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Editorial on the Research Topic

Immunologic Mechanisms of Myeloid Neoplasms

Myeloid neoplasms (MN), namely myelodysplastic syndromes (MDS), myeloproliferative
neoplasms (MPN), and acute myeloid leukemias (AML) are characterized by disrupted
myelopoiesis encompassing increased apoptosis of bone marrow (BM) progenitors,
differentiation arrest and increased proliferation (1). This results in either peripheral cytopenia
(with fatigue, bleeding, and infectious risk), or in hyperproliferative phenotype (with splenomegaly,
high blood counts, and thrombosis). Along with the “first genetic hit” that may happen several years
before disease onset in a hematopoietic stem cell (2), the surrounding immunologic niche seems to
play a pivotal role in the subsequent disease development. Clinically, the immune system disruption
is evidenced by an increased incidence of autoimmune phenomena in MN, which may worsen the
degree of cytopenia (particularly anemia and thrombocytopenia) and respond to
immunosuppressive therapy (3–5). From a pathogenic point of view, bone marrow
hematopoietic stem cells are strongly regulated by the crosstalk with the surrounding
microenvironment and its components, including mesenchymal stem cells, lymphocytes, and
macrophages (Figure 1) (6). Several alterations of these cells have been described in MN, and it
is not clear whether they are the cause or consequence of disease development and progression.
Furthermore, niche disruption might sustain pancytopenia and promote the accumulation of
molecular alterations that lead to leukemic evolution (4, 6, 7). Finally, immunologic alterations
might in turn be potential targets for novel biologic drugs (8). In this Research Topic the above-
mentioned points have been addressed by eleven articles focusing on pathogenic, prognostic, and
therapeutic implications of immune system disruption in MN.

Barcellini and Fattizzo asked themselves the “egg or chicken” question as to whether immune
phenomena comes before or after MN. They examined their epidemiological association, and
discussed that autoimmunity and immunodeficiency are the two faces of a dysregulated immune
tolerance and surveillance possibly resulting in tumor escape and infections. Alterations of the
microbiota and of mesenchymal stem cells in MN are also discussed to highlight the importance of a
permissive microenvironment for tumor growth. Finally, the authors highlight how novel therapies
for MN (including checkpoint inhibitors and chimeric antigen receptor T-cells) may increase
autoimmune phenomena.

Cominal et al., focused on Philadelphia chromosome-negative MPN that display inflammatory
alterations of BM niche. They studied BM soluble mediator signatures using a multiplex assay and
June 2022 | Volume 12 | Article 94963315
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FIGURE 1 | The myeloid compartment and its microenvironment. Bone marrow is a tissue defined by a high cellular and biological complexity. This UMAP
recapitulates how myeloid cells (red text) are surrounded and in strict connection with a complex and multifaceted immune microenvironment (blue text).
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found a distinctive profile in polycythemia vera with increased
levels of chemokines, and growth factors compared to essential
thrombocytopenia and primary myelofibrosis. Deregulation of
soluble mediators was associated with abnormal blood counts,
thrombosis, treatment status and risk stratification and this
might represent a therapeutic target. Additionally, JAK
inhibitors also affect the levels of inflammatory cytokines in
MPN patients, as described by Cattaneo and Iurlo. They also
discussed how these drugs affect several components of the
innate and adaptive immune systems such as dendritic cells,
natural killer cells, T helper cells, and regulatory T cells, resulting
in a level of immune deficiency with increased infectious risk.

Sciumè et al., focused on another rare “proliferating”
condition: systemic mastocytosis. They described a KIT D816V
mutated patient who evolved into MN with PDGFRA
rearrangement and responded to imatinib therapy; they discuss
how immunological mechanisms may play a role in promoting
clonal prevalence of one entity (mastocytosis) over the
other (MN).

The clinical and prognostic aspects of the concomitant
presence of distinct hematological clonal entities was further
addressed by Bucelli et al., who described a large series of patients
with co-occurrence of myeloid and lymphoid neoplasms.
Patients mainly suffered from MPN with associated non-
Hodgkin lymphomas; nearly a half required anti-lymphoma
therapy and 1/3 experienced a high-grade infection that was
significantly associated with mortality.

Whether the myeloid and lymphoid clones share a common
origin or develop autonomously is still debated, and another
interesting example is the association of large granular
Frontiers in Oncology | www.frontiersin.org 26
lymphocyte (LGL) expansion with MN and BM failure
syndromes. Our group performed a literature review and
discussed how LGL clones, found in up to 1/3 of MN, are
associated with deeper cytopenia (likely through immune
mediated apoptosis) and good response to immunosuppression.
Far from being innocent bystander, LGL clones may contribute to
immunosurveillance, as their depletion after immunosuppression
may favor leukemic escape.

Focusing on AML, Li et al., developed and validated an
innovative prognostic model based on a novel immune-17
signature derived from transcriptome data from The Cancer
Genome Atlas (TCGA) and The Genotype-Tissue Expression
(GTEx) databases. They confirmed that immune biology
processes and transcriptional dysregulations are critical factors
in the development of AML. Interestingly, the incorporation of
the immune-17 signature to the ELN2017 risk score improved
patient stratification. This immune signature may be
therapeutically exploited, as described by Sun Yao et al., that
treated an AML patient with PD-1 blockade in combination with
azacytidine after allogeneic hematopoietic stem cell
transplantation; these strategies that reactivate anti-leukemic
immune surveillance may in turn result in devastating
autoimmune/autoinflammatory responses, as in the case
described who developed fatal graft versus host disease.

Moving to innate immunity effectors, Razanamahery et al.,
described a case of Erdheim–Chester disease (ECD), a rare
histiocytosis, characterized by somatic mutations of MAP-
kinase pathway in CD14+ monocytes. They found a
correlation between disease activity and increased CD14+
+CD16− “classical monocyte” and decreased CD14lowCD16++
June 2022 | Volume 12 | Article 949633
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“non-classical monocyte” highlighting the contribution of a
phenotype switch of innate immunity in this rare disease.

Another very rare condition associated with autoimmunity
and MN is paroxysmal nocturnal hemoglobinuria (PNH).
Giannotta et al., reported a patient with MPN who developed
clinically overt PNH requiring anti-complement therapy. They
discuss that the selection and expansion of PNH clones in MPN
is likely to be ascribed to the same immunological bottlenecks
described in BMF: autoimmunity against BM precursors, toxicity
of therapies, and acquirement of cooperative somatic mutations.

Finally, Caprioli et al., described how the use of single-cell
technologies represent powerful tools to assess the cellular
composition of the complex tumour ecosystem and its
immune environment (Figure 1), to dissect interactions
between neoplastic and non-neoplastic components, and to
decipher their functional heterogeneity and plasticity. In
addition, recent progress in multi-omics approaches provide
an unprecedented opportunity to study multiple molecular
layers (DNA, RNA, proteins) at the level of single-cell or single
Frontiers in Oncology | www.frontiersin.org 37
cellular clones during disease evolution or in response to therapy.
Applying single-cell technologies to MN holds the promise to
uncover novel cell subsets or phenotypic states and highlight the
connections between clonal evolution and immune escape,
which is crucial to fully understand disease progression and
therapeutic resistance.

In conclusion, this Research Topic highlights the multifaceted
immunologic aspects of pathogenesis, clinical course, and
treatment of MN. This expanding field will increasingly benefit
from sophisticated molecular tools to further identify druggable
pathways/targets and optimize management of MN and other
rare entities.
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Background: Azacitidine is commonly used in the treatment of relapsed acute myeloid

leukemia (AML) and myelodysplastic syndrome (MDS) after allogeneic hematopoietic

stem cell transplantation (allo-HSCT), but the effectiveness of this monotherapy is still

very low. A possible mechanism of resistance to hypomethylating agents (HMAs) is

the upregulation of the expression of inhibitory checkpoint receptors and their ligands,

making the combination of HMAs and immune checkpoint blockade therapy a rational

approach. Although the safety of anti-programmed cell death protein (PD)-1 antibodies

for patients with post-allo-HSCT remains a complicated issue, the preliminary clinical

result of combining azacitidine with anti-PD-1 antibodies is encouraging; however, the

safety and efficacy of this approach need further investigation.

Case Presentation: We reported a case of treated secondary (ts)-AML in a patient who

received tislelizumab (an anti-PD-1 antibody) in combination with azacitidine. The patient

relapsed after allo-HSCT and was previously exposed to HMAs-based therapy. The

patient received tislelizumab for compassionate use. After the combination treatment,

the patient achieved complete remission with incomplete hematologic recovery, negative

minimal residual disease (MRD) by flow cytometry (FCM), and negative Wilms’ tumor

protein 1 (WT1). However, the patient successively developed serious immune-related

adverse events (irAEs) and graft vs. host disease (GVHD) and eventually died from

complications of GVHD.

Conclusion: To our knowledge, this is the first case to report the combined use

of tislelizumab and azacitidine to treat relapsed AML posttransplantation. This report

highlights the safety concerns of using an anti-PD-1 antibody in combination with
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azacitidine after allo-HSCT, especially the risk of GVHD, and provides a basis for

future studies.

Keywords: acute myeloid leukemia, post-transplantation relapse, GvHD, immune checkpoint blockade,

hypomethylating agents

INTRODUCTION

Although allogeneic hematopoietic stem cell transplantation
(allo-HSCT) is a potentially curative therapy for patients with
high-risk acute myeloid leukemia (AML) and myelodysplastic
syndrome (MDS), the relapse of the disease remains the major
cause of treatment failure in these patients and carries a
dismal prognosis (1–4). Hypomethylating agents (HMAs), such
as azacitidine and decitabine, are the most common, non-
targeted pharmacologic agents used to treat and prevent the

FIGURE 1 | (A) Clinical course of the patient. (B,C) Numbers of (B) leukocytes, lymphocytes, neutrophils, monocytes, and (C) platelets in the peripheral blood after

the AML diagnosis. (D) Donor cell chimerism in the bone marrow (BM) following allo-HSCT. In (B–D), the dotted vertical line indicates the timing of tislelizumab

administration. GC, glucocorticoid; AZA, azacytidine; t-MDS, therapy-related myelodysplastic syndrome; ts-AML, treated secondary-acute myeloid leukemia.

URD-HSCT, unrelated donor hematopoietic stem cell transplantation.

relapse in posttransplantation AML and MDS in recent times.
However, a single-agent HMA therapy in relapsed/refractory
(r/r) HMAs-naïve AML has only achieved a low response
rate (5–8). Previous studies have shown that, while HMAs
promote antitumor immune signaling (9), they concurrently
dampen antitumor immunity by increasing the expression of
programmed cell death protein (PD)-1 and programmed death-
ligand (PD-L)1 in solid tumors (10) and MDS/AML (11). This
could be a possible mechanism of resistance to HMAs (8).
For patients with relapsed AML after human leukocyte antigen
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(HLA) matching and incompatible transplantation without HLA
loss, the mechanism of recurrence after the transplantation is
mainly by the downregulation of HLA class two molecules (30–
40%) and the upregulation of immune checkpoints (∼20%) at
the epigenetic level, which can be treated by HMAs and immune
checkpoint blockade (ICB) therapy, respectively (12). Thus, for
posttransplantation AML, the combination therapy of azacitidine
with anti-PD-1 antibodymay be a better approach in comparison
to monotherapy. In fact, single-agent anti-PD-1 antibodies
exhibit only minimal activity in patients with relapsed AML and
high-risk MDS (13–15). ICB therapy after allo-HSCT has been
reported to cause severe graft vs. host disease (GVHD) in both
preclinical (16–18) and clinical studies (15, 19–22). However, the
combination therapy of azacitidine and nivolumab (an anti-PD-1
antibody) showed an encouraging response with no GVHD and
moderate immune-related adverse events (irAEs) with respect to
the relapse of AML/MDS (prior allo-HSCT-19%) in a clinical trial
(8). Given these promising preliminary clinical results, the safety
and efficacy of combining azacitidine and anti-PD-1 antibodies
in post-allo-HSCT patients should be urgently investigated
further. Tislelizumab R© (BeiGene, China), an antihuman PD-
1 monoclonal IgG4 antibody, has been approved in China
for patients with r/r classical Hodgkin lymphoma (HL) after
at least a second-line chemotherapy (23). In the present
study, we report a case of compassionate use of tislelizumab
combined with azacitidine to treat a patient with relapsed AML
after allo-HSCT. The report highlights the importance of the
prudent use of an anti-PD-1 antibody in patients who are
undergoing HSCT.

CASE PRESENTATION

A 56-year-old man was diagnosed with follicular lymphoma
[FL; grade IIIA, stage IVA, Follicular Lymphoma International
Prognostic Index (FLIPI) stage: high risk] 18 years ago. The
patient was cured by four sequential cycles of fludarabine,
cyclophosphamide, rituximab (FCR) chemotherapy; four
cycles of rituximab, cyclophosphamide, hydroxyldaunorubicin,
oncovin, and prednisone (R-CHOP) chemotherapy; and local
lymph node radiotherapy. Unfortunately, the patient was
diagnosed with therapy-related MDS (t-MDS) in February 2019
according to the WHO classification (Figure 1A). The baseline
characteristics of the patient diagnosed with t-MDS are presented
in the Supplementary Material.

The patient received induction chemotherapy with a
decitabine, cytarabine, aclacinomycin, and recombinant human
granulocyte colony-stimulating factor (G-CSF) (DCAG) scheme
in March 2019 and achieved a partial response (PR). Then, the
patient received another cycle of consolidation chemotherapy
with DCAG and achieved a complete response (CR); at this
stage, the patient was positive for minimal residual disease
(MRD), confirmed through flow cytometry (FCM). The patient
underwent allo-HSCT from a HLA-mismatched unrelated
donor (8/10), after preconditioning with decitabine, fludarabine,
and busulfan, followed by cyclosporine A, mycophenolate
mofetil, basiliximab (a monoclonal anti-CD25 antibody),

and short-term methotrexate for prophylaxis of GVHD.
The patient achieved CR with MRD negativity (CRMRD-) 1
month after allo-HSCT and developed extensive skin chronic
GVHD (cGVHD) and bronchiolitis obliterans with organizing
pneumonia (BOOP) 6 months after allo-HSCT but improved
after glucocorticoids and antifungal therapy. During the
treatment for BOOP, the patient remained CRMRD- but was
positive for Wilms’ tumor protein 1 (WT1+). In January 2020,
the disease progressed to AML, and the evaluation of bone
marrow (BM) showed that 34.5% of blasts, 36.14% of donor
chimeric,; 28.8% of FCM–MRD; and 7.57% of WT1. The
patient was diagnosed with treated secondary (ts)-AML, arising
from an antecedent hematologic disorder that was previously
treated with chemotherapy or immunomodulatory therapy, an
entity known to have an extremely dismal prognosis (24–26).
The gene mutation test from a BM sample showed casitas
B-lineage lymphoma (CBL) of 5.92% and Kirsten rat sarcoma
(KRAS) of 6.3%. The immunosuppressor was immediately
withdrawn. We performed the HLA-loss test, but no HLA gene
loss was detected.

The patient was counseled on the risks and benefits of
azacitidine in combination with tislelizumab. Although the
patient did not have any signs or symptoms of GVHD at
the time of relapse, we decided to administer anti-PD-1 after
one course of azacitidine to ensure the use of tislelizumab for
at least 4 weeks after the withdrawal of immunosuppressive
agents according to a previous study (15). Thus, the patient
received azacitidine monotherapy and achieved 0.611% of
CRiMRD- and WT1 1 month later. The patient subsequently
developed herpes zoster infection, but the condition of the
patient improved with antiviral therapy. The patient also
developed a drug-induced liver injury, but the condition of
the patient improved after the drugs causing liver injury
were discontinued, namely estazolam and zopiclone, which
had been prescribed for insomnia. In March 2020, the patient
received 100mg of azacitidine on days 1–7 subcutaneously
and 200mg of tislelizumab on day 1 intravenously. About
20 days later, the patient remained CRiMRD- and was WT1
negative (WT1–) (0.11%, the cutoff value of WT1/ABL in
our laboratory is 0.5%). The patient successively developed
hypoadrenocorticism, infectious diarrhea, fever, and shock.
Although the symptoms of the patient were relieved with
symptomatic and antimicrobial treatment, diarrhea continued to
worsen. No definite infection was found after repeated etiological
examinations, and multiple antibiotic treatments proved to
be ineffective.

The patient refused to undergo a colonoscopy and further
biopsies, so the diagnosis of G3 gut acute GVHD (aGVHD)
was mainly based on history and clinical manifestation.
Prednisone, 2 mg/kg/day, combined with ruxolitinib, 10mg
(bid), was prescribed. The patient continued to have diarrhea
even after 5 days. Prednisone was tapered and basiliximab
was started. The patient subsequently developed delirious
behavior, involuntary tremors, decreased muscle strength, and
dystonia. A diagnosis of autoimmune-related encephalopathy
was hypothesized after consultation with a neurologist, based
on history, clinical manifestations, and imaging. CT showed
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TABLE 1 | The safety and efficacy of the published clinical trials of immune checkpoint blockade in post-allo-HSCT myeloid malignancies.

References Immune

checkpoint

inhibitors/ pathway

HMAs Study design Trial regimen Study population

(N)

Efficacy Safety

ICB THERAPY ONLY

Bashey et al. (27) Ipilimumab/CTLA-4 - Phase 1 Single arm in relapsed

Malignancies

after allo-HSCT

Total (29)

AML (2)

CML (2)

No response in the

four patients

In all myeloid malignancies

after allo-HSCT, no patient

developed DLT and

GVHD. One patient with

AML developed G3

polyarthropathy with

nodules clinically

consistent with

rheumatoid arthritis.

Davids et al. (28) Ipilimumab/CTLA-4 - phase 1/1b Single arm in relapsed

HMs

After allo-HSCT

Total (28)

AML (12)

Relapse with

extramedullary

disease (4)

MDS (2)

MPN (1)

In myeloid

malignancies, four

patients with

extramedullary and

one patient with

MDS/AML achieved

CR.

In all patients, 6 (21%)

developed irAEs including

1 death, 4 (14%)

developed GVHD. All of

GVHD resolved with

glucocorticoids. Other

sAEs: acute kidney injury,

corneal ulcer,

thrombocytopenia,

neutropenia, anemia, and

pleural effusion. *

Holderried et al.

(22)

Nivolumab/PD-1

Ipilimumab/CTLA-4

- Retrospective

study

Disease recurrence

after allo-HSCT other

than HL

Total (21)

AML/MDS (12)

One patient with AML

received Niv + DLI

survived > 2 years

after Niv with ongoing

CR. One AML

received Niv survived

> 2 years after Niv

with PD.

2/12 patients with

AML/MDS developed

GVHD. One received Niv,

the other one received Niv

+ Ipi.

Wong et al. (29) Nivolumab/PD-1 - Phase 2a Single arm in relapsed

or persistent HMs

after allo-HSCT

Total (6)

AML (2)

One patient with AML

achieved transient

blast reduction but

progressed

subsequently.

2/6 patents with HMs

developed G3 aGVHD 2

weeks after first dose of

Niv. *

Davids et al. (15) Nivolumab/PD-1 - Phase 1 Single arm in relapsed

HMs

after allo-HSCT

Total (28)

AML (10)

MDS (7)

CMML (1)

less activity in

patients with myeloid

malignancies (ORR

21%).

11 HMs pts (39%)

developed new or

worsening a/c-GVHD (two

acute, eight chronic, and

one both). Additional

sAEs: pneumonitis,

transaminitis, respiratory

syncytial virus pneumonia,

rash, orthostatic

hypotension, and lipase

elevation. *

Schoch et al. (30) Nivolumab/PD-1

Pembrolizumab/PD-1

Ipilimumab/CTLA-4

- Retrospective

study

Relapsed cancers

after

allo-HSCT.

Total (9)

AML (1)

MDS (1)

* In all the 9 patients

(including two with solid

tumors), one developed

G2 cutaneous aGVHD

when DLI was given for

relapsed disease after

ipilimumab. *

Liao et al. (31) Pembrolizumab/PD-1 - Single arm in relapsed

AML after allo-HSCT

AML (8) No response Can induce early and

severe irAEs.

Wang et al. (32) Nivolumab/PD-1 - Cases report Maintenance therapy

after allo-HSCT in

myeloid malignancies

AML (3)

t-MDS (1)

- All the 4 patients rapidly

developed irAEs, 2 of

them ≥G3.

Albring et al. (33) Nivolumab/PD-1 - Cases report Monotherapy in

relapsed

AML after allo-HSCT

AML (3) 1 CR, 1 SD, 1 NR Pancytopenia and skin

GVHD in one patient,

muscle and joint pain in

another. No severe GVHD.

(Continued)
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TABLE 1 | Continued

References Immune

checkpoint

inhibitors/ pathway

HMAs Study design Trial regimen Study population

(N)

Efficacy Safety

HMAs+ICB

Daver et al. (8) Nivolumab/PD-1 AZA Phase 2 single arm in R/R AML AML (70)

Post-allo-HSCT

(13)

Post-

transplantation

AML (13)

ORR 33%, CRR 22%

in all patients, ORR

58% in HMAs-naïve

and 22% in

HMAs-pre-treated

patients. ORR 13% in

post-allo-HSCT r/r

AML.

Grade 3–4 irAEs occurred

in 8/70 (11%) R/R AML

patients. No GVHD was

reported.

R/R, Relapsed/refractory; NR, Not reported; ORR, Overall response rate; OS, Overall survival; CR, Complete remission; CRR, Complete remission rate; PR, Partial response; HMAs,

Hypomethylating agents; ICB, Immune checkpoint blockade; allo-HSCT, Allogeneic hematopoietic stem cell transplantation; SD, Stable disease; PD, Progressive disease; GVHD, Graft vs.

host disease; DLT, Dose-limiting toxicity; AML, Acute myeloid leukemia; MDS, Myelodysplastic syndrome; CML, Chronic myeloid leukemia; CMML, Chronic myelomonocytic leukemia;

HL, Hodgkin lymphoma; DLI, Donor lymphocyte infusion; irAEs, immune-related adverse events; AZA, Azacytidine; ITP, Immune thrombocytopenic purpura; HMs, Hematological

malignancies; MPN, Myeloproliterative neoplasms.

*Detailed data about the separate disease are unavailable.

multiple spots and patches of low-density lesions around
bilateral lateral ventricles, and MRI showed scattered spots and
patchy lesions near both frontal lobes and lateral ventricles
that showed equal or long signal on T1 images, a long
signal on T2 images, and a high signal on T2WI fluid-
attenuated inversion recovery (FLAIR). Gamma globulins
were administered, but the nervous system symptoms were
not relieved. Gut aGVHD was resistant to steroid and
second-line treatment, and the patient subsequently developed
hematochezia, enteric infections, septic shock, and metabolic
acidosis secondary to gut GVHD and died 6 days later
(Figures 1B–D).

DISCUSSION AND LITERATURE REVIEW

The patient with MDS mentioned in the study was previously
exposed to HMA therapy, which rapidly progressed to ts-
AML after allo-HSCT. At the time of relapse, neither HLA
loss nor active GVHD was present. First, the patient received
azacitidine monotherapy and achieved CRiMRD- but was WT1+.
Subsequently, the patient received a combination of azacitidine
and tislelizumab and remained CRiMRD- and became WT1-.
Unfortunately, the patient developed serious irAEs, including
hypoadrenocorticism, autoimmune-related encephalopathy, and
fatal gut GVHD. We have summarized the safety and efficacy
of using checkpoint inhibitors in post-allo-HSCT myeloid
malignancies in Table 1. Clinical studies showed that the CTLA-
4 blockade induces lower GVHD as compared to anti-PD-
1 (14% vs. 39%) (15, 28). Furthermore, CTLA-4 inhibitors
as single agents demonstrated activity in patients with high-
risk MDS after the therapy of HMAs and relapsed AML
post-allo-HSCT, while anti-PD-1 antibodies showed limited
efficacy (28, 34). Currently, clinical trials of the combination
of HMAs with ICB therapy are ongoing (8, 34). Table 2 shows
a summary of autoimmune complications of the published
clinical trials using checkpoint inhibitors in post-allo-HSCT

hematologic malignancies other than myeloid malignancies. On
the whole, the incidence of autoimmune diseases, including
GVHD, after ICB monotherapy is high: 21–39% in AML/MDS
(15, 28) and 30%−55% in other hematological malignancies
(20, 36).

A possible pathogenic mechanism of GVHD in the patient
could involve enteric infection that may have damaged
gastrointestinal tissue, favoring T-cell activation against
self-antigens. The blockage of PD-1/PD-L1 increases the
proliferation, activation, Th1 cytokine-production, and
metabolic stress of donor T cells, along with increased homing
in the GVHD target tissues such as the gut, due to the loss
of intestinal epithelial integrity (47). Moreover, the blockage
of PD-1/PD-L1 accelerated donor CD8+ T-cell expansion
and exacerbated aGVHD (48). It is challenging to distinguish
between gut GVHD and GI-irAEs even after biopsies. We
diagnosed a gut aGVHD for the following reasons: first, the
patient had a history of cGVHD and was more likely to be
susceptible to develop GVHD after the treatment of PD-1
as described in the previous studies (36, 49). Meanwhile, the
patient remained completely donor chimeric after anti-PD-1
therapy. However, other studies have suggested that prior
a/cGVHD has no significant impact on the development of
GVHD after ICB therapy (15, 22). Although this issue is
controversial and remains to be clarified, it is a possibility that
deserves attention. In addition, the cumulative incidence of
gastrointestinal aGVHD might be as high as 60% (50), while
the incidence of diarrhea was 11–17% after the treatment of
anti-PD-1 (51).

Previous studies showed that 0.5 mg/kg of nivolumab
monotherapy for every 3 weeks and 100mg of nivolumab plus
azacitidine for every 2 weeks are considered safe (8, 15). In
addition, the low affinity of tislelizumab for the Fc receptor and
Fc-γ receptor 1 (FcγRI) may contribute to improved anticancer
efficacy as compared to other anti-PD-1 antibodies (52), which
means that the dose of tislelizumab may need to be further
reduced. It is interesting that the patient developed a delayed
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TABLE 2 | Autoimmune complications of the published clinical trials using checkpoint inhibitors in post-allo-HSCT hematologic malignancies other than myeloid

malignancies.

References immune

checkpoint

inhibitors/pathway

Other drugs Study design Trial regimen Study population (N) Autoimmune complications

Bashey et al. (27) Ipilimumab/CTLA-4 - Phase 1 Single arm in relapsed

malignancies

after allo-HSCT

Total (29)

HL (14)

Myeloma (6)

CLL (2)

NHL (1)

3 patients developed

organ-specific irAEs, including

G2 hyperthyroidism, recurrent

G4 pneumonitis, and G3

dyspnea.

Davids et al. (28) Ipilimumab/CTLA-4 - Phase 1/1b Single arm in relapsed

HMs

after allo-HSCT

Total (28)

HL (7)

NHL (4)

MM (1)

ALL (1)

In all patients, 6 (21%) developed

irAEs including 1 death, 4 (14%)

developed GVHD. *

Holderried et al.

(22)

Nivolumab/PD-1

Ipilimumab/CTLA-4

- Retrospective

study

Disease recurrence after

allo-HSCT other than HL

Total (21)

ALL (2)

NHL (5)

MF (2)

4/9 patients with non-myeloid

hematologic malignancies

developed GVHD, 1 received

Niv, 3 received Niv + DLI.

Wong et al. (29) Nivolumab/PD-1 - phase 2a Single arm in relapsed or

persistent HMs after

allo-HSCT

Total (6)

HL (2)

tCLL (1)

MCL (1)

2/6 HMs patients developed G3

aGVHD 2. *

Khouri et al. (35) Ipilimumab/CTLA-4 Lenalidomide Phase ii Relapsed lymphomas

after allo-HSCT and

high-risk patients after

autologous HSCT

17 pts (10 allo, 7 auto) Allogeneic: 1 cGVHD of liver,

mouth, 1 G2 hypothyroid;

Autologous: 1 G2 dermatitis, 1

G1 hypothyroid.

Schoch et al. (30) Nivolumab/PD-1

Pembrolizumab/PD-1

Ipilimumab/CTLA-4

- Retrospective

study

relapsed cancers after

allo-HSCT.

