect of the jth replication, bkj is the effect of the kth incomplete 
block in the jth replication, and eijk is the error term. Genotype 
was considered fixed, while season, replication, and block within 
replication were considered random. Best linear unbiased 
prediction estimates (BLUP) for the populations were generated 
and used for further QTL analysis in the present study.

Marker-Trait Association Analysis
The BLUP estimate for phenotypic data was generated for each 
genotype as described above. Co-segregation of loci with phenotype 
was detected by comparing allele type with the phenotype. 

Positive co-segregation was declared when a genotype showed 
resistance allele and MLN score of below 4.0 (in the scale of 
1–9). Relationship between allele and phenotype was confirmed 
by splitting the BC3F2 progeny into resistant and susceptible 
groups and means of the two groups compared using a t-test. 
Further, significance of differences between variances of means 
was determined using F-tests.

RESULTS

Screening of Parental Lines
A total of 21 KASP primers designed from 19 SNP markers, 
originally developed by CIMMYT Global Maize Program, were 
tested for polymorphism to MLN resistance using 20 parental 
lines that were involved in development of bi-parental backcross 
populations. Six KASP markers showed polymorphism for 
resistance to MLN among 9 of the 19 bi-parental backcross 
populations used. As a result, the remaining 11 populations 
were eliminated. Two of the six polymorphic KASP markers 
(S3_146250249 and S3_146363360) were previously reported 
to be  linked to major QTL associated with resistance to MLN 
(Gowda et  al., 2015). Therefore, they were retained for this 
study. The preliminary KASP analysis revealed that recurrent 
parents of the nine selected populations were fixed for 
susceptibility alleles, while the donor parent was homozygous 
for resistance alleles for both markers (Table  3).

Genotyping of BC3F2 Populations for 
Resistance to MLN
Selected high quality DNA samples representing 957 BC3F2 
lines selected from nine bi-parental populations and their 10 
parental lines were genotyped for resistance to MLN using 
KASP genotyping platform at BecA-ILRI Hub Laboratory, 
Nairobi. The two polymorphic KASP markers mentioned earlier 
linked to major QTL for resistance to MLN were used (Semagn 
et  al., 2014; Rasheed et  al., 2016; Kusza et  al., 2018). KASP 
results showed clustering of the genotypes based on the two 
KASP markers. Some BC3F2 and all recurrent parents clustered 
with susceptible homozygous HEX alleles on y-axis. The donor 
parent and some BC3F2 lines clustered with the resistant 
homozygous FAM alleles on x-axis. A few BC3F2 lines clustered 
for heterozygous alleles on the diagonal. However, the two 
markers failed to discriminate between some BC3F2 including 
parents (Figure  2).

Cluster plot results indicated that 57 BC3F2 individuals were 
segregating for resistance to MLN. A total of 26 BC3F2 lines 
were homozygous (fixed) for the favorable alleles of both KASP1 
(S3_146250249) and KASP2 (S3_146363360). The remaining 
BC3F2 lines were fixed for one locus and heterozygous for the 
other (Supplementary Appendix 3). The selected 57 BC3F2 
lines were subjected to artificial MLN infection for phenotypic 
selection under field conditions. Allele distribution for each 
SNP marker varied among the nine populations (Figure  3). 
Both markers showed higher percentages of alleles for resistance 
to MLN among progeny from populations six and seven. 
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Population 6 contributed most with over 40% of the population 
showing favorable alleles for resistance to MLN, followed by 
population 7 with over 30% distribution of BC3F2 progeny 
containing favorable alleles for resistance to MLN for both 
markers. Populations 1, 2, 3, and 9 contributed the least with 
less than 20% each for both markers.

Phenotypic Evaluation of BC3F2 
Populations for Resistance to MLN
The mean distribution for the populations used in the current 
study is presented in Table  5. The results showed that mean 
distribution for MLN scores ranged from 3.2 for first score 
to 6.0 for the last fourth score, with area under disease progress 
curve (AUDPC) of 133.2, respectively. A total of 19 selected 
BC3F2 lines including MLN resistance donor parent showed 
MLN severity and AUDPC below the population mean for 
both early and late scores. BCL02 was the most resistant line 
with MLN score of 3.1, which was similar to the mean of 

the donor parent and it had an even lower AUDPC score of 
69.6 compared to the donor parent that showed a score of 
81.8. When mean severity (1–9) was plotted against the score 
interval (in weeks), it was observed that the best performing 
BC3F2 lines had lower MLN mean severity across scores compared 
to the general population mean (Figure  4A). Similarly, the 
trend of the development of AUDPC showed that both disease 
severity and AUDPC values increased as MLN severity increased 
from first to fourth scores (Figure  4B). Results obtained from 
ANOVA are shown in Table  6. It was observed that there 
were variations among the BC3F2 lines for response to MLN 
infections under field conditions. The variability among the 
genotypes ranged from significant (p  ≤  0.05) at first MLN 
severity score (MLN1) to highly significant (p  ≤  0.01) for the 
fourth MLN severity score (MLN4). Similarly, the results showed 
highly significant (p  ≤  0.001) variability for AUDPC. Broad-
sense heritability was detected to be  very high and it ranged 
from of 0.84 to 0.91. Narrow-sense heritability was moderate 
to high with values ranging from 0.32 to 0.58, respectively.

A B C

FIGURE 2 | Single nucleotide polymorphism (SNP) views showing cluster plots of BC3F2 progeny and their parental lines for two SNP markers for resistance to 
MLN: (A) KASP cluster plots showing genotypes clustering for resistance (blue), susceptibility (red), and heterozygous (green) alleles. Unclassified DNA samples 
(purple) clustering toward the origin and closer to no treatment control (NTCs; black dots). The heterozygous genotypes (green) still segregate for MLN resistance 
alleles; (B) BC3F2 individuals lacking both SNP markers and clustered with susceptible alleles (red). Only donor parent was clustering for homozygous resistant FAM 
alleles (blue); (C) Both SNP markers were not effective hence did not discriminate between BC3F2 progeny and the parents (including donor).

FIGURE 3 | Percent distribution of BC3F2 progeny per population based on resistance and susceptibility alleles for two SNP markers linked to major quantitative 
trait loci (QTL) associated with resistance to MLN.
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Validation of Marker Effects on Phenotypic 
Variations
At least 57 BC3F2 lines selected using the two KASP markers 
linked to major QTL for resistance to MLN were evaluated 
together with their parents under artificial MLN inoculation 
in Naivasha during first season of 2018. Phenotypic means 
and genotypic data were compared and co-segregations of 
resistance alleles with phenotype were determined 
(Supplementary Appendix 4). Some selected BC3F2 lines with 
strong allele-phenotype associations for resistance to MLN are 
shown in Tables  7 and 8. Additionally, 31 BC3F2 lines fixed 
for one of the two resistance loci showed resistant to moderately 
susceptible reactions to MLN with means ranging from 3.1 
to 6.7. However, 20 BC3F2 lines fixed for both resistance loci, 

showed susceptibility to MLN with mean severity of 7.5–8.8 
(data not shown).

Distribution of genotypes based on their responses to MLN 
infection is shown in Figure  5. The recurrent parents 
demonstrated moderate to highly susceptible responses to MLN. 
Comparison between early and late scores showed that early 
MLN mean severity values for all genotypes were below 4.0 
(Figure  5A), however, for later scores, a number of individual 
plants succumbed to MLN infection with disease scores above 
8 (Figure  5B). Out of 57 BC3F2 lines genotyped, six were 
fixed for both resistance loci and showed high resistance to 
MLN under MLN artificial inoculation in the field, whereas 
31 lines fixed for only one of the two loci demonstrated 
moderate resistance to the disease. Another 20 lines though 

TABLE 5 | Mean scores and AUDPC for MLN severity for 10 resistant BC3F2 lines compared to donor and susceptible parents evaluated under artificial MNL infections 
in Naivasha for two seasons in 2018.

SN Geno. Pedigree MLN1 MLN2 MLN3 MLN4 AUDPC

1 BCL02 (CKDHL0186 * 2/KS23-6):B-1019 > 1,033 2.5 2.5 2.4 3.1 69.6
2 BCL05 (CKDHL0106 * 2/KS523-5):B-1110 > 1,016 2.8 3.6 2.1 3.2 69.5
3 BCL16 (CML511 * 2/KS23-6):B-1083 > 1,008 2.8 3.6 2.5 3.2 70.3
4 BCL03 (CKDHL0106 * 2/KS523-5):B-1110 > 1,016 3.0 3.9 2.3 3.3 73.4
5 BCL18 (CML511 * 2/KS23-6):B-1083 > 1,008 2.8 4.1 3.4 3.4 82.2
6 BCL20 (CML511 * 2/KS23-6):B-1083 > 1,008 2.9 4.0 2.6 3.7 76.7
7 BCL17 (CML511 * 2/KS23-6):B-1083 > 1,008 3.0 3.7 2.8 3.9 77.8
8 BCL27 (CML511 * 2/KS23-6):B-1154 > 1,037 3.0 4.1 3.1 3.9 81.6
9 BCL31 (CML511 * 2/KS23-6):B-1154 > 1,037 2.9 4.3 2.9 4.0 82.8
10 BCL33 (CML511 * 2/KS23-6):B-1154 > 1,037 2.9 4.1 2.9 4.0 80.3
11 Check KS23-6 (Donor parent) 2.9 4.5 3.0 3.1 81.8
12 Check CKDHL0106 (Recurrent parent) 3.3 5.0 4.8 5.7 116.6
13 Check CML511 (Recurrent parent) 3.6 5.1 5.5 6.6 134.5

Mean 3.2 4.6 5.1 6.0 133.3
LSD (0.05) 0.6 1.2 0.9 1.2 22.7
CV% 11.8 14.6 10.3 12.1 9.9
Min mean 1.8 2.4 2.1 3.1 69.5
Max mean 3.9 6.5 8.1 8.8 212.7

MLN severity scores taken on a scale of 1–9, where 1–4 is resistant to moderate resistant. MLN1, 1st score of MLN severity taken 21 days from date of first inoculation; MLN2, 2nd 
score of MLN severity taken 7 days after the first score; MLN3, 3rd score of MLN severity recorded 14 days after the first score; MNL4, 4th score of MLN severity taken 21 days 
from the first score; AUDPC, area under disease progress curve calculated from the four MLN scores; LSD (0.05), Fisher’s protected least significant difference at 5% level; and 
CV%, coefficient of variability measures in percent.

A B

FIGURE 4 | (A) Means of best BC3F2 progeny compared to population means across four scores; (B) Area under disease progress curve (AUDPC) produced by 
plotting AUDPC values (along y-axis) against MLN development stage (along x-axis).
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fixed for both resistance loci, however, manifested high 
susceptibility to MLN under artificial MLN inoculation in the 
field (Figure  5C). Mean scores for resistant genotypes was 
compared to the means of the susceptible group. The resistant 
category demonstrated lower mean MLN score of 3.9 compared 
to 7.0 for the susceptible genotypes (Figure  5D). Means of 
the two groups were subjected to t-test and the results revealed 
highly significant differences (p  ≤  0.001) between means of 
resistant and susceptible groups of the populations (Table  9). 
Further, differences between variances of the two means were 

determined using the F-test and the results showed highly 
significant differences (p  ≤  0.0001) as shown below (Table  8). 
Consequently, 19 elite BC3F2 lines fixed for both or one locus 
and showing resistant to moderately resistant reaction to MLN 
infection were identified.

DISCUSSION

Kompetitive allele specific PCR analysis showed clustering of 
some BC3F2 lines with the donor parent. This indicates that 
the lines could be  fixed for favorable alleles of the two KASP 
markers for resistance to MLN. The high MLN severity observed 
at fourth score was attributed to an increase in disease severity 
with time. The genotypes under study revealed two categories 
in the field based on their responses to MLN incidence. The 
first category showed low MLN scores. This might imply that 
the two QTL were stable across different genetic backgrounds. 
Therefore, materials in this category were fixed for the two 
loci, hence were able to manifest resistance under field conditions 
and minimize MLN effects. The second group, though fixed 
for both loci, showed high susceptibility under field conditions, 
which could be  due to false positive effects. This means the 
QTL were falsely selected for favorable alleles, while they were 
carrying susceptibility alleles. The reason could be  that the 
KASP markers separated from the resistance genes during 

TABLE 6 | Mean squares and variance components of BC3F2 populations 
evaluated for two seasons for resistance to MLN in Naivasha in 2018.

Trait Mean 
squares

F-value F-prob. H2 σ2
G σ2

E

MLN1 0.4 2.25 0.024 0.84 0.92 0.17
MLN2 1.4 2.7 0.008 0.87 3.23 0.50
MLN3 1.6 4.74 <0.001 0.91 3.49 0.33
MLN4 2.1 3.09 <0.001 0.88 4.84 0.67
AUDPC 834.8 3.86 <0.001 0.90 1886.10 216.50

MLN1, 1st score of MLN severity taken 21 days from date of first inoculation; MLN2, 
2nd score of MLN severity taken 7 days after the first score; MLN3, 3rd score of MLN 
severity recorded 14 days after the first score; MNL4, 4th score of MLN severity taken 
21 days from the first score; AUDPC, area under disease progress curve calculated 
from the four MLN scores; H2

, broad sense heritability; σ2
G, genotypic variance; and σ2

E, 
error variance; the Degree of freedom = 61 for each trait.

A C

B D

FIGURE 5 | Responses of BC3F2 lines to MLN infections in the field recorded at scale of 1–9: (A) mean distribution of MLN severity for first score; (B) mean 
distribution of MLN severity fourth score; (C) mean distribution of MLN scores for resistant, moderate, and susceptible genotypes; and (D) mean distribution of MLN 
scores for resistant and susceptible groups of genotypes.
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meiosis resulting in the markers being present but the genes 
are not. This outcome highlights the critical importance of 
confirming resistance of MLN under field conditions when 
molecular markers are used to select for resistance. The significant 
(p ≤ 0.01) variability observed among the genotypes for resistance 
to MLN, in this study implies that the genotypes responded 
differently to MLN infection. Further, statistical results showed 
significant AUDPC and with increased disease development 
for MLN, with maximum at the fourth score. Development 
of MLN within plant systems is rapid and is supported by 
viral movement and replication proteins produced by the 
pathogens (Mbega et  al., 2016; Xia et  al., 2016). Therefore, 
MLN quickly developed such that by the 42nd day (4th scores) 
after first inoculation, the disease had advanced and colonized 
most parts of the plant systems leading to expanded AUDPC.

Narrow sense heritability estimates for MLN scores were 
moderate to high indicating that resistance to MLN was mostly 
conditioned by additive gene action as opposed to non-additive 
inheritance. Additionally, the high heritability indicated that 

genotype played major roles in influencing the variability in 
MLN resistance among the individuals compared to the 
environment in which the experiment was conducted. In summary, 
the moderate to high narrow-sense heritability estimates imply 
the ease of transfer of the target trait from parent to offspring. 
High heritability estimates for disease resistance have been 
reported in maize (Gowda et  al., 2015; Sukruth et  al., 2015; 
Cao et  al., 2017). Gowda et  al. (2018) reported moderate to 
high heritability estimates of 0.34–0.89 for early and late MLN 
scores. Beyene et  al. (2017) observed broad sense heritability 
of 69–73% for MLN resistance. The moderate to high narrow-
sense heritability estimates observed in the present study also 
indicates that genotypes contributed significantly to the phenotypic 
variation observed. Therefore, identification of these lines for 
resistance to MLN is possible through field evaluation of the 
genotypes similar to findings of Pereira et  al. (2015).

The present study validated two KASP markers (S3_146250249 
and S3_146363360) on chromosome 3, which have been reported 
to habor a hot spot region for various genes responsible for 

TABLE 7 | Some selected BC3F2 lines and a donor parent showing strong co-segregation of resistant alleles with phenotypic MLN scores under field infections.

S/N Genotype SNP1 (T/G) SNP2 (C/T) MLN1 MLN2 MLN3 MLN4

1 KS23-6 (door parent) T:T C:C 2.9 4.5 3.0 3.1
2 BCL5 T:T C:C 2.8 3.6 2.1 3.2
3 Check5 T:T C:C 1.8 2.4 3.0 3.2
4 BCL3 T:T C:C 3.0 3.9 2.3 3.3
5 BCL10 T:T C:C 3.0 4.4 3.6 4.2
6 BCL11 T:T C:C 2.8 4.1 3.1 4.2

T:T and C:C indicate MLN resistant loci for SNP1 and SNP2.

TABLE 8 | List of 19 MLN resistant BC3F2 lines selected for testcross development.

SN Pedigree MLN1 MLN2 MLN3 MLN4 AUDPC

1 (CKDHL0186 * 2/KS23-6):B-1019 > 1,033 2.1 2.1 2.5 3.0 69.6
2 (CKDHL0106 * 2/KS523-5):B-1110  >1,016 2.1 2.1 2.0 3.0 69.5
3 (CKDHL0106 * 2/KS523-5):B-1110 > 1,016 2.1 2.1 2.0 3.0 70.3
4 (CML511 * 2/KS23-6):B-1083 > 1,008 2.1 2.1 2.5 3.0 73.4
5 (CML511 * 2/KS23-6):B-1083 > 1,008 2.1 2.7 3.0 3.0 82.2
6 (CML511 * 2/KS23-6):B-1083 > 1,008 2.1 2.2 2.5 3.5 76.7
7 (CML511 * 2/KS23-6):B-1083 > 1,008 2.1 2.7 2.5 3.5 77.8
8 (CML511 * 2/KS23-6):B-1154 > 1,037 2.1 2.2 2.5 3.5 81.6
9 (CML511 * 2/KS23-6):B-1154 > 1,037 2.1 2.7 2.5 3.5 82.8
10 (CML444 * 2/KS23-6):B-1118 > 1,008 2.6 3.6 3.5 4.0 80.3
11 (CML444 * 2/KS23-6):B-1118 > 1,008 2.1 3.1 3.0 4.0 78.9
12 (CML511 * 2/KS23-6):B-1083 > 1,008 2.1 2.2 3.0 4.0 85.4
13 (CML511 * 2/KS23-6):B-1083 > 1,008 2.1 2.2 3.0 4.0 81.6
14 (CML511 * 2/KS23-6):B-1083 > 1,008 2.1 2.2 3.0 4.0 100.1
15 (CML511 * 2/KS23-6):B-1154 > 1,037 2.1 3.2 3.0 4.0 88.6
16 (CML511 * 2/KS23-6):B-1154 > 1,037 2.1 3.2 3.0 4.0 81.4
17 (CML511 * 2/KS23-6):B-1154 > 1,037 2.1 2.6 3.0 4.0 85.2
18 (CML511 * 2/KS23-6):B-1154 > 1,037 2.1 2.7 3.0 4.0 86.5
19 (CML511 * 2/KS23-6):B-1083 > 1,008 2.1 2.2 3.0 4.5 85.2
Mean 3.17 4.60 5.09 6.03 133.28
LSD (5%) 0.40 0.74 0.55 0.73 16.87
CV % 6.80 8.17 5.98 7.18 5.81
H2 0.94 0.95 0.99 0.98 0.97
h2 0.32 0.39 0.45 0.52 0.58

The mean MLN scores and AUDPC were obtained under artificial MLN infections in Naivasha during 2018 cropping season. MLN1, MLN2, MLN3, and MLN4 were 1st, 2nd, 3rd, 
and 4th MLN severity scores.
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resistance to diseases of economic importance in maize (Gowda 
et  al., 2015; Lohithaswa et  al., 2015). T-test analysis revealed 
that means of resistant and susceptible groups were highly 
significant (p  ≤  0.0001) meaning that resistant and susceptible 
genotypes performed differently under MLN infections. Similarly, 
F-tests showed that differences between variances of the means 
were highly significant (p  ≤  0.0001). The findings implied that 
phenotypic resistance demonstrated by genotypes was highly 
related to the favorable alleles associated with major QTL for 
resistance to MLN. Consequently, 26 BC3F2 lines containing both 
KASP markers demonstrated resistance to MLN infections, 
suggesting that the two QTL were associated with phenotypic 
resistance in those populations. Tanweer et al. (2015) used marker 
assisted backcrossing for introgression of two blast resistance 
genes (Pi-b and Pi-kh) into a locally adapted rice line. Evaluation 
for blast resistance under field conditions revealed that the 
improved lines had higher resistance against pathotype P7.2. 
However, a QTL may be  transferred into recipient background 
yet its effect may not show due to interactions (epitasis and 
linkage) with other genes in the new backgrounds (Hospital, 
2005; Collard and Mackill, 2008). In the current stury, 20 BC3F2 
lines were fixed for both KASP markers but were susceptible 
to MLN under field conditions, which could mainly be  due to 
weak associations (in terms of genetic distance) between the 
KASP markers and target gene. This could indicate the possibility 
of false-positive detection of QTL. The susceptible genotypes 
could be  because of separation of these markers with the gene. 
This probably indicates weak linkage between the markers and 
the resistance genes. We  recommend the identification of more 
closely linked loci between these markers and the resistance genes.

CONCLUSION

The current study confirmed presence of two KASP markers 
(S3_146250249 and S3_146363360) with major effects for resistance 
to MLN under field conditions. Both QTL are located on 
chromosome 3 at a distance of 113,111 nucleotides apart. These 
two QTL were reproducible under different genetic and 
environmental conditions. The validation study confirmed that 
19 superior BC3F2 lines were fixed for favorable alleles of the 
two QTL, and showed higher levels of resistance to MLN under 
artificial field inoculations. These elite BC3F2 lines represent 

useful parents for developing maize hybrids with resistance to 
MLN. Furthermore, the validated QTL can be  utilized to speed 
up marker assisted breeding for resistance to MLN. The study 
identified 20 lines fixed for two KASP markers for resistance 
to MLN but with susceptible reaction under artificial MLN 
inoculations suggesting weak marker-gene linkage. We recommend 
the identification of additional loci between these markers and 
the resistance genes to strengthen the linkage. The results highlight 
the importance of confirmation of resistance under field conditions 
when molecular markers are used for selection.
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TABLE 9 | Summary of t-test of means and F-test statistics for the significance 
of the difference between variances of means for resistance to MLN between 
resistant and susceptible groups of BC3F2 populations.

Df 60

Mean(Res) 3.9
Mean(Sus) 7.2
Mean(Res) – mean(Sus) 3.35
t-value −10.6
F-value 7.4
Prob. 0.0001

Df, degrees of freedom; p ≤ 0.0001 = means and variances of means are highly 
significantly different.
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Fusarium wilt (FW) is a typical soil-borne disease that seriously affects the yield and
fruit quality of bottle gourd. Thus, to improve resistance to FW in bottle gourd, the
genetic mechanism underlying FW resistance needs to be explored. In this study, we
performed a genome-wide association study (GWAS) based on 5,330 single-nucleotide
polymorphisms (SNPs) and 89 bottle gourd accessions. The GWAS results revealed a
total of 10 SNPs (P ≤ 0.01, −log10P ≥ 2.0) significantly associated with FW resistance
that were detected in at least two environments (2019DI, 2020DI, and the average
across the 2 years); these SNPs were located on chromosomes 1, 2, 3, 4, 8, and 9.
Linkage disequilibrium (LD) block structure analysis predicted three potential candidate
genes for FW resistance. Genes HG_GLEAN_10001030 and HG_GLEAN_10001042
were within the range of the mean LD block of the marker BGReSe_14202;
gene HG_GLEAN_10011803 was 280 kb upstream of the marker BGReSe_00818.
Real-time quantitative PCR (qRT-PCR) analysis showed that HG_GLEAN_10011803
was significantly up-regulated in FW-infected plants of YD-4, Yin-10, and Hanbi;
HG_GLEAN_10001030 and HG_GLEAN_10001042 were specifically up-regulated in
FW-infected plants of YD-4. Therefore, gene HG_GLEAN_10011803 is likely the major
effect candidate gene for resistance against FW in bottle gourd. This work provides
scientific evidence for the exploration of candidate gene and development of functional
markers in FW-resistant bottle gourd breeding programs.

Keywords: bottle gourd, Fusarium wilt, genome-wide association (GWAS), novel genomic regions, qRT-PCR

INTRODUCTION

Bottle gourd [Lagenaria siceraria (Mol.) Standl.] (2n = 2 × = 22), also known as calabash or
long melon, is a member of the Legendaria genus, Cucurbitaceous family, and is an annual plant
(Whitaker, 1971; Erickson et al., 2005). Its fresh young fruits are eaten as a vegetable in parts of Asia
and Africa, while dry old fruits are used for containers, musical instruments, and crafts (Heiser,
1979; Morimoto and Mvere, 2004). Moreover, due to its strong resistance to disease and abiotic
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stress, bottle gourd is commonly used as grafting rootstock
for other crops, such as watermelon and melon (Lee, 1994;
Yetisir and Sari, 2003). According to records, bottle gourd has
been cultivated in China for more than 7,000 years, covering a
cultivation area of more than 2 million mu; this is an important
vegetable crop in China, especially in the southern part.

Fusarium wilt (FW), which is caused by Fusarium oxysporum,
is a typical soil-borne disease of economic crops worldwide
(Katan, 1994; Wechter et al., 2012; Bodah, 2017). Since this
pathogen can survive in the absence of host-infected plants, once
the disease occurs in the field, F. oxysporum is likely to remain
in the soil indefinitely, which seriously affects the yield of crops
(Cha et al., 2016; Khan et al., 2017). FW has a broad host on
cucurbit crops, including watermelon, melon, cucumber, luffa,
and bottle gourd (Bodah, 2017). Usually, the infected plants
morphologically show a constriction in the stem xylem, resulting
in vascular bundle clogging, plant wilting, or death (Freeman
et al., 2002; Singh et al., 2017). FW commonly occurs during
the whole growth period of bottle gourd, especially the flowering
to fruiting period. Its incidence is approximately 20–40%, and
severe cases could cause devastating losses (data from Ningbo
Institute of Agriculture), which severely restrict the sustainable
development of the bottle gourd industry.

Breeding resistant varieties is one of the most effective and
economic methods to control FW disease. At present, a series
of commercial varieties that are highly resistant to FW has been
grown for production, such as watermelon, melon, and cowpea
(Zink and Gubler, 1985; Martyn and Bruton, 1989; Ehlers et al.,
2000, 2009). To improve FW resistance, we need to exploit
markers tightly linked to FW resistance using quantitative trait
loci (QTL) and then generate germplasm by molecular marker
assistant selection (MAS; Zhao et al., 2014; Li et al., 2017). To
date, QTLs/genes conferring FW resistance have been thoroughly
studied in many crops. For example, a dominant gene I-2 that
confers resistance to race 2 of FW was cloned in tomato by map-
based cloning (Simons et al., 1998; Catanzariti et al., 2015). Using
the same map-based cloning technique, Joobeur et al. (2004)
identified two candidate genes of melon FW resistance in the
physical range of Fom-2. Several genes associated with cowpea
FW resistance were identified using QTL analysis in “California
Blackeye 27” (Pottorff et al., 2012, 2013). In cucumber, a major
QTL Foc2.1 conferring resistance to FW was detected using
recombinant inbred lines (Zhang et al., 2014), and a major QTL,
Fo-1.1, associated with FW resistance to race 1 was identified by
using selective genotyping in genetic populations derived from
related watermelon lines (Lambel et al., 2014). However, research
progress on the FW resistance of bottle gourd is relatively limited.
Only its specialization of F. oxysporum f. sp. lagenariae has been
reported, whereas the genetic mechanism of FW resistance and
related genes/QTLs are unknown in bottle gourd.

To date, a high-density genetic map has been constructed, and
a series of ISSR, SSR, and single-nucleotide polymorphism (SNP)
markers has been exploited for bottle gourd (Xu et al., 2011,
2014; Bhawna et al., 2014), allowing the establishment of various
marker–trait associations, such as association analysis for the free
glutamate content of bottle gourd (Wu et al., 2017). Genome-
wide association study (GWAS), based on linkage disequilibrium

(LD), has also been widely used in the study of plants, and various
results have been reported (Joobeur et al., 2004; Wang et al.,
2009; Sabbavarapu et al., 2013; Zhang et al., 2014). In bottle
gourd molecular breeding, Wu et al. (2017) performed a GWAS
for SNPs related to the free glutamate content of the umami
factor. With the development of quantitative genetics, many
researchers have proposed different analytical models, such as
efficient mixed-model association (Kang et al., 2008), compressed
mixed linear model (Zhang et al., 2010), restricted two-stage
multi-locus GWAS (He et al., 2017), etc. Among them, general
linear model (GLM) and mixed linear model (MLM) are still
the common GWAS methods in plants (Huang et al., 2010; Li
et al., 2013; Fang et al., 2017). In this study, we initially genotyped
89 bottle gourd accessions using 5,330 SNPs and surveyed the
disease index (DI) of FW resistance in two consecutive years. We
then performed a GWAS to identify significant associated SNPs
and potential candidate genes. Finally, three candidate genes
associated with FW resistance were verified by quantitative real-
time PCR (qRT-PCR). Our study is the first to use GWAS to
identify genomic regions and candidate genes associated with
FW resistance. The GWAS results can lay a foundation for
MAS breeding and the genetic mechanisms of FW resistance
in cucurbit crops.

MATERIALS AND METHODS

Plant Materials
Germplasm consisting of 89 bottle gourd accessions was
collected, consisting of 87 accessions from wide areas across
China, one accession from Europe, and one accession from
Mexico (Supplementary Table 1). All accessions (inbred lines)
were evaluated for FW resistance in a glasshouse of the Haining
Experimental Station (30◦ N, 120◦ E) in 2019 and 2020.
According to a completely randomized block design, the plants
were studied based on two replications in both years.

Inoculation System of FW Resistance in
Bottle Gourd
During 2018–2019, bottle gourd FW fungus was isolated from
wilted plants that were collected from severely affected areas
such as Shaoxing and Haining (Supplementary Figures 1A,B).
According to the conventional tissue separation method, FW
strains with obvious antagonistic effects were obtained by using
potato dextrose agar (containing 100 mg/ml Kana and Amp)
for screening four to five times (Supplementary Figure 1C).
Under a microscope with 10 × 40 magnification, small
conidia were observed to be ovoid or kidney-shaped, and
large conidia were spindle-shaped or sickle-shaped with hooked
apex (Supplementary Figure 1D). PCR assays showed that the
similarity between the sequence of FW isolates and the 16S rRNA
sequence was as high as 99%. After cytological tests and PCR
detection, the isolates were identified as F. oxysporum f. sp. strains
and were stored at 4◦C at the Zhejiang Academy of Agricultural
Sciences, Hangzhou, China.

Each FW strain was shake-cultured on potato sucrose broth
for 3 days in the dark at 28◦C at 200 rpm. With the use of
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a hemacytometer, the conidial suspension was adjusted to a
final concentration of 1.0 × 106 conidia/ml with sterile distilled
H2O. The seeds of each accession were sown in mixed soil
(nutritional soil/vermiculite = 3: 1) in plastic pots (6 by 6
by 5 cm) and were grown in a glasshouse set at 24◦C, 16-
h light/18◦C, 8-h darkness, 60% humidity. At the second true
leaf of the seedling spreading stage, we used the root dipping
method for bottle gourd FW resistance screening and testing.
Each accession consisted of 10–12 seedlings, and two duplicates
were set per environment.

Disease Assessment and Statistical
Analysis
Leaf damage was used as a main index to evaluate
resistant/susceptible phenotypic traits. The standard reported
by Gao et al. (2015) and Xu et al. (2016) was further improved
and implemented with a few modifications. We classified the
phenotypes of plants according to a 0–4 scale as follows: level
0, no disease symptoms, i.e., immune (I); level 1, slight disease
symptoms, featured by less than 25% of leaves with disease
symptoms, with normal plant growth, i.e., highly resistant (HR);
level 2, slight wilt symptoms, featured by 25–50% of leaves
with disease symptoms, i.e., resistant (R); level 3, moderate wilt
symptoms, featured by 50–90% of leaves with disease symptoms,
i.e., susceptible (S); and level 4, completely wilted or dead plants,
i.e., highly susceptible (HS; Supplementary Figure 2). After
10–12 replicates per material were evaluated individually, we
calculated the mean value to determine the disease severity for
each accession. The DI was calculated according to the following
equation:

DI =
∑

Pi× ni
N × P4

× 100%,

where DI is the disease index, Pi is the grade of the DI, ni is
the plant number of the corresponding DI grade, N is the total
number of plants investigated, and P4 is the highest DI grade.

According to the DI scores, the FW resistance of each
material was determined following Shen and Li (2008) with a
few modifications: immune (DI = 0, level 0), highly resistant
(0 < DI ≤ 15%, level 1), resistant (15% < DI ≤ 45%, level 2),
susceptible (45% < DI ≤ 75%, level 3), and highly susceptible
(DI > 75%, level 4).

SNP Genotyping, LD, and Population
Structure
The SNP markers used in this study were generated from RAD
sequencing with paired-end sequencing (150 bp) on the Illumina
HiSeq platform. We initially found 89 bottle gourd accessions
that aligned to the Hangzhou gourd reference genome of ∼330
Mb (Wang et al., 2018)1 and then removed those SNPs with
a minor allele frequency (MAF) of ≤0.01 and a heterozygous
rate ≥25% for data filtering. This left a total of 6,222 high-
quality SNPs. Of these SNPs, 85.66% were located on the 11
chromosomes of the bottle gourd, leaving 5,330 high-quality
SNPs. These were used for the correlation analysis of traits

1http://www.gourdbase.cn

(Wu et al., 2017). The density of SNP markers was estimated to
be one SNP per 59.37 kb for the 11 bottle gourd chromosomes.

The LD parameters (r2) for estimating the LD distance
of the genome between pairwise SNPs (MAF > 0.01) were
calculated using PLINK V1.07 (Purcell et al., 2007; Xu et al.,
2021, unpublished), and the average LD decay was drawn with
R. The population structure was constructed by STRUCTURE
2.3.4 software (Evanno et al., 2005). K (number of subgroups)
values were set to 2–8, with 10,000 (MOMC, Markov chain
Monte Carlo)–100,000 runs (MCMC, Monte Carlo Markov
Chain) with four replications. Then, the best value of K was
determined by Ln P(D) and Delta K according to the principle
of maximum likelihood (Evanno et al., 2005). The neighbor-
joining tree was constructed using PHYLIP software. The kinship
matrix was assessed based on the SNP dataset using TASSEL
5.2.14 to determine the relatedness among individuals (Anderson
and Weir, 2007; Zhang et al., 2010). In previous studies, the
population was divided into two subgroups depending on the
markers used in the tests (Wu et al., 2017).

Genome-Wide Association Analysis and
LD Block Construction
For natural populations, the population structure and relative
kinship always lead to high levels of false positives in association
maps (Yu et al., 2006). After assessment of the population
structure (Q), relative kinship (K), and principal component
analysis (PCA) of 89 accessions, four correlation analysis models
including (1) a general linear model GLM (Q), GLM (PCA) and
(2) a mixed linear model MLM (Q + K), MLM (PCA + K)
were used to conduct a genome-wide correlation analysis of
FW resistance using TASSEL 5.2.14 (Anderson and Weir, 2007;
Zhang et al., 2010). The significance threshold for SNP–trait
associations was determined by 1/n, where n is the number
of markers in the association panel (Yang et al., 2014), and
P ≤ 1/5,330 or −log10P ≥ 3.7. Considering that population
structure and kinship reduced the detection efficiency of SNPs
associated with FW resistance, the −log10P value of significantly
associated SNPs identified in this study was low, which has also
appeared in previous studies (Atwell et al., 2010; Huang et al.,
2010). In order to fully exploit the valuable genetic information in
the bottle gourd germplasm population, the significant threshold
for SNP–trait associations was set as−log10P = 2. This threshold
has already been applied to other traits in an association analysis
(Li et al., 2015; Zhang et al., 2018). The correlation analysis results
were plotted using a Manhattan plot and Q–Q plot based on the
“qqman” package in R software.

The genome-wide LD decay rate, defined as the LD block
distance where the LD decays to half of its maximum value,
was about 400 kb in a natural population of bottle gourd
(from Xu et al., 2021, unpublished). We defined the average LD
decay distance as the candidate region to select candidate genes
associated with large-effect SNPs. The genome of “Hangzhou
gourd” was used as a reference sequence (Wang et al., 2018).
Based on the genomic annotations of GourdBase,2 potential
candidate genes for FW resistance were predicted.

2http://www.gourdbase.cn
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Validation of Candidate Genes
The expression levels of the candidate genes were measured
before and after infecting plants with FW by using qRT-PCR.
Based on the phenotype data in 2019 and 2020, Hanbi (HR
to FW, level 1), Yin-10 (HR to FW, level 1), and YD-4 (HS
to FW, level 4) were chosen as extreme materials and were
cultivated in the glasshouse. The leaves from healthy plants (CK)
and treatment plants were collected 3 days after FW infection
and stored in liquid nitrogen. Total RNA was extracted from
Hanbi, Yin-10, and YD-4 leaves using an RNA Simple Total
RNA kit (Tiangen, China). After the quality and concentration
of total RNA were evaluated using 1% agarose gel and an Agilent
2100 Bioanalyzer, complementary DNA (cDNA) was synthesized
by using a Script cDNA Kit (Tiangen, China) with a standard
protocol. The CDS sequences of genes were obtained from the
GourdBase website.3 qRT-PCR primers (Supplementary Table 2)
were designed using the Integrated DAN Technologies website4

and were synthesized by Sangon Biotech (Shanghai) Co., Ltd.
The bottle gourd TuB-α gene (BG_GLEAN_10019523) was used
as the internal control gene. qRT-PCR was performed on a Bio-
Rad CFX96 Touch q-PCR System (Bio-Rad, CA, United States)
with SuperReal PreMix Plus/SYBR Green (Tiangen, China). Each
reaction was replicated three times. The relative expression level
of candidate genes was evaluated by the 2−11Ct method (Livak
and Schmittgen, 2001); healthy plants (CK) served as the control.

3http://www.gourdbase.cn
4https://www.idtdna.com/scitools/Applications/RealTimePCR/Default.aspx

Student’s t-test was used for statistical analyses (∗0.01≤ P < 0.05,
∗∗0.001 ≤ P < 0.01, ∗∗∗P < 0.001).

RESULTS

Identification of a F. oxysporum f. sp.
lagenariae Race
According to the conventional tissue separation method, purified
strains from Fusarium wilt-infected plants were obtained.
Through morphological identification of the colony, the
microscopic view of its conidia, and PCR detection of its sequence
(Supplementary Figure 1), we preliminarily identified the bottle
gourd wilt isolates as F. oxysporum f. sp. Due to differences in
the infectivity and pathogenicity of different strains to cucurbit
crops, individual strains of F. oxysporum usually infect only one
or few host species. Thus, to better distinguish the different
races of F. oxysporum f. sp., we still relied on the special host
for identification. The pathogenicity results showed that bottle
gourd plants had obvious wilt infection symptoms, featured by
the first and second leaves that were more than 50% wilted
and the third and fourth leaves that were crumpled. However,
there were no symptoms of wilt infection in watermelon, melon,
cucumber, and luffa plants (Figure 1). Therefore, we proposed
that the isolated F. oxysporum f. sp was a F. oxysporum f.
sp. lagenariae race and was named physiological race ShaoX-
1, which was used for the subsequent phenotypic identification
of bottle gourd.

FIGURE 1 | Morphology and Fusarium wilt (FW)-inoculated infestation response of cucurbit crops. (A) Bottle gourd was more susceptible than other crops after FW
inoculation. (B) Plant phenotype of bottle gourd inoculated treatment group and control group after 10 days. (C) Plant phenotype of watermelon inoculated
treatment group and control group after 10 days.
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Phenotypic Analysis of FW Resistance in
the Natural Population
In this study, a total of 89 bottle gourd accessions were evaluated
for resistance to Fusarium wilt in a glasshouse in 2019 (DI2019)
and 2020 (DI2020), with two replicates per environment. DI, as
an evaluation of FW resistance, had a wide range of phenotypic
variation in the 2-year trials. The DI of all accessions ranged
from 6 to 95%, with a mean value of 46% in 2019 (DI2019), and
from 11 to 94%, with a mean value of 55% in 2020 (DI2020).
The ANOVA results showed that the broad-sense heritability
(h2) was 87.19% across the 2 years (Table 1), suggesting that
the genetic effect played a predominant role in the phenotypic
variation of FW resistance in bottle gourd. We divided the DI
into five levels (Supplementary Figure 2): immune (level 0),
highly resistant (level 1), resistant (level 2), susceptible (level 3),
and highly susceptible (level 4), according to relevant previous
studies (Gao et al., 2015; Xu et al., 2016). Only a tiny percentage
of accessions had DI values less than 15% (8 in 2019 and 1 in
2020), whereas the majority of the accessions were within the
range of 15.01–45% (35 in 2019 and 28 in 2020) and 45.01–
75% (37 in 2019 and 42 in 2020). When DI exceeded 75%,
there were 9 accessions in 2019 and 18 accessions in 2020
(Figure 2). Unfortunately, we did not select for any material that
was immune to FW in the 2-year trials; only a small amount of
material had high resistance to FW (Figure 2), which showed that
the bottle gourd germplasm resource of FW resistance is scarce.
The correlation coefficient between the 2-year trials was as high as
0.62 (Supplementary Figure 3), and the frequency distribution of
DI was approximately normally distributed, which indicated that
this natural population could be suitable for correlation analysis
for FW resistance.

SNP Marker Analysis
The SNP markers used in this work resulted from RAD-
sequencing by using the Illumina HiSeq platform. After removal
of SNPs with a MAF of ≤0.01 and a heterozygous rate
≥25%, a total of 5,330 high-quality SNPs were retained for
GWAS of the FW resistance trait. These SNPs covered all 11
chromosomes, with an uneven distribution across the genome
(Table 2). The average density of SNP markers was about
59.37 kb/SNP. The maximum marker density was found on
chromosome 11 (101.18 kb/SNP) followed by chromosome 6
(67.25 kb/SNP), whereas the minimum marker density was
found on chromosome 1 (42.11 kb/SNP). Based on the SNP
markers, we estimated the population structure of 89 bottle
gourds using STRUCTURE software and cluster analysis. The

TABLE 1 | Descriptive statistics and heritability (h2) of the Fusarium
wilt disease index.

Trial Maximum Minimum Mean SD CV (%) Heritability (%)

DI2019 0.95 0.06 0.46 0.22 48.77 87.19

DI2020 0.94 0.11 0.55 0.22 41.21

Mean 0.94 0.11 0.50 0.21 42.29

SD, standard deviation; CV (%), coefficient of variation.

FIGURE 2 | Phenotypic distribution of Fusarium wilt resistance in 89 bottle
gourd accessions.

TABLE 2 | Single-nucleotide polymorphism (SNP) marker distribution on 11
chromosomes of bottle gourd.

Chr. Chromosome
length (Mb)

Number of
SNP

Density of
SNP (kb/SNP)

PIC

chr1 28.39 674 42.11 0.10

chr2 29.76 631 47.17 0.14

chr3 30.34 563 53.90 0.13

chr4 32.30 637 50.70 0.11

chr5 35.14 553 63.55 0.12

chr6 26.83 399 67.25 0.12

chr7 23.92 389 61.49 0.13

chr8 23.22 505 45.98 0.10

chr9 19.99 370 54.03 0.12

chr10 26.30 400 65.75 0.10

chr11 21.15 209 101.18 0.12

delta K reached a sharp peak when K was 2. Therefore,
this association population was divided into two subgroups,
namely, subgroup 1 and subgroup 2 (Figures 3A,C). Subgroup 1
contained 80 accessions, and subgroup 2 was small and included
nine accessions. A neighbor-joining result also classified the
population into two subgroups, consistent with the population
grouping result (Figure 3D). Because all accessions have some
distant relationship, there were no primary factors, such as
geographic distribution, affecting the population structure of
the 89 accessions. Genotype data were subjected to correlation
analysis of the free glutamate content trait in bottle gourd
(Wu et al., 2017).

To determine the mapping resolution of the GWAS, we
estimated the genome-wide LD decay distance of the association
population. The average LD decay distance was approximately
400 kb, where r2

= 0.3 for all chromosomes [half of its maximum
value, from Xu et al., 2021, unpublished] (Figure 3B).

Model Comparison for Correlation
Analysis
To reduce a false positive association, we applied four kinds of
association analysis models to GWAS for FW resistance in bottle
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FIGURE 3 | Population structure and linkage disequilibrium (LD) decay rate analysis of 89 bottle gourd accessions. (A) The mean delta K value, when K ranged from
2 to 8. (B) Decay of LD in the germplasm collection [from Xu et al., 2021, unpublished]. (C) Population structure of 89 bottle gourd accessions based on
STRUCTURE software; subgroup1 is shown in red, and subgroup 2 is shown in blue. (D) Neighbor-joining tree of 89 bottle gourd accessions constructed by
PHYLIP software.

gourd. Based on the mean value of DI across the 2 years, quantile–
quantile (Q–Q) plots were drawn (Supplementary Figure 4). The
results showed that there was a large deviation in the −log10P
value between the observed values and the expected values in
GLM (PCA) and GLM (Q) models, which indicated that the two
models might cause a high false positive correlation. Due to the
introduction of the covariable K, the observed −log10P values
fit well with the expected values in the MLM (PCA + K) and
MLM (Q + K) models, indicating that those two models could
effectively control the false positive of the association analysis
results. Taking into account the Q–Q plots of each environment,
the MLM (Q + K) model (red scatter plot in Supplementary
Figure 4) was selected for the follow-up association analysis
for FW resistance.

Genome-Wide Association Analysis
A GWAS was performed to detect SNPs associated with FW
resistance between 5,330 SNP markers and 89 phenotype data
points from the mean across the 2 years (aDI) and within
an individual year (DI2019 and DI2020). The Manhattan plots

and Q–Q plots for the GWAS results are shown in Figure 4.
The GWAS result showed that 20 SNPs (with a significance
threshold of p ≤ 0.01, −log10P ≥ 2.0) significantly associated
with FW resistance were detected in at least one environment
(Supplementary Table 3), including 12 SNPs from the 2019
data, 11 SNPs from the 2020 data, and 11 SNPs from the
mean data. Among these SNPs, 10 significantly correlated SNP
sites were detected in at least two environments, which were
located on chromosomes 1, 2, 3, 4, 8, and 9, indicating that
the FW resistance of bottle gourd is controlled by multiple
genes (Figures 4A–C). The phenotypic variation explained by
these sites ranged from 8.82 to 15.03% (Table 3). Among
them, markers of BGReSe_14212 and BGReSe_14202 were
located on chromosome 9, and those two SNP markers were
within the range of the genome-wide LD block (400 kb).
BGReSe_14202 was detected in all three environments with
relatively high significant levels (−log10P = 2.81/2.49/2.46) and
an effect on FW (R2

= 14.14%/13.90%/10.49%). Therefore,
the region range of chromosome 9 may contain the major
genes associated with FW resistance. On chromosome 8, two
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FIGURE 4 | Manhattan plot and Q–Q plot of genome-wide association study for Fusarium wilt (FW) resistance in bottle gourd. (A–C) Manhattan plot for FW
resistance in 2019 and 2020 and the mean across the 2 years, respectively, (D–F) Q–Q plot for FW resistance in 2019 and 2020 and the mean across the 2 years,
respectively. The red horizontal dashed line indicates the genome-wide significance threshold (−log10P ≥ 2). The blue vertical bar spanning three graphs denotes 10
significantly correlated single-nucleotide polymorphism sites for FW resistance detected in at least two environments.

SNP markers were detected with a certain LD distance away.
BGReSe_12911 was significantly correlated with FW resistance
in all three environments, and BGReSe_12338 was detected
in DI2019 and aDI. Two SNP markers, BGReSe_02569 and
BGReSe_02108, were detected on chromosome 2. Of these
two, BGReSe_02569 explained the largest phenotypic variation
in DI2020 and aDI, i.e., 16.19 and 15.38%, respectively.
BGReSe_02108 was detected in three environments, with a
contribution rate for phenotypic variation of 12.60, 11.03,
and 11.28%. BGReSe_01042 and BGReSe_00818 were located
on chromosome 1. One of the markers, BGReSe_00818
(−log10P = 2.25/2.02), was significantly correlated with FW
resistance in the two environments of DI2019 and aDI, and its
contribution rate for phenotypic variation was 12.26 and 12.84%,
respectively (Table 3).

Prediction of Candidate Genes for FW
Resistance
In this study, we were interested in the markers with the
greatest effect, such as marker BGReSe_00818 (MAF = 1.16)
on chromosome 1 and markers BGReSe_14202 (MAF = 1.09)
and BGReSe_14212 (MAF = 1.07) on chromosome 9. To

reduce the range of candidate regions, we performed LD
block structure analysis. The results showed that BGReSe_14202
and BGReSe_14212 could form an obvious LD (±400 kb)
block, meaning that these two SNPs were closely linked
(Figure 5A). The candidate region of chromosome 9 was
narrowed down to approximately 140 kb. This region contained
15 genes, of which two candidate genes were significantly
associated with FW resistance of bottle gourd (Table 4). Both of
them, HG_GLEAN_10001030 (ethylene-responsive transcription
factor RAP2) and HG_GLEAN_10001042 (GDSL esterase), are
involved in signaling pathways, such as resistance genes and
hormone induction. LD block reduced the candidate region of
BGReSe_00818 to about 415 kb, which contained seven genes
(Figure 5B). Among them, HG_GLEAN_10011803 encodes
carboxylesterase and a CDPK-related kinase protein and plays
a role in the signal transduction pathway. To confirm whether
the potential candidate genes participated in the FW resistance
pathway, the expression patterns of the three genes in both
FW-infected and healthy bottle gourd plants were analyzed via
qRT-PCR. The representative materials were selected from the
association analysis population in this study. The DI of Yin-10
and Hanbi was 10.83 and 13.44%, respectively, and both were
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TABLE 3 | Significant markers associated with Fusarium wilt resistance in at least two environments.

Marker Chromosome Positive Allelic 2019DI 2020DI aDI

−log10P R2 (%) −log10P R2 (%) −log10P R2 (%)

BGReSe_14212 9 13,476,930 A/G 2.10 9.76 2.08 8.82

BGReSe_14202 9 13,457,203 A/G 2.81 14.14 2.49 13.90 2.46 10.49

BGReSe_12911 8 11,449,774 A/G 2.36 10.14 2.16 10.31 2.10 10.33

BGReSe_12338 8 6,378,304 C/T 2.23 15.03 2.12 12.87

BGReSe_5941 4 12,071,538 C/T 2.42 13.60 2.03 9.88

BGReSe_5382 3 28,668,323 A/G 2.35 15.40 2.14 12.25

BGReSe_2569 2 15,601,788 A/G 2.14 16.19 2.03 15.38

BGReSe_2108 2 12,417,989 A/G 2.37 12.60 2.32 11.03 2.02 11.28

BGReSe_1042 1 14,684,871 C/T 2.55 11.06 2.49 12.83 2.19 12.30

BGReSe_818 1 12,140,445 C/T 2.25 12.26 2.02 12.84

FIGURE 5 | Regional Manhattan plot and linkage disequilibrium heat map of the candidate region of significantly associated single-nucleotide polymorphism (SNP)
markers. (A) The candidate region of marker BGReSe_14212 on chromosome 9. (B) The candidate region of marker BGReSe_00818 on chromosome 1. The black
horizontal dashed line indicates the genome-wide significance threshold. The region between the two black vertical dashed lines indicates the candidate region. Red
pots indicate SNPs (−log10P ≥ 2.0) associated with Fusarium wilt resistance in at least one environment.

highly resistant (HR, level 1) to FW. The DI of YD-4 was 87.81%,
i.e., highly susceptible (HS, level 4) to FW. The expression pattern
of three potential candidate genes HG_10011803, HG_10001030,
and HG_10001042 in materials YD-4, Yin-10, and Hanbi is
presented (Figure 6). Compared to healthy YD-4 (HS material,
level 4), the expression levels of the three candidate genes
were all significantly higher (P < 0.001) in the FW-infected
group (3 days after infection) (Figure 6A). For Yin-10 and
Hanbi (HR materials, level 1), the expression level of gene
HG_10011803 showed a significant difference (P < 0.05 and
P < 0.001) between FW-infected and healthy groups. However,
the expression levels of HG_10001030 and HG_10001042 in
infected plants showed a higher or lower expression level than
those in healthy Yin-10/Hanbi plants, without a significant
difference (Figures 6B,C). Combining the above-mentioned
interesting results, we speculated that HG_10011803 is a major
effect gene, whereas HG_10001030 and HG_10001042 might be

the candidate genes involved in the FW resistance response
in bottle gourd.

DISCUSSION

Fusarium wilt is one of the most important diseases throughout
the world, which seriously affects the yield and quality of cucurbit
crops (Miguel et al., 2004; Wechter et al., 2012; Oumouloud
et al., 2013). The genetic mechanism of resistance to FW in
cucurbit crops is complex, showing genetic diversity. However,
there are no studies on the genetic effect and inheritance of genes
governing FW resistance in bottle gourd, and molecular markers
linked to FW resistance are also poorly reported.

Genome-wide association study has emerged as a powerful
tool to study complex traits and genetic variations in SNP loci
and has been successfully applied to different crops in recent
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TABLE 4 | Function annotation and genes in candidate intervals of Fusarium wilt resistance single-nucleotide polymorphisms.

Gene model Chromosome Start (bp) End (bp) Gene Ontology biological process descriptions

HG_10001024 9 13,370,905 13,396,585 Chloroplastic/mitochondrial isoform X1

HG_10001026 9 13,403,689 13,406,203 NA

HG_10001028 9 13,411,513 13,414,862 Mitochondrial dicarboxylate/tricarboxylate transporter

HG_10001029 9 13,422,565 13,425,196 Tubulin alpha-3 chain

HG_10001030* 9 13,426,782 13,427,351 Ethylene-responsive transcription factor

HG_10001031 9 13,435,260 13,440,011 Importin

HG_10001032 9 13,440,450 13,443,769 Importin-5

HG_10001034 9 13,447,396 13,453,363 Chloroplastic isoform X1

HG_10001035 9 13,453,903 13,460,368 Indole-3-acetaldehyde oxidase-like isoform X1

HG_10001037 9 13,467,477 13,475,348 Indole-3-acetaldehyde oxidase-like

HG_10001040 9 13,491,070 13,493,857 NADH–cytochrome b5 reductase 1-like isoform X3

HG_10001041 9 13,494,064 13,495,437 Chloroplastic-like isoform X1

HG_10001042* 9 13,495,614 13,500,201 GDSL esterase

HG_10001043 9 13,505,538 13,506,317 Protein YLS9-like

HG_10001044 9 13,510,514 13,520,956 La-related protein 1A

HG_10011790 1 12,064,283 12,065,568 Probable carboxylesterase 15

HG_10011791 1 12,073,500 12,084,249 Protein TRANSPARENT TESTA 12-like

HG_10011796 1 12,254,943 12,255,467 Hypothetical protein

HG_10011797 1 12,274,175 12,283,744 Hypothetical protein

HG_10011798 1 12,346,824 12,347,511 Hypothetical protein

HG_10011799 1 12,379,221 12,379,829 Zinc-finger homeodomain protein-like

HG_10011803* 1 12,423,049 12,429,778 CDPK-related kinase 1-like isoform X1

*potential candidate genes for FW resistance.

FIGURE 6 | Relative expression level of three potential candidate genes in bottle gourd leaves. (A) Relative expression level of candidate genes in Fusarium wilt
(FW)-infected and healthy (CK) YD-4. (B) Relative expression level of candidate genes in FW-infected and healthy (CK) Yin-10. (C) Relative expression level of
candidate genes in FW-infected and healthy (CK) Hanbi. Statistical significance was detected by a two-tailed t-test (*0.01 ≤ P < 0.05, **0.001 ≤ P < 0.01,
***P < 0.001).

years (Joobeur et al., 2004; Wang et al., 2009; Sabbavarapu et al.,
2013; Zhang et al., 2014). Especially the general linear model
and mixed linear model are still the common GWAS methods
in plants (Huang et al., 2010; Li et al., 2013; Fang et al., 2017).
GLM, based on a linear regression model, is usually used for
the analysis of quantitative traits and discrete resistance traits.
MLM, based on population structure (Q) and kinship (K) as
covariance, could better reduce the false positive association
(Yu et al., 2006). Taking into account the deviation between

expected −log10P and observed −log10P in Q–Q plots, we
finally selected the MLM (Q + K) (Supplementary Figure 4)
as GWAS model for FW resistance. In this study, we used
a GWAS to evaluate a population of 89 accessions for FW
resistance under glasshouse inoculation conditions. A total of
20 SNPS (P ≤ 0.01, −log10P ≥ 2.0)significantly associated
with FW resistance were identified in at least one environment
(Supplementary Table 3). These sites were distributed on seven
chromosomes, which could explain the phenotypic variation
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up to 16.19%. Among them, 10 significantly correlated SNP
sites were detected in at least two environments, which were
located on chromosomes 1, 2, 3, 4, 8, and 9 (Figure 4).
According to the reference genome sequence of “Hangzhou
Gourd” (Wang et al., 2018), we preliminarily predicted three
candidate genes in candidate regions or LD block regions of
these 10 SNP markers (Figure 5). HG_GLEAN_10011803, a
candidate gene, which was located 280 kb upstream of the
BGReSe_00818 marker on Chr.1, encodes calcium-dependent
protein kinase (CDPK) protein. There have been increasing
studies confirming the involvement of CDPKs in plant disease
resistance defense responses (Boudsocq and Sheen, 2013). For
example, Loss-AtCPK28 or overexpression-AtCDPK1 mutants
displayed enhanced responses to antibacterial immunity in
Arabidopsis (Coca and Segundo, 2010; Monaghan et al., 2014).
SlCRK6 in tomato played a role in resistance to both Sclerotinia
sclerotiorum and Pseudomonas syringae pv. tomato (Pst) DC3000
(Wang et al., 2016). StCDPK5VK in potato could increase
resistance to late blight fungus through the production of
ROS (Kobayashi et al., 2012). In addition, by conducting
a qRT-PCR analysis, we found that the expression level of
HG_GLEAN_10011803 in FW-infected plants was significantly
higher than that in healthy plants (Figure 6). Therefore, we
inferred that the candidate gene HG_GLEAN_10011803 might be
related to the FW resistance of bottle gourd.

In the LD block region of another candidate marker
BGReSe_14202, one candidate gene HG_GLEAN_10001030,
located 50 kb upstream of this marker on chromosome 9,
encoded the ethylene-responsive transcription factor (ERTF)
RAP2 protein. ERTFs play an important regulatory role in plant
signal transduction of disease resistance and stress resistance,
and overexpression could improve plant disease resistance and
stress resistance (Singh et al., 2002; Gutterson and Reuber, 2004).
For example, OsRAP2.6-overexpressed plants showed improved
resistance to rice blast fungus (Wamaitha et al., 2012). TERF1
and TSRF1 genes in tomato could be resistant to Ralstonia
solanacearum and Botrytis cinerea (Huang et al., 2004; Zhang
et al., 2004, 2008). Another candidate gene, HG_10001042,
located 18 kb downstream of this marker on chromosome 9,
is a member of the GDSL gene family. The GDSL gene family
consists of a wide range of members and plays important roles in
plant growth, development, and stress defense responses (Akoh
et al., 2004; Chepyshko et al., 2012). Overexpressed GDSL genes,
such as AtGLIP1 and CaGLIP1, could enhance the resistance
to a variety of pathogenic fungi (Hong et al., 2008; Lee et al.,
2009; Naranjo et al., 2010). The qPR-PCR results showed that the
expression levels of these two candidate genes were significantly
increased in FW-infected YD-4 (HS material, level 4), while their
expression levels were not significantly different before and after
infection of Yin-10/Hanbi (HR materials, level 1) (Figure 6).
Thus, we postulate that these three genes were candidate genes
for FW resistance; in particular, HG_GLEAN_10011803 might
be a major effect gene. However, further evidence is needed
to functionally validate this hypothesis. To our knowledge, this
study is the first to perform GWAS for FW resistance in cucurbit
crops. Our results provide the molecular tools for FW resistance
selection and lay a foundation for candidate gene discovery.

The resistant materials and SNP markers that we identified will
promote breeding programs for FW-resistant bottle gourd.
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Supplementary Figure 1 | Morphological features of wilted plant and Fusarium
oxysporum f. sp. lagenariae. (A) Symptoms of wilted bottle gourd. (B) Symptoms
of vascular bundle browning of wilted plants. (C) F. oxysporum colony of Fusarium
wilt on potato dextrose agar. (D) Microscopic view of conidia of F. oxysporum f.
sp. lagenariae.

Supplementary Figure 2 | Plant symptoms of Fusarium wilt disease at levels 0–4
in bottle gourd. From left to right: level 0 (I), level 1 (HR), level 2 (R), level 3 (S),
and level 4 (HS).

Supplementary Figure 3 | Correlation analysis of disease index of 89 bottle
gourd accessions between 2019 and 2020.

Supplementary Figure 4 | Q–Q plot of genome-wide association study for
Fusarium wilt resistance based on four different association analysis models. (A)
Four different association analysis models of DI2019. (B) Four different association
analysis models of DI2020. Different colors represent different models: blue, GLM
(PCA); black, GLM (Q); green, MLM (PCA+K); red, MLM (Q+K).

Supplementary Table 1 | Accession, origin, and disease index of 89 bottle gourd
accessions used in this study.

Supplementary Table 2 | Primer sequences used for qRT-PCR.

Supplementary Table 3 | Significant markers associated with Fusarium wilt
resistance in at least one environment.
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Characterization and Mapping of
Spot Blotch in Triticum
durum–Aegilops speltoides
Introgression Lines Using SNP
Markers
Jashanpreet Kaur1, Jaspal Kaur2†, Guriqbal Singh Dhillon3†, Harmandeep Kaur1,
Jasvir Singh2, Ritu Bala2, Puja Srivastava2, Satinder Kaur3†, Achla Sharma2 and
Parveen Chhuneja3*†

1 Department of Plant Pathology, Punjab Agricultural University, Ludhiana, India, 2 Department of Plant Breeding
and Genetics, Punjab Agricultural University, Ludhiana, India, 3 School of Agricultural Biotechnology, Punjab Agricultural
University, Ludhiana, India

Spot blotch (SB) of wheat is emerging as a major threat to successful wheat production
in warm and humid areas of the world. SB, also called leaf blight, is caused by Bipolaris
sorokiniana, and is responsible for high yield losses in Eastern Gangetic Plains Zone
in India. More recently, SB is extending gradually toward cooler, traditional wheat-
growing North-Western part of the country which is a major contributor to the national
cereal basket. Deployment of resistant cultivars is considered as the most economical
and ecologically sound measure to avoid losses due to this disease. In the present
study, 89 backcross introgression lines (DSBILs) derived from Triticum durum (cv.
PDW274-susceptible) × Aegilops speltoides (resistant) were evaluated against SB for
four consecutive years, 2016–2020. Phenotypic evaluation of these lines showed a
continuous variation in disease severity indicating that the resistance to SB is certainly
quantitative in nature. Phenotypic data of DSBILs were further used for mapping QTLs
using SNPs obtained by genotyping by sequencing. To identify QTLs stable across
the environments, Best Linear Unbiased Estimates (BLUEs) and Predictions (BLUPs)
were used for mapping QTLs based on stepwise regression-based Likelihood Ratio Test
(RSTEP-LRT) for additive effect of markers and single marker analysis (SMA). Five QTLs,
Q.Sb.pau-2A, Q.Sb.pau-2B, Q.Sb.pau-3B, Q.Sb.pau-5B, and Q.Sb.pau-6A, linked to
SB resistance were mapped across chromosomes 2A, 2B, 3B, 5B, and 6A. Genes
found adjacent to the SNP markers linked to these QTLs were literature mined to
identify possible candidate genes by studying their role in plant pathogenesis. Further,
highly resistant DSBIL (DSBIL-13) was selected to cross with a susceptible hexaploidy
cultivar (HD3086) generating BC2F1 population. The QTL Q.Sb.pau-5B, linked to SNP
S5B_703858864, was validated on this BC2F1 population and thus, may prove to be a
potential diagnostic marker for SB resistance.

Keywords: leaf blight, spot blotch, backcross introgression lines, Aegilops speltoides, Bipolaris sorokiniana,
Triticum durum, QTL
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INTRODUCTION

Wheat, a major food crop of the world population, is in a
constant threat from various biotic and abiotic stresses, limiting
its potential for yield. Helminthosporium leaf blight/foliar
blight/spot blotch (SB), caused by Cochliobolus sativus
(anamorph: Bipolaris sorokiniana), is a major foliar disease
of wheat in warmer wheat-growing regions. This hemibiotrophic
fungus can potentially infect and damage various species of
Poaceae family (Gupta et al., 2018). Due to drastic changes
in the weather conditions in the last few decades leading to
higher average temperature and unusual rainfall patterns, foliar
leaf blight is emerging as a major threat to wheat production
in India. Globally, an estimated 25 million ha of wheat land
is affected by SB (Yadav et al., 2015), out of which around
10 million ha is in the Indian Subcontinent and 9 million ha
of this is in the North-Eastern Plain Zone of India (Duveiller
and Sharma, 2012; Chowdhury et al., 2013). This disease is
extending gradually toward the North-West part characterized
by high temperature and humidity late in the season (Saari,
1998) with an average yield loss of about 15–20% (Chand et al.,
2003). The disease also causes serious damage in seed quality
and market value of the produce leading to substantial economic
losses (Singh and Kumar, 2008). Under heavy infestation,
yield losses vary from 80 to 100% (Kumar et al., 2008). It is
chiefly a seed-transmitted disease and the conidia can also
survive in the soil.

Considering the huge wheat acreage attacked by this disease,
it becomes obligatory to tackle this disease in wheat-growing
areas through use of disease-free seed, seed treatment with a
suitable fungicide reducing the carryover inoculum, and crop
rotation to provide enough window period for decomposition of
inoculum-carrying stubble (Chowdhury et al., 2013). Fungicide
application seems to be the most convenient method. However,
their repeated application involves significant cost, health hazard,
and emergence of fungicidal resistance in the target pathogen.
Among various alternatives, deployment of resistant cultivars
remains a top priority approach as genetic resistance is an
economical, robust, and environmentally friendly tool in the
management of leaf blight disease. Resistance to leaf blight in the
commonly grown wheat varieties of South-East Asia is generally
insufficient or lacking (Joshi et al., 2004). So, there is an urgent
need to identify sources of SB resistance from the gene pool
of wild relatives.

From the limited number of inheritance studies, it has been
found that both qualitative and quantitative type of inheritance
are involved in SB resistance. A number of bi-parental studies
and association mapping studies have reported QTLs linked to SB
resistance present all over the wheat genome. Among them, four
major QTLs, Sb1 on 7D (Lillemo et al., 2013), Sb2 on 5B (Kumar
et al., 2015), Sb3 on 3B (Lu et al., 2016), and Sb4 on 4B (Zhang
et al., 2020), have been identified and mapped. Several QTLs on
chromosomes 2AL, 2BS, 5BL, and 6DL in “Yangmai#6”; on 2AS,
2BS, 5BL, and 7DS in the cultivar “Ning#8201”; and on 2BS, 2DS,
3BS, 7BS, and 7DS in the cultivar “Chirya#3” have been reported
(Kumar et al., 2008, 2010). Neupane et al. (2010) reported a
single, dominant gene conditioned resistance to leaf blight in

“Chirya#3” and “Milan/Sanghai#7.” Association mapping studies
conducted by Gurung et al. (2014) and Adhikari et al. (2012)
identified genomic regions associated with resistance to SB on
chromosomes 1A, 1B, 3B, 5B, 6B, 7B, and 7D.

However, identification of donor lines resistant to SB remains
a major continuing challenge (Joshi et al., 2007). At CIMMYT,
a number of Aegilops and Triticum species were used as
donors for resistance to leaf blight which included Aegilops
triuncialis, Aegilops cylindrica, Aegilops speltoides, Aegilops
triaristata, Triticum dicoccoides (wild emmer wheat), Triticum
boeoticum, Triticum persicum, Triticum timopheevii, Triticum
araraticum, Triticum urartu, and Triticum sphaerococcum (Singh
and Dhaliwal, 1993; Smurova and Mikhailova, 2007). Aegilops
species is considered as a good and less exploited source for
increasing the genetic potential of cultivated wheat to various
biotic and abiotic stresses.

In the wide hybridization program at Punjab Agricultural
University, Ludhiana, a set of stable interspecific backcross
introgression lines derived from Triticum durum and
A. speltoides (DSBILs), putative B genome donor of wheat,
were evaluated under polyhouse conditions for four consecutive
seasons from 2016 to 2020 against SB. These DSBILs were used
further to detect QTL(s) governing SB resistance and identify
linked markers to aid in breeding for disease resistance in
wheat. The linked markers were further used for validation
on a BC2F1 population derived from HD3086 and one of the
resistant DSBILs.

MATERIALS AND METHODS

Plant Genetic Material
A total of 89 backcross introgression lines derived from
A. speltoides (accession #pau3809) and T. durum cultivar
“PDW274” as recurrent parent were screened for resistance
against SB. The F1 plants from the cross of T. durum cv.
PDW274 and A. speltoides acc. pau3809 were backcrossed for
two generations with T. durum and selfed to generate BC2F10
introgression lines (DSBILs). Details of development of material
can be retrieved from Awlachew et al. (2016).

Screening for SB Resistance
All the 89 DSBILs along with resistant parent A. speltoides,
recurrent parent PDW274, and hexaploid susceptible check “Raj
4015” were evaluated under polyhouse conditions following
artificially induced epiphytotic conditions. Susceptible check
WL711 was sown after every 20 rows, and also in alleys to
promote inoculum build-up and spread. Screening to leaf blight
disease was done during four consecutive wheat seasons 2016–
2017 (E1), 2017–2018 (E2), 2018–2019 (E3), and 2019–2020
(E4). Artificial epiphytotic conditions were created by spraying
conidial suspension of the pathogen B. sorokiniana maintained
on sorghum grains which were previously soaked and autoclaved.
Aqueous conidial suspension (106 conidia/ml) was sprayed
on plants during evening hours until symptoms appeared on
the susceptible checks. After inoculation, plants were lightly
irrigated to provide high-humidity conditions, which is one
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of the predisposing conditions for infection by B. sorokiniana.
Disease scoring was done at three different growth stages (GS)
on Zadoks’ scale (Zadoks et al., 1974), which are GS55 (flowering
stage or FS), GS75 (medium milk/dough stage or DS), and GS87
(hard dough stage or HDS), using a double-digit scale (00–
99) which is based on percent leaf area covered due to blight
in flag leaf and one leaf below flag leaf (F-1) as mentioned
in Supplementary Table 1. The digit toward the left side
indicates score of percent blighted area on flag leaf whereas the
right digit gives the score of penultimate/F-1 leaf (Khan and
Chowdhury, 2011). These two leaves at this stage contribute most
to the grain-filling process thus directly affecting the grain yield
(Chowdhury et al., 2013).

The AUDPC (area under disease progress curve) based
on disease severity at GS55 (FS), GS75 (DS), and GS87
(HDS) was calculated as the total area under the graph
of disease severity against time t, from the first disease
evaluation to the last, with the following equation as given by
Shaner and Finney (1977):

AUDPC = Si =

n−1∑
i

[
(ti−1 − ti)

(
yi + yi+1

)
/2
]

where yi = disease severity at time, (ti+1–ti) = time in days
between two disease scores, and n = number of dates for which
SB disease level was recorded.

Statistical Analysis
The disease severity scores across different years using scores
of FS, DS, HDS, and AUDPC were used to obtain best linear
unbiased estimates (BLUEs) and predictions (BLUPs) by fitting
linear mixed effects models in lme4 package v 1.1-26 (Bates et al.,
2015) in R v4.0.3 (R Core Team, 2019) using

Yik = µ+ Yeari + Linek + εik

where Yik is the trait of interest, µ is the mean effect, Yeari
is the effect of the ith year, Linek is the effect of the kth
line, and εik is the error associated with the ith year and the
kth line, which is assumed to be normally and independently
distributed, with mean zero and homoscedastic variance σ2.
For BLUEs model, the genotypes were considered as fixed
effects, while for BLUPs model all the effects were considered as
random effects. Considering genotypes as random effects reduces
the effect of screening time along with other environmental
effects on SB severity (Tomar et al., 2021). The disease severity
scores obtained by fitting the BLUPs and BLUEs models were
plotted using ggplot2 v3.3.3 (Wickham, 2016) and ggpubr v0.4.0
(Kassambara, 2020) in R v4.0.3 to study the distribution across
the DSBILs.

Further, principal component analysis was performed to
identify the number of principal components required to explain
the variation across the years along with fitted values from linear
mixed effect models using FactoMineR v2.4 (Lê et al., 2008) and
factoextra v1.0.7 (Kassambara and Mundt, 2020) in R v4.0.3. The
principal components were plotted as biplots to study the relation
between disease severity scores of FS, DS, HDS, and AUDPC

along with identification of reduction in environmental effects
in fitted values.

Genotyping
DNA extraction for all the 89 DSBILs along with both the parents
was done using modified cetyltrimethylammonium bromide
(CTAB) method (Saghai-Maroof et al., 1984). All these DNA
samples were genotyped with genotyping-by-sequencing (GBS)
to provide dense genome-wide marker coverage. Raw sequence
files were processed in the TASSEL GBS pipeline version 5.2.31
(Glaubitz et al., 2014) and further aligned to the International
Wheat Genome Sequencing Consortium (IWGSC) RefSeq v1.0
reference genome. The vcf file so obtained was filtered for a
minimum depth at 3 (DP3) and converted to hapmap format.
The TASSEL output was then filtered for homozygous SNPs
for each parental line and SNP markers polymorphic between
the two parents were selected, and loci with very low coverage
(<50%)/high missing data (>50%) or heterozygosity (>50%)
were filtered out. DSBILs with more that 10% missing data
were filtered out. Missing SNPs were imputed using the LD-
kNNi method implemented in TASSEL with the following default
parameters of minimum number of high LD sites = 30 and
number of nearest neighbors = 10 (Ladejobi et al., 2019).
SNPs with minor allele frequency (MAF) < 0.05 were excluded
from further analysis and finally, 4056 SNPs with good quality
genotype calls for 77 DSBILs along with recurrent parent were
used for mapping.

QTL Mapping Using QTL IciMapping
QTL mapping was done by using CSL functionality of QTL
IciMapping version 4.1 software (Meng et al., 2015). Disease
resistance mapping was conducted with 4056 SNPs (MAF > 0.05)
in 77 DS-BILs plus recurrent parent by stepwise regression-
based Likelihood Ratio Test (RSTEP-LRT) for additive effect
of markers and single marker analysis (SMA) in the software.
Stepwise regression was used to determine the percentages of
phenotypic variance explained (PVE) (R2) by individual QTL and
their respective additive effects at the likelihood of odds ratio
(LOD) peaks. Significant SNPs were identified using threshold
LOD of 3 at significant p ≤ 0.001 and 1000 permutations. Only
QTLs detected by both the algorithms and using both BLUPs
and BLUEs were considered stable and significant. Further,
the allelic effects were investigated to identify significantly
associated markers with phenotypic data by Kruskal–Wallis
test for studying the importance of individual alleles in SB
disease resistance.

Postulation of Candidate Genes
The identified QTLs were further used to identify genic regions
adjacent to their linked SNPs using reference genome assembly’s
functional annotation for high confidence genes (IWGSC Ref
Seq v1.0). The genes were retrieved from a region of 500 kb on
either side of the SNP and using the functional annotations, the
proteins coded by these genes were identified. The functions of
the proteins were further literature mined to identify their role in
imparting resistance against SB.
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TABLE 1 | Phenotypic evaluation for spot blotch disease severity of DSBILs along with recurrent parent (RP) and susceptible check.

Env Stage RP Check Population

PDW274 Raj4015 Range Median Mean SD CV Skew. Kurt.

BLUEs FS 14.50 38.00 00.25–39.00 11.25 12.71 8.42 0.66 0.96 0.54

DS 62.00 70.25 08.75–70.50 42.50 41.02 13.83 0.34 −0.20 −0.86

HDS 77.75 89.00 35.00–83.75 72.25 69.17 10.76 0.16 −1.07 0.93

AUDPC 1081.25 1337.50 302.50–1228.75 828.75 819.55 213.24 0.26 −0.23 −0.73

BLUPs FS 13.61 24.20 07.18–24.65 12.14 12.81 3.79 0.30 0.96 0.56

DS 52.92 57.58 22.82–57.73 41.90 41.09 7.76 0.19 −0.21 −0.83

HDS 75.00 82.81 45.32–79.17 71.18 69.06 7.43 0.11 −1.09 1.01

AUDPC 985.25 1147.62 491.81–1078.71 825.26 819.86 134.52 0.16 −0.24 −0.70

RP, recurrent parent; CV, coefficient of variation; Skew., skewness; Kurt., kurtosis; Env, environment; BLUEs, best linear unbiased estimates; BLUPs, best linear unbiased
predictions; FS, flowering stage; DS, dough stage; HDS, hard dough stage; AUDPC, area under disease progression curve.
Donor parent Aegilops speltoides (#pau3809) showed score 00 across all stages.

Validation of the Identified QTLs and
Markers
For validation of the identified QTLs and markers, a BC2F1
population was developed from bread wheat cv. “HD3086”
(high yielding, susceptible cultivar) and one of the DSBILs
showing highly resistant response persistently under polyhouse
conditions. All the plants were evaluated by creating artificial
epiphytotic conditions as explained previously and scoring was
done using a double-digit scale. Genomic DNA for all plants
of BC2F1 mapping population and parents was extracted using
CTAB method. To validate the SNP markers significantly linked
to SB resistance as identified in mapping results, Kompetitive
allele-specific PCR (KASP) assay was used for genotyping1.
For this purpose, SNPs linked to the QTLs were used to
design KASP markers.

RESULTS

Phenotypic Evaluation of DSBILs
Large variation in disease severity was observed across the
different growth stages with disease pressure increasing from
flowering to hard dough stage (Table 1 and Supplementary
Table 2). Across the environments, overall disease pressures
were the lowest in E1 and highest in E3. To enhance the
accuracy and map stable QTLs across the environments,
linear mixed-effects models were used to obtain fitted
values of disease severity, accounting for G × E effect.
These values are termed as BLUPs (genotypes as random
effects) and BLUEs (genotypes as fixed effects) from here
onward. Plotting the eigenvalues/variances explained by
each individual principal component (from PC1 to PC2),
across the different growth stages and AUDPCs for all the
environments, including BLUEs and BLUPs, showed that
the first two principal components explained 93.7% of total
(Supplementary Figure 1). The first two dimensions of principal
components showed both BLUEs and BLUPs were able to explain
the variance of disease scores across the four environments

1https://www.lgcgroup.com

(Figure 1). The BLUPs showed lower variance than the BLUEs
which meant BLUPs were able to reduce the environmental
variance across the years to a larger extent. The disease score
distribution curves further agreed to this showing better normal
distribution (Figure 2).

The donor parent A. speltoides acc. pau3809 was found to be
immune to SB showing highly resistant disease severity score
of 00, on the double-digit scale, across all the growth stages
studied. Overall, the recurrent parent PDW274 showed moderate
to high susceptibility and the susceptible check Raj4015 showed
high susceptibility across the growth stages and AUDPCs when
compared with range of disease scores of respective data sets.
At FS, disease score BLUEs of the recurrent parent PDW274
and susceptible check Raj4015 were 14.5 and 38.0, respectively,
while for the DSBILs, it ranged from 0.25 to 39.00. The disease
score BLUPs of PDW274 and Raj4015 were 13.61, and 24.20,
respectively with DSBILs showing a range from 07.18 to 24.65
(Table 1). At DS, disease score BLUEs of the recurrent parent
PDW274 and susceptible check Raj4015 were 62.00 and 70.25,
respectively, while for the DSBILs, it ranged from 08.75 to 70.50.
The disease score BLUPs of PDW274 and Raj4015 were 52.92
and 57.58, respectively, with DSBILs showing a range from
22.82 to 57.73. At HDS, disease score BLUEs of the recurrent
parent PDW274 and susceptible check Raj4015 were 77.75 and
89.00, respectively, while for the DSBILs, it ranged from 35.00
to 83.75. The disease score BLUPs of PDW274 and Raj4015
were 75.00 and 82.81, respectively, with DSBILs showing a range
from 45.32 to 79.17.

The AUDPC values showed a similar trend, where the disease
score BLUEs of the recurrent parent PDW274 and susceptible
check Raj4015 were 1081.25 and 1337.50, respectively, while
for the DSBILs, it ranged from 302.50 to 1228.75. The disease
score BLUPs of PDW274 and Raj4015 were 985.25 and 1147.62,
respectively, with DSBILs showing a range from 491.81 to
1078.71. Only three genotypes, DS13, DS61, and DS80, were
found highly resistant across all the growth stages. Overall,
less than 1% of lines were categorized under highly resistant
category while 29 and 25% of genotypes showed moderate to
high susceptibility, respectively. The rest of the lines fell under
resistant to moderately resistant category.
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FIGURE 1 | Principal component analysis (PCA) biplot of disease severity of spot blotch across four individual environments E1, E2, E3, and E4 (turquoise color),
across environment BLUEs (blue color), and across environment BLUPs (red color) for disease severity at flowering stage (FS), dough stage (DS), hard dough stage
(HDS), and AUDPCs.

FIGURE 2 | Distribution of 89 DSBILs for spot blotch severity based on BLUEs (yellow color) and BLUPs (blue color) for disease score at flowering stage (A), dough
stage (B), hard dough stage (C) and AUDPC (D). The vertical red line indicates disease score of recurrent parent PDW274, the vertical black line indicates disease
score of susceptible check Raj4015, and the disease score or A. speltoides was 00 across the stages.

QTL Mapping
QTL mapping using both SMA and RSTEP-LRT for additive
effect of markers using BLUPs and BLUEs for disease severity
scores at different GS and AUDPCs resulted in detection of

five QTLs across five chromosomes (Table 2 and Figure 3).
These QTLs were located on chromosomes 2A, 2B, 3B, 5B, and
6A. The phenotypic variation explained by these QTLs varied
from 16.03 to 25.56%, while the LOD score varied from 3.04
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TABLE 2 | Summary of the QTLs detected using both single marker analysis (SMA) and RSTEP-LRT for additive effect of markers algorithms of QTL ICI mapping for
spot blotch disease severity.

QTL Marker Chr Pos (Mb) GS Env LOD PVE (%) Add

Q.Sb.pau-2A S2A_755774702 2A 755.77 HDS BLUEs 3.12 18.44 −8.24

BLUPs 3.18 18.77 −5.73

Q.Sb.pau-2B S2B_673595704 2B 673.60 AUDPC BLUEs 3.04 16.03 160.96

BLUPs 3.16 16.98 149.57

HDS BLUEs 4.09 21.27 11.81

BLUPs 5.02 25.56 10.35

Q.Sb.pau-3B S3B_104700872 3B 104.70 AUDPC BLUEs 4.33 23.27 −128.66

BLUPs 4.58 25.27 −113.13

HDS BLUEs 3.22 17.86 −8.62

BLUPs 3.82 20.43 −7.79

Q.Sb.pau-5B S5B_703858864 5B 703.86 DS BLUEs 3.32 19.48 −6.06

BLUPs 3.23 18.97 −3.36

Q.Sb.pau-6A S6A_131743987 6A 131.74 FS BLUEs 3.07 16.38 7.59

BLUPs 3.08 16.42 3.42

Chr, chromosome; Pos Mb, position in million bases; GS, growth stage; Env, environment; LOD, logarithm of odds; PVE, phenotypic variation explained; Add, additive
effect; BLUEs, best linear unbiased estimates; BLUPs, best linear unbiased predictions; FS, flowering stage; DS, dough stage; HDS, hard dough stage; AUDPC, area
under disease progression curve.

FIGURE 3 | Physical map of candidate QTLs on 2A, 2B, 3B, 5B, and 6A chromosomes. Significant QTLs mapped for resistance against spot blotch are highlighted
in black with their respective physical positions (in Mb) in blue, while previously reported QTLs/markers are labeled in red.

to 5.02. QTL QSb.pau-2A was mapped at chromosome 2A at
755.77 Mb using disease severity at hard dough stage with LOD
3.12, PVE 18.44% using BLUEs and LOD 3.18, PVE 18.77%
using BLUPs with resistance allele contributed by A. speltoides.
Two QTLs, Q.Sb.pau-2B and Q.Sb.pau-3B, were mapped using
both disease severity at HDS and AUDPC, where the resistant
allele for Q.Sb.pau-2B was contributed by PDW274 while the
resistant allele for Q.Sb.pau-3B was contributed by A. speltoides
in both cases. QTL QSb.pau-2B was mapped at chromosome 2B
at 673.60 Mb using disease severity at HDS with LOD 4.09, PVE
21.27% using BLUEs and LOD 5.02, PVE 25.56% using BLUPs.
Using AUDPCs, it was mapped with LOD 3.04, PVE 16.03% using
BLUEs and LOD 3.16, PVE 16.98% using BLUPs. QTL QSb.pau-
3B was mapped at chromosome 3B at 104.70 Mb using disease
severity at HDS with LOD 3.22, PVE 17.86% using BLUEs and
LOD 3.82, PVE 20.43% using BLUPs. Using AUDPCs, it was
mapped with LOD 4.33, PVE 23.27% using BLUEs and LOD 4.58,
PVE 25.27% using BLUPs.

Only one QTL was mapped for disease severity at FS
and DS. QTL QSb.pau-5B was mapped at chromosome 5B
at 703.86 Mb using disease severity at DS with LOD 3.32,
PVE 19.48% using BLUEs and LOD 3.23, PVE 18.97% using
BLUPs with resistance allele contributed by A. speltoides. QTL
QSb.pau-6A was mapped at chr6A at 131.74 Mb using disease
severity at FS with LOD 3.07, PVE 16.38% using BLUEs and
LOD 3.08, PVE 16.42% using BLUPs with resistance allele
contributed by PBW274.

Allelic Effect of Identified QTLs
The allelic effect of the SNPs linked to SB QTL was plotted
for the five significant QTLs (Figure 4). The allelic variation
patterns of the QTLs, between the two alternate alleles, further
agreed with positive mapping results. Also, the donor parent of
resistant alleles was confirmed for the QTLs. The disease severity
scores of growth stages in which the QTLs were detected were
used along with AUPDCs. The patterns of disease severity for
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FIGURE 4 | Boxplots showing the effect of phenotypic variation between the two alleles of the SNP markers linked to QTLs for disease score of DSBILs.
Kruskal–Wallis test was used to determine the significant differences between the mean values of two alleles.

the alternate alleles confirmed that three of the QTLs (QSb.pau-
2A, QSb.pau-3B, and QSb.pau-5B) had resistant allele donated
by A. speltoides, while the remaining two QTLs (QSb.pau-2B,
and QSb.pau-6A) had resistant allele donated by PDW274. The
alternate alleles of QTL QSb.pau-3B and QSb.pau-5B were the
most significantly different for respective disease severity score
and AUDPCs, while the alternate alleles of QTL QSb.pau-6A were
least significantly different.

Postulation of Candidate Genes
Because the physical locations of the SNPs linked to the
QTLs detected in the present study were known, they were
used to identify the genes present adjacent to them in a
region of 500 kb on either side of the SNP (Supplementary
Table 3). For each target locus, the regions were inspected
to identify candidate genes for the QTL and the genes
known to be involved in different pathways of pathogen–host
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TABLE 3 | QTLs along with SNPs and corresponding proteins and functional gene annotation elucidated based on the high confidence genes from wheat reference
sequence (RefSeq V1.0) annotation database.

QTL SNP Chr GeneID Dist. (kb) Gene annotation

Q.Sb.pau-2A S2A_755774702 2A TraesCS2A01G546600 439.059 Cytochrome P450 family protein, expressed

TraesCS2A01G546700 435.192 Cysteine proteinase

TraesCS2A01G546800 418.040 Zinc finger MYM-type-like protein

TraesCS2A01G547400 81.978 FBD, F-box and Leucine Rich Repeat domains protein

TraesCS2A01G547600 37.854 Cytochrome P450, putative

TraesCS2A01G547800 5.678 Auxin response factor

TraesCS2A01G547900 −11.024 Zinc finger CCCH domain-containing protein 32

Q.Sb.pau-2B S2B_673595704 2B TraesCS2B01G476400 425.139 Senescence-associated family protein (DUF581)

TraesCS2B01G476500 353.761 Senescence-associated family protein (DUF581)

TraesCS2B01G476600 −32.658 Senescence-associated family protein (DUF581)

TraesCS2B01G476700 −112.168 Senescence-associated family protein (DUF581)

TraesCS2B01G476800 -115.776 Senescence-associated family protein (DUF581)

TraesCS2B01G476900 −329.070 Senescence-associated family protein (DUF581)

Q.Sb.pau-3B S3B_104700839 3B TraesCS3B01G127000 375.807 Protein FAR1-RELATED SEQUENCE 3

TraesCS3B01G127100 −269.633 IQ domain-containing protein

Q.Sb.pau-5B S5B_703858864 5B TraesCS5B01G553200 370.394 F-box family protein

TraesCS5B01G553300 361.335 F-box domain containing protein

TraesCS5B01G553400 358.507 F-box and associated interaction domains protein

TraesCS5B01G553500 329.318 F-box domain containing protein, expressed

TraesCS5B01G553700 214.322 F-box family protein

TraesCS5B01G553900 1.689 F-box family protein

TraesCS5B01G554000 −214.708 ATP-dependent Clp protease ATP-binding subunit

TraesCS5B01G554100 −232.540 F-box family protein

TraesCS5B01G554200 −250.728 Disease resistance protein RPM1

TraesCS5B01G554300 −276.340 Disease resistance protein (NBS-LRR class) family

TraesCS5B01G554500 −368.461 AIG2-like (Avirulence induced gene) family protein

Q.Sb.pau-6A S6A_131743987 6A TraesCS6A01G149500 297.870 Ubiquitin family protein

TraesCS6A01G149600 −436.076 Uricase

Distance from SNP (Dist.) represents distance of start site of gene to SNP linked with QTL, where (+) sign indicates that the gene was found downstream of the SNP and
(−) sign indicates that the gene was found upstream.

interactions and pathogenesis were considered to understand
their role in imparting resistance to SB (Table 3). The SNP
S2A_755774702 linked to QTL QSb.pau-2A was found adjacent
to genes TraesCS2A01G547800 and TraesCS2A01G547900. The
gene TraesCS2A01G547800 codes for Auxin response factor
(ARF) and TraesCS2A01G547900 codes for Zinc finger CCCH
domain-containing protein 32. Gene TraesCS2A01G547400 was
found in close vicinity of the QTL for FBD, F-box, and
Leucine Rich Repeat domains protein. Other genes in the
genomic region with probable role in disease resistance coded for
cysteine proteinase (TraesCS2A01G546700), Cytochrome P450
(TraesCS2A01G546600 and TraesCS2A01G547600), and Zinc
finger MYM-type-like protein (TraesCS2A01G546800). The SNP
S2B_673595704 linked to QTL QSb.pau-2B was found adjacent
to genes TraesCS2B01G476500 and TraesCS2B01G476600 both
encoding senescence-associated family protein (DUF581). Four
other genes coding for DUF581 were also found in the genomic
region of the QTL. The SNP S3B_104700839 linked to QTL
Q.Sb.pau-3B was found adjacent to genes TraesCS3B01G127000
and TraesCS3B01G127100. The gene TraesCS3B01G127000
coded for protein FAR1-RELATED SEQUENCE 3 and gene
TraesCS3B01G127000 coded for IQ domain-containing protein.

The SNP S5B_703858864 linked to QTL Q.Sb.pau-5B
was found adjacent to genes TraesCS5B01G553900 and
TraesCS5B01G554000. The gene TraesCS5B01G553900 coded for
F-box family protein and gene TraesCS5B01G554000 coded for
ATP-dependent Clp protease ATP-binding subunit. Along with
six other F-box family protein coding genes in the region, three
disease resistance protein genes RPM1 (TraesCS5B01G554100),
NBS-LRR family protein (TraesCS5B01G554200), and AIG2
like protein (TraesCS5B01G554300) were found in the
genomic region of the QTL. The SNP S6A_131743987
linked to QTL Q.Sb.pau-6A was found adjacent to genes
TraesCS6A01G149500 and TraesCS6A01G149600. The gene
TraesCS6A01G149500 coded for Ubiquitin family protein and
gene TraesCS6A01G149600 coded for uricase.

Validation of the Identified QTLs and
Markers
BC2F1 population derived from DSBIL13 × HD3086 was
generated for transfer of SB resistance into wheat and to validate
the identified SNP markers linked to SB QTLs, where HD3086
is a high-yielding SB-susceptible hexaploid cultivar and DSBIL13

Frontiers in Plant Science | www.frontiersin.org 8 May 2021 | Volume 12 | Article 650400121

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-650400 May 24, 2021 Time: 15:53 # 9

Kaur et al. Spot Blotch of Wheat

FIGURE 5 | (A) Validation of QTL using KASP assay on BC2F1 population from DS13/HD 3086 with marker S5B_703858864. The central cluster (green) represents
heterozygous individuals, whereas clusters near the axes are homozygous for resistant allele (HEX; red) and susceptible allele (FAM; blue). (B,C) Boxplots showing
the effect of phenotypic variation between the two alleles of the QTLs for disease score and AUDPC of BC2F1 population. Kruskal–Wallis test was used to determine
the significant differences between the mean values of two alleles.

is a highly resistant line. Besides being highly resistant to SB,
DSBIL13 also harbored resistant alleles of four out of five QTLs
mapped in the present study, namely QSb.pau-2A, QSb.pau-2B,
QSb.pau-3B, and QSb.pau-5B. About 75% of the plants were
found to show resistance reaction when screened phenotypically
under polyhouse conditions.

The SNPs linked to the five SB resistance QTLs were
converted to KASP markers (Supplementary Table 4) and
parental polymorphism survey was done to study the allelic
composition of HD3086, DSBIL13, PDW274, and A. speltoides
acc. pau3809. Out of five markers, only S5B_703858864 was
found to be polymorphic between HD3086 and DSBIL13, i.e.,
HD3086 harbored an alternate allele to the allele imparting
resistance. Thus, only this marker could be successfully used
to track the SB resistance allele of QTL QSb.pau-5B. This
marker was then applied to BC2F1 population derived from
DSBIL13 × HD3086. The disease severity scores of growth
stages in which the QTL was detected was used along with
AUPDCs to evaluate significance of differences by Kruskal
test of significant difference (Figure 5). The patterns of
disease severity for the alternate alleles confirmed that the
QTL QSb.pau-5B having resistant allele from A. speltoides was
transferred to the BC2F1 population with significant difference
of alternate alleles at p = 0.0034 for DS and p = 0.0036
for AUDPC. Thus, this marker can be used for marker-
assisted selection (MAS) and gene pyramiding in future crop
improvement programs.

DISCUSSION

Spot blotch is one of the major constraints to the global wheat
production, especially in areas with hot and humid climate
(Tomar et al., 2021). To counter the constraints from foliar
diseases like SB, there is a need for constantly identifying and
introgressing new sources of resistance. The DSBIL panel used

in the present study showed wide range of variation for different
traits and has already been reported to possess various QTLs
for heat tolerance, stripe rust, and powdery mildew resistance
(Awlachew et al., 2016; Dhillon et al., 2020). In the present
study, during phenotypic evaluation of disease severity for SB,
three DSBILs (DSBIL 13, 61, and 80) were identified to be
highly resistant against SB. Because no wheat cultivar presently
grown in North-Western plains of India possess resistance to
SB, these lines become an important resource for transfer of SB
resistance. The phenotypic evaluation showed increased disease
severity from FS (GS55) to HDS (GD87). At HDS, immunity
was mostly characterized by moderate resistance in the DSBIL
panel. The continuous distribution of disease severity score
in the panel indicated additive effect leading to quantitative
nature of resistance. Most of the studies on SB resistance
dictate that multiple genes with minor effect control the SB
resistance in wheat (Adhikari et al., 2012; Lillemo et al., 2013;
Zhuang et al., 2013; Gurung et al., 2014; Lu et al., 2016; Ayana
et al., 2018; Kaur et al., 2018; Singh et al., 2018; Tomar et al.,
2021). Kumar et al. (2008) also suggested that the resistance
to SB is polygenic and controlled by a number of loci each
having its own additive effect. This was further confirmed by
Singh et al. (2018) in which lines were continuously distributed
based on phenotypic screening, indicating that the resistance
to leaf blight is certainly quantitative in nature. Latwal et al.
(2016) reported that out of 200 wheat accessions obtained
from CIMMYT, ∼5 lines were highly resistant, ∼123 lines
resistant to moderately resistant, and 28 lines were susceptible
to highly susceptible. A similar pattern was observed in
the present study.

In the present study, five QTLs were mapped on chr 2A, 2B,
3B, 5B, and 6A. Three out of five QTLs (QSb.pau-2A, QSb.pau-
3B, and QSb.pau-5B) had resistance allele donated by A. speltoides
and are probably novel as no gene/QTL for SB resistance from
A. speltoides has yet been reported, despite large genetic potential
against SB (Smurova and Mikhailova, 2007). FBD, F-box, and

Frontiers in Plant Science | www.frontiersin.org 9 May 2021 | Volume 12 | Article 650400122

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-650400 May 24, 2021 Time: 15:53 # 10

Kaur et al. Spot Blotch of Wheat

Leucine Rich Repeat domains protein was 80.98 kb from the
QTL QSb.pau-2A. NBS-LRR genes are the most common disease
resistance gene family in plant genomes (Lee and Yeom, 2015;
Dubey and Singh, 2018). A gene coding for ARF protein was
found 5.68 kb from the QTL. As reported by Fu and Wang (2011),
ARF regulates (enhance or repress) the transcription of primary
auxin-responsive genes, thus involving auxin in biotic stress
defense responses. Auxin-responsive genes are downregulated in
Arabidopsis thaliana upon Botrytis cinerea infection making it
more susceptible (Llorente et al., 2008). The genomic region of
this SNP harbored another gene with Zinc finger CCCH domain-
containing protein 32 (AtC3H32). Tandem CCCH zinc finger
(TZF) motifs are known to play a variety of roles: ABA and
gibberellin stress response (Lin et al., 2011), seed germination
(Kim et al., 2008), mediated pathogen-associated molecular
pattern (PAMP)–triggered immune responses (Maldonado-
Bonilla et al., 2013), and involved in salt stress responses (Sun
et al., 2007). Maldonado-Bonilla et al. (2013) reported that
in A. thaliana, tandem zinc finger protein is phosphorylated
by PAMP-responsive MAPKs which is required to trigger
a PAMP-triggered immunity (PTI). Two genes coding for
Cytochrome P450 were also found in the genomic region
of the QTL and wheat Cytochrome P450 family protein is
known to induce resistance to mycotoxin deoxynivalenol (DON)
(Gunupuru et al., 2018). The cysteine protease coding gene
in the region of the QTL also plays an important role as
the extracellular cysteine protease is important for pathogen
recognition. An oxidative burst is triggered by recognition,
accompanied by transcriptional reprogramming and HR, which
leads to disease resistance (Thomas and van der Hoorn, 2018).
QTL QSb.pau-2A mapped in the present study was found
55 Mb from QTL Q.Sb.bisa.2A (Tomar et al., 2021) and in
same genomic region of QTL QSb.bhu-2A (Kumar et al., 2010)
and is probably novel as this QTL had been contributed
by A. speltoides while previously reported QTL are from
cultivated wheat.

QTL QSb.pau-2B was mapped 20 Mb from another QTL
previously mapped in the region (Bainsla et al., 2020) and
was found to be flanked by six senescence-associated family
protein (DUF581) coding genes. In wheat, if one allele of
the gene is involved in senescence, the other is associated
with the stay-green trait (Tomar et al., 2021) and the stay-
green trait has been reported to positively correlate with wheat
leaf blight resistance (Joshi et al., 2006; Rosyara et al., 2008).
QTL QSb.pau-3B was found to be linked with Protein FAR1-
RELATED SEQUENCE 3 which is known to modulate plant
immunity. FHY3 and its homolog FAR1 improve resistance
by negatively regulating ROS accumulation and suppressing
plant cell death (Ma and Li, 2018) and by positively regulating
the biosynthesis of myo-inositol (Ma et al., 2016). The
genomic region of the QTL was found to carry another
gene coding for IQ domain-containing protein. Levy et al.
(2005) reported that in A. thaliana, this protein, IQD1,
encodes a novel nuclear protein that binds to calmodulin
in a Ca2+-dependent fashion and stimulates accumulation
of plant defense–related secondary metabolite glucosinolates.
QTL QSb.pau-3B was mapped 28 Mb from QTL QSb.bhu-3B

(Kumar et al., 2010) and hence this QTL introgressed from
A. speltoides might be novel.

QTL QSb.pau-5B was found 20 Mb from earlier reported
QTL Q.Sb.bisa.5B (Tomar et al., 2021) and 24 Mb from another
QTL S5B_679369233 (Jamil et al., 2018). Chromosome 5B has
been reported as hotspot for SB resistance as a large number of
QTLs/genes mapped for resistance against SB have been mapped
on this chromosome. The annotation study revealed that the
SNP S5B_703858864 linked to loci QSb.pau-5B is associated with
three disease resistance protein coding genes. Both RP1 and
AIG2 protein are known to play a crucial role in recognition
of pathogens and effector-triggered immune responses in plants
(Reuber and Ausubel, 1996; Beth Mudgett, 2005; Chisholm
et al., 2006). The third resistance gene was NB-LRR gene which
are the most common disease resistance gene family in plant
genomes (Lee and Yeom, 2015; Dubey and Singh, 2018). The
region also included six F-box family proteins. F-box family
protein mediates a variety of biological processes, such as leaf
senescence (Woo et al., 2001), and responses to biotic (Kim
and Delaney, 2002) and abiotic stresses (Calderón-Villalobos
et al., 2007). In mutant seedlings of Arabidopsis showing high
susceptibility to pathogen Peronospora parasitica, Kim and
Delaney (2002) have reported to isolate son1 protein which
was responsible to induce resistance among the seedlings. On
cloning son1, it was found to encode a novel protein containing
F-box motif, an element found within the E3 ubiquitin–ligase
complex, suggesting the existence of a novel defense response
through the ubiquitin–proteosome pathway, independent of
SAR. The genomic region also carries gene encoding for ATP-
dependent Clp protease ATP-binding subunit. Clp protease
degrades damaged or non-native proteins in mitochondria and
chloroplasts whose amount increases during abiotic and biotic
stress conditions (Ali and Baek, 2020).

QTL QSb.pau-6A was mapped 53 Mb from QTL SNP_3021829
(Bainsla et al., 2020) mapped in the same genomic region.
A gene for Ubiquitin family protein was found flanking the QTL.
Ubiquitin-related proteins implant plant resistance by degrading
flagellin-sensing 2 (FLS2) receptor, which binds the microbe-
associated molecular pattern (MAMP), flagellin (Trujillo and
Shirasu, 2010; Lu et al., 2011). Ubiquitin, which is a part of the
ubiquitin–proteasome system (UPS), controls various pathways
including response to biotic and abiotic stresses (Sadanandom
et al., 2012), and acts as one of the major systems in plant
immunity (Üstün et al., 2016). Besides immunity, their role
in defense responses by the production of ROS and forming
hypersensitive reactions have also been reported (Marino et al.,
2012). Another gene flanking the QTL coded for uricase.
Increased activity of uricase has been observed in bean leaf tissue
after infection with Uromyces phaseoli (Montalbini, 1991) in both
resistant and susceptible plants. Higher activity of uricase was
observed more in plants with hypersensitive reaction than in the
susceptible plants.

The SNPs linked to QTLs were used to design KASP-based
markers for marker-assisted transfer and validation. Using a
susceptible high-yielding cultivar HD3086 and highly resistant
DSBIL13, a BC2F1 population was generated. Since four of
the five markers were not polymorphic between HD3086 and
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DSBIL13, only one marker S5B_703858864 linked to QTL
QSb.pau-5B could be validated on the segregating population.
The homozygous alternate alleles of this marker showed
significant difference for SB severity with p value < 0.01, and
thus this marker could be used for marker-assisted transfer of the
QTL. The phenotypic evaluation of the segregating population
showed a wide range of SB severity scores from highly resistant
to highly susceptible, which indicated that more than one locus
for resistance was segregating in the population. This segregation
pattern was highly expected as DSBIL13 harbored four QTLs viz.
QSb.pau-2A, QSb.pau-2B, QSb.pau-3B, and QSb.pau-5B. Thus,
there is a need to explore more marker systems to design
markers for marker-assisted transfer of other QTLs identified in
the present study.
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Soybean cyst nematode (SCN, Heterodera glycines) has become the major yield-limiting

biological factor in soybean production. Common bean is also a good host of SCN,

and its production is challenged by this emerging pest in many regions such as the

upper Midwest USA. The use of host genetic resistance has been the most effective and

environmentally friendly method to manage SCN. The objectives of this study were to

evaluate the SCN resistance in the USDA common bean core collection and conduct

a genome-wide association study (GWAS) of single nucleotide polymorphism (SNP)

markers with SCN resistance. A total of 315 accessions of the USDA common bean

core collection were evaluated for resistance to SCN HG Type 0 (race 6). The common

bean core set was genotyped with the BARCBean6K_3 Infinium BeadChips, consisting

of 4,654 SNPs. Results showed that 15 accessions were resistant to SCN with a Female

Index (FI) at 4.8 to 9.4, and 62 accessions were moderately resistant (10 < FI < 30) to HG

Type 0. The association study showed that 11 SNP markers, located on chromosomes

Pv04, 07, 09, and 11, were strongly associated with resistance to HG Type 0. GWAS

was also conducted for resistance to HG Type 2.5.7 and HG Type 1.2.3.5.6.7 based on

the public dataset (N = 276), consisting of a diverse set of common bean accessions

genotyped with the BARCBean6K_3 chip. Six SNPs associated with HG Type 2.5.7

resistance on Pv 01, 02, 03, and 07, and 12 SNPs with HG Type 1.2.3.5.6.7 resistance

on Pv 01, 03, 06, 07, 09, 10, and 11 were detected. The accuracy of genomic prediction

(GP) was 0.36 to 0.49 for resistance to the three SCN HG types, indicating that genomic

selection (GS) of SCN resistance is feasible. This study provides basic information for

developing SCN-resistant common bean cultivars, using the USDA core germ plasm

accessions. The SNP markers can be used in molecular breeding in common beans

through marker-assisted selection (MAS) and GS.

Keywords: common bean, Phaseolus vulgaris, soybean cyst nematode, Heterodera glycines, genomic prediction,

genome wide association study, genomic selection, single nucleotide polymorphism
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INTRODUCTION

Common bean (Phaseolus vulgaris L.) is the most important
edible grain legume crop worldwide, with crop value equal to
the combined value of all other food legumes such as peas and
chickpeas (Jain et al., 2016). The most common bean is harvested
as seed grain called “dry bean,” but it is also grown as a green
vegetable (called “green bean” or “snap bean”) in many parts of
the world. Common bean has high nutritional value and is one
of the most important sources of protein for billions of people in
the world. In recent years, about 2million acres were planted, and
approximately 1.3 million metric tons of common beans valued
at US$2 billion were produced annually in the United States (US)
(USDA NASS, 2020).

The production of dry beans in the US may be challenged by
an emerging, invasive pest, the soybean cyst nematode (SCN),
Heterodera glycines Ichinohe (Tylenchida: Heteroderidae). The
SCN is the most serious pathogen of soybean [Glycine max (L.)
Merr.] in the US and suppresses a yield more than any other
pathogen (Koenning and Wrather, 2010; Allen et al., 2017). The
SCN reduces a yield by feeding on plant nutrients, retarding root
growth, reducing water and nutrient uptake and transportation
from roots to shoots, and inhibiting rhizobium nodulation. Yield
losses can exceed 40% (Koenning andWrather, 2010), depending
on many factors such as SCN population density, soil texture
and fertility, rainfall, and the presence of susceptible soybean
genotypes (Duan et al., 2009). The SCN has been widely spread
in the US, especially in the North Central region that produces
most soybeans (Tylka and Marett, 2017). Unfortunately, the top
four common bean-growing states, North Dakota, Michigan,
Nebraska, and Minnesota, which produce approximately 70% of
the common bean in the US, are also in the North Central region.
The SCN has been reported in the common bean fields of those
states (Poromarto et al., 2010; Yan et al., 2017). SCN infection
can cause severe yield loss without any aboveground symptoms
in common beans (Poromarto et al., 2010, 2012) and becomes a
serious threat to common bean production.

The use of host resistance has been highly successful in SCN
management for soybeans. Numerous commercial SCN-resistant
soybean cultivars are available and are planted in most soybean
fields in the US. Similarly, the use of host resistance in common
bean cultivars will also be crucial to SCN management in dry
bean production. Growing common bean cultivars resistant to
SCN infection will not only reduce common bean yield loss but
also relieve SCN pressure for soybean production if common
beans and soybean are rotated with wheat (Triticum aestivum L.).
Recently, Osorno et al. (2020) has released the first pinto bean
cultivar “ND Falcon,” a new pinto bean with combined resistance
to SCN and rust. Screening more common bean germplasm for
SCN resistance, using different HG Types (races) will provide
breeders to use germplasm as parents to develop and release
new superior common bean cultivars with broad and more
stable resistance.

Limited research has demonstrated that some common bean
germplasm and cultivars are resistant to SCN. Smith and Young
(2003) conducted a greenhouse study to evaluate 20 common
bean lines for SCN resistance and found a few lines resistant to

SCN, and some Mesoamerican genotypes were more resistant
than Andean genotypes. Poromarto et al. (2012), in North
Dakota, evaluated 416 accessions (germplasm lines) in the USDA
core collection of P. vulgaris and found 23% of the lines had
low nematode reproduction and were considered highly resistant
to SCN HG Type 0 (Jain et al., 2016, 2019). Wen et al. (2019),
in Illinois, evaluated 363 accessions of the same core collection
and found 19 accessions (5%) were highly resistant to SCN HG
Type 2.5.7, and 160 (44%) resistant to HG Type 1.2.3.5.6.7, with
FI < 10.

Jain et al. (2016) analyzed the transcriptome sequences
of the SCN-resistant line PI533561 vs. SCN-susceptible P.
vulgaris line GTS-900 and demonstrated that genes-encoding
nucleotide-binding site leucine-rich repeat resistance (NLR)
proteins, WRKY transcription factors, pathogenesis-related (PR)
proteins, and heat shock proteins involved in diverse biological
processes were differentially expressed between SCN-resistant
and susceptible genotypes. Recently, two reports on SCN-
resistant quantitative trait loci (QTLs) in common beans
were published. Wen et al. (2019) conducted a genome-wide
association study (GWAS) based on the dataset of 363 USDA
common bean core accessions phenotyped against SCN HG
types 2.5.7 and 1.2.3.5.6.7 and genotyped, using 84,416 single
nucleotide polymorphisms (SNPs) obtained from genotyping by
sequencing (GBS) and reported that there were five SNPs on
chromosome Pv01 and one on Pv09 associated with resistance
to HG Type 2.5.7. They also reported a gene cluster orthologous
to the three genes at the SCN-resistant rhg1 locus in soybeans. In
addition, an SNP was found on Pv09, associated with resistance
to HG Type 1.2.3.5.6.7. Jain et al. (2019) conducted GWAS in 317
accessions of USDA common bean core collection, challenged
with SCN HG Type 0, and found 14 significant SNP markers
on Pv04, 05, 06, 07, 08, 10, and 11 in the Middle American
subpopulation and 23 SNP markers on Pv01, 02, 07, 08, 09,
and 11 for the Andean subpopulation. Besides, Jain et al. (2019)
reported several candidate genes on Pv01 and Pv08, which had
high similarity to the three genes of rhg1 of soybean for SCN
resistance. Based on previous reports and the study, the SCN
resistance in the common bean is polygenic traits with multiple
genes or alleles.

Plant molecular breeding has been the foundation for crop
improvement into the twenty first century and has become
part of the breeding programs to expedite advances and genetic
gains in many crops (Moose and Mumm, 2008). Marker-assisted
selection (MAS) has been successfully used in the selection of
specific major genes/alleles in plant breeding (Collard et al.,
2005; Collard and Mackill, 2008; Xu and Crouch, 2008). More
recently, predictive breeding via GS has become an essential tool
in crop improvement. GS refers to selecting the performance
of individuals within a population based on genomic-estimated
breeding values (GEBV) (Hayes et al., 2009; Desta and Ortiz,
2014). The decreasing cost of DNA sequencing renders GS
affordable and powerful by providing high-density markers
across the genome (Lin et al., 2014). GS is more efficient than the
traditional MAS when dealing with small-effect QTL (Bernardo
and Yu, 2007; Heffner et al., 2009, 2011; Cortés et al., 2020). So far,
genomic prediction (GP) as a GS parameter has been investigated
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in a dozen of crops such asmaize (Zeamays L.), rice (Oryza sativa
L.), soybean, and wheat (Bernardo and Yu, 2007; Heffner et al.,
2009, 2011; Albrecht et al., 2011; Jarquin et al., 2014, 2016; Onogi
et al., 2016; Xavier et al., 2016; Shikha et al., 2017; Zhang et al.,
2017; Qin et al., 2019) for various agronomic traits, and abiotic
and biotic stress traits. Genomic breeding value estimation in GP
is the key step in GS. Several approaches have been proposed for
GEBV, such as BLUP methods (gBLUP, RR-BLUP, cBLUP, and
sBLUP) and Bayesian methods (BayesA and BayesB). All articles
discussed the selection prediction accuracy (PA), estimated using
the Pearson’s correlation coefficient (r) between the GEBV and
observed values for each trait in validation sets (testing sets),
using several models. In recent years, GP has also been reported
in common beans to predict agronomic traits under different
environmental stresses (Keller et al., 2020) and SCN resistance
(Wen et al., 2019).

Currently, SNP technology is the molecular-marker platform
of choice in genome-wide mapping, association studies, diversity
analysis, and tagging of important genes in plant genomics and
breeding. SNPs are abundant in the genome, cost-effective, and
amenable to high throughput analysis (Collard and Mackill,
2008; Xu and Crouch, 2008). Therefore, the identification of
SNP markers will provide breeders with powerful tools to
assist in selecting biotic and abiotic stress resistance/tolerance
and expedite the development of elite cultivars with stress
resistance/tolerance in common bean breeding programs.
SNPs have been reported and used in common beans (Cortés
et al., 2011; Blair et al., 2013). Gene-based SNP markers were
developed in common beans (Galeano et al., 2012). SNP genetic
maps for common beans have been constructed, using the 6K
SNP BeadChips (Song et al., 2015) and were used to anchor
the scaffold of the common bean whole-genome sequence
reference assembly for the Andean landrace G19833 (Schmutz
et al., 2014). In common beans, the BARCBean6K_3 Infinium
BeadChip has been used for QTL and association mapping to
identify genes/QTL controlling different traits (Hagerty et al.,
2015, 2016; Hoyos-Villegas et al., 2016, 2017; Moghaddam
et al., 2016; Castro et al., 2017; Hurtado-Gonzales et al., 2017;
Valentini et al., 2017). Recently, several versions of P. vulgaris
(common bean) genome assembles were released. They include
the aforementioned Andean genome (Schmutz et al., 2014;
https://phytozome-next.jgi.doe.gov/info/Pvulgaris_v2_1) and
four Middle American genomes: (1) race Mesoamerica: cultivar
OAC Rex (https://www.ncbi.nlm.nih.gov/genome/380?genome_
assembly_id=1500596) and breeding line BAT93 (https://www.
ncbi.nlm.nih.gov/genome/380?genome_assembly_id=262776;
Vlasova et al., 2016; Rendón-Anaya et al., 2017); (2) race
Durango: cultivar Pinto UI111 (https://phytozome-next.jgi.
doe.gov/info/PvulgarisUI111_v1_1), and cultivar Labor Ovalle
of race Guatemala (https://phytozome-next.jgi.doe.gov/info/
PvulgarisLaborOvalle_v1_1). The genome assembly of G19833
has been used as a reference to map SNPs of the BARCBean6K_3
Infinium BeadChip to the 11 chromosomes in common beans
(Song et al., 2015).

With the decreased genotyping cost and improved statistical
methods, GWAS and GS offer new approaches for genetic
improvement of complex traits in crop species. GWAS, based
on a population of unrelated lines and high-density markers,

has been used to identify candidate genes for a broad range of
complex traits in different crops (Huang et al., 2010; Li et al.,
2013; Morris et al., 2013; Yano et al., 2016). GWAS is relatively
new for common beans, but it has been reported to be an effective
approach to identify SNPmarkers associated with SCN resistance
(Jain et al., 2019; Wen et al., 2019). However, MAS has been
successfully coupled with backcrossing schemes for transferring
several traits, among which anthracnose resistance and seed
mineral accumulation traits (even from the wild) in common
beans (Garzón et al., 2008; Blair and Izquierdo, 2012). Therefore,
research is needed to identify SNP markers associated with SCN
resistance and to use these SNPmarkers in molecular breeding to
enhance common bean improvement.

We initiated a project in 2016 to study the SCN resistance in
common beans, using SCN HG Type 0. So far, two studies for
SCN resistance QTLs in the USDA common bean core collection
have been reported (Jain et al., 2019; Wen et al., 2019). Wen et al.
(2019) conducted GWAS in 363 accessions of USDA common
bean core collection phenotyped against SCNHGTypes 2.5.7 and
1.2.3.5.6.7 and genotyped, using GBS. The common bean core
sets were also genotyped BARCBean6K_3 Infinium BeadChip
SNPs, and the SNP data are available (Song et al., 2015;
Gepts et al., 2019; Kuzay et al., 2020). The BARCBean6K_3
Infinium BeadChip could provide additional SNPs for a breeding
program. Therefore, we conduct GWAS and GP analysis for
resistance to HG Type 2.5.7 and HG Type 1.2.3.5.6.7, using the
phenotypic data from Wen et al. (2019) and genotypic data of
the BARCBean6K chip SNPs in this report. Although Jain et al.
(2019) conducted GWAS in 317 accessions of USDA common
bean core collection with SCN HG Type 0, only 86 accessions
with FI < 10 were published in the article; hence, their data
are not included in this study for further analysis. The overall
goal of the research was to develop technology to effectively
manage the SCN in common bean productions. Specifically, the
objectives of this study were to evaluate the SCN resistance in
the USDA common bean core collection, to conduct GWAS,
and to identify SNP markers associated with SCN resistance. The
approach was to first conduct GWAS to identify associated SNP
markers and then use the associated SNP markers to do GS. This
is an approach combining MAS and GS through GEBVs, using
associated SNP markers (Spindel et al., 2016; Zhang J. P. et al.,
2016; Qin et al., 2019; Ravelombola et al., 2019, 2020, 2021; Ali
et al., 2020). The information presented in this report is a new
contribution to the understanding of SCN resistance in common
beans beyond the previous studies (Jain et al., 2019; Wen et al.,
2019).

MATERIALS AND METHODS

Plant Materials
About 315 common bean germplasm accessions, a core set
of common beans, described at USDA Germplasm Resources
Information Network (GRIN), were used in this study. This
common bean core set has been widely used for genetic diversity
analysis (Kwak and Gepts, 2009; McClean et al., 2012; Campa
et al., 2018; Gepts et al., 2019; Kuzay et al., 2020). The core
set was mainly from two gene pools, i.e., the Andean and
Mesoamerican pools (Gepts et al., 1986, 2019; Koenig and Gepts,
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1989; Koinange and Gepts, 1992; Beebe et al., 1997, 2000; Kwak
and Gepts, 2009; Bitocchi et al., 2012, 2013; McClean et al.,
2012; Schmutz et al., 2014; Campa et al., 2018; Kuzay et al.,
2020), and can form three clusters and seven groups (Kuzay
et al., 2020). The 315 accessions in this study were originally
collected from 11 countries, including Mexico (163 accessions),
Colombia (35), Guatemala (30), Peru (17), Costa Rica (17),
Ecuador (16), El Salvador (13), Nicaragua (13), Honduras (9),
Bolivia (1), and United States (1) (Supplementary Table 1)
They represented 241 accessions from Middle American gene
pools, 67 from the Andean pool, and seven from an admixture
(Supplementary Table 1).

In addition, the seven soybean SCN HG Type indicator
(differential) lines PI 548402 (Peking), PI 88788, PI 90763, PI
437654, PI 209332, PI 89772, and PI 548316 (Niblack et al.,
2002), and four SCN race differential lines PI 548402 (Peking),
PI 548982 (Pickett 71), or PI 548988 (Pickett), PI 88788, and PI
90763 (Riggs and Schmitt, 1988), with the susceptible Williams
82 (PI 518671) as control were included to confirm the virulence
phenotype of the SCN population (Supplementary Table 2).
Based on the reactions of the differential lines to the SCN
population, the population was HG Type 0 and race 6 similar to
race 3.

Soybean Cyst Nematode Resistance
Phenotyping
The 315 common bean accessions were tested for their resistance
to SCN HG Type 0 (race 6). HG Type 0 is avirulent to most
current commercial SCN-resistant soybean cultivars, and if there
is any SCN resistance in common beans, it is likely resistant
to HG Type 0 based on the knowledge of SCN resistance in
soybeans. Consequently, we started screening, using the HG
Type 0, to identify more SCN-resistant common bean lines
and genes/alleles.

The SCN population was collected from a field in Swift
County, Minnesota, USA, in 2007. Since it was collected from
the field, the population had been maintained in the greenhouse
on susceptible soybean cultivars or stored in a freezer at −20◦C.
Prior to the experiment, the nematode population was cultured
on susceptible soybean “sturdy” for about 45 days. Newly formed
females and cysts were washed with a vigorously applied water
stream through an 850-µm-aperture sieve onto a 250-µm-
aperture sieve and extracted by centrifugation in a 63% (w/v)
sucrose solution. Eggs were released from the cysts by crushing
the cysts on a 150-µm-aperture sieve with a rubber stopper
mounted on a motor (Faghihi and Ferris, 2000). The eggs were
separated from debris by centrifugation in a 35% (w/v) sucrose
solution for 5min at 1,500 g, and an egg suspension of 800
eggs/ml was made. The reproduction of the SCN population on
the soybean or bean lines was assayed by growing the bean in
cone-tainers (4-cm diameter and 13.5-cm high) in a growth room
(Supplementary Figure 1).

The experimental design was a randomized complete block
design (RCBD) with three replicates. Each replicate included
two common bean plants in two separate cone-tainers per
common bean accession. Control soybean Williams 82 in each

replicate included five plants in five separate cone-tainers. All
three replicates of the 315 common bean accessions, with a total
of 1,890 cone-tainers, plus the Williams 82, were set up within
2 days of December 14 to 15, 2016, in the growth room, and
they were arranged in three blocks (Supplementary Figure 1).
The cone-tainers were filled with autoclaved soil (80% sands
+ 20% field clay loam soil) to half to which 2,000 eggs in
2.5ml of water were added. Additional soil was placed in
the cone-tainer to approximately 2 cm from the top. Another
inoculum of 2,000 eggs in 2.5ml of water was added to the
soil surface, and one common bean or soybean seed was sowed
in each cone-tainer. The seed was covered with additional soil
to about 1-cm depth. The cone-tainers were placed on a rack
and maintained in the growth room with the temperature set at
28◦C and daily artificial lights for 16 h. Water was applied with
a sprinkler irrigation system to maintain adequate soil moisture
(Supplementary Figure 1). The environments, including soil
temperature, moisture, and lights, were controlled relatively even
over time and across the benches in the growth room. After 35
days in the growth room, the plants were cut to about 1 cm above
the soil surface, and all of the cone-tainers were moved to a cool
room (4◦C) to stop SCN development. The samples were stored
in the cool room until processed.

Cysts (females) were extracted from the roots and soil
according to established procedures after 35 days. Briefly, the soil
and plant roots were removed from the cone-tainer and placed in
a beaker, and water was added. Any cysts on the wall of the cone-
tainer were washed off. Plant roots were removed and females
washed off on an 850-µm-aperture sieve, nested on a 250-µm-
aperture sieve. In addition, the cysts in the soil were extracted by
pouring soil suspension on the sieves. After rinsing the materials
on the 850-µm-aperture sieve, the cysts with debris on the 250-
µm-aperture sieve were collected. The cysts were separated from
the debris by flotation centrifugation in sucrose solution (63%)
and counted under a dissecting microscope.

A FI for each common bean plant was determined by
comparing SCN female number of the plant with the average
female number on the five plants of Williams 82: FI = female
number on a given plant × 100/mean number of females on
Williams 82, where we defined FI on Williams 82 as 100. The
average FI of the two plants in each block was considered as one
replicate, and three replicates were included.

So far, two studies for SCN resistance in the USDA common
bean core collection have been reported (Jain et al., 2019;
Wen et al., 2019). Wen et al. (2019) conducted GWAS in 363
accessions of USDA common bean core collection phenotyped
against SCN HG Types 2.5.7 and 1.2.3.5.6.7. Among the 363
accessions reported in Wen et al. (2019), 276 accessions were
further analyzed for GWAS and GP in this report based on
available SNP data. Therefore, we also include their SCN FI
data in this study for comparative data analysis. Although
Jain et al. (2019) conducted GWAS in 317 accessions of
USDA common bean core collection with SCN HG Type
0, only 86 accessions with FI < 10 were published in the
article; hence, their data are not included in this study for
further analysis.
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Phenotypic Data Analysis
The SCN resistance phenotypic data FI of SCN HG Type 0 (race
6) among the 315 common bean accessions were analyzed, using
the ANOVA, with the general linear models (GLM) procedure
of JMP Genomics 7 (SAS Institute, Cary, NC). For comparisons
among individual accessions in JMP, the “LSMeans Student’s
t” was used to perform multiple comparisons at α = 0.05.
The mean, range, SD, SE, and coefficient of variation (CV)
were estimated for FI, using “Tabulate.” Person’s correlation
coefficients (r) were calculated, using “Multivariate Methods.”
The distribution of FI was drawn, using “Distribution” in JMP
Genomics 7. The average of FI to SCN HG Type 0 (race 6) for
each soybean accession fromANOVAwas used as the phenotypic
data for GWAS.

The broad-sense heritability (H) was estimated, using the
following formula (Holland, 2003).

H = σ2g/[σ2g+ (σ2e/r)]

with σ2g being the total genetic variance, σ2e being the residual
variance, and r being the number of blocks. The estimates for
σ2g and σ2e were [EMS(G)–Var (Residual)]/r and Var (Residual),
respectively. EMS(G) and Var (Residual) were obtained from the
ANOVA table.

Genotyping
The common bean core set was genotyped with the
BARCBean6K_3 Infinium BeadChips (Song et al., 2015),
consisting of 5,398 SNPs distributed across the 11 pairs of
common bean chromosomes with the Illumina BeadStation
500G (Gepts et al., 2019; Kuzay et al., 2020). The 5,389 SNPs
across 382 accessions of the common bean core set are available
and can be downloaded on the website at https://datadryad.
org/stash/dataset/10.25338/B8KP45, with AA BB AB—format.
The AA BB AB—was changed to the nucleotide format (A C
T G) based on P. vulgaris G19833 reference sequences. After
elimination of the missing data, a total of 4,654 SNPs were used
for genetic diversity, population structure analysis, and GWAS
in this study with a missing rate <20%, heterogeneous <10%,
and minor allele frequency (MAF) > 5%. The distribution of
the 4,654 SNPs on the 11 chromosomes of the common bean is
shown in Supplementary Figure 2.

Genetic Diversity and Population Structure
Analysis
This collection was previously analyzed with simple-sequence
repeats (SSRs) (McClean et al., 2012) and SNPs (Gepts et al.,
2019; Kuzay et al., 2020) for their genetic diversity and population
structure. They found mainly three or seven subpopulations in
the core set. In this study, we repeat the genetic diversity and
population structure in the 315 accessions from the core set.
A model-based clustering method in the STRUCTURE 2.3.4
program (Pritchard et al., 2000) was used to infer the population
structure of the common bean accessions based on the 4,654
SNPs. To identify the number of populations (K) capturing the
major structure in the data, the burn-in period was set at 50,000,
with the Markov Chain Monte Carlo iterations, and the run

length was set at 10,000 in an admixture model; correlated allele
frequencies were assumed to be independent for each run (Lv
et al., 2012). Ten runs were performed for each simulated value of
K, ranging from 1 to 10. For each simulated K, the statistical value
delta K was calculated, using the formula described by Evanno
et al. (2005). The optimal K was determined, using Structure
Harvester (Earl and Vonholdt, 2012; http://taylor0.biology.ucla.
edu/structureHarvester/). Each common bean genotype was then
assigned to a cluster (Q) based on the probability determined
by the software that the genotype belonged in the cluster. The
cutoff probability for assignment to a cluster was 0.50 or above.
Based on the optimum K, a bar plot with “Sort by Q” was
obtained to show the population structure among the common
bean genotypes (accessions).

The number of principal components (PC) was chosen
according to the optimum subpopulation determined in
STRUCTURE 2.3.4, and a PCA plot was drawn, using R package
ggplot2 by the data from TASSEL 5 (Bradbury et al., 2007;
http://www.maizegenetics.net/tassel). Genetic diversity also was
assessed, and phylogenetic trees were drawn, using MEGA 7
(Kumar et al., 2016) based on the Maximum Likelihood (ML)
tree method with the following parameters (Shi et al., 2016,
2017): the bootstrap method with the number of bootstrap
replications 500; model/method: the General Time Reversible
model; rates among sites: Gamma distributed with Invariant
sites (G + I); the number of discrete gamma categories: five;
gaps/missing data treatment: Use all sites; the ML heuristic
method: Subtree-Pruning-Regrafting-Extensive (SPR level 5); the
initial tree for ML: Make the initial tree automatically (Neighbor-
Joining); and a branch swap filter: Moderate. During the drawing
of the phylogeny trees, the population structure and the cluster
information were imported to MEGA 7 for combined analysis
of genetic diversity. For the sub-tree of each Q (cluster), the
shapes of “Node/Subtree Marker” and the “Branch Line” were
drawn with the same color as in the figure of the bar plot of the
population clusters from the STRUCTURE 2.3.4 analysis.

Association Analysis
GWAS was performed, using the Genomic Association and
Prediction Integrated Tool version 3 (GAPIT3) (Lipka et al.,
2012; Wang and Zhang, 2020; https://zzlab.net/GAPIT/index.
html; https://github.com/jiabowang/GAPIT3), where the mixed
linear model (MLM), compressed MLM (CMLM) (Zhang
et al., 2010), GLM, SUPER (Wang et al., 2014), multiple-
locus MLM (MLMM), Fixed and Random Model Circulating
Probability Unification (FarmCPU) (Liu et al., 2016), and
Bayesian-information and Linkage-disequilibrium Iteratively
Nested Keyway (BLINK) (Huang et al., 2019) were run in this
study. Single marker regression (SMR), GLM (Q), and MLM
(Q+K) were also conducted, using TASSEL 5 (Bradbury et al.,
2007; http://www.maizegenetics.net/tassel). Q-matrix (Q) was
obtained from the population structure analysis by STRUCTURE
2.3.4, and Kinship (K) was estimated by the tool Kinship with
the Scald_IBS method built-in TASSEL 5. In addition, a t-test
was performed for every single SNP, using visual basic codes
in Microsoft Excel 2016. Multiple modes in several tools were
used to identify SNP markers associated with resistance to SCN
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HG Types to recognize more sTable NP markers and to tag the
candidate gene(s) or QTL region(s) strongly associated with the
SCN resistance. Highly significant associations were determined,
using a strict Bonferroni correction of P-value at an α = 0.05, in
which the P = 0.05/ (SNP number) as the significance threshold
(López-Hernández and Cortés, 2019). In this study, for the panel
of all 315 accessions, the significant LOD [−log10 (P-value)]
[LOD was used instead of−log10 (P-value) in the text] threshold
value was 4.97, 4.84, and 4.52 for the panel of all 315 accessions,
Q1, and Q2, respectively, based on the 4,654 SNPs, 3,455 SNPs,
and 1,653 SNPs used for each panel after filtered with a missing
rate <20%, heterogeneity <10%, and MAF > 5%.

Besides the SCN phenotypic data of resistance to HG Type
0 (race 6) in the USDA common bean core collection from
the experiment used to conduct GWAS for SCN resistance,
the phenotypic data of resistance to HG Types 2.5.7 and
1.2.3.5.6.7 from the report by Wen et al. (2019) were also used
to conduct GWAS, using the same BARCBean6K_3 Infinium
BeadChips (Song et al., 2015). Although Wen et al. (2019)
conducted the GWAS for the two HG Types, using 84,416
SNPs identified from GBS, more information and more SNP
markers would be provided that are associated with resistance
to HG Types 2.5.7 and 1.2.3.5.6.7 when using different SNP sets
and different GWAS models. An LD heat map was drawn for
regions containing a significant SNP marker, using Haploview
(Barrett et al., 2005; https://www.broadinstitute.org/haploview/
haploview). However, we do not conduct an LD-based haplotype
association analysis in this research.

Candidate Gene Prediction
Candidate gene models were searched within 50 kb on either side
of significant SNPs (Zhang H. Y. et al., 2016) and retrieved from
the reference annotation of the common bean genome reference
Pvulgaris v1.0_218 (https://genome.jgi.doe.gov/portal/pages/
dynamicOrganismDownload.jsf?organism=Phytozome) because
the SNP information was based on this reference sequence
(Gepts et al., 2019).

Genomic Prediction of SCN Resistance
In this study, the ridge regression best linear unbiased
prediction (RR-BLUP) was used to predict GEBV in GP and
performed in the rrBLUP package (Endelman, 2011), with the
R software Version 4 (https://cran.r-project.org/bin/windows/
base/rtest.html). The RR-BLUP is an effective and accurate
prediction method as demonstrated in a wide range of traits and
crops (Jarquin et al., 2014; Zhang J. P. et al., 2016). In additions,
GP was performed with the genomic best linear unbiased
prediction (gBLUP) (Wang and Zhang, 2020; https://zzlab.net/
GAPIT/index.html; https://github.com/jiabowang/GAPIT3) and
also performed using Bayesian models: Bayes A, Bayes B, Bayes
LASSO (BL), and Bayes ridge regression (BRR) (Legarra et al.,
2011; Barili et al., 2018), random forest (RF) (Ogutu et al., 2011),
and support vector machines (SVM) (Maenhout et al., 2007).
The “Bayesian Generalized Linear Regression (BGLR),” “RF,” and
“kernlab” were used and run in the R package to perform the GP

models for Bayes A, Bayes B, BL, BRR, RF, and SVM (Bao et al.,
2014; Ravelombola et al., 2019, 2020, 2021).

In this study, we conducted four groups of GP analyses (Bao
et al., 2014; Tan et al., 2017; Ravelombola et al., 2019, 2020, 2021).
(1) GP was performed with six different ratios of a training set: a
testing set with 19:1, 9:1, 4:1, 2:1, and 1:1; or as 5, 10, 20, 30, 40,
and 50% of a testing set in the panel of 315 common accessions.
Each training population subset was randomly selected from the
association panel, and the remainder was used as a testing set.
(2) Nine different SNP number sets from 20 SNPs to all 4,654
SNPs were used in cross-predictions of resistance to three HG
Types, using five GP models: rrBLUP, Bayes A, Bayes B, BL, and
BRR. (3) Six different testing set sizes (percentages) from 5 to
50% were used in cross-prediction for resistance to three HG
Types in three common bean populations (all tested accessions,
Q1 population, and Q2 population), using a rrBLUP model. (4)
Three SNP sets (all 4,654 SNPs, 20 SNP markers, and 20 random
SNPs) were used in cross-prediction of resistance to three HG
Types, using eight GP models (rrBLUP, gBLUP, Bayes A, Bayes B,
BL, BRR, RF, and SVM). The PA was estimated using the average
Pearson’s correlation coefficient (r) between the GEBVs and
observed phenotypic values for SCN resistance in the validation
set (testing set) (Zhang J. P. et al., 2016; Shikha et al., 2017). The
r-value indicates PA and the selection efficiency of GP; the higher
the r-value, the more PA and the better the selection efficiency
in GS. The training and testing sets were randomly created 100
times, and the r-value was estimated each time. The average r-
value of 100 times was calculated for each trait (here for SCN HG
Type 0, 2.5.7, or 1.2.3.5.6.7). The distribution charts were drawn
by Microsoft Excel 2016 and R package ggplot2.

RESULTS

Soybean Cyst Nematode Resistance
Evaluation
The reactions of SCN HG Type indicator lines and race
differential lines to the SCN population are presented in
Supplementary Table 2. In the HG Type test, the susceptible
control Williams 82 soybean yielded 289 averaged SCN females
per plant, indicating there was adequate SCN reproduction for
this study. All of the seven HG Type indicators were resistant
with FI < 10, confirming that the SCN used in this study was
the HG Type 0 (Supplementary Table 2). In the race test, the
susceptible control Williams 82 soybean yielded 426 averaged
females per plant, indicating there was adequate reproduction
for this study. The lines PI 548982 (Pickett 71) and PI 548988
(Pickett) were moderately resistant to the SCN population with
FI 19.3 and 25.6, respectively; and other indicator lines were
resistant with FI < 10, confirming the population was race 6
(Supplementary Table 2).

The FI of the HG Type 0 (race 6) on the common bean core
accessions had a large range (145.5) from 4.8 on PI 313733 to
150.3 on PI 313671 (Supplementary Tables 1, 3, Figure 1), with
an average of 49.9, SD of 25.45, SE of 1.43, and CV of 51.0%;
and a near-normal distribution (Figure 1A), indicating a large
variation of resistance reactions to the SCN HG Type 0. Fifteen
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FIGURE 1 | Distribution of female index (FI) of soybean cyst nematode (SCN)

HG Type 0 (race 6) (A), HG Type 2.5.7 (B), and HG Type 1.2.3.5.6.7 (C) on

315 USDA common bean germplasm core collection.

accessions were resistant to the HG Type 0 with FI < 10. The top
seven accessions with the highest resistance to HG Type 0 were
PI313733, PI201329, PI319684, PI313440, PI325614, PI417616,
and PI313445, with FI ranging from 4.8 to 6.7, and the two most
susceptible accessions were PI313671 with FI 150.3 and PI182004
with FI 124.5 (Supplementary Tables 1, 3). The H was 65.7%,
indicating the HG Type 0 resistance was highly inheritable.

The FI of HG Type 2.5.7 ranged (199.1) from 0.4 on PI 313445
to 199.6 on PI 313671 (Supplementary Tables 1, 3, Figure 1),
with an average of 62.9, SD of 36.4, SE of 2.19, and CV of 50.1%;
a skewed near-normal distribution (Figure 1, middle) indicated
a large variation of resistance reactions to this SCN HG Type.
Twelve accessions were resistant to the HG Type 2.5.7 with FI
< 10. The top seven accessions with the highest resistance were
PI313445, PI417754, PI430210, PI201354, PI415913, PI417616,
and PI325653, with FI ranged from 0.4 to 4.0; the two most
susceptible accessions were PI313671, with FI 199.6 and PI
307820, with FI 158.6 (Supplementary Tables 1, 3).

The FI of HG Type 1.2.3.5.6.7 had a large range
(146.1) from 0 for five accessions to 146.2 for PI 207148
(Supplementary Tables 1, 3, Figure 1), with an average of 15.9;
SD of 17.0; a skewed distribution (Figure 1, bottom) indicated

there was a large variation of resistance reactions to this SCNHG
Type. Fifty-nine out of the 276 accessions (21.4%) had FI < 5.0,
and 115 out of 276 accessions (41.7%) had FI < 10, indicating
there was a high percentage for the accessions resistant to the HG
Type 1.2.3.5.6.7 (Supplementary Table 1). Many accessions were
classified as resistant or highly resistant to HG Type 1.2.3.5.6.7,
and only eight were susceptible (FI > 65). The two highest
susceptible entries were PI207148 with FI 111.4 and PI313671
with FI 146.2.

Combining analysis of resistance to the three HG Types,
only one accession, PI 313671, was susceptible with high FI
> 100 for the three HG Types, indicating this accession
can serve as a susceptible control. Four accessions, namely,
PI201354, PI 313445, PI417616, and PI313733, had FI < 10
for resistance to the three HG Types, suggesting they have
high and broad resistance to the three HG Types 0, 2.5.7, and
1.2.3.5.6.7 (Supplementary Table 1). There were 37 accessions
with resistance to the three HG Types (FI < 20: Table 1); their
genetic diversity will be analyzed in the following section of
this report.

There were weak correlations (r = 0.31 to 0.33) of SCN
resistance to HG Types, 0, 2.5.7, and 1.2.3.5.6.7 resistance among
the 315 common bean accessions (Supplementary Table 4),
suggesting that they had different genetic resistance to the three
HG types.

From the 86 common bean accessions reported by Jain et al.
(2019), 59 accessions were also screened for their resistance to
HG Type 0 in this study. Six out of the 59 lines, PI201354,
PI201329, PI430206, PI319684, PI343950, and PI269209, showed
HG Type 0 resistance with FI < 10 in both studies, indicating
the six lines had more durable or stable resistance. However,
the correlation of the SCN HG Type resistance in the 59
lines between the two studies was very low, with r = 0.057,
indicating that the SCN pathogens used in the two studies might
have different pathogenicity. It is possible that the HG Type 0
population used in Jain et al. (2019) and the population we used
belonged to different races because HG Type 0 can be race 3 or 6,
and the race of the former was not reported.

Genetic Diversity and Population Structure
Analysis
The population structure of the 315 USDA germplasm accessions
was initially inferred, using STRUCTURE 2.3.4 (Pritchard et al.,
2000). The peak delta K was observed at K = 2, indicating the
presence of two main population clusters, Q1 and Q2, in the
common bean germplasm panel (Supplementary Figures 3A,B).
The classification of accessions into populations or clusters based
on the model-based structure from STRUCTURE 2.3.4 is shown
in Supplementary Figure 3B and Supplementary Table 1. The
315 accessions were assigned to one of the two populations or
clusters, defined as Q1 and Q2 groups (populations). Q1 and Q2
consisted of 248 (78.7%) and 67 (21.3%) accessions, respectively
(Supplementary Table 1). Seven accessions were classified as
Q1(2) because their probability belonging to Q1 was >0.5 but
<0.7 (Supplementary Table 1, bottom). A graphical plot of the
PCA of the 315 common bean accessions showed two clusters
(Supplementary Figure 3C) based on data from TASSEL 5 with
two subpopulations.
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TABLE 1 | Accession ID, origin (country), population clusters and groups, and their SCN Female Index (FI) of top 37 SCN-resistant common bean accessions in reaction

to HG Types 0, 2.5.7 and 1.2.3.5.6.7.

Line_IDa Line Country 2Q_cluster 2_group HG_Type 0_FI HG_Type

2.5.7_FI

HG_Type

1.2.3.5.6.7_FI

PI313615b_Colombia_Q1_0.987_0.013a PI313615 Colombia Q1 I 14.80

PI313630b_Colombia_Q1_1_0 PI313630 Colombia Q1 I 9.15

PI309845_Costa Rica_Q1_1_0 PI309845 Costa Rica Q1 I 11.66 28.19 4.49

PI343950_Guatemala_Q1_1_0 PI343950 Guatemala Q1 I 8.10

PI449410_Mexico_Q1_1_0 PI449410 Mexico Q1 I 14.54

PI313328b_Mexico_Q1_1_0 PI313328 Mexico Q1 I 7.02

PI201329_Mexico_Q1_1_0 PI201329 Mexico Q1 I 5.06 10.57 2.24

PI201354_Mexico_Q1_1_0 PI201354 Mexico Q1 I 7.19 3.08 0.37

PI417667_Mexico_Q1_1_0 PI417667 Mexico Q1 I 11.71 24.23 16.82

PI313440_Mexico_Q1_1_0 PI313440 Mexico Q1 I 5.92 8.81 17.2

PI313445_Mexico_Q1_1_0 PI313445 Mexico Q1 I 6.74 0.44 0.1

PI313444_Mexico_Q1_1_0 PI313444 Mexico Q1 I 7.08 16.74 10.28

PI325630_Mexico_Q1_1_0 PI325630 Mexico Q1 I 15.73 9.25 3.36

PI417616_Mexico_Q1_1_0 PI417616 Mexico Q1 I 6.46 3.96 7.29

PI313473_Mexico_Q1_1_0 PI313473 Mexico Q1 I 10.38

PI203920_Mexico_Q1_1_0 PI203920 Mexico Q1 I 19.41 25.55 12.71

PI313501_Mexico_Q1_1_0 PI313501 Mexico Q1 I 8.33 23.79 0.56

PI325642_Mexico_Q1_1_0 PI325642 Mexico Q1 I 11.22 10.13 3.74

PI313512_Mexico_Q1_1_0 PI313512 Mexico Q1 I 12.95 14.1 7.48

PI201296_Mexico_Q1_1_0 PI201296 Mexico Q1 I 14.11 12.78 1.87

PI313490_Mexico_Q1_1_0 PI313490 Mexico Q1 I 19.25 27.75 2.24

PI325653_Mexico_Q1_1_0 PI325653 Mexico Q1 I 16.21 3.96 1.5

PI417739_Mexico_Q1_1_0 PI417739 Mexico Q1 I 19.76 13.22 1.12

PI430206_Mexico_Q1_1_0 PI430206 Mexico Q1 I 9.40 12.33 0.1

PI313820_Mexico_Q1_0.989_0.011 PI313820 Mexico Q1 I 11.08

PI313425_Mexico_Q1_1_0 PI313425 Mexico Q1 I 15.09

PI417657_Mexico_Q1_0.89_0.11 PI417657 Mexico I 14.56 22.03 3.93

PI430204_Mexico_Q1_0.692_0.308 PI430204 Mexico II(I) 13.89 14.1 4.49

PI346960_Mexico_Q1_0.661_0.339 PI346960 Mexico Q1(2) II(I) 14.30 12.33 12.9

PI345576_Costa Rica_Q1_0.672_0.328 PI345576 Costa Rica Q1(2) II(I) 11.06 15.86 0.56

PI241794_Ecuador_Q2_0.119_0.881 PI241794 Ecuador Q2 II 14.55 20.7 15.89

PI415936_Ecuador_Q2_0.027_0.973 PI415936 Ecuador Q2 II 10.73 13.66 12.34

PI209498_Costa Rica_Q2_0.019_0.981 PI209498 Costa Rica Q2 II 11.47 28.19 17.01

PI313733_Mexico_Q2_0_1 PI313733 Mexico Q2 II 4.78 5.73 4.49

PI325731_Mexico_Q2_0_1 PI325731 Mexico Q2 II 17.58

PI316030b_Peru_Q2_0_1 PI316030 Peru Q2 II 13.51

PI293355_Peru_Q2_0_1 PI293355 Peru Q2 II 18.04 27.31 10.09

aLine_ID consists of PI accession, original country, one of the two clusters Q1 or Q2, the Q1 probability, and Q2 probability. For example, PI313615b_Colombia_Q1_0.987_0.013, where

the PI accession is PI313615b, which is grouped into Q1 cluster with probabilty of 0.987 and has 0.013 probability to Q2.

The genetic diversity among the 315 accessions was also
assessed, using the ML method in MEGA 7 (Kumar et al.,
2016), with phylogenetic trees are drawn based on the results.
All accessions were assigned into one of the two clusters
(populations), further indicating there were two distinct genetic
populations in the common bean core set.

The second highest peak of delta K in STRUCTURE 2.3.4
was observed for K = 3, using Structure Harvester, indicating
the 315 common bean germplasm accessions can be divided
into three clusters (G1 to G3) (Figure 2A). Figure 2B shows

the bar plot drawn in STRUCTURE 2.3.4 to visualize the
three-clustered populations. The classification of the germplasm
accessions into populations based on the model-based structure
developed in STRUCTURE 2.3.4 was shown in Figure 2B,
Supplementary Table 1. Each common bean accession also was
assigned to one of the three populations based on probabilities
calculated in STRUCTURE 2.3.4 (Supplementary Table 1). A
Q value = 0.5 was used to divide the three populations
(clusters) and the admixture. In total, 301 out of 315 accessions
(95.6%) were assigned to one of the three populations. G1
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FIGURE 2 | Model-based populations in the association panel consisted of 315 USDA common bean germplasm accessions. (A) Delta K values for different numbers

of populations (K) assumed in the analysis completed with the STRUCTURE Version 2.3.4 software. (B) Classification of 315 common bean accessions into three

populations using the STRUCTURE Version 2.3.4, where the numbers on the y-axis show the subgroup membership and the x-axis shows the different accessions.

The distribution of accessions in different populations is indicated by the color coding (Cluster 1, G1, is red; Cluster 2, G2, is green; and Cluster 3, G3, is blue). (C)

Graphical plot of the principal component analysis (PCA) of the 315 common bean accessions. The horizontal and vertical axes are the first and second principal

components, and the variances explained by each component are noted. (D) Maximum Likelihood (ML) tree of the 315 common bean accessions drawn in MEGA 7.

The color code for each population is consistent in the (B–D).

to G3 consisted of 97 (30.8%), 138 (43.8%), and 66 (21.0%)
accessions, respectively. The remaining 14 accessions (4.4%) were
categorized as having admixed ancestry between G1 and G3
(Supplementary Table 1). A PCA plot was shown in Figure 2C

based on data from TASSEL 5.
The genetic diversity of the 315 common bean accessions was

also analyzed, using the ML method in MEGA 7 by combining
the three populations G1 to G3, identified by STRUCTURE.
The results shown in Figure 2D indicate there may be three
differentiated genetic populations and admixtures among the
315 accessions.

Combining (1) the two subpopulations (Q1 and Q2) and
(2) the three clusters (G1 to G3) from STRUCTURE 2.3.4,
a rectangular phylogenetic tree was drawn, using the ML
method fromMEGA 7 (Supplementary Figure 4). The common
bean accession number, the original country of the accession,
and the two populations (clusters) were merged into one
taxon name for each branch in the combined tree drawn by
MEGA 7 (Supplementary Figure 4). The resulting tree shows
there were three main groups: (1) Q1G1, (2) Q1G2, and
(3) Q2G3 in the 315 accessions (Supplementary Figure 4).
Q1G1 included 96 accessions (30.5%), Q1G2 138 accessions
(43.8%), Q1G (admixture) 8 (2.5%), Q2G3 66 (21.0%), Q2G31
(admixture) 1 (0.3%), and Q1(2) Gx (admixture) 7 (2.2%),
indicating that the Q1 population was further divided into
two groups and some admixture. The entire Q2 group (except

one) was not subdivided into the K = 3 analysis and became
group G2 (G2∼ = Q2∼ = Q2G2), with only one exception
(Supplementary Table 1), suggesting the Q2 population has a
well-defined genetic background with stable boundaries.

Association Analysis
In this study, we performed GLM, MLM, SUPER, MLMM,
FarmCPU, and BLINK analyses in GAPIT3 by setting PCA
= 3, and SMR, GLM (Q), and MLM (Q+K) analyses in
TASSEL 5, where Q = 3. We also conducted a t-test for each
SNP. If an SNP had a LOD [−log (P-value)] greater than the
significance threshold value LOD [−log (0.05/SNP number)]
in one of the six MLM models (gapit.mlm, gapit.mlmm,
gapit.super, gapit.farmCPU, gapit.blink, or tassel.mlm), the SNP
was selected as a candidate-associated SNP marker and listed in
Supplementary Tables 5–7 for resistance to SCN HG Types 0,
2.5.7, and 1.2.3.5.6.7, respectively. After combining the output
from GAPIT3 and Tassel 5 for the three association panels (all
tested accessions (all.set), Q1 and Q2 populations), the SNP
markers, which were significant for resistance to the three HG
Types, are listed in Table 2.

Genome-Wide Association Study for
Resistance to SCN HG Type 0
The distributions of the QQ plots between the observed vs.
expected LOD [−log10 (p)] showed a large divergence from
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TABLE 2 | SNP markers associated with three SCN HG Types, 0, 2.5.7, and 1.2.3.5.6.7 in three sets of common bean genotypes, based on six models, BLINK, FarmCPU, MLM, MLMM, SUPER, and GLM in GAPIT 3

and three models, MLM, GLM, and SMR in Tassel 5, and T-test.

SNP Chr Position –log(P-value) using GAPIT 3 –Log(P-value) in Tassel T-test Rsq in Tassel R-allele S-allele MAF (%) Set Associated_HG_Type

Blink FarmCPU MLM MLMM SUPER GLM SMR GLM MLM –LOG(P) SMR GLM MLM

ss715640464 4 33307678 10.31 4.31 4.90 1.08 0.79 6.27 0.03 5.74 4.16 0.38 0.05 7.47 6.33 T C 22.6 all.315 HG Type 0

ss715650114 6 10550456 5.68 5.11 2.60 2.70 2.36 2.91 3.04 2.32 1.97 3.38 4.39 3.09 2.94 T G 26.6

ss715647158 7 7343812 6.78 3.31 4.24 3.31 1.19 5.07 7.15 5.56 4.40 5.72 10.01 7.20 6.70 C A 8.7

ss715649511 7 7759866 5.76 3.36 2.43 2.75 5.26 4.27 1.69 3.53 1.74 2.44 2.47 4.64 2.64 G A 46.2

ss715639339 9 12175377 1.84 0.48 2.07 2.82 5.26 4.75 0.33 4.50 1.46 0.79 0.49 5.89 2.20 T C 33.2

ss715647549 11 44651807 7.42 2.67 3.37 3.89 5.40 4.64 1.13 3.74 2.33 1.34 1.83 5.41 4.00 C T 37.3

ss715639339 9 12175377 3.62 0.89 2.98 2.10 5.09 0.89 9.20 6.04 2.40 11.28 16.30 10.03 4.75 T C 11.8 Q1

ss715647549 11 44651807 7.26 0.83 4.25 5.46 5.36 0.83 7.16 3.71 2.72 9.61 14.47 6.96 5.98 C T 19.5

ss715641893 2 10113375 0.82 1.26 1.72 1.74 5.28 5.52 5.90 1.01 1.35 6.54 8.26 0.92 1.49 T C 43.7 all.315 HG Type 2.5.7

ss715639285 2 33312585 5.92 4.29 2.58 2.65 4.08 6.64 6.42 1.86 1.64 8.14 10.26 2.86 2.80 T G 38.4

ss715645573 3 50143102 3.39 5.67 2.86 2.94 3.97 5.67 5.64 2.21 2.52 6.07 9.10 3.39 4.34 C T 41.1

ss715645642 9 33052539 0.15 0.05 1.25 1.26 5.32 5.62 6.05 1.19 0.97 6.41 8.45 1.14 0.96 G T 48.6

ss715650604 1 41625385 1.11 0.02 1.59 1.62 8.91 5.44 5.21 2.79 1.08 7.58 11.16 5.69 2.46 G A 39.8 Q1

ss715651021 1 41732173 1.34 2.48 2.05 2.10 9.10 5.73 5.56 3.32 1.50 8.09 11.84 6.72 3.44 T C 37.4

ss715647960 1 41789504 1.12 0.04 1.49 1.51 8.45 5.26 4.96 2.29 0.88 7.29 10.60 4.68 2.01 G A 38.1

ss715639285 2 33312585 1.58 0.47 2.47 2.55 5.73 5.68 5.44 2.24 1.67 7.48 11.56 4.56 3.84 T G 49.5

ss715640488 7 35740746 6.07 6.17 3.62 3.82 10.35 8.86 9.67 6.09 2.63 18.50 19.60 11.88 6.10 T C 22.8

ss715640389 9 12154448 0.68 1.00 3.05 3.18 7.66 8.31 9.83 6.84 2.73 30.85 18.19 11.70 4.86 A C 11.2

ss715639339 9 12175377 4.88 2.20 2.98 3.10 8.42 8.40 9.03 6.18 2.05 26.01 18.45 12.06 4.74 T C 11.9

ss715641522 11 13037340 0.31 0.06 1.06 1.07 7.20 4.34 4.60 2.18 0.94 5.55 8.39 3.31 1.23 T C 31.1

ss715647636 3 3963582 9.29 5.65 2.55 4.38 2.73 2.56 8.18 2.61 2.54 2.78 11.57 2.97 3.12 C T 11.2 all.315 HG Type 1.2.3.5.6.7

ss715647109 6 27257765 10.60 8.32 3.43 2.92 3.79 3.43 8.55 3.29 3.14 2.76 13.44 4.84 5.14 C T 9.4

ss715640509 10 2792311 10.60 5.95 6.19 6.80 1.44 6.19 0.12 7.32 6.76 0.43 0.04 9.40 9.98 T C 13.0

ss715639563 11 46491205 6.09 4.15 1.92 2.37 3.33 1.92 7.27 2.62 2.58 4.02 13.38 4.56 4.76 A G 27.0

ss715639563 11 46491205 4.11 4.11 4.03 4.30 1.78 4.35 6.06 6.55 5.64 1.52 14.98 15.60 16.27 A G 9.7 Q1

ss715639339 9 12175377 1.84 0.48 2.07 2.82 5.26 4.75 0.33 4.50 1.46 0.79 0.49 5.89 2.20 T C 33.2 all HG Type 0

3.62 0.89 2.98 2.10 5.09 0.89 9.20 6.04 2.40 11.28 16.30 10.03 4.75 T C 11.8 Q1

0.33 0.54 2.14 2.18 1.36 0.31 0.33 4.15 1.65 0.56 0.57 6.26 2.83 T C 33.2 all HG Type 2.5.7

4.88 2.20 2.98 3.10 8.42 8.40 9.03 6.18 2.05 26.01 18.45 12.06 4.74 T C 11.9 Q1
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the expected distribution (Supplementary Figure 5), indicating
there were SNPs associated with the resistance to SCN HG Type
0 in the three association panels. The Manhattan plot showed
there were a dozen SNPs with LOD value >4.97 in all.set and Q1
(Supplementary Figure 5), and associated with SCN resistance
to HG Type 0. Based on MLMmodels, a total of 18 SNPs, located
on Pv 03, 04, 05, 06, 07, 08, 09, and 11 had LOD > 4.79 in all.set
or > 4.84 in Q1 (Supplementary Table 5), associated with the
resistance to SCN HG Type 0 (Supplementary Table 5). Among
the six models, BLINK had the highest LOD values, and several
SNP markers were observed in all.set and Q1 but not in Q2
(Figure 3).

There were several SNPs with LOD > 4.97 in all.set and
> 4.84 in the Q1 population in the SMR and GLM models
but not in the MLM model (Supplementary Table 5), indicating
that there were significant SNP markers, but they were not
strongly associated with SCN resistance based on the Tassel
tool. However, there were several SNPs with a LOD score >

4.0 or 3.0, indicating there were small-effect QTLs for SCN
resistance (Supplementary Table 5). Based on t-tests, all 18 SNPs
had LOD values > 2.0 (P < 0.01) either in all.set, Q1, or Q2
(Supplementary Table 5).

After combining, six SNPmarkers, ss715640464, ss715650114,
ss715647158, ss715649511, ss715639339, and ss715647549,
located on chromosomes Pv04, 06, 07, 07, 09, and 11, were
associated with resistance to SCN HG Type 0 in all.set (Table 2).
The two SNPs, ss715647158 and ss715649511, were located
at 7,343,812 bp and 7,759,866 bp, respectively, on Pv07 based
on the Pvulgaris v1.0_218 whole-genome reference sequences
(Table 2), suggesting that there was a QTL on Pv07 for HG Type
0 resistance. The ss715639339 SNP at 12,175,377 bp on Pv09 and
ss715647549 at 44,651,807 bp on Pv11 were observed in both
all.set and Q1 for HG Type 0 resistance (Table 2), suggesting the
presence of a QTL on each of the two chromosomes.

Genome-Wide Association Study for
Resistance to SCN HG Type 2.5.7
The distributions of the QQ plots between the observed
vs. expected LOD [-log10 (p)] showed a large divergence
from the expected distribution (Supplementary Figure 6),
suggesting there were SNPs associated with resistance to
SCN HG Type 2.5.7 in the three association panels. The
Manhattan plot showed there were a dozen SNPs with a LOD
value >4.97 in all.set (Supplementary Figures 6A,B) and Q1
(Supplementary Figures 6C,D) for resistance to HG Type
2.5.7. A total of 15 SNPs, located on chromosomes Pv01, 02,
03, 07, 09, and 11 had LOD > 4.79 in all.set, or > 4.84 in Q1
(Supplementary Table 6). Among the six models, SUPER had
the highest LOD values, and several SNP markers had LOD
values greater than the 4.97 significance threshold in all.set, and
> 4.84 in Q1, but not in Q2 (Figure 4, Supplementary Table 6).

The TASSEL 5 analysis showed that there were several
significant SNPs with a LOD score > 4.97 in all.set and >

4.84 in the Q1 population in the SMR and GLM models but
not in the MLM model (Supplementary Table 6). Nevertheless,
these markers were not strongly associated with SCN resistance.

However, there were several SNPs with a LOD score > 3.0 or 2.5,
suggesting there were QTLs for HG Type 2.5.7 resistance with
a small effect (Supplementary Table 6). Based on t-tests, 14 of
the 15 SNPs had a LOD value > 2.0 (P < 0.01) either in all.set,
Q1, or Q2, (Supplementary Table 6), indicating that the 14 SNPs
were associated with resistance to HG Type 2.5.7 at the P = 0.01
significance level.

After combining, four SNPs were associated with resistance
to the HG Type 2.5.7 in all.set, eight SNPs in Q1, and none
in Q2 (Table 2). Among the eight SNPs in Q1, the three SNPs,
ss715650604, ss715651021, and ss715647960, were located in
the same region of chromosome Pv01, from 41,625,385 bp to
41,789,504 bp, indicating that there was a QTL on Pv01 for
HG Type 2.5.7 resistance. The ss715639285 was identified in
both all.set and Q1, suggesting that there was a QTL in the
33.3 Mbp region on Pv02 for HG Type 2.5.7 resistance. The
two SNPs, ss715640389 and ss715639339, were located in the
same region, from 12,154,448 bp to 12,175,377 bp on Pv09, and
the two SNPs had very high LOD values (>26) in the t-test
(Table 2). In addition, a SNP, ss715640488 at 35,740,746 bp on
Pv07 and another SNP, ss715641522, at 13,037,340 bp on Pv11
were associated with HG Type 2.5.7 resistance.

Genome-Wide Association Study for
Resistance to SCN HG Type 1.2.3.5.6.7
The distributions of the QQ plots between the observed vs.
expected LOD [–log10 (p)] showed a large divergence from
the expected distribution (Supplementary Figure 6), indicating
there were SNPs associated with resistance to SCN HG Type
1.2.3.5.6.7 in the three association panels. The Manhattan plot
showed there were several SNPs with LOD values >4.97 in
all.set (Supplementary Figures 7A,B), suggesting there were
SNPs associated with SCN resistance to HG Type 1.2.3.5.6.7.
Six SNPs, ss715647636, ss715647109, ss715647614, ss715649401,
ss715640509, and ss715639563, located on chromosomes Pv
03, 06, 09, 09, 10, and 11, respectively had LOD > 4.79 in
all.set (Supplementary Table 7). Among the six models, BLINK
had the highest LOD values, and several SNP markers were
observed with a significant LOD value > 4.97 in all.set but not
in Q1 or Q2 (Figure 5), indicating there were significant SNPs
associated with SCN resistance to HG Type 1.2.3.5.6.7 based on
the association panel of all.set of 276 accessions. Two additional
SNPs, ss715646397 and ss715648134, located on Pv03 and 04,
also had LOD values greater than four and were selected as
markers for HG Type 1.2.3.5.6.7 resistance in the Q1 population
(Supplementary Table 7).

There were only three SNPs that had a LOD score > 4.97
in all.set and one SNP with LOD > 4.84 in the Q1 population,
either in SMR, GLM, or MLMmodels (Supplementary Table 7).
However, seven out of the eight listed SNPs had LOD> 3.0 or 2.5
in all.set or Q1, suggesting there were QTLs for SCN resistance
with small effects (Supplementary Table 7). The t-tests indicated
that the eight SNPs had a LOD value > 2.0 (P < 0.01) either in
all.set, Q1, or Q2 (Supplementary Table 7).

After combining, four SNPs were associated with resistance to
SCN HG Type 1.2.3.5.6.7 in all.set, one SNP in Q1, and none in
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FIGURE 3 | Distributions of Manhattan plot (left side) and QQ-plot (right side) of genome-wide association study (GWAS) for common bean resistance to SCN HG

Type 0 (race 6) in all 315 accessions (top), 241 accessions of Q1 population (middle), and 67 accessions of Q2 population (bottom) based on BLINK, where x-axis

represents the common bean 11 chromosomes and y-axis represents LOD [–log(P-value)] value of each SNP in Manhattan plot, and x-axis represents the Expected

LOD [–log(P-value] and y-axis represents Observed LOD [–log(P-value)] value of each SNP in QQ-plot.

Q2 (Table 2). The four SNP markers in all.set were ss715647636,
ss715647109, ss715640509, and ss715639563, located at 3,963,582
bp, 27,257,765 bp, 2,792,311 bp, and 46,491,205 bp on Pv 03, 06,
10, and 11, respectively (Table 2). SNP marker ss715639563 was
also identified in Q1 population, increasing the confidence in this
SNP as a marker for HG Type 1.2.3.5.6.7 resistance.

Combining GWAS for Resistance to the
Three SCN HG Types
In this study, a total of 40 SNPs were identified as
potential SNP markers associated with SCN resistance
(Supplementary Tables 5–7) based on the LOD values from
the MLM models in GAPIT3 and Tassel 5, after Bonferroni

correction. Combining results from the six models (GLM, MLM,
SUPER, MLMM, FarmCPU, and BLINK) in GAPIT3, three
models (SMR, GLM, and MLM) in TASSEL 5, and t-tests among
the three association panels (all.set, Q1, and Q2), 6, 11, and 4
SNPs were significantly associated with resistance to HG Type 0,
2.5.7, and 1.2.3.5.6.7, respectively (Table 2). Among them, one
SNP, ss715639339, at 12,175,377 bp on Pv09 was associated with
the resistance to both SCN HG Types 0 and 2.5.7 (Table 2).

We did not conduct LD analysis for all SNPs in this study.
However, the LD heatmaps were drawn, using Haploview for
seven genome regions with the eight SNP markers significantly
associated with resistance to either SCN HG Type 0, 2.5.7, or
1.2.3.5.6.7 (Supplementary Figure 8), where two LLR genes were
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FIGURE 4 | Distributions of Manhattan plot (left side) and QQ-plot (right side) of GWAS for common bean resistance to SCN HG Type 2.5.7 in all 276 accessions

(top), 207 accessions of Q1 population (middle), and 62 accessions of Q2 population (bottom) based on SUPER, where x-axis represents the common bean 11

chromosomes and y-axis represents LOD [–log(P-value)] value of each SNP in Manhattan plot, and x-axis represents the Expected LOD [–log(P-value] and y-axis

represents Observed LOD [–log(P-value)] value of each SNP in QQ-plot.

also included: Phvul.006G104700 and Phvul.010G018300. The
Phvul.006G104700 gene is located on Pv04 in the same LD block
as an SNP marker SS715640464 at a distance of only 8.98 Kbp
(Supplementary Figure 8A) for HG Type 0 resistance. The gene
Phvul.010G018300 is located on Pv10 at a distance of 39.9 Kbp
from ss715640509 associated with HG Type 1.2.3.5.6.7 resistance
(Supplementary Figure 8E, bottom left).

Candidate Genes for SCN Resistance
A total of 20 significant GWAS-derived SNPs were selected
as markers associated with the resistance to the three SCN
HG Types, 0, 2.5.7, and 1.2.3.5.6.7 (Table 2). Candidate gene

models were searched within 10, 30, and 50 kb, flanking each of
these SNPs. A total of 125, 83, 33, 19, and 8 genes were found
at a distance of 50, 30, 10, 5, and 1Kb, respectively, from the
20 SNPs (Supplementary Table 8) based on the annotations
of the common bean genome reference Pvulgaris v1.0_218.
Among the 125 genes, five gene models, Phvul.001G158800,
Phvul.002G072100, Phvul.006G160700, Phvul.007G080900, and
Phvul.009G223200, contained an SNP marker, ss715647960,
ss715641893, ss715647109, ss715649511, and ss715645642,
respectively, on chromosomes Pv01, Pv02, Pv06, Pv07, and Pv09
(Table 3). Whether these five gene models are related to SCN
resistance needs further study.
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FIGURE 5 | Distributions of Manhattan plot (left side) and QQ-plot (right side) of GWAS for common bean resistance to SCN HG Type 1.2.3.5.6.7 in all 276

accessions (top), 207 accessions of Q1 population (middle), and 62 accessions of Q2 population (bottom) based on BLINK, where the x-axis represents the common

bean 11 chromosomes and the y-axis represents LOD [–log(P-value)] value of each SNP in Manhattan plot, and x-axis represents the Expected LOD [–log(P-value)]

and the y-axis represents Observed LOD [–log(P-value)] value of each SNP in QQ-plot.

The Leucine-Rich Repeat (LRR) gene model
Phvul.004G099300 (disease resistance family protein/LRR
family protein), located at 33,316,658–33,320,257 bp on Pv04,
based on the common bean genome reference Pvulgaris
v1.0_218, is located near the SNP marker ss715640464 (distance
of 8.98 Kbp), associated with SCN HG Type 0 resistance.
Another LRR gene, Phvul.010G018300 (LRR protein kinase
family protein) at 2,832,211–2,839,756 bp on Pv10 is close to the
SNP marker ss715640509 (distance of 39.9 Kbp). In addition,
one NAC-domain gene, Phvul.006G023100 (NAC-domain

containing protein 42), is located at 10,522,343–10,526,782 bp
on Pv06 was close (∼24 Kbp) to the SNP marker ss715650114
(Table 3). Whether the two LRR genes and the NAC-domain
gene are related to SCN resistance needs further evaluation.

Genomic Prediction of SCN Resistance
Genomic Prediction With Different Ratios of a

Training Set to a Testing Set
In this study, GP was performed using six different ratios of
training/testing sets, 19:1, 9:1, 4:1, 7:3, and 1:1, expressed as 5,
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10, 20, 30, 40, and 50% of a testing set in all.set, containing
the 315 common bean accessions for HG Type 0 resistance or
276 accessions for HG Types 2.5.7 and 1.2.3.5.6.7 resistance.
The actual sizes of the [training set/testing set] were 299/16,
283/32, 252/63, 220/95, 189/126, and 158/157 for HG Type 0,
and 262/14, 248/28, 221/55, 193/83, 166/110, and 138/138 for HG
Types 2.5.7 and 1.2.3.5.6.7. The GEBVs and r- values between
GEBVs and observed values in the testing set were estimated
by six GP models (rrBLUP, gBLUP, Bayes A, Bayes B, BL, and
BRR) in cross-prediction for resistance to the three HG Types,
0, 2.5.7, and 1.2.3.5.6.7, using (1) all 4,654 SNPs and (2) 20
associated SNPmarkers (20 GWAS-derived SNPmarkers). There
were six ratios between training and testing sets, six models,
two SNP sets, and three SCN HG types to make a total of
216 combinations. Each combination was run 100 times to
calculate GP statistical parameters and r-values. The average r-
value (rȲ 100) and its SE from the 100 runs for each combination
are listed in Supplementary Table 9 and the 216 averaged r-
values (rȲ 100) displayed in charts drawn in MS Excel 2016,
grouped by the six sets (5, 10, 20, 30, 40, and 50%) of testing set
percentages (Supplementary Figure 9). The r-distribution charts
were created by an R-package for the 216 combinations grouped
by percentages of a testing set; the r-distributions of the 36
combinations estimated by rrBLUP model are listed in Figure 6.
The 108 averaged r-values (rȲ 100) (half of all 216 combinations)
for the all.set are listed in Table 4.

The six sets of 5, 10, 20, 30, 40, and 50% of testing set
percentages had similar, although not identical averaged
r-values across five models except gBLUP with slightly
lower r-values (Table 4, Figure 4, Supplementary Figure 9,
Supplementary Table 9). The r-value, averaged over six models,
was 0.39 for HG Type 0, 0.33 for HG Type 2.5.7, and 0.27 for
HG Type 1.2.3.5.6.7. They were 0.40 for HG Type 0,0.35 for HG
Type 2.5.7, and 0.31 for HG Type 1.2.3.5.6.7 when averaged from
five models, except gBLUP, when using all 4,654 SNPs (Table 4,
Supplementary Table 9). This observation suggested that it may
be feasible to do GS for SCN resistance in common bean with
one of the six sets. The r-value increased to 0.46,0.38, and 0.41,
averaged over the six models, and 0.51,0.41, and 0.46, averaged
over the five models (except gBLUP) when using only the 20 SNP
markers (Supplementary Table 9, Supplementary Figure 9),
suggesting that GWAS-derived SNP markers can be used in GS.
From Figure 6, the 5% test set had the largest variance, and the
50% test set had the smallest. The PA decreased when the size of
the testing set increased. Likewise, the SE values decreased when
the test sets increased from 5 to 50% (Supplementary Table 9),
indicating that the larger the testing set, the less variable the
r-values. However, a small decrease of the r-value was observed
as well in most cases when the training/test ratio was 40%
or higher.

Genomic Prediction With Different SNP Numbers
Genomic prediction was performed with nine different SNP
number sets (20, 50, 100, 200, 400, 800, 1,600, and all 4,654
SNPs, plus the 20 GWAS-derived SNP markers) in cross-
predictions for resistance to three HG Types, using five GP
models: rrBLUP, Bayes A, Bayes B, BL, and BRR. There were 135
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combinations for GP analysis, consisting of nine SNP sets, five
GP models, and three SCN HG Types. Each combination was
run 100 times to calculate GP statistical parameters and r-values.
The average r-value (rȲ 100) and its SE from the 100 runs for
each combination are presented in the Supplementary Table 10,
Supplementary Figure 10. The 27 averaged r-values (rȲ 100)
estimated by rrBLUP are presented in Table 5. The 54 r-
distribution charts created by ggplots in R-package for r-values,
estimated by Bayes A and rrBLUPmodels, are shown in Figure 7.

FIGURE 6 | Genomic prediction of six different testing set percentages from 5

to 50% in cross-prediction for resistance to three SCN HG Types, 0,

1.2.3.5,6,7, and 2.5.7 using all 4,654 SNPs (left three groups as all.HG0,

all.HG123567, and all.HG257), and 20 associated SNP markers (m.HG0,

m.HG123567, and m.HG257) estimated by rrBLUP model.

The nine SNP sets had an averaged r-value 0.38 for HG Type
0,0.31 for HG Type 2.5.7, and 0.33 for HG Type 1.2.3.5.6.7
(Table 5, Figure 7, Supplementary Figure 10). The r-values were
somewhat decreased a little when 100 or less SNPs were used for
HG Type 0 resistance, 200 or less SNPs were used for HG Type
2.5.7 resistance, but did not decrease for HG Type 1.2.3.5.6.7
resistance, indicating that sets of more than 200 SNPs can be used
for GS. The set of the 20 SNP markers had the highest averaged
r-values in all five models for the three HG Type resistances
(Figure 7), indicating that the 20 associated SNP markers can be
used to do GS for SCN resistance selection as well.

Genomic Selection in Three Association Panels
Genomic prediction was performed in the three association
panels (all.set, Q1, andQ2) with six different testing set sizes from
5 to 50% in cross-prediction for resistance to the three HG Types,
using the rrBLUP model (54 combinations). Each combination
was run 100 times to estimate GEBVs and r-values. The average
r-value (rȲ 100) and its SE from the 100 runs for each combination
are listed in Supplementary Table 11, and the r-charts are shown
in Supplementary Figure 11.

For the HG Type 0 resistance, all r-values are similar
among the three sets (all.set, Q1, and Q2) across six
testing sets with averaged 0.41, 0.41, and 0.38, respectively
(Supplementary Table 11, top). For HG Type 2.5.7 and
1.2.3.5.6.7 resistance, all.set and Q1 had similar r-values, but Q2
had much lower r-values (Supplementary Figure 11). The 5%
of the “Testing set” had the largest variability, and the 50% had
the lowest SE value, and PA decreased when the “Testing set”
percentage increased (Supplementary Table 11).

Genomic Prediction Comparisons Among All SNPs,

SNP Markers, and the Random SNP Set
Genomic prediction was performed for three SNP sets (all 4,654
SNPs, 20 GWAS-derived SNP markers, and 20 random SNPs)
in cross-prediction for resistance to three HG Types, using eight
GP models (rrBLUP, gBLUP, Bayes A, Bayes B, BL, BRR, RF, and
SVM) (72 combinations). Each combination was run 100 times
to estimate GEBVs and r-values. The average r-value (rȲ 100) and
SE from the 100 runs for each combination are presented in
Supplementary Table 12, and the r-charts are also showed in
Supplementary Figure 12.

TABLE 4 | Prediction accuracy (PA) for SCN resistance to three HG Types with six different testing sets (percentages) using all 4,654 SNPs with six genomic prediction

models.

GP model r-value in HG Type 0 r-value in HG Type 2.5.7 r-value in HG Type 1.2.3.5.6.7

5% 10% 20% 30% 40% 50% Average 5% 10% 20% 30% 40% 50% Average 5% 10% 20% 30% 40% 50% Average

rrBLUP 0.44 0.41 0.41 0.41 0.40 0.37 0.41 0.33 0.36 0.35 0.32 0.33 0.32 0.34 0.30 0.36 0.34 0.33 0.33 0.33 0.33

gBLUP 0.38 0.31 0.30 0.29 0.28 0.27 0.31 0.25 0.31 0.27 0.26 0.24 0.23 0.26 0.11 0.11 0.12 0.10 0.08 0.08 0.10

Bayes A 0.41 0.39 0.39 0.42 0.39 0.39 0.40 0.33 0.40 0.37 0.36 0.35 0.34 0.36 0.31 0.31 0.30 0.30 0.29 0.29 0.30

Bayes B 0.40 0.40 0.38 0.40 0.37 0.36 0.39 0.34 0.35 0.33 0.35 0.33 0.31 0.33 0.32 0.30 0.30 0.31 0.29 0.28 0.30

BL 0.43 0.43 0.43 0.40 0.38 0.38 0.41 0.37 0.33 0.35 0.37 0.35 0.34 0.35 0.27 0.34 0.28 0.29 0.27 0.28 0.29

BRR 0.44 0.41 0.40 0.41 0.39 0.38 0.41 0.38 0.36 0.38 0.35 0.34 0.32 0.36 0.31 0.35 0.34 0.34 0.31 0.31 0.33

Average 0.42 0.39 0.39 0.39 0.37 0.36 0.39 0.33 0.35 0.34 0.34 0.32 0.31 0.33 0.27 0.30 0.28 0.28 0.26 0.26 0.27
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TABLE 5 | Genomic prediction of nine different SNP number sets from 20 SNPs to all 4,654 SNPs in cross-prediction for resistance to SCN HG Types 0, HG Type 2.5.7,

and HG Type 1.2.3.5.6.7 using rrBLUP.

HG Type 4654SNP 1600SNP 800SNP 400SNP 200SNP 100SNP 50SNP 20SNP 20SNP.marker Average

HG Type 0 0.41 0.38 0.44 0.42 0.45 0.33 0.22 0.27 0.52 0.38

HG Type 257 0.35 0.34 0.32 0.34 0.30 0.28 0.22 0.21 0.40 0.31

HG Type 123567 0.34 0.34 0.30 0.34 0.33 0.32 0.31 0.34 0.39 0.33

FIGURE 7 | Genomic prediction of nine different SNP numbers from 20 SNPs to all 4,654 SNPs in cross-prediction for resistance to three SCN HG Types, 0, 2.5.7,

and 1.2.3.5.6.7 using Bayes A model (left three groups) and rrBLUP model (right three groups).

The set of 20 GWAS-derived SNP markers had the highest r-
values across the eight models for resistance to either HG Type
0, 2.5.6, or 1.2.3.5.6.7, suggesting that the GWAS-derived SNP
markers will be more effective for GS than the random 20-SNP
sets (Supplementary Table 12, Supplementary Figure 12). The
set of “random 20 SNPs” had the lowest r-values, suggesting that
usingmore SNPs would increase the selection effectiveness in GS.

Genomic Prediction Using Different Models
Eight GPmodels (rrBLUP, gBLUP, Bayes A, Bayes B, BL, BRR, RF,

and SVM)were used to conduct GP for resistance to the threeHG
Types. The five GP models (rrBLUP, Bayes A, Bayes B, BL, and

BRR) had similar r-values, but the gBLUP model had the lowest

r-values for resistance to either HG Type 0, 2.5.7, or 1.2.3.5.6.7
(Supplementary Figure 13C).

Based on the results from six different testing sets
(percentages) in 315 common bean accessions (Table 4,
Supplementary Table 9), the six GP models (rrBLUP, gBLUP,

Bayes A, Bayes B, BL, and BRR) had similar averaged PA (0.41,
0.31, 0.40, 0.39, 0.41, and 0.41) for resistance to HG Type 0;
lower but similar PA (0.34, 0.26, 0.36, 0.33, 0.35, and 0.36) for
HG Type 2.5.7 resistance; and the lowest PA (0.33, 0.10, 0.30,
0.30, 0.29, and 0.33) for HG Type 1.2.3.5.6.7 resistance. When
the set of 20 significant SNP markers was used, the averaged PA
of the six models increased for resistance to all of the three HG
Types (Supplementary Table 9, bottom half).

Based on the results from the nine different SNP number
sets from 20 SNPs to all 4,654 SNPs in cross-prediction for
resistance to the three HG Types (Supplementary Table 10,
Supplementary Figure 11), the five GP models (rrBLUP, Bayes
A, Bayes B, BL, and BRR) had averaged PA, 0.38, 0.38, 0.36, 0.38,
and 0.38, respectively, for resistance toHGType 0;0.31, 0.35, 0.31,
0.34, and 0.35 for HG Type 2.5.7 resistance; and 0.33, 0.34, 0.30,
0.34, and 0.34 for HG Type 1.2.3.5.6.7 resistance.

Based on the three SNP sets (all 4,654 SNPs, 20 significant
SNP markers, and 20 random SNPs) used in cross-prediction,
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the eight GP models, rrBLUP, gBLUP, Bayes A, Bayes B, BL, BRR,
RF, and SVM, had averaged PA values of 0.38, 0.20, 0.41, 0.35,
0.42, 0.40, 0.35, and 0.39, respectively, for resistance to HG Type
0;0.31, 0.20, 0.34, 0.28, 0.34, 0.34, 0.29, and 0.32 for HGType 2.5.7
resistance; and 0.36, 0.11, 0.37, 0.32, 0.38, 0.39, 0.33, and 0.30
for HG Type 1.2.3.5.6.7 resistance (Supplementary Table 12,
Supplementary Figure 12).

Overall, sets of 400 SNPs or more for GP had similar GS
efficiency (r-value) for resistance to either HG Type 0, 2.5.7, or
1.2.3.5.6.7. The set of 20 significant SNP markers for GP had
the highest r-value for GP (Supplementary Figure 13A). The
six sets of different sizes from 5 to 50% had similar r-values
(Supplementary Figure 13B). Except for the gBLUP model,
which had a lower r-value for GP, all other seven models had
similar PA (Supplementary Figure 13C). The averaged r-values
were 0.40 for HG Type 0 resistance, 0.34 for HG Type 2.5.7,
and 0.32 for HG Type 1.2.3.5.6.7 (Supplementary Figure 13D),
indicating that we can use one of the seven GP models to
conduct GS. Each model provided similar selection efficiency for
SCN resistance.

Genomic Heritability (GH)
In this study, the GH was estimated by the rrBLUP model for
resistance to the three SCN HG Types, 0, 2.5.7, and 1.2.3.5.6.7
(Supplementary Table 13, Supplementary Figure 14). As we
did for GP estimations, the GH was estimated, using six different
ratios of the training set: the testing set 19:1, 9:1, 4:1, 7:3, and 1:1,
as 5, 10, 20, 30, 40, and 50% of the testing set in the GWAS panel
with (1) all 4,654 SNPs (top in both Supplementary Table 13,
Supplementary Figure 14), (2) 20 GWAS-derived SNP markers
(middle), and (3) nine different SNP number sets from 20 SNPs
to all 4,654 SNPs (bottom) in cross-prediction. The averaged
GH was 22.4, 12.1, and 5.4% for three HG Types, respectively,
in all 4,654 SNPs; 28.1, 22.1, and 6.1% in 20 SNP markers;
and 13.7, 10.5, and 3.2% in the nine different SNP number
sets from 20 SNPs to all 4,654 SNPs in cross-prediction. The
results showed that GH was highest for resistance to HG Type 0,
middle for HG Type 2.5.7, and lowest for HG Type 1.2.3.5.6.7,
and the GWAS-derived 20 SNP marker set had higher GH
(Supplementary Table 13).

Genetic Diversity Analysis for the
SCN-Resistant Germplasm Accessions
There were 47 resistant accessions with FI< 20.0 for resistance to
HG Type 0 (Supplementary Table 1). Among the 47 accessions,
10 had FI > 30.0 for resistance to HG Type 2.5.7, although
they had FI values <20.0 for resistance to both HG Type 0 and
1.2.3.5.6.7. These 10 accessions were not recognized as broadly
resistant lines and were dropped from further genetic diversity
analysis. Among the 37 accessions, 27 accessions were originally
collected from Mexico, two from Colombia, three from Costa
Rica, two from Ecuador, one from Guatemala, and two from
Peru (Table 1) indicating that the SCN resistance was mainly
distributed among Mesoamerican accessions in this study.

The 37 accessions formed two clusters as I and II (Figure 8,
Table 1). Group I consisted of 27 accessions, which were mainly
from Mexico, plus two from Colombia, one from Costa Rica,

and one from Guatemala. All of the 27 accessions also belonged
to Cluster Q1, based on the population structure and genetic
analyses of all 315 accessions. Group II had 10 accessions,
including four from Mexico, two from Costa Rica, two from
Ecuador, and two from Peru (Figure 8, Table 1). Among the
10 accessions in II, seven belonged to Q2, with a membership
coefficient >70%, and three to Q1 or Q1(2) with a membership
coefficient of 30%. The latter three accessions, PI430204,
PI346960, and PI345576, had Q1 membership coefficients >

66% based on the population structure and genetic analysis
in all 315 accessions. In this phylogenetic tree of the 37
accessions (Figure 8), the three accessions, PI430204, PI346960,
and PI345576, were clustered to group II but diverged from the
cluster. The three accessions plus PI417657 more likely belonged
to a subpopulation between clusters I and II, indicating the four
accessions combined genetic backgrounds of both clusters (I
and II) and the two subpopulations of common bean based on
STRUCTURE 2.3.4 analysis.

DISCUSSION

Genetic Diversity and Population Structure
In this study, the common bean population structure was
examined among 315 common bean germplasm accessions
belonging to the USDA P. vulgaris core collection, using
the Markov Chain Monte Carlo iterations in STRUCTURE
2.3.4. The 315 accessions can be divided into two larger
populations (Q1 and Q2 clusters) or into three subpopulations
(G1 to G3 plus admixture) (Figure 2, Supplementary Figure 3,
Supplementary Table 1).

Based on the two broader populations (Q1 and Q2) in the
core collection, Q1 was the larger cluster with 77% (241/315)
of accessions and consisted of germplasm mainly from Mexico
(145), Guatemala (25), Colombia (20), Costa Rica (13), Nicaragua
(12), El Salvador (11), and Honduras (7), with 60, 10, 8, 5, 5,
5, and 3%, respectively (Supplementary Table 14). Q2 consisted
of germplasm mainly from Mexico (15), Colombia (15), Peru
(14), and Ecuador (11), with 22, 22, 21, and 16%, respectively
(Supplementary Table 14). Most of the germplasm accessions
from Central America, including Nicaragua (92.3%), Mexico
(89.0%), Guatemala (83.3%), El Salvador (84.6%), Costa Rica
(76.5%), and Honduras (77.8%) belonged to Q1; most accessions
from South America, including Bolivia (only one accession), Peru
(82.4%), and Ecuador (68.8%) belonged to Q2; and Colombia
accessions belonged to both Q1 and Q2 with 57.1% to Q1 and
42.9% to Q2 (Supplementary Table 13).

Common bean consists of two geographic, diverged gene
pools, namely the Andean and Middle American pools (Gepts
and Bliss, 1985; Gepts et al., 1986, 2019; Koenig and Gepts,
1989; Koinange and Gepts, 1992; Beebe et al., 1997, 2000;
Blair et al., 2009, 2012; Kwak and Gepts, 2009; Bitocchi
et al., 2012, 2013; McClean et al., 2012; Schmutz et al.,
2014; Campa et al., 2018; Kuzay et al., 2020). The analysis
confirmed the presence of two populations (two clusters) among
these 315 accessions but notes that the germplasm accessions
from Nicaragua, Mexico, Guatemala, El Salvador, Costa Rica,
Honduras, Colombia, Ecuador, and Peru include the members
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FIGURE 8 | The phylogenetic tree created by the Maximum Likelihood (ML) method from MEGA 7 in 37 common bean germplasm accessions that were resistant to

all three SCN HG Types 0, 2.5.7, and 1.2.3.5.6.7.

of both clusters (populations), indicating that both gene pools
existed in these countries.

Based on the three clusters (populations G1 to G3) in
the 315 accessions, G1 had accessions mainly from Mexico
(32 accessions), Colombia (13), Costa Rica (12), Nicaragua
(11), and El Salvador (8), with 33, 13, 12, 11, 10, and 8%,
respectively (Supplementary Table 13). G2 consisted of the
accessions mainly from Mexico (111) and Guatemala (10), with
80 and 7%, respectively (Supplementary Table 13). G3 came
from Mexico (15), Columbia (15), Peru (13), and Ecuador (11),
with 23, 22, 20, and 17%, respectively (Supplementary Table 13).
Besides, 14 accessions (4%) of the panel were admixed
(Supplementary Table 13). For each country, most of the
germplasm accessions from the United States (only one
accession), Nicaragua (84.6%), Costa Rica (70.6%), El Salvador
(61.5%), and Honduras (55.6%) belonged to G1. Most Mexico
accessions (68%) belonged to G2; and most accessions from Peru
(77%), Ecuador (69%), and Bolivia (only one accession) belonged
to G3. The accessions from Guatemala and Colombia belonged

to three populations (Q1, Q2, and Q3); 23% of accessions from
Guatemala were admixed (Supplementary Table 13). The three
Q populations matched those in the report by Kuzay et al. (2020)
when K = 3 (Supplementary Table 1). Furthermore, nearly half
of the resistant accessions in this core collection belonged to the
Middle American gene pool and the Durango ecogeographic race
within this gene pool, although some resistant accessions were
also identified in race Mesoamerica of the Middle American gene
pool and races Nueva Granada and Peru of the Andean gene
pool (Supplementary Table 15). Based on these results, we used
the three Q-matrices for GWAS in all.set of the 315 accessions
to identify SNP markers associated with SCN resistance in
this study.

Genome-Wide Association Study and SNP
Marker Identification for SCN Resistance
In this GWAS study, six, 11, and four SNPs were identified to be
associated with resistance to HG Types, 0, 2.5.7, and 1.2.3.5.6.7,
respectively (Table 2). The six SNPs for HG Type 0 resistance
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were newly identified markers for resistance to HG Type 0
(race 6) based on their location on chromosomes (Table 2).
However, in the region of the two markers, ss715647158 and
ss715649511 on Pv07, Jain et al. (2019) also reported an SNP
marker ss715648793 (Supplementary Table 16) in the region,
further validating a QTL in this region for HG Type 0 resistance.
The SNP marker, ss715647549, was significantly associated with
HG Type 0 resistance in two association panels, all.set, and Q1
(Table 2), and Jain et al. (2019) also reported six SNPs nearby
(Supplementary Table 16), suggesting that there is a QTL on
Pv11 for resistance to HG Type 0.Near ss715640464on Pv04
(distance of 8.98 Kbp), a gene model Phvul.004G104700 of
the disease resistance family protein/LRR family protein was
found (Table 3) in the same LD region (Figure 8), suggesting
that Phvul.004G104700 may be associated with the HG Type 0
resistance, but this observation needs to be validated.

For the 11 SNPs with resistance to HG Type 2.5.7, three are
located on Pv01, two on Pv02, one on Pv03, one on Pv07, three
on Pv09, and one on Pv11 (Table 2). The 11 SNPs are newly
identified markers for resistance to HG Type 2.5.7. However,
at the ss715639285 region on Pv02 and the ss715645642 region
on Pv09, Jain et al. (2019) reported associated SNP markers for
HG Type 0 resistance (Supplementary Table 16) and Wen et al.
(2019) reported a close SNPmarker on Pv09 for resistance to HG
Type 2.5.7 resistance (Supplementary Table 16), suggesting that
there are QTLs in the regions for SCN resistance. Further studies
are needed to validate the broad resistance to multiple HG Types
associated with these SNP markers.

The four SNPs with resistance to HG Type 1.2.3.5.6.7 were
located on Pv03, 06, 10, and 11 (Table 2), and they are newly
identified in this study. However, close to the ss715647109 region
on Pv06, Jain et al. (2019) reported an SNP marker, ss715645673,
associated with HGType 0 resistance (Supplementary Table 16),
indicating theremay be aQTL in the region, but whether theQTL
is associated with resistance to the two different HG Types needs
to be further validated. Another SNP, ss715639563 at 46,491,205
bp on Pv11 for HG Type 1.2.3.5.6.7 resistance (Table 2), was
close (distance ∼1.84 Mbp) to ss715647549 at 44,651,807 bp,
suggesting a QTL existed in the region, but whether this QTL is
associated with resistance to both HG Types needs further study.
However, based on the LD analysis (Supplementary Figure 8F,
bottom right), the two SNPs, ss715647109 and ss715647549, are
located in two different LD regions, suggesting that there are
different genes or alleles for resistance to HG Type 0 and 2.5.7.

One SNP, ss715639339 at 12,175,377 bp on Pv09 was
associated with both HG Type 0 and HG Type 2.5.7 resistance
in two association panels, all.set, and Q1 (Table 2). Another
SNP, ss715640389, at 12,154,448 bp on Pv09 was associated with
resistance to HG Type 2.5.7 (Table 2). The two SNPs are very
close to each other (within 20.929 Kbp) and located in the
same LD region (Supplementary Figure 8C), suggesting that a
QTL exists for SCN resistance, but further studies are needed to
determine whether the QTL is associated with resistance to the
two different HG Types.

So far, there are only two GWAS reports for SCN resistance
in common beans (Jain et al., 2019; Wen et al., 2019). Wen
et al. (2019) conducted GWAS in 363 accessions of the USDA

common bean core set for resistance to SCN HG types 2.5.7 and
1.2.3.5.6.7, using 84,416 SNPs obtained with GBS. They found
five SNPs on Pv01 and one on Pv09, associated with resistance to
HG Type 2.5.7, and only one SNP on Pv07, associated with HG
Type 1.2.3.5.6.7 resistance. The five SNP markers with resistance
to HG Type 2.5.7 were located at 10,061,925 bp, 18,388,378 bp,
18,388,392 bp, 18,388,403 bp, and 18,388,408 bp on Pv01 of the
P. vulgaris G19833 Pvulgaris v1.0 reference sequence (Schmutz
et al., 2014), with P-value from 1.02 × 10−6 to 4.94 × 10−6, and
another one on Pv09 at 35,068,146 bp with P-value 1.80 × 10−6.
The SNPmarker for resistance to HGType 1.2.3.5.6.7 was located
at 44,761,605bp on Pv07.We used the SCN phenotypic data from
the report by Wen et al. (2019), but a different set of SNPs in
BARCBean6K_3 BeadChips (Song et al., 2015) to redo the GWAS
analysis.We did not identify the same SNPmarkers but identified
the SNP markers in the same regions for resistance to SCN HG
Type 2.5.7, but not for HG Type 1.2.3.5.6.7 resistance (Table 2,
Supplementary Tables 6, 7). The two SNPs, ss715640034 and
ss715639810, located at 18,874,808 bp and 20,450,707 bp on
Pv01 and two SNPs, ss715645642 and SS71549401 located at
33,052,539 bp and 33,956,905 bp on Pv09 (Table 6) were located
in similar regions reported by Wen et al. (2019), suggesting that
there are QTLs for HG Type 2.5.7 resistance in these regions.

Jain et al. (2019) conducted GWAS in 317 accessions of USDA
common bean core collection with SCN HG Type 0 and found
14 significant SNP markers on Pv 04, 05, 06, 07, 08, 10, and 11
in the Middle American subpopulation (179 accessions) and 23
SNP markers on Pv 01, 02, 07, 08, 09, and 11 for the Andean
subpopulation (138 accessions). However, we could not find any
of the 37 SNPs with LOD values greater than the significant
threshold values of 4.97 in all.set, 4.84 in Q1, and 4.52 in Q2
for the resistance to HG Type 0, 2.5.7, or 1.2.3.5.6.7, respectively
(Supplementary Table 16). Nevertheless, 11 of the 37 SNPs had
at least one LOD value >3.0 from GAPIT3 or TASSEL 5 and,
also, a LOD score > 3.0 in t-tests for resistance to the population
of HG Type 0 (Supplementary Table 17a). We did not retain
them as significant associated SNP markers because each of the
11 SNPs did not have LOD values greater than the significant
threshold, even <3.0 in any MLM model, although they may
be associated with the resistance to HG Type 0 with a minor
effect (Supplementary Table 17a). In addition, we observed nine
and 10 SNPs with LOD values >3.0 in one or more models and
t-tests as well (Supplementary Tables 17b,c), suggesting these
SNPs have minor effects for resistance to either HG Type 2.5.7
or 1.2.3.5.6.7.

Candidate Gene Model
Wen et al. (2019) reported three gene models,
PHAVU_001G248000g (amino acid transporter),
PHAVU_001G247900g (α-SNAP protein), and
PHAVU_001G247700g (wound inducible protein 12), located
at 50,653,407–50,655,828 bp, 50,646,068–50,650,097 bp, and
50,629,261–50,630,123 bp respectively, on Pv01 of common
beans to be associated with resistance to HG Type 2.5.7, which
corresponded to three gene models in the rhg1 region of soybean
chr18 with 91%, 94%, and 88% identities. However, Wen et al.
(2019) did not report any associated SNP marker in a 50 Mbp
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region of chromosome Pv01; the closest gene model was located
at 18,388,408 bp, which was 32 Mbp distance away from the
three genes. The data of resistance to SCN HG Type 2.5.7
from Wen et al. (2019) did not confirm the rhg1 in soybean
existed in common beans for their study. Jain et al. (2019)
also reported several candidate genes on Pvulgaris v1.0 Pv01
and Pv08, which had high similarity to the three genes of rhg1
of soybean for SCN resistance, but they did not report any
significant SNP marker located in the candidate gene regions,
which were associated with the resistance to HG Type 0. Thus,
their study could not confirm either that there is rhg1 or Rhg4
resistance in common beans. From the study, an SNP marker,
ss715645939, was associated with HG Type 2.5.7, which was
located at 48,772,176 bp on Pvulgaris v1.0 Pv01, at a distance of
around 1.9 Mbp from the three rhg1 paralog genes in common
beans (Supplementary Table 6). The low LOD values of the
SNP marker (LOD < 4 in all six MLM models and 5.0 in GLM
and 5.12 in SMR, Supplementary Table 6) cast doubt about
resistance to SCN HG Types at this location.

From this study, two LRR gene models, Phvul.004G099300
and Phvul.010G018300 were identified as candidates for
SCN resistance. Phvul.004G099300 (disease resistance family
protein/LRR family protein) at 33,316,658–33,320,257 bp
on Pv04 was associated with HG Type 0 resistance, and
Phvul.010G018300 (LRR protein kinase family protein) at
2,832,211–2,839,756 on Pv10 was associated with resistance to
HG Type 1.2.3.5.6.7 (Table 3). However, the LRR gene in the
rhg1 region on chr 18 in soybean was not involved in SCN
resistance (Mitchum, 2016). Further studies are needed to
validate whether the two genes are responsible for the SCN
resistance in common beans.

Genomic Prediction
Genomic prediction accuracy, using the Pearson’s correlation
coefficient (r) between the GEBV and the observed values, has
been the main parameter to measure the performance of GS
(Jarquin et al., 2014, 2016; Zhang J. P. et al., 2016; Qin et al.,
2019; Ravelombola et al., 2019, 2020, 2021; Wen et al., 2019; Ali
et al., 2020; Keller et al., 2020). The PA is affected by several
factors, such as the trait itself with its heritability, marker number,
and the marker associated with the trait, and is also affected by
GS models, marker density, the level of LD, QTL number, the
population size, and the relationship between training population
and testing population (Jarquin et al., 2016; Ali et al., 2020;
Keller et al., 2020). In this study, five scenarios were tested
for genomic PA: (1) different ratios of the training set and the
testing set (validation set), (2) different SNP numbers, (3) three
association panels, (4) the use of GWAS-derived significant SNP
markers, and (5) different GP models for resistance to three SCN
HG Types.

In this study, GP was performed, using six different ratios of
the training set: the testing set 19:1, 9:1, 4:1, 7:3, and 1:1, as 5,
10, 20, 30, 40, and 50% of the testing set in the panel. The six
tests showed similar PA (averaged r-values). A small decrease
of the r-value was observed in most cases with testing sets of
40% or higher. But the 5% “Testing set” (19:1 in the training
set: the testing set) had the largest variance, and 50% had the

smallest. The averaged r-values decreased from 5 to 50% (Table 4,
Supplementary Tables 9, 11, and Supplementary Figures 6, 9).
The study showed that 10, 20, and 30% of the testing set size (as
the same 9:1, 4:1, and 7:3 of the training set: the testing set) are
good to be used in GS for HG Type resistance in common beans.
Keller et al. (2020) reported that the training set of <30% could
reduce PA due to an insufficiently sized training set that resulted
in overfitting of the model; they also reported that a training set
> 80% can lead to large variation between cross-validations due
to an excessively small validation set. The results showed similar
trends but 10% of the testing set size (i.e., training set size =

90%) was acceptable to GS. Ravelombola et al. (2021) reported
that the average GS accuracy was similarly based on the r-values
at 2-fold [training set: testing set (validation set) = 1:1], 3-
fold, 4-fold, 5-fold, 6-fold, 7-fold, and 8-fold cross-validation for
growth habit, flowering time, and a grain yield in a multi-parent
advanced generation intercross (MAGIC) cowpea population
under drought condition, but a slightly higher averaged r-value
was observed in 7-fold cross-validation for 100-seed weight,
perhaps associated with the higher heritability of seed weight
(Nienhuis and Singh, 1988).

In this study, GP was also performed with nine different SNP
number sets from 20 to all 4,654 SNPs in cross-prediction for
resistance to three HG Types, using five GP models: rrBLUP,
Bayes A, Bayes B, BL, and BRR (Table 5). PA decreased when
100 or less SNPs were used for HG Type 0 resistance and when
200 or less SNPs were used for HG Type 2.5.7 resistance, but
PA did not decrease for HG Type 1.2.3.5.6.7 resistance (Table 5,
Figure 7, Supplementary Table 10, Supplementary Figure 10).
Overall, the results suggest that > 200 SNPs should be used for
GS.Wen et al. (2019) reported the average PA estimated by cross-
validationwas 0.52 and 0.41 for SCNHGType 2.5.7 andHGType
1.2.3.5.6.7, respectively, when 5,000 SNPs or more were used and
showed a decrease when 1,000 SNPs were used. In most of the
reports, the smaller the number of SNPs used, the lower the PA
was (Jarquin et al., 2014, 2016; Zhang J. P. et al., 2016; Wen et al.,
2019; Ali et al., 2020). Zhang J. P. et al. (2016) estimated PA (r-
value) of seed size based on 309 soybean accessions and reported
r= 0.85 when 2,000 SNPs or 31,045 SNPs were included; r = 0.8
when 1,000 SNPs or 500 SNPs were used.

In this study, using GWAS-derived SNP markers led to
the highest GP accuracy for resistance to all three SCN HG
Types (Supplementary Tables 9, 12, Supplementary Figure 12).
Ali et al. (2020) estimated the prediction accuracy of various GS
models on yield and yield-related traits in wheat; they reported
that the GWAS-derived markers improved PA in most cases.
Zhang J. P. et al. (2016) conducted GWAS and identified 48 SNPs
on 12 chromosomes associated with soybean seed size. Based on
GWAS, they reported that the r-values ranged from 0.64 to 0.74
when 5, 10, and 15 of the 48 SNP markers were used, which
were 25% higher than those calculated from the same number
of randomly selected SNPs. Qin et al. (2019) reported that the
average correlation coefficient (r) among 15 amino acids between
the observed values (each amino acid content) and the GEBVs
predicted ranged from 0.18 to 0.61 when all 23,279 SNPs were
used, from 0.45 to 0.68 when 231 SNP markers, associated with
one or more amino acid from GWAS were used; and 0.33 to 0.54
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when only the associated SNP markers with the specific amino
acid content were used, using RR-BLUP in rrBLUP software.
Spindel et al. (2016) developed a GS model (GS + de novo
GWAS) that combines RR-BLUP with GWAS-derived-markers,
which were fitted as fixed effects on the RR-BLUP training data
and found that this new model outperformed other models,
RR-BLUP, Bayesian LASSO (BL), Reproducing Kernel Hilbert
Spaces (RKHS) and RF, and multiple linear regression (MLR)
for a variety of traits in multiple environments. Thus, using
GWAS-derived SNP markers to perform GS is an approach
combining MAS and GS that can be used in the real-world
breeding program, although the predictive ability may be biased,
using SNP markers from GWAS to predict the GEBVs in the
same GWAS panel. The real GP will be lower if conducting
predictions in other panels with different individuals. We have
tested many traits in several crops and find it is a practical
approach to do genome breeding, using GWAS-derived SNP
markers (Qin et al., 2019; Ravelombola et al., 2019, 2020, 2021).
Therefore, an approach combiningMAS andGS throughGEBVs,
using associated SNP markers (Spindel et al., 2016; Zhang J. P.
et al., 2016; Qin et al., 2019; Ravelombola et al., 2019, 2020, 2021;
Ali et al., 2020) will be a good choice to domolecular breeding for
SCN resistance in common beans and, also, for other quantitative
traits in other plant species.

In addition, GA is affected by the trait self, such as heritability.
The GH has been estimated and reported in animals and plants
such as heifers (Nawaz et al., 2018), soybean (Xavier and Rainey,
2020), and safflower (Zhao et al., 2021). de los Campos et al.
(2015) developed whole-genome regression methods to estimate
the GH, which was defined as the proportion of variance of
a trait that can be explained (in the population) by linear
regression on a set of markers. In this study, the GH was also
estimated by the rrBLUP model for resistance to the three SCN
HG Types, 0, 2.5.7, and 1.2.3.5.6.7 (Supplementary Table 13,
Supplementary Figure 14), as we did for GP estimations. The
results indicated that the higher GH, the higher GP, similar as
reported by Xavier and Rainey (2020) for yield and related traits
in soybeans.

Utility of Common Bean Resistance
Accessions
From this study, 15 out of 315 (4.8%) common bean accessions
were resistant to SCN, with FI ranging from 4.8 to 10; 62 (19.7%)
accessions were moderately resistant (10< FI< 30) for HG Type
0 (race 6). The 15 resistant accessions were PI343950, PI313630,
PI313328, PI201329, PI201354, PI313445, PI313440, PI313444,
PI319684, PI417616, PI313501, PI325614, PI430206, PI313733,
and PI269209, which will be preferred sources for resistance to
HG Type 0 (race 6).

To select common bean accessions with resistance to multiple
SCN HG Types, we combined the data of the SCN resistance
to HG Types, 2.5.7 and 1.2.3.5.6.7 from the Wen et al. (2019)
report and the data. We then selected 37 accessions, having broad
resistance with FI < 20 to both HG Types, 0 and 1.2.3.5.6.7, and
FI < 30 to HG Type 2.5.7 (Table 1). The genetic diversity of the
37 accessions showed similar to the genetic organization of the

entire 315 accession collections (Figure 8, Table 1). Most of the
resistant accessions belonged to the ecogeographic race Durango
of the Middle American gene pool, although other gene pools
or races also contained SCN resistance. The accessions with the
highest resistance to multiple HG Types (with FI < 12 to the
three HG Types) were PI201329, PI201354, PI313445, PI325642
(all race Durango), PI313733 (Andean admixed), and PI417616
(admixed) (Table 1, Supplementary Table 1).

These resistant accessions can be used in common bean
breeding programs as parents to develop new cultivars with
resistance to multiple SCN HG Types. In this study, we observed
that the SCN resistance commonly existed in common bean
accessions. There were 15 out of 315 (4.8%) common bean
accessions resistant to HG Type 0 (race 6) with FI < 10
(Supplementary Table 1). Based on the report by Wen et al.
(2019), 19 out of 363 accessions (5.2%) were resistant to HG Type
2.5.7, and 160 out of 363 (44.1%) resistant to HG Type 1.2.3.5.6.7
with FI < 10.

Interestingly, there were much more common bean lines
resistant to HG Type 1.2.3.5.6.7 than HG Type 2.5.7 and HG
Type 0. This contrasts to the SCN resistance in soybean, which
has fewer lines resistant to HG 1.2.3.5.6.7 as compared with HG
Type 2.5.7, and much fewer lines as compared with HG Type
0 because a population of HG Type 1.2.3.5.6.7 generally has
broader virulence than a population of HG Type 2.5.7 or HG
Type 0. Although the FI on theHGType indicator lines of the two
SCN populations used byWen et al. (2019) was not reported, it is
possible that the mechanisms of SCN resistance differed between
soybeans and common beans. If this is true, the different and
broad-spectrum SCN resistance in common beans potentially
provides excellent sources of SCN resistance to soybeans. SCN
has been the most damaging pest in soybeans. Only a few sources
available for resistance to multiple HG Types, particularly for
resistance to HG Type 2.5.7 and 1.2.3.5.6.7, but none of them
has been successfully deployed in commercial soybean cultivars.
After the discovery of the SCN resistance genes in common
beans, it will be possible to transfer the genes from common
beans to soybeans through a transgenic approach.

CONCLUSION

In this study, 15 accessions of the USDA common bean core
collection were observed for the resistance to SCN HG Type 0
with FI at 4.8 to 9.4; six SNP markers, located on chromosomes
Pv 04, 06, 07, 07, 09, and 11, respectively, were significantly
associated with the resistance to this SCN HG Type 0. GWAS
was also conducted for resistance to HG Type 2.5.7 and HG Type
1.2.3.5.6.7 based on published phenotypic data and the genotypic
data from the BARCBean6K_3 chip. Eleven SNPs were associated
with HG Type 2.5.7 resistance on chromosomes Pv01, 02, 03, 07,
09, and 11, and four SNPs with HG Type 1.2.3.5.6.7 resistance on
chromosomes Pv 03, 06, 10, and 11. A gene model of the disease
resistance family protein/LRR protein family, Phvul.004G104700,
was close to the SNP marker ss715640464 at a distance of 8.98
Kbp in the same LD region of chromosome Pv04, suggesting that
Phvul.004G104700 may be a candidate gene for the HG Type 0
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resistance. GP was performed for resistance to three HG Types,
using eight GP models (rrBLUP, gBLUP, Bayes A, Bayes B, BL,
BRR, RF, and SVM), with BL showing the most promising results
in terms of PA. The results showed that 400 SNPs or more had
similar GS efficiency for resistance to either HG Type 0, 2.5.7,
or 1.2.3.5.6.7, and the set of 20 significant SNP markers had the
highest PA for GP. The six sets of different testing set sizes from
5 to 50% had similar r-values. Except for gBLUP (lower PA), all
other seven models had similar PA. The averaged r-values were
0.40 for HG Type 0 resistance, 0.34 for HG Type 2.5.7, and 0.32
for HG Type 1.2.3.5.6.7. This study provides basic information
for breeders to develop SCN-resistant common bean cultivars,
using the USDA core germplasm accessions through MAS and
GS in common beans.
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Achieving food security for an ever-increasing human population requires faster
development of improved varieties. To this end, assessment of genetic gain for key traits
is important to inform breeding processes. Despite the improvements made to increase
production and productivity of cassava in Uganda at research level, there has been
limited effort to quantify associated genetic gains. Accordingly, a study was conducted in
Uganda to assess whether or not genetic improvement was evident in selected cassava
traits using cassava varieties that were released from 1940 to 2019. Thirty-two varieties
developed during this period, were evaluated simultaneously in three major cassava
production zones; central (Namulonge), eastern (Serere), and northern (Loro). Best
linear unbiased predictors (BLUPs) of the genotypic value for each clone were obtained
across environments and regressed on order of release year to estimate annual genetic
gains. We observed that genetic trends were mostly quadratic. On average, cassava
mosaic disease (CMD) resistance increased by 1.9% per year, while annual genetic
improvements in harvest index (0.0%) and fresh root yield (−5 kg per ha or −0.03% per
ha) were non-substantial. For cassava brown streak disease (CBSD) resistance breeding
which was only initiated in 2003, average annual genetic gains for CBSD foliar and CBSD
root necrosis resistances were 2.3% and 1.5%, respectively. It’s evident that cassava
breeding has largely focused on protecting yield against diseases. This underpins the
need for simultaneous improvement of cassava for disease resistance and high yield for
the crop to meet its current and futuristic demands for food and industry.

Keywords: cassava breeding, cassava brown streak disease, cassava mosaic disease, yield related traits, genetic
progress

INTRODUCTION

Cassava (Manihot esculenta Crantz) is a major staple crop in the tropics (Food and Agriculture
Organization of the United Nations (FAOSTAT), 2019) owing to its transformative potential to spur
economic growth, rural development and food security (Otekunrin and Sawicka, 2019). Indeed,
over 60% of the world’s cassava is produced in Africa (Food and Agriculture Organization of the
United Nations (FAOSTAT), 2019), where its roots are processed into various forms (Shittu et al.,
2016) to feed millions of people on a daily basis (Prakash, 2018). Within sub-Saharan Africa (SSA),
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cassava is recognized as a choice crop for climate change
adaptation, as it performs reasonably well under prolonged
droughts and marginal soils (Orek et al., 2020). It is for these
reasons that cassava features predominantly in strategic plans for
agricultural development of most SSA countries.

It suffices to note that cassava breeding efforts in Africa only
began around 1930s (Storey and Nichols, 1938). During then,
cassava mosaic disease (CMD) was a major breeding objective,
as it had attained epidemic status on the continent (Legg and
Thresh, 2000). Accordingly, pioneer cassava breeding efforts were
initiated at Amani Research Station, Tanzania, to combat CMD.
That breeding work involved interspecific hybridizations which
led to the development and dissemination of cassava clones that
were resistant to both CMD and cassava bacterial blight (Ortiz
and Nassar, 2007).

The successful development of CMD resistant clones at
Amani spurred an Africa-wide cassava research program that
was instated at the International Institute of Tropical Agriculture
(IITA) in Nigeria by 1971 (Hahn et al., 1980). Selected germplasm
from Latin America, Asia and East Africa, along with cultivars
from West Africa were collected to commence systematic genetic
improvement of cassava at IITA (Hahn et al., 1980). Through
that work, several elite genotypes with multiple resistances to
prevalent pests and diseases and good culinary qualities were
developed and disseminated to national breeding programs in
Africa (Manyong et al., 2000).

In Uganda, CMD resistant varieties sourced from Tanzania
formed a major part of the cassava production system between
1940s and 1980s (Otim-Nape et al., 2001), with clones such as
Magana, Nyaraboke, Alado-Alado, Njure-Red, and Bamunanika
predominating production in that period (Otim-Nape et al.,
2001). It is should be noted that systematic cassava improvement
in Uganda only started in the 1980s when a second wave of CMD
caused by coinfection of African Cassava Mosaic Virus (ACMV)
and the East African Cassava Mosaic Virus Uganda (EACMV-
UG) emerged (Gibson et al., 1996; Patil and Fauquet, 2009).
Subsequently, elite cassava clones combining yield and resistance
to CMD were sourced from IITA and evaluated in Uganda to
select those with durable CMD resistance. Through this process,
some outstanding varieties including NASE 1, NASE 2, and NASE
3 were identified and promoted for production in the early 1990s
(Ssemakula et al., 2000).

Released varieties were meant to be used for two main food
products: “boiled or fried roots” that predominates central and
western Uganda, and “flour-based meal” that predominates the
eastern and northern parts of the country. As such, emphasis
was initially placed on development of varieties characterized by
high fresh root yield and dry matter content, multiple resistance
to pests and diseases, starch quality, and low hydrogen cyanide
(Ssemakula et al., 2000).

However, with the outbreak of cassava brown streak disease
(CBSD) in early 2000s (Alicai et al., 2007), considerable efforts
were diverted toward breeding for CBSD resistance, as the disease
had then attained epidemic status and caused immense yield
losses (Kawuki et al., 2016). CBSD damages the starch bearing
part of cassava rendering it unfit for consumption, thereby
causing huge economic losses and food insecurity (Hillocks et al.,

2001). In fact, from the time when CBSD attained epidemic status
in Uganda, cassava production in the country declined drastically
from 4.9 million tons (MT) in the 2000s to the current 2.6
MT (Food and Agriculture Organization of the United Nations
(FAOSTAT), 2019).

Another notable change in the 2010s, was the consideration
of gender and integration of preferred end-user quality
traits in cassava breeding operations (Esuma et al., 2019;
Iragaba et al., 2019). Currently, cassava breeding in Uganda
is designed to enhance key traits that contribute toward
increased resilience, nutrition and productivity for the benefit of
stakeholders involved in the production-processing-marketing-
consumption continuum.

Through these breeding efforts, 21 cassava varieties have been
released between 1993 and 2015, and several other elite clones
developed using genomic selection (Ozimati et al., 2019). Despite
the improvements made to increase production and productivity
of cassava in Uganda at research level, there has been limited
effort to quantify associated genetic gains. Quantifying such gains
would guide cassava breeding processes, especially now when
the rapidly increasing population demands faster development
and deployment of improved varieties. Therefore, the objective
of this study was to determine the rate of genetic gain per
year for cassava traits that have been selected for between 1940
and 2019 in Uganda.

MATERIALS AND METHODS

Plant Material
A total of 32 cassava varieties were used for this study (Table 1)
and these were divided into four categories. Category one
comprised local varieties; these arose from selections from Amani
Research Program in Tanzania and were deployed for cultivation
in Uganda between 1940s and1980s. Category two comprised
varieties introduced from IITA and released in Uganda in the
1990s to combat CMD. Category three comprised a combination
of varieties from IITA and Uganda; these were majorly developed
for CMD resistance in the 2000s. Lastly, category four comprised
varieties and elite clones developed in the 2010s to combat
CBSD epidemic. All varieties were sourced from the Root Crops
Research Program at the National Crops Resources Research
Institute (NaCRRI) in Uganda, and had been maintained in
Ngetta (northern Uganda), which is known to have low pressure
of CBSD (Pariyo et al., 2015; Alicai et al., 2019). Sourcing planting
materials from low disease pressure sites was important to ensure
high vigor and uniform establishment.

Description of Trial Environments
All varieties were evaluated simultaneously at three environments
representing major cassava agro-ecologies in Uganda, and this
was done during the period April 2019 to May 2020. These
environments were: Namulonge (0.5232◦N, 32.6158◦E), Serere
(033◦26′48.0′′E, 01◦32′22.6′′N), and Loro (32◦28′E, 2◦12′N).
Namulonge is located in the Lake Victoria crescent at an altitude
of 1163 m above sea level (asl), and is characterized by reddish
sandy-clay loam soils (Fungo et al., 2011). Serere is located in
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TABLE 1 | Summary of attributes and origin of varieties used for genetic gain assessment.

Code Variety Remarks Status Year Special attributes at development and release

1 NASE 1 Introduced from IITA as TMS 60142 Released 1993 CMDt, high DMC, and low HCN

2 NASE 2 Introduced from IITA as TMS 30337 Released 1993 CMDt, good LR, and low HCN

3 NASE 3 Introduced from IITA as TMS 30572 Released 1993 CMDt, CBSDt, good LR, and low HCN

4 NASE 4 Introduction from IITA Released 1999 CMDr and low HCN

5 NASE 5 Introduction from IITA Released 1999 CMDt and low HCN

6 NASE 6 Introduced from IITA as TMS 4 (2) 1425 Released 1999 CMDr and low HCN

7 NASE 9 Introduced from IITA as 30555-17 Released 2003 CMDt, CBSDs, and low HCN

8 NASE 11 Introduced from IITA as 92/NA-2 Released 2003 CMDt, CBSDs, good LR, LUS, and low HCN

9 NASE 12 MH95/0414 Released 2003 CMDr, CBSDs, low HCN, and desirable CQ

10 NASE 13 MH97/2961 Released 2011 CMDr, CBSDs, high DMC, low HCN, and desirable CQ

11 NASE 14 MM96/4271 Released 2011 CMDr, CBSDt, high DMC, low HCN, and desirable CQ

12 NASE 15 Derivative of TME14 Released 2011 CMDr, CBSDt, high DMC, low HCN, and desirable CQ

13 NASE 16 Derivative of Bamunanika Released 2011 CMDr, CBSDs, high DMC, low HCN, and desirable CQ

14 NASE 18 Derivative of TME14 Released 2011 CMDr, CBSDt, high DMC, low HCN, and desirable CQ

15 NASE 19 Derivative of TME14 Released 2011 CMDr, CBSDt, high DMC, low HCN, and desirable CQ

16 NAROCASS 1 NDL90/34HS Released 2015 CMDr, CBSDt, high DMC, low HCN, and desirable CQ

17 NAROCASS 2 Introduced from Tanzania as MM06130 Released 2015 CMDr, CBSDt, high DMC, and desirable CQ

18 UG120124 MM96/4271//MH04/2767 Candidate 2019 CMDr, CBSDt, high DMC, and low HCN

19 UG110166 Introduction from Tanzania Candidate 2019 CMDr, CBSDt, high DMC, and low HCN

20 UG120024 NASE 14/UG110043 Candidate 2019 CMDr, CBSDt, high DMC, and low HCN

21 UG120156 Introduction from Tanzania Candidate 2019 CMDr, CBSDt, high DMC, low HCN, and high RWF

22 UG120183 Introduction from Tanzania Candidate 2019 CMDr, CBSDt, high DMC, and low HCN

23 UG120198 Introduction from Tanzania Candidate 2019 CMDr, CBSDt, high DMC, and low HCN

24 UG120193 Introduction from Tanzania Candidate 2019 CMDr, CBSDt, high DMC, low HCN, and high RWF

25 UG110164 Introduction from Tanzania Candidate 2019 CMDr, CBSDt, high DMC, and low HCN

26 Magana Introduction from Tanzania Landrace 1940 CMDt, quality flour and brew (popular in eastern Uganda)

27 Njure Red Introduction from Tanzania Landrace 1940 CMDt, soft when boiled or fried (popular in central Uganda)

28 Alado Alado Introduction from Tanzania Landrace 1940 CMDt, quality flour and brew (popular in northern Uganda)

29 Bamunanika Introduction from Tanzania Landrace 1940 CMDt, soft when boiled or fried (popular in central Uganda)

30 Bao Introduction from Tanzania Landrace 1940 CMDt, quality flour and brew (popular in northern Uganda)

31 Omo Introduction from Tanzania Landrace 1940 CMDt, EM, sweet, quality flour and brew (popular in west Nile)

32 Nyaraboke Introduction from Tanzania Landrace 1940 CMDt, soft when boiled or fried (popular in mid-western Uganda)

IITA, International Institute of Tropical Agriculture; CMDt, tolerant to cassava mosaic disease; CMDr, resistant to cassava mosaic disease; CBSDt, tolerant to cassava brown
streak disease; CBSDs, susceptible to cassava brown streak disease; DMC, dry matter content; RWF, resistant to whitefly; LR, leaf retention; LUS, long underground
storage; CQ, culinary qualities; HCN, hydrogen cyanide; EM, early maturity. The candidate varieties (2019) have high CMD resistance, high DMC and high tolerance to
CBSD.

the semi-arid zones of eastern Uganda at an altitude of 1085 m
asl with sandy loamy soils (Isabirye et al., 2004). Loro, on the
other hand, has an altitude of 1063 m asl is also characterized by
sandy loamy soils (Isabirye et al., 2004). Namulonge and Serere
were specifically chosen because they are known to have high
disease pressure for CMD and CBSD as well as high whitefly
(vector) populations (Alicai et al., 2019). Loro was considered a
suitable site for yield assessment owing to low disease pressure
and vector populations for CBSD (Pariyo et al., 2015). The rainfall
distribution at the three trial sites is bimodal with peaks in March
to May and August to October, and mean annual precipitation
ranges between 500 and 2800 mm, while temperature ranges
between 150C and 300C (Nsubuga et al., 2014).

Trial Design and Management
Trials at each site were planted in a randomized complete block
design with two replications. Each clone was planted in five rows

of six plants at 1 x 1 m spacing, making a plot size of 20 m2

with 30 plants. Adjacent plots were separated by 2-meter alleys
to limit vegetative competition between varieties. Planting was
done during the first growing season of 2019 (April) to ensure
adequate soil moisture for sprouting. At 2 months after planting
(MAP), six plants per plot were side-grafted with scions from
highly infected TME 204, a standard CBSD susceptible check,
to augment disease pressure for CBSD (Wagaba et al., 2013) at
the three environments. All trials were conducted under standard
agronomic practices for cassava (IITA, 1990).

Data Collection
Data on disease incidence and severity for CMD and CBSD were
collected on each plant in a plot at 3 and 6 MAP. CMD severity
was assessed on a scale of 1–5; where 1 = no visible disease
symptoms, 2 = mild chlorotic pattern on entire leaflets or mild
distortion at base of leaflets, rest of leaflets appearing green and
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healthy, 3 = strong mosaic pattern on entire leaf, and narrowing
and distortion of lower one-third of leaflets, 4 = severe mosaic,
distortion of two-thirds of leaflets and general reduction of leaf
size, and 5 = severe mosaic, distortion of four-fifths or more
of leaflets, twisted and misshapen leaves (IITA, 1990). Similarly,
CBSD foliar severity (CBSDfs) was scored on scale of 1–5, where
1 = no apparent symptoms, 2 = slight foliar chlorosis but with
no stem lesions, 3 = pronounced foliar chlorosis and mild stem
lesions with no die back, 4 = severe foliar chlorosis and severe
stem lesions with no die back, and 5 = defoliation, severe stem
lesions and die back (Gondwe et al., 2003).

At 12 MAP, trials were harvested to enable assessment of
yield and other root attributes. All twelve plants within the net
plot were harvested and partitioned into roots and above-ground
biomass. Fresh root weight (FRW) and above-ground biomass
were separately measured (kg plot−1) using a hanging weighing
scale of 200 kg capacity. Harvest index (HI) was calculated as
the ratio of FRW to total plant biomass as described by Kawano
et al. (1978). Fresh root yield (FRY) (tones ha−1) was estimated
by extrapolation of net plot root yields (Tumuhimbise et al.,
2014). Root dry matter content (DMC) was determined by oven-
drying of 100 g fresh samples at 80oC for 48 h, as described
by Kawano et al. (1987). Lastly, data on cassava brown streak
disease root necrosis incidence (CBSDri), and severity (CBSDrs)
was recorded on all harvested roots/plot. Data on CBSDrs was
collected using a standard scale of 1–5; where 1 = no observable
necrosis, 2=≤ 5% of root necrotic, 3= 6 to 25% of root necrotic,
4 = 26 to 50% of root necrotic with mild root constriction, and
while 5 showed greater than 50% of root necrosis with severe root
constriction (Gondwe et al., 2003).

Data Analysis
For all measured traits, associated variance components were
estimated by restricted maximum likelihood (Spilke et al., 2005).
Effects of replicate nested in environment, variety, environment
and variety by environment interaction were considered random,
following the model below that was fitted using the lmer function
in lme4 package (Bates et al., 2015) in R (R Core Team, 2019).

Yijk = µ+ (Rj)Ek + Vi + Ek + VxEik + eijk

where, Yijk = phenotypic value; µ overall mean;
(Rj)Ek = random effect of replicate j nested in kth environment
such that Rj∼N(0, σ2

j); Vi = random effect of the ith variety with
Vi ∼ N(0, σ2

i); Ek = random effect of kth environment with Ek ∼
N(0, σ2

k); VxEik = random interaction effect of ith variety with
kth environment such that VxEik ∼ N(0, σ2

ik); and eijk random
residual that is assumed to be normally distributed with mean
zero and variance σ2. Respective broad sense heritability (H2) for
each trait across environments was computed as:

H2
=

σ2
V

σ2
v +

σ2
VxE
n +

σ2
e
rn

Where, σ2
V the variance component for variety; σ2

VxE = the
variance for variety by environment interaction; σ2

e = the error
variance; n = the number of environments; and r = the number

of replications. Accordingly, best linear unbiased predictors
(BLUPs) for each variety were extracted using the ranef function
in lme4 package (Bates et al., 2015). Eventually, BLUPs were used
to perform correlation analyses, compute selection index and
estimate annual genetic gains for evaluated traits, as they provide
better estimates of genotype performance for unbalanced datasets
than fixed clone effects (Piepho et al., 2008).

A weight-free rank summation index (RSI) (Hallauer et al.,
1988; Badu-Apraku et al., 2013) was used to rank variety
performances based on nine traits: FRY, HI, DMC, CMDs, cassava
mosaic disease incidence (CMDi), CBSDfi, CBSDfs, CBSDri, and
CBSDrs. To estimate genetic gains, BLUPs were assigned to
the year when the variety was released i.e., varieties specifically
released in 1940, 1993, 1999, 2003, 2011, 2015, and the current
candidate varieties of 2019. Because released years were unevenly
distributed, traits were regressed on order of release year i.e., 1,
2, 3, 4, 5, 6, and 7 representing 1940, 1993, 1999, 2003, 2011,
2015, and 2019, respectively. Effects of order of release year were
tested for linear and quadratic responses of evaluated traits by
orthogonal polynomial contrasts to determine the model that
would best fit the set of data for a specific trait.

Absolute gain for linear relationships was obtained following
the statistical model: y = a + bx, where; y is dependent
variable; x = independent variable (order of released year);
a = intercept; and b regression slope, which is the absolute
genetic gain per released order (de Felipe et al., 2016). The slope
was thereafter divided by the number of years for the respective
breeding period to determine the annual genetic gain. Relative
gain was obtained by dividing the absolute annual gain by mean
trait performance of oldest released year that served as the check.

For quadratic relationships, absolute annual gain was
calculated as the slope between two released orders i.e., between
1 (1940) and 2 (1993), 2 (1993) and 3 (1999), and 3 (1999) and
4 (2003), etc divided by the number of years for the respective
breeding period. Relative gain was obtained by dividing the
absolute annual gain by mean trait performance of older released
year for each specific breeding period. Thus genetic gains were
assessed sequentially in phases and as an average.

RESULTS

Trait Heritabilities
Diseases (CMD and CBSD) and yield traits (DMC, HI, and
FRYD) were differently affected by environment and genotypic
effects (Table 2). For example, variety effects explained up to
96.4% of the total variance for CMD severity, while < 20% of total
variance could be attributed to varieties for HI, DMC, and FRY.
Indeed, highest heritability was registered for CMD (H2

= 0.96)
and lowest registered for harvest index (H2

= 0.43). Overall,
modest-high heritabilities i.e., H2 > 0.4 were observed for all
evaluated traits (Table 2).

Performance of Varieties Based on Rank
Summation Index
Based on RSI, the top performers were mostly candidate clones
(UG120024, UG120193, UG120183, UG120198, and UG110164),
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TABLE 2 | Percentage of the total variance attributed to variety, environment and variety by environment interaction for evaluated traits.

Source of variation CMDi CMDs CBSDfi CBSDfs CBSDri CBSDrs DMC HI FRY

Replicate/Environment 0.0 0.5 11.4 11.2 0.0 6.1 4.3 0.0 11.8

Variety 95.4 96.4 33.9 35.2 45.7 36.5 18.2 5.8 13.6

Environment 0.4 0.0 43.6 39.2 22.1 12.3 60.3 86.7 63.0

Variety*Environment 3.1 2.7 7.6 10.8 21.9 30.4 11.5 3.5 6.1

Residual 1.1 0.4 3.5 3.6 10.3 14.7 5.7 4.0 5.5

Genotype/Genotype*Environment 30.8 35.7 4.4 3.2 2.1 1.2 1.6 1.6 2.2

Broad-sense heritability (H2) 0.95 0.96 0.75 0.70 0.59 0.44 0.51 0.43 0.53

CMDi, cassava mosaic disease incidence at 6 months after planting; CMDs, cassava mosaic disease severity at 6 months after planting; CBSDfi, cassava brown streak
disease foliar incidence at 6 months after planting; CBSDfs, cassava brown streak disease foliar severity at 6 months after planting; CBSDri, cassava brown streak disease
root incidence at 12 months after planting; CBSDrs, cassava brown streak disease root severity at 12 months after planting; DMC, root dry matter content; HI, Harvest
index; FRY, Fresh root yield. Analysis based on data collected in 2019 at three sites; Namulonge (central region), Serere (eastern region) and Loro (northern region).

and varieties officially released in 2011 (NASE 15), 1999 (NASE
4), 2015 (NAROCASS 1 and NAROCASS 2) and NASE 1 (1993)
(Table 3). On the other hand, worst performers mostly comprised
of popular local varieties (Magana, Nyaraboke, Bamunanika and
Njure Red), and varieties released in 1993 (NASE 2 and NASE 3)
or 2011 (NASE 13 and NASE 14). Both local varieties and varieties
released in 1990s exhibited higher CMD and CBSD susceptibility
compared to 2019 candidate clones or varieties released in 2015
(Tables 3, 4). Although varieties released in 2011 were generally
resistant to CMD (incidence of ≤ 2.2%), they were susceptible
to CBSD (severity ≥ 2 and incidence ≥ 41%). Candidate clones
exhibited high tolerance/resistance to CMD and CBSD as well as
high DMC (Tables 3, 4).

Genetic Gains for Disease Resistance
and Yield Related Traits
Cassava mosaic disease severity correlated negatively and
significantly with order of release year (r = −0.9, P < 0.001)
(Table 5). However, there was a negative non-significant
correlation between CMD severity and CBSD foliar severity
(r = −0.36, P = 0.13), and between CMD severity and CBSD
root necrosis severity (r = −0.40, P = 0.08). CMD severity
reduced from mean severity score of 3.5 (varieties released
in1940) to 1.3 (candidate clones of 2019), attaining an average
annual genetic gain of 1.9% (Table 6). Highest annual gains were
registered for 1993 to 1999 (5.2%) and 1999 to 2003 (8.1%).
However, CMD susceptibility increased by 4.5% per year from
2015 to 2019.

For CBSD, we observed negative significant correlations
between order of release year and CBSD foliar severity
(r =−0.74, P < 0.001). Similar observations were made between
order of release year and CBSD root necrosis severity (r =−0.63,
P < 0.01) (Table 5). CBSD foliar severity correlated positively
and significantly with CBSD root necrosis severity (r = 0.67,
P < 0.01). CBSD foliar severity reduced from symptom severity
score of 2.1 in 2003 to 1.3 in 2019 and thus attaining an average
annual genetic gain of 2.3% (Table 6). Highest annual gains were
recorded for 2015 to 20.19 (4.1% per year). Similarly, CBSD root
necrosis severity reduced from root necrosis score of 2.1 in 2003
to root necrosis score of 1.4 in 2019 and thus attaining an average
annual genetic gain of 1.5%.

Much as order of release year correlated positively and
significantly with dry matter content (r = 0.40, P = 0.02),
we observed small, positive, nonsignificant correlations between
order of release year and harvest index (r=−0.11, P= 0.53), plus
fresh root yield (r = 0.07, P = 0.73). Fresh root yield correlated
positively and significantly with harvest index (r = 0.58,
P < 0.001). From 1940 to 2019, root dry matter content increased
linearly from 37.6 to 39.4% with a genetic gain of 0.1% per year.
Fresh root yield increased from 17.1 tons per ha in 1940 to
25.5 tons per ha in 1999 with an average annual gain of 0.06%.
However, fresh root yield reduced from 25.6 tons/ha in 2003
to 18.6 tons/ha in 2019 at a rate of 0.12% per year (Table 6).
Meanwhile, there were no genetic gains for harvest index between
1940 and 2019 (Figure 1).

DISCUSSION

Development and deployment of nutritious, stress-resilient,
and high yielding cassava varieties requires identification and
introgression of desirable alleles. As part of this process, routine
assessment of genetic gain for key traits is necessary to identify
gaps and quantify progress made toward attainment of prior
defined breeding targets. Among the various methods for genetic
gain assessment, growing released varieties in a common set
of environments and regressing their trait means on year of
release has gained popularity, as germplasm from recurrent
selection programs is rarely available in breeding programs
(Rutkoski, 2019). Accordingly, in this study, cassava varieties
developed in Uganda between 1940 and 2019, were evaluated
in 2019 to get insights into annual genetic gains. This was the
first attempt to estimate genetic gain for selected cassava traits
in Uganda.

Significant genotype variances were observed for all evaluated
traits and thus, positively confirming the appreciable genetic
variability in the evaluated clones and varieties (Ssemakula et al.,
2000). The high heritabilities observed for disease traits are
comparable to heritability estimates by Okul et al. (2018) and
suggest that Namulonge (central Uganda) and Serere (eastern
Uganda) are areas of high disease pressure for CMD and CBSD.
Consistency in variety or clone rankings for CMD resistance
could imply durability of resistance in the tested genotypes.
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TABLE 3 | Overall performance of clones based on rank summation index.

Genotype Year of release CMDi CMDs CBSDfs CBSDfi CBSDrs CBSDri DMC HI FRY RSI Rank

Alado Alado 1940 29 30 10 12 4 5 31 12 21 154 18

Bao 1940 28 31 6 6 20 17 30 20 18 176 22

Omo 1940 32 29 9 8 23 27 9 23 12 172 21

Bamunanika 1940 25 27 21 17 30 29 21 6 11 187 27

Njure Red 1940 30 32 29 28 10 11 13 8 20 181 23

Nyaraboke 1940 31 28 30 31 9 7 23 28 32 219 32

Magana 1940 27 24 23 26 17 19 11 28 30 205 30

NASE 1 1993 26 25 11 11 1 1 18 5 25 123 9

NASE 2 1993 21 22 26 22 21 26 24 13 8 183 24

NASE 3 1993 23 23 22 20 22 24 26 24 27 211 31

NASE 4 1999 12 9 15 19 4 6 28 2 5 100 6

NASE 5 1999 24 26 17 18 23 21 25 1 2 157 19

NASE 6 1999 13 15 31 27 16 20 27 9 26 184 26

NASE 9 2003 19 19 28 25 15 23 19 22 13 183 24

NASE 11 2003 20 20 14 14 25 22 10 4 1 130 11

NASE 12 2003 2 9 27 30 18 15 20 19 23 163 20

NASE 13 2011 10 11 32 32 32 32 5 30 10 194 29

NASE 14 2011 2 4 24 29 31 31 15 32 24 192 28

NASE 15 2011 2 5 13 13 19 16 6 20 4 98 4

NASE 16 2011 2 1 18 16 26 28 17 18 6 132 12

NASE 18 2011 1 3 25 24 29 30 7 15 14 148 17

NASE 19 2011 2 5 19 21 28 25 11 14 15 140 14

NAROCASS 1 2015 15 13 16 15 11 10 16 3 3 102 7

NAROCASS 2 2015 8 5 8 10 12 14 14 25 31 127 10

UG120193 2019 18 18 3 3 4 8 2 16 7 79 2

UG120024 2019 9 1 6 7 3 3 3 9 28 69 1

UG110164 2019 16 16 5 5 13 13 22 6 9 105 8

UG120183 2019 17 17 1 1 4 4 4 16 16 80 3

UG120124 2019 2 5 4 4 26 18 29 31 22 141 15

UG120156 2019 11 12 12 9 14 12 8 26 28 132 12

UG120198 2019 22 21 2 2 2 2 1 27 19 98 4

UG110166 2019 14 13 20 23 8 9 32 11 17 147 16

CMDi, cassava mosaic disease incidence at 6 months after planting; CMDs, cassava mosaic disease severity at 6 months after planting; CBSDfi, cassava brown streak
disease foliar incidence at 6 months after planting; CBSDfs, cassava brown streak disease foliar severity at 6 months after planting; CBSDri, cassava brown streak disease
root incidence at 12 months after planting; CBSDrs, cassava brown streak disease root severity at 12 months after planting; DMC, root dry matter content; HI, Harvest
index; FRY, Fresh root yield; RSI, rank summation index. BLUPs for disease traits (CMD and CBSD) based only on data from Namulonge and Serere owing to low disease
pressure at Loro. Genotypes were ranked based on their BLUP values for each trait.

TABLE 4 | Means for cassava traits selected for between 1940 and 2019 in Uganda.

Year of release No of Varieties CMDs DMC HI FRY CBSDfs CBSDrs

1940 7 3.5 ± 0.2 37.6 ± 1.1 0.37 ± 0.03 17.1 ± 3.5 1.8 ± 0.2 1.8 ± 0.3

1993 3 2.3 ± 0.3 37.4 ± 0.4 0.40 ± 0.003 20.9 ± 8.5 2.0 ± 0.3 1.8 ± 0.4

1999 3 1.6 ± 0.6 35.9 ± 0.6 0.45 ± 0.01 25.5 ± 7.4 2.1 ± 0.2 1.8 ± 0.3

2003 3 1.4 ± 0.2 38.5 ± 0.3 0.38 ± 0.01 25.6 ± 7.1 2.1 ± 0.2 2.1 ± 0.1

2011 6 1.1 ± 0.02 39.8 ± 0.6 0.30 ± 0.02 22.7 ± 2.5 2.2 ± 0.2 2.9 ± 0.2

2015 2 1.1 ± 0.1 38.8 ± 0.1 0.40 ± 0.07 17.5 ± 8.1 1.7 ± 0.5 1.5 ± 0.0

2019 8 1.3 ± 0.1 39.5 ± 1.3 0.30 ± 0.02 18.6 ± 1.8 1.3 ± 0.1 1.4 ± 0.2

CMDs, cassava mosaic disease severity; DMC, dry matter content; HI, harvest index; FRY, fresh root yield; CBSDfs, cassava brown streak disease foliar severity; CBSDrs,
cassava brown streak disease root severity.

Indeed, local and varieties released in 1990s consistently
registered higher CMD susceptibility when compared to recent
elite clones or varieties released in 2015 (Table 3). However,

variety or clone rankings for CBSD resistance were not consistent
across environments, possibly because there could be different
cassava brown streak virus strains that are resident in test
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TABLE 5 | Pearson’s correlation coefficients among selected cassava traits
evaluated in cassava varieties released between 1940 and 2019 in Uganda.

DMC CMDs CBSDfs CBSDrs HI FRY

CMD6s −0.21 1

CBSDfs −0.29 −0.36 1

CBSDrs −0.17 −0.40 0.71*** 1

HI −0.21 0.07 0.03 −0.34 1

FRY 0.06 −0.08 0.17 0.22 0.58*** 1

Order of release year 0.40* −0.9*** −0.74*** −0.63** −0.11 0.07

CMD6s, cassava mosaic disease severity at 6 months after planting; CBSDfs,
cassava brown streak disease severity at 6 months after planting; CBSDrs, cassava
brown streak disease root necrosis severity at 12 months after planting; DMC, dry
matter content; HI, harvest index; FRY, fresh root yield; *P < 0.05, **P < 0.01;
***P < 0.001. Correlations including CBSDfs and CBSDrs were performed using
varieties or clones developed between 2003 and 2019 because selection for CBSD
resistance began in 2003. Two sets of correlations were performed: (1) between
evaluated traits and order of release year, and (2) amongst the evaluated traits
across the released years.

environments. Cassava brown streak viruses [cassava brown
streak virus (CBSV) and Uganda cassava brown streak virus
(UCBSV)] have been reported to evolve rapidly, a phenomenon
that could influence virulence (Ndunguru et al., 2015; Alicai et al.,
2016) and thus amplify genotype by environment interactions
(Pariyo et al., 2015; Okul et al., 2018). These findings further
underpin the need for systematic evaluation and screening for
CBSD in locations that are truly hotpots so as to discern resistant
from susceptible clones.

Generally, candidate varieties and recently released varieties
exhibited higher disease resistance (Tables 3, 4). Indeed, some
of the candidate varieties e.g., UG120156 and UG120024 have
also been reported by Okul et al. (2018) to exhibit high
CBSD resistance. One possible explanation for this is that
these candidate clones and/or varieties were selected for dual
resistances to CMD and CBSD, which was not the case with
varieties released before 2011. An exceptional clone was NASE

4, a variety released in 1999, which ranked among the top
10 performers; its ability to maintain superior and stable
performance over a wide range of environments could explain
this trend (Adriko et al., 2011).

Local varieties such as Magana (popular in eastern region),
Nyaraboke (popular in mid-western region), Bamunanika
(popular in central region) and Njure Red (popular in central
region), were among the worst performers. These varieties
showed high susceptibility to both CMD and CBSD (Tables 3, 4).
It is important to note that these local varieties were among
the first CMD resistant clones developed in 1930s in Amani
(Tanzania) and introduced into Uganda in the 1940s for
cultivation (Legg and Thresh, 2000). These clones were deployed
for production in 1950s and formed a major part of the cassava
production system in Uganda until the 1980s (Otim-Nape et al.,
2001), when a second wave of CMD caused by co-infection of
African Cassava Mosaic Virus (ACMV) and the recombinant
strain of the East African Cassava Mosaic Virus (EACMV-
UG) emerged (Patil and Fauquet, 2009). The breakdown of
CMD resistance in local varieties and varieties released in
early 1990s (Table 3) is likely due to the long exposure to
viruses or synergistic infections from the different cassava mosaic
germiniviruses (CMGs).

Following the CBSD outbreak in Uganda in the early 2000s
(Alicai et al., 2007), efforts were initiated to develop and
release varieties that combine both CMD and CBSD resistance.
The first batch of these varieties were officially released in
2011, all in an effort to limit spread and damage inflicted by
CBSD. Notable of these were: NASE 14, NASE 15, NASE 16,
NASE 18, and NASE 19. However, in the present study, these
varieties maintained CMD resistance, but succumbed to CBSD,
as exhibited in their respective CBSD foliar incidence (Table 4).
Given that this assessment was done 8 years after these varieties
were released, it is likely that the high root necrosis severity
scores (Tables 3, 4) are a reflection of increased virus load
accumulating in the vegetative tissues during this propagation

TABLE 6 | Genetic gains for cassava traits selected for between 1940 and 2019 in Uganda.

Breeding period Absolute annual gain Relative annual gain (%)

From To No. of years CMDs DMC CBSDfs CBSDrs FRY CMD DMC CBSDfs CBSDrs FRY

1940 1993 53 −0.02 0.004 0.004 0.004 2.6 kg −0.57 0.01 0.22 0.22 0.02

1993 1999 6 −0.12 0.033 0.010 0.010 20 kg −5.20 0.09 0.50 0.56 0.10

1999 2003 4 −0.13 0.050 0.000 0.000 15 kg −8.10 0.14 0.00 0.00 0.06

2003 2011 8 −0.03 0.025 −0.010 −0.008 0.0 kg −1.80 0.06 −0.48 −0.38 0.00

2011 2015 4 0.00 0.050 −0.050 −0.033 −30 kg 0.00 0.13 −2.30 −1.10 −0.13

2015 2019 4 0.05 0.050 −0.070 −0.047 −38 kg 4.50 0.14 −4.10 −3.10 −0.21

Average genetic gain −0.04 0.035 −0.04 −0.03 −5 kg −1.90 0.10 −2.30 −1.50 −0.03

Adjusted R2 linear 0.63 0.16 0.14 0.02 0.02

Adjusted R2 quadratic 0.85 0.10 0.41 0.18 0.079

CMDs, cassava mosaic disease severity at 6 months; DMC, dry matter content; CBSDfs, cassava brown streak disease foliar severity at 6 months after planting; CBSDrs,
cassava brown streak disease root severity at 12 months after planting; FRY, fresh root yield; R2, coefficient of determination of the relationship between order of release
year and the changes in traits over the years. Average annual gains (absolute and relative) for resistance to CBSD were computed using estimates from 2003 to 2019
because selection for the trait only began in 2003. There were no genetic gains for harvest index between 1940 and 2019. With the exception of DMC where genetic gains
were estimated using slope of linear regression, annual genetic gains for all other traits were estimated using the slope between two released orders from the quadratic
graphs, because the quadratic model provided higher R2 values.
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FIGURE 1 | Changes in yield and disease severity for 32 varieties released and/or developed between 1940 and 2019 in Uganda. (A) Cassava mosaic disease
severity at 6 months after planting (CMDs). (B) Dry matter content (DMC). (C) Cassava brown streak disease foliar severity at 6 months after planting (CBSDfs).
(D) Cassava brown streak disease root necrosis severity at 12 months after planting (CBSDrs). (E) Harvest index (HI). (F) Fresh root yield (FRY). CBSD resistance
breeding was initiated in fourth released year (2003).
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period (Shirima et al., 2019). Similar observations were made by
Mukiibi et al. (2018) and Okul et al. (2018), who reported that
NASE 14 (released in 2011) registered high CBSD foliar and
root incidence and severity after 6 years of release. This situation
may be attributed to changes in the composition of virus species
and/or virulence that overwhelms host defense systems and cause
resistance breakdown or degeneration (Shirima et al., 2019). The
clonal nature of cassava propagation amplifies this problem.

Correlation analyses were performed to assess relationships
between order of release year and traits evaluated (Table 5).
The significant linear relationships between order of release
year and CMD resistance plus dry matter content suggest
that breeding efforts between 1940 and 2019 were successful
in developing CMD resistant genotypes with high dry matter
content. Significant negative correlations between order of
release year and CBSD resistance also suggest that breeding
efforts undertaken between 2003 and 2019 majorly focused on
development and/or release of CBSD resistant varieties. The
small nonsignificant correlations between order of release year
and yield-related traits (FRY and HI) are indicative of preferential
selection and release of genotypes with more emphasis placed on
disease resistances as compared yield.

Direct selection for disease resistance without similar efforts
devoted to yield-traits could explain the non-significant positive
correlations between CBSD resistance with FRY or HI. On
the other hand, high significant positive correlation between
CBSD foliar and CBSD root necrosis severity, could imply
that both traits were directly selected for, as witnessed by
their respective reductions across years of release. Negative
nonsignificant correlations between CBSD resistance and CMD
resistance between 2003 and 2019, could suggest that high levels
of CMD resistance had been attained at the time when selection
for CBSD resistance was initiated, and therefore, most of the
clones were tolerant to CMD, but had not attained similar levels
of resistance for CBSD.

Based on regression analyses, CMD severity reduced by an
average of 1.9% per year between the period 1940 and 2019.
This genetic gain estimate is higher than that provided by
Okechukwu and Dixon (2008), who reported 0.65% genetic gain
per year for CMD resistance among IITA clones developed in
Nigeria between 1970 and 2000. The highly significant genetic
gain per year for CMD resistance could be explained in three
ways. Firstly, breeding efforts targeting CMD resistance have
been ongoing since 1930s (Legg and Thresh, 2000), which is
sufficient time for increasing the frequency of resistance alleles
in the breeding population through recurrent selection (Hallauer
et al., 1988). Secondly, CMD resistance is largely governed by
additive genetic effects (Hahn et al., 1980; Wolfe et al., 2016;
Rabbi et al., 2020), which makes it amenable to genetic gains
from recurrent selection. Thirdly, that deployed CMD resistance
was effective against the prevalent cassava mosaic germiniviruses.
Indeed, latest findings by Mukiibi et al. (2018) have showed that
both single and coinfection of ACMV and EACMV-UG do exist
in Uganda. The 4.5% increase in CMD susceptibility between
2015 and 2019 may be attributed to tradeoffs during selection for
combined resistance to CBSD and CMD or use of CBSD resistant
parents that are deficient in CMD resistance.

Much as research efforts to combat CBSD began in early
2000s when the disease had attained epidemic status in Uganda
(Alicai et al., 2007), some varieties like NASE 1 that were released
in 1993, exhibited high CBSD tolerance (Table 3). This finding
could indicate that CBSD resistance alleles were present in
IITA germplasm, from which NASE 1 was derived. Since 2003
when systematic CBSD resistance improvement began, there
were average genetic gains of 2.3% per year for CBSD foliar
resistance, and 1.5% per year for CBSD root necrosis resistance
(Table 6). These genetic gains for CBSD resistance within such
a relatively short timeframe could be attributed to the concerted
and systematic approaches taken to harness and utilize available
genetic resources in cassava breeding (Abaca et al., 2012; Kaweesi
et al., 2014; Pariyo et al., 2015; Kawuki et al., 2016; Okul et al.,
2018; Ozimati et al., 2018). Predominance of additive gene effects
for CBSD resistance (Kulembeka et al., 2012; Chipeta et al., 2018),
which can be exploited through recurrent selection, have equally
enabled consolidation of gains.

Between 1940 and 2019, generally 5 kg per ha per year were
lost for fresh root yield and no genetic gains in harvest index
were observed; equally low genetic gains were recorded for dry
matter content (0.1% per year) (Table 6). This is contrary to
findings from earlier studies by Okechukwu and Dixon (2008),
and Ceballos et al. (2020), who reported annual genetic gains
of 1.2% and 1.0% for fresh root yield in Nigeria and Thailand,
respectively. Differences in selection strategies customized to
address local needs in Uganda, Nigeria and Thailand could
explain this variation. For example, breeding programs in South
East Asia have for long, mainly focused on developing cassava
clones with high yield and root quality traits such as starch
(Ceballos et al., 2020). Similarly, cassava breeding programs in
West Africa (Nigeria) have focused on development of cassava
clones that combine high fresh root yield, root quality and
CMD resistance (Manyong et al., 2000). In Uganda, however,
critical traits selected for include; dual resistance to CMD and
CBSD, high yield and desirable root quality (Kawuki et al., 2016).
Certainly, selection for several traits limits genetic progress as
it leads to compromising tradeoffs amongst target traits. For
example, before CBSD emerged in Uganda, fresh root yield
increased from 17.1 tons in 1940 to 25.6 tons in 2003 (Table 4).
However, when CBSD attained epidemic status in the early 2000s,
fresh root yield reduced from 25.6 tons in 2003 to 18.6 tons in
2019. Another good example is the sharp contrast between fresh
root yield and CBSD resistance observed in clones UG120024 and
UG120156 (Table 3).

CONCLUSION

The study described herein was conducted to estimate annual
genetic gains for critical cassava traits that have been selected
for between 1940 and 2019 in Uganda. Based on the generated
datasets, this study revealed that there was significant annual
genetic improvement of cassava for resistance to CMD and
CBSD. Findings from the present study also demonstrated that
the annual rate of genetic gain for cassava yield in Uganda is not
sufficient to achieve the desired output necessary to reach the
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cassava production demand predicted for 2050. This underpins
the urgent need to incorporate simultaneous selection for disease
resistance and high yield for the crop to meet its current and
futuristic demands for food and industry.
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Wheat leaf rust (also known as brown rust), caused by the fungal pathogen Puccinia
triticina Erikss. (Pt), is one by far the most troublesome wheat disease worldwide. The
exploitation of resistance genes has long been considered as the most effective and
sustainable method to control leaf rust in wheat production. Previously the leaf rust
resistance gene Lr65 has been mapped to the distal end of chromosome arm 2AS linked
to molecular marker Xbarc212. In this study, Lr65 was delimited to a 0.8 cM interval
between flanking markers Alt-64 and AltID-11, by employing two larger segregating
populations obtained from crosses of the resistant parent Altgold Rotkorn (ARK) with
the susceptible parents Xuezao and Chinese Spring (CS), respectively. 24 individuals
from 622 F2 plants of crosses between ARK and CS were obtained that showed the
recombination between Lr65 gene and the flanking markers Alt-64 and AltID-11. With
the aid of the CS reference genome sequence (IWGSC RefSeq v1.0), one SSR marker
was developed between the interval matched to the Lr65-flanking marker and a high-
resolution genetic linkage map was constructed. The Lr65 was finally located to a region
corresponding to 60.11 Kb of the CS reference genome. The high-resolution genetic
linkage map founded a solid foundation for the map-based cloning of Lr65 and the co-
segregating marker will facilitate the marker-assisted selection (MAS) of the target gene.

Keywords: Altgold Rotkorn, Lr65, leaf rust resistance, fine mapping, marker-assisted selection

INTRODUCTION

Virtually anywhere wheat is cultivated, its production is seriously constrained by fungal pathogens,
and most significantly by single or multiple of the three species of rust (Hovmøller et al., 2010),
i.e., leaf rust (Puccinia triticina); stem rust (Puccinia graminis f. sp. tritici); and stripe rust (Puccinia
striiformis f. sp. tritici). Among these, leaf rust is considered potentially the most disruptive disease
due to its more frequency and widespread occurrence in all wheat-growing locations of the world
(Roelfs et al., 1992; Bolton et al., 2008; Huerta-Espino et al., 2011). Leaf rust can cause a 15%
production reduction and heavy infection can lead to losses of up to 40% (Knott, 1989; McMullen
et al., 2008). Over the past decades, outbreaks of rust diseases have occurred in various regions
of China, resulting in severe wheat yield reduction (Chen et al., 2018). Although leaf rust can be
controlled through foliar fungicide applications, the most effective and eco-friendly way to control
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the disease is based on improved varieties containing resistance
genes (Keller et al., 2008). However, one of the most frustrating
issues in disease resistance breeding is the failure of resistance
genes, due to the evolving nature of plant pathogens resulting
in new virulent races that can cause disease in formerly resistant
wheat varieties. Therefore, it is necessary to search for new diverse
effective resistance genes that can be used in wheat breeding
programs.

To date, more than 80 leaf rust resistance genes (Lr) have
been identified (Singh et al., 2013; Qureshi et al., 2018; Kumar
et al., 2021). Roughly half of these genes are from wild relatives
of wheat, while the remainder are from cultivated wheat (Marais
et al., 2005; Naik et al., 2015; Rani et al., 2020). Wild relatives of
wheat provide a huge gene pool of agronomy utility, including
genes for rust resistance (Narang et al., 2019). The D genome
donor of wheat, Aegilops tauschii, has been a rich source of
resistance genes (Gill et al., 2019). Leaf rust resistance genes Lr21,
Lr32, and Lr39 have been transferred from Ae. tauschii into bread
wheat (Raupp et al., 2001; Huang et al., 2003; Thomas et al., 2010).
Tetraploid wheat is another important origin of disease resistance
(Singh et al., 2017). Lr14a, Lr23, and Lr53 were derived from
durum wheat or wild emmer wheat and were used in common
wheat breeding (McIntosh et al., 1995; Marais et al., 2005).

Spelt wheat (Triticum spelta) is an ancient crop that has been
cultivated since 5000 BC (Xie et al., 2015). It is still a minor crop
used for bread and fodder in Europe and North America today
(Campbell, 1997). Spelt wheat has the same AABBDD genome
as common wheat and their hybrids are fertile, facilitating the
transfer of desirable genes to common wheat. In addition to
genetic variation in protein concentration (Gomez-Becerra et al.,
2010), lipid and mineral nutrient contents (Ruibal-Mendieta
et al., 2002; Zhao et al., 2009), spelt wheat also shows excellent
resistance to wheat rusts. Examples are the wheat yellow rust
resistance gene Yr5 gene, derived from spelt and localized on the
long arm of chromosome 2B (Sun et al., 2002; Yan et al., 2003),
and the Lr44 gene in the Spelt variety 7831, located chromosome
1B (Dyck and Sykes, 1994).