Total (9)

HL (4)

Dsmoplastic small round

cell tumor (1)

In all the 9 patients (including 2

with solid tumors), 1 developed

G2 cutaneous aGVHD when DLI

was given for relapsed disease

after ipilimumab. *

Davids et al. (15) Nivolumab/PD-1 - Phase 1 Single arm in relapsed

HMs

after allo-HSCT

Total (28)

HL (5)

NHL (3)

CLL (1)

11 HMs patients (39%)

developed new or worsening

a/c-GVHD (2 acute, 8 chronic,

and 1 both). *

Herbaux et al. (36) Nivolumab/PD-1 - Retrospective

study

HL patients relapsing

after allo-HSCT.

r/r HL (20) 30% (6/20) patients developed

GVHD, all of them had prior

history of aGVHD. 1 developed

possibly related G2 hepatic

cytolysis.

Haverkos et al.

(20)

Nivolumab/PD-1

Pembrolizumab/PD-1

- Retrospective

study

Relapsed lymphomas

after allo-HSCT

HL (29)

Other lymphomas (2)

55% (17/31) patients developed

treatment-emergent GVHD (6

acute, 4 overlap, and 7 chronic).

29% developed ≥G3 a/cGVHD.

26% deaths related to GVHD.

Only 2 of these 17 achieved CR

to GVHD treatment, and 14/17

required ≥2 systemic therapies.

The majority experienced

cutaneous and hepatic GVHD.

Angenendt et al.

(37), Covut et al.

(38), and Shad

et al. (39)

Nivolumab/PD-1 - Cases report Relapsed HL after

allo-HSCT

HL (4) None

Chan et al. (40)

and Villasboas

et al. (41)

Pembrolizumab/PD-1 - Cases report Relapsed lymphoma after

allo-HSCT

HL (2)

ALCL (1)

None

Singh et al. (19) Pembrolizumab/PD-1 - Case report Relapsed HL after

allo-HSCT

HL (1) Stage IV skin, stage II gut and

stage IV liver leading to an overall

grade IV aGvHD.

(Continued)
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TABLE 2 | Continued

References immune

checkpoint

inhibitors/pathway

Other drugs Study design Trial regimen Study population (N) Autoimmune complications

Kwong et al. (42) Pembrolizumab/PD-1 - Cases report Relapsed or refractory

NK/T-cell lymphoma after

allo-HSCT

NK/T-cell lymphoma (7) G2 skin GVHD disease in 1

patient with previous allo-HSCT.

Godfrey et al. (43) Nivolumab/PD-1 - Cases report Relapsed HL after

allo-HSCT

HL (3) G3 polyarthritis in 1 patient, G2

keratoconjunctivits in 2, G1 rash

(possibly representing

limited-stage chronic GVHD) in 1.

Boekstegers et al.

(44)

Pembrolizumab/PD-1 - Case report Relapsed ALL after

allo-HSCT

ALL (1) G4 aGVHD of the skin, mucosa,

liver, lung, CNS and eyes. A

severe lethal inflammatory

disease.

El Cheikh et al.

(45)

Nivolumab/PD-1 - Cases report Relapsed HL after

allo-HSCT

HL (2) G3 aGVHD involving ocular, liver

and skin in 1 patient, G3 aGVHD

involving skin, GI and liver in the

other pt.

Yared et al. (46) Nivolumab/PD-1 - Case report Relapsed HL after

allo-HSCT

HL (1) G2 pneumonitis and hepatitis

NHL, Non-Hodgkin’s lymphoma; ALL, Acute lymphoblastic leukemia; CLL, Chronic lymphoblastic leukemia; ALCL, Anaplastic large cell lymphoma; R/R, Relapsed/refractory; CR,

Complete remission; CRR, Complete remission rate; allo-HSCT, Allogeneic hematopoietic stem cell transplantation; GVHD, Graft vs. host disease; HL, Hodgkin lymphoma; DLI, Donor

lymphocyte infusion; irAEs, immune-related adverse events; DLT, Dose-limiting toxicity; MF, Marrow failure; MM, Multiple myeloma; tCLL, transformed chronic lymphocytic leukemia;

MCL, Mantle cell lymphoma; HMs, Hematological malignancies.

*Detailed data about separate disease are unavailable.

and steroid-resistant GVHD nearly 4 weeks after anti-PD-1
therapy. This could be related to the highest terminal half-life of
tislelizumab compared to other ICB (23). Therefore, reducing the
dose of tislelizumab or extending the interval of administration
should be evaluated to improve safety in future studies on
patients with post-allo-HSCT.

Some other factors may also cause the occurrence of GVHD
after ICB therapy in posttransplantation patients. Although it
is still controversial (22), two studies observed that a shorter
interval between the transplantation and the first nivolumab
infusion was associated with a higher risk of developing GVHD
(15, 36). Extreme caution should be followed during the
enrollment of patients with active cGVHD (21). Furthermore, the
question remains as to whether anti-PD-L1 is safer than anti-PD-
1. Hematopoietic cells upregulate the expression of both PD-L2
and PD-L1 after HSCT, but only PD-L1 is broadly expressed by
parenchymal cells in host GVHD target tissues (47). Host PD-L1
is dominant over PD-L2 in regulating GVHD lethality (47), and
the PD-L1 expression on donor T cells may drive GVHD lethality
(53). Thus, PD-L1 may play a vital role in the development
of GVHD. At present, there is still a lack of reliable data on
the clinical application of anti-PD-L1 for posttransplantation
patients, and the safety and efficacy of PD-L1 inhibitors need to
be investigated clinically.

CONCLUSION

Azacitidine in combination with anti-PD-1 seems to be a
rational strategy for posttransplantation relapsed AML but needs
further urgent clinical investigation. The report highlights the

safety issues of an anti-PD-1 antibody in combination with
azacitidine after allo-HSCT, especially GVHD. Additionally, we
conducted an in-depth discussion around safety issues and
provided suggestions for follow-up research. For such patients,
the type, dosage, and timing of ICB drugs should be selected
with caution.
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The prognosis of acute myeloid leukemia (AML) is closely related to immune response
changes. Further exploration of the pathobiology of AML focusing on immune-related
genes would contribute to the development of more advanced evaluation and treatment
strategies. In this study, we established a novel immune-17 signature based on
transcriptome data from The Cancer Genome Atlas (TCGA) and The Genotype-Tissue
Expression (GTEx) databases. We found that immune biology processes and
transcriptional dysregulations are critical factors in the development of AML through
enrichment analyses. We also formulated a prognostic model to predict the overall survival
of AML patients by using LASSO (Least Absolute Shrinkage and Selection Operator)
regression analysis. Furthermore, we incorporated the immune-17 signature to improve
the prognostic accuracy of the ELN2017 risk stratification system. We concluded that the
immune-17 signature represents a novel useful model for evaluating AML survival
outcomes and may be implemented to optimize treatment selection in the next future.

Keywords: acute myeloid leukemia, prognostic signature, immune-relate genes, The Cancer Genome Atlas, Least
Absolute Shrinkage and Selection Operator
INTRODUCTION

Acute myeloid leukemia (AML) is one of the most common hematological cancers in adults,
characterized by the accumulation of immature myeloblasts in the bone marrow and peripheral
blood at the expense of normal blood components (1). Unlike many other cancers, AML has a low
tumor mutation burden (TMB) with an average of 10–13 coding mutations per patient (2).
Although we have understood the role of mutational genes in driving tumor progression along with
an uncomplicated mutational landscape, the overall therapeutic strategy for AML patients has
remained the same for the last 30 years (3, 4). The conventional treatment paradigm has a restricted
contribution to improve overall survival (OS), especially in the elderly population (4). Although
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allogeneic hematopoietic cell transplantation (alloHCT) and
chemotherapy regimens allowed a five-year survival rate of 40–
70% in younger patients (<40 years of age), survival in the elderly
remains poor (5, 6) with a risk of relapse within 5 years from
diagnosis as high as 75% (7). Therefore, it is urgent to identify
potential biomarkers to inform prognosis and treatment
allocation in this setting.

It has been well proved that allogeneic hematopoietic cell
transplantation (alloHCT) is successful in treating AML and
AML is immune-responsive (8). However, immunosuppression
could also be caused by AML blasts, leading to paradoxical
immunosuppression in patients with AML (9). Therefore,
further understanding of how immune cells battle with AML
blasts could lead to more effective therapies for AML.

Previous studies (10–12) have stratified AML patients into low-
and high-risk groups based on immune and stromal scores with
the ESTIMATE algorithm (13), which is based on single sample
Gene Set Enrichment Analysis and then generates stromal and
immune scores to predict the infiltration of stromal and immune
cells in tumors. The identified differentially expressed genes
(DEGs) from low- and high-risk groups were then studied to
look for potential prognostic value in AML patients. However,
there is a lack of a comprehensive study on the utility of immune-
related gene (IRG) expression in predicting AML prognosis and
comparing AML with healthy samples. This study aimed to fill the
gap by focusing on the relationship between IRG expression and
AML patients’ prognosis.
MATERIALS AND METHODS

Data Acquisition
Clinical and transcriptome information of TCGA-LAML and
GTEx-whole blood cohorts were acquired from the UCSC Xena
database (http://xena.ucsc.edu/). The GTEx project is a data
resource of the healthy population from organ donation and
rapid autopsy settings (14). All the transcriptome data have been
normalized according to the description from the UCSC Xena
database. The ImmPort database provided a total of 2,498
immune-related genes. We obtained clinical and transcriptome
data from the GSE37642 cohort (validation cohort) in the Gene
Expression Omnibus (GEO) database to validate our prognostic
model. All eligible samples from TCGA and validation cohorts
were collected according to the following inclusive criteria: (1)
newly diagnosed acute myeloid leukemia specimen; (2)
Availability of transcriptome data; (3) Availability of general
survival information and related clinical data. The clinical
information of inclusive AML samples is detailed in Table 1.

Establishment of an Immune-Related
Signature
2,516 DEGs were identified between the TCGA-LAML and
GTEx-whole blood cohorts (Table S1). After integrating 2,498
IRGs, we obtained 199 differentially expressed IRGs (Table S2).
Univariate Cox regression analysis was performed to evaluate the
association between expression levels of individual IRGs and OS
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and 72 of them were of potential prognostic value (Table S3). To
minimize the risk of overfitting, LASSO regression analysis was
applied to construct a prognostic model (15). We finally
established an immune prognostic signature (immune-17
signature, because it contains 17 IRGs). The risk score was
calculated using the equation: b1 × gene1 expression + b2 ×
gene2 expression +… + bn × genen expression, where b was the
correlation coefficient generated by LASSO regression analysis.

Evaluation of the Immune-17 Signature
Each patient from the GEO or TCGA database was allocated a
risk score derived from the immune-17 signature. These patients
were then stratified into low- and high-risk groups using the
median risk score as the cutoff value. The Kaplan–Meier analysis
was conducted to evaluate the prognostic significance of the
immune-17 signature. Model specificity and sensitivity were
assessed by calculating the area under the curve (AUC) values.
Specific predictive ability was determined when AUC >0.60,
while excellent predictive values were determined if AUC
>0.75. Univariate and multivariate Cox analysis were used to
prove the signature is an independent prognostic model.

Improvement of European LeukemiaNet
(ELN) 2017 Risk Stratification System
Patients were stratified into three new groups: ELN favorable/
immune-17high and ELN adverse/immune-17low patients were
re-assigned to the intermediate-risk group, and ELN
intermediate/immune-17high patients were re-assigned to the
high-risk group. Through Kaplan–Meier analysis, we evaluated
the prognostic significance of the new risk stratification system.

Statistical Analysis
The R software (version 4.0.2, https://www.r-project.org/) was
used to perform all statistical analyses. DEGs between healthy
individuals and AML patients were identified using the “limma”
package with filter criteria (FDR <0.05 and |log FC |>2).
Heatmap and clustering were carried out using the “pheatmap”
package. Enrichment analysis was performed using the
“clusterProfiler” package. Univariate and multivariate Cox
regression analysis was conducted using “survival” package.
“glmnet” and “survival” packages were used to conduct LASSO
regression analysis. “survminer” and “survival” packages were
used to perform Kaplan–Meier analysis. “survivalROC” package
was used to determine AUC values and construct receiver
operating characteristic (ROC) curves. The introduction of
packages in R software can be found at the site of (https://
cloud.r-project.org/). All statistical tests were two-sided, and
p <0.05 was considered to be statistically significant.
RESULTS

IRGs Were Associated With the OS of AML
Patients
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses indicated that
May 2021 | Volume 12 | Article 639634
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DEGs were mainly enriched in the immune biology processes
(Figure S1A). The KEGG enrichment analysis results revealed
the central role of transcriptional dysregulations in the
development of AML (Figure S1B). 17 IRGs involved in the
model were associated with the OS of AML patients (Table 2),
and their expression in AML patients is shown in Table S2.
Representative Kaplan–Meier plots showed TRH, MPO, IGHV4-
39 and CLEC11A associated with prolonged survival of AML
patients. On the contrary, APOBEC3G, IL1R2, GZMB, ISG20
and HSPA1B correlated with a poor OS (Figures 1A–I).

Evaluation of the IRG Signature
The IRG signature was evaluated in the training (TCGA-LAML)
and validation cohorts. Kaplan–Meier plots demonstrated that
patients allocated to the high-risk group showed a significantly
shorter OS (p = 1.321e−14, TCGA-LAML; p = 5.275e−4,
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validation cohort), (Figures 2A, B). This model’s AUC value
achieved a value of 0.823 in the TCGA-LAML cohort and a value
of 0.613 in the validation cohort, respectively (Figures 2C, D).
To determine whether the immune-17 signature was a stable
predictive model, we performed the Kaplan-Meier analysis in
patients from the TCGA-LAML cohort stratified by age (Figure
S2A) and ELN risk system (Figure S2B), respectively. The results
indicated that the immune-17 signature could discern low-risk
patients from high-risk patients in all stratified groups. We
performed the univariate and multivariate Cox analysis
revealed that the signature was an independent prognostic
model (univariate Cox: hazard ratio [HR], 1.768; 95%
confidence interval [95% CI], 1.559–2.019; p <0.001;
multivariate Cox: HR, 1.631; 95% CI, 1.417–1.878; p <0.001),
(Table 3). After re-stratification of patients (Figures 3A), we
found that combined ELN + immune-17 risk stratification
TABLE 1 | Baseline characteristics of the patients in the training and validation cohorts.

Clinicopathological variables Training dataset (n = 151) Clinicopathological variables Validation dataset (n = 417)

high-risk group low-risk group p high-risk group low-risk group p

Age (years) 　 　 0.004 Age (years) 　 0.256
<60 33 51 <60 108 119
≥60 42 25 ≥60 101 89
FAB classification 0.01 FAB classification 0.003
M0 10 5 M0 11 3
M1 20 15 M1 40 44
M2 15 23 M2 49 68
M3 4 11 M3 4 15
M4 10 19 M4 57 47
M5 12 3 M5 30 17
M6 2 0 M6 7 8
M7 1 0 M7 2 0
Gender 0.467 Status 0.001
Female 36 32 Alive 40 69
Male 39 44 Dead 169 139
Status <0.0001 RUNX1-RUNX1T1 0.001
Alive 11 43 Negative 205 189
Dead 64 33 Positive 4 19
WBC 0.787 RUNX1 mutation 0.043
<10 × 109/L 28 30 Negative 153 157
≥10 × 109/L 47 46 Positive 37 21
BM blast 0.559
<70% 31 35
≥70% 44 41
Risk (Cytogenetic) <0.0001
Good 7 24
Intermediate 43 38
Poor 24 12
ELN2017 <0.0001
Favorable 7 25
Intermediate 28 23
Adverse 36 17
Transplant 0.161
Yes 29 38
No 46 38
Chemotherapy 0.638
Yes 72 74
No 3 2
Relapse 0.12
Yes 38 29
No 36 46 　 　 　 　 　
May 2021 | Vo
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FAB, French-American-British; WBC, white blood cell; BM, bone marrow; ELN, European LeukemiaNet.
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system could more accurately define AML patients’ prognosis
(Figures 3B, C).
DISCUSSION

Genetic and clinical factors play increasingly important roles in
predicting OS and event-free survival (EFS) for AML patients
(16). Patient-related factors, AML-related genetic factors and
MRD monitoring are considered as key factors responsible for
AML prognosis (17). In the past, immune factors have been
largely ignored. This study constructed an immune prognostic
signature for AML based on the TCGA-LAML and GTEx-whole
blood cohort, which improved the accuracy of ELN2017 risk
stratification system.

Among the 17 IRGs involved in the immune-17 signature, we
roughly divided them into three categories according to genes’
function: 1) innate immunity-related genes; 2) specific
immunity-related genes; 3) endocrine-related genes.
TABLE 2 | Univariate Cox regression analysis of 17 genes from immune-17
model for overall survival of TCGA-LAML patients.

id HR HR.95L HR.95H p-value Coef

CALR 0.5621 0.4192 0.7537 0.0001 −0.0376
HSPA1B 1.2640 1.0710 1.4918 0.0056 0.0362
APOBEC3G 1.8348 1.3200 2.5503 0.0003 0.0589
MX1 1.2173 1.0787 1.3736 0.0014 0.0687
ISG20 1.6087 1.2889 2.0077 0.0000 0.1710
MPO 0.8764 0.8274 0.9284 0.0000 −0.0483
CCL4 1.3606 1.0863 1.7041 0.0074 0.1340
FGR 1.1088 1.0253 1.1991 0.0097 0.0032
MIF 1.2278 1.0085 1.4948 0.0410 0.2294
IGHD5.18 1.1075 1.0345 1.1856 0.0033 0.0108
IGHV4.39 0.8980 0.8301 0.9714 0.0073 −0.0794
IGHV5.51 0.8796 0.8042 0.9620 0.0050 −0.0608
PLXNB2 1.2653 1.0672 1.5002 0.0068 0.0676
CLEC11A 0.8809 0.8211 0.9450 0.0004 −0.0324
TRH 0.8622 0.7922 0.9385 0.0006 −0.0645
IL1R2 1.1756 1.0602 1.3035 0.0021 0.0939
GZMB 1.3243 1.1444 1.5324 0.0002 0.0535
HR (Hazard ratio) is intended for overall survival; Coef, correlation coefficient.
A B C

D E F

G H I

FIGURE 1 | Immune-related genes (IRGs) associated with the overall survival (OS) of acute myeloid leukemia (AML) patients. (A–I) Kaplan–Meier curve analysis of
nine representative IRGs in TCGA-LAML cohort.
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APOBEC3G, MIF, MX1, ISG20, MPO, FGR, and IL1R2 are
innate immunity-related genes. APOBEC3G is highly expressed
in various cancers and plays an essential role in regulating tumor
growth and innate immune responses (18, 19). MIF contributes
to the immune escape, anti-inflammatory, and immune
tolerance in either innate or adaptive immune cells (20).
Primary AML highly expressed MIF and MIF drives the
bone marrow mesenchymal stromal cells (BM-MSC) to express
IL-8, which in turn assists AML cell survival and proliferation
(21). Base on this finding, an anti-MIF monoclonal antibody
(Imalumab) is being studied in a phase I study (NCT01765790)
to assess the safety, pharmacokinetics, tolerability, and antitumor
activity against solid cancers (22). FGR is a member of the Src
family and contributes to the transition of signals from cell
surface receptors and promotes inflammatory cytokines releases.
FGR expression is restricted to myeloid lineage and is markedly
highly expressed in a subset of AML (23). CALR, CCL4, and
GZMB are considered genes of the adaptive immunity. CALR is
found in myeloproliferative neoplasms (MPN) and represents an
MPN-driver mutation. The presence of this gene is included in
the current diagnostic criteria of Ph(−) MPN (24). The AML
patients converted from MPN had more CALR mutation rate
Frontiers in Immunology | www.frontiersin.org 521
frequency (25). Moreover, there are reports that the expression of
CALR is remarkably higher than other hematologic
malignancies, such as ambiguous lineage, ALL, MPN, MDS/
MPN (26). CCL4 and GZMB are associated with T-cell
immunity. CCL4 is a biomarker of multiple sclerosis and
associated with inflammation and T-cell activation (27). AML
patients with monocytic differentiation had increased serum
levels of CCL4 along with CCL5 and CCL3. The three
biomarkers promote an inflammatory state and participated in
the progression of suppressing T cell-related immune response
(28). GZMB encodes the preprotein secreted by NK cell and
CTLs, which is related to the apoptosis of target cells (29).
Hypermethylation of the enhancer upstream of GZMB
might contribute to an inferior overall survival of AML (30).
The mutation in these genes might cause obstacles to
the elimination of abnormal cells. Finally, TRH and CLEC11A
not only have functions in the endocrine system, but also play
a role in immune system. Other genes included in the 17-
immune signature have been reported to participate in
immune response. These include HSPA1B, IGHD5-18,
IGHV4-39, IGHV5-51, and PLXNB2, providing directions and
clues for our future research.
A B

C D

FIGURE 2 | Evaluation of the IRG signature. Kaplan–Meier curve analysis between the high- and low-risk groups in the raining (A) and validation (B) cohort, respectively.
Time-dependent receiver operating characteristic (ROC) curve analysis of the immune-17 signature in the training (C) and validation (D) cohort, respectively.
May 2021 | Volume 12 | Article 639634
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Although the immune-17 signature has been proved effective
in both training and validation cohorts, the AUC value for this
model applied in the validation cohorts is not satisfying; it might
be due to different data platforms. The training cohort is
generated from RNA-sequencing, while the validation cohort is
obtained from the microarray platform. In addition, the different
ethnicity distribution may contribute to this result. Although the
Frontiers in Immunology | www.frontiersin.org 622
AUC value is lower in the validation cohort than that in the
training cohort, the signature still exhibited predictive power in
validation cohort evidenced by the Kaplan–Meier survival and
ROC curve analysis.

ELN2017 risk stratification system (integrated cytogenetic
and mutational status information) has been utilized in general
practice (17). However, non-genetic potential mechanisms have
TABLE 3 | Univariate and multivariate Cox regression analysis of immune-17 model for overall survival of TCGA-LAML patients.

Characteristics Univariate Cox Multivariate Cox

HR HR.95L HR.95H p-value HR HR.95L HR.95H p-value

Age 1.0324 1.0171 1.0479 2.73E−05 1.0258 1.0102 1.0416 0.0011
Sex 1.0141 0.6684 1.5386 0.9474 0.7646 0.4824 1.2118 0.2533
BM Blast (%) 1.0025 0.9920 1.0131 0.6431 1.0058 0.9944 1.0172 0.3201
WBC 1.0019 0.9972 1.0067 0.4242 1.0034 0.9984 1.0083 0.1824
Platelet count 0.9999 0.9964 1.0034 0.9408 0.9983 0.9943 1.0024 0.4199
ELN2017 1.7708 1.3287 2.3600 9.64E−05 1.6412 1.1859 2.2711 0.0028
Immune-17 score 1.7685 1.5490 2.0190 3.35E−17 1.6313 1.4167 1.8784 1.04E−11
May 2021 |
 Volume 12 | Artic
HR is intended for overall survival; WBC, white blood cell; BM, bone marrow; ELN, European LeukemiaNet.
A

B C

FIGURE 3 | Improved ELN2017 risk stratification system. (A) Re-stratification of patients from the three ELN2017 categories to the novel three ELN2017+immune-
17 categories. Each line represents a patient. The line’s left end means the ELN2017 categories and the line’s right end means novel ELN-immune-17 categories. If
the line is parallel, the patient’s classification is not change. If not, the patient’s classification has changed. Kaplan–Meier analysis for AML patients stratified by
ELN2017 risk stratification system (B) or ELN2017+immune-17 risk stratification system (C).
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been found to play essential roles in AML patients’ survival (31,
32). In this study, from the immunology perspective, we
improved the accuracy of ELN2017 risk stratification system
by incorporating the immune-17 signature. Different immune
signatures in myeloid neoplasms need to be investigated, which
will likely improve knowledge on disease pathogenesis and
inform novel therapies. Several novel drugs such as anti-TIM3
and anti-CD47 antibodies are macrophage and lymphocyte
immune checkpoint inhibitors, which are under active
investigation and (33, 34). These drugs reactivate immune
response against myeloid blasts, thus blocking leukemia
immune escape.

In conclusion, we constructed an immune-related signature,
which is a reliable and accurate model to predict AML patients’
OS. We also refined the ELN2017 risk stratification system after
the incorporation of this model. The immune-17 signature may
be implemented to refine AML prognosis and, in the future, to
inform treatment with novel immunotherapies.
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Background: Essential thrombocythemia (ET), polycythemia vera (PV), and primary
myelofibrosis (PMF) are clonal hematological diseases classified as Philadelphia
chromosome-negative myeloproliferative neoplasms (MPN). MPN pathogenesis is
associated with the presence of somatic driver mutations, bone marrow (BM) niche
alterations, and tumor inflammatory status. The relevance of soluble mediators in the
pathogenesis of MPN led us to analyze the levels of cytokines, chemokines, and growth
factors related to inflammation, angiogenesis and hematopoiesis regulation in the BM
niche of MPN patients.

Methods: Soluble mediator levels in BM plasma samples from 17 healthy subjects, 28
ET, 19 PV, and 16 PMF patients were determined using a multiplex assay. Soluble
mediator signatures were created from categorical analyses of high mediator producers.
Soluble mediator connections and the correlation between plasma levels and clinic-
laboratory parameters were also analyzed.

Results: The soluble mediator signatures of the BM niche of PV patients revealed a highly
inflammatory and pro-angiogenic milieu, with increased levels of chemokines (CCL2,
CCL5, CXCL8, CXCL12, CXCL10), and growth factors (GM-CSF M-CSF, HGF, IFN-g,
IL-1b, IL-6Ra, IL-12, IL-17, IL-18, TNF-a, VEGF, and VEGF-R2). ET and PMF patients
presented intermediate inflammatory and pro-angiogenic profiles. Deregulation of soluble
mediators was associated with some clinic-laboratory parameters of MPN patients,
including vascular events, treatment status, risk stratification of disease, hemoglobin
concentration, hematocrit, and red blood cell count.
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Conclusions: Each MPN subtype exhibits a distinct soluble mediator signature.
Deregulated production of BM soluble mediators may contribute to MPN pathogenesis
and BM niche modification, provides pro-tumor stimuli, and is a potential target for
future therapies.
Keywords: myeloproliferative neoplasms, soluble mediators, inflammation, angiogenesis, cytokines, bone
marrow niche
INTRODUCTION

Essential thrombocythemia (ET), polycythemia vera (PV), and
primary myelofibrosis (PMF) are classical myeloproliferative
neoplasms (MPN) also known as Philadelphia chromosome
(Ph)-negative MPN. These clonal diseases are characterized by
single or multilineage hyperproliferation of the bone marrow
(BM) that results in spontaneous accumulation of mature
myeloid cells in the BM and peripheral blood. The erythroid
lineage is the mostly affected in PV patients, while the
megakaryocytic lineage from ET and PMF patients exhibit
hyperplasia and atypia, and BM fibrosis. PMF patients also
have increased or decreased number of granulocytes,
monocytosis, and erythroid dysplasia (1, 2).

Disease pathogenesis is partially attributed to the presence of
acquired driver mutations in Janus Kinase 2 (JAK2), calreticulin
(CALR) or myeloproliferative leukemia virus (MPL) genes. These
somatic mutations lead to abnormal activation of the JAK
pathway, resulting in constitutive activation of their downstream
effectors, specially STATs (2, 3). JAK2V617F is the most frequent
driver mutation in MPN patients: it is detected in more than 90%
of PV patients, and in about 50–60% of ET and PMF patients (4,
5). The CALR mutation is found in about 20–30% of ET and PMF
patients, and is the second most frequent MPN-mutation (4, 5).
Triple negative and MPL mutation are present in less than 12% of
ET and PMF patients (4).

The crosstalk between inflammation and neoplastic cells plays a
crucial role in disease development and progression. The BM of
MPN patients is rich in inflammatory cytokines and growth factors,
which form a pro-tumorigenic microenvironment that supports
neoplastic cells and favors specific clinical phenotypes (6–8).

Cytokines and chemokines are key mediators of the immune
system that regulate many complex signaling processes, and whose
levels reflect the systemic and local immune activation status (9, 10).
The co-participation of cytokines may result in activation or
inactivation of immune pathways, and one cytokine can be
secreted by different cell types in the same environment (10). In
addition, cytokines act as important regulatory signals of
hematopoiesis by inducing proliferation and/or survival of
hematopoietic stem-cells (8, 11). Cytokines can also play a role as
extrinsic factors that contribute to BM pathological changes (6, 7).

MPN are considered tumor inflammatory diseases. Over the
past years, several studies have investigated how chronic
inflammation contributes to MPN pathogenesis (6, 7, 12). We
have recently described an altered cytokine profile in peripheral
blood of MPN patients (13). PMF patients exhibit high
inflammatory profile due overproduction of multiple pro-
226
inflammatory cytokines and chemokines (13, 14); in these
patients, the presence of JAK2V617F mutation is associated
with high CXCL10 levels (13).

Considering the relevance of cytokines, chemokines, and growth
factors (hereafter referred to as soluble mediators) as mediators of
inflammation, angiogenesis and hematopoiesis regulation, here we
examined the soluble mediator signature in the BM niche of ET,
PV, and PMF patients. We also analyzed the correlation between
cytokine levels and clinic-laboratory parameters.
MATERIALS AND METHODS

Patients and Samples
The Ethics Committees for Human Research from the School of
Pharmaceutical Sciences of Ribeirão Preto, from the University
Hospital of the Ribeirão Preto Medical School (HC-FMRP;
Ribeirão Preto, Brazil), and from the Euryclides de Jesus
Zerbini Transplant Hospital (São Paulo, Brazil) approved the
study protocol.

The studied groups consisted of 17 healthy volunteers (CTRL
group) and 63 MPN patients (28 ET, 19 PV, and 16 PMF
patients). The patients were recruited at the Bone Marrow
Transplantation Unit of HCFMRP-USP and at the Euryclides
de Jesus Zerbini Transplant Hospital. All MPN patients were
diagnosed according to the 2016 World Health Organization
criteria (1). Healthy BM donors were recruited at the Bone
Marrow Transplantation Unit of HCFMRP-USP.

BM aspirates were collected from the left posterior iliac crest
into EDTA tubes at the time of diagnosis. Plasma was separated
from the BM samples by centrifugation at 400×g for 10 min at 4°C
(Eppendorf 5810R centrifuge), and aliquots were stored at −80°C
for further cytokine analysis.

Risk-Stratification of MPN Patients
PV patients were classified into two risk categories: high and low.
High-risk patients were the ones with age >60 years and/or
history of vascular complications (including previous
thrombosis, cardiovascular events and/or strokes). The patients
who did not present the abovementioned two risk factors were
classified as low risk (15).

The revised IPSET-thrombosis (r-IPSET-t) risk score splits
ET patients into four risk categories: very low (age <60 years and
absence of JAK2 mutation), low (age <60 years and presence of
JAK2 mutation), intermediate (age >60 years and absence of
JAK2 mutation), and high risk (age >60 years and presence of JAK2
mutation or vascular complication) (16).
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The DIPSS-Plus scoring system was used to classify PMF
patients into four categories: low, intermediate-1, intermediate-2,
and high risk. The prognosis score considered the following risk
factors: age, white blood cell and platelet counts, peripheral blood
blast percentage, hemoglobin concentration, transfusion
dependency, presence of constitutional symptoms, and
unfavorable karyotype (17).

Multiplex Assays
Soluble mediator levels were determined using a customized
microbeads multiplex assay (Human Magnetic Luminex® Assay,
R&D Systems) performed on the Luminex1 MAGPIX1 System
(Luminex Corporation). The cytokines and chemokines
measured were interleukins (IL) IL-6, IL-1b, IL-12p70, IL-10,
IL-17a, and IL-18; interferon gamma (IFN-g); tumor necrosis
factor alpha (TNF-a); IL-6 receptor subunit alpha (IL-6Ra); C–
X–C motif ligands (CXC) CXCL8 (also known as IL-8), CXCL12
(also known as SDF-1, stromal cell-derived factor 1), CXCL10
(also known as IP-10, interferon-induced protein 10); and C–C
motif chemokine ligands (CCL) CCL2 (known as MCP-1,
monocyte chemotactic protein 1) and CCL5 (known as
RANTES). The growth factors granulocyte-macrophage colony
stimulating factor (GM-CSF), macrophage colony stimulating
factor (M-CSF), granulocyte colony stimulating factor (G-CSF),
hepatocyte growth factor (HGF), vascular endothelial growth
factor (VEGF), and VEGF receptor 2 (VEGF-R2) were also
quantified. Data were analyzed using the Milliplex Analyst
software v3.5 (Millipore; VigeneTech Ind).

Data Analyses
Mann–Whitney test was applied to compare differences in
distribution of soluble mediators among MPN groups (ET, PV,
and PMF) and patients’ JAK2V617F status. Spearman test was
used for the correlation analysis of hematological parameters.
GraphPad Prism 6.0 software (GraphPad Software) was used for
statistical analysis. Significance was set at 0.05.

Cytoscape 3.7.2 software (available at htpp://cytoscape.org,
National Institute of General Medical Sciences of the National
Institutes of Health, USA) was used to construct the soluble
mediator signatures (18), using the r-values (correlation
coefficient) from the Spearman test that had p-value <0.05.

Overall soluble mediator profi le was obtained by
characterizing the general cytokine pattern of each group (18,
19). Each individual was classified as high or low mediator-
producer, based on overall median values, as described
previously by Vitelli-Aguiar et al. (19). The complete protocol
of overall analyses was adapted from our previous work (13).
RESULTS

Demographic Data and Clinic-Laboratory
Profile of Study Cohort
The median age of MPN patients was 65.5 years (20–85),
distributed as 63 (31–78), 62 (20–85), and 68.5 (54–80) years
for ET, PV, and PMF patients, respectively. The median age of
Frontiers in Oncology | www.frontiersin.org 327
CTRL subjects was 49 (19–83) years. Male–female proportions in
the studied CTRL, ET, PV, and PMF groups were 6–11, 5–23,
12–7, and 12–4, respectively. Demographic and clinic-laboratory
characteristics of the MPN cohort, including age, gender,
mutation status, risk stratification, fibrosis rate, transfusion
dependency, treatment status, hematological parameters, and
reticulin rate are summarized in Table 1. The individual
characteristics of CTRL volunteers and MPN patients are
summarized in Tables S1–S4.
TABLE 1 | Demographic data and clinic-laboratory parameters from
polycythemia vera (PV), essential thrombocythemia (ET), and primary
myelofibrosis (PMF) patients.

Data PV (n=19) ET (n=28) PMF (n=16)

Age (years/range) 62 (20–85) 63 (31–78) 68.5 (54–80)
Gender (male %) 12 (63.16) 5 (17.86) 12 (75)
Mutation status
JAK2V617F+ (%) 19 (100) 13 (46.43) 9 (56.25)
CALR+ (%) 0 (0) 7 (25) 5 (31.25)
JAK2V617F- (%) 0 (0) 5 (17.86) 0 (0)
Double negative (%) 0 (0) 3 (10.71) 2 (12.5)
Treatment, n (%) 4 (21.06) 10 (35.71) 5 (31.25)
ASA 2 (10.53) 2 (20) 0 (0)
HU 2 (10.53) 6 (60) 3 (60)
ASA + HU 0 (0) 2 (20) 0 (0)
Anagrelide + ASA 0 (0) 0 (0) 1 (20)
Ruxolitinib 0 (0) 0 (0) 1 (20)
Vascular event, n (%) 7 (36.84) 5 (17.86) 5 (31.25)
NA 0 (0) 4 (14.29) 0 (0)
Transfusion
dependency, n (%)

0(0) 2 (7.14) 5 (31.25)

NA 1 (5.26) 3 (10.71) 0 (0)
Fibrosis rate n, (%)
0 10 (52.64) 20 (71.44) 1 (6.25)
1 5 (26.32) 3 (10.71) 0 (0)
2 1 (5.26) 2 (7.14) 3 (18.75)
3 1 (5.26) 1 (3.57) 8 (50)
4 1 (5.26) 0 (0) 4 (25)
NA 1 (5.26) 2 (7.14) 0 (0)
Reticulin rate n, (%)
0 0 (0) 14 (50) 0 (0)
1 0 (0) 4 (14.29) 0 (0)
2 0 (0) 1 (3.57) 4 (25)
3 0 (0) 1 (3.57) 8 (50)
4 0 (0) 1 (3.57) 4 (25)
NA 19 (100) 7 (25) 0 (0)
Hematological
parameters
WBC count,
×103/mm³ (range)

12.1 (3.59–21) 7.28 (3.35–15.6) 5.85 (1.46–15.3)

RBC count,
×106/mm³ (range)

6.33 (3.09–7.46) 4.34 (2.98–5.19) 3.66 (2.49–6.01)

Hemoglobin, g/dl
(range)

16.3 (11.1–21.5) 13.2 (10.1–22.4) 11.1 (8.62–17.4)

Hematocrit, % (range) 49.1 (33.7–62) 40.65 (34.6–64.7) 35.15 (26.3–55.3)
PLT count, ×103/mm³
(range)

605 (161–1502) 665.5 (304–1293) 305 (71.7–917)
M
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ASA, acetylsalicylic acid; CALR+, positive for calreticulin mutation; Double negative,
negative for JAK2V617F and CALR mutation; HU, hydroxycarbamide; JAK2V617F+,
positive for JAK2V617F mutation; JAK2V617F−, negative for JAK2V617F mutation; NA,
data not available; PLT, platelets; RBC, red blood cells; VE, previous vascular event; WBC,
white blood cells.
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Soluble Mediator Levels in the BM Niche
of PV, ET and PMF Patients
Compared with CTRL, the BM niche of PV patients presented
increased levels of inflammatory cytokines and angiogenesis-
and hematopoiesis-related factors, including CCL2, CCL5,
CXCL8, CXCL10, CXCL12, GM-CSF, HGF, IFN-g, IL-1b, IL-
6Ra, IL-12p70, IL-17a, IL-18, M-CSF, TNF-a, VEGF, and
VEGF-R2 (Figure 1 and Table S5).

ET patients exhibited augmented levels of CCL2, CCL5, CXCL8,
CXCL10, GM-CSF, IFN-g, IL-1b, IL-17a, IL-18, TNF-a, and VEGF,
when compared with CTRL. MF patients displayed higher levels of
only CXCL8, CXCL10, IL-6Ra, and IL-18, as compared with CTRL
(Figure 1 and Table S5).

All MPN categories presented high production of the
chemokines IL-18, CXCL10 and CXCL8. Compared with PV
patients, ET patients had lower levels of G-CSF, HGF, IFN-g,
Frontiers in Oncology | www.frontiersin.org 428
IL-10, and IL-17a in the BM niche, while PMF patients presented
lower levels of CCL2, CCL5, CXCL12, G-CSF, GM-CSF, HGF,
IFN-g, IL-1b, IL-10, IL-17a, IL-12p70, M-CSF, TNF-a, and
VEGF. The BM niche of ET patients exhibited higher levels of
CCL5, IL-6 and VEGF than PMF patients.

The present results indicated that the BM levels of IL-17, IFN-g,
G-CSF, and HGF in PV patients were higher than those detected in
PMF and ET patients. Hence, PV patients seem those with more
unique soluble mediators profile as compared to the other MPN.

Categorical Analyses of Soluble Mediator
Production in BM Niche of MPN Subtypes
Categorical analyses were performed to better comprehend the
soluble mediator production patterns and the differences among
MPN subtypes. Patients were stratified into high and low
producers of soluble mediators using the overall median as
FIGURE 1 | Bone marrow plasma levels of inflammatory soluble mediators in healthy subjects (CTRL; n = 17) and patients with essential thrombocythemia (ET, n =
28), polycythemia vera (PV, n = 19), and primary myelofibrosis (PMF, n = 16). The concentration of all the soluble mediators was determined using a Multiplex assay.
Significant differences when p <0.05, Mann–Whitney test.
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cut-off point. High producer was the individual whose soluble
mediator production value was higher than the overall median,
while low producer was the individual whose soluble mediator
production level was equal to or lower than the overall median.
The frequency of high producers of each mediator was calculated
for all disease and CTRL subsets. The production of each
mediator was considered relevant when the frequency of high
producers exceeded 50% (13, 19, 20).

The CTRL group did not produce any of the mediators in
relevant amounts, since less than 50% of the individuals were
high producers (Figure S1). Soluble mediator production in BM
niche differed among MPN subtypes. PV patients exhibited
remarkably dysregulated production of soluble mediators, with
relevant production of the 20 mediators analyzed. Only PV
group showed high producers for IL-10, CXCL12, IFN-g, G-
CSF and HGF in a relevant frequency. Differently from PMF, PV
and ET group showed relevant production of IL-6, IL-1b, IL-17a,
IL-12p70, CCL5, VEGF, VEGF-R2, TNF-a, GM-CSF and
M-CSF.

ET patients produced most of the mediators in relevant
amounts, but PMF patients exhibited relevant production of
only five mediators (Figure S1), among them IL-6Ra, IL-18 and
Frontiers in Oncology | www.frontiersin.org 529
CXCL10 were present in PMF but not in ET patients.
Interestingly, all MPN categories presented high production of
the chemokines CXCL8 and CCL2 (>50% high producers).

Spider charts summarize the soluble mediator signatures and
enable visual comparison among the CTRL, ET, PMF, and PV
groups (Figure S2).

Soluble Mediator Networks in
MPN Subtypes
After identifying the soluble mediator signature for each disease
(ET, PV, and PMF) and CTRL group, we analyzed the existence
of correlation between the mediator levels (Figure 2).
Correlations were stratified into negative (r <0), weak (r ≤0.35),
moderate (r ≥0.36 and r ≤0.67) or strong (r ≥0.68). The CTRL
group exhibited the highest number of strong correlations, and
similar findings were obtained in ET patients (IL-1b with IL-17a
and IFN-g; IL-10 with IL-12p70, IFN-g and M-CSF; IL-17a with
CCL5 and IFN-g; IL-12p70 with CCL5 and IFN-g; CCL5 with IFN-g
and M-CSF; VEGF with VEGF-R2; and IFN-g with M-CSF). PMF
patients also showedmany strong interactions (between IL-17a with
IL-6Ra, CCL5, VEGF, GM-CSF, G-CSF and M-CSF; IL-10
with CXCL10 and GM-CSF; CCL5 with IFN-g and VEGF;
FIGURE 2 | Soluble mediators interaction networks in healthy subjects (CTRL, n = 17) and patients with essential thrombocythemia (ET, n = 28), polycythemia vera
(PV, n = 19), and primary myelofibrosis (PMF, n = 16). The correlations were stratified according to r-values: strong (blue lines, r ≥0.68), moderate (gray lines, 0.36 ≤ r ≥ 0.67)
and negative (dashed red line, r <0). The correlations depicted in this figure were significant (p <0.05).
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CXCL10 with GM-CSF; M-CSF with IFN-g and VEGF-R2), while
PV patients were highly different from the CTRL group and showed
the lowest number of strong correlations (CXCL8 with IL-6, IL-
12p70 and CCL2; IL-10 with GM-CSF and CXCL10; and M-CSF
with IFN-g). These results highlighted the deregulation of soluble
mediator network in PV patients versus other MPN categories and
CTRL group.

Correlation Between the BM Soluble
Mediator Levels and Patients’ Clinic-
Laboratory Parameters
We analyzed the potential correlation between soluble mediator
levels and the major clinic-laboratory parameters (Figure 3A).
The patients’ hematological parameters analyzed were
hemoglobin concentration, hematocrit, and white blood cell,
red blood cell, and platelet counts.

The following correlations among soluble mediators and
MPN clinical parameters were found:

In PV, hemoglobin concentration positively correlated with
VEGF and HGF, and negatively with CCL5 and IFN-g; red blood
cell count positively correlated with IL-6Ra and TNF-a;
hematocrit positively correlated with IL-6Ra, and negatively
correlated with CCL5 and IFN-g; white blood cell count
positively correlated with IL-6Ra and VEGF, and negatively
with CCL5; and platelet counts negatively correlated with
CXCL10 and CCL2 (Table S6).

ET patients displayed positive correlations between
hemoglobin concentration with IL-6Ra, IL-1b, IL-10, IL-18
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and G-CSF; red blood cell count with IL-6Ra and VEGF-R2;
hematocrit with GM-CSF and IL-1b; white blood cell count with
IL-6Ra; and platelet count with VEGF-R2 and CCL5 (Table S7).

In PMF, white blood cell count positively correlated with
VEGF-R2. Negative correlations among hemoglobin
concentration, red blood cell count and hematocrit with IL-6,
IL-10, CXCL10 and GM-CSF were also observed (Table S8). No
similar patterns of correlation between soluble mediator levels
and the clinic-laboratory parameter were obtained in PV, ET
and PMF.

Risk-stratification analysis showed in very low risk ET
patients (n = 6) higher CXCL8 levels than those detected in
low risk ET patients (n = 4) (Figure 4A). No relationships were
found among soluble mediators and PV and PMF risk status.

Rega rd ing the rapy , t r e a t ed PV pa t i en t s (w i th
hydroxycarbamide or acetylsalicylic acid) had lower G-CSF
levels than untreated PV patients (Figure 4B). There was no
association between soluble mediator levels and treatment in ET
and PMF patients

Five ET patients with vascular event (including thrombosis,
cardiovascular events and/or strokes) exhibited lower levels of
IL-17, CCL5, GM-CSF, and VEGF than ET patients with no
vascular event (n = 17) (Figure 4A). PV patients with vascular
event (n = 7) displayed higher levels of CXCL12, TNF-a and
VEGF-R2 than PV patients with no vascular event (n = 12)
(Figure 4B). PMF patients with vascular event (n = 5) had
increased levels of IL-6Ra when compared with patients with no
vascular event (n = 11) (Figure 4C).
A

B

FIGURE 3 | (A) Correlation between soluble mediator levels and laboratory parameters of healthy subjects (CTRL, n = 17) and patients with essential
thrombocythemia (ET, n = 28), polycythemia vera (PV, n = 19), and primary myelofibrosis (PMF, n = 16). The Spearman coefficient (r-value) was represented by a
color gradient that ranged from close to 1 (dark blue) to −1 (dark red); white indicates no correlation. The correlations depicted in this figure were significant
when p <0.05. HCT, hematocrit; HGB, hemoglobin concentration; PLT, platelet count; RBC, red blood cell count; WBC, white blood cell count. (B) Association
between driver mutation status and IL-6Ra, CXCL12, and M-CSF levels in bone marrow plasma from patients with ET. JAK2V617+ (n = 13 ET patients positive
for JAK2V617F mutation). JAK2V617F- (n = 5; ET patients negative for JAK2V617F mutation). CALR+ (n = 7; patients positive for calreticulin mutation). DN
(n = 3; double negative for CALR and JAK2V617 patients). Statistical difference when p <0.05, Mann–Whitney test.
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Finally, we analyzed, in PMF patients, the potential
association between soluble mediator levels and transfusion
dependency, and disease stages (Figure 4C). PMF patients
with transfusion dependency had higher CXCL10 levels than
those with no dependency. In addition, PMF patients in pre-
fibrotic/proliferative stage had elevated CCL2 levels when
compared with those in fibrotic stage.

JAK2V617F+ ET Patients Have High
IL-6Ra Levels
The soluble mediators levels of ET and PMF patients
were stratified according to their driver mutation status.
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ET JAK2V617F+ showed higher IL-6Ra levels than those with
CALR mutation, and double negative (DN) for JAK2V617F and
CALR. ET CALR mutated patients displayed elevated M-CSF
levels than DN; and JAK2V617F- patients showed lower levels of
M-CSF and CXCL12 than DN patients (Figure 3B). There was
no association between soluble mediators levels and mutation
status in PMF patients.

The extent of production (i.e. high versus low producers) of
soluble mediators according to the presence of driver mutations
was also analyzed in ET (Figure S3) and PMF (Figure S4)
patients. JAK2V617F+ ET patients were high producers of CCL2,
CXCL10, CXCL12, IL-1b, IL-6Ra, IL-18, and TNF-a; while
A

B

C

FIGURE 4 | Association between clinical parameters of patients with essential thrombocythemia (ET, n = 28), polycythemia vera (PV, n = 19), and primary
myelofibrosis (PMF, n = 16) and soluble mediator levels. (A) ET patients: association between VEGF, GM-CSF, CCL5, and IL-17 levels and the presence (n = 5) or
absence (n = 19) of VE; and CXCL8 levels and risk-stratification in very low (n = 6), low (n = 4), intermediate (n = 8) and high (n = 10) risk. (B) PV patients:
association between G-CSF levels and administration (n = 4) or not (n = 15) of drug treatment; and association between TNF-a, CXCL12, and VEGF-R2 levels and
the presence (n = 7) or absence (n = 12) of VE. (C) PMF patients: association between IL-6Ra levels and the presence (n = 5) or absence (n = 11) of VE; association
between CCL2 levels and fibrotic disease (n = 9) or pre-fibrotic/proliferative (n = 7) stage; and association between CXCL10 levels and transfusion dependency
(n = 5) or no transfusion necessity (n = 11).
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CALR mutated were high producers of GM-CSF, G-CSF, HGF,
IFN-g, IL-12p70, and IL-17a. The soluble mediators were
differentially produced in PMF subgroups, JAK2V617F+

patients were high producers of CXCL8, and low producers of
G-CSF, M-CSF, and VEGF-R2, while CALR mutated patients
showed the opposite profile of these mediators’ production.
DISCUSSION

Both the MPN clone and BM-resident cells maintain the
cytokine-mediated inflammatory microenvironment in a
feedback loop mechanism that also maintains a pro-
tumorigenic environment. Neoplastic cells secrete pro-
inflammatory and angiogenic mediators that promote
autocrine and paracrine stimulation of fibroblasts, endothelial
cells, and stromal cells. In contrast, mediators produced in the
BM have the potential to modify the phenotype of resident cells,
stimulate angiogenesis and fibrosis, and thereby influence
neoplastic cell survival, proliferation, and progression (7, 21, 22).

Little is known about the cytokine milieu in the BM niche of
MPN patients. Most of the studies have reported the presence of
angiogenesis-related molecules by immunohistochemistry
analysis and associated their high levels with the presence of
neo-angiogenesis and fibrosis in BM (23, 24).

In physiological state, the control of cytokines and
chemokines production include an intricate of regulatory
mechanism, with an inhibitory feedback and synergic actions
to guarantee the balance of mediators levels, non-inflammatory
status, and tissue homeostasis (25, 26).

PV patients exhibited a unique soluble mediator signature, as
demonstrated by the overall and single analysis of soluble
mediators. PV patients had higher levels of IL-17, IFN-g, G-
CSF and HGF, as compared with PMF and ET patients. These
cytokines may be a useful tool in differential diagnosis of MPN.

The increased soluble mediator levels in BM niche fromMPN
patients could be partially explained by chronic inflammation
associated with oncogenesis (7, 21). Chronic inflammation may
be linked to hypoxia due to cell accumulation in the BM, which
in turn was associated with JAK/STAT pathway activation by IL-6,
IL-11, VEGF, HGF, PDGF, and TGF-b that mediates cell survival
and proliferation, and thereby contributes to MPN pathogenesis
(27, 28). Cytokine overproduction could also result from cancer-
associated genetic mutations (27). Most of our results demonstrate
that soluble mediators are not influenced by driver mutation status
and corroborate previous studies on MPN patients (13, 28–31).

It is worth to note that IL-6Ra andM-CSF levels, in this study,
were associated with JAK2V617F and CALR driver mutations,
respectively. JAK2V617F+ ET patients presented high BM IL-
6Ra levels, while CALR+ ET patients exhibited high M-CSF
levels. Categorical analysis of soluble mediator production
according to driver mutation status identified that the group of
CALR+ ET patients had the lowest number of high producers.

The trans-signaling of IL-6/IL-6R soluble receptor (sIL-6R)
complex lead to subsequent activation of JAK/STAT, MAPK and
PIK pathways, and it can be activated in all types of cells,
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including cells not responsive to IL-6 alone (32). An
observat ional epidemiologica l s tudy reported that
polymorphisms that cause loss of IL-6R function are associated
with reduced risk of JAK2V617F mutation and MPN (33).

M-CSF-stimulated human macrophages have growth-
promoting and proangiogenic phenotype with tissue repair
potential under conditions of induced inflammation (34). In
the present study, CALR+ MPN patients had higher M-CSF
levels than JAK2V617F+ patients. It is well-known that CALR+

patients have better prognosis and higher overall survival than
JAK2V617F+ patients (35). Our results, combined with the
abovementioned references (32–35), may suggest that: 1) high
IL-6Ra levels favor JAK/STAT pathway activation and the
oncoinflammatory state in ET patients; 2) high M-CSF levels
favor tissue homeostasis and attenuate inflammation in BM from
CALR+ patients.

The BM milieu and the peripheral blood systemic profile
from MPN patients are distinct. Many authors have reported
that MPN patients develop a robust and systemic inflammatory
response in peripheral blood (13, 29, 36, 37). In our study, ET
and PMF patients had mild BM niche inflammation, while PV
patients exhibited the most prominent and diffuse inflammatory
response in BM niche, among the studied MPN categories.

PMF is the MPN subtype with higher number of alterations in
the BM niche, including the presence of fibrosis and defective
hematopoiesis (1). Indeed, BM fibrosis seems to result from
continuous and long-lasting shift of the cytokine milieu rather
than a specific genetic trigger (38). In our study, the cytokine
milieu in PMF patients was similar to the CTRL group, despite
the increased levels of CXCL8, CXCL10, IL-18, and IL-6Ra.
Indeed, we identified CCL2, CXCL8, CXCL10, and IL-18 as
MPN-associated cytokines, due to their prominent levels in BM
niche of all MPN subtypes.

IL-18 is considered an inflammasome product whose main
function is to promote IFN-g secretion (39). IL-18 secreted by
BM stroma elicits the growth of leukemia blast cells and
contributes to progression of T-cell acute leukemia (40).
Elevated BM IL-18 levels are also associated with poor overall
survival of multiple myeloma patients (41). IL-18 has been
implicated in induction of fibrosis in idiopathic pulmonary
fibrosis and heart inflammation; blockage of IL-18 activity has
antifibrotic effects (42, 43). As described in other hematological
malignancies and diseases characterized by accentuated fibrosis,
we hypothesize that IL-18 may contribute to tumorigenesis and
BM fibrosis process in MPN.

CXCL8 and CXCL10 are important to regulate hematopoietic
stem cells (44, 45) and mediate inflammation-driven
angiogenesis due to CXCL10 angiostatic activity and CXCL8
angiogenic properties (46). The contribution of CXCL8 to
tumorigenesis has been described in patients with acute
myeloid leukemia, in which high CXCL8 levels are secreted by
BMmesenchymal stromal cells and support the proliferation and
survival of leukemic cells (47). Blockage of CXCL8 expression in
PMF CD34+ cells promotes cell proliferation and megakaryocyte
differentiation (48). Neutralization of the CXCL8 receptors
CXCR1 and CXCR2 enhances PMF megakaryocyte cell
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proliferation, indicating that CXCL8 and its receptor are
involved in megakaryocyte abnormalities and contribute to
PMF pathogenesis (48). The two last reports cited (47, 48)
confirmed our findings and stressed the importance of these
mediators in MPN subtypes, manly by regulating neoplastic cell
proliferation, survival, and differentiation.

CXCL8 is a pre-fibrotic cytokine (21) whose levels are
increased in BM biopsies of PMF patients, as demonstrated by
immunohistochemistry. MF CD34+ CXCL8-secreting clones are
associated with patients with high-grade reticulin fibrosis in BM
(49). Moreover, elevated CCL2 levels in MPN patients are
associated with fibrosis and poor prognosis (28, 29, 36, 37).
The expression of inflammatory genes, especially CCL2 and
CXCL10, is upregulated in patients with overt fibrosis,
indicating that pro-inflammatory gene upregulation is
associated with BM fibrosis, independently of the MPN (30).
CCL2 and CXCL8 also exert a myelosuppressive effect that can
disturb normal hematopoiesis (50).