Molecular markers have been used extensively in wheat
breeding, principally for genetic mapping, marker-assisted
selection (MAS), and positional gene cloning (Jost et al.,
2020). With the evolution of sequencing technology, marker
development has shifted to the sequencing era (Paux et al., 2012).
The release of the annotated genome sequence of Chinese Spring
(CS) have greatly improved our understanding of the wheat
genome and facilitated the efficiency of marker development in
wheat (Li et al., 2020).

The spelt wheat Altgold Rotkorn (ARK), a Swiss variety
(Pedigree: Oberkulmer/Sandmeier), was first released in 1952.
Wang et al. (2010) identified a leaf rust resistance gene LrAlt
in Altgold and localized it to the distal end of the short
arm of chromosome 2A. Mohler et al. (2012) reported the
characterization and mapping of the same leaf rust resistance
gene LrARK0; in ARK. Since LrAlt and LrARK0; were from
the same germplasm and located at the same position, they
were designated as Lr65 (Mohler et al., 2012). In this study,
we performed fine mapping of Lr65 gene by exploring the CS
reference genome. Our analysis located Lr65 gene to a 60.11

Kb region on the IWGSC Ref-Seq v1.0 and identified one most
likely candidate gene for Lr65 in Altgold by comparing genome
resequencing data between resistant and susceptible parents. In
addition, co-segregating molecular markers were developed for
MAS of the target gene.

MATERIALS AND METHODS

Plant and Pathogen Materials
Altgold, a spelt wheat cultivar with high resistance to leaf rust, was
crossed with two susceptible common wheat lines “Xuezao” and
“CS”, and two F2 segregating populations (Xuezao/Altgold and
CS/Altgold) were constructed. These two populations were used
for the genetic analysis and mapping of leaf rust resistance gene.
In all experiments, a susceptible common wheat line of Xuezao
was used as a comparison to check for successful inoculation. The
P. triticina isolate PHT (provided by Institute of Plant Protection,
Chinese Academy of Agricultural Sciences, Beijing, China) was
used for the inoculation. PHT was avirulent on Altgold and
virulent on Xuezao and CS. The conidia were propagated in the
greenhouse on the susceptible plants.

Plant Growth and Pathogen Infection
The parental plants of Altgold, Xuezao and CS and F2
populations were tested for leaf rust resistance at seedling
stage. The inoculations were initiated when the first leaves
were fully unfolded, by spraying 1% Tween-20 aqueous solution
as surfactant and then brushing conidia from the susceptible
seedlings with sporulating leaf rusts onto the seedlings to
be tested. The inoculated seedlings were incubated in dark
plastic-covered boxes for 48 h at 15◦C and 100% relative
humidity and then transferred to greenhouse. 10–14 days after
inoculation, infection types (ITs) were scored on a scale of 0–
4 (0 = hypersensitive flecks, 1 = small uredinia with necrosis,
2 = moderate size pustules with chlorosis, 3 = moderate-large
size uredinia without necrosis or chlorosis, and 4 = large uredinia
lacking necrosis or chlorosis) (Stakman et al., 1962). ITs 0–2
represent resistance and ITs 3–4 represent susceptibility.

DNA Extraction and Quantification
DNA was extracted from seedlings of the F2 populations and
parents Altgold (resistant parent) as well as Xuezao and CS
(susceptible parents) using the CTAB method (Maroof et al.,
1994). DNA samples were quantified using a NanoDrop One
spectrophotometer instrument (Nanodrop Technologies) and
diluted to a concentration of 30 ng/µ l.

Resequencing of Resistant Parent
Altgold
To obtain genomic variations between Altgold and CS, we
performed whole-genome resequencing of Altgold. Altgold’s
whole genome sequencing was performed using the Illumina
HiSeq2500 sequencing platform for double-end sequencing.
The library construction and sequencing were performed by
Beijing Novogene company. The read length of the paired-
end sequencing library was 150 bp, the raw sequencing data
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were processed according to GATK’s best practices workflow
(Van der Auwera et al., 2013).

Molecular Marker Development
Lr65 gene had already been mapped distal to marker Xbarc212
on chromosome arm 2AS (Wang et al., 2010). Simple sequence
repeats (SSRs) were developed based on the CS reference
genome sequence distal to the Xbarc212 locus. Meanwhile, InDels
with insert/deletion size > 3bp were selected from the target
interval between Altgold re-sequencing and CS reference genome
sequence alignment database for further marker design. InDel
polymerase chain reaction (PCR) primers were designed using
Primer3Plus1, with amplicon sizes ranging from 100 to 500 bp.
BatchPrimer3 v1.02 was used to develop SSR markers.

Polymerase Chain Reaction
Amplification and Visualization
Polymerase chain reaction amplification was performed in a
10 µL reaction volume containing 6 µL of 2 × Tag PCR StarMix
with loading dye, 35–120 ng/mL DNA 2 µL, 1 µL of primer (mix
of forward and reverse primers, 2 mM) and 1 µL of ddH2O. The
thermal profile consists of an initial denaturation step at 94◦C for
5 min, followed by 35 cycles of 94◦C for 30 s (denaturation), 50–
61◦C (depending on the annealing temperature of the specific
primer) for 30 s, 72◦C for 30 s (primer extension), and a
terminal extension at 72◦C for 10 min, stored at 4◦C. The PCR
products were separated by 10% non-denaturing polyacrylamide
gel electrophoresis (acrylamide: bisacrylamide = 39:1), and gels
were visualized with silver nitrate staining (Bassam et al., 1991).

Linkage Analysis and Map Construction
A chi-square analysis was performed on the leaf rust test data
to confirm the goodness of fit of the observed ratios from
the F2 populations to the theoretical expected values. The χ2

analysis was executed in Microsoft Excel (version 2010) using the
Bchitestˆ function to calculate χ2 and p-values. The polymorphic
markers tested between resistant and susceptible parents were
used to genotype 2144 F2 plants. The phenotypic data of disease
responses were used for linkage analysis in combination with
PCR amplification results. The localization of markers and
the target gene is fulfilled based on recombination between
markers genotype data and resistance/susceptibility phenotype
data. Genetic distances were calculated in centiMorgan (cM).

Physical Mapping and Gene Annotation
The sequences of the two closest flanking markers linked to
Lr65 were used as lookups for a searches of the IWGSC RefSeq
v1.0 to define the physical interval covering Lr65 locus on CS
chromosome 2AS. The gene annotation for the target interval was
retrieved from the IWGSC RefSeq v1.0 annotation3.

1http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
2https://probes.pw.usda.gov/batchprimer3/
3http://urgi.versailles.inra.fr/jbrowseiwgsc/gmod_jbrowse/

Genomic Comparison Among Multiple
Wheat Varieties
The sequence information was obtained from the Triticeae Multi-
omics Center4 to obtain sequence information of annotated genes
in candidate intervals, and then using the wheat 10 + genome5

(Walkowiak et al., 2020) for sequence alignment between the
genomes of 15 wheat varieties.

RESULTS

Genetic Analysis of the Leaf Rust
Resistance Gene Lr65 in Two
Segregating Populations
At the seedling stage, the parental lines Xuezao and CS
demonstrated a clear susceptible response to the leaf rust
isolate PHT with an infection type (IT) score of 3, while
Altgold showed a high-level resistant response with an IT score
of 0 (Figures 1A,B). The F1 plants and F2 populations of
Xuezao/Altgold and CS/Altgold were examined for the responses
to the inoculation of the Pt isolate PHT at the seedling stage
as well, along with the parents. The F1 plants showed the
same approximate immune infection type as the resistant parent
Altgold, indicating the complete dominance of the resistance
(Figures 1A,B). Of the 1522 F2 plants screened from the
Xuezao/Altgold cross, 1130 were resistant and 392 susceptible,
fitting the ratio of 3:1 (χ2

3:1 = 0.46, p > 0.05). In the F2
population derived from cross CS/Altgold, 454 plants were
resistant and 168 susceptible (χ2

3:1 = 1.33, p > 0.05). The
segregation of these two populations confirm that the leaf rust
resistance in Altgold is controlled by a single dominant gene
(Table 1), which is most likely the gene Lr65 (previously known
as LrAlt or LrARK0) (Wang et al., 2010; Mohler et al., 2012).

Marker Discovery and Molecular
Mapping
Since Lr65 gene has been located on the terminus of the short
arm of chromosome 2A and the closest marker to Lr65 is
Xbarc212 (Figure 2A) (Wang et al., 2010; Mohler et al., 2012).
To further increase the map resolution in the Lr65 region, new
markers were developed using various genomic resources. 88
SSR primers were developed based on CS chromosome 2AS
reference genome sequence (RefSeq v1.0) and tested on the two
parents (Altgold and Xuezao). Four polymorphic markers (Alt-
14, Alt-21, Alt-24, and Alt-64) were identified (Table 2). A total
of 1522 Xuezao/Altgold F2 plants were genotyped with these
four markers, and 47 plants were identified with recombination
between the marker loci and the resistance gene. Linkage analysis
indicated that the closest marker to Lr65 was Alt-64 with a genetic
distance of 0.5 cM. All four markers were on the proximal side to
Lr65 and closer than Xbarc212 (Figure 2B).

To obtain markers on the other side of Lr65, we compared
the resequencing data of Altgold with the CS reference in the

4http://202.194.139.32/getfasta/index.html
5https://webblast.ipk-gatersleben.de/wheat_ten_genomes/

Frontiers in Plant Science | www.frontiersin.org 3 June 2021 | Volume 12 | Article 666921166

http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
https://probes.pw.usda.gov/batchprimer3/
http://urgi.versailles.inra.fr/jbrowseiwgsc/gmod_jbrowse/
http://202.194.139.32/getfasta/index.html
https://webblast.ipk-gatersleben.de/wheat_ten_genomes/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-666921 June 28, 2021 Time: 11:45 # 4

Zhang et al. Fine Mapping Leaf Rust Resistance

FIGURE 1 | Phenotype of seedling responses after inoculation with Pt race PHT. (A) Altgold (ARK), Xuezao (Xz), F1 (Xz/Altgold), and typical resistant and susceptible
F2 individuals. (B) Altgold (ARK), CS, F1 (CS/Altgold) and resistant and susceptible F2 of individuals.

TABLE 1 | Segregation for leaf rust resistance in the Xuezao/Altgold and CS/Altgold F2 population.

Number of seedling plants

Cross Population Resistant Susceptible Total χ 2
(3:1)

Xuezao/Altgold F2 1130 392 1522 χ2 = 0.46, p = 0.49

CS/Altgold F2 454 168 622 χ2 = 1.33, p = 0.24

FIGURE 2 | Comparison of genetic linkage maps of Lr65 on chromosome 2AS and the corresponding physical location on Chinese Spring RefSeq v1.0.
(A) Previous map of Wang et al. (2010). (B) The map of Lr65 in current study based on Xuezao/Altgold F2 population, genetic distances were indicated in cM on the
right-hand side. (C) The map of Lr65 in current study based on CS/Altgold F2 population, genetic distances are indicated in cM on the right-hand side. (D) The
physical location of markers of Lr65 on the chromosome 2AS of Chinese Spring RefSeq v1.0. The physical distances were shown on the right in Mb.
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target region, which corresponds to the most distal 1.16 Mb
interval of chromosome 2AS in CS RefSeq v1.0. Based on the
Indel variations between the two parents, we designed eighteen
Indel markers, two (AltID-10 and AltID-11) of which were tested
polymorphic between the parents (Table 2). These two Indel
markers and previously developed SSR markers (Alt-21and Alt-
64) were used to genotype 622 F2 plants of the cross CS/Altgold.
A genetic linkage map spanning 2.6 cM was constructed using
these four markers (Figure 2C). In this map, Lr65 gene is
delimited to a genetic interval of 0.8 cM, flanked by markers Alt-
64 and AltID-11, with AltID-11 0.2cM distal to Lr65 and Alt-64
0.6cM to Lr65 on the proximal side.

When we matched the sequences of Alt-64 and AltID-11 with
the genome sequence of CS (IWGSC v1.0), we found that the
two markers were spanning an area of about 0.34 Mb (555551–
891823) on CS chromosome 2AS (Figure 2D). Based on Altgold’s
re-sequencing data matching this 0.34 Mb interval, 11 SSR
primers were designed and one more polymorphic marker Alt-
92 was found between Altgold and CS (Table 1). After tested
among the 24 recombinants previously obtained by screening
with the flanking markers Alt-21, Alt-64 and AltID-10, AltID-
11, two recombinants were identified between Alt-92 and Lr65.
These results showed that the Lr65 locus was located between the
markers AltID-11 and Alt-92 (Figure 3).

Physical Mapping and Gene Annotation
of the Lr65 Target Interval
In order to physically locate Lr65-linking markers, the sequences
of all markers which were anchored in the high-resolution
gene map were aligned to the CS reference genome sequence.
The relative physical positions of these markers were generally
consistent with the genetic linkage map (Figure 2). The closest
flanking markers AltID-11 and Alt-92 of Lr65 delimitated a
60.11 Kb (555,551–615,668) interval in the CS Reference Genome
(RefSeq v1.0). This region encompasses two annotated protein-
coding genes, TraesCS2A02G001400 and TraesCS2A02G001500,
according to the IWGSC RefSeq v1.0 annotation6 (see text
foot note 3) (Figure 3). The two annotated genes were put
on NCBI7 to predict their protein structures, we found that
TraesCS2A02G001400 encodes a protein similar to that found
in intracellular human pathogens with a conserved regions of
internalin_A super family and TraesCS2A02G001500 encodes a
typical disease resistance protein (R protein) with a NB-ARC
domain at the N-terminal end and three contiguous LRR at
the C-terminal end (Supplementary Figure 1 and Table 3).
One 3 bp Indel and one SNP were found in the coding
sequence of TraesCS2A02G001500 (Figure 4 and Supplementary
Figure 3), indicating that these differences may lead to different
protein functions, while there is no difference in sequence of
TraesCS2A02G001400 between Altgold and CS (Supplementary
Figure 2). Therefore, TraesCS2A02G001500 is most likely the
candidate gene of Lr65.

6http://ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
7https://webblast.ipk-gatersleben.de/wheat_ten_genomes/

Comparison Among the Genomes of
Multiple Wheat Cultivars
To validate the consistency of collinearity within candidate
intervals in multiple wheat varieties, the wheat 10 + genome8

(Walkowiak et al., 2020) was used for comparison between
genomes of additional wheat materials. Six wheat varieties
(CS_RefSeq1.0, ArinaLrFor, Jagger, Julius, Norin61, Spelt) were
identified in which both genes in the candidate interval were
matched to chromosome arm 2AS, while three varieties were
found matched to the same scaffold (Paragon_scaffold, Weebill_
scaffold, and Cadenza_scaffold). The number of genes in these
nine wheat varieties was consistent within the candidate interval,
and the order of these two genes in these varieties was the same
as in CS, with only one reversed (Cadenza_scaffold) (Figure 5).
This indicates that the number of genes in the candidate region is
uniform in multiple wheat varieties.

Development of the Diagnostic Marker
of Lr65
Based on the 3-bp Indel in TraesCS2A02G001500 between
Altgold and CS, marker 1500-1 was developed and validated on
Altgold, Xuezao, and CS and the key recombinants (A25, A211,
A321, and A523) (Table 2 and Figure 6). The test result indicated
marker 1500-1 was co-segregating with Lr65 gene (Figure 3).

In order to confirm the usefulness of this Lr65 co-segregating
marker in breeding, we tested marker 1500-1 on other 18 different
Chinese wheat cultivars, we found that the PCR product size
of marker 1500-1 in Altgold containing Lr65 was unique and
not detected in the other cultivars (Supplementary Figure 4);
therefore, marker 1500-1 is diagnostic for selection of Lr65 gene.
Then we screened the marker 1500-1 in two other populations
of F1 progenies of crosses “Xuexao/Altgold//Shiyou 20” and
“Xuexao/Altgold//Zhongmai 1062” and found that the marker
was 100% associated with the leaf rust resistance (Figure 7 and
Supplementary Figure 4). Since the resistant plants were the
results of combining of Lr65 with the susceptible alleles of Shiyou
20 and Zhongmai 1062, these plants all showed the heterozygous
banding of marker 1500-1.

DISCUSSION

In addition to Lr65, four wheat leaf rust resistance genes was
located on the short arm of chromosome 2A, including Lr17,
Lr37, and Lr45 (McIntosh et al., 2008; Prasad et al., 2020). Lr11
was previously located on chromosome 2AS (Soliman et al.,
1964), but recent studies have shown that Lr11 is located distal
to chromosome 2DS (Darino et al., 2015). The gene Lr17 has
two resistance alleles, Lr17a and Lr17b (Dyck and Kerber, 1977;
Singh et al., 2001). Lr17a was flanked by marker Xgwm614 (distal)
and Xgwm407 (proximal), while marker Xgwm636 was distal
to Xgwm614 (Bremenkamp-Barrett et al., 2008). Lr65 (LrAlt)
is mapped distal to Xgwm636 (Wang et al., 2010). Gene Lr37
is located within a fragment of Ae. ventricosa (Tausch) Cess.
chromosome 2NS translocated to bread wheat chromosome 2AS,
and genetic mapping analysis showed that the 2NS translocation
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TABLE 2 | The primer sequences used in this study.

Marker Forward primer (5′–3′) Reverse primer (5′–3′) Marker type Product size (bp) Physical position (bp)

Start End

AltID-10 CATCACTTTTGTCTCATCCA CTATAACCCTGGCCCTTTAATA Indel 153 517281 517434

AltID-11 AGAGGCTATGGATTGGAGTAG CGCCATTAATGTCCATATCA Indel 249 555551 555800

Alt-92 GTCCCTCTACAGTTCCATCC GTGAAAACCATGTTGCAAAG SSR 206 615668 615874

Alt-64 AATCACATCACCCGACTCT CGATTTCTACCTTTCTGGACT SSR 173 891823 891996

Alt-21 GTAAAATAGAGGAGGGGTGAA CATGTTAGAAGGGATAGAGAGG SSR 144 1166351 1166495

Alt-24 ACCCAATGCACTTGTACTCTAT CTGGTGAATGGATGAAACA SSR 135 1227798 1227933

Alt-14 GCGAACAGAAAGAAAGAAAG CCTAGACAGCACACATCTTGTA SSR 152 1309861 1310013

1500-1 ATTCCATTGCCGGTCTATCTT GCACCTCCTTTTTGTTGTTG Indel 108 583323 583431

Xbarc-212a GGCAACTGGAGTGATATAAATACCG CAGGAAGGGAGGAGAACAGAGG SSR 185 1582751 1582936

aThe marker Xbarc212 was used in a previous study (Wang et al., 2010).

TABLE 3 | Candidate genes in the most distal 60.11kb region of 2AS.

No. Gene ID Start position of the genea Length of gene (bp) Gene annotation Conservative regions

1 TraesCS2A02G001400 562911 2915 found in the intracellular human pathogen internalin_A super family

2 TraesCS2A02G001500 580888 4532 Disease resistance protein NB-ARC and LRR

aGene ID and positions were fetched from the URGI website (https://urgi.versailles.inra.fr/) and as per IWGSC gene annotation v1.0.

FIGURE 3 | Fine mapping of Lr65 and two annotated genes in the target interval on the Chinese spring reference genome. The phenotypes and genotypes of six F2

recombinants are displayed. The code and phenotype of each individual were put on the left and right sides, respectively. Black, white and gray blocks represent the
genomic regions of Altgold, CS, and heterozygotes, respectively.

replaced about half of the short arm of chromosome 2A
(Helguera et al., 2003). The gene Lr45 is from rye chromosome
2R translocated to wheat chromosome 2A (Zhang et al., 2006).
According to the above information, we conclude that Lr65 is a
unique leaf rust resistance gene.

Previously Lr65 was mapped distal to the closest marker
Xbarc212 on wheat chromosome 2AS (Wang et al., 2010;

Mohler et al., 2012). In this study, using two large F2 segregating
populations of crosses Xuezao/Altgold and CS/Altgold, we fine
mapped Lr65 and narrow down it between markers AltID-11
and Alt-92, corresponding to the 60.11 Kb (555,551–615,668)
interval according to the CS Reference Genome.

The gene fine mapping involved developing more
polymorphic markers covering the genetic interval of the
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FIGURE 4 | Structure of the annotated gene TraesCS2A02G001500 displaying nucleotide and amino acid sequence polymorphisms between the resistant and
susceptible parents. Introns and exons are indicated by lines and orange boxes, respectively. Blue and red color characters indicate alleles of resistant and
susceptible parents, respectively. Numbers in parentheses represent the positions of nucleotide and amino acid sequences relative to ATG and M. – Indicates a
sequence deletion.

FIGURE 5 | Candidate interval of two genes TraesCS2A02G001400 and TraesCS2A02G001500 compared among nine wheat varieties. The left side indicates the
position of the gene on the chromosome and the right side is the wheat variety name.

target gene. With the release of whole genome Reference
sequence of CS, development of polymorphic markers associated
with a target gene is becoming easier. The process of fine
mapping of Lr65 illustrates the effectiveness of the reference
genome information and the resequencing data of the specific
parental lines for the guided development of markers to target
genes. Our work also demonstrate the advantage of using
different crosses in the genetic mapping. Even though additional
closer markers to Lr65 were found using the Xuezao/Altgold
F2 population, all were on one side to the target gene. When
we changed to the CS/Altgold population, the target gene was
successfully delimitated by flanking markers and narrow down
to a shorter interval.

In the 60.11-Kb interval that contains Lr65 locus on
CS 2AS, there are two protein-coding genes annotated,
TraesCS2A02G001400 and TraesCS2A02G001500, according to
the IWGSC RefSeq v1.0 annotation (see text foot note 3).
Sequence analysis showed no difference in TraesCS2A02G001400
between the resistant and susceptible parents (Altgold, CS and

FIGURE 6 | Verification of Lr65’s diagnostic marker 1500-1. Nos. 1–3 are
Altgold, Xuezao and CS. Nos. 4–7 are recombinants A523, A25, A321, and
A211, respectively. M is marker.

Xuezao). However, we found two sequence variations (one 3-
bp Indel and one SNP) between Altgold and CS in the coding
region of TraesCS2A02G001500. One marker was developed
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FIGURE 7 | Marker-assisted selection of Lr65 with diagnostic marker 1500-1. (A) Selection of Lr65 in “Xuexao/Altgold//Shiyou 20” population. 1: a resistant progeny
of Xuexao/Altgold, 2: Shiyou20, 3–14: the resistant plants among the progenies. (B) Selection of Lr65 in “Xuexao/Altgold//Zhongmai 1062” population. 1: a resistant
progeny of Xuexao/Altgold, 2: Zhongmai1062, 3–14: the resistant plants among the progenies. M is marker.

to tag the 3-bp Indel variation between the parents and
found to be co-segregating with Lr65. TraesCS2A02G001500
was predicted to encode a protein with nucleotide binding
sites and multiple leucine-rich repeats (NBS-LRR), the typical
structures of disease resistance genes (R genes). Many cloned
wheat rusts resistance genes are found to encode NBS-LRR
proteins, including leaf rust resistance genes (Lr1, Lr10, Lr21,
and Lr22) (Feuillet et al., 2003; Huang et al., 2003; Hiebert
et al., 2007; Qiu et al., 2007), stripe rust resistance genes
(Yr5 and Yr10) (McGrann et al., 2014; Yuan et al., 2018),
and stem rust resistance genes (Sr22, Sr33, Sr35, Sr45, and
Sr50) (Saintenac et al., 2013; Periyannan et al., 2014; Casey
et al., 2016; Saur et al., 2019; Md Hatta et al., 2020).
Our results suggest that TraesCS2A02G001500 might be the
candidate gene of Lr65. The works to verify the disease
resistance function of the Altgold allele of TraesCS2A02G001500
are underway. However, there is still a chance that the
sequence corresponding to Lr65 is absent in CS genomic
sequence. If so, we need to construct a genomic library
of Altgold and to clone Lr65 by physical mapping of
contigs. The closest flanking and co-segregating markers
developed in our present study will greatly aid the map-based
cloning of Lr65.

Spelt is genetically distant from common wheat and with a
high degree of genetic variation unexploited (Würschum et al.,
2017; Akel et al., 2018). Lr65 was first identified in spelt wheat and
not being widely used in common wheat breeding. In addition
to the resistance to the Chinese isolate PHT as in this study,
Lr65 was resistant to many Australia and Germany P. triticina
isolates (Mohler et al., 2012). Utilization of Lr65 will help to
diversify the resistance genes in common wheat breeding and
help to protect wheat production. However, due to the evolution

of new virulent pathogen isolates, major disease resistance genes
are prone to lose their effectiveness when deployed alone. Mohler
et al. (2012) had reported the existence of virulent pathotypes
for Lr65. The Lr65 gene was recommended to be used in
combination with other resistance genes for the protection
against leaf rust. The co-segregating marker we developed in
present study would be helpful to pyramid Lr65 with other
resistance genes.
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Cassava production and productivity in Eastern, Central, and Southern Africa are ravaged

by cassava brown streak disease (CBSD), causing yield losses of up to 100% when

susceptible varieties are grown. Efforts to develop CBSD-resistant clones are underway.

However, the methods for screening CBSD resistance currently vary between breeders

and pathologists, with the limited empirical data to support their choices. In this study,

we used the empirical CBSD foliar and root necrosis data from two breeding populations,

termed cycle zero (C0) and cycle one (C1), to assess and compare the effectiveness of the

CBSD screeningmethods of breeders vs. pathologists. On the one hand, the estimates of

broad-sense heritability (H2) for the CBSD root necrosis assessment of breeder ranged

from 0.15 to 0.87, while for the assessment method of pathologists, H2 varied from

0.00 to 0.71 in C0 clones. On the other hand, the marker-based heritability estimates

(h2) for C0 ranged from 0.00 to 0.70 for the assessment method of breeders and from

0.00 to 0.63 for the assessment method of pathologists. For cycle one (C1) population,

where both foliar and root necrosis data were analyzed for clones assessed at clonal

evaluation trials (CETs) and advanced yield trials (AYTs), H2 varied from 0.10 to 0.59

for the assessment method of breeders, while the H2 values ranged from 0.09 to 0.35

for the CBSD computation method of pathologists. In general, higher correlations were

recorded for foliar severity from the assessment method of breeders (r = 0.4, p≤ 0.01 for

CBSD3s and r = 0.37, p ≤ 0.01 for CBSD6s) in C1 clones evaluated at both clonal and

advanced breeding stages than from the approach of pathologists. Ranking of top 10 C1

clones by their indexed best linear unbiased predictors (BLUPs) for CBSD foliar and root

necrosis showed four overlapping clones between clonal and advanced selection stages

for themethod of breeders; meanwhile, only a clone featured in both clonal and advanced

selection stages from the CBSD assessment method of pathologists. Overall, the CBSD

assessment method of breeders was more effective than the assessment method of

pathologists, and thus, it justifies its continued use in CBSD resistance breeding.
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INTRODUCTION

The human population in the next 30 years is projected to
increase by 25%, from the current world population of ∼7.5
billion to 10 billion people. The highest rate of this growth is
expected to arise from sub-Saharan Africa (SSA; Hickey et al.,
2017). Consequently, there is an urgent need to match this rapid
growth in the human population with a concomitant increase in
food production. Cassava (Manihot esculenta Crantz), a climate-
resilient food staple in SSA, is a suitable crop to meet the
projected calorie demand since more than half of the global
production is in Africa (FAOSTAT, 2019).

Unfortunately, the average on-farm yield of cassava in
Africa is low, stagnating at 12 tons/ha compared with 20
tons/ha estimated for Asian and Latin American countries
(Malik et al., 2020). The biotic factors, such as cassava brown
streak disease (CBSD), cassava mosaic disease (CMD), cassava
bacterial blight, and whitefly vector, are the key obstacles
to optimal cassava production and productivity in Africa
(Maruthi et al., 2005; Mware et al., 2009; Patil and Fauquet,
2009; Patil et al., 2015). In the case of East Africa, the
CBSD is currently the most devastating constraint for cassava
production, causing yield losses of up to 100% in highly
susceptible varieties (Alicai et al., 2007; Legg et al., 2011;
Hillocks and Maruthi, 2015). Typical cassava plants infected
with CBSD present characteristic yellowing along the veins,
compromising the photosynthetic capacity of leaves, brown
streaks on stems, and corky necrosis in the edible root
parenchyma, and rendering the roots unusable for food or feed
(Hillocks, 2004; Patil et al., 2015; Hillocks et al., 2016).

The severity and incidence of foliar and root CBSD symptoms
form the basis of CBSD resistance screening. Currently, a scale of
1–5 is used to independently assess CBSD severity on foliar and
roots; these assessments are commonly performed at 3 (CBSD3s)
and 6 (CBSD6s) months for foliar and at 12 (CBSDRs) months
at harvest for root necrosis (Hillocks, 2004; Kaweesi et al., 2014;
Okul et al., 2018). The scores for the foliar severity assessment
are as follows: 1 = no symptom, 2 = slight foliar chlorotic leaf
mottle with no stem lesions, 3 = foliar chlorotic leaf mottle and
blotches with mild stem lesions, 4 = foliar chlorotic leaf mottle
and blotches with well-pronounced stem lesions, but no dieback,
and 5= defoliation with stem lesions and dieback. The scores for
the root necrosis assessment are as follows: 1 = no necrosis, 2 =
mild necrotic lesions (1–10%), 3 = pronounced necrotic lesions
(11–25%), 4 = severe necrotic lesion (26–50%), and 5 = very
severe necrotic lesions (>50%).

Although the CBSD symptom expressions are common to

both breeders and pathologists, there is an apparent discrepancy

in the data processing for decision support. For example,

pathologists compute plot scores by averaging all severity scores

≥2, i.e., they exclude the CBSD severity scores of 1 when deriving
plot mean for foliar and root symptoms (Ogwok et al., 2012;
Odipio et al., 2014; Wagaba et al., 2017). On the other hand,
breeders compute the averages of CBSD foliar and root severity
using all the recorded observations, i.e., they do not exclude
the CBSD scores of 1 (Kawuki et al., 2016, 2019; Okul et al.,
2018). Essentially, the average values obtained from the CBSD

assessments of pathologists or breeders are the different traits
used for decision support.

In our efforts to optimize the cassava breeding operations
tailored toward increased genetic gains, there is a need to assess
the precision and relationship between the CBSD assessment
methods. A keymetric used to assess trait reliability is heritability,
which measures the ratio of genetic variance to phenotypic
variance (broad-sense heritability) or the ratio of additive genetic
variance to phenotypic variance (narrow-sense heritability)
(Bernardo, 2003). Accordingly, the data sets presented in this
study aimed at answering the following research questions: (a)
What proportion of total genetic and additive genetic variances
are captured by the CBSD assessment methods of breeders and
pathologists? and (b) To what extent do the CBSD assessment
methods of breeders and pathologists select and advance the
same clones?

MATERIALS AND METHODS

Test Clones and CBSD Field Evaluations
The clones used in this study comprised genomic selection cycle
zero (C0) and cycle one (C1) populations developed by the
cassava breeding program of National Crops Resources Research
Institute (NaCRRI). The data for C0 clones presented in this
study were collected from clonal evaluation trials (CETs), while
C1 clones were evaluated in both CETs and advanced yield
trials (AYTs). The first set of CETs from C0, herein referred
to as CETs-1, were evaluated at seven sites during first (April–
May) and second (September–October) planting seasons in 2015.
The first and second plantings generally depict the onset of
rains. In Uganda, our first and second rains typically appear
in February–March and September–October, respectively. The
trial sites represent some of the key cassava production and
consumption zones in Uganda. In these multilocational trials,
a total of 155 C0 clones from a genomic selection training
population of 427 genotypes were evaluated (Ozimati et al.,
2018). Each trial was established in an augmented design with
five checks (i.e., UG110008, UG110014, UG110015, UG110016,
and UG110017) and replicated —five to six times in single-
row plots of 10 plants spaced at 1 × 1m between and
within rows.

On the other hand, the C1 population presented in this study
was generated from crosses made among 100 progenitors, a
subset of the 155 C0 clones. In 2015–2016, we started with a
seedling evaluation of ∼5,000 genotypes for C1, from which 735
clones were evaluated in CET (2016–2017), herein referred to
as CETs-2 at two locations (i.e., Namulonge and Serere). The
CETs-2 were also planted in an augmented design with three
checks, namely, UG110015, UG110017, and UG110134 in single-
row plots of 10 plants spaced at 1× 1m between and within rows.
During harvest in August 2017, a subset of 50 C1 clones were
selected, based on the yield performance and response to CBSD
as well as CMD from the CETs-2, and established in AYTs at three
locations (i.e., Arua, Serere, and Namulonge). At each location,
the trials were established in randomized complete block design,
with a plot size of 6× 6m, replicated twice. For all trials, the plots
were separated by 2-m alleys.
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Since the plant-based foliar CBSD data collected at 3
(CBSD3s) and 6 (CBSD6s) months after planting (MAP) were
only available for C1 clones assessed at CETs-2 and AYTs, we
derived the mean foliar CBSD values for the assessment methods
of breeders and pathologists for this population. To compute
the plot means for foliar CBSD severity for the two disease
assessmentmethods, plant-based diseases scored on a scale of 1–5
were used. In this case, score 1= no foliar symptom expressions,
2 = mild symptoms (1–10%), 3 = pronounced chlorotic mottle
and mild stem lesions (11–25%), 4 = foliar chlorotic leaf mottle
and blotches with pronounced stem lesions (26–50%), and 5 =

defoliation with stem lesions and dieback (>50%) (Hillocks and
Thresh, 2000).

At harvest, which coincided with 12 MAP for both C0 and C1

populations, all plants per plot were uprooted, and roots were
also assessed individually for CBSD necrosis using the scale of
1–5, where 1 = no necrosis, 2 = mild necrotic lesions (1–10%),
3 = pronounced necrotic lesions (11–25%), 4 = severe necrotic
lesions (26–50%) with mild root constrictions, and 5 = very
severe necrotic lesions (>50%) with severe root constrictions
(Hillocks and Thresh, 2000; Kaweesi et al., 2014). We further
processed the root necrosis data to match the mean CBSD
severity computationmethods of breeders and plant pathologists,
i.e., all root severity scores were averaged for the assessment
method of breeders, while only the root severity scores ≥2 were
averaged for the CBSD assessment method of pathologists.

Genotyping of the Clones
DNA was extracted from ∼100mg of fresh young leaves from
each of the 155 C0 clones. DNA extractions were performed using
QIAGEN DNeasy, Texas, USA extraction kits and quantified
using Picogreen R© to ensure that the required concentrations
for sequencing were obtained. Consequently, DNA samples
were genotyped using the genotyping-by-sequencing method as
described by Elshire et al. (2011). Removing the single nucleotide
polymorphic (SNP)markers by filtering and imputationmethods
has been described in an earlier study (Hamblin and Rabbi, 2014;
Wolfe et al., 2016, 2017). Ultimately, we had a total of 25,383 SNP
markers, which were filtered at minor allele frequency (MAF)
≥0.01 for the estimation of SNP-based heritability for each of the
C0 clones.

Statistical Analyses
To estimate the broad-sense heritability for each CBSD
assessment method, i.e., breeders vs. pathologists for C0 clones,
we fitted the linear mixed model for each trial using the lme4
package for the R statistical computing software (R Development
Core Team, 2008) as follows:

yijk = µ + ci + bj + eijk Model 1

where yijk was the response of ith clone from jth block in the kth
plot, µ represented the fixed trial mean, b and c represented a
vector of random block and clone effects, respectively, and e was
the random residual term. The variance components to compute
the broad-sense heritability (H2) were extracted from the
model described earlier. The plot-based broad-sense heritability

estimates for root necrosis for the two CBSD assessment methods
across 14 CETs-1 (i.e., location–season combinations) were then
computed as follows:

H2
=

σ2c

(σ2c + σ2
b
+ σ 2

e )

where σ2c was the clone variance, σ2
b
was the variance due to

blocks, and σ2e was the model residual variance.
To obtain the genomic estimated breeding values and the

additive genetic variance for the two methods from CETs-1,
we fitted a single-step genomic best linear unbiased predictor
(G-BLUP) model as follows:

yijk = µ + wi + gj + eijk Model 2

where yijk was the response of jth genotype in the ith block
recorded for kth plot, µ and w were the fixed grand mean and
block effects, respectively, gj represented the random genotype
effect, assuming gj ∼N(0, Gσ

2
g) with σ

2
g representing the variance

due to genotypic effects while G represented the covariance
structure among clones based on the marker data, and e was
the random model residual effect, assumed to be normally
distributed as ε

IID
ijk ∼ N (0, σ2

e) with σ
2
e as the residual variance.

We extracted the variance components from the G-BLUP model
and estimated the narrow-sense heritability (h2 SNP-heritability)
using the formula as follows:

h2 =
σ2g

(σ2g + σ2e)

where σ2g was the additive genetic variance and σ2e was the model
residual variance.

Furthermore, we examined how many top 10 ranked clones
at CETs-2 were featured among the best 10 clones at AYTs for
the two CBSD assessment methods from C1 population. To do
this, the data sets from each of the two trial stages (i.e., CETs-
2 and AYTs) were combined across sites, followed by fitting a
multilocational linear mixed model as described below for each
trial stage. For the CETs-2, we fitted a multilocational model
described as follows:

yijkl = µ + li + gj + b/lk(i) + glij + εijkl Model 3

where the grand mean µ and the main effect of the ith
environment (l) were considered fixed, while the jth genotype
(g), the kth block (b) nested within the ith environment (l),
the interaction of the jth genotype (g) by ith environment (gl),
and the residual term (ε) were considered random. The variance
components were extracted for the estimation of broad-sense
heritability, using the formula described above for CETs-1.

Similarly, we fitted a multilocational linear mixed model for
C1 AYTs, where the grand mean and location were considered
fixed, while clones, replicates nested within trial, genotype-by-
environment interactions, and residual terms were considered
random. Accordingly, the variance components were extracted
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to compute the plot-based broad-sense heritability estimates for
foliar and root necrosis for the two CBSD assessment methods.

The raw phenotypic means and BLUP values for foliar CBSD
severity as well as root necrosis of C1 clones were extracted
for both CETs-2 and AYTs from the models fitted and used
to compute Pearson’s correlation coefficients for 50 C1 clones
that featured in both CETs-2 and AYTs for each of the CBSD
assessment methods. Furthermore, we computed selection index
(SI) from BLUPs and raw phenotypic means of the three traits
across sites, with the traits having equal economic weights
as follows:

SI = −1(CBSD3s)+−1(CBSD6s)+−1(CBSDRs)

where CBSD3s, CBSD6s, and CBSDRs were the CBSD severities
assessed at 3, 6, and 12 MAP, respectively.

Finally, we used the indexed BLUP values of the three traits for
the 50 clones that appeared at both CETs-2 and AYTs for ranking
the top 10 clones at each trial stage. The purpose of ranking was to
compare the number of 10 top clones that overlapped at CETs-2
and AYTs for each of the CBSD averaging methods.

RESULTS

Broad-Sense and SNP-Heritability

Estimates
The broad-sense heritability (H2) estimates for the CBSD root
severity assessment method of breeders ranged from 0.15 in
Arua 2015A trial to 0.87 in Namulonge 2015A trial (Table 1).
On the other hand, H2 estimates for the assessment method
of pathologists ranged from 0.00 in Arua 2015A trial to 0.71
in Namulonge 2015A and B trials (Table 1). Meanwhile, the
narrow-sense heritability (h2) estimates, also referred to as SNP-
based heritability, for the assessment method of breeders ranged
from 0.00 in Arua 2015A trial to 0.72 in Namulonge 2015A trial
(Table 1). Similarly, h2 for the assessment method of pathologists
varied from 0.00 in Arua 2015A trial to 0.63 in Serere 2015A trial.
Overall, the average broad-sense and narrow-sense heritability
estimates across trials were higher for the CBSD assessment
method of breeders (H2

= 0.56 and h2 = 0.36) than for the
CBSD assessment approach of pathologists (H2

= 0.49 and
h2 = 0.25) (Table 1).

For C1 population, the broad-sense heritability estimates
for foliar and root necrosis from both CETs-2 and AYTs are
presented in Figure 1. We also observed higher H2 values
for the CBSD assessment method of breeders compared with
the CBSD assessment method of pathologists for both CET
and AYT evaluation stages. For example, at CET, H2 at 3
months was 0.48 for the method of breeders and 0.38 for the
method of pathologists. At 6 months, H2 was 0.47 for the
method of breeders and 0.21 for the computation of pathologists.
Based on the root necrosis data at harvest, the broad-sense
heritability values were 0.44 and 0.35 for the methods of breeders
and pathologists, respectively. Similarly, the higher broad-sense
heritability estimates of 0.42 and 0.56 were recorded for the
combined data from AYTs for the method of breeders compared

with the estimates of 0.41 and 0.09 recorded for the computations
of pathologists for CBSD3s and CBSD6s, respectively (Figure 1).

Relationship Between BLUP Values of the

50 Clones Evaluated at CETs-2 and AYTs

for Mean CBSD Assessment Methods
In general, we recorded higher Pearson’s correlation coefficients
from the foliar CBSD assessment method of breeders than
the approach of pathologists, using both BLUP estimates and
raw phenotypic means across locations (Table 2). On the one
hand, the highest correlation coefficient value (r = 0.40, p ≤

0.01) was observed for CBSD3s from the assessment method of
breeders. On the other hand, low and statistically nonsignificant
correlation coefficients were recorded for root necrosis and
indexed trait values for both the CBSD assessment methods
(Table 2). The correlation values for root necrosis and indexed
trait values varied from 0.02 to 0.21. Overall, for all three disease
traits and their indexed values, the CBSD computation method
of breeders had higher correlation coefficients than the approach
of the CBSD assessment of pathologists (Table 2).

Ranking of 50 Clones in CETs-2 and AYTs

Using Indexed BLUPs Values for the Two

CBSD Averaging Methods
We ranked the 50 clones from C1, CETs-2, and AYTs by
their indexed BLUP values of CBSD3s, CBSD6s, and CBSDRs
for the two CBSD assessment methods (Table 3). Based on
ranking of the top 10 clones, four clones (i.e., UG15F190P001,
UG15F170P507, UG15F079P011, and UG15F176P502)
evaluated in CETs-2 and AYTs overlapped among the top
10 ranked clones for the mean CBSD assessment method of
breeders, whereas only one clone (UG15F190P001), overlapped
between CETs-2 and AYTs evaluated among the top 10 ranked
clones (Table 3).

DISCUSSION

On recognizing the CBSD epidemic in Uganda in the early
2000s, concerted research efforts were initiated to understand
the diversity of viruses causing CBSD (Mbanzibwa et al., 2011;
Alicai et al., 2016; Ateka et al., 2017; Mbewe et al., 2017), their
transmission by the whitefly vector, Bemisia tabaci (Maruthi
et al., 2005; Omongo et al., 2012; Mugerwa et al., 2018; Ally
et al., 2019), and sourcing for resistant genetic materials for
breeding (Kanju et al., 2007; Kawuki et al., 2016). More recently,
transgenic approaches have also been explored to combat CBSD,
but with no officially released genetically transformed plant
under cultivation in Uganda to date (Patil et al., 2011; Yadav
et al., 2011; Wagaba et al., 2017). Collectively, these research
interventions have contributed to our increased understanding
and management of CBSD.

A discrepancy remains in the methodologies of CBSD
resistance screening, which continues to be refined (Kawuki
et al., 2019). In general, in screening for CBSD resistance,
plant pathologists assess clone performance based on average
foliar infected plants and/or roots, i.e., exclude scores of 1
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TABLE 1 | Broad and narrow-sense heritability estimates associated with breeder’s and pathologist’s CBSD root severity assessment methods.

Trial location Seasons C0 clones Broad-sense heritability Narrow-sense heritability

Breeder’s Pathologist’s Breeder’s Pathologist’s

Mityana 2015A 115 0.39 0.51 0.10 0.04

Mityana 2015B 105 0.62 0.64 0.49 0.22

Arua 2015A 149 0.15 0.00 0.00 0.00

Arua 2015B 111 0.64 0.47 0.39 0.34

Kasese 2015A 116 0.26 0.06 0.21 0.06

Kasese 2015B 138 0.54 0.57 0.51 0.34

Kigumba 2015A 147 0.49 0.61 0.25 0.09

Kigumba 2015B 116 0.56 0.54 0.13 0.05

Namulonge 2015A 150 0.87 0.71 0.72 0.31

Namulonge 2015B 113 0.79 0.71 0.55 0.45

Serere 2015A 123 0.68 0.64 0.64 0.63

Serere 2015B 112 0.71 0.58 0.70 0.56

Lira 2015A 149 0.47 0.44 0.25 0.22

Lira 2015B 108 0.67 0.48 0.54 0.27

Mean Heritability 0.56 0.49 0.39 0.25

2015A and 2015B, refers to the first (April-May) and second (Aug-Sept) planting seasons.

FIGURE 1 | The broad-sense heritability estimates (H2) for the three disease traits (cassava brown streak disease severity assessed at 3-months after planting

[CBSD3s], cassava brown streak disease severity assessed at 6-months after planting [CBSD6s], cassava brown streak disease root severity assessed at 12-months

after planting [CBSDRs]) for clonal evaluation trials (CETs-2) and advanced yield trials (AYTs) for the two mean CBSD computation methods.

(Ogwok et al., 2012; Odipio et al., 2014). On the other hand,
breeders assess clone performance based on average foliar
infected plants and/or roots without excluding the severity scores
of 1, i.e., no data are excluded (Kanju et al., 2007; Okul et al.,
2018; Kawuki et al., 2019; Ozimati et al., 2019). Certainly,

the methods have varying sampling sizes, hence introducing
sampling errors or biases. This study aimed at comparing the
two CBSD severity assessment methods based on the heritability
estimates and the relative ranking of clones at different
trial stages.
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TABLE 2 | Pearson correlation coefficients of the 50 clones evaluated at CETs-2

and AYTs.

BLUPs Raw phenotype

Traits Breeder’s Pathologist’s Breeder’s Pathologist’s

CBSD3s 0.40** 0.29** 0.37** 0.19ns

CBSD6s 0.37** 0.20ns 0.36** 0.26*

CBSDRs 0.02ns 0.03ns 0.05ns 0.11ns

S.I 0.20ns 0.06ns 0.21ns 0.09ns

*, **Significant correlation at p ≤ 0.05 and 0.01, respectively.

ns, non-significant correlations coefficients; CBSD3s, cassava brown streak disease

severity scored 3 months after planting; CBSD6s, cassava brown streak disease severity

scored 6 months after planting; CBSDRs, cassava brown streak disease root severity

scored at 12-months harvest; S.I, selection index values for the three cassava brown

streak traits; BLUPs, best linear unbiased predictors for clones.

TABLE 3 | Ranking of top 10 C1 clones by their indexed BLUPs values for the two

CBSDs.

Breeder’s Pathologist’s

CETs-2 AYTs CETs-2 AYTs

UG15F190P001* UG15F190P001 UG15F262P513 UG15F265P001

UG15F262P513 UG15F079P011 UG15F190P001* UG15F312P003

UG15F170P507* UG15F140P003 UG15F017P003 UG15F190P001

UG15F176P004 UG15F196P004 UG15F177P016 UG15F249P007

UG15F201P517 UG15F176P502 UG15F170P507 UG15F047P010

UG15F079P011* UG15F177P016 UG15F306P028 UG15F044P009

UG15F176P502* UG15F044P009 UG15F176P004 UG15F169P507

UG15F017P003 UG15F170P507 UG15F222P038 UG15F158P005

UG15F209P001 UG15F222P038 UG15F361P510 UG15F140P001

UG15F302P513 UG15F312P003 UG15F154P005 UG15F196P004

CETs-2, clonal evaluation trial (C1); AYTs, advanced yield trials.

*Overlapping clones at CET and AYT.

Heritability Estimates of CBSD Foliar and

Root Necrosis for the Two Assessment

Methods
According to Bernardo (2003), the broad- and narrow-sense

heritability estimates are critical for selection decisions. The

comparison of heritability estimates across CETs-1 revealed

higher heritability estimates for the method of breeders for

CBSD root severity assessment than that for the method of
pathologists, with the highest plot-based broad-sense (H2

= 0.87)
and narrow-sense (h2 = 0.72) heritability estimates recorded
for Namulonge trial in 2015A. In a recent study by Kawuki
et al. (2019), a minimum number of 30 roots per plot were
recommended to obtain the meaningful assessment of CBSD
root necrosis. A notable difference between the CBSD assessment
methods of breeders and pathologists is that the former uses
sample sizes larger (i.e., includes all roots to obtain plot mean)
than the latter (i.e., excludes roots with a severity score of 1).
Averaging all root scores per plot possibly explains the higher
precision and heritability estimates observed for the CBSD
assessment of breeders compared with that for the approach
of pathologists with the exclusion of roots scores of 1 (i.e.,

no necrosis). In the same study by Kawuki et al. (2019), the
lowest standard error from five CBSD root necrosis assessment
methods were associated with trials at Namulonge, supporting
early studies qualifying Namulonge as a hot spot for CBSD
screening (Kaweesi et al., 2014; Okul et al., 2018). It is not
surprising that Namulonge presented the highest heritability
estimates in this study, supporting it as a hot spot for CBSD
screening. Efforts are currently in place to improve the CBSD
phenotyping at the hot spot in Namulonge by the use of
imaging technology, which is considered a robust and less
subjective screening method. As stated by Bernardo (2003),
heritability is an important function in the genetic study of
metric character, because it reflects the predictive accuracy and
reliability of the phenotypic values. Thus, the highest heritability
estimates (i.e., broad sense and narrow sense) for both foliar
and CBSD root necrosis recorded from the computation of
breeders support the use of this method for efficient selection of
CBSD-resistant clones.

Comparing Pearson’s Correlation

Coefficients for BLUP Estimates of Clone

in CETs-2 and AYTs for the Two CBSD

Assessments Methods
The best linear unbiased predictor (BLUP) pioneered by C.R.
Henderson (Piepho et al., 2008) as a procedure for genetic
estimation was first used for practical dairy breeding. The BLUP
procedure allows for a more accurate estimation of genetic
merit of traits in the unbalanced data while accounting for the
differences in the amount of data available for each genotype
(Bernardo, 2003). In general, the correlation coefficients of
BLUP values for CBSD traits of clones that were filtered from
CETs-2 (C1) to AYTs (C1) were low to moderate (r = 0.02–
0.40). However, these correlation coefficients were higher and
significant (p ≤ 0.01) for the mean foliar CBSD computation of
breeders than the method of pathologists for clones that made it
from CETs-2 to AYTs. Ozimati et al. (2019) previously reported
a high genetic correlation of 0.70 for root necrosis between
measurements at seedling vs. at clonal evaluations. In this study,
the low correlation observed between BLUPs values at CETs-
2 and AYTs for root necrosis could be due to degeneration.
Recycling the clones for more than three planting seasons has
been reported to cause resistance degeneration due to the buildup
of the virus population (Shirima et al., 2017). In fact, to date,
no clones have been reported to be immune in the conventional
breeding pipeline, except for the recent sources of immunity
reported from Latin American germplasm (Sheat et al., 2019).
One approach of selecting and advancing clones in face of
degeneration due to the virus buildup would be to complement
the symptom-based screening with the measurements of virus
titer, especially when advancing clones from the mid-to-late
stages of selection, i.e., from CET stage onward. However, the
high cost per assay is a major limitation to the use of quantitative
PCR (q-PCR) for virus screening of a large number of clones, as at
CET (i.e., over 600 genotypes; Ogwok et al., 2012; Kaweesi et al.,
2014; Okul et al., 2018). Through international collaboration
with Plant Virus Department, Leibniz Institute DSMZ-German
Collection of Microorganism and Cell Culture, Braunschweig,
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Germany, a cheap and rapid assay is being developed to enable
the screening of large entries. Nonetheless, the higher correlation
coefficients observed between the BLUP values of clones in
CETs-2 and AYTs for mean CBSD computation of breeders
than for the approach of pathologists support the use of the
assessment methods of breeders for a more effective selection of
resistant clones.

Ranking of Clones by Their Indexed BLUPs

for the Two CBSD Averaging Methods
In a recent study by Kawuki et al. (2019), to evaluate the
alternative methods for assessing CBSD root necrosis, 256
clones were ranked using their BLUPs for five CBSD assessment
methods. The comparison of the top 15 resistant clones ranked
across the CBSD assessment methods showed one overlapping
clone for all the five CBSD root necrosis assessment methods
(Kawuki et al., 2019). In this study, ranking of the top 10 resistant
clones from CETs-2 and AYTs revealed four clones featuring
at both evaluation stages for the CBSD assessment method of
breeders compared with only a single clone that overlapped
for the approach of pathologists. Four clones overlapping
at CETs-2 and AYTs for breeders mean CBSD computation
relative to a single clone for pathologists assessment method,
further supports the use of breeders-derived phenotypes to guide
selection decisions.

CONCLUSION

This study provides insights into CBSD necrosis assessment as
performed by the methods of breeders and pathologists that
remarkably differ in how the mean severities are computed.
Based on the heritability estimates and the number of clones
that were filtered, it was evident that computing mean CBSD
for the entire number of roots from a plot was more reliable

compared with cases where roots with severity scores of
1 were excluded.
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Wheat (Triticum aestivum L.) is the most widely grown cereal crop in the world and is
staple food to half the world’s population. The current world population is expected
to reach 9.8 billion people by 2050, but food production is not expected to keep
pace with demand in developing countries. Significant opportunities exist for traditional
grain exporters to produce and export greater amounts of wheat to fill the gap. Karnal
bunt, however, is a major threat, due to its use as a non-tariff trade barrier by several
wheat-importing countries. The cultivation of resistant varieties remains the most cost-
effective approach to manage the disease, but in countries that are free of the disease,
genetic improvement is difficult due to quarantine restrictions. Here we report a study
on pre-emptive breeding designed to identify linked molecular markers, evaluate the
prospects of genomic selection as a tool, and prioritise wheat genotypes suitable for
use as parents. In a genome-wide association (GWAS) study, we identified six DArTseq
markers significantly linked to Karnal bunt resistance, which explained between 7.6 and
29.5% of the observed phenotypic variation. The accuracy of genomic prediction was
estimated to vary between 0.53 and 0.56, depending on whether it is based solely on
the identified Quantitative trait loci (QTL) markers or the use of genome-wide markers.
As genotypes used as parents would be required to possess good yield and phenology,
further research was conducted to assess the agronomic value of Karnal bunt resistant
germplasm from the International Maize and Wheat Improvement Center (CIMMYT). We
identified an ideal genotype, ZVS13_385, which possessed similar agronomic attributes
to the highly successful Australian wheat variety, Mace. It is phenotypically resistant
to Karnal bunt infection (<1% infection) and carried all the favourable alleles detected
for resistance in this study. The identification of a genotype combining Karnal bunt
resistance with adaptive agronomic traits overcomes the concerns of breeders regarding
yield penalty in the absence of the disease.

Keywords: Karnal bunt resistance, Tilletia indica, wheat, Triticum aestivum, genome-wide association study,
GWAS, genomic prediction, grain yield
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INTRODUCTION

Wheat (Triticum aestivum L.) is the most widely grown cereal
crop on the planet, a staple of the world economy, supplying
one fifth of calories consumed by people each day (Anonymous,
2020). The current world population of about 7.7 billion is
expected to increase and reach 9.8 billion people by 2050.
To accommodate the increased demand for food, annual
cereal production will need to rise by about 60–70% from
the current level of 2.8 billion tonnes. For various reasons,
however, production is not expected to keep pace with demand
in developing countries, and their net imports of cereals
are projected to more than double from 135 million metric
tonnes in 2008/2009 to 300 million metric tonnes in 2050
(Food Agriculture Organization 2009). This gap can be bridged
by increased imports, and significant opportunities exist for
traditional grain exporters, including Australia, to produce and
export greater amounts of wheat over the next few decades
(Linehan et al., 2012). Karnal bunt, a disease caused by the fungus
Tilletia indica Mitra [syn. Neovossia indica (Mitra) Mundkur],
is a threat to grain export (Joshi et al., 1983), due to its use as
a non-tariff trade barrier by several wheat-importing countries
(Beattie and Biggerstaff, 1999). The disease has minimal impact
on wheat grain yield (Warham, 1986; Murray and Brennan,
1998) but the infected grains exude an unpleasant, rotten fish
odour due to a chemical (trimethylamine) produced by the fungal
spores (Mitra, 1935). Trimethylamine is associated with multiple
diseases in humans, including renal disorders, cancer, obesity,
and cardiovascular diseases (Chhibber-Goel et al., 2016).

Control of this disease is difficult because teliospores of the
fungus are resistant to physical and chemical factors (Fuentes-
Dávila et al., 2018), the fungus causes local infections (Fuentes-
Davila, 1996), and teliospores may remain dormant for more
than 32 months (Babadoost et al., 2004). The cultivation of
resistant varieties remains the most cost-effective approach to
manage the threat of incursions into countries free of the disease
(Singh et al., 2007; Emebiri et al., 2019a). Sources of resistance
have been identified in the wild relative of wheat, Aegilops
tauschii (Chhuneja et al., 2008), and in synthetic hexaploid wheat
(Mujeeb-Kazi et al., 2006), but resistance in common wheat
is limited (Fuentes-Dávila and Rajaram, 1994), and as such,
progress in breeding resistant varieties has remained modest. In
most wheat-exporting countries that are free of the disease, there
are no breeding efforts due to cost burdens and the low return on
investments, which in the absence of an incursion, is zero (White
et al., 2016). Availability of molecular markers closely linked to
resistance genes could be incentivising, as it has the potential
to improve selection (Singh et al., 2012; Emebiri et al., 2019b),
but efforts in the past have also been modest. Quantitative trait
loci (QTL) associated with Karnal bunt resistance in common
wheat have been identified in the past (Nelson et al., 1998;
Singh et al., 2003; Singh et al., 2007, 2012; Kumar et al., 2007,
2015; Kaur et al., 2016), but these studies were based on a small
number of restriction fragment length polymorphisms (RFLP)
and PCR-based simple sequence repeats (SSRs). Recently, the use
of high-density single nucleotide polymorphism (SNP) arrays in
genome-wide association studies (GWAS) have been reported

(Brar et al., 2018; Emebiri et al., 2019b; Gupta et al., 2019;
Singh et al., 2020), which offers new opportunities for marker-
assisted selection (MAS). However, the focus of many plant
breeders has now shifted from the use of MAS to the application
of genomic selection.

Genomic selection, first introduced by Meuwissen et al.
(2001), would be an attractive tool for pre-emptive breeding
against exotic pathogens, as it would reduce the challenges of
phenotyping (Poland and Rutkoski, 2016). Genomic selection is
a two-stage process in which whole-genome markers are used to
predict genomic estimated breeding value (GEBV) of individuals
in a population, and then selection decisions are made on the
basis of these GEBVs (Meuwissen et al., 2001). In the best-
case scenario, breeders can select the best performing genotypes
from the population for use in their crossing block, without
the need to phenotype the plants themselves. The potential
for genomic selection has yet to be evaluated for Karnal bunt
resistance in common wheat. The prediction accuracy depends
on the trait’s heritability, and for Karnal bunt resistance, the
estimates are quite high (ranging from 0.75 to 0.91) (Brar et al.,
2018; Emebiri et al., 2019a; Gupta et al., 2019; Singh et al.,
2020) due to the well-established protocol for disease screening
(Fuentes-Dávila et al., 1995).

The International Maize and Wheat Improvement Center
(CIMMYT), Mexico, develops novel common wheat germplasm
carrying Karnal bunt resistance genes (Singh et al., 2016). Some
of the lines were derived from crosses that include Munal#1
(now released as Super 172) and synthetic hexaploids (Mujeeb-
Kazi et al., 2006) as parents, and some were developed from
backcrosses to commercial varieties, such as Batavia, and Pastor.
The lines are important pre-emptive breeding tools to prevent
the spread of this quarantined disease into countries that
are currently disease-free. However, many other variables are
involved in grower uptake of new varieties, with grain yield
as the ultimate determinant of which variety the farmer will
grow in any given season. In the absence of a disease pressure,
genetic resistance may in fact become a liability (yield penalty),
as demonstrated in numerous studies (Brown, 2002; Ning et al.,
2017). Sharp et al. (2002), for instance, observed that while
the Wsm1 gene in wheat provided the most effective resistance
to wheat streak mosaic virus, a mean yield reduction of 21%
occurred in the absence of the virus. The wheat stem rust
resistance gene, Sr26, has a 9% yield penalty (Brown, 2002), and
the barley (Hordeum vulgare) mlo resistance gene has a 4.2% yield
penalty (Jorgensen, 1992). This is because genetic resistance is
an on-going process, and plants expend metabolic energy that
might otherwise be converted to yield. In the absence of the
pathogen, existence of a yield penalty for Karnal bunt resistance
will outweight the value of the resistance gene (Oliver et al., 2014;
Ning et al., 2017), and breeders will be further discouraged from
adopting and using improved germplasm in their programmes
for fear of upsetting the established phenology and yield profiles.

The key to pre-emptive breeding would be to provide breeders
with a package of molecular markers and resistance genes in
genetic backgrounds that will not upset established yield and
phenology profiles, as there is no point selecting less susceptible
varieties if there is an opportunity cost of lower yield without
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disease. In this paper, we report a research on pre-emptive
breeding for Karnal bunt resistance designed to identify linked
molecular markers, assess prospects of genomic selection as a
tool, and prioritise wheat genotypes suitable for use as parents. To
identify such genotypes, we performed field experiments over two
years to compare their agronomic values with those of reference,
commercial varieties.

MATERIALS AND METHODS

Plant Materials
The germplasm materials consisted of 242 genotypes, made
up of 177 bread wheat varieties, 8 durum wheat, 11 triticale,
and 46 Karnal bunt-resistant germplasm lines (KBRL). The
KBRL were developed at the CIMMYT, and imported into
Australia through the CIMMYT-Australia-ICARDA Germplasm
Evaluation (CAIGE) suite of projects.1 The wheat varieties
represent parents used in breeding programmes, historical
varieties, and current commercial varieties that are still being
cultivated. These were mainly bred in Australia, but some
originated from the United States, Brazil, Canada, China, Mexico,
New Zealand, and India, providing a global resource for genetic
analysis. The bread wheat lines include Super172 (synonym
Munal-#1), used as the resistant check, and the highly susceptible
Indian wheat variety WL-711 (synonym WL-711-0IND) used as
a susceptible check. The names of the varieties, year of release and
pedigrees are listed in Supplememntary Table 1.

Disease Phenotyping
Phenotypic data on Karnal bunt resistance collected from
Australian wheat varieties and CIMMYT advanced breeding lines
were used. The data for the Australian varieties were derived
from field experiments (Emebiri et al., 2019a) conducted during
three consecutive cropping seasons (2014–2015, 2015–2016, and
2016–2017), at the Norman E. Borlaug Experimental Station,
the CIMMYT, Obregon. The data on CIMMYT breeding lines,
collected over three planting dates, were kindly provided by Dr.
Ravi P. Singh as part of the materials delivered through CAIGE
project. In these data, Karnal bunt resistance was calculated as
the percentage of infected grains in each ear (Fuentes-Dávila
and Rajaram, 1994), but to rate the genotypes consistently
across data sets, those with infection levels of 0–2.5% were
rated as resistant, 2.6–5% as moderately resistant, 5.1–10% as
moderately susceptible and greater than 10% as susceptible
(Gaudet et al., 2001).

Genotyping
Genomic DNA was isolated from the leaves of individual lines
as described in Tan et al. (2015) and genotyped using DArT-
Seq technology (Diversity Arrays Technology Pty Ltd., Australia).
The polymorphisms were scored as binary data (0/1), indicating
the presence/absence of SNP in the genome of each sample.
The DArTseq data were filtered for quality, first by removing
duplicates and monomorphic markers; then by retaining markers

1http://caigeproject.org.au/

on the basis of CallRate (≥0.95), reproducibility (≥0.95), minor
allele frequency (≥0.05), and percent missing data (≤15%). The
final molecular marker data set comprised of 8,012 loci scored
on 177 hexaploid genotypes. All heterozygotes were treated
as missing data, and the corresponding values were imputed
using the Random Forest regression method in R package
(Stekhoven and Bühlmann, 2012).

Genetic Structure and Linkage
Disequlibrium
Genetic structure was analysed using algorithms implemented
in the adegenet package (Jombart, 2008). First, we ran the
snapclust function to select the optimal number of genetic
groups, based on a statistical measure of goodness of fit, the
Bayesian Information Criterion (BIC). Then, a discriminant
analysis of principal components (DAPC) was applied, which
combined PCA with discriminant analysis to maximise between-
group differences while minimising the within-group variation
(Jombart et al., 2010).

Linkage disequilibrium (LD) (statistical association between
allelic variants) was calculated in plink v1.9 (Purcell et al., 2007)
as the squared correlation coefficient (r2) between alleles at pairs
of loci within each chromosome. The analyses were carried out
with a molecular data set that was thinned down evenly across the
genome to a window size of 8 kb. The decay of LD over genetic
distance was examined by plotting the pair-wise LD against
distance, and fitting a decay curve, established by square root
transformation of the predicted LD values calculated according to
Andreescu et al. (2007). The background r2 value was calculated
as the 95th percentile of all LD values between markers located
on different chromosomes, assumed to unlinked (Breseghello and
Sorrells, 2006).

Genome-Wide Association Analysis
Genome-wide analyses were performed with the R package,
lmem.gwaser (Gutierrez et al., 2016), according to the Kinship
model, which had a lambda value of 1.03. It can be described as
follow:

y = xβ+ zu+ ε,

where y is the observed phenotype, x is the molecular marker
score matrix, β is the vector of marker allelic effects, z is an
incidence matrix, u is a vector of random polygene background
effects with Var(u) being 2KVG (K = Kinship coefficients
and VG = genetic variance), and ε is a vector of random
experimental error.

We adjusted observed P-value for multiple testing using
two methods: the method of Li and Ji (2005), which is based
on the effective number of independent tests (alpha level of
0.05) and the false discovery rate (FDR) method of Benjamini
and Hochberg (1995). The method of Li and Ji (2005) was
implemented in the lmem.gwaser package but FDR was calculated
in the R function, p.adjust(). Allelic effects and proportion
of phenotypic variance (R2-values) explained by significant
markers were derived from simple linear regression analyses, with
R2 = SSreg/SStot , where SSreg is the regression sum of squares and
SStot is the total sum of squares.
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Physical Mapping
Significant markers were assigned to physical positions in
megabase pairs (Mbp) by nucleotide BLAST (BLASTN) search
(E-value threshold = 1E-5) against the IWGSC RefSeq v1.0
Chinese Spring assembly,2 using the marker sequence for query.
High-confidence candidate genes closely matching the marker
sequence were obtained in a window size of estimated LD
each side of the marker. The results were further refined with
the JBrowse tool (Buels et al., 2016) to identify nearby wheat
expressed sequence tags (wEST), and this allowed assigning the
markers to physical bin positions on the deletion maps of the
Chinese Spring cultivar.

Prediction of Karnal Bunt Resistance
Two scenarios were considered for genomic prediction: (1) the
use of only the markers identified in GWAS analysis (QGBLUP),
analogous to marker-assisted selection strategy and (2) the use of
genome-wide markers to predict the performance of individuals
for which genotypic data is available, but not the phenotypes. The
analysis was carried out using the genomic best linear unbiased
prediction (GBLUP) model (Meuwissen et al., 2001), in which the
G-matrix was calculated using either the six significant markers
identified in GWAS, or the genome-wide markers, depending
on the approach. In both cases, accuracies were determined
from a fivefold cross-validation scheme, in which 80% of the
genotypes were randomly assigned to a training set (TRN) and
the remaining 20% to a testing set (TSN). This was repeated 100
times, and for each repeat, the individuals in the TRN and TSN
set were randomly re-sampled, the phenotypes of individuals in
the TST set were masked, and then predicted based on the TRN
set. Genomic prediction accuracy was calculated as the Pearson’s
correlation between the actual and the predicted phenotypes of
the lines in the TSN set.

Agronomic Assessment
Field experiments were carried out in 2015 and 2016 cropping
seasons to assess the agronomic value of Karnal bunt-resistant
lines. For this study, 37 of the Karnal bunt resistant lines from
CIMMYT were used. Seven commercial wheat varieties were
included as reference genotypes. These included Super172 (syn.
Munal#1), Axe, Mace, Rosella, Scout, Suntop, and Waagan. Axe
was released in 2007 and is a very early maturing wheat that is
suited for short growing seasons, while Mace, released in 2008,
has broad adaptation, with consistently high yield under a wide
range of conditions. Rosella is a widely adapted winter wheat
used for dual-purpose grazing, while Suntop was released in
2011 as a main season line, with high and stable yields from
low to high yield potential areas. Both Scout and Waagan were
released in 2009. Scout is a mid-season maturity variety with
low screenings and high test weight, and Waagan is a very early
maturing spring wheat, with high yield potential in medium/low
rainfall environments.

The experiments were conducted at the Wagga Wagga
Agricultural Institute, Wagga Wagga NSW, Australia (latitude –
35.05◦ S, longitude 147.35◦ E), on a site with well-drained, sandy

2https://urgi.versailles.inra.fr/blast/

clay loam soil with a greyish brown colour. The experiments were
arrayed in a row-column, p-rep design (Cullis Brian et al., 2006),
with experimental units (plots) measuring 7.5 m2 in area (six
rows with 30 cm spacing, 6 m long, trimmed to 5 m prior to
harvest). Plots were sown with a tractor-mounted Seeder, at a
rate of 60-g seeds per plot. All experiments were fertilised at the
time of sowing with monoammonium phosphate at the rate of
100 kg/ha, and standard operational procedures (irrigation, weed,
pest/disease control) were applied.

Statistical Analysis of Agronomic Data
Data on the following agronomic traits were collected: emergence
counts (number of plants per plot), flowering date (50% awn
emergence), plant height (height from soil to tip of the awns),
NDVI (at anthesis using the GreenSeeker) and grain yield (weight
of the uncleaned seed weight from machine harvests per plot).
At harvest, the uncleaned grains (300 g) were subsampled and
used to collect data on grain size (1,000 grain weight) and grain
plumpness (grains retained over a 2.5 mm sieve).

A two stage approach was used for data analysis. In the
first stage, each trait within an experiment/year was analysed
separately to account for design factors and spatial field variation.
This was performed using a mixed linear model framework
with spatial corrections for field heterogeneity as implemented
in the R package, SpATS (Rodríguez-Álvarez et al., 2018). The
analytical model included data on seedling emergence (count)
per plot as a fixed component to adjust for differences in
plant density. SpATS uses two-dimensional smoothing surfaces
with penalised splines to model the spatial trends within the
field and obtain estimates of predicted means. In the second
stage, adjusted means for the 2 years were jointly modelled to
generate variance components, and a genotype × trait matrix,
which was analysed according to the genotype plus genotype-by-
environment method, as implemented in GGEBiplotGUI (Frutos
et al., 2014). Graphical displays of the output were aided by the R
package, ggplot2 (Ginestet, 2011).

RESULTS

Phenotypic Variation
Broad-sense heritability of Karnal bunt resistance, calculated
as the ratio of genotypic to phenotypic variance components,
was 0.83 ± 0.02, and for narrow-sense heritability, calculated
using a marker-based approach (Covarrubias-Pazaran, 2016), the
estimate was relatively high at 0.61 ± 0.14. These estimates
indicated a large contribution of genetic factors to Karnal
bunt resistance in the wheat accessions. The average percentage
infection in the wheat accessions was 17.5%, with a range of
0.4–51.8%. There were 10 resistant lines, that is, genotypes
with seed infection levels of 0–2.5%. These included seven
KBRL and three cultivated varieties. Sixteen of the accessions
were moderately resistant (% KB infection > 2.5–5%), 46 were
moderately susceptible (>5–10%) and 105 were susceptible (%KB
infection > 10%).
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FIGURE 1 | Population structure in the panel of 177 wheat accessions used for the study. Panel (A) is the optimal number of clusters identified with the find.cluster
function in adegenet (Jombart, 2008). Panel (B) is the DAPC results, showing relative positions of individuals and genetic clusters in the discriminant space (inset is
the PCA eigenvalues).

FIGURE 2 | Plot of average linkage disequilibrium (LD) values (r2) against
inter-marker distances over a short (100 kbp) distance to visualise LD decay.
The decay curve is the square root transformation of predicted LD values
according to Andreescu et al. (2007). The horizontal and vertical dotted lines
indicate the baseline r2 threshold value, and the extent of LD decay,
respectively.

Genetic Structure
Genetic structure analysis was performed to determine whether
the composition of wheat accessions was structured, that is,
differentiated into clusters of closely related individuals, and
which individuals belong to which clusters. Graph of BIC values
showed a minimum value at K = 4, and this was determined to
be the optimal number of genetic clusters in the wheat accessions
(Figure 1A). The DAPC analysis showed clear separation of the
accessions into four genetic clusters (Figure 1B), with sample
sizes ranging from 11 to 79. It was noteworthy that the CIMMYT-
derived Karnal bunt resistant lines cluster together in Pop3
(n = 46), and along with varieties such as Seri-M82, Pastor,

TABLE 1 | Summary of significant markers detected in association mapping of
Karnal bunt resistance in common wheat.

Peak
marker

Chr. Physical
position

(Mb)

Deletion
bin

P-value FDR-
value

Allelic
effect

R-squared
(%)

2282741 1A 481.52 1AL1-0.17-
0.61

2.08E-05 3.33E-
02

1.10 26.91

1249729 2A 723.62 C-2AL1-
0.85

1.45E-04 1.16E-
01

0.92 7.58

1037716 3B 618.02 3BL10-
0.50-0.63

7.64E-07 6.12E-
03

-1.04 29.47

993727 4A 719.43 4AL4-0.80-
1.00

4.44E-05 5.08E-
02

-1.03 26.31

1128414 5A 618.27 5AL17-
0.78-0.87

6.07E-06 2.43E-
02

-1.06 27.87

989877 6B 683.23 6BL5-0.40-
1.00

3.06E-04 1.88E-
01

0.26 8.09

Nominal P-values were adjusted using the false discovery rate (FDR) method
of Benjamini and Hochberg (1995); the explained variation (R-squared) and
allelic effects attributable to each marker were derived from simple linear
regression analyses.

Genaro-F81, and Veery5, they were separate from the other
wheat genotypes. Seri-M82 and Genaro-F81 are semi-dwarf,
historical wheat varieties from CIMMYT, and Pastor is derived
from a cross involving Ser-M82 as a parent. The genotypes in
Pop1 (n = 41) and Pop2 (n = 11) were Australian-bred wheat
varieties, and those in Pop4 (N = 79) were a mixture of global
wheat genotypes. They include Australian varieties such as Axe,
Drysdale and EGA-Burke, the Indian variety WL-711, Canadian
varieties such as AC-Domain and its progeny, AC-Snowbird, the
Chinese variety, Chuan-Mai-18, the Brazilian variety, Carazinho
and the USA variety, Angus.

Linkage disequilibrium (statistical association between allelic
variants) and its decay rate were examined using pair-wise
combinations of markers genotyped across the 21 wheat
chromosomes. The estimate of background LD, calculated from
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FIGURE 3 | (A) Circular Manhattan plot from genome-wide scan with a mixed linear model. The red line is the significance threshold; (B) QQ plots from
genome-wide scan. The late separation between observed and expected P-values in the upper left section represents the significant associations; and
(C) Relationship between number of favourable alleles and Karnal bunt resistance in the wheat accessions.

FIGURE 4 | Prediction accuracy of models for Karnal bunt resistance, using markers detected in GWAS analysis (QTL), and genome-wide markers (WG).

r2 values of unlinked markers was 0.15, which agrees with the
value commonly reported for wheat (Joukhadar et al., 2020). This
value intersected the LD decay line at 62.5 Kbp (Figure 2), and

this represents the extent of LD in the population used for this
study. It represents the mapping resolution of any QTL detected
and was used as the confidence interval.
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TABLE 2 | Spatially adjusted means of check varieties and CIMMYT-derived,
Karnal bunt resistant germplasm.

Source Disease
rating

Grain
yield

(t ha−1)

Flowering
date

(days)

Plant
height
(cm)

1,000
Kernel
weight

(g)

NDVI Plump
grains

(%)

σ2genetic 1.14 22.51 68.44 42.47 0.00 17.96

σ2residual 0.14 4.18 12.56 2.84 0.00 5.343

Heritability 0.94 0.92 0.92 0.97 0.87 0.87

SE heritability 0.08 0.11 0.11 0.04 0.16 0.16

Adjusted genotype means

Axe S 4.75 128.64 85.72 43.90 0.57 91.83

Mace S 5.11 128.75 91.28 41.90 0.57 89.83

Rosella S 5.04 135.14 97.26 38.02 0.51 85.17

Scout S 5.56 129.55 92.28 44.76 0.58 91.72

Suntop S 5.26 130.28 94.08 41.78 0.60 84.34

Super172 R 4.92 130.34 94.66 45.11 0.59 89.02

Waagan S 5.45 128.54 86.36 41.06 0.57 90.39

ZVS13_312 MR 5.35 130.31 93.75 47.87 0.59 91.02

ZVS13_316 MS 4.84 129.95 91.07 47.44 0.61 91.68

ZVS13_385 R 4.69 128.34 89.51 43.93 0.57 89.94

ZVS13_404 MS 5.15 129.13 97.73 44.57 0.60 90.96

ZVS13_406 MR 4.46 128.54 89.66 49.69 0.59 88.86

ZVS13_441 MS 4.79 129.29 99.56 44.67 0.61 92.24

ZWB10_44 R 5.09 128.96 94.61 46.44 0.58 90.29

ZWB10_76 MR 5.36 129.40 99.08 47.03 0.60 89.76

ZWB11_153 MS 4.73 129.06 99.98 49.49 0.60 91.83

ZWB11_172 R 5.07 130.97 97.13 45.16 0.57 91.37

ZWB11_95 MR 5.57 130.55 94.10 44.15 0.58 90.54

ZWB12_103 MS 5.33 128.96 94.81 51.79 0.59 91.94

ZWB12_121 MS 4.75 128.68 94.32 47.88 0.60 91.19

ZWB12_122 MS 5.16 129.22 95.93 47.63 0.63 89.61

ZWB12_123 MS 4.71 129.58 92.15 52.55 0.58 93.66

ZWB12_124 MS 4.93 128.26 88.84 52.70 0.57 93.69

ZWB12_14 R 4.97 129.23 96.78 48.14 0.61 91.46

ZWB12_147 MS 4.65 128.43 96.26 51.82 0.61 93.46

ZWB12_158 MS 4.73 128.72 101.65 47.69 0.59 92.88

ZWB12_16 S 5.14 128.40 93.55 46.60 0.58 92.34

ZWB12_168 S 5.13 130.14 93.86 49.10 0.58 93.11

ZWB12_18 MR 4.57 128.84 92.68 49.05 0.58 93.02

ZWB12_187 MR 5.56 130.75 99.05 48.18 0.62 91.03

ZWB12_189 MS 4.82 127.85 97.52 43.74 0.60 90.55

ZWB12_194 MS 4.79 128.53 94.78 48.26 0.59 92.55

ZWB12_202 S 4.89 128.75 94.30 50.25 0.55 94.61

ZWB12_219 MS 4.75 130.45 96.43 44.21 0.52 88.04

ZWB12_24 MS 4.91 129.47 98.90 47.51 0.60 92.98

ZWB12_29 MS 5.31 130.32 95.10 49.92 0.61 91.83

ZWB12_30 R 5.17 129.73 100.39 50.20 0.59 90.88

ZWB12_31 MR 5.32 129.60 98.16 51.10 0.60 93.32

ZWB12_4 MR 5.20 129.48 95.07 48.22 0.59 90.91

ZWB12_42 MS 5.25 128.84 91.86 48.29 0.60 92.47

ZWB12_62 MR 4.80 129.33 91.24 45.91 0.59 90.12

ZWB12_63 MS 4.73 129.11 94.99 46.19 0.58 89.93

ZWB12_67 MS 5.15 129.40 94.55 46.79 0.58 90.96

ZWB12_86 MS 5.27 128.11 95.54 51.17 0.60 93.19

QTL Identification
There was an evident association between genetic groups and
Karnal bunt resistance in the population, as majority of the
lines in Pop3 were resistant, and separate from the other
groups in the DAPC space (Figure 1B). This association of
population group with resistance was statistically significant, as
determined from a chi-square test of independence (X2 = 54.81,
P-value < 0.001), hence, corrective measures were applied to
adjust for the potential bias in declaring QTL identification.

A Kinship-corrected GWAS analysis identified six markers
that were significantly associated with Karnal bunt resistance,
after controlling for multiple testing using both the genome-
wide threshold and FDR criteria (Table 1 and Figure 3A).
We compared different mixed models and found the kinship
model as the most effective to correct for population structure,
as it produced the lowest genomic inflation factor (lambda,
λgc = 1.03), and the observed P-values showed little deviations
from the expected (Figure 3B). Surprisingly, all the significant
markers were in the A and B genomes, and physically localised
to the long arms of chromosomes 1A, 2A, 3B, 4A, 5A, and
6B (Table 1). The markers explained a large proportion (7.6–
29.5%) of the variation in Karnal bunt resistance, and when
favourable alleles were considered, genotypes with a high number
of beneficial alleles were completely resistant to Karnal bunt
infection (Figure 3C).

Genomic Prediction
There was no difference in prediction accuracy between the
QGBLUP approach and the whole-genome prediction (GBLUP)
approach (Figure 4). In the QGBLUP approach, the prediction
ability for Karnal bunt resistance averaged 0.53 ± 0.003, and
in the alternate approach of whole genome marker prediction,
the accuracy averaged 0.56 ± 0.01. In effect, genomic prediction
using a few, trait-specific markers produced accuracies that
compared favourably with those from whole-genome markers.

Agronomic Profiles
In the agronomic experiments, estimates of trait heritability,
independent of year and heterogeneous field conditions, were
consistently high across traits (Table 2), indicating strong
genotypic main effects. The adjusted trait means were analysed
using the GGE biplot method to allow visual examination of
genotype performance across multiple traits, and identification
of superior individuals. The biplot captured 87.7% of total
variability in the data (Figure 5) and is therefore appropriate
for visualising the relationships among traits. All traits were
equally important, as indicated by the relative length of their
vectors. The biplot showed that grain yield was positively related
to growth duration and biomass production (acute angles),
negatively related to plant height (obtuse angle), and independent
of grain size (near right angles). When the “which-won-where”
function was used to partition the data into a two-dimensional
polygon view, the agronomic traits were grouped into three
major sectors (Figure 5A): phenology (flowering time/plant
height), grain yield (grain yield/NDVI), and grain size (1,000-
kernel weight/grain plumpness). Vertex genotypes in each sector
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FIGURE 5 | GGE biplot of a genotype × trait matrix averaged over two years, using trait-focussed SVP, and Double-Centred GE with scaling by standard deviation.
(A) Polygon plot of “which won where.” The numbers refer to individual wheat accessions (see Table 1), and abbreviations are given for trait names. Flt, flowering
time; Gyld, Grain yield; NDVI, Normalised difference vegetative index; Tkw, Thousand kernel weight; Plht, Plant height. (B) Ranking the accessions in relation to the
“ideal” genotype.

are considered the best/worst for traits within the sector (Yan
and Rajcan, 2002). Thus, the late-maturing variety, Rosella, was
placed at the apex of the phenology sector, while early maturing
varieties, Waagan and Axe, were placed at the vertex of the
grain yield sector (Figure 5A). These varieties were positioned
opposite to the plant height vector, which is consistent with the
negative relationship between plant height and grain yield. Of
the CIMMYT-derived accessions, ZWB12-124 and ZWB12_147,
had the best agronomic values for grain size/plumpness, while
ZWB12_158 and ZWB12_30 were the worst for plant height
(Figure 5A). The mean trait value for all genotypes are presented
in Table 2 to validate the interpretations.

The GGE biplot can also be used to visualise genotype ranking
against the “ideal.” The “ideal” is defined as a genotype that
combines all favourable attributes, and in Figure 5B, the arrow
indicates where the ideal genotype should be. Accordingly, the
ideal genotype is expected to be high yielding, early maturing
and below average in plant height. A performance line passing
through the origin is used as a reference, and a genotype
closer to the “ideal” is considered more desirable than those
further away. As shown in Figure 5B, Waagan, followed by
Mace and Axe are the more desirable of the check varieties,
while Rosella and Suntop were far from the ideal genotype. Of
the Karnal bunt-resistant accessions, ZVS13-385 and ZWB12-
62 were the closest to the ideal genotype (Figure 5B). In
particular, the genotype ZVS13-385 was placed within the same
concentric ring as Mace, which meant it had similar agronomic
attributes. This is relevant information, as Mace is one of
the most widely grown varieties in Australia. DNA analysis
showed that ZVS13-385 possessed all six of the favourable alleles

identified for Karnal bunt resistance, and therefore would be
suitable as a parent for transferring resistance into commercially
acceptable backgrounds.

DISCUSSION

In the first part of this study, we sought to dissect the genetic
basis of Karnal bunt resistance, as the information is essential
for confirming resistance sources, identifying those most suitable
as donor parental lines, and designing strategies to accelerate
transfer of resistance into commercial cultivars. We identified six
DArTseq markers, which explained between 7.6 and 29.5% of the
observed phenotypic variation and were located at chromosome
positions previously reported in the literature (Bishnoi et al.,
2020). When BLASTN search was conducted against the IWGSC
RefSeq v1.0 Chinese Spring assembly, the most frequently
identified putative candidate gene at the QTLs encoded the F-box
domain containing proteins. The F-box proteins are a large
superfamily that play pivotal roles in host-pathogen interactions
through targeting substrates into the degradation machinery
(Cao et al., 2008).

The knowledge that Karnal bunt resistance is mediated
by multiple genes is supported by previous studies, but this
introduces another dimension to the difficulties of breeding for
resistance in the absence of the pathogens (Emebiri et al., 2019b).
The multi-gene control implies that marker-assisted selection by
pyramiding or stacking of favourable alleles may not be successful
(Langridge and Waugh, 2019), because interactions among
QTL/genes and environmental factors can make substantial
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contributions to variation in complex traits such as disease
susceptibility (Carlborg and Haley, 2004). As suggested in
Emebiri et al. (2019b), new and innovative strategies will be
required, and in this study, we assessed the potentials of
the method of genomic prediction as a pre-emptive breeding
tool. For developing the prediction model, we compared the
traditional use of whole-genome markers against the use of a few
significant markers identified by GWAS and found the prediction
abilities to be comparable (Figure 4). This was not surprising,
as genomic prediction accuracy is highly dependent on the LD
between the genotyped markers and actual causative variants (de
Los Campos et al., 2013). The use of significant trait-specific
markers was expected to improve genomic prediction, and in
fact, prior marker selection has been suggested as a strategy
to increase reliability of the genomic estimated breeding values
(Brøndum et al., 2015). Rutkoski et al. (2012) reported that
in wheat, genomic predictions based on QTL targeted markers
for fusarium head blight resistance (deoxynivalenol) alone were
higher than predictions based on genome-wide markers. Other
researchers have also found higher prediction abilities of the
MAS approach over whole-genome prediction (Slavov et al.,
2014; Zhao et al., 2014; Boeven et al., 2016), but Gaikpa et al.
(2020) found the opposite to be the case. Similarly, while some
researchers have found that use of trait-specific markers as fixed
factors increased accuracy of genomic prediction (e.g., Daetwyler
et al., 2014), others have observed no difference (e.g., Rice
and Lipka, 2019). Invariably, this will vary with trait, and the
performance of such a prediction model should be explored on
a trait-by-trait basis prior to its implementation in a breeding
programme (Rice and Lipka, 2019). Karnal bunt resistance in
this population showed high heritability (0.83 ± 0.02), hence
marker-based prediction accuracies were almost comparable to
genome-wide prediction accuracies. This may not be the case in
different populations, but the possibility of using a few significant
markers for genomic prediction would augur well for pre-
emptive breeding against Karnal bunt infection in countries that
are free of the disease, where phenotyping would be difficult
and the costs for high-density genotyping can be limiting. This
is a subject that requires further investigation, as large-scale
studies are showing that, in a high LD crop like wheat, high-
density genomic coverage has minimal impact on the genomic
predictabilities (Juliana et al., 2019).

The identification of parental lines combining Karnal bunt
resistance with adaptive agronomic traits is key to pre-emptive
breeding, as it addresses breeder’s concerns regarding yield
penalty in the absence of the disease. Plant breeders use the GGE
biplot technique for prioritising genotypes for use as parents
in varietal improvement as the regular stability analysis does
not provide information on the relative ranking of entries with
reference to an ideal genotype (Yan and Kang, 2003). The current
research carried out a comprehensive examination of Karnal bunt
resistant germplasm from CIMMYT and has identified an ideal
genotype, ZVS13_385 (TAM200/PASTOR//TOBA97/3/HEILO),
which showed agronomic similarity to the highly successful
Australian wheat variety, Mace (Moffat et al., 2015; Table 2;
Figure 5B). Furthermore, ZVS13_385 is phenotypically resistant
to Karnal bunt infection (<1% infection), and possessed all

favourable alleles detected for major and minor QTL linked to
resistance. This means that it could be used directly as a cultivated
variety, or as an ideal genotype for use in the crossing block.
We conclude that the identification of a genotype combining
Karnal bunt resistance with adaptive agronomic traits negates the
concerns of breeders regarding yield penalty in the absence of
the disease. Using mathematical modelling, Vyska et al. (2016)
showed that even when disease outbreak is uncertain, growing
resistant varieties is an optimal strategy for crop protection as it
reduces the probability of an outbreak occurring. We add that
wide availability of Karnal bunt resistant lines may encourage
countries to relax the zero-tolerance regulation that currently
exists for Karnal bunt, which is quite costly to implement
(Babadoost, 2000; Vocke et al., 2010).
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Disease resistance in plants is mostly quantitative, with both major and minor genes

controlling resistance. This research aimed to optimize genomic selection (GS) models

for use in breeding programs that are needed to select both major and minor genes for

resistance. In this study, stripe rust (Puccinia striiformis Westend. f. sp. tritici Erikss.) of

wheat (Triticum aestivum L.) was used as a model for quantitative disease resistance. The

quantitative nature of stripe rust is usually phenotyped with two disease traits, infection

type (IT) and disease severity (SEV). We compared two types of training populations

composed of 2,630 breeding lines (BLs) phenotyped in single-plot trials from 4 years

(2016–2020) and 475 diversity panel (DP) lines from 4 years (2013–2016), both across

two locations. We also compared the accuracy of models using four different major

gene markers and genome-wide association study (GWAS) markers as fixed effects.

The prediction models used 31,975 markers that are replicated 50 times using a 5-fold

cross-validation. We then compared GSmodels using a marker-assisted selection (MAS)

to compare the prediction accuracy of the markers alone and in combination. GS models

had higher accuracies than MAS and reached an accuracy of 0.72 for disease SEV.

The major gene and GWAS markers had only a small to nil increase in the prediction

accuracy more than the base GS model, with the highest accuracy increase of 0.03 for

the major markers and 0.06 for the GWAS markers. There was a statistical increase in

the accuracy using the disease SEV trait, BLs, population type, and combining years.

There was also a statistical increase in the accuracy using the major markers in the

validation sets as the mean accuracy decreased. The inclusion of fixed effects in low

prediction scenarios increased the accuracy up to 0.06 for GS models using significant

GWAS markers. Our results indicate that GS can accurately predict quantitative disease

resistance in the presence of major and minor genes.

Keywords: genomic selection, fixed-effect, disease resistance, stripe rust, genome-wide associate studies,

rrBLUP
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INTRODUCTION

Plant breeding programs select and improve both qualitative
and quantitative traits. Qualitative traits are controlled by a
few large-effect genes that are readily detectable and follow a
Mendelian inheritance (Chen, 2013). In contrast, quantitative
traits are controlled by several small-effect genes that are difficult
to distinguish and controlled by quantitative trait loci (QTL;

Bernardo, 2008). The genetic control of a trait determines the
types of selection that will be most effective for improvement.
However, disease resistance can be either a qualitative or a
quantitative trait, and, therefore, the most effective method of
improvement varies (Poland and Rutkoski, 2016). Breeding for
disease resistance is a major goal for most breeding programs due
to the effect of the disease on yield and quality performance.

Breeding for qualitative disease resistance is controlled by one

or two large-effect alleles, called resistance (R) genes and further
referred to as major genes (Agrios, 2005). Qualitative disease
resistance generally follows a race-specific resistance and quickly
degrades due to the rapid evolution of new pathogen races (Chen,
2005). Major gene pyramiding can reduce the possibility of major
genes by combining multiple major genes to provide a more
durable resistance to multiple pathogen races into a single line.
Pyramiding is implemented through a marker-assisted selection
(MAS) and has been an effective method for various crops (Wang
et al., 2001, 2017; Pietrusińska et al., 2011; Bai et al., 2012; Jiang
et al., 2012; Liu et al., 2016b; Singh et al., 2017). Successful
implementation of major genes relies on identifying the useful
sources of the genes, finding the linked markers, confirming the
effect in different genetic backgrounds, and finally, deploying
said major genes (Bernardo, 2008). Major gene implementation
is further complicated when it comes to selecting multiple major
genes simultaneously for gene pyramiding. A large population is
needed to screen and select the lines with more than one gene
in early generations while still maintaining enough lines to select
for other traits in later generations (Poland and Rutkoski, 2016).
The difficulty can be further attributed to unfavorable linkage and
multiple major gene sources (Bernardo, 2008).

Breeding for quantitative resistance conferred by minor-
effect genes or a combination of minor and major genes
tends to produce a more durable resistance in breeding lines
(BLs) because it relies on multi-resistant alleles. Breeding for
quantitative resistance requires multiple breeding cycles to
improve resistance gradually (Poland and Rutkoski, 2016). The
breeding method for quantitative resistance is similar to the
methodology used for other complex traits such as grain yield
(Rutkoski et al., 2014; Poland and Rutkoski, 2016; González-
Camacho et al., 2018). Similar to qualitative resistance, selecting
for quantitative resistance can be completed throughout the
breeding process, but disease resistance is commonly completed
in earlier generations to select for other traits further in the
program. Therefore, selecting for quantitative resistance in
earlier generations can be difficult due to the lack of replication
and environments. However, selecting for resistance in later
generations reduces genetic gain due to the selection for other
traits (Poland and Rutkoski, 2016). Both methods, therefore,
reduce the effectiveness of breeding quantitative resistance.

One such trait that displays both qualitative and quantitative
resistance is stripe rust, also called yellow rust (Yr), caused by
Puccinia striiformisWestend. f. sp. tritici Erikss.

Stripe rust is one of the most devastating diseases of wheat
(Triticum aestivum L.) and is highly destructive in the western
USA (Chen, 2005; González-Camacho et al., 2018; Liu et al.,
2019). Stripe rust can cause more than 90% yield losses in
fields planted with susceptible cultivars (Liu et al., 2020). The
use of resistance varieties and the applications of fungicide are
the primary methods to control stripe rust (Chen and Line,
1995; Liu et al., 2020). Stripe rust resistance is categorized into
qualitative all-stage resistance (ASR) and quantitative adult-plant
resistance (APR).

All-stage resistance is conferred by race-specific genes that are
inherited qualitatively with a life span of ∼3.5 years per gene
(Case et al., 2014; Chen and Kang, 2017). There are more than
300 identified QTL conferring resistance to stripe rust (Wang
and Chen, 2017). The identification of a large number of major
genes shows numerous resistance alleles available for breeding
purposes in various varieties and populations. Previously, major
genes Yr5 and Yr15 have been shown to be effective against all
races of the stripe rust pathogen in the USA (Wang and Chen,
2017). However, virulence to Yr5 has been demonstrated in a few
countries not including the USA (Wellings et al., 2009; Zhang
et al., 2020; Kharouf et al., 2021; Tekin et al., 2021). Virulence
to Yr15 has only been documented in Afghanistan (Gerechter-
Amitai et al., 1989). The virulence to these genes demonstrates
the need to not rely on any singlemajor gene to provide resistance
in a cultivar.

Adult-plant resistance is usually a non-race-specific
quantitative resistance that is associated with durable resistance
with some genes being effective for more than 60 years (Chen,
2013). APR is often affected by temperature and also can be
referred to as high-temperature adult-plant (HTAP) resistance,
which is often controlled by more than one gene mainly with
additive effect (Chen and Line, 1995; Chen et al., 1995; Liu et al.,
2019). HTAP resistance is influenced by the temperature and age
of the plants. As the temperature increases, the plant becomes
more resistant, and rust development slows down (Chen, 2005).
However, to confirm HTAP, greenhouse studies with different
temperature ranges need to be conducted (Chen, 2005). HTAP
resistance and APR are conferred by different loci with varying
effects and often display partial resistance, making them difficult
to incorporate into new cultivars (Chen and Line, 1995; Liu et al.,
2019). Consequently, APR or HTAP resistance must be improved
over multiple selection cycles as mentioned previously (Rutkoski
et al., 2014; Poland and Rutkoski, 2016; González-Camacho
et al., 2018). APR is generally expressed in the later stages of
wheat, whereas ASR is expressed throughout the lifecycle of
the plant (Wang and Chen, 2017). Therefore, it is difficult to
identify APR genes due to the masking of their effect by ASR
genes. The masking of ASR genes and the quantitative nature of
APR genes result in much of the APR resistance in a population
being uncharacterized. It is recommended to combine both ASR
and APR genes to take advantage of both types of resistance
limitations (Wang and Chen, 2017). The lack of ASR durability
coupled with the challenge in identifying and breeding APR
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creates a unique opportunity for genomic selection (GS). In
addition, major ASR genes are known to interact with APR
and including them in GS models as fixed effect have increased
prediction accuracy (Bernardo, 2014; Rutkoski et al., 2014;
Arruda et al., 2016).

In many crops, the difficulty in selecting for qualitative and
quantitative disease resistance (similar to stripe rust) creates
an opportunity for GS to integrate quantitative resistance by
accounting for small-effect alleles in the presence of large-effect
major genes without the development and analysis of mapping
populations and techniques (Poland and Rutkoski, 2016). The
goal of this study was to determine the most accurate GS method
to select for disease resistance in the presence of both major
and minor genes. Wheat stripe rust was used as an example as
most plant breeders try to capture the additive effects of both
ASR and APR simultaneously. The identified GS approaches will
be a valuable tool for breeders to facilitate cultivar and parental
selection for accumulating favorable alleles for disease resistance
in the presence of major and minor resistance genes (Rutkoski
et al., 2014; Michel et al., 2017).

MATERIALS AND METHODS

Phenotypic Data
Two training populations were used to compare the inclusion of
fixed-effect markers in populations with different frequencies of
stripe rust genes. The first training population consists of F3 : 5
and double-haploid soft white winter wheat BLs developed by
the Washington State University (WSU) winter wheat breeding
program. The BL population was evaluated for stripe rust in the
unreplicated single-plot trials in Pullman and Lind, Washington
planted in 2016, 2017, 2018, and 2020 growing seasons (Table 1).
Due to the unreplicated nature of the single-plot trails, each trial
consisted of unique lines, which resulted in a total of 2,630 lines
for all years and locations. The year 2019 was not included due to
the lack of adequate disease SEV in our trials. The BL population
was previously selected for stripe rust resistance in headrow
plots the year previous to unreplicated trials. Susceptible BLs in
headrow plots were culled and not included in the BL population,
which represents a prior selected, closely related BL population
with similar pedigree sources of stripe rust resistance. The second
training population consists of diverse associationmapping panel
[diversity panel (DP)] trials evaluated in unreplicated trials in
Central Ferry and Pullman, Washington from 2013 to 2016
with the same 475 lines represented in each trial (Table 1). The
mapping panel consists of varieties and BLs from at least six soft
white winter wheat breeding programs in the Pacific Northwest
(PNW) and represents diverse backgrounds with the potential
sources of stripe rust resistance.

The measured disease traits were stripe rust IT and SEV. The
recordings of these traits were dependent on natural infection
and stripe rust incidence at the time of observation and were
not previously inoculated. Some trials had three observations for
stripe rust and were identified with sequential numbers. The first
recording was taken soon after the emergence of a flag leaf, the
second was taken again after anthesis, and the third was taken in
the early milk stage. The trials with only one observation were

recorded right after anthesis for responses in the adult plant stage
as stripe rust was not present in the field during earlier growth
stages. IT was recorded based on a 0–9 scale (Line and Qayoum,
1992). SEV was recorded as the percentage of the leaf-infected
area using themodified Cobb Scale (Peterson et al., 1948).Table 1
summarizes environments, years, genotyped individuals, and the
measurements taken for each trial during which stripe rust was
recorded. However, due to the nature of APR being effective
in the adult stage and the fact that not all trials had multiple
recordings, only the last observation for each trial was used to
measure the disease traits for APR.

To account for differences in disease pressure under different
environments, a two-step adjusted mean method by which a
linear model was implemented to adjust both IT and SEV
means within and across environments was used. Then, a mixed
linear model was used to calculate genomic estimated breeding
values (GEBVs; Ward et al., 2019). Means from the stripe rust
data collected in the unreplicated trials were adjusted using the
residuals calculated for the unreplicated genotypes in individual
environments and across environments using the modified
augmented complete block design (ACBD)model (Federer, 1956;
Goldman, 2019). The adjustments were made according to the
method implemented in Merrick and Carter (2021), with the full
model across environments as follows:

Yij = Blocki + Checkj + Envk + Blocki × Envk + Checkj

× Envk + εijk (1)

where Yij is the trait of interest, either IT or SEV; Blocki is the
fixed effect of the ith block and kth trial; Checkj is the fixed effect
of the jth replicated check cultivar; Envk is the fixed effect of the
kth trial; and εijk denote the residual errors.

Heritability on a genotype-difference basis for broad-sense
heritability was calculated using the variance components from
the models implemented in Merrick and Carter (2021) and
using the best linear unbiased predictors for both individual
environments and across environments with the formula:

H2
Cullis = 1−

vBLUP1..

2σ 2
g

(2)

where σ 2
g and vBLUP1 are the genotype variance and mean

variance of the BLUPs, respectively (Cullis et al., 2006). In
general, the broad-sense heritability measurement is not suitable
for an unreplicated, unbalanced multi-environment trial, and,
therefore, narrow-sense heritability was not calculated (Schmidt
et al., 2019).

Genotypic Data
Lines were genotyped using genotyping-by-sequencing (GBS;
Elshire et al., 2011) through the North Carolina State Genomics
Sciences Laboratory in Raleigh, NC, USA, using the restriction
enzymes MspI and PstI (Poland et al., 2012). Genomic DNA
was isolated from seedlings in the one-leaf to three-leaf stage
using Qiagen BioSprint 96 Plant kits and the Qiagen BioSprint
96 workstation (Qiagen, Germantown, MD, USA). DNA libraries
were prepared following the protocol of DNA digestion with PstI
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TABLE 1 | Training populations for stripe rust IT and SEV in Central Ferry, Lind, and Pullman, WA, USA from 2013 to 2020.

Populationa Year Trials Locations Linesb IT 1c SEV 1d IT 2 SEV 2 IT 3 SEV 3

DP 2013 2 2 475 X X X X X X

DP 2014 2 2 474 X X X X X X

DP 2015 2 2 474 X X X X X X

DP 2016 1 1 474 X X X X X X

DP 2013–2014 4 4 475 X X X X X X

DP 2013–2015 6 6 475 X X X X X X

DP 2013–2016 7 7 475 X X X X X X

BL 2016 2 2 304 X X X

BL 2017 4 2 728 X X X X X X

BL 2018 3 2 1,239 X X X X X X

BL 2020 1 1 373 X X

BL 2016–2017 6 4 1,029 X X X X X X

BL 2016–2018 9 6 2,262 X X X X X X

BL 2016–2020 10 7 2,630 X X X X X X

aDP, Diversity panel; BLs, Breeding lines.
bLines, Unique lines in the training population.
c IT, Infection type.
dSEV, Disease severity.

X, Indicates measurement recorded.

and MspI restriction enzymes (Poland et al., 2012). Genotyping-
by-sequencing (GBS; Elshire et al., 2011) was conducted at North
Carolina State University Genomic Sciences Laboratory with
either an Illumina HiSeq 2500 or a NovaSeq 6000. DNA library
barcode adapters, DNA library analysis, and sequence single-
nucleotide polymorphism (SNP) calling were provided by the
USDA Eastern Regional Small Grains Genotyping Laboratory
(Raleigh, NC, USA). Sequences were aligned to the Chinese
Spring International Wheat Genome Sequencing Consortium
(IWGSC) RefSeq v1.0 (Appels et al., 2018), using the Burrows–
Wheeler Aligner (BWA) 0.7.17 (Li and Durbin, 2009). Genetic
markers with more than 20% missing data, a minor allelic
frequency of<5%, and themarkers that weremonomorphic were
removed. Markers were then imputed using Beagle version 5.0
and filtered once more for markers less than a 5% minor allelic
frequency (Browning et al., 2018). A total of 31,975 SNP markers
for the 475 unique DP lines and 2,630 BLs were obtained from
GBS. Principal components for themarkers were calculated using
the function “prcomp,” and a biplot with k-mean clusters was
created using the function “autoplot” in R (R Core Team, 2018).
Cluster number for k-means was calculated according to the
elbow method using a screen plot with the identification of the
optimal number of clusters when the total intracluster variation
was minimized.

Major rust-resistant genes observed to be common in the
WSU breeding population are Yr10, Yr17, Lr68, and Qyr.wpg-
1B.1, and molecular marker data for these genes were included
as fixed effects in our GS models. All winter wheat lines were
genotyped using Kompetitive Allele Specific PCR (KASP R©) assay
for Yr17, Lr68, and Qyr.wpg-1B.1 in the WSU winter wheat
breeding laboratory. The Yr17 gene (Helguera et al., 2003) was
screened using the KASPmarker developed byMilus et al. (2015).
The Lr68 leaf rust resistance gene (Herrera-Foessel et al., 2012)

was screened using the KASP marker developed by Rasheed et al.
(2016). Although leaf rust resistance is not commonly selected
in the US PNW breeding programs, this gene was found in
a large proportion of BLs, and thus was hypothesized that it
might have been selected congruently with stripe rust resistance.
The APR QTL Qyr.wpg-1B.1 reported on chromosome 1B by
Naruoka et al. (2015) was screened using the marker IWB12603
(Mu et al., 2020). The KASP assays were performed using
PACETM Genotyping Master Mix (3CR Bioscience, Essex, UK)
following the instructions of the manufacturer, and endpoint
genotyping was conducted on fluorescence using a Lightcycler
480 Instrument II (Roche, Indianpolis, IN, USA). The previously
reported ASR gene Yr10 (Frick et al., 1998) was screened
with a microsatellite marker Xpsp3000 developed by Bariana
et al. (2002). The microsatellite marker Xpsp3000 was run
using PCR products, which were separated on an ABI3730XL
DNA fragment analyzer (Applied Biosystems, Waltham, MA,
USA), and alleles were scored with the GeneMarkerv4.0 software
(SoftGenetics, State College, PA, USA), in collaboration with the
USDAWestern Regional Small Grains Genotyping Laboratory in
Pullman, Washington.

Genome-Wide Association Model
In addition to the inclusion of molecular markers for major rust-
resistant genes as fixed effects, the markers identified through
genome-wide association studies (GWASs) were included
through de novo GWAS. This method is further referred
to as GWAS-assisted GS (GWAS-GS). The GWAS-GS was
implemented according to McGowan et al. (2020). Briefly,
a proper cross-validation using GWAS was conducted using
BLINK in the genome association and prediction integrated tool
(Liu et al., 2016a; Tang et al., 2016; Huang et al., 2019; GAPIT)
with three principal components fitted as fixed effects on the
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training population only. Three principal components were used
because they were previously observed to be most reliable in
accounting for a population structure for yield and agronomic
traits in winter wheat for the same populations (Lozada et al.,
2017). In accordance to advice put forward by Rice and Lipka
(2019), the first method of GWAS-GS included only significant
markers based on a Bonferonni cutoff of 0.05 (GWAS_B). Due
to our cross-validation scheme, different significant markers for
GWAS_B were identified in each cross-validation, year, and
population. Therefore, significant markers were not presented.
For the remaining GWAS-GS methods, the markers were
ordered by the degree of statistical significance based on the
values of p from the smallest to largest. We compared the
inclusion of the top 5, 10, 25, 50, and 100most significantmarkers
as fixed effects (GWAS_5, GWAS_10, GWAS_25, GWAS_50,
and GWAS_100).

Prediction Models
Marker-Assisted Selection Model
Single and multiple regression models were used as MAS models
to compare major rust-resistant markers and the predictive
ability of de novo GWAS markers alone and in combination. The
fixed-effect multiple regression model is described as follows:

yi = µ + X1β1 + . . .Xiβi + εi (3)

where yi is the observed phenotypic value of the ith individual, µ
is the mean, Xi is the genotype of the marker i, βi is the effect of
the ith marker, and εi is the residual error term.

GS Model
rrBLUP was used as the base GS model and was implemented
using the package “rrBLUP” (Endelman, 2011). rrBLUP was
used as the base model due to the nonplacement of the ridge
regression penalty implemented by rrBLUP on the fixed effects,
allowing a large effect on the model. Further, rrBLUP has shown
to outperform other models when integrating fixed effects into
the models and in predicting disease resistance (Rutkoski et al.,
2014; Arruda et al., 2016; Poland and Rutkoski, 2016; Muleta
et al., 2017). The basic rrBLUPmodel is described as follows (Rice
and Lipka, 2019):

yi = µ +

p∑

k=1

xikβk + εi (4)

where yi is the observed phenotypic value of the ith individual,
µ is the mean, xik is the genotype of the kth marker and ith
individual, p is the total number of markers, βk is the estimated
random marker effect of the kth marker, and εi is the residual
error term.

GS Model With Fixed Effects
To evaluate the effect ofmajor and de novoGWASmarkers on the
prediction accuracy of GS models, we used the rrBLUP model as
described (Rice and Lipka, 2019):

yi = µ +

m∑

j=1

xijαj

p∑

k

xikβk + εi (5)

where yi is the observed phenotypic value of the ith individual,
µ is the mean, xij is the jth marker of the ith individual, m is the
number of markers included as fixed-effect covariates, αj is the
fixed additive effect of the jth marker, xik is the genotype of the
kth marker and ith individual, p is the total number of markers,
βk is the estimated random marker effect of the kth marker, and
εi is the residual error term.

Prediction Accuracy and Schemes
The prediction accuracy for the GS was reported using Pearson
correlation coefficients, and a prediction bias was reported using
a root mean square error (RMSE) between GEBVs and their
respective adjusted means using the function “cor” in R (R Core
Team, 2018). The effect of fixed-effect markers on prediction
accuracy was assessed using a 5-fold cross-validation scheme
and independent validation sets for IT and SEV in the DP
and BL training populations. The two populations were used
to compare the effects of the significant markers in populations
with different genetic relatedness, frequency of markers, and
sources of resistant pedigrees. GS models were conducted with
5-fold cross-validation by including 80% of the samples in the
training population and predicting the GEBVs of the remaining
20% (Lozada and Carter, 2019). One replicate consists of the five
model iterations, where the population is split into five different
groups. This was completed 50 times. As mentioned previously
for the GWAS-GS, the GWASwas conducted on 80% of the lines,
and then the markers are included in the GS model to predict
the remaining 20% of the lines. Independent validation sets were
then performed on a yearly basis by combining the two training
populations and environments together per year. This allows the
evaluation of models in a realistic breeding situation in which we
combine all available data to build a training population.

The training populations were evaluated for cross-validations
on a yearly basis and over combined years and trials. We assessed
each year independently using cross-validations.We then created
prediction models starting with the earliest trial and then a new
model with the addition of each subsequent trial to evaluate a
genotype-by-environment interaction, continuous training of a
prediction model, and the effect of different races of P. striiformis
f. sp. tritici. Independent validation sets were first conducted
using continuous training. For example, the earliest year, i.e.,
2013, was used to predict the following year, i.e., 2014. The
years were then combined to predict the following year, i.e.,
2013 and 2014 to predict 2015, and this process was continued
until the years 2013–2018 were used to predict 2020. Using this
scenario, the first 3 years, 2013–2015, consisted of the DP lines
alone, and therefore, each year consisted of the same lines. With
the inclusion of the years 2016–2020, unique lines from the BL
were added each year due to the fact that each trial in the BL
consisted of unique lines only phenotyped in a single trial as
mentioned previously.

All GS and MAS models and scenarios were analyzed using
WSU’s Kamiak high performance computing cluster (Kamiak,
2021). Model and year comparisons were evaluated by using a
Tukey’s honestly significant difference (HSD) test implemented
in the “agricolae” package in R (R Core Team, 2018; de
Mendiburu and deMendiburu, 2019). The comparison of models
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was then plotted for a visual comparison using “ggplot2” in R
(Wickham, 2011; R Core Team, 2018).

RESULTS

Phenotypic Data
Stripe rust phenotyping was dependent on natural infection.
Therefore, it is important to evaluate GSmodels in different years
to account for environments with little to no variation in stripe
rust SEV and pathogen race changes. Overall, the maximum
IT and SEV were relatively high for each scale, indicating the
presence of adequate stripe rust SEV in each trial (Table 2). The
BL had relatively high coefficient of variations (CVs) for each
trial. However, the heritability was very high, ranging from 0.60
to 0.96 across traits and trials, indicating adequate screening trials
for stripe rust. Further, the phenotypic correlations between IT
and SEV were relatively high in the DP, ranging from 0.67 in
2013 to 0.88 in 2015 (Table 3). The phenotypic correlation in the
BL between IT and SEV was similarly high, ranging from 0.70 in
2016 to 0.86 in 2018.

The inclusion of multiple environments creates a challenge
for GS models due to the genotype–environment interaction
(GEI). There were significant differences between the majority
of years for each population and trait (Figures 1A–D). The
ranges for both IT and SEV were large, indicating both resistant
and nonresistant varieties within the populations. The mean
IT and SEV were also lower in the BL compared to the DP
(Figures 1A–D; Table 2). In comparison to the DP, the BL
population consisted of a larger proportion of resistant cultivars,
which was expected as these had previously been selected under
field conditions. SEV displayed a large concentration of values
near zero, specifically in the year 2018 (Figure 1D). Significant
differences of each year indicate an environmental effect that
needs to be accounted for within the prediction models.

In addition to GEI, stripe rust races may change from year
to year, which creates an opportunity for major genes to be
overcome by virulent races. TheUSDA stripe rust lab records race
frequencies and virulence each year (https://striperust.wsu.edu/
races/data/). The major stripe rust races for each year was either
PSTv-37 or PSTv-52 with the exception of 2017 and 2020, which
had large frequencies for PSTv-37 (Supplementary Table 1).
The other races with higher frequencies included PSTv-39,
PSTv-322, PSTv-48, PSTv-79, PSTv-11, and PSTv-73. Therefore,
the difference in race change was not a major factor in
prediction scenarios.

Genotypic Data
The major rust genes present in the WSU winter wheat breeding
program germplasm are Yr10, Yr17, Lr68, and Qyr.wpg-1B.
The frequency of genotypes, as determined by the previously
described molecular markers for each of these genes, is presented
inTable 4. Similar frequencies in both populations were observed
for the homozygous resistant allele for Lr68 with 50 and 46% in
the DP and BL, respectively. The frequency of the marker for
Yr10 and IWB12603 was much higher in the DP than in the BL
with Yr10 having a relatively high frequency of 53% in the DP.
However, the homozygous resistant allele for Yr17 was much

higher in the BL (38%) than in the DP (19%). There was also
a wide combination of homozygous resistant alleles within each
population (Figure 2).

The principal component biplot using the GBS SNP markers
over the combined DP and BL training populations accounted
for only 9.1% of the total genetic variation, indicating a large
population structure (Figure 3). PC1 explained 5.4% of the
variation, and PC2 explained 3.7% of the variation. The biplot
revealed three main clusters over the combined populations
using k-means clustering. A majority of lines in both the DP and
BL were included in the first cluster with 355 and 2,107 lines,
respectively. The second cluster also displayed a mixture of DP
lines and BLs with 108 and 219 lines, respectively. Finally, the
third cluster included mainly BLs with 12 lines in the DP and 304
lines from the BL.

Cross-Validations
Major Markers
Multiple comparisons for accuracy and RMSE between the
inclusion of each major molecular marker for the known rust-
resistant genes individually and in combination (ALL_M) were
completed for both populations in and across the years for IT
and SEV (Supplementary Tables 2, 3). The markers for major
rust genes were included as fixed effects and compared to
the base rrBLUP model and MAS models with the markers
as variables alone (Figures 4, 5; Supplementary Tables 4, 5).
Within individual years in the BL, the rrBLUP base model
reached a high accuracy of 0.65 in 2018 and 2020 for IT and
0.68 in 2018 for SEV. The effects of the major markers varied
from year to year, but the marker for Yr17 showed an increase
in the prediction accuracy for every year except in 2018 for
IT (Supplementary Table 2) and in 2018 and across 2016–2018
and 2016–2020 for SEV (Supplementary Table 3). A majority of
markers had relatively low prediction accuracies for MAS with
the exception of the Yr17marker that reached an accuracy of 0.05
and 0.42 for IT and SEV, respectively (Supplementary Tables 4,
5). When all markers were combined, similar accuracies were
attained and compared to the time of inclusion of only the
Yr17 marker in both the rrBLUP model and MAS models. The
remainder of major rust gene markers with the exception of
Lr68 increased the accuracy within specific years but had less
consistency than the Yr17 marker for. The largest differences
from the rrBLUP model within a single year in the BL were
seen in 2016 for GS models (Supplementary Figure 1). In 2016,
the combination of both Yr10 and Yr17 markers increased the
accuracy by 0.06 for SEV. Yr17 and the combination of markers
only slightly increased the accuracy across environments with an
increase in IT of 0.01 (Supplementary Figure 2). Additionally,
the RMSE was similar between all markers and rrBLUP for
both traits (Supplementary Figure 3; Supplementary Tables 2,
3). However, for MAS, RMSE was higher than all GS models.
In MAS models, the RMSE was lower for Yr17, and ALL_M,
compared to another marker, with SEV having a much higher
error than IT for the majority of years. The individual years of
2018 and 2020 displayed a higher RMSE compared to the other
individual years and combined years (Supplementary Figure 3;
Supplementary Tables 4, 5).
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TABLE 2 | Stripe rust IT and disease SEV heritability (H2) and trial statistics for unadjusted phenotypes in the DP and BL training population phenotypes from 2013 to

2016 and 2016 to 2020.

Population Year Trait H2 CVa Maxb Mean Minc SDd

DP 2013 IT 0.85 52.31 9 3 1 2

DP 2014 IT 0.82 57.13 9 4 1 2

DP 2015 IT 0.89 43.82 9 5 1 2

DP 2016 IT 0.84 46.23 9 4 0 2

DP 2013–2014 IT 0.93 55.58 9 4 1 2

DP 2013–2015 IT 0.94 52.66 9 4 1 2

DP 2013–2016 IT 0.95 51.77 9 4 0 2

DP 2013 SEV 0.91 108.31 100 22 2 24

DP 2014 SEV 0.78 116.04 90 24 2 28

DP 2015 SEV 0.92 72.78 100 43 2 32

DP 2016 SEV 0.89 70.57 100 36 0 26

DP 2013–2014 SEV 0.93 112.77 100 23 2 26

DP 2013–2015 SEV 0.96 99.31 100 30 2 30

DP 2013–2016 SEV 0.96 94.90 100 31 0 29

BL 2016 IT 0.90 87.56 8 3 0 2

BL 2017 IT 0.83 83.36 9 3 0 2

BL 2018 IT 0.79 172.49 8 2 0 3

BL 2020 IT 0.96 93.03 8 3 0 3

BL 2016–2017 IT 0.83 84.06 9 3 0 2

BL 2016–2018 IT 0.79 115.26 9 2 0 3

BL 2016–2020 IT 0.80 113.22 9 2 0 3

BL 2016 SEV 0.86 152.31 80 9 0 13

BL 2017 SEV 0.88 131.79 90 16 0 21

BL 2018 SEV 0.60 212.74 80 11 0 24

BL 2020 SEV 0.96 125.06 80 18 0 23

BL 2016–2017 SEV 0.89 136.36 90 15 0 20

BL 2016–2018 SEV 0.85 165.25 90 13 0 22

BL 2016–2020 SEV 0.86 160.47 90 14 0 22

aCV, Coefficient of variation.
bMax, Maximum.
cMin, Minimum.
dSD, Standard deviation.

TABLE 3 | Phenotypic correlations between IT and disease SEV.

Population Year 1 Year 2 Year 3 Year 4 Year 1–2 Year 1–3 Year 1–4

DP 0.79 0.67 0.88 0.82 0.76 0.85 0.86

BL 0.70 0.80 0.86 0.85 0.76 0.83 0.83

Phenotypic correlations between IT and disease SEV for Pacific Northwest (PNW) winter wheat within both the diversity panel (DP) lines and breeding lines (BL) phenotyped from 2013

to 2020 in Central Ferry, Lind, and Pullman, WA, USA.

Within individual years in the DP, the rrBLUP base model
reached an accuracy of 0.55 for IT (Supplementary Table 2)
and 0.64 for SEV in 2013 (Supplementary Table 3). Across
years, IT reached 0.56 in 2013–2016 (Supplementary Table 2)
and SEV reached 0.69 in 2013–2014 (Supplementary Table 3).
In the DP, the major rust markers had a less effect on the
prediction accuracy, with Yr10 being the only marker that
increased the accuracy from the base rrBLUP model and at a
maximum of 0.01. ForMAS, the combination of markers resulted

in the least reduction of accuracy with a maximum reduction
of 0.10 in 2015 for IT (Supplementary Table 4) and 0.07 in
2016 for SEV (Supplementary Table 5). Markers for Yr10 and
IWB12603 also had the largest effect on MASmodels. The largest
differences from the rrBLUP model within a single year in the
DP were seen in 2015 for GS models (Supplementary Figure 4).
In 2015, the Yr10 marker increased the accuracy by 0.01. There
were no increases in the accuracy across any combination of
environments in the DP. The results for RMSE were similar to
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FIGURE 1 | Comparison of infection type (IT) and disease severity (SEV) over years in the diversity panel (DP) lines and breeding lines (BL) training populations using

least significant differences. Models labeled with the same letter are not significantly different (p = 0.05). (A) Infection type for the diversity panel over years. (B)

Disease severity for the diversity panel over years. (C) Infection type for the breeding lines over years. (D) Disease severity for the breeding lines over years.

the BL, with SEV having a much higher RMSE for each model
than IT (Supplementary Tables 2, 3). Further, within SEV for
MAS, Lr68 had a higher RMSE compared to the other markers.
Yr17 did not display a lower RMSE than the other markers,
with Yr10 and ALL_M displaying the lowest RMSE in MAS
(Supplementary Figure 5; Supplementary Tables 4, 5).

De novo GWAS Markers
The de novo GWAS markers increased the prediction accuracy
in individual years and across years in the BL, but not in the
DP. Only the GWAS_B, GWAS_5, and GWAS_10 sets increased
the accuracy with GWAS_25, GWAS_50, and GWAS_100
decreasing the prediction accuracy (Figures 6, 7). The largest
increase in IT was for GWAS_5 in 2018 with an increase
of 0.02 for both IT and SEV (Supplementary Tables 1,
2; Supplementary Figure 6). Across years, GWAS_10
had the largest increase of 0.02 in 2016–2018 for SEV
(Supplementary Table 3; Supplementary Figure 7). The
MAS for the de novo GWAS markers had larger decreases
in MAS compared to the major markers in both the DP
and BL (Supplementary Tables 4, 5). The larger GWAS sets
(GWAS_25, GWAS_50, and GWAS_100) consistently had
lower prediction accuracies than the other GWAS sets and the
major rust gene markers. GWAS_B using significant markers
showed the similar accuracies to GWAS_5, displaying no
advantage compared to arbitrarily including markers based
on the value of p. The GWAS-GS models displayed a higher
RMSE for both GS and MAS in both population and traits
compared to the major markers (Supplementary Figures 8, 9).

The GWAS_100 sets displayed the highest RMSE out of all
models in the cross-validation scenarios with an RMSE of 43.02
(Supplementary Table 5).

Validation Sets
Major Markers
The validation sets were conducted by combining both training
populations and years and predicting the following year as
a forward prediction. In doing so, the validation sets were
evaluated to demonstrate real-world breeding scenarios wherein
all available information was used to create predictions. The first
3 years, 2013–2015, consisted exclusively of the DP, and from
2016 forward, the BL was included due to the availability of
training populations. The validation sets resulted in the highest
accuracy of all prediction scenarios using the rrBLUP base
model, and all major markers reached an accuracy of 0.72 in
the SEV for predicting 2014 using the 2013 data (Figures 8,
9; Supplementary Tables 6, 7). For the same year, the major
markers with the exception of Yr10 resulted in an increase of
the accuracy by 0.01. The major rust markers either performed
the same or increased the accuracy for the majority of validation
GS predictions.

As a number of environments and years were added to
the population, the general prediction accuracy decreased
presumably due to the prediction of multiple environments
within a year and the inclusion of different training populations.
However, as the accuracy decreased for the base rrBLUP model,
the effect of fixed markers increased. The largest increase
in both cross-validations and validation sets occurred using
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TABLE 4 | Frequency of rust-resistant genotypesa in both the breeding line (BL) and diversity panel (DP) line populations.

Population Marker (gene) Genotype Numbeb Frequency Major race

effectiveness

DP KASP (Yr17) 0 356 0.75 PSTv-322

PSTv-48

PSTv-79

PSTv-11

1 30 0.06

2 89 0.19

DP IWB12603 (Qyr.wpg-1B.1) 0 288 0.61 NAc

1 16 0.03

2 171 0.36

DP KASP (Lr68) 0 182 0.38 NA

1 55 0.12

2 238 0.50

DP Xpsp3000 (Yr10) 0 220 0.46 PSTv-37

PSTv-52

PSTv-322

PSTv-48

PSTv-79

PSTv-11

PSTv-73

1 4 0.01

2 251 0.53

BL KASP (Yr17) 0 1,491 0.57 PSTv-322

PSTv-48

PSTv-79

PSTv-11

1 131 0.05

2 1,008 0.38

BL IWB12603 (Qyr.wpg-1B.1) 0 2,244 0.85 NA

1 53 0.02

2 333 0.13

BL KASP (Lr68) 0 1,255 0.48 NA

1 166 0.06

2 1,209 0.46

BL Xpsp3000 (Yr10) 0 2,172 0.83 PSTv-37

PSTv-52

PSTv-322

PSTv-48

PSTv-79

PSTv-11

PSTv-73

1 11 0.00

2 447 0.17

aGenotype: Allele 0: homozygous wild-type allele; Allele 1: heterozygous with both alleles present; Allele 2: homozygous resistant allele.
bNumber, number of lines.
cNA, Data were not available.

2013–2017 to predict 2018, resulting in MAS models using
Yr17 and all markers with an increase of 0.17 and 0.16,
respectively, for IT and 0.13 and 0.10, respectively, for SEV
(Supplementary Tables 8, 9; Supplementary Figure 10). The
validation sets were the only prediction scenarios in which MAS
performed better than GS models. However, this was not the
case for all MAS models, with most major markers showing
similar decreases in the accuracy compared to cross-validations.

Additionally, the RMSE was similar to cross-validations with
low values for GS models compared to MAS across all markers
(Supplementary Figure 11). Further, for SEV, an RMSE for MAS
decreased with the addition of years.

De novo GWAS Markers
The de novo GWAS marker sets also increased the accuracy
when more environments were included. The increase in the
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FIGURE 2 | Heat map and hierarchical clustering for lines in the diversity panel (DP) lines and breeding lines (BL) populations for the major rust markers:

IWB12603(Qyr.wpg-1B.1), KASP(Lr68), Xpsp3000(Yr10), and KASP(Yr17). Genotype: 0, homozygous wild-type allele; 1, heterozygous with both alleles present; 2,

homozygous resistant allele.

FIGURE 3 | Principal component (PC) biplot and k-means clustering of single-nucleotide polymorphism (SNP) genotyped-by-sequencing (GBS) markers from the

diversity panel (DP) lines and breeding lines (BL) training populations.

prediction accuracy was not seen in the previous validation sets
as seen for the molecular markers for major rust genes. The de
novo GWAS markers had the largest prediction accuracies in
the last two validation sets with GWAS_5 having an accuracy
of 0.33 for IT and GWAS having an accuracy of 0.38 for SEV

using 2013–2017 to predict 2018 (Supplementary Tables 6,
7). In the last validation set, GWAS had the largest prediction
accuracy of 0.55 for IT. Similarly, the smaller GWAS sets had the
highest prediction accuracy. In contrast to the cross-validations,
the larger GWAS sets did not have a drastic decrease with

Frontiers in Plant Science | www.frontiersin.org 10 August 2021 | Volume 12 | Article 713667202

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Merrick et al. Breeding With Major and Minor Genes

FIGURE 4 | Difference in prediction accuracy from the base rrBLUP model for major markers in genomic selection (GS) and marker-assisted selection (MAS) using

cross-validations in the BLs phenotyped from 2016 to 2020. Adjustments: ALL_M, IWB12603(Qyr.wpg-1B.1), KASP(Lr68), Xpsp3000(Yr10), and KASP(Yr17)

combined.

GWAS_100, and actually had the same prediction accuracy as
the base rrBLUP for IT and an increase of 0.01 for SEV in using
2013–2018 to predict 2020 (Supplementary Tables 6, 7). The
de novo GWAS marker sets had the largest increases in overall
scenarios with GWAS_5 having an increase of 0.19 with MAS
for IT (Supplementary Tables 8, 9; Supplementary Figure 12).
Further, MAS for GWAS_100 displayed a much higher
RMSE with the highest value for all scenarios reaching
an RMSE of 381.71 using 2013–2015 to predict 2016
(Supplementary Figure 13; Supplementary Table 9). This
prediction scenario was the only scenario using only the DP lines
to predict BLs. However, all of the other GS-GWAS sets had an
RMSE similar to the major markers for GS and MAS.