In summary, these reports corroborate our findings and
reinforce the contribution of CCL2, CXCL8, CXCL10, and IL-
18 for MPN pathogenesis by promoting hematopoietic niche
modifications, activation of angiogenesis, and deregulation of
hematopoiesis. Only CXCL8 has been previously reported as a
MPN-associated cytokine (21, 22, 51); this could be explained by
the distinct cytokine levels detected in peripheral blood and BM.

The network analysis of soluble mediators revealed a distinct
integrative system among PV and the other studied groups (ET,
PMF and Control). Most of the soluble mediators interaction
found in our study presented biological relevance, and resides in
their synergistic interactions, which could be observed between:
1) IL-1b and IL-12 inducing IFN-g secretion (52); 2) IL-1b, TNF-
a and IL-6 promoting VEGF secretion (53); 3) GM-CSF
interaction with M-CSF/G-CSF resulting in increase of
granulopoiesis and monocytopoiesis (54); 4) IFN-g with IL-1b
and TNF-a upregulates CCL5 expression (55). These
correlations were observed in ET and PMF patients.

PV patients display very strong positive correlations only
between a few cytokine and chemokine molecules (IL-6, CXCL-
8, IL-12 and CCL2). This data suggests that the immune
imbalance in BM microenvironment is more prominent in PV
than in ET and PMF patients. Literature reported that these
molecules are associated with a pro-inflammatory status,
occurrence of vascular events and oncoinflammation.

We demonstrated that soluble mediator levels in the BM
niche correlated to clinic-laboratory parameters, including
hemoglobin concentration, hematocrit, and white blood cell,
red blood cell, and platelet counts. Many studies corroborate
our findings and have demonstrated cytokine-phenotype
associations related to pro-inflammatory status in MPN
patients’ serum (13, 36, 37). In PMF patients, CXCL8 is
associated with leukocytosis, and CXCL10 levels correlate with
thrombocytopenia (37). In PV patients, high levels of IL-12 are
associated with hematocrit; high IL-1b and HGF levels are
associated with leukocytosis; low IL-6 and FGF (fibroblast
growth factor) levels are associated with hemoglobin
concentration; and low GM-CSF levels are associated with
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thrombocytosis (36). In PMF patients, the elevation of
CXCL10 was associated with thrombocytosis and decreased
levels of CXCL10 and IL-17 with erythropenia, while in ET
patients the low levels of TNF-a was associated with
thrombocytosis (13). The different soluble mediator association
patterns among MPN subtypes may explain their distinct
clinical features.

In our study, soluble mediator levels were not significantly
associated with disease prognosis risk, probably due to the small
number of patients enrolled. The reduced soluble mediator levels
in treated MPN patients suggest that drug treatment influenced
the production of many soluble mediators, although most of the
comparisons did not reach statistical significance—except for G-
CSF levels in PV patients.

It is well-known that hydroxycarbamide (hydroxyurea), a
cytoredutor drug indicated for MPN treatment, is capable of
lowering serum inflammatory markers such as TNF-a, IL-6,
CXCL8, and IL-1b in sickle cell disease patients (56, 57). This
drug suppresses production of pro-inflammatory cytokines in
monocytes from sickle cell anemia patients (57); however, its
effect on cytokine levels of MPN patients is poorly studied. The
anti-inflammatory action of hydroxycarbamide relies on the
hematological remission resulting from myelosuppression,
reduction of leukocyte counts (58), and the drug effects on
monocytes, as pointed out in sickle cell anemia.

The frequency of vascular events was associated with different
setups of soluble mediators among MPN subtypes. PV patients
exhibited increased TNF-a, CXCL12, and VEGFR2 levels; ET
patients displayed increased IL-17, CCL5, GM-CSF, and VEGF
levels; and PMF patients had increased IL-6Ra levels. Elevated
GM-CSF and IL-12 serum levels are associated with the lack of
vascular complications in ET and PV patients; these cytokines
may also help to select the treatment regimen (29). In addition,
CCL5 levels are associated with microvascular manifestations in
PV patients (36). Augmented levels of angiogenic cytokines as
VEGF, soluble vascular endothelial growth factor receptors 1 and
2, and placenta growth factor, as well as the increased number of
endothelial cells and endothelial precursors are associated with
high risk of thrombotic events in ET and PV patients (59). The
levels of coagulation activation markers did not differ with
respect to the JAK2V617F mutational status, but the
association between endothelial cells and leukocytes may
contribute to thrombosis (59).

Activated platelets are the mainly secretors of CXCL12.
Upregulated CXCL2 expression and secretion may favor the
development of cardiovascular diseases, while the fast increase of
CXCL12 in peripheral blood platelets can be used as biomarker
for cardiac injury (60). Patients with ischemic stroke have
increased TNF-a serum levels and higher risk for
cardiovascular diseases, compared with healthy volunteers (61).
The studies reported in the two last paragraphs (26, 33, 53, 54)
corroborate our findings on the influence of soluble mediators on
vascular events and support the concept that the inflammatory
environment is a crucial stimulus for the initiation and
deve lopment of thrombo-hemorrhag ic events and
cardiovascular diseases (7).
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In PMF patients, there were associations between high
CXCL10 levels and transfusion requirement, and high CCL2
levels and pre-fibrotic/proliferative disease stage. These results
are supported by the association between upregulated CXCL10
and CCL2 gene expression and increased fibrosis in BM niche
(30). Our findings revealed a potential utility of monitoring
CCL2 levels during PMF course, and provide a new tool to
measure BM fibrosis evolution.
CONCLUSIONS

Taken together, our findings demonstrate the existence of
different soluble mediator signatures for each MPN subtype,
among which PV patients present the highest levels of
inflammatory and angiogenic soluble mediators. We identified
CXCL8, CXCL10, IL-18, and CCL2 as MPN-associated soluble
mediators; IL-17, IFN-g, and HGF as biomarkers for PV; and
CCL2 as biomarker for monitoring the BM fibrosis. In addition,
specific mediators are potential targets for developing future
therapies to prevent BM transformation in MPN patients. The
molecular mechanisms involved in cellular malignant
transformation by the inflammatory/angiogenic BM milieu in
MPN patients are currently unknown and further investigations
are underway.
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Immune phenomena are increasingly reported in myeloid neoplasms, and include
autoimmune cytopenias/diseases and immunodeficiency, either preceding or
complicating acute myeloid leukemia, myelodysplastic syndromes (MDS), chronic
myeloproliferative neoplasms, and bone marrow failure (BMF) syndromes.
Autoimmunity and immunodeficiency are the two faces of a dysregulated immune
tolerance and surveillance and may result, along with contributing environmental and
genetic factors, in an increased incidence of both tumors and infections. The latter may
fuel both autoimmunity and immune activation, triggering a vicious circle among
infections, tumors and autoimmune phenomena. Additionally, alterations of the
microbiota and of mesenchymal stem cells (MSCs) pinpoint to the importance of a
permissive or hostile microenvironment for tumor growth. Finally, several therapies of
myeloid neoplasms are aimed at increasing host immunity against the tumor, but at the
price of increased autoimmune phenomena. In this review we will examine the
epidemiological association of myeloid neoplasms with autoimmune diseases and
immunodeficiencies, and the pivotal role of autoimmunity in the pathogenesis of MDS
and BMF syndromes, including the paroxysmal nocturnal hemoglobinuria conundrum.
Furthermore, we will briefly examine autoimmune complications following therapy of
myeloid neoplasms, as well as the role of MSCs and microbiota in these settings.

Keywords: myelodysplastic syndromes, acute myeloid leukemia, myeloproliferative neoplasms, microbiome,
autoimmunity, immunodeficiencies
INTRODUCTION

The immune system is broadly involved in maintaining homeostasis, either by fighting infectious
agents or controlling tumor growth. Autoimmunity and immunodeficiency are the two faces of a
dysregulated immune tolerance and surveillance and may result, along with contributing
environmental and genetic factors, in an increased incidence of tumors (1). Autoimmunity is
primarily the consequence of an improper self-directed immune reaction, whilst immunodeficiency
org September 2021 | Volume 12 | Article 751630137
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is the inability to efficiently eliminate infectious pathogens or
neoplastic cells, and both may result in severe and life-
threatening diseases. There is a delicate balance between
immune-defense mechanisms and autoimmune reactivity, as
recently highlighted by the autoinflammatory response and
autoimmune complications following therapy with checkpoint
inhibitors (CPI) and chimeric antigen receptor (CAR) T-cells
(2). The association between lymphoproliferative disorders and
peripheral immune-mediated cytopenias is well known, along
with the underlying pathogenic mechanisms (3). The presence of
autoimmune phenomena/diseases is less investigated in myeloid
neoplasms, although reported in bone marrow failure (BMF) and
myelodysplastic syndromes (MDS), as well as in chronic and
acute myeloproliferative diseases (2). Of note, autoimmune
phenomena may be a spurious serologic finding without
clinical consequences, or even represent a favorable response
aimed at eliminating damaged/harmful self-structures (1). On
Frontiers in Immunology | www.frontiersin.org 238
the other hand, the association of immunodeficiency with
tumors is well known, together with the role of consequent
chronic/relapsing infections that may fuel both autoimmunity
and immune activation. The latter may be exaggerated,
ineffective and potentially harmful, triggering a vicious circle
among infections, tumors and autoimmune phenomena. More
generally, there is increasing interest on the role of the immune
system in the generation of a permissive or hostile
microenvironment for tumor growth, which has recently
involved also the microbioma and the mesenchymal stem cells
(MSCs) (4–6). This review will examine immune phenomena
(autoimmunity and immunodeficiency) in myeloid neoplasms,
including MDS, BMF syndromes, acute myeloid leukemia
(AML), and chronic myeloproliferative neoplasms (MPN). We
will also focus on the several overlapping conditions,
highlighting the continuous and mutual cross-talk between the
immune effectors and the neoplastic cells (Figure 1).
FIGURE 1 | Autoimmunity and immunodeficiency in myeloid neoplasms and associated conditions. AML, acute myeloid leukemia; MDS, myelodysplastic
syndromes; MPN, myeloproliferative neoplasms; AA, aplastic anemia; ICUS, idiopathic cytopenia of undetermined significance; IDUS, idiopathic dysplasia of
undetermined significance; PNH, paroxysmal nocturnal hemoglobinuria; PRCA, pure red cell aplasia; AIHA, autoimmune hemolytic anemia; ITP, immune
thrombocytopenia, CIN, chronic idiopathic neutropenia; TLD, telomeres diseases; LGL, large granular lymphocyte lymphoproliferative syndromes; CPI, checkpoint
inhibitors; HSCT, hematopoietic stem cell transplantation; CAR T, chimeric antigen receptor T-cells; MSCs, mesenchymal stem cells.
September 2021 | Volume 12 | Article 751630

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Barcellini and Fattizzo Immune Phenomena in Myeloid Neoplasms
EPIDEMIOLOGICAL ASSOCIATION
OF AUTOIMMUNE DISEASES AND
MYELOID NEOPLASMS

Several autoimmune diseases (AID) and, less frequently,
autoimmune cytopenias (AIC) have been described in myeloid
neoplasms. These include systemic and organ specific disorders,
such as rheumatoid arthritis (RA), systemic lupus erythematosus
(SLE), vasculitis, thyroid autoimmune diseases, Sjogren syndrome
(SS), autoimmune hemolytic anemia (AIHA), immune
thrombocytopenia (ITP), pure red cella aplasia (PRCA), and
immune-mediated hemostatic disorders (2, 7–10). The diagnosis
may be challenging due to the great clinical heterogeneity and
variable organ involvement of AID, whose signs/symptoms may be
confounded with those of the hematologic malignancy. Likewise,
diagnosis of AICmay be complicated by overlapping conditions like
chemotherapy, bone marrow infiltration, and transfusion support
(2). Additionally, straightforward diagnostic tests are lacking,
particularly for AID, and several diagnostic pitfalls exist for AIC
as well. Among myeloid neoplasms, MDS and chronic
myelomonocytic leukemia (CMML) are complicated in up to 20-
30% by vasculitis subtypes, more commonly Behçet’s-like
syndrome, relapsing polychondritis, polyarteritis nodosa and
giant-cell arteritis (2, 9). CMML is also frequently complicated by
ITP either concomitant or preceding its diagnosis, while AIHA and
PRCA are occasionally observed (9). Regarding MPN, including
myelofibrosis (MF), various cases of RA, dermatomyositis,
polyarteritis nodosa, multiple sclerosis, inflammatory bowel
disease, and primary biliary cirrhosis have been reported (11, 12).
AML is also occasionally associated with AID as well as with AIC
(13, 14). Finally, case-reports/small series of immune-mediated
hemostatic disorders have been described in MDS, CMML, MPN,
and AML. These included acquired hemophilia A, thrombotic
thrombocytopenic purpure, and anti-phospholipid syndrome, that
may be life-threatening (2). On the other hand, there is evidence
that patients with prior systemic autoimmune rheumatic diseases
have an increased risk for the development of hematological
malignancies, particularly lymphomas and MDS. This has been
reported for RA, SS, SLE, ITP, myasthenia gravis, and giant cell
arteritis, suggesting that the immune dysregulation underlying the
autoimmune disease may be involved in the generation of a “tumor
permissive” soil, although the contribution of treatment with
immunosuppressive/cytotoxic drugs cannot be excluded (15–17).
IMMUNODEFICIENCY AND
MYELOID NEOPLASMS

Immunodeficiency is a broad concept that may involve the
deficiency of one of the several arms of the immune system (1).
Primary immunodeficiency syndromes (PID) represent a complex
and heterogeneous category comprising more than three-hundred
distinct disorders, mostly congenital, increasingly diagnosed
through genetic and immunologic tests. They are grouped
according to the predominant deficiency, including T-B severe
Frontiers in Immunology | www.frontiersin.org 339
combined defects, antibody, complement, neutrophils, and
cytokine deficiencies, and also encompass hematologic conditions
such as Fanconi Anemia, Diamond-Blackfan anemia, Familial
Hemophagocytic Lymphohistiocytosis, and Wiskott-Aldrich
syndrome (immunodeficiency with congenital thrombocytopenia).
Other immunodeficiencies are associated with somatic mutations,
such as the autoimmune lymphoproliferative syndrome and the
RAS-associated autoimmune leukoproliferative disease (18–20). An
increased risk of developing acute leukemias (mostly T-cell derived),
lymphomas and MDS, as well as other solid cancers have been
described in most of the PID listed above, underlying the concept
that an efficient immunosurveillance is pivotal in preventing
tumorigenesis. Moreover, continuous/relapsing infections
consequent to immunodeficiency may sustain a state of chronic
hyper-inflammation, which in turn may favor tumor growth (18–
20). An interesting player in controlling neoplastic expansion is the
complement system that may be exploited by monoclonal
antibodies directed against tumor antigens, increasingly used as
therapeutic tools in various cancers (21). An example of interplay
among immunodeficiency, autoimmunity and cancer is the Kabuki
syndrome, a rare genetic disorder with specific facial features,
intellectual disability, and increased frequency of infections,
autoimmune diseases and neoplasias. The syndrome is caused by
mutations in the KDM6A or KMT2D genes, which are involved in
the early differentiation of mesenchymal cell lineage and in the
development of tolerance and immune system maturation (22, 23).
Another example is the MIRAGE syndrome (Myelodysplasia,
Infection, Restriction of growth, Adrenal hypoplasia, Genital
problems, and Enteropathy) which is caused by mutation in the
SAMD9 gene, a regulator of inflammatory response acting as a
downstream target of TNF-alpha signaling (24). Finally, the group
of telomeropathies comprises several heterogeneous defects in the
telomere maintenance machinery, characterized by a variable
clinical phenotype and genetic penetrance, and by great
susceptibility to environmental factors. Among the several,
Dyskeratosis Congenita, idiopathic pulmonary fibrosis, and
familial liver cirrhosis, show variable overlap with autoimmune
diseases and BMF syndromes, as well as increased risk of infections
and hematologic neoplasms (25, 26).
AUTOIMMUNITY IN BMF SYNDROMES:
MDS, HYPOPLASTIC MDS, AND AA

Several lines of evidence support the relationship between BMF/
MDS and autoimmunity, i.e. their epidemiologic association, the
response to similar immunosuppressive therapies, and the
existence of common immune-mediated physiopathologic
mechanisms (27–29). The latter include bone marrow
suppression by T-cells, cytokine dysregulation, and apoptosis
of hematopoietic precursors. Aplastic anemia is the prototype of
an immune-mediated attack against BM, with several effectors
involved, such as activated cytotoxic T cells, increased
production of type 1 cytokines, reduced T reg, and enhanced
apoptosis via Fas/FasL. Moreover, defects of the innate immunity
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and of the hematopoietic niche are also reported as important
pathogenic mechanisms. The most relevant evidence supporting
the autoimmune pathophysiology is the response to
immunosuppressive therapy (IST) and the requirement, in
most cases, of continuous immunesuppression to maintain
response (30). At the boundaries of the classic BMF
syndromes, and with frequent overlap, there are other diseases
in which several immunologic abnormalities are increasingly
reported. These include pure red cell aplasia, pure white cell
aplasia, amegakaryocytic thrombocytopenia, and the telomere
diseases, all definitely cytopenic; however, other diseases, such as
large granular lymphocyte lymphoproliferative (LGL)
syndromes, and hemophagocytic lymphohistiocytosis (HLH),
may manifest with autoimmune cytopenias along with
proliferative features (31–35). Additionally, the landscape of
BMF syndromes has been enriched with the recently described
idiopathic cytopenia/dysplasia of undetermined significance
(ICUS/IDUS) and the hypoplastic MDS, which again share
common immune-mediated pathogenic mechanisms and a
cytopenic phenotype (27, 32, 36, 37).

There is growing interest about the presence of somatic
mutations in autoimmune/autoinflammatory conditions. It is
known that mutational burden increases with age, as described in
the so called clonal hematopoiesis of indeterminate potential
(CHIP) or clonal cytopenia of undetermined significante
(CCUS). Recently, DNMT3A, TET2 and ASXL1 mutations
were found in 29.5%, 15.0% and 3.5% of studied patients, with
a striking association with autoimmune diseases (38). Regarding
BMF, a variable combination of somatic mutations has been
largely described: in MDS the most frequently observed involve
the splicing genes SF3B1, SRSF2, U2AF1, ZRSR2, the DNA
methylation genes DNMT3A, TET2, IDH1, IDH2, and the
chromatin modification genes ASXL1, EZH2, KDM6A (39). In
AA the genomic landscape is more shaded, with less MDS-
associated and more frequent typical paroxysmal nocturnal
hemoglobinuria (PNH)-related PIGA mutations (40, 41), while
in hypoplastic MDS the picture is somehow in between MDS and
AA (32). More recently, mutations have been detected even in
lymphoid cells of BMF patients. For instance, JAK-STAT and
MAPK pathways mutations have been described by single-cell
sequencing in CD8+ T cells of AA patients, and the mutational
burden was associated with CD8+ T-cell clonality (42). It may be
speculated that mutations accumulate in the pathogenic immune
effectors, which are the most activated and replicating cell types.
Finally, STAT3 somatic mutations have been reported in CD8+
T cells in LGL, and in other autoimmune “benign” conditions,
such as rheumatoid arthritis/Felty’s syndrome, multiple sclerosis,
and celiac disease (43).
THE PNH CONUNDRUM

One of the key mechanisms of PNH pathogenesis is the escape of
GPI-negative hematopoietic precursors from a GPI-directed
autoimmune attack. This hypothesis is supported by the known
association of PNH and AA, and by the reported increase of the
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PNH clone after IST in AA (44, 45). However, inactivating
mutations of PIG-A do not “per se” confer a selective growth
advantage to hematopoietic precursors, since they are found in
several conditions including healthy subjects, without causing overt
disease. Thus, further events (additional cooperating mutations)?
are thought to be necessary for the expansion of the PIG-A mutant
clone. Additionally, the bone marrow environment (dominated by
an auto-immune signature) seems to play an important role in a
further growth advantage of the PNH clone (46). Bone marrow
microenvironment and autoimmune phenomena may play a role
also in MDS, where mainly small PNH clones are described,
without an overt hemolytic disease (45). Consistently, anti-
erythroblast antibodies have been demonstrated in about 2/3 of
early MDS together with increased values of the pro-apoptotic
protein Bax and decreased levels of Bcl‐2 levels, and their BM
culture supernatants induced dyserythropoietic signs, erythroblastic
clustering, and increased overall in cultured normal BM (47, 48).
Furthermore, small PNH clones have been demonstrated in
hypomegakaryocytic thrombocytopenia (49, 50) and chronic
idiopathic neutropenia (51), two conditions hardly distinguishable
from ICUS and with autoimmune reactivity against BM precursors.
Finally, small PNH clones have been reported also in a considerable
proportion of AIHAs, conferring a prominent hemolytic pattern
and a higher thrombotic risk to the disease. The presence of a PNH
clone was also associated with a different cytokine signature
(reduced levels of IFN-g and IL-17) as compared to PNH-
negative AIHA cases (52). In AIHA the clinical picture is
dominated by an immune attack directed against peripheral
erythrocytes; however, in cases with reticulocytopenia and severe
onset the immune attack is also directed against bone marrow
precursors. Additionally, chronic/relapsing AIHA show a possible
evolution to ICUS, IDUS or BMF syndromes over time, suggesting a
shift from “peripheral” to “central” autoimmunity (27, 28, 53, 54).
Altogether these findings support the idea that the PNH clone may
be the “immunological scar” of an immune attack directed against
BM precursors.
AUTOIMMUNE COMPLICATIONS
FOLLOWING THERAPY OF MYELOID
NEOPLASMS

Historically IFN-alpha has been used in MPN, including chronic
myeloid leukemia (CML), systemic mast cell disease, and
hypereosinophilic syndrome, and has been associated with the
occurrence of several AID and AIC. Several autoimmune side
effects have been described, ranging from spurious autoantibody
formation to overt diseases, such as AIHA, ITP, thrombotic
thrombocytopenic purpura, hypo- or hyper thyroid disorders,
SLE, RA, and Behçet’s disease (55). Tyrosine kinase inhibitors
(TKIs) have certainly changed the therapeutic approach to MPN,
and their risk-benefit balance is well established, with mainly
infectious concerns (56). However, most of their effects on the
complex regulations of the immune system are far from being fully
elucidated. They have immunosuppressive effects on monocyte/
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macrophage functions, dendritic cell maturation, and lymphocyte
subsets, but also exert an immunomodulatory activity inducing
monocyte type 1 polarization, increased NK function and T-
lymphocyte activation. This has provided a rationale for
investigating a possible therapeutic use in autoimmune diseases
(57). On the other hand, imatinib has been associated with the
occurrence of aplastic anemia, and nilotinib and dasatinib
implicated in the development of immune-mediated liver injury,
SLE, panniculitis, and neurologic demyelinating disease. The
harmful effects of potent immunomodulation are even more
marked with aggressive therapies such as BM transplantation,
where several autoimmune complications are thought to be the
consequence of the “immunological storm” elicited by the battle
against tumor cells (58–60). The complexity of the immunological
perturbation following allogenic BM transplantation is maximally
reflected in the well known graft-versus-host-disease, which
resembles progressive systemic sclerosis and vasculitis of the skin,
gastrointestinal tract, liver, lungs, and kidneys. Additionally, CAR
T-cells, although mainly studied in lymphoid conditions, are
recently considered also for acute myeloid leukemia (61). Well
known toxicities of CAR T-cells also derive from a complex
immune dysregulation and include the cytokine release syndrome,
the immune effector cell-associated neurotoxicity syndrome, and
the hemophagocytic lymphohistiocytosis; later toxicities comprise
prolonged cytopenias and hypogammaglobulinemia (62). Finally,
the difficulty of a balanced immune stimulation is also highlighted
by the autoimmune complications following therapy with check
point inhibitors in solid and hematologic tumors (63, 64).
MESENCHYMAL STEM CELLS IN
AUTOIMMUNE DISEASES AND
MYELOID NEOPLASMS

Mesenchymal stem cells are key constituents of the BM niche
able to differentiate in various tissues and to exert several
immunomodulatory activities (5, 6). They appear to play a
pivotal role against tumors and infections through a variety of
properties including anti-inflammatory, regenerative,
angiogenic, anti-fibrotic, anti-apoptotic, and anti-oxidative
stress activities. Conversely, there is growing evidence that
MSCs from patients with myeloid neoplasms may differently
support leukemic growth and protect the leukemic cell from
apoptosis or chemotherapy-induced cell death. MSCs behavior
may be due to the bidirectional crosstalk between the leukemic
cell and the BM niche, that realizes through several cytokines,
chemokines and other soluble factors (CXCR2, CXCR4, IL6R,
LFA, VLA4, RANK and FAT/CD36) as described in AML (65).
On the other hand, MSCs may harbor intrinsic alterations, as
recently reported for MDS and AA. These included dysregulated
proliferation/apoptosis (prevalent in MDS), decreased
angiogenesis (prevalent in AA), and immunosuppressive
functions, with a shift from type 1 (pro-inflammatory) to type
2 (anti-inflammatory/tumor-educated) MSC profile (5). Finally,
MSCs may be involved in resistance even to novel treatments, as
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observed in CML. In this setting, MSCs favor the immune escape
of residual leukemic cells causing resistance to TKIs, that may
overcome by interferon-a (66). On the whole, the
immunomodulatory properties of MSCs and their possible
allogeneic/unmatched use have promoted several clinical trials
in various autoimmune disorders, including aplastic anemia,
Crohn’s disease, multiple sclerosis, inflammatory liver and
pulmonary diseases, neurodegenerative disorders, as well as in
graft rejection and graft-vs-host-disease (67). Limitations of
MSCs as cell therapy include handling difficulties, safety issues,
and high economic cost. Thus, the use of MSC-derived
secretome products is increasingly pursued, although the
choice of the ideal MSC type and the standardization of
production strategies need to be defined.
MICROBIOME IN AUTOIMMUNE
DISEASES AND MYELOID NEOPLASMS

There is growing evidence on the role of microbiome in
regulating several homeostatic processes, such as metabolic
pathways, synthesis of vitamins and fat storage, as well as
self-tolerance, immune surveillance for tumors, and host
defense against pathogens. Alterations of the microbiome
have been associated with the development of autoimmune
diseases, neoplasms, and infections and their treatments (68).
Beyond data on BM transplantation, it has been shown that a
permissive microbiota, i.e. the microorganisms that colonize
various districts of the body, is associated with acute leukemias,
lymphoma, and multiple myeloma (4). Of note, microbiome
changes may be induced by the leukemic cell itself, by
chemotherapy or antibiotics, or by superimposed infections,
adding further complexity to the topic. Alterations of the
microbiome have been reported also in autoimmune
cytopenias and aplastic anemia (69–71). Helicobacter pylori
colonization has long been associated with ITP, although it is
not strictly considered a microbiome alteration (4). More
recently, in ITP and chronic idiopathic neutropenia, a
peculiar microbiota composition has been identified, possibly
predictive of response to therapy (72). Similarly, alterations of
the microbiota have been reported in SLE, RA, Multiple
Sclerosis and Type-1 diabetes (73). Moreover, Parvovirus
B19, hepatitis viruses, CMV and EBV have been associated
with transitory forms of AA, probably due to a molecular
mimicry between foreign and self-antigens or polyclonal
immune stimulation. In addition, the presence of chronic
inflammation, the alteration of epithelial barriers, and the
dissequestration of self-antigens driven by an altered
microbioma are also thought to contribute to the
development of autoimmune diseases and neoplasms (4). In
the next future the availability of NGS techniques will improve
the ability to analyze the microorganisms, providing new
insights in this fascinating area, and improving the
knowledge of disease pathogenesis, complications, and
therapy outcome.
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AUTOIMMUNE PHENOMENA

By definition autoantibodies are antibodies that react with self-
antigens (1), although not invariably associated with AID and AIC.
It is largely known that low-affinity IgM and, occasionally, low titer
IgG autoantibodies are detected in healthy individuals. They
comprise rheumatoid factors, antinuclear-, and even anti-RBC
and anti-platelets antibodies, without a clinically overt disease.
Additionally, natural autoantibodies, mainly polyreactive IgM
with a moderate affinity for self-antigens, may provide a first line
defense against infections and have housekeeping functions by
recognizing apoptotic cells and promoting their phagocytic
clearance (74). This phenomenon has been extensively studied in
thalassemias and congenital hemolytic anemias, hypothesizing a
physiologic role in the clearance of debris of lysed cells (75). In this
view natural autoantibodies may concur to the opsonization and
removal of potentially harmful elements, including tumor cells. The
role of natural autoantibodies is not known in hematologic
neoplasms, with the isolated exception of chronic lymphocytic
leukemia (CLL). Autoimmunity and immunodeficiency are a
hallmark of CLL, with a relentless accumulation of anergic, self-
reactive CD5+ B cells, which produce several polyreactive natural
autoantibodies (76). As regards myeloid neoplasms, it may be
hypothesized that natural autoantibodies may contribute (or not)
to the first-line defense of innate immunity that has been found
deficient in most of these disease (77–79).
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CONCLUSION

Immune phenomena, both autoimmunity and immunodeficiency,
are definitely an egg and chicken question in cancer, including
myeloid neoplasms. The complexity of the issue is further
increased by the heterogeneity of myeloid disorders that
encompass truly malignant cells (as in acute leukemias) and
more subtle diseases (as MDS and BMF syndromes). Likewise,
immune-mediated phenomena are broadly represented, including
immune-mediated cytopenias and hemostatic disorders, classic
autoimmune diseases, and immunodeficiencies, as summarized in
Table 1. The immune system is undoubtedly pivotal in preventing
and controlling tumor growth and in direct killing of neoplastic
cells. These functions are characterized by pleiotropism (several
different activities are performed by a single effector depending on
the setting) and redundancy (the same result is accomplished by
different effectors). In this complex scenario, two main tasks are
required to maintain homeostasis: tolerance versus self and
surveillance against potential harmful noxae, i.e., infectious
agents and tumors. However, microorganisms are not always
dangerous and autoimmunity may be potentially useful in
removing damaged/badly functioning cells. Autoimmunity
occurs in peripheral blood and, less investigated, in bone
marrow and lymphoid organs, and may be fundamental in
maintaining homeostasis, provided its tight control and absence
of over activation. Stretching the concept, the removal of a
TABLE 1 | Main evidences of immune system involvement in myeloid neoplasms.

Epidemiological associations
with autoimmunity

- MDS is associated with systemic and organ specific disorders, such as RA, SLE, vasculitis, thyroid autoimmune diseases, SS, AIHA,
ITP, PRCA, and immune-mediated hemostatic disorders in about 20% of cases.
- CMML are complicated in up to 30% by vasculitis and ITP.
- MPN and AML are occasionally complicated by autoimmune cytopenias and diseases.

Epidemiological associations
with immunodeficiency

- AML and MDS are observed in patients with primary immunodeficiencies, including T-B severe combined defects, antibody,
complement, neutrophils, and cytokine deficiencies.

Autoimmunity in BMF
syndromes

- MDS, particularly low-grade hypoplastic type, is marked by autoimmune phenomena promoting apoptosis of hematopoietic
precursors.
- AA, which may evolve to MDS/AML, has a well-defined autoimmune pathogenesis against BM precursors (cytotoxic T cells,
increased production of type 1 cytokines, and reduced T reg).
- MDS and AA share common somatic mutations (mainly splicing genes, DNA methylation genes, and chromatin modification genes),
although with different frequencies.

Overlapping syndromes - MDS presenting with cytopenia and autoimmunity displays overlapping features with ICUS/IDUS, PRCA, white cell aplasia,
amegakaryocytic thrombocytopenia, telomere diseases, LGL, and HLH.

PNH clones - MDS, MPN and AML may display PNH clones, usually small or very small.
- AA and peripheral autoimmune cytopenias are also associated with PNH clones.

Autoimmune complications
following therapy

- MPN, particularly CML, has been historically treated with IFN-alpha, which induced several autoimmune complications (AIHA, ITP,
TTP, and other autoimmune diseases).
- MPN treated with TKIs (imatinib, nilotinib and dasatinib) may be complicated by immune-mediated disorders (AA, SLE, liver injury,
and neurologic demyelinating disease).
- AML and MDS subjected to more aggressive therapies (HSCT, CAR T, and CPI) may be complicated by several autoimmune
cytopenias and other immune-mediated disorders (cytokine release, neurotoxicity syndrome, HLH).

Mesenchymal stem cells - AML, MDS, and MPN show alterations of MSCs that may be implied in disease pathogenesis and resistance to therapy.
Microbiome - AML is associated with alterations of the microbiome, either per se or because of chemotherapy, antibiotics and HSCT. Alterations

of the microbiome have been reported in various autoimmune diseases.
AML, acute myeloid leukemia; MDS, myelodysplastic syndromes; MPN, myeloproliferative neoplasms; CMML, chronic myelomonocytic leukemia; AA, aplastic anemia; ICUS, idiopathic
cytopenia of undetermined significance; IDUS, idiopathic dysplasia of undetermined significance; PNH, paroxysmal nocturnal hemoglobinuria; PRCA, pure red cell aplasia; LGL, large
granular lymphocyte lymphoproliferative syndromes; HLH, hemophagocytic lymphohistiocytosis; AIHA, autoimmune hemolytic anemia; ITP, immune thrombocytopenia, TTP, thrombotic
thrombocytopenic purpura; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus, SS, Sjogren syndrome; IFN, interferon; TKIs, tyrosine kinase inhibitors; CPI, checkpoint
inhibitors; HSCT, hematopoietic stem cell transplantation; CAR T, chimeric antigen receptor T-cells; BM, bone marrow; MSCs, mesenchymal stem cells.
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neoplastic cell may be considered a self-directed “autoimmune”
reaction. Additionally, autoimmune phenomena, although not
directly causative, may be deeply involved in the pathogenesis of
myeloid neoplasms, particularly MDS and BMF. At variance, in
AML, autoimmunity takes a second place in pathogenesis, whilst it
can be clinically harmful. Finally, there are escape phenomena, like
PNH clones, which can guarantee hematopoiesis, albeit deficient.
More than 30 years ago a visionary scientist, J. Edwin Blalock,
pioneer of neuroimmunoendocrinology, defined the immune
Frontiers in Immunology | www.frontiersin.org 743
system as our “circulating brain” (80), and this notion is still up
to date and far away from being fully understood.
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Large granular lymphocytes (LGL) are lymphoid cells characterized by either a T-cell or a
natural killer phenotype whose expansion may be reactive to toxic, infectious, and
neoplastic conditions, or result from clonal selection. Recently, the higher attention to
LGL clones led to their detection in many clinical conditions including myeloid neoplasms
and bone marrow failures. In these contexts, it is still unclear whether LGL cells actively
contribute to anti-stem cell autoimmunity or are only a reaction to dysplastic/leukemic
myelopoiesis. Moreover, some evidence exists about a common clonal origin of LGL and
myeloid clones, including the detection of STAT3 mutations, typical of LGL, in myeloid
precursors from myelodysplastic patients. In this article we reviewed available literature
regarding the association of LGL clones with myeloid neoplasms (myelodysplastic
syndromes, myeloproliferative neoplasms, and acute myeloid leukemias) and bone
marrow failures (aplastic anemia and pure red cell aplasia, PRCA) focusing on evidence
of pathogenic, clinical, and prognostic relevance. It emerged that LGL clones may be
found in up to one third of patients, particularly those with PRCA, and are associated with
a more cytopenic phenotype and good response to immunosuppression. Pathogenically,
LGL clones seem to expand after myeloid therapies, whilst immunosuppression leading to
LGL depletion may favor leukemic escape and thus requires caution.

Keywords: large granular lymphocyte, myelodysplastic syndromes, acute myeloid leukemia, myeloproliferative
neoplasm, aplastic anemia
INTRODUCTION

Large granular lymphocytes (LGL) are lymphoid cells characterized by either a T-cell or a natural
killer (NK) phenotype that physiologically participate in innate immunity and immunosurveillance.
Their expansion may be a response to toxic, infectious, and neoplastic conditions, or result from
clonal selection (1). The latter may rarely lead to the development of a lymphoproliferative disorder,
namely a T-cell or NK lymphoma with variable aggressiveness. Beyond overt lymphoproliferative
disease, the increasing awareness about LGL cells and their phenotype led to the discovery of many
clinical associations including idiopathic cytopenias and hematologic malignancies (2, 3).
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The former are part of a spectrum ranging from peripheral
autoantibody mediated cytopenias (autoimmune hemolytic
anemia, immune thrombocytopenia, and autoimmune
neutropenia) to bone marrow failures (aplastic anemia, AA,
and low risk myelodysplastic syndromes) characterized by
central immune attack towards stem cells (2). In this context it
is still unclear whether LGL cells actively contribute to anti-stem
cell autoimmunity or are only part of the proinflammatory
microenvironment. Regarding hematologic malignancies, LGL
clones have been recently detected in myeloid neoplasms such as
myeloproliferative neoplasms and acute myeloid leukemia (1, 2).
Whether LGL expansion is only a reactive phenomenon or has a
common clonal origin with the myeloid clone is object of open
investigation. In this review we collect more recent literature
about the association of LGL with myeloid neoplasms and bone
marrow failures focusing on evidence of pathogenic, clinical, and
prognostic relevance.
DEFINITION AND DETECTION
OF LGL CLONES

Morphologically, LGL are more than twice the diameter of
erythrocytes, and are characterized by mature chromatin,
excessive cytoplasm, with or sometimes without prominent
cytoplasmic granules. Normally, LGLs comprise 10 to 15% of
blood mononuclear cells which may be either surface CD3+ (T-
cell) or surface CD3– (NK cell). Most normal LGLs in the
peripheral blood are NK cells, whilst some are T lymphocytes
(2). As mentioned before, LGLs may configure heterogeneous
disorders comprising non-clonal reactive processes, indolent
clonal proliferative disorders and highly aggressive neoplasms.
World Health Organization (WHO) divides clonal LGL
expansions into three disorders: T-cell LGL leukemia (T-
LGLL), chronic lymphoproliferative disorders of NK cells
(CLPD-NK), and aggressive NK-cell leukemia (ANKL) which
is associated with Epstein-Barr virus (EBV) infection of the
neoplastic NK cells. In contrast to ANKL, both T-LGLL and
CLPD-NK are clinically indolent and have a low risk of
transformation into an aggressive malignancy (4). In the last
decade, European and US Registry are actively studying LGL
leukemias and accumulating evidence on clinical features and
outcome. Overall, incidence of LGL leukemia is reported as 0.2-
0.72 per million persons per year, with no gender effect, and
more than 85% of cases are the T-LGL subtype. Median age at
diagnosis is 60 years and the disease is only rarely observed in the
infancy (5–7).

Flow cytometry is the gold standard for LGLs detection and is
usually based on the expression of NK-associated markers CD16
and CD57. CD56 is another marker, constitutively expressed by
circulating normal NK cells and usually downregulated in
CLPD-NK; its expression in T-LGLL may be associated with a
less-favorable prognosis (2, 3). T-LGLs usually express CD3+,
TCR ab+, CD4−, CD5dim, CD8+, CD16+, CD27−, CD28−,
CD45R0−, CD45RA+, and CD57+ phenotype, representing a
constitutively activated phenotype. Less commonly, T-LGLs
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mount CD4 with variable expression of CD8. The rare CD3+/
CD56+ T-LGL leukemias may show higher clinical
aggressiveness. T-LGL usually harbor the T-cell receptor
(TCR) ab+ heterodimer, rarely gd TCR heterodimer. NK-LGLs
are characterized by CD2+/sCD3-/CD3e+/TCRab-/CD4-/
CD8+/CD16+/CD56+ phenotype. Evidence of T-LGL clonality
is assessed using TCRg-polymerase chain reaction analyses
(PCR) and deep sequencing of TCR has demonstrated a
restricted diversity of TCR repertoire. Vb TCR gene repertoire
analysis can also be ascertained using flow cytometry, although
this is not routinely performed (8). NK-LGLs do not express
TCR so it is difficult to assess their clonality. However, they often
show abnormal killer immunoglobulin-like receptor (KIR)
expression with complete absence of surface KIR or restricted
expression. Restricted KIR expression is often seen in both in
T- and NK-LGL leukemia (2).

Regarding other markers, LGL leukemia patients show
increased serum levels of interferon-g 2, monocyte
chemoattractant protein-1 (attractive factor for monocytes, T,
and NK cells to sites of inflammation), epidermal growth factor,
and various interleukins (IL) including IL-6, IL-8, and IL-18.
Rheumatoid factor and antinuclear antibody are detected in 60%
and 40% of patients, respectively (2). Serum protein electrophoresis
usually shows polyclonal hypergammaglobulinemia. Defects in
downregulation of Ig secretion in LGL leukemia could explain
part of association with autoantibodies malignancies (3).
PATHOGENESIS OF LGL EXPANSION

From a pathogenic perspective, it is generally thought that normal
LGLs acquire a defect of apoptosis that leads to their
accumulation. An interesting explanation for this phenomenon
is the expansion of an oligoclonal LGL population under chronic
stimulation from an unknown antigen. LGL cells may then
acquire a molecular lesion promoting monoclonal proliferation,
and release cytokines and toxic granules that contribute to bone
marrow failure (2). Concerning apoptosis, LGL cells strongly
express Fas (CD95) and Fas-ligand (Fas-L) (CD178). Moreover,
RAS and ERK constitutive activation and G12 KRAS mutation are
often found in NK-LGL leukemia, and their blockade may restore
Fas sensitivity in leukemic LGLs. Although not routinely
performed, increased soluble Fas-L is a good surrogate marker
of LGL leukemia (9). From a cytogenetic point of view, karyotype
is normal in most cases. Recurrent somatic mutations in the Src
homology 2 (SH2) domain of the signal transducer and activator
of transcription 3 (STAT3) gene have been found in 27-40% of
patients with T-LGL leukemia and 30% of patients with CLPD-
NK. These mutations lead to constitutive activation of STAT3,
with consequent dysregulation of genes downstream of STAT3
(10). Once dimerized, STAT3 shuttles from the cytoplasm to the
nucleus, where it ultimately binds to DNA, mediating growth and
survival. Disease manifestations such as cytopenias and
autoimmune diseases may result from the production of
proinflammatory cytokines mediated by STAT3 hyperactivation,
as well as from a direct attack on bone marrow by the STAT3-
activated LGL (11–13).
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Another relevant member of STAT protein family is STAT5b
which has been reported to carry gain-of-function mutations in
15–55% of CD4+ T-LGLL, and in 19% of TCRgd LGLL (14, 15).
STAT5b N642H has been identified as an oncogenic driver in
innate-like lymphocytes, and a mouse model expressing human
N642H mutated STAT5b developed severe CD8+ T-cell
neoplasia. IL-15 is an upstream factor of STAT5b and seems
crucial for neoplastic transformation. In fact, IL-15 transgenic
mice developed the aggressive variant of T or NK cell leukemia
(15). The requirement of additional cytokine signals on STAT5b
genetic lesions to lead neoplastic evolution suggests the
importance of the immunological microenvironment. STAT3
and STAT5b mutations have been included in the 2017 WHO
classification of LGLL and STAT5b mutation is associated with a
more aggressive clinical course (16). Another gene recurrently
mutated in LGLL is TNFa-induced protein 3 (TNFAIP3), a
tumor suppressor encoding A20, a negative regulator of nuclear
factor kappa B (NFkB) (17). Other genes occasionally mutated in
T-LGLL, mainly linked to STAT3 signaling pathway and
cytotoxic T lymphocyte activation, are PTPRT, BCL11B,
PTPN14, PTPN23 (15). Moreover, it has been shown that
patients lacking STAT mutations may harbor other lesions
involving genes connecting STAT with Ras/MAPK/ERK and
IL-15 signaling, such as FLT3, ANGPT2, KDR/VEGFR2, and
CD40LG (18). Finally, whole exome sequencing (WES) on 3
STAT-mutation negative CLPD-NK patients found somatic
mutations including KRAS, PTK2, NOTCH2, CDC25B,
HRASLS, RAB12, PTPRT, and LRBA (15). Altogether, these
data shows that LGL clonal selection and expansion result from a
complex interplay among genetic and environmental factors that
may be heterogeneously combined.
LGL CLONES REACTIVE TO
AUTOIMMUNE, INFECTIOUS, AND
OTHER CONDITIONS

LGL clones can be identified in different conditions such as
autoimmune diseases, infections, and transplant, likely
representing an unbalanced response to systemic infections
and/or immune deregulation. It is difficult to differentiate
primary LGL leukemia from reactive LGL expansions. Flow
cytometry patterns, together with the molecular lesions, are
important tools to assess “quantity and quality” of LGL
populations and establish clonality.

Autoimmune Diseases
Concerning LGL in the context of autoimmune diseases,
rheumatoid arthritis is the most common association, being
present in up to 18% of patients with LGL expansion (19). This
association may be difficult to distinguish from Felty syndrome
(FS) that is characterized by chronic arthritis, splenomegaly, and
neutropenia, in the setting of longstanding seropositive
rheumatoid arthritis. Clonal proliferations of LGLs have been
observed in patients with FS, and it has been proposed that these
patients may in fact have T-LGLL (20). Clonality tests may be
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useful, although the patient is generally managed according to the
prevailing phenotype (autoimmune versus proliferative). Systemic
lupus erythematosus, Sjogren syndrome, autoimmune thyroiditis,
autoimmune coagulopathies, vasculitis with cryoglobulinemia,
and inclusion body myositis have also been reported as
associated with LGLs (2, 19, 21). Overall, autoimmune diseases
should be taken into account in the workup of patients with LGL
expansion and vice versa.

Infections
Infections, particularly viral and chronic ones, represent a
persistent trigger stimulating lymphocytes with the possible
development of lymphoproliferative disorders (22). Cases of
LGL expansion secondary to Epstein Bar virus (EBV),
cytomegalovirus (CMV), Hepatitis B virus (HBV), Hepatitis C
virus (HCV), and Human immunodeficiency virus (HIV) have
been reported (2). Moreover, some case reports described
untreated strongyloidiasis as cause of chronic inflammation
and consequent LGL expansion (23). History of infection and
serology for hepatitis and herpetic viruses and HIV have to be
investigated when approaching patients with LGL expansion and
lymphoproliferative disorders in general.

Transplant
LGL clones may also arise after both solid and hematopoietic stem
cell transplant (HSCT) (24, 25). These procedures induce an
immunological storm encompassing the host and the donor
immune system. Moreover, the occurrence of viral infections
(CMV, EBV, etc.) and the immunosuppressive drugs
administered may favor autoimmunity (26). In the case of
HSCT, the graft shows immune competence and may mount a
response against persistent self-antigens. Graft versus host disease
(GVHD) is a typical manifestation, and other autoimmune
conditions may develop during immune reconstitution. It has
been reported that up to 20% patients show increased LGLs after
HSCT, with a median onset of 312 days from transplant, and CMV
reactivation and acute GVHD as prominent risk factors (24, 26).
Post-transplant LGL expansion, although mainly chronic and
indolent, deserves proper investigation in patients with new-
onset persistent cytopenia following transplant, since may
require adjustment of ongoing immunosuppressive therapy.

Other Associations
LGL clones are not only associated to autoimmunity but even to
immunodeficiency. Although pediatric cases of LGL disorders are
rare, a phenotypic overlap may occur with primary
immunodeficiencies characterized by increased susceptibility to
infections, autoimmunity, and development of lymphoproliferative
disorders. Interestingly, LGL clones have been reported in patients
with adenosine deaminase 2 deficiency (27). Their presence was
related with an activation of phosphatidylinositol-3-phosphate
kinase pathway, whose disruption has been implied in the
apoptosis imbalance typical of LGL.

Many drugs induce immune/inflammatory perturbations and
LGL expansion after the tyrosine kinase inhibitor (TKI) dasatinib
(a drug used in chronic myeloid leukemia and Philadelphia
positive acute lymphoblastic leukemia) has been reported.
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Although most LGL clones developing upon dasatinib treatment
are asymptomatic, some cases of fever, colitis, and pleural effusions
have been reported, suggesting an aberrant immune response (28).
Finally, LGLs have been reported after solid tumors and
hematologic diseases, particularly myeloid malignancies and bone
marrow failure syndromes, as discussed thereafter, and may be
associatedwith autoimmune/autoinflammatory phenomenonsuch
as livedoid vasculopathy, urticarial vasculitis, or complex recurrent
aphthous stomatitis in these patients (2).
LGL EXPANSION IN
MYELODYSPLASTIC SYNDROMES

Various evidence exists about LGLs expansion in patients with
myelodysplastic syndromes (MDS). Some studies only reported
the prevalence of LGLs clones in patients affected by MDS
without the development of an overt lymphoproliferative
syndrome, whilst other also described a “true” LGL chronic
expansion in these subjects (13, 29–33). These findings are
summarized in Table 1. The prevalence of LGL clones in MDS
was highly variable across studies and ranged from 1.4% to 49%.
Conversely, in a study by Huh et al., 9 out of 28 patients with T-
LGLL also had MDS, and all of them had monoclonal TCR gene
rearrangement. Clinically, LGL clones were associated with more
marked cytopenias, mainly anemia and thrombocytopenia (30).
In particular, patients with T-LGLL/MDS showed lower median
hemoglobin and lymphocyte counts when compared with the
subgroup affected by T-LGLL alone, whilst platelets levels and
neutrophil count were similar (33). Contrarily, in another case
series, 9 patients with LGL expansion/MDS from a group of 100
cytopenic subjects showed no significant differences in the grade
of cytopenia as compared to patients with MDS or T-LGLL alone
(29). These features are consistent with the variable and
multifaceted factors contributing to cytopenias in subjects with
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MDS. In fact, MDS patients are usually elderly, with reduced
stem cell reserve, and with pro-inflammatory and pro-apoptotic
bone marrow milieu as compared to T-LGLL patients. On the
other hand, the presence of a T-LGL infiltrate may contribute to
the immune imbalance typical of MDS pathogenesis. In this
view, various studies reported the pathogenic role of LGL clones
in bone marrow failures and also showed the possibility of a
common origin of the two clones. In particular, Durrani et al.
analyzed 240 patients with LGL leukemia and found that 5.4% of
them was affected by MDS (11/13 with TCR gene
rearrangement) (33). They showed that somatic STAT3/STAT5
mutations can be found in up to 15% of LGLL/MDS patients
versus 39% of those with LGL clones only. More recently,
STAT3-mutated clones were reported in up to 37.5% patients
with MDS harboring LGL clones and in 2.5% of MDS alone (13).
The detection of LGL-related mutations in MDS cases supports a
common pathogenic origin of the two conditions. Interestingly,
constitutive STAT5 activation is observed in various myeloid
diseases, including chronic myeloid leukemia and JAK2 mutated
myeloproliferative syndromes. In fact, JAK/STAT pathway is
downstream of many growth factor receptors including those of
erythropoietin and thrombopoietin. STAT5b mutations have
been associated with more aggressive LGLL phenotype, and
recent evidence suggests their unique distribution in T-LGL
cells of advanced myeloid neoplasms (35). In another study
including 1177 patients with MDS, a LGL clone was found in 322
subjects (27%), and LGL leukemia in 36 (2%). They observed that
mutations in certain genes associated with myeloid disorders
(e.g., TET2, SF3B1 and ASXL1) had same frequencies in LGL/
MDS and MDS alone, whilst U2AF1 mutations were more
common among the former (32). Very recently, STAT3 and
TET2 mutations were found in 27% and 34% of patients with
CLPD-NK, respectively. TET2-mutated CLPD-NK was
preferentially associated with MDS, and whole-exome
sequencing of sorted cells found that TET2 mutations were
TABLE 1 | Large granular lymphocytes in myelodysplastic syndromes.

Study Type Relevance Main Findings Ref.

Clinical study Clinical and therapeutic 11.8% of patients with MDS showed LGL/MDS association and had lower LGL
counts and lower response rate to immunosuppression compared to patients
with T-LGLL alone.

29
76 MDS, 15 T-LGLL, 9 T-LGLL/MDS.

Case series Clinical Patients with T-LGLL/MDS showed lower median Hb level and lymphocytes
compared with patients with T-LGL alone.

30
28 T-LGLL patients, 9 had MDS (32%)
Clinical study Pathogenic Somatic STAT3 mutations may be found in 2.5% of patients affected by MDS,

the frequency reaches 37.5% in patients with MDS/LGLL association.
13

367 MDS, 24 with LGL clones (9,2%).
Clinical study Clinical and prognostic 85% of LGL/MDS had a TCR gene beta or/and gamma rearrangement by PCR

and mainly showed bone marrow hypocellularity. LGL/MDS had similar OS as
MDS alone.

31
71 MDS, 35 with MDS/LGL (49%)

Clinical study
1177 MDS, 322 with LGL clonal expansion (27%)

Pathogenetic/Prognostic LGL clonal expansion was associated with similar survival and frequency of
AML evolution.

32

TET2, SF3B1 and ASXL1 were the most frequently mutated genes among both
groups. U2AF1 mutations more common among LGL/MDS than MDS alone.

Clinical study Pathogenic and clinical 5.4% of patients with LGLL had concomitant MDS and were more
thrombocytopenic. 15% showed somatic mutations of STAT3/STAT5 versus
39% with LGLL only.

33
240 LGLL, 13/240 (5.4%) had also MDS

Clinical study Pathogenic LGLL/MDS patients were characterized by lower Hb levels and erythroid
dysplasia and mostly showed mutations in ASXL1 (30%) and STAG2 (30%).

34
721 MDS, 10 (1.38%) with LGLL
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shared by myeloid and NK cells indicating that they occurred in
early hematopoietic progenitors (36).

From a therapeutic point of view, in the large study by Komrokij
et al.MDSpatients harboring an LGL clone showed a lower response
rate to immunosuppression with anti-thymocyte globulin and
cyclosporine as compared to the MDS group (28% vs 41%), whilst
nodifferencewasobserved regardinghypomethylating anderythroid
stimulatingagents (32).Thisfindingwas also confirmedbyadifferent
group that showed LGLL/MDS subjects had lower responses to
immunosuppression compared to those with T-LGLL alone,
possibly due to older age and likely decreased stem cell reserve in
those with LGLL/MDS (29). Additionally, it may be speculated that
inhibiting two clones may be harder than targeting a single one.
Finally, Olson et al. showed that patients with CLPD-NK harboring
TET2mutationshowprominent thrombocytopeniaandresistance to
immunosuppressive treatments (37).

From a prognostic perspective, the presence of an LGL clone did
not seem to impact MDS outcome. A study including 71 MDS
patients, 49% of whom harbored a T-LGL expansion, did not find
substantial differences inOS between the two groups (83months in
the LGL/MDSgroup versus 65months in theMDSone) (31).These
data were more recently confirmed by Komrokji et al., who found
similar median OS (24 months vs 27 months) and acute myeloid
leukemia (AML) transformation rates (19% in both groups) among
patients affected by MDS and LGL/MDS (32).

Concerning overt LGL lymphoproliferative diseases, 3 studies
described an association with MDS (30, 33, 34). In particular, Ai
et al. evaluated 721 patients with MDS and identified 7 T-LGLL,
2 mixed-phenotype LGLL, and 1 CLPD-NK, resulting in a
prevalence of 1.38%. Lower hemoglobin levels, neutropenia
and thrombocytopenia were a common finding, as well as a
higher frequency of erythroid dysplasia in patients with MDS/
LGLL. This condition was mostly associated with mutations in
ASXL1 (30%) and STAG2 (30%) genes, and TCR gene
rearrangement was present in 9/10 patients (34).
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On the whole, LGL expansion may be found in more than 1/3
of MDS patients, is associated with a more cytopenic phenotype,
and does not seem to markedly impact on outcome. LGL/MDS
cases responded worse to immunosuppression as compared to
MDS or LGL alone, so that the same approach as for primary
disease is suggested. Conversely, overt LGLL and MDS are
rarely associated.
LGL EXPANSION IN OTHER
MYELOID NEOPLASMS

LGL clones have been also described in myeloproliferative
neoplasms (MPN) and AML, even though this association is
rarer (Table 2). There are case reports describing the association
of LGL clones with AML, acute promyelocytic leukemia (APL),
essential thrombocythemia, chronic myeloid leukemia (CML),
and chronic myelomonocytic leukemia (38–44). Again, a
hallmark of this association is cytopenia. For instance, Reda
et al. reported a case of an association between T-LGLL and
APL in the same patient, who initially presented with prolonged
neutropenia, due to different causes (autoimmunity, APL and LGL
expansion). After the APL diagnosis, induction chemotherapy was
started, leading to a complete response. Despite chemotherapy,
LGLL clone continued to increase, possibly due to a growing
advantage after leukemic depletion. Interestingly, severe
neutropenia persisted and also interfered with chemotherapy
maintenance (44). Finally, even for LGL/AML, it has been
speculated that the two clones may origin from the same
progenitor (38) and this association did not lead to a worse
prognosis. In another experience, Costello et al. reported a 60-
year-old man diagnosed with AML, treated with chemotherapy
and hematopoietic stem cell transplant with response. Thereafter,
the patient developed an LGL expansion requiring therapy with
low-dose modified mini-CHOP and methotrexate. Later, AML
TABLE 2 | Large granular lymphocytes in acute myeloid leukemia and myeloproliferative neoplasms.