Overall Differences
When comparing the different models over all years within
each population, we found that the marker for Yr17 and the

combination of all markers had the largest prediction accuracies.
However, the increase was only statistically significant in the BL
population and in the validation sets. There was no statistical
increase in the prediction accuracy in the DP. The largest mean
accuracy in any population was the major rust markers and base
rrBLUP for SEV in theDPwith an accuracy of 0.64 across all years
(Table 5). There was also a statistical increase in the prediction
accuracy as we increased the combination of years over both IT
and SEV training populations with the accuracies of 0.57 and
0.63 for IT and SEV, respectively when years 1–4 were combined
(Table 6).

DISCUSSION

GS for Disease Resistance
The development of resistant cultivars is the most effective and
economical method for controlling diseases such as stripe rust
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FIGURE 5 | Difference in prediction accuracy from the base rrBLUP model for major markers in GS and MAS using cross-validations in the diversity panel (DP) lines

phenotyped from 2013 to 2016. Adjustments: ALL_M, IWB12603(Qyr.wpg-1B.1), KASP(Lr68), Xpsp3000(Yr10), and KASP(Yr17) combined.

(Chen and Kang, 2017). Due to the challenges of breeding
for both quantitative and qualitative disease resistance, it is
recommended to combine them. In addition to the challenges
for breeding both major gene qualitative disease resistance
and minor gene quantitative resistance are also the common
challenges of implementing and integrating any major gene or
QTL into new cultivars. These difficulties include inconsistent
effects of the QTL due to inconsistent QTL segregations in
mapping populations, QTL interaction with genetic background,
and QTL interaction with the environment (Bernardo, 2008).
However, in addition to the common challenges, qualitative
resistance also faces the disadvantage of new virulent races of a
pathogen that can overcome major gene resistance (Chen and
Kang, 2017). Breeding for minor gene quantitative resistance
tends to produce a more durable resistance in BLs because it
relies on multiple small-effect alleles. Similar to other agronomic
traits, breeding for quantitative resistance requires multiple
breeding cycles to gradually improve resistance (Poland and

Rutkoski, 2016). The lack of qualitative resistance durability
coupled with the challenge in identifying and breeding for
quantitative resistance creates a unique opportunity for GS to
identify quantitative resistance by accounting for minor-effect
genes in the presence of large-effect major genes.

The goal of this study was to identify the best GS method for
disease resistance in the presence of both major and minor genes.
In our study, we used stripe rust as an example of the disease with
both major and minor resistant genes. Previous studies on the
GS of stripe rust showed promising prediction accuracies. Muleta
et al. (2017) showed that accuracy increased with population
size and marker density and reached up to 0.80. Ornella et al.
(2012) reported accuracies in The InternationalMaize andWheat
Improvement Center (CIMMYT) wheat populations of values
greater than 0.50 for stripe rust, but showed a lower accuracy
when compared to stem rust. In our study, the prediction
accuracy for both IT and SEV reached an accuracy of up to
0.67 and 0.69 in cross-validations, respectively. Further, IT and
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FIGURE 6 | Difference in prediction accuracy from the base rrBLUP model for de novo genome-wide association study (GWAS) markers in GS and MAS using

cross-validations in the BLs phenotyped from 2016 to 2020. Adjustments: GWAS_B, genome-wide association study assisted GS (GWAS-GS) with Bonferonni

significant markers; GWAS_5, GWAS-GS with the top five significant markers; GWAS_10, GWAS-GS with the top 10 significant markers; GWAS_25, GWAS-GS with

the top 25 significant markers; GWAS_50, GWAS-GS with the top 50 significant markers; GWAS_100, GWAS-GS with the top 100 significant markers.

SEV reached the accuracies of up to 0.66 and 0.72 in validation
sets, respectively. In comparison to other rust diseases, Rutkoski
et al. (2014, 2015) showed promising results to predict stem rust
with the accuracies of up to 0.50. Overall, our study showed
high prediction accuracies in comparison to most rust prediction
studies, and further displayed the feasibility for accurately
predicting disease resistance in the presence of major and minor
resistant genes.

Major Markers
When major genes are present, a large portion of the genetic
variance for a trait may be due to the unknown QTL with
minor effects (Bernardo, 2014). The other minor-effect QTL will
not necessarily be integrated when major genes are integrated
into cultivars. The lack of integration can be attributed to not
being able to use MAS and the difficulties outlined previously in

pyramiding major-effect genes. In contrast, GS simultaneously
models all QTL (Meuwissen et al., 2001). However, the use of
GS models such as rrBLUP will underestimate the effect of the
major QTL. Therefore, the inclusion of the major-effect QTL as
fixed effects can increase accuracy. According to Bernardo (2014),
major genes should be used in predictionmodels when only a few
major genes are present, and each gene accounts for more than
10% of the variation.

In this study, the major gene in both populations was Yr17.
In the BL, Yr17 accounted for up to 0.40 prediction accuracy
when used in MAS, and therefore accounts for a large amount of
variation. Themoderate accuracy of Yr17 supports that even with
the degradation of the ASR for Yr17, it still provides resistance
for APR as indicated in Liu et al. (2018). The other major rust
genes present in the BL would be considered as minor-effect
genes with a near-zero prediction accuracy within MAS or, in the
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FIGURE 7 | Difference in prediction accuracy from the base rrBLUP model for de novo GWAS markers in GS and MAS using cross-validations in the diversity panel

(DP) lines phenotyped from 2013 to 2016. Adjustments: GWAS_B, GWAS-GS with Bonferonni significant markers; GWAS_5, GWAS-GS with the top five significant

markers; GWAS_10, GWAS-GS with the top 10 significant markers; GWAS_25, GWAS-GS with the top 25 significant markers; GWAS_50, GWAS-GS with the top 50

significant markers; GWAS_100, GWAS-GS with the top 100 significant markers.

case of the marker for Yr10, only produced an accuracy greater
than 0.10 in a few prediction scenarios. The higher accuracy
in the BL for Yr17 also shows a lower RMSE compared to the
other markers. However, within the DP, all of the markers with
the exception of Lr68 produced accuracies greater than 0.20,
with IWB12603 reaching 0.34 and Yr10 reaching the highest
accuracies for MAS within cross-validations of 0.42, and could
be considered as major-effect markers. Additionally, the higher
accuracy for Yr10 was coupled with a lower RMSE than the
other markers.

Even with the moderate accuracies of the major rust markers
in MAS, we observed only a slight increase in the prediction
accuracy when the major markers were included in our GS
models, and relatively a lower RMSE than the MAS. The major
markers only increased the prediction accuracy at a maximum
of 0.06 within the cross-validation scenarios and 0.03 within

the validation sets. Interestingly, the validation sets resulted in
the highest accuracy of all scenarios with 0.72 for the base GS
model and the inclusion of the major markers when predicting
SEV in 2014 using 2013 with the small RMSE values for all
markers. These results are in direct contrast to previous studies
showing a higher accuracy in cross-validations (Lozada and
Carter, 2019; Merrick and Carter, 2021). Validation sets are a
more realistic approach for GS because it is comparable to how
GS would be implemented in breeding programs (Lozada and
Carter, 2019). However, the major markers only increased the
prediction accuracy as the overall prediction accuracy decreased.
For example, using 2013–2017 to predict 2018, all of the
major markers increased the prediction accuracy, but the base
prediction was only 0.27, and the markers increased the accuracy
by 0.03 maximum in all scenarios. Further, the major markers
hadmuch larger increases in theMAS scenarios with a maximum
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FIGURE 8 | Difference in prediction accuracy from the base rrBLUP model for major markers in GS and MAS in the validation set using the diversity panel (DP) lines

and breeding lines (BL) phenotyped from 2013 to predict 2020. Adjustments: ALL_M, IWB12603(Qyr.wpg-1B.1), KASP(Lr68), Xpsp3000(Yr10), and KASP(Yr17)

combined.

increase of 0.17, but resulted in a higher RMSE. Therefore, the
inclusion of the major markers provides an advantage in the
more realistic validation sets when the base GS model has poor
predictive ability.

In the context of GS models and breeding programs, a
small increase in the prediction accuracy would be considered
negligible in realistic breeding scenarios. The results in our
study are in contrast to previous studies showing that the major
markers had a large increase in prediction accuracies in GS
models for other diseases such as stem rust (Rutkoski et al., 2014)
and Fusarium head blight (Arruda et al., 2016). One hypothesis
for the lack of increase in the prediction accuracy may be due
to GS models accounting for a majority of variation in both
the major- and minor-effect markers for disease resistance, or
the major-effect markers may be accounted for in the models
of the GBS markers. However, the ridge regression penalty
reduces the effect of large-effect markers, hence the additional

variation would need to be accounted for by other small-effect
markers (Rice and Lipka, 2019). Additionally, the lack of increase
in the prediction accuracy may be due to the major markers
not accounting for enough phenotypic variation. Due to the
reduction in the effect of the major markers, Bernardo (2014)
suggested implementingmarkers that account for more than 10%
of the variation as mentioned previously. This theory may be
disproved by the major markers that display a moderate accuracy
in MAS models. However, this may be the case for Lr68, which
displayed a minimal effect in both MAS models and GS models.

Further, the lack of increase in the prediction accuracy may be
beneficial in demonstrating that other uncharacterized resistant
QTL can still provide a large amount of disease resistance
within the populations either alone or in conjunction with
major genes. In this case, our results would be beneficial in
confirming the presence of minor-effect QTL for quantitative
resistance and provide a more durable resistance within the

Frontiers in Plant Science | www.frontiersin.org 15 August 2021 | Volume 12 | Article 713667207

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Merrick et al. Breeding With Major and Minor Genes

FIGURE 9 | Difference in prediction accuracy from the base rrBLUP model for de novo GWAS markers in GS and MAS in the validation set using the diversity panel

(DP) lines and breeding lines (BL) phenotyped from 2013 to predict 2020. Adjustments: GWAS_B, GWAS-GS with Bonferonni significant markers; GWAS_5,

GWAS-GS with the top five significant markers; GWAS_10, GWAS-GS with the top 10 significant markers; GWAS_25, GWAS-GS with the top 25 significant markers;

GWAS_50, GWAS-GS with the top 50 significant markers; GWAS_100, GWAS-GS with the top 100 significant markers.

training populations. Therefore, we can conclude that genotyping
and selecting major genes for disease resistance may not be
necessary when the breeding programs can use more cost-
effective genome-wide markers to implement GS with more
consistent results.

De novo GWAS Markers
Frequently, the major markers for disease resistance are
either unknown or have an uncharacterized effect within the
populations. Therefore, GWAS can be performed to characterize
disease-resistant QTL within a population, and the significant
markers can be used as fixed-effect covariates (Rice and Lipka,
2019). In Zhang et al. (2014), publicly available GWAS markers
were integrated into prediction models but only increased the
accuracy by 0.01, similar to our results. In contrast, we used de
novoGWASmarkers dependent on the training population. This

approach has been used for FHB in which Arruda et al. (2016)
demonstrated an increase in the accuracy of up to 0.14. These
results were also demonstrated in Spindel et al. (2016), in which
de novo GWAS markers implemented into GS increased the
accuracies more than 0.10 in rice (Oryza sativa L.). However, in
our study, the de novo GWAS markers only marginally increased
the accuracy, or in the case of implementing more than 25
markers, decreased accuracy in the majority of cross-validation
scenarios and an increased RMSE. A reduction in the prediction
accuracy and an increase of RMSE with a larger set of de novo
GWAS markers may be attributed to an increase in the bias of
the model and an increase of RMSE due to overfitting as seen
in Raymond et al. (2018) or due to the difficulty experienced
by the model to simultaneously estimate all of the fixed effects
(Bernardo, 2014). A reduction in the prediction accuracy was also
shown in Rice and Lipka (2019).
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TABLE 6 | Comparison of the number of years in the training populations on

overall GS model accuracy and pairwise comparisons for stripe rust infection type

(IT) and disease severity (SEV) for PNW winter wheat over both the DP lines and

BLs phenotyped from 2013 to 2020 in Central Ferry, Lind, and Pullman, WA, USA

in the cross-validation sets.

Trait Year 1 Year 2 Year 3 Year 4 Year 1–2 Year 1–3 Year 1–4

IT 0.52d 0.43f 0.57a 0.54c 0.49e 0.56b 0.57a

SEV 0.53f 0.55e 0.61b 0.59c 0.58d 0.62a 0.63a

Models labeled with the same letter are not significantly different (P-value = 0.05).

Another hypothesis may be stated for why the de novo
GWAS markers failed to increase the prediction accuracy due
to the inclusion of false positives within GWAS models. To
mitigate this, we included a GWAS-GS model that only included
significant markers based on a Bonferroni correction of 0.05.
However, this model failed to self-differentiate from another
smaller set of GWAS-GS models. The lack of reduction was
mainly seen in our cross-validation sets. Within cross-validation,
the training population is divided. The division of the training
populations may be one cause of the lack of increase of the
prediction accuracy. The smaller validation fold within a cross-
validation may have a weak association with the markers found
in the larger training folds, as hinted at by Rice and Lipka (2019).
The weak association theory may be supported by the contrasting
results seen in the validation sets.

Similar to the inclusion of the major markers in the cross-
validations, the validation sets showed an increase in the
prediction accuracy when the de novo GWAS markers were
included and displayed the largest increases from GS models.
The GWAS model with significant markers only (GWAS_B)
displayed the largest increase of 0.06 in the SEV. Once again,
this increased prediction accuracy was observed as the prediction
accuracy of the base GSmodel decreased. This occurrence in both
the major and de novo GWAS markers demonstrates the ability
to increase and maintain a high accuracy as the GS model fails
in predicting lines. Therefore, we can conclude that even though
fixed-effect markers may not increase the accuracy in typical
cross-validation scenarios, they are beneficial in more realistic
validation set approaches similar to the major markers.

However, similar to the major markers, increased prediction
accuracy with the inclusion of de novo GWAS markers was
very small relative to the high accuracy for most scenarios.
Further, small sets of de novo GWAS markers were similar in
consistency to the major markers. Therefore, there is little benefit
in characterizing major-effect disease resistance markers for GS
over implementing the GWAS-GS methods that would use the
same sets of markers like GS models.

Training Population and Environment
We compared the effect of the major and de novoGWASmarkers
in different training populations that are commonly used in
breeding programs. The frequency and source of both major
disease- and minor disease-resistant genes vary. For instance,
the BL population consists of WSU BLs that have been selected
for resistance, specifically for P. striiformis f. sp. tritici races
in Washington, and therefore has a high level of resistance
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throughout the population. In comparison, the DP consists of
varieties from various breeding programs in the PNW. The
sources of resistance in the varieties are more similar within the
BL than in the DP, with the DP containing major genes different
from the major markers chosen in this study common in the
WSU germplasm or selected for resistance to races not present
in eastern Washington.

The differences in the frequency of major genes were observed
in the major rust markers used in this study. In the BL, the Yr17
marker showed an increase in the prediction accuracy for GS
models and a relatively high accuracy in MAS models compared
to the other markers. However, this was not consistently seen
in the DP. The inconsistent effect of Yr17 in different training
populations may be due to the higher frequency of Yr17 in the
BL compared to the DP. This may also be supported by the
higher accuracies for Yr10 and IWB12603 in the DP compared
to the BL, and both of these rust genes have a higher frequency
in the DP than in the BL. Our study showed that regardless of
the frequency of the rust-resistant genotypes, there was only a
small to nil increase in the prediction accuracy. Therefore, GS
would be more accurate than MAS regardless of the frequency
of the known rust-resistant genotypes in a breeding program
due to the ability to account for both major disease and minor
disease-resistant genes.

In addition to different frequencies of major genes, the general
composition of the training populations can affect GS prediction
accuracy (Asoro et al., 2011). The composition of the training
population affects the accuracy due to both population structure
and genetic relatedness (Habier et al., 2007; Asoro et al., 2011;
Mirdita et al., 2015). We compared the population structure
in our models by plotting principal components and identified
three clusters indicating distinct subpopulations. In addition,
the population structure was not taken into account in our GS
models. However, we can see the effect of genetic relatedness and
population in both our cross-validation and validation sets. The
BL had a statistically higher mean accuracy for both IT and SEV
than the DP in cross-validations, which could be attributed to
the closer genetic relatedness of the population and sources of
resistance as mentioned previously. A higher prediction accuracy
for the BL is advantageous for breeding programs because they
can use their existing breeding trials for GS without screening
a DP outside their breeding program. In the validation sets, we
see an initial increase in the accuracy due to the DP being the
only population in the training populations, but as we added in
BLs, the accuracy decreased. The accuracy was reduced when
the DP predicted the BL, but eventually increased as more BLs
were introduced into the training population. The decrease in
validation sets can also be attributed to GEI (Michel et al., 2016;
Huang et al., 2018; Lozada and Carter, 2019, 2020; Haile et al.,
2020).

Further, GEI is important for qualitative disease resistance.
Race-specific qualitative resistance is dependent on the race in the
environment and thus can lead to larger environmental effects
(Poland and Rutkoski, 2016). In contrast, GEI has a much smaller
effect on minor-gene quantitative resistance due to the lack of a
gene-for-gene interaction. In our study, the most frequent races
were similar from year to year, and therefore may not be a
significant factor in the differing prediction accuracy.

In this study, disease resistance screening was dependent on
the natural occurrence of stripe rust for disease pressure, and
therefore the overall effect of the environment is important.
Additionally, diseases such as stripe rust are affected by several
environmental factors, including moisture, temperature, and
wind. Further, disease SEV is affected by the other aspects of
the disease triangle, disease inoculum, and a susceptible host to
induce disease development (Chen, 2005). Disease development
and the quality of the phenotypic data obtained from the
unreplicated trials may also explain the differences in the
prediction accuracy from year to year, especially in the DP in
which the same lines are phenotyped every year. Meanwhile, BLs
are only phenotyped in a single year, and therefore the difference
from 1 year to the next can be either disease incidence as in the
DP or the changes occurred due to differing levels of resistance
within BLs. In addition, we see an increase in the prediction
accuracy for both the cross-validation and validation sets as
we increase the number of environments within our training
population. The increase in accuracy may be accounted for by
the inclusion of GEI within our phenotypic adjustments and GS
models as reported in previous studies, as well as the general
high heritability for disease resistance (Crossa et al., 2014; Jarquín
et al., 2014; Haile et al., 2020; Merrick and Carter, 2021). Overall,
our GSmodels accurately predicted disease resistance in different
training populations and environments, and therefore will be an
important strategy for selecting for disease resistance.

Applications in Breeding
Genome selection is beneficial for complex traits and can
outperform phenotypic selection and MAS for low heritable
traits. However, there may be little benefit in using GS for
selection purposes for highly heritable traits such as disease
resistance (Poland and Rutkoski, 2016). In the case of highly
heritable traits, GS can still outperform phenotypic selection
and MAS in terms of gain per unit time when implemented in
the early stages of the breeding cycle (Bernardo and Yu, 2007;
Rutkoski et al., 2011). In our study, a high prediction accuracy
would allow an increase in genetic gain by decreasing the cycle
time of the breeding program and rapidly accumulating favorable
alleles for disease resistance (Rutkoski et al., 2011).

Even though phenotypic selection has been successfully
implemented for disease resistance, without controlled
experiments, one cannot determine whether the resistance
is quantitative or qualitative. Therefore, we cannot conclude
whether the resistance will be durable in the long term.
Alternatively, we can implement MAS to select qualitative
and quantitative disease resistance within the BLs to bypass
the need for controlled experiments. However, as seen in our
study, MAS does not account for all of the resistance within
the lines in either of the training populations, as shown by
a decrease in the prediction accuracy for MAS models. MAS
also has limitations when it comes to pyramiding multiple
markers, as discussed previously, and is a form of tandem
selection (Bernardo, 2014). In contrast, GS is a form of selection
index and has been shown to be superior to tandem selection
(Hazel and Lush, 1942). Using GS, we can select for the
accumulation of all-resistant QTL to take advantage of the
quantitative and qualitative resistant genes within a population,
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even when they are uncharacterized. Furthermore, by using
fixed effects, we can select the lines that have a major marker
of interest (Poland and Rutkoski, 2016). Therefore, GS will
have a place in selecting for both quantitative and qualitative
disease resistance.

Another advantage in implementing GS is by reducing both
genotyping and phenotyping within a breeding program. GS
can remove the need for genotyping for major and minor
genes for selection purposes. This is further supported by the
similar accuracies between major and de novo GWAS markers.
By utilizing genome-wide markers, we can not only implement
GS or GWAS-GS but also utilize the markers for additional
traits, thus making the genome-wide markers more cost-effective
(Poland and Rutkoski, 2016). Likewise, with the help of GS,
breeding programs can reduce the need for phenotypic screening
in disease nurseries in multiple locations and free up resources
for screening more lines and increase genetic gain (Poland and
Rutkoski, 2016).

Furthermore, the challenges introduced by the environment
mentioned previously provide another advantage in using GS
for disease resistance. GS models will help select cultivars
with durable quantitative resistance with the accumulation of
favorable alleles and select for disease resistance in environments
not conducive to disease incidence needed for phenotypic
selection. Overall, the high accuracy of GS models in our study
displays the ability to predict durable disease resistance and
account for uncharacterized minor-effect QTL in the presence of
known major genes.

CONCLUSIONS

This study showed the ability to accurately predict disease
resistance using major and minor genes. The small to nil increase
in the prediction accuracy for the major markers indicates the
need for a careful selection of the major markers that account for
a large variation in the training and test populations. Further, a
comparison of the number of de novoGWASmarkers shows that
a small number of de novoGWASmarkers should be used instead
of a large set of markers to keep from overfitting the model.
Additionally, fixed-effect markers may not provide a benefit in
scenarios with already high prediction accuracy. However, in
prediction scenarios with low accuracies such as in more realistic
validation sets, the inclusion of both major markers and de novo
GWAS helps to account for a variation in case of the failure
of the base GS models. Moreover, we can increase the accuracy
with the inclusion of additional environments and by using the
populations that are genetically related such as the BL. Overall,
there were no disadvantages in the inclusion of the major or

de novo GWAS markers. The lack of increase of the prediction
accuracy with the inclusion of fixed effects coupled with a large
decrease in the accuracy using MAS indicates the presence of
minor-effect QTL for quantitative resistance and thus durable
resistance within the training populations. This study showed
the ability to predict disease resistance and accumulate favorable
alleles for durable disease resistance in the presence of major and
minor resistance genes.
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Cucumber is a widely grown vegetable crop plant and a host to many different plant

pathogens.Cucumber vein yellowing virus (CVYV) causes economic losses on cucumber

crops in Mediterranean countries and in some part of India such as West Bengal and in

African countries such as Sudan. CVYV is an RNA potyvirus transmitted mechanically

and by whitefly (Bemisia tabaci) in a semipersistent manner. Control of this virus is

heavily dependent on the management of the insect vector and breeding virus-resistant

lines. DNA markers have been used widely in conventional plant breeding programs via

marker-assisted selection (MAS). However, very few resistance sources against CVYV in

cucumber exist, and also the lack of tightly linked molecular markers to these sources

restricts the rapid generation of resistant lines. In this work, we used genomics coupled

with the bulked segregant analysis method and generated the MAS-friendly Kompetitive

allele specific PCR (KASP) markers suitable for CsCvy-1 selection in cucumber breeding

using a segregating F2 mapping population and commercial plant lines. Variant analysis

was performed to generate single-nucleotide polymorphism (SNP)-based markers for

mapping the population and genotyping the commercial lines. We fine-mapped the

region by generating new markers down to 101 kb with eight genes. We provided SNP

data for this interval, which could be useful for breeding programs and cloning the

candidate genes.

Keywords: CVYV, cucumber, marker assisted selection, kompetitive allele-specific PCR genotyping, plant

breeding

INTRODUCTION

Cucumber plants, Cucumis sativus, have been cultivated as a vegetable crop across the globe for
centuries (Tatlioglu, 1993). The fruit is consumed as fresh or industrialized product, and the
major producing countries are China (7,033,8971 tons), Turkey (1,916,645 tons), Russia (1,626,360
tons), Ukraine (1,034,170 tons), and Iran [871,692 tons (FAO, 2019)]. As an important vegetable,
cucumber is challenged by many different fungal, oomycete, bacterial, and viral pathogens (Kong
et al., 2015; Słomnicka et al., 2018; Bandamaravuri et al., 2020).
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One of the most devastating viral pathogens is Cucumber vein
yellowing virus (CVYV), which belongs to the Potyviridae family
(Lecoq et al., 2000), has an RNA genome (Janssen et al., 2005),
is transmitted mechanically and by whitefly, Bemisia tabaci, in
a semipersistent manner (Mansour and Al-Musa, 1993), and
infects a number of cucurbit species (Gil-Salas et al., 2011).
The occurrence and heavy crop losses due to CVYV infection
in the open fields and under protected cucumber crops have
been reported in the Mediterranean countries from Israel to
Portugal (Cohen and Nitzany, 1960; Louro et al., 2004). The
main symptoms of CVYV on the cucumber include vein clearing
followed by vein yellowing on the youngest leaves (Cohen
and Nitzany, 1960), the occasional occurrence of yellow/green
mosaics on the fruit (Cuadrado et al., 2007), and eventual general
necrosis of the entire infected plant (Cohen and Nitzany, 1960).
Mechanical transmission of the virus allows the use of cucumber
as a test and indicative plant for multiplication.

Cucumber vein yellowing virus has been classified as a
quarantine viral pathogen in the EPPO A2 Action List (https://
www.eppo.int/ACTIVITIES/plant_quarantine/A2_list). Control
of this virus relies heavily on the application of integrated pest
management (IPM) practices that incorporate the ecosystem-
based strategies, including cultural practices, biological and
chemical control of the vector, and the use of resistant varieties
(Horowitz et al., 2011). Sanitation, use of certified virus-free
seedlings, and eradicating diseased plants parts are common
practices for controlling viral plant pathogens (Hilje et al., 2001;
Nazarov et al., 2020). Although chemical pesticides have been
used to control the whitefly insect vector, concerns to human
health, occurrence of insecticide resistance, and damage to the
environment led to a search for alternative measures (Sani et al.,
2020). Use of microbial biological control agents (MBCA), such
as entomopathogenic fungi (Faria and Wraight, 2001; Sani et al.,
2020), use of barrier or trap crops (Zhang et al., 2020), and use
of beneficial insects, such as predators or parasitoids (Moreno-
Ripoll et al., 2014), have been considered.

The RNA-guided genome editing using clustered regularly
interspaced short palindromic repeats (CRISPR)-Cas9 has
been also used to generate virus-resistant crops (Liu and
Fan, 2014). For example, Chandrasekaran et al. (2016) used
Cas9/sgRNA constructs to target the recessive eukaryotic
translation initiation factor 4E (eIF4E) gene in cucumber. They
reported that the homozygous T3 lines showed immunity to
CVYV (Chandrasekaran et al., 2016) indicating the possibility
of alternative new methods for CVYV control. Planting
cultivars resistant to the whitefly and/or to the virus is
one of the most important control measures in the CVYV
management. In a study to identify cucumber lines resistant
to whitefly, Novaes et al. (2020) screened 60 genotypes and
found that accessions IAC-1214, IAC-1201, Campeiro, Japonês,
IAC-1311, Kyria, and IAC-1175 displayed some low levels of
attractiveness to these insects and suggested they could be
included in the breeding programs to develop whitefly-resistant
cucumber lines.

Genetics of resistance to CVYV have been investigated by
several groups (Picó et al., 2003). A Spanish landrace of short

cucumber, C. sat-10, was found to be monogenic and displaying
dominant resistance to CVYV (Picó et al., 2008). Similarly, a
cucumber cultivar named Kyoto-3-feet originating from Japan
has been reported to be resistant to CVYV (Martín-Hernández
and Picó, 2021); however, detailed information on the nature of
these resistance mechanisms is not available. Cucumber hybrid
lines resistant to CVYV exist in the commercial market; however,
currently all the work for selecting resistant lines relies on
traditional pathotesting efforts. Recently, Pujol et al. (2019)
described their elegant study on the resistant accession CE0749, a
CVYV-resistant long Dutch-type cucumber. They used genomics
and bulked segregant analysis (BSA) (Michelmore et al., 1991)
and fine-mapped a locus containing the gene CsCvy-1 locus in a
625 kb region with 24 candidate genes (Pujol et al., 2019).

Here, we described our investigations on the identification
of DNA markers for fine mapping CsCvy-1 using genomics and
BSA. We used both segregating F2 populations and the available
commercial F1 hybrids, mapped the locus down to 101 kb
with eight genes, and provided single-nucleotide polymorphism
(SNP) data for the interval, which could be useful for plant
breeding programs.

MATERIALS AND METHODS

Plant Lines and Mapping Populations
An F2 mapping population, generated from a cross between a
susceptible (YT-189-1) and a resistant (YT-MLN-33) cucumber
inbred lines (Yüksel Tohum A.S., Antalya, Turkey), was used in
the phenotyping and genotyping experiments. F3 families were
raised by selfing the selected lines and used to determine the
genotype of the F2 lines.

Virus Isolate and Pathology Methods
The CVYV isolate used in this study was obtained from
DSMZ (Braunschweig, Germany) and propagated in susceptible
cucumber plants (Cucumis sativus, line YT-189-1). Virus
inoculum was prepared by homogenizing 1 g infected leaves in
4ml 0.01M phosphate buffer (pH 7.0) containing 0.2% sodium
sulfate and 0.2% diethyldithiocarbamic acid (DIECA, Sigma-
Aldrich, St. Louis, MO, United States). After adding 600-mesh
carborundum and active carbon, cotyledons of cucumber plants
(parental lines, F1, and F3 generations), which were at the
cotyledon to one-true-leaf stages, were mechanically inoculated.
A second inoculation was performed 3 days after the first one
to eliminate escapees. The inoculated cucumber seedlings were
then kept in a growth chamber with temperature control set
at 30/25◦C (day/night) with a 16 h light/8 h dark photoperiod
for 3 weeks and observed every 2 days. First symptoms were
observed 5–7 days postinoculation (dpi), but became obvious
after 12–15 dpi. After 3 weeks, no further symptom developments
were observed; thus, 15 dpi was selected to be the optimal
time for symptom evaluation. Plants showing clear symptoms
including mosaic and vein yellowing on leaves were rated as
susceptible, whereas those with no symptoms or a very light vein
discoloration on only the oldest ones were accepted as resistant.
A minimum of 20 plants was used per treatment.
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DNA Extraction and Genome Sequencing
Young leaves were collected from parental and F2 lines.
Plant genomic DNA was isolated using the Wizard Magnetic
Kit (Promega, Madison, WI, United States) following the
instructions of manufacturer. DNA was extracted from each
individual plant lines, and a gel electrophoresis was performed to
determine whether high molecular weight DNAs were isolated.
The resistant and susceptible bulks were generated from 20
resistant and 20 susceptible F2 individuals, respectively, as
described in earlier studies (Devran et al., 2015, 2018). Genomic
DNA library and sequencing have been carried out by the
University of Exeter Sequencing Service after quality check of
DNAs, generating 2 × 150 bp paired-end read data for each
parent line and bulked (resistant and susceptible) pools with
Illumina HiSeq 2500 (Illumina, Inc. San Diego, CA, USA).

Analysis of Genomic Sequences
As previously described (Devran et al., 2018), we took the
NGS analysis approach where the raw reads were trimmed
using BBDuk (filter = 27, trimk = 27; https://sourceforge.net/
projects/bbmap/) to remove Illumina adapters and to quality
trim both ends to Q12. Subsequently, trimmed sequences from
parental lines and the bulks were mapped onto the available
reference cucumber genome (V2 and V3) using BBMap (https://
sourceforge.net/projects/bbmap/), and the alignment data
were converted to the BAM format (Li et al., 2009). As the
CsCvy-1 locus was previously mapped onto chromosome 5
(Pujol et al., 2019), the data from the interval on chromosome
5: 7,000,000–7,850,000 were extracted using SAMtools (Li et al.,
2009). The variant detection has been performed using BCFtools
(Li et al., 2009) and a publicly available custom script (https://
github.com/davidjstudholme/SNPsFromPileups) as previously
described; (Yemataw et al., 2018). Integrative Genomics
Viewer (IGV) was used to visualize the alignment results
(Robinson et al., 2011).

Converting Single Nucleotide Variants to

PCR-Based Markers
Several of the SNPs within the interval were converted to
Kompetitive Allele Specific PCR markers (KASP) by taking 100
bases either side of the SNP. KASP primers were developed using
the LGC’s primer picker software, Middlesex, United Kingdom.
The PCRs were performed in a total volume of 15 µl that
included DNA (10 ng; 5 µl), KASP Assay Mix (0.2 µl), KASP
Master Mix (7.5 µl), and distilled water (2.3 µl). The KASP
assay reactions were performed using the LightCycler R© 480 II
(Roche) using 61–55◦C touchdown protocol (https://biosearch-
cdn.azureedge.net/assetsv6/KASP-thermal-cycling-conditions-
all-protocols.pdf). The fluorescence signal was measured for
2min at 25◦C using a FluOstar Omega Microplate Reader (BMG
LABTECH, Ortenberg, Germany).

Confirming Interval and Identifying

Marker-Assisted Selection (MAS)-Friendly

Markers
As the CsCvy-1 locus had been previously mapped (Pujol
et al., 2019), we used some of the published KASP markers
including CVYV-184, CVYV-187, CVYV-188, CVYV-190, and

CVYV-122 in this work. Published and newly generated
KASP markers were first tested on parents to confirm the
identified polymorphisms and then 120 segregating F2 lines.
Marker genotyping data and the viral disease phenotyping
data were used to confirm the CsCvy-1 interval. As we
developed new markers (Supplementary Table 1) to narrow
the interval down, we also tested these markers with the
commercial F1 hybrid lines, which were obtained from the
relevant companies. As F2 lines are a segregating population,
markers discovered using F2s may not be a reliable MAS-
friendly marker. Therefore, we used F1 hybrid lines to
narrow the interval further down and identify the MAS-
friendly markers.

Genomic Sequences and Accession

Numbers
Cucumber reference genome sequences ChineseLong 9930 v2 are
at http://cucurbitgenomics.org/organism/2 ChineseLong 9930
v3 at (https://ftp.ncbi.nlm.nih.gov/genomes/genbank/plant/
Cucumis_sativus/latest_assembly_versions/GCA_000004075.
3_Cucumber_9930_V3/). The raw sequence reads aligning to
the interval have been deposited in the Sequence Read Archive
(SRA) and are accessible via BioProject accession PRJNA713378.

RESULTS

Resistance to CVYV Segregates as a

Single Locus
A cross was generated between the susceptible C. sativus inbred
line YT-189-1 and the resistant inbred line, YT-MLN-33. The
F1 hybrid showed resistance to CVYV, indicating that resistance
was dominant. The F1 was selfed to generate segregating F2
populations. A total of 120 F2 lines were taken to F3 level,
and 20 F3 lines descending from each F2s were inoculated
with the virus to determine accurately the phenotype of the
mapping population. Disease symptoms, including mosaics and
vein yellowing, were obvious on the leaves of susceptible plants at
15 dpi (Figure 1). The segregation ratio observed in this bioassay
was 92:28 (resistant:susceptible, 3:1; with Chi-square = 0.05 and
p ≤ 0.05), suggesting that a single locus was providing resistance
to CVYV in this cross and allowing the subsequent analysis.

Linkage to CsCvy-1 Locus
We used a next-generation sequencing (NGS)-based BSA
approach whereby we generated bulks from DNA isolated
from 20 resistant and susceptible F2 lines. We generated 150-
bp paired-end Illumina HiSeq2500 sequencing data from the
two parents and bulks (resistant and susceptible). A total
of 390 million reads for each parent and 391 million reads
for each bulk were generated. We then mapped these reads
onto to the cucumber reference genome sequence (GenBank:
GCA_000004075.3). However, during the course of our work,
a locus designated CsCvy-1 mapped on chromosome 5 was
published using BSA approach (Pujol et al., 2019). This
prompted us to check whether we were mapping the same
region even though we were using different breeding lines.
We used published CVYV-184, CVYV-187, CVYV-188, CVYV-
190, and CVYV-122 KASP markers (Pujol et al., 2019) to
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FIGURE 1 | Healthy and Cucumber vein yellowing virus (CVYV)-infected
cucumber leaves. Cucumber plants were mechanically inoculated at the

cotyledon to one-true-leaf stages. A second inoculation was performed 3 days

after the first one. The inoculated cucumber seedlings were then kept in a

growth chamber with temperature control set at 30/25◦C (day/night) with a

16 h light/8 h dark photoperiod for 3 weeks and observed every 2 days. The

plants were evaluated for symptom development at 15 days after the first

inoculation (dpi). Control plants were treated with buffer without virus in a

similar manner. (A) Leaf of an uninoculated control plant, (B) leaf of a

Cucumber vein yellowing virus (CVYV)-inoculated-resistant plant, and (C) leaf

of a CVYV-inoculated-susceptible plant.

TABLE 1 | Molecular markers used to define the interval for CsCvy-1 locus and

the critical recombinant F2 lines.

F2 lines* 10218 10317 CsCvy-1 10644 10950 122**

58 Rr Rr Rr SS SS Rr

59 RR RR RR Rr Rr Rr

65 Rr Rr Rr RR RR Rr

80 Rr RR RR RR RR RR

103 Rr Rr RR RR RR RR

*F2 lines were generated from the cross between the resistant and the susceptible
cultivars. SS, homozygous for susceptible parent allele; RR, homozygous for resistant
parent allele; RS, heterozygous. Recombinants are shown in bold.
**This marker is from Pujol et al. (2019).

determine whether the resistance locus in our parental line YT-
MLN-33 is linked to CsCvy-1. Our mapping data showed a
clear linkage (Table 1, Supplementary Figure 1), and therefore
we concentrated on chromosome 5. As we had already
performed an SNP analysis using the then-available version
of the reference genome sequence (GCA_000004075.2), we
developed several KASP markers and mapped the CsCvy-1
locus in our segregating mapping population. To make our
work comparable with the published data, we then mapped
our clean NGS reads onto the updated reference genome
sequence (GCA_000004075.3), concentrated on a region between
SNP10218, identified in this work, and the published CVYV122
marker (Supplementary Table 2). Several of the published
markers were not polymorphic for the parental lines we used, e.g.,
CVYV-173, CVYV-174, CVYV-175, and CVYV 176.

Narrowing the Interval Using Nucleotide

Variants
As our ultimate aim was to identify a marker that is tightly
linked to CsCvy-1, we wanted to narrow the interval and
generate further markers to identify an MAS-friendly marker.
Using NGS data from parents and bulks, we mined the data

on chromosome 5: 10,218,000–11,370,000 (ChineseLong 9930
ASM407v2, Supplementary Figure 1). KASP markers were then
designed and used for mapping to narrow the interval. A total of
13 new KASPmarkers were generated, and the locus was mapped
down to a 327-kb interval between the markers 10,317 and
10,644K using the available F2 lines (Supplementary Table 2).
As the version-three reference genome sequence became
available, we also used this version and mined the data
on chromosome 5: 7,000,000–7,850,000 (GCA_000004075.3,
Supplementary Figure 2) for SNPs. A total of 436 SNPs have
been detected (Supplementary Table 3). It should be noted
here that although markers developed in this work using the
GCA_000004075.V2 reference map to the region, several of the
newly developed ones, especially toward the marker CVYV-122,
were missing when the GCA_000004075.V3 reference was used.
This may have been due to misassembly of the region as there
was a 394 kb was missing in the GCA_000004075.3 genome
(Figure 2).

Commercial Varieties Help Narrowing the

Interval
Although we had enough number of markers to map the locus
further, the number of F2 lines to bring the interval down
was not sufficient to identify further recombinants. We then
obtained seeds of more than 20 commercial cucumber varieties
with claimed CVYV phenotype and confirmed their phenotype
by testing them with the CVYV isolate. Their DNAs were
screened with our newly developed markers, and we narrowed
down the locus to a 101-kb interval between the markers 10,317
and 10,418K (Supplementary Table 4, Table 2). This finding
suggests that the polymorphism identified in this work has been
maintained across different varieties that have been used in
the commercial breeding programs. In addition, the identified
polymorphisms within the interval could be used in a breeding
program by checking the existence of polymorphisms in the
lines used.

The CsCvy-1 Interval Contains Genes That

May Play a Role in Defense
CsCvy-1 locus mapped by Pujol et al. (2019) contained
24 genes. However, as we mapped the interval down
to 101 kb, we used the annotations of the cucumber
reference genome (GCA_000004075.3) to identify genes
within the interval. The CsCvy-1 locus in our mapping
interval contains eight predicted genes (Table 3). Although
CsaV3_5G011160 encodes a cytochrome P450-like protein,
CsaV3_5G011170, CsaV3_5G011190, and CsaV3_5G011230
encode unknown proteins. However, CsaV3_5G011180 encodes
a serine/arginine repetitive matrix protein 2 isoform X2,
CsaV3_5G011220 encodes an endo-1,4-beta-xylanase, and two
genes, CsaV3_5G011200 and CsaV3_5G011210, both encode
RNA-dependent RNA polymerase 1-like (RDR1-like) proteins.
Interestingly, the deletion in the intragenic region of the RDR1
reported in this interval (Pujol et al., 2019) has been maintained
in the resistant inbred line we used.
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FIGURE 2 | Pairwise sequence alignment of CsCvy-1 interval in reference genomes version two and three (GCA_000004075.2 and GCA_000004075.3). Sequences

were aligned using Progressive Mauve (Darling et al., 2004).

TABLE 2 | Molecular markers used to define the interval for CsCvy-1 locus using

F1 hybrids.

F1 10270 10290 10317 CsCvy-1** 10418 184*** 10644 10950 122***

hybrids*

Civan Rr Rr Rr R**** SS SS SS SS SS

Quinton SS SS SS SS SS SS RR SS SS

Botanik Rr Rr Rr SS SS SS RR Rr Rr

Kitir SS SS SS SS SS SS RR SS SS

52-23 SS SS SS SS SS SS RR SS SS

Quarto SS SS SS SS SS SS RR SS SS

Kybele Rr Rr Rr SS SS SS RR SS SS

*These were selected from more than 21 readily available varieties on the market.
**Phenotype information has been obtained from the web sites of companies, which sell
these varieties to growers and confirmed by pathotesting.
***These markers were from Pujol et al. (2019).
****The phenotype was not confirmed by using offspring to determine whether it is
homozygous or heterozygous.
RR, Homozygous resistant; Rr, Heterozygous resistant; SS, Homozygous susceptible.
Recombination is shown in bold.

DISCUSSION

Here, we present genetic evidence that a single dominant locus
CsCvy-1 confers resistance to CVYV infection in our inbred lines,
consistent with a recent report (Pujol et al., 2019). Our genomic
and molecular investigations using an F2 mapping population
and also commercial resistant and susceptible varieties enabled
us to map this locus down to 101-kb interval in which eight genes
reside. Use of genomics allowed the identification of SNPs that
could be used in breeding programs.

The plant immune system has the ability to recognize
extracellular or intracellular molecules derived from plant
pathogens and generate a defense response to restrict the
pathogen growth or replication (Wang et al., 2008; Tör et al.,
2009; Steinbrenner et al., 2015). Map-based studies usually
involve the phenotyping and genotyping of a large number
of individual plants in a segregating population. Using this

TABLE 3 | Genes within the CsCvy-1 interval in the Chinese Long cucumber

genome.

Gene ID Putative function

CsaV3_5G011160 Cytochrome P450-like protein

CsaV3_5G011170 Unknown protein

CsaV3_5G011180 Serine/arginine repetitive matrix protein 2 isoform X2

CsaV3_5G011190 Unknown protein

CsaV3_5G011200 RNA-dependent RNA polymerase 1-like

CsaV3_5G011210 RNA-dependent RNA polymerase 1-like

CsaV3_5G011220 Endo-1,4-beta-xylanase

CsaV3_5G011230 Unknown protein

approach, genes conferring resistance to fungal, oomycete,
bacterial, and viral pathogens have been mapped, and many of
them have been cloned (Tai et al., 1999; Borhan et al., 2008; Kim
et al., 2017; Chen et al., 2021).

Linkage analysis plays a significant role in the cloning genes
or generating markers tightly linked to the locus of interest using
map-based approach. When we started this investigation, there
was no published data on the chromosomal location of the gene
conferring resistance to CVYV. During our SNP analysis, Pujol
et al. (2019) published their work on the mapping of CsCvy-1 in
cucumber using genomic approach. We used relevant markers
from this published work; however, several of them were not
polymorphic in our parental lines, indicating the importance of
generating SNP data from the lines used in generating mapping
populations. After establishing the linkage between the resistance
source in our material and the CsCvy-1, it was obvious that
we were mapping the same locus, and thus we zoomed into
the region.

We used genomics and BSA previously to clone genes
(Woods-Tör et al., 2018) and to generate MAS-friendly
molecular markers (Devran et al., 2018) that are tightly linked
to the gene of interest. Our experience shows that although the
use of reference genomes helps the identification of variants in
the region of interest, different versions of reference genome
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assemblies produced different results in the SNP analysis. It
was the case in this study where we initially used version 2
(GCA_000004075.2) as the reference and generated markers
for our mapping work. Although all the markers generated
from version 2 mapped the gene, several of them were missing
when version 3 (GCA_000004075.3) were used, indicating the
importance of mapping for confirmation and using more than
one available reference genome.

High number of individual lines in a map-based study help
identify the recombinant lines, which enables narrowing the
interval. It can be easy to generate large number of F2 lines from
plants, such as Arabidopsis thaliana (Tör et al., 2002). However,
in plants such as cucumber, it may not be possible to achieve large
number of F2s. In this work, we relied on 120 F2 lines to narrow
the interval down to a 327 kb. Considering the breeding efforts
where many characters are collected in a “pure” line, during
which many crosses are carried out and many recombination
events take place, for an MAS-friendly marker, the interval needs
to be very small so that the likelihood of a recombination event
between the marker and the gene of interest is almost zero.
Bearing this in mind, we used the commercial cucumber F1
hybrids in our phenotyping and genotyping assays and reduced
the interval down to 101 kb with eight genes.

Resistance to plant pathogens could be provided by
membrane-bound proteins, such as receptor-like proteins
(RLPs) (Wang et al., 2008) or receptor-like kinases (RLKs) (Roux
et al., 2011; Zhang et al., 2013) or by the cytoplasmic nucleotide-
binding, leucine-rich repeat (NLR) immune receptors (Adachi
et al., 2019). There were no classic RLP, RLK, or NLR-type genes
in the 101-kb CsCvy-1 interval. Pujol et al. (2019) looked into the
small variants and structural variation in the locus and argued
that CsaV3_5G011180 encoding for serine/arginine repetitive
matrix protein (SARMP) could be a possible candidate. In
addition, Pujol et al. (2019) postulated that CsaV3_5G011200
and CsaV3_5G011210 encoding RDRs 1a and 1b had the most
appealing modifications in the locus and discussed the role
of RDRs in RNA silencing pathways. Leibman et al. (2018)
carried out detailed investigations into the RDR1-like genes in
cucumber and reported the presence of four putative RDR1-
family genes. They then investigated the expression of these
RDR1-like genes and their role in defense against different
viruses, including Zucchini yellow mosaic virus (ZYMV), CMV,
and CVYV and showed that the level of RDR1-like gene
expression varied according to the virus used (Leibman et al.,
2018).

The NLR-type disease resistance genes in Arabidopsis have
been reported to be clustered in the genome (Holub, 2007), and
some of them function together and could be in head-to-head
orientation, termed paired NLRs (Saucet et al., 2015). Further
detailed studies indicated that one of them could function as a
pathogen sensor, and the other member as signaling executor
(Van de Weyer et al., 2019). Here, we have RDR1a and RDR1b
in the interval right next to each other, functioning “like an
R-gene” (Leibman et al., 2018), but it is not totally clear from
expression studies whether they function together as some
genetic investigations are needed. It is tempting to speculate that
RDR1a and RDR1b are the most suitable candidate genes for the
CVYV resistance.

Our strategy to use genomics and BSA to identify SNPs
and generate molecular markers that could be employed in the
selection of CsCvy-1 enabled us to screen several markers and
narrowed the interval down. These SNPS and markers could
be used to identify polymorphism in different backgrounds in
any breeding program to select CsCvy-1. Subsequent experiments
could be designed to silence both RDR1 and RDR2 genes
individually and together in the same background to reveal
their dependence onto each other and their contribution to
CVYV defense.
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Septoria tritici blotch, caused by the fungus Zymoseptoria titici, poses serious and

persistent challenges to wheat cultivation in Ethiopia and worldwide. Deploying resistant

cultivars is a major component of controlling septoria tritici blotch (STB). Thus, the

objective of this study was to elucidate the genomic architecture of STB resistance in an

association panel of 178 bread wheat genotypes. The association panel was phenotyped

for STB resistance, phenology, yield, and yield-related traits in three locations for 2 years.

The panel was also genotyped for single nucleotide polymorphism (SNP) markers using

the genotyping-by-sequencing (GBS) method, and a total of 7,776 polymorphic SNPs

were used in the subsequent analyses. Marker-trait associations were also computed

using a genome association and prediction integrated tool (GAPIT). The study then

found that the broad-sense heritability for STB resistance ranged from 0.58 to 0.97

and 0.72 to 0.81 at the individual and across-environment levels, respectively, indicating

the presence of STB resistance alleles in the association panel. Population structure

and principal component analyses detected two sub-groups with greater degrees of

admixture. A linkage disequilibrium (LD) analysis in 338,125 marker pairs also detected

the existence of significant (p ≤ 0.01) linkage in 27.6% of the marker pairs. Specifically,

in all chromosomes, the LD between SNPs declined within 2.26–105.62 Mbp, with an

overall mean of 31.44 Mbp. Furthermore, the association analysis identified 53 loci that

were significantly (false discovery rate, FDR, <0.05) associated with STB resistance,

further pointing to 33 putative quantitative trait loci (QTLs). Most of these shared similar

chromosomes with already published Septoria resistance genes, which were distributed

across chromosomes 1B, 1D, 2A, 2B, 2D, 3A,3 B, 3D, 4A, 5A, 5B, 6A, 7A, 7B, and

7D. However, five of the putative QTLs identified on chromosomes 1A, 5D, and 6B

appeared to be novel. Dissecting the detected loci on IWGSC RefSeq Annotation v2.1

revealed the existence of disease resistance-associated genes in the identified QTL

regions that are involved in plant defense responses. These putative QTLs explained
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2.7–13.2% of the total phenotypic variation. Seven of the QTLs (R2
= 2.7–10.8%) for

STB resistance also co-localized with marker-trait associations (MTAs) for agronomic

traits. Overall, this analysis reported on putative QTLs for adult plant resistance to STB

and some important agronomic traits. The reported and novel QTLs have been identified

previously, indicating the potential to improve STB resistance by pyramiding QTLs by

marker-assisted selection.

Keywords: genome-wide association study, linkage disequilibrium, population structure, quantitative trait locus,

septoria tritici blotch, wheat, Zymoseptoria titici

INTRODUCTION

Common wheat (Triticum aestivum L.) is the most widely
cultivated and the major staple food crop in the world consumed
by human, providing almost 20% of the total calories and
21% of protein demand globally (Arzani and Ashraf, 2017;
InternationalWheat Genome Sequencing Consortium (IWGSC),
2018; Ramadas et al., 2019). By 2050, the world’s human
population is projected to reach nine billion, and we will need
to increase wheat production by 70% to feed this projected
growth (FAO, 2009; Ray et al., 2013; Marcussen et al., 2014).
Hence, boosting the wheat harvest is very pertinent to achieve
zero-hunger by 2050.

Septoria tritici blotch, caused by the fungus Zymoseptoria
tritici (anamorph: Septoria tritici), is an ever-existing bottleneck
to wheat cultivation worldwide (Dalvand et al., 2018; Odilbekov
et al., 2019), accounting for 30–54% of global wheat yield loss
annually (Eyal and Levy, 1987). Septoria tritici blotch (STB) is
also amajor threat to wheat production in Ethiopia (Getinet et al.,
1990; Takele et al., 2015; Kidane et al., 2017; Mekonnen et al.,
2019, 2020), causing up to 82% of yield loss in the worst seasons
(Getinet et al., 1990; Mengistu et al., 1991; Ayele et al., 2008).

The deployment of genetic resistance is the most durable,
economical, and environmentally friendly method to manage
crop diseases like STB (Ghaneie et al., 2011; Mekonnen et al.,
2019; Odilbekov et al., 2019). In particular, qualitative and
quantitative types of resistance to STB have been reported in
wheat (Arraiano and Brown, 2006; Arraiano et al., 2009). The
former refers to a condition where one or few major Stb genes
provide resistance to specific Z. tritici isolates (Brown et al.,
2015). Quantitative resistance, on the other hand, results from
the expression of many genes with minor effects and is generally
not specific to isolates. As such, quantitative resistance is the

Abbreviations: DH, days to heading; DF, days to flowering; DM, says to

maturity; FDR, false discovery rate; FarmCPU, fixed and randommodel circulating

probability unification; GAPIT, genome association and prediction integrated

tools; GBS, genotyping by sequencing; GFD, grain-filling duration; GWAS,

genome-wide association study; HLW, hectoliter weight; PH, plant height; LD,

linkage disequilibrium; MAF, minor allele frequency; MAS, marker-assisted

selection; MTAs, marker-trait associations; PCA, principal component analysis;

QTL, quantitative trait locus or loci; SL, spike length; SN, seed number

per spike; SDS, Septoria disease severity; SDSH, Septoria disease severity at

heading; SDSMM, Septoria disease severity at mid-maturity; SDSM, Septoria

disease severity at maturity; STB, Septoria tritici blotch; SNP, single-nucleotide

polymorphism; SPC, Septoria progress coefficient; TKW, thousand kernel weight.

most effective, durable, and preferred method to manage rapidly
evolving wheat pathogens such as Z. tritici (Long et al., 2019).

The resistance-breeding method used in Ethiopia is mainly
conventional, making the crop-improvement program very
slow and inefficient. Nowadays, the advent and application of
modern genomic tools have revolutionized crop breeding by
facilitating the precise identification, mapping, and introgression
of genomic regions controlling useful agronomic traits, such as
resistance, into new cultivars. To account for this, a genome-wide
association study (GWAS) is a powerful approach to elucidating
the genomic architecture of many traits (Long et al., 2019). The
development of high-throughput sequencing and bioinformatics
technologies (Huang et al., 2017) has also enabled GWAS to
scan single nucleotide polymorphisms (SNPs) associated with
desirable traits at the whole-genome scale (Rafalski, 2010).

Genome-wide association studies have been successfully
applied to many crop species (Xiao et al., 2017) such as maize
(Rashid et al., 2018), rice (Huang et al., 2017), wheat (Kidane
et al., 2017; Long et al., 2019; Cheng et al., 2020), and sorghum
(Girma et al., 2019). In particular, this study design has been
used in wheat to analyze several traits such as resistance to
stripe rust (Long et al., 2019; Yao et al., 2019; Cheng et al.,
2020), stem rust (Edae et al., 2015; Kankwatsa et al., 2017),
Septoria tritici blotch (Kidane et al., 2017; Odilbekov et al., 2019),
drought tolerance (Mathew et al., 2019), and other phenological
characteristics, plus yield and yield-related traits (Jamil et al.,
2019; Wang et al., 2019; Ward et al., 2019). While Ethiopia is
the largest producer of wheat in sub-Saharan Africa, little is
known about the resistance Ethiopian wheat cultivars have to
STB, even though it is the most important disease economically.
Thus, the objectives of this study were: (1) to determine the
population structure, family relatedness, and level of linkage
disequilibrium of the tested bread wheat association panel; (2)
to elucidate the genomic architecture of adult plant resistance to
STB; (3) to identify the SNP loci underlying yield, yield-related,
and phonological traits in Ethiopian cultivars that could be useful
in wheat breeding programs.

MATERIALS AND METHODS

Association Mapping Panel
This study used an association panel of 180 bread wheat
(Triticum aestivum L.) genotypes (Supplementary Table 1), of
which 167 were obtained from the International Maize and
Wheat Improvement Center (CIMMYT-Mexico) and 13 were
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commercial cultivars grown in Ethiopia. The 167 CIMMYT
genotypes included 49 from the International Bread Wheat
Screening Nursery (IBWSN), 56 from the International Septoria
Observation Nursery (ISEPON), 14 from the High Rain Wheat
Yield Trial (HRWYT), 34 from the High Rainfall Wheat
Screening Nursery (HRWSN), 5 from an adaptation trial, 6
from the National Variety Trials (NVT), and the remaining 3
genotypes were from a preliminary variety trial (PVT).

Multi-Environment Trials
Field evaluations were carried out under natural STB infestation
during the 2015 and 2016 main cropping seasons across three
STB hotspots: the Holetta Agricultural Research Center (HARC)
(9◦ 3’N/38◦ 30’E), Bekoji Agricultural Research Subcenter (7◦

32’N/39◦ 15’E), and Kulumsa Agricultural Research Center
(KARC) (8◦ 02’N/ 39◦ 15’E). The experimental design was an
alpha lattice with two replications, six incomplete blocks, and
30 entries per sub-block per replication. The trial was sown by
hand, with each entry planted in four rows of a 2.5-m length,
20-cm spacing between rows, and 40 cm between entries. The
susceptible cv. “Lakech” was planted as a spreader row along
the length of the blocks to create adequate disease pressure.
The spaces between the blocks and replications were 1.5m
long. A seeding rate of 150 kg ha−1 and fertilizer rates of 100
and 75 kg ha−1 of N and P2O5, respectively, were used in all
the experiments. Weeding was performed by hand three times
each season.

STB Evaluation
Septoria tritici blotch disease severity (SDS) was estimated
visually plot-wise by considering the percentage of necrotic leaf
area (NLA) on the four uppermost infected leaves of 10–20 plants
(Eyal and Levy, 1987) at three growth stages, namely, heading
(SDH), medium milk (SDMM), and at maturity (SDM), using
a double-digit 00–99 scoring scale (Eyal and Levy, 1987). The
first digit (0–9) represented blotch development in terms of plant
height (for instance, 5 if the disease reached the middle (50%) of
the plant height, 8 for reaching the flag leaf, and 9 for reaching
the spike), while the second digit stood for the disease severity as
a percentage but in terms of 0–9 (1 = 10%, 2 = 20%, and 9 = 90
%). For each stage, Septoria disease severity percentage (SDS%)
was computed from the 00–99 score using the following formula
as described by Sharma and Duveiller (2007):

SDS = [(D1/9) (D2/9)] x 100

where D1 and D2 are the first and the second digits of the double-
digit scores, respectively. The SDS values range from 0 to 100,
where 0 indicates complete resistance and 100 indicates complete
susceptibility (Kidane et al., 2017).

In addition, the Septoria progress coefficient (SPC) developed
by Eyal and Ziv (1974) was computed to indicate the
position of pycnidia relative to plant height according to the
following equation:

SPC = (SDH/PH)

where SDH (Septoria disease height) is themaximumheight (cm)
above ground at which the pycnidia of the pathogen could be
found on the plant at the maturity stage and PH is the average
height of the genotype from the ground to the tip of its awn.
The SPC coefficient indicates the position of pycnidia relative
to plant height, regardless of pycnidial coverage, and allows for
the comparison of the infection placements on cultivars with
different plant statures. Furthermore, SPC values ranged from 0
to 1, where SPC = 0 means that there was no disease, while SPC
=1 means that pycnidia were produced at the top of the plant
(Eyal and Levy, 1987).

Other Agronomic Data Scoring
The phenotypic data that were recorded were heading date
(HD, days to 50% heading), flowering date (FD = days to 50%
flowering), grain-filling duration (GFD), maturity date (MD =

days to 90% maturity), grain yield, hectoliter weight (HLW =

kilograms per 100 liters of wheat), thousand-kernel weight (TKW
= weight of 1,000 kernels, in grams), plant height (PH), number
of spikelets per spike (SPS), number of kernels per spikelet
(NKPS), and number of kernels per spike (NKS). These yield
data were taken from the four rows of each plot and converted to
kilograms per hectare (kg ha−1) at 12.5% moisture content using
plot size as a factor. Plant height measurement was also carried
out at physiological maturity from five randomly selected and
tagged plants from the middle rows of each entry.

DNA Extraction and Genotyping by
Sequencing
The wheat plants of the association panel were grown at the
National Agricultural Biotechnology Research Center, Holetta
under greenhouse conditions. The 2-week-old leaf samples were
then collected into 96 deep-well sample collection plates, oven-
dried overnight at 50◦C, and sent to Integrated Genotyping
Service and Support (IGSS) located at the Biosciences Eastern
and Central Africa (BecA-ILRI) Hub in Nairobi, Kenya for high-
density genotyping by Diversity Arrays Technology sequencing
(DArTseqTM technology). Furthermore, DNA extraction was
carried out using the Nucleomag Plant Genomic DNA extraction
kit (Macherey-Nagel GmbH & Co. KG, Duren, Germany).
Afterward, extracted DNA quality and quantity were checked
on a Thermo ScientificTM NanoDropTM 2000 Spectrophotometers
(Thermo ScientificTM, USA) and on 0.8% agarose gels. As a result,
the extracted genomic DNA concentration ranged from 50 to
100 ng/µl. Whole-genome profiling was also carried out using
the genotyping-by-sequencing (GBS) platform as described by
Elshire et al. (2011). This method involved library construction
following the DArTSeq complexity reduction method via the
digestion of genomic DNA using ApeKI [a type II restriction
endonuclease that recognizes a degenerate 5-bp sequence
(GCWGC, where W is A or T)] and the ligation of barcoded
adapters, which was also followed by the PCR amplification of
adapter-ligated fragments. The libraries were then sequenced
using single-read sequencing runs for 77 bases. The next-
generation sequencing of the GBS library was also carried out
using an Illumina HiSeq 2500 lane (Illumina, San Diego, CA,
United States) following the protocol of the manufacturer.
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Quality Control and SNP Calling
The technical quality of the sequencing was checked using a
Sequencing Analysis Viewer. DArTSeq markers were scored
using the DArTsoft14 software implemented in the KDCompute
plug-in system developed by Diversity Arrays Technology
(2017) (http://www.kddart.org/kdcompute.html) based on their
alignment with the reference genome of the Chinese Spring
Wheat RefSeq v1.0 [International Wheat Genome Sequencing
Consortium (IWGSC), 2018], which was obtained from the
International Wheat Genome Sequencing Consortium database
(https://urgi.versailles.inra.fr/download/iwgsc/) at a minimum
base identity of 90% and e-value of 5e-10. Two types of markers
were scored, namely, SilicoDArT markers and SNP markers,
which were both scored in a binary fashion (1/0), indicating the
presence or absence of a marker in the genomic representation of
each sample as described by Akbari et al. (2006). Marker quality
was also maintained by removing monomorphic markers and
those with lower call rates (>30% missing) and MAFs (minor
allele frequencies) <5% using the ArTSoft14 software.

Statistical Data Analysis
Phenotypic Data Analysis
We conducted an ANOVA for each location in each year
using the SAS software version 9.2 (SAS Institute Inc., 2008)
by considering genotype and the block as fixed and random
factors, respectively. In an individual environment, the observed
phenotypic response of the ith genotype in the jth replication and
lth sub-block was computed using the following model:

yijl = µ + gi + γj + bl(j) + ǫij (1)

where yijl = the observed phenotype, µ = the grand mean, gi =

fixed effect of the ith genotype, γj = effect of the jth replication,

bl(j) = random effect of the lth block nested within the jth

replication, and εijl = random error term.
The ANOVA of all seasons and locations was executed by

considering genotype as a fixed effect and the block, location, and
year as random effects according to the following model:

Yijklm = µ + gm + γijk + yij + ej + bijkl +
(
gy

)
im

+

(
ge

)
jm

+

(
ye

)
ij
+

(
yeg

)
ijm

+ ǫijklm

where Yijklm = observed response of genotype m, replication k
of block l of location j and year i; µ = grand mean; gm = fixed
effect of genotype m; rijk = effect of replication k in location j and
year i; yij = random effect of year i at location j that is∼ normally
and independently distributed (NID) (0, δ2y); ej = random effect

of location j that is∼ NID (0, δ2e); bijkl = random effect of block l
nested with replication k in location j and year i that is∼NID (0,
δ2
b
); (gy)im = random effect of the interaction between genotype

m and year i that is∼NID (0, δ2gy); (ge)jm = random effect of the
interaction between genotype m and location j that is ∼ NID (0,
δ2ge); (ye)ij = random effect of the interaction between year i and

location j that is ∼ NID (0, δ2ye); (yeg)ijm = random effect of the
three-way interaction of genotype m in location j and year i that
is ∼ NID (0, δ2gey); εijklm = random residual effect that is ∼ NID

(0, δ2ε ).

The variance components were also computed. The broad-
sense heritability (H2) within an environment was estimated for
the traits from an ANOVA using the following formula:

H2
= (δ2g)/(δ2g + δ2ǫ/r)

The broad-sense heritabilities across the environments were also
estimated by the formula:

H2
= (δ2g)/(δ2g+δ2gy/y+δ2ge/l+δ2gye/yl+δ2ǫ/ylr)

where δ2 g is the genotypic variance, σ2gy is the genotype-by-year
interaction variance, σ2ge is the genotype-by-location interaction
variance, σ2gye is the genotype-by-year-by-location interaction
variance, δ2e is the location variance, and l, r, and y represent
the numbers of locations, replicates, and years, respectively.
The percentage of heritability was categorized as low (<30%),
moderate (30–60%), or high (≥60%) as described by Robinson
et al. (1949). The relationship between agronomic traits was
also determined by Pearson’s correlation using the SAS software
version 9.2 (SAS Institute Inc., 2008).

Population Structure Analysis
A population stratification of the association panel was visualized
by principal component analysis (PCA) using the KDCompute
plug in system version 1.0.1 (https://kdcompute.seqart.net/
kdcompute/plugins). Population admixture patterns were also
determined using a Bayesian model-based clustering algorithm
implemented in the STRUCTURE software v.2.3.4 (Pritchard
et al., 2000). The STRUCTURE program was run with the
admixture model, correlated allele frequencies, a burn-in period
of 10,000, and 50,000 Markov Chain Monte Carlo (MCMC)
replications after a burn in for hypothetical subpopulations K
from 1 to 10 with 10 iterations. The optimum K value was
predicted based on a study by Evanno et al. (2005) using
STRUCTURE HARVESTER ver. 0.6.92 (Earl and von Holdt,
2012). A bar plot for the optimum K was determined using
Clumpak beta version (Kopelman et al., 2015).

Genome-Wide Association Study
The association mapping of phenotypic traits with genome-wide
scanned SNPs was conducted using the Genome Association
and Prediction Integrated Tools (GAPIT) package (Lipka et al.,
2012) in the R software (R Core Team, 2013). This GWAS
was carried out for four Septoria disease traits, namely, SDSH,
SDSMM, SDSM, and SPC, and some important agronomic
traits such as the days to 50% heading (DH), days to 50%
flowering (DF), grain filling duration (GFD), days to 90%
maturity (DM), grain yield, thousand-kernel weight (TKW), and
plant height (PH) in each individual environment; the study
design also used the means across all environments [the best
linear unbiased estimate (BLUE) values]. The analysis involved
a total of 7,776 robust SNPs with a call rate of >70% and
MAF of >5%. Missing SNP data were imputed using optimal
impute ver. 1.0.0 in the KDcompute_plugin system based on
the KNN imputation method. The marker distribution on each
chromosome was determined using LDmeasure in R2 ver.0.2.2 of
the KDcompute_plugin. Pairwise LD measures (r2 and P-value)
betweenmarkers on each chromosomewere also computed using
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TASSEL Ver. 5 (Bradbury et al., 2007). A genome-wide LD decay
scatter plot was then produced by plotting the r2 values against
physical distance (bp) using the GAPIT software. Finally, r2 =

0.2 was considered as a cutoff point for no LD between pairs
of markers.

The GWAS was conducted using the fixed and random
model circulating probability unification (FarmCPU) algorithm
(Liu et al., 2016) implemented in the GAPIT R package
(2.0) (Tang et al., 2016). The algorithm uses both fixed-
effect and random-effect models iteratively to control spurious
marker-trait associations due to population structure and family
relatedness (Lipka et al., 2012). Furthermore, a kinship (K)
matrix was computed using the method of VanRaden (2008).
Principal components describing the population stratification
were computed using R/GAPIT and iteratively added to the fixed
part of the model. Quantile–quantile (Q–Q) plots generated from
–log10 p-values were assessed visually to determine how well the
model accounted for population structure and family relatedness
among the study samples. Statistically significant marker-trait
associations were declared using a false discovery rate (FDR)-
adjusted p < 0.05 as implemented in GAPIT. Furthermore,
the Bonferroni correction rate at a significance threshold of p
< 0.15 or –log10 (p-values) = 4.71 was also included in the
analysis for comparison. Both the Q–Q and Manhattan plots
were visualized using the R package qqman (Turner, 2014). The
high-confidence candidate genes within the identified resistance-
associated regions were also extracted from the recently released
IWGSC RefSeq Annotation v2.1 available on the URGI Seq
repository (https://wheat-urgi.versailles.inrae.fr/Seq-Repository/
Annotations).

RESULTS

Phenotypic Data Analysis
Adult Plant Responses to STB and Broad-Sense

Heritability
The genotype effect was significant (p < 0.0001) for STB
resistance at all the growth stages in all the test environments.
Genotypic variance (σ2g) was the major contributor to STB
resistance variability among the tested wheat genotypes. The
Septoria disease severity traits also showed pseudo-normal
distributions (Figure 1), indicating the quantitative nature of
STB resistance in the tested wheat genotypes (Kidane et al.,
2017). The analysis revealed that the STB infestation showed
seasonal fluctuations, but that was still higher during the 2015
growing season (Table 1). Moreover, the disease severity showed
an increasing trend from heading to the maturity stage. In each
environment, mean SDS values at the heading and mid-maturity
stages ranged from 18.2 to 31.2% and 21.7 to 37.6%, respectively,
while the highest severity values were registered at Holetta in
2015. The mean disease severity at maturity and its vertical
progress varied from 30 to 50.8% and 0.41 to 0.69, respectively,
while they were the highest at Bekoji in the 2015 growing
season. The lowest Septoria severity was recorded at Kulumsa in
2016. The broad-sense heritability for Septoria resistance in each

environment ranged from moderate (H2
= 0.58) to high (H2

=

0.99) (Table 2).
The combined ANOVA revealed that the effect of genotype,

year, location, and their two- (genotype × year, genotype
× location, and year × location) and three-way interactions
(genotype × year × location) were significant for SDS traits
except for the Septoria progress coefficient, where the effect of
year was not significant (Table 3). The analysis of pooled data
revealed that genotypic variance (σ2g) was the highest for all the
SDS parameters except SDSMM, where environmental effect was
the highest (Table 4). The broad-sense heritabilities of Septoria
resistance traits showed that they were highly heritable (H2

=

72– 81%) (Table 4) (Robinson et al., 1949). The phenotypic and
genotypic coefficients of variation for SDS traits ranged from
32.4 (SPC) to 68.3% (SDSH) and 22.5 (SPC) to 41.4% (SDSM),
respectively. At 5% selection intensity, the genetic advance for
SDS traits ranged from 0.31 (SPC) to 35.23 (SDSM), while the
magnitude of the expected genetic gains as a percent of the mean
varied from 53.69% (SPC) to 102.38% for SDSH (Table 4).

Over all the environments, the average SDS of the individual
wheat genotypes ranged from 5.3 to 39.8% at heading, 8.2
to 48.5% at mid-maturity, and 10.6 to 65.3% at maturity
(Supplementary Table 2). The average SPC of the individual
environments ranged from 0.37 to 0.79. The most resistant
genotype at all the growth stages was G174, while G104 (39.8%),
G76 (48.5%), and G127 (65.3%) were the most susceptible
genotypes at the heading, mid-maturity, and maturity stages,
respectively (Supplementary Table 2). A comparative severity
analysis with the standard checkKing-bird (G40) and the
mean performance of the released varieties also confirmed the
presence of superior STB-resistant genotypes among the tested
materials. Of the 180 tested genotypes, 56 (31%) at heading,
75 (42%) at mid-maturity, and 105 (59%) at maturity had
numerically superior STB resistance compared with King-bird
(Supplementary Table 2).

The top 5% best genotypes at maturity had 47.6–71% greater
resistances than King-bird and 11.9–74.4 % greater resistances
compared with the mean performances of the released varieties
(Table 5).

Pearson’s correlation analysis of the means over all
environments revealed that STB resistance traits were
significantly negatively associated with important agronomic
traits. Except for SPC, all the SDS traits showed non-significant
and negligible negative correlations (r < −0.3) with plant height.
Disease traits also showed little to negative associations with HD,
FD, GFD, NKPS, and NKS. However, a significant weak negative
association (−0.25 to −0.48) was observed between SDS traits
and MD, grain yield, HLW, and TKW (Table 6).

SNP Statistics
The Illumina HiSeq 2500 (Illumina, San Diego, CA,
United States) sequencing failed to generate SNP data for
two genotypes (9 and 95); hence, a total of 178 bread wheat
genotypes were successfully DArTSeq genotyped. Initially, a
total of 35, 672 SNPs were discovered, of which 31,052 (87%)
were mapped to known chromosomal positions on the reference
used and 828 (2%) of the sequences were mapped to unknown
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FIGURE 1 | Frequency distribution of some SDS traits. The combined data were from three locations and over 2 years field evaluation of 180 wheat genotypes. The

right and left ends of the graphs indicate the highest and lowest affection classes, respectively. The combined Septoria disease severity at heading, mid-maturity, and

maturity stages followed a normal distribution. The severity values increased from heading to mid-maturity, and then to maturity stages. Combined Septoria progress

coefficient showed pseudo-normal distribution, confirming the quantitative nature of STB resistance in the tested wheat material. The x-axis represents the BLUE

value of the study genotype.

chromosomes in the reference. In contrast, approximately 11%
(3,792) of the SNPs did not align to any of the chromosomes
of the wheat reference genome. Furthermore, the discovered
DArTSeq SNPs were not evenly distributed among the sub-
genomes, with the A, B, and D genomes accounting for 10,317,
10,979, and 9,756 SNPs, respectively (Supplementary Figure 1).
Among the 21 wheat chromosomes, the highest (2,065) and the
lowest (833) numbers of SNPs were mapped to chromosomes 7D

and 4D, respectively (Supplementary Figure 1), and on average,
each chromosome harbored about 1,479 SNPs. Maintaining
SNPs with higher call rate (>70%) and MAF >0.05 resulted
in 7,776 SNP markers, among which 87.3% had a known
chromosome position in the wheat reference genome. Among
the filtered SNPs, 2,410 were distributed on the A genome, 2,872
were distributed on the B genome, and 1,506 were distributed
on the D genome. The remaining 988 SNPs were assigned to a
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TABLE 1 | Descriptive statistics of SDS values in bread wheat genotypes evaluated in three locations in Ethiopia during the 2015 and 2016 growing seasons.

Trait Environment Mean Range SD Pr > F Trait Environment Mean Range SD Pr > F

SDSH E1 (HARC2015) 31.23 72.84 8.88 *** SDSM E1 (HARC 2015) 46.9 95.68 24.07 ***

E2 (Bekoji 2015) 24.48 63.58 6.8 *** E2 (Bekoji 2015) 50.77 77.16 19.05 ***

E3 (Kulumsa 2015) 23.47 40.74 8.00 *** E3 (Kulumsa 2015) 32.38 70.99 9.44 ***

E4 (HARC 2016) 20.09 39.81 4.88 *** E4 (HARC 2016) 33.07 65.44 1.8 ***

E5 (Bekoji 2016) 19.36 44.71 9.08 *** E5 (Bekoji 2016) 34.28 55.56 10.41 ***

E6 (Kulumsa 2016) 18.16 38.89 6.87 *** E6 (Kulumsa 2016) 30.04 46.94 9.61 ***

SDSMM E1 (HARC 2015) 37.6 82.72 22.7 *** SPC E1 (HARC 2015) 0.65 0.87 0.2 ***

E2 (Bekoji 2015) 34.56 74.07 17.2 *** E2 (Bekoji 2015) 0.69 0.74 0.12 ***

E3 (Kulumsa 2015) 32.13 49.51 8.2 *** E3 (Kulumsa 2015) 0.41 0.60 0.09 ***

E4 (HARC 2016) 27.13 58.95 5.29 *** E4 (HARC 2016) 0.6 0.62 0.09 ***

E5 (Bekoji 2016) 25.6 47.03 9.51 *** E5 (Bekoji 2016) 0.58 0.61 0.12 ***

E6 (Kulumsa 2016) 21.73 39.51 8.35 *** E6 (Kulumsa 2016) 0.58 0.46 0.08 ***

SDSH, Septoria disease severity at heading; SDSMM, Septoria disease severity at mid- maturity; SDSM, Septoria disease severity at maturity; SPC, Septoria progress coefficient; SD,

standard deviation; ***, very highly significant (p ≤ 0.0001); “sn”, non-significant at the α, 5% significance level.

TABLE 2 | Genotypic variance (σ2g) and heritability in the broad sense (H2) for phenotypic traits in 180 bread wheat genotypes in six different environments in Ethiopia.

Holetta-2015 (E1) Bekoji-2015 (E2) Kulumsa-2015 (E3) Holetta-2016 (E4) Bekoji-2016 (E5) Kulumsa-2016 (E6)

Trait σ
2g H2

σ
2g H2

σ
2g H2

σ
2g H2

σ
2g H2

σ
2g H2

SDSH 344.51*** 0.90 212.66*** 0.90 39.14*** 0.61 42.56*** 0.78 79.41*** 0.96 44.67*** 0.95

SDSMM 485.36*** 0.94 255.28*** 0.86 38.7*** 0.58 92.23*** 0.90 88.63*** 0.98 66.48*** 0.95

SDSM 516.40*** 0.89 275.44*** 0.76 331.16*** 0.88 127.99*** 0.99 105.24*** 0.97 86.59*** 0.94

SPC 0.04*** 0.88 0.01*** 0.70 0.02*** 0.87 0.01*** 0.62 0.01*** 0.83 0.00*** 0.67

σ2g, genotypic variance; H2, heritability in the broad sense (H2 ); ***, very highly significant (p ≤ 0.0001); “sn” = non-significant at the α, 5% significance level.

TABLE 3 | Combined analysis of variance for Septoria disease severity traits across three locations in Ethiopia over years 2015 and 2016.

Source of variation DF Mean squares

SDSH SDSMM SDSM SPC

Genotype 179 699.53*** 874.84*** 1650.29*** 0.12***

Replication 1 662.48* 35.41ns 5498.56*** 0.87***

Year 1 29489.27*** 44295.09*** 64059.86*** 0.01ns

Location 2 5257.27*** 2734.03 *** 24849.55*** 4.57***

Incomplete block (nested) 5 1468.79*** 2167.8*** 2955.71*** 0.31***

Genotype*year 179 310.41*** 392.85*** 1008.41*** 0.06***

Genotype*location 358 207.74*** 288.83*** 172.91*** 0.02***

Year*location 2 1987.73*** 358.46ns 10452.82*** 3.78***

Genotype*Year*Location 358 148.97*** 213.74*** 152.76* 0.02***

SDSH, Septoria disease severity at heading; SDSMM, Septoria disease severity at mid-maturity stage; SDSM, Septoria disease severity at maturity; SPC, Septoria progress coefficient;

***, very highly significant at p < 0.0001; *, significant at p < 0.05; ns, non-significant at the p = 0.05 significance level; DFs, degrees of freedom.

hypothetical chromosome “0” for the sake of analysis. Hence,
7,776 SNPs were used in downstream analyses, which included
principal component analysis (PCA), population clustering,
population structure, LD, and GWAS.

Population Structure Analysis
The STRUCTURE analysis indicated two sub-populations in the
association panel (Figure 2A), where∼43% (76) of the genotypes

were assigned to cluster one and 57% (101) were assigned to
cluster two. Additionally, the Clumpak result detected a greater
degree of genetic admixture between the two sub-populations
(Figure 2B), where all the individual genotypes shared alleles
inherited from both subgroups (Figure 2C), thus confirming
the presence of close relationships among the study materials.
Furthermore, the PCA results also suggested the presence of two
sub-populations (Figure 3). The first two principal components
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TABLE 4 | Variance component estimates for SDS, H2 (broad sense), genotypic coefficient of variance (GCV), phenotypic coefficient of variance (PCV), genetic advance

(GA), and genetic advance as percent of the mean (GAM) based on pooled data from the six environments.

Trait σ
2g σ

2gy σ
2gl σ

2gyl σ
2e H2 GCV PCV GA GAM

SDSH 81.97*** 26.91*** 14.7*** 34.63*** 79.71*** 0.73 40.07 68.26 23.14 102.38

SDSMM 97.67*** 29.86*** 18.78*** 40.46*** 132.82*** 0.72 32.62 59.01 26.36 86.99

SDSM 246.24*** 142.61*** 5.04*** 15.32*** 122.13*** 0.75 41.41 60.83 35.23 93.09

SPC 0.02*** 0.01*** −0.01*** 0.01*** 0.01*** 0.81 22.51 32.37 0.31 53.69

σ2g, genotypic variance estimate; σ2gL, genotype × year interaction variance estimate; σ2gL, genotype × location interaction variance estimate; σ2gyl, genotype × year × location

interactions variance estimate; σ2e, residual variance estimate; ***, very highly significant at p < 0.0001; *, significant at p < 0.05; ns, non-significant at the p = 0.05 significance level;

SDSH, Septoria disease severity at heading; SDSMM, Septoria disease severity at mid maturity stage; SDSM, Septoria disease severity at maturity; SPC, Septoria progress coefficient.

TABLE 5 | Comparison of the mean performances of 5% of the genotypes selected for Septoria tritici blotch (STB) resistance with King-bird, a recently released variety,

and with the mean performances of 13 released varieties.

Comparative advantage

for STB resistance

(% over)

Comparative advantage

for STB resistance

(% over)

Genotypes Mean of

selected

genotypes

King-bird MRV* Genotypes Mean of

selected

genotypes

King-bird MRV*

Septoria disease severity at heading (%) Septoria disease severity at maturity (%)

G174 5.25 70.95 74.4 G174 10.6 74.25 71.83

G153 5.82 67.81 71.63 G144 14.21 65.49 62.24

G144 5.87 67.53 71.38 G3 15.23 63 59.51

G150 6.07 66.39 70.38 G153 15.95 61.25 57.6

G151 8.45 53.22 58.78 G156 18.73 54.5 50.21

G141 8.9 50.72 56.57 G133 18.83 54.25 49.94

G133 8.9 50.72 56.57 G151 19.04 53.75 49.4

G3 9.32 48.44 54.56 G155 19.45 52.75 48.3

G156 9.47 47.58 53.81 G97 19.66 52.25 47.75

King-bird 18.06 – 11.88 King-bird 41.15 – −9.43

MRV* 20.49 13.48 – MRV* 37.61 8.62 –

Septoria disease severity at mid-maturity (%) Septoria progress coefficient

G174 8.18 70.4 72.74 G174 0.31 50.44 45.59

G153 10.55 61.83 64.86 G144 0.35 44.51 39.09

G144 14.15 48.79 52.85 G133 0.37 40.82 35.03

G3 14.46 47.68 51.83 G3 0.37 40.31 34.48

G151 15.28 44.7 49.08 G155 0.37 40.3 34.46

G155 15.75 43.02 47.54 G151 0.38 38.97 33.01

G92 16.31 40.97 45.65 G154 0.39 38.03 31.97

G150 16.36 40.79 45.48 G97 0.39 37.76 31.68

G81 17.03 38.37 43.25 G47 0.4 36.88 30.71

King-bird 27.63 – 7.93 King-bird 0.62 – 9.78

MRV* 30.01 −8.61 – MRV* 0.57 8.91 –

*MRV, mean of 13 selected released varieties. Negative values for comparative advantage indicate less STB resistance (inferior performance) of the genotype.

explained 65% (PC1 = 50% and PC2 = 15%) of the total
variance contained in the data (Figure 3). With this, a scree
plot, which was used to display the proportion of variation
captured by each of the 10 principal components, also showed
that the first two principal components (PC1 and PC2) explained

the highest proportion of the total variation in the panel
(Figure 4A). Figure 4B represents the 3D plots of the first three
principal components to depict the samples’ relationship in
space, the analysis also confirmed the presence of kinship in
the association panel (Figure 4C), suggesting the importance
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TABLE 6 | Correlation analyses among Septoria resistance traits and some agronomic traits in 180 bread wheat genotypes based on the pooled data from 2 years of field

trials in Ethiopia.

HD FD MD GFD Yield HLW TKW PH NKPS NKS

SDSH −0.04ns −0.05ns −0.19* −0.21* −0.43*** −0.32*** −0.42*** −0.1ns −0.19* −0.19*

SDSMM −0.1ns −0.1ns −0.25* −0.24** −0.48*** −0.33*** −0.51*** −0.08ns −0.25** −0.21*

SDSM −0.21** −0.22* −0.35*** −0.26** −0.47*** −0.32*** −0.44*** −0.06ns −0.16* −0.14ns

SPC −0.15* −0.14ns −0.29*** −0.22* −0.38*** −0.25** −0.44*** −0.21* −0.12ns −0.1ns

HD, heading date; FD, flowering date; MD, maturity date; GFD, grain-filling duration; HLW, hectoliter weight; TKW, thousand-kernel weight; PH, plant height; NKPS, number of kernels

per spikelet; NKS, number of kernels per spike; SDSH, Septoria disease severity at heading; SDSMM, Septoria disease severity at mid maturity stage; SDSM, Septoria disease severity

at maturity; SPC, Septoria progress coefficient.

***, very highly significant (p < 0.0001); ** = highly significant; *, significant; ns, non-significant at the α, 5% significance level; (–), negative correlation. The magnitude of the correlation

coefficient indicates the strength of the correlation.

FIGURE 2 | Population structure of the 178 bread wheat genotypes representing eight populations. (A) Best delta K value estimated using the method of Evanno

et al. (2005), and the pick at k = 2 indicates the number of subpopulations in our collection, (B) Population structure plot and SP1 and SP2 represents subpopulations

1 and 2, respectively, (C) Estimated population structure for K = 2 according to the breeding materials. The different (blue and orange) co lures represent genetic

groups or sub-populations designated by Structure Harvester: the x-axis represents individual samples and y-axis represents the proportion of ancestry to each

cluster. Population abbreviations are: IBWSN, International Bread Wheat Screening Nursery; ISEPTON, International Septoria Observation Nursery; HRWYT, High Rain

Wheat Yield Trial; HRWSN, High Rain Wheat Screening Nursery; ADAPT, Adaptation t1ial; NVT, National Verification Trial, and PVT, Preliminary Verification.

of using a powerful statistical GWAS model that accounts
for the population structure and familial relatedness in the
association study.

Linkage Disequilibrium (LD) Analysis
The linkage disequilibrium of alleles at different loci varied
considerably across each chromosome and among chromosomes
and sub-genomes (Table 7). There was a total of 338,125 marker
pairs with average LD values of r2 = 0.11, with 97,723 (27.6%)
pairs showing significant linkage at p ≤ 0.01 (Table 7). In

particular, the B genome harbored the highest (143,600 or 42.5%)
number of marker pairs, followed by the A genome with 119,225
(35.5%) of the marker pairs (Table 7). In contrast, the D genome
harbored the lowest number (75,300 or 22.3%) of the marker
pairs. Relatively, however, the SNPs on the B genome showed
the strongest LD, with a mean value of r2 = 0.1187. Over all the
chromosomes, the LD between SNPs declined to r2 = 0.2 within
a physical distance of 31.44 Mbp; this ranged from 2.26 to 105.6
Mbp by chromosome. The weakest and strongest LD values were
observed between the marker pairs on chromosomes 4D (r2 =
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FIGURE 3 | Population structure analysis of the 178 bread wheat genotypes based on principal component analysis clustering as revealed by the first two principal

components. Samples coded with the same color belong to same population. Cluster (A) composed of 33 (18.54%) genotypes while Cluster (B) possessed 145

(81.46%) of the genotypes.

0.0251) and 2D (r2 = 0.211), respectively (Table 7). The physical
distance (bp) at which the LD decayed to the critical r2 (0.2)
value was used to determine the confidence interval for declaring
the distinct QTL for each chromosome. Significant SNP markers
from the same chromosome were also assigned to the same QTL
if the distance between the significant markers was less than the
critical physical distance.

Genome-Wide Association Study
STB Resistance
The GWAS identified 53 SNPs that were significantly (FDR
< 0.05) associated with STB resistance at any growth
stage. The report, however, only included the marker-trait

associations (MTAs) that surpassed a Bonferroni-correction
significance threshold of 0.15. Supplementary Table 3

presents the complete output of the GWAS results for
STB resistance at the heading, mid-maturity, and maturity
stages and for the Septoria progress coefficient. This table
also reports allele identity, marker position, MAF, p-values,
FDR-corrected q values, and the additive effects of the
identified MTAs. The Q–Q plots demonstrating how well
the used GWAS model accounted for population structure
and kinship for STB resistance analysis are also presented in
Supplementary Figure 2.

Among the 53 identified MTAs, 3 did not have
chromosomal positions on the bread-wheat physical map
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FIGURE 4 | Principal component and familiar relatedness analyses of 178 bread wheat genotypes based on 7,776 genome-wide scanned, high-quality SNPs. (A) A

screen plot displaying the first 10 principal components with their corresponding fraction of variation explained, (B) 3D plots of the first three principal components to

depict the samples’ relationship in space, and (C) Heat map showing the kinship analysis. The kinship values showed a normal distribution (turquoise curve), and

orange and red colors represent weak and high kinship relations in the panel, respectively. The resulted clustering tree is indicated outside of the matrix.

(Supplementary Table 4). Ten (18.9%) of the MTAs conferred
STB resistance at heading, 4 (7.6%) were effective at mid-
maturity, 4 (7.6%) were effective at the maturity stage, and 35
(66.9%) of the MTAs were associated with a resistance to disease
development as plant height increased (Supplementary Table 4).
The percentage of phenotypic variance explained by the markers
varied considerably, from 2.7% for the SDS measured at
maturity at Bekojiin in 2016 to 13.2% for the severity data
measured at the mid-maturity stage at the same location in
2015 (Supplementary Table 4). The proportion of phenotypic
variation (R2) explained by SDS MTAs at heading ranged from
2.9% for the allele 1195254|F|0-31:C>T-31:C>T on chromosome
3A to 11.1% for 1087857|F|0-41:T>C-41:T>C on chromosome
7D (Supplementary Table 4). Likewise, the R2 for MTAs for SDS
at mid-maturity, maturity, and SPC ranged from 8.6 to 13, 2.7 to
2.7, and 6 to 10.8%, respectively (Supplementary Table 4).

The combined measure of SDS at the heading, mid-maturity,
and maturity stages did not provide any significant associations
at the used threshold. However, the combined measure of SPC
identified eight MTAs at the stringent Bonferroni significance
threshold on chromosomes 1B, 2D, 3A, 3B, 3D, 6B, 7B, and 7D,
with one MTA that was unmapped on the bread wheat physical
map (Supplementary Table 4, Supplementary Figure 3).

The GWA scan for SDS at the individual-environment level
identified considerable (45) MTAs conferring resistance to
STB at different growth stages (Supplementary Table 4,
Supplementary Figures 4, 5). The analysis for disease data
measured in 2015 at Holetta identified six MTAs for STB
resistance at heading on chromosomes 1D, 2A, 3A, 3D, 5A, and
7D, four MTAs effective for STB resistance at the mid-maturity
stage on chromosomes 1B, 3D, and 7B, with one MTA with
an unknown position on the bread wheat physical map at
Holetta, and nine MTAs for SPC (six at Holetta and three at
Kulumsa) on chromosomes 1A, 1B, 1D, 2B, 3A, 3D, and 7B
(Supplementary Table 4, Supplementary Figure 4). However,
no MTA was observed for SDS data measured at the maturity
stage in the same year. Likewise, the association analysis for
SDS data measured in 2016 identified 26 MTAs: 4 for STB
resistance at heading at Bekoji on chromosomes 3A, 3D, and
7A, with 1 MTA with an unknown position on the bread wheat
physical map, 4 for maturity stage resistance on chromosomes
1D, 4A, 6A, and 7D at the same location, 18 MTAs for SPC,
which were mapped to chromosomes 1A, 1B, 2B, 2D, 3B, 5B,
5D, 6A, 6B, 7A, and 7D plus 1 MTA with an unknown position
on the bread wheat physical map (Supplementary Table 4,
Supplementary Figure 5).
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TABLE 7 | Summary of linkage disequilibrium analyses among marker pairs and

the number of significant marker pairs per chromosome and genome.

Chromosome TNMP r2 Distance

(Mbp)

Significant

marker pairs

(P < 0.01)

1A 12,475 0.13 58.05 4,374 (35.06)

1B 19,900 0.10 44.93 5,910(29.7)

1D 10,250 0.128 57.08 1,783 (17.40)

2A 21,200 0.15 48.03 7,342 (34.63)

2B 28,100 0.11 36.88 9,511 (33.85)

2D 14,550 0.21 57.45 4,771 (32.79)

3A 17,450 0.09 57.38 4,259 (24.41)

3B 22,000 0.12 49.85 6,795 (30.89)

3D 14,650 0.12 56.41 3,940 (26.90)

4A 13,050 0.11 75.78 3,830 (29.35)

4B 9,600 0.14 96.54 3,463 (36.08)

4D 2,700 0.03 218.80 1,71 (6.34)

5A 17,600 0.09 52.97 4,897 (27.83)

5B 22,750 0.14 40.22 8,193 (36.01)

5D 11,100 0.12 59.51 2,273 (20.48)

6A 14,700 0.08 57.51 3,928 (26.72)

6B 18,800 0.11 50.53 6,163 (32.78)

6D 7,950 0.05 87.75 911 (11.46)

7A 22,750 0.09 42.53 6,382 (28.05)

7B 22,450 0.11 42.47 7,492 (33.37)

7D 14,100 0.08 60.62 2,246 (15.93)

A genome 119,225 0.11 56.04 35,012 (29.44)

B genome 143,600 0.12 51.63 47,527 (33.24)

D genome 75,300 0.11 65.70 15,184 (20.16)

Total 338,125 0.11 57.79 97,723 (27.61)

TNMP, total number of marker pairs; Mbp, mega-base pairs.

Putative QTL for STB resistance were identified by
combining the MTAs based on their genomic positions
using a window of physical distance (in Mbp) determined
through a pair-wise LD analysis of the genome-wide scanned
SNPs. Supplementary Figure 6 presents a scatter plot of the
genome-wise pairwise LD r2 values between the SNPs on each
chromosome against inter-marker physical distance. The MTAs
falling on the same linkage group within the physical distance
for LD decay specific for that chromosome were assigned to
the same putative QTL. Hence, based on the LD criteria, the 53
markers were assigned to 33 putative QTLs (Table 8, Figure 5).

The association analysis for STB resistance at heading in the
individual environments identified nine putative QTL localized
on chromosomes 1D (qSTB.07), 2A (qSTB.08), 3A (qSTB.16
and qSTB.17), 3D (qSTB.20 and qSTB.21), 5A (qSTB.23), 7A
(qSTB.30), and 7D (qSTB.33) (Table 8, Figure 5). The combined
measure of the SDS at the mid-maturity stage did not reveal
any QTL. However, measuring the same trait in 2015 at Holetta
identified three putative QTLs on chromosomes 1B (qSTB.04),
3D (qSTB.21), and 7B (qSTB.31) (Table 8) that were effective
for STB resistance at the mid-maturity stage. Likewise, the
SDS measured at maturity in 2016 at Bekoji provided four

putative QTLs on chromosomes 1D (qSTB.05), 4A (qSTB.22),
6A (qSTB.27), and 7D (qSTB.32) (Table 8, Figure 5). However,
the same phenotype measured across all environments did not
provide any putative QTLs effective for STB resistance.

We identified seven QTLs for the SPC in the analysis of
means over all the six environments: qSTB11 on 2D; qSTB15
on 3A; qSTB19 on 3B; qSTB21 on 3D; qSTB28 on 6B; qSTB31
on 7B; qSTB32 on 7D. These seven QTL modeled 9.7 to 13%
of the phenotypic variation. Three of these QTLs (qSTB.11 on
2D, qSTB.14 on 3A, and qSTB.19 on 3D) were not significant
in the analyses of the six environments; two (qSTB.28 and
qSTB.32) were significant in one of the environments; the
other two (qSTB.21 and qSTB.31) were significant in two
environments (Table 8, Figure 5). Measuring the same trait
in 2015 identified seven putative QTLs on chromosomes 1A
(qSTB.01), 1B (qSTB.04), 1D (qSTB.06), 2B (qSTB.10), 3A
(qSTB.17), 3D (qSTB.21), and 7B (qSTB.31) (Table 8, Figure 5).
Similarly, the association analysis for the SPC data measured
during 2016 identified effective putative QTLs on chromosomes
1A (qSTB.01 and qSTB.03), 1B (qSTB.04), 2B (qSTB.09), 2D
(qSTB.12-14), 3B (qSTB.18), 5B (qSTB.24 and qSTB.25), 5D
(qSTB.26), 6A (qSTB.27), 6B (qSTB.28), 7A (qSTB.29), and 7D
(qSTB.32 and qSTB.33) (Table 8, Figure 5).

The functional association of the identified QTLs for
STB resistance was further investigated by annotating genes
found in the QTL regions on the recently released IWGSC
RefSeq Annotation v2. The analysis resulted in several
disease resistance-associated genes involved in plant defense
systems (Supplementary Table 7). For instance, the high-
confidence candidate genes TraesCS1A02G279300 on 1A,
TraesCS1B02G332400 on 1B, TraesCS1D02G001700 on 1D, and
TraesCS2A02G297500 on 2A are highly involved in systemic
acquired resistance (SAR), which refers to the long-lasting,
broad-spectrum resistance of plants to pathogen infections.
Specifically, the high-confidence gene detected near qSTB.08
on chromosome 2A (TraesCS2A02G297500) controls mitogen-
activated protein kinase (MAPK) cascades, which are involved in
signaling multiple defense responses of plants against pathogen
attacks (Meng and Zhang, 2013).

MTAs for Agronomic Traits
The combined measures of the agronomic traits, such as
days to heading, days to flowering, days to maturity, grain-
filling duration, grain yield, and 1,000-kernel weight, did not
provide any MTAs at the stringent Bonferroni significance
threshold used except for plant height, which resulted in
one MTA on chromosome 7A at the 514.43 Mbp position
(Supplementary Table 6). However, the dissections of these traits
in the individual environments in separate years identified
considerable MTAs at the significance threshold utilized
(Supplementary Figure 7). In particular, a GWA scan for days to
heading in 2015 at Holetta provided six MTAs on chromosomes
1A, 5A, 5B, 6A, 6B, and 7B (Supplementary Table 6). The
same trait measured in 2016 at Kulumsa identified three
significant (FDR < 0.05) SNPs on chromosomes 2B, 5D, and
6A (Supplementary Table 6). Additionally, the total phenotypic
variance explained by the SNPs for this trait ranged from
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TABLE 8 | Summary of the putative QTLs identified across bread wheat chromosomes for STB resistance.

Putative

QTL

Chr Mapposition (bp) No.of

MTAs

Flanking Markers Phenotype_Location_Year R2

Position*

(Mbp)

Left/Right Position**

(Mbp)

qSTB.01 1A 366278319 1 366.28 9766808|F|0-10:A>G-10:A>G /1087379|F|0-64:G>A-64:G>A 374.57 SPC_Kulumsa_2016 6.91

qSTB.02 1A 474702375 1 474.56 4409931|F|0-10:T>C-10:T>C/2263809|F|0-17:G>C-17:G>C 475.71 SPC_Kulumsa_2015 9.21

qSTB.03 1A 566369413 1 565.20 987669|F|0-11:T>G-11:T>G/1863565|F|0-7:G>A-7:G>A 566.56 SPC_Kulumsa_2016 5.98

qSTB.04 1B 558551443-587138312 4 556.11 3948637|F|0-11:A>G-11:A>G/1276419|F|0-52:A>C-52:A>C 587.28 SPC and SDS at

mid-maturity

5.98–9.67

qSTB.05 1D 3324483 1 2.95 2248863|F|0-53:G>T-53:G>T/1863120|F|0-61:T>C-61:T>C 4.82 SDSM_Bekoji_2016 273

qSTB.06 1D 375956648 1 363.25 1217216|F|0-11:G>C-11:G>C/1119123|F|0-11:C>G-11:C>G 377.58 SPC_Holetta_2015 9.66

qSTB.07 1D 463434850 1 462.07 1034027|F|0-63:C>G-63:C>G/1398976|F|0-52:G>C-52:G>C 464.86 SDSH_Holetta_2015 10.44

qSTB.08 2A 514858369 1 513.83 1181149|F|0-28:G>A-28:G>A/1102718|F|0-68:C>A-68:C>A 21.69 SDSH_Holetta_2015 10.63

qSTB.09 2B 243083729 1 237.98 100665389|F|0-10:A>G-10:A>G/3064852|F|0-14:G>A-14:G>A 249.19 SPC_Kulumsa_2016 6.63

qSTB.10 2B 700740191 1 698.10 1127049|F|0-20:T>C-20:T>C/1220715|F|0-13:A>G-13:A>G 701.09 SPC_Holetta_2015 9.84

qSTB.11 2D 288602370 1 215.60 3025921|F|0-19:G>T-19:G>T/1107980|F|0-6:T>C-6:T>C 331.55 SPC_Combined 9.68

qSTB.12 2D 450991087 1 443.24 2262159|F|0-55:C>A-55:C>A/991014|F|0-5:G>C-5:G>C 461.85 SPC_Bekoji_2016 7.35

qSTB.13 2D 593032041 1 591.60 2251911|F|0-13:A>G-13:A>G/1078056|F|0-40:C>T-40:C>T 594.54 SPC_Bekoji_2016 6.01

qSTB.14 2D 598728762 1 595.56 5324627|F|0-45:G>C-45:G>C/2246647|F|0-7:T>C-7:T>C 598.73 SPC_Kulumsa_2016 7.35

qSTB.15 3A 8862385 1 8.74 2256311|F|0-9:C>G-9:C>G/1088933|F|0-37:C>T-37:C>T 12.87 SPC_Combined 9.82

qSTB.16 3A 203418249 1 161.44 12470406|F|0-23:A>G-23:A>G/992022|F|0-9:G>A-9:G>A 222.04 SDSH_Bekoji_2016 2.92

qSTB.17 3A 710771071 2 710.34 989196|F|0-7:A>T-7:A>T/4989102|F|0-40:G>A-40:G>A 711.04 SDSH_Holetta_2015

SPC_Holetta_2015

9.92

qSTB.18 3B 17785833 1 17.11 1244651|F|0-19:A>G-19:A>G/998652|F|0-18:C>T-18:C>T 18.45 SPC_Kulumsa_2016 6.07

qSTB.19 3B 59645976 1 59.53 1263371|F|0-58:G>A-58:G>A/1110947|F|0-39:T>C-39:T>C 60.37 SPC_Combined 9.75

qSTB.20 3D 42679365 1 42.63 981546|F|0-39:T>C-39:T>C/4911094|F|0-6:T>C-6:T>C 45.94 SDSH_Bekoji_2016 3.48

qSTB.21 3D 593664469 5 593.66 1102020|F|0-37:G>A-37:G>A/992091|F|0-53:G>C-53:G>C 595.02 SDSH_Holetta_2015,

SDSMM_Holeta_2015,

SPC_Holetta_2015,

SPC_Kulumsa_2015 and

SPC_Combined

2.67–

13.01

qSTB.22 4A 619375783 1 619.16 2263956|F|0-45:T>C-45:T>C/994022|F|0-52:G>C-52:G>C 620.75 SDSM_Bekoji_2016 2.7

qSTB.23 5A 688359748 1 685.96 3938163|F|0-43:T>C-43:T>C/2278701|F|0-37:A>T-37:A>T 689.42 SDSH_Holetta_2015 10.44

qSTB.24 5B 487460716 1 487.44 1696148|F|0-16:C>G-16:C>G/2281586|F|0-67:A>G-67:A>G 491.07 SPC_Kulumsa_2016 6.92

qSTB.25 5B 538706298 1 538.31 5582250|F|0-47:T>C-47:T>C/1097026|F|0-40:C>A-40:C>A 539.08 SPC_Bekoji_2016 6.92

qSTB.26 5D 541603929 1 539.15 1696148|F|0-16:C>G-16:C>G/6038202|F|0-6:C>T-6:C>T 541.68 SPC_Kulumsa_2016 6.13

qSTB.27 6A 607427728-609480220 2 607.43 2328288|F|0-13:G>C-13:G>C/1231806|F|0-13:G>C-13:G>C 608.28 SPC_Kulumsa_2016 and

SPC_Kulumsa_2016

2.72–6.01

qSTB.28 6B 708272196 2 706.98 995556|F|0-65:C>T-65:C>T/1091698|F|0-30:C>G-30:C>G 708.02 SPC_Combined and

SPC_Bekoji_2016

6.13–9.91

qSTB.29 7A 116530515 1 116.12 3064815|F|0-27:A>G-27:A>G/1151957|F|0-24:T>G-24:T>G 123.28 SPC_Kulumsa_2016 7.26

(Continued)
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8.5% for the allele 987806|F|0-16:A>G-16:A>G on chromosome
5D at 77.02 Mbp to 24.1% for the SNP1204551|F|0-57:C>T-
57:C>T positioned on chromosome 1A at 499.84 Mbp
(Supplementary Table 6).

The GWA scan for days to flowering in the individual
environments identified six MTAs for the data measured
in 2015 at Holetta on chromosomes 1A, 5A, 5B, 6A,
6B, and 7B (Supplementary Table 6, Supplementary Figure 8).
The detected markers could explain 22.8–25% of the total
phenotypic variation for days to flowering, while the SNP
markers 1000134|F|0-15:T>C-15:T>C on chromosome 6B and
1204551|F|0-57:C>T-57:C>T on chromosome 1A accounted for
the lowest and highest phenotypic variations in days to flowering
in the association panel, respectively (Supplementary Table 6).
Likewise, the association analysis for the days to maturity
data measured in 2016 at Bekoji identified 15 MTAs pointing
to nine putative QTLs on 1A, 2A, 3A, 3B, 5B, 6D, and
7A (Supplementary Table 6, Supplementary Figure 9). Three
of these significant SNPs, however, were not mapped on the
bread wheat physical map. The detected markers explained 11.6–
15.6% of the total phenotypic variation for days to maturity,
while the lowest and highest values were reported for the
SNPs 2278215|F|0-18:A>G-18:A>G on 2A and for 7332831|F|0-
9:T>C-9:T>C on 1A, respectively (Supplementary Table 6).

Moreover, a GWA scan on grain-filling duration data
measured in 2016 revealed 15 MTAs, among which 11 were
identified from the data collected at Holetta on chromosomes 1B,
2B, 3A, 3B, 6D, and 7D, plus 1 MTA with an unknown position
on the bread wheat physical map (Supplementary Figure 9).
Four of the significant associations for this trait were obtained
from data measured at Kulumsa on chromosomes 2B, 3B, 5B,
and one MTA with an unknown chromosomal position on
the bread wheat genome. The total phenotypic variation for
GFD explained by the SNPs ranged from.5% for the allele
on chromosome 3B (5325155|F|0-26:G>T-26:G>T) to 7.9% for
the SNP marker on 3A at 250.82 Mbp (5325155|F|0-26:G>T-
26:G>T) (Supplementary Table 6).

The association analysis for pooled plant height data
identified 1 MTA on chromosome 7A (Supplementary Figure 9)
and 24 for the data measured in the individual environments
(Supplementary Table 6). The plant height data measured
in 2015 at Bekoji resulted in 4 MTAs on chromosomes 1A,
5A,7A, and 7B and 10 MTAs for Kulumsa on chromosomes
1B, 2A, 5B, 5D, 6B, and 7D (Supplementary Figures 7, 8).
The same trait measured in 2016 at Kulumsa provided 10
MTAs on chromosomes 3B, 5A, 5B, 6B, 6D, and 7D, with
2 MTAs that were unmapped on the bread wheat physical
map (Supplementary Table 6, Supplementary Figure 9).
The identified SNPs accounted for 3.3–12.3% of the total
variation in plant height, and the SNP marker on 6B (SNP
2276919|F|0-10:G>T-10:G>T) at 521.99 Mbp had the largest
effect (Supplementary Table 6).

The study revealed that grain yield and yield-related attributes
measured over all the environments did not provide any
significant SNPs. However, their association analysis based
on mean values in the individual environments identified
numerous MTAs. The grain yield measured in 2015 at
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Kulumsa identified 10 significant MTAs on chromosomes 1A,
3A, 3D, 4A, 5A, 5D, and 7D, with one SNP that was not
mapped in the bread wheat genome (Supplementary Table 6,
Supplementary Figure 8). Similarly, a GWA scan for TKW
measured in 2016 at Kulumsa provided one MTA pointing to
a putative QTL on 7D at 79.52 Mbp (Supplementary Table 6,
Supplementary Figure 9). Furthermore, the total phenotypic
variations explained by the significant SNPs for yield and yield-
related traits varied considerably based on traits and markers,
with the lowest being 0.5% for grain yield on 3D (1045011|F|0-
60:T>A-60:T>A) and the highest being 15.7% for TKW on 7D
(4262368|F|0-28:A>G-28:A>G) (Supplementary Table 6).

The analysis revealed that some putative QTLs identified by
SDS data overlapped with those determined for agronomic data.
For instance, the putative QTL determined for plant height
measured in 2016 at Kulumsa on chromosome 6B was co-
mapped with qSTB.28, which was identified for combined SPC.
Similarly, the putative QTL identified on 7B for plant height
measured at Bekoji in 2015 was co-mapped with qSTB.31, which
was also identified for combined SPC. In addition, the putative
QTLs mapped on chromosome 7D for plant height measured in
2015 and 2016 at Kulumsa and for GFD and TKWdata measured
in 2016 at Holetta and Kulumsa, respectively, were co-mapped
with qSTB.32, which was identified for the SDS data measured at
the maturity stage at Bekoji and for pooled SPC data.

DISCUSSION

The phenotypic evaluation revealed significant genetic variability
for STB resistance among the tested wheat genotypes, thus
confirming the availability of relevant alleles for future breeding
and improvement. The observed high broad-sense heritabilities
within the individual environments (H2

= 0.58–0.99) and
across the environments (H2

= 0.72–81) indicated a strong
genetic signal in the data, which can be used for improving
STB resistance through selection. Similarly, a high broad-sense
heritability (H2

= 0.78) for STB resistance was reported for
European bread wheat varieties in Germany (Muqaddasi et al.,
2019) and Tunisia (H2

= 0.55) (Berraies et al., 2014). The
present field evaluation results confirmed that STB infestation
is significantly influenced by year, location, and all interaction
effects, thus confirming the importance of multiple locations and
years for germplasm evaluations at disease hotspots to identify
durable and stable STB-resistant genotypes.

The correlation analysis revealed that Septoria disease ratings
had negligible negative correlations with plant height, indicating
that tallness only had a weak contribution for reducing STB
infections (Muqaddasi et al., 2019). The lack of or slight negative
correlations of SDS traits with the agronomic traits HD, FD, GFD,
NKPS, and NKS and the moderately negative correlation with
MD indicate that genotypes with late phenology could escape
STB with slightly reduced infection. Moreover, the significant
negative correlations of STB infection with yield and yield-
related traits such as HLW, TKW, and KN could most likely
be due to the fact that the infection of the flag and second
leaves at the grain-filing stage could significantly influence

the photosynthesis process, and, thus, result in reduced grain
yield. Negative associations of SDS with days to flowering, days
to maturity, number of seeds per spike, and thousand-grain
weights were also reported for Ethiopian durum wheat
(Kidane et al., 2017).

The STRUCTURE and principal component analyses revealed
population stratifications and admixtures, suggesting the need
to use a powerful statistical model in the association analysis
that controls for spurious marker-trait associations. The analyses
suggested two sub-groups in the population. The very powerful
statistical model used in the analysis, FarmCPU, sufficiently
accounted for population stratification, familial relatedness, and
marker effects, which consequently reduced the confounding
effects that could result in false-positive MTAs. This was
confirmed by visualizing the Q–Q and Manhattan plots. Similar
indistinct population stratifications, higher admixtures, and weak
population sub-structuring were reported among 371 European
wheat genotypes based on 35k and 90k SNP marker arrays
(Muqaddasi et al., 2019).

Like previous reports, this study confirmed the unequal
distribution of the SNP markers among wheat genomes, where
most were harbored by the A (10,317) and B genomes (10,979),
while fewer SNPs (9,756) were harbored by the D genome
(Berkman et al., 2013; Edae et al., 2015; Rahimi et al., 2019).
This variation most likely resulted from the evolutionary
and domestication history of the crop (Dvorak et al., 2006;
Jordan et al., 2015), where the D genome had less time to
accumulate mutations.

These analyses revealed that the LD between the markers
and genes contributing to STB resistance declined to r2 <

0 within a physical distance of 1.26–105.61 Mbp in all the
chromosomes, with an overall mean of 31.44 Mbp. This is
much lower than the average physical distance (69.1 Mbp) for
LD decay in Ethiopian durum wheat at the critical threshold
of r2 = 0.2 (Alemu et al., 2021). The marker distances at
which the LD decayed across the older sub-genomes (A and B)
were relatively lower than those for the D sub-genome, most
likely because of the long evolutionary history of the A and B
genomes as compared with the D genome. Furthermore, the
LD between alleles can decay because of a number of factors
such as selection, recombination, themating system, genetic drift,
mutation, and/or population relatedness (Stich and Melchinger,
2010). Hence, it is likely that the shorter selection history of
the D sub-genome did not allow linkage breakdown due to
the recombination that occurs between SNPs located at longer
physical distances.

The GWAS analysis identified 53 MTAs pointing to 33 QTL
for STB resistance and 82 MTAs for agronomic traits where
markers had a FDR p ≤ 0.05 and a Bonferroni correction
significance threshold of 0.15. The number of SDS MTAs
identified in this study was significantly lower than that in the
findings of Rahimi et al. (2019), who reported 313–394 MTAs for
an Iranian bread wheat association panel. However, this number
was still substantially higher than that in the report of Kidane
et al. (2017), who identified 35 significant associations for an
Ethiopian durum wheat panel. Only seven QTLs for SPC were
identified in an analysis of the mean over environments, while
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FIGURE 5 | Genomic positions of detected putative QTLs effective for STB resistance. Significant DArTSeq SNPs are presented according to their physical positions

on chromosomes in millions base pairs. The putative QTLs identified in this study for the MTAs are indicated on the right sides of the bars. Underlined MTAs (marked

in pink) on the right sides of the chromosomes could be potentially novel loci in this study.

none was detected for SDS. Kidane et al. (2017) also reported no
QTLs for SDS in an analysis of means.

More QTL were noted in the analysis of data from individual
environments, although none was detected in more than four
of the six environments and 24 of the 33 were detected in
just one environment. The failure to detect QTL effects over
environments could be due to the seasonal specificity of QTL
effects, disease pressure, or the use of a very stringent FDR level
that controls type I errors but leads to increased type II errors,
e.g., declaring a QTL not significant when it actually is. The 2015
growing season at Holetta was characterized by extended and
heavy rainfall that resulted in the highest STB natural infestations
across all the growth stages. Additionally, in this growing season,
12 individual QTLs were detected (five for SPC and seven for
SDS), 3 of which affected both SPC and SDS. In contrast, the
heavy rainfall and prolonged moisture experienced at Bekoji in
2016 produced the highest SDS, while 12 QTLs were detected, of
which 6 were for SPC, 4 for SDS, and 2 that affected both traits,
using the data that were obtained. Therefore, climatic conditions,

such as persistent crop moisture and prolonged heavy rain, favor
the successful infection and spread of the disease throughout the
crop canopy (Fones and Gurr, 2015). Furthermore, no QTLs for
SDS were detected for Kulumsa in either year. Although a total of
11 QTLs for SPC were detected in the same environment, none
was repeated over the years. The different climatic conditions
may have caused the later onset of the disease in both growing
seasons. However, one QTL, qSTB.21, had the most repeatable
effect and was significant for SPC overall for both SPC in two
environments SDS at the heading and mid-maturity stages in
2015 at Holetta.

In this study, the GWA scan on SDS data measured at heading
at Holetta in 2015 and at Bekoji in 2016 identified putative QTLs
on chromosomes 1D, 2A, 3A, 3D, 5A, 7A, and 7D. Moreover, the
association analysis for SDS at the mid-maturity stage at Holetta
in 2015 reported three effective putative QTLs on chromosomes
1B, 3D, and 7B, which have not been reported for this trait so
far. Likewise, dissecting the disease data measured at the maturity
stage identified putative QTLs on chromosomes 1D, 4A, 6A, and
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7D. Moreover, the GWA scan for SPC identified putative QTLs
on chromosomes 1A, 1B, 1D, 2B, 2D, 3A, 3B, 3D, 5B, 5D, 6A,
6B,7A, 7B, and 7D.

Although the different mapping methods, marker systems,
and populations used can make it difficult to compare QTL
positions from different studies, some of the QTLs detected in
this analysis coincided with the mapping positions of previously
reported major STB resistance genes. Hence, the putative QTL
on 1B (qSTB.04) may represent Stb2 (Liu et al., 2013) and/or
Stb11 (Chartrain et al., 2009), the QTLs on 1D (qSTB.05–
07) may represent Stb10 (Chartrain et al., 2005), the QTL on
2B may represent Stb9 (Chartrain et al., 2009), the QTLs on
3A (qSTB.15–17) may represent Stb6 (Brading et al., 2002)
and/or StbSm3 (Cuthbert, 2011), the QTLs on 3B may represent
Stb14 (Cowling, 2006), the QTLs on 3D may represent Stb16q
(Tabib Ghaffary et al., 2012), the QTL on 4A may represent
Stb7 (McCartney et al., 2003) or Stb12 (Chartrain et al., 2005),
the QTLs on 5A may represent Stb17 (Tabib Ghaffary et al.,
2012), the QTLs on 5B may represent Stb1 (Adhikari et al.,
2004a), the QTL on 6A may represent Stb15 (Arraiano et al.,
2007), the QTLs on 7A may represent Stb3 (Goodwin and
Thompson, 2011) or TmStb1 (Jing et al., 2008), the QTL
on 7B may represent Stb8 (Adhikari et al., 2003) or Stb13
(Cowling, 2006), and the putative QTLs on 7D may represent
Stb4 (Adhikari et al., 2004b) or Stb5 (Arraiano et al., 2001).
Similar to the results of this study, Kollers et al. (2013) also
reported significant MTAs for STB resistance on chromosomes
2A and 2D. The present result also agrees with Muqaddasi et al.
(2019), who reported an adult-plant-stage STB resistance QTL on
chromosome 4A.

The identification of defense-related candidate genes,
such as TraesCS1A02G279300, TraesCS1B02G332400,
TraesCS1D02G278400, TraesCS2B02G233600, TraesCS2A02
G297500, TraesCS2D02G497400, TraesCS2D02G506300, and
TraesCS4A02G341300, in the vicinity of the significant markers
indicates the possible functional association of the detected QTL
regions in plant defense systems against pathogen infections.
For instance, the translations of the genes found in qSTB.02
(TraesCS1A02G279300) and qSTB.04 (TraesCS1B02G332400)
on chromosomes 1A and 1B, respectively, are involved in the
jasmonic- acid and ethylene-dependent systemic-acquired
resistance of plants to pathogen infections. This systemic
acquired resistance (SAR) is a broad-spectrum, long-lasting
resistance acquired after the initial localized infection of plants
by pathogens (Lawton et al., 1995). Furthermore, the gene
TraesCS2A02G297500 found in qSTB.08 on chromosome 2A
controls MAPK cascades, which are involved in signaling
multiple defense responses, including the biosynthesis/signaling
of plant stress/defense hormones, reactive oxygen species (ROS)
generation, stomatal closure, defense gene activation, phytoalexin
biosynthesis, cell wall strengthening, and hypersensitive
response (HR) cell death. Moreover, most of the genes in
proximity to the detected significant markers are inferred
to be involved in salicylic acid (SA) biosynthesis, with SA
being an important plant hormone that is best known for
mediating host responses upon pathogen infection (Lefevere
et al., 2020).

In this study, we discovered some STB resistance QTL
that appear to be novel. These include the putative QTLs on
chromosomes 1A (qSTB.01-3), 5D (qSTB.26), and 6B (qSTB.28)
that explained >5% of the genetic variations, suggesting their
relevance for wheat resistance breeding against STB. To the
best knowledge of the authors, none of the known major
STB resistance genes published in existing literature have been
mapped to these regions of the wheat chromosomes; therefore,
these QTLs could be considered novel.

Moreover, the study revealed that some of the putative STB
resistance QTLs were co-located with QTL for agronomic traits.
For instance, the putative QTLs derived from plant height
measured in 2016 at Kulumsa on chromosome 6B (R2

= 11.36)
and in 2015 at Bekoji on chromosome 7B (R2 = 8.88) were
co-mapped with qSTB.28 and qSTB.31, which were identified
for combined SPC. Likewise, the putative QTLs mapped on
chromosome 7D for grain-filling duration (R2 = 4.69) and 1,000-
kernel weight measured in 2016 (R2

= 0.54) at Holetta and
Kulumsa, respectively, were co-mapped with qSTB.32, which was
identified for the SDS data measured at the maturity stage at
Bekoji and for the pooled SPC data. Furthermore, STB is themost
destructive foliar disease in Ethiopia. Hence, the infection of the
flag and second leaves, which contributes most to photosynthetic
assimilates at the grain-filling stage (King et al., 1983; Muqaddasi
et al., 2019), can result in the substantial loss of grain weight
and yield. This is consistent with the findings of Kidane et al.
(2017), who reported the co-mapping of putative QTLs for 1,000-
kernel weight with SDS data. Moreover, the putative QTL on
chromosome 1A identified for grain yield measured at Kulumsa
in 2015 (R2

= 0.79) was co-mapped with qSTB.03, which was
identified for the SPC measured in the same environment. It
is, therefore, expected that the vertical progression rate of the
disease could affect grain yield by influencing grain filling and
the number of seeds produced per spike.

In this study, most of the QTLs identified for agronomic
and phenological traits did not overlap with those detected for
SDS traits, likely because of the lack of common genetic effects
for STB resistance and these traits. Many of the correlations of
STB traits with agronomic traits were non-significant and had
negligible to weak negative coefficients, indicating that the traits
were independent. However, some level of co-localization was
observed for the putative QTL for days to heading and days to
flowering measured at Holetta in 2015 on chromosome 6B (R2 =
22.82), with the putative QTL qSTB.28 on 6B being identified for
the SPC measured at Bekoji in 2016 and for the pooled data.

CONCLUSIONS

In this study, the genetic architecture of adult-plant resistance
to STB was explored in bread wheat using high-density,
genome-wide SNP markers and multi environment-derived
phenotype data. The analysis revealed that the association panel
possessed considerable STB resistance alleles that could be
deployed to improve wheat resistance to the prevailing Z. tritici
populations in Ethiopia. Several genotypes with better resistance
than the moderately resistant check King-bird were identified.
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Furthermore, the GWAS identified 33 putative QTLs, which were
associated with 53 SNPs. Most (24) of the QTLs were detected
in just one environment, suggesting the presence of resistance
gene/genes effective against location-specific Z. tritici races. The
detected QTLs also explained 2.7–13.2% of the total phenotypic
variance for STB resistance. Several disease resistance-associated
gene/s were also identified in the proximity of the detected
SNPs, which can be targeted in efforts to understand the actual
causative genes at the associated loci. Additionally, most of the
detected putative QTLs shared similar chromosomal positions
with previously reported genes and QTLs. Among these detected
alleles, five were potentially novel, accounting for >5% of STB
resistance. However, the effects of these QTLs need to be
validated before being deployed in MAS. Finally, we conclude
that the identified stably resistant wheat genotypes and the
identified QTLs can be deployed in wheat breeding programs
for the development of durable and broad-spectrum-resistant
varieties against Z. tritici.
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Root rot is a major constraint to snap bean (Phaseolus vulgaris) production in the
United States and around the world. Genetic resistance is needed to effectively
control root rot disease because cultural control methods are ineffective, and the
pathogen will be present at the end of one season of production on previously clean
land. A diversity panel of 149 snap bean pure lines was evaluated for resistance
to Fusarium root rot in Oregon. Morphological traits potentially associated with root
rot resistance, such as aboveground biomass, adventitious roots, taproot diameter,
basal root diameter, deepest root angle, shallowest root angle, root angle average,
root angle difference, and root angle geometric mean were evaluated and correlated
to disease severity. A genome wide association study (GWAS) using the Fixed and
random model Circulating Probability Unification (FarmCPU) statistical method, identified
five associated single nucleotide polymorphisms (SNPs) for disease severity and two
SNPs for biomass. The SNPs were found on Pv03, Pv07, Pv08, Pv10, and Pv11. One
candidate gene for disease reaction near a SNP on Pv03 codes for a peroxidase, and
two candidates associated with biomass SNPs were a 2-alkenal reductase gene cluster
on Pv10 and a Pentatricopeptide repeat domain on Pv11. Bean lines utilized in the
study were ranked by genomic estimated breeding values (GEBV) for disease severity,
biomass, and the root architecture traits, and the observed and predicted values had
high to moderate correlations. Cross validation of genomic predictions showed slightly
lower correlational accuracy. Bean lines with the highest GEBV were among the most
resistant, but did not necessarily rank at the very top numerically. This study provides
information on the relationship of root architecture traits to root rot disease reaction.
Snap bean lines with genetic merit for genomic selection were identified and may be
utilized in future breeding efforts.

Keywords: common bean, disease resistance, genome wide association studies, genomic prediction, best linear
unbiased prediction, root morphology, genomic selection
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INTRODUCTION

Root rot is a serious disease that affects common beans (Phaseolus
vulgaris) wherever they are grown. It has been and continues to be
a primary yield limitation in both snap and dry bean production.
Root rot is a broad term that can refer to infection by a variety
of pathogens or complexes thereof (Abawi et al., 1985). The most
serious and widespread causal pathogen, Fusarium solani f. sp.
phaseoli, has been reported to cause yield losses of up to 84% in
the United States (Schneider et al., 2001). This organism is the
primary, although not necessarily exclusive, root rot pathogen
in Oregon snap bean fields. There is currently no satisfactory
management technique to control root rot in snap beans with
cultural and chemical methods having met with limited success
(Burke and Miller, 1983). The best cultural option available to
control root rot is crop rotation but the four-to-five-year interval
that is required is impractical for most farmers. With so few
options, genetic resistance is of paramount importance. The
benefits of resistance extend beyond mitigating disease. Without
functional root systems, it is impossible to select for other traits,
such as abiotic stress and nutrient use efficiency that are needed to
combat climate change and adapt to agricultural intensification.

Most prior genetic analyses of F. solani root rot resistance
have been conducted with biparental dry bean populations
(Supplementary Table 1). Many were conducted with RAPD
marker systems that are difficult to rectify with contemporary
SNP-based maps (Chowdhury et al., 2002; Román-Avilés and
Kelly, 2005; Navarro et al., 2008; Schneider et al., 2001). SNPs
have become the preferred marker for linkage and association
mapping because of their abundance, repeatability and reference
to physical location within the genome (Blair et al., 2013; Cortés
et al., 2011). Unlike others who focused exclusively on dry beans,
Navarro et al. (2008) and Hagerty et al. (2015) used snap x
dry bean populations to map QTL for root rot resistance. In
all cases, resistance was inherited quantitatively with one to 15
QTL explaining from five to 53% of total phenotypic variance.
Where reported, heritabilities have ranged from 10 to 99%, with
the majority being in the low to moderate range. One genome
wide association study (GWAS) has been conducted in dry bean
for resistance to F. solani root rot. This study identified SNP
associations in Andean and Middle American diversity panels
(Zitnick-Anderson et al., 2020). They found sixteen unique SNP
associations in an Andean diversity panel on Pv01, Pv02, Pv03,
Pv04, Pv07, Pv08, Pv09, and Pv11, and seven unique SNP
associations in a Middle American panel on Pv01, Pv03, Pv04,
Pv07, and Pv08 (Zitnick-Anderson et al., 2020). Further GWAS
studies have been conducted on root rot caused by Pythium spp.,
Pythium ultimum, Fusarium oxysporum and Rhizoctonia solani in
dry bean (Oladzad et al., 2019; Dramadri et al., 2020; Diaz L. M.
et al., 2021; Paulino et al., 2021). With F. solani, the studies listed
in Supplementary Table 1 have not found major QTL associated
with resistance and the general consensus is that resistance is
conditioned by several to many genes with small individual effect.

There is evidence that the genetic background of snap
beans has unique characteristics which warrants examination
on its own (Wallace et al., 2018). In particular, the genetic
background of snap beans is highly mixed between the
Andean and Middle American gene pools with unknown

effects on the interactions of genes. Moreover, snap beans
have been selected for succulent, low fiber pods mostly
in isolation from dry beans since their assimilation by
Europeans starting in the 1500’s and this time frame may
have been sufficient for unique resistance traits to evolve
within snap beans.

The traditional GWAS model is a mixed linear model with a
correction for kinship and population structure that adequately
controls type I statistical errors. Last-generation GWAS models,
such as FarmCPU, have improved sensitivity and statistical power
with similar control of type I statistical errors and much improved
control of type II statistical errors (Liu et al., 2016; López-
Hernández and Cortés, 2019). Work on last-generation GWAS
models (FarmCPU, BLINK, and SUPER) indicates that they
are comparable and complement with each other when used
in parallel, although subtle differences have been found, such
as non-redundant results (FarmCPU) or a greater number of
associated SNPs (BLINK) in a study of heat stress in common
bean (López-Hernández and Cortés, 2019). Both BLINK and
FarmCPU iteratively utilize a random and fixed model and may
have an advantage over SUPER in having a lower type II statistical
error rate (López-Hernández and Cortés, 2019).