Study Type Relevance Main Findings Ref.

Case report (1 MPN, 1 MDS, 1
HCL)

Pathogenic
and
prognostic

Clinically, the concomitant existence of LGL proliferation and other leukemia doesn’t seem to be responsible
for a worse prognosis on patients.

38

Case report Pathogenic LGLs have a significant spontaneous cytotoxicity against autologous leukemia and hematopoietic cells. 39
Case report Clinical First reported case of concomitant presentation of T-LGLL with acute myeloid leukemia in an eldery patient

who was treated with combination AML chemotherapy and remained alive and well seven months after initial
diagnosis.

40

Clinical study Pathogenic In the subgroup of patients on dasatinib, clonal lymphocytes increased, both CD8+ cytotoxic cells and NK-
and gamma/delta T-cell fractions. These clones may help in the elimination of the residual CML cells.

41
46 CML patients (20 on dasatinib,
14 on imatinib, 12 healthy
volunteers
Case report Pathogenic A patient with essential thrombocythemia treated with hydroxyurea. developed a clonal proliferation of

cytotoxic T-cells with consequent BM failure
42

Case report Pathogenic Concomitant existence of CMML and T-LGL clone may be due to a common pathogenic pathway, linked to
immune-dysregulation mediated by expanded cytotoxic T-cells clones.

43

Case report Clinical In a patient affected by acute promyelocytic leukemia and concomitant LGL, LGL clones continued to
increase despite leukemia chemotherapy. Leukemia treatment may have given a growing advantage to clone
expansion of LGL cells.

44
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relapsed, and the patient died (39). Finally, Malani et al. reported a
case of concomitant presentation of T-LGLL with AML in an
elderly patient who was treated with combination chemotherapy
with good outcome (40). Overall, these experiences suggest a
relationship among LGL and AML clones: chemotherapy-
induced leukemia depletion leads to LGL expansion, whilst
immunosuppression reduces immunosurveillance and favors
leukemic escape.

Regarding myeloproliferative diseases, treatment with
dasatinib for CML has been associated with an increase in
clonal T-/NK-LGL. Kretuzman et al. observed 34 CML patients
on treatment with either dasatinib (N=20) or imatinib (N=14):
83% had clonal BCR/ABL-negative lymphocytes (mostly with
TCR rearrangement) and this percentage increased during
tyrosine kinase therapy with dasatinib but not with imatinib.
The Authors speculated that these clones may inhibit the
proliferation of residual CML cells and facilitate remission (41).
Selvan et al. described a patient with essential thrombocythemia
treated with hydroxyurea who eventually developed a clonal
proliferation of cytotoxic T-cells and consequent BM failure
(42). Finally, concomitant existence of CMML and T-LGLL
clone has also been reported with no therapeutic insights (43).
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LGL EXPANSION IN APLASTIC ANEMIA

Many Authors described the association of LGL clones with AA
and pure red cell aplasia (PRCA), as summarized in Table 3.
Some case reports addressed the clinical association only, whilst
others speculated about the pathogenic implications. For
instance, Handgretinger et al. reported a case of PRCA
associated with clonal expansion of T-LGLs of gd-type. They
commented that LGL cells were able to selectively destroy
erythroid progenitors that lack HLA class I expression and are
unable to inhibit TCR/KIR activation. LGLs contribute to
cytopenia by direct toxicity (Fas-FasL interaction) and cytokine
production (46). Consistently, Saitoh et al. described polyclonal
T-LGLs along with high serum-soluble FasL in a patient who
developed severe AA 10 years after Hodgkin lymphoma
remission. The patient responded to steroids and cyclosporine,
but HL relapsed leading to death. As already discussed for AML,
this data indicate that LGL depletion might have impaired
immunosurveillance on HL clone (50). More recently, Li et al.
analyzed the quantitative and functional changes of CD56bright
NK cells in peripheral blood of patients with moderate AA. They
found that CD56bright NK were higher than in normal controls,
TABLE 3 | Large granular lymphocytes in aplastic anemia and pure red cell anemia.

Study Type Relevance Main Findings Ref.

Case series Therapeutic One patient had PRCA and obtained response with immunosuppressive therapy. 45
10 NK-LGL, 1 PRCA 45
Case series Therapeutic PRCA/T-LGLL association predicts superior response to immunosuppressive therapy, but is not correlated with

improved survival.
45

47 PRCA, 9 T-LGLL
Case report Pathogenic A case of PRCA with clonal expansion of T-LGLs of g d-type in which the malignant LGLs were shown to carry

functional inhibitory MHC class I receptors.
46

Case series Clinical AA can be a presenting manifestation of T-LGLL, and T-LGLL should be considered in the differential diagnosis of
acquired aplastic anemia.

47
9 AA/LGL
Case series Pathogenic 14% had pancytopenia at presentation and some fit the diagnostic criteria for AA. 48
203 T-LGLL patients Therapeutic LGLL-associated PRCA was observed in 7% of cases and effectively treated with immunosuppression.
Case report Therapeutic T-LGLs of g d-type of pure red cell aplasia with low-dose alemtuzumab in a patient with T-LGLs of g d-type refractory

to cyclosporine and methotrexate
49

Case report Pathogenic This case shows a rare instance of a patient who had aplastic anemia associated to polyclonal LGL as the first
manifestation of a relapse of Hodgkin lymphoma.

50

Case series Therapeutic LGLL with pure red cell aplasia responded well to continuous treatment with cyclophosphamide or cyclosporine A. 51
14 LGLL/PRCA
Case series Pathogenic STAT3 clones can be found in 7% AA and 2.5% MDS and are associated with better responses to

immunosuppressive therapy and with HLA-DR15.
13

367 MDS, 140 AA Clinical
Therapeutic

Case series Pathogenic PRCA associated with LGL frequently displays STAT3 mutations. 12
42 T-LGLL, 19 with PRCA
(45%), 11
CLPD-NK, 3 PRCA (27%)
Case series Therapeutic PRCA/LGLL was associated with response to methotrexate. Response was shorter in patients with STAT-3

mutation.
10

36 LGLL, 18 PRCA (50%)
Case series Pathogenic the proportions of NK and T-LGL in the hypoplastic-MDS group were higher than those in the AA group. 52
41 AA, 46 hypoplastic-MDS
Case series Pathogenic STAT3 mutations in 18 of 42 PRCA patients (43%) with or without T-LGLL. 11
54 AA, 21 MDS, 7 PNH,
and 42 PRCA

STAT3-mutated CD81 T cells may be closely involved in the selective inhibition of erythroid progenitors in PRCA
patients.

Case series Pathogenic CD56bright NK cells in newly diagnosed AA patients was higher than in normal controls 53
50 AA
Case series Pathogenic Somatic mutations in T cells, particularly JAK-STAT and MAPK are frequent in AA patients and may have a

pathogenic role.
54

24 AA
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and displayed higher expression of NKG2D and CD158a, likely
contributing to disease pathogenesis (53). Zhang et al. compared
T lymphocyte subsets in AA and hypoplastic MDS (hypo-MDS)
and showed that the proportions of NK- and T-LGL cells in the
hypo-MDS group were higher than those in the AA group. These
findings indicate that the dysplastic clone (present in hypo-MDS
but not in AA) may be a trigger for LGL expansion (52). Finally,
PRCA complicated LGL leukemia in 7% of cases only, whilst
neutropenia is the leading cytopenia in these patients (48).

At a molecular level, Ishida et al. investigated STAT3 in an
Asian cohort of T-LGLL and CLPD-NK of whom a proportion
had concomitant PRCA (19/42 and 3/11, respectively). They
found STAT3 mutation in 47.6% of T-LGLL and 27.2% of
CLPD-NK patients (12). Furthermore, Jerez et al. studied
STAT3 mutation in a large series of patients with acquired BMF
syndromes, including 140 AA, and identified 16 mutated patients
of whom 6 with an LGL clone (13). Other Authors found a STAT3
mutation in 43% of 42 PRCA patients, of whom 13 had associated
LGL clones, but not in the 82 patients with AA/MDS (11). More
recently, Lundgren et al. showed that CD8+ T cells from AA
patients frequently show somatic mutations of JAK-STAT and
MAPK pathways, that are associated with CD8+ T-cell clonality
and alter CD8+ phenotype (54). On the whole, these studies
suggest that STAT3 mutations, may play a pathogenic role,
particularly in PRCA, but also in AA, by increasing the
production of proinflammatory/proapoptotic cytokines.

Immunosuppression is the backbone therapy for both AA/
PRCA and LGL lymphoproliferative disorders, although with
heterogeneous outcome (45, 47, 51). In STAT3-mutated AA
patients a better response to immunosuppressive therapy has
been described in some studies, whilst others reported that
STAT3 mutated patients were less responsive to cyclosporine.
As regards other immunosuppressants, Lacy et al. reported good
response to steroids and azathioprine in an LGLL/PRCA patient
(45) and Go et al. described bad responses with cyclophosphamide
in LGLL/AA cases (47). More recently, Fujishima et al. analyzed
185 patients with PRCA, of whom 14 had an LGLL clone and
responded well to continuous treatment with cyclophosphamide
or cyclosporine (51). Finally, methotrexate produced good long-
lasting responses in 18 subjects with LGLL/PRCA, similarly to
those observed in patients with LGL expansion only (10).
Moreover, Schutzinger et al. described successful treatment of
LGLL/PRCA with low-dose alemtuzumab, a monoclonal antibody
against CD52, in a patient refractory to cyclosporine and
methotrexate (49). Finally, only one study addressed the impact
of LGL clones on survival of 9 AA/PRCA patients and showed that
superior response to immunosuppression did not correlate with
improved survival (45). Beyond cytotoxic immunosuppressants,
the role of steroids is still controversial, as they may be effective in
patients with autoimmune cytopenias associated with LGL-
expansion. However, their use in primary LGL, AA, and PRCA
is usually not sufficient to revert the phenotype, and association
with cytotoxic immunosuppressants is suggested.

In conclusion, this evidence confirms that immuno-
suppression, particularly with cyclosporine but also with
methotrexate, are good options in bone marrow failures
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associated with LGL clones. Since AA/PRCA are already
treated with cyclosporine combinations, patients with LGL
expansion may be effectively treated as the primary disease. A
warning persists about infectious risk that represents an
important cause of morbidity and mortality in these patients
and may be increased by immunosuppression. This may also
account for the absence of a favorable effect on survival of LGL/
AA association, despite a better response to treatment. Further
insights in the pathogenetic mechanisms of LGL/AA associations
will possibly enable the development of more targeted and less
toxic treatments in the next future (10).
DISCUSSION AND CONCLUSIONS

LGLclones are increasingly recognized inpatientswithbonemarrow
failures (AA/MDS), but also, although rarely, in AML and MPN.
Figure 1 depicts the features and intersections among myeloid
neoplasms and LGL disorders. LGL clones are relatively easy to be
demonstrated but the communication between the clinician and the
pathologist is pivotal for a correct interpretation. In fact, depending
on the method utilized (morphology, flow cytometry, TCR/KIR
clonality by molecular analysis) the prevalence of LGL clones in
these conditions ranges from less than 5% to more than 30%. Their
detection is usually associated with a more cytopenic phenotype,
likely due to a more pro-inflammatory and pro-apoptotic bone
marrow milieu, where LGL clones may induce direct toxicity
against stem cells or produce a variety of immunoregulatory
cytokines. Moreover, LGL clones are associated with autoimmune
phenomena, frequently described in myeloid neoplasms (55). When
peripheral lymphocytosis and splenomegaly are present, overt
lymphoproliferative disease should be assessed and classified as per
WHO criteria. The latter may in fact require specific
immunosuppressive treatment. To avoid overtreatment, LGL-
specific therapies are indicated based on clinical features of
cytopenia (symptomatic anemia, thrombocytopenia, and
neutropenia), constitutional symptoms, and lymphoproliferative
progression (2). Moreover, it is worth mentioning that
splenomegaly, although considered a classic association, has been
reported in about 1/5 of patients only, andmay be a commonfinding
in several hematologic diseases, including MPN.

Immunosuppression is the mainstay treatment of LGL
disorders as well as of AA and hypo-MDS. In these contexts,
the presence of an LGL clone seems associated with better
outcome, particularly if cyclosporine or methotrexate are used.
At variance, patients with MDS/LGL showed a worse treatment
outcome as compared with those with LGLL, likely due to an older
age and reduced stem cell reserve in the former. An intriguing
feature of LGL clones is that they tend to expand after therapy,
particularly if they are associated with myeloid disease. This
phenomenon is common to other clonal entities such as
paroxysmal nocturnal hemoglobinuria (PNH). Here, a multi-
step pathogenesis is postulated encompassing the acquisition of
a somatic mutation of PIG-A gene, the autoimmune attack to
normal stem cells, and the selection/expansion of the PNH clone
favored by immunosuppression and/or acquisition of co-
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mutations (56). Similarly, in LGL clones, somatic mutations of
STAT3 and STAT5b have been demonstrated, that seem however
not sufficient to cause the disease, without additional contribution
of environmental factors, cytokine dysregulation, and therapies.
To make this picture even more confusing, the possible common
origin of the two clones has been reported, since STAT mutations
have been found in myeloid precursors of LGL/MDS patients and
myeloid genes mutations have been detected in LGL cells. Overall,
although regarded as an important pathogenic player, the
detection of a STAT mutation does not inform treatment for
LGL that is still based on the severity of cytopenia, B symptoms,
and lymphoproliferative progression (2).

The relationship of LGL clones with AA/MDS prognosis is less
clear. In fact, some studies indicated a better outcome for LGL/MDS
association as compared with MDS alone, whilst other showed no
differencesdespite abetter response to immunosuppression.Apossible
explanation may be the increased infectious risk that represents an
important cause ofmorbidity andmortality after immunosuppression.
Furthermore, it may be speculated that LGL depletion after
immunosuppression may reduce immunosurveillance on leukemic
Frontiers in Oncology | www.frontiersin.org 853
landscape and counteract the advantage obtained with a better
response to immunosuppression. This has been observed even in
patientswithmore aggressivediseases, suchasacutemyeloid leukemia,
where immunosuppression improved LGL signs/symptoms but led to
leukemia relapse.

In conclusion, LGL clones may be detected in myeloid diseases
in a “whoever seeks finds” fashion. The use of cytofluorimetric and
molecular techniques, although the analysis of somatic mutation is
not routinely available, will likely allow us to investigate small
lymphoid clonalities in myeloid diseases, but even in the general
population. This might unveil the presence of a “clonal
lymphopoiesis of indeterminate potential” that may precede
overt lymphoproliferative diseases, including LGL, but also favor
the development of autoimmune diseases still called “idiopathic”.
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Loredana Pettine1, Francesca Gaia Rossi1, Gianluigi Reda1, Ramona Cassin1,
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and Onco-Hematology, University of Milan, Milan, Italy

The co-occurrence of myeloid neoplasms and lymphoproliferative diseases (LPDs) has
been epidemiologically described, particularly in myeloproliferative neoplasms (MPNs).
However, the clinical features of these patients are poorly known. In this study, we
evaluated a single-center cohort of 44 patients with a diagnosis of myeloid and LPD
focusing on clinical features, therapy requirement, and outcome. The two diagnoses were
concomitant in 32% of patients, while myeloid disease preceded LPD in 52% of cases
(after a median of 37 months, 6–318), and LPD preceded myeloid neoplasm in 16% (after
a median of 41 months, 5–242). The most prevalent LPD was non-Hodgkin lymphoma
(50%), particularly lymphoplasmacytic lymphoma (54.5%), followed by chronic
lymphocytic leukemia (27%), plasma cell dyscrasias (18.2%), and rarer associations
such as Hodgkin lymphoma and Erdheim–Chester disease. Overall, 80% of BCR-
ABL1-negative MPN patients required a myeloid-specific treatment and LPD received
therapy in 45.5% of cases. Seven subjects experienced vascular events, 13 a grade >/= 3
infectious episode (9 pneumonias, 3 urinary tract infection, and 1 sepsis), and 9 developed
a solid tumor. Finally, nine patients died due to solid tumor (four), leukemic progression
(two), infectious complications (two), and brain bleeding (one). Longer survival was
observed in younger patients (p = 0.001), with better performance status (p = 0.02)
and in the presence of driver mutations (p = 0.003). Contrarily, a worse survival was
significantly associated with the occurrence of infections (p < 0.0001). These data suggest
that in subjects with co-occurrence of myeloid and lymphoid neoplasms, high medical
surveillance for infectious complications is needed, along with patient education, since
they may negatively impact outcome.

Keywords: myeloproliferative neoplasms, lymphoproliferative syndromes, myelodysplastic syndromes, infections,
secondary malignancies
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INTRODUCTION

The potential formyeloid neoplasms to evolve one into each other
is largely known [i.e., leukemic evolution of myeloproliferative
neoplasms (MPNs) and myelodysplastic syndromes (MDSs)],
and the same occurs for lymphoproliferative disorders [(LPDs),
i.e., chronic lymphocytic leukemia, (CLL), which may evolve to
aggressive non-Hodgkin lymphomas (NHLs)]. Less is known
about the permutation of a myeloid into a lymphoid neoplasm
and vice versa, and about their co-occurrence. Some reports
describe epidemiological associations of myeloid and lymphoid
cancers, and a large Italian study involving 820 MPN patients
reported an increased risk for LPD (3.4-fold greater for CLL and
12.4-fold for NHL) and solid tumors compared to the general
population (1). From a lymphoid perspective, CLL patients are
known to be at higher risk for secondary neoplasms, mostly
cutaneous ones (2); however, hematological neoplasms are
rarely observed. Irrespective of the former neoplasm (either
myeloid or lymphoid), important concerns have been raised
about the possible causal effect of hematological treatments on
the development of second tumors, and it is still an unanswered
question. Moreover, little is known about the clinical
characteristics of patients with co-occurrence of myeloid and
lymphoid neoplasms, and their outcome in terms of infectious
and thrombotic complications, and survival. In this study, we
evaluated a single-center cohort of patients with a double
diagnosis to assess their clinical features, therapy requirement,
and outcome.
PATIENTS AND METHODS

We retrospectively evaluated a cohort of 1,351 myeloid neoplasms
(930MPNsand421MDSs) diagnosedwithin the period1987–2020
and followed up at a tertiary hematological center in Milan, Italy.

All patients displaying the association of a myeloid and
lymphoid neoplasm were included (either presenting with
myeloid, lymphoid, or concomitant diseases).

MPN diagnoses, including polycythemia vera (PV), essential
thrombocythemia (ET), primary myelofibrosis (PMF), chronic
myeloid leukemia (CML), and myeloproliferative neoplasms,
unclassified (MPN, U), were made according to the most
recent WHO classification and current guidelines (3). The
same was performed for MDS cases.

Lymphoid diseases included NHL, Hodgkin lymphomas
(HLs), CLL, and plasma cell dyscrasias (PCDs), with a
histological diagnosis according to current guidelines (4).

For each patient, we evaluated clinical features at first diagnosis,
including demographics, performance status according to the
Eastern Cooperative Oncology Group scale (ECOG), hematological
parameters, cytogenetic abnormalities, and the presence of driver
mutations (JAK2V617F, CALR, andMPL) for MPN cases.

The time from initial diagnosis to LPD development and LPD
type was collected and all therapies performed for both myeloid
and lymphoid disorders. For LPDs, the time from diagnosis to
first treatment was also calculated.
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Concerning outcome, the occurrence of thrombosis, infections,
and death was registered and overall survival (OS) analyzed.

For statistical analysis, Student’s t-test orWilcoxon testwas used
for continuous variableswhere appropriate.Chi-squaredorFisher’s
exact tests were used for the comparison of categorical variables,
where appropriate. Analysis of variance was performed by using
mean, median, ranges, and standard errors. Once identified,
variables associated with occurrence of complications and OS
hazard ratios for 95% confidence intervals were calculated by Cox
regression models. Overall survival was evaluated by Kaplan–
Meier method.
RESULTS

Baseline Features
During amedian follow-upof 9 years (range, 0.8–35), a total of 44of
the 1,351 patients (3.25%) were diagnosed with both a myeloid and
lymphoid neoplasm. The two diagnoses were concomitant in 32%
of patients, while myeloid disease preceded LPD in 52% of cases
after a median time of 37 months (range, 6–318) from myeloid
disease, andLPDprecededmyeloidneoplasm in16%after amedian
time of 41 months (range, 5–242). Table 1 shows clinical and
laboratory characteristics: patients were mainly male, elderly (61%
aged >65 years), with a good performance status (96% ECOG 0–1),
and all but three had a diagnosis ofMPN(3out of 158CMLs and 38
out of 772 BCR-ABL1-negative MPNs). The remaining subjects
were low-risk MDS with multilineage dysplasia (3/421 total MDS
patients). Cytogenetic aberrations, excluding t(9;22), were reported
in nine patients, comprising one complex karyotype. Among BCR-
ABL1-negative MPN patients, JAK2V617F mutation was found in
30 (79%) cases, while 8% and 3% were CALR and MPL mutated,
respectively. In those first presenting with a myeloid disease,
mutated patients showed a longer time to LPD development
(mean 120 ± 92 vs. 31 ± 17 months in triple-negative cases; p =
0.01). As shown in Table 2, the most prevalent LPD was NHL
(50%), all but one of B-cell origin, particularly lymphoplasmacytic
lymphoma (54.5%).MostNHLwere indolent, except foronediffuse
large B-cell lymphoma (DLBCL). The second most frequent LPD
was CLL (27%), followed by plasma cell dyscrasias (18.2%), and
rarer associations such as HL and Erdheim-Chester disease.

Therapy Requirement
The clinical characteristics and therapy sequences of patients
divided according to the first presenting neoplasm are detailed in
the Supplementary Table. Overall, 80% of BCR-ABL1-negative
MPN patients required myeloid-specific treatment, including
hydroxyurea in most cases (71%), followed by ruxolitinib in
three patients, and pipobroman in two. Of note, 14 cases had
been treated before LPD diagnosis (11 hydroxyurea, 1
hydroxyurea and pipobroman, and 2 ruxolitinib), 11 cases
started therapy concomitantly (10 hydroxyurea, 1 ruxolitinib,
and 1 imatinib), and 11 after LPD diagnosis (9 hydroxyurea, 1
hydroxyurea and imatinib, and 1 hydroxyurea and pipobroman).
All CML patients received imatinib either before, concomitantly,
or after LPD diagnosis (one case each). Moreover, 29 patients
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were on antiplatelet prophylaxis (27 aspirin and 2 ticlopidine).
Finally, one MDS subject received recombinant erythropoietin
and steroids (concomitant MDS and LPD diagnosis). Lymphoid
diseases required specific treatment in 45.5% of cases, after a
median time from the first diagnosis of 8 months (range, 0–115).
The following therapies were administered: seven anti-CD20
monoclonal antibody plus chemotherapy, one rituximab-
ibrutinib, three chemotherapies, two radiotherapies, one
pegylated interferon, one parotidectomy, one phototherapy,
two steroids only, one lenalidomide-dexamethasone, and one
allogeneic hematopoietic stem cell transplant. Notably, four
patients had received LPD treatment before myeloid diagnosis.
Frontiers in Oncology | www.frontiersin.org 358
Complications
Seven patients (4 ETs and 3 PMFs) experienced a total of 10
vascular events (5/7 occurring before diagnosis of the second
hematological neoplasm), including 7 venous thromboses (3
pulmonary embolisms, 1 cerebral vein thrombosis, 1 retinal
vein thrombosis, and 2 portal vein thromboses), and 3 arterial
events (1 myocardial infarction, 1 stroke, and 1 ileal infarction).
Of note, three patients experienced more than one events. All
venous events were managed with low molecular weight heparin,
and four were switched to long-term oral anticoagulants (three
warfarin and one on direct oral anticoagulant). Unexpectedly,
JAK2 resulted unmutated in more than half of the cases (57.1%),
and no associations were observed with LPD type.

Concerning infections, 13 (30%) patients experienced a
grade ≥3 episode, including 9 pneumonias (of whom 2 fatal), 3
urinary tract infection, and 1 sepsis, all due to bacterial agents
(12/13 occurring after the second neoplasm diagnosis).
Infections were mainly diagnosed in elderly subjects (12/13,
p = 0.006), in CLL patients (54%), and only one after a recent
LPD therapy with rituximab plus chemotherapy. Importantly, no
patients were on ruxolitinib at the time of infection.

After a median time from hematological diagnosis of 106
months (range, 0–301), nine subjects (five PMFs, two CMLs, one
PV, and one ET) developed a solid tumor (two lung, two gastric,
one liver, one kidney, one cutaneous, one bladder carcinoma,
and one seminoma); six occurred after the second hematological
diagnosis (Supplementary Table). Of note, one patient had a
concomitant diagnosis of PMF, follicular lymphoma, CLL, and
lung cancer. Overall, cases developing a solid tumor had a
shorter time to first LPD therapy as compared to those without
solid cancer (7 ± 10 vs. 37 ± 42 months; p = 0.02).

Survival
Nine (20%) patients died due to solid tumor (four), leukemic
progression (two), infectious complications (two), and brain
bleeding (one). Fatalities were more frequent in patients with
lymphoid treatment requirement (35% vs. 9%; p = 0.04). As
shown in Figure 1, a longer OS was observed in younger patients
(p = 0.001), with better performance status (p = 0.02) and in the
presence of driver mutations (p = 0.003). Contrarily, a worse
survival was significantly associated with the occurrence of
infections (p < 0.0001). Multivariate analysis by Cox regression
model showed that the occurrence of infections was the only
independent predictor of worse survival within the cohort (HR,
3.18; 95%CI, 2.9–19; p = 0.003).
DISCUSSION

Here, we describe a single-center series of associated myeloid and
lymphoid neoplasms and contribute to delineate some peculiar
clinical features and their impact on outcome. In particular, these
patients, despite being mainly chronic/indolent neoplasms (i.e.,
MPN, low-risk MDS, and indolent LPD), display a dismal
outcome, mostly related to infectious complications.
Importantly, the detrimental impact of infections on survival
TABLE 1 | Clinical and hematological characteristics of patients with
concomitant myeloid and lymphoid neoplasms.