Marker assisted selection (MAS) have been most successfully
applied to traits conditioned by major genes, or in some cases,
major QTL (Assefa et al., 2019) and specifically in breeding
programs to introgress disease resistance. Over 40 SCAR or
SRAP markers linked to resistance to 11 pathogens are available
in common bean (BIC, 2021b). Only two of these are for
root pathogens (Fusarium oxysporum and Pythium ultimatum),
where resistance is conditioned by major genes. Some studies on
F. solani resistance indicate that the markers that were discovered
may be useful in breeding for resistance. However, there is
little evidence of their application in breeding programs. The
underlying reason for this is probably the polygenic nature of
F. solani resistance. MAS has not proven to be very effective for
such traits. Genomic selection (GS) is emerging in common bean
as a technique that allows selection of quantitative traits without
the labor-intensive approach that traditional MAS would require
(Assefa et al., 2019). GS models generally use many markers
distributed across the genome, and as a result, are more effective
than traditional MAS in selection for traits with many genes with
small effect. GS has been applied to common bean for root rot
(Diaz L. M. et al., 2021) as well as to agronomic traits (Keller
et al., 2020), cooking time (Diaz S. et al., 2021), and nematode
resistance (Wen et al., 2019; Shi et al., 2021) to discover genotypes
with the best breeding values for recombination schemes, but
deployment in breeding programs is only beginning.

Differing models for genomic selection are similar in their
predictive accuracy. One study of maize traits found that rrBLUP
had a slightly higher predictive accuracy in comparison to four
other genomic prediction models (Riedelsheimer et al., 2012).
Other research into genomic selection models in barley and
wheat found no differences, but a study of loblolly pine found
rrBLUP lacking when applied to oligogenic traits with a few major
genes (Heslot et al., 2012; Resende et al., 2012).

The purpose of this research was to improve the
understanding of the genetics underlying resistance to F. solani
sp. phaseoli in snap beans under field conditions typically found
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in a major snap bean growing region of the United States. As the
genetic background of snap beans is unique, this is an important
gap that needs investigation separate from previous dry bean
studies of Fusarium root rot genetic architecture. To achieve
this goal, three research focus areas were identified: (1) Analysis
of root and plant morphological traits in a diversity panel of
snap beans as related to root rot resistance or susceptibility, (2)
GWAS on root rot resistance in a diversity panel of snap beans,
and (3) Genomic prediction of cultivars to identify lines with
superior breeding potential based on the totality of all marker
effects in order to better capture minor allelic effects that may
be missed by GWAS.

MATERIALS AND METHODS

Study Site and Experimental Design
In this study, 149 pure lines of the Common Bean Coordinated
Agricultural Project (BeanCAP) Snap Bean Diversity Panel
(SBDP; see data availability statement for details on this panel)
were evaluated for resistance to root rot, which primarily consists
of F. solani in Oregon. This diversity panel contains pure line
examples of both centers of domestication with a representative
cross section of historical and contemporary snap beans, but
no wild materials. About 83% of the lines in the SBDP are of
Andean center of domestication with the remainder being of
Mesoamerican derivation (Wallace et al., 2018). They can be
further classified into eight groups based on Structure analysis,
with some lines having genetic contributions from as many as
seven groups. Since snap beans have undergone a high level
of intermixing relative to dry beans between the centers of
domestication (Wallace et al., 2018), more than 50% of the snap
beans in the panel contain some genetic background from both
centers of domestication.

Strongly root rot susceptible (‘Seabiscuit’, ‘Shade’, and ‘Zodiac’)
and strongly resistant (‘Black Valentine’, ‘Impact’, and ‘Widusa’)
cultivars were included. The OSU cultivars included in the panel
were bred and selected on the research farm under constant
root rot pressure, and as a result, have high levels of resistance,
and consistently grouped with the most resistant lines in the
diversity panel. Additionally, the panel included ‘FR-266’, an
experimental snap bean line bred in the Pacific Northwest for
F. solani root rot resistance (Silbernagel, 1987). This line has
been used in biparental mapping population studies of root rot
resistance (Schneider et al., 2001). It has been a check in our
root rot breeding nursery trials, where it shows moderate levels
of resistance. The complete panel was used, except for ‘BBL 274’,
which was unavailable for planting. In late spring of 2014 and
2015, four replicates of the SBDP were planted at the Oregon State
University Vegetable Research Farm. The Vegetable Research
Farm is located in Corvallis, Oregon on Chehalis silty clay loam
soil at latitude N44.571209, longitude W123.243261 at 77 masl.
The studies took place in our root rot “purgatory plot” that
had been planted continually with snap beans for over 25 years
in an effort to build a heavy pathogen population and increase
disease pressure for more effective screening. In monitoring of
bean root pathogens present at the Vegetable Research Farm,

we have always found F. solani to be the primary pathogen (see
Cirak and Myers, 2021 for latest assay). To further encourage
heavy and uniform disease pressure, the trials were well irrigated
(2.5 cm of water weekly by solid set sprinklers) in the beginning
of each season, as high soil moisture levels aid in infection. After
pod set, irrigation was reduced to increase abiotic stress levels.
The late season irrigation schedules were determined based on
weather conditions.

The trials were planted with a modified randomized complete
block design with the field divided into four replicated blocks on
a north-south axis. This method of blocking was chosen as the
size of this experiment exceeded previous years’ plantings and
extended into soil that may have had a lower level of disease
pressure. Due to their unique characteristics and need for a trellis
system, the pole beans were planted in a separate four block
randomization at the west end of the field. The plots were 3.0 m
long, planted in a single row at a density of 50 seeds per plot.
Rows were spaced 75 cm apart. A border row of OSU5446, a root
rot susceptible experimental line, was planted on the north and
south edges of the field, as well as 1.5 m end plots on the east and
west ends of each row to minimize edge effects. Planting dates
were 10 June in 2014 and 21 May in 2015. The seed was treated
with captan pre-emergent fungicide (Bonide Products Inc.) prior
to planting to improve germination and emergence uniformity
and reduce differences in stand among lines.

Field Evaluation
Data collection began when the earliest lines were at 50%
buckskin pod stage (when half the pods per bush have lost
their chlorophyll and have taken on a flexible, leathery texture).
Each plot was evaluated at this uniform phenological stage.
A Shovelomics protocol (Lynch and Brown, 2001, 2013) was
used to perform evaluations. The SBDP was evaluated for several
morphological traits including taproot diameter, largest basal
root diameter, deepest and shallowest basal root angles, and
aboveground biomass to investigate correlations between plant
structure and disease resistance. Five consecutive plants from the
center of the plot were dug with a 30 cm radius of soil around
the roots, and carefully shaken and washed to remove the soil
without damaging the roots. The five plants were evaluated on
a 1–5 (1 = least and 5 = most biomass) scale as a single unit for
aboveground biomass (Supplementary Figure 1). A subsample
of two randomly selected plants from the original five were
evaluated independently for taproot diameter, largest basal root
diameter, deepest basal root angle, shallowest basal root angle,
adventitious roots (1–3 scale; 1 = few, 3 = many roots), and
disease severity (1–5 scale; Table 1). In evaluating disease severity
of F. solani, nearly all researchers have used 1–5 or 1–9 visual
rating scales (Azzam, 1956; Baggett et al., 1965; Abawi, 1990;
Hagerty et al., 2015; BIC, 2021a). Taproot and largest basal root
diameter were recorded with digital calipers. The measurements
were taken 1 cm. below where the root emerged from the
hypocotyl. The deepest (closest to the taproot) and shallowest
(closest to the soil line) basal root angles were measured by laying
the specimen on a cutting board marked with protractor angle
increments (Supplementary Figure 2).
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TABLE 1 | Scale for rating Fusarium solani root rot symptoms in the BeanCAP
Snap Bean Diversity Panel grown at the Oregon State University Vegetable
Research Farm for a genome wide association study.

Score Root rot rating scale description

1.0 Clean white root

1.5 Few external red or brown lesions

2.0 Some external lesions, but root still firm and white inside

2.5 Some external lesions, red discoloration of pith, but root is firm

3.0 Significant external infection, red to brown pith

3.5 Spongy brown lesions are present

4.0 Root is soft and rotten

4.5 Root is very rotten, falling off

5.0 Root is absent, plant ends in rotten stump

Root angle difference, root angle average, and root angle
geometric mean were calculated from deepest and shallowest
root measurements. Root angle difference was the shallowest root
angle subtracted from the deepest root angle. This conveys the
span of the soil profile accessed by the plant. Root angle average is
the mean of the deepest and shallowest root angles and expresses
the general orientation of the roots, from zero to 90◦. Root angle
geometric mean is the geometric mean of the root angle average
and the root angle difference and was formulated to provide a
single value that integrated soil profile span and root orientation.

Statistical Analysis of Field Trials
To characterize the variation observed in the 2014 and 2015 trials,
the following statistical approach was used. First, homogeneity
of variances across years was examined using PROC GLIMMIX
(SAS version 9.3: SAS institute, Cary, NC) using the model
[Trait] = Variety Rep(Year) Year Variety∗Year with Year treated
as a random effect and the Covtest option to test for homogeneity
of variances. Variances from 2014 and 2015 demonstrated
homogeneity, and both years of data were combined into a single
analysis. Second, normality by year was examined using PROC
GLM with the model [Trait] = Rep Variety. Third, a mixed model
analysis of variables with years combined was performed using
PROC GLM with the model [Trait] = Variety Year Rep(Year)
Year∗Variety with Year, Rep(Year) and Year∗Variety treated as
random effects. As the two individual plants measured from
each plot were intended to capture information on a plot-mean
basis rather than an individual plant basis, mean scores for
each plot were used.

Multiple Correlation Analysis Among
Traits
To evaluate whether root morphological traits and disease
severity were positively or negatively associated, a Pearson’s
correlation coefficient analysis was performed in SAS 9.3 on the
least square means of the phenotypic data for disease severity,
aboveground biomass, adventitious roots, basal root diameter,
taproot diameter, shallowest root angle, deepest root angle, root
angle difference, root angle average, and root angle geometric
mean. Least square means were generated from combined data
from the 2014 and 2015 trials when ANOVAs were conducted

as described above. Correlations were generated for all pairwise
combinations of traits.

Genotyping
The genotypic dataset consisted of 10,607 SNPs generated by
using two Illumina iSelect 6K Gene Chip sets (BARCBEAN6K_1
and BARCBEAN6K_2) (Song et al., 2015). These BeadChips
were designed following sequencing a diverse set of 17 dry bean
cultivars with 10 from the Mesoamerican and seven from the
Andean centers of domestication. SNPs with 50% or greater
missing data were discarded (Song et al., 2015). Remaining
missing genotypes were imputed using fastPHASE, which uses
the Hidden Markov Model to indicate the cluster membership of
haplotypes (Scheet and Stephens, 2006). Genotypic data for the
‘Panama’ genotype was unavailable and was excluded from the
GWAS and BLUP analysis.

Heritability
Narrow sense and broad sense heritability are essentially
equivalent in a highly inbred crop such as common bean. With
complete homozygosity, it can be assumed that there are no
dominance effects present. In the absence of dominance effects,
variance among inbred lines, or Var(G), provides an estimate of
additive genetic variance or Var(A), rendering the two equations
equivalent (Hallauer et al., 2010). Additive x additive epistasis
may inflate estimates of narrow sense heritability, but is typically
minimal in a diploid crop such as common bean. The formula:

ĥ2
=

σ̂2
g

σ̂2

re +
σ̂2
ge
e + σ̂2

g

was used to determine heritability, where σ̂2
g is the estimated

genotypic variance component, σ̂2
ge is the estimated genotype by

environment interaction variance component, σ̂2 is the estimated
experimental error variance, e is the number of environments,
and r is the number of replications per environment. Heritability
for each trait was calculated using SAS code developed by
Holland et al. (2003). Mixed model analysis (PROC MIXED,
SAS 9.3) was used to obtain variance components. Variance
components were estimated using the restricted maximum
likelihood (REML) method. All model components were
treated as random effects. Heritability was calculated on a
line mean basis.

Genome-Wide Association Study
The entire SNP dataset was utilized for GWAS analysis. The
phenotypic data used for GWAS was a single value for each trait,
averaged across four reps and two years. Due to the incongruity
of a pole bean plant architecture for biomass measurements, pole
type beans were removed from the biomass analysis leaving 139
genotypes (lines) for this analysis. All other traits were measured
with the full set of genotypes.

The FarmCPU statistical method was performed in version
4.0.2 of the R software environment (Liu et al., 2016). To derive
SNP R2 values, FarmCPU was run within GAPIT (version 3)
with the added code, Random.model = TRUE. The SNP data was
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formatted in Microsoft Excel and was filtered for a minor allele
frequency (MAF) of 0.05 within R.

The principal component analysis (PCA) was conducted
in TASSEL, version 5.2.73.1 Principal components one to five
accounted for 22, 33, 41, 48, and 52% of the variation,
respectively. Based on the widely accepted criterion of principal
components accounting for between 25 and 50% of the variation
(Oladzad et al., 2019; Zitnick-Anderson et al., 2020), the choice
of principal components was narrowed to between two and four.
To further narrow the choice of principal components, QQ plots
were examined for fit around the null distribution to make the
final selection of two principal components (Supplementary
Figure 3). Linkage Disequilibrium (LD) heat maps for individual
chromosomes were also generated in TASSEL using the full
matrix in lieu of the sliding window.

Two different thresholds were examined for a cutoff of
significance in the Manhattan plots. The more conservative
threshold was a Bonferroni cutoff that utilized the effective
marker number of 2,411 as determined by the SimpleM method
(Gao et al., 2010). This generated an alpha 0.05 threshold
of 4.68 as expressed as a negative log value. In addition, a
10,000 bootstrap threshold was generated for an alpha of 0.05
(Mamidi et al., 2014). This bootstrap identified a threshold of
4.51 negative log.

Candidate Gene Search
Associated SNP positions were located in the common bean
genome as shown in the Phytozome JBrowse genome browser
(Phytozome, version 12.1; P. vulgaris genome, version 2.1). Using
conservative estimates of linkage disequilibrium in common bean
(Soltani et al., 2018; Oladzad et al., 2019) and in consideration of
the fact that no wild materials are included in our panel, we chose
to bracket a region of ±100 kb in our search for candidate genes.
Each gene model within the bracketed region was researched for
its potential role in disease resistance or biomass.

Genomic Prediction
Genomic estimated breeding values were calculated by adding
the fixed effect BLUE value for a given trait to the random effect
BLUP value for a given bean line and trait as determined by the
rrBLUP R package (Endelman, 2011). rrBLUP is equivalent to
gBLUP when QTLs are many, there are no major QTLs and QTLs
are evenly distributed across the genome (Bernardo, 2020). They
differ in that rrBLUP calculates SNP effects from a set of related
individuals whereas gBLUP uses markers to estimate relatedness
among individuals. Genomic prediction utilized the entire SNP
dataset.

To evaluate the predictive power of the rrBLUP calculations,
cross validation was performed by randomly splitting all the
genotypes within this study into a training set and validation set.
The models evaluated used ratios of training set to validation
set of 60:40, 70:30, 80:20, and 90:10%. Random partitioning
into training and validation sets with the training set used in
rrBLUP to predict the phenotype of the validation set was iterated
10,000 times (utilizing all SNPs) with 10 repetitions at each

1https://www.maizegenetics.net/tassel

level for each trait from which the mean predictive accuracy (r)
was determined. Correlations between observed and predicted
values using the entire population (100%) in both the rrBLUP
calculations and the cross validated rrBLUP calculations were
determined in R using a Pearson correlation coefficient.

Associated SNPs from the GWAS analysis were not added to
the rrBLUP model as fixed effects (Spindel et al., 2016) because
of the relatively low R2 values of variance explained by associated
SNPs but we did investigate the effect of number of SNPs retained
in the model on prediction accuracy. SNPs were sorted from
lowest to highest P value. From these, nine subsets (in addition to
the full set) were created. The full SNP sets had 7,082 for biomass
and 8,032 for all other traits (number of SNPs retained after
filtering for MAF < 0.05). These were reduced in an exponential
manner (3,541, 1,770, 885, 442, 221, 120, 55, 28, and 14 SNPs
for biomass and 4,018, 2,009, 1004, 502, 251, 126, 63, 32, and 16
for all other traits) to create the subsets. Each subset contained
the most highly significant SNPs identified by GWAS. For each
subset, the correlation of observed with predicted values was
computed in rrBLUP.

RESULTS

ANOVA
Means and standard errors for the traits measured in
the BeanCAP SBDP are shown in Table 2. Histograms
(Supplementary Figure 4) based on LSMeans showed traits to
be approximately normal in distribution except for biomass.
Biomass was unimodal but right skewed for LSMeans. The lines
making up the BeanCAP SBDP exhibited large differences for all
of the traits evaluated. Mean squares for the ANOVA model were
highly significant for all traits evaluated (Table 3). Mean squares
for lines were either significant or highly significant for all traits

TABLE 2 | Means and standard error (SE) (N = 16), and narrow sense heritability
(h2) and 95% confidence intervals for heritability for Fusarium solani root rot
symptoms (disease severity), plant biomass and root parameters of lines grown in
the BeanCAP Snap Bean Diversity Panel at the Oregon State University Vegetable
Research Farm in 2014 and 2015.

Trait Mean1 SE (mean) h2 95% Confidence
interval (h2)

Disease severity 3.10 0.01 0.74 (0.66–0.82)

Aboveground Biomass 3.28 0.02 0.75 (0.67–0.83)

Adventitious Roots 1.98 0.02 0.64 (0.52–0.76)

Taproot Diameter (cm) 2.27 0.02 0.51 (0.35–0.67)

Basal Root Diameter (cm) 2.08 0.02 0.47 (0.29–0.64)

Shallowest Root Angle 16.14 0.30 0.38 (0.18–0.58)

Deepest Root Angle 55.68 0.31 0.38 (0.18–0.58)

Root Angle Average 39.55 0.36 0.41 (0.22–0.60)

Root Angle Difference 35.91 0.25 0.32 (0.10–0.54)

Root Angle Geometric Mean 36.10 0.23 0.33 (0.12–0.55)

1Disease severity rated on a 1–5 scale where 1 is resistant and 5 is susceptible;
Biomass rated on a 1–5 scale where 1 is the least and 5 the most biomass
accumulation; Adventitious roots rated on a 1 – 3 scale where 3 = most adventitious
roots; and root angle measurements are in degrees from 0◦ to 90◦ where 0◦

represents a horizontal position.
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TABLE 3 | Degrees of freedom, mean squares, and significance level for model, year, bean line, replicate within year, and year by line interaction from an analysis of
variance for traits associated with Fusarium solani disease reaction and plant and root parameters evaluated in trials at the Oregon State University Vegetable Research
farm near Corvallis, of the BeanCAP Snap Bean Diversity Panel in 2014 and 2015.

Source of variation d.f. Disease severity Aboveground biomass Adventitious roots Taproot diameter Basal root diameter

Disease, plant, and primary root traits

Model 301 0.80*** 2.40*** 1.00*** 0.77*** 0.58***

Year 1 2.03ns 10.80ns 13.04ns 21.51* 22.46*

Line 147 1.25*** 3.71*** 1.33*** 0.89*** 0.62***

Rep(Year) 6 1.47*** 4.97*** 3.66*** 2.58*** 1.99***

Year*Line 147 0.32* 0.92*** 0.48*** 0.43ns 0.33*

R2 0.55 0.58 0.54 0.42 0.44

CV 15. 4 23.4 27.1 26.6 24.2

Source of variation d.f. Shallowest root angle Deepest root angle Root angle difference Root angle average Root angle geometric mean

Derived root traits

Model 301 186.4*** 210.0*** 240.0*** 138.0*** 103.8***

Year 1 5455.4* 5101.0* 6.2ns 5276.6* 1242.2*

Line 147 200.6* 233.2* 285.2* 145.4*** 118.6*

Rep(Year) 6 494.0*** 418.5* 241.4ns 395.8*** 155.7*

Year*Line 147 123.8ns 145.0* 196.2ns 85.2ns 79.2*

R2 0.35 0.38 0.32 0.38 0.36

CV 68.1 19.4 33.0 24.3 22.0

Shown at the bottom of the table are R2 values and coefficient of variation values. R2 is the regression coefficient for fit to the general linear model. ns = not significant;
∗ = significant at P < 0.05; ∗∗∗ = significant at P < 0.001.

evaluated, with lower significance levels corresponding to the
root angle measurements and the traits derived thereof. Mean
squares for replicate were either significant or highly significant,
except for the derived trait root angle difference. The mean
square for year was significant for taproot diameter, basal root
diameter, shallowest root angle, deepest root angle, root angle
average, and root angle geometric mean. It was not significant
for any other traits. In no cases were years highly significant.
Year by line interaction was significant for disease, basal root
diameter, deepest root angle, and root angle geometric mean. It
was highly significant for aboveground biomass and adventitious
roots (Table 3).

Multiple Correlation Analysis Among
Traits
Disease severity was negatively correlated with aboveground
biomass, basal root diameter, and taproot diameter (Table 4),
and positively correlated with adventitious roots, shallowest root
angle, and deepest root angle. Aboveground biomass, basal root
diameter and taproot diameter were highly positively correlated
(Table 4). Aboveground biomass and taproot diameter were
negatively correlated with shallowest and deepest root angle.
Basal root diameter showed the same negative relationship with
shallowest root angle but did not have a significant correlation
with deepest root angle. Shallowest and deepest root angles were
positively correlated with each other.

Heritability
A range of heritabilities was observed for the different
traits measured (Table 2). Aboveground biomass

and disease severity had the highest heritability
with h2 = 0.75 and 0.74, respectively. The root
angle traits had the lowest heritability, ranging from
h2 = 0.32 for root angle difference to h2 = 0.41 for
root angle average.

Genome-Wide Association Study
GWAS assumes normality (Goh and Yap, 2009). The disease
severity and biomass datasets were normally distributed based
on QQ plots of residuals generated from an ANOVA analysis of
years, reps, and genotypes. The tap root diameter and basal root
diameter datasets were also normally distributed for residuals
after a square root transformation. Adventitious roots, short root
angle, and deep root angle could not be made to conform to
normality for their residuals. A GWAS analysis was conducted on
all datasets, including square root transformed tap root diameter
and basal root diameter. GWAS analysis of tap root diameter,
basal root diameter, adventitious roots, short root angle, and deep
root angle did not generate any significant SNP associations with
a two PCA FarmCPU model.

A biplot of the first two PC axes (Supplementary
Figure 3) revealed a clinal gradient along PCA 1 for center
of domestication, with those lines clearly from the Mesoamerican
center of domestication having strong positive scores and those
with Andean background ranging from positive to negative
scores. PCA 2 primarily separated European-bred small sieve
cultivars from blue lake and pole bean types, but without
discernable differentiation for Andean background cultivars.
These results generally match our findings with Structure analysis
(Wallace et al., 2018).
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TABLE 4 | Pearson multiple correlation coefficients1 for Least Square Means of the BeanCAP Snap Bean Diversity Panel evaluated for Fusarium solani disease and plant
and root traits at the Oregon State University Vegetable Research Farm near Corvallis in 2014 and 2015.

Biomass Adventitious
roots

Basal root
diameter

Taproot
diameter

Shallowest
root angle

Deepest root
angle

Root angle
difference

Root angle
average

Root angle
geometric
mean

Disease severity −0.35*** 0.26** −0.27** −0.40*** 0.37*** 0.32*** −0.02ns 0.42*** 0.19*

Biomass 0.13ns 0.21* 0.19* −0.37*** −0.18* 0.14ns
−0.33*** −0.04ns

Adventitious roots −0.09ns
−0.24** 0.03ns 0.13ns 0.09ns 0.10ns 0.13ns

Basal root diameter 0.37*** −0.17* −0.05ns 0.10ns
−0.13ns 0.03ns

Taproot diameter −0.23** −0.46*** −0.23** −0.43*** −0.39***

Shallowest root angle 0.34*** −0.53*** 0.80*** 0.00ns

Deepest root angle 0.62*** 0.83*** 0.93***

Root angle difference 0.08ns 0.84***

Root angle average 0.59***

1Probability > | r| under Ho: Rho = 0. * = significant at P < 0.05; ** = significant at P < 0.01; and *** = significant at P < 0.0001. ns = not significant.

Five SNPs were associated with disease severity on
chromosomes Pv03, Pv07, Pv08, and Pv10 with two SNPs
on Pv10 (Table 5 and Figure 1). SNPs ss715639797, ss715649485,
and ss715646318 on Pv08 and Pv10 were identified through a
Bonferroni threshold. A further two SNPs, ss715647578 and
ss715646526, were identified on Pv03 and Pv07 through a
bootstrap analysis. The phenotypic variation (R2) explained by
SNPs indicated a low contribution to disease resistance by each
SNP ranging in value from 0.9 to 10.8% with the highest value
for ss715647578 on Pv03 and the lowest value for ss715646526
on Pv07. The effect of allelic substitution was negative for three
SNPs and positive for two (Table 5). Effect was relatively small
with a cumulative effect of altering disease severity score by
0.5. Two SNPs were associated with biomass on chromosomes
Pv10 and Pv11 (Table 5 and Figure 1). SNPs ss715649390 and
ss715645486 on Pv10 and Pv11, respectively, were identified
through a Bonferroni threshold. No further SNPs were identified
through a bootstrap analysis. The R2 values were 11.3% for
ss715645486 and 14.8% for ss715649390, and the former had an
allelic substitution effect of -0.12 while the latter had a relatively
larger effect of -0.18 (Table 5). The cumulative effect of these two
SNPs would be to shift the five-point scale by 0.3.

Within a 100 kb window upstream and downstream of these
SNPs, a total of 123 gene models were found across the seven
regions with an average of 18 per region (Table 5). One candidate
gene (peroxidase) was identified as potentially involved in disease
resistance (Table 6). A total of four candidate genes were
identified as potentially involved in biomass and abiotic stress
tolerance, including a pentatricopeptide repeat domain and three
tandem 2-alkenal reductase genes models (Table 6). Two of the
three 2-alkenal reductase gene models were outside of the 100 kb
window, but are included here because they were adjacent to one
within the window.

Based on a threshold of D’ or R2
≥ 0.80 and P ≤ 0.01,

regions of LD were identified around some significant SNPs.
D’ identified extremely large blocks of LD that were on the
order of 1.9–36.0 Mb for disease severity whereas R2 provided
a much more conservative estimate, ranging from 150 to 679 kb
(Supplementary Table 2). The LD heat map and table indicated

that SNPs on Pv03, Pv07, and Pv10 for disease severity, and Pv10
for biomass were within blocks of LD (Figure 2). These ranged
from 150 to 679 kb in size. The other SNPs were in LD blocks
using D’ as a criterion, but not with R2 (Supplementary Table 2).

An ANOVA analysis of the trait-SNP associations supported
the results of the GWAS analysis (Supplementary Figure 5). The
results were uniform for years with no significant differences
between years. The box plot trend supported the trait-SNP
association for SNP ss715639797 with P = 0.08. The other SNPs
for disease were significant with P < 0.05. The only exception was
SNP ss715646526 which was not significant, and the box plots did
not show any particular trend, and this was true for individual
years. For biomass, ss715649390 was highly significant whereas
ss715645486 was not, but it does show a trend.

Genomic Prediction
GEBV rankings represent the general trends seen in the
phenotypic data but with numerous crossovers in ranking due
to the information from relatives reflected in GEBV calculations
(Table 7). This can be seen in the ranking of disease severity,
which has ‘Impact’, ‘Black Valentine’, ‘Widusa’, ‘NY6020-5’, and
‘Romano Gold’ as the top five most resistant lines in the
phenotypic data set (data not shown) but the GEBV calculations
show ‘Widusa’, ‘Impact’, ‘Double Dutch White’, ‘Booster’, and
‘Stringless French Filet’ as having the best GEBV for disease
resistance (Table 7). When compared to the PCA biplot
(Supplementary Figure 3), lines with the highest GEBV rankings
for disease severity come from both Mesoamerican and Andean
centers and provide evidence that population structure is not
influencing choice of significant SNP associations.

Predicted and observed values for all traits resulted in high
to moderate correlations (r) for disease severity, biomass, and
the five root architecture traits (Figure 3 and Supplementary
Table 3; 100% column in histograms and row in table).
Ten thousand iterations of a cross validation with four
training-testing models and replicated 10 times for each trait-
model combination produced moderate to low correlations for
predictive ability. The correlations that were highest under
training and validation were those for disease severity, biomass
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TABLE 5 | SS identification numbers of the SNP, chromosome, position, negative log p-value, minor allele frequency (MAF), proportion of total phenotypic variation
explained by the SNP (R2), allelic effect, chromosomal location and number of gene models found within a 200 kb window proximal and distal to the SNP for significant
associations found from genome wide association study of Fusarium solani root rot disease severity and biomass in the BeanCAP Snap Bean Diversity Panel grown at
the Oregon State University Vegetable Research Farm in 2014 and 2015.

Trait SS ID No. Chromosome Position (bp) -log P. MAF R2 Effect Chromosomal location1 No. gene models

Disease ss715647578 Pv03 12,661,037 4.58 0.09 10.8 −0.15 pericentric 11

Disease ss715646526 Pv07 34,296,485 4.51 0.37 0.9 0.09 pericentric 21

Disease ss715639797 Pv08 32,951,182 5.24 0.23 6.2 −0.13 pericentric 7

Biomass ss715649390 Pv10 5,677,538 4.89 0.37 14.8 −0.12 proximal 11

Disease ss715649485 Pv10 7,910,750 4.85 0.14 7.3 −0.13 pericentric 12

Disease ss715646318 Pv10 40,686,027 5.75 0.39 5.6 0,14 distal 35

Biomass ss715645486 Pv11 766,814 5.35 0.22 11.3 −0.18 proximal 26

1Pericentric location of a SNP is associated with low rates of recombination while proximal and distal locations are in regions of high recombination. Placement based on
Supplementary Figures of physical vs. linkage map distances in Schmutz et al. (2014).

FIGURE 1 | Manhattan and corresponding Q-Q plots from a GWAS analysis of disease severity (A) and biomass (B) in the BeanCAP Snap Bean Diversity Panel
evaluated in 2 years for Fusarium solani reaction at the Oregon State University Vegetable Research Farm. The Bonferroni cutoff based on effective marker number
(-log10 4.68, α = 0.05) is shown as a solid line. For the Q-Q plots, the null distribution is shown as a red line.

TABLE 6 | Putative candidate genes within 350 kb of the associated SNP for Fusarium solani root rot disease severity and plant biomass identified by genome wide
association study using the BeanCAP snap bean diversity panel grown at the Oregon State University Vegetable Research Farm near Corvallis.

Chrom. SNP position Distance1 P. vulgaris gene
model

Start End Gene function References

bp bp

Pv032 12,661,037 74,361 Phvul.003G078600.1 12,584,313 12,586,676 Peroxidase Ray et al., 1998

Pv10 5,677,538 76,042 Phvul.010G039100 5,753,580 5,758,499 2-alkenal reductase Xi et al., 2015

102,406 Phvul.010G039200 5,779,944 5,784,500 2-alkenal reductase Xi et al., 2015

125,106 Phvul.010G039300 5,802,644 5,808,058 2-alkenal reductase Xi et al., 2015

Pv11 766,814 72,566 Phvul.011G010900 839,380 841,056 Pentatricopeptide
repeat domain
(PPR_3)

Jiang et al., 2015;
Cao et al., 2020

1Distance between SNP and nearest end of candidate gene. 2QTN on Pv03 associated with disease severity while those on Pv10 and Pv11 are associated with biomass.
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FIGURE 2 | Linkage disequilibrium (LD) heat map of common bean chromosomes Pv03, 07, 08, 10, and 11 showing all possible pairwise comparisons of SNPs
arranged along the chromosome. R2 values are displayed above and right of the diagonal and corresponding probabilities below and left of the diagonal. Color
scales show corresponding R2 and probabilities where red for each would indicate strong and highly significant LD. SNPs associated with disease severity (black ∗)
or biomass (yellow ∗) are indicated along the diagonal.
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TABLE 7 | Genomic estimated breeding values (GEBV) calculated from BLUPs and BLUEs for the 10 highest and 10 lowest ranked lines in the BeanCAP Snap Bean Diversity Panel for Fusarium solani root rot disease
severity, plant biomass, tap root, basal root diameter, adventitious roots, deepest and shallowest root angle.

Disease severity Biomass Tap root diameter Basal root diameter Adventitious roots Deep root angle Shallow root angle

Accession GEBV1 Accession GEBV2 Accession GEBV
(mm)

Accession GEBV
(mm)

Accession GEBV3 Accession GEBV4 Accession GEBV4

Widusa 2.61 Oregon 2065 4.32 Widusa 2.71 Goldrush 2.28 Widusa 1.7 Booster 48.8 Oregon Giant
Pole

11.51

Impact 2.64 Idaho Refugee 4.15 Trail of Tears 2.66 Oregon 91G 2.27 Serin 1.71 Oregon 2065 48.88 Roma II 11.68

Dutch Double
White

2.68 Corbett
Refugee

4.04 Fortex 2.65 Gold Mine 2.26 Pole Blue Lake
S7

1.72 Banga 49.08 Fortex 11.99

Booster 2.72 Gina 4 Pole Blue Lake
S7

2.62 Profit 2.26 Dutch Double
White

1.74 Pole Blue Lake 49.09 Ebro 12.02

Stringless
French Filet

2.73 Ebro 3.97 Booster 2.56 Stringless
French Filet

2.24 Impact 1.74 Serin 49.26 Magnum 12.05

Selecta 2.74 Tapia 3.92 EZ Pick 2.54 Oregon 5630 2.22 Kylian 1.76 Astun 49.3 Tapia 12.11

Pole Blue Lake 2.78 NY6020-5 3.89 Impact 2.54 Eagle 2.22 Koala 1.76 EZ pick 49.36 Astun 12.6

Oregon 2065 2.79 Coloma 3.89 Pole Blue Lake 2.53 Gina 2.22 Polder 1.77 Celtic 49.44 Idaho Refugee 12.96

Pole Blue Lake
S7

2.79 Unidor 3.87 Paloma 2.51 Carson 2.21 Renegade 1.77 Stayton 49.46 Romano 118 13.01

Cherokee 2.81 Calgreen 3.82 Hayden 2.5 Summit 2.21 Pix 1.78 Redon 49.67 Cyclone 13.01

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Shade 3.45 Brio 2.68 US Refugee #5 2.05 Redon 1.96 NY6020-5 2.2 Benton 59.87 Benton 18.51

Espada 3.45 Minuette 2.67 Charon 2.04 EZ Pick 1.94 Medinah 2.2 Castano 59.89 Warrior 18.66

Spartacus 3.46 Paulista 2.66 Opus 2.04 Banga 1.93 Landmark 2.2 Brio 59.91 Festina 18.68

Matador 3.49 Festina 2.65 Strike 2.04 Idaho Refugee 1.93 Benton 2.24 Shade 60.04 Zeus 18.68

Warrior 3.5 Matador 2.64 Mercury 2.04 Booster 1.93 Coloma 2.29 Summit 60.1 Matador 18.72

Titan 3.53 Palati 2.64 Dusky 2.03 Blue Peter Pole 1.91 FR-266 2.32 Carlo 60.38 Palati 18.77

Benton 3.53 Flavorsweet 2.63 Castano 2.02 Corbett
Refugee

1.89 Oregon Giant
Pole

2.34 Provider 60.56 Benchmark 18.88

Hercules 3.53 Dusky 2.51 Landmark 2.01 Kentucky
Wonder

1.87 US Refugee #5 2.43 Stallion 60.82 Dusky 19.04

Festina 3.54 Speedy 2.4 Idaho Refugee 1.97 McCaslan No.
42

1.86 Idaho Refugee 2.55 Valentino 61.39 Castano 19.22

Seabiscuit 3.58 Embassy 2.32 Corbett
Refugee

1.93 Trail of Tears 1.86 Corbett
Refugee

2.6 Grenoble 61.41 Roller 19.37

1Disease severity rated on a 1–5 scale where 1 is resistant and 5 is susceptible. 2Rated on a 1–5 scale where 1 is the least and 5 the most biomass accumulation. 3Rated on a 1–3 scale where 3 = most adventitious roots.
4Degrees from 0◦ to 90◦ where 0◦ represents a horizontal position.
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FIGURE 3 | Correlation of predicted and observed values for training vs. testing populations at four ratios (60:40, 70:30, 80:20, and 90:10%) and compared with
observed vs. predicted for the entire population (100%) of the BeanCAP Snap Bean Diversity Panel for Fusarium solani root rot disease severity and plant and root
traits. Correlation coefficients were generated by rrBLUP using 10 K iterations and 10 repetitions per trait-level combination. (A) Adventitious roots, (B) Biomass, (C)
Basal stem diameter, (D) Disease severity, (E) Deep root angle, (F) Shallow root angle, and (G) Taproot diameter.

and deep root angle. As size of the training population increased,
mean correlation remained essentially flat (adventitious roots,
basal root diameter), showed a linear increase (biomass, disease

severity, and taproot diameter), or fluctuated (deep and shallow
root angles). Variation about the mean of r was greatest at
the 90% level (Figure 3 and Supplementary Table 3). Overall,
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standard deviations were smallest for the model with 70%
training population although for biomass, 60 or 70% training
models were very similar, as were 70 and 80% training models for
basal root diameter. Cross-validation predictions generally were
20–40% lower than correlation among predicted and observed
of the entire population. Disease severity, deep root angle and
shallow root angle showed the smallest differences.

Number of SNPs retained in the model affected predictive
ability. Correlation coefficients were generally lowest for the
fewest significant SNPs and increased as SNPs were added to the
model (Figure 4), but in most cases plateaued before declining
with use of the full SNP set. The traits separated into two
groups with disease severity and biomass showing relatively
high correlations, and the root traits exhibiting moderate to
moderately high correlations over SNP subsets. For disease
severity, r > 0.90 was obtained with 126 SNPs, while for biomass
r > 0.90 was obtained with 221 SNPs. Disease severity exhibited
a decrease in r from 0.91 to 0.78 when transitioning from 4,018
to the full SNP set, and for biomass, the decrease was from 0.93
to 0.90. For root traits, most did not reach a maximum r until
2,009 or 4,018 SNPs were used with r ranging from 0.72 to 0.84.
In all cases except for adventitious roots and deep root angle, r
decreased for the full SNP set compared to half the SNPs used in
the model (Figure 4).

DISCUSSION

Our ANOVA results showed significant year x line interaction
for disease severity (P ≤ 0.05), biomass (P ≤ 0.001), adventitious

roots (P ≤ 0.001), basal root diameter (P ≤ 0.05), deepest root
angle (P ≤ 0.05), and root angle geometric mean (P ≤ 0.05), but
no statistical significance for the remaining traits. The significant
interactions for disease severity and biomass appeared to be due
to differences in magnitude rather than changes in rank years as
shown by moderate but highly significant correlations between
years based on Spearman rank correlation (data not shown).
The pattern exhibited by the replicates for disease score differed
in 2014 and 2015, most likely due to differences in order of
evaluation. In 2014, lines in all reps were evaluated when reaching
the desired physiological stage but in 2015, reps were evaluated
sequentially. In 2014, spatial variation in reps was important
with the two inner reps showing more disease than the outer
reps. In 2015, disease severity increased over time. Coefficient of
variation (CV) was relatively low at 15 and 23 for disease severity
and biomass, respectively, with other traits similar to biomass,
except shallow root angle, which was had a CV of 68. The high
disease pressure and consistent watering likely contributed to this
uniformity across years and a low CV. Although our study could
not exclude every environmental factor present in an outdoor
field, these environmental factors may be both confounding
but also offer the possibility of capturing complex interactions
between genes and the environment that could be important to
disease manifestation in a grower’s field.

Our shovelomics methodology provides a valuable window
into the disease process. Our analysis showed that root angle
and disease severity are positively correlated suggesting that
susceptible lines had root systems oriented at a deeper angle than
resistant lines (Table 4). Similar to our findings, Snapp et al.
(2003) found that more lateral roots of larger diameter were

FIGURE 4 | Effect of number of SNPs on predictive accuracy for Fusarium root rot disease severity and root traits of a snap bean diversity panel. SNPs were first
filtered for MAF < 0.05, then sorted from smallest to largest P value and arranged in nine subsets approximately doubling in size with each step. Full set of SNPs for
biomass was 7,082 while for all other traits totaled 8,036. Number of SNPs is plotted on a logarithmic (base 10) scale.
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associated with Fusarium root rot resistance. In their research
on nutrient foraging, Lynch and Brown (2001) emphasized that
a plant with exclusively deep root angles is exploring a smaller
amount of soil than a plant with either a shallow or a range of
root angles. The beans with shallower root systems may have been
able to access a greater soil volume. Another possible explanation
for the effect observed in this study is that the upper layer of
soil had superior drainage, which reduced infection by root rot.
There may be a tradeoff between disease resistance and drought
tolerance with regard to root angle. Drought tolerant plants will
likely have roots exploring greater depths of soil.

The negative correlation of disease severity with aboveground
biomass, basal root diameter, and taproot diameter, indicated that
resistant cultivars had greater aboveground biomass and larger
root diameter than susceptible cultivars (Table 4). The positive
correlation of disease severity with adventitious roots, shallowest
root angle and deepest root angle indicated that cultivars
with fewer adventitious roots and shallower root angles were
associated with less disease. For aboveground biomass, basal root
diameter and taproot diameter, the highly positive correlation
indicated that the magnitude of the three size measurements
maintained a constant relationship across lines. Aboveground
biomass and taproot diameter were negatively correlated with
shallowest and deepest root angle, meaning that larger plants
had shallower root systems. Positively correlated shallowest and
deepest root angles indicated that regardless of the orientation
of the root system, the span of the soil profile that it accessed
remained constant.

Disease severity, biomass, and adventitious roots had higher
heritability than the other shovelomics traits, such as root
angle measurements. The heritability value for disease resistance
is within the range of values measured by most previous
researchers. Hagerty et al. (2015) obtained h2 of ∼0.20 and
Mukankusi et al. (2011) reported heritability of 0.38–0.45 for root
rot resistance. In contrast, Kamfwa et al. (2013) found higher
heritabilities of 0.86–0.99. The heritability for aboveground
biomass found in this study also corresponds to previously
reported values. Shenkut and Brick (2003) found a range from
0.60 to 0.70. Navarro et al. (2008) reported values of 0.77–0.91
for heritability of biomass, based on measurements of dry weight,
which implies that our categorical rating system did not greatly
inflate heritability values. The high heritability values imply that
simple selection strategies on these traits would be effective.

The high heritabilities of disease severity and biomass are
consistent with the high correlational accuracy of these two traits
in genomic prediction and the significant results in GWAS. These
two traits were also negatively correlated with a high statistical
significance (Table 4) indicating the possibility that disease
stressed plants were generating less biomass. Nevertheless, these
traits are not entirely overlapping and the negative correlation
may be partly coincidental and not causal because GWAS analysis
identified distinct SNP markers for disease severity and biomass.

The lack of GWAS results for five of seven traits is notable.
There may be confounding factors associated with measuring
traits under disease pressure. As noted already, the other traits
had lower heritabilities that may also explain the difference.
Moreover, the Bonferroni and bootstrap thresholds utilized

in this study are very conservative. Additionally, increasing
the population size and/or number of SNPs would have led
to greater precision and a greater likelihood of detecting
significant associations.

The SNPs identified by our GWAS analysis did not clearly
overlap with any previously identified SNP from GWAS analysis
or biparental analysis of root rot organisms (Hagerty et al.,
2015; Oladzad et al., 2019; Dramadri et al., 2020; Zitnick-
Anderson et al., 2020). We identified one candidate gene related
to plant defense within the immediate vicinity of an associated
SNP (Table 6). Peroxidases are involved in the final steps of
the biochemical pathway leading to lignification, which directly
interferes with pathogen invasion (Ray et al., 1998).

From our studies and those of others (Hagerty et al., 2015;
Nakedde et al., 2016; Wang et al., 2018; Zitnick-Anderson
et al., 2020), there is strong evidence that F. solani resistance
in common bean is polygenic with many genes with small
effect being involved. One interesting finding is the lack of
commonality of resistance QTL among the different studies
where genome location can be compared. This would support
the idea of polygenic resistance based on genes that are
not considered classical resistance genes. Given the level of
resistance in some lines in our diversity panel, it is possible to
achieve relatively high levels of resistance with the right gene
combination, which appears to confer broad-spectrum resistance
to different Fusarium isolates. While virulence may vary among
isolates, there does not appear to be a pathogen race structure. As
a case in point, the resistance in FR-266 was relatively effective
to Fusarium isolates endemic to Michigan (Schneider et al.,
2001; Snapp et al., 2003), whereas we found this genotype to be
moderately resistant against our field isolates in Oregon, implying
that Oregon isolates were more virulent. However, in both cases,
resistance was quantitative with no clear major QTL.

Where host and pathogen are coevolving under antagonist
selection, the prediction is resistance genes would evolve in
concert and tend accumulate in large haplotype blocks in low
recombining genomic regions (Ravinet et al., 2017). Our findings
lend support to that idea in that of the five SNPs associated
with disease severity, four were located in low-recombination,
gene-sparse pericentric regions and only one was located distally
on Pv10 in a high-recombination region (Table 5). Both SNPs
associated with biomass were in high-recombination regions
located proximally on their respective chromosomes.

Linkage disequilibrium heatmaps (Figure 2 and
Supplementary Table 2) provide a more detailed examination of
low recombination blocks in relations to chromosomal location,
and are in partial agreement with low recombination regions
identified in Table 5. Visually, Figure 2 aligns with categories in
Table 5. One discrepancy between Table 5 and Supplementary
Table 2 was for the SNP associated with disease severity on Pv08,
where the SNP clearly resides in a region of low recombination
(based on physical vs. cM biplots in Schmutz et al., 2014),
however, an LD block for this region was essentially non-existent
based on an R2 cutoff of 0.80. The heatmap (Figure 2) does show
moderate to high LD in this region. The second discrepancy
was for a SNP on Pv10 associated with biomass. This SNP is
located proximally, but had a sizable LD block of 421 kb. Pv10
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is acrocentric and the SNP is located in the short arm, which
have reduced recombination (see Supplementary Figure 13 in
Schmutz et al., 2014).

A further implication of the location of most resistance
associated SNPs in low recombination regions is that marker
assisted selection would be at best, inefficient and at worst,
ineffective because of the large non-recombinant blocks of
genes. This provides further support for prioritizing genomic
selection over QTL mapping and marker assisted selection
of individual QTL.

The biomass candidate genes were identified through their
known effects on biomass but also their effects on abiotic stress
tolerance because disease pressure can induce drought stress in
affected bean plants through the loss of their roots to disease.
A pentatricopeptide repeat (PPR) domain candidate gene was
found in the vicinity of SNP ss715645486. PPR domains have
been implicated in an increase of biomass in a study of Paulownia
trees (Cao et al., 2020), and are also implicated in drought stress
tolerance (Jiang et al., 2015). The three tandem duplicate genes
of 2-alkenal reductase in the vicinity of SNP ss715649390 are also
implicated in increased biomass and improved drought tolerance
in a study of transgenic tobacco plants (Xi et al., 2015).

Are there tradeoffs between Fusarium resistance and abiotic
stress tolerances? Burke and Miller (1983) extensively analyzed
the interactions of Fusarium root rot with various cultural
practices that can affect the development of disease. Their
findings were that anything that constricts the root system
(such as cold soils and compaction) will exacerbate disease
development. Intermittent drought stress combined with these
factors restricting root growth will further increase disease
pressure. Excess soil moisture even if it is intermittent and of
short duration will prevent oxygen diffusion to the roots and
further inhibits root growth. High population densities also tend
to increase root rot. Previously bred Fusarium root rot resistant
dry bean cultivars tended to tolerate cold soils, drought and
compaction better than susceptible cultivars, but in waterlogged
soils, resistance was defeated. In the present study, there does not
appear to be a tradeoff among these traits with one exception: the
correlation of shallow root angle with disease resistance, which
might lead to less drought tolerant plants. Correlation is not
causation so this supposition would need to be tested and could
be carried out by subjecting the snap bean diversity panel to
drought as well as other forms of abiotic stress. On the other
hand, nutrient use efficiency, especially for phosphorous (P), is
associated with shallow root systems (Lynch and Brown, 2001).
Breeding for P use efficiency would not likely impact root rot
resistance and vice versa.

The multiple associated SNPs detected for disease severity
with low R2 values and their non-overlap with numerous SNPs
detected for root rot in other studies strongly suggests that root
rot resistance is highly polygenic in nature with numerous loci
of low effect. This further supports the notion that genomic
selection, which fully utilizes all SNPs, may be a better method to
breed for root rot disease resistance in snap bean than identifying
a small number of loci in GWAS and applying marker assisted
selection to those loci.

Optimum ratio of training to testing populations for
achieving the highest repeatable predictive ability was 70:30%

training:validation for most traits. This level is within the range
of what has been found for other studies of genomic prediction in
common bean (Keller et al., 2020; Diaz L. M. et al., 2021; Diaz S.
et al., 2021; Shi et al., 2021). At 90% training population, the
highest average predictabilities as measured by r were achieved,
but standard deviations were much larger, leading to less certainty
in whether a prediction was accurate. Shi et al. (2021) reported
that training sets >80% can lead to large variation associated with
too small a validation set.

In evaluating the influence of the number of SNPs on
prediction accuracy, it was curious that for most traits, the full
set of SNPs used in our model had lower predictive accuracy
compared to a reduced number of SNPs. Studies in bean and
other crops have generally shown a positive correlation between
number of SNPs and predictive accuracy (Spindel et al., 2016; Liu
et al., 2018; Wen et al., 2019; Keller et al., 2020; Thistlethwaite
et al., 2020; Arenas et al., 2021; Shi et al., 2021). These studies
do differ in how many SNPs were used and in how they were
selected for each subset, but the overall trends were similar.
Some studies have observed decreases in predictive accuracy at
various SNP levels. Thistlethwaite et al. (2020) observed a drop
at around 10,000 SNPs before rising again. Arenas et al. (2021)
observed a dip at around 1,000–1,500 SNPs for four traits. In
our study, disease severity and biomass could be modeled with
a high degree of accuracy (r > 0.90) with relatively few (126–221)
SNPs. In contrast, root traits were best modeled with one-half to
one-quarter of the full SNP data set. Other studies have shown
that genomic prediction models that incorporate GWAS can
improve accuracy in breeding programs (Spindel et al., 2016). Shi
et al. (2021) found the highest predictive accuracy when 20 SNPs
derived from GWAS were used. Our selection of 14 (biomass)
and 16 (disease severity) most highly significant SNPs had among
the lowest predictive accuracies. Our results reinforce the idea
that resistance to Fusarium root rot is polygenic and requires
many genes to achieve the highest levels of resistance.

One of the important questions in GWAS has been how to
account for the “missing heritability” in such studies (Manolio
et al., 2009). Relative to the heritability estimates based on
phenotypic and genotypic variances, the amount of variation
explained by significant SNP associations is small, and the
cumulative effect of all associations in the model does not always
approximate classical measures of heritability. This is particularly
true where QTL have small individual effect. In the present study,
the h2 estimate based on genotypic and phenotypic variances
was relatively high 0.74 for disease severity and 0.75 for biomass
(Table 2) while the cumulative R2 for the SNPs associated with
these traits ranged from 0.26 to 0.31. This implies that either
h2 is overestimated, or that GWAS may be missing medium-
and low-effect associations. Relaxing our cutoff for identifying
SNP associations could lead to the identification of additional
associations, but increasing number of genotypes and/or markers
would provide the greatest possibility of accurately detecting
additional associations.

One piece of the missing heritability may be
conditioned by genetic variability in the phenolic/flavonoid
biosynthetic pathway. Flavonoids and phenolics have
been shown to possess antimicrobial properties which
have been associated with resistance to root rots
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(Hagerty et al., 2015; Cirak and Myers, 2021). One line
(‘Cherokee’) from those with the highest rank for GEBV for
disease severity had colored seeds and flowers, while none of the
lowest ranked lines were colored (Table 7 and Supplementary
Table 1 in Kleintop et al., 2016). The SBDP has been evaluated
for total phenolic content (TPC) of pods (Kleintop et al.,
2016), which can serve as a proxy for phenolics and flavonoids
distributed in other plant parts. The 10 lines with lowest GEBV
values for disease severity had relatively higher TPC than did the
10 lines with the highest GEBV (mean of 0.52 vs. 0.40 mg g−1

FW gallic acid equivalents). Disease severity and GEBV for
disease severity were negatively correlated with TPC (r = -0.18,
P = 0.03 and r = -0.23, P = 0.005, respectively). Myers et al.
(2019) conducted a GWAS for TPC in pods of the SBDP and
when we compared those results to the current findings, we did
not find any overlap in regions of significant SNPs for disease
severity or biomass. These results are compatible with the idea
that phenolics do play a role in root rot resistance although it is
not a major one.

To achieve acceptable processing quality, most contemporary
snap bean cultivars are white-seeded, which eliminates
anthocyanins and flavonols from the pods. If we had found
a strong relationship between TPC and disease severity, those
associations with pigment production would not be useful in a
breeding program. Although lines varied for total TPC, all but
one was white-seeded (preventing anthocyanin accumulation in
the pods) and thus do not present barriers to use in a breeding
program for root rot resistance.

In common bean, geographic origin and population structure
have been shown to be an important influence on genetic
variation in wild and landrace beans (Blair et al., 2012; Cortés
et al., 2018). With the BeanCAP snap bean diversity panel, we
do not expect associations that might be related to demography
since snap bean origins are not associated with a particular
place. However, snap beans do appear to have been secondarily
derived from dry beans, and indirectly from the two centers
of domestication, possibly with several independent events, and
have retained some genetic signature of their origins (Wallace
et al., 2018). Derivation has been followed by substantial
admixing, which has reduced distinct associations with centers of
domestication and has produced more of a clinal variation across
the diversity panel. Population structure could result in spurious
marker – trait associations; however, structure was accounted for
in the FarmCPU model, and we did not see any pattern between
disease severity GEBVs and location on the PCA biplot.

This research builds on prior work on Fusarium root
rot resistance in common bean and will give snap bean
breeders additional tools to dissect and manipulate resistance
to Fusarium root rot in snap beans. The heritabilities give
information on the expected gain from selection that could
be achieved. The correlations among disease and root traits
provide valuable information on the root architecture necessary
to develop resistant lines. The GWAS analysis provides additional
markers to a growing number associated with resistance. The
genomic predictions identify individual lines with genetic merit
worth pursuing by utilizing the totality of marker effects.
Future research could include a more detailed investigation
root trait associations with biotic and abiotic stress tolerance,

combine snap bean data with dry bean for a meta-GWAS, and
development of a MAGIC population (Cavanagh et al., 2008) to
facilitate recombination of SNP associations into a common snap
bean background.
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Charcoal rot is a post-flowering stalk rot (PFSR) disease of maize caused by the fungal

pathogen, Macrophomina phaseolina. It is a serious concern for smallholder maize

cultivation, due to significant yield loss and plant lodging at harvest, and this disease is

expected to surge with climate change effects like drought and high soil temperature. For

identification and validation of genomic variants associated with charcoal rot resistance,

a genome-wide association study (GWAS) was conducted on CIMMYT Asia association

mapping panel comprising 396 tropical-adapted lines, especially to Asian environments.

The panel was phenotyped for disease severity across two locations with high disease

prevalence in India. A subset of 296,497 high-quality SNPs filtered from genotyping

by sequencing was correcting for population structure and kinship matrices for single

locus mixed linear model (MLM) of GWAS analysis. A total of 19 SNPs were identified

to be associated with charcoal rot resistance with P-value ranging from 5.88 × 10−06

to 4.80 × 10−05. Haplotype regression analysis identified 21 significant haplotypes

for the trait with Bonferroni corrected P ≤ 0.05. For validating the associated variants

and identifying novel QTLs, QTL mapping was conducted using two F2 : 3 populations.

Two QTLs with overlapping physical intervals, qMSR6 and qFMSR6 on chromosome

6, identified from two different mapping populations and contributed by two different

resistant parents, were co-located with the SNPs and haplotypes identified at 103.51Mb

on chromosome 6. Similarly, several SNPs/haplotypes identified on chromosomes 3, 6

and 8 were also found to be physically co-located within QTL intervals detected in one

of the two mapping populations. The study also noted that several SNPs/haplotypes for

resistance to charcoal rot were located within physical intervals of previously reported

QTLs for Gibberella stalk rot resistance, which opens up a new possibility for common

disease resistance mechanisms for multiple stalk rots.

Keywords: GWAS–genome-wide association study, linkage (QTL)mapping, haplotype analysis, charcoal rot, maize
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INTRODUCTION

Maize is cultivated on more than 180 million hectares (M ha)
globally, contributing∼50% [1,117 million metric tons (MMTs)]
to the global grain production (Prasanna, 2018). Asian countries
have shown rapid progress in maize production and productivity
and are the second largest maize producers in the world with
31% share in global maize production (Zaidi et al., 2018).
China produced nearly 260.95 MMT of maize by cultivating
the maize area of 41.30M ha during 2019 (FAO., 2021). The
second prime maize producing country among Asian countries
is India with an estimated maize area of ∼9.03M ha in 2019
with the maize production of 27.72M Mt at a productivity
of 3.07 t/ha (FAO., 2021). In Asia, a large portion of maize
(∼70% of total volume) is used by the feed industry (Prasanna,
2018), and the maize demand is always increasing due to the
rise in population and socio-economic growth (Shiferaw et al.,
2011). Apart from feed, maize is increasingly used in industries
especially in food processing industry for making additives and
sweeteners (Prasanna, 2018).

Despite the substantial growth rates in terms of cultivated
maize area, production, and productivity in the last few years,
maize in the south and southeast Asia is largely (80%) grown as
a rainfed crop that is prone to the vagaries of monsoon rains,
in addition to a number of biotic and abiotic stresses in this
region (Zaidi et al., 2018). Abiotic stresses like drought, heat, and
waterlogging are the main stresses that have a high impact on
yield loss. Compounded with these, diseases have a huge impact
on grain yield, as observed in most of the countries in Asia. The
most common and economically important diseases in the region
are soil-borne diseases like post-flowering stalk rots (PFSR) and
banded leaf and sheath blight (BLSB) and foliar diseases like
Turcicum leaf blight (TLB), downy mildews (DM), common
rust, and polysora rust. Due to the impact of climate change
effects, maize stalk rots and ear rots are reported to become
more severe and widespread (Prasanna et al., 2021). Stalk rots
in maize are caused by many fungi and bacteria, most of which
occur commonly in the fields and behave opportunistically by
infecting senescing, injured, and stressed plants (Jackson-Ziems
et al., 2014). Stalk rots caused by fungi are Fusarium stalk rot
(FSR), Gibberella stalk rot (GSR), late wilt, Anthracnose stalk rot
(ASR), Diplodia stalk rot (DSR), and charcoal rot (CR).

Macrophomina phaseolina (Tassi) Goid., which causes

charcoal rot of maize, is economically one of the most important
pathogens that have a wide host range, affecting more than 500

species of plants. Microsclerotia of M. phaseolina survive in the

soil, and the infected plant remains serve as a basic source of
infection for the crops. They are ubiquitous under raised soil

temperature and low moisture conditions, and in moisture-less
soil, they can exist for more than 10 months (Khan, 2007).
Charcoal rot symptoms are distinguished by the appearance of a
large number of minute black sclerotia on vascular bundles and
inside the rind of the stalk, resulting in grayish black stalk color.
Symptoms of charcoal rot are observed after plant reproductive
growth, when the fungus spreads into the lower internode of the
stalk causing soft stalk, premature drying of stalk, and lodging of
plants (Khokhar et al., 2014), and hence, the economic impact

of the disease is high. Disease severity is exacerbated by low soil
moisture, and higher soil and air temperature (Smith andWyllie,
1999), which are serious constraints faced under smallholder
farming conditions in climate-vulnerable environments. It is
distributed worldwide in the tropics and subtropics, as well
as in the US northern, central, and southern regions (Wyllie,
1988). It is a serious biotic concern in Asian countries like China,
India, Indonesia, Pakistan, Philippines, Thailand, and Vietnam
(Sharma et al., 1993). Yield loss due to charcoal rot was estimated
to be 25–32.2% in India (Kumar et al., 1996) and recorded
as high as 63.5% in All India Coordinated Research Program
trials (Maize AICRP., 2014). These losses can be avoided by
the deployment of resistant cultivars, as chemical control to
soil-borne diseases has been reported as largely ineffective, and
it increases the cultivation cost of resource-constrained farmers,
apart from having hazardous effects on the environment.

Resistance to CR is shown to be a polygenic trait, with additive
and non-additive gene action, with significant environmental
interaction (Singh and Kaiser, 1991; Krishna et al., 2013,
Mir et al., 2018). Incorporating resistance to diseases like
charcoal rot, which are quantitatively inherited and have
significant environmental interaction, in the breeding schemes
to enhance genetic gains over time, necessitates the use of all
modern breeding tools and strategies. Molecular technologies
are used to accelerate the breeding for disease resistance by the
possibility to expand the size of breeding populations, thereby
increasing selection intensity, without increasing phenotyping
requirements. Genotypic information can be used to select
germplasm at the early stages of selection, and the capability to
increase this phenotypically untested layer will allow the total
number of genotypes within a breeding program to be expanded
(Cooper et al., 2014). Linkage mapping can be used to identify
quantitative trait loci (QTLs), which, in turn, are the tools for
selection of loci of interest in breeding crosses and hence act
as a proxy to the actual trait. Among the different PFSR, QTL
mapping studies have been reported for resistance to stalk rots
like GSR and ASR in maize. Three moderate to major QTLs have
been identified, and one among them has been fine mapped for
resistance to GSR caused by Fusarium graminearum (Yang, 2010;
Zhang et al., 2012; Ma et al., 2017). A major QTL for ASR (caused
by Colletotrichum graminicola) was cloned and found to belong
to a nucleotide-binding site-leucine-rich repeat (NBS-LRR) gene
class on the long arm of chromosome 4 (Jung et al., 1994; Abad
et al., 2006; Broglie et al., 2011). Molecular mapping studies
for charcoal rot resistance in maize have not been reported yet,
which may be attributed to several factors like limited availability
of disease-resistant sources, complex nature of the disease, and
possible co-infection with other stalk rot pathogens under natural
conditions leading to low repeatability in trials. However, QTLs
for resistance to charcoal rot caused by M. phaseolina have
been reported in crops like sorghum (Mahmoud et al., 2018),
soybean (da Silva et al., 2019), and sesame (Wang et al., 2017).
Keeping in view the increasing incidences of charcoal rot of
maize in South Asia and gap in knowledge on the genomic
regions conferring resistance to the trait, we conducted this
study to discover trait markers through genome-wide association
mapping and haplotype analysis using CIMMYTAsia association
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mapping (CAAM) panel. The genomic regions associated with
charcoal rot resistance identified were validated using QTL
mapping in two mapping populations, apart from identifying
population-specific QTLs. Validated regions/markers will be
further studied in breeding populations for possible deployment
in the breeding pipelines.

MATERIALS AND METHODS

Plant Material
A set of 396 lines from the CAAM panel that were developed
and adapted in Asian environments, involving inbred lines with
tolerance to abiotic stresses like drought, high temperature, and
excess moisture, besides quality protein maize (QPM) lines, and
inbred lines derived from downy mildew-resistant populations
in Asia, was used in genome-wide association study (GWAS).
The CAAM panel included lines that are adapted to tropical,
subtropical, lowland, mid-altitude, and highland environments
and was classified into early maturing, intermediate maturing,
and late maturing based on growing degree days (GDD). Most
of the lines had yellow/orange kernel color, with very few lines
had white kernel color (Supplementary Table 1).

Two biparental F2 : 3 families were formed to perform linkage
mapping analysis for the validation of GWAS results. The first
population (MSR) derived from a cross between a charcoal
rot-resistant female parent CML495 and a susceptible male
parent CML474 comprised 190 F2 : 3 families. CML495 is an
elite lowland adapted, late inbred line with white kernel color.
The second population (FMSR) derived from a cross between a
resistant female parentWLS-F36-4-2-2-B-1-B∗9 (now released as
CML578) and a susceptible male parent CML474 comprised 257
F3 families. The common susceptible parent CML474 is an Asia-
lowland adapted early line used as the early generation tester for
heterotic group A.

Phenotypic Evaluation
Screening Sites
The CAAM panel was evaluated under artificial inoculation
conditions for charcoal rot at two hot spot locations: Borlaug
Institute for South Asia (BISA) farm, Ludhiana, Punjab, India

(30◦55
′

N, 75◦54
′

E; 229 masl; 750–800 mm/year rainfall)
during the wet season of 2013 and International Crop Research
Institute for Semi-Arid Tropics (ICRISAT) farm, Hyderabad,
Telangana, India (17.53◦ N; 78.27◦ E.; 545 masl; 784 mm/year
average rainfall) during the dry season of 2013 and 2014. For
linkagemapping, F2 : 3 families of twomapping populations,MSR
and FMSR, were evaluated for charcoal rot at ICRISAT farm,
Hyderabad, during the dry season of 2017 and 2018, respectively.
All disease evaluation trials were planted in alpha lattice design
with two replications of a single row. The row length was 2mwith
a spacing of 0.20m between plant to plant and 0.75m between
row to row. Standard agricultural practices were maintained
throughout the cropping season.

Inoculum Preparation and Inoculation Technique
Toothpick method was followed for artificial inoculation of the
trials (Lal and Singh, 1984). In this method, mass multiplication

of M. phaseolina for artificial inoculation was done on wooden
toothpicks by the method proposed by Jardine and Leslie (1992),
with slight modifications. For inoculum multiplication, wooden
toothpicks were saturated in tap water for 12–15 h followed by
air drying. Dried toothpicks (∼250) were packed in 250ml glass
bottles with 50ml distilled water and were autoclaved at 15
lbs and 121◦C for 15min. After sterilization, excess water was
poured out of the glass bottles and potato dextrose broth (PDB)
was added, followed by autoclaving at the same temperature
and pressure regime. After cooling, freshly subcultured fungi
were inoculated into the bottles under aseptic conditions and
incubated at 25◦C till the toothpicks were covered up with fungal
growth (∼15 days).

At the tassel emergence stage of the plants, colonized
toothpicks were inserted into the stalks. This was attained by
drilling a hole of 4–5 cm at 45◦ angle in the second internode (first
elongated node) with an iron needle having a wooden handle,
where the toothpicks were introduced into the hole.

Disease Scoring
Disease scores were taken after 45–50 days of inoculation by
splitting the stalk of the inoculated plants. Longitudinally divided
stalks were individually scored on disease severity on a 1–9 scale
(Payak and Sharma, 1983), where a score of 1= 25% infection of
the inoculated node; 2 = 26–50% of infection in the inoculated
node; 3 = 51–75% of infection in the inoculated node; 4 = 76–
100% of infection in the inoculated node; 5 = lesser than 50% of
infection in the adjacent node, 6=more than 50% of infection in
the adjacent node; 7 = infection in more than three nodes; 8 =

infection inmore than four nodes; and 9= infection in five nodes
or plant lodging due to disease. Disease scores 1–2 were rated
as highly resistant (HR), 2.1–4 were rated as resistant (R), 4.1–6
were rated as moderately resistant (MR), and >6.1 were rated as
susceptible (S). In each row, at least 10 plants were inoculated,
and each inoculated plant was scored to obtain a mean disease
score for the plot.

Phenotypic Data Analysis
Descriptive statistics like mean, skewness, kurtosis, and genetic
correlation were estimated using Meta-R (Alvarado et al., 2015).
The CR disease data were skewed toward susceptibility in the
CAAM panel. Best linear unbiased prediction (BLUPs) was
obtained using the software Meta−6.0 across year data analysis,
and the single year data were used for GWAS and QTL mapping
analysis, respectively. The linear models are implemented in lmer
from package lme4 of R (R Core Team 2013) using REML to
calculate BLUPs and estimate variance components. Broad-sense
heritability of the combined analysis across years was estimated
as H2

= σ2g /(σ2g + σ2ge/e + σ2e /er), where σ2g, σ2ge, and σ2e are
the genotypic, genotype-by-year interaction, and error variance
components, respectively, and e and r are the number of years
and number of replicates within each year included in the
corresponding analysis, respectively.

DNA Isolation and Genotyping of CAAM Panel
Genomic DNA of the maize lines in the association mapping
panel was isolated from leaves of 3–4-week-old seedlings
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(CIMMYT., 2001). Genotyping of the panel was performed at
the Institute for Genomic Diversity, Cornell University, Ithaca,
NY, USA, for single-nucleotide polymorphism (SNP) using
genotyping by sequencing method (GBS). Genomic DNA was
digested with the restriction enzyme ApeKI. The GBS libraries
were constructed in 96-plex and sequenced in Ilumina HiSeq
2000 (Elshire et al., 2011), and SNP calling was performed using
TASSEL GBS pipeline (Glaubitz et al., 2014), where the GBS
2.7 sequences were used to anchor reads to the Maize B73
RefGen_v2 reference genome (www.maizegdb.org). Imputation
was performed using FILLIN method in TASSEL 5.0, using GBS
2.7 haplotype files from Panzea (www.panzea.org) made from
8,000-site windows, as described in Swarts et al. (2014). The
partially imputed GBS SNP data that had 955,690 genotypic
data points (SNPs) across all the chromosomes were based on
an algorithm that explores the closest neighbor in a small SNP
window across the whole genome, permitting 5% mismatch
(Romay et al., 2013). GWAS was conducted using 296,497 SNPs
that were generated with the filtration criteria of call rate ≥ 0.7
and minor allele frequency (MAF)≥ 0.05.

GWAS and Haplotype Regression
Methods studied for GWAS analysis were naïve model, where
genotypic data were used without correction (G-test); general
linear model (GLM), where genotypic data were corrected for
structure (Q) using 10 principal components (G + Q-test); and
single locus mixed linear model (MLM), where genotypic data
were corrected for both structure and kinship (K) (G+Q+K) to
avoid spurious associations. Additive models were used forG-test
and GLM, and mixed model single locus (EMMAX) (Kang et al.,
2010) was used for MLM for association studies in SVS version
8.6.0 (Golden Helix, Inc., Bozeman, MT, www. goldenhelix.com).
The mixed association mapping model used was Y = SNP∗β +

PC∗α + K ∗µ + ε, where Y = response of the dependent variable
(MSR Score), SNP = SNP marker (fixed effects), PC = principal
component coordinate from the PCA (fixed effects), K = kinship
matrix (random effects), α = vector of PC, β and µ = vectors of
SNP and K, respectively, and ε = the error. A kinship matrix was
estimated from identity-by-state distances matrix as executed in
SVS version 8.6.0, where IBS distance = (no. of markers IBS2)
+ 0.5 × (no. of markers IBS1) no. of non-missing markers,
where IBS1 and IBS2 are the states in which the two inbred lines
share one or two alleles at a marker (Bishop and Williamson,
1990). Linkage disequilibrium (LD) was estimated on adjacent
pairwise r2-values between adjacent SNPs among the SNPs from
the GBS data and physical distances between those SNPs as
described in Rashid et al. (2020). Manhattan and quantile–
quantile plots were created using the association results. P-value
threshold was estimated by using genome-wide LD between SNPs
and the effective number of independent markers. Markers that
were in approximate linkage equilibrium with each other were
determined based on SNP pruning with LD r2 threshold of 0.1
to select a subset of markers representing linkage blocks, and the
suggestive-value threshold to control the genome-wide error rate
was 5.16 × 10−5 (Mao et al., 2015; Cui et al., 2016). SNPs with
P ≤ 0.01 in GWAS of CAAM panel were selected for haplotype
detection and trait regression. Expectation maximization (EM)

algorithm (Excoffier and Slatkin, 1995) with 50 EM iterations,
EM convergence tolerance of 0.0001, and a frequency threshold
of 0.01 were used to estimate haplotype frequency as applied in
SVS version 8.6.0. Block defining algorithm (Gabriel et al., 2002)
was used to identify haplotype blocks to minimize historical
recombination. Regression analysis was carried out with the
haplotype blocks identified on the MSR BLUP values based on
stepwise regression with forward elimination.

Linkage Map Construction and Quantitative Trait Loci

Mapping
Genomic DNA of the F2 : 3 lines of mapping population was
extracted from the 3–4 weeks old seedlings. Markers were
selected across the genome from the Illumina Goldengate assay
for the QTL mapping study, apart from a few GWAS-identified
SNPs. The lines were genotyped with KASP assays developed
from random and GWAS-identified SNP markers at LGC
Genomics, London. Based on parental line polymorphism, MSR
mapping population was genotyped with a set of 125 markers,
and the second population, FMSR, was genotyped with a set of
166 SNPs. Linkage map was constructed using QTL IciMapping
version 3.4 software using the twin criterion of more than 3.0
LOD and a maximum distance of 40 cm between two loci.
The QTLs were identified for BLUPs of the disease score using
inclusive composite interval mapping (ICIM) as implemented in
QTL IciMapping version 3.4. The walking step in QTL scanning
was 1 cm, and a likelihood odds (LOD) threshold of 3.138 and
3.460 was used to declare QTL in MSR and FMSR populations,
respectively, which was based upon 1,000 times permutations
analysis. QTL statistics were also reported for those in which the
LOD score exceeded 2.5. The sign of the additive effect of each
QTL was used to identify the origin of the favorable allele.

RESULTS

Phenotypic Evaluation for Charcoal Rot
Resistance
The CAAM panel consisting of 396 inbred lines was screened
for charcoal rot resistance across three locations/years in India.
The panel showed elevated disease severity, with a maximum
score of 9.00 on a scale of 1.00–9.00 during all 3 years at two
locations. Minimum disease scores of 2.10, 2.00, and 3.77 were
observed at BISA, Ludhiana and Hyderabad, during years 1
and 2, respectively. The average disease score across locations
was 7.21, which was skewed toward susceptibility. Broad-sense
heritability (h2) was moderate to high (0.54–0.67) across single
location with significant genotypic variance (P ≤ 0.001). QTL
mapping population, MSR, evaluated at Hyderabad showed a
trial mean of 5.62, with minimum and maximum disease scores
of 3.76 and 7.79, respectively. The second mapping population,
FMSR, showed an average trial mean of 6.21, with minimum
and maximum scores of 3.42 and 8.90, respectively. Heritability
estimates of MSR and FMSR trials were high, with 0.65 in
MSR and 0.71 in FMSR population (Table 1). The response of
both mapping populations showed continuous distribution for
CR disease severity ranging from disease resistant or tolerant
to susceptible reaction (Supplementary Figure 1). BLUPs were
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TABLE 1 | Summary statistics of CIMMYT Asia association mapping panel evaluated at three environments and two F2 : 3 linkage mapping populations evaluated during

the dry season of 2017 and 2018.

Location/year Mean Min Max Phenotypic variance Error variance Genotypic variance G × E variance Heritability

ICRISAT-13 7.71 2.00 9.00 2.57 1.67 1.73** – 0.67

ICRISAT-14 7.17 3.77 9.00 1.46 1.35 0.79** – 0.54

BISA-13 6.71 2.10 9.00 1.23 1.01 0.73** – 0.59

Across 7.25 4.51 9.00 0.73 1.89 0.41** 0.00016** 0.57

MSR-MP 5.62 3.76 7.79 0.59 0.42 0.38** – 0.65

FMSR-MP 6.21 3.42 8.90 0.84 0.49 0.60** – 0.71

**P < 0.001.

FIGURE 1 | (A) Inflation depicted by Q–Q plots of observed vs. expected –log10 (P-values) plots for charcoal rot using the naïve association model (G-test), GLM (G +

Q), and MLM (G + Q + K); G = genotype (fixed), Q = 10 principal components (fixed), K = kinship matrix (random) for CAAM panel. (B) Highly significant SNPs

identified from MLM model using Manhattan plot, plotted with the individual SNPs on the X-axis and –log10 P-value of each SNP on the Y-axis. The horizontal line

showed the cutoff P-value, and the vertical line represents the identified QTLs and haplotype blocks in these regions for charcoal resistance.

estimated to further conduct GWAS for charcoal rot resistance
in association mapping panel and linkage mapping analysis.

GWAS for Resistance to Charcoal Rot
From high density imputed 955K GBS genotypic data, a subset
of 296,497 SNPs fulfilling the criteria of call rate ≥0.7 and MAF
≥ 0.05 was used for conducting GWAS analysis. The quantile–
quantile (QQ) plot with observed against expected –log10 P-value
revealed that highest genomic inflation was observed in Naïve
or G-test association model, followed by general linear model
(GLM) or G+Q model, where genomic inflation was controlled
with population structure using first 10 principal components

(PCs). However, mixed linear model (MLM) or G+Q+Kmodel
corrected for both population structure (Q) and kinship (K)
sighted minimum genomic inflation as noticed in the QQ plots
(Figure 1). Therefore, highly significant associations for charcoal
rot resistance in the CAAM panel were determined based on
MLM analysis. The narrow-sense heritability for charcoal rot
resistance due to the associated SNPs was found to be 0.53. The
total number of SNPs identified to be linked with charcoal rot
resistance was 19 with P-value ranging from 5.88× 10−06 to 4.80
× 10−05 (Figure 1). The most significant association detected
for resistance to charcoal rot was with SNP S5_48504604 on
chromosome 5, which showed the lowest P-value, followed by
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SNP S10_117560618 on chromosome 10. Among the 19 SNPs
detected, groups of SNPs located at close physical co-ordinates
were found on chromosome 5 (S5_19528704, S5_19528705),
chromosome 6 (S6_103513337 and S6_103513378), and
chromosome 8 (S8_165726551, S8_165726553, S8_165726556,
and S8_165726574) (Table 2). Based on the physical position
of the significant SNPs with respect to B73 version 2 of the
reference genome (http://ensembl.gramene.org/Zea_mays), the
significant SNPs identified in GWAS were associated with 12
genes, several of which had functional domains involved in
resistance to biotic stresses.

Haplotype Detection and Regression
Analysis
Two hundred and eighty-nine SNPs (with P ≤ 10−3) that were
identified in GWAS analysis were used to construct 44 haplotype
blocks across 10 chromosomes, which were used in haplotype
regression (HTR) analysis on estimated BLUP values. HTR
analysis identified 21 haplotypes with Bonferroni P≤ 0.05, which
explained 3.22–6.48% of phenotypic variance. Haplotype blocks
for charcoal rot resistance were identified on chromosomes 1,
2, 3, 5, 6, 8, and 9, formed with 2–8 SNPs (Table 3). Hap_8.1
on chromosome 8 formed by two SNPs, S8_151908973 and
S8_151908983, showed the highest significance (Bonferroni P-
value 7.73 × 10−05), followed by the Hap_5.2 on chromosome
5 (P-value 5.11 × 10−06 and Bonferroni P-value 2.24 × 10−04)
(Table 3).

Linkage Mapping for Charcoal Resistance
Two biparental mapping populations phenotyped for charcoal
rot at Hyderabad, India, were used for QTL mapping and
validation of the genomic regions identified through GWAS and
HTR analysis. By genotyping the MSR and FMSR populations
with 125 and 166 markers, respectively, linkage maps were
constructed. The average marker densities for MSR and FMSR
populations were 7.09 and 5.59 cm, respectively, across the 10
chromosomes. Inclusive composite interval mapping in MSR
mapping population identified two QTLs on chromosomes 6 and
8 (Figure 2), and two other QTLs were detected on chromosomes
3 and 4 at the lower default LOD threshold of 2.5. QTL qMSR8
on chromosome bin 8.06–07 betweenmarkers PZA01964_29 and
PHM4757_14 had the largest effect, which explained 13.86% of
the phenotypic variation. Resistant alleles were contributed by
the resistant parent CML495 for all the QTLs identified in MSR
population. In the FMSR mapping population, no QTLs were
detected at the LOD threshold of 3.460, and two QTLs were
identified on chromosomes 6 and 7 (Figure 2) at a lower default
threshold of 2.5. QTL qFMSR6 on chromosome bin 6.03–04
between the markers PZA01029_1 and S6_103513510 showed
the largest effect explaining 6.56% of the phenotypic variance
(Table 4). For the two QTLs, resistant alleles were contributed
by the resistant parent (WLS-F36-4-2-2-B-1-B∗9). QTLs qMSR6
and qFMSR6, identified on chromosome 6, were found to be
overlapping based on the physical coordinates, and this region
was identified in both GWAS and HTR analysis also. QTLs
detected in the two mapping populations predominantly showed

dominant effects; however, two QTLs detected in MSR mapping
population showed additive effects for charcoal rot resistance.

DISCUSSION

Post-flowering stalk rots are complex diseases, due to collective
infection with multiple soil-borne pathogens, intensified by
abiotic stresses like drought and further compounded by
secondary infections. Charcoal rot, caused by soil-borne
pathogen M. phaseolina, is an important component of the
PFSRs and its management methods include cultural practices,
fungicide application, biological control, and resistant varieties.
A comprehensive understanding of the host plant resistance
is necessary to develop and deploy elite, stress-resistant
varieties with little yield reduction in the presence of biotic
stresses. As there are no reported studies on resistance to
charcoal rot resistance in maize, we undertook this study to
discover and validate genomic regions controlling this trait. A
GWAS was conducted using a mapping panel that included
tropical/subtropical inbred lines from CIMMYT breeding
programs in Asia, Mexico, Kenya, Zimbabwe, and Colombia that
are also acclimatized to the Asian tropics. The CAAM panel
was previously used to study traits like resistance to sorghum
downy mildew (Rashid et al., 2018), northern leaf corn blight
(Rashid et al., 2020), and root traits under drought conditions
(Zaidi et al., 2016) in Asian environments. Phenotypic evaluation
of CAAM panel for charcoal rot at Hyderabad and Ludhiana,
revealed that the panel was skewed toward susceptibility, possibly
because both these locations had ideal environment for pathogen
infection and spread, and the artificial inoculation using the
toothpick method reduced the chances of escapes. The toothpick
method has been widely used for artificial inoculation of stalk
rots due to its simplicity and low cost (Tesso et al., 2009). In this
study, we used linkage mapping apart from GWAS to study the
genomic regions conferring resistance to charcoal rot. The high
disease score mean in the AM panel compared with the mapping
populations showed that the allele frequency of the resistant
alleles might be lesser in the AM panel, whereas in the mapping
populations such alleles contributed by the resistant parents were
segregating in the populations, and hence higher allele frequency
and lesser disease incidence.

Linkage mapping targets genetic recombination generated in
artificially controlled crosses and offers huge advantages in terms
of QTL detection power. However, it has the disadvantages of low
mapping resolution, allele sampling, and speed. Unlike linkage
mapping, GWAS makes use of the ancestral recombination
events in a natural population to analyze marker-phenotype
relations (Rafalski, 2002). It has the advantage of increased
mapping resolution and speed but could have a lesser power
of mapping (Korte and Farlow, 2013). Whereas, QTL mapping
in biparental populations segregating for the relevant alleles at
the associated/linked locus may be used in the validation of
trait association (Rafalski, 2010), it also identifies novel QTLs
not identified in GWAS, if the alleles are rare in the AM panel
and/or the allelic phase differs across population structure groups
(Famoso et al., 2011). To complement the GWAS analysis carried
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TABLE 2 | Significantly associated single-nucleotide polymorphisms (SNPs) along with the predicted gene model and their function detected by genome-wide

association studies in CIMMYT association mapping panel for charcoal rot resistance.

Marker Ch P-Value PVE% Favorable

allele

Predicted gene

model

Gene name/best

matching

ortholog

Plants Reported

function

References

S5_48504604 5 5.88 × 10−06 5.63 G – – – –

S10_117560618 10 1.12 × 10−05 5.3 A GRMZM2G072513 OSJNBa0088K19.7-

like

protein

Rice –

S10_144684808 10 1.29 × 10−05 5.22 G GRMZM2G136895 Zea mays

Beta-D-xylosidase

4

Arabidopsis, other

plants

Cell wall

modification, fruit

development

Itai et al., 2003;

Minic et al., 2004;

Liao et al., 2012

S9_1994787 9 1.44 × 10−05 5.17 G GRMZM2G500051 – – –

S8_165726556 8 1.68 × 10−05 5.09 C GRMZM2G414696 – – –

S10_115937334 10 1.97 × 10−05 5.01 A GRMZM2G050647 Exocyst complex

component SEC5

Arabidopsis, other

plants

Plant-pathogen

interaction

Du et al., 2018

S5_19528704 5 2.11 × 10−05 4.97 G GRMZM2G178767 Zea mays Dof

zinc-finger protein

DOF5.7

Plants Abiotic stress,

biotic stress

Sakamoto et al.,

2004; Guo et al.,

2009

S5_19528705 5 2.19 × 10−05 4.95 A

S4_167190764 4 2.37 × 10−05 4.92 A GRMZM2G168337 Zea mays

Nicastrin

Arabidopsis, maize Promotes

maturation and

proper trafficking

of complex

components and

substrate

recognition, biotic

stress

Wang et al., 2012;

Smolarkiewicz

et al., 2014

S8_165726551 8 2.38 × 10−05 4.91 C GRMZM2G414696 – – – –

S1_52605386 1 2.85 × 10−05 4.82 T – – – – –

S1_200489143 1 2.90 × 10−05 4.81 T GRMZM2G557453 – – – –

S6_163106367 6 3.07 × 10−05 4.78 A AC206312.3_FGT008 – – – –

S8_165726574 8 3.98 × 10−05 4.65 A GRMZM2G414696 – – – –

S3_2125663 3 4.31 × 10−05 4.61 T GRMZM2G170047 Zea mays

Cytochrome P450

71A26

Maize, wheat,

barley

Oxidation-

reduction reaction,

defense

mechanism,

secondary

metabolite

synthesis,

Fusarium head

blight

Morant et al.,

2003; Irmisch

et al., 2015;

Gunupuru et al.,

2018

S7_156114994 7 4.34 × 10−05 4.61 G GRMZM2G465999 Zea mays G-type

lectin

S-receptor-like

serine/threonine-

protein kinase

B120

Plants Biotic and abiotic

stress tolerance,

plant defense

Lannoo and Van

Damme, 2014

S6_103513378 6 4.62 × 10−05 4.57 C GRMZM2G122172 Aldehyde

dehydrogenase

family 2 member

C4

Plants Abiotic and biotic

stresses tolerance

Wen et al., 2012;

Brocker et al.,

2013

S6_103513337 6 4.73 × 10−05 4.56 A

S8_165726553 8 4.80 × 10−05 4.55 A GRMZM2G414696 – – –

Ch, chromosome, PVE, Phenotypic varinace explained.
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TABLE 3 | Significant haplotypes identified in the CAAM panel for resistance to charcoal rot using haplotype regression.

Haplotype

block

Ch Markers P-Value PVE% Bonferroni P-value FDR Favorable alleles

Hap_1.1 1 S1_228148457, S1_228148501,

S1_228148728, S1_228148775

0.000394055 4.4725128 0.017338434 0.001238 TCGG

Hap_1.2 S1_245219474, S1_245219477,

S1_245221215, S1_245221351,

S1_245221353, S1_245221363

0.000434489 4.14338 0.019117509 0.001275 CCCAAG

Hap_1.3 S1_259778254, S1_259778269 3.49E-05 4.6908192 0.001537657 0.000384 CG

Hap_1.4 S1_268948971, S1_268948972,

S1_268948974, S1_268948981

0.000289605 4.3917062 0.012742613 0.001274 ATCC

Hap_1.5 S1_290819006, S1_290819008 8.31E-06 5.8851488 0.000365777 0.000122 GA

Hap_2.1 2 S2_212365693, S2_212365694 0.000543506 3.8516348 0.023914282 0.001407 AG

Hap_3.1 3 S3_148298879, S3_148298896,

S3_148298906, S3_148299049

0.000180157 4.3758201 0.007926917 0.000991 GCCG

Hap_3.2 S3_168367332, S3_168367335,

S3_168367337

0.00053713 3.7499107 0.02363372 0.001477 CGG

Hap_3.3 S3_202114642, S3_202114644 0.000666384 3.2229271 0.029320889 0.001466 GC

Hap_3.4 S3_220734668, S3_220734677 0.000547048 3.3326993 0.024070091 0.001337 CA

Hap_5.1 5 S5_19528704, S5_19528705,

S5_19590454

4.59E-05 6.3666231 0.002019445 0.000404 CCA

Hap_5.2 S5_68423958, S5_68423980 5.11E-06 5.8413714 0.000224844 0.000112 CG

Hap_5.3 S5_194559998, S5_194560001,

S5_194560045, S5_194560047,

S5_194560048

0.001015383 3.2534765 0.044676862 0.002127 AATTA

Hap_6.1 6 S6_95934506, S6_95934536 0.000332882 3.5967653 0.014646826 0.001127 GT

Hap_6.2 S6_103513337, S6_103513340,

S6_103513378, S6_103513510

0.00017213 4.3611641 0.00757371 0.001082 CGGG

Hap_8.1 8 S8_151908973, S8_151908983 1.76E-06 6.4890618 7.73E-05 7.73E-05 GT

Hap_8.2 S8_161523161, S8_161523199,

S8_161523202, S8_161523204,

S8_161523205, S8_161523207,

S8_161523208, S8_161523210

0.000271353 4.1801244 0.011939511 0.001327 GACTCTCT

Hap_9.1 9 S9_24597525, S9_24597528,

S9_24597531, S9_24597534

4.96E-05 4.5259142 0.002180251 0.000363 CTTG

Hap_9.2 S9_34173064, S9_34173069,

S9_34173103

0.000311075 4.3479104 0.013687318 0.001141 GGC

Hap_9.3 S9_137258399, S9_137258400,

S9_137258402

0.00057319 3.4234421 0.025220351 0.001327 GTG

Hap_9.4 S9_137258446, S9_137258482 0.000291508 4.0121756 0.012826349 0.001166 TA

Ch, chromosome, PVE, Phenotypic varinace explained, FDR, False discovery rate.

out in the Asia-adapted AM panel, two mapping populations,
MSR and FMSR, with a common susceptible parent were used
for linkage mapping to identify novel QTLs and for the validation
of detected marker associations. A common susceptible early
maturing parent, CML474, was used in both the mapping
populations because it is highly susceptible to this disease and is
being used as a tester for early maturity heterotic pool A. Markers
spread across the genome were used for the QTL mapping study,
along with some GWAS-identified SNP-based markers. There
was no prior information on the status of the QTLs present
in either of the parents. We conducted inclusive composite
interval mapping to detect trait QTLs that were contributed
by either of the parents. The QTLs identified that were co-
located with the SNPs identified in GWAS were considered as
validated in independent studies. The GWAS-SNPs that were

not co-located within QTL intervals were not considered as
unvalidated, as they might just not be segregating in the parental
combinations studied.

Two QTLs were detected with PVE ranging from 5.65 to
13.86% in one of the populations. Apart from these, three QTLs
were detected at a lower threshold from the two populations.
The results indicated that phenotypic variation for charcoal rot
resistance in the two populations was explained largely by minor
to moderate effect alleles. This is in accordance with QTL studies
of a number of complex traits in maize. Out of the two QTLs
identified in MSR populations, qMSR6 was found to overlap,
based on physical co-ordinates, with qFMSR6, a minor QTL
identified at a lower threshold of 2.5 in the FMSR population.
This assumes immense significance as it is not very common to
observe stable QTLs for complex traits contributed by unrelated
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FIGURE 2 | Plot of LOD scores from quantitative trait loci (QTL) analysis for charcoal rot resistance across 10 maize chromosomes in two F2: 3 biparental

populations, (A) MSR and (B) FMSR. MSR and FMSR populations were evaluated under artificial inoculation conditions by Macrophomina phaseolina. The horizontal

line represents the threshold LOD value of 2.5.

parental lines in different experiments. Among the genomic
regions identified in GWAS, two SNPs on chromosome 6.03
(S6_103513337, S6_103513378) co-located with these QTLs were
detected in linkage mapping. The trait-associated SNPs were
located in the gene GRMZM2G122172, having the functional
domain of aldehyde dehydrogenase (ALDH) family 2 member
C4 (Carbon 4). Studies showed that ALDH upregulation is a
common target of stress response pathway activation in plants,
where ALDH responds to abiotic stresses leading to altered
expression under exposure to stresses like drought (Bartels and
Sunkar, 2005, Kotchoni et al., 2006). This function implies
direct significance under charcoal rot infection, as the disease
severity is directly related to drought stress. Also, studies have
shown that ALDH gene from Chinese wild grapevine enhanced
resistance to mildew pathogens and salt stress in Arabidopsis
(Wen et al., 2012). Thus, this region can be considered as a region
of interest for charcoal resistance and calls for further studies on
dissection of the QTL and possible use in breeding populations.
Another haplotype block, Hap_6.1 located at 95.93Mb, was also
identified within the QTL interval of qMSR6 identified in MSR
mapping population.

On chromosome bin 8.06, four SNPs, S8_165726556,
S8_165726551, S8_165726574, and S8_165726553, were
identified, which co-located with the largest QTL identified in
this study, qMSR8, located in the physical interval of 151.45
to 166.98Mb on chromosome 8. Haplotype regression analysis
identified two significant haplotypes (Hap_8.1 and Hap_8.2)
for this trait within this QTL interval. In published studies on
resistance to GSR, a major QTL Rgsr8.1 was also fine mapped
to 2.04Mb interval between 164.69 and 166.72Mb, with two
candidate resistant genes, one of which was an auxin-responsive
element and the other encoding a disease resistance protein
(Chen et al., 2017). Also, co-incident with Hap_8.1, Ma et al.
(2017) identified a QTL for resistance to GSR at physical position
between 146.4 and 158.9Mb. It is interesting to note that our

study identified and validated a genomic region contributing for
resistance to charcoal rot, which also houses QTLs for resistance
to another stalk rot pathogen, Fusarium graminearum, causing
GSR. Apart from this, chromosomal bin 8.05–8.06 is known
to harbor genes for resistance to multiple biotic stresses and is
considered as one of the “complex, important and interesting”
genomic regions in terms of maize disease resistance (Chung
et al., 2010). Similar to this region on chromosome 8, trait-
associated SNPs were identified on other chromosomes too that
were located within previously mapped QTL intervals for GSR.
Hap_3.4 was located within the QTL interval of minor QTL
qMSR3 on chromosomal bin 3.09 at 220.73Mb, where Ma et al.
(2017) identified a QTL between 217.9 and 225.6Mb for GSR
resistance. In the same study, a major QTL qRfg3, at a physical
position of 176.8–209.9Mb, was detected across three field trials
on chromosome bin 3.6/07 explaining 10.7–19.4% phenotypic
variance for GSR resistance. The haplotype regression analysis
for charcoal rot in this study identified Hap_ 3.3 on chromosome
bin 3.07 at a physical position of 202.11Mb, which fell within the
QTL interval of QTL qRfg3. Ma et al. (2017) also identified a QTL
on chromosome 5 between 49.9 and 152.0Mb for GSR resistance,
which also housed Hap_5.2 located at a physical co-ordinate of
68.42Mb in this study. Further studies on gene characterization
at these loci for both these diseases will be required to understand
if common resistance mechanisms operate toward resistance to
multiple stalk rot pathogens.

Several significant trait-associated SNPs identified in the
GWAS were located within genes with functional domains
related to biotic and abiotic stress tolerance, immune response,
metabolism, plant development, and maturity (Table 2). Two
SNPs, S5_19528704 and S5_19528705 identified for charcoal
resistance and located in the same chromosomal bin as a QTL
identified for GSR resistance on chromosome 5.02-5.04 (Pè et al.,
1993) were located within the predicted gene GRMZM2G178767
that codes for a Zea mays Dof zinc-finger protein DOF5.7, which
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is implicated in abiotic and biotic stress tolerance in plants (Guo
et al., 2009, Sakamoto et al., 2004). Zinc-finger domain is present
in a well-known class of plant-resistant proteins, NBS-LRR,
that are involved in effector-triggered immune response (Gupta
et al., 2012). Zinc-finger-based WRKY transcription factor (TF)
plays a broad and pivotal role in plant immune responses
(Eulgem et al., 2007). Another significant SNP, S3_2125663, was
located in the gene GRMZM2G170047 that potentially codes for
cytochrome P450, which is known to boost disease resistance.
Cytochrome P450s are membrane-bound enzymes that can
accomplish oxidation–reduction reactions (Morant et al., 2003)
and are involved in plant defense and secondary metabolite
synthesis in classical xenobiotic detoxification pathway (Schuler
and Werck-Reichhart, 2003). It was also reported to play a major
role in resistance to Fusarium head blight disease caused by
Fusarium graminearum in wheat (Walter et al., 2008; Walter and
Doohan, 2011). Similarly, the gene GRMZM2G168337, which
houses SNP S4_167190764, was implicated in the synthesis of
Nicastrin, which was found to be upregulated in maize after
inoculation with southern corn rust (Wang et al., 2012). A
gene where a charcoal rot-associated SNP S7_156114994 was
located is GRMZM2G465999, which is a type of lectin S-receptor-
like serine/threonine-protein kinase. Plant kinases constitute a
diverse protein superfamily, which is capable of recognizing
and interacting with specific carbohydrate structures either from
invading microorganisms or deformed plant cell wall structures,
and plant lectin motifs are used constantly to combat against
pathogens and predators during plant defense (Lannoo and
Van Damme, 2014). Gene GRMZM2G050647 associated with
SNP S10_115937334 codes for exocyst complex component
SEC5, which plays a role in plant–pathogen interaction.
Exocyst complex is a conserved multiprotein complex that
has eight subunits that are used in pathogen defense against
hemi-biotrophic pathogens like Phytophthora infestans and
Pseudomonas syringae, and some exocyst subunits can act as
a susceptibility factor for necrotrophic pathogens like Botrytis
cinerea. (Du et al., 2018). InArabidopsis, Exo70Bmutants showed
lesion-mimic cell death mediated by salicylic acid accumulation
(Kulich et al., 2013).

CONCLUSION

The genetic architecture of charcoal rot resistance was dissected
through association and linkage mapping. Nineteen SNPs were
found to be highly significant for charcoal rot resistance inGWAS
analysis, and haplotype regression identified 21 haplotypes, of
which Hap_8.1 at 151.90Mb on chromosome 8 was shown
to have the most significant effect on the trait. Inclusive
composite interval mapping in two F2 : 3 mapping populations
detected QTLs on chromosomes 6 and 8 with PVE ranging
from 5.65 to 13.86%. QTLs on chromosome bin 6.03, with a
flanking marker at 103.51Mb, were detected in both the linkage
mapping populations, albeit at a lower threshold in one of
the populations. SNPs/haplotypes in this QTL interval were
identified in the GWAS and haplotype regression studies also.
Similarly, the SNPs and haplotype detected on chromosome 8
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were also validated in QTL mapping in one mapping population.
These haplotypes on chromosomes 6 and 8 can be further
analyzed in breeding populations for the possible deployment
of trait markers for charcoal rot resistance. Several significant
SNPs and haplotypes identified in this study were found to be
located within published QTL intervals for GSR resistance. To
our understanding, this study is the first report for mapping
and validating genomic regions for charcoal rot resistance
in maize.
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an Excellent Quantitative Trait Loci 
Conferring Adult-Plant Resistance to 
Stripe Rust in Chinese Wheat 
Landrace Gaoxianguangtoumai
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Luyao Duan 1, Yu Wu 1, Hao Li 1, Wei Li 3, Qiantao Jiang 1,2, Yuming Wei 1,2, Jian Ma 1, 
Pengfei Qi 1, Mei Deng 1, Youliang Zheng 1,2, Houyang Kang 1,2*, Yunfeng Jiang 1*  and 
Guoyue Chen 1,2*
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Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China, 3 College of 
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The Chinese wheat landrace “Gaoxianguangtoumai” (GX) has exhibited a high level of 
adult-plant resistance (APR) to stripe rust in the field for more than a decade. To reveal 
the genetic background for APR to stripe rust in GX, a set of 249 F6:8 (F6, F7, and F8) 
recombinant inbred lines (RILs) was developed from a cross between GX and the 
susceptible cultivar “Taichung 29.” The parents and RILs were evaluated for disease 
severity at the adult-plant stage in the field by artificial inoculation with the currently 
predominant Chinese Puccinia striiformis f. sp. tritici races during three cropping seasons 
and genotyped using the Wheat 55 K single-nucleotide polymorphism (SNP) array to 
construct a genetic map with 1,871 SNP markers finally. Two stable APR quantitative trait 
loci (QTL), QYr.GX-2AS and QYr.GX-7DS in GX, were detected on chromosomes 2AS 
and 7DS, which explained 15.5–27.0% and 11.5–13.5% of the total phenotypic variation, 
respectively. Compared with published Yr genes and QTL, QYr.GX-7DS and Yr18 may 
be the same, whereas QYr.GX-2AS is likely to be novel. Haplotype analysis revealed that 
QYr.GX-2AS is likely to be rare which presents in 5.3% of the 325 surveyed Chinese wheat 
landraces. By analyzing a heterogeneous inbred family (HIF) population from a residual 
heterozygous plant in an F8 generation of RIL, QYr.GX-2AS was further flanked by 
KP2A_36.85 and KP2A_38.22 with a physical distance of about 1.37 Mb and co-segregated 
with the KP2A_37.09. Furthermore, three tightly linked Kompetitive allele-specific PCR 
(KASP) markers were highly polymorphic among 109 Chinese wheat cultivars. The results 
of this study can be used in wheat breeding for improving resistance to stripe rust.

Keywords: adult-plant resistance, QTL, stripe rust, Chinese wheat landrace, genetic mapping, heterogeneous 
inbred family
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INTRODUCTION

Stripe rust (yellow rust), caused by Puccinia striiformis f. sp. 
tritici (Pst), is among the most harmful and widespread obligate 
pathogens of common wheat (Triticum aestivum L.) worldwide 
(Knott, 1989; Wellings, 2011). In China, stripe rust prevailed 
for several times in large wheat-growing areas and this caused 
serious yield losses (Zeng and Luo, 2006; Chen et  al., 2014; 
Han and Kang, 2018). Since the 1950s, four severe epidemics 
of wheat stripe rust have occurred in China in 1950, 1964, 
1990, and 2002, resulting in yield losses of 6.0, 3.2, 1.8, and 
1.4 million tonnes, respectively (Li and Zeng, 2000; Wan et al., 
2004). The main cause of the outbreaks is the emergence of 
new virulent races that overcome the widely deployed resistance 
genes (Chen and Kang, 2017). At present, new virulent Pst 
race CYR34 appears and overcomes the widely deployed Yr 
genes. In the meantime, the simplification of Yr genes in 
commercial wheat cultivars have not changed yet though a 
lot of cultivars are used in wheat production. The most efficient 
and economical method of controlling the disease is the use 
of genetic resistance (Liu et  al., 2017; Wang et  al., 2019). 
Continuous improvement in the resistance of wheat cultivars 
to cope with evolving races of Pst is a high priority to control 
stripe rust (Manickavelu et  al., 2016).

To date, more than 300 genes or quantitative trait loci (QTL) 
for stripe rust resistance on the 21 wheat chromosomes have 
been reported (Rosewarne et  al., 2013; McIntosh et  al., 2019). 
In general, these resistance genes and QTL can be  classified 
into two major classes: all-stage resistance (ASR) and adult-
plant resistance (APR). ASR usually confers complete resistance 
during all growth stages and is simple to select during breeding. 
However, most ASR genes are race specific and encode nucleotide-
binding and leucine-rich repeat (NLR) proteins, and therefore 
are effective against only a subset of Pst races. With regard 
to the dynamic rust pathogen populations of the virulent races, 
only a small number of the characterized ASR genes, such as 
Yr5 (Marchal et  al., 2018) and Yr15 (Klymiuk et  al., 2018), 
are still widely effective against currently dominant Pst race 
groups in China (Sharma-Poudyal et al., 2013; Wu et al., 2018).

In contrast, APR is effective starting at adult-plant growth 
stages and typically provides a degree of partial resistance. 
Although a few APR genes are race-specific (Milus et al., 2015), 
a greater proportion of APR genes including Yr18 (Krattinger 
et  al., 2009), Yr29 (William et  al., 2003), Yr30 (Hayden et  al., 
2004), and Yr46 (Moore et  al., 2015) is non-race-specific and 
provides durable resistance to Pst. Of the three APR genes 
cloned to date, Yr18 encodes a putative ATP-binding cassette 
transporter (Krattinger et  al., 2009), Yr36 encodes a kinase 
domain and a lipid-binding domain (Fu et  al., 2009), and 
Yr46 encodes a predicted hexose transporter (Moore et  al., 
2015). These genes represent different protein families compared 
with classical ASR genes (the NLR family) and provide unique 
mechanisms effective against a broader range of pathogens. 
As an example, Yr18 has been globally used as a component 
of durable rust resistance in breeding programs and no evolution 
of increased virulence has been observed for almost 100 years 
(Krattinger et  al., 2009). To achieve a high degree of durable 

resistance, combining multiple APR genes into the same 
background has been considered as an important strategy for 
improvement of stripe rust resistance in wheat breeding.

Chinese wheat landraces are farmer-developed and maintained 
as traditional cultivars in China. These landraces harbor rich 
genetic diversity for stripe rust resistance. Numerous stripe 
rust genes or QTL have been identified, such as Yr1 (Bansal 
et al., 2009), Yr18 (Krattinger et al., 2009), Yr81 (Gessese et al., 
2019), YrYL (Wu et  al., 2016a), YrBai (Ma et  al., 2015), Yrqbc 
(Cao et al., 2020), QYr.caas-5AL (Lan et al., 2010), QYr.cau-6DL 
(Zhang et  al., 2017), QYr.cau-2AL (Wang et  al., 2019a), QYr.
GTM-5DL (Wu et  al., 2020), and QYr.AYH-5BL (Long et  al., 
2021). Recently, our research program evaluated more than 
1,000 Chinese wheat landrace accessions collected from all 10 
agro-ecological zones (Zhou et al., 2017) for responses to stripe 
rust in the greenhouse and the field under inoculation with 
selected Chinese predominant races of Pst (Cheng et  al., 2019; 
Long et  al., 2019; Yao et  al., 2019, 2020; Ye et  al., 2019; Wang 
et  al., 2021). Many resistant accessions of Chinese wheat 
landraces continually display APR to stripe rust in the field, 
providing a novel resistance resource for the breeding of wheat 
cultivars with durable resistance to stripe rust. Therefore, it is 
necessary and important to identify and develop new durable 
high-level APR resistance genes against stripe rust.

Gaoxianguangtoumai (GX) is a spring wheat landrace from 
Sichuan Province in southwest China, which is a regional center 
for oversummering and overwintering of the stripe rust pathogen. 
This landrace has exhibited a high degree of APR to stripe 
rust in the field for more than a decade, but little information 
is available on the genetic basis of resistance in this landrace. 
The objectives of the present study were to (1) identify the 
QTL conferring APR to stripe rust in a recombinant inbred 
line (RIL) population developed from the cross between GX 
and a susceptible cultivar, “Taichung 29” (TC 29, 2) validate 
and mendelize the novel QTL in a heterogeneous inbred family 
(HIF) population, and (3) develop tightly linked Kompetitive 
allele-specific PCR (KASP) markers for use in marker-assisted 
selection in breeding programs.

MATERIALS AND METHODS

Plant Materials and Races
The Chinese wheat landrace GX (accession number ZM7854 in 
National Germplasm Bank, China (NGBC) and AS1579  in 
Triticeae Research Institute, Sichuan Agricultural University) 
originating from Gao County, a county of Sichuan Province 
(28°26′N, 104°31′E). Because of high level of resistance to 
stripe rust for more than a decade, GX was crossed (as the 
female parent) with the highly stripe rust susceptible wheat 
cultivar TC 29. In total, 249 F6:8 (F6, F7, and F8) RILs derived 
from an individual F1 plant were developed by single-seed 
descent. A KASP marker, KP2A_36.85 which was located around 
the peak of QYr.GX-2AS, was used to identify heterozygous 
lines from an F8 generation of RIL. Through a single heterozygous 
plant was selected and selfed (Tuinstra et  al., 1997), a HIF 
population of 130 individuals was generated for validating the 
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QYr.GX-2AS. The scheme for developing the genetic populations 
was showed in Supplementary Figure S1. A collection of 325 
Chinese wheat landraces was genotyped with the 55 K single-
nucleotide polymorphism (SNP) array and further was used 
for marker haplotype analysis (Zhou et  al., 2017). A panel of 
109 Sichuan wheat cultivars was used to determine the 
polymorphism of markers tightly linked with QYr.GX-2AS. The 
highly stripe rust susceptible wheat cultivars “Mingxian 169,” 
“SY95-71,” and “Avocet S” (AvS) were used as susceptible 
controls in seedling and adult-plant tests throughout the study. 
Here, SY95-71 is a spring wheat line, selected from hexaploid 
triticale/wheat followed by backcrossing with wheat (Eronga 
83/Fan6∥Fan6; Shu et  al., 1999). The line has been widely 
used in China as a highly susceptible stripe rust spreader 
genotype or susceptible control. The Pst races (comprising 
CYR32, CYR33, CYR34, G22-14, Su11-4, Su11-5, and Su11-7; 
Wu et  al., 2016b; Huang et  al., 2018) were kindly provided 
by the Plant Protection Institute of the Gansu Academy of 
Agricultural Sciences, Gansu, China.

Evaluation of Resistance to Stripe Rust
Seedling tests to evaluate the stripe rust resistance of GX and 
TC 29 were conducted in a greenhouse using two prevalent 
Chinese Pst races (CYR32 and CYR34). Five plants of each 
line were sown in a plastic pot filled with nutrient soil and 
grown in a controlled environment in the greenhouse. Seedlings 
were inoculated at the two-leaf stage with each Pst race in 
accordance with the protocol of Hickey et al. (2012). Inoculated 
plants were placed in a dew chamber at 10°C and 100% relative 
humidity for 24 h in the dark, and then moved to separate 
growth chambers at 15–16°C with 12–14 h of light daily. When 
the susceptible control “Mingxian 169” showed full sporulation, 
the infection type (IT) on the second leaf (approximately 
15–18 days after inoculation) was scored using a 0–9 scale 
(Line and Qayoum, 1992). Plants with IT scores of 1 to 6 
were considered resistant, whereas plants with IT scores of 
7–9 were considered susceptible.

Assessments of adult-plant stripe rust responses were 
conducted at the Chongzhou Experimental Station (30°33′N, 
103°39′E), Sichuan Agricultural University, Chengdu, China. 
The F6:8 RILs population and the parental lines were evaluated 
for APR to stripe rust during the 2017–2018, 2018–2019, and 
2019–2020 growing seasons (referred to as CZ2018, CZ2019, 
and CZ2020, respectively). The HIF population of 130 individuals 
was evaluated for APR to stripe rust during the 2020–2021. 
The phenotype data of HIF population were used for Chi-Squared 
analysis (3:1 ratio) and genetic mapping. In all tests, 20 seeds 
of each line were planted in rows 2 m in length and spaced 
30 cm apart, with individual plants spaced 10 cm apart. The 
susceptible cultivar TC 29 was planted in every 20th row as 
a susceptible control. To provide inoculum for infection, the 
susceptible cultivars SY95-71 and AvS were planted around 
the perimeter of the experimental area as spreaders. Artificial 
inoculation was conducted using a mixture of currently 
predominant Pst races in China (comprising CYR32, CYR33, 
CYR34, G22-14, Su11-4, Su11-5, and Su11-7). Stripe rust 

response was first recorded by scoring the IT and disease 
severity (DS) when the susceptible checks SY95-71 and AvS 
showed more than 80% DS and was followed by two additional 
evaluations at 7 day intervals (i.e., three evaluations in total) 
for three randomly selected individual plants. The IT was 
recorded based on the 0–9 scale of Line and Qayoum (1992). 
The DS was scored as the percentage infected leaf area (0, 5, 
10, 20, 40, 60, 80%, or 100%) in accordance with the Chinese 
National Standard, GB/T 15797-2011. The final DS (FDS) was 
used for phenotypic analysis.

Genotyping, Linkage Map Construction, 
and QTL Analysis
Genomic DNA was extracted from a single plant for each 
line of the wheat materials using the cetyltrimethylammonium 
bromide method (Stewart and Via, 1993). The two parents 
(GX and TC 29) and the 117 RILs were genotyped using the 
Axiom® Wheat 55 K SNP array (53,036 markers) by the China 
Golden Marker Biotechnology Company Ltd. (Beijing, China). 
Monomorphic and SNP loci with a minor allele frequency 
less than 0.3 were excluded with further analysis (Ma et  al., 
2019). Polymorphic SNP markers were used to remove redundant 
markers in the binning step using the BIN function, with the 
parameters missing rate = 20% and distortion value = 0.01, 
implemented in QTL IciMapping v4.2 (Wang et  al., 2019b). 
The binned markers were used for linkage map construction 
using the Kosambi mapping function (Kosambi, 1944) with 
JoinMap v4.0 (Van Ooijen, 2006). Mapping of QTL was performed 
using QTL IciMapping v4.2 based on inclusive composite 
interval mapping with the preset parameters Step = 1 cM, value 
of p for entering variables (PIN) = 0.001, and logarithm of the 
odds (LOD) = 2.5.

To determine the effects of the QTL, the RILs were divided 
into four groups based on the presence/absence of the most 
closely linked flanking markers of QYr.GX-2AS and QYr.GX-7DS. 
In addition, the epistatic interactions between QYr.GX-2AS and 
QYr.GX-7DS were identified in RILs using QTL IciMapping 
v4.2 based on inclusive composite interval mapping of digenic 
epistatic QTL (ICIM-EPI) functionality with the preset parameters 
Step = 1 cM, value of p for entering variables (PIN) = 0.0001, 
and LOD = 5.

Haplotype Analysis
Haplotype analysis was performed to identify haplotype variants 
for QYr.GX-2AS in a collection of 325 Chinese wheat landrace 
accessions (Zhou et  al., 2017; Ye et  al., 2019). The informative 
markers linked to QYr.GX-2AS were screened using the Wheat 
55 K or Wheat 660 K SNP arrays in accordance with the method 
described by Long et  al. (2021). The SNP genotype data and 
the phenotype data (FDS) were obtained from recently published 
studies (Cheng et  al., 2019; Long et  al., 2019; Yao et  al., 2019, 
2020; Ye et  al., 2019; Wang et  al., 2021). Haplotype variants 
were detected using Haploview v4.2.1 The haplotypes detected 
in at least 10 accessions were considered to be major haplotypes. 

1 http://www.broad.mit.edu/mpg/haploview/
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Boxplots were generated to display the average FDS of accessions 
carrying the different haplotypes. Haplotype data were combined 
with provenance information to examine the geographic 
distribution of the superior haplotypes in the 10 major agro-
ecological production zones of Chinese wheat landraces.

Exome Capture Sequencing, Development 
of KASP Markers, and Genetic Mapping
Genomic DNA of the resistant parent GX was sequenced using 
the wheat exome capture sequencing protocol described by 
Dong et al. (2020). The raw sequence data have been submitted 
to GenBank under Bioproject no. PRJNA734801. The sequence 
variants were identified using the variant calling pipeline GATK4 
(Heldenbrand et  al., 2019). After QTL mapping, random SNPs 
in the target region to QYr.GX-2AS from the Wheat 55 K array 
and exome capture sequencing were selected and converted 
to KASP markers using the PolyMarker online tool (Ramirez-
Gonzalez et  al., 2015). The specific KASP markers were used 
to screen the parents and a paired of NIL (selected from HIF 
population with a common genetic background but differing 
in QYr.GX-2AS) to confirm polymorphism before genotyping 
in the HIF population. The KASP assays were performed in 

96-well format as 10 μl reactions containing 2 μl of 50–100 ng 
genomic DNA, 5 μl of HiGeno 2× Probe Mix B, 0.24 μM of 
each forward primer, 0.6 μM of the common reverse primer, 
and double distilled water to make up the volume to 10 μl. 
Each PCR was conducted using the BIO-RAD CFX96 qPCR 
system. Thermocycling was performed with a touchdown 
protocol: 95°C for 10 min; 95°C for 20 s and 61°C (−0.6°C 
per cycle) for 40 s for 10 cycles; and 95°C for 20 s and 55°C 
for 40 s for 38 cycles. Data analysis was performed manually 
using BIO-RAD CFX96 Manager 3.1.

The polymorphic KASP markers were used for validating 
the QYr.GX-2AS in the HIF population of 130 individuals. 
Linkage analysis was performed using JoinMap v4.0 (Kyazma 
BV, Wageningen, Netherlands; Van Ooijen, 2006) with a LOD 
threshold of 3.0. The Kosambi map function (Kosambi, 1944) 
was used to convert the recombination fractions to centi-
Morgans. The linkage map was drawn using Mapdraw v2.1 
(Liu and Meng, 2003). Three tightly linked markers for QYr.
GX-2AS were further assessed in 109 wheat cultivars grown 
in Sichuan for checking the usefulness of the newly developed 
KASP markers for marker-assisted selected.

Data Analyses
Best linear unbiased prediction (BLUP) values for each RIL, 
ANOVA, Pearson’s correlation coefficients, and broad-sense 
heritability (H2) estimates were calculated using the “AOV” 
tool implemented in QTL IciMapping v4.22 (Wang et  al., 
2019b). The Chi-squared (χ2) test with Excel 2016 was used 
to evaluate the goodness-of-fit for phenotype data of RILs 
population (1:1 ratio and 3:1 ratio) and HIF population (3:1 
ratio). Student’s t-tests (p < 0.05 and 0.01) were conducted 
with SPSS Statistics v17.0 (IBM Corp., Armonk, NY, 
United States) to evaluate the significance of differences between 
the two groups.

RESULTS

Stripe Rust Response of the Parents 
and RILs
Plants of GX were susceptible (IT = 8) to CYR32 and CYR34 
at the seedling stage (Figure 1A) but exhibited strong resistance 
(IT = 3, FDS < 10%) to mixed Pst races (comprising CYR32, 
CYR33, CYR34, G22-14, Su11-4, Su11-5, and Su11-7) at the 
adult-plant stage in three crop seasons from 2018 to 2020 
(Figures  1B, 2; Supplementary Table S1), indicating that GX 
has effective APR to these prevalent Chinese Pst races. In all 
three environments, the average FDS of RILs for GX × TC 29 
was 12.5–15.7% in the field tests, and the distributions were 
skewed toward resistance (Figure 2). A total of 200 homozygous 
resistant lines (IT ≤6) were consistently observed in the 249 
RILs in all three field trials, and 142 lines of them showed 
high resistance similar to GX (IT ≤3). In addition, 25 homozygous 
susceptible lines (IT ≥7) were consistently observed in all three 

2 http://www.isbreeding.net

A

C

B

FIGURE 1 | Stripe rust response of the resistant parent 
Gaoxianguangtoumai (GX) and susceptible parent Taichung 29 (TC 29) with 
CYR34 at the seedling stage (A) and mixture Pst at the adult-plant stage (B); 
Stripe rust response of the randomly selected recombinant inbred lines (RILs) 
of lines in the field (C).
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field trials. According to the homozygous phenotypes, the 
distribution of F6:8 families was not fit the expected ratios for 
a single gene (1:1 ratio; χ2 = 136.11, p < 0.001) and two genes 
(3:1 ratio; χ2 = 23.15, p < 0.001). The result indicated that the 
high level of resistance in GX was controlled by multiple genes 
(Figures  1C, 2; Supplementary Table S1). Broad-sense 
heritability (H2) was 96.7% for FDS in all tests (Table  1). 
Correlation coefficients (R2) for FDS of the RILs among the 
different environments were significant (p < 0.01) and ranged 
from 0.82 to 0.95 (Supplementary Table S2).

Linkage Map Construction and QTL 
Analysis
A total of 1,871 markers were used to construct the linkage 
map which spanning a total length 2,799.12 cM for the GX × TC 
29 population (Supplementary Table S3). The A, B, and D 

genomes included 681 (36.40%), 669 (35.76%), and 521 (27.85%) 
markers covering lengths of 911.04, 855.71, and 1,032.37 cM 
with average marker intervals of 1.34, 1.28, and 1.98 cM, 
respectively (Supplementary Table S3).

Two high quality QTL, conferring APR to Pst races, was 
screened through further analysis (Table 2; Figures 3A,B). The 
most significant QTL, designated QYr.GX-2AS, was mapped to 
the short arm of chromosome 2AS and explained 15.5–27.0% 
phenotypic variation (Table  2; Figure  3A). The other QTL, 
designated QYr.GX-7DS and explaining 11.5–13.5% phenotypic 
variation, was located on the short arm of chromosome 7D 
where this gene overlaps with Yr18 (Krattinger et  al., 2009). 
The genetic distances analysis showed SNP markers cssfr5 and 
AX-110502471 flanking QYr.GX-7DS were 3.1 cM and 5.4 cM, 
respectively (Table  2; Figure  3B). Results indicated that it was 
highly likely that QYr.GX-7DS corresponded to Yr18.

A B

C D

FIGURE 2 | Frequency distributions of the final disease severity (FDS) for the recombinant inbred lines (RILs) population derived from Gaoxianguangtoumai 
(GX) × Taichung 29 (TC 29) at Chongzhou in 2018 (A), 2019 (B), 2020 (C), and best linear unbiased prediction (BLUP) values (D).

TABLE 1 | The summary of final disease severity (FDS) data for the recombinant inbred lines (RILs) population from the Gaoxianguangtoumai (GX) × Taichung 29 
(TC 29) recorded in the fields at Chongzhou in 2018–2020.

Environments Parents RILs population

GX TC 29 Min-max Mean SD CV H2 (%)

CZ2018 (%) 5.0 80.0 0–100 14.0 25.2 1.8
CZ2019 (%) 6.7 80.0 0–100 12.5 23.7 1.9
CZ2020 (%) 5.0 80.0 0–100 15.7 27.0 1.7
BLUP (%) 7.1 73.2 2.1–91.0 14.6 21.2 1.5 96.7

SD, standard deviation; CV, coefficient of variation; and H2, broad-sense heritability.
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Clearly, the RILs that carried one of the QTL showed a lower 
FDS than those without any QTL (average FDS = 63.4%; Figure 3C). 
The RILs carrying only QYr.GX-7DS showed 14.8% of the average 
FDS, whereas average FDS of lines with only QYr.GX-2AS was 
9.3%. The lines with two QTL had the highest resistance level 
(average FDS = 7.06%; Figure  3C), similar to that of GX. In 
addition, the epistatic interaction between QYr.GX-2AS and QYr.
GX-7DS could be  significantly detected in two field trials and 
Busing the ICIM-EPI functionality of the QTL IciMapping v4.2 
(Supplementary Table S4). These results indicated that the high-
level resistance in GX was contributed by these two QTL through 
additive and epistatic interactions, where QYr.GX-2AS provided 
relatively stronger resistance to Pst races than QYr.GX-7DS.

Haplotype Analysis of QYr.GX-2AS
To assess the distribution of QYr.GX-2AS among 325 Chinese 
wheat landraces, the favorable haplotype was identified by 
haplotype analysis and seven SNP markers tightly linked to 
QYr.GX-2AS were screened from the Wheat 55 K or 660 K 
SNP arrays (Figures  4A–C). Eight major haplotypes (n > 10) 
were detected in the panel (Figures  4A,B). GX and 15 other 
accessions clustered with Hap1 (Supplementary Table S5), 
which showed a frequency of about 5.3% in the total population 
(Figure  4A). Almost all accessions carrying Hap1, except one 
from Henan, were collected from Sichuan. The accessions 
carrying Hap1 showed 18.4% of the average FDS and thus 
were more strongly resistant to stripe rust than those accessions 
carrying other haplotypes (Hap2 = 37.2%, Hap3 = 24.1%, 
Hap4 = 47.7%, Hap5 = 21.5%, Hap6 = 39.0%, Hap7 = 27.0%, and 
Hap8 = 47.6%; Figure  4C). The above results suggested that 
Hap 1 was the favorable haplotype of QYr.GX-2AS and relatively 
rare in Chinese wheat landraces.

Validation and Mapping of QYr.GX-2AS
QYr.GX-2AS was further mapped finely using newly KASP 
markers developed from SNPs screened by exome capture 

sequencing and the Wheat 55 K array. Eleven markers were 
confirmed to be  polymorphic between GX and TC 29 
(Supplementary Table S6). Combined with the KASP marker 
KP2A_36.85 for QYr.GX-2AS and the marker cssfr5 for Yr18, 
the HIF population of 130 individuals with a single locus QYr.
GX-2AS was developed from a heterozygous plant (IT = 4) in 
the F8 generation of RILs (Supplementary Figure S1). No 
significant phenotypic differences were observed in the HIF 
population, except for APR to stripe rust (Figure  5A). With 
regard to stripe rust response in the field test, the HIF population 
could be  clearly classifiable into 97 resistant (IT = 3–4) and 33 
susceptible (IT = 8–9) individuals, which fits the expected ratio 
(3:1) for a single Mendelian factor (chi-square goodness-of-fit 
test, χ2 = 0.01, p = 0.92; Supplementary Table S7). Using the 
newly developed 11 KASP markers (Supplementary Table S7) 
to construct the genetic map, QYr.GX-2AS was screened in 
1.37 Mb interval between the KASP marker KP2A_36.85 and 
KP2A_38.22 and co-segregated with the KP2A_37.09 (Figure 5B).

Validation of KASP Markers for Marker-
Assisted Selection
The molecular identification of 109 Chinese wheat cultivars 
was tested with three KASP markers KP2A_36.85 (G/A), 
KP2A_37.09 (A/C), and KP2A_38.22 (G/A; 
Supplementary Figure S2; Supplementary Table S8), which 
suggested that most of the cultivars could be amplified susceptible-
specific alleles and showed 85.3, 99.1, and 95.4% polymorphism, 
respectively (Supplementary Table S8). Based on the above 
results, three KASP markers were valuable to apply QYr.GX-2AS 
in wheat breeding by marker-assisted selection.

DISCUSSION

It is the highest priorities to develop durable resistance to Pst 
races in wheat breeding during the past decade (Chen, 2013). 

TABLE 2 | Quantitative trait loci (QTL) for stripe rust resistance detected in the recombinant inbred lines (RILs) population from the Gaoxianguangtoumai 
(GX) × Taichung 29 (TC 29) using final disease severity (FDS) data across three environments and best linear unbiased prediction (BLUP) values.

QTL Environment Trait Chromosome Left Marker Right Marker Chromosome 
interval (cM)

LOD PVE (%) Resistance 
source

  QYr.GX-2AS CZ2018 FDS 2AS AX-
109957471

AX-
110026721

2.8–3.1 8.1 27.0 GX

CZ2019 AX-
109957471

AX-
110026721

2.8–3.1 7.1 17.1

CZ2020 AX-
109957471

AX-
110026721

2.8–3.1 5.2 15.5

BLUP AX-
109957471

AX-
110026721

2.8–3.1 7.7 21.8

  QYr.GX-7DS CZ2018 FDS 7DS cssfr5 (Yr18) AX-
110502471

93.9–102.4 3.4 11.6 GX

CZ2019 cssfr5 (Yr18) AX-
110502471

93.9–102.4 3.2 11.5

CZ2020 cssfr5 (Yr18) AX-
110502471

93.9–102.4 3.6 12.4

BLUP cssfr5 (Yr18) AX-
110502471

93.9–102.4 4.0 13.5

278

www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Wang et al. Mendelization a Wheat Stripe-Rust QTL

Frontiers in Plant Science | www.frontiersin.org 7 October 2021 | Volume 12 | Article 756557

A large number of genes or QTL that confer various degrees 
of APR to stripe rust have been identified (Chen, 2013), but 
most only have minor effects on stripe rust response and are 
therefore difficult to use in breeding. Thus, the identification 
of new high quality Yr genes or QTL with APR is useful in 
wheat breeding. The Chinese wheat landrace GX has displayed 
a high degree of APR to stripe rust in the field for more 
than a decade in southwest China. Two QTLs conferring APR 
to Pst races tested were identified in GX, tentatively named 
as QYr.GX-2AS and QYr.GX-7DS, and mapped on 
chromosome2AS and 7DS, respectively. In addition, the QYr.
GX-2AS had a large effect in the reduction of stripe rust 
severity at adult-plant stages, which would be expected to have 
a great potential to pyramid this QTL with other Yr gene/
QTL to develop wheat cultivars with high-level and durable 
resistance to Pst races.

QTL analysis is a useful procedure to reveal possible multiple 
loci when analyzing complex genetic traits, such as APR to 
stripe rust, in resistant germplasm. However, this procedure 
only allows approximate mapping of the QTL (Tanksley and 
Hewitt, 1988) owing to the heterogeneity in genetic backgrounds. 
The confidence interval of many QTL spans a considerable 
genetic distance and, as a result, molecular markers for these 

QTL may not be  reliably used in marker-assisted selection. 
As a strategy for accurate mapping of QTL in genetic analysis, 
HIF populations that allow the conversion of a quantitative 
trait into a Mendelian factor have been widely used for fine 
mapping and cloning of many important QTL in wheat, such 
as Yr18 (Krattinger et  al., 2009), Yr36 (Fu et  al., 2009), Fhb1 
(Su et  al., 2019), and Fhb7 (Wang et  al., 2020). In the present 
research, a HIF population targeting QYr.GX-2AS was developed 
based on the method of heterogeneous inbred family analysis 
(Tuinstra et  al., 1997). Members of this population were 
unambiguously classified as either resistant or susceptible and 
fitted the expected ratio (3:1) for a single Mendelian factor; 
thus, accurate mapping of the locus was possible. Analysis of 
the HIF population revealed that QYr.GX-2AS, flanked by 
KP2A_36.85 and KP2A_38.22, was located in the interval 
36.85 Mb to 38.22 Mb on chromosome 2AS. One KASP marker 
co-segregating with the targeted locus was successfully developed 
for marker-assisted selection.

Several genes that confer resistance to stripe rust have been 
identified on wheat chromosome 2AS, including Yr17 (Bariana 
and Mcintosh, 1993), Yr56 (Bansal and Bariana 2014), Yr69 (Hou 
et  al., 2016), YrR61 (Hao et  al., 2011), and YrSph (Chen et  al., 
2012; Figure  6 and Supplementary Table S9). The genes Yr17, 

A B C

FIGURE 3 | QTL conferring adult plant stripe rust resistance detected by inclusive composite interval mapping (ICIM) in the recombinant inbred lines (RILs) 
population from Gaoxianguangtoumai (GX) × Taichung 29 (TC 29). Graphical displays of QTL (A) QYr.GX-2AS and (B) QYr.GX-7DS detected on chromosome 2A and 
7D based on the final disease severity (FDS) from three field trials and best linear unbiased prediction (BLUP) data. The box plots for final disease severity (FDS) 
based on the best linear unbiased prediction (BLUP) data associated with the two loci (QYr.GX-2AS and Yr18) and their combination in the Gaoxianguangtoumai 
(GX) × Taichung 29 (TC 29) recombinant inbred lines (RILs) population (C). *indicate significant at P = 0.05; **indicate significant at P = 0.01.
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Yr69, and YrSph confer ASR to stripe rust. Although recent 
studies suggest that Yr17 also confers APR to stripe rust in the 
field, QYr.GX-2AS is likely to differ from Yr17 because accessions 
of the Chinese wheat landrace GX that lack the 2 N alien segment 
carry Yr17. Yr56 is a major gene conferring APR to stripe rust 
that was identified in the Australian durum wheat cultivar 
“Wollaroi.” Yr56 is flanked by Xsun167 (wPt-4,197) and Xsun168 
(wPt-9104; Bansal and Bariana 2014), which corresponds to the 
“Chinese Spring” physical map region between 8.35 Mb and 
14.28 Mb. YrR61, corresponding to the major-effect QTL QYr.
uga-2AS_26R61 conferring APR to stripe rust, was identified 
from the soft red winter wheat cultivar “Pioneer” and is flanked 
by the markers Xbarc124 (3.78 Mb) and Xgwm359 (28.20 Mb; 
Hao et al., 2011). Clearly, both Yr56 and YrR61 are located distant 
from QYr.GX-2AS. In addition, at least 20 QTL have been reported 
on chromosome 2AS, and most of them are located at a QTL 
hot-spot region in the distal end of 2AS (<30 Mb; Figure  6). 
For example, the QTL QYr.tam-2AS_TAM 111 (Basnet et al., 
2014) confer ASR to stripe rust. QYr.ufs-2A (Agenbag et  al., 
2012), QYrst.orr-2AS_Stephens (Vazquez et  al., 2012), and QYr.
sun-2A_Kukri (Bariana et  al., 2010) were all flanked by the basis 

of a common DArT marker XwPt-0003, which were nearly with 
the QYrva.vt-2AS_VA00W-38 (Christopher et al., 2013) corresponds 
to the “Chinese Spring” physical map region 29.94 Mb. QYrtb.
orz-2AS (Vazquez et al., 2015) and QYr.inra_2AS.1_Recital (Dedryver 
et  al., 2009) were located in 2AS close to marker Xcfd36 (about 
16.63 Mb) which are homeologous to the Yr17 introgression. The 
QYr.ucw-2AS_PI610750 (Lowe et  al., 2011), contributed by the 
synthetic derivative PI610750, is flanked by the XwPt-3896 
(13.14 Mb) and Xwmc177 (33.70 Mb). QYr.inra-2A_CampRemy 
from Camp Remy (Mallard et al., 2005) is located by the Xgwm382a 
and Xgwm359 (about 28.20 Mb). QYrzv.swust-2AS (Zhou et  al., 
2021) flanked by IWB7877 and IWB72720 is derived from the 
wild emmer wheat (T. dicoccoides) accession Zavitan, corresponding 
to the “Chinese Spring” physical map region between 5.25 Mb 
and 5.33 Mb. Similarly, the other QTL identified by GWAS is 
located in different regions from QYr.GX-2AS on chromosome 
2AS, expect for a minor locus QYr.wsu-2A.1_IWA2526 (about 
36.63 Mb). Hence, the large-effect QTL QYr.GX-2AS identified 
in the present study is unlikely to be  the previously reported 
QTL. Anyway, the most powerful evidence still is gene sequencing 
on the target region after cloning QYr.GX-2AS.

A B

C

FIGURE 4 | Haplotype analysis of QYr.GX-2AS associated with stripe rust resistance in 325 Chinese wheat landraces. (A) LD heat map surrounding QYr.GX-2AS. 
The number on the right shows the distribution frequency of eight haplotypes in these Chinese wheat landraces. (B) Boxplot displays the mean final disease severity 
of the accessions carrying different haplotypes. (C) Frequencies of resistance allele of QYr.GX-2AS in Chinese wheat landraces in 10 major agro-ecological 
production zones of China.
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A B C

FIGURE 5 | Stripe rust response of the near-isogenic lines with mixture Pst at the adult-plant stage in the field (A), genetic map of chromosomes 2AS showing 
locations of stripe rust resistance genes QYr.GX-2AS based on the heterogeneous inbred family (HIF) population (B), predicted genes in IWGSC RefSeq v1.1, 
highlight in black showed non-synonymous variants between Gaoxianguangtoumai (GX) and Chinese Spring in the exon regions (C).

FIGURE 6 | Comparison of QYr.GX-2AS with previously identified genes/QTL (from biparental population) for resistance to stripe rust based on the reference 
genome of bread wheat (IWGSC, RefSeq v1.0).
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According to gene annotation information in IWGSC RefSeq 
v1.1, 16 predicted genes are located in the candidate region 
for QYr.GX-2AS (Figure 5C; Supplementary Table S10). None 
of these genes is a classic NBS-LRR resistance gene. In addition, 
no annotations accorded with the protein types encoded by 
the APR genes Yr18 (ABC transporter), Yr36 (kinase-START), 
and Yr48 (hexose transporter), implying that the candidate 
gene for QYr.GX-2AS might differ from known stripe rust 
resistance genes. Combined with exon sequencing data, eight 
predicted genes showed non-synonymous variants between GX 
and “Chinese Spring” in exon regions, including a RING/U-box, 
ascorbate peroxidase, glycosyltransferases, and F-box family 
protein, that may be  involved in disease resistance. For 
confirmation of the candidate gene and cloning of QYr.GX-2AS, 
fine mapping to narrow the candidate interval will be performed 
using a large HIF population in future work.
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Many studies have evaluated the effectiveness of genomic selection (GS) using cross-
validation within training populations; however, few have looked at its performance for
forward prediction within a breeding program. The objectives for this study were to
compare the performance of naïve GS (NGS) models without covariates and multi-
trait GS (MTGS) models by predicting two years of F4:7 advanced breeding lines for
three Fusarium head blight (FHB) resistance traits, deoxynivalenol (DON) accumulation,
Fusarium damaged kernels (FDK), and severity (SEV) in soft red winter wheat and
comparing predictions with phenotypic performance over two years of selection based
on selection accuracy and response to selection. On average, for DON, the NGS model
correctly selected 69.2% of elite genotypes, while the MTGS model correctly selected
70.1% of elite genotypes compared with 33.0% based on phenotypic selection from
the advanced generation. During the 2018 breeding cycle, GS models had the greatest
response to selection for DON, FDK, and SEV compared with phenotypic selection.
The MTGS model performed better than NGS during the 2019 breeding cycle for
all three traits, whereas NGS outperformed MTGS during the 2018 breeding cycle
for all traits except for SEV. Overall, GS models were comparable, if not better than
phenotypic selection for FHB resistance traits. This is particularly helpful when adverse
environmental conditions prohibit accurate phenotyping. This study also shows that
MTGS models can be effective for forward prediction when there are strong correlations
between traits of interest and covariates in both training and validation populations.

Keywords: genomic selection, Fusarium head blight, wheat, resistance, multi-trait genomic selection, forward
prediction

INTRODUCTION

Resistance to the disease Fusarium head blight (FHB) is important in wheat (Triticum aestivum L.)
production, particularly in the Southeastern US. Fusarium head blight is a fungal disease caused by
Fusarium graminearum and incurs nearly US$4.2 billion in losses annually (Wilson et al., 2017).
The F. graminearum pathogen produces the mycotoxin deoxynivalenol (DON), which is harmful
for humans and animals that consume infected grain (FDA, 2010; Sobrova et al., 2010).
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Traditionally, wheat breeders have primarily relied on
phenotypic selection within their breeding programs to advance
breeding material. However, phenotypic selection has its
limitations, especially with low-heritability traits of interest that
are difficult to phenotype. Difficulties with phenotyping are
also compounded by genotype × environment interactions that
can lead to differential responses between genotypes across
environments, reducing the accuracy of selections. Alternatives
to phenotypic selection include marker assisted selection (MAS)
and genomic selection (GS). Marker assisted selection can be
effective for qualitative traits controlled by one or two genes or
quantitative traits that are controlled by large-effect quantitative
trait loci (QTL) (Xu and Crouch, 2008). However, MAS is
less effective for complex quantitative traits controlled by many
small-effect QTL (Bernardo and Yu, 2007; Heffner et al., 2009).
Genomic selection is an effective alternative to both phenotypic
selection and MAS, in that it incorporates allelic effects across the
entire genome, making it ideal for quantitative traits. Genomic
selection can also reduce the time within a breeding cycle, as
two rounds of GS can be performed compared to one cycle of
phenotypic selection allowing for greater genetic gain over time
(Bernardo and Yu, 2007; Heffner et al., 2009; Asoro et al., 2013;
Rutkoski et al., 2015).

Genomic selection was first applied to animal breeding,
particularly in the dairy industry, but it has since been
adapted by plant breeders over the last decade (Meuwissen
et al., 2001; Heffner et al., 2009). Genomic selection uses
a training population (TP), a panel of lines that have been
phenotyped for a trait of interest and genotyped using whole-
genome sequencing, to train a genomic prediction model. The
genomic prediction model then uses relatedness between all
genotypes to obtain genome-estimated breeding values (GEBVs)
for breeding lines, otherwise known as the validation population
(VP), that have only been genotyped. The breeder can then
make selections based on the GEBVs for a trait of interest
(Meuwissen et al., 2001).

Most studies involving GS have focused on increasing
prediction accuracy by manipulating the TP and subsequently
evaluating model performance through cross-validation within
the TP (Habier et al., 2007; Heffner et al., 2009; Jannink et al.,
2010; Combs and Bernardo, 2013; Akdemir et al., 2015; Isidro
et al., 2015; Larkin et al., 2019). Many have also investigated the
genomic prediction model used for GS analysis (Heslot et al.,
2012). While these methods are valuable, few have researched the
effectiveness of applying GS in breeding programs for forward
prediction of breeding lines (Bernardo, 2016). However, when
investigated, many have seen mixed results regarding prediction
accuracy of forward prediction, compared to cross-validated
prediction accuracy within TPs (Asoro et al., 2013; Combs
and Bernardo, 2013; Massman et al., 2013; Michel et al., 2017;
Belamkar et al., 2018; Calvert et al., 2020). Additionally, there
are few, if any, studies that focus on forward prediction for FHB
resistance in wheat as opposed to grain yield (GY) (Michel et al.,
2016, 2017; Belamkar et al., 2018; Calvert et al., 2020).

In an evaluation of GS in the Kansas State University wheat
breeding program, GS was used to predict GY in a TP where
the prediction accuracy was between r = 0.31 and r = 0.47.

However, when the TP was used for forward prediction, the
highest prediction accuracy between the GEBVs for GY in the
preliminary yield trials (PYTs) and the actual phenotypic results
for GY was r = −0.16 (Calvert et al., 2020). This trend was
also observed in an evaluation of the University of Nebraska
wheat breeding program, where GY data from PYTs from
three years were used to predict the performance of a fourth
year. When no lines for the fourth year were included in the
TP, prediction accuracies for GY were between r = 0.22 and
r = 0.26. However, as more lines from the fourth year were
included in the TP, the prediction accuracy of GY for the
remaining lines in the fourth year increased to between r = 0.37
and r = 0.52, when 90% of the lines from the fourth year
were included in the TP (Belamkar et al., 2018). Phenotypic
selection and GS were also compared in terms of selection
accuracy between the PYT and advanced yield trial generations.
Genomic selection outperformed phenotypic selection during
the 2012 and 2015 seasons, where Nebraska experienced severe
drought and disease stress. Even still, prediction accuracies
were low, indicating that prediction accuracy is not the best
indicator of GS success for forward prediction (Belamkar
et al., 2018). Another study using forward prediction for GY
in wheat adapted to central Europe found that the use of
GS (r = 0.39) to select high performing lines for multiple-
environment trials was far better than phenotypic selection
(r = 0.21) (Michel et al., 2017).

In addition to traditional GS, researchers have begun
investigating the efficacy of multi-trait GS (MTGS). Multi-trait
GS uses mixed models that incorporate secondary traits that
are genetically correlated with a trait of interest as covariates to
improve the prediction accuracy for the trait of interest (Calus
and Veerkamp, 2011; Jia and Jannink, 2012; Covarrubias-Pazaran
et al., 2018). Multi-trait GS can improve prediction accuracies
for low-heritability traits when high-heritability secondary traits
are used as covariates (Calus and Veerkamp, 2011; Guo et al.,
2014; Jia et al., 2018). Many studies have evaluated MTGS models
for cross-validation, particularly for GY in wheat using high-
throughput phenotyping traits (Rutkoski et al., 2016; Sun et al.,
2017; Crain et al., 2018; Lozada and Carter, 2019; Guo et al.,
2020). Others have evaluated resistance traits related to FHB in
wheat using phenological traits, such as heading date (HD) and
plant height (PH), or other FHB resistance traits as covariates
(Rutkoski et al., 2012; Schulthess et al., 2018; Steiner et al.,
2019; Larkin et al., 2020; Moreno-Amores et al., 2020). Few
have evaluated the use of MTGS for forward prediction. One
study used high-throughput phenotyping traits as a covariate in
a MTGS model for forward prediction of GY in wheat, though
the prediction accuracy was unfavorable unless a large TP was
used (Calvert et al., 2020). Therefore, our aim is to validate the
use of MTGS models compared to naïve GS (NGS) models to
predict FHB resistance in wheat, using secondary FHB resistance
traits regularly collected throughout the season within a breeding
program based on results from Larkin et al. (2020).

The University of Arkansas soft red winter wheat (SRWW)
breeding program makes over 800 unique crosses per year.
Progenies are then tested over the following 10 seasons prior
to releasing a new cultivar (Mason et al., 2018). Breeding
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lines are not evaluated for FHB resistance traits until the
F4:7 advanced (ADV) and F4:8 elite (ARE) trials, where they
are evaluated in misted and inoculated FHB disease nurseries
at two locations in a RCBD design with two replications.
Selections are made based on three FHB resistance traits: type
II resistance, which is resistance to the spread of FHB within
a spike, otherwise known as severity (SEV) (Schroeder and
Christensen, 1963); type III resistance, or resistance to Fusarium
damaged kernels (FDK) (Argyris et al., 2003; Goral et al., 2019);
and type IV resistance, or resistance to DON accumulation
(Mesterhazy, 1995).

Some elite lines are also grown in regional statewide variety
testing trials, as well as the USDA-ARS Uniform Eastern (UE)
and Southern nurseries (US), Southeastern University Grains
(Sungrains) cooperative nurseries, and foundation seed increases.
The UE and US nurseries include approximately 36 elite breeding
lines from public and private SRWW breeding programs in
the Southern and Eastern US, grown between 22 and 36
locations with between one and three replications per location
annually (Boyles et al., 2019). The Sungrains cooperative consists
of Southeastern US SRWW breeding programs that performs
regional testing within the Southeastern US (Harrison et al., 2017;
Johnson et al., 2017; Mason et al., 2018; Boyles et al., 2019).
Select breeding lines from the ADV and ARE are grown in these
regional Sungrains nurseries.

In theory, GS can improve selection accuracy in the early
generations of the breeding program for FHB resistance traits
while also reducing time and resources spent for phenotyping.
In this study, we evaluated the selection accuracy of GS from the
advanced through elite generations and compared to phenotypic
selection through forward prediction using NGS and MTGS
models. The three goals for this study were to: (1) compare NGS
and MTGS with phenotypic selection for three FHB resistance
traits, including DON, FDK, and SEV for new breeding lines
that have not been phenotyped at the advanced generations;
(2) compare the selection accuracy between NGS, MTGS, and
phenotypic selection between the advanced and elite generations
of the University of Arkansas SRWW breeding program; and
(3) compare the response to selection between NGS, MTGS, and
phenotypic selection between the advanced and elite generations
of the University of Arkansas SRWW breeding program.

MATERIALS AND METHODS

Plant Materials
Breeding Materials
Two generations of the ADV trials, 2017–2018 and 2018–
2019, consisting of F4:7 breeding lines from the University of
Arkansas wheat breeding program and doubled haploid (DH)
lines developed through the Sungrains cooperative, were used
as VPs to predict three FHB traits, DON, FDK, and SEV.
Approximately 20% of breeding lines from the ADV18 and
ADV19 yield trials were selected and advanced to the ARE19
and ARE20 yield trials for the 2018–2019 and 2019–2020 growing
seasons, respectively. Genotypes were advanced based on both GS
and phenotypic selection (Table 1).

Training Populations
A population of 355 SRWW genotypes was used as the initial
2018 TP (TP18_FHB) for this study to predict GEBVs for
DON, FDK, and SEV in the ADV18 trial. The population
consisted of 187 genotypes from the University of Arkansas, 87
from Louisiana State University, 40 from North Carolina State
University, 38 from the University of Georgia, and one genotype
each from Syngenta AG, Pioneer Hi-Bred International, Inc.,
and Virginia Polytechnic Institute and State University (Larkin
et al., 2020). The 2019 TP (TP19_FHB) for the three FHB traits
consisted of the 355 genotypes from TP18_FHB, as well as the
104 genotypes from the ADV18 trial.

Experimental Design and Trait
Measurements
Winter wheat is planted during the fall and harvested during the
late spring in the southern United States, therefore the growing
season spans two years. The TP18_FHB genotypes were evaluated
for three FHB resistance traits, including DON, FDK, and SEV,
over four seasons between 2014 and 2017 at two locations, at
the Milo J. Shult Agricultural Research and Extension Center in
Fayetteville, AR, United States (FAY) and the Newport Research
and Extension Center near Newport, AR, USA (NPT). The data
collection and experimental design methods were outlined in
Larkin et al. (2020), as TP18_FHB was the same population
used in their study.

The AVD18, ADV19, and ARE19 FHB nurseries for the
2017–2018 and 2018–2019 growing seasons were grown at
two locations, FAY and NPT, in a randomized complete block
design (RCBD) with two replications per location using the
same methods described with respect to the TP18_FHB and
TP19_FHB populations in Larkin et al. (2020). This was also
the case for the ARE20 FHB nursery; however, it was only
grown in NPT during the 2019–2020 season due to poor
growing conditions in FAY. Data were also collected for HD,
PH, DON, FDK, and SEV for the FHB nurseries using methods
described in Larkin et al. (2020).

Phenotypic Data Analyses
Phenotypic data was analyzed using a single stage mixed linear
model within the PROC MIXED procedure in SAS 9.4 to obtain
adjusted means for HD, PH, DON, FDK, and SEV (SAS Institute
Inc., Cary, NC, United States). The following model was fit to the
phenotypic data:

yijk = µ+ genotypei + rep(env)jk + envk + (genotype × env)ik + εijk

where yijk is the observed phenotype, µ is the population mean,
genotypei is the fixed effect of the ith genotype, rep(env)jk is
the random effect of the jth replication nested within the kth
location-year (or location) (env), envk is the random effect of
the kth location-year (or location), (genotype × env)ik is the
random effect of the interaction between genotype and location-
year (or location), and εijk is the residual error term, where
εijk ∼ N(0,Iσ2

ε ), where I is an identity matrix and σ2
ε is the

residual error variance.
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TABLE 1 | Description of the number of genotypes, composition, and experimental design of two generations of F4:7 advanced nurseries (ADV), and F4:8 elite nurseries
(ARE), as well as the initial training population (TP18_FHB) used to predict three Fusarium head blight (FHB) resistance traits, including deoxynivalenol (DON)
accumulation, Fusarium damaged kernels (FDK), and severity (SEV).

Triala Generationb Conventional
lines

DH lines Total Location(s) Rep(s) Designc

TP18_FHB – 355 – 355 9 2 RCBD

ADV18 F4:7/DH 64 40 104 2 2 RCBD

ADV19 F4:7/DH 50 70 120 2 2 RCBD

ARE19 F4:8/DH 16 6 22 2 2 RCBD

ARE20 F4:8/DH 12 11 23 1 2 RCBD

aTrial types and the years each were grown. TP18_FHB was grown over four years between 2013–2014 and 2016–2017; 18, 2017–2018; 19, 2018–2019; 20, 2019–
2020.
bBreeding trials consisted of conventionally bred genotypes as well as doubled haploid (DH) genotypes.
cRCBD, randomized complete block design.

Phenotypic Pearson correlations were calculated between
DON, FDK, HD, PH, and SEV within TP18_FHB and TP19_FHB
as well as the ADV and ARE FHB nurseries using the
multivariate function in JMP Pro 15.2.0 software (SAS Institute
Inc., Cary, NC). Entry mean-based broad-sense heritability (H2)
was calculated for each trait using the following equation:

H2
=

σ2
genotype

σ2
genotype +

σ2
genotype × env

nenv +
σ2
ε

nenv × nrep

where σ2
genotype is the genotypic variance, σ2

genotype × env is the
variance of the interaction between genotype and location-year,
nenv is the number of location-years where the trait was evaluated,
σ2

ε is the residual error variance, and nrep is the number of
replications within each location-year. Variance components
were obtained from the single stage mixed linear model described
above for each trait using the PROC MIXED procedure in
SAS 9.4. Narrow-sense heritability (h2) was calculated using
the “marker_h2” function within the “heritability” package in
R v4.0.3 software for TP19_FHB due to a lack of shared
genotypes within the TP (Kruijer et al., 2015; R Core Team,
2020). The analysis used a genome relationship matrix obtained
from the “A.mat” function within the “rrBLUP” package in
Rv4.0.3 software using the marker set described below as
well as the abovementioned phenotypic data (Endelman, 2011;
Endelman and Jannink, 2012; R Core Team, 2020).

Genotyping by Sequencing
All genotypes were genotyped using genotyping by sequencing
(GBS) using methods described in Larkin et al. (2020). Single
nucleotide polymorphism (SNP) calling was performed using
the TASSEL 5.0 GBSv2 pipeline using 64 base tag length and
a minimum tag count of five (Bradbury et al., 2007). Reads
were aligned to the International Wheat Genome Sequencing
Consortium (IWGSC) RefSeq v1.0 “Chinese Spring” wheat
reference sequence (Appels et al., 2018) using the Burrows-
Wheeler aligner version 0.7.17 (Li and Durbin, 2009).

Raw SNP data generated from the TASSEL pipeline were
filtered using PLINK software (Purcell et al., 2007) to remove
taxa with more than 85% missing data and heterozygosity
greater than 30%. Genotypic data were then filtered to select

for biallelic SNPs with minor allelic frequency of greater than
five percent, less than 20% missing data, and heterozygosity less
than or equal to 10%. Missing marker data were then imputed
using BEAGLE software, based on windows encompassing the
entire chromosome (Browning et al., 2018). Markers were again
filtered after imputation to select SNP markers with minor allele
frequency greater than five percent and heterozygosity of less
than equal to 10% using PLINK software. Markers aligning to
unassembled contigs were also removed for a final genotypic
dataset of 5,202 SNP markers.

Principal component analyses were performed within each
of the TPs to evaluate the genetic relationships between
subpopulations using the PCA function in TASSEL 5.0. These
relationships between the first three principal components were
visualized for each TP using the “scatterplot3d” package in R
v4.0.3 software (Ligges et al., 2018; R Core Team, 2020).

Genomic Selection
Two different models were tested for both TPs to obtain GEBVs
for DON, FDK, and SEV for the ADV18 and ADV19 trials. The
first model was a naïve genomic BLUP (GBLUP) model with no
covariates (NGS). The second model was a MTGS GBLUP model
where DON was predicted using FDK and HD as covariates, FDK
was predicted using DON and SEV as covariates, and SEV was
predicted using FDK and PH as covariates. The optimal covariate
combinations for the MTGS models were determined in Larkin
et al. (2020) for the FHB traits.

Cross Validation
Mean prediction accuracies between the NGS and MTGS models
for each TP were obtained using a five-fold cross-validation
analysis performed using the Genomic Selection function in
TASSEL 5.0 (Bradbury et al., 2007). The GBLUP model used for
the analyses is described as follows:

y = Xβ + Zu+ εi

where u is a vector of genotype effects, which is assumed to
have a normal distribution u∼N(0,Gσ2

u), where G is the genomic
relationship matrix, obtained using the Kinship function within
TASSEL 5.0, which uses the same methodology as the “rrBLUP”
package in R (Endelman, 2011; Endelman and Jannink, 2012),
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and σ2
u is the variance of the individual genotype effects; β is a

vector of fixed effects; X is a design matrix relating fixed effects to
phenotypic observations (y); Z is a design matrix relating random
effects to phenotypic observations; and εi is the residual error at
the ith locus, which is assumed to have a normal distribution
εi ∼ N

(
0, Iσ2

ε

)
, where I is the identity matrix and σ2

ε is the
residual error variance. The GEBV from the GBLUP model is
equivalent to the sum of all allele effects of a genotype from
the ridge regression BLUP (RR-BLUP) model (VanRaden, 2008;
Endelman, 2011).

The five-fold cross-validation approach randomly divided the
TP into five equal sized groups. Four of the five groups were then
used as the TP to train the GBLUP model to calculate GEBVs
for the fifth group, serving as the VP, where the phenotypic
values were set as missing. In the case of the MTGS models, the
phenotypic data for the covariate traits were used as a fixed effect
in the model. The GEBVs calculated for the VP were compared
to the actual phenotypic values using a Pearson correlation. The
five-fold cross-validation process was repeated over 100 iterations
for a total of 500 iterations. The mean prediction accuracies
between the NGS and MTGS models were compared between
both TPs using a generalized linear mixed model (GLMM) and
Fisher’s LSD with an α of 0.05, implemented in PROC GLIMMIX
in SAS 9.4. Mean prediction accuracy comparisons between the
NGS and MTGS models for each TP were visualized using the
“yarrr” package in R v4.0.3 (Phillips, 2017; R Core Team, 2020).

Forward Prediction
Both TPs were then used to obtain predictions for their respective
VPs using the NGS and MTGS GBLUP models associated with
each trait. For example, TP18_FHB was used to calculate GEBVs
for DON, FDK, and SEV for the ADV18 trial using the NGS and
MTGS models (Table 2).

Once GEBVs for each trait for each model were obtained,
GEBVs were compared to the adjusted mean of the trait of
interest for each genotype in the following generation using
a Pearson correlation using the multivariate function in JMP
15.2.0 software. For example, GEBVs for DON obtained for
ADV18 were compared to the adjusted mean DON for each
genotype across the ADV18 and ARE19 generations. This serves
as a form of prediction accuracy for the respective model and
TP. A scatterplot visualizing the comparison between GEBVs
and adjusted means across years for each genotype, as well
as individual genotypes advanced to the next generation, was
created using the “ggplot2” package in R v4.0.3 for each model
for each TP (Wickham et al., 2016; R Core Team, 2020). Selection
accuracy was also determined as the percentage of genotypes
advanced to the ARE generation that were above average based on
GEBVs from the NGS or MTGS models as well as above average
based on phenotypic values.

Response to selection was also compared between the NGS
and MTGS models and phenotypic selection, based on the
adjusted means from the ADV generations for FHB traits, using
a selection pressure of 50%. The response to selection formula is
as follows:

R = H2S

where H2 was the broad-sense heritability calculated as above,
and S is the selection differential, calculated as S = µSelected −

µUnselected where µSelected is the mean of the phenotypic data
for the top 50% of genotypes selected for genotypes in the ARE
generations using either phenotypic selection, NGS, or MTGS,
and µUnselected is the mean of the full unselected population of the
genotypes in the ARE generation of the breeding cycle (Falconer
and McKay, 1996; Arruda et al., 2016b; Lozada et al., 2020).

RESULTS

Variation in Fusarium Head Blight
Resistance Traits
Both FHB TPs as well as the ADV and ARE FHB trials had
significant variation for all five traits. The ADV18 FHB trial had
the highest mean DON and FDK, but it also had the lowest
mean SEV. The ARE20 FHB trial had the lowest mean DON
and FDK, likely due to stronger genetic resistance (Table 2). All
trials also had significant correlations between the three FHB
traits. Correlations between DON and HD were consistently
positive, however, the correlations were not significant with
smaller population sizes, while DON was significantly correlated
with PH only in ADV19. There were generally negative
correlations between FDK and PH apart from ADV19, however,
the significance of the correlations between FDK and PH were
not significant with smaller population sizes. There were strong
negative correlations between SEV and HD and PH for nearly all
trials, however, they were not significant for smaller populations.
High heritability was also observed for all three FHB traits in
addition to HD and PH (Table 2).

Population Structure
Genotyping by sequencing identified 5,202 SNPs across the entire
wheat genome after filtering and imputation. The number of SNP
markers were unevenly distributed between genomes, where the
B genome had the largest number of markers (2,315), followed by
the A (2,210) and D (677) genomes, which was consistent with
other studies using GBS SNPs (Arruda et al., 2016a; Larkin et al.,
2020). The chromosome with the largest number of SNPs was
3B at 477, while the chromosome with the smallest number was
4D (38). The proportion of heterozygosity within the dataset was
2.5% and the average minor allele frequency was 21.6%.

The PCA of the initial TP18_FHB population showed two
primary clusters within the population. Genotypes from all
breeding programs appeared in both clusters, although there was
evidence of sub-clustering by breeding program within the two
main clusters. This clustering has also been observed in other
studies using SRWW populations adapted to the Southeastern
US and is hypothesized to result from the large number of linked
SNPs called between lines with and without a translocation from
Triticum timopheevii Zhuk., which harbors stem rust (Puccinia
graminis f. sp. tritici) and powdery mildew (Blumeria graminis
f. sp. tritici) resistance genes Sr36 and Pm6 (Nyquist, 1962;
Benson et al., 2012; Sarinelli et al., 2019; Larkin et al., 2020).
The population structure was generally low, where the first three
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TABLE 2 | Descriptive statistics, Pearson phenotypic correlations, and heritabilities (H2) for adjusted means for two training populations, two advanced F4:7 nurseries,
and two elite F4:8 nurseries for three Fusarium head blight (FHB) resistance traits, including deoxynivalenol (DON), Fusarium damaged kernels (FDK), and severity (SEV)
as well as heading date (HD) and plant height (PH).

Triala Trait Summary statistics Correlations

Mean Min Max Range SD H2b DONc FDK SEV HDd

FHB_TP18 DON 10.53 0.08 92.80 92.72 11.35 0.74 − − − −

FDK 32.49 0.00 100.00 100.00 29.93 0.79 0.40*** − − −

SEV 27.88 0.00 100.00 100.00 25.78 0.82 0.32*** 0.73*** − −

HD 94.69 74.00 118.00 44.00 10.19 0.90 0.25*** −0.05ns†
−0.10* −

PHe 90.27 56.46 121.87 65.40 10.06 0.91 0.01ns
−0.29*** −0.36*** 0.34***

FHB_TP19 DON 14.26 6.15 37.50 31.35 4.59 0.60 − − − −

FDK 38.22 6.00 92.12 86.12 14.86 0.68 0.45*** − − −

SEV 28.67 3.75 91.71 87.96 12.97 0.93 0.12* 0.55*** − −

HD 97.91 86.76 116.50 29.74 8.30 0.92 0.31*** 0.02ns
−0.54*** −

PH 90.40 71.12 113.03 41.91 6.96 0.74 0.00ns
−0.29*** −0.31*** 0.16***

ADV18 DON 16.64 3.60 51.50 47.90 7.60 0.62 − − − −

FDK 39.32 2.00 75.00 73.00 16.29 0.77 0.62*** − − −

SEV 15.44 0.00 85.00 85.00 14.88 0.38 0.27** 0.54*** − −

HD 112.22 108.00 117.00 9.00 2.16 0.90 0.28** −0.10ns
−0.34*** −

PH 89.46 68.58 119.38 50.80 8.53 0.71 −0.05ns
−0.22* −0.18* 0.25***

ADV19 DON 10.09 0.12 74.50 74.38 10.08 0.61 − − − −

FDK 31.01 0.00 98.00 98.00 23.94 0.83 0.86*** − − −

SEV 25.60 0.00 95.00 95.00 25.54 0.45 0.76*** 0.86*** − −

HD 102.38 97.00 109.00 12.00 2.35 0.81 0.10ns
−0.04ns

−0.17ns
−

PH 81.20 63.50 101.60 38.10 7.16 0.74 0.29*** 0.09ns 0.01ns 0.35***

ARE19 DON 8.51 0.59 64.10 63.51 8.32 0.50 − − − −

FDK 27.04 1.00 95.00 94.00 21.06 0.71 0.84*** − − −

SEV 23.55 0.00 90.00 90.00 22.87 0.43 0.74*** 0.86*** − −

HD 102.20 98.00 108.00 10.00 2.27 0.84 0.01ns
−0.28ns

−0.28ns
−

PH 80.06 53.34 93.98 40.64 7.14 0.76 0.21ns
−0.12ns

−0.18ns 0.41*

ARE20 DON 7.30 0.99 19.30 18.31 3.95 0.78 − − − −

FDK 15.21 2.00 60.00 58.00 12.49 0.84 0.78*** − − −

SEV 16.83 0.00 60.00 60.00 13.11 0.76 0.65*** 0.82*** − −

HD 99.49 94.00 111.00 17.00 3.39 0.76 0.09ns† 0.09ns
−0.08ns

−

PH 89.69 76.20 101.60 25.40 6.20 0.87 0.01ns
−0.05ns

−0.11ns 0.48**

aTP, training population; ADV, F4:7 advanced FHB trial; ARE, F4:8 elite FHB trial.
bBroad-sense heritability for FHB_TP18, ADV18, ADV19, ARE19, and ARE20 calculated using entry-mean based heritability. Narrow-sense heritability was
calculated for FHB_TP19.
cDON was recorded in µg g−1, whereas FDK and SEV were recorded in percentage.
dHeading date was recorded as day of year after 1st of January, when 50% of the heads were emerged from the flag leaf.
ePlant height was recorded in inches from the surface of the soil to the tip of the head minus awns if present, but reported in centimeters here.
*Significant at the 0.05 probability level.
**Significant at the 0.01 probability level.
***Significant at the 0.001 probability level.
†ns, nonsignificant at the 0.05 probability level.

principal components only accounted for 5.23, 3.99, and 3.42%
of the total genetic variation (Figure 1). There was no noticeable
differentiation between the TP18_FHB population and ADV18
and the TP19_FHB population and ADV19 (Supplementary
Figures 1A,B).

Cross Validation
Between both TPs, the MTGS models had significantly higher
prediction accuracies compared to NGS models for DON,
FDK, and SEV (Figure 2). Prediction accuracies for DON
decreased between TP18_FHB and TP19_FHB while prediction

accuracies for FDK and SEV increased. The decrease in
prediction accuracy for DON was likely a result of background
population structure within TP19_FHB between genotypes from
the TP18_FHB population, which does not contain genotypes
with Fhb1, and ADV18 which does contain genotypes with Fhb1
(Supplementary Figure 1A). The trait with the highest mean
prediction accuracies among the NGS models for TP18_FHB was
DON, with a mean accuracy of 0.61, while the trait with the
highest prediction accuracy for TP19_FHB was SEV (r = 0.61).
The trait with the second highest mean prediction accuracy
among the NGS models for TP18_FHB was SEV (r = 0.54)
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FIGURE 1 | Population structure of 355 soft red winter wheat genotypes using 5,202 single nucleotide polymorphism (SNP) markers. This population represents the
training population used to predict three Fusarium head blight (FHB) resistance traits including deoxynivalenol (DON) concentration, Fusarium damaged kernels
(FDK), and severity (SEV) (TP18_FHB) for the 2018 advanced Fusarium head blight trial (ADV18). Colors represent the origin of the genotypes. AR, developed at the
University of Arkansas, Fayetteville; GA, developed at the University of Georgia, Athens; LA, developed at Louisiana State University, Baton Rouge; NC, developed at
North Carolina State University, Raleigh; Pioneer, developed by Pioneer Hi-Bred International; Syngenta, developed by Syngenta and AgriPro; and VA, developed by
Virginia Polytechnic Institute and State University, Blacksburg; PC, principal component.

while DON and FDK had the same mean prediction accuracy for
TP19_FHB (r = 0.49). Fusarium damaged kernels had the lowest
mean prediction accuracy among the NGS models for TP18_FHB
(r = 0.45). The ranking of traits between the MTGS models was
not consistent with the NGS models or between TPs. Severity
had the highest prediction accuracy in TP18_FHB (r = 0.76),
followed by FDK (r = 0.74) and DON (r = 0.72). With TP19_FHB,
DON also had the MTGS model with the lowest mean prediction
accuracy (r = 0.66), while FDK and SEV had mean prediction
accuracies of 0.74 (Figure 2).

Forward Prediction
When TP18_FHB was used to predict DON, FDK, and SEV for
ADV18, there were significant correlations between the GEBVs
calculated from the NGS and MTGS models and phenotypes
for all FHB resistance traits. The strength of both correlations
decreased for all methods when compared with phenotypic data
from ARE19, with the exception for the MTGS model for SEV,
where the correlation increased to r = 0.60 compared with r = 0.57
(Table 3). Both NGS and MTGS models had higher selection
accuracies compared to phenotypic selection from ADV18 DON
data (52.9%), where the NGS model correctly selected 82.4% of
genotypes in ARE19, while the MTGS model correctly selected
70.6% (Table 3 and Figures 3A,B). The NGS (R =−0.37 µg g−1)
model had the highest response to selection for DON compared

to the NGS model (R = −0.23 µg g−1) and phenotypic selection
(R = 0.20 µg g−1) (Table 3).

When predicting FDK for ADV18, the MTGS model had
the strongest correlations with the ADV18 FDK data as well as
the FDK adjusted means from ARE19. The NGS (R = −4.09%)
model again had the highest response to selection than the MTGS
(R = −2.83%) model and phenotypic selection (R = −1.59%)
for FDK (Table 3). The MTGS and NGS models had the
same selection accuracy for FDK (70.6%) where both models
outperformed phenotypic selection based on adjusted means for
FDK from ADV18 (58.8%) (Table 3 and Figures 3C,D).

The MTGS model had stronger correlations between GEBVs
for SEV and adjusted means for SEV from ADV18 and
ARE19 than the NGS model (Table 3). The MTGS model
also had the strongest response to selection (R = −2.29%)
and selection accuracy (47.1%) compared with the NGS model,
where R = −0.82% and selection accuracy was 41.2%. The NGS
model underperformed phenotypic selection for both response
to selection (R = −1.49%) and selection accuracy (52.9%), with
the MTGS model only underperforming phenotypic selection for
selection accuracy (Table 3 and Figures 3E,F).

When using TP19_FHB to predict FHB resistance traits
for ADV19, the correlations between GEBVs from the MTGS
models and phenotypic results from AVD19 were stronger
than TP18_FHB for all three traits. Correlations between
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FIGURE 2 | Pirate plots comparing the mean prediction accuracies between multi-trait genomic selection (MTGS) models with naïve genomic selection (NGS)
models for three Fusarium head blight resistance traits (FHB), deoxynivalenol (DON) concentration, Fusarium damaged kernels (FDK), and severity (SEV) in soft red
winter wheat across two training populations (TPs): (A) TP18_FHB, TP used to predict three FHB resistance traits for the 2018 advanced F4:7 generation (ADV18);
(B) TP19_FHB, TP used to predict three FHB resistance traits for the 2019 advanced F4:7 generation (ADV19), consisting of all genotypes from TP18_FHB and
ADV18. The x-axis represents the combination of FHB resistance traits and GS model used to predict each trait. The y-axis represents the mean prediction accuracy
across 100 iterations of fivefold cross-validation in the form of a Pearson correlation coefficient (r) between the predicted genome-estimated breeding value (GEBV)
and the actual phenotypic value for the validation populations. Individual points represent the Pearson correlation from each fold of each iteration of cross-validation
for a total of 500 data points. The lines within each plot represent the mean and 95% confidence intervals for prediction accuracy. The curves represent the
smoothed densities of the data.

GEBVs from the MTGS models were stronger than TP18_FHB
when compared with adjusted means from ARE20 for DON
and FDK (Table 3). Response to selection for TP19_FHB
was different from TP18_FHB in that phenotypic selection
outperformed the GS models for DON and SEV, whereas
the MTGS model had a stronger response to selection than
the NGS model and phenotypic selection for FDK (Table 3).
Selection accuracies did change between TPs, as the MTGS model

(69.6%) outperformed both phenotypic selection (13.0%) and
the NGS model (56.5%) for DON for TP19_FHB (Table 3 and
Figures 4A,B). Unlike the results for TP18_FHB, both GS models
had far lower selection accuracies than phenotypic selection
(91.3%), although the MTGS model (60.9%) was better than
the NGS model (34.8%) (Table 3 and Figures 4C,D). Selection
accuracy for SEV also changed, where the MTGS model had
the same selection accuracy as phenotypic selection (82.6%)
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TABLE 3 | Comparison of three selection methods, phenotypic selection based on three FHB resistance traits using two training populations (TP), deoxynivalenol (DON)
concentration, Fusarium damaged kernels (FDK), and severity (SEV) from the advanced trials (ADV), naïve genomic selection (NGS), and multi-trait genomic selection
(MTGS), based on correlations between genome estimated breeding values and the adjusted means from following generations, response to selection, and selection
accuracy of genotypes in the final generation.

TP Trait Method r ADVa r AREb Selection differential Response to selection Selection accuracy

TP18_FHB DON PS − −0.01ns† 0.40 0.20 52.9

NGS 0.22* 0.19ns
−0.73 −0.37 82.4

MTGS 0.53*** 0.10ns
−0.46 −0.23 70.6

FDK PS − 0.14ns
−2.24 −1.59 58.8

NGS 0.41*** 0.38ns
−5.77 −4.09 70.6

MTGS 0.70*** 0.42ns
−3.99 −2.83 70.6

SEV PS − 0.54* −3.46 −1.49 52.9

NGS 0.29** 0.16ns
−1.90 −0.82 41.2

MTGS 0.57*** 0.60* −5.33 −2.29 47.1

TP19_FHB DON PS − 0.51* −1.32 −1.03 13.0

NGS 0.17ns 0.37ns
−0.67 −0.53 56.5

MTGS 0.71*** 0.45* −0.96 −0.75 69.6

FDK PS − 0.67*** −4.07 −3.42 91.3

NGS 0.18* 0.45* −3.21 −2.70 34.8

MTGS 0.83*** 0.64** −4.57 −3.84 60.9

SEV PS − 0.78*** −5.86 −4.45 82.6

NGS 0.25** 0.08ns 0.50 0.38 60.9

MTGS 0.67*** 0.12ns
−0.18 −0.13 82.6

aPearson correlation coefficient between GEBVs and phenotypic data from the ADV population used as a validation population (VP).
bPearson correlations coefficient between GEBVs and adjusted means for phenotypic data from the elite (ARE) generation.
*Significant at the 0.05 probability level.
**Significant at the 0.01 probability level.
***Significant at the 0.001 probability level.
†ns, nonsignificant at the 0.05 probability level.

while also outperforming the NGS model (60.9%) (Table 3 and
Figures 4E,F).

DISCUSSION

Genomic selection is a valuable tool for plant breeders, and
many studies have shown the vast realm of possibilities for its
application (Heffner et al., 2009; Sorrells, 2015; Larkin et al.,
2019). The primary goal for GS is to increase genetic gain
for a trait of interest within a breeding program through the
reduction of time within a breeding cycle and by improving
selection accuracy (Schaeffer, 2006; Bernardo and Yu, 2007;
Heffner et al., 2009; Asoro et al., 2013; Rutkoski et al., 2015).
While most research in GS has focused on optimizing TPs
to increase model predictive ability, less have focused on the
implementation of GS into breeding programs in the form of
forward selection (Bernardo, 2016). In our study, we chose to
focus on forward prediction using NGS and MTGS models and
compared their performance, based on selection accuracy and
response to selection, to phenotypic selection for economically
important traits, such as FHB resistance.

Prediction Accuracy of Training
Populations
In our study, we saw that MTGS models consistently had
significantly higher prediction accuracies for DON, FDK, and

SEV in every TP compared to NGS. These results were consistent
with previous studies involving MTGS for FHB resistance traits
(Schulthess et al., 2018; Larkin et al., 2020; Moreno-Amores et al.,
2020). This follows the general trend for MTGS, where covariate
traits sharing a strong correlation with a trait of interest can
improve prediction accuracies for said trait of interest (Calus and
Veerkamp, 2011; Jia and Jannink, 2012; Schulthess et al., 2016;
Lozada and Carter, 2019; Ward et al., 2019).

Regarding the correlations between FHB resistance traits,
it is interesting to note that HD was consistently negatively
correlated with SEV, and yet positively correlated with DON. The
negative correlation between SEV and HD has been observed in
many different studies (Gervais et al., 2003; Paillard et al., 2004;
Schmolke et al., 2005; Larkin et al., 2020; Moreno-Amores et al.,
2020). This is because wheat genotypes that flower earlier are
exposed to more favorable conditions for FHB infection, such
as higher humidity and rainfall during the early growing season,
versus the later part of the growing season (Buerstmayr et al.,
2019). However, while positive correlations have been observed
between HD and DON in other studies, less is known about
this association (Liu et al., 2012; Agnes et al., 2014; Larkin et al.,
2020). Agnes et al. (2014) suggested that this positive correlation
was related to additional fungal growth after the soft dough
stage (Feekes 11.2). Several groups have also identified QTL
associated with both DON and HD (Schmolke et al., 2005; Lin
et al., 2008; Agnes et al., 2014). Agnes et al. (2014) specifically
identified such a QTL on chromosome 7B, which was co-located
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FIGURE 3 | Scatter plots between genome-estimated breeding values (GEBVs) for three Fusarium head blight (FHB) resistance traits in soft red winter wheat from
two different genomic selection models (GS), including naïve models without covariates (NGS) and multi-trait GS models with covariates (MTGS), and adjusted
means for deoxynivalenol (DON) concentration, Fusarium damaged kernels (FDK), and severity (SEV) across two generations, F4:7 advanced from 2017 to 2018
(ADV18) and F4:8 elite from 2018 to 2019 (ARE19): (A) predictions for DON in ADV18 using a NGS model, (B) predictions for DON using a MTGS model, (C)
predictions for FDK from ADV18 using a NGS model, (D) predictions for FDK using a MTGS model, (E) predictions for SEV in ADV18 using a NGS model, (F)
predictions for SEV using a MTGS model. The x-axis represents adjusted mean for DON, FDK, or SEV across the ADV and ARE generations. The y-axis represents
the GEBVs calculated for DON, FDK, or SEV from the NGS or MTGS models. Different colored data points represent genotypes that were advanced to the next
generation. The solid vertical line represents the mean of the adjusted means for the respective FHB resistance trait from the ADV generation, while the vertical
dashed line represents the mean of the adjusted means for the respective FHB resistance trait from the ARE generations. The solid horizontal line represents the
mean of GEBVs for the respective FHB resistance trait calculated from the NGS or MTGS models. The r label represents the Pearson correlation between GEBVs
and adjusted means.

with the vernalization response gene Vrn-B3. Even so, like most
FHB resistance traits and HD, we believe that this association
is variable and environmentally dependent (Buerstmayr et al.,
2019), as we saw correlations between DON and HD ranging
between r = 0.01 and r = 0.31 (Table 2).

We also updated our TPs for each generation by adding
phenotypic data for genotypes from the previous generation into
the following year’s TP. Other studies have found that updating
TPs helped to prevent the deviation in genetic relationships
between the TP and VP as new germplasm was added and
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FIGURE 4 | Scatter plots between genome-estimated breeding values (GEBVs) for three Fusarium head blight (FHB) resistance traits in soft red winter wheat from
two different genomic selection models (GS), including naïve models without covariates (NGS) and multi-trait GS models with covariates (MTGS), and adjusted
means for deoxynivalenol (DON) concentration, Fusarium damaged kernels (FDK), and severity (SEV) across two generations, F4:7 advanced from 2018 to 2019
(ADV19) and F4:8 elite from 2019 to 2020 (ARE20): (A) predictions for DON in ADV19 using a NGS model, (B) predictions for DON using a MTGS model, (C)
predictions for FDK from ADV19 using a NGS model, (D) predictions for FDK using a MTGS model, (E) predictions for SEV in ADV18 using a NGS model, (F)
predictions for SEV using a MTGS model. The x-axis represents adjusted mean for DON, FDK, or SEV across the ADV and ARE generations. The y-axis represents
the GEBVs calculated for DON, FDK, or SEV from the NGS or MTGS models. Different colored data points represent genotypes that were advanced to the next
generation. The solid vertical line represents the mean of the adjusted means for the respective FHB resistance trait from the ADV generation, while the vertical
dashed line represents the mean of the adjusted means for the respective FHB resistance trait from the ARE generations. The solid horizontal line represents the
mean of GEBVs for the respective FHB resistance trait calculated from the NGS or MTGS models. The r label represents the Pearson correlation between GEBVs
and adjusted means.

advanced through the breeding program (Meuwissen, 2009;
Clark et al., 2012; Lorenz et al., 2012; Lorenz and Smith, 2015;
Neyhart et al., 2017). Studies have also shown that larger TP sizes
can have higher prediction accuracies as well, particularly when
working with more diverse populations where new germplasm
is continually added to the breeding program (Heffner et al.,
2011; Mujibi et al., 2011; Heslot et al., 2012; Poland et al., 2012;

Isidro et al., 2015; Norman et al., 2018). We also observed this
trend for FDK and SEV between TP18_FHB and TP19_FHB;
however, we did not observe this trend for DON, where
prediction accuracy decreased when additional genotypes were
added from ADV18. This can likely be attributed to less variation
and a lower heritability for DON within ADV18. Genotypes
within ADV18 also had the FHB resistance alleles for Fhb1,
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which could have increased background population structure
within TP19_FHB.

Forward Prediction
Much like the results from the cross-validation analyses of the
TPs, the MTGS models had stronger correlations between their
calculated GEBVs and phenotypic results from their respective
VPs for FHB resistance traits, aligning with other studies
involving MTGS models (Jia and Jannink, 2012; Schulthess
et al., 2016; Lozada and Carter, 2019; Ward et al., 2019; Larkin
et al., 2020). This was clearly observed with TP18_FHB, when
correlations between MTGS GEBVs and ADV18 phenotypic
results were compared with correlations between NGS GEBVs
and ADV18 phenotypic results for all three traits. The prediction
accuracy advantage of the MTGS model was also observed with
correlations between GEBVs and ARE19 phenotypic results for
FDK and SEV when compared with NGS.

Our range in prediction accuracy for the NGS models were
between r = 0.08 and r = 0.45 while the range of our MTGS
models was between r = 0.10 and r = 0.83. These prediction
accuracies were within the range of prediction accuracies
observed for FHB resistance traits in previous studies (Rutkoski
et al., 2012; Arruda et al., 2015, 2016a; Larkin et al., 2020).
However, the observation of lower prediction accuracies under
specific circumstances was consistent with other studies with
forward prediction for GY (Belamkar et al., 2018; Calvert et al.,
2020). In an evaluation of forward prediction in the Kansas
State University wheat breeding program, the highest prediction
accuracy between the GEBVs for GY in the preliminary yield
trials (PYTs) and the actual phenotypic results for GY was
r = −0.16 (Calvert et al., 2020). The same study also used high-
throughput phenotyping traits as covariates in a MTGS model
for forward prediction of GY in wheat, however, the prediction
accuracy was unfavorable unless a large TP was used (Calvert
et al., 2020). This contrasts with our results where the use of other
FHB resistance or agronomic traits as covariates significantly
improved prediction accuracy for both TPs.

The MTGS model was also superior to phenotypic selection
based on ADV18 phenotypic data for all three traits; however, this
advantage disappeared when implementing the models trained
with TP19_FHB. This is likely because genotypes in ADV19
had a much higher prevalence of resistance alleles for Fhb1
compared with TP19_FHB, therefore the TP failed to account for
this major source of genetic resistance to FHB in the VP. This
highlights the importance of the TP being able to account for
population structure existing within the VP, otherwise prediction
accuracies can be lower. Such a result was foreshadowed with
the lower prediction accuracies from the cross-validation for
TP19_FHB, where no genotypes from the initial TP18_FHB
contained resistance alleles for Fhb1, while only a small portion of
genotypes from ADV18 contained the resistance alleles. A more
detailed description of major and minor FHB resistance QTL
present within TP18_FHB can be found in Larkin et al. (2020).

Response to selection was measured as the difference between
the mean of the top 50% of breeding lines in the ARE generation,
selected based on GEBVs and adjusted means of FHB resistance
traits for the ADV population, compared with the mean of the

full ARE population. Other studies have shown that GS could not
have as high of a response to selection as phenotypic selection;
however, our method of excluding phenotypic data from the
ADV genotypes from the selection dataset allowed for greater
independence from bias toward the phenotypic selection method
(Lozada et al., 2019). In terms of response to selection, both GS
models were superior to phenotypic selection for DON and FDK,
and the MTGS model for SEV, when using the TP18_FHB to
predict ADV18. Much like the results for prediction accuracy, this
strong advantage was not observed when using the TP19_FHB
to predict ADV19, except for the MTGS model for FDK, likely
due to the same reasons described above. There have been no
extensive forward prediction studies for FHB resistance traits
in wheat. Regardless, the fact that phenotypic selection did not
significantly outperform the MTGS model across years or traits
indicates that MTGS models may be a good supplement, if
not substitute for phenotypic selection, particularly during years
when it is difficult to phenotype.

When comparing GS models with phenotypic selection for
FHB resistance traits based on selection accuracy, the NGS and
MTGS models had higher selection accuracies for DON using
TP18_FHB, and the MTGS model was equal to phenotypic
selection using TP19_FHB. Both the MTGS and NGS models
were equally more accurate than phenotypic selection for
FDK with TP18_FHB. Additionally, the MTGS model was
equal in performance with phenotypic selection for SEV in
TP19_FHB. It has been mentioned that prediction accuracy does
not necessarily correlate with selection accuracy for forward
prediction (Belamkar et al., 2018).

CONCLUSION

This study showed that both NGS and MTGS could be
successfully implemented into a SRWW breeding program, while
using other agronomic and disease traits as covariates with
reasonable accuracy compared to phenotypic selection and again
asserted its value as a tool for plant breeders. We also found that
MTGS models performed significantly better than NGS models
in terms of both cross-validation within TPs as well as forward
prediction of untested genotypes for economically important
traits, such as FHB resistance traits. This was particularly evident
when there was a strong correlation between the trait of interest
and the covariate trait. This is one of the first studies to show that
MTGS could be effectively implemented for forward prediction
within a wheat breeding program. This is also the first study
to extensively investigate the use of forward prediction when
breeding for FHB resistance in wheat. We found that GS could
serve as a suitable, albeit imperfect, alternative to phenotypic
selection when implemented during years where environmental
conditions prohibit accurate phenotypic selection, particularly
when experiencing late freezing events or extensive lodging.

Prior to implementing GS into their own breeding programs,
breeders must consider the genetic relationships between their
prospective TPs and the breeding lines they hope to use as
their VP. In the case of MTGS, breeders must also consider the
correlations between their traits of interest and secondary traits
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used as covariates, as these correlations can differ between the
TP and VP. For example, there could be a strong correlation
between DON and HD in the TP but there could be a weak
correlation between the two traits in the VP, therefore the MTGS
model might not be more accurate than a NGS model. Inversely,
there could be a strong correlation between traits in the VP while
there is a weak correlation between traits in the TP, therefore
MTGS could be more accurate than expected when forward
prediction is implemented.
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Fusarium seedling blight (FSB) is an important disease of wheat occurring as part of the
Fusarium disease complex consisting also of Fusarium head blight (FHB). 240 Chinese
elite cultivars and lines were evaluated in greenhouse experiments for FSB resistance
and genotyped using the wheat 90 K single nucleotide polymorphism arrays. Among
them, 23 accessions had an average lesion length of less than 0.6 cm, exhibiting
potential for breeding for FSB resistance in wheat. Jingfumai 1 and Yangmai 11 had
a relatively high resistance to both FSB and FHB simultaneously. Six relatively stable
quantitative trait loci (QTLs) were detected on chromosome arms 1DL, 3AS, 3BL,
6BL, 7AL, and Un using the mixed linear model approach, interpreting 4.83–7.53% of
phenotypic variation. There was a negative correlation between the average FSB lesion
length and the BLUE FHB index with a low coefficient, and resistance to both diseases
appeared to be conferred by different QTLs across the same population. Four KASP
markers were detected on 1DL, 3AS, 3BL, and 6BL in QTLs to facilitate marker-assisted
selection. Combined with transcriptome data analysis, eight defense-related genes were
considered as candidates for mapping QTLs. The resistant elite germplasm, mapped
QTLs, and KASP markers developed in this study are useful resources for enhancing
Fusarium seedling blight in wheat breeding.

Keywords: common wheat, Fusarium seedling blight, Fusarium head blight, GWAS, QTL

INTRODUCTION

Fusarium seedling blight (FSB) and Fusarium head blight (FHB), primarily caused by Fusarium
pathogens, refer to are economically devastating diseases in wheat (Triticum aestivum L.) as well as
other small grain cereals across the world (Bai and Shaner, 2004; Li X. et al., 2010; Ren et al., 2016).
Fusarium seedling blight can cause extensive damage to growing seedlings or foot rot later during
the growing season, leading to reduced emergence and crop establishment and consequently yield
losses in wheat (Wiese, 1987; Antalová et al., 2020). Moreover, FSB can provide a pathogen source
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for following FHB infection, creating reddish scabby spikes
(Haigh et al., 2009; Li X. et al., 2010). Due to the global climate
change and tillage management, FSB and FHB usually reach
epidemic levels, causing huge yield losses across millions of
hectares in global wheat production regions (Cheng et al., 2015;
Liu et al., 2016). In addition, both FSB and FHB produce various
mycotoxins during infection, with high toxicity, posing a threat to
people as well as livestock (Pestka and Smolinski, 2005; Liu et al.,
2012).

China is the largest producer and consumer of wheat (Shi
and Ling, 2018). Cultivars play a major role in national wheat
production, and developing and using resistant cultivars can
confer protection to Fusarium pathogens. The analysis of the
probable association between FSB and FHB can help develop
new strategies to combat the Fusarium disease complex. Twelve
Polish spring wheat cultivars and 18 spring wheat accessions
from CIMMYT were examined for resistance to FSB and FHB by
applying a highly aggressive fungal isolate, and no correlation was
found between the two resistance types (Wisniewska and Busko,
2005). No significant correlation was also detected between
FSB infection and FHB index and between FSB infection and
DON content in a Wuhan/Nyubai doubled haploid (DH) wheat
population (Somers et al., 2003; Tamburic-Ilincic et al., 2009). In
subsequent research, QTLs for Fusarium resistance at seedling
and spike stages were different, but further verification was
required for various wheat populations (Tamburic-Ilincic et al.,
2009). Comparatively, there have also been reports concerning
the positive association between FSB and FHB resistance
(Mesterhazy, 1987; Wu et al., 2005; Shin et al., 2014). Mesterhazy
(1987) found a significant correlation between FSB and FHB
resistance, and the most resistant genotypes at the seedling stage
could yield the FHB resistant material with a large probability.
By inoculation of wheat coleoptiles with Fusarium graminearum
isolates, Wu et al. (2005) found a significant correlation between
FSB and FHB resistance in the same genotype in the field. Using
the clip-dipping inoculation method, Shin et al. (2014) found the
remarkable correlation between the lesion length and Type II
FHB resistance and suggested that the method for the evaluation
of FSB resistance may provide a simple and feasible way for the
early screening of FHB resistance in wheat.

Using linkage analysis, quite a few QTLs associated with FHB
resistance were detected in 21 wheat chromosomes reported
(Buerstmayr et al., 2009; Ma et al., 2020), with 7 FHB genes
(Fhb1-Fhb7) being formally cataloged (Zhu et al., 2020). But FSB
has not received much attention so far, and there have been
very few studies on the QTLs for FSB resistance. A QTL on
chromosome 5B controlling FSB resistance was identified in a
DH population, and its linked marker WMC75 interpreted 13.8%
of the phenotypic variation (Tamburic-Ilincic et al., 2009). Single
major QTLs for FSB resistance, caused by Microdochium nivale
and Microdochium majus, were detected on the chromosomes
1AL and 2BS, respectively (Ren et al., 2016).

Genome-wide association studies (GWAS) on the basis of
linkage disequilibrium (LD) offer several advantages over linkage
mapping, which has gained success in the analysis of different
quantitative characteristics in wheat (Sapkota et al., 2019;
Hu et al., 2020). For example, using 166 elite wheat varieties from

Yellow and Huai River Valleys Wheat District in China, 120
common loci were detected for their associations with grain yield,
among which 78 were potentially new (Li et al., 2019). In our
previous studies, five QTLs were identified for their consistent
associations with FHB resistance in a natural population, among
which the QTLs on 5AS, 5AL, and 7DS were possibly new (Zhu
et al., 2020). However, GWAS to identify FSB in wheat has not
been reported yet, and the molecular mechanisms for FSB remain
poorly understood.

In the present study, we evaluated FSB resistance in Chinese
elite wheat lines and then performed GWAS and QTL analyses.
The study aimed to (1) identify wheat germplasms with FSB
resistance that could be used as resistance donors in breeding
and confirm the relationship between FSB and FHB resistance
caused by Fusarium pathogens, (2) uncover novel FSB-resistant
loci that could be used in molecular marker-assisted breeding.
The findings provide an insight into the genetics of FSB response
in Chinese cultivars, and the developed markers associated with
the mapped QTLs may be used for breeding FSB resistance wheat.

MATERIALS AND METHODS

Plant Materials
A total of 240 common wheat cultivars or elite lines
(Supplementary Table 1) were selected as the natural population
to evaluate FSB resistance and perform GWAS analysis,
as described in our previous study (Zhu et al., 2020). The
population included 229 elite wheat cultivars (lines) developed in
the main wheat-growing areas of China, covering 12 provinces
with five agroecological systems, and could represent the current
situation of breeding in China. The remaining 11 genotypes
belonged to CIMMYT (10) and Australian (1). Seeds were
harvested in the Wuhan Nanhu farm of Hubei Academy of
Agricultural Sciences (N 30.28◦, E 114.19◦) during the cropping
seasons in 2018–2019.

Phenotyping
Wheat coleoptiles at the seedling stage were inoculated with
conidiospores using the previously described method (Li X. et al.,
2010; Cheng et al., 2015) with minor alterations. For seedling
inoculation, the concentration of the macroconidia suspension
for the aggressive isolate F. graminearum Huanggang 1 (Zhu
et al., 2020) was regulated to 5 × 105 spores/mL with sterilized
distilled water. Forty full wheat seeds per cultivars (lines) were
disinfected using 0.1% HgCl2 for 1 min and then rinsed twice
using sterilized distilled water. Sterilized seeds were placed on wet
filter paper in Petri dishes and incubated at 20◦C in the dark for
2 days. Then 20 seeds with steady growth were picked, transferred
to a sterilized germination box (length, width, and height of
11.5, 11.5, and 9.8 cm, respectively) with three layers of wet filter
papers, and kept in the dark at 20◦C for 1 day. Top coleoptiles (2–
3 mm) were dissected, and a 3-µL aliquot of the macroconidial
suspension was injected into the slant side of the dissected
seedlings. Inoculated seedlings were stored in the germination
box in the dark at 20◦C, in dark as previously mentioned. The
brown lesions of diseased seedlings were measured at 7 day post
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inoculation, and the lesion length was determined as previously
described (Li X. et al., 2010). For each genotype, 20 wheat
seedlings were examined each time, and the average value was
used for subsequent analysis. The experiments were performed
independently with triple replications.

Statistical Analysis
The t-tests, as well as Pearson’s correlation analysis for
independent samples, were conducted using IBM SPSS Statistics
version 19.0 (IBM Corporation, Armonk, NY, United States).
Histograms showing the distribution of the lesion length (cm) of
240 cultivars (lines) were made for each replicate with a script
executed in R version 3.5.1.1

Genotyping
Illumina 90 K SNP array genotyping was performed on 240
wheat accessions (Wang et al., 2014). Calling and filtering for
SNPs, kinship, and population structure analysis have all been
all elaborately explained in the previous research (Zhu et al.,
2020). A total of 19,803 with MAF of >5 and <20% missing
data of 22,922 polymorphic SNPS were employed for subsequent
analysis (Zhu et al., 2020). Population structure analysis was
performed via ADMIXTURE.2 The population fell into three
subgroups, basically based on geographic origin and pedigree
(Zhu et al., 2020).

Genome-Wide Association Studies for
Fusarium Seedling Blight Resistance
Associations between genotypic and phenotypic data were
analyzed in Tassel v5.0. A kinship (K) + PCA model was used
to perform the MLM analysis for controlling the background
variation and eliminating spurious marker-trait associations
(MTAs). R2 exhibiting the variation explained by SNP was
documented (Bradbury et al., 2007). SNPs with an adjusted-
log10 (P-value) of ≥3.0 were considered associated with FSB
resistance. The remarkable loci in a minimum of two repetitions
detected in the research were stable QTLs. Remarkable SNP
markers in one linkage disequilibrium on the same chromosome
represented one locus.

Kompetitive Allele-Specific PCR Assay
The SNP markers remarkably associated with FSB resistance
were identified using GWAS and transformed into Kompetitive
Allele-Specific PCR (KASP) markers to facilitate their application
in MAS. The SNP contextual sequences were obtained at
GrainGenes3 and the primers were designed by PolyMarker4 or
the primer premier 5.0 (PREMIER Biosoft International, Palo
Alto, CA, United States). Amplification was performed initially at
95◦C for 15 min, 10 cycles of touchdown PCR (at 95◦C for 20 s;
an initial touchdown at 65◦C, followed by a reduction of −1◦C
per cycle for 25 s), and the final 30 additional cycles for annealing
(95◦C for 10 s; 60◦C for 60 s). Fluorescence signals were inspected

1www.r-project.org
2http://software.genetics.ucla.edu/admixture
3https://wheat.pw.usda.gov/GG3/
4http://polymarker.tgac.ac.uk

under the multifunctional microplate reader PHERAstarPlus
(BMG LABTECH, Ortenberg, Germany) and determined via
KlusterCaller (LGC Genomics, Teddington, United Kingdom).

Candidate Gene Analysis
To identify the candidate genes associated with typical SNPs,
physical positions of markers before the chromosome name were
introduced into Ensembl,5 and genes within a 2 Mb distance
from typical SNPs were detected to assess their candidacy for FSB
resistance. The transcript IDs of all these genes were obtained
from wheat sequences (Alaux et al., 2018). We used another
publicly available database, expVIP,6 to obtain the expression
profiles of all these genes in wheat seedling coleoptile organs
infected by Fusarium spp. (Ma et al., 2014; Powell et al., 2017).
To visualize the expression profiles, heat maps were drawn using
TBtools (Chen et al., 2018) from differently expressed genes, with
the absolute value of log2 fold change of≥1 or≤–1 at either time
point. Up-regulated genes in resistant varieties associated with
disease resistance annotated by RefSeq Annotation v1.1 (Appels
et al., 2018) were identified as candidate genes. The candidate
genes were further used for searing the sequences with high
similarity via NCBI, combined with a basic local alignment search
tool (BLAST).7

RESULTS

The Evaluation of Fusarium Seedling
Blight Resistance
The assessment of FSB resistance in 240 wheat accessions
showed a lesion length within the range of 0.075–2.896,
with a normal distribution in three replications (Table 1
and Figure 1). Pearson’s correlation coefficients among three
replications ranged from 0.535 to 0.577 with a significant
difference (P < 0.01), and the average values were significantly
associated with repeats, with correlation coefficients of 0.826,
0.857, and 0.828 for each repeat (Table 1). Further analysis
indicated that 23 accessions, including the elite cultivars Zhoumai
17, Yanzhan 4110, Yunong 035, Jimai 38, Yumai 69, Jingfumai 1,
Zhoumai 16, Yannong 24, and Yangmai 11 showed an average
lesion length of less than 0.6, with a potential for breeding
for FSB resistance in wheat. There were 105, 71, 29, and
12 accessions showing the average lesion lengths within the
ranges of 0.6–1.0, 1.01–1.40, 1.41–1.80, and >1.80, respectively.
Representative accessions with different grades of resistance to
FSB are represented in Table 2.

The Correlation Between Fusarium
Seedling Blight and Fusarium Head
Blight
Correlation coefficients were determined based on FSB infection
values in the research and BLUE values of FHB indices, calculated

5https://urgi.versailles.inra.fr/gb2/gbrowse/wheat_survey_sequence_annotation
6http://www.wheat-expression.com/
7http://blast.ncbi.nlm.nih.gov/Blast.cgi
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TABLE 1 | Descriptive statistics and correlation coefficients of Fusarium seeding blight and Fusarium head blight of 240 wheat cultivars (lines).

T-TEST Correlations

Mean Min Max SD Std Error FSB_Rep1 FSB_Rep2 FSB_Rep3 FSB_Mean

FSB_Rep1 1.159 0.139 2.769 0.478 0.031

FSB_Rep2 0.946 0.075 2.896 0.531 0.034 0.535**

FSB_Rep3 1.052 0.165 2.735 0.437 0.028 0.545** 0.577**

FSB_Mean 1.049 0.346 2.510 0.404 0.026 0.826** 0.857** 0.828**

BLUE of FHBa 46.66 5.00 89.00 16.571 1.070 –0.239** –0.160* –0.273** –0.263**

**Significant at P < 0.01.
*Significant at P < 0.05.
aData from our previous study (Zhu et al., 2020).

FIGURE 1 | Frequency distribution of Fusarium seeding blight of 240 wheat cultivars (lines). (A) FSB_Rep1; (B) FSB_Rep2; (C) FSB_Rep3; and (D) FSB_mean.

within 4 years, according to the results of our previous study
(Zhu et al., 2020) using the same population. The average FSB
lesion length was negatively correlated with the BLUE FHB index
across the population, although a low coefficient of R = –0.263
was determined (Table 1). The most notable cultivar Sumai3
and its derivative Ning7840 with a high FHB resistance showed
quite low resistance to FSB in this assay. Conversely, the FHB
susceptible cultivars Zhengyumai 9987 and Zhoumai 17 (Zhu
et al., 2020) showed relatively high resistance to FSB. However,
some accessions such as Jingfumai 1 and Yangmai 11 had
relatively high resistance to both FSB and FHB simultaneously
(Zhu et al., 2020).

Marker-Trait Association Analysis
Six QTLs on chromosome arms 1DL, 3AS, 3BL, 6BL, 7AL,
and Un, designated as Qfsb.hbaas-1DL, Qfsb.hbaas-3AS,

Qfsb.hbaas-3BL, Qfsb.hbaas-6BL, Qfsb.hbaas-7AL, and
Qfsb.hbaas-un, respectively, were significant in a minimum
of two repetitions, interpreting phenotypic variation of 4.83–
7.53% (Table 3 and Figure 2). Representative significant
markers for these QTLs were IWB41243, IWB64668, IWB3107,
IWA3221, IWB41907, and IWB36312, respectively. For the goal
of identifying minor QTL, this study was underpowered
because of small population size which results in not
seeing high signals.

Of the 240 genotypes, 12, 180, 130, 204, 220, and 217
possessed the resistance alleles Qfsb.hbaas-1DL, Qfsb.hbaas-
3AS, Qfsb.hbaas-3BL, Qfsb.hbaas-6BL, Qfsb.hbaas-7AL, and
Qfsb.hbaas-un, respectively, on the basis of marker analysis
(Table 4 and Supplementary Table 1). The mean FSB lesion
length in accessions with favorable Qfsb.hbaas-1DL alleles was
21.4% shorter than with unfavorable alleles. Discrepancies
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TABLE 2 | Materials with different resistance levels to Fusarium seedling blight (FSB) (only representative materials are shown).

Mean of lesion
length (cm)

Number Representative cultivars (lines)

≤0.60 23 Zhengyumai 9987, Zhoumai 17, Yanzhan 4110, Yunong 035, Lianmai 2, Xikemai 4, Yumai 70–36, Zhongmai 1, Yan 2415, Luohan 2,
Luomai 21, Jimai 38, Yumai 69, Jingfumai 1, Zhoumai 16, Yannong 24, and Yangmai 11

0.60–1.00 105 Xinmai 20, SYN1, Kenong 199, Zhongyu 10, Yangmai 22, Ningmai 13, Chuanmai 42, Zhengmai 366, Xinong 9871, Yangmai 13,
Liangxing 99, Xinong 979, Jimai 22, Ocoroni, Mianmai 37, Xiaoyan 22, Yangmai 17, Ningmai 9, Hengguan 35, and Emai 27

1.01–1.40 71 Lantian 18, Jingdong 17, Emai 23, Yangmai 12, Xinmai 11, Mayoor, and Huaimai 20
Zhongmai 9, Zhengmai 9023, Jimai 20, Ningdong 10, 04 Zhong 36, Aikang 58, Chuanmai 50, Wuhan 1, Zhenmai 168, Ningchun 43,
Jingmai 103, Lumai 21, Ningmai 16, Pingan 6, and Emai 580

1.41–1.80 29 Yumai 48, Emai 12, Een 6, Chuanmai 51, Yangmai 16, Lantian 23, Ningdong 11, Yangmai 158, Ningmai 8, Emai 18, Lunxuan 987,
Xiangmai 25, Jingdong 8, and Xiaoyan 6

>1.80 12 Xinong 88, Jingzhou 66, Ningmai 11, Ning 7840, Zhongnong 2, Xiangmai 55, Jining 16, Een 5, Een 1, Sumai 3, and Gamenya

TABLE 3 | Loci significantly associated with FSB resistance in at least two environments in the 240 wheat cultivars (lines) using the mixed linear model (MLM)
model in Tassel v5.0.

QTL Markera Variantb Chrc Position (Mb)d Environment P-value R2 (%)e

Qfsb.hbaas-1DL IWB41243 A/G 1DL 458.9 Rep2/Mean 6.36E-04/7.37E-04 5.74/5.33

Qfsb.hbaas-3AS IWB64668 T/G 3AS 176.6 Rep1/Mean 4.57 E-04/8.16 E-04 5.12/4.83

Qfsb.hbaas-3BL IWB3107 G/A 3BL 723.0 Rep1/Mean 3.24 E-04/2.14 E-04 5.47/6.29

Qfsb.hbaas-6BL IWA3221 C/T 6BL 668.0 Rep1/Rep3/Mean 6.34E-04/6.39E-04/1.21 E-04 5.07/5.20/6.50

Qfsb.hbaas-7AL IWB41907 G/A 7AL 724.1 Rep1/Mean 5.86 E-05/6.99 E-05 7.00/7.53

Qfsb.hbaas-un IWB36312 A/C Un 32.2 Rep2, Mean 2.51 E-04/9.40 E-05 6.18/6.74

aRepresentative markers showing the strongest association with the FSB resistance locus.
bFavorable allele is underlined.
cChr, chromosome.
dPhysical positions based on the Chinese Spring reference genome sequences from the International Wheat Genome Sequencing Consortium (IWGSC,
http://www.wheatgenome.org).
ePercentage of phenotypic variance explained.

between Qfsb.hbaas-6BL and Qfsb.hbaas-7AL were much
greater (31.7 and 36.3%, respectively). In Qfsb.hbaas-3AS,
Qfsb.hbaas-3BL, and Qfsb.hbaas-un, the FSB lesion lengths were
reduced by 17.4, 13.8, and 8.8%, respectively (Table 4).

The Relationship Between the Fusarium
Seedling Blight Lesion Length and the
Number of Favorable Alleles
To examine the pyramiding effects of favorable alleles of various
QTLs, we analyzed the number of favorable alleles in 6 mapped
loci per accession. Favorable alleles were 0–5. Linear regression
(r2 = 0.872) revealed the correlation between disease severity and
the number of favorable alleles (Figure 3 and Supplementary
Table 2). Accessions including a larger number of favorable
alleles, such as Zhoumai16 (5), Xikemai4 (4), and Zhoumai17
(4), exhibited strong FSB resistance. Conversely, Yang 07–
15, with no favorable alleles, exhibited low FSB resistance
(Supplementary Table 1).

Development of Kompetitive
Allele-Specific PCR Markers for
Quantitative Trait Locis Underlying
Resistance to Fusarium Seedling Blight
The SNPs (IWB41243, IWB64668, IWB3107, and
IWA3221), associated with Qfsb.hbaas-1DL, Qfsb.hbaas-3AS,

Qfsb.hbaas-3BL, and Qfsb.hbaas-6BL, respectively, were
successfully used to develop KASP markers (Table 5). All 240
wheat accessions were genotyped by these KASP markers. The
results demonstrated that the genotypes from the KASP test were
identical to the chip assay with low-frequency oscillations (2.5,
5.0, 3.3, and 3.8% for each marker, respectively).

The Prediction of Candidate Genes
A total of 291 candidate genes were located within the
candidate regions. Combined with transcriptome data from
public databases (Ma et al., 2014; Powell et al., 2017), 57 genes
were differently expressed in wheat seedling coleoptile organs
after infection by Fusarium spp. (Figure 4 and Supplementary
Table 3). Among them, eight unique annotated genes involved
in plant disease resistance were considered as candidates for
mapping QTLs (Table 6). Two genes encoding the disease
resistance protein RPM1 and receptor-like protein kinase
were identified as candidates for Qfsb.hbaas-1DL. A gene
encoding L-type lectin receptor kinase might contribute to
FSB resistance for Qfsb.hbaas-3AS. A gene encoding MADS-
box protein was considered as a candidate for Qfsb.hbaas-6BL.
For Qfsb.hbaas-7AL, a gene encoding NAC domain-containing
protein was identified. Three genes encoding serine/threonine
kinase-like protein, HCBT-like defense response protein, and
subtilisin-like protease might contribute to FSB resistance for
Qfsb.hbaas-un.
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FIGURE 2 | Manhattan plots from genome-wide association scan for Fusarium seedling blight (FSB) severities among 240 wheat accessions in (A) FSB_Rep1,
(B) FSB_Rep2, (C) FSB_Rep3, and (D) FSB_mean. Dashed red horizontal line is the significant threshold level.

DISCUSSION

Breeding the cultivars with resistance to FSB and FHB offers an
efficient way to control complex diseases and decrease yield losses
or mycotoxin occurrence in agricultural products. Combining
the two resistance traits in one elite wheat cultivar is challenging
due to its exposure to regulated independent genetic loci and
also the restricted size of resistant germplasm in the natural
environment (Tamburic-Ilincic et al., 2009). In this study, 229
elite Chinese wheat cultivars and lines, which represent the

genetic diversity in newly assembled accessions in China (Jia
et al., 2020), were investigated. A total of 54 cultivars reached the
maximum annual acreage of 1 × 105 ha during 2000–2016, and
quite a few cultivars such as Liangxing 99, Zhoumai 18, Jimai 22,
Zhoumai 22, Zhengmai 9023, and Aikang 58, have been used as
founder parents in breeding programs (Jia et al., 2020). Among
them, 23 accessions showed a relatively high-level resistance
with an average lesion length of less than 0.6 cm, exhibiting the
potential for breeding for FSB resistance in wheat. Despite the
negative correlation between FSB infection and FHB index in
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TABLE 4 | T-tests for differences in Fusarium seedling blight between two groups
of wheat accessions with contrasting resistance or susceptibility alleles for
quantitative trait loci (QTL) on chromosomes 1D, 3A, 3B, 6B, 7A, and Un.

QTL Present/Absent# Number Rep1 Rep2 Rep3 Mean

Qfsb.hbaas-1D Present 12 1.02a 0.57a 0.78a 0.79a

Absent 223 1.15a 0.95b 1.06b 1.06b

Qfsb.hbaas-3A Present 180 1.07A 0.89A 1.03a 1.00A

Absent 58 1.39B 1.11B 1.14a 1.21B

Qfsb.hbaas-3B Present 130 1.05A 0.84A 0.94A 0.94A

Absent 108 1.26B 1.06B 1.17B 1.16B

Qfsb.hbaas-6B Present 204 1.08A 0.88A 1.00A 0.99A

Absent 31 1.56B 1.40B 1.41B 1.45B

Qfsb.hbaas-7A Present 220 1.10A 0.89A 1.02A 1.00A

Absent 15 1.69B 1.48B 1.54B 1.57B

Qfsb.hbaas-un Present 217 1.15a 0.92a 1.05a 1.04a

Absent 19 1.15a 1.14a 1.14a 1.14a

#The QTL present superior effect (present) or inferior effect (absent), A and B
represent significant at P < 0.01, a and b represent significant at P < 0.05.

FIGURE 3 | Relationship between the number of favorable quantitative trait
locis (QTLs) and the mean FSB severity. Lesion length indicates the FSB
severity.

the population (Table 1), combined with our previous research
results (Zhu et al., 2020), we also found that some cultivars such as
Jingfumai 1 and Yangmai 11 had relatively great resistance to both
FSB and FHB simultaneously. Jingfumai 1 and Yangmai 11 both
bred in the Middle and Lower Yangtze River Valleys were red-
grained spring wheat and high resistant to pre-harvest sprouting.
The spike length of the two lines was 8.0 and 8.4 cm, and the
spikelet number was 18.3 and 17.2, respectively. The research
conformed to the findings reported by Ren et al. (2015), who
found that the FSB-resistant cultivar Petrus was simultaneously
resistant to FHB. These lines were good parent candidates for
future crosses in breeding for Fusarium seedling resistance and
head blight resistance in wheat.

The correlation analysis between FSB and FHB resistance
has been reported in previous studies (Mesterhazy, 1987;
Ruckenbauer et al., 2001; Gosman et al., 2005; Tamburic-Ilincic
et al., 2009; Shin et al., 2014). Few studies revealed a positive
association between FSB and FHB resistance. Shin et al. (2014)
reported the significant correlation coefficients between the

TABLE 5 | Primer sequences of single nucleotide polymorphism (SNP) markers for
validation in wheat lines by Kompetitive Allele-Specific PCR (KASP) assay.

QTL Primer Sequence (5′–3′)

Qfsb.hbaas-1D P41243A CCACCTTTCAACTCGCTCA

P41243B CCACCTTTCAACTCGCTCG

P41243C CTCACTTCTTCTAGAACAAATCGAA

Qfsb.hbaas-3A P64668A TGCAATCTTGGACAAACATCAT

P64668B TGCAATCTTGGACAAACATCAG

P64668C GTGCTTTGTCAACAACAGATGC

Qfsb.hbaas-3B P3107A GGTCGCATCAGGAAGAGCA

P3107B GGTCGCATCAGGAAGAGCG

P3107C TTCTTCCCTTTACAGACTCTTCAGC

Qfsb.hbaas-6B P3221A GTTTTTGTGGCTGCGGGT

P3221B GTTTTTGTGGCTGCGGGC

P3221C TTCTTCCCTTTACAGACTCTTCAGC

A Primer labeled with FAM: GAAGGTGACCAAGTTCATGCT.
B Primer labeled with HEX: GAAGGTCGGAGTCAACGGATT.

lesion lengths and Type II resistance to FSB and FHB, but the
number of samples was not very large and only 29 Korean winter
wheat cultivars were chosen in trials. The CIMMYT spring wheat
line LSP2 was proved to have a high susceptibility to FSB and
resistance to FHB, caused by Fusarium spp. (Ren et al., 2016).
The widely planted British winter wheat cultivar Rialto was highly
resistant to FSB, caused by Microdochium spp., while some
reports revealed its high susceptibility to FHB (Srinivasachary
et al., 2008). Some wheat cultivars, including Chinese local
cultivars Wangshuibai and Sumai3, were highly resistant to FHB,
and high susceptibility to FSB was also found (Mesterhazy, 1987;
Wu et al., 2005; Li X. et al., 2010). Using Sumai3 and Falat
as the cultivars resistant and susceptible to FHB, respectively,
Sorahinobar et al. (2016) observed little correspondence between
wheat seedling tolerance to F. graminearum crude extract
and resistance to FHB. In both our previous (Zhu et al.,
2020) and present studies, Sumai3 showed an FSB-susceptible
reaction while exhibiting FHB resistance in response to Fusarium
spp. Negative correlations, albeit low, between FSB and FHB
resistance were observed in the present study. These results
also agreed with the findings published by Bruins et al. (1993);
Ruckenbauer et al. (2001), Gosman et al. (2005), and Tamburic-
Ilincic et al. (2009), who discovered that greenhouse experiments
in seedling cannot be used when selecting for FHB resistance.

Two transgenic wheat lines expressing two anti-fungal
peptides exhibited enhanced resistance to FSB and FHB, while
FHB resistance could be detected in the other five lines (Liu
et al., 2012). Transgenic wheat overexpressing an A. thaliana
NPR1 gene could increase the severity of FSB, although FHB
resistance increased simultaneously (Gao et al., 2013). Li X. et al.
(2010) firstly reported a close association between FHB and FSB
resistance in wheat using distinct molecular profiles for disease-
associated gene expression and suggested that there may be two
resistance mechanisms in wheat spikes and seedlings in response
to FHB pathogens. Some studies have also shown different QTLs
for resistance to FSB and FHB (Tamburic-Ilincic et al., 2009; Ren
et al., 2016). In our previous study, five QTL on chromosome
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FIGURE 4 | Clustering heatmap for differentially expressed genes infected by Fusarium spp. compared to those in the mock. S-NIL1-Fp 3 days, susceptible isolines
infected by Fusarium spp. after 3 days; S-NIL1-Fp 5 days, susceptible isolines infected by Fusarium spp. after 5 days; R-NIL1-Fp 3 days, resistant isolines infected
by Fusarium spp. after 3 days; R-NIL1-Fp 5 days, resistant isolines infected by Fusarium spp. after 3 days; Chara-Fp 36 h, wheat culture “Chara” infected by
Fusarium spp. after 36 h.
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arms 1AS, 2DL, 5AS, 5AL, and 7DS were associated with FHB
resistance, explaining 5.4–10.3% of phenotypic variation (Zhu
et al., 2020). Using the same population, we identified six entirely
different QTL on chromosome arms 1DL, 3AS, 3BL, 6BL, 7AL,
and Un, interpreting phenotypic variation of 4.83–7.53% (Table 3
and Figure 2). Different regions suggested the differences in
QTLs for resistance to FSB and FHB and resistance to FSB and
FHB is probably independent. Thus, due to gene recombination,
a few accessions in this research exhibited Fusarium resistance in
seedling and head.

There might be two main reasons why discrepant alterations
in genes or QTLs could be associated with resistance to both FSB
and FHB. The first reason is the infection time; FSB infection
occurs during the seedling growth, whereas FHB infection occurs
during the flowering stage. It is well known that different
genes can be involved in the resistance of host plants to one
disease in various stages of plant development (Li H. B. et al.,
2010). The second reason is the infection of different organs
by the two diseases. Miedaner (1997) put forward the idea
that complex interactions can occur between the resistance to
diseases across different plant growth stages, plant organs, or
host genotypes. We suggested that the mechanisms and genes
involved in resistance to Fusarium during seedling growth and
spike formation are possibly different, and separate screening is
essential to evaluate the resistance to FSB and FHB, caused by
Fusarium in breeding programs.

The discovery of novel genes or QTLs is a constant challenge
and extremely important in wheat breeding. Many QTLs
associated with FHB resistance have been detected (Zhu et al.,
2020), whereas there have been very few studies on QTLs for
resistance to FSB. Using a Wuhan/Nyubai doubled haploid (DH)
wheat population, merely one QTL, controlling FSB resistance,
detected on chromosome 5B and marker WMC75, could
interpret 13.8% phenotypic variation in the trait (Tamburic-
Ilincic et al., 2009). Using the Rialto/LSP2 DH population, a single
major QTL conferring FSB resistance to Microdochium majus
was found on the chromosome 1AL in all four experiments,
accounting for 32.5–56.6% of the phenotypic variation; a
significant QTL conferring FSB resistance to Microdochium
nivale was discovered on chromosomes 2BS and explained 29.3–
55.0% of the phenotypic variation (Ren et al., 2016). In this

research, we detected six QTLs on chromosome arms 1DL, 3AS,
3BL, 6BL, 7AL, and Un that were significant for resistance to
FSB and previously uncharacterized in wheat, and therefore
they were likely to be novel QTLs for FSB resistance. The
average lesion length dramatically decreased when the number
of favorable alleles increased (Figure 3). This finding suggested
the prospective role of these QTLs in FSB resistance. But some
QTls such as Qfsb.hbaas-1D and Qfsb.hbaas-7A have very tiny
minor allele frequencies, they may not be real signals. To validate
the real effects of these 6 mapped QTLs, typical significant
markers should be examined using various bi-parental and
natural populations.

Combined with the analysis of transcriptome data, we
identified eight unique annotated genes involved in plant disease
resistance in wheat in IWGSC RefSeq v1.1, which were linked to
the six QTLs (Table 6). The RPM1 is a CC-NB-LRR protein that
conferred resistance against Pseudomonas syringae pv. maculicola
1 (Mackey et al., 2002; Su et al., 2017), and TaRPM1 might
play a key part in the wheat innate immune response to the
infection caused by the powdery mildew pathogen (Nie and
Ji, 2019). Receptor-like protein kinases, which are the largest
gene family in plants, play essential roles in combating infection
caused by pathogens (Liu et al., 2017). TaCRK2, a novel receptor-
like kinase gene, plays a positive role in resistance to leaf rust
in wheat through the regulation of the HR cell death process
induced by P. triticina (Gu et al., 2020). L-type lectin receptor
kinases are omnipresent in plants and play an important role
in the initiation of innate immunity (Wang and Bouwmeester,
2017). An L-type lectin receptor kinase in Haynaldia villosa
conferred powdery mildew resistance in wheat (Wang et al.,
2018). Moreover, MIKC-type MADS-box genes exhibited new
expression patterns in response to biotic stress (Schilling et al.,
2020). The NAC protein constituting the most important plant
transcription factors could enhance resistance to Fusarium head
blight, as well as stripe rust (Ning et al., 2010; Perochon et al.,
2019). Serine/threonine kinase, one of the largest protein kinase
gene families, could confer resistance to powdery mildew and
stripe rust in wheat (Cao et al., 2011; Gou et al., 2015). HCBT-
like defense response protein, which was rapidly and transiently
expressed after being induced by the pathogen, plays an essential
role in fungal pathogen resistance (Brooks et al., 2002). The

TABLE 6 | Candidate genes for Fusarium seeding blight resistance.

Gene ID Chra Positionb (Mb) Predicted functionc Identity (%) Orthologous gene

TraesCS1D02G388800 1D 460.85 Disease resistance protein RPM1 99.40 LOC109754777

TraesCS1D02G381800 1D 457.07 Receptor-like protein kinase 100 LOC109748921

TraesCS3A02G169600 3A 177.70 L-type lectin receptor kinase 98.82 LOC109777203

TraesCS6B02G391800 6B 666.77 MADS-box protein 99.36 LOC119321270

TraesCS7A02G549000 7A 723.26 NAC domain-containing protein 90.58 LOC109760823

TraesCSU02G041800 Un 34.16 Serine/threonine kinase-like protein 83.01 LOC109786647

TraesCSU02G041700 Un 34.14 HCBT-like defense response protein 92.54 LOC109754238

TraesCSU02G039600 Un 32.13 Subtilisin-like protease 87.27 LOC109786891

aChr, chromosome.
bGene annotations were referred to IWGSC Ref Seq annotation v1.1 (IWGSC, http://www.wheatgenome.org/).
cThe sequences of T. aestivum gene were blasted in the NCBI (http://www.ncbi.nlm.nih.gov/), databases to identify putative gene functions.
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subtilisin-like protease is associated with pathogenicity in fungi
and plays an important role in resistance to leaf rust in wheat
(Fan et al., 2016).
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Identification of Two Major QTLs in
Brassica napus Lines With
Introgressed Clubroot Resistance
From Turnip Cultivar ECD01
Fengqun Yu* , Yan Zhang, Jinghe Wang, Qilin Chen, Md. Masud Karim, Bruce D. Gossen
and Gary Peng

Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada

Plasmodiophora brassicae causes clubroot disease in brassica crops worldwide.
Brassica rapa, a progenitor of Brassica napus (canola), possesses important sources
for resistance to clubroot. A doubled haploid (DH) population consisting of 84 DH
lines were developed from a Backcross2 (BC2) plant through an interspecific cross
of B. rapa turnip cv. ECD01 (resistant, R) with canola line DH16516 (susceptible, S)
and then backcrossed with DH16516 as the recurrent parent. The DH lines and their
parental lines were tested for resistance to four major pathotypes (3A, 3D, 3H, and
5X) of P. brassicae identified from canola. The R:S segregation ratio for pathotype 3A
was 1:3, and 3:1 for pathotypes 3D, 3H, and 5X. From genotyping by sequencing
(GBS), a total of 355.3 M short reads were obtained from the 84 DH lines, ranging from
0.81 to 11.67 M sequences per line. The short reads were aligned into the A-genome
of B. napus “Darmor-bzh” version 4.1 with a total of 260 non-redundant single-
nucleotide polymorphism (SNP) sites. Two quantitative trait loci (QTLs), Rcr10ECD01

and Rcr9ECD01, were detected for the pathotypes in chromosomes A03 and A08,
respectively. Rcr10ECD01 and Rcr9ECD01 were responsible for resistance to 3A, 3D,
and 3H, while only one QTL, Rcr9ECD01, was responsible for resistance to pathotype
5X. The logarithm of the odds (LOD) values, phenotypic variation explained (PVE),
additive (Add) values, and confidence interval (CI) from the estimated QTL position
varied with QTL, with a range of 5.2–12.2 for LOD, 16.2–43.3% for PVE, 14.3–25.4
for Add, and 1.5–12.0 cM for CI. The presence of the QTLs on the chromosomes was
confirmed through the identification of the percentage of polymorphic variants using
bulked-segregant analysis. There was one gene encoding a disease resistance protein
and 24 genes encoding proteins with function related to plant defense response in
the Rcr10ECD01 target region. In the Rcr9ECD01 region, two genes encoded disease
resistance proteins and 10 genes encoded with defense-related function. The target
regions for Rcr10ECD01 and Rcr9ECD01 in B. napus were homologous to the 11.0–
16.0 Mb interval of chromosome A03 and the 12.0–14.5 Mb interval of A08 in B. rapa
“Chiifu” reference genome, respectively.

Keywords: Brassica napus, Brassica rapa, Plasmodiophora brassicae, clubroot, genotyping by sequencing,
ECD01, resistance, pathotype
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INTRODUCTION

Brassica species are grown for the production of edible oil and
vegetables. The genomic relationships among the main species of
brassica crops were explained by the “triangle of U” (Morinaga,
1934; Nagaharu and Nagaharu, 1935); Brassica rapa (genome
represented as AA; n = 10), Brassica nigra (BB; n = 8), and Brassica
oleracea (CC; n = 9) are diploid species, and Brassica napus
(AACC; n = 19), Brassica juncea (AABB; n = 18), and Brassica
carinata (BBCC; n = 17) are amphidiploid species resulting from
hybridization between pairs of the diploid species.

Clubroot, caused by the obligate soil-borne pathogen
Plasmodiophora brassicae Woronin, is an important disease
in brassica crops worldwide. The pathogen belongs to the
infrakingdom Rhizaria, a diverse group of amoeboid microbes
(Nikolaev et al., 2004). Root infection by P. brassicae results in
the formation of characteristic clubs, also known as “galls,” on
the roots of host plants. These abnormal growths restrict the
flow of water and nutrients to the plant, resulting in above-
ground symptoms that include stunting, yellowing, premature
senescence, and reduction in both seed yield and quality (Pageau
et al., 2006). B. napus (oilseed rape/canola) is an important crop
for edible oil production worldwide. Clubroot was first identified
in canola fields on the Canadian Prairies in 2003 but has spread
rapidly to pose a serious threat to canola production in Canada.

Strains of P. brassicae collected in Canada have been classified
into more than 30 pathotypes based on the reactions on
the Canadian Clubroot Differential (CCD) set (Strelkov et al.,
2018; Hollman et al., 2021). Among the pathotypes, 3H was
the most prevalent original pathotype, 5X was the first new
pathotype that was aggressive on the first generation of Canadian
clubroot-resistant cultivars, and 3A and 3D are currently the
predominate new pathotypes in Alberta (Dakouri et al., 2021).
The pathogen can survive in soil as resting spores for a long
period, so it is difficult to manage using cultural practices or
chemical treatments (Voorrips, 1995). Genetic resistance can be
an effective strategy for clubroot management, but the sources
available for resistance to clubroot in B. napus are very limited.
Strong resistance was identified in its progenitor species, B. rapa,
especially in European turnip, B. rapa subsp. rapifera, which was
reviewed by Hirai (2006). The resistance to clubroot available
from European turnips has been transferred into Chinese cabbage
(B. rapa) (Piao et al., 2009). Introgression of traits from turnip
into B. napus is possible via interspecific crosses, so turnip has
been a valuable source for resistance to clubroot in canola.
Clubroot resistance (CR) from turnip cultivar “Debra” has been
transferred into B. napus cultivars of swede (Lammerink, 1970)
and from turnip cultivar “Waaslander” (also known as ECD04)
into forage (Johnston, 1974) and oilseed lines of B. napus
(Gowers, 1982).

Genetic mapping of CR genes is an important step toward
breeding for resistance to clubroot. To date, more than 20
genes or quantitative trait locus (QTLs) have been mapped
to six chromosomes of the A-genome in B. rapa through
biparental mapping methods. Crr2 and PbBa1.1 were located
on A01 (Suwabe et al., 2003; Chen et al., 2013); CRc and Rcr8
were located on A02 (Sakamoto et al., 2008; Yu et al., 2017);

Bra.CR.a, Bra.CR.c, Crr3, CRa, CRb, CRbkato, CRd, CRk, PbBa3.1,
PbBa3.2, PbBa3.3, Rcr1, Rcr2, Rcr4, and Rcr5 were located on
A03 (Matsumoto et al., 1998; Hirai et al., 2004; Piao et al.,
2004; Sakamoto et al., 2008; Chen et al., 2013; Chu et al., 2014;
Pang et al., 2014; Yu et al., 2016, 2017; Huang et al., 2017,
2019; Hirani et al., 2018); Crr4 were located on A06 (Suwabe
et al., 2003); qBrCR38-1 were located on A07 (Zhu et al., 2019);
Crr1, CRs, PbBa8.1, Bra.CR.b, Rcr3, Rcr9/Rcr9wa, and qBrCR38-
2 were located on A08 (Suwabe et al., 2006; Chen et al., 2013;
Yu et al., 2017; Hirani et al., 2018; Laila et al., 2019; Zhu et al.,
2019; Karim et al., 2020). Three genes, Crr1, CRa, and CRbkato,
have been cloned, all of which encode toll-interleukin-1 receptor,
nucleotide binding site, and leucine-rich repeat (TIR-NBS-LRR,
TNL) proteins (Ueno et al., 2012; Hatakeyama et al., 2013, 2017).
The identification of CR genes has been also carried out in
B. oleracea (Lee et al., 2016; Dakouri et al., 2018; Peng et al., 2018),
B. nigra (Chang et al., 2019), and B. napus (Manzanares-Dauleux
et al., 2000; Werner et al., 2008; Fredua-Agyeman and Rahman,
2016; Hasan and Rahman, 2016; Botero-Ramírez et al., 2020).

Brassica rapa turnip cv. “Debra” was used as the donor for
developing CR in swede cultivars (Lammerink, 1970). “Debra”
was included in the European clubroot differential (ECD) set
as differential line ECD01 (Buczacki et al., 1975; Diederichsen
et al., 2009). CRb, a CR gene identified in a Chinese cabbage
cv. “CR Shinki” and two CR genes in Chinese cabbage cv.
“CR Kanko,” CRk and CRc, were derived from ECD01 (Piao
et al., 2004) and “Debra” (Sakamoto et al., 2008), respectively.
Two other CR genes, BraA.CR.a (A03) and BraA.CR.b (A08),
were also identified from ECD01 (Hirani et al., 2018). Finally,
ECD01 was resistant to all of the Canadian pathotypes of
P. brassicae described by Strelkov et al. (2018) (Yu F, unpublished
data), which makes it a valuable source of genes for CR
canola in Canada.

In this study, an interspecific cross of ECD01 × B. napus
line DH16516 was made, and the resulting F1 progeny
were backcrossed with DH16516 to produce BC1. Continuing
backcross was made by crossing the BC1 with DH16516 to
produce Backcross2 (BC2). A doubled haploid (DH) population
consisting of 84 DH lines from a single BC2 plant was developed.
Genotyping by sequencing (GBS) analysis of the A-genome
of B. napus was used to (1) characterize the genome-wide
DNA variants in the DH lines, (2) detect QTLs associated with
resistance to the most important pathotypes of P. brassicae
on the Canadian Prairies, and (3) identify putative candidate
genes for each QTL.

MATERIALS AND METHODS

Plant Materials
A seed of ECD01, a turnip (B. rapa) cultivar carrying genes
for CR, was provided by Nutrien Ag Solutions (Saskatoon, SK,
Canada). DH16516 is a spring-type, clubroot-susceptible, DH
canola-quality line of B. napus developed by Dr. Séguin-Swartz
at Saskatoon Research and Development Centre, Agriculture
and Agri-Food Canada (SRDC, AAFC), Saskatoon, SK, Canada.
ECD01 was crossed to DH16516 (pollen donor) to produce F1
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progeny. Backcrosses with DH16516 (recurrent parent) were
performed to produce the BC1 and BC2 populations. A BC2
plant with resistance to pathotype 5X was chosen as the donor
for microspore culture. In total, 84 DH lines were developed
by Haplotech Inc. (Winnipeg, Canada) through a fee-for-service
contract. Seed from three plants of each DH line was increased in
a greenhouse at SRDC for study.

Evaluation of Resistance to Clubroot
Clubroot strains collected in canola fields in Alberta were
characterized based on pathotype and provided by Dr. S. E.
Strelkov at the University of Alberta, Canada. The method and
experimental design used in this study were as described by
Suwabe et al. (2003). Plants were tested for resistance to four
pathotypes of P. brassicae (strain F.3-14 for pathotype 3A, F.1-
14 for 3D, P. 41-14 for 3H, and LG02 for 5X). Fresh and clean
clubbed roots harvested at 4–5 weeks after inoculation of each
strain were cut into smaller pieces with scissors, macerated in
distilled water for 1–2 h, and blended in a blender at high
speed for 2 min. After filtering through eight layers of sterile
cheesecloth, resting spores extracted from the clubbed roots were
adjusted to a concentration of 1.0 × 107 resting spores/ml in
distilled water for plant inoculation.

Seeds of the DH population were sown into Sunshine #3
soilless mix (Sun Gro Horticulture Canada Ltd., Seba Beach,
AB, Canada) with Osmocote (Everris NA Inc., Dublin, OH,
United States) in 32 pot inserts held by trays (The HC Companies,
Twinsburg, OH, United States). Approximately 4 L of water was
added to each tray to soak the soilless mix overnight. Seven days
after planting, inoculation was performed by adding 15 ml of
inoculum (1× 107 spores/ml) into each pot with 6–9 seedlings of
each line. The inoculated plants were grown in a growth chamber
set at 22/18◦C day/night temperature with a 16-h photoperiod.
The canola cultivar “45H29” (resistant to pathotype 3H) and the
parental lines (ECD01 and DH16516) were included as controls.
Six weeks after inoculation, plants were pulled and the roots were
examined for clubroot symptoms.

Clubroot severity was evaluated on a 0–3 scale, where 0
indicates no clubbing, 1 indicates a few small clubs, 2 indicates
moderate clubbing, and 3 indicates severe clubbing. A disease
severity index (DSI) was calculated for each line using the method
of Horiuchi and Hori (1980):

DSI =
∑

(rating class) × (# plants in rating class)
total # plants in treatment × 3

× 100

Correlation coefficients of severity among the DH families to
four pathotypes of P. brassicae were calculated in Microsoft Excel
function “Correl” using the equation:

Correl (X,Y) =

∑
(x− x)

(
y− y

)√∑
(x− x)2 ∑ (

y− y
)2

Significance was determined using t-tests (Iversen and Gergen,
1997). Each line with a resistance response (DSI ≤ 30%) in
the initial study was reassessed two more times. Each of these
repetitions provided a similar result in most cases. For those

lines with inconsistent results, the highest DSI among the three
repetitions of the assessment was considered to be the most
accurate and was used to characterize the resistance response of
the line. DH lines with DSI ≤ 30% were classified as R and those
lines with DSI >30% as S lines.

The F1 plants were tested with pathotype 3H, and the BC2
donor plant was only tested with 5X for several reasons. First, the
clubroot reaction of a single plant can be assessed for only one
pathotype. Second, pathotype 3H was the predominant pathotype
in Canada when we obtained the F1 progeny and performed the
selection for CR. Similarly, at that time when the donor plant
from BC2 was chosen for microspore culture, pathotype 5X was
the only new pathotype that had been identified. Third, only a few
seeds of F1 were obtained due to difficulties in the interspecific
cross, so it was not possible to test multiple pathotypes in the
F1 progeny.

DNA Sequencing and Alignment of
Reads to a Reference Genome
DNA was extracted from young leaves of each of the 84
DH lines and parental lines following the DNeasy Plant Mini
Handbook from QIAGEN. GBS of the 84 DNA samples
and two replications of the parental cultivar ECD01 were
performed on an Illumina platform with pair-end sequencing
at BGI Americas Corp (Cambridge, MA, United States). Two
replications of cv. ECD01 were performed to increase the
sequencing depth for this parental line to provide a more accurate
call of the genotype at each single-nucleotide polymorphism
(SNP) site in the DH population. DH16516 is an important
B. napus canola recipient line for introgression of CR at
AAFC, Saskatoon, so whole-genome sequencing of the line
had already been performed at Plant Biotechnology Centre
(Saskatoon, SK, Canada) as part of the generation of a new
reference genome (unpublished data). The short reads from
the whole-genome sequencing data were used for this study.
The program SeqMan NGen 15 (DNASTAR, Madison, WI,
United States) was used for short read assembly. “Whole genome
DNA-Seq/Genotyping” assembly workflow, “Reference based
assembly-normal workflows” assembly type, and “Automatic
Mer size, Automatic Minimum match percentage, High Layout
stringency and Medium SNP filtering stringency” assembly
options were chosen. Short reads from each of the 84 DH samples,
parental DH16516, and the combined two replicates of ECD01
were aligned to B. napus reference genome for cv. “Darmor-bzh”
version 41.

Identification of Variants, Variant
Filtering, Construction of Linkage Map,
and Quantitative Trait Locus Mapping
Identification of variants (SNPs and InDels) in the DNA
sequences of each BC2 DH sample relative to the reference
genome of B. napus “Darmor-bzh” was performed using
SeqMan Pro 15 (DNASTAR, Madison, WI, United States), but
only SNPs were used for further study. Comparison of the

1https://www.genoscope.cns.fr/brassicanapus/data/
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variants among the 84 BC2 DH samples was carried out using
Qseq 15 (DNASTAR).

Genotyping by sequencing-SNP sites were named based
on the reference genome (DM: “Darmor-bzh”), the A-genome
chromosome (A01–A10), and the position on the reference
chromosome sequence. An SNP site was called in a given sample
at following criteria: depth >5, Q > 30, and SNP percentage
>50%. Since the recipient parent DH16516 and the 84 DH lines
were DH lines, all SNP sites should theoretically be homozygous.
After filtering, heterozygous genotypes in the parental line
DH16516 and the DH lines and monomorphic phenotypes
between the parents or among the 84 individuals were removed.

The remaining SNP sites after filtering were further
analyzed using JoinMap 4.1 (Kyazma B.V.,Ln.v.A. Wageningen,
Netherlands; Van Ooijen, 2011). SNP alleles from the resistant
parent (ECD01) were scored as “B,” and those from the
susceptible parent (DH16516) as “A.” Marker orders and
positions in the genetic map were determined using maximum
likelihood in the Kosambi’s model with a minimum logarithm
of the odds (LOD) values of 10. Only SNP sites that could be
assigned into the 10 chromosomes of the A-genome at LOD
scores of 10.0 were kept. The set of filtered SNP sites obtained was
used for binning of redundant markers, construction of linkage
map, and mapping of QTLs for resistance to clubroot using
the QTL IciMapping Inclusive Composite Interval Mapping
(ICIM) method (Meng et al., 2015). A linkage map was drawn
using MapChart 2.1 (Droevendaalsesteeg 4, Wageningen,
Netherlands; Voorrips, 2002) based on the genetic location
determined with QTL IciMapping. The LOD score threshold
was set using a 1,000-permutation test with a type I error of
0.05 for QTL declaration. The QTL effects were estimated
as phenotypic variation explained (PVE) and additive (Add)
values by each QTL.

Identification of Genes in the Target
Regions of the B. napus “Darmor-bzh”
Reference Genome
Gene annotation was analyzed using Blast2GO (Conesa et al.,
2005) using coding sequences (CDS) of the genes in each of the
QTL target regions from 1 Mb upstream to 1 Mb downstream
of the SNP markers in the peak regions as determined by
IciMapping. Genes related to disease resistance and defense
responses were identified using Blast2GO information of the gene
description and gene ontology. The most probable Arabidopsis
homolog corresponding to each disease resistance gene and the
class of disease resistance proteins were obtained using the CDS
of the disease resistance gene in the B. napus by Blast search at
www.arabidopsis.org.

Mapping of the Quantitative Trait Loci
With Bulked Segregant Analysis
Bulked segregant analysis (BSA) has been used to detect
molecular markers linked to traits of interest, such as disease
resistance (Michelmore et al., 1991). In BSA, bulks of plants
with contrasting phenotypes are generated. Our previous studies
showed that a gene could be genetically mapped by identifying

the percentage of polymorphic variants (PPV) in a genome using
BSA (Yu et al., 2016; Dakouri et al., 2018; Huang et al., 2019;
Karim et al., 2020).

Doubled haploid lines were selected to form a R bulk and
a S bulk based on their phenotypes using SNP marker-assisted
selection. GBS data from the R and S bulks were aligned onto
the B. napus reference genome separately using SeqMan NGen 15
(DNASTAR). Mapping of the QTLs was performed using the PPV
method described by Yu et al. (2016) and Dakouri et al. (2018).

Search for the Syntenic Regions of
Identified Quantitative Trait Loci in
B. rapa “Chiifu” Reference Genome
The B. rapa reference genome version 3.0 (Zhang et al.,
2018) was downloaded from https://brassicadb.org/brad/
downloadOverview.php. DNA sequences of the QTL target
regions from the A-genome of B. napus were aligned
into the B. rapa genome using MegAlign Pro 15 with
MAUVE (DNASTAR).

RESULTS

Resistance to Clubroot in the Parental
Lines and the Backcross2 Doubled
Haploid Population
The clubroot reaction of the parental lines (ECD01 and
DH16516), controls, and the DH population was assessed against
pathotypes 3A, 3D, 3H, and 5X (Table 1). As expected, ECD01
was highly resistant to all pathotypes (0% DSI), DH16516 was
highly susceptible (100% DSI), and “45H29” was resistant to
pathotype 3H only (Figure 1 and Table 1). The F1 plants from the
interspecific crosses of DH16516 × ECD01 were highly resistant
to pathotype 3H (0% DSI), which was the predominate pathotype
in Canada before the emergence of the 3A, 3D, and 5X. Clubroot
severity in response to inoculation with each pathotype in the
DH population could be divided into two classes: resistant (R)
lines with DSI ≤ 30% and susceptible (S) lines with DSI > 30%
(Figure 2). The segregation ratio of R and S was calculated, and
the goodness-of-fit was tested with a χ2 test using Microsoft Excel
software. Of the four pathotypes, segregation of R and S best fit

TABLE 1 | Genetic analysis of resistance of the parental lines (DH16516, ECD01),
controls (cv. “45H29”), and the inoculation of doubled haploid (DH) population
derived from BC2 with four pathotypes of Plasmodiophora brassicae based on the
clubroot severity (disease severity index, DSI) of each line (Resistant, R, DSI ≤ 30;
Susceptible, S, DSI > 30).

Patho
type

DSIs No. of DH lines P-value of ratio

ECD01 DH16516 F1 45H29 Total R S 1:1 3:1 1:3

3A 0 100 – 100 82 27 55 0.001 0.001 0.100

3D 0 100 – 100 80 49 31 0.001 0.005 0.001

3H 0 100 0 0 82 61 21 0.001 0.90 0.001

5X 0 100 – 100 84 52 32 0.001 0.006 0.001
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FIGURE 1 | Plant phenotypes and clubroot response at 5 weeks after
inoculation in the parental lines (Debra and DH16516) and a control cultivar
(45H29) to inoculation with four pathotypes (3A, 3D, 3H, and 5X) of
Plasmodiophora brassicae under controlled conditions. The bars represent
5 cm in length.

a 1:3 ratio for pathotype 3A and a 3:1 ratio for pathotypes 3D,
3H, and 5X. These results indicated that resistance to pathotype
3A was controlled by two genes in complementary action, and
resistance to pathotypes 3D, 3H, and 5X was controlled by two
genes in duplicate action.

Correlation coefficients among the DSI values for the
pathotypes ranged from 0.55 to 0.81, but all were significant at
P < 0.01 (Table 2). This indicated that the genes for resistance to
the different pathotypes were likely controlled by the same genes
or tightly linked genes.

Alignment of DNA Short Reads Into the
B. napus Genome
Since CR in the DH population originated from the A-genome
of B. rapa cv. ECD01, only A-genome DNA sequences in the
reference genome B. napus “Darmor” version 4.1 were used
for alignment of DNA short reads and discovery of DNA
variants (SNPs and InDels). Approximately 219.9 million (M)
short reads were obtained from whole-genome sequencing from
DH16516, and 53.1% of the reads were assembled into the
reference A-genome; 13.8 M sequences were obtained from
GBS of ECD01, and 70.9% were assembled into the reference
A-genome. A total of 355.3 M short reads from 84 DH lines
were obtained, ranging from 0.81 to 11.67 M sequences per line
(Supplementary Figure 1). The mean number of reads aligned
into the reference genome from each line was 2.3 M (range 0.46–
5.22 M, Supplementary Figure 1), and 54.7% were assembled
into the reference A-genome.

Identification of Polymorphic
Single-Nucleotide Polymorphism Sites
and Quantitative Trait Locus Analysis
After the initial filtering, 429 polymorphic SNP sites were left and
were distributed to 9 of 10 chromosomes of the reference genome
of “Darmor-bzh” (Supplementary Table 1). No polymorphic
markers were identified from chromosome A06. There was
no correlation between chromosome size and the number of
SNP markers identified (r = −0.092) in the population. To
remove redundant markers, the 429 SNP sites were further
filtered using the binning function in IciMapping, which left only
260 non-redundant SNP sites (Table 3). A genetic map of the
nine chromosomes of the A-genome was constructed from the
distributed SNP sites (Supplementary Figure 2). The length of
each chromosome ranged from 0 (chromosome A06) to 471.8 cM
(A01), with an average length of 85.3 cM. Chromosome A01 was
much longer than the other linkage groups. The number of SNP
sites per chromosome ranged from 0 (A06) to 152 (A01), with
a mean of 26 SNPs per chromosome. The SNP interval of each
chromosome ranged from 0.8 to 4.8 cM, with a mean of 3.3 cM
(Supplementary Table 1).

Mapping of the QTLs was performed using the linkage map
(Supplementary Figure 1) and trait values for resistance to each
pathotype (3A, 3D, 3H, and 5X). Two QTLs were identified:
a QTL designated as Rcr10ECD01 on A03, with a peak at the
SNP markers DM_A03_12570715 and DM_A03_10873502, and
a QTL designated as Rcr9ECD01 (Figure 3), located near the
previously identified genes Rcr9 and Rcr9wa (Yu et al., 2017;
Karim et al., 2020) on A08, with a peak at DM_A08_10325589
and DM_A08_10529713 (Table 3). Resistance to pathotypes 3A,
3D, and 3H was associated with the two QTLs (Rcr10ECD01

and Rcr9ECD01), but resistance to 5X was only associated with
Rcr9ECD01 (Table 3). LOD, PVE, Add values, and CI from the
estimated QTL position varied between the QTLs, ranging from
5.2 to 12.2 for LOD, 16.2 to 43.3% for PVE, 14.6 to 25.4 for Add,
and 1.5 to 12 cM for CI (Table 3). The values of Add for the two
QTLs were positive, indicating that the resistant loci were derived
from the resistant parent ECD01.

Identification of Disease Resistance
Genes and Genes Related to Plant
Defense Response
Searches for candidate genes for Rcr10ECD01 and Rcr9ECD01 that
encoded disease resistance proteins and defense-related genes
were performed using CDS of the reference genome in the target
region including 1 Mb up- and downstream of the left and right
markers (Table 3).

Rcr10ECD01, which was responsible for resistance to
pathotypes 3A, 3D, and 3H, was mapped into chromosome
A03, with a peak at SNP markers DM_A03_10873502 and
DM_A03_12570715 (Table 3). There are 676 genes in this 3.7 Mb
region (Supplementary Table 3). Among the genes, one gene
(BnaA03g25330D) encoded a disease resistance protein (Table 4),
and 24 genes encoded proteins with functions related to plant
defense response (Supplementary Table 3). BnaA03g25330D is
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FIGURE 2 | Distribution of clubroot severity (disease severity index, DSI) following inoculation with four pathotypes (3A, 3D, 3H, and 5X) of P. brassicae in a doubled
haploid (DH) population derived from a BC2 plant of Brassica rapa ECD01 crossed with B. napus DH16516. Colors in each stacked column represent the proportion
of the lines with a DSI value within that decile (= 10% range).

homologous to the Arabidopsis gene AT5G22690, which encoded
a TNL protein (Table 4).

Rcr9ECD01, which was responsible for resistance to all four
pathotypes, was mapped into chromosome A08, with a peak
at SNP markers DM_A08_10325589 and DM_A08_10529713.
There were 338 genes in this 2.2 Mb region (Table 4 and
Supplementary Table 3). Two genes (BnaA08g10100D and
BnaA08g11840D) encoded disease resistance proteins, and
BnaA08g10100D was homologous to the previously cloned
resistance gene Crr1. BnaA08g10100D and BnaA08g11840D
were homologous to the Arabidopsis genes AT5G11250 and
AT4G33300, respectively. AT5G11250 encodes an atypical TNL
protein and AT4G33300 encodes a member of the activated
disease resistance 1 family nucleotide-binding leucine-rich repeat
immune receptors (Table 4). Also, this region contained 10
genes that encoded proteins with defense-related functions
(Supplementary Table 3).

TABLE 2 | Correlation coefficients for clubroot severity after inoculation of DH
population derived from BC2 of DH16516 × ECD01 for resistance to four
pathotypes of P. brassicae.

Pathotype 3A 3D 3H 5X

3A 1.00

3D 0.64** 1.00

3H 0.65** 0.81** 1.00

5X 0.55** 0.55** 0.68** 1.00

**Significance level at P < 0.01.

Confirming the Quantitative Trait Locus
Intervals With Bulked Segregant Analysis
Of the 84 DH lines, 19 lines were resistant to almost all
the pathotypes. They all carried alleles from the resistant
parent ECD01 (SNP genotype “B”) with Rcr10ECD01

(DM_A03_10873502 and DM_A03_12570715) and Rcr9ECD01

(DM_A08_10325589 and DM_A08_10529713). Also, 17 lines
were susceptible to almost all the pathotypes and all of them
carried alleles from the susceptible parent line DH16516 (SNP
genotype “A”) for the two QTLs. As a result, the R bulk was
formed from the 19 R DH lines, while the S bulk was formed
from the 17 S DH lines for the BSA (Supplementary Table 4).

A total of 93.5 M short reads from the R bulk and 69.4 M
short reads from the S bulk were aligned into the B. napus
reference genome. A PPV peak (25–30%) occurred within
the physical interval 9–14 Mb on chromosome A03 and the
other peak (25–36%) within the physical interval 9–12 Mb on
chromosome A08 (Figure 4), which indicated that Rcr10ECD01

and Rcr9ECD01 resided in the intervals of chromosomes A03 and
A08, respectively. This result is consistent with that from the
above QTL analysis.

Search for the Syntenic Regions of the
Quantitative Trait Loci in the B. rapa
“Chiifu” Reference Genome
Most of the genes or QTLs for CR in Brassica species containing
the A-genome that have been identified were from B. rapa. In this
study, the DH population was developed with introgression of
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TABLE 3 | QTL position, phenotypic variation explained (PVE), additive (Add), the logarithm of the odds (LOD), and confidence interval (CI) for the QTLs originating from
Brassica rapa ECD01 for resistance to four pathotypes of P. brassicae (permutations = 1,000).

Pathotype Chromosome/QTL Position Left marker Right marker LOD PVE (%) Add Left CI Right CI

3A A03/Rcr10ECD01 0 DM_A03_12570715 DM_A03_10873502 5.6 16.2 14.3 0.0 1.5

A08/Rcr9ECD01 38 DM_A08_10325589 DM_A08_10529713 11.4 43.3 22.4 35.5 42.5

3D A03/Rcr10ECD01 0 DM_A03_12570715 DM_A03_10873502 7.2 27.3 21.4 0.0 2.5

A08/Rcr9ECD01 38 DM_A08_10325589 DM_A08_10529713 5.2 21.5 18.1 32.5 44.5

3H A03/Rcr10ECD01 0 DM_A03_12570715 DM_A03_10873502 6.2 17.9 16.6 0 2.5

A08/Rcr9ECD01 35 DM_A08_10337601 DM_A08_10325589 12.2 43.1 25.2 33.5 37.5

5X A08/Rcr9ECD01 34 DM_A08_10337601 DM_A08_10325589 10.9 42.8 25.4 32.5 37.5

FIGURE 3 | Two QTLs were detected: Rcr10ECD01 on chromosome A03 and Rcr9ECD01 on A08.

QTLs from B. rapa, so the QTL target regions of chromosome
A03 and A08 of B. napus were compared with those of
B. rapa.

The B. rapa reference genome “Chiifu” version 3.0 is
the most recent version available for the “Chiifu” reference
genome (Zhang et al., 2018). The 3.7 Mb region from
9.8 to 13.5 Mb of B. napus chromosome A03, which
included a fragment of the markers DM_A03_10873502
and DM_A03_12570715 for Rcr10ECD01, was homologous
to the region 11.0–16 Mb of “Chiifu” A03 (Figure 5).
Rcr9ECD01, located on the 2.2 Mb length from 9.3 to
11.5 Mb of B. napus chromosome A08, which included
SNP markers DM_A08_10325589 and DM_A08_10529713, was
homologous to the region 12.0–14.5 Mb of A08 in B. rapa
“Chiifu” (Figure 5).

DISCUSSION

Clubroot has the potential to become an important constraint
to canola production on the Canadian Prairies. Pathotype 3H
was (and likely still is) the predominant pathotype in the Prairie
region, pathotype 5X was the first new pathotype identified
as virulent on resistant canola cultivars such as “45H29,” and
3A and 3D have become the most prevalent among the new
virulent pathotypes (Hollman et al., 2021). Therefore, these four
pathotypes were selected for this study.

Two QTLs for resistance to the four pathotypes of P. brassicae
derived from B. rapa ECD01 were transferred to, identified, and
mapped in a DH population of B. napus. The DH population
was segregated in a 1:3 (R:S) ratio for resistance to pathotype
3A. This indicated that resistance to pathotype 3A was controlled
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TABLE 4 | A list of genes encoding proteins associated with plant disease resistance through BLAST2GO and Blast searches with CDS in the QTL target regions at
https://www.arabidopsis.org/Blast/index.jsp.

QTL Rcr10ECD01 Rcr3/9ECD01

R to pathotype 3A, 3D, and 3H 3A, 3D, 3H, and 5X

Chromosome A03 A08

Gene name BnaA03g25330D BnaA08g10100D BnaA08g11840D

B. napus gene location (base) 12234711. . .12240552 9456084. . .9467947 10622229. . .10625339

Length (base) 5841 11863 3110

Description from Blast2GO Disease resistance protein RPS6-like Disease resistance protein TAO1-like Probable disease resistance protein
At4g33300

Function with Blast2GO Hydrolase activity; ADP binding;
defense response; signal transduction

Hydrolase activity; ADP binding;
defense response; signal transduction

ADP binding

Homolog in Arabidopsis AT5G22690 AT5G11250 AT4G33300

R gene class Disease resistance protein
(TIR-NBS-LRR class) family

TIR-NBS-LRR protein involved in stress
response

Activated disease resistance 1 (ADR1)
family of NBS-LRR immune receptors

FIGURE 4 | Distribution of polymorphic variants (%): One peak for Rcr10ECD01 on chromosome A03 and the other for Rcr9ECD01 on A08 were identified through bulk
segregant analysis with the mapping method of the percentage of polymorphic variants described by Yu et al. (2016) and Dakouri et al. (2018).
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FIGURE 5 | Maps of the Rcr10ECD01 and Rcr9ECD01 target regions in A03 and A08 of B. napus “Darmor” and the homologous regions of the B. rapa reference
genome “Chiifu” version 3.0. Different colors represent the sequenced region of the B. rapa reference genome “Chiifu” version 3.0.

by two genes in complementary action. The segregation ratio for
resistance to pathotype 3H was 3:1, which was also the most likely
fit for pathotypes 3D and 5X. This indicated that resistance to
all three pathotypes in the DH population was controlled by two
genes in duplicate action. Two QTLs, Rcr10ECD01 and Rcr9ECD01,
for resistance to pathotypes 3A, 3D, and 3H were identified,
which was consistent with the genetic analysis of phenotype
ratios. However, only one QTL, Rcr9ECD01, was identified for
resistance to 5X, although the segregation ratio was close to 3:1.
This inconsistency merits further investigation.

In general, strong resistance to clubroot pathotypes is
controlled by single dominant genes such as Rcr1–Rcr7 (Chu
et al., 2014; Yu et al., 2016; Huang et al., 2017, 2019; Yu et al.,
2017; Dakouri et al., 2018; Chang et al., 2019; Karim et al., 2020).
Two genes in duplicate action (Rcr8 on chromosome A02 and
Rcr9 on chromosome A08 from B. rapa line T19) that conferred
resistance to pathotype 5X were reported previously (Yu et al.,
2017). Similarly, a previous study indicated that neither Crr1
nor Crr2 on their own conferred resistance to Japanese strain
“Wakayama-01” of P. brassica; resistance was only expressed
when resistance alleles were present at both loci (Suwabe et al.,
2003). In this study, the QTL for resistance to pathotype 3A
derived from ECD01 may behave similarly to Crr1 and Crr2.

The number of SNP sites per chromosome is usually
correlated with chromosome size in mapping populations (Yu
et al., 2016) but was not correlated in this study. This unusual
result likely occurred because the BC2 donor plant used for
microspore culture carried a large fragment of chromosome A01
originating from ECD01 but smaller fragments of the other
chromosomes from ECD01.

In this study, the target region for Rcr10ECD01 was defined as
9.8–13.5 Mb of B. napus chromosome A03 using QTL analysis.
A similar interval (9–14 Mb) for Rcr10ECD01 was obtained using

the identification of the PPV with BSA. The region forRcr10ECD01

in B. napus was homologous to the 11.0–16.0 Mb region of A03 in
the B. rapa “Chiifu” version 3.0. This was a distinct genetic region
from Rcr1, Rcr2, Rcr4, and Rcr5 for resistance to pathotypes of
P. brassicae (Figure 4). The genes Rcr1, Rcr2, and Rcr4, which
confer resistance to pathotypes of P. brassica, have previously
been mapped into chromosome A03 of B. rapa “Chiifu” version
3.0 at ∼25 Mb region (Chu et al., 2014; Yu et al., 2016; Huang
et al., 2017), while Rcr5 was also mapped at ∼24 Mb region in
that chromosome (Huang et al., 2019; Figure 4). Rcr1, Rcr2, and
Rcr4 were subsequently co-localized with the cloned CR genes
CRa/CRbkato (Ueno et al., 2012; Hatakeyama et al., 2017), while
Rcr5 was located in a region close to CRa/CRbkato. In addition,
resistance genes Rcr1, Rcr2, Rcr4, and Rcr5 were identified for
resistance to pathotype 3H, not for 3A, 3D, or 5X. Several CR
genes or QTLs, such as PbBa3.2 (Chen et al., 2013), CRd (Pang
et al., 2018), Crr3 (Hirai et al., 2004), and CRk (Sakamoto et al.,
2008) for resistance to clubroot strains collected from Japan
and China, have been mapped into the regions different from
CRa/CRbkato. Similarly, BraA.CR.c for resistance was mapped
into chromosome A03 in turnip cvs. ECD01, ECD02, and ECD04
(Hirani et al., 2018). The relationship of Rcr10ECD01 to these
previously identified genes needs to be determined. Also, CRb
was identified in a Chinese cabbage cv. “CR Shinki” was originally
derived from ECD01 for resistance to P. brassica strains collected
in South Korea (Piao et al., 2004). It was located in a genetic
region close to CRa/CRbkato. However, no QTL in the CRb region
was identified in this study.

A QTL, identified and designated as Rcr9ECD01 (because it
was mapped into the genetic region of Rcr9 and was originally
derived from B. rapa cv. ECD01), conferred resistance to all
four pathotypes (3A, 3D, 3H, and 5X) assessed in this study.
Rcr9ECD01 was located on the 2.2 Mb length from 9.3 to 11.5 Mb
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of B. napus chromosome A08 using QTL analysis. The Rcr9ECD01

interval was confirmed through the identification of PPV with
BSA, located in the physical interval 9–12 Mb. The region of
Rcr9ECD01 in B. napus corresponded to 12.0–14.5 Mb of A08 in
B. rapa “Chiifu” version 3.0 (Figure 4).