Table 1 All patients (N = 44)

Median age, years (range) 70 (21–93)
Males 25 (56)
PS ECOG
0 32 (73)
1 10 (23)
2 1 (2)
3 1 (2)

Laboratory data at diagnosis, median(range)
Leukocytes, ×109/L 9.56 (1.8–116)
Hemoglobin, g/dl 14 (7–20)
Platelets, ×109/L 489 (20–1482)
Lymphocytes, ×109/L 1.94 (0.69–25)

Sequence of neoplasm
First myeloid 23 (52)
Concomitant 14 (32)
First lymphoid 7 (16)

Myeloid type
ET 8 (18)
PV 12 (27)
PMF 13 (30)
MPN, U 5 (11)
CML 3 (7)
MDS 3 (7)
Splenomegaly 22 (50)

Driver mutations
JAK2V617F 30 (79)
Median allele burden, % (range) 28.7 (1.2-97.3)
CALR 3 (8)
MPL 1 (3)
Triple-negative 4 (10)
Cytogenetic aberrations* 9 (21)

LPD type
NHL 24 (55)
CLL 11 (25)
HL 1 (2)
PCD 8 (18)

Complications
Thrombosis 7 (16)
Infections 13 (30)
Solid tumors 9 (21)
Death 9 (21)
Values are given as N (%) unless otherwise specified.
*Excluding CML.
PS ECOG, performance status according to the Eastern Cooperative Oncology Group; ET,
essential thrombocytemia; PV, polycytemia vera; PMF, primary myelofibrosis; MPN U,
myeloproliferative neoplasm unclassified; CML, chronic myeloid leukemia; MDS,
myelodysplastic syndrome; LPD, lymphoproliferative disorder; NHL, non-Hodgkin lymphoma;
CLL, chronic lymphocytic leukemia; HL, Hodgkin lymphoma; PCD, plasma cell dyscrasia.
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seems independent from LPD aggressiveness or therapy. In fact,
only one infection was related to recent rituximab plus
chemotherapy and none to ruxolitinib. This might hint that
the infectious risk is more disease intrinsic than iatrogenic, is
possibly favored by the presence of a double myeloid/lymphoid
clonality, and should be considered even in untreated patients.
Interestingly, infections had a higher impact on survival than
thrombotic episodes that are the major cause of morbidity and
mortality in MPNs. In this study, thromboses were not
associated with JAK2 mutation in MPN-LPD cases, contrarily
Frontiers in Oncology | www.frontiersin.org 459
to what was reported for classic MPNs (5, 6). Moreover, most
events occurred in patients presenting with myeloid neoplasm,
before the development of the LPD, and did not have an impact
on survival. Additionally, together with expected dismal outcome
in elderly patients with poorer performance status, triple
negative MPN-LPD subjects also showed shorter OS, as
already described for isolated PMF (7). Triple negative MPN-
LPD cases also displayed a shorter time to LPD development
compared to mutated ones, although this observation requires
further investigation.
A B

C D

FIGURE 1 | Overall survival in patients with concomitant myeloid and lymphoid neoplasms according to (A) age, (B) performance status, (C) presence of driver
mutation, and (D) infectious complications.
TABLE 2 | Overview of the associated myeloid and lymphoid malignancies.

PV ET PMF CML MPN-U MDS Total

Chronic lymphocytic leukemia 2 3 5 1 1 – 12
Lymphoplasmocytic lymphoma 4 2 2 – 3 – 11
Follicular lymphoma 1 1 3 – – – 5
Marginal zone lymphoma – – 2 – – 2 4
Diffuse large B-cell lymphoma 1 – – – – – 1
Multiple myeloma 3 1 1 1 – 1 7
Plasmocytoma – 1 – – – – 1
Erdheim–Chester disease 1 – – – – – 1
Mycosis fungoides – – – – 1 – 1
Hodgkin lymphoma – – – 1 – – 1
Total 12 8 13 3 5 3 44
October 2021 | Vo
lume 11 | Article 7
ET, essential thrombocytemia; PV, polycytemia vera; PMF, primary myelofibrosis; MPN U, myeloproliferative neoplasm unclassified; CML, chronic myeloid leukemia; MDS, myelodysplastic
syndrome.
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From an epidemiological point of view, an Italian population
studyhas reported thatMPNpatients (excludingCML)have a 3.44-
fold increased risk of LPD compared with the general population
(1). This was confirmed by a further review of 1,915 MPN patients
of whom 22 displayed coexistent LPD, with a calculated risk 2.79-
fold higher than the general Italian population (8). Our results well
compare to these data, with a prevalence of 3.25%, although a direct
comparisonwith thegeneral populationhasnotbeenperformed.At
variance, other studies reported a higher prevalence of myeloid/
lymphoid associations (up to 15%), possibly due to the inclusion of
pre-neoplastic conditions such as monoclonal gammopathy of
uncertain significance (MGUS) and monoclonal B-cell
lymphocytosis (MBL) (9–11).

In our series, a minority of patients had LPD precedingmyeloid
neoplasm, mostly CLL or indolent NHL, while plasma cell
dyscrasias and aggressive neoplasms occurred all concomitantly
or after myeloid diagnosis. This finding is in accordance with a
recent meta-analysis, where aggressive forms were rarer (14%),
mostly concomitant or subsequent tomyeloid cancerdiagnosis, and
required chemotherapy in 7% of cases only (12).

Biologically, it has been speculated that the co-occurrence of
myeloid and lymphoid neoplasms may be sustained by a common
clonal progenitor (13, 14). This could be assumed particularly in
MPNpatientswithademonstrateddrivermutation, precedingLPD
onset. In our series of MPN-LPD cases, JAK2V617F was
overrepresented as compared to MPN patients not developing
lymphoid diseases (79% vs. 65%). Consistently, it has been shown
that patients harboring the JAK2V617F mutation display an
increased risk (5.46-fold) of LPD development (1, 15). Moreover,
Vannucchi et al. demonstrated the JAK2V617F mutation in
lymphoid tumor cells in two out of three evaluated cases (1).
Conversely, the presence of a “true” double clonality might be
hypothesized, with the myeloid and lymphoid clones facilitating
each other’s selection/expansion in a vicious circle. This could be in
line with our study and that of others, reporting the possible
coexistence or subsequent development of the two diseases and
with the hardly demonstrable common origin of the two clones in
most cases. Finally, thepossible contributionofgermlinemutations,
including DDX41, RUNX1, ETV6, ANKRD26, and POT1, which
have been associated with the occurrence of both myeloid and
lymphoid neoplasms, is an intriguing point to be explored in future
studies (3, 16).

External triggers, such as hematological therapies, may also
favor the emergence of the second clone. In our series, the only
therapies administered before LPD development were
hydroxyurea, ruxolitinib, and pipobroman. It has been speculated
that these drugs may contribute to a reduced immune surveillance
on the development of second tumors (17, 18). This immunological
derangement is already present in untreated MPN patients and
encompass the increase inmyeloid-derived suppressor cells and the
defective function of T-regulatory and NK cells, showing impaired
degranulation and killing capacity. Ruxolitinib may further exert a
negative influence on the innate and the adaptive immune system
(19). Accordingly, it has been reported that its use may disclose a
latent clonality, including lymphoid one, promoting its clinical
emergence (20).
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Finally, 20% of patients developed a solid tumor, six after the
secondhematologicalmalignancyand three inbetween.These cases
had three neoplasms, and four of nine patients died. Although we
did not find any association with previous therapies or
hematological disease pattern, it may be speculated that an
underlying genomic instability may be present in these cases (21).

We reckon that our study carries several limitations,
particularly regarding the retrospective nature of the study, the
relatively small number of patients, and the inclusion of
diagnoses dating back to 30 years ago. However, only patients
with overt clinical association and available detailed clinical data
have been included, and all subjects have been followed at a
single center and their diseases restaged/reclassified as per the
state of the art. Larger multicenter studies including a control
population would be important to confirm our observations.

In conclusion, our data suggest that in subjects with co-
occurrence of myeloid and lymphoid neoplasms, high medical
surveillance for infectious complications is needed, along with
patient education, irrespective of treatment requirement, since
they may negatively impact outcome.
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Paroxysmal nocturnal hemoglobinuria (PNH) is characterized by intravascular hemolytic
anemia and thrombosis and is notoriously associated with aplastic anemia and
myelodysplastic syndromes. Rarer associations include myeloproliferative neoplasms
(MPNs), which are also burdened by increased thrombotic tendency. The therapeutic
management of this rare combination has not been defined so far. Here, we describe a
62-year-old man who developed a highly hemolytic PNH more than 10 years after the
diagnosis of MPN. The patient started eculizumab, obtaining good control of intravascular
hemolysis but without amelioration of transfusion-dependent anemia. Moreover, we
performed a review of the literature regarding the clinical and pathogenetic significance
of the association of PNH and MPN. The prevalence of PNH clones in MPN patients is
about 10%, mostly in association with JAK2V617F-positive myelofibrosis. Thrombotic
events were a common clinical presentation (35% of subjects), sometimes refractory to
combined treatment with cytoreductive agents, anticoagulants, and complement
inhibitors. The latter showed only partial effectiveness in controlling hemolytic anemia
and, due to the paucity of data, should be taken in consideration after a careful risk/benefit
evaluation in this peculiar setting.

Keywords: paroxysmal nocturnal hemoglobinuria, myeloproliferative neoplasm, complement inhibitors,
thrombosis, bone marrow failure, case report
INTRODUCTION

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare acquired disorder caused by the somatic
mutations of phosphatidylinositol glycan A (PIGA). The consequent defect of glycosyl
phosphatidylinositol (GPI)-anchored proteins on red blood cell (RBC) surface increases the
susceptibility of PNH cells to complement-mediated destruction, leading to intravascular
hemolytic anemia, which is the main clinical feature of the disease (1, 2). The natural history of
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https://www.frontiersin.org/articles/10.3389/fonc.2021.756589/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.756589/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.756589/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.756589/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:jurigiann@gmail.com
https://doi.org/10.3389/fonc.2021.756589
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.756589
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.756589&domain=pdf&date_stamp=2021-11-11


Giannotta et al. PNH in MPN
PNH was burdened by high morbidity due to chronic anemia
and considerably increased mortality, mainly related to fatal
thrombotic events (3). With the advent of complement
inhibitors, PNH patients significantly ameliorated their quality
of life and survival (4). PNH has been described in the context of
bone marrow failure (BMF) syndromes, namely, aplastic anemia
(AA) and myelodysplastic syndrome (MDS) (4). However, with
the development of more sensitive cytofluorimetric techniques
(5), PNH clones of various sizes are increasingly being detected
in various onco-hematologic and autoimmune disorders (6–9).
The coexistence of PNH and myeloproliferative neoplasms
(MPNs) has been reported, but its clinical/prognostic
significance and therapeutic management are still poorly
known. Moreover, these two conditions share an overlapping
clinical presentation, represented by thrombotic events at usual
and unusual sites (3, 10–13). Here, we provide the description of
a patient with MPN who was subsequently diagnosed with PNH
and required specific treatment for hemolytic anemia. In
addition, we searched for the available evidence in literature
about the association of PNH and MPN, collecting data over the
last 40 years in MEDLINE via PubMed and the National Library
of Medicine. In detail, we reviewed data about the coexistence of
clinically overt PNH and MPN, the prevalence of PNH clones in
MPN patients, and the prevalence of MPN driver mutations in
PNH subjects.
CASE DESCRIPTION

A 62-year-old Caucasian male was diagnosed with Janus kinase
(JAK)2-negative essential thrombocythemia (ET) in May 2007
due to isolated asymptomatic thrombocytosis (Table 1). His
medical history was unremarkable, except for moderate arterial
hypertension on regular treatment; no previous thrombotic
events were registered. Bone marrow (BM) evaluation showed
normocellularity (40%), increased mature megakaryocytes,
slight increase of reticulin fibers (MF-1), and normal
karyotype. Once-daily acetylsalicylic acid (ASA) and low-dose
hydroxyurea (HU) were started with adequate control of platelet
count. From March 2016, a trend to increased lactate
dehydrogenase (LDH) levels was noticed, and from February
2019, a mild macrocytic anemia [hemoglobin (Hb) 10.2 g/dL,
Frontiers in Oncology | www.frontiersin.org 263
mean corpuscular volume (MCV) 103 fL; normal iron and
vitamin status] developed (Figure 1). Direct antiglobulin test
(DAT) was negative, with mild elevation of unconjugated
bilirubin (UB, 1.3 mg/dL), consumption of haptoglobin, and
increased reticulocytes. HU dose was decreased, but anemia
worsened (Hb nadir 7 g/dL), LDH rose to 4× upper limit of
normal (ULN), and peripheral CD34-positive cells increased.
The patient became strongly symptomatic for anemia, requiring
about 1–2 RBC units/month. His physical examination was
unremarkable. In October 2019, BM reevaluation showed
increased cellularity (>95%) with dystrophic megakaryocytes
and increased fibrosis (MF-2) and was therefore interpreted as
fibrotic evolution of ET. Molecular tests on peripheral blood
revealed the presence of a type-2 calreticulin (CALR) mutation
at exon 9. Abdomen ultrasonography displayed normal spleen
and liver size. HU and ASA were stopped, and an attempt with
steroids (oral prednisone 50 mg/day) was made with a transient
response and reappearance of transfusion dependency during
tapering (2–3 packed RBC units/month). In February 2020,
danazol was administered, again without anemia improvement.
In November 2020, due to persistent intravascular hemolytic
anemia and referred dark-colored urines, a flow cytometry for
PNH was made and turned positive with a clone size of 95%/
94% on neutrophils/monocytes. Low-molecular weight heparin
(LMWH) prophylaxis (enoxaparin 4,000 units/day) was started,
and the patient was referred to our center for treatment
indications. No major PNH-related symptoms were registered.
In December 2020, the patient started eculizumab after
recommended vaccinations. In the subsequent months, Hb
stabilized at 7.5–8 g/dL, LDH progressively lowered to 1.1×–
1.2× ULN, and transfusion need returned to 1–2 units/month,
with subjective amelioration of the quality of life and
disappearance of hemoglobinuria. LMWH was stopped. In
June 2021, due to a minor response to eculizumab, a re-
evaluation was performed: DAT result turned positive for
complement without evidence of cryoagglutinins (as
frequently observed under eculizumab treatment), and UB
levels slightly increased, indicative of extravascular hemolysis
(EVH) during terminal complement inhibitor treatment. BM
biopsy confirmed increased age-adjusted cellularity,
granulocytic hyperplasia, and numerous megakaryocytes in
loose and dense clusters, including both mature and atypical,
dystrophic cells; fibrosis was stable with diffuse increase in
TABLE 1 | Laboratory parameters at different time points of the clinical history of the patient.

ET diagnosis (May 2007) Post-ET MF (Oct 2019) PNH diagnosis (Nov 2020) Month +6 after ECU start (June 2021) Normal ranges

Hb (g/dL) 13.5 7* 7.3* 8* 13.5–17.5
PLT (×103/mL) 830 396 450 540 130–400
WBC (×103/mL) 7.5 4.5 6.0 8.5 4.8–10.8
LDH (× ULN) 0.8 4 4 1.1 -
UB (mg/dL) 0.5 1.3 1.3 2.0 0–0.8
Retics (×109/L) 40 140 200 155 20–100
Haptoglobin (mg/dL) 70 <10 <10 <10 30–200
CD34+ cells (n/mL) 7 56 56 60 -
November 2021 | Volume 11
ET, essential thrombocythemia; MF, myelofibrosis; PNH, paroxysmal nocturnal hemoglobinuria; ECU, eculizumab; Hb, hemoglobin; PLT, platelet; WBC, white blood cell; LDH, lactate
dehydrogenase; ULN, upper limit of normal; UB, unconjugated bilirubin; Retics, reticulocytes. *Pre-transfusion Hb levels.
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reticulin and focal bundles of thick collagen fibers (MF-2); of
note, hyperplasia of the erythroid lineage in the absence of
dysplastic features was described. Karyotype analysis was
normal. Analyzed by an expert hemopathologist, the BM
trephine was consistent with MPN unclassifiable (MPN-U). A
targeted next-generation sequencing (NGS) myeloid panel
confirmed the presence of type-2 CALR mutation [variant
allele frequency (VAF), 45%] and showed an additional
somatic mutation in ten-eleven translocation 2 (TET2) gene
(VAF, 9.7%). The patient is continuing regular fortnightly
eculizumab infusions, with subjective benefit, although with
persistent transfusion dependence.
REVIEW OF THE LITERATURE

Clinical Association of Paroxysmal
Nocturnal Hemoglobinuria and
Myeloproliferative Neoplasm
Since the 1970s, several case reports about the coexistence of
PNH and MPN have been described (Table 2). A total of 23
cases have been reported so far, mainly in association with
myelofibrosis (MF; n = 12), followed by polycythemia vera
(PV; n = 3), MPN-U (n = 2), and only one case each of ET (20)
and chronic myeloid leukemia (CML) (19). Nine cases were
JAK2-positive, while only two CALR- and one MPL-mutated
(24). In 12 cases, the diagnosis of MPN preceded that of PNH,
and the clinical suspicion for the latter (when indicated) was
the development of hemolytic or iron-deficient anemia (15, 17,
20). The diagnoses were concomitant in seven patients, whose
main clinical presentation included atypical thromboses or the
coexistence of hemolytic anemia and thrombocytosis (18, 21,
24, 25). In the remaining four subjects, the diagnosis of MPN
followed that of PNH and derived from recurrent thrombosis
or development of thrombocytosis/leukocytosis (14, 18, 19).
Frontiers in Oncology | www.frontiersin.org 364
Ten patients harbored PNH clones >10% (8/10 were >50%),
while in four cases, it was <10%. PNH clone size showed a
complessively wide distribution, as reported by Richards et al.
(23) in a recent large retrospective study analyzing the clinical
presentation of 1,081 PNH patients. The five patients with a
previous MPN diagnosis had a PNH clone from 0.7% to 96.3%,
while cytopenic/myelodysplastic patients generally harbored
smaller clones, and hemolytic/thrombotic subjects harbored
larger ones (23). With regard to treatments, eculizumab was
administered in four patients (notably, all with JAK2V617F-
positive MPN). In one patient, eculizumab monotherapy was
able to resolve anemia (18); in another, the concomitant
administration of eculizumab with acenocumarol and HU
resolved a severe case of visceral thrombosis (25). In
the remaining two cases, hemolytic anemia was refractory,
and one experienced visceral thrombosis recurrence
notwithstanding eculizumab plus HU and anticoagulation
(18). A retrospective series of 55 PNH patients undergoing
hematopoietic stem cell transplantation (HSCT) included two
cases associated with MF. The reported overall survival at 5
years was 70%, although the outcome of these two patients is
not specified (22). Regarding outcome, four out of the total 23
patients reported (17.4%) died due to acute lymphoblastic/
myeloid leukemia progression (16, 17), infections, or liver
failure secondary to refractory Budd–Chiari syndrome (18).

Prevalence of Paroxysmal Nocturnal
Hemoglobinuria Clones in
Myeloproliferative Neoplasm Patients
Some cross-sectional studies on MPN patients evaluated the
association with PNH clones. Tanasi et al. (26) tested 32 patients
with MPN and concomitant hemolysis or unexplained anemia
and found a PNH clone in three (9.3%) with MF (two JAK2- and
one CALR-mutated). Two of them harbored a PNH clone >90%
but did not require specific PNH therapy (26). In a recent large
FIGURE 1 | Trend of hemoglobin (Hb; dotted black line) and lactate dehydrogenase (LDH; dashed-dotted black line) levels along the patient’s clinical journey. ULN,
upper limit of normal; HU, hydroxyurea; ASA, acetylsalicylic acid; LMWH, low-molecular weight heparin; ET, essential thrombocythemia; PNH, paroxysmal nocturnal
hemoglobinuria. Red drops represent red blood cell transfusions.
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TABLE 2 | Association of MPNs and PNH.

Type of
study, year

N. of patients
(sex, age)

Timing of
PNH and
MPN

presentation
(delay)

PNH
clone
size

MPN
diagnosis
(driver

mutation)

Thrombosis Treatment Outcome Notes Ref.

Case report,
1979

1 (M, 60) PNH first - Not
specified

No Oxymetholone
for hypoplastic
PNH

- - (14)

Retrospective,
1992

47 PNH patients,
four of whom
with MPN

MPN first - PMF - - - PNH succeeded the
development of PMF, while it
preceded the diagnosis of
MDS.

(15)

Case report,
1993

1 (M, 58) Concomitant - PMF No HU, splenic
irradiation

Died for AML
progression 6
years after
diagnosis

AML blasts were PNH+. (16)

Case report,
2005

1 (M, 53) MPN first (2
years before
PNH)

- PMF 3 AMI IFN, HU Died 6 months
after PNH
diagnosis due
to BCP-ALL
progression

PNH diagnosed for iron-
deficient anemia.

(17)

Case series,
2012

#1 M, 51
#2 M, 65
#3 M, 78

#1
Concomitant
#2 PNH first
(2 years
before MPN)
#3 PNH first
(1 year before
MPN)

#1
99%
G,

13% R
#2

40% R
#3
73%
G,

53% R

#1 and #2
MPN-U
(JAK2)
#3 PMF
(JAK2)

#1 Multiple
thromboses
(stroke, BCS)
#2 splenic
infarction under
anticoagulation;
BCS under HU
and ecu
#3 No

#1 Ecu
#2 added HU
and ecu to
anticoagulation
#3 ecu,
danazol, steroid

#1
Transfusion-
free with ecu,
but variceal
bleeding due
to BCS
#2 died in 10
months for
liver failure and
iron overload
#3 died for
clostridiosis 1
year after

#1 and #2: JAK2V617F
detected in PNH+
granulocytes, but not in those
PNH- ! the JAK2V617F
mutation coexists within the
PNH clone
#3: PMF diagnosed for
thrombocytosis; anemia
refractory to all treatments.

(18)

Case report,
2015

1 (M, 52) PNH first (11
years before
MPN)

12%
CD55-,
24%
CD59-

G

CML No Cyclosporin A,
prednisolone,
erythropoietin,
and Andriol

PNH
responsive to
IST, CML
responsive to
imatinib

Disappearance of PNH clones
at the time of CML diagnosis.

(19)

Case report,
2016

1 MPN first (6
years before
PNH)

73%
M,
60%
G,

14% R

ET (CALR) No No Alive Diagnosis of PNH because of
hemolytic anemia

(20)

Case report,
2017

#1 F, 72
#2 M, 75

#1
Concomitant
#2 MPN first
(24 years
before PNH)

#1
88.6%
G,

86.9%
M,

71% R
#2
<1%

#1 Post-ET
MF (JAK2)
#2 PV
(JAK2V617F)

#1 Portal vein
thrombosis
#2 multiple
arterial and
venous
thromboses

#1 HU,
anticoagulation
#2
anticoagulation,
anti-platelets

#1
Recanalization
within 2
months
#2 Alive

In #1, cell sorting showed that
JAK2+ subclone arose within
the PNH population.

(21)

Retrospective,
2019

55 PNH patients,
two of whom
with MPN

Concomitant - PMF - HSCT - Indication for HSCT was
association with MF.
Complessive 5-year-OS in the
cohort: 70%.

(22)

Retrospective,
2020

1081 PNH
patients, five of
whom with MPN
(71, M; 65, F; 55,
M; 71, F; 74, M)

MPN first #1
0.7%
#2

93.3%
#3

1.2%
#4

3.4%

#1 MF
(CALR)
#2 not
specified
(JAK2)
#3 PV
(JAK2)
#4 not

#1 DVT/PE
#2 BCS

- - Severe hemolysis was evident
only in Pt #5

(23)

(Continued)
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monocentric study, more than 3,000 patients were tested for
PNH because of unexplained cytopenia/thrombosis, including 92
patients diagnosed with MPN (27). A PNH clone was found in
16 patients (17.4%), mainly MF, and was generally smaller than
1% (except for one patient with a clone of 5%). It was associated
with increased frequency of thrombosis without impact on
overall survival (28). In a large cross-sectional study including
197 MPN, 14.2% of subjects had CD55/CD59-negative red cells;
this prevalence rose to 21.3% in the subgroup of ET patients (29).
At variance, in a series of 98 MPN subjects, PNH clones greater
than 1% were detected in only two patients (2%) (30), one of
whom with recurrent thrombotic complications. Finally, two
studies failed to detect PNH clones in MPN patients. In detail,
Nazha et al. (31) tested 62 MF patients with significant anemia
(Hb <10 g/dL) and elevated LDH, but none of them harbored a
PNH clone. Likewise, a study on 136 patients with myeloid
disease, including five MF and 15 MDS/MPN overlap, found
GPI-negative cells in 8% of low-risk MDS, but none in MPN
subjects (32).

Prevalence of Myeloproliferative
Neoplasm Driver Mutations in Paroxysmal
Nocturnal Hemoglobinuria Patients
There are isolated reports of PNH patients harboring mutations
in MPN-related driver genes, namely, JAK2. Shen et al. (33)
performed targeted NGS in a cohort of 36 PNH patients and
found JAK2V617F homozygous mutations in two patients
(5.5%). Langabeer et al. (34) reported a case of AA-PNH with
a concomitant JAK2V617F mutation at low allele ratio (1.8%)
without any clinical feature of MPN; intriguingly, the JAK2-
positive clone disappeared after cyclosporin therapy, while the
PNH clone remained stable. More recently, Santagostino et al.
(35) described a case of hemolytic PNH occurring 10 years after
HSCT for acute myeloid leukemia (AML); concomitantly,
somatic mutation analysis revealed the presence of JAK2
Frontiers in Oncology | www.frontiersin.org 566
mutation with an allele ratio of 44% and TET2 with a VAF of
34%. Soon after, the patient relapsed for AML.
DISCUSSION

Our patient, along with the others described, allows several
clinical and pathogenic considerations about the rare
coexistence of PNH and MPN. Besides AA and MDS, PNH
clones have been detected also in the context of lymphoid
disorders, such as acute lymphoblastic leukemia and
lymphomas (9, 36), and in autoimmune/idiopathic cytopenias
(6–8, 37). The review of the literature highlighted that about 10%
of MPN patients harbor a PNH clone (26, 29, 30), and this
frequency rises up to 17% if clones smaller than 1% are
considered (27). More importantly, the disregarded association
of these two conditions may cause a significant delay in PNH
diagnosis, as observed in our case. Additionally, in the MPN
setting, the differential diagnosis of hemolytic anemia may be
hampered by several confounders: haptoglobin can be decreased
in more than 30% of MF (38), LDH is often elevated as a
consequence of disease burden (31), and reticulocytosis can be
observed in case of myeloid metaplasia (39). Furthermore, the
appearance of anemia in MPN should prompt the exclusion of
fibrotic evolution, which was in fact observed in our patient, who
met the diagnostic criteria for post-ET MF (40). However, at
variance with post-ET MF, BM trephine revealed erythroid
hyperplasia, which may be attributed to the concomitant
peripheral hemolytic process and indicative of bone marrow
compensation. Consultation with an expert hemopathologist
may be thus advised when morphological findings are not fully
consistent with a clear diagnosis and confounding factors coexist.

An important clinical issue is the thrombotic risk in MPN-
PNH patients and its management. In our literature review, 35%
of MPN-PNH subjects had a severe thrombotic presentation,
TABLE 2 | Continued

Type of
study, year

N. of patients
(sex, age)

Timing of
PNH and
MPN

presentation
(delay)

PNH
clone
size

MPN
diagnosis
(driver

mutation)

Thrombosis Treatment Outcome Notes Ref.

#5
96.3%

specified
(JAK2)
#5 not
specified
(JAK2)

Case report,
2020

1 (M, 49) Concomitant 99% PMF (MPL) No - - The patient presented with
anemia, thrombocytosis,
elevated LDH, dark-colored
urine.

(24)

Case report,
2021

1 (F, 51) Concomitant >90% Masked PV
(JAK2V617F)

Venous
(hepatic,
splenic, kidney)

Anticoagulation,
HU, ecu

Clinical
resolution of
ascites in 2
months

No signs of hemolysis (25)
Novembe
r 2021 | Volume 11 | Article 75
MPN, myeloproliferative neoplasm; PNH, paroxysmal nocturnal hemoglobinuria; PMF, primary myelofibrosis; MDS, myelodysplastic syndrome; HU, hydroxyurea; AML, acute myeloid
leukemia; AMI, acute myocardial infarction; IFN, interferon; B-ALL, B-acute lymphoblastic leukemia; G, granulocyte; R, red blood cell; MPN-U, MPN unclassifiable; BCS, Budd–Chiari
syndrome; ecu, eculizumab; CML, chronic myeloid leukemia; IST, immunosuppressive treatment; M, monocyte; ET, essential thrombocythemia; HSCT, hematopoietic stem cell
transplantation; PV, polycythemia vera; DVT, deep vein thrombosis; PE, pulmonary embolism; LDH, lactate dehydrogenase.
6589

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Giannotta et al. PNH in MPN
often refractory to combined anticoagulant, cytoreductive, and
anti-complement treatments. This frequency appears higher
than that reported for isolated untreated PNH (18.8%) (41)
and for MPN (complessively 20%, higher in PV vs. ET/MF
and JAK2-mutated patients) (12, 13, 42, 43), possibly due to the
association of two thrombophilic conditions. With regard to
therapy, it is well established that cytoreductive and anti-
coagulant/platelet therapies are the cornerstones of thrombosis
treatment in MPN, although recurrencies interest about 20% of
treated patients (44, 45). In PNH, complement inhibition (Ci)
has proven to significantly reduce the thrombotic risk, while
anticoagulation alone is poorly effective (4, 46). Whether primary
thromboprophylaxis is indicated in untreated PNH is still
debated. Given the higher risk observed in patients with a
larger clone size (i.e., >50%), they are generally candidates to
primary prophylaxis if there are no contraindications.
Prophylaxis may be then discontinued once complement
inhibitors are started, as in the case described (47). With
regard to secondary prophylaxis in patients on complement
inhibitors, some experts discontinue anticoagulants when
Intravascular hemolysis (IVH) is well controlled by anti-
complement therapy (4, 48, 49). Finally, anti-platelet
prophylaxis had been stopped in our patient when CALR-
positive post-ET MF diagnosis was made. In fact, JAK2-
negative ET is apparently associated with lower rates of
thrombosis (50, 51); additionally, the indication to anti-
thrombotic primary prophylaxis in MF is not clear-cut (52).