Previously, our laboratory had identified Rcr9 for resistance
to pathotype 5X in B. rapa breeding line T19, which originated
from German turnip cv. “Pluto” (Yu et al., 2017). The
proposed position of Rcr9 spanned a large interval (6.48 Mb)
of chromosome A08, including the genome region of Rcr3 and
Rcr9ECD01. However, several breeding lines that carried Rcr9 were
resistant to 5X, but not to 3A, 3D (Yu, unpublished), and 3H
(Yu et al., 2017). This difference in phenotype indicated that Rcr9
differed from Rcr9ECD01. Another resistance gene, designated as
Rcr9wa, has also been identified from a turnip differential line in
the ECD. It originated from cv. “Waaslander” (ECD04), provided
resistance to pathotype 5X, and was mapped into the same region
asRcr9 (Karim et al., 2020).Rcr9wa was mapped based on flanking
markers into 12.3–12.6 Mb of chromosome A08 (smaller interval
than Rcr9). In addition, another resistance gene originated from
cv. “Waaslander” and conferred resistance to pathotype 3H,
designated as Rcr3, has been mapped into chromosome A08,
flanked by SNP markers in position 11.3–11.6 Mb in the B. rapa
“Chiifu” reference genome version 3.0 (Karim et al., 2020). The
position of Rcr3 was separated from Rcr9ECD01 (Figure 4). Also,
gene BraA.CR.b for resistance to pathotype 3H was previously
identified from the turnip differentials ECD01, ECD02, ECD03,
and ECD04 and mapped into chromosome A08 (Hirani et al.,
2018), but no information on the genome region corresponding
to the B. rapa “Chiifu” reference genome version 3.0 was
provided. Several genes for resistance to collections of P. brassicae
from Japan and China, including Crr1 (Suwabe et al., 2003), CRs
(Laila et al., 2019), PbBa8.1 (Chen et al., 2013), and qBrCR38-2
(Zhu et al., 2019), have also been mapped into chromosome A08.
The cloned CR geneCrr1was highly homologous to Bra020861 in
the B. rapa reference genome version 1.5 and to BraA08g014480
in the B. rapa reference genome version 3.0, which is located in
the Rcr9ECD01 genomic region. However, breeding lines carrying
Crr1 gene did not show resistance to the strains of P. brassica used
in this study (Yu, unpublished). Therefore, Rcr9ECD01 is unlikely
the same as Crr1. The relationship of Rcr9ECD01 with CRs (Laila
et al., 2019), PbBa8.1 (Chen et al., 2013), and qBrCR38-2 needs
to be determined.

CRc was identified in the Chinese cabbage cv. “CR Kanko”
derived from “Debra,” which was located into chromosome A02
(Sakamoto et al., 2008). However, this gene was not found in the
DH population used for this study.

Analysis of QTLs has been used for the identification of
several major genes for resistance to clubroot (Yu et al., 2017).
A QTL that can be consistently detected with a PVE of >10%
of trait value can be designated as the main effect QTL or major
QTL (Wang et al., 2019). In this study, QTLs Rcr10ECD01 and
Rcr9ECD01 were identified with 16.2 to 43.3% PVE. Rcr10ECD01

was identified based on the response to inoculation with
pathotypes 3A, 3D, and 3H. Rcr9ECD01 was identified based on
the response to inoculation with all of the pathotypes used in
this study. Therefore, both Rcr10ECD01 and Rcr9ECD01 appear

to be major QTLs. The presence of the two major QTLs was
also confirmed through BSA, which is consistent with the result
obtained from the QTL analysis.

Clubroot severity in the DH lines in response to inoculation
with the individual pathotypes was highly correlated, which
indicated that resistance to these pathotypes was likely controlled
by the same gene or tightly linked genes. However, the
identification of QTLs in this study was based on relatively rough
gene mapping, so it could not be determined if resistance to the
pathotypes was controlled by a single gene or tightly linked genes.
More detailed studies are in progress.
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Crop wild species are increasingly important for crop improvement. Peanut (Arachis
hypogaea L.) wild relatives comprise a diverse genetic pool that is being used to broaden
its narrow genetic base. Peanut is an allotetraploid species extremely susceptible to
peanut root-knot nematode (PRKN) Meloidogyne arenaria. Current resistant cultivars
rely on a single introgression for PRKN resistance incorporated from the wild relative
Arachis cardenasii, which could be overcome as a result of the emergence of virulent
nematode populations. Therefore, new sources of resistance may be needed. Near-
immunity has been found in the peanut wild relative Arachis stenosperma. The two
loci controlling the resistance, present on chromosomes A02 and A09, have been
validated in tetraploid lines and have been shown to reduce nematode reproduction by
up to 98%. To incorporate these new resistance QTL into cultivated peanut, we used a
marker-assisted backcrossing approach, using PRKN A. stenosperma-derived resistant
lines as donor parents. Four cycles of backcrossing were completed, and SNP assays
linked to the QTL were used for foreground selection. In each backcross generation
seed weight, length, and width were measured, and based on a statistical analysis we
observed that only one generation of backcrossing was required to recover the elite
peanut’s seed size. A populating of 271 BC3F1 lines was genome-wide genotyped
to characterize the introgressions across the genome. Phenotypic information for leaf
spot incidence and domestication traits (seed size, fertility, plant architecture, and
flower color) were recorded. Correlations between the wild introgressions in different
chromosomes and the phenotypic data allowed us to identify candidate regions
controlling these domestication traits. Finally, PRKN resistance was validated in BC3F3

lines. We observed that the QTL in A02 and/or large introgression in A09 are needed for
resistance. This present work represents an important step toward the development of
new high-yielding and nematode-resistant peanut cultivars.

Keywords: wild crop relatives, Arachis, peanut, root-knot nematode, Meloidogyne arenaria, marker-assisted
backcrossing, domestication
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INTRODUCTION

Arachis hypogaea L., with a common name of peanut or
groundnut, is an important oil, food, and fodder crop cultivated
worldwide with an annual production of 66.3 million tons and
grown on 34.1 Mha (FAOSTAT, 2021). Peanut is an allotetraploid
species (AABB, 2n = 4x = 40), with a recent and unique polypoid
origin, which occurred 5 to 10 thousand years ago (Bertioli et al.,
2019, 2020). This narrow genetic base and limited gene flow with
its genetically diverse diploid wild relatives resulted in a lack of
strong resistance alleles for pests and diseases in the primary
gene pool. One important pest is the peanut root-knot nematode
(PRKN) (Meloidogyne arenaria) (Holbrook and Stalker, 2003).
It causes yield losses greater than 50% in infested fields, and at
times, 100% losses in heavily infested areas of fields have been
reported (Dickson and De Waele, 2005; Timper et al., 2018). In
the United States, M. arenaria is the most damaging nematode
for peanut (Timper et al., 2018). Chemical control is one option,
but is costly, hazardous to human health, and can damage the
environment (Oka, 2020). Crop rotation is also effective, but
with susceptible cultivars, the constraints on the frequency at
which peanut can be grown reduce agronomic and financial
sustainability. The use of high-yielding and nematode-resistant
cultivars in combination with rotation is the most efficient and
effective way to control nematode populations and maintain yield
while reducing the use of nematicides.

Strong resistance to many pests and diseases is limited
in the A. hypogaea primary gene pool (Stalker, 2017), which
imposes constraints for crop improvement using cultivated
germplasm (Nelson et al., 1989; Noe et al., 1992). Yet, the
wild relatives comprise a diverse genetic pool that has the
potential to broaden a peanut’s genetic base and to improve
its performance under pest/disease pressure (Stalker, 2017).
Previously, successful transfer of root-knot nematode resistance
into cultivated peanut was accomplished through backcrossing
schemes involving a synthetic allotetraploid (Simpson and Starr,
2001). This resistance is derived from introgression of a large
segment on chromosome A09 from the wild species Arachis
cardenasii (Nagy et al., 2010; Chu et al., 2016), and is present
in several commercial cultivars (Georgia-14N, TifNV-High O/L,
Tifguard, NemaTAM, and Webb) (Simpson et al., 2003, 2013;
Holbrook et al., 2008, 2017; Branch and Brenneman, 2015).
Although this resistance has been durable thus far, occasional
resistance breakdown has been reported (Holbrook CC, personal
communication). Therefore, it is important to incorporate new
sources of resistance to reduce the risk of selection of a virulent
population of M. arenaria and to guarantee continued protection
of the peanut crop from losses due to PRKN.

The peanut wild relative Arachis stenosperma
PI666100/V10309 has been described as highly resistant to
peanut root-knot nematode (Proite et al., 2008). Previously,
three quantitative trait loci (QTL) (on chromosomes A02, A04,
and A09) were identified in the diploid genome of Arachis
stenosperma (Leal-Bertioli et al., 2016). Later, segments of
both chromosomes A02 and A09, that provide near immunity,
were mapped using a segregating population derived from
a cross between A. hypogaea and the synthetic allotetraploid

BatSten1 (Bertioli et al., 2021a), and validated in a tetraploid
background (Ballén-Taborda et al., 2019, 2021). The main
objective of this study was to incorporate PRKN resistance
QTL from A. stenosperma into elite peanut. To accomplish
this goal, a marker-assisted backcross breeding approach was
employed and BatSten1 was used as the donor parent. Four
cycles of backcrossing were completed with genetic foreground
and background selection and phenotypic characterization
were performed in each generation. Correlations between the
wild introgressions across the genome and the phenotypic
data allowed us to identify candidate regions controlling traits
measured in the BC3F1 population.

This work is key to developing new high-yielding peanut
cultivars with a new and strong resistance against the
peanut root-knot nematode. Additionally, single nucleotide
polymorphism (SNP) markers tightly linked to the QTL are
described to facilitate the introgression of A. stenosperma
resistance into different elite recipient lines. In the near future,
we expect to release advanced introgression lines that incorporate
strong PRKN resistance with attached molecular information,
that can be used directly in breeding programs in areas where
PRKN is a constraint for peanut cultivation.

MATERIALS AND METHODS

Plant Materials
The synthetic allotetraploid BatSten1 PI 695418
{[Arachis batizocoi PI298639/K9484 x A. stenosperma
PI666100/V10309](2n = 4x = 40)} (Bertioli et al., 2021a) was used
to introgress the nematode resistance QTL from A. stenosperma
into tetraploid peanut. An F2 population was created by selfing
an F1 derived from a cross between A. hypogaea cv. Runner
IAC-886 (herein called Runner-886) and BatSten1, and then
used for QTL mapping (Ballén-Taborda et al., 2019). From
this population, four superior F2 lines (F2-7, F2-13, F2-34, and
F2-73) were selected based on (1) better vigor, as visually more
leaf biomass; (2) good agronomic traits; (3) late leaf spot (LLS)
and PRKN resistance; (4) harboring QTL in A02 and A09 for
nematode resistance per molecular genotyping. Six F2-derived
F3 (F2:3) homozygous progeny from F2:3-7 and F2:3-34, with
validated resistance to PRKN (Ballén-Taborda et al., 2021), were
used as initial donor parents in a backcrossing scheme (Figure 1,
red boxes). For incorporation of resistance from A. stenosperma
into peanut, we used three susceptible recurrent parents, which
are TifGP-2, 5-646-10, and 13-1014. For pyramiding resistances
from both wild species A. stenosperma and A. cardenasii, we
used two resistant lines, which are 13-2113 and 13-1125. (1)
TifGP-2 is a breeding line with good yield and grade, and normal
oleic content (Holbrook et al., 2012); (2) 5-646-10 is derived
from the cross Florida-07 x Tifguard, with good yield and
grade, and high oleic/linoleic fatty acid ratio (Holbrook, CC,
unpublished data); (3) 13-1014 is derived from [C1805-617-1
(Florida-07 x Tifguard) x GA-06G], with high oleic/linoleic fatty
acid ratio (Holbrook, CC, unpublished data); (4) 13-2113 is
derived from [C1805-2-9-16 (Florida-07 x Tifguard) x TifGP-2],
a high oleic/linoleic fatty acid ratio, that was included in the
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FIGURE 1 | Schematic of the marker-assisted backcrossing scheme for incorporation of peanut root-knot nematode resistance from the wild species
A. stenosperma V10309 into peanut breeding lines from Tifton, GA. Superior F2-derived F3 lines (Ballén-Taborda et al., 2019) were selected as donor parents (DP,
red boxes). Recurrent parents (RP, blue boxes) included TifGP-2, 5-646-10, 13-1014, 13-2113, and 13-1125. In each cycle, KASP genotyping was performed to
identify lines carrying resistance loci in chromosomes A02 and A09 (Marker-assisted selection – MAS) (green checkmark) (Supplementary Tables 1, 2, gray-shaded
markers). BCnFn progeny from each cycle were used as male parents for the next (orange boxes). All BCnFns were genotyped for seed size (weight, length, and
width) (seed symbol). BC2F1s were genome-wide genotyped and phenotyped for PRKN resistance for validation (green circle and nematode symbol) (Ballén-Taborda
et al., 2021) and pollen viability was studied (pollen symbol). BC3F1s were subjected to genome-wide genotyping for characterization of introgressions (green circle)
and phenotyped for leaf spot incidence, fertility, architecture, and flower color (indicated by leaf spot, brown arrow, architecture, and flower symbols, respectively).
BC3F2s were phenotyped for leaf spot incidence, architecture, branching, and extra leaves (indicated by leaf spots, architecture, branching, and leaves symbols,
respectively). BC3F3s were phenotyped for PRKN resistance and KASP genotyped (green checkmark and nematode symbol). Self-pollination is represented by ⊗.

second cycle only (Holbrook, CC, unpublished data); (5) 13-1125
breeding line was included in the fourth cycle only (Holbrook,
CC, unpublished data) (Figure 1, blue boxes).

Marker-Assisted Breeding
A marker-assisted backcrossing (MABC) approach was used
to incorporate PRKN resistance from A. stenosperma into
cultivated peanut. Four cycles of backcrossing were performed
in two different locations: Athens, GA and Tifton, GA under
greenhouse conditions. In the first, second, and third cycles, 16
SNP markers linked to the QTL in A02 and A09 (Leal-Bertioli
et al., 2016) were used for foreground selection (Supplementary
Table 1, gray-shaded markers). For the fourth cycle, 10
new markers were used to finely target these chromosome
segments based on high-throughput genotyping of backcross
(BC) lines (Ballén-Taborda et al., 2021) (Supplementary Table 2,

gray-shaded markers). 60 additional SNPs markers were also
developed and are available here for genotypic selection in
breeding programs (Supplementary Tables 1, 2, not shaded
markers). Progeny from each cycle that harbored segments
associated with PRKN resistance were used as male parents for
the next backcross cycle (Figure 1, orange boxes). BC4F1s were
germinated for seed increase.

Kompetitive Allele-Specific PCR assays (KASP, LGC Biosearch
Technologies, Hoddesdon, United Kingdom)1 assays were used
for the selection of PRKN resistance alleles. For KASP reactions,
genomic DNA was isolated from a small section of the peanut
cotyledon opposite to the embryo (seed chip, ∼50-100 mg).
DNA was extracted using the DNeasy Plant Mini Kit (QIAGEN,

1https://biosearch-cdn.azureedge.net/assetsv6/KASP-genotyping-chemistry-
User-guide.pdf
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Hilden, DE) according to the manufacturer’s instructions. Each
KASP marker consisted of three primers per SNP position (two
allele-specific and one common flanking primer). Primers were
designed using the web-based program BatchPrimer32 (USDA-
ARS, Albany, CA, United States) (You et al., 2008) with the
“Allele-specific primers and allele flanking primers” option.
Parameters used were 60–120 bp in fragment size, GC content
of 30–80%, and Tm between 58 and 60◦. KASP primer assay
mix per SNP position consisted of 12 ul (100 uM) of each
allele-specific primer, 30 ul (100 uM) of the flanking primer,
and 46 ul of H2O. Single KASP reactions (5 ul) consisted of
2.5 ul of KASP 2x Master Mix (Low Rox 5000 V4.0), 0.07 ul of
KASP primer assay mix, 1.93 ul of water, and 0.5 ul of DNA
(10 ng/ul). Two replicates per primer per sample were included
in each reaction, as well as no-template controls (NTCs). A C100
touch Thermal Cycler (BIO-RAD, Hercules, CA, United States)
was used with the following conditions: 94◦C for 15 min; 8
cycles of 94◦C for 20 s and touchdown starting at 61◦C for
1 min (dropping 6◦ per cycle); 31 cycles of 94◦C for 10 s
and 55◦C for 1 min; 9 cycles of 94◦C for 20 s, and 57◦C for
1 min; 4◦C hold. Fluorescence was read with a LightCycler R©480
Instrument II (Roche Life Science, Switzerland) and analyzed
using the LightCycler R©480 Software (v.1.5.1.62) (Roche Life
Science, Switzerland). Finally, data were exported into Microsoft
Excel for analysis.

Genome-Wide Genotyping of BC3F1s
Genomic DNA of 271 BC3F1 lines and controls (BatSten1,
Runner-886, 5-646-10, 13-1014, TifGP-2, Tifguard, and
Tifrunner) were extracted from lyophilized leaves using the
DNeasy 96 Plant Kit (QIAGEN, Hilden, DE, United States)
according to the manufacturer’s instructions. DNAs were
genotyped with the Axiom_Arachis2 SNP array (Clevenger
et al., 2018; Korani et al., 2019). Genotypic data was
extracted and processed using the AxiomTM Analysis Suite
software (v.4.0.3.3) (ThermoFisher Scientific, Waltham, MA,
United States). Output was analyzed using custom shell scripts
(see below) and resulting data were visualized as a color map
in Microsoft Excel. The physical positions of the A-genome
markers were determined according to the position of their
orthologs in the A. duranensis pseudomolecules and the
K-genome markers based on the A. ipaensis pseudomolecules
(Bertioli et al., 2016).

The strategy to identify polymorphic SNP markers included
two main steps. First, a set of polymorphic SNP markers between
parental genotypes (BatSten1 6= Runner-886) was extracted.
Original genotyping calls were replaced by numbers (“1” for
BatSten, “2” for Runner-886, and “3” for a different genotype).
Second, SNPs present in the genetic map previously identified
(A. stenosperma-specific and A. batizocoi-specific markers)
(Ballén-Taborda et al., 2019) were retrieved (Supplementary
Script 1). Genotypic data were used to perform the principal
component analysis (PCA) using the “dist” function in R.

2https://wheat.pw.usda.gov/demos/BatchPrimer3/

Peanut Root-Knot Nematode Resistance
Validation Using BC3F3s
BC3F3 segregating lines from five BC3F1 families and controls
were evaluated for PRKN resistance to further validate the QTL
in A02 and/or A09 (Table 1). The experiment included 72 BC3F3
lines, which were selected based on the genotypic information
of the BC3F1 generation, by focusing on high cultivar genome
recovery (89.1–95.9%) and with superior field performance (data
not shown) of the BC3F2 generation during summer 2020.
Selected lines included two BC3F3 lineages with the A02-QTL,
two with the A09-QTL, one with both A02-QTL and A09-QTL,
and one with a large A09-QTL. The synthetic allotetraploid
BatSten1 and the cultivar A. hypogea TifNV-High O/L (Holbrook
et al., 2017) were used as resistant controls and A. hypogea 5-646-
10 and 13-1014 as susceptible controls. To confirm the presence
of the QTL, BC3F3s and controls were genotyped using KASP
markers (as described in the “Marker-assisted breeding” section).
Six KASP markers targeting the bottom of A02 (A02-83,464,195,
A02-92,077,207, and A02-92,983,792) and A09 (A09-16,516,448,
A09-112309,231 and A09-114,515,959) (Supplementary Table 2)
were used. Additionally, Axiom_Arachis2 SNP array genotyping
was performed for genome-wide characterization, and data were
filtered as described above.

Peanut root-knot nematode (PRKN) populations were
cultured and extracted from eggplant (Solanum melongena) to
be used as inoculum for bioassays. Second stage juveniles (J2s)
were collected from infected roots in a mist chamber every
2–3 days over a week and stored at 10◦C until inoculation.
Peanut seeds were grown in nursery pots filled with steam-
sterilized sandy soil in the greenhouse. Bioassay was performed
under greenhouse conditions, in a randomized complete block
design with 12 replicates per genotype. Furthermore, 40-day-old
plants were inoculated with 6,000 J2s by adding the inoculum
in two 2-cm deep holes at the base of the plant. Two months
later, plants were uprooted, rinsed to remove soil, assessed for
galling, and weighed. Eggs were extracted from roots using
0.5% NaOCl and counted (Hussey and Barker, 1973; Holbrook
et al., 2003). Two different traits were measured: (1) galling
index (GI), where 0 = no galls, 1 = 1-2 galls, 2 = 3-10
galls, 3 = 11-30 galls, 4 = 31-100 galls and 5 = more than
100 galls (Taylor and Sasser, 1978) and (2) number of eggs.
Galling index and number of eggs per root weight (GI/g and
eggs/g) were used for resistance assessment. A highly resistant
plant was defined as such when the reproduction of nematodes
was less than 20% of the reproduction in a susceptible plant
(Taylor and Sasser, 1978).

Phenotypic Characterization
Seed Size
In each cycle of backcrossing, 11 BC1F1, 30 BC2F1, 253
BC3F1, 101 BC3F2 and 25 BC4F1 seeds were phenotyped for
weight (g), length (mm, longest point) and width (mm, widest
point) prior to planting. For controls (A. stenosperma V10309;
A. batizocoi K9484; BatSten1; A. hypogaea genotypes, 5-646-10,
13-1014, TifGP-2 and Runner-886), 10 individual seeds were
measured (Table 2).
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TABLE 1 | Average and standard deviation for GI/g and eggs/g measured in BC3F3 lines, resistant, and susceptible controls using a pot bioassay.

Genotype (short) Type PRKN resistance segment* GI/g (avg ± SD) Eggs/g (avg ± SD)

BatSten1 Resistant control All segments 0.00 ± 0.00 (d) 0.00 ± 0.00 (b)

A. hypogaea TifNV-High O/L (TifNV-O/L) Resistant control** - 0.03 ± 0.08 (cd) 6.66 ± 17.43 (b)

A. hypogaea 5-646-10 (5-646-10) Susceptible control - 0.31 ± 0.26 (ab) 579.18 ± 855.26 (ac)

A. hypogaea 13-1014 (13-1014) Susceptible control - 0.42 ± 0.11 (b) 1268.64 ± 1046.49 (a)

14_BC3F3:C2633-2_3(16) S14_B (BC3F3_14_B) Backcross line – BC3F3 Bottom A02 (A02) 0.00 ± 0.00 (cd) 30.71 ± 75.23 (b)

170_BC3F3_BRD_C0050_Seed9_S77_A (BC3F3_170_A) Backcross line – BC3F3 Bottom A02 (A02) 0.02 ± 0.04 (cd) 11.89 ± 25.08 (b)

133_BC3F3_RBS_sd20_S3_01 (BC3F3_133) Backcross line – BC3F3 Bottom A09 (A09) 0.35 ± 0.18 (ab) 1411.04 ± 1076.60 (a)

135_BC3F3_RBS_sd20_S3_03 (BC3F3_135) Backcross line – BC3F3 Bottom A09 (A09) 0.25 ± 0.17 (a) 946.29 ± 888.79 (a)

202_BC3F3_RBS_sd14_S1_B (BC3F3_202_B) Backcross line – BC3F3 Bottom Small A02 (A02-) and
Bottom A09 (A09)

0.13 ± 0.19 (ac) 34.92 ± 73.71 (bc)

203_BC3F3_RBS_sd14_S2_A (BC3F3_203_A) Backcross line – BC3F3 Large A09 (A09+) 0.09 ± 0.13 (ac) 9.87 ± 27.91 (b)

avg ± SD, average ± standard deviation. GI/g, galling index per gram of root. Eggs/g, number of eggs per gram of root. Columns with the same letter do not differ
significantly (P < 0.05). Full data in Supplementary Table 8. ∗Resistance was derived from A. stenosperma, based on genotyping by Axiom_Arachis2 SNP array.
∗∗ Resistance was derived from A. cardenasii.

TABLE 2 | Average and standard deviation for seed weight, length, and width measured in BCnFn lines, diploid wild species, induced allotetraploid BatSten1, and
cultivated controls.

Genotype Type Weight (g) min – max
(Avg ± SD)

Length (mm) min – max
(Avg ± SD)

Width (mm) min – max
(Avg ± SD)

N

A. stenosperma V10309 Diploid wild species 0.16 – 0.19 (0.17 ± 0.01 b) 11.10 – 13.39 (11.86 ± 0.64 d) 4.93 – 5.57 (5.21 ± 0.21 c) 10

A. batizocoi K9484 Diploid wild species 0.14 – 0.31 (0.22 ± 0.05 c) 11.26 – 14.70 (12.95 ± 1.21 e) 5.01 – 6.37 (5.70 ± 0.43 d) 10

BatSten1 Induced allotetraploid 0.13 – 0.20 (0.17 ± 0.03 b) 11.18 – 14.45 (12.52 ± 0.92 e) 4.34 – 5.41 (5.05 ± 0.33 c) 10

A. hypogaea 5-646-10 Cultivated (Recurrent parent) 0.67 – 1.03 (0.81 ± 0.10 a) 14.30 – 20.22 (17.21 ± 1.87 ab) 9.71 – 11.20 (10.43 ± 0.51 ab) 10

A. hypogaea 13-1014 Cultivated (Recurrent parent) 0.58 – 0.97 (0.84 ± 0.11 a) 15.30 – 20.19 (18.04 ± 1.62 a) 8.50 – 11.54 (10.64 ± 0.89 a) 10

A. hypogaea TifGP-2 Cultivated (Recurrent parent) 0.59 – 0.91 (0.75 ± 0.12 a) 14.23 – 17.66 (16.48 ± 1.22 bc) 9.06 – 10.89 (9.81 ± 0.63 b) 10

A. hypogaea Runner-886 Cultivated control 0.51 – 0.94 (0.74 ± 0.17 a) 12.61 – 17.77 (15.07 ± 1.70 c) 8.40 – 11.26 (10.23 ± 1.01 ab) 10

BC1F1s Backcross lines 0.29 – 1.46 (0.68 ± 0.34) – – 11

BC2F1s Backcross lines 0.25 – 1.47 (0.72 ± 0.24) 11.01 – 21.46 (15.66 ± 2.15) 7.48 – 13.91 (9.87 ± 1.34) 30

BC3F1s Backcross lines 0.09 – 1.31 (0.66 ± 0.25) 9.22 – 20.83 (15.60 ± 2.30) 3.71 – 13.42 (9.51 ± 2.04) 253

BC3F2s Backcross lines 0.40 – 1.17 (0.72 ± 0.16) 13.47 – 22.05 (16.94 ± 1.93) 8.19 – 12.57 (10.11 ± 0.94) 101

BC4F1s Backcross lines 0.42 – 0.97 (0.69 ± 0.13) 12.95 – 17.33 (15.83 ± 1.09) 7.96 – 12.32 (10.23 ± 1.06) 25

Minimum and maximum values for controls and BCnF1 seeds are presented.
Weight, length, and width for controls with the same letter do not differ significantly (P < 0.05). Min-max (avg ± SD), minimum – maximum (average ± standard deviation)
values are presented. N, number of seeds. Full data is in Supplementary Table 9.

Pollen Viability (BC2F1s)
Pollen viability (PV) was evaluated for the BC2F1s and controls
(Table 3). Flowers were collected early morning (between 8:00
and 10:00 am) and stained with acetocarmine (Heslop-Harrison,
1992). Stained pollen grains were observed and counted under
a microscope (40X). Pollen viability from 10 individual flowers
(reps) per genotype was assessed as the percentage of stained
pollen grains (Gaaliche et al., 2013).

Leaf Spot Incidence, Fertility, Architecture, and
Flower Color (BC3F1s)
While the BC3F1s were growing in the greenhouse, segregation
for different traits was noticed, including foliar disease incidence,
fertility (number of pegs), plant architecture, and flower color
(Figures 2A–C). Single plant measurements were recorded. Leaf
spot incidence was scored as a categorical variable as: “yes” (1) for
A. hypogaea phenotype (susceptible) or “no” (0) for the resistant
phenotype (Figure 2A). A total number of pegs was counted for

assessment of fertility. Plant architecture or growth habit was
scored from 1 to 4, with 1 being erect and 4 for prostrate growth
habit (Figure 2B) (Pittman, 1995). Lastly, flower color was scored
visually as orange (1) for A. hypogaea phenotype versus yellow (0)
for the wild phenotype (Figure 2C).

Leaf Spot Incidence, Architecture, Branching, and
Extra Leaves (BC3F2s)
A group of 101 BC3F2 plants from 12 BC3F1 families with a
high recurrent parent (A. hypogaea) genome recovery (88.3–
97.3%) were selected to create a group of lines carrying different
sizes of introgressions in A02 and A09 for future gene cloning
experiments. KASP assays targeting ten SNPs at A02-QTL and
A09-QTL (Supplementary Table 2, gray-shaded markers) were
used to confirm the presence of the QTL. While the plants were
growing, several traits were recorded: leaf spot incidence and
plant architecture were scored as above, in addition, a score of
5 for dwarf phenotype was included (Figures 2A,B). Branching
was scored from an abnormal number of branches (high) (1)
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TABLE 3 | Average and standard deviation for pollen viability (%) and the number of pods quantified in BC2F1s lines and controls.

Genotype (short) Type Pollen viability (%) Number of pods

A. stenosperma V10309 Diploid wild species 94.90 ± 1.23 (b) 107

A. batizocoi K9484 Diploid wild species 71.69 ± 11.45 (cd) 260

BatSten1 Induced allotetraploid 75.51 ± 11.01 (c) 172

A. hypogaea 5-646-10 Cultivated (Recurrent parent) 93.63 ± 1.17 (ab) 120

A. hypogaea 13-1014 Cultivated (Recurrent parent) 90.24 ± 2.78 (ef) 95

BC2F1:C2633-2_3(16) Backcross line – BC2F1 92.10 ± 3.46 (ae) 60

BC2F1_BRD_C0049_Seed1 (BC2F1_Seed1) Backcross line – BC2F1 86.62 ± 5.60 (fg) 109

BC2F1_BRD_C0049_Seed2 (BC2F1_Seed2) Backcross line – BC2F1 79.50 ± 4.81 (c) 48

BC2F1_BRD_C0049_Seed7 (BC2F1_Seed7) Backcross line – BC2F1 80.84 ± 7.05 (cg) 5

BC2F1_BRD_C0049_Seed8 (BC2F1_Seed8) Backcross line – BC2F1 65.08 ± 6.05 (d) 47

BC2F1_BRD_C0050_Seed9 (BC2F1_Seed9) Backcross line – BC2F1 75.27 ± 5.19 (c) 103

BC2F1_BRD_C0055_Seed15 (BC2F1_Seed15) Backcross line – BC2F1 Not evaluated 49

BC2F1_BRD_C0055_Seed17 (BC2F1_Seed17) Backcross line – BC2F1 65.58 ± 9.14 (d) 107

BC2F1_BRD_C0057_Seed28 (BC2F1_Seed28) Backcross line – BC2F1 89.81 ± 2.29 (ef) 260

BC2F1_BRD_C0058_Seed33 (BC2F1_Seed33) Backcross line – BC2F1 77.90 ± 3.68 (c) 172

Pollen viability (%) – Percentage of viable pollen grains. The pollen viability (%) column with the same letter does not differ significantly (P < 0.05). Number of pods – Total
number of pods per plant. The correlation between Pollen viability (%) and the Number of pods was –0.007 (P < 0.05).

to intermediate (2) to normal A. hypogea phenotype (3) (see
Figure 2D). Finally, extra leaves in leaflets were observed and
scored as 1 for A. hypogaea and 0 for the presence of at least one
extra leaf (Figure 2E).

Association Analysis Using the BC3F1
Population
Association between genome-wide genotypic data of BC3F1 lines
and phenotypic data of seed weight, length and width, leaf spot
incidence, fertility, architecture, and flower color were used to
identify candidate wild introgressions that could be controlling
these traits. For seed size, leaf spot incidence, fertility, and
architecture a Pearson correlation was performed. Flower color
was analyzed using a mixed linear model (MLM) in Tassel (v.5)
(Ithaca, NY, United States) (Bradbury et al., 2007). A Manhattan
plot was created in R using the “qqman” package (Turner, 2014)
and thresholds calculated using the “CalcThreshold” package with
the Bonferroni method (Hamazaki and Iwata, 2020).

Statistical Analysis
Phenotypic data for seed weight, length and width, pollen
viability, and nematode resistance bioassay were analyzed using
the package R. A Shapiro-Wilk test was used to test for
normal distribution. Non-parametric Kruskal-Wallis one-way
analysis of variance (Kruskal and Wallis, 1952) was used to
evaluate differences at a 5% level of significance (P < 0.05).
For the seed weight, length, and width (transformed to
Log10 when needed) the Welch t-test was used to perform
pair-wise comparisons between wild accessions, cultivated
genotypes, and backcross generations. Additionally, the non-
parametric Skillings-Mack test (Chatfield and Mander, 2009)
was used to evaluate significant differences for the RCBD
nematode bioassay (P < 0.05). Further analysis included the
Wilcoxon signed-rank test for pairwise comparisons using false

discovery rate (FDR) correction to group samples by significant
similarity (P < 0.05).

RESULTS

Marker-Assisted Breeding
Four generations of MABC for introgression of PRKN resistance
from A. stenosperma were completed in two locations, Athens,
GA, and Tifton, GA under greenhouse conditions (Figure 1).
KASP genotyping was performed using 16 (for first, second and
third cycles) and 10 SNP markers (fourth cycle) (Supplementary
Tables 1, 2, gray-shaded markers). For the first cycle of
backcrosses, 38 cross combinations were used, with 19 F2:3 plants
as donor male parents and two cultivated peanut female parents,
namely, TifGP-2 and 5-646-10. In this cycle, 1,008 potential
BC1F1 seeds were harvested, and based on KASP genotyping, 17
were selected for harboring the nematode resistance segments in
A02 and A09 (Supplementary Table 3).

For the second cycle, 14 cross combinations were made with
four cultivated peanut female parents, TifGP-2, 5-646-10, 13-
1014 and 13-2113, and 11 BC1F1 male parents. Here, 61 potential
BC2F1 seeds were obtained and genotyped with KASP markers.
A total of 21 were selected as they harbored resistance segments
in A02 and A09 PRKN resistance QTL (Supplementary Table 4).

For the third cycle of backcrossing, a total of 21 cross
combinations were made using 5-646-10 and 13-1014 as female
parents and 21 BC2F1 male parents selected the previous
year, six of which were shown to be resistant to PRKN
(Ballén-Taborda et al., 2021). This resulted in 397 potential
BC3F1 seeds (Supplementary Table 5), that were genotypically
characterized in two different ways. First, 81 BC3F1 seeds were
randomly selected and evaluated for the presence of resistance
segments using the KASP assays. From this group, 52 BC3F1s
harbored the segments in A02 and A09 from A. stenosperma
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FIGURE 2 | Phenotypic characterization of advanced backcross population. Leaf spot incidence for BC3F1s and BC3F2s [“yes” (1) or “no” (0)] (A); architecture for
BC3F1s and BC3F2s (scores: 1 – erect, 2 and 3 – intermediate, 4 – prostrate, and 5 – dwarf phenotype observed only for BC3F2 generation) (Pittman, 1995) (B);
flower color for BC3F1s (scores: Orange – 1 or yellow – 0) (C); variation in branching for BC3F2s (scores: 1 – high, 2 – intermediate and 3 – normal) (D); 1–3 extra
leaves in leaflets for BC3F2s (score 0) (E). “∗” indicates A. hypogaea phenotype in all the cases.

(Supplementary Table 5). Second, 271 BC3F1s were genome-
wide genotyped (see next section).

For the fourth cycle, six cross combinations were used with
5-646-10, 13-1014, and 13-1125 as females and two BC3F2
male parents harboring A02 and A09 loci. Here, 27 potential
BC4F1 seeds were obtained and genotyped with KASP markers.
A total of 25 were confirmed to harbor PRKN resistance
chromosome segments at the bottom of both A02 and A09
(Supplementary Table 6). Three of them could have combined
both sources of resistance in A02 from A. stenosperma and A09
from A. cardenasii present in parent 13-1125.

Genome-Wide Genotyping of BC3F1s
To characterize the wild introgressions in the BC3F1 population,
271 lines and controls were genotyped with the Axiom_Arachis2
SNP array. A total of 930 informative polymorphic SNP markers,
previously identified and assigned to A and B subgenomes
(Ballén-Taborda et al., 2019), were recovered. Among these,
527 markers were located in A-subgenome (A. stenosperma-
specific markers) and 403 to B/K-subgenome (A. batizocoi-
specific markers). Of the 271 genotyped lines, 253 (93.4%) were
true progeny from hybridization and 18 (6.6%) were products of
self-pollination (Supplementary Table 7).

Examples of Axiom clustering plots of SNPs linked to QTL in
A02 (Supplementary Figures 1A,B) and A09 (Supplementary
Figures 1C–E) show the distribution of BC3F1 lines and
controls. Red clusters (A02 SNPs) and blue clusters (A09 SNPs)
comprise genotypes without the A. stenosperma-derived allele.
A. stenosperma was genotyped with the alternate allele. Yellow

clusters indicate the backcross lines with incorporated PRKN
resistance from A. stenosperma.

The principal component analysis (PCA) performed on
the genotyping data, allowed us to observe that the BC3F1s
have recovered a high percentage of the A. hypogaea genome.
Backcross lines showed a recurrent parent genome recovery
between 80.2 and 98.8%, while still carrying between 1.1 and
19.1% of the wild donor genome (Supplementary Figure 2).
Additionally, to visualize the distribution of the backcross
population according to the proportion of wild introgression
(%) in each chromosome, the data was displayed in violin plots.
These plots allowed us to observe that the lines were harboring
more wild alleles in the A-subgenome than in B-subgenome,
especially in chromosomes A02 and A09 where foreground
selection was applied during the backcrossing process (Figure 3
and Supplementary Table 7).

Peanut Root-Knot Nematode Resistance
Validation Using BC3F3s
To validate the PRKN resistance controlled by QTL in A02 and/or
A09, 72 BC3F3 segregating lines, and resistant and susceptible
controls were evaluated using a greenhouse pot nematode
bioassay and genotyped with both KASP and Affymetrix to
confirm the presence of the QTL. Specifically, Affymetrix was
completed for genome-wide characterization. Galling index (GI)
and number of eggs in relation to root weight (GI/g and eggs/g)
allowed us to assess the resistance to M. arenaria within the
backcross lines (Table 1).
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FIGURE 3 | Violin plots for the proportion of wild genome (%) (y-axis) in each of the 10 A- and 10 B-subgenome chromosomes (x-axis) for the 271 BC3F1 lines.
Black dots indicate each individual BC3F1, and red dots indicate the mean.

Resistant controls (BatSten1 and TifNV-High O/L) and
susceptible genotypes (5-646-10 and 13-1014) exhibited the
expected phenotype. BatSten1 and TifNV-High O/L showed
strong resistance, with no or low gall/egg production. In
contrast, for 5-646-10 and 13-1014, GI/g fluctuated between
0.31 ± 0.26 and 0.42 ± 0.11 and eggs/g varied between
579.18 ± 855.26 and 1268.64 ± 1046.49 (Figure 4, Table 1
and Supplementary Table 8). BC3F3 lines showed significant
differences for GI/g and eggs/g (Kruskal-Wallis, Skillings-
Mack and Wilcoxon tests, P < 0.05). Since the BC3F3s were
still recombining and segregating for PRKN QTL, to better
summarize the results, the lines were grouped according to the
segments they were carrying as follows: • Group 1: bottom
A02 (A02) (A. stenosperma allele at A02-83,464,195, A02-
92,077,207 and A02-92,983,792 → 81.0 – 93.8 Mb); • Group

2: bottom A09 (A09) (A. stenosperma allele at A09-112,309,231
and A09-114,515,959 → 104.6 – 119.8 Mb); • Group 3: large
A09 (A09+) (A. stenosperma allele at A09-16,516,448, A09-
112,309,231 and A09-114,515,959 → 3.4 – 118.7 Mb); and •
Group 4: Both bottom small A02 (A. stenosperma allele at
A02-92,077,207 and A02-92,983,792 → 91.6 – 93.8 Mb) and
bottom A09 (A02- and A09). According to this grouping, all the
backcross materials belonging to groups 1, 3, and 4 exhibited
high levels of resistance to PRKN. No or few galls (0.01 ± 0.03–
0.17± 0.20) and low egg production (0.00± 0.00–36.30± 83.17)
was observed in the infected roots. For groups 3 and 4 galls
were observed in the roots, but the production of eggs was
inhibited. In contrast, lines in group 2 were susceptible to
PRKN by having GI/g and eggs/g values of 0.26 ± 0.19 and
1050.62 ± 1005.38, respectively (Figure 4). For more details of
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FIGURE 4 | Boxplot diagrams for Galling index per gram of root (GI/g) (A) and Number of eggs per gram of root (eggs/g) (B) of BC3F3 lines, resistant controls
Batsten1 and A. hypogea TifNV-High O/L, and susceptible controls 5-646-10 and 13-1014. BC3F3 lines were grouped according to the A. stenosperma alleles that
they are carrying as: • Group 1: bottom A02 (A02) (A. stenosperma allele at A02-83,464,195, A02-92,077,207, and A02-92,983,792); • Group 2: bottom A09 (A09)
(A. stenosperma allele at A09-112,309,231 and A09-114,515,959); • Group 3: large A09 (A09+) (A. stenosperma allele at A09-16,516,448, A09-112,309,231 and
A09-114,515,959); and • Group 4: Both bottom small A02 (A. stenosperma allele at A02-92,077,207 and A02-92,983,792) and bottom A09 (A02- and A09). The
top of the figure indicates the introgression in A02 and A09 from A. stenosperma in blue and SNP markers as black horizontal lines. For TifNV-High O/L, resistance
from A. cardenasii is colored in gray. The numbers at the top of the bars indicate the mean ± SD. The numbers above the groups indicate the number of lines
included in each group. Complete pedigree in Supplementary Table 8. Black bars across boxes indicate the median and red dot the mean. BC3F3s in salmon
color and controls in teal color.

GI/g and eggs/g values for the BC3F3 lines, see Table 1 and
Supplementary Table 8.

Phenotypic Characterization
A wide variation of morphological and agronomic traits was
observed in the backcross populations (BC3F1s and BC3F2s),
including seed size, pollen viability, leaf spot incidence,
fertility (number of pegs), plant architecture, flower color,
branching, and extra leaves (Figure 2). Association analysis
between phenotypic information and wild introgressions in the
BC3F1 population was performed to identify candidate regions
associated with these traits.

Seed Size
Seed weight (g), length (mm) and width (mm) measurements
were recorded for 11 BC1F1, 30 BC2F1, 253 BC3F1, 101 BC3F2
and 25 BC4F1 seeds prior to planting, along with wild and
cultivated controls. Significant differences were observed between
the control genotypes according to the Kruskal-Wallis test and
the Wilcoxon Test (P < 0.05), where wild genotypes have
significantly smaller and lighter seeds as compared with seed
dimensions of cultivated genotypes (Figure 5A, Table 2, and
Supplementary Table 9). There was a clear recovery in seed size
as early as BC1. According to the Welch t-test, the wild accessions
(A. stenosperma V10309, A. batizocoi K9484, and BatSten1)
differed significantly from the cultivated genotypes (A. hypogaea

5-646-10, 13-1014, TifGP-2 and Runner-886) and the backcross
generations (BC1F1, BC2F1, BC3F1, BC3F2, and BC4F1) for
weight, length, and width (P < 0.05). When comparing seed
measurements of cultivated genotypes with each of the BC
generations and between BC generations, in most of the cases
there were no significant differences in seed size (P < 0.05 and
P < 0.01) (Welch t-test matrix in Supplementary Table 9).
Between the BC lines seed size exhibited variation, and on average
the seed weight fluctuated from 0.66 g (BC3F1s) and 0.72 g
(BC2F1s and BC3F2s), but having weight as high as 1.47 g when
compared to the cultivated controls that exhibited similar seed
weight of 0.74 g (Runner-886) and 0.84 g (13-1014), with the
highest being 1.03 g. In this study, we presented data for the
weight (Figure 5A), a similar tendency was observed for length
and width (Table 2 and Supplementary Table 9). Based on
the Pearson correlations performed between the seed weight,
length, and width and the genotypic data for the BC3F1s potential
A. hypogaea loci associated with large seed size were identified in
chromosomes A03, B01, and B08 (Supplementary Figures 3A–C
and Supplementary Table 10).

Pollen Viability (BC2F1s)
Pollen viability (PV) of wild accessions A. stenosperma,
A. batizocoi, the induced allotetraploid BatSten1, recurrent
parents 5-646-10 and 13-1014 and 9 BC2F1 lines was evaluated
to estimate differences in viability within BC lines. Individuals
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FIGURE 5 | Violin plots for the distribution of seed weight (g) (y-axis) for wild controls, several backcross generations (BC1F1s, BC2F1s, BC3F1s, BC3F2s, and
BC4F1s) and cultivated genotypes (x-axis); Black dots indicate each individual line and red dot the mean (A). Photo of seeds of diploid species (A. stenosperma and
A. batizocoi), synthetic allotetraploid BatSten1, cultivated genotypes (Runner-886, 5-646-10, 13-1014, TifGP-2), and seeds from BC3F1 lines (B). Groups of 15
seeds are presented. Recurrent parent (RP) indicated in parenthesis for each BC3F1 line. Complete pedigree in Supplementary Table 7. The same trend for length
(mm) and width (mm) was observed (Supplementary Table 9). Refer to Table 2 for average, SD, and statistical analysis for controls.

showed varying degrees of pollen viability, ranging from 65.6
to 94.9% (Table 3). In control genotypes, PV varied from 71.7
to 94.9% and in the BC2F1s, it fluctuated from 65.6 to 89.8%.
Although significant differences were observed between the
genotypes according to the Kruskal-Wallis test and the Wilcoxon
Test (P < 0.05), no grouping trend was observed. In summary,
high pollen viability in the cultivated genotypes (5-646-10 and
13-1014), A. stenosperma, and some BC2F1s were observed, and
lower pollen viability was observed for BatSten1, A. batizocoi,
and other BC2F1s (Supplementary Figure 4). A low correlation
between pollen viability and the number of produced pods per
plant was observed (–0.007, p < 0.05).

Leaf Spot Incidence, Fertility, Architecture, and
Flower Color (BC3F1s)
For the BC3F1 population that included 253 lines, segregation
for leaf spot incidence, fertility, architecture, and flower color
was noticed while growing in the greenhouse in a randomized
position (Figures 2A–C). 150 lines exhibited signs of leaf
spot, while 103 did not (Supplementary Figure 5A). Pearson
correlation performed between phenotypic and genotypic data
allowed us to identify two candidate loci in chromosomes A06

and B02 that could be associated with resistance to leaf spot
(Supplementary Figure 3D) and are now being tested using
BC3F2 progeny (data not shown). The number of pegs was
counted as an indication of fertility. The distribution of the data
showed that the majority of the lines had a similar number of
pegs as the recurrent parents 5-646-10 and 13-1014, with an
average of 13.15 ± 7.83 total number of pegs (Supplementary
Figure 5B). For this trait, A. hypogaea loci in chromosomes A02
and A09 could be associated with fewer pegs (Supplementary
Figure 3E). For architecture, around two-thirds of the lines had
the cultivated growth habit phenotype (163) and one-third of the
lines were exhibiting an erect growth habit (84) (six were too
small to be scored) (Figure 2B and Supplementary Figure 5C).
According to the association analysis, SNPs in chromosomes A01
and B08 could be associated with changes in plant architecture
(Supplementary Figure 3F). Most lines exhibited orange flowers
(245) while eight had the yellow color, a common trait within
Arachis wild species (Supplementary Figure 5D). After running
the mixed linear model in Tassel, introgression on the top of
chromosome A05 (7.92–8.62 Mb) was found to be associated
with the change in flower color from orange to yellow. In this
study, four markers were found to be linked with this trait
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(A05-7,919,003, A05-7,958,564, A05-8,040,921, A05-8,621,849)
(Supplementary Figure 6).

Leaf Spot Incidence, Architecture, Branching, and
Extra Leaves (BC3F2s)
Segregation for leaf spot incidence, architecture, branching, and
extra leaves was also noticed among the 101 BC3F2 lines (two of
them were too small to be scored) (Supplementary Table 11). 38
lines had leaf spots and 61 did not (Supplementary Figure 5E).
Around half of the lines had the cultivated growth habit
phenotype (51), some exhibiting an erect phenotype (41) and
a few with a dwarf phenotype (7) (Supplementary Figure 5F).
Most lines showed the peanut phenotype of normal branching
(79 with score 3) and some presented a high number of stems
(20 with score 1 or 2) (Supplementary Figure 5G). Finally,
at least one extra leaflet was observed in 70 plants (score 0)
and 31 did not display this unexpected phenotype (score 1)
(Supplementary Figure 5H).

DISCUSSION

Crop wild relatives (CWR) have become an important source to
reintroduce genetic diversity for crop improvement (Dempewolf
et al., 2017). For peanut breeding, diploid wild relatives
comprise a diverse genetic pool that is being used to broaden
peanut’s genetic base (Stalker, 2017). Transferring wild beneficial
alleles requires an additional step of developing peanut
compatible wild-derived synthetic allotetraploids (Suassuna
et al., 2020). To incorporate root-knot nematode resistance
from A. cardenasii, synthetic allotetraploids were successfully
developed and used (Simpson et al., 1993; Simpson and Starr,
2001). The introgression in A09 controlling PRKN resistance
(Nagy et al., 2010; Chu et al., 2016) is present in several
commercial cultivars (Simpson et al., 2003, 2013; Holbrook et al.,
2008, 2017; Branch and Brenneman, 2015) and has provided a
strong resistance over the years. Since the resistance to PRKN is
controlled by a single source, there is a risk of virulent nematode
populations developing. Therefore, the incorporation of new
alleles is essential to provide stronger and more durable resistance
against PRKN.

One of the peanut wild relatives A. stenosperma
PI666100/V10309 has been confirmed to be resistant to
peanut root-knot nematode, M. arenaria (Proite et al., 2008),
and genes involved in plant defense against this pathogen
have been described (Proite et al., 2007; Guimarães et al.,
2010; Mota et al., 2018; Araujo et al., 2021). The present work
reports the successful incorporation of two new and strong
PRKN resistance loci from A. stenosperma previously mapped
and validated (Leal-Bertioli et al., 2016; Ballén-Taborda et al.,
2019, 2021). Here, marker-assisted backcross breeding was
employed to complete four cycles, and genetic and phenotypic
characterization was performed (Figure 1). As pyramiding
of major R-genes has been proven to be valuable to extend
durability and effectiveness of major genes (Pilet-Nayel et al.,
2017), in the fourth cycle the elite breeding line 13-1125
harboring nematode resistance from A. cardenasii was included

as a female parent (Holbrook, CC, unpublished data). Based
on KASP genotyping, three BC lines could have pyramided
both sources of resistance in A02 from A. stenosperma and A09
from A. cardenasii (Supplementary Tables 6, 12, highlighted
in green).

A population of 253 true third backcross lines were subjected
to genome-wide genotyping and phenotypically characterized
for association analysis. These lines originally selected for
PRKN resistance had wild introgressions between 1.1 and
19.1% across the genome. Having a high percentage of
the wild genome would indicate that additional cycles of
backcrossing are needed to assure maximum elite genome
representation; therefore, we completed the fourth cycle.
However, segregation for several phenotypic attributes (seed
size, pollen viability, leaf spot incidence, fertility, architecture,
flower color, branching, and extra leaves) was observed, which
indicated that wild introgressions in different chromosomes
could be controlling these traits and are worth further study.
The whole BC3 population has been carried forward not only
to develop nematode-resistant cultivars but additionally to study
resistances to other pests and diseases and to develop a CSSL-
like population that would be useful for precise mapping
of QTL.

Based on the data of agronomic and morphological traits
measured in several generations, most lines exhibited elite
peanut traits and were similar to recurrent parental breeding
lines. First, seed size in each generation of introgression was
examined. This was done to observe the seed size recovery
as we progressed through our MABC scheme, as seed size
is an important trait associated with germination, vigor, and
yield, and is important for the peanut industry and market
(Singh et al., 1998). For the backcross lines, our measurements
showed that seed size was not progressively increased as the
wild genome representation was reduced in each generation. On
the contrary, we observed that only one backcross generation
was required to recover the elite peanut’s large seeds and
that in later generations the average seed size did not change
significantly (Figure 5B). We also observed that larger and
heavier seeds were produced by some BC lines, by having seed
weight as high as 1.47 g compared to the cultivated controls
that exhibited 1.03 g as the heaviest seed. Similar behavior
was observed for length and width. An explanation for the
transgressive segregation in seed size could be due to the
presence of wild alleles that are contributing to larger seed size,
as reported before in interspecific peanut progenies (Fonceka
et al., 2012a; Suassuna et al., 2015). Although the correlation
analysis showed candidate regions in chromosomes A03, B01,
and B08, this requires further validation as these have not been
reported previously.

Results for pollen viability measured in the BC2 generation
agreed with that of Leal-Bertioli et al. (2015) as cultivated
peanut genotypes and A. stenosperma showed a high pollen
viability (average of 91.9%) and most of the BC2F1 lines
had lower numbers (average of 79.2%) reflecting the genetic
distance of the parental genotypes. Our results showed little
variation regardless of the genotype, which suggests that pollen
viability is not a key contributor to the production of seeds
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within the backcross lines (Leal-Bertioli et al., 2015). This
was also corroborated by the low correlation between pollen
staining and pod production (–0.007, P < 0.05). The correlation
analysis on the BC3 generation, also allowed us to identify
candidate introgressions for leaf spot reduction in chromosomes
A06 and B02. For flower color, the region at the top of
chromosome A05 (7.92 – 8.62 Mbp) associated with the
yellow color trait is consistent with previous reports, and a
result of homologous recombination (Fonceka et al., 2012b;
Bertioli et al., 2019).

Although most of the BC lines had domesticated features, we
also observed some variation in fertility (number of pegs), plant
architecture, branching, and extra leaves. Further analyses will be
required to fully understand the candidate wild introgressions
that are controlling these traits. Finally, in the case of extra
leaflets, this is a phenotype that has been described as a novel
heterozygous trait that continues to segregate even after several
generations of selfing (Branch et al., 2020).

Validation of Nematode Resistance
In this study, resistance to PRKN was successfully validated in
a set of BC3F3 lines. The bottom of A02 (81.0 – 93.8 Mb)
(Figure 4, group 1) provided strong resistance as previously
described and validated (Leal-Bertioli et al., 2016; Ballén-Taborda
et al., 2019, 2021). In the case of the QTL in chromosome A09,
we observed that the small introgression at the bottom (104.6 –
119.8 Mb) was insufficient to stop nematode development (group
2) and that a larger segment at the top-bottom of A09 (3.4 –
118.7 Mb) was required to provide resistance, especially for
preventing eggs production (group 3). It is possible that the
presence of wild alleles in A04 associated with susceptibility
in group 2 could be acting against resistance as previously
described (Ballén-Taborda et al., 2019). When the plants were
harboring both bottom small A02 (91.6 – 93.8 Mb) and bottom
A09 (104.6 – 119.8 Mb) (group 4) we would expect to observe
inhibition of both galls and egg production since A02 was present;
however, galls were present in the roots. Field testing is in
progress to test the stability of the resistance and for allele fixation
through selfing.

Implications for Breeding for Disease
Resistance
Genetic maps, quantitative trait loci (QTL), and marker-
phenotype associations have been reported for numerous crops
and traits (Collard and Mackill, 2008). Despite this, examples of
QTL incorporation in plant breeding programs are lower than
expected (Bernardo, 2016). This work represents a successful
example of QTL introgression from a wild relative into an elite
peanut despite the genetic incompatibilities. This provides an
alternative to the only source of root-knot resistance currently
deployed in the peanut crop, derived from A. cardenasii
(Simpson and Starr, 2001).

The population of advanced peanut backcross lines that we
have developed during this work has wild chromosome segments
through much of the genome, distributed in different ways in
different lines. They are being tested and advanced in several

locations, and the best performing lines are being selected
for germplasm release. The PRKN resistance alleles have been
successfully validated and DNA markers are now available to
facilitate the marker-assisted selection. Furthermore, because
of the diverse wild chromosome segments in this population,
we also anticipate that it has other disease resistances and
traits of value to the peanut crop. We anticipate that, over
time, these backcrossed lines will impact peanut production
by delivering several new traits to the peanut crop, similar
to the case of North Carolina peanut lines with A. cardenasii
segments that have provided resistance to late leaf spot, rust,
and web blotch in numerous countries around the world
(Bertioli et al., 2021b).
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Fusarium root rot, caused by a complex of Fusarium spp., is a major disease of field
pea (Pisum sativum). The development of genetic resistance is the most promising
approach to manage the disease, but no pea germplasm has been identified that is
completely resistant to root rot. The aim of this study was to detect quantitative trait
loci (QTL) conferring partial resistance to root rot and wilting, caused by five fungal
isolates representing Fusarium solani, F. avenaceum, F. acuminatum, F. proliferatum, and
F. graminearum. Evaluation of the root rot-tolerant cultivar “00-2067” and susceptible
cultivar “Reward” was carried out with the five species. There was a significant difference
(p < 0.001) between the mean root rot values of the two cultivars inoculated with the
F. avenaceum (F4A) and F. graminearum (FG2) isolates. Therefore, in the QTL study,
the F8 recombinant inbred line (RIL) population derived from “Reward” × “00-2067”
was inoculated in the greenhouse (4 ×) with only F4A and FG2. The parents and F8

population were genotyped using 13.2K single nucleotide polymorphisms (SNPs) and
222 simple sequence repeat (SSR) markers. A significant genotypic effect (p < 0.05)
and high heritability (79% to 92.1%) were observed for disease severity, vigor, and plant
height following inoculation with F4A and FG2. Significant correlation coefficients were
detected among and within all traits. This suggested that a high proportion of the genetic
variance was transmitted from the parents to the progeny. However, no significant QTL
(LOD > 3) were detected for the RILs inoculated with F4A. In the case of the RILs
inoculated with FG2, 5 QTL for root rot severity and 3 QTL each for vigor and plant
height were detected. The most stable QTL for plant height (Hgt-Ps3.1) was detected
on Chrom5/LGIII. The two most stable QTL for partial resistance to FG2, Fg-Ps4.1,
and Fg-Ps4.2 were located in a 15.1-cM and 11.2-cM genomic region, respectively, on
Chrom4/LGIV. The most stable QTL for vigor (Vig-Ps4.1) was found in the same region.
Twenty-five major and moderate effect digenic epistatic interactions were detected.
The identified region on chrom4/LGIV could be important for resistance breeding and
marker development.

Keywords: Pisum sativum L., recombinant inbred lines (RIL), conidia suspension, SNP and SSR markers, linkage
map construction and QTL mapping

Frontiers in Plant Science | www.frontiersin.org 1 January 2022 | Volume 12 | Article 784593337

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.784593
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2021.784593
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.784593&domain=pdf&date_stamp=2022-01-20
https://www.frontiersin.org/articles/10.3389/fpls.2021.784593/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-784593 January 13, 2022 Time: 17:5 # 2

Wu et al. Pea Resistance to Fusarium spp.

INTRODUCTION

Globally, root rot is estimated to cause yield reductions of 10–
30% in pulse crops, but losses can be as high as 100% in crops
with severe infections under ideal environmental conditions
(Oyarzun, 1993; Schneider et al., 2001; Schwartz et al., 2005;
Cichy et al., 2007). As such, root rot is one of the most
devastating diseases of field pea and other pulse crops in
Canada and worldwide (Hwang and Chang, 1989; Feng et al.,
2010; Chatterton et al., 2015, 2019; Gossen et al., 2016; Chang
et al., 2017; Safarieskandari et al., 2020; Wu et al., 2021). The
causal organisms of the pea root rot complex (PRRC) are soil-
borne fungal and fungal-like organisms that include Fusarium
spp., Aphanomyces euteiches, Pythium spp., Phytophthora spp.,
Rhizoctonia spp., Didymella spp. (formerly Mycosphaerella spp.),
and Ascochyta spp. (Fletcher et al., 1991; Kaiser, 1992; Hwang
et al., 1994; Xue et al., 1998; Bailey et al., 2003; Chang et al., 2005,
2013, 2014, 2017; Tyler, 2007; Díaz Arias et al., 2011).

Given their abundance and wide host range, the vast majority
of the PRRC organisms are Fusarium species, although these
may exhibit variable virulence toward different hosts. The various
species identified in the Canadian prairies include F. solani,
F. avenaceum, F. oxysporum, F. graminearum, F. culmorum,
F. acuminatum, F. redolens, F. sambucinum var. coeruleum, F.
equiseti, F. poae, F. sporotrichioides, and F. tabacinum (Kraft
and Pfleger, 2001; Fernandez, 2007; Fernandez et al., 2008;
Feng et al., 2010; Chittem et al., 2015; Wu et al., 2017; Chang
et al., 2018; Zitnick-Anderson et al., 2018). Among these,
F. avenaceum, F. solani, and F. oxysporum were reported to
be the primary species causing significant Fusarium root rot
(FRR) in the major field pea cultivation regions in Canada and
worldwide (Kraft, 1981; Kraft and Pfleger, 2001; Wille et al.,
2020).

The Fusarium graminearum species complex (FGSC) includes
the major pathogens causing Fusarium head blight (FHB) of
wheat, barley, oats, and other small grain cereals (O’Donnell
et al., 2008). On cereal hosts, FGSC produces various mycotoxins
known as trichothecenes [e.g., deoxynivalenol (DON), nivalenol
(NIV), zearalenone (ZEN), and fumonisin B1 (FB1)], which are
detrimental to human and animal health when ingested (van der
Lee et al., 2015). While F. graminearum mainly affects cereals,
this pathogen has been isolated from field pea in Canada, the
USA, and Lithuania (Feng et al., 2010; Chittem et al., 2015;
Rasiukevičiūtė et al., 2019). Rasiukevičiūtė et al. (2019) reported
that field pea was the non-cereal crop most susceptible to
F. graminearum compared with faba bean, fodder beet, oilseed
rape, potato, and sugar beet.

At present, there are no sources of complete resistance to
PRRC in field pea. Furthermore, higher global temperatures
and excessive soil moisture associated with climate change have
led to the increased incidence and severity of many plant
diseases (Chakraborty et al., 2000; Dorrance et al., 2003; Gautam
et al., 2013; Elad and Pertot, 2014). While tillage was reported
to be beneficial to the soil environment, it did not suppress
the development of FRR in field pea (Bailey et al., 1992).
Seedling data and depth were reported to affect FRR in lentil
(Hwang et al., 2000), but not in field pea (Chang et al., 2013).

Crop rotations longer than 4 years are recommended for the
management of root rot, but these are not always practical
(Hwang and Chang, 1989; Bainard et al., 2017). Fungicidal seed
treatments were reported to increase emergence and reduce root
rot severity in the early growth stages of pea (Xue et al., 2000;
Wu et al., 2019), with Apron Maxx (fludioxonil, metalayxyl-M
and S-isomer), prothioconazole, fluopyram, and penthiopyrad,
suppressing FRR in greenhouse and field experiments (Avenot
and Michailides, 2010; Chang et al., 2013). However, some
fungicides can also affect Rhizobia, leading to reductions in
nodulation and nitrogen fixation (Chang et al., 2013), and their
use is not environmentally friendly.

Genetic resistance offers the most promising way to control
FRR and wilt in pea. However, there is no complete resistance
to FRR in field pea, and only a few studies have reported QTL
associated with partial resistance to this disease (Feng et al., 2011;
McPhee et al., 2012; Coyne et al., 2015, 2019). Coyne et al. (2015,
2019) identified the major QTL for partial resistance to F. solani,
Fsp-Ps2.1, to be on LGII (Chromosome 6), while four minor
QTL were found on LGIII, IV, VI, and VII (Chromosomes 5,
4, 1, and 7, respectively). These QTL explained 44.4–53.4% of
the total variance for resistance (Coyne et al., 2019). McPhee
et al. (2012) detected one major QTL on LGIV (Chromosome 4)
and two minor QTL on LGIII (Chromosome 5) to be associated
with partial resistance to F. oxysporum race 2. The major QTL
identified by McPhee et al. (2012), Fnw4.1, explained 68–80% of
the phenotypic variance. Feng et al. (2011) identified one QTL
controlling resistance to F. avenaceum on LGVII (Chromosome
7) in a rough map generated with 14 SSRs. The QTL identified
in most of these studies had very large confidence intervals due
to the limited number of markers used. The low marker density
makes it difficult to apply the identified markers in pea breeding.

On the Canadian prairies, cereals are grown in tight rotations
with canola, while the cultivation of field pea and other pulses
is increasing (Bekkering, 2013; Gill, 2018). Boom-and-bust-
type cycles of root rot diseases were highly correlated with
crop rotation practices (Govaerts et al., 2007; Su et al., 2021).
Therefore, the order of cultivation of crops in a rotation is
important. The increased incidence and severity of FRR in field
pea make the study of the genetic resistance to different Fusarium
spp. an important research objective.

Therefore, the objectives of this study were to: (1) evaluate the
partially resistant pea cultivar “00-2067” for resistance to different
Fusarium spp. recovered from surveys for root rot in Alberta,
Canada; (2) map the QTL associated with partial resistance to
FRR using a segregating recombinant inbred line (RIL) pea
population genotyped by Wu et al. (2021) and the most virulent
of the Fusarium isolates; and (3) determine the stability of the
QTL, accounting for disease severity, vigor, and plant height.

MATERIALS AND METHODS

Plant Materials
One-hundred thirty-five RILs used by Wu et al. (2021)
for mapping the QTLs associated with partial resistance to
Aphanomyces root rot were included in this study. In brief, the
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Aphanomyces root rot-resistant pea parent “00-2067” developed
by Dr. J. Kraft and V. A. Coffman at the Irrigated Agriculture
Research and Extension Center in Prosser, WA, United States
(Conner et al., 2013; Wu et al., 2021), was used in genetic
crosses with the susceptible parent “Reward” (Bing et al., 2006)
to produce F1 plants, which were then used to develop an F8 RIL
population (Supplementary Figure 1) by the single-seed descent
(SSD) method (Brim, 1966).

Fusarium Isolates
Five single-spore isolates (SSI), S4C (F. solani), F4A
(F. avenaceum), F037 (F. acuminatum), F039 (F. proliferatum),
and FG2 (F. graminearum), representing the Fusarium species
most frequently recovered from symptomatic pea plants in root
rot surveys in Alberta, were used to screen the parental cultivars
“00-2067” and “Reward.” Briefly, to obtain the SSIs, surface-
sterilized pieces of root tissue with disease lesions were placed on
potato dextrose agar (PDA) and incubated at 25◦C for 2–3 days
and then transferred to the peptone-pentachloronitrobenzene
(PCNB) medium for further selection. Mycelial tips of the fungal
isolates were cut from selected colonies under a stereomicroscope
(Zeiss Axio Scope A1, Carl Zeiss Canada Ltd., Canada), and the
water agar (WA) procedure was used to obtain SSI (Zitnick-
Anderson et al., 2020). The species designation of each of the
SSIs was confirmed based on morphology and evaluation with
the PCR primer sets ITS4/ITS5 and EF-1/EF-2, while isolate
virulence was confirmed by fulfilling Koch’s postulates (Feng
et al., 2010; Chen et al., 2014; Zhou et al., 2014; Wu et al., 2017;
Chang et al., 2018; Zitnick-Anderson et al., 2018).

Inoculum Production
Conidial suspensions of the five isolates were generated following
Son et al. (2013). Pure cultures of each Fusarium spp. were grown
in Petri dishes on PDA under darkness at room temperature
for 4–6 weeks. Sterile-distilled water was added to each Petri
dish, and the surface of each colony was gently scraped
with a sterile inoculation needle to dislodge the spores (and
hyphal fragments), with the resulting suspension decanted into
250-ml Erlenmeyer flasks, containing a 100-ml autoclaved CMC
medium (1.5% carboxymethyl cellulose, 0.1% yeast extract, 0.05%
MgSO4·7H2O, 0.1% NH4NO3, 0.1% KH2PO4, 100-ml H2O). The
flasks were covered in aluminum foil to block light and incubated
on a rotary shaker at room temperature for 2 weeks. The
suspension was centrifuged to collect conidia. The concentration
of conidia was estimated with a hemocytometer and adjusted
to a final concentration of 2 × 106 spores ml−1 with sterile-
deionized water.

Screening of Recombinant Inbred Line
Parents With Five Fusarium Species
Plastic cups (9-cm diameter and 10.5-cm depth) were filled with
a sterilized potting mixture (Cell-TechTM, Monsanto, Winnipeg,
MB, Canada). In the greenhouse tests with each SSI (S4C, F4A,
F037, F039, and FG2), the roots of seven 5-day-old seedlings
of the partially resistant parent “00-2067” and the susceptible
parent “Reward” were immersed in the conidial suspension for

15 min and transplanted into the soilless mixture in a cup.
An aliquot (1 ml) of conidial suspension was pipetted onto the
roots before they were covered with the potting mix. The plants
were kept in a greenhouse at 20–25◦C/15–18◦C day/night and
a 16-h photoperiod with daily watering to maintain the potting
mix at saturation conditions conducive for FRR development.
Each experiment was repeated two times. After 3 weeks, disease
severity was estimated for the parental cultivars on a scale of 0–4,
where: 0 = completely healthy; 1 = brown or black spots on the
main root; 2 = lesions covering the main root, but the rootlets still
healthy; 3 = lesions spread to the entire root system; and 4 = root
totally dead (Figures 1a,c).

Disease Assessment of Recombinant
Inbred Line Population Under Controlled
Conditions
The most virulent of the Fusarium isolates was used as
inoculum to screen the 135 RIL population and parents under
greenhouse conditions. The inoculation and the maintenance
of the plants were as described above. The pots were arranged
in a randomized complete block design (RCBD) with four
replicates. The greenhouse experiment was repeated four times.
After 3 weeks, plant height (cm) was measured from the base of
the stem to the top leaf. Plant vigor was evaluated as a measure
of the wilting severity on a scale of 0–4 (4 = plant completely
healthy; 3 = thin stem and short height; 2 = brown lesions on
stem and yellowing of leaf tips; 1= wilting on stems and leaves;
0 = plant completely dead) (Figure 1b). The plants were then
carefully uprooted, washed under standing water, and assessed for
disease severity as described above.

Statistical Analysis of Phenotypic Data
ANOVA was conducted using R software (R Core Team, 2019)
for disease severity, vigor, and plant height in four greenhouse

FIGURE 1 | Disease reaction of the parents (a) and scales used to rate
disease severity (c) and vigor (b).
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environments. The mean and least square mean (LSM) of all
traits were calculated for single environments and total data
using the package “lsmeans” (Lenth, 2016) in R. To estimate
random effects, the best linear unbiased predictors (BLUPs) and
heritability were also calculated using the package “Phenotype”
(Zhao, 2020) in R. Correlation analysis was conducted within
each trait (all variables including means for single environments,
LSM, and BLUPs for total data) and among traits (including
disease severity, vigor, and plant height) using the package
“PerformanceAnalytics” (Peterson et al., 2019) in R, displaying
the correlation coefficient, frequency distribution, and dot plot.
The P-value of the Shapiro–Wilk test was used to determine the
normality for each variable using R (R Core Team, 2019).

Genotyping With Single Nucleotide
Polymorphisms and Simple Sequence
Repeat Markers
The 13.2K SNP markers and 222 SSR markers, the parents,
and the RIL population genotyped by Wu et al. (2021) were
used in this study. In brief, SNP genotyping was carried out at
TraitGenetics GmbH, Gatersleben, Germany, using an SNP array
developed from gene-encoding sequences, which are distributed
uniformly across the pea genome (Tayeh et al., 2015). The SSR
markers were obtained from Loridon et al. (2005). In the case of
the SSR markers, the PCR assays, thermal cycling conditions, and
genotyping using an ABI PRISM 3730 x l DNA analyzer (Applied
Biosystems, Foster City, CA, United States) were as described
by Wu et al. (2021). Filtering of the SNP and SSR was carried
out to retain highly polymorphic markers and RIL individuals
with > 95% genotyping data, as well as markers that exhibited
the expected 1:1 segregation ratio.

Linkage Map Construction
Linkage analysis was carried out using the filtered SNP and
SSR markers, following Wu et al. (2021). This involved the
generation of a draft linkage map using the minimum spanning
tree map (MSTMap) (Wu et al., 2008) and then refined by
MAPMAKER/EXP 3.0 (Lincoln et al., 1992). The Kosambi map
function (Kosambi, 1944) was used to calculate the genetic
distances (in cM) between the markers. The map construction
was carried out with MapChart v. 2.32 (Voorrips, 2002) using
the Kosambi map function, of which the linkage groups were
assigned to chromosomes based on the consensus SNP map of
pea developed by Tayeh et al. (2015). The sequences of the SNP
markers flanking the QTLs associated with partial resistance to
FRR caused by F. graminearum were used in BlastN (E-value≤ E-
20) searches of the Pulse Crop Database1 to determine their
possible functions.

Quantitative Trait Loci Analysis
Additive-effect QTL analysis was first carried out using the
genotypic and phenotypic data (disease severity, vigor, and
plant height) from the RILs inoculated with F. graminearum
(FG2). This was then repeated for the RILs inoculated with
F. avenaceum (F4A). The analysis was conducted using means

1www.pulsedb.org/

for the four single greenhouse experiments, LSM, and BLUPs
of the total data by Composite Interval Mapping (CIM) using
WinQTL Cartographer v2.5 (Wang et al., 2012). The program
was set at 1-cM walking speed; forward and backward regression
method; window size, 10 cM; five background cofactors; 1,000
permutations, and p < 0.05 (Wang et al., 2012). The LOD score
threshold was set at 3 for QTL detection. The confidence interval
for each QTL was defined by the consensus region bordered by
the four environments.

The QTL names were defined according to the QTL detection
studies by Coyne et al. (2015, 2019), where the name of the
Fusarium isolate was indicated, followed by “Ps” = Pisum sativum,
the first number = the pea linkage group (Tayeh et al., 2015), and
the second number = the serial number of the QTL on the linkage
group; for example, “Fg-Ps4.1” represents the QTL for disease
severity caused by F. graminearum located on linkage group IV
of the pea genome. The chromosomes and pseudomolecules were
named in accordance with Neumann et al. (2002) and Kreplak
et al. (2019), respectively. A similar nomenclature was adopted
for vigor (e.g., Vig-Ps2.1) and plant height (e.g., Hgt-Ps2.1).

Quantitative trait loci identified in at least two of the
four environments were classified as stable. The percentage of
variation (R2) was determined for each QTL. Furthermore, QTL
with R2 > 10%, 5–10%, and <5% were arbitrarily classified
as major-, moderate-, or minor-effect QTL, respectively. The
origins of favorable alleles for individual traits were assigned to
different parents, following Wu et al. (2021). Pairwise epistatic
interactions were estimated with IciMapping V.4.1 using the
ICIM-EPI method (Meng et al., 2015). The significance threshold
for major, moderate, and minor was arbitrarily set at R2 > 15%,
7.5–15%, and <7.5%, respectively. Epistatic-effect QTL were
named with the prefix “E,” followed by the QTL name and a serial
number (e.g., E.FG-Ps1, E.Vig-Ps1, and E.Hgt-Ps1).

RESULTS

Preliminary Root Rot Assessment in
Parents Against Five Fusarium spp.
Between the parental cultivars, “00-2067” developed lower root
rot severity than “Reward” in response to each of the five
isolates (Supplementary Table 1), confirming that “00-2067” was
tolerant, while “Reward” was susceptible. There were significant
differences (p < 0.001) between the mean root rot values
of the tolerant parent “00-2067” and the susceptible parent
“Reward”, following inoculation with F. graminearum isolate FG2
(Figure 1a) and F. avenaceum isolate F4A, while no significant
differences were detected following inoculation with the F. solani,
F. acuminatum, and F. proliferatum isolates S4C, F037, and F039,
respectively (Supplementary Table 1). Therefore, FG2 and F4A
were selected to screen the 135 F8 RIL population for QTL
identification associated with resistance to FRR.

ANOVA for Disease Severity, Vigor, and
Plant Height
The mean root rot severity, vigor, and plant height of the
RIL population inoculated with FG2 and F4A are presented
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in Tables 1, 2. ANOVA indicated that the genotypic effect
of disease severity, vigor, and plant height was significant
(p < 0.001) (Supplementary Tables 2a,b). This suggested that
a high proportion of genetic variance was transmitted from
parental cultivars to the progenies. Heritability values of 92 and
86% for disease severity and vigor were obtained for plants
inoculated with FG2 and F4A, respectively, while heritability
values for plant height ranged from 79 to 91% (Supplementary
Tables 2a,b). The G × E interactions were significant for disease
severity, vigor, and plant height for F4A but not for FG2,
while differences among the four greenhouse experiments were
significant for both FG2 and F4A (p < 0.001) (Supplementary
Tables 2a,b).

Root Rot, Vigor, and Plant Height of
Parents and the Recombinant Inbred
Line Population Inoculated With FG2
Estimated disease severity values (±SE) on the parental cultivar
“00-2067” inoculated with FG2 were 1.5 ± 0.7, 1.3 ± 0.6, 2 ± 1.2
and 1.5 ± 0.7 for the four greenhouse experiments, 1.6 ± 0.8
for LSM and 1.2 for the BLUPs. This was comparable with
the estimated mean of 1.1 ± 0.4 obtained in the preliminary
screening of the parents (Table 1 and Supplementary Table 1).
On the other hand, the estimated disease severity values (±SE)
for “Reward” were 3.3 ± 0.5, 3.3 ± 0.5, 3.5 ± 0.6, and 3.0 ± 0.0
for the four greenhouse experiments, 3.3 ± 0.5 for LSM and 4.1
for the BLUPs; these values were also comparable to the estimated
mean of 3.3± 0.4 obtained in the preliminary screening (Table 1
and Supplementary Table 1). A t-test indicated a significant
difference between the parents for disease severity in all four
experiments. Frequency distribution (Figure 2A) indicated that
the disease severity data of the RILs in the four experiments
were continuous, but only DSGH3 and DSGHC followed a
normal distribution based on the Shapiro–Wilk test (Table 1).
High correlation coefficients, ranging from 68 to 99%, were
found for disease severity among the single experiments, pooled,
and BLUPs (Figure 2A). The differences in vigor between the
parents inoculated with FG2 were significant, except for VGH4.
The parental cultivar, “00-2067” had estimated means (±SE)
of 4.0 ± 0.0, 4.0 ± 0.0, 3.0 ± 1.2 and 3.5 ± 0.7 for the
four greenhouse experiments and 3.6 ± 0.8 for the pooled
data. In the case of “Reward”, the estimated means (±SE) were
2.0 ± 0.8, 2.5 ± 0.6, 1.5 ± 0.6 and 2.7 ± 0.6 for the four
greenhouse experiments and 2.2 ± 0.7 for the pooled data.
The BLUPs for the parental cultivars “00-2067” and “Reward”
were 4.2 and 1.6, respectively (Table 1). The Shapiro–Wilk
test indicated that the RIL population vigor data for the four
greenhouse experiments did not follow a normal distribution,
except for VGHC (Figure 2B). A significant correlation (0.34
< r < 0.96, p < 0.001) existed among the single experiments,
pooled, and BLUPs for vigor (Figure 2B). The height of “00-
2067” plants inoculated with FG2 was greater than plants of
“Reward” for the means in the single environments, LSM, and
BLUPs, although the differences were not significant based on
a t-test. The estimated means in single conditions, LSM, and
BLUP for plant height (±SE) of “00-2067” were 234.5± 54.6 cm,

157.3 ± 50.6 cm, 155.5 ± 59.5 cm, 159.7 ± 6.7 cm,
176.7 ± 56.6 cm and 158.9 cm, respectively. For “Reward”, the
plant heights were 177.5± 36.1 cm, 120.7± 31.5 cm, 129.5± 26.
cm, 178.5± 34.6 cm, 151.5± 36.9 cm, and 100.8 cm, respectively.
The frequency distribution of plant height of the RIL population
for all six variables was not normal and slightly skewed (Table 1
and Figure 2C). A high correlation (0.42 < r < 0.95, p < 0.001)
was found for plant height among the single experiments, pooled,
and BLUPs data (Figure 2C).

Collectively, the correlation analysis among traits indicated
that root rot caused by FG2 was negatively correlated with
vigor and plant height. High correlation coefficients were
detected between disease severity and vigor in all conditions
(–0.65 < r < –0.90, p < 0.001), indicating the adverse effect of
FG2 on root and aboveground growth. Plant height showed low
to moderate correlation with disease severity (–0.22 < r < –0.35,
p < 0.05) and vigor (0.19 < r < 0.38, p < 0.05).

Root Rot, Vigor, and Plant Height of
Parents and the RIL Population
Inoculated With F4A
The estimated means (±SE) of disease severity for “00-2067” were
1.0± 0.0, 1.0± 0.8, 1.3± 0.5, 1.0± 0.0, 1.1± 0.4, and 1.0, while,
for “Reward”, they were 3.3 ± 0.5, 3.3 ± 0.5, 3.5 ± 0.6, 3.0 ± 0.0,
3.3 ± 0.4, and 3.0 for DSGH1, DSGH2, DSGH3, DSGH4, LSM
of pooled data, and BLUPs, respectively (Table 2). These values
were comparable to the estimated means (±SE) of 1.8 ± 0.5
and 2.8 ± 0.2 for disease severity obtained in the preliminary
screening of the parents (Table 2 and Supplementary Table 1).
t-tests indicated significant differences between estimated means
of the parental cultivars “00-2067” and “Reward” inoculated
with F4A. The Shapiro–Wilk test indicated that only the root
rot data of the RIL population for DSGH4 and DSGH Pooled
followed a normal distribution (Table 2), although the data for
the four greenhouse experiments were continuous (Figure 3A).
The correlation coefficient between the experiments ranged from
0.44 to 0.93 (p < 0.001) (Figure 3A). Based on the t-tests, the
parental cultivar “00-2067” inoculated with F4A had significantly
greater vigor than “Reward.” The estimated vigor values (±SE)
for “00-2067” were 4.0 ± 0.0, 3.7 ± 0.5, 3.5 ± 0.6, and 4 ± 0 for
the four individual greenhouse experiments, 3.8 ± 0.5 for LSM
for the pooled data and 4.0 for BULPs of the pooled greenhouse
experiments (Table 2). The estimated vigor values (±SE) for
“Reward” were 1.7 ± 0.5, 2.0 ± 1.4, 1.2 ± 1.5, and 2.5 ± 0.6
for the individual greenhouse experiments, 1.9 ± 1.1 for LSM,
and 1.9 for the BULPs of the pooled greenhouse experiments. All
vigor variables for the RIL population were continuous with slight
left skewness (–0.4∼–0.9) (Figure 3B). Additionally, the data did
not follow a normal distribution based on the Shapiro–Wilk test
(Table 2). The correlation coefficient between the experiments
ranged from 0.54 to 0.98 (p < 0.001) (Figure 3B).

In contrast to vigor, the difference in plant height of the
parental cultivars inoculated with F4A was not significant based
on the t-test. The estimated plant height for “00-2067” for the
individual experiments, LSM, and BLUP was 210.8 ± 128.2 cm,
174.5 ± 104.8 cm, 159.5 ± 13.5 cm, 210.0 ± 53.1 cm,
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TABLE 1 | A statistical summary of phenotypic data for the parental pea cultivars, “00-2067” and “Reward”, and an RIL population inoculated with Fusarium
graminearum isolate FG2, in four greenhouse experiments, as well as the pooled and the best linear unbiased predictors (BLUPs).

Trait Abbrev/Experiment Parental cultivar RIL population

‘00-2067’a ‘Reward’a T-test (P) RILsa Skewness Kurtosis Shapiro-test (P)

Root rot severity DSGH1 1.5 ± 0.7 3.3 ± 0.5 1.1E-02 2.0 ± 0.7 –0.1 –0.7 1.6E-03

Root rot severity DSGH2 1.3 ± 0.6 3.3 ± 0.5 2.6E-03 1.9 ± 0.7 –0.2 –0.6 1.5E-02

Root rot severity DSGH3 2.0 ± 1.2 3.5 ± 0.6 3.0E-02 2.2 ± 0.7 0.0 –0.2 6.0E-02

Root rot severity DSGH4 1.5 ± 0.7 3.0 ± 0.0 1.3E-02 2.1 ± 0.7 0.1 –0.3 3.7E-02

Root rot severity DSGHPooled 1.6 ± 0.8 3.3 ± 0.5 4.6E-07 2.0 ± 0.6 –0.1 –0.7 6.2E-02

Root rot severity DSGHBLUPS 1.2 4.1 – 2.0 ± 1.2 –0.1 –0.8 4.6E-02

Vigor VGH1 4.0 ± 0.0 2.0 ± 0.8 1.5E-02 3.0 ± 0.8 –0.3 –0.7 0.0E + 00

Vigor VGH2 4.0 ± 0.0 2.5 ± 0.6 3.5E-03 3.0 ± 0.7 –0.3 –0.2 9.5E-06

Vigor VGH3 3.0 ± 1.2 1.5 ± 0.6 3.0E-02 2.7 ± 0.7 –0.2 –0.2 5.1E-06

Vigor VGH4 3.5 ± 0.7 2.7 ± 0.6 1.2E-01 2.8 ± 0.8 –0.4 0.6 1.1E-03

Vigor VGHPooled 3.6 ± 0.8 2.2 ± 0.7 6.0E-05 2.9 ± 0.5 0.0 –0.5 1.1E-01

Vigor VGHBLUPS 4.2 1.6 – 2.9 ± 1.1 –0.1 –0.4 5.1E-02

Plant height HGH1 234.5 ± 54.6 177.5 ± 36.1 1.3E-01 217.6 ± 96.3 1.0 0.7 0.0E + 00

Plant height HGH2 157.3 ± 50.6 120.7 ± 31.5 1.6E-01 231.5 ± 87.4 0.7 0.2 5.6E-05

Plant height HGH3 155.5 ± 59.5 129.5 ± 26.0 2.3E-01 154.5 ± 84.4 1.0 1.1 8.0E-06

Plant height HGH4 159.7 ± 6.7 178.5 ± 34.6 2.0R-01 184.6 ± 83.9 0.6 0.5 5.5E-02

Plant height HGHPooled 176.7 ± 56.6 151.5 ± 36.9 5.1E-02 197.5 ± 68.8 1.1 1.2 0.0E + 00

Plant height HGHBLUPS 158.9 100.8 197.3 ± 135.5 1.0 0.6 0.0E + 00

aThe estimated means of parental cultivars, “Reward” and “00-2067,” as well as RILs, are shown along with plus/minus stand error (SE).

TABLE 2 | A statistical summary of phenotypic data for the parental pea cultivars, “00-2067” and “Reward”, and an RIL population inoculated with Fusarium avenaceum
isolate F4A, in four greenhouse experiments, as well as the pooled and the best linear unbiased predictors (BLUPs) of the greenhouse experiments.

Trait Abbrev/Experiment Parental cultivar RIL population

‘00-2067’a ‘Reward’a T-test (P) RILsa Skewness Kurtosis Shapiro-test (P)

Root rot severity DSGH1 1.0 ± 0.0 3.3 ± 0.5 5.30E-05 2.2 ± 0.9 0.2 –0.9 7.77E-05

Root rot severity DSGH2 1.0 ± 0.8 3.3 ± 0.5 1.66E-03 2.3 ± 0.9 0.3 –0.6 1.35E-04

Root rot severity DSGH3 1.3 ± 0.5 3.5 ± 0.6 5.30E-04 2.5 ± 0.9 0.0 –1.0 2.86E-06

Root rot severity DSGH4 1.0 ± 0 3.0 ± 0.0 1.36E-03 2.4 ± 0.9 0.0 –0.7 1.38E-02

Root rot severity DSGHPooled 1.1 ± 0.4 3.3 ± 0.4 2.63E-13 2.4 ± 0.7 0.0 –0.6 1.20E-01

Root rot severity DSGHBLUPS 1.0 3.0 2.3 ± 0.9 0.1 –1.0 8.07E-05

Vigor VGH1 4.0 ± 0.0 1.7 ± 0.5 5.26E-05 2.6 ± 1.1 –0.5 –0.6 5.96E-08

Vigor VGH2 3.7 ± 0.5 2.0 ± 1.4 2.92E-02 2.6 ± 1.1 –0.9 –0.1 0.00E + 00

Vigor VGH3 3.5 ± 0.6 1.2 ± 1.5 1.56E-02 2.4 ± 1.2 –0.5 –0.7 0.00E + 00

Vigor VGH4 4.0 ± 0.0 2.5 ± 0.6 1.01E-03 2.5 ± 1.1 –0.4 –1.0 1.79E-07

Vigor VGHPooled 3.8 ± 0.5 1.9 ± 1.1 1.06E-07 2.5 ± 0.9 –0.5 –0.6 9.89E-06

Vigor VGHBLUPS 4.0 1.9 2.6 ± 1 –0.6 –0.3 5.96E-08

Plant height HGH1 210.8 ± 128.2 118.3 ± 100.2 1.49E-01 196.8 ± 87.9 0.7 0.6 1.35E-03

Plant height HGH2 174.5 ± 104.8 193.5 ± 104.5 4.03E-01 194.5 ± 88.5 0.6 1.3 9.74E-02

Plant height HGH3 159.5 ± 13.5 125.0 ± 98.9 2.58E-01 171.8 ± 80 0.4 0.3 3.76E-01

Plant height HGH4 210.0 ± 53.1 194.0 ± 38.4 3.00E-01 180.8 ± 80.1 0.7 0.7 8.17E-03

Plant height HGHPooled 188.7 ± 82.8 157.7 ± 88.5 1.54E-01 185.2 ± 64 0.6 0.5 9.79E-02

Plant height HGHBLUPS 208.0 133.1 186.6 ± 122.6 0.6 1.0 5.72E-02

aThe estimated means of parental cultivars, “Reward” and “00-2067”, as well as RILs, are shown along with plus/minus stand error (SE).

188.7± 82.8 cm, and 208.0 cm, respectively. The estimated plant
height for “Reward” was 118.3 ± 100.2 cm, 193.5 ± 104.5 cm,
125. ± 98.9 cm, and 194.0 ± 38.4 cm for the individual
experiments, 157.7 ± 88.5 cm for LSM and 133.1 cm for
the BLUP. The frequency distribution for the RIL population

was continuous and slightly skewed to the right. In addition,
HGH2, HGH3, HGH Pooled, and HGH BLUPs followed a
normal distribution (Table 2 and Figure 3C). Plant height
variables were also significantly correlated (0.28 < r < 0.97,
p < 0.01) (Figure 3C).
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FIGURE 2 | Correlation analysis of estimated mean of four single greenhouse experiments, BLUPs, and combined total data for (A) root rot severity, (B) vigor, and
(C) height of pea inoculated with FG2, illustrating the significant correlation among all variables for each trait. The bar graphs indicate the frequency distributions
across the diagonal. The correlation coefficients with a significance level (* indicates p < 0.05; ** indicates p < 0.01; *** indicates p < 0.001) and scatter plots
between pairs are shown above and below the diagonal, respectively.

FIGURE 3 | Correlation analysis among three pea root rot disease-related traits of (A) root rot severity, (B) vigor, and (C) plant height for all six variables, including the
estimated mean of four single greenhouse studies, combined total data, and BLUPs (e.g., panels ds1, ds2, ds3, ds4, dsc, and dsB for disease severity) inoculated
with F4A. The bar graphs indicate the frequency distributions across the diagonal. The correlation coefficients with a significance level (* indicates p < 0.05; **
indicates p < 0.01; *** indicates p < 0.001) and scatter plots between pairs are shown above and below the diagonal, respectively.

The correlation among the traits for plants inoculated with
F4A was similar to that of plants inoculated with FG2. Disease
severity was highly correlated with vigor (–0.88 < r < –0.95,
p < 0.001) and with plant height (–0.48 < r < –0.63, p < 0.001).
Plant height was positively correlated with vigor (0.57 < r < 0.62,
p < 0.001).

Genetic Map Construction and
Quantitative Trait Loci Analysis
Linkage grouping, the distribution of markers, map length, and
marker density of 2999 (2978 SNP + 21 SSR) retained markers
were as described by Wu et al. (2021). The marker distribution
in this study was compared with the seven chromosomes of
pea as determined by Neumann et al. (2002), linkage groups
as determined by Tayeh et al. (2015), and pseudomolecules of
pea (Kreplak et al., 2019). The genetic map spanned 1704.1 cM
and contained an average marker density of 1.8 markers/cM

(Wu et al., 2021). The QTL analysis was conducted with 1,422
unique markers, which represented 10.5% of the markers used
for genotyping (Wu et al., 2021).

Additive-Effect Quantitative Trait Loci
Analysis
No significant QTL (LOD > 3.0) for disease severity, vigor,
and plant height were detected for the RILs inoculated with
F. avenaceum isolate F4A. As such, no QTL likelihood profiles are
shown. In the case of RILs inoculated with F. graminearum isolate
FG2, a total of 11 QTL were detected for the three parameters
and six variables (i.e., GH1, GH2, GH3, GH4, LSM, and BLUPs)
by the CIM using Win QTL Cartographer v2.5 (Wang et al.,
2012; Table 3). Five of the 11 QTL were identified for disease
severity, whereas three QTL each were detected for vigor and
plant height. The QTL had LOD scores ranging from 3.0 to 14.4
and the percentage of phenotypic variation (R2) values ranging
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TABLE 3 | A summary of the QTL associated with Fusarium root rot severity, vigor, and plant height in 128 F8-derived recombinant inbred pea lines from the cross between the cultivars “Reward” × “00-2067” under
greenhouse (GH) conditions.

Identified
QTL

Trait Environment LG Analysis
(Present
study)

Chromα/LGβ Peak (cM) Confidence
interval(cM)

Left Marker Right marker LOD Additive R2(%)

Fg-Ps3.1 Root rot severity GH Expt 1 4 Chrom5/LGIII 311.9 307.9–316.5 AA5 PsCam036163_21311_1095 3.9 –0.2409 9.88

Fg-Ps3.2 Root rot severity GH Expt 4 4 Chrom5/LGIII 338.2 334.9–341.4 PsCam036163_21311_1095 PsCam042783_26826_1395 3.5 –0.2153 9.62

Fg-Ps4.1 Root rot severity GH Expt 1 5 Chrom4/LGIV 71.7 63.7–74.4 PsCam050913_33466_1250 PsCam048871_31524_450 3.0 –0.2121 9.10

Root rot severity GH Expt 2 5 Chrom4/LGIV 61.3 59.3–69.2 PsCam001381_1152_437 PsCam042375_26443_3427 3.8 –0.2229 10.57

Fg-Ps4.2 Root rot severity GH Expt 3 5 Chrom4/LGIV 80.2 74.0–85.2 AA239 PsCam057281_37909_2940 5.9 –0.2344 11.26

Root rot severity GH Expt 4 5 Chrom4/LGIV 80.2 75.4–85.2 AA239 PsCam057281_37909_2940 4.1 –0.2526 13.17

Root rot severity Pooled 5 Chrom4/LGIV 79.2 75.4–85.2 AA239 PsCam057281_37909_2940 5.1 –0.2492 15.44

Root rot severity BLUPs 5 Chrom4/LGIV 79.2 75.4-85.2 AA239 PsCam057281_37909_2940 3.7 –0.3838 10.02

Fg-Ps5.1 Root rot severity GH Expt 1 7 Chrom3/LGV 5.2 0.9–9.2 PsCam059449_39630_321 PsCam011153_7569_125 5.5 0.3036 14.22

Vig-Ps3.1 Vigor GH Expt 4 4 Chrom5/LGIII 68.9 67.1–70.5 PsCam013763_9362_423 AD270 4.9 –0.1423 4.05

Vig-Ps3.2 Vigor GH Expt 2 4 Chrom5/LGIII 312.0 307.8–316.8 AA5 PsCam036163_21311_1095 3.0 0.1910 9.53

Vigor GH Expt 3 4 Chrom5/LGIII 316.1 310.4–320.4 AA5 PsCam036163_21311_1095 3.3 0.2582 11.22

Vigor Pooled 4 Chrom5/LGIII 312.6 310.4–316.5 AA5 PsCam036163_21311_1095 4.6 0.1938 12.13

Vigor BLUPs 4 Chrom5/LGIII 312.6 307.5–316.5 AA5 PsCam036163_21311_1095 4.2 0.3736 11.92

Vig-Ps4.1 Vigor GH Expt 1 5 Chrom4/LGIV 68.0 63.5–69.9 PsCam050913_33466_1250 PsCam042375_26443_3427 4.4 0.2728 13.50

Vigor GH Expt 2 5 Chrom4/LGIV 60.3 58.0–70.7 PsCam000712_620_237 PsCam042375_26443_3427 3.2 0.2060 10.42

Vigor GH Expt 4 5 Chrom4/LGIV 71.5 70.5–73.2 PsCam042375_26443_3427 AA239 4.5 0.2437 9.19

Vigor Pooled 5 Chrom4/LGIV 61.3 58.8–63.5 PsCam000712_620_237 PsCam057555_38139_296 4.4 0.1868 11.59

Vigor BLUPs 5 Chrom4/LGIV 61.3 59.3–63.5 PsCam001381_1152_437 PsCam057555_38139_296 3.8 0.3474 10.51

Hgt-Ps3.1 Height GH Expt 1 4 Chrom5/LGIII 288.6 288.3–291.7 PsCam020937_11699_2576 AA5 14.4 –62.31 36.35

Height GH Expt 2 4 Chrom5/LGIII 287.6 286.8–293.7 PsCam020937_11699_2576 AA5 4.7 –33.90 12.90

Height GH Expt 4 4 Chrom5/LGIII 287.6 286.8–295.2 PsCam020937_11699_2576 AA5 3.3 –27.27 9.94

Height Pooled 4 Chrom5/LGIII 287.6 286.8–292.4 PsCam020937_11699_2576 AA5 6.2 –33.24 20.96

Height BLUPs 4 Chrom5/LGIII 287.6 286.8–291.4 PsCam020937_11699_2576 AA5 9.4 –71.63 23.97

Hgt-Ps7.1 Height GH Expt 1 9 Chrom7/LGVII 92.2 85.3–102.1 PsCam039854_24711_656 PsCam046792_30096_853 10.1 46.60 20.04

Height Pooled 9 Chrom7/LGVII 92.2 84.5–115.3 PsCam056683_37453_248 PsCam021891_12310_347 4.9 28.68 13.54

Height BLUPs 9 Chrom7/LGVII 92.2 81.2–102.5 PsCam035831_20992_561 PsCam042171_26273_1937 4.5 52.40 7.04

Hgt-Ps7.2 Height GH Expt 2 9 Chrom7/LGVII 154.3 143.8–167.5 PsCam002756_2184_427 PsCam045262_28962_162 5.1 34.63 13.63

Height GH Expt 4 9 Chrom7/LGVII 144.3 142.3–151.9 PsCam002756_2184_427 PsCam011213_7616_1104 4.4 32.77 13.85

Height Pooled 9 Chrom7/LGVII 157.7 148.8–168.0 AB91 PsCam045262_28962_162 4.4 27.87 14.06

αPea chromosomes named according to Neumann et al. (2002) and βPea linkage groups named according to Tayeh et al. (2015).
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FIGURE 4 | Identified QTL and the linkage map of pea LG III (Chrom 5), IV (Chrom 4), and V (Chrom 3) associated with partial resistance to Fusarium graminearum in
an F8 RIL derived from “Reward” × “002067.” The LOD scores are indicated on the x-axis, while the genetic distances (in cM) are indicated on the y-axis. (A) Two
minor-effect QTL, Fg-Ps3.1 and Fg-Ps3.2, on LG III (Chrom5) were detected in greenhouse Experiments 1 and 4, respectively. (B) Two stable, moderate-effect QTL,
Fg-Ps4.1 and Fg-Ps4.2, were located on LG IV (Chrom4) and identified in greenhouse Experiments 1 and 2 and 3 and 4, respectively. (C) Another moderate-effect
QTL, Fg-Ps5.1, on LG V (Chrom5) was detected only in greenhouse Experiment 1.

FIGURE 5 | The QTL likelihood profile and the linkage map of pea LG III (Chrom5) and IV (Chrom 4) for vigor in an F8 RIL of the cross “Reward” × “002067.” The LOD
scores are indicated on the x-axis, while the genetic distances (in cM) are indicated on the y-axis. (A) Minor-effect QTL Vig-Ps3.1 on LG III (Chrom5) was detected for
vigor only in greenhouse Experiment 4. Another QTL Vig-Ps3.2 was identified multiple times in greenhouse Experiments 2 and 3, as well as in the BLUPs and pooled
data. (B) One minor-moderate-effect QTL, Vig-Ps4.1, was identified on LG IV (Chrom 4) greenhouse Experiments 1, 2, and 5, as well as the pooled data and BLUPs.

from 4.05 to 36.35% (Table 3). Based on the R2 values, two, six,
and three of the QTL were considered major, moderate, or minor
effect, respectively. Six of the 11 QTL were identified in two or
more environments and hence could be considered stable, while
the remaining five QTL were detected in single experiments and
hence could be considered unstable.

The most stable QTL for partial resistance to F. graminearum
isolate FG2, Fg-Ps4.1, and Fg-Ps4.2 were located in the

middle of Chrom4/LGIV at positions 59.3–74.4 cM and
74.0–85.2 cM, respectively (Figure 4B). The 15.1-cM and
11.2-cM genomic regions delimiting these two QTL were
flanked by the SNP markers PsCam048871_31524_450 and
PsCam001381_1152_437 and the SSR marker AA239 and SNP
marker PsCam057281_37909_2940, respectively (Figure 4B).
Both Fg-Ps4.1 and Fg-Ps4.2 exhibited a moderate effect,
with the percentage variance ranging from 9.1 to 15.4%
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FIGURE 6 | The QTL likelihood profile and the linkage map of Peas III (Chrom5) and VII (Chrom7) for plant height in an F8 RIL of the cross “Reward” × “002067.” The
LOD scores are indicated on the x-axis, while the genetic distances (in cM) are indicated on the y-axis. (A) One stable QTL, Hgt-Ps3.1 on LGIII (Chrom5), was
detected by all variables except greenhouse Experiment 3, with a minor to major effect. (B) Two QTL were detected on LGVII (Chrom7); the minor-major-effect QTL
Hgt-Ps7.1 was detected in greenhouse Experiment 1, as well as in the pooled data and BLUPs, while the moderate-effect QTL Hgt-Ps7.2 was detected in
greenhouse Experiments 2 and 4 and the pooled data.

(Table 3). Two other moderate-effect but unstable QTLs,
Fg-Ps3.1 (located on the bottom segment (307.9–316.5 cM)
of Chrom5/LGIII and with flanking markers of AA5 and
PsCam036163_21311_1095) and Fg-Ps3.2 (located distal to Fg-
Ps3.1 and with flanking markers PsCam036163_21311_1095
and PsCam042783_26826_1395) explained 9.62–9.88% of the
total variance (Figure 4A). Another unstable QTL, Fg-Ps5.1
[detected on the top part (0.9–9.2 cM) of Chrom3/LGV and
flanked by the SNP markers PsCam059449_39630_321 and
PsCam011153_7569_125] explained 14.2% of the total variance
in greenhouse Experiment 1 (Figure 4C). Four of the QTL
for disease severity (with the exception of Fg-Ps5.1) had a
negative additive effect, indicating that genomic regions for
resistance in Fg-Ps4.1, Fg-Ps4.2, Fg-Ps3.1, and Fg-Ps3.2 originated
from “00-2067,” while Fg-ps5.1 derived its resistance from
“Reward” (Table 3).

The stability of the QTL for vigor was in the order Vig-Ps4.1 on
Chrom4/LGIV (GH1, GH2, and GH4, R2 = 9.19 to 13.5%) > Vig-
Ps3.2 (GH2 and GH3, R2 = 9.53% to 12.13%) > Vig-Ps3.1 (GH4,
R2 = 4.05%) both on Chrom5/LGIII (Table 3). The QTL Vig-Ps4.1
was located on Chrom4/LGIV from 58.0 cM to 73.2 cm between
the SNP marker PsCam000712_620_237 and the SSR marker
AA239 (Figure 5B). Vig-Ps3.2, which was located 307.8-316.5 cM
on the bottom of Chrom5/LGIII, was flanked by the SSR marker
AA5 and the SNP marker PsCam036163_21311_1095; Vig-Ps3.1,
which was located on the top segment (67.1–70.5 cM) of the same
chromosome or linkage group, was flanked by the SNP marker
PsCam013763_9362_423 and the SSR marker AD270 (Figure 5).
The two stable QTL, Vig-Ps4.1 and Vig-Ps3.2, had a positive
additive effect, indicating that the alleles for vigor originated from

“00-2067.” In contrast, Vig-Ps3.1 has a negative additive effect,
indicating that the alleles originated from “Reward” (Table 3).

In the case of plant height, the most stable QTL, Hgt-
Ps3.1, was detected in three of the four experiments (GH1,
GH2, and GH4; R2 = 9.94–36.35%). This QTL was located
on the bottom segment of Chrom5/LGIII (Figure 6) and was
flanked by the SNP marker PsCam020937_11699_2576 and
the SSR marker AA5 (Figure 6A). The second most stable
QTL, Hgt-Ps7.2, was detected across two (GH2 and GH4)
of four greenhouse experiments (R2 = 7.04–20.04%). These
QTL were located 142.3–168.0 cM on Chrom7/LGVII and
were flanked by the SNP markers PsCam002756_2184_427 and
PsCam045262_28962_162 (Table 3 and Figure 6B). Hgt-Ps7.1,
which was flanked by the SNP markers PsCam035831_20992_561
and PsCam021891_12310_347 (81.2–115.3 cM) (Figure 6B),
was detected in only one environment (GH1) on the same
chromosome (R2 = 13.63–14.06). The additive effect was negative
for Hgt-Ps3.1, but positive for Hgt-Ps7.1 and Hgt-Ps7.2 (Table 3).
This suggested that the QTL for height on Chrom5/LGIII was
derived from “Reward”, while the QTL on Chrom7/LGVII
originated from “00-2067.”

Epistatic Quantitative Trait Loci Analyses
Two hundred eight putative digenic epistatic pairs were identified
using all variables for disease severity, vigor, and plant height.
These comprised 65 (12-24) for disease severity, 57 (10–21) for
vigor, and 86 (15–28) for plant height. The 208 putative digenic
interactions consisted of one major epistatic effect (PVE ≥ 15%),
13 moderate epistatic effects (7.5% ≤ PVE ≤ 15%), and 194
minor epistatic effects (PVE ≤ 7.5%). BLUPs for disease severity,
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vigor, and plant height detected 20, 18, and 21 putative digenic
interactions, respectively. Within the 59 digenic interactions
among BLUPs of all traits, epistatic analysis identified one major
QTL pair, three moderate QTL pairs, and 55 minor QTL pairs
(Table 4). In contrast, LSM of the pooled data detected 23 digenic
interactions for disease severity, 14 for vigor, and 19 for plant
height. The total 56 pairs included seven moderate epistatic-effect
QTLs and 49 minor-effect QTLs.

Twenty-five digenic epistatic interactions with major and
moderate effects were identified by 33 flanking markers, of which
10 epistatic-effect QTL with 14 flanking markers were linked
to three additive-effect QTL (Fg-Ps3.1, Fg-Ps3.2, and Vig-Ps3.1).
The remaining 15 epistatic QTL were not related to any of the
additive-effect QTL (Table 4). Eight of the 10 epistatic-effect QTL
were linked to Fg-Ps3.2, including the most significant QTL pairs,
E.Hgt-Ps1 (R2 = 31.2%), followed by E.Hgt-Ps7 (R2 = 19.1%) and
E.Hgt-Ps4 (R2 = 13.5%). The fourth was E.Hgt-Ps3 (R2 = 13.5%),
which was linked to Fg-Ps3.2 and Vig-Ps3.1. Only E.Fg-Ps7 and
E.Vig-Ps7 were linked to Fg-Ps3.1, showing moderate epistatic
effect (R2 = 9.5% and R2 = 12.6%, respectively).

Candidate Genes
The QTL associated with partial resistance to F. graminearum on
Chrom5/LGIII and Chrom4/LGVI flanked four and 74 candidate
genes, respectively (Supplementary Table 3). Fifteen of the 74
genes were related to plant defense mechanisms. These included
UDP formation and transportation, the integral component
of membrane proteins, histone-lysine N-methyltransferase,
phospholipid transport, actin cytoskeleton, calcium-ion binding,
methyltransferase, UBQ-conjugating enzyme/RWD, AP-4
adaptor complex, oxidoreductase, acyl group transferases,
hydrolases, G protein-coupled receptors, and protein involved
in phosphorylation and proteolysis. Some of the genes were
involved in pathways related to plant defense mechanisms.
Psat4g125440 is involved in cellulose biosynthesis, while
Psat4g111280, Psat4g110800, Psat4g108480, and Psat4g102720
are involved in protein ubiquitination.

DISCUSSION

Commercial farming in Canada is characterized by short
rotations of cereal crops with canola and, to a limited extent,
pulse crops. Disease surveys in Canada have identified Fusarium
species as the most frequently isolated fungi from all crops
surveyed for root rot severity (Chang, unpublished data).
Fusarium poae was predominant in FHB-infected kernels,
followed by F. graminearum; other Fusarium species were less
common in infected kernels (Banik et al., 2019; Xue et al., 2019;
Ziesman et al., 2019). The predominant Fusarium spp. isolated
from the infected roots of field pea were F. avenaceum, F. solani,
and F. oxysporum (Kraft, 1981; Kraft and Pfleger, 2001; Feng et al.,
2010; Chittem et al., 2015; Rasiukevičiūtė et al., 2019). Fusarium
species, especially F. acuminatum, have been reported to cause
root rot of canola (Li et al., 2007; Chen et al., 2014).

Increasingly, F. graminearum has become a major problem
across cereal-growing regions worldwide. For example, in

Manitoba, Canada, from 1937 to 1942, F. graminearum was
present in <0.5% of 1,448, 262, 865, and 519 samples,
respectively, of wheat, durum, barley, and oats tested, compared
with 16.4–39.9% for F. poae and 13.5–29.5% for F. acuminatum
(Gordon, 1944). In contrast, in Saskatchewan, Canada, from 2014
to 2018, F. graminearum represented 23.4–55.4% (mean, 39.1%
over 5 years) of all the Fusarium species isolated from 1,812
wheat, 71 durum, 596 barley, and 177 oat samples (Olson et al.,
2019). The increased frequency or shift to F. graminearum has
also been reported in the US, China, Brazil, Argentina, Paraguay,
Uruguay, and Africa (Savary et al., 2019). Unfortunately, damage
to pulse crops by F. graminearum has not received enough
attention compared with FHB of cereals. However, the available
data suggest that, among pulse crops, field pea is most susceptible
to F. graminearum (Clarkson, 1978; Chongo et al., 2001;
Goswami et al., 2008; Bilgi et al., 2011; Foroud et al., 2014;
Rasiukevičiūtė et al., 2019).

In a previous study, the pea cultivar “00-2067” was found to
possess partial resistance to Aphanomyces root rot, while the
cultivar “Reward” was susceptible (Wu et al., 2021). In this study,
we screened the cultivars “00-2067” and “Reward” to determine
their reaction to five isolates representing F. solani, F. avenaceum,
F. acuminatum, F. proliferatum, and F. graminearum. The
cultivar “00-2067” was partially resistant to all five species, which
suggests that it might be tolerant to many pathogens of the
pea root rot complex. The difference in disease severity between
the mean root rot values of the two cultivars was significant
(p < 0.001) only for the isolates representing F. avenaceum and
F. graminearum. Therefore, the F8 RIL population derived from
“Reward” × “00-2067” was screened with F4A (F. avenaceum)
and FG2 (F. graminearum) for the detection of partial resistance
to the two Fusarium species. The greenhouse experiments
were repeated four times to determine the G × E interaction
for all traits. In addition, the best linear unbiased predictors
(BLUPs) and LSM were applied to minimize environmental
effects (Wang et al., 2018). The LSM identified six QTL,
while BLUPs identified five QTL, suggesting that the LSM
and BLUPs of the pooled data had comparable efficiency to
detect important QTL.

Transgressive segregation was found for disease severity in the
RILs inoculated with FG2 and F4A. This suggested that different
resistance loci derived from the parental cultivars might have
contributed to the stronger resistance observed in some of the
RILs. Some transgressive RILs, such as X1303-19-3-1, X1303-21-
3-1, X1303-26-2-1, X1304-21-3-1, and X1304-22-3-2, had lower
disease severity in response to FG2 and higher vigor in all four
environments compared with “00-2067.” In response to F4A, the
RIL X1303-29-4-1 showed greater resistance and vigor compared
with “00-2067.” Transgressive segregation was reported in other
studies of resistance to Fusarium and Aphanomyces root rot in
field pea (Feng et al., 2011; McPhee et al., 2012; Coyne et al., 2015,
2019; Nakedde et al., 2016; Wu et al., 2021). These transgressive
lines will be valuable resources for developing commercial
pea cultivars with improved resistance to F. graminearum and
F. avenaceum and other pathogens of the pea root rot complex.

The average marker density of 1.8 marker/cM in this study was
much greater than what has been reported in previous studies
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of pea with PCR-based markers, while the total map length
(1704.9 cM) was comparable. Feng et al. (2011) constructed
a linkage map of 53 cM with 14 SSR markers and obtained
a marker density of 0.26 marker/cM. McPhee et al. (2012)
constructed a linkage map of total length 1,716 cM with 278
PCR-based markers and reported a marker density of 0.16
marker/cm. Similarly, Coyne et al. (2015) used 178 PCR-based
markers to construct a linkage map of 1,323 cM and obtained a
marker density of 0.13 marker/cM. More recently, Coyne et al.
(2019) have applied 914 SNP markers to construct a linkage
map of total length 1,073 cM and reported a marker density
of 0.85 marker/cM. A marker density of 3.5 marker/cM and
total map length of 843 cM were obtained when 18 pea lines
were genotyped with the same SNP array set used in this study
(Desgroux et al., 2016).

In this study, 11 QTL accounting for disease severity, vigor,
and plant height were identified. The major QTL for disease
resistance were located on Chrom4/LGIV, while two minor QTL
were detected on Chrom5/LGIII and one QTL on Chrom3/LGV.
These QTL were coincident with the QTL detected for resistance
to Aphanomyces root rot (Wu et al., 2021). The major QTL
(R2 = 68–80%) identified by McPhee et al. (2012) for resistance
to F. oxysporum were also located on Chrom4/LGIV, while three
minor QTL (R2 = 2.8–5.4%) were located on Chrom5/LGIII.
Despite identifying the same chromosomes, the similarity of the
location of the QTL cannot be confirmed, given the different
markers used in the two studies. However, the coincidence of
the QTL is not surprising, since very few partially resistant pea
cultivars are used in breeding programs across the world. Feng
et al. (2011) reported that the major QTL for root rot severity
caused by F. avenaceum were located on Chrom7/LGVII. Coyne
et al. (2015, 2019) reported that the major QTL for resistance
to F. solani were located on Chrom6/LGII, while several minor
QTL were located on Chrom5/LGIII, Chrom4/LGIV, Chrom6/II,
and Chrom7/LGVII.

Significant QTL × QTL interactions were found between the
minor QTL for disease severity and plant height but not for
vigor. An interaction of the major QTL for disease severity, vigor,
and height was not observed. Wu et al. (2021) reported that
the same genomic regions controlled disease severity and vigor,
while plant height was a poor measure of Aphanomyces root
rot severity in pea. Coyne et al. (2019) treated plant height as
a direct disease-related trait. In contrast, Desgroux et al. (2016)
considered plant height as an agronomic trait. The reduced
epistatic interaction might be due to a reduction in the detected
number of additive-effect QTL from 27 in Wu et al. (2021) to 11
in the current study.

To the best of our knowledge, no genetic studies have been
carried out to determine the genomic regions associated with
the partial resistance of field pea to F. graminearum. The use of
high-density SNP markers and SSR anchor markers contributed
to the construction of a fine linkage map and the identification
of two stable QTL located on Chrom4/LGIV associated with
partial resistance to F. graminearum. The identified QTL showed
broad resistance to F. graminearum, F. solani, F. avenaceum,
F. acuminatum, and F. proliferatum, as well as to A. euteiches.
This study, together with our previous report (Wu et al., 2021),
suggests that “00-2067” and the transgressive RILs with lower

disease severity can be used to develop pea cultivars with
improved root rot resistance.
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napus Secondary Gene Pool
Chinthani S. Karandeni Dewage1* , Katherine Cools2†, Henrik U. Stotz1, Aiming Qi1,
Yong-Ju Huang1, Rachel Wells3 and Bruce D. L. Fitt1

1 Centre for Agriculture, Food, and Environmental Management Research, School of Life and Medical Sciences, University
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Use of host resistance is the most economical and environmentally safe way to
control light leaf spot disease of oilseed rape (Brassica napus). The causal organism
of light leaf spot, Pyrenopeziza brassicae, is one of the most economically damaging
pathogens of oilseed rape in the United Kingdom and it is considered to have a high
potential to evolve due to its mixed reproduction system and airborne ascospores.
This necessitates diverse sources of host resistance, which are inadequate at present
to minimize yield losses caused by this disease. To address this, we screened a
doubled haploid (DH) population of oilseed rape, derived from a secondary gene
pool (ancestral genomes) of B. napus for the introgression of resistance against
P. brassicae. DH lines were phenotyped using controlled-environment and glasshouse
experiments with P. brassicae populations obtained from three different geographic
locations in the United Kingdom. Selected DH lines with different levels of resistance
were further studied in a controlled-environment experiment using both visual (scanning
electron microscope – SEM) and molecular (quantitative PCR) assessment methods
to understand the mode/s of host resistance. There was a clear phenotypic variation
for resistance against P. brassicae in this DH population. Quantitative trait locus (QTL)
analysis identified four QTLs with moderate to large effects, which were located on
linkage groups C1, C6, and C9. Of these, the QTL on the linkage group C1 appeared
to have a major effect on limiting P. brassicae asexual sporulation. Study of the
sub-cuticular growth phase of P. brassicae using qPCR and SEM showed that the
pathogen was able to infect and colonise both resistant and susceptible Q DH lines
and control B. napus cultivars. However, the rate of increase of pathogen biomass was
significantly smaller in resistant lines, suggesting that the resistance segregating in this
DH population limits colonisation/sporulation by the pathogen rather than eliminating
the pathogen. Resistance QTLs identified in this study provide a useful resource for
breeding cultivar resistance for effective control of light leaf spot and form a starting
point for functional identification of the genes controlling resistance against P. brassicae
that can contribute to our knowledge on mechanisms of partial resistance of crops
against pathogens.
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INTRODUCTION

Host plant resistance against pathogens is an important
characteristic in agricultural crops. In general, resistance
against pathogens is described under two broad categories:
complete/qualitative resistance and incomplete/quantitative
resistance (Roux et al., 2014; French et al., 2016). Of these two
categories, quantitative disease resistance (QDR) is preferred as
a broad-spectrum, durable source of resistance (Poland et al.,
2009; French et al., 2016). Development of genetic linkage
maps with DNA-based markers and quantitative trait loci
(QTLs) mapping by exploiting the marker-trait associations have
proved to be effective in breeding for plant disease resistance
(Poland et al., 2009; St. Clair, 2010). Further dissection of
resistance loci and characterisation of underlying genes can
improve understanding of the mechanisms of QDR against
plant pathogens (French et al., 2016), especially for those
with complex host-pathogen interactions (e.g., extracellular
pathogens) where the operation of host resistance does not
eliminate the pathogen.

Light leaf spot (LLS), caused by ascomycete extracellular
fungal pathogen Pyrenopeziza brassicae Sutton and Rawlinson
(anamorph Cylindrosporium concentricum Grev.) (Rawlinson
et al., 1978) is one of the most widespread diseases of oilseed
rape (Brassica napus L.) in the United Kingdom, causing
major yield losses (CropMonitor, 2016). The pathogen affects
most aerial parts of the plant, including leaves, stems, flowers,
and seed pods, resulting in reduction of leaf photosynthetic
area, reduced plant vigour, and further yield loss through
pod shatter (Boys et al., 2007). According to recent reports,
P. brassicae can cause up to 30% yield reduction (AHDB,
2021). However, earlier studies have reported yield losses as
great as 50% under severe epidemics (Rawlinson et al., 1978).
Current recommendations for managing LLS risks include
application of fungicides, growing cultivars with good field
resistance, and crop sanitary practices, such as ploughing crop
debris, delaying of the sowing date, and separation of oilseed
rape crops in space and time (AHDB, 2021). In practice, the
effectiveness of fungicide control methods depends on several
factors, including fungicide application timings, weather, and
shifts in P. brassicae populations toward fungicide insensitivity.
Additionally, fungicide applications may not always be an
economically viable solution for farmers. Despite crop sanitary
practices, cruciferous vegetables, weeds species, and volunteer
oilseed rape plants that occur from pod shatter during harvest
can provide a pathway for the pathogen to transfer between
cropping seasons due to the cross-infectivity of P. brassicae
between oilseed rape and other Brassica species (Maddock et al.,
1981; Evans et al., 2003). Therefore, it is necessary to put
more emphasis on host resistance in LLS management practices
and produce cultivars that have a greater economic return
to sustain the production of oilseed rape, which is the third
largest arable crop in the United Kingdom (DEFRA, 2020). The
development of oilseed rape cultivars with good levels of field
resistance against P. brassicae can provide economical means of
disease control, especially for farmers with small to medium-sized
arable farming areas.

Even though the average LLS resistance rating of oilseed
rape cultivars has increased in recent years1, frequent recent
epidemics of LLS indicate that the currently available cultivar
resistance is inadequate to achieve successful control of this
disease (CropMonitor, 2016). There has been little knowledge
on the genetic basis of host resistance against P. brassicae
(Karandeni Dewage et al., 2021) with only three published
studies on mapping qualitative or quantitative resistance genes
(Pilet et al., 1998; Bradburne et al., 1999; Boys et al., 2012).
Moreover, sexual reproduction of P. brassicae could lead to the
development of new virulent strains, rendering the resistance
genes ineffective (Boys et al., 2007; Karandeni Dewage et al.,
2018). Therefore, diversification of the resistance sources is
essential to achieve effective and prolonged control of LLS
through host resistance. Improvement of cultivar resistance
through selective breeding requires sufficient genetic diversity
to be present within the current gene pool. Nevertheless,
continuous selection of plant material for specific traits can
cause genetic bottlenecks, resulting in reduced genetic diversity
in the primary gene pool (Doebley et al., 2006). Narrow gene
pools can make crop species more vulnerable to emerging pests
and pathogens and reduce the potential for improving crop
productivity (Hyten et al., 2006). In such cases, genetic variations
present in external gene pools provide plant breeders with an
opportunity to improve crop cultivars by incorporating various
traits for which there is insufficient diversity in the primary gene
pools (Boyd et al., 2013).

Oilseed rape has been known for its narrow genetic diversity
caused by strong selection for various traits in its breeding history
(Snowdon and Iniguez Luy, 2012). For example, the process of
developing modern double-low cultivars (low seed glucosinolate
and low erucic acid contents) is considered to have caused genetic
bottlenecks in current B. napus gene pools. However, being
a natural hybrid between B. rapa and B. oleracea (Chalhoub
et al., 2014), the compatibility between these two ancestral
species (secondary gene pool) of B. napus enables introgression
of new sources of resistance from these external gene pools
into cultivated B. napus. Compared to B. napus, B. rapa, and
B. oleracea are considered to have higher genetic diversity and
they have proved to be effective in providing new resistance
genes against other important pathogens of oilseed rape (Neik
et al., 2017; Robin et al., 2017; Katche et al., 2019). Experimental
work described in this article has focused on analysing a doubled
haploid (DH) population of oilseed rape, derived from the
ancestral genomes of B. napus, as a potential source of resistance
against the LLS pathogen P. brassicae and understanding the
operation of host resistance against this pathogen.

MATERIALS AND METHODS

Plant Material
A progeny of DH lines (Q population consisting of a total of
92 lines) derived from an F1 cross between synthetic B. napus
(B. oleracea atlantica X B. rapa oleifera “29”) and oilseed rape cv.

1https://ahdb.org.uk/rlarchive
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Tapidor (European winter-type cultivar with a strict vernalisation
requirement and low seed erucic acid and low glucosinolate
content) (Mithen and Magrath, 1992; Smooker et al., 2011) was
used in this study. Additionally, oilseed rape cultivars Canberra
[UK Agriculture and Horticulture Development Board (AHDB)
recommended list (RL) resistance rating 7 (2007/08), resistant],
Cuillin [RL resistance rating 8 (2014/15), resistant], Marathon
[RL resistance rating 5 (2016/17), susceptible], Bristol [RL
resistance rating 2 (1996/97), susceptible], Imola (characteristic
black flecking resistance phenotype against P. brassicae infection,
Boys et al., 2012), and Tapidor and B. rapa oleifera “29” (A-
genome parent of synthetic B. napus) were included in the
phenotyping experiments. The AHDB RL ratings (resistance
rating for LLS on 1–9 scale, where nine is most resistant),
which are available for commercial cultivars, were taken from
the most recent records available (given in parentheses next
to the RL rating).

Phenotyping of Resistance Against
Pyrenopeziza brassicae in the Q Doubled
Haploid Population
The Q DH population was assessed for its resistance against
P. brassicae in three separate experiments to represent
different P. brassicae populations (mixture of isolates
collected from diseased leaves from oilseed rape crops) and
different environmental conditions. These consisted of two
glasshouse experiments (GH) and one controlled-environment
(CE) experiment. Each experiment included appropriate
resistant/susceptible control cultivars. The numbers of Q
DH lines and resistant/susceptible control cultivars included
in each of the three phenotyping experiments are given in
Table 1. Different P. brassicae populations that originated
from England or Scotland were used in the three experiments
(Table 1). Pyrenopeziza brassicae conidial suspensions were
prepared by selecting diseased oilseed rape leaves with clear
LLS symptoms and incubating them at 4◦C for 5 days in sealed
polyethylene bags with a layer of dampened paper towel to
increase humidity to induce sporulation. Leaves were then
washed with sterile distilled water to produce conidial inoculum.
Conidial suspensions were filtered through sterile Miracloth
(Calbiochem, United States), and the concentration of each
spore suspension was measured using a haemocytometer.
Spore concentration was adjusted with sterile distilled water
to 105 spores/ml for the glasshouse experiments and 104

spores/ml for the CE experiment and suspensions were stored at
–20◦C until needed.

Glasshouse experiments were arranged in an alpha design
generated using an alpha design generator (Parsad et al.,
2007) as it was not possible to assess all the lines/cvs in
one experiment due to space limitations. Q DH lines were
divided into small batches and assessed at different occasions
within each glasshouse experiment (four and three batches
in the first and second glasshouse experiment, respectively).
Resistant/susceptible control cultivars and a Q DH line (Q12)
were repeated on each occasion in GH1 and GH2 to monitor
the uniformity of experimental conditions. Plants were grown

in 9 cm diameter pots until they reached growth stage 1,4–
1,5 (plants have five true leaves) (Sylvester-Bradley et al.,
1984). Five replicate plants were included for each Q DH
line and control cultivar. At growth stages 1,4–1,5, plants
were spray-inoculated with P. brassicae conidial suspensions
using a 50 ml travel spray bottle (Boots, United Kingdom)
until all the leaves were evenly and fully covered with fine
droplets of the spore suspension. After inoculation, plants
were covered with a polyethylene cover for 48 h to maintain
high humidity to facilitate spore germination and infection.
Glasshouse conditions were maintained at 16◦C/14◦C day/night
temperatures with natural daylight and supplemented by a 12 h
photoperiod. At 24 days post-inoculation (dpi), plants were
destructively harvested by cutting at the stem base above the
compost surface, individually placed in polyethylene bags with
a dampened paper towel, and incubated at 4◦C for 5 days to
induce sporulation. The disease assessment was made by visually
estimating the percentage leaf area covered with P. brassicae
acervuli (sporulation). The presence or absence of a necrotic
response was also recorded for each plant.

In the CE experiment, plants were first grown in 7 cm diameter
pots and maintained in a glasshouse at 20◦C for 3 weeks. Four
replicate plants were included for each Q DH line and the
control cultivar. At growth stages 1,4–1,5, plants were spray-
inoculated using an aerosol sprayer (Chrom Atomiser, Camlab;
Cambridge, United Kingdom) until drops ran off the leaves. After
inoculation, plants were individually covered with polyethylene
bags (26 cm × 38 cm) to maintain high humidity to facilitate
spore germination and infection and kept in a CE room at
16◦C with a 12 h photoperiod. Bags were removed 48 h after
inoculation and were replaced 14 days later for the final week
before disease assessment. LLS severity on each plant was assessed
by visually estimating the percentage leaf area covered with
P. brassicae acervuli.

Statistical Analysis and Mapping of
Quantitative Trait Locus for Resistance
Against Pyrenopeziza brassicae
Light leaf spot severity data (% leaf area covered with P. brassicae
sporulation) were subjected to ANOVA using GENSTAT
statistical software for Windows (Payne et al., 2011). Arcsine
transformation of the percentage of leaf area with sporulation
was made with an arcsine formula in Excel before ANOVA
was done, so that the variance was more homogeneous across
treatments and measurements were normally distributed. For
each glasshouse experiment, data generated by the alpha design
experiments were combined and the effect of experiment was
analysed as a factor in the ANOVA using control cultivars
and Q DH lines, which were included in each experiment
(batch). For analysis of the relationships between LLS severities
measured in each of the three phenotyping experiments, simple
linear regression analyses were done using calculated means for
different Q DH lines and cultivars.