Another relevant clinical issue in MPN-PNH patients may be
the infectious risk due to the treatment with anti-complement
therapy and the known infectious diathesis observed in MPN
(53). Despite the known risk of capsulated bacterial infections
under Ci (54), no infectious complications occurred in our
patient and in only one out of 23 patients (4%) in the literature (18).

With regard to therapy, in our patient, eculizumab showed
effectiveness in controlling IVH but was not able to resolve
transfusion-dependent anemia. Accordingly, the review of the
literature showed that only a fraction of MPN-PNH patients
responded to eculizumab (Table 2) (18, 25). In classic PNH,
persistent anemia under Ci treatment can be caused by residual
IVH, concomitant BMF, and EVH. The management of the latter
still remains an unmet need, but promising results are coming
from clinical trials with proximal complement inhibitors that
avoid deposition of C3 on RBC surface (55).

Many speculations can be made regarding the pathogenic
significance of the association of MPN and PNH clones. The
evidence of MPN driver mutations, particularly JAK2, selectively
in GPI-deficient cells (18, 21) has raised the hypothesis that they
Frontiers in Oncology | www.frontiersin.org 667
may confer an intrinsic growth advantage to PNH cells. This
cooperative effect has also been proposed for other somatic
mutations, such as TET2 (33, 35, 56, 57), also present in our
patient. This view would provide a different explanation to the
more common notion that PNH cells have an extrinsic growth
advantage secondary to an autoimmune, GPI-selective process
against bone marrow precursors (58, 59). Interestingly, MPN
diagnosis preceded that of PNH in more than half of cases, and
Shen et al. (33) demonstrated that PIGAmutation was subclonal to
JAK2-mutated clone in their report. It is tempting to speculate that
the MPN-associated inflammatory microenvironment (60–63) can
impair normal hematopoiesis, exerting an “immune pressure” that
favors PNH clone expansion, similarly to what happens in AA.

In conclusion, the association of MPN and PNH deserves
attention because of the unpredictable clinical course often
affected by dramatic thrombotic complications. Since PNH
diagnosis is based on highly sensitive and cost-effective
techniques, testing for PNH clones should be prompted in any
MPN patient showing unexplained anemia with/without frank
hemolysis, recurrent thrombosis, and/or atypical BM
morphologic findings. Anti-complement treatment in the
setting of MPN relies on a careful case-by-case evaluation,
weighing the contribution of intravascular hemolysis to anemia
and the thrombotic risk.
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Erdheim–Chester disease is a rare histiocytosis characterized by iconic features
associated with compatible histology. Most patients have somatic mutations in the
MAP-kinase pathway gene, and the mutations occur in CD14+ monocytes.
Differentiation of the myeloid lineage plays a central role in the pathogenesis of
histiocytosis. Monocytes are myeloid-derived white blood cells, divided into three
subsets, but only the CD14++CD16− “classical monocyte” can differentiate into
dendritic cells and tissue macrophages. Since most mutations occur in CD14+ cells
and since ECD patients have a particular monocytic phenotype resembling CMML, we
studied the correlation between disease activity and monocytic subset distribution during
the course of a severe vascular form of ECD requiring liver transplantation. During early
follow-up, increased CD14++CD16− “classical monocyte” associated with decreased
CD14lowCD16++ “non-classical monocyte” correlated with disease activity. Further
studies are needed to confirm the use of monocyte as a marker of disease activity in
patients with ECD.
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HIGHLIGHTS

• This case report raises the question of whether an increase in
CD14++CD16− “classical monocytes” associated with a decrease
in CD14lowCD16++ “non-classical monocytes” correlates with
ECD activity.

• Monocyte immunophenotyping could be a simple and
reproductible tool to assess disease activity in ECD patients.

• Monocyte immunophenotyping can be repeated frequently
unlike metabolic evaluation
INTRODUCTION

Monocytes are myeloid-derived white blood cells divided into
three subsets (classical, intermediate, non-classical) based on the
level of expression of surface chemokines (1) (CD14 and CD16).
The functions of the three subsets (classical, intermediate, and
non-classical) are different, but only the classical monocyte can
differentiate into dendritic cells and tissue macrophages (2, 3).

The involvment of myeloid lineage differentiation, particularly
monocytes, has been highlighted in neoplasia and plays a central
role in the genesis of histiocytoses (4). Histiocytoses are orphan
diseases characterized by the proliferation of dendritic cells and
various monocyte-macrophage (histiocytic) cell types infiltrating
tissues and causing organ damage (5). Among the histiocytoses,
Erdheim–Chester disease (ECD) is a rare clonal histiocytosis
characterized by iconic features (long bone, retroperitoneal, and
vascular involvement) associated with compatible histology
(CD68+, CD1a−, S100− histiocyte infiltration with various
degrees of fibrosis) (6). In most biopsies, histiocytes express a
phosphorylated extracellular signal-regulated kinase (p-Erk)
testifying mitogen-activated protein kinase (MAP-kinase)
pathway gene activation (7, 8). This activation of p-ERK is the
final nuclear traduction of somatic mutations on the MAP-kinase
pathway genes present in most ECD patients (6). Few other
patients harbor a mutation in PI3K/AKT/mtor pathway, and
unmutated patients represent <15% of ECD patients (9).
Mutations in the MAP-kinase pathway genes (particularly
BRAF) occur mainly in CD14++ CD16low monocytes (10, 11).

Treatment is based on conventional agents [pegylated
interferon, mammalian target of rapamycin (mTOR) inhibitors],
biological agents [interleukin (IL)-1 or tumor necrosis factor
(TNF)-alpha inhibitors], or targeted therapies (BRAF/MEK
inhibitors) depending on staging and molecular status (6).
Staging evaluation is based on metabolic response using PRECIST
criteria (12) by analogy to solid tumors. However, these
assessments, repeated every 6 months or every year, are not
accurate in deciphering the specific activity of ECD in relation to
infectious or other inflammatory processes.

To date, no biological marker of the disease activity has been
so far validated.

Papo et al. recently demonstrated that a particular monocyte
phenotype, resembling chronic myelomonocytic leukemia
(CMML), was found in ECD patients (13). Moreover, CD14++
Frontiers in Immunology | www.frontiersin.org 271
CD16low monocytes play a central role in ECD pathogenesis, as
they carry somatic mutations in most cases (10, 11). Based on
these points, our case report presents (14) a correlation between
clinical activity and monocytes subset distribution during the
follow-up of a patient presenting a severe vascular ECD requiring
liver transplantation.
CASE DESCRIPTION

We report a case of a patient with a severe vascular form of ECD
requiring liver transplantation for whom a correlation between
monocytes subset distribution and disease activity was shown.
METHODS

Histology was performed on 4-mm thick tissue sections after
staining with hematoxylin & eosin and immunohistochemistry,
including at least CD1a, S100, and (CD68, CD163) primary
antibodies (7). Tumor DNA was extracted from formalin-fixed
and paraffin-embedded tissues. Detection of MAP-kinase pathway
genes’ mutations was performed using targeted next-generation
sequencing. Samples were analyzed using MiSeq (Illumina) after
preparing the Custom Amlicon Low Input Kit libraries. The
targeting genes were AKT1, ALK, ARAF, ASXL1, BRAF, CALR,
CBL, CDK4, CDKN1B, CDKN2A, CEBPA, CSF3R, CTNNB1,
DNMT3A, EGFR, EZH2, FLT3, GATA2, GNA11, GNAQ, GNAS,
HERC1, HRAS, IDH1, IDH2, JAK2, JAK3, KIT, KRAS, KTM2D,
MAML3, MAMLD1, MAP2K1, MAP2K2, MAP2K3, MAP2K4,
MAP2K6, MAP3K1, MAP3K8, MAP3K9, MAP3K10, MAP3K19,
MAP4K4, MAPK1, MAPK11, MAPK9, MPL, NF1, NOTCH1,
NOTCH2, NPM1, NRAS, PDGFRA, PIK3CA, PP6C, PTEN,
PTPN11, RAC1, RAF1, RIT1, RUNX1, SETBP1, SRSF2, STAG2,
STK19, SYNGAP1, TAOK1, TAOK2, TET2, TP53, U2AF1, WT1,
and ZRSR2 as described by Melloul et al. (15)

The gene panel analyzed by next-generation sequencing
(NGS) on bone marrow were ASXL1, BCOR, BCORL1, CALR,
CBL, CSF3R, DNMT3A, ETV6, EZH2, FLT3, GATA2, IDH1,
IDH2, JAK2, KIT, KRAS, MPL, NIPBL1, NPM1, NRAS, PHF6,
PTPN11, RAD21, RIT1, RUNX1, SETBP1, SF3B1, SMC1A, SMC3,
SRSF2, STAG2, TET2, TP53, U2AF1, WT1, and ZRSR2. Variant
allele frequency (VAF) was significant over a threshold of 1%.
Variants between 0% and 1% were confirmed with another NGS
technology with a library preparation using the Haloplex Target
Enrichment System (Agilent Technologies) and run on MiSeq
(Illumina). The variant interpretation was performed according
to their absence in public databases of polymorphisms (especially
GnomAD) and their status in our “in-house” database of more
than 8,000 samples validated (including AML samples from the
Acute Leukemia French Association and MDS samples from the
Groupe Franç ais des Myé lodysplasies)

Whole-blood samples were stained with dot plot CD45-KO
(clone J33) to isolate the monocyte population. The three subsets
of monocytes are gated with the combination CD16/CD14.
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RESULTS

A 25-year-old woman was hospitalized for progressive abdominal
pain. Regarding her medical history, Budd–Chiari syndrome was
diagnosed at the age of 14 years, which led to long-term treatment
with vitamin K antagonists. During this episode, the search for
hereditary thrombophilia (factor V Leiden mutation, prothrombin
gene mutation, protein C and S deficiency, antithrombin-III
deficiency) or acquired thrombophilia (antiphospholipid syndrome,
paroxysmal nocturnal hemoglobinuria) was negative. The search for
JAK2 mutation was negative. Bone marrow examination was not
performed because the cells in the blood count were normal.

The current medical history started with recurrent abdominal
pain responsible for weight loss (13 kg in 4 months). The physical
examination was unremarkable. Biological tests showed an
inflammatory syndrome (C-reactive protein, 300 mg/L). CT scan
showed mesenteric ischemia secondary to the superior mesenteric
artery sheath and celiac trunk (Figure 1) associated with bilateral
nephromegaly. The patient underwent thrombectomy of the
superior mesenteric artery associated with a secondary stent graft
with successful reimplantation on the abdominal aorta associated
Frontiers in Immunology | www.frontiersin.org 372
with heparin-anticoagulation therapy. Despite the anticoagulation
treatment, she presented with extensive digestive ischemia that
required partial surgical removal of the jejunum. Investigations
for hereditary or acquired thrombophilia were again negative.
Mesentery artery biopsy showed normal intima and media,
without atherosclerosis or vasculitis. The arterial lumen was
normal without any sign of recent or ancient thrombosis. The
adventitia contained abundant fibrosis with a mild leukocyte
infiltration including lymphocyte and histiocyte but only rare
plasma cells. The immunohistochemical analysis showed CD68+,
CD1a− histiocytes with strong phospho-ERK expression (Figure 1).
NGS analysis on the biopsy tissue showed nomutation in theMAP-
kinase pathway gene. Extensive analysis of the bonemarrow showed
no dysplasia and no reported mutations in clonal hematopoiesis.
Thus, there was no evidence of hematological malignancy, solid
tumor (on body CT scan), and infectious or rheumatological disease
(connective tissue disease, vasculitis).

Technetium bone scan showed radiotracer uptake by long
bones highly suggestive of ECD (Figure 1).

In the early postoperative period, the patient received an
interleukin-1 receptor antagonist (Anakinra 100 mg/day) for 2
FIGURE 1 | Clinical, radiological, and histological features of Erdheim–Chester Disease. (A) Sagittal computed tomography of the patient showing severe stenosis of
superior mesenteric artery responsible for mesenteric ischemia in a patient with ECD. (B) Sagittal computed topography of the patient after thrombectomy and
stenting of superior mesentery artery. (C) Coronal view of severe stenosis of superior mesenteric artery responsible for mesenteric ischemia in a patient with ECD.
(D) Coronal view after thrombectomy and stenting of superior mesentery artery. (E) Bone scintigraphy showing radiotracer uptake on long bones characteristic of
ECD. (F) Maximum intensity sagittal and angio3D projection showing vascular stenosis of coeliac trunk and superior mesentery artery. (G) Maximum intensity sagittal
and angio3D projection demonstrates extensive digestive. (H) Maximum intensity sagittal and angio3D projection after digestive removal and vascular stenting.
(I) Tissue biopsy of mesentery artery showing fibrosis of vessels adventitia without signs of vasculitis (×100). (J) Same sample showing adventitia fibrosis without
signs of vasculitis (×200), (K) Same samples showing tissue infiltration with multinucleated histiocytes with CD163 (brown staining) expression on immunostaining.(HES;
immunohistochemistry, ×200) consistent with ECD. (L) Same samples showing tissue infiltration with multinucleated histiocytes expressing phosphor-Erk (brown staining)
HES; immunohistochemistry, (200×).
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weeks, followed by an MEK inhibitor (Cobimetinib) 40 mg/day
(20 mg twice daily, for 21 days of a 28-day cycle). Cobimetinib
induced partial metabolic remission with decreased radiotracer
uptake by long bones on 18

fluorodeoxyglucose PET-CT.
After Cobimetinib induced partial metabolic remission,
monocyte subset analyses showed 92.9% “classical” MO1
monocytes (CD14++CD16−), 5.7% “intermediate” MO2 monocytes
(CD14+CD16+), and 1.2% “non-classical” MO3 monocytes
(CD14lowCD16+). The total white blood cell count was 7.5 G/L.
The monocyte count was 0.62 G/L or 7% of the total white blood cell
count. Unfortunately, the patient developed a new celiac trunk
thrombosis causing acute liver failure that required an emergency
liver transplant. Prevention of graft rejection included high-dose
steroids (500 mg/day in pulses for 3 days and then 1 mg/kg/day
followed by a gradual decrease in steroids), a calcineurin inhibitor
(tacrolimus, 0.2 mg/kg/day), mycophenolate mofetil (2 g/day), and
Frontiers in Immunology | www.frontiersin.org 473
basiliximab (20 mg/day for 4 days after transplantation).
Cobimetinib was stopped after transplantation. One month later,
despite immunosuppressive agents and curative anticoagulant
therapy, the patient developed new thrombotic events and
immunosuppressant-related infections and died. During this ECD
flare, the blood cell count reached a total of 8.87 G/L, with a
monocyte count of 0.33 G/L (3.7% of total white blood cells).
Monocyte subset analyses showed an increase in “classical”
monocytes (97.5%) and a decrease in “nonclassical” monocytes
(1%) with 0.7% “intermediate” monocytes (Figure 2). The entire
clinical course of the patent is reported in Figure 3.

DISCUSSION

We present a case report evaluating the correlation between
monocyte subset and disease activity in the early follow-up of
A

B

FIGURE 2 | Flow cytometry analysis of monocyte subset on peripheral blood samples of a patient with ECD. (A) Flow cytometry analysis of monocyte subset in ECD
remission. A.1 Monocyte population (green) is gated in dot plot SSC/CD45, and the zone is purified residual population (blue) by exclusion of T and NK lymphocytes with
expression of CD7, granular cells with expression of CD16+ and CD14+) and B lymphocytes without CD16- but with expression of CD24+. A.2 The three subtypes of
monocytes are gated with the combination CD16/CD14: classical monocytes are MO1 (black) CD16−CD14+ representing 92.9% of total monocytes. Intermediate
monocytes are MO2 (blue) CD16+ CD14+low and represent 5.7% of total monocyte. Non-classical monocytes are MO3 (pink) expressing CD16+ without CD14 and
representing 1.2% of total monocytes. A.3 In order to define the subtype, the gate is positioned with the help of all cells. (B) Flow cytometry analyses of monocyte subset in
ECD flare The three monocytes subsets are gated with the combination CD16/CD14: classical monocytes are MO1 ((black) CD16− CD14+ representing 97.5% of total
monocytes. Intermediate monocytes are MO2 (blue) CD16+ CD14+low representing 0.7% of total monocytes. Non classical monocytes are MO3 (pink) CD16+ CD14-

representing 1% of total monocytes. CD45V500, CD7V450, CD16FITC, CD24PE, CD14APC-H7, and CD56PC7. BC, Beckman Coulter Immunotech, Miami, FL, USA; BD, BD
Biosciences, San Jose, CA, USA; V500, Horizon V500; APC-H7, allophycocyanin-H7; PC7, phycoerythrin-cyanin-7; PE, phycoerythrin; V450, Horizon V450; FITC,
fluorescein isothiocyanate. Peripheral blood mononuclear cells (PBMC) were stained with CD15, CD 14, CD13 PE-CF594, CD33, CD34, and CD45 KO, and monocytes
subsets were sorted. PBMC were centrifugated on a microscope slide, dried at room temperature for 30 min, and stained using May–Gruenwald–Giemsa stain. Monocyte
population is gated in dot plot SSC/CD45, and the zone is purified of residual population by exclusion of T and NK lymphocytes with expression of CD7, granular cells with
expression of CD16+ and CD14+ and B lymphocytes without CD16− but with expression of CD24+.
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ECD. Papo et al. studied the distribution of monocyte subsets in
patients with ECD without monocytosis (13). Patients with
active ECD had an increase in “classical” monocytes and a
decrease in “non-classical” monocytes compared with treated
patients (considered to have controlled disease). This
distribution resembles that of patients with CMML (16).

This distribution seems logical since most mutations in the
MAP-kinase pathway genes occur in CD14+ monocytes (10, 11).
Basedon this consideration,webelieve that uncontrolled expansion
of CD14+ cells could be a cornerstone of the pathogenesis of
histiocytosis. Even though mutated CD14+ monocytes represent a
marginal part of blood cells, their expansion leads to classical
monocytes and to the production of dendritic cells and homing
tissue macrophages in histiocytic disorders. Our result regarding
the level of classical monocytes in controlled ECD is comparable to
the study of Papo et al. (13). Furthermore, our work reports the
repeat analysis of monocyte subsets in a patient with ECD, and the
expansion of classical monocytes appears to be associated with
disease activity. CD14++CD16low monocyte expansion was
primarily assessed in CMML when the monocyte count was >1
G/L (16). CMML is a hybrid myelodysplastic/myeloproliferative
disease that may overlap with histiocytosis (17, 18) and whom
sometimes involve the MAP-kinase pathway (19, 20). By analogy
with the CMML flare in proliferative patients, we believe that the
expansion of CD14+monocytes is associated with the flare in ECD,
independent of the monocytes count in histiocytosis.

It should be noted that non-classical monocytes (CD14low,
CD16++) are involved in the wound healing process (21) and
promote endothelial adhesion of neutrophils via TNF-alpha
secretion (22). In patients with atherosclerosis, their decrease
Frontiers in Immunology | www.frontiersin.org 574
correlates with coronary plaque progression (23). Our case calls into
question the role of “non-classical”monocytes as potential markers of
vascular disease because their decrease was associatedwith thrombosis.

This case also reports an aggressive vascular presentation of
ECD that led to organ transplantation at an early age. ECD usually
occurs in middle-aged patients (5, 6, 9), but pediatric patients have
been reported previously (24). The current observation is that ECD
isnot a disease of the heart. In the currentobservation,Budd–Chiari
syndrome at 14 years of agemay be thefirst vascular event related to
ECD. ECD should be sought in unusual site thrombotic events,
including Budd–Chiari syndrome. On the other hand,
transplantation has been reported only twice in patients with
ECD-related organ failure (25, 26). It was associated with
favorable outcomes in patients with ECD-related organ failure. It
was associated with favorable outcomes in both cases, but the ECD
was in remission at the time of transplantation, which was not the
case in our patient. Neither immunosuppressive drugs (calcineurin
inhibitors, mycophenolate mofetil) nor MEK inhibitor induced
remission of ECD in this patient. The fact that the disease is not
controlled by aMEK inhibitor in non-mutated ECD patients calls
into question another dominant activation pathway rather than
MAP-kinase activation (possibly PI3K/AKT/mTOR) (27). Other
pathways have recently been described in patients with
histiocytosis, (28, 29) suggesting new therapeutic targets in
refractory patients. Inhibition of RANKL may be a promising
therapeutic approach because RANKL is expressed in active ECD
lesions along with p56 NF-kB activation (29, 30). CSF1-R inhibitor
can also suppress dendritic cell differentiation and migration in
histiocytosis (31). This approach may decrease the local tumor
infiltrate and may reduce disease activity in refractory patients.
FIGURE 3 | Chronological history of the patient from Budd–Chiari syndrome to ECD.
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Treatments may interfere with monocyte assays; patient-
administered immunosuppressive drugs (calcineurin inhibitors,
mycophenolate mofetil) have no effect on monocyte subsets (32),
but steroids in renal transplant patients may increase the ratio of
classical monocytes and decrease that of non-classical monocytes
(32). Indeed, the subset distribution results may have been biased
by steroid use. However, in the cohort of transplanted patients,
the change in monocyte distribution was not associated with
clinical events. The change in the classical/non-classical
monocyte ratio resembles what is observed in uncontrolled
vascular disease. From our point of view, we cannot exclude a
unfavorable role of steroid use in patients with ECD.

The main strength of our presentation is the use of monocyte
subset analysis in two consecutive samples from an ECD patient,
which shows an increase in classical monocytes correlated with
the flare-up. This presentation may provide reassurance of the
central role of monocytes in the pathophysiology of histiocytosis.
The main limitation of the study is a case report, and the results
need to be validated in a prospective cohort of patients. Thus, the
functional role of monocyte subsets in histiocytosis is not fully
elucidated, and basic science studies are mandatory to compare
monocyte polarization to major pathologies described in the
literature and broadly explore their pivotal role in histiocytosis.

Nevertheless, this bioassay may be useful in specific situations
where 18FDG PET may be misleading (infection, postoperative
period). Physicians may repeat it more frequently than 18FDG
PET in patients with ECD.
Frontiers in Immunology | www.frontiersin.org 675
In conclusion, this case supports the hypothesis that
monocyte subset analysis can be a simple tool to assess ECD
activity. However, further studies are needed to confirm
this hypothesis.
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BCR-ABL1-negative myeloproliferative neoplasms are burdened by a reduced life
expectancy mostly due to an increased risk of thrombo-hemorrhagic events, fibrotic
progression/leukemic evolution, and infectious complications. In these clonal myeloid
malignancies, JAK2V617F is the main driver mutation, leading to an aberrant activation of
the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling
pathway. Therefore, its inhibition represents an attractive therapeutic strategy for these
disorders. Several JAK inhibitors have entered clinical trials, including ruxolitinib, the first
JAK1/2 inhibitor to become commercially available for the treatment of myelofibrosis and
polycythemia vera. Due to interference with the JAK-STAT pathway, JAK inhibitors affect
several components of the innate and adaptive immune systems such as dendritic cells,
natural killer cells, T helper cells, and regulatory T cells. Therefore, even though the clinical
use of these drugs in MPN patients has led to a dramatic improvement of symptoms
control, organ involvement, and quality of life, JAK inhibitors–related loss of function in
JAK-STAT signaling pathway can be a cause of different adverse events, including those
related to a condition of immune suppression or deficiency. This review article will provide
a comprehensive overview of the current knowledge on JAK inhibitors’ effects on immune
cells as well as their cl inical consequences, particularly with regards to
infectious complications.

Keywords: myeloproliferative neoplasms, JAK inhibitors, ruxolitinib, infections, immune system
1 INTRODUCTION

The BCR-ABL1-negative myeloproliferative neoplasms (MPNs) are a heterogenous group of clonal
disorders of the hematopoietic stem cell, mainly characterized by hyperproliferative bone marrow
with varying degrees of reticulin/collagen fibrosis, extramedullary hematopoiesis, abnormal
peripheral blood counts, and constitutional symptoms. They include polycythemia vera (PV),
essential thrombocythemia (ET), and myelofibrosis (MF). The latter may present as a primary
disorder (PMF) or evolve from another pre-existing BCR-ABL1-negative MPN, such as PV or ET,
globally identified as secondary MF (SMF) (1).

Somatic mutations in MPNs are classified into “driver” and “other” mutations; the former
include JAK2, CALR, and MPL; and the latter, ASXL1, EZH2, IDH1/2, SRSF2 and U2AF1,
org November 2021 | Volume 12 | Article 750346177
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among others (2–4). It is generally believed that driver mutations
are essential for MPN phenotype, whereas the “other”mutations
might contribute to fibrotic progression and leukemic evolution
(5, 6).

JAK2V617F is the main driver mutation in MPNs, leading to
an aberrant activation of the Janus kinase-signal transducer and
activator of transcription (JAK-STAT) signaling pathway.
Therefore, its inhibition represents an attractive therapeutic
strategy for these disorders.

Numerous JAK inhibitors have entered clinical trials,
including ruxolitinib, the first JAK1/2 inhibitor to become
commercially available for the treatment of MPNs. Indeed, it
was initially approved in both the US and Europe for the
treatment of splenomegaly and/or constitutional symptoms in
MF patients (7, 8); subsequently, it was also licensed for PV
subjects with an inadequate response to or an unacceptable
toxicity from hydroxyurea (HU) (9, 10).

Despite its efficacy, ruxolitinib-related loss of function in JAK-
STAT signaling pathway can be a cause of different adverse events
(AEs), including those related to a condition of immune
suppression or deficiency. Accordingly, the increased risk of
infections already inherent to even untreated MPNs is further
augmented due to the immunomodulatory and immuno-
suppressive effects of JAK inhibitors.

This review article will provide a comprehensive overview of
the current knowledge on JAK inhibitors’ effects on immune
cells, as well as their clinical consequences particularly with
regards to infectious complications.
2 IMMUNOSUPPRESSIVE ACTIVITY OF
JAK INHIBITORS

The JAK-STAT pathway—based on four non-receptor protein
tyrosine kinases, JAK1, JAK2, JAK3, and Tyk2, and seven STAT
proteins—regulates proliferation, differentiation, and survival of
a variety of cells and is crucially relevant for hematopoiesis as
well as for immune cell development and function (11–14). As an
example, JAK1 is involved in type I IFNs, IFN-g, IL-2, IL-7,
IL-15, and IL-21 signaling; it also cooperates with Tyk2 for type I
Frontiers in Immunology | www.frontiersin.org 278
IFN and with JAK2 for IFN-g signal transduction (15–17). JAK2
is activated by several cytokines and growth factors including
erythropoietin, thrombopoietin, IL-3, IL-6, G-CSF, and IFN-g
(18, 19), while JAK3 is associated with the Υc chain family of
cytokines (20) and Tyk2 is triggered by cytokines such as type I
IFNs, IL-6, IL-10, and the IL-12 and IL-23 families (21).

Due to interferencewith the JAK-STATpathway, JAKinhibitors
affect several components of the innate and adaptive immune
systems such as dendritic cells (DCs), natural killer cells (NKs), T
helper cells, and regulatory T cells (Tregs), thus resulting in a
significant immunosuppressive activity (Table 1) (27).

2.1 Dendritic