The linkage map and marker data for the Q DH population
have been described previously (Smooker et al., 2011). The
genetic linkage map of the Q DH population comprised of
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TABLE 1 | Summary of phenotyping experiments used to assess resistance against Pyrenopeziza brassicae in the Brassica napus Q doubled haploid (DH) population.

Experiment Number of Q DH
linesa

Control cultivarsb Origin of Pyrenopeziza
brassicae inoculumc

Inoculum concentration
(spores/ml)

Light leaf spot severity (%
leaf area affected) (range)

Glasshouse 1 (GH1) 84 Marathon (S), Bristol (S), Cuillin (R),
Imola (R), Tapidor, Brassica rapa

oleifera “29”

Morley, Norfolk, England 1 × 105 0–83%

Glasshouse 2 (GH2) 78 Bristol (S), Charger (S), Imola (R) Aberdeen, Scotland 1 × 105 0–63%

Controlled environment
(CE)

89 Canberra (R) Harpenden, Hertfordshire,
England

1 × 104 0–46%

aQ DH population consists of 92 lines in total. From GH1 and GH2, 77 and 70 lines were taken into the final data analysis, respectively. Therefore, there were 70 lines in
common between the three experiments.
bEach experiment included resistant (R)/susceptible (S) control cultivars. Additionally, GH1 experiment included two of the parental lines of the Q DH population; B. rapa
oleifera “29” (A-genome parent of the synthetic B. napus) and cv. Tapidor.
cPlants were inoculated with P. brassicae populations (conidial suspensions collected from diseased leaves from oilseed rape crops in England or Scotland).

358 simple sequence repeats (SSR) markers over 19 linkage
groups with a total genetic distance of 1,381 cm. QTL mapping
was implemented with QTL cartographer version 2.5 (Wang
et al., 2012) using quantitative disease severity (% leaf area with
P. brassicae sporulation) data within each individual experiment
and across all three experiments using combined data. Initial
genome scans for marker-trait associations were done using
single marker analysis to identify possible QTLs. The results
obtained from single marker analysis were further refined using
interval mapping (IM) (Haley and Knott, 1992). Genome-wide
QTL threshold was determined by permutation analysis using
1,000 iterations corresponding to a significance level of α = 0.10.
Support interval for each QTL was determined based on the
decrease in 1.5-logarithm of the odds (LOD) on either side
of the LOD maximum (Silva et al., 2012). Since IM may be
affected by the skewed distribution of phenotype data, QTL
positions and the effects were confirmed with transformed data.
The binary (categorical) phenotype data for necrosis obtained
from the two glasshouse experiments (presence or absence of
a necrotic response) were analysed using the non-parametric
Kruskal–Wallis test. QTLs detected by IM were visualised on the
linkage map of the Q DH population using MapChart software
(version 2.32) (Voorrips, 2002) with manual editing.

Assessment of the Sub-Cuticular Growth
Phase of Pyrenopeziza brassicae in Q
Doubled Haploid Lines
Four Q DH lines (Q04, Q38, Q69, and Q83), based on the
amount of P. brassicae sporulation and presence of a necrotic
response observed in phenotyping experiments, and oilseed rape
cultivars Bristol and Imola were selected. Plants were grown in
9 cm diameter pots under controlled-environment conditions
(FITOCLIMA D1200, ARALAB, Rio de Mouro, Portugal) with
a 12 h photoperiod, 60% relative humidity, and 20◦C/18◦C
day/night temperatures, respectively. Plants were arranged in a
randomised complete block design generated using Experimental
Design Generator and Randomiser (EDGAR) (Brown, 2004). At
growth stage 1,4–1,5 (five leaves unfolded) (Sylvester-Bradley
et al., 1984), plants were point-inoculated at four “marked”
points on adaxial surfaces of each of the fourth and fifth
true leaves using sterilised Whatman no. 1 filter papers (cut

into c.0.8 mm × 0.8 mm squares) immersed in a P. brassicae
conidial suspension (105 spores/ml). After inoculation, plants
were covered with a polyethylene cover for 48 h to maintain high
humidity. Inoculated plants were maintained in the controlled
environment cabinet with a 12 h photoperiod, 60% relative
humidity, and 16◦C/14◦C day/night temperatures, respectively.

Plants were sampled at 0, 3, 7, 14, and 24 dpi, and the fourth
and fifth true leaves were used for the analysis of sub-cuticular
growth of P. brassicae using quantitative PCR (qPCR) with
species-specific primers (Karolewski et al., 2006) and scanning
electron microscopy (SEM), respectively. For qPCR analysis, the
fourth true leaf to appear was removed from each plant and
2 cm diameter leaf discs were cut from each inoculation point.
Leaf discs were individually placed in 2 ml tubes, frozen at
–20◦C, and freeze-dried. Samples were processed in a Fastprep
machine (MP Biomedicals, United Kingdom) with three metal
beads (3 mm diameter) until leaf discs were ground to a fine
powder. DNA extraction and quantification of P. brassicae DNA
was done according to the method described in Boys et al. (2012)
with minor modifications (DNA samples were diluted to a final
concentration of 20 ng/µl and five standards, each containing
known quantities of P. brassicae DNA ranging from 1 pg to 10
ng, were used in qPCR). Quantitative PCR data were analysed
by simple linear regression of P. brassicae DNA content against
the days post-inoculation (dpi). Since the amount of P. brassicae
DNA in leaf tissues showed an exponential increase with time
after inoculation, data were transformed by taking the common
logarithm (log10) of the original measurements. A position and
parallelism regression analysis was used to analyse the differences
in the increase in the amount of P. brassicae DNA over time
between the six lines/cultivars included in this experiment. All
the analyses were done using GENSTAT statistical software for
Windows (Payne et al., 2011).

Scanning electron microscope (SEM) analysis of leaf samples
of the Q DH lines collected at different time points after
inoculation was done using the Bioimaging facility at Rothamsted
Research, Harpenden, United Kingdom.2 Pieces of leaves (c.
4 mm × 4 mm) were obtained from the inoculation points using
a sterile blade and were prepared according to standard operating
procedures of the SEM instrument (JEOL JSM-6360, JEOL Ltd.,

2https://www.rothamsted.ac.uk/bioimaging
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FIGURE 1 | Frequency distribution of light leaf spot severity (% leaf area
affected) in the Q doubled haploid (DH) population in three phenotyping
experiments. (A) Glasshouse experiment 1 (GH1), (B) glasshouse experiment
2 (GH2), (C) controlled-environment experiment (CE). Arrows indicate the
position of parental lines [B. rapa olifera “29” (B. rapa) and Tapidor (T)] and the
resistant [Imola (I), Cuillin (Cu), and Canberra (Ca)] or susceptible [Bristol (Br),
Charger (Ch), and Marathon (M)] control Brassica napus cultivars in the
phenotypic distribution.

United Kingdom) at Rothamsted Research for examination and
recording images.

RESULTS

Phenotyping of Resistance Against
Pyrenopeziza brassicae in the Q Doubled
Haploid Population
The ANOVA indicated a significant effect of genotypes (p < 0.01)
on the LLS severity. The effect of the batch experiment was
not significant within GH1 and GH2 (p > 0.69, Supplementary
Table 1). Distribution of resistance against P. brassicae, measured
using % leaf area covered with pathogen sporulation, among

Q DH lines is illustrated in Figure 1. The phenotype
distribution showed positive skew toward resistance in all three
experiments. Significant positive correlations were observed
between the experiments (Supplementary Table 2; p < 0.01),
indicating consistency in disease scoring methodology across
experiments. The correlation was particularly good between the
two glasshouse experiments, and the overall LLS severity in
these two experiments appeared to be greater [ranging from
0 to 83% and from 0 to 63% leaf area affected in the first
(GH1) and second (GH2) glasshouse experiments, respectively]
compared to that of the CE experiment (ranging from 0 to
46%). Some of the Q DH lines had disease severities smaller
than or equal to those of the resistant control cultivars (cvs
Imola and Cuillin) in GH1 and GH2 experiments, and most
of the Q DH lines had disease severities smaller/equal to those
of the resistant control (cv. Canberra) in the CE experiment.
Thirty-nine lines in GH1 and 27 lines in GH2 showed no
significant difference from the disease severity observed on
cv. Imola (0.9 and 0% leaf area with sporulation in GH1
and GH2, respectively) (p < 0.05). The two parental lines
included in the GH1 experiment differed significantly in LLS
severity (p < 0.05). Of these, the A-genome parent of the
synthetic B. napus, B. rapa oleifera “29” showed an average
of 32.5% leaf area with sporulation, which is similar to
that of cv. Cuillin. In contrast, cv. Tapidor showed extreme
susceptibility to P. brassicae with an average of 83% leaf area
with sporulation.

In addition to the varying numbers of P. brassicae acervuli that
appeared with or without lesion formation, some of the Q DH
lines showed a necrotic response against P. brassicae that started
to appear c. 10–14 dpi (Figures 2A–C). These responses were
mainly observed on the leaf veins, midribs, and along petioles,
and elsewhere on the leaf lamina (leaf blade). This was similar
to the necrosis observed on cv. Imola (Figure 2D) that is known
to contain a major-gene locus for resistance against P. brassicae.
However, cv. Imola was consistent in producing zero to very little
(>1% area affected) sporulation (mainly confined to leaf veins,
the midrib, and petioles) in different experiments, whereas the Q
DH lines with necrosis showed a great variation in sporulation.
For example, some of the Q DH lines appeared to have large
numbers of acervuli in the presence of a less intense necrotic
response. Some lines showed limited sporulation confined only
to the leaf veins and the midribs (Figure 2E). Necrotic flecking
on the leaf lamina appeared in concentric rings (Figure 2F) which
resembled concentric ring-like sporulation patterns characteristic
of susceptible interactions (Figure 2G). In the GH1 experiment,
41 out of 77 lines produced a necrotic response, whereas in
GH2 experiment, 46 out of 70 lines produced necrosis. Of these,
six lines that had necrosis in GH1 did not produce necrosis in
GH2, and nine lines that did not have necrosis in GH1 produced
necrosis in GH2. Comparisons of the LLS severities between Q
DH lines with or without a necrotic response using qualitative
assessments (presence or absence) made in GH1 and GH2
experiments are illustrated in Figure 3. According to Shapiro-
Wilk W statistics, LLS severity distributions showed deviation
from normality (p < 0.05) in both groups. The difference in the
median values of % leaf area covered with acervuli between Q
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FIGURE 2 | Necrotic responses observed in different B. napus lines from the Q DH population. (A) Q88, (B) Q60, (C) Q83, (D) cv. Imola, (E) Q64 with necrosis and
occasional acervuli on the midrib, (F) Q33 with necrosis on leaf lamina in concentric rings, (G) susceptible line Q38 with concentric ring-like sporulation patterns
characteristic of Pyrenopeziza brassicae.

DH lines with or without a necrotic response was statistically
significant in GH1 (p < 0.01) and GH2 (p < 0.05) experiments.

Mapping of Quantitative Trait Locus for
Resistance Against Pyrenopeziza
brassicae
Single marker analysis, which was used as the initial approach
for the genetic mapping of the resistance against P. brassicae,
indicated several loci with significant marker-trait associations.
IM analysis within individual experiments identified four QTLs
for resistance against P. brassicae across three linkage groups in
the genetic linkage map for the Q DH population. Summary
of the QTLs detected in each experiment, including maximum
values of LOD scores, QTL positions, the percentage of
phenotypic variance explained, and the estimate of QTL effects, is
given in Table 2. Identification of QTL positions and effects were
compared between transformed and untransformed data. This
indicated similar results except for one QTL maximum on linkage
group A10 for which the LOD score was less than the significant
threshold with untransformed data. This QTL was removed from
further analysis. One major QTL exceeding the LOD threshold
was detected in the GH1 experiment located on the linkage group
C6 (maximum LOD at 31.5 cM), accounting for 33.8% of the
phenotypic variance. In comparison, three and two QTLs were
detected in GH2 and CE experiments, respectively. The QTLs
identified in the GH2 experiment were located on the linkage
groups C1 (maximum LOD at 30.3 cM), C6 (maximum LOD at

31.5 cM), and C9 (maximum LOD at 57.0 cM), accounting for
between 24.31 and 52.74% phenotypic variance. The two QTLs
detected in the CE experiment included a major QTL located on
the linkage group C1 (maximum LOD at 30.3 cM), accounting
for 69.37% of the variance identified, and a QTL with a relatively
small effect on the linkage group C6 (maximum LOD at 49.0 cM),
accounting for 20.23% of the variance identified. Comparing the
QTLs identified within different experiments (Figure 4), one
of the QTLs on linkage group C6 was detected in both GH1
and GH2 experiments, and the QTL on linkage group C1 was
detected in both GH2 and the CE experiments. For the GH1
experiment, a putative QTL co-located with the QTL on linkage
group C1 identified in GH2 and CE experiments was detected
with a LOD score of 3.1 that was just below the significance
threshold (LOD = 3.3). QTL analysis for the combined data across
all three experiments detected three QTLs co-located with those
identified within individual experiments. These included QTLs
located on the linkage groups C1 (maximum LOD at 30.4 cM), C6
(maximum LOD at 31.4 cM), and C9 (maximum LOD at 56.8 cm)
(Figure 4), accounting for 37.31, 37.22, and 22.83% of phenotypic
variance, respectively.

Second QTL analysis was done for GH1 and GH2 experiments
by taking sub-populations of Q DH lines based on the presence
or absence of necrosis with the intention of distinguishing QTL
effects related to these two phenotype groups. According to the
results, only the QTL identified on linkage group C1 remained
significant in GH2 for the sub-population of Q DH lines without
necrosis. The QTL on the linkage group C9 was also retained,
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FIGURE 3 | Box plots comparing light leaf spot severity of Q DH lines with or without the presence of black necrotic flecking observed in two glasshouse
experiments. (A) GH1, (B) GH2. Q DH lines inoculated with P. brassicae appeared to have a variation in the light leaf spot severity (% leaf area with sporulation) with
or without the presence of necrosis. In each plot, the centre lines crossing the boxes denote median values, box edges represent the lower 25% and the upper 75%
quartiles, x denotes the mean value and error bars represent minimum and maximum values. There was a significant difference in the median light leaf spot severity
values between the two groups (*p < 0.05; **p < 0.01).

with a small decrease in the LOD score. The same phenomenon
was observed in GH1, where the putative QTL maximum on
the linkage group C1 was detected with the sub-population
of Q DH lines without necrosis. Therefore, it is possible that
the QTLs on the linkage groups C1 and C9 contribute to the
reduced sporulation without necrosis. QTL mapping of the
sub-population of DH lines with necrosis retained the QTL
maximum on linkage group C6 with slightly reduced LOD scores
for both GH1 and GH2, while showing a considerable loss of
QTL maxima on the linkage group C1. The overall phenotypic
variance in the sub-population of DH lines with necrosis may be
attributed to the combined effects of QTLs (i.e., those related to
reduced sporulation and necrosis). Considering the QTL maxima
identified in the sub-population, it can be suggested that the QTL
on the linkage group C6 contributes more toward the phenotypic
variance in the group of DH lines with necrosis. However, no
significant interactions with marker data exceeding the QTL
threshold were detected for the binary data on necrosis.

Assessment of the Sub-Cuticular Growth
Phase of Pyrenopeziza brassicae in Q
Doubled Haploid Lines
Using the results obtained in the three phenotyping experiments
(GH1, GH2, and CE), four Q DH lines were selected to represent
differences in the amounts of sporulation and the necrosis
observed. These included Q83 with an average of <1% leaf
area affected with sporulation in the presence of necrosis, Q4
with <5% leaf area with sporulation in the presence of necrosis,
Q69 with <2% leaf area with sporulation without necrosis,
and Q38 with >59% of leaf area with sporulation without
necrosis. Imola and Bristol were the resistant and susceptible
control cultivars, respectively. Analysis of P. brassicae DNA
content in leaf discs taken from the points of inoculation
showed a significant increase between 0 and 24 dpi in all the
lines and cultivars. There were significant differences between

lines/cultivars (p < 0.05). Position and parallelism regression
analysis indicated three distinct groups based on the difference
in the increase in P. brassicae DNA over time: group 1 contained
Q38, group 2 consisted of Q04, Q83, Q69, and cv. Bristol,
and group 3 contained cv. Imola (Figure 5). Line Q38, which
developed large numbers of P. brassicae acervuli in all three
phenotyping experiments (GH1, GH2, and CE), had the greatest
amount of P. brassicae DNA and the greatest rate of increase over
time. Cultivar Imola had significantly less P. brassicae DNA than
the rest of the lines/cultivars and the amount of DNA increased
over time at a slower rate.

Scanning electron micrographs also indicated that P. brassicae
was capable of infecting and colonising all the lines selected in
this experiment even though the extent of sub-cuticular hyphal
growth varied among them (Figure 6). Lines Q83, Q4, and Q69
had hyphae growing more prominently along the leaf veins at
early time points (i.e., 3–7 dpi). In addition, sub-cuticular hyphal
growth on these lines appeared to follow the branching patterns
of the main and lateral veins. This observation was consistent
with the patterns of necrosis and acervuli production on the
resistant lines. As the pathogen colonisation progressed with time
(i.e., 14 dpi), the hyphae appeared to spread out onto the leaf
lamina to a certain extent and more fungal biomass could be
observed on the leaf lamina at c. 24 dpi. In addition, epidermal
cell collapse associated with hyphae was observed on the Q DH
lines with necrosis. In contrast, extensive hyphal growth could be
observed on both the leaf veins and leaf lamina of the susceptible
line Q38 from 7 dpi with more hyphae branching out from leaf
veins onto the leaf lamina.

DISCUSSION

This article reports identification of new QTLs for resistance
against P. brassicae derived from a B. napus secondary gene pool
(ancestral genomes). Results from the phenotypic and genetic
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TABLE 2 | Quantitative trait loci (QTLs) detected across three phenotyping experiments for resistance against P. brassicae in the B. napus Q DH population.

Experimenta Linkage groupb QTL position (cM)c Support interval (cM)d Peak LOD R2 (%)e Additive effect QTL significancef

GH1 C6 31.5 29.3–32.9 3.4 33.8 10.98 ***

GH2 C1 30.3 30.3–31.8 5.5 52.74 12.03 ****

C6 31.5 29.6–32.9 3.5 34.59 9.15 ***

C9 57.0 56.2–58.6 4.1 24.31 7.54 ****

CE C1 30.3 30.1–30.5 7.4 69.37 12.21 **

C6 49.0 47.6–49.9 3.3 20.23 –4.77 ***

aDH population was phenotyped in two glasshouse experiments (GH1 and GH2) and a controlled-environment experiment (CE), and QTL was determined within each
individual experiment. A summary of the phenotyping experiments is given in Table 1.
bLinkage groups are labelled according to the standard chromosome/linkage group nomenclature of B. napus (A1–A10 and C1–C9) agreed by the Multinational Brassica
Genome Project (MBGP) Steering Committee (http://www.brassica.info/resource/maps/lg-assignments.php).
cFlanking markers for each QTL have been indicated in Figure 4.
dLOD-1.5 support interval, which has a confidence interval close to 95%, is given for each of the QTL detected.
e% phenotypic variance explained by the QTL.
f Significance based on individual marker-trait association. Significance at the 1, 0.1, and 0.01% levels are indicated by **, *** and ****, respectively.

FIGURE 4 | Quantitative trait loci (QTLs) for resistance against P. brassicae in the B. napus Q DH population detected using three phenotyping experiments.
Phenotyping of the Q DH population was done using two glasshouse experiments (GH1 and GH2) and a CE experiment with each involving different P. brassicae
populations. Four QTLs were identified across three linkage groups, C1, C6, and C9 using QTL analysis within individual experiments. Combined data across all
three experiments identified three QTLs (labelled “All”) co-locating with those identified within individual experiments. On the left, QTL positions are marked with LOD
support intervals and flanking markers for each QTL are indicated by bold, italicised letters on the linkage maps.

analysis of host resistance against P. brassicae provided good
evidence for the segregation of resistance against P. brassicae
in the Q DH population. Q DH lines differed from each
other in their ability to limit P. brassicae asexual sporulation.
There were significant differences in the % leaf area covered
with sporulation between different lines. Reduced P. brassicae
sporulation appeared to be present with or without a necrotic

response and there was a significant difference between the
two groups in the median values of % leaf area covered with
acervuli. The concentric ring-like arrangement of the necrotic
spots on the leaf lamina may indicate that P. brassicae asexual
sporulation, which occurs in concentric rings in susceptible
responses (Karandeni Dewage et al., 2018), is prevented by
operation of the host resistance in these lines. This suggests
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FIGURE 5 | Change with time in amount of P. brassicae DNA in selected
B. napus Q DH lines and control cultivars. In a controlled-environment
experiment, four Q DH lines differing in resistance and oilseed rape cultivars
Bristol and Imola were point-inoculated with a P. brassicae conidial
suspension. Amounts of P. brassicae DNA in leaf samples taken from the
points of inoculation between 0 and 24 dpi were quantified using qPCR.
Position and parallelism regression analysis was used to analyse the difference
in the increase of DNA with time between the six lines/cultivars. Data were
best fitted by three regression lines and there were three distinct groups
based on the difference in the increase of DNA with time: group 1 contained
Q38 (y = 0.09x + 0.67), group 2 consisted of Q04, Q83, Q69, and cv. Bristol
(y = 0.07x + 0.53) and group 3 contained cv. Imola (y = 0.04x + 0.53).

that host recognition occurs at a late stage (c. 10–14 dpi) of
P. brassicae colonisation, possibly during the asexual sporulation
phase. However, the variation in amount of sporulation, observed
between Q DH lines that gave a necrotic response upon pathogen
recognition, suggests that there may be a background resistance
or other resistance genes segregating in this population that affect
the overall level of resistance to the pathogen.

Of the parental lines, neither the synthetic B. napus nor the C
sub-genome parent of the synthetic B. napus (Brassica oleracea
altantica) were available to test in our experiments. However,
in the GH1 experiment, we were able to include B. rapa olifera
“29” (A sub-genome parent of the synthetic B. napus) and cv.
Tapidor, which showed moderate to high percentage leaf area
with P. brassicae asexual sporulation without a necrotic response.
According to these observations, it can be speculated that most of
the favourable alleles for resistant QTLs were likely to have been
contributed by C sub-genome parent via synthetic B. napus. The
Q DH population is known to have an asymmetric distribution
of marker polymorphisms between the A and C sub-genomes
with allelic diversity diverted more toward the C sub-genome
(Smooker et al., 2011). This seems to be true for the segregation
of resistance against P. brassicae in the Q DH population,
considering the distribution of QTLs on the C sub-genome.

In three phenotyping experiments, four QTLs were identified
with moderate to large QTL effects. Linkage groups C1 and C6
appeared to have co-locating QTL stable across GH2/CE and
GH1/GH2 experiments, respectively. Of these, the QTL on the
linkage group C1 appeared to have a major effect on limiting
P. brassicae asexual sporulation. QTL analysis is considered as

the initial step toward marker-assisted selection (MAS) in plant
breeding, and for a particular QTL to be effective in a plant
breeding programme, it is important to confirm the repeatability
and the efficiency of the QTLs in different environments (Collard
et al., 2005). Accurate identification of QTL depends on the
quality of the phenotyping data and the robustness of the
linkage map. A significant positive correlation of the phenotype
data between the different experiments indicated consistency in
disease scoring methodology across experiments. However, it
should be noted that the relatively small population size used
in this study probably resulted in false negatives, particularly in
detecting QTLs with relatively small effects, along with possible
over-estimation of the QTL effects.

There seem to be several QTLs contributing to the overall
phenotypic variation. QTL-mediated resistance associated with
reduced P. brassicae sporulation or leaf necrosis is probably
controlled by different B. napus resistance loci. However, no
significant QTL was detected when the binary data for necrosis
were used as a phenotype, which could have been due to the
genetic complexity of this phenotype. All the experiments were
done with P. brassicae populations (mixtures of isolates) and
some of the lines that had necrosis in GH1 did not produce
necrosis in GH2 and vice versa. It is possible that there were
different pathogen races or effectors recognised by the host.
Furthermore, there seemed to be differences in the intensity of
black flecking observed in different lines, indicating that the
expression of this necrosis phenotype may be affected by other
QTLs for resistance, or that this could be a component of a
network of host responses. When we separate the DH lines based
on the presence or absence of necrosis, the lines with necrosis
contain phenotypic variation attributed to the combined effect of
different loci, whereas the effect of necrosis is eliminated from
the lines without necrosis. This may provide a possible genetic
explanation for the significantly smaller median LLS severity
values observed in the group of DH lines that showed necrosis
compared to the group without necrosis.

Similar phenotype classes for resistance against P. brassicae
have been explained by Bradburne et al. (1999) in a DH
population of B. napus. Bradburne et al. (1999) reported two
major genes for resistance against P. brassicae. Linkage analysis
positioned the gene corresponding to “no asexual sporulation”
(PBR1) on linkage group A1 and the gene responsible for “dark
necrotic flecking” (PBR2) on linkage group C6. The QTL on
linkage group C6 has been localised toward the centre of the
linkage group in both Bradburne et al. (1999) and the present
study. There is a possibility that both the studies refer to the
same resistance locus. However, the linkage map published by
Bradburne et al. (1999) contains limited information with only
two restriction fragment length polymorphism (RFLP) markers
on C6. There are no common markers between the two studies,
which are necessary to create a consensus map between different
populations to enable the comparison of QTLs across different
studies. Therefore, it is difficult to draw a conclusion with the
information currently available. Regarding the work reported by
Pilet et al. (1998) on quantitative resistance against P. brassicae,
QTLs were detected mostly on the A sub-genome (linkage
groups A2, A6, A7, and A9) and one QTL was detected on the
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FIGURE 6 | Scanning electron micrographs of leaf discs taken from B. napus Q DH lines point-inoculated with P. brassicae conidia in a controlled environment
experiment. (A) Q83 at 7 dpi, (B) Q4 at 7 dpi, (C) Q38 at 7 dpi, (D) Q04 at 7 dpi showing P. brassicae hyphae following leaf vein (v) branching patterns, (E) epidermal
cell collapse (x) on Q83 associated with P. brassicae hyphae, (F) Q4 at 24 dpi. Arrows indicate P. brassicae hyphae growing in sub-cuticular spaces of leaf vein and
leaf lamina tissues.

C sub-genome (linkage group C4), whereas the present study
identified QTLs on linkage groups C1, C6, and C9.

Using a DH population derived from the material described
by Bradburne et al. (1999) and Boys et al. (2012) reported a
single locus for resistance corresponding to the black flecking
phenotype (PBR2) that mapped to the bottom end of chrA1.
The second major gene (PBR1, corresponding to the absence
of asexual sporulation) reported by Bradburne et al. (1999) was
not identified and it has been suggested that PBR1 might have
been lost during the breeding process. In the present study, we
have identified DH lines with little to no sporulation without
necrosis. These lines can be used to further dissect the genetic
basis of this resistant phenotype by developing a larger mapping
population for fine-scale mapping. Availability of Brassica napus
genomic resources offers new possibilities for the identification
of host resistance genes and provides molecular tools to assist

in marker-assisted selection (MAS) for disease resistance. There
are a few B. napus genome sequences published, including the
genome sequence of cv. Tapidor (Chalhoub et al., 2014; Bayer
et al., 2017; Sun et al., 2017), which is one of the parental lines
of the Q DH population. Sequencing of the flanking markers can
be used to identify the corresponding genomic regions of the
QTL on the B. napus genome, facilitating the identification of
candidate resistance genes.

The Q DH population segregates for vernalisation and winter
hardiness (Smooker et al., 2011), making it difficult to assess
some of the lines directly in winter oilseed rape field experiments
in the United Kingdom. Therefore, we chose to phenotype the
Q DH population under controlled-environment and glasshouse
conditions to enable the identification of different components of
resistance without being affected by other characters segregating
in this population. Instead of using single-spore isolates, plants
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were inoculated with a different P. brassicae population in
each experiment, representing natural inoculum. In a separate
study that assessed resistance against P. brassicae in different
B. napus genotypes, selected Q DH lines have shown more
resistance compared to that of commercial oilseed rape cultivars.
In addition, the resistance in those lines appeared to be less
sensitive toward the increasing virulence of P. brassicae isolates
(Karandeni Dewage et al., 2021). This agrees with the stability
of the resistance in Q DH lines across different P. brassicae
populations observed in the present study. Host resistance QTLs
that are stable across different P. brassicae populations are of
particular importance to oilseed rape breeders.

Our results suggest that the resistance segregating in this
DH population limits colonisation/sporulation by the pathogen
rather than eliminating the pathogen. Pyrenopeziza brassicae
was able to infect and colonise both resistant and susceptible
Q DH lines and control cultivars with a significantly smaller
rate of increase of pathogen biomass in resistant lines than
that in susceptible lines. According to the qPCR data, three
resistant Q DH lines were in the same group as cv. Bristol that
had a significantly greater number of P. brassicae acervuli in
phenotyping experiments. This also supports the suggestion that
there may be resistance operating during the time of P. brassicae
asexual sporulation. According to SEM, hyphal growth was more
prominent along the leaf veins of resistant lines, especially at
early time points. According to Boys et al. (2012), the amount
of P. brassicae DNA was significantly greater in leaf vein/midrib
tissues than elsewhere in the leaves of cv. Imola when samples
were taken from the points of inoculation. This suggests that
the pathogen was able to colonise more of leaf vein/midrib
tissues than tissues of interveinal regions. It can be assumed that
abundant vascular bundles in leaf veins provide the pathogen
with more access to resources and hence support the extracellular
colonisation of leaf veins, midribs, and petioles. This may also
explain the presence of the black flecking phenotype, mainly
along the leaf veins, midrib, or petioles, and the production of
occasional acervuli along with these tissues in the case of resistant
cultivars. There have been similar reports of other endophytic
fungi with more affinity toward leaf vein/petiole colonisation
(Photita et al., 2001; Toofanee and Dulymamode, 2002).

Even though LLS is considered as a major disease problem
of oilseed rape in the UK with many epidemics since 1970s,
little is known about this pathosystem in contrast to that of
other important diseases, such as phoma stem canker (Boys
et al., 2007; Karandeni Dewage et al., 2018). So far, there have
been only two published studies on genetic mapping of major-
gene-mediated resistance (Bradburne et al., 1999; Boys et al.,
2012) and one study reporting quantitative resistance against
P. brassicae in B. napus (Pilet et al., 1998). Therefore, new studies
on qualitative and quantitative resistance against P. brassicae are
invaluable to combat LLS to sustain oilseed rape production in
the United Kingdom.

Quantitative trait locus mapping can be used to determine
QTL effects, interactions between resistance genes, race-
specificity of resistance, etc., providing insights into resistance
against pathogens that has complex inheritance (Young, 1996;
St. Clair, 2010). Even though QDR has been studied in several

pathosystems, underlying molecular mechanisms of QDR are
not well understood, with few studies reporting functional
characterisation of resistance QTL. In this study, we were
able to do detailed phenotyping of the resistance against
P. brassicae originating from the ancestral brassica species and
allocate the observed variation into its genetic components.
Resistant lines identified can serve as pre-breeding material and
the QTLs that are stable across different experiments could
be utilised in MAS in oilseed rape breeding programmes to
improve cultivar resistance against P. brassicae with further
resolution of resistance QTLs. Associated markers can be used
as a starting point for functional identification of the genes
controlling resistance against P. brassicae that can contribute
to our knowledge on mechanisms of partial resistance/QDR of
crops against pathogens.
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Xiongwei Li1†, Jiabo Wang2†, Mingshen Su1, Jingyi Zhou3, Minghao Zhang1, Jihong Du1,
Huijuan Zhou1, Kexin Gan4, Jing Jin4, Xianan Zhang1, Ke Cao5, Weichao Fang5,
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1 Forest and Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China, 2 Key Laboratory
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and Service Center, Shanghai, China, 4 Key Laboratory for Horticultural Plant Growth, Department of Horticulture,
Development and Quality Improvement of State Agriculture Ministry, Zhejiang University, Hangzhou, China, 5 Zhengzhou Fruit
Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, China

Peach gummosis is one of the most widespread and destructive diseases. It causes
growth stunting, yield loss, branch, trunk, and tree death, and is becoming a restrictive
factor in healthy and sustainable development of peach production. Although a locus
has been identified based on bi-parental quantitative trait locus (QTL) mapping, selection
of gummosis-resistant cultivars remains challenging due to the lack of resistant parents
and of the complexity of an inducing factor. In this study, an integrated approach of
genome-wide association study (GWAS) and comparative transcriptome was used to
elucidate the genetic architecture associated with the disease using 195 accessions and
145,456 genome-wide single nucleotide polymorphisms (SNPs). The broad-sense and
narrow-sense heritabilities were estimated using 2-year phenotypic data and genotypic
data, which gave high values of 70 and 73%, respectively. Evaluation of population
structure by neighbor-joining and principal components analysis (PCA) clustered all
accessions into three major groups and six subgroups, mainly according to fruit shape,
hairy vs. glabrous fruit skin, pedigree, geographic origin, and domestication history. Five
SNPs were found to be significantly associated with gummosis disease resistance,
of which SNPrs285957, located on chromosome6 across 28 Mb, was detected by
both the BLINK and the FarmCPU model. Six candidate genes flanked by or harboring
the significant SNPs, previously implicated in biotic stress tolerance, were significantly
associated with this resistance. Two highly resistant accessions were identified with low
disease severity, which could be potential sources of resistance genes for breeding. Our
results provide a fresh insight into the genetic control of peach gummosis disease.
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INTRODUCTION

Peach [Prunus persica (L.) Batsch] is one of the most
economically important deciduous fruit from the Rosaceae
family (Li et al., 2013). It originated in northwest China, and has
spread throughout China and the rest of the world because of
its greater adaptability (Faust and Timon, 1995; Yu et al., 2018).
But, the short-life syndrome due to gummosis is a long-lasting
problem in the warm and moist climate regions.

Gummosis is a nonspecific disease response to pathogen
infection, mechanical injury, drought and cold stress, or insect
attack. It is characterized by a gum exudation from tree trunks,
branches, and fruits in several fruit species, such as peach
(Britton and Hendrix, 1982), almond (Popović et al., 2021),
apricot (Liu et al., 2015), sweet cherry (Zhang L. et al., 2019),
and in citrus (Fan et al., 2011). Gummosis in peach was first
reported in central Georgia in 1974 (Weaver, 1974). The gum
exudation on trunks, scaffold limbs, and branches significantly
supresses tree growth and fruit yield of susceptible peach
varieties. It is one of the most destructive peach diseases in
the south of China (Fan et al., 2011) and the southeastern
United States (Weaver, 1974; Britton and Hendrix, 1982).
Based on the conidial morphology, cultural characteristics, and
nucleotide sequences, three Botryosphaeria fungi species were
reported to be the main pathogens causing the peach gummosis
disease: Botryosphaeria dothidea (anamorph Fusicoccumaesculi),
Botryosphaeria rhodina (anamorph Lasiodiplodia theobromae),
and Botryosphaeria obtuse (anamorph Diplodiaseriata) (Weaver,
1974). Of these, Botryosphaeria dothidea is the most common
cause of the disease in a large number of hosts worldwide
(Britton and Hendrix, 1982; Mancero-Castillo et al., 2018), while
Lasiodiplodia theobromae has proven to be the most virulent,
causing the largest lesions and most copious gummosis in China
(Fan et al., 2011).

Previous studies on controlling peach gummosis disease have
mainly involved chemical and biological controls with very
limited efficacy. Therefore, the use and the breeding of gummosis
resistance cultivars are the most cost-effective, environment-
friendly, and healthy approach for long-term management of the
disease (Beckman et al., 2011). As previously reported, although
most peaches and nectarines are susceptible to gummosis disease
to some degree, highly resistant genotypes also exist (Beckman
and Reilly, 2005). However, using these resistant genotypes in
breeding programs via conventional breeding methods remains
a challenge due to the large plant size, self-compatibility, low
genetic diversity, and the most restrictive factors, including
the long juvenile periods and breeding cycles (Li et al., 2013;
Aranzana et al., 2019). In addition, phenotypic variation of
peach gummosis is always affected by several factors, such as
wounding, pathogen infection, temperature, or humidity. As far
as the genetic factor is concerned, a dominant allele for peach
fungus gummosis resistance has been found in almond based
on F1 and BC1F1 population. Segregation and mapping analyses
located the peach fungal gummosis resistance locus on chimeric
linkage groups 6–8 near the leaf color locus (Mancero-Castillo
et al., 2018). Furthermore, being the center of origin of peach,
China has a huge population of wild relatives and landraces
with high genetic diversity (Li et al., 2013; Micheletti et al.,

2015). These genetic resources always exhibit specific phenotypes
of resistance and fruit quality but are rarely used in modern
peach breeding programs. For example, P. davidiana carries
resistance genes against the peach green aphid and can be used
for aphid-resistant breeding (Li et al., 2019). It will be, therefore,
helpful to perform extensive work with large-scale germplasm to
elucidate the genetic mechanism controlling the severity of peach
gummosis disease.

Next-generation sequencing technologies have not only
promoted the development of genetics and genomics tools, but
also greatly improved the understanding of the genetic basis
of important agronomic traits. Based on RNA-seq technology,
a large number of differentially expressed genes have been
identified, which has enabled the elucidation of the molecular
mechanism of plant-pathogen interaction of peach fungal
gummosis after the infection (Gao et al., 2016). These genes
have been found to be mainly involved in the process of cellular
defense and metabolism of carbohydrates, the phenylpropanoid
biosynthesis and metabolism pathway, anthocyanin biosynthetic
pathway, and the ethylene and jasmonic biosynthetic pathways
(Gao et al., 2016). Recently, the reactive oxygen species
(ROS) production-scavenging system has been reported to
play a crucial role in plant-pathogen interaction and in the
development of gummosis caused by Lasiodiplodia theobromae
(Zhang et al., 2020).

Genotyping by sequencing (GBS) is a method that combines
the enzyme-based complexity reduction and the second-
generation sequencing technology for marker discovery, with
and without the reference genomes (Elshire et al., 2011).
Despite the high rate of missing values in the GBS data,
the advantages of simultaneous discovery of abundant single
nucleotide polymorphisms (SNPs) at low cost, reduced the
ascertainment bias compared with array-based markers, and a
relatively easy automation still make it an efficient approach to
detect polymorphisms and to identify various loci controlling
traits both by biparental quantitative trait locus (QTL) mapping
and by genome-wide association study (GWAS) (Elshire et al.,
2011; Poland and Rife, 2012; Jarquín et al., 2014; Arruda et al.,
2016; Minamikawa et al., 2018). A large number of studies on
GWAS that were integrated with GBS have been reported in
multiple plant species (Arruda et al., 2016; Cao et al., 2016,
2019; Guo et al., 2019; Siddique et al., 2019). By combing GBS-
based QTL mapping with GWAS, 117 significant SNPs across the
genome were identified to be associated with P. capsici root rot
resistance in pepper (Siddique et al., 2019). Similarly, the genetic
determinants of grape berry-related traits, including grape skin
color, berry development period, berry weight, berry flesh texture,
and berry flavor, were identified by performing GWAS with 179
grape accessions and 32,311 SNP markers derived from GBS
analysis (Guo et al., 2019). Another example of GBS-based GWAS
is where the candidate genes of 12 agronomic traits and selected
domestication traits, including fruit shape, fruit color, fruit hairy,
fruit weight, sorbitol, and catechin content, have been identified
(Cao et al., 2016, 2019). Thus, keeping the above in view, an
integrated approach of GWAS and comparative transcriptome
was used in the present study. Here, the gummosis disease
was scored in the large-scale peach core germplasm accessions,
grown in the experimental field over the period of 2 years. The
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plant resources were selected from the previous genetic diversity
study (Li et al., 2013). A group of highly resistant accessions,
especially the traditional landraces, were identified. These are
potentially resistant parents to enrich the gene pool in modern
peach breeding programs. The GWAS, combined with RNA-seq,
was used to identify the associated SNP markers and candidate
genes. The aim was to gain insights into the genetic basis of
this complex trait and to apply the results in a peach genomic
selection breeding program.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
A set of 195 peach accessions originating from 19 provinces
and autonomous regions in China and United States, Italy,
New Zealand, and Japan was selected (Supplementary Table 1).
All trees were grafted on “MaoTao” rootstock and planted in
the peach experimental trial fields of Shanghai Academy of
Agricultural Sciences, Shanghai (N30◦55′3.18′′-E121◦27′14.44′′)
during the March month of the year 2016. This region in
China is characterized by high temperature and high humidity
as the annual average temperature and humidity reach up to
17◦C and 80%, respectively. The tree plants were managed
under uniform conditions of irrigation, fertilization, and pest
and disease control. Two accessions “Nan Shan Tian Tao” and
“Sunfre” were additionally grown in two different locations as
replications for resistance validation.

Evaluation of Lesions and Statistical
Analysis of Gummosis Disease Score
The severity of peach gummosis was investigated in the end of
the years 2018 and 2019. The score (0, 1, 3, 5, 7, and 9) for each
tree was based on the number and area of gumming lesions on
the trunks and limbs, a standard evaluation criterion adopted
by the modern Chinese peach industry technology community.
The minimum score of 0 refers to no visible symptoms or lesions
on the whole tree, and the maximum 9 indicates a very severe
infection on limbs and the main trunk. The scoring was as
follows: 1, only 1–2 lesions with a diameter of the spots less than
3 cm identified on trunks or main limbs; 3, the lesion was from 1
or 2 spots covering an area of up to 25% of the whole plant with
the gum spots not clearly distinguishable; 5, the total lesion area
was 25–50% of the whole plant with the gum spots not clearly
distinguishable; 7, the total lesion area covered from 50 to 75%
of the whole plant with the gum spots not clearly distinguishable;
and 9 when the total lesion area was more than 75% of the whole
plant (Supplementary Figure 1). Those with mean scores of both
years as stable to 1 or less were designated as high resistant, and
those scores lower than or equal to 3 as middle resistant, and
those greater than 3 were designated as susceptible.

The severity of disease was also compared in different
peach groups (Supplementary Table 1) divided according
to geographic origin and four phenotypes, including fruit
pubescence (peach/nectarine), fruit shape (round/flat), fruit
flesh color (red/yellow/white), and blossoming time (very
early/early/middle/late). The statistical analyses, including

means, standard errors (SE), and the minimum and maximum
values, were calculated using Graphpad Prism 8 software
(Graphpad Software Inc., San Diego, California). Pearson
correlation coefficients between the severity score of gummosis
disease and geographic origin and four phenotypes were analyzed
with the same software. The statistical significance was set at the
p < 0.001 level. Ordinary one-way ANOVA and unpaired t-test
(for fruit shape and hairy fruit skin) were used for paired and
multiple comparisons, respectively.

Estimation of Best Linear Unbiased
Prediction Values
Best linear unbiased prediction (BLUP) values were extracted
from the 2-year (2018–2019) phenotypic data for gummosis
disease using the linear mixed model in R-package lme4 based
on the following equation:

Yij = µ+ Ai + yj + e

where Yij is the vector of severity observation for each accession
in each year, µ is the overall mean values for all individuals, Ai is
the random effect of the ith individual accession (i = 1,. . . . . . , 195),
yj is the random effect of the jth year (j = 2018 and 2019), and e is
the residual error. Extraction of the random effects (accessions) in
the model used the “ranef” function. The estimated BLUP values
were used as phenotype values in the GWAS. In the equation, the
ratio of the individuals’ (accessions’) variance in the total variance
was used as estimated heritability (general heritability). The total
variance was the sum variance of accessions, years, and e, that is
the same as observations variance.

DNA Extraction, Re-sequencing, and
Single Nucleotide Polymorphism
Discovery
Young leaves with no disease from each accession were collected
and frozen at -80◦C. Total genomic DNA was isolated from
0.1-g tissue using the DNeasy 96 Plant Mini Kit (Qiagen,
CA, United States) following the manufacturer’s protocol. The
libraries with an insert size of 500 bp were constructed and
sequenced by Novogene Bioinformatics Technology Co., Ltd.
(Beijing, China) using an Illumina HiSeq X Ten platform
(Illumina, San Diego, CA) based on a paired-end mode, which
resulted in sequenced fragments of 150 bp read length. The
sequencing depth of each accession was greater than 10.33-fold
with an average genome coverage of 98.14%. The raw sequencing
data and SNP calling were analyzed using SAMTOOLS software
(Li et al., 2009). The SNPs were filtered under the quality control
parameter to remove those with more than a 7% individual
missing rate and a minor allele frequency (MAF) that is lower
than 0.05, according to the user manual of Beagle software 3.3.2.

Estimation of Population Structure,
Genetics Parameters, and Genome-Wide
Linkage Disequilibrium
The narrow sense of heritability of gummosis disease was
estimated by GAPIT3 based on a mixed linear model using
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whole of the marker data. Principal Component Analysis
(PCA) and Neighbor Joining (NJ)-tree analysis were performed
to find the clustered group and the genetic distance using
GAPIT3 software (Wang and Zhang, 2021) for understanding the
population structure. Eigen values and matrices were extracted as
dimensionality reduction vectors from all genotype information.
The first two PCs with major genetic variance were used to
indicate population stratification. The clustered kinship was used
to plot the NJ tree. To estimate the rate of linkage disequilibrium
decay, r2 values between each loci genotype were calculated
using PopLD decay, which is a fast and effective tool for linkage
disequilibrium decay analysis based on variant call format files
(Zhang C. et al., 2019). A window size, with averaged 300 kb
across the whole genome, was used to calculate average r2 values.

The genetic diversity indices for different populations,
including observed heterozygosity (Ho), inbreeding coefficient
(Fis), nucleotide diversity (π), and hapotypes, were calculated
using the POPULATION program in the stacks package with
a custom Perl script. Paired F-statistics values (Fst) (Weir and
Cockerham, 1984) were calculated to measure the difference
between populations using the same aforementioned program.
Analysis of molecular variance (AMOVA) was used to partition
the genetic variation into inter- and intra- gene pool diversities
using Arlequin version 3.5.1 with 1,000,000 markov chain and
100,000 burning steps (Excoffier and Lischer, 2010).

Genome-Wide Association Study
Gummosis disease severity data from 195 peach accessions were
used for GWAS based on mixed linear model (MLM) (Segura
et al., 2012), fixed and random model circulating probability
unification (FarmCPU) (Liu et al., 2016), and Bayesian-
information and linkage-disequilibrium iteratively nested keyway
(BLINK) (Huang et al., 2019) using GAPIT 3 in R (Wang and
Zhang, 2021). The first three principal components were used as
covariates for the population structure and familial relatedness
calculation, while the kinship matrix was used to eliminate
GWAS false positive. The individual relationships were estimated
by using the VanRaden method in the GAPIT3 software
(VanRaden, 2008). In each step, the variances were estimated
by generalized least-square (GLS), and the P-values estimated
using the F-test. All R scripts for converting data format,
estimating phenotype BLUP, and plotting pairwise correlation
of LD were coded by our research group, and GWAS programs
were performed with default parameters in the GAPIT3 software
(Wang and Zhang, 2021). The estimated BLUP values were used
as phenotype values in GWAS with the cutoff threshold set as 0.01
and the Bonferroni correction (0.01/total number of markers) to
filter the significant markers.

Estimation of Linkage Disequilibrium
Block in the Gummosis
Disease-Associated Region and
Candidate Genes Identification and Their
Annotation
A 100-kb region flanking the significant SNPs associated with
gummosis disease and located within the high LD regions was

investigated based on the peach genome v2.0 to identify the
annotated genes. The annotated gene sequences of the peach
genome v2.0 assembly were retrieved from GDR1 to identify the
target genes for the corresponding associated regions. Pair-wise
LD between markers was calculated as the squared correlation
coefficient (r2) of alleles using the R package LD heatmap (Shin
et al., 2006). We used r2 > 0.6 to filter the candidate regions.

RNA-Seq of the Branch Tissue After
Pathogen Inoculation
The 1-year-old branches of the susceptible cultivar “Huyou018”
were inoculated with Botryosphaeria dothidea. The pathogen was
isolated from our own germplasm. The inoculation method was
based on a previous study by Gao et al. (2016). The tissue
measuring 0.5 cm in a diameter was cut from the lesion area
and frozen at -80◦ C for RNA extraction at 0, 48, 60, 72,
and 84 h after inoculation. Total RNA extraction and first-
strand complementary DNA (cDNA) synthesis were carried out
according to Li’s method (Li X.W. et al., 2015). The sequencing
libraries were generated using the NEBNext R©UltraTM RNA
Library Prep Kit for Illumina R©(NEB, United States) following
the manufacturer’s recommendations. Reference genome and
gene model annotation files were downloaded from the genome
website.2 The mapped reads of each sample were assembled
by StringTie (v1.3.3b) using a reference-based approach (Pertea
et al., 2015). A quantification of gene expression level feature
Counts v1.5.0-p3 was used to count the read numbers mapped
to each gene. The FPKM of each gene was then calculated based
on the length of the gene and reads count mapped to that gene.
DESeq2 R package (Love et al., 2014) was used for differential
gene expression analysis of pair-wise stages using a model with
the negative binomial distribution. The P-values were adjusted
using the Benjamini and Hochberg’s approach to controlling the
false discovery rate. Genes with an adjusted P-value < 0.05 found
by DESeq2 were assigned as differentially expressed. For each
sampling stage, three biological replicates were combined for
further DEG analysis.

RESULTS

Phenotypic Evaluation of Peach
Gummosis Disease and Its Heritability
The average gummosis disease value score from the 2-year dataset
displayed continuous normal distribution ranging from 0 to 9.
The average disease score value for each accession was highly
consistent across the period of 2 years (r2 = 0.726). The estimated
BLUP value also had a normal distribution (Figure 1). The
results demonstrated the existence of a group of accessions highly
resistant to gummosis disease. In 92 (47.6%) accessions, the
severity of the disease increased over time from 2018 to 2019.
In nine accessions, only one to two lesions were found on the
entire trunk and branches with a gummosis disease score value
of 1, indicating high resistance. Two highly resistant accessions

1www.rosaceae.org
2http://www.rosaceae.org/species/prunus_persica/genome_v2.0
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FIGURE 1 | The density distribution of peach gummosis in 195 peach accessions. Disease scale of 0–9 was used, where 0 and 1 represent highly resistant and 9,
highly susceptible accessions. The red density distribution is the phenotypic data obtained from 2018; green is the density distribution of the phenotypic data
obtained from 2019, and blue represents the density distribution of the best linear unbiased predictions (BLUPs) expressed as estimated breeding values.

“Nan Shan Tian Tao” and “Sunfre” were grown and validated
in two field locations. In 2019, 52 accessions had a gummosis
disease score under or equal to 3. A total of 134 accessions had
a score greater than 3. Of these 31 accessions, including the well-
known traditional landraces from several geographic locations,
especially north China (“Shenzhou Bai Tao,” “Feicheng Hong Li
6,” “Feicheng Bai Li 10,” and “Taiyuan Shui Mi”) had very severe
disease symptoms ranging from 7 to 9.

Among the different peach groups, no significant correlation
was observed between gummosis disease and the hairy fruit
skin (r2 = 0.0004), fruit flesh color (r2 = 0.0004), fruit shape
(r2 = 0.002), geographic origin and domestication history (r2

= 0.0006), and blossoming date (r2 = 0.001). However, the
disease severity score in different peach groups separated by
geographic origin and domestication history was significantly
different. The mean disease severity score of landraces from
South China was lower than that of improved accessions from
South China and landraces from North China. The mean score in
the nectarine group was relatively higher than that in the peach
group (Supplementary Figure 2). The broad-sense heritability
estimated by multiple years phenotypic data was approximately
70% (Table 1). The narrow-sense heritability estimated by whole
genome DNA markers was 73% (Figure 2).

Single Nucleotide Polymorphism
Discovery
A total of 1.35 TB of sequence data was generated for the
195 peach genotypes, including 864.45 million reads. The
sequencing coverage of at least 1 X was 79.46%. The Q30
ratio, Q20 ratio, and GC content were 85.19, 93.78, and
37.51%, respectively. High-quality reads were aligned with the
Prunus persica Whole Genome Assembly v2.0 & Annotation

TABLE 1 | Variance components, standard deviations of the variance
components, and broad-sense heritability of peach gummosis disease evaluated
over 2 years in 195 peach accessions.

Accessions Years Residuals Total

Standard deviation 1.72589 0.5221 0.99049 –

Variance 2.9787 0.2726 0.9811 4.2324

Number of observations 195 3 – 1,389

Heritability 0.70

v2.1.3 A total of 9,486,722 SNPs were initially obtained for
these genotypes from the SAMTOOLs utility calling (Li et al.,
2009). After removing those SNPs with a MAF lower than
0.05 and the missing value higher than 0.07, the remaining
set of 145,608 high-quality SNPs was used for further analysis.
Among the 145,608 SNPs, 145,456 SNPs (99%) covered all
eight chromosomes. The largest number of high-quality SNPs
was found on Chromosome 1 (30,358 SNPs), followed by
Chromosome 6 (20,173 SNPs); whereas, the smallest number
of SNPs was found on Chromosome 8 (13,718 SNPs). The
distribution of SNPs on each chromosome was largely consistent
with the physical length of the corresponding chromosome.

Population Structure, Genetic Diversity,
and Linkage Disequilibrium
The observed heterozygosity per individual ranged from 0.068 to
0.332 with a mean of 0.19 (Supplementary Table 2). The highest
value was observed for accession “Hu Zhen 43,” while the lowest
value was observed for the traditional Prunus. Ferganensis, “Mo
Yu 8.” The average value of observed heterozygosity of all SNPs
was 0.25. The highest value was observed on Chromosome 4

3https://www.rosaceae.org/species/prunus_persica/genome_v2.0.a1
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FIGURE 2 | Narrow-sense heritability of the resistance of peach gummosis disease calculated by whole genome SNP markers. “Genetic” and “Residual” means
estimated genetic and residual variance in the mixed linear model. The optimum compression information indicates the optimal algorithm to calculate the group
kinship matrix, the optimal clustering algorithm, the optimal number of groups in the compress mixed linear model. “-2 LL” is the abbreviation of -2 multiply likelihood
value, which means the level of model fitting.

(0.23), and the lowest value was observed on Chromosome 5
(0.15) (Supplementary Table 4 and Supplementary Figure 3).

The geographical origin of the selected accessions could
be located at three different continents and 19 provinces in
China (Figure 3A). A phylogenetic dendrogram using the
neighbor-joining method clustered 195 accessions into three
major groups, mainly according to fruit shape, hairy vs. glabrous
fruit skin, pedigree, geographical origin, and domestication
history (Figure 3B, Supplementary Table 1, and Supplementary
Figure 4). The first major group was composed of 79 accessions
and further divided into three subgroups. The first subgroup G1-
1 was marked as the flat peach group, with 10/12 accessions
being flat peaches. The accessions of the other two subgroups
were closely related to the founder “Shanghai Shui Mi” used in
peach breeding programs of China and Japan. One of the most
famous cultivars, “Yu Lu,” clustered with the primitive cultivars
originating from Shanghai, and most of the Japanese cultivars
clustered with “Bai Hua Shui Mi.” The second major group had 30
cultivars and was marked as the traditional landrace group, which
included those cultivars carrying special traits, such as red flesh,
extremely firm texture, and extremely low chilling requirement.
The third major group was composed of 86 accessions and was
further divided into two subgroups. The first subgroup G3-
1 included 18 peaches and 38 nectarines. In this study, 84%
(38/45) of nectarines were clustered in this group. It is noticeable
that most of the accessions in this subgroup were characterized
as early or very early blossoming. The second subgroup, G3-
2, included 27 peaches and three nectarines, and was mainly
composed of the accessions with early maturity time. Based on
the phylogenetic dendrogram, first approximation of population
structure was obtained by using PCA for the complete set of
SNPs (Figure 3C). The first two principal components explained
43.46% of the total genotypic diversity. The stratification pattern

was highly consistent with NJ hierarchical clustering. All 145,456
SNP markers were employed to estimate the LD extent across the
three major groups. The average value of r2 was 0.269 in G1, 0.133
in G2, and 0.218 in G3. The LD value decreased with distance
between the markers in all groups. The level of LD value in G1 was
higher than that in G2 and G3. The average value of r2 dropped
below 0.2 at around 30 kb in G2 and 150 kb in G3 (Figure 3D).

Based on the population structure, the genetic variation
among three major groups was estimated. The result showed
that G2, which was a landrace group, had the highest values of
Fis, π, and haplotype diversity, while the observed heterogosity
value of G2 seemed significantly lower than that of the
other groups. The statistical analysis of haplotypes showed
that the number of haplotypes and unique haplotypes of G3
was higher than that of G1 and G2 (Table 2). The AMOVA
revealed that 12.86% of the total variation was found among
groups, while the rest of the variation (87.14%) was within
groups (Table 3). The pairwise genetic differentiation (Fst) was
highest (0.0909) between G1 and G2 and the lowest (0.0494)
between G2 and G3.

Genome-Wide Association Study for
Gummosis Disease
Three statistical models were used for GWAS to detect the
associated genomic regions with gummosis disease using 145,456
SNP markers and the estimated BLUP values. No significant
locus was identified by the MLM model. Five SNPs on five
chromosomes were identified as significantly associated with
peach gummosis disease (Figure 4, Table 4, and Supplementary
Figure 5). Three SNPs were detected by FarmCPU and three
by BLINK. Among the five SNPs, rs285957 at about 28
Mb on Chromosome 6 was simultaneously detected both by
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FIGURE 3 | (A) The geographic location of the origins of each accession in China and worldwide. (B) Phylogenetic dendrogram constructed by the neighbor-joining
method. The accession name is represented by the accession code, which is coincident with Supplementary Table 1. (C) Principal component analysis (PCA) of
accessions, with the proportion of variance explained by each PC indicated in parenthesis. Dots of different color indicate different cluster groups. (D) Linkage
disequilibrium measures (r2) against physical distance between pairs of SNP markers for the three major groups.

TABLE 2 | The genetic diversity estimated of three major group.

Group ID No. of individual Obs het Fis π No. of haplotype No. of unique haplotype Haplotype diversity

G1 79 0.3653 0 0.2852 13,175,146 161,332 0.2852

G2 30 0.2418 0.2544 0.3256 5,003,220 161,607 0.3255

G3 86 0.3533 0 0.3024 14,342,564 166,600 0.3024

Obs Het represented observed heterozygosity. Fis indicated inbreeding coefficient. π indicated nucleotide diversity.

FarmCPU and BLINK methods with the allelic effect of 0.64.
The phenotypic variation explained by a single SNP varied from
6.28 to 19.85%, and from 6.98 to 17.94% based on FarmCPU
and BLINK, respectively. The variance explained by the SNP
rs285975 was different under the two models. There were
significant phenotypic differences caused by four SNPs in the

different genotypes. The BLUP value of allele “T” at rs22118_C/T,
rs142398_C/T, and rs285957_T/G was significantly higher than
that of allele “C” and “G,” especially at rs22118. The value of
allele “A” at rs191998 was higher than for “T” (Figure 5). It is
noticeable that the nine highly resistant accessions carried the
same genotype “GG” at rs285957.
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TABLE 3 | Analysis of molecular variance of the genetic differentiation among and
within three major groups of 195 accessions.

Source of
variation

d.f. Sum of
squares

Variance
components

Percentage of
variation

P-value

Among groups 2 479,575 1,885 12.86 0.001

Within groups 387 4,944,323 12,776 87.14 0.001

Total 389 5,423,898 14,661

Analysis of Differentially Expressed
Genes Related to Gummosis Disease at
Different Pathogen Inoculation Stages
The fifteen transcriptome sequencing profiles (5 sampling times
× 3 replications) generated a total of 124.91 Gb high-quality
data with Phred Quality score or Q30 of 93.43%. The total
clean reads for each sample ranged from 43.19 to 70.43 million
(Supplementary Table 4). The proportion of total mapped
reads to the peach reference genome v2.0 accounted for 96.02–
97.43%. Of these, the properly mapped reads accounted only
88.31–92.98%. The highest number of DEGs was observed

during the first 48 h after inoculation, including the up- and
downregulation of 6,451 and 6,592 genes, respectively. The
lowest number of DEGs was observed in 72 vs. 84 h after
inoculation, including the up- and downregulation of 2,924 and
2,212 genes, respectively.

The functional annotation of DEGs discovered was
performed using gene ontology (GO) functional classification
and enrichment analyses. The results showed that three
biological process (BP) and six molecular function (MF)
terms enriched within 48 h after inoculation, including a
response to biotic stimulus (GO:0009607). We also identified
a considerable number of DEGs from the functional groups
of carbohydrate metabolic process (GO:0005975) in “48
vs. 60 h” and “60 vs. 72 h” comparison (Supplementary
Table 5). KEGG Pathway enrichment analysis of the
DEGs obtained from pairwise comparisons showed that
most DEGs were involved in two pathways “Cysteine and
methionine metabolism” and “Ribosome” among 0 vs.
48 h. The other three pathways “Flavonoid biosynthesis,”
“plant-pathogen interaction,” and “plant hormone signal
transduction,” which might be highly correlated with

FIGURE 4 | Distribution of SNPs on the eight chromosomes. Tracks 1, 2, and 3 represent results from three statistical analysis models used for genome-wide
association study (GWAS) of peach gummosis disease. Track 4 represents filtered SNPs on the eight peach chromosomes. The red dotted-line indicates the
significance threshold (-log10 P = 6). The red asterisks represent the significant SNP.
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TABLE 4 | A summary of significant SNPs consistently associated with gummosis disease in peach accessions.

Model SNP ID Chromosome Position P-value MAF FDR Allelic effect Variance explained

FarmCPU rs22118 1 13,801,843 9.95E-10 0.061538 7.24E-05 1.113248981 19.85

FarmCPU rs191998 4 12,480,256 5.46E-08 0.092308 0.002648813 -0.732419028 19.03

FarmCPU rs285957 6 28,139,324 9.15E-11 0.294872 1.33E-05 0.640842547 6.28

BLINK rs96598 2 13,388,877 7.73E-09 0.464103 0.000375161 NA 6.98

BLINK rs142398 3 9,810,975 3.20E-09 0.089744 0.000233144 NA 17.94

BLINK rs285957 6 28,139,324 8.27E-11 0.294872 1.20E-05 NA 17.41

FDR in the head row refers to “FDR. Adjusted P-values.”

FIGURE 5 | The boxplots show the comparison of the phenotypic performance illustrated by the BLUP value for different genotypes of the five significant SNPs. For
each graph, X axis indicates the different genotypes of SNP rs22118 (A), rs96598 (B), rs142398 (C), rs191998 (D), and rs285957 (E). Y axis indicates the BLUP
value.

pathogen infection, were also significantly enriched
(Supplementary Table 6).

Linkage Disequilibrium Block in the
Gummosis Disease-Associated Genomic
Regions and Predicted Candidate Genes
The linkage disequilibrium (LD) pattern around each identified
significant gummosis disease associated SNPs was evaluated
by calculating the squared allele-frequency correlation between
each pair of these SNPs. The candidate genes for disease
resistance/susceptibility were then searched in the genomic
regions flanking the associated SNPs. LD analysis revealed a high

pairwise correlation among SNPs within two candidate genes
(PRUPE.2G084800 and PRUPE.6G315800) on Chromosomes
2 and 6, respectively. The putative gene on Chromosome 2
harboring the significant SNP rs96598 is PRUPE.2G084800
encoding galactose oxidase. The other gene located at the 2 kb
upstream region in the same chromosome is a transcriptional
activator PRUPE.2G084700. It has shown a higher expression
level than PRUPE.2G084800 (Supplementary Figure 6).
Upon pathogen infection, these two genes showed significant
upregulation from 0 to 72 h and then were downregulated.
The significant SNP rs285957 located on Chromosome 6 was
found in PRUPE.6G315800 encoding a Dna J domain, which
plays an important role in plant biotic stress in Arabidopsis
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FIGURE 6 | Significant associations and candidate genes on Chromosome 6, underlying peach gummosis disease. (A) Manhattan plots showing the significance of
SNP rs285957 at the chromosome-wide level. The vertical blue lines indicate the position of the significant locus identified by three different models. The annotated
candidate genes and the gene structure are represented below the plot. (B) Pairwise correlation of LD (r2) between significant SNPs along the highlighted genomic
region. (C) Relative expression of Prupe.6G315800 obtained by comparative RNA-Seq profile during the inoculation of “Huyou018.”

(Wang et al., 2014). The transcript of PRUPE.6G315800
decreased after pathogen infection and then increased from
60 to 84 h (Figure 6). The third associated SNP rs142398
located on Chromosome 3 was found within the coding
region of a leucine-rich repeat receptor-like protein kinase
(LRR-RLK) PRUPE.3G116000. Pathogen infection dramatically
downregulated the expression level of PRUPE.3G116000
from 0 to 48 h. The log2Fold Change of the transcript level
of PRUPE.3G116000 was reduced 3.96 times at 48 h after
inoculation compared to 0 h (Supplementary Figure 7).
The associated SNP rs191998 on Chromosome 4 was located
within the putative gene PRUPE.4G201700, which showed
an expression pattern similar to PRUPE.3G116000. The
functional annotation of PRUPE.4G201700 identified it as
a histone H2A.1-like protein (Supplementary Figure 8).
Additionally, two UDP-glucosyl transferase genes (UGTs,
PRUPE.1G169100, and PRUPE.1G169200) were found to
be located at the 20 and 31 kb region downstream of the
significant SNP rs22118 on Chromosome 1. However, the
pairwise correlation was extremely low within the 25 kb region
around the significant SNP (Supplementary Figure 9). The
expression of the two genes significantly increased on pathogen
inoculation until 72 h, which were similar to PRUPE.2G084700
and PRUPE.2G084800.

DISCUSSION

Gummosis disease is one of the most destructive diseases
causing severe loss to peach industry worldwide. At present,
no orchard management or fungicide effectively controls the
disease in the peach field (Beckman et al., 2011). The absence
of resistance cultivars to be used as parents and the poorly
understood genetic mechanisms of gummosis disease are the
major challenges for breeding the resistant cultivars. In addition,
the best solution for breeding a resistant cultivar should be
coupled with high fruit quality and not just the root stock, as, even
if the rootstock is resistant, the cultivars grafted on the rootstock
remain susceptible. In the present study, we investigated large-
scale germplasm resources, including improved cultivars and
traditional landraces, to identify resistant cultivars for parental
selection for future breeding programs. Integrating multiple
approaches, including multi-model GWAS and RNA-seq, five
novel genetic loci associated with gummosis disease were
identified. Four genetic loci with SNPs located on Chromosomes
1, 3, 6, and 4 were found to have a significant impact (P-value
< Bonferroni threshold) on the disease severity. The candidate
genes harboring the significant SNPs (rs142398, rs285957, and
rs191998) were mainly identified and validated by comparative
RNA-seq. The functional annotation showed that these genes
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were highly related to disease response, which further indicates
the reliability of our results.

Phenotypic Variation and the Selection of
Resistant Sources
Gummosis is a complex disease as it is reported to be affected
by multiple external factors, such as age of the tree, pruning
methods, orchard management, temperature humidity, as well
as the pathogenic type, plant regulators, and the cultivar itself.
By comparing the disease severity of plants in the years of
2018 and 2019, we confirmed the results of Mancero-Castillo
that the severity of gumming increases with the age of the
tree (Mancero-Castillo et al., 2018). Then, to explain the
proportion of phenotypic variance determined by genetic factors,
we firstly evaluated the heritability of gummosis disease. The
high heritability estimated for peach gummosis disease based
on multi-years phenotypic data and genome-wide SNP data is
strong evidence that the phenotypic variation of the disease
is largely due to genetic effect. This, moreover, indicated the
possibility of breeding for resistant cultivar to gummosis disease
by introducing resistant parents in the breeding program. Also,
because of the high heritability and the significant correlation
reported among gum exudates, disease severity, and tissue
necrosis (Mancero-Castillo et al., 2018), we mainly evaluated
the severity of gummosis disease according to the area of the
wound lesion on trunks and branches in the same field, but not
according to the pathogen inoculation. Our phenotypic results
of 195 germplasm sources showed that most accessions were
moderately or highly susceptible to gummosis. Nine Prunus
persica accessions were highly resistant, of which two accessions
showed consistency in resistance across different growing
conditions. This result is congruent with the previous reports,
where the majority of the peach genotypes were susceptible and
no sources of complete resistance were identified even though the
available peach genetic resources show the presence of resistant
genotypes upon investigation in the field after pathogen infection
(Beckman and Reilly, 2005; Beckman et al., 2011). One of the
resistant cultivars, “Nan Shan Tian Tao,” is a landrace originating
from Shenzhen, southern China, a place with high humidity
and temperature (the annual average temperature and humidity
ranges up to 25 and 68.5%). This cultivar also exhibited high
gummosis resistance in Jiaxing, Zhejiang. The resistance of
“Sunfre” was validated by growing in two different locations with
“3 plus 6” replications in total. Our previous research on 8-year-
old trees of “Sunfre,” grown in different experimental fields, also
exhibited high resistance to gummosis disease with strong tree
vigor and smooth clean trunk (Supplementary Figure 10). The
consistent and stable resistance of these two cultivars made them
more reliable selections as breeding materials. Although a genetic
source for resistance to peach fungal gummosis has been reported
from the P. dulcis cultivar “Tardy Nonpareil,” which is an almond
cultivar (Mancero-Castillo et al., 2018), but it may be simpler and
more efficient to choose some famous landraces of Prunus persica
for intraspecific cross so as to introduce specific alleles, increasing
the genetic diversity, and selecting resistant progenies. Accessions
with low disease severity will not only be the ideal materials

for breeding superior resistant cultivars but also for identifying
disease resistance and related genes in future genetic studies.

Several research groups have reported gummosis disease
severity in various peach cultivars. However, there are less
comparative studies in different peach groups. Zhao et al. (1996)
reported that the severity of the disease was lowest in nectarine
groups and highest in the flat peach group. Although we did
not identify significant differences on gummosis severity in the
groups based on hairy fruit skin, blossom time, and fruit flesh
color, a major difference was observed in the groups divided
by geographic origin. For example the lowest gummosis disease
score was observed in the South China landrace group, and the
highest gummosis disease score was observed in the North China
landrace group. This result was further confirmed by comparing
the disease severity among different subgroups clustered using
the neighbor-joining method with genome-wide SNP markers
(Supplementary Figure 2). Subgroup G1-2, which contains
most of the primitive landraces and offsprings originating from
Shanghai, was more resistant than the other subgroups. Shanghai
is in Southeast China and has high temperatures and humidity
during summer. The monthly average temperature and humidity
from June to September range from 23.3 to 28.9◦C, and 8 to
85%, respectively. It is known as the origin of flavorful honey
peach and elite commercial cultivars worldwide. The result that
peach genotypes originating from the Shanghai region showed
high resistance to gummosis disease, therefore, indicates toward a
selective adaption to climate during acclimation or evolutionary
history. The pedigree of modern cultivars is another reason for
resistant gene inheritance. For instance, the symptoms in “Early
Red 2,” an offspring of “Sunfre” were mild compared to “Huyou”
nectarines, derived from “Mayfire,” which had severe disease
symptoms (Supplementary Table 7).

Population Structure and Genetic
Diversity
Population structure obtained from Neighbor-Joining algorithm
and PCA was highly consistent and has clustered the accessions
according to the domestication history, pedigree, geographic
origin, fruit shape, fruit hairy skin, and blossome time. The
traditional landraces were clearly separated from the improved
accessions, which, as per the previous reports, were obtained by
SSR markers and by the GBS-based SNP array (Li et al., 2013;
Micheletti et al., 2015; Cao et al., 2019). Because the accessions
originating from Shanghai or developed from “Shanghai Shui
Mi” are derived from the same parents, they were grouped
together in G1. It is remarkable that the two traditional honey
peach (“Yu Lu” and “Bai Hua Shui Mi”), which might have
been introduced from Shanghai showed close clustering with
the primitive landraces from Shanghai. Henceforth, they are
not only the ancestors for the elite cultivars in modern peach
breeding programs, but also the most popular cultivars in the
fresh-eating market due to the favorable aroma, juicy, melting
texture, and high sweetness.

The genetic diversity indices provided useful information on
genetic diversity of each population. The high level of genetic
diversity within groups and a low level of diversity among groups
may be due to gene flow and artificial selection (Eltaher et al.,
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2018). The low observed heterozygosity and the highest value
of Fis, π, and haplotype diversity among landraces of G2 can
be strong indications that there are no gene flow from landrace
in the current breeding program. However, the higher observed
heterozygosity and lower genetic diversity among accessions
of G1 and G3 may be due to artificial selection of favorable
morphological traits and narrow genetic bottleneck because
most accessions in these two groups were improved cultivars
with desirable traits, such as glabous fruit skin, strong aroma,
sweetness, and low acidity. Some accessions have been frequently
used as crossing materials (Li et al., 2019). Considering the above
results, the understanding of genetic and phenotypic diversity of
G2 will be very helpful for introducing new alleles and enlarging
the genetic diversity for creative cultivar selection in the future.

Genome-Wide Association Study Model
Selection and Quantitative Trait Locus
Identification
Optimal statistical models are needed to accurately evaluate the
associations between markers and phenotypes. On comparing
the results of three statistical models, no significant SNPs were
detected by MLM, which is known as a single locus marker
testing model for association study. Many studies have shown
that multiple loci markers testing models, such as FarmCPU
and BLINK, are more powerful for detection of real association
signals and have been integrated into GAPIT3 R packages (Wang
and Zhang, 2021). These utilize different testing models to
select pseudo QTNs as fixed effect in the final estimated model.
FarmCPU uses a set of markers associated with a causal gene as
a cofactor instead of kinship to avoid overfitting and eliminates
confusion between kinship and testing markers iteratively (Liu
et al., 2016). The BLINK eliminates the requirement of FarmCPU,
which demands that the quantitative trait nucleotides (QTNs)
should be evenly distributed in the genome (Huang et al., 2019).
The simulation study has shown that the BLINK model is
more powerful than the FarmCPU (Wang and Zhang, 2021).
In this study, we compared the results from these two multiple
loci models (FarmCPU and BLINK) and selected all significant
markers from both models as candidate loci for gummosis
disease resistance.

Remarkably, at present, there is only one publication on QTL
mapping of peach gummosis disease, which identified a locus
Botd8 on chimeric linkage groups 6–8 from “UF Sharp” × (FG
× TNP1260), with the effect on gumming rates ranging from an
average of 0.5 ± 0.2 for resistant to 3.4 ± 0.2 for the susceptible
trees (Mancero-Castillo et al., 2018). Here, we identified a total
of five quantitative resistance loci affecting gummosis disease by
multiple GWAS resolution. All five significant SNPs-harboring
genomic loci distributed on five chromosomes (1, 2, 3, 4, and 6)
are novel and provided high variance explanation. The large allele
effect on phenotypic value is a good indication for detecting the
favorable resistance alleles in the current population as well as
for future populations. The higher number of QTLs identified by
GWAS might be due to higher genetic diversity of our germplasm
since most accessions were selected based on the previous study
of 658 oriental and occidental cultivars (Li et al., 2013). In
addition, comparing with previous linkage mapping study using

bi-parental populations, GWAS gave high mapping resolution to
narrow down the chromosomal region of candidate QTLs and
predict causal genes (Zhang et al., 2016). However, the SNPs
found in our study have not yet been validated in multiple
bi-parental populations or natural populations, especially elite
parents. This means that there is need for validating the SNPs
either using KASP or other convenient and effective tool in
training populations to identify favorable alleles that can be
selected in future marker-assisted parent selection (MAPS) or
marker-assisted seedling selection (MASS) breeding programs.

Identification of Gummosis Disease
Resistance Loci and Candidate Genes
Several studies have reported that peach has large LD extent,
spanning from around 25–50 kb due to its self-compatibility with
limited genetic diversity to be used in peach breeding (Li et al.,
2013; Micheletti et al., 2015; Cao et al., 2016). In our study, the
LD extent seems to be highly dependent on different groups as it
ranged from 30 kb (in G2) to 150 kb in G3. This study is similar
to the previous reports (Li et al., 2013; Micheletti et al., 2015;
Thurow et al., 2020). However, the LD extent detected for G1 was
relatively larger than for G2 and G3. This may be because most
accessions in this group have originated from Shanghai or derived
from “Shanghai ShuiMi.” With the above view in mind, candidate
genes within a conservative window size of approximately 100
kb were searched, and their LD level was analyzed. The SNP
rs285927 located in a Dna J domain was identified using both
FarmCPU and BLINK models. This is a protein, also known as
heat-shock protein 40, which belongs to the family of conserved
co-chaperones for HSP70s. Plant J-domain proteins have been
shown to have diverse functions in stress responses. For example,
silencing a soybean type-III nuclear body-localized DnaJ protein
GmHSP40.1 enhanced the susceptibility of soybean plants to
soybean mosaic virus (Liu and Whitham, 2013). Similarly,
the overexpression of tomato chloroplast-targeted DnaJ protein
(LeCDJ2) enhanced the tolerance to drought stress and resistance
to Pseudomonas solanacearum in transgenic tobacco (Wang
et al., 2014). However, virulence effector HopI 1, a chloroplast-
targeted class-III J protein from Pseudomonas syringae, has been
shown to suppress both salicylic acid accumulation and host
defense responses in Arabidopsis (Jelenska et al., 2007). The
comparative transcriptome analysis in this study identified 39
differentially expressed genes that were annotated as Dna J
domains. Of these, PRUPE.6G315800was co-localized at the same
region, where significant SNP rs285957 was detected by GWAS.
Moreover, its transcript level also decreased significantly after
pathogen inoculation. To further ascertain the function of the
DnaJ domain gene family in peach, genome-wide identification
and characterization combined with transcript analysis and
subcellular localization are necessary. Additionally, another
putative gene, PRUPE.6G315700, encoding the calmodulin-
binding-like protein (CBP), which is related to disease resistance
against Pseudomonas syringae in Arabidopsis and tomato, was
found at the 7 kb upsteam of the significant SNP locus (rs285957)
(Chiasson et al., 2005). In peach, it has been reported that
exogenous CaCl2 treatment can increase the content of Ca2+

in shoots, prevent the degradation of cell wall polysaccharides,
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maintain the stability and integrity of cell wall, and, finally, reduce
the severity of gummosis disease (Li M.J. et al., 2015).

The candidate gene PRUPE.3G116000 harboring the
significant SNP rs142398 on Chromosome 3 is the LRR-RLK
gene, which belongs to a large gene family of receptor-
like protein kinases and actively participates in regulating
growth, development, signal transduction, immunity, and
stress responses in plants (Liu et al., 2017; Sun et al., 2017).
By performing GBS-based bi-parental QTL mapping and
GWAS, clusters of candidate nucleotide-binding site-leucine-
rich repeat (NBS-LRR) and receptor-like kinase (RLK) were
predicted within the QTL region, which was highly associated
with P. capsici root rot resistance in pepper (Siddique et al.,
2019). In peach, 258 LRR-RLKs genes have been found (Sun
et al., 2017). Here, we identified a total of 11 SNPs within
PRUPE.3G116000 using genome sequencing data. However,
the correlation between the significant SNP (rs142398) and
the other SNPs in the LD block around the gummosis disease-
associated genomic region was lower. For this reason, the
targeted region was traced in the peach genome v2 in GDR.4 As
a result, ten SNPs on the IRSC Peach 9K and 18 K SNP array
located in the coding region of PRUPE.3G116000 were found.
It is worth noting that the haplotype block constructed with
the peach IRSC 9 K SNP array by Stijn (Vanderzande et al.,
2019) was not found in this region. This indicates that it may
not be a conserved gene but a highly diverse region resulting
from recombination, selection, or domestication. Therefore,
use of multi bi-parental populations or BSA is required to
further analyze the association of PRUPE.3G116000 with peach
gummosis disease.

The UDP-glycosyl transferases are a multigenic and highly
divergent superfamily of enzymes that are widely found in all
living organisms. In plants, many UGTs play important roles
in plant defense to biotic and abiotic stresses by glycosylating
acceptor molecules, such as anthocyanidins, flavanols, flavonoids,
saponins, sterols, terpenoids, phenylpropanoids, and plant
hormones, or by detoxifying and deactivating xenobiotics as a
pivotal role in plant-pathogen interactions. In wheat and barley,
several UGT genes have been reported to enhance their resistance
against Fusariumhead blight by glycosylating the deoxynivalenol
(DON), produced by Fusarium fungus to the less toxic D3G,
such as the barley HvUGT13248 and HvUGT-10W1 (Xing et al.,
2016) and the wheat TaUGT3 (Xing et al., 2016) and TaUGT6
(He et al., 2020). In peach, 168 UGT genes have been identified
and clustered into 16 groups based on the phylogenetic analysis
(Wu et al., 2017). Using the RNA-seq technique, six UGTs
(ppa005290 mg, ppa023599 mg, ppa012496 mg, ppa005161 mg,
ppa025073 mg, and ppa016033 mg), which are mainly involved
in the biosynthesis of anthocyanidins and other flavonoids,
has been shown to be upregulated by pathogen infection.
The tissue around the wounded area changed from green
to red and accumulated anthocyanin during disease infection
(Gao et al., 2016). It is worth noting that PRUPE.1G169100
is identical to the ppa005161 identified in peach genome v1
by Gao et al. (2016). In our study, two UGTs located around

4https://www.rosaceae.org/

the significant SNP rs22118 were remarkably upregulated by
pathogen infection. They have been previously reported to
belong to the same cluster and as homologous with UGT75D1,
UGT84A1, UGT74F2, and UGT74F2, playing a critical role in
Pseudomonas syringae resistance and involved in salicylic acid
glycosylation in Arabidopsis (Boachon et al., 2013; Thompson
et al., 2016). UGT glycosylation is a critical step in forming
glycosylated linalool, which has been reported to have a defensive
function in several plant species such as against rice bacterial
blight induced by Xanthomonas Oryzae PV. Oryzae (Xoo)
(Antony et al., 2010), citrus canker induced by Xanthomonas citri
subsp. citri (Xcc) (Takehiko et al., 2017) and antibacterial and
antifungal activities to Xcc and Penicillium italicum in Ponkan
mandarin (Shiduku et al., 2013). In peach, PpUGT85A2 catalyzes
the glycosylation of linalool, and the overexpression of this gene
increases the production of linalyl-β-d-glucoside (Wu et al.,
2019). Here, we did not evaluate the content of anthocyanin or
glycosylated linalool in the shoots of different peach cultivars.
Although the regulation of anthocyanin biosynthesis and terpene
synthase genes by UGTs was not investigated, this research
provides a new insight into resistance to peach gummosis disease
to understand its defense system.

CONCLUSION

The present study is the first to identify multiple genetic
factors involved in peach gummosis using GWAS by using
a substantial number of peach germplasm accessions. Two
highly resistant accessions were detected in the germplasm,
which will be useful plant material for resistant cultivar
selection in peach breeding programs. Strong evidence was
provided on its high heritability both by genotypic and
phenotypic data for peach gummosis disease. This indicates
that the phenotypic variation of this complex trait is largely
determined by genetic control. By integrating the GWAS
and RNA-seq analysis, four candidate genes harboring the
significant SNPs on chromosomes 2, 3, 4, and 6 and showing
significant differential expression were identified. This study
enhances our knowledge of the genetic basis of resistance
to peach gummosis disease. The associated markers and
resistant plant sources can assist a precise breeding to develop
breeders in developing higher resistant cultivars to the disease
at a faster rate.
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Influence of Elevated Temperatures
on Resistance Against Phoma Stem
Canker in Oilseed Rape
Katherine Noel1,2* , Aiming Qi1†, Lakshmi Harika Gajula1, Craig Padley2, Steffen Rietz3,
Yong-Ju Huang1†, Bruce D. L. Fitt1† and Henrik U. Stotz1†

1 Centre for Agriculture, Food and Environmental Management, School of Life and Medical Sciences, University
of Hertfordshire, Hatfield, United Kingdom, 2 LS Plant Breeding Ltd., Cambridge, United Kingdom, 3 NPZ Innovation GmbH,
Holtsee, Germany

Cultivar resistance is an important tool in controlling pathogen-related diseases in
agricultural crops. As temperatures increase due to global warming, temperature-
resilient disease resistance will play an important role in crop protection. However, the
mechanisms behind the temperature-sensitivity of the disease resistance response are
poorly understood in crop species and little is known about the effect of elevated
temperatures on quantitative disease resistance. Here, we investigated the effect
of temperature increase on the quantitative resistance of Brassica napus against
Leptosphaeria maculans. Field experiments and controlled environment inoculation
assays were done to determine the influence of temperature on R gene-mediated and
quantitative resistance against L. maculans; of specific interest was the impact of high
summer temperatures on the severity of phoma stem canker. Field experiments were
run for three consecutive growing seasons at various sites in England and France
using twelve winter oilseed rape breeding lines or cultivars with or without R genes
and/or quantitative resistance. Stem inoculation assays were done under controlled
environment conditions with four cultivars/breeding lines, using avirulent and virulent
L. maculans isolates, to determine if an increase in ambient temperature reduces the
efficacy of the resistance. High maximum June temperature was found to be related
to phoma stem canker severity. No temperature effect on stem canker severity was
found for the cultivar ES Astrid (with only quantitative resistance with no known R
genes). However, in the controlled environmental conditions, the cultivar ES Astrid had
significantly smaller amounts of necrotic tissue at 20◦C than at 25◦C. This suggests
that, under a sustained temperature of 25◦C, the efficacy of quantitative resistance is
reduced. Findings from this study show that temperature-resilient quantitative resistance
is currently available in some oilseed cultivars and that efficacy of quantitative resistance
is maintained at increased temperature but not when these elevated temperatures are
sustained for a long period.

Keywords: phoma stem canker, quantitative resistance, climate change, oilseed rape, temperature-sensitivity
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INTRODUCTION

The plant immune system consists of two branches: a
primary basal defense response known as the pathogen-
associated molecular pattern (PAMP)-triggered immunity (PTI),
and a specific effector-triggered immune (ETI) response. PTI
recognizes conserved molecules common to classes of microbes
while ETI recognizes and responds to effectors produced by
pathogens adapted to overcome PTI. Jones and Dangl (2006)
originally proposed a Zigzag model to explain the strength
and evolution of PTI and ETI; whereas PTI depends on the
perception of PAMPs by pattern recognition receptors (PRRs),
ETI involves effector recognition by nucleotide-binding leucine-
rich repeat receptors (NLRs). Since this model was proposed,
advances have been made in understanding plant immunity,
revealing its limitations (Pritchard and Birch, 2014). It has
recently become clear that PTI and ETI influence one another to
generate a comprehensive immune response (Yuan et al., 2021).
Further issues arose from the confusion over the classification
of resistance against apoplastic pathogens, such as Leptosphaeria
maculans, as PTI or ETI (Jones and Dangl, 2006; Thomma et al.,
2011; Stotz et al., 2014). The classification of effector-triggered
defense (ETD) as another form of resistance, in addition to ETI
and PTI, was first proposed by Stotz et al. (2014). ETD replaces
ETI when extracellular apoplastic pathogens are encountered.
Involving different receptors (ETI is triggered by intracellular
NLRs), ETD differs from ETI in several aspects. The ETD
response is delayed relative to ETI, which is often associated with
fast, hypersensitive host cell death. Furthermore, with ETD, the
pathogen is not killed and may resume growth following the onset
of host senescence, or if the host resistance response is otherwise
compromised (Stotz et al., 2014). All these plant immune and
defensive mechanisms are influenced by temperature changes
(Cheng et al., 2013).

Increased temperature has been linked to more severe phoma
stem canker in winter oilseed rape crops. Previous studies
have agreed that in seasons experiencing elevated temperatures
and increased rainfall, the efficacy of R genes is negatively
influenced, and the stem canker severity is greater (Huang et al.,
2006, 2018; Evans et al., 2008). Cotyledon assays showed clear
differences betweenR genes in their resilience to maintain efficacy
under elevated temperatures. Less is known about how these
R genes respond individually to temperature in crops. Some
work has been done in determining which months are most
significant in affecting phoma severity; Huang et al. (2018)
found phoma leaf spotting and stem canker severity to be
linked to October and June average temperatures, respectively.
This severity analysis did not explore the impact of maximum
monthly temperatures. There is some evidence that maximum
temperature may influence canker severity. A multiple linear
regression analysis on 40 winter oilseed rape field experimental
datasets by Evans et al. (2008) indicated that the mean maximum
daily temperature and total rainfall (between 15 July and 26
September) produced the best prediction of the start date of
the phoma leaf spotting epidemic, which is used to time the
spraying of fungicides in autumn in the United Kingdom for all
sites and growing seasons included. Maximum daily temperature
and rainfall are important in stage one of the model described

by Evans et al. (2008) relating to the date of leaf spotting in
autumn. This study relates to stages two and three of the model
(date of canker appearance in spring; severity of canker before
harvest); for these stages, only temperature and host resistance
are important. June is known to be a critical period in the
development of the phoma stem canker; the most severe stage
of the disease, the crown canker, occurs from May to July
(West et al., 2001).

Conclusions drawn from investigations into the response of
quantitative resistance at increased temperatures are somewhat
conflicting. Huang et al. (2009) found, by analyzing stem
cross-sections, the efficacy of quantitative resistance to be
reduced when a cultivar with good quantitative resistance was
exposed to an elevated temperature of 25◦C compared to 15◦C.
While more severe cankers were observed on the cultivar with
“little” quantitative resistance at 15◦C, no significant difference
between the two cultivars in stem canker severity at the higher
temperature was observed, suggesting that temperature modifies
the response of quantitative resistance to L. maculans. An
experiment by Hubbard and Peng (2018) subjected L. maculans-
inoculated Brassica napus cultivars with quantitative resistance to
a temperature regime designed to mimic a heatwave, increasing
to 32◦C daytime temperature for 7 h before decreasing to 18◦C
for 7 h overnight. No difference in disease severity was found
compared to plants grown at a moderate temperature regime
of 22◦C daytime/16◦C overnight; suggesting that quantitative
resistance can maintain efficacy at increased temperatures.
It remains poorly understood how temperature affects the
operation of quantitative resistance.

Here we aimed to determine how quantitative resistance and
different R genes impacted the severity of the phoma stem canker
of winter oilseed rape cultivars/breeding lines in field conditions,
specifically in relation to the June maximum temperature.
Second, we examined the effect of elevated temperature on the
quantitative resistance response in stems during the colonization
of stem tissues of the host B. napus by the pathogen L. maculans
to develop stem canker.

MATERIALS AND METHODS

Winter Oilseed Rape Field Experiments
A selection of B. napus breeding lines and cultivars with
“good” or “little” quantitative resistance and major resistance
(R) genes Rlm4, Rlm7, or LepR3 were used in the field and
controlled environment (CE) experiments. Field disease data and
weather data were then analyzed to investigate the relationships
between canker severity in different cultivars/breeding lines
and maximum monthly temperatures throughout the growing
seasons. The field experiments were run for three growing
seasons (2016/17, 2017/18, and 2018/19) in England and France.
There were two sites in 2016/17; Impington, Cambridgeshire,
United Kingdom (lat. 52.253824◦, long. 0.125801◦) (the previous
crop was wheat) and Châteauroux, France (lat. 46.5319◦, long.
1.3758◦) (the previous crop was wheat). There were two sites
in 2017/18; Wisbech, Cambridgeshire, United Kingdom (lat.
52.695707◦, long. 0.081937458) (the previous crop was pea) and
Châteauroux, France (lat. 46.5319◦, long. 1.3758◦). However, the
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crop failed to establish at Châteauroux due to severe flea beetle
damage. There were two sites in the United Kingdom in 2018/19:
Callow, Herefordshire (lat. 51.994688◦, long. −2.756194◦) (the
previous crop was wheat) and Wisbech, Cambridgeshire (lat.
52.619527◦, long. 0.16128927◦) (the previous crop was pea).

A total of 12 winter oilseed rape cultivars/breeding lines were
selected for field experiments (Table 1). The rationale for the
choice of genotypes was to include current cultivars/breeding
lines with “good” or “little” quantitative resistance and R genes
Rlm4, Rlm7, or LepR3. Current United Kingdom cultivars and
breeding lines were included in the study to determine if
temperature-resilient characteristics are present in commercially
available oilseed rape cultivars. Seven of the cultivars/breeding
lines have R genes with a “good” quantitative resistance
background; DK Exception (Rlm7), Breeding line A (Rlm7),
Adriana (Rlm4), Jet Neuf (Rlm4), Breeding line C (Rlm4),
Breeding line E (LepR3), and Breeding line F (LepR3). Three of
the cultivars/breeding lines have R genes and “little” quantitative
resistance backgrounds; Breeding line B (Rlm7), Breeding line
D (Rlm4), and Breeding line G (LepR3). Cultivar ES Astrid
contains no known R genes but has a quantitative resistance
background. Cultivar Incentive, which has no known R genes and
“little” quantitative resistance, was used as a susceptible control.
Breeding line C was not included in the first year as it was
selected to replace a cultivar that did not establish in the first
year of trials due to poor germination of the seed lot. The field
experiments were arranged in randomized block designs with
two or three replicates. Seeds were sown between late August
and early September, at a density of 45 seeds/m2 in France
and 55 seeds/m2 in the UK. Plots were 6 m2 for Châteauroux,
France (2016/17, 2017/18), Impington (2016/17), and Wisbech,
England (2017/18), and 8.6 m2 for Wisbech, England (2018/19)
and Callow, England (2018/19).

Frequency of Avirulent Alleles in
L. maculans Populations
To determine the frequencies in the field experiment areas of
virulent and avirulent alleles of L. maculans toward the R genes
Rlm4, Rlm7, and LepR3, cultivar Drakkar with no R genes and
no quantitative resistance was used for sampling L. maculans
populations. Leaves of Drakkar with phoma leaf spot lesions were
taken from Impington in autumn 2015 and Wisbech in autumn
2016 and 2017. L. maculans isolates from single pycnidia were
obtained as described by Huang et al. (2018). Eight avirulent
alleles of different effector genes in each L. maculans isolate
were identified by inoculating the isolate onto cotyledons of
a differential set of cultivars/lines carrying known Rlm genes
(Huang et al., 2018).

Phoma Stem Canker Severity
Assessment on Different Cultivars and
Breeding Lines
The severity of phoma stem canker was assessed in July, prior to
harvest, and 15 plants were randomly pulled from each plot. The
stems were cut at the base, immediately above the root collar and
the area of necrotic tissue caused by phoma stem canker in the
cross-section was scored using a scale from 0 to 6 (Pilet et al.,

TABLE 1 | Winter oilseed rape cultivars and breeding lines tested in field
experiments in 2016/17, 2017/18, and 2018/19 and a controlled environment
(CE) experiment.

R-gene resistance ‘Good’ quantitative
resistance

‘Little’ quantitative
resistance

Rlm7 Group 1 DK Exception1,
Breeding line A1

Group 2 Breeding line B1

Rlm4 Group 3 Adriana1, Jet
Neuf1,2, Breeding line C1*

Group 4 Breeding line D1,2

LepR3 Group 5 Breeding line E1,
Breeding line F1

Group 6 Breeding line G1

None Group 7 ES Astrid1,2 Group 8 Incentive1,
Breeding line H2

There were 12 cultivars/breeding lines in the field experiment and 4
cultivars/breeding lines in the CE experiment (one breeding line is different; hence
the 13 cultivars/breeding lines in the table).
Cultivars/breeding lines were categorized into eight groups, depending on their
combination of R-gene and/or quantitative resistance.
Numbers in superscript refer to experiments in which the cultivar/breeding
line was used; winter oilseed rape field experiments (1) and CE temperature-
sensitivity assay (2).
Breeding lines A, B, C, D, E, F, G, and H are from NPZ and Jet Neuf is an NPZ
cultivar. DK Exception is from DEKALB, Incentive is from DSV, Adriana is from
Limagrain and ES Astrid is from Euralis.
*Breeding line C was not included in the first year of field experiments.

1998; Delourme et al., 2008); scale 0 = no affected tissue; scale
1 = 1–5% area affected; scale 2 = 6–25% area affected; scale 3 = 26–
50% area affected; scale 4 = 51–75% area affected; scale 5 = 76–
100% area affected, plant alive, and 6 = 100% area affected, stem
broken or plant dead.

Weather Data at Field Sites
The monthly average maximum temperature and total rainfall
data were obtained for the five field site locations to assess
their effects on phoma stem canker severity. Weather data were
obtained from the NASA Langley Research Centre Atmospheric
Science Data Centre Surface Meteorological and Solar Energy
(SSE) web portal supported by the NASA LaRC POWER Project1.
The average maximum monthly temperature for six months
(from September to July) and maximum June temperature
were used for analysis to investigate the effect of increased
environmental temperatures.

Effects of Temperature on the Growth
Rate of Different L. maculans Isolates
The growth of L. maculans isolates in vitro was assessed at both
20◦C and 25◦C to ensure any differences in phenotype were not
caused by differences in pathogen growth rate. The growth rates
of L. maculans isolates v23.1.3 (Av1-4-5-6-7; avirulent against
Rlm4) and v23.11.9 (Av1-5-6-7; virulent against Rlm4) were
compared at 20 and 25◦C; both isolates were derived from a
single cross (Balesdent et al., 2001). Mycelial disk inoculum
was placed in the center of 9 cm diameter Petri dishes of V8
agar amended with penicillin (20 mg L−1 filter sterilized) and
streptomycin (40 mg L−1 filter sterilized). These were then stored
for 24 h in darkness at 20◦C before transfer to the CE chamber

1https://power.larc.nasa.gov/data-access-viewer/
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for further growth. Six replicate Petri dishes were prepared per
treatment. Photographs were taken daily over a 5-day period
using a NEX-5R camera (Sony) with a 40.4–49 mm lens. Photos
were taken from a fixed height and under controlled lighting
to reduce image distortion and give color consistency between
treatments. Image J software was used to trace the circumference
of the isolated colony in each image using the freehand tool.
This method was used to provide more accurate results than
measuring colony radius with a ruler as isolates of L. maculans
often grow with an irregular margin rather than a perfect circular
perimeter. The dark orange V8 agar provided a clear contrast
to the white mycelia allowing the areas of fungal growth to be
clearly identified.

Plant Growth and Stem Inoculation for
Controlled Environment Assay
The effect of temperature on the quantitative disease resistance
and the role of R genes during the second symptomless stage
of colonization was investigated by the inoculation of the stem
bases of B. napus young plants with L. maculans isolates.
Cultivars/breeding lines possessing four different combinations
of resistance genotypes were selected; susceptible background
with no R genes (Breeding line H); “good” quantitative
resistance background with no known R genes (ES Astrid);
susceptible background with Rlm4 (Breeding line D), and
“good” quantitative resistance background with Rlm4 (Jet Neuf)
(Table 1). Two isolates of L. maculans were used for inoculation;
one avirulent and the other virulent against Rlm4; v23.1.3
(AvrLm4), and v23.11.9 (avrLm4), respectively. Plants were
treated with the virulent L. maculans isolate to remove any
resistance response caused by major R gene interactions. Thus,
any differences in resistance response observed in these plants
were due to differences in the quantitative resistance background.
For each of the four treatments (inoculation with avirulent isolate
at 20◦C, inoculation with avirulent isolate at 25◦C, inoculation
with virulent isolate at 20◦C, and inoculation with virulent isolate
at 25◦C), 15 plants of each cultivar/breeding line were subdivided
into three sub-blocks of five, which were arranged randomly
between four trays each containing 15 plants (three sub-blocks).
Plants were grown in a 1:1 ratio of MiracleGro and John Innes
No 3 compost, in 6 cm × 6 cm wide and 8 cm deep pots, inside
CE cabinets at a constant temperature of 20◦C (12-h light/12-
h dark). Light intensity at plant height was measured to be
320 µmol/m2/s. Plants were divided into two groups 24 h prior
to inoculation; half were transferred to 25◦C, the rest remaining
at 20◦C. Plants were inoculated after 6-weeks of growth in the CE
cabinets by placing a 1 cm2 square piece of sponge cloth soaked
in 107 ml−1 conidial suspension over a 1 cm cut in the stem, then
wrapping with Parafilm to secure it in place.

Image-Based Canker Severity
Assessment and Measurement of Plant
Health
Assessment of plant health and canker severity was done at 6-
weeks post-inoculation. To assess plant health, the following
measurements were taken for each plant; leaf number, plant

FIGURE 1 | Image-based canker severity assessment workflow. Photos of
stem pieces for each treatment were cropped to isolate each of the individual
stems to allow more in-depth statistical analysis. (A) The saturation threshold
level was adjusted for each individual image to ensure the cross-sectional area
was totally masked, as shown in red on the right-hand side. (B) Brightness
and hue threshold filters were applied, identifying necrotic tissue (shown in red
on the left) and healthy green tissue (shown in red on the right).

height (stem base to the tip of the longest leaf), and stem
thickness (measured with a digital caliper). To assess stem canker
severity, 1 cm long pieces of the stem were cut at 1 cm below
the inoculation site and photographed as previously described.
Photos were then batch-cropped into fifteen photos of stem
pieces, each measuring 815 pixels × 815 pixels, to improve
accuracy before statistical analysis. These were then analyzed
with Image J (Schneider et al., 2012) to determine the percentage
area of the necrotic tissue discolored by the disease to assess the
severity of the stem canker (Figure 1). Saturation was adjusted
for each image to ensure the cross-section of the stem was fully
covered in the analysis. Healthy tissue was identified through
setting the color threshold parameters, in HSB (hue, saturation,
brightness) mode to brightness min 82, hue min 42. Settings for
necrotic discolored tissue were brightness max 81 and hue max
41. The Analyze Measure function was then used to measure the
pixels in the filtered areas.

Statistical Analysis
The statistical analyses of the data were all done using GenStat
statistical software (VSN International, 2020). ANOVA was
done to test the effects of cultivars/breeding lines with R gene
resistance, “good” quantitative resistance, R gene resistance with
“good” quantitative resistance, or susceptible background on
stem canker severity score. ANOVA was also done to test the
effects of oilseed rape cultivar/breeding line and temperature
on plant height, leaf number, and stem diameter of the oilseed
rape cultivars and breeding lines tested. The post hoc test with

Frontiers in Plant Science | www.frontiersin.org 4 March 2022 | Volume 13 | Article 785804384

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-785804 February 25, 2022 Time: 13:10 # 5

Noel et al. Temperature Effect on Phoma Resistance

FIGURE 2 | Frequency of avirulent alleles in Leptosphaeria maculans isolates taken from field locations in Wisbech and Impington, United Kingdom. To determine the
frequencies of virulent/avirulent alleles of L. maculans present in the field experiment areas toward the R genes Rlm4, Rlm7, and LepR3, cultivar Drakkar with no R
genes and no quantitative resistance was used for sampling L. maculans populations. Leaves of Drakkar with phoma leaf spot lesions were taken from Impington in
autumn 2015 and Wisbech in autumn 2016 and 2017 for obtaining L. maculans isolates. Avirulent alleles of different effector genes (Avr) genes in each L. maculans
isolate were identified by inoculating the isolate onto cotyledons of a differential set of cultivars/breeding lines carrying known Rlm genes (Huang et al., 2018).

Fisher’s least significant difference (LSD) calculated at P = 0.05
was used to separate the difference between means of treatments.
Correlation analysis for canker severity score against mean
monthly maximum temperature was done to identify the month
with the greatest temperature effect on phoma stem canker
severity score. Then, the relationship between the stem canker
severity score and the highest maximum temperature recorded
in June was analyzed using linear regression. Differences between
cultivars/breeding lines were tested using comparative analysis
of position and parallelism of linear regression (i.e., linear
regression with groups).

RESULTS

Frequency of Avirulent Alleles in
L. maculans Isolates
The proportions of the avirulent alleles of AvrLm1, AvrLm2,
AvrLm3, AvrLm4, AvrLm5, AvrLm6, AvrLm7, and AvrLm9 were
assessed in L. maculans isolates obtained from leaf lesions taken
from experimental locations in Impington (autumn 2015) and
Wisbech (autumn 2016 and 2017). The frequency of isolates with
AvrLm7 in Wisbech decreased in 2017/18 (74.3%) compared to
2015/16 and 2016/17 (100%) (Figure 2) and would be expected
to decrease further during 2018/19. Thus, cultivars/breeding lines
with Rlm7 would be expected to have good resistance against
phoma stem canker in the first year; that would deteriorate
during the second and third year of the field experiments as
the avrLm7 races increased in frequency. Most of the isolates
tested were found to have the virulent alleles avrLm1 (87.5%
for Impington 2015/16, 100% for Wisbech 2016/17, and 77.1%
for Wisbech 2017/18) and avrLm4 (75% for Impington 2015/16,
87.8% for Wisbech 2016/17, and 85.7% for Wisbech 2017/18)
which confer virulence to resistance genes Rlm1 or Rlm4,
respectively. Since the effector gene AvrLm1 is recognized by

the resistance genes Rlm1 and LepR3, cultivars/breeding lines
containing LepR3 would be expected to show severe phoma
stem canker at these sites. Similarly, cultivars/breeding lines
containing Rlm4 would also be expected to be susceptible as the
effector gene AvrLm4-7 is recognized by the resistance gene Rlm4
(Pilet et al., 1998).

Phoma Stem Canker Severity on
Different Cultivars and Breeding Lines
The phoma stem canker severity scores for the twelve winter
oilseed rape breeding lines/cultivars with different combinations
of R genes and/or quantitative resistance included in the
field experiments in England and France were analyzed.
Figure 3 shows the distribution of phoma canker severity
scores between cultivars/breeding lines. The cultivar Incentive
(“little” quantitative resistance, no known R genes) had the
greatest canker severity (mean severity score = 3.88), two times
greater than that of the cultivar ES Astrid (with quantitative
resistance only). Breeding line G (“little” quantitative resistance
and LepR3) had the smallest average severity score (0.82). The
greatest variance in stem canker severity was observed in cultivar
DK Exception (“good” quantitative resistance and Rlm7) and
the smallest in Breeding line D (“little” quantitative resistance
and Rlm4).

Cultivars/breeding lines with the same R gene and “good”
or “little” categorization of quantitative resistance were grouped
together to allow cross-comparison (Table 2), and the material
containing the same R genes is color-coded in Figure 3. Fisher’s
least significant comparison test was done to test for significant
differences between R genes and quantitative resistance in
average stem canker severity. Large differences were seen in R
gene effects in cultivars/breeding lines with “little” quantitative
resistance; cultivars/breeding lines with Rlm7, Rlm4, LepR3, or
no known R gene were all significantly different from each other.
However, in cultivars/breeding lines with quantitative resistance,
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FIGURE 3 | Distribution of phoma canker severity scores for winter oilseed
rape cultivars/breeding lines with different R genes and/or quantitative
resistance. Cultivars/breeding lines were grown at five locations over three
growing seasons (Chateauroux, France, 2016/17; Impington,
United Kingdom, 2016/17; Wisbech, United Kingdom, 2017/18 and 2018/19;
and Callow, Herefordshire, United Kingdom, 2018/19). Each box-plot shows
the mean (cross) and median (line) scores for each cultivar/breeding line.
Upper and lower box boundaries denote the 25th and 75th percentiles and
whiskers indicate the minimum and maximum severity scores. Basal stem
canker severity (Scale 0–6; Lô-Pelzer et al., 2009) was scored on fifteen plant
stems randomly sampled from each plot. Colors represent the different R
genes in cultivars/breeding lines; pink is LepR3, green Rlm7, blue Rlm4, and
black no known R gene. Shaded boxes denote cultivars with higher levels of
quantitative resistance as indicated by breeders. Average scores sharing the
same letter are not statistically different (P < 0.05) in multiple comparisons
using Fisher’s least significant difference (LSD) test.

there were no R gene effects. No significant differences were
found for Rlm7 and LepR3 cultivars/breeding lines between
those with “good” and “little” quantitative resistance. However,
for cultivars/breeding lines with Rlm4 and cultivars/breeding
lines with no known R gene, significant differences were found
between those with “good” and “little” quantitative resistance.
In both cases, those with “good” quantitative resistance had a
significantly smaller score. Quantitative resistance had the largest
protective effect against stem canker caused by L. maculans in the
absence of R genes.

Effect of June Temperature on Canker
Severity in Cultivars and Breeding Lines
Varying in R Gene-Mediated and/or
Quantitative Resistance
An initial correlation analysis for the canker severity score and
mean monthly maximum temperature was done to identify
the month with the greatest temperature effect on phoma
stem canker severity score. June was found to have the
greatest influence, with a correlation coefficient of r = 0.33

TABLE 2 | Fisher’s least significance comparison of average canker severity
scores for 12 winter oilseed rape cultivars/breeding lines grouped by single R gene
and quantitative resistance.

R gene Quantitative resistance* R gene mean

“Little” “Good”

Rlm7 1.53b 1.36b 1.421

Rlm4 2.66c 1.57b 1.830

LepR3 0.82a 1.20ab 1.072

None 3.39d 1.66b 2.520

Quantitative resistance mean 2.074 1.433

*Average scores sharing the same letter were not statistically different at P < 0.05
in multiple comparisons with Fisher’s least significant difference (LSD) test. Values
in bold are overall means for genotypes with R gene-mediated or quantitative
resistance.

(Supplementary Table 1). The regression analysis of the
relationship between the greatest recorded June temperature and
phoma stem canker severity score in cropping years 2016/17,
2018/19, and 2018/19 showed that there were differences between
genotypes (Figure 4). The highest maximum June temperature
was 35.97◦C in Chateauroux, France (June 22, 2017) and the
lowest maximum June temperature was 23.59◦C in Wisbech
(June 25, 2018).

Groups 1 and 2 (cultivars/breeding lines with Rlm7 and
with “good” or “little” quantitative resistance) both had a
positive correlation between the maximum June temperature and
phoma stem canker severity. This correlation was stronger in
the cultivars/breeding lines with “little” quantitative resistance
(R2 = 0.85, P < 0.025) than that for the cultivars/breeding
lines with “good” quantitative resistance (R2 = 0.52, P < 0.01).
Groups 3 and 4 (cultivars/breeding lines with Rlm4, and
“good” or “little” quantitative resistance) showed a much weaker
relationship of phoma stem canker severity with maximum June
temperature (R2 = 0.31, P < 0.01 and R2 = 0.26, P > 0.05
respectively). With quantitative resistance, a positive correlation
was observed, but with “little” quantitative resistance (Breeding
line D), there was no significant correlation. Group 5 (LepR3
with “good” quantitative resistance) (Breeding lines E and F)
and group 6 (LepR3 and “little” quantitative resistance) (Breeding
line G) followed a similar trend to groups 1 and 2; both
showed a positive correlation between phoma stem canker score
and maximum June temperature, with a stronger correlation
in cultivars/breeding lines with “little” quantitative resistance
(R2 = 0.86, P < 0.025) than those with “good” quantitative
resistance (R2 = 0.29, P < 0.05). Group 7 (cultivar ES Astrid
with “good” quantitative resistance and no known R genes)
showed no significant correlation between the canker severity
score and maximum June temperature (R2 = 0.034). Group
8 (cultivar Incentive with no known R genes and “little”
quantitative resistance) showed a negative correlation (R2 = 0.65,
P < 0.05) with reduced phoma stem canker severity at the
higher temperatures. Analysis of position and parallelism based
on cultivar/breeding line R genes compared groups with R genes
against susceptible cultivar Incentive. Cultivars/breeding lines
with Rlm7 (P < 0.01) and LepR3 (P < 0.05) both had significantly
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FIGURE 4 | Relationship between phoma stem canker severity of winter oilseed rape cultivars/breeding lines and maximum June temperature. Twelve
cultivars/breeding lines (see Table 1) were grown in 2–3 replicate blocks over three growing seasons at five locations in Chateauroux, France (2016/17); Impington,
Cambridgeshire, United Kingdom (2016/17); Wisbech, Cambridgeshire, United Kingdom (2017/18 and 2018/19); and Callow, Herefordshire, United Kingdom
(2018/19). Basal stem canker severity (Scale 0–6; Lô-Pelzer et al., 2009) was scored on 15 plant stems randomly sampled from each plot.

different slopes, but those cultivars/breeding lines with Rlm4 did
not (P = 0.061). The intercept was found to be significantly
different from Incentive for all cultivars/breeding lines; Rlm7
(P < 0.001), Rlm4 (P < 0.05), and LepR3 (P < 0.01).

Effects of Temperature on the Growth
Rate of L. maculans Isolates in Culture
The two L. maculans isolates used in this study, v23.1.3 and
v23.11.9, were grown at 20 and 25◦C under CE conditions
and measured every 24 h for 5 days to determine the effect of
temperature on their growth (Figure 5). The growth rates of both
isolates were not affected by temperature. The perimeters of the
v23.1.3 cultures were slightly larger at 25◦C than at 20◦C, whereas
the perimeters of the v23.11.9 cultures were marginally larger at
20◦C. However, neither of these differences were significant.

Effects of Temperature on Phoma Stem
Canker Severity in B. napus With
Quantitative and/or R Gene-Mediated
Resistance Under Controlled
Environment Conditions
The effect of increased temperature, from 20 to 25◦C, on canker
severity for four winter oilseed rape cultivars/breeding lines with
different resistance profiles was determined, 6 weeks following
inoculation with L. maculans isolates avirulent (v23.1.3) or
virulent (v23.11.9) against Rlm4 (Figure 6). Rlm4 was chosen
as the R gene in this study as significant differences between
cultivars/breeding lines with “little” and “good” quantitative

resistance had previously been observed in the field experiment
(Table 2). As expected, canker severity was greater when the
different plant genotypes were inoculated with the virulent
(Figure 6B) rather than the avirulent isolate (Figure 6A). Cultivar
Jet Neuf (“good” quantitative resistance and Rlm4) showed the
smallest canker severity at both temperatures when inoculated
with the avirulent rather than the virulent isolate. No significant
difference was seen between the two temperatures for the
inoculation with the avirulent L. maculans isolate v23.1.3 (11.3
and 24.6% necrosis for 20 and 25◦C, respectively); however,
the virulent isolate produced significantly greater amounts of
necrosis at 25◦C (54.1%) compared to 20◦C (37.1%). Cultivar
ES Astrid (“good” quantitative resistance, no known R genes)
performed well against isolate v23.1.3 at 20◦C with an average
necrotic area of 31.8%. However, this cultivar resistance lost
efficacy at 25◦C, with over twice as much necrotic tissue area
(83.7%). When inoculated with the virulent isolate v23.11.9, a
significant difference was also seen between the temperatures
(63.7 and 84.8% necrotic tissue for 20 and 25◦C, respectively).
Breeding line D (“little” quantitative resistance and Rlm4) also
showed a significant difference between the two temperatures
when inoculated with the avirulent v23.1.3 isolate (46.3 and
60.3% necrotic tissue area at 20 and 25◦C, respectively). When
inoculated with the virulent isolate, this temperature effect
was reversed, with a statistically significantly greater necrotic
tissue area (90.7%) found at 20◦C, compared to 69.4% at 25◦C.
Breeding line H (“little” quantitative resistance, no known R
genes) did not exhibit any significant temperature effect, although
for both isolates the canker severity was slightly less at the
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FIGURE 5 | Effects of temperature on the radial growth rates of L. maculans isolates v23.1.3 and v23.11.9 at 20 and 25◦C. Mycelial disks were transferred from
fungal colonies onto V8 media Petri dishes incubated at a constant temperature of 20 or 25◦C in darkness. Photographs were taken daily at regular time points for
5 days. The area of fungal growth was analyzed using Image J. An ANOVA showed that temperature had not significantly affected radial growth rate for v23.1.3
(P = 0.322) or v23.11.9 (P = 0.971). Error bars indicate the standard error of the mean (5 df).

higher temperature. When inoculated with the isolate v23.1.3,
the necrotic tissue area was 66 and 58.4% at 20 and 25◦C,
respectively. When inoculated with the isolate v23.11.9, it was
94.7 and 83.3% at 20 and 25◦C, respectively. Both differences were
not significant.

Effects of Temperature on Plant Growth
Parameters of the Oilseed Rape
Cultivars and Breeding Lines Tested
Plant health assessments showed very little difference between
the temperatures of 20◦C and 25◦C (Table 3). Although some
differences were seen in stem diameter, these were not significant
except for cultivar ES Astrid with a larger stem diameter at 20◦C.
However, this difference did not affect the image analysis of stem
canker because percentages of the area that were necrotic were
determined. Cultivar ES Astrid grew better at 20◦C than at 25◦C;

plants grew taller and had more leaves, but these differences were
not significant. Breeding line D grew taller at 25◦C than 20◦C,
significantly when inoculated with isolate v23.11.9; however,
significantly more leaves were produced at 20◦C when inoculated
with this isolate. Breeding line H grew significantly taller at 25◦C
than at 20◦C when inoculated with isolate v23.11.9.

DISCUSSION

Weather Influences Phoma Stem Canker
Severity in Genotypes With Different R
Genes and/or QR
This study confirmed the findings of previous work on the effect
of temperature on phoma stem canker severity. While the average
June temperature showed a correlation with phoma stem canker
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FIGURE 6 | Canker severity in four winter oilseed rape cultivars/breeding lines
at 20 or 25◦C. Stems of 6-week-old plants were inoculated with L. maculans
isolates v23.1.3 (AvrLm4) (A) or v23.11.9 (avrLm4) (B) by wrapping a sponge
soaked in 107 mL-1 conidial suspension over a 1 cm cut in the stem with
Parafilm. Pieces 1 cm long of the stem were cut 1 cm above the inoculation
site and photographed at 6 weeks post-inoculation. The mean percentage
area of necrotic tissue in stem pieces was calculated from the area of tissue
discolored by the disease and the total area analyzed using ImageJ. A total of
15 plants per treatment for each cultivar/breeding line were assessed. Error
bars indicate the standard error of the mean (14 df). Average scores sharing
the same letter are not statistically different (P < 0.05) in multiple comparisons
using Fisher’s LSD test.

severity, a stronger positive relationship was observed for the
maximum June temperature recorded and phoma stem canker
severity score. This new observation supports the suggestion

that more cultivars will require temperature-resilience to perform
successfully in years experiencing high June temperatures, as
these are predicted to increase with climate change (Evans et al.,
2008; Pullens et al., 2019).

Cultivars/breeding lines with the R genes Rlm7, Rlm4, and
LepR3 responded differently in terms of phoma canker severity
to the maximum June temperature. Cultivars/breeding lines
with Rlm7 showed a positive correlation with canker severity
increasing with temperature. An alternative explanation could
be that L. maculans isolates differed between the sites that
were tested. Virulent isolates containing avrLm7 alleles were
present in France; the field site Châteauroux experienced the
highest maximum June temperature. It is therefore possible that
L. maculans races, rather than a temperature-sensitive Rlm7
affected phoma stem canker severity. A recent study of the Avr
frequencies present in 30 L. maculans isolates sampled in Le
Rheu, France found 63% had virulence against Rlm7 (Bousset
et al., 2020). Cultivars/breeding lines with LepR3 had the smallest
average canker score, but it also showed a positive relationship
with the maximum June temperature.

Breeding line D (“little” quantitative resistance and Rlm4)
had the second-largest average canker severity; this genotype
showed an insignificant correlation between maximum June
temperature and canker severity. This could be due to Rlm4
not being a temperature-sensitive R gene; alternatively, a
significant proportion of L. maculans isolates with virulence
against Rlm4 at the experiment sites, as shown in Figure 2,
may have an effect. Analysis of L. maculans populations
from 13 sites, 11 of which were in the United Kingdom,
by Huang et al. (2018) found mean frequencies of AvrLm4
to be 41%, less than that of AvrLm7 which was 100%.
Within the 30 L. maculans isolates sampled in Le Rheu,
France, 100% were found to show virulence against Rlm4
(Bousset et al., 2020). This suggests that Rlm4 gene-mediated
resistance would be rendered at least partially ineffective,
explaining the greater canker severity observed in Breeding
line D. However, genotypes with Rlm4 and quantitative
resistance had more severe stem canker severity scores
at a higher temperature, suggesting that races were “not
the end of this story”. Collectively, this suggests that

TABLE 3 | Effect of increased temperature from 20 to 25◦C on average plant height, leaf number, and total stem diameter of four winter oilseed rape cultivars/breeding
lines, inoculated with v23.1.3 or v23.11.9 isolates of Leptosphaeria maculans.

Isolate Jet Neuf ES Astrid Breeding line D Breeding line H

20◦C 25◦C 20◦C 25◦C 20◦C 25◦C 20◦C 25◦C

v23.1.3 Height (cm) 30.4 29.3 26.3 25.9 33.4 35.9 27.1 27.9

Leaf number 6.3 6.4 4.9 4.8 5.9 5.6 7.4 6.9

Stem diameter (mm) 4.2 4.4 4.3* 3.6 4.6 4.9 5.4 5.3

v23.11.9 Height (cm) 27.9 28.3 26.5 25.5 30.2* 34.6 23.1* 29.8

Leaf number 5.3 5.7 5.1 4.8 6.0* 5.3 7.9 7.6

Stem diameter (mm) 4.3 3.8 4.1 4.2 4.7 5.0 4.4 4.9

To compare the differences between variables for v23.1.3, use least significant differences (at P < 0.05) for between heights = 2.014; for between leaf numbers = 0.576 and
for between stem diameters = 0.467. To compare the differences between variables for v23.11.9, use least significant differences (P < 0.05) for between heights = 2.558;
for between leaf numbers = 0.632 and for between stem diameters = 0.598. *Significant at P < 0.05.

Frontiers in Plant Science | www.frontiersin.org 9 March 2022 | Volume 13 | Article 785804389

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-785804 February 25, 2022 Time: 13:10 # 10

Noel et al. Temperature Effect on Phoma Resistance

more research is needed on the sampling of isolates from
experimental fields together with the characterization of their
Avr gene profiles.

Lower Temperatures Are More
Conducive to Canker Development for
Susceptible Cultivars and Breeding Lines
A significant negative correlation of phoma canker severity
in field experiments with maximum June temperature was
seen for cultivar Incentive, which lacks both known R genes
and quantitative resistance (Figure 4). Susceptible Breeding
line H plants also had a greater amount of necrosis in
the stem at 20◦C compared to 25◦C in the CE experiment,
although this difference was not significant when tested
separately for each L. maculans isolate tested. Together, it
may be a result of a greater temperature optimum for
PTI. Increased temperatures (23–32◦C) have been reported
to enhance PAMP signaling in Arabidopsis thaliana; on the
contrary, ETI has a lower temperature optimum of 10–23◦C
(Cheng et al., 2013).

R Genes Operate in the Stems of Young
Plants Under Controlled Environment
Conditions
Results from the field experiments suggested that R genes are
operating alongside quantitative resistance in June to influence
the phoma stem canker severity. Through inoculating stems
of young plants, any resistance brought about by R genes
operating in the leaves was circumvented in stems in the
CE experiment. As a control, axenic growth of L. maculans
was monitored at 20 and 25◦C, but no difference in radial
growth rate was observed (Figure 5), which is not inconsistent
with previous publications (Newbery et al., 2020). While the
subtle environmental changes like temperature may influence
molecular processes in organisms, it is also rational to
assume that organisms can compensate for such changes
at least over a certain range. The similar growth rates of
L. maculans at 20 and 25◦C reflect this dynamic range and
fit with naturally occurring temperatures in June. Data in
Table 3 demonstrated that any observed difference in symptom
development under both temperature regimes did not result
from different growth rates. Furthermore, it has previously been
shown that L. maculans can cause disease at both 20 and 25◦C
(Huang et al., 2006).

The L. maculans isolate avirulent to Rlm4 was found to cause
significantly less necrotic tissue in stems of a cultivar with Rlm4
grown at 20◦C than that grown at 25◦C. This suggests that
Rlm4 has a protective or suppressive effect against the pathogen
growth in the stems of young plants. Previous work showed
that R genes operate in the leaves of young plants during the
autumn to prevent leaf spotting (Rimmer and van den Berg,
1992; Fitt et al., 2006). To confirm this hypothesis, more stem
inoculation experiments should be done using near-isogenic lines
with or without individual R genes. However, little work has
been done on the operation of R genes in stems. There is a
need to test more cultivars with different R genes using stem

inoculation, ideally to test near-isogenic lines with or without
single R genes.

Quantitative Resistance May Protect R
Gene-Mediated Resistance at High
Temperatures
Results of field experiments suggested that quantitative resistance
may act to reduce the effect of increasing maximum June
temperature on the phoma stem canker severity when combined
with R genes. This correlation between the maximum June
temperature and phoma stem canker severity was weaker
for Rlm7 and LepR3 cultivars/breeding lines with quantitative
resistance compared to those with “little” quantitative resistance.
When quantitative resistance was present in a cultivar/breeding
line (e.g., ES Astrid) with no known R genes, no relationship with
maximum June temperature was seen. These findings suggested
that quantitative resistance shows temperature-resilience in
crops and can buffer a plant resistance response against high
temperature, maintaining the efficacy of the plant resistance.
However, in the CE stem inoculation experiments, cultivars ES
Astrid (with “good” quantitative resistance) and Jet Neuf (Rlm4
with “good” quantitative resistance) were both found to have a
significantly smaller amount of necrotic tissue at 20◦C than at
25◦C. This suggests that, under a sustained temperature of 25◦C,
the efficacy of quantitative resistance is reduced. This finding
is consistent with previous publications on the temperature
sensitivity of quantitative resistance under CE conditions (Huang
et al., 2009). One possible explanation for the difference in
the performance of cultivar ES Astrid between the field and
CE experiments could be the period in which the plant is
exposed to elevated temperatures. This finding is supported by
CE experiments that mimicked heat waves occurring in Canadian
Prairies; gradual increases in temperature from a 7-h night-time
period at 18◦C to reach a 7-h daytime of 32◦C did not change
quantitative resistance against L. maculans, suggesting that
quantitative resistance maintains its efficacy when the increased
temperature is not sustained for a long period (Hubbard and
Peng, 2018). While quantitative resistance appears to provide a
mechanism to reduce the effect of elevated temperature, this may
be rendered ineffective if this higher temperature is sustained
over a long period.

Although cultivars/breeding lines were classified as having
quantitative resistance or not, the resistance mechanisms of
different cultivars/breeding lines with quantitative resistance
may be completely different. Furthermore, other differences
in the genetic backgrounds of these cultivars/breeding lines
may also influence their response to the environment and
impact the severity of phoma stem canker. Thus, there are
clear limitations to this study. Nevertheless, in the absence of
a set of oilseed rape lines differing only in their quantitative
resistance trait loci, this set of genotypes provides a good choice
for investigating the effect of temperature on the quantitative
resistance response.

It is not known if increased levels of quantitative resistance
are linked with a reduction in fitness. A review by Brown
(2002) on yield penalties of disease resistance in crops suggested
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that plants with good quantitative resistance could suffer from
a fitness penalty. The evidence behind this proposal came
from the observations of Vanderplank (1984) that quantitative
resistance can be lost due to masking by single R genes or
if not exposed to the pathogen. Quantitative resistance genes
could be linked to genes involved in yield, resulting in linkage
drag if these resistance genes were to be introgressed. More
research is needed in this area to fully understand any potential
trade-offs in important traits, such as yield, that may be linked
to greater levels of quantitative resistance in oilseed against
phoma stem canker.

CONCLUSION

Results from field experiments suggest that temperature-resilient
quantitative resistance is currently available in some oilseed
cultivars. For example, ES Astrid (“good” quantitative resistance,
no known R genes) showed no significant correlation between
canker severity score and maximum June temperature. However,
ES Astrid had significantly smaller amounts of necrotic tissue
at 20◦C than at 25◦C when inoculated with both virulent and
avirulent L. maculans isolates under CE conditions. We suggest
that the efficacy of quantitative resistance is maintained at
increased temperature but not when these elevated temperatures
are sustained for long periods of time under CE conditions.

The effectiveness of Rlm4 mediated resistance in the stem
also appears to be reduced when plants are subjected to a
prolonged elevated temperature of 25◦C. Significantly more
necrotic tissue was found at 25◦C than 20◦C after Breeding line D
(“little” quantitative resistance and Rlm4) was inoculated with an
avirulent L. maculans isolate. The reverse was seen when the same
line was inoculated with a virulent L. maculans isolate. However,
in Jet Neuf (“good” quantitative resistance and Rlm4) there was
no significant difference in the amount of necrotic tissue between
the two temperatures, when inoculated with an avirulent isolate.
Therefore, in years experiencing warmer summers, as have been
predicted to result from climate change in the United Kingdom,
a combination of temperature-resilient R genes and a good
quantitative resistance background will be required to protect
oilseed crops from phoma stem canker.

Furthermore, the results of the CE experiments show that both
quantitative resistance and R gene resistance operate in the stem
by either preventing or suppressing the growth of L. maculans,
subsequently reducing stem canker severity. This is important
to growers as yields can be significantly reduced by phoma stem
canker developing in the summer months. There may be scope
to reduce this damage in the future by assessing new cultivars to
determine their level of stem resistance and ability to maintain
resistance at elevated temperature, using stem base inoculation
methods in CE assays. However, it would be advised that the
temperatures in these assays would be set to simulate the types of
heatwaves forecast to become more common as global warming
advances. Temperatures should be set to fall at night rather than
maintain a constant temperature throughout.

From this study, it could be suggested that Rlm4 is a
weaker, yet more temperature-resilient, R gene compared to

Rlm7 and LepR3. For cultivars/breeding lines with Rlm4,
significant differences were found between those with “good”
and “little” quantitative resistance. However, it must be
remembered that high frequencies of virulent isolates with
avrLm4 alleles were found in two of the field experiment
locations. Cultivars/breeding lines with Rlm4, with “good”
or “little” quantitative resistance, showed a much weaker
relationship of phoma stem canker severity with maximum June
temperature compared to cultivars and breeding lines with Rlm7
and LepR3.
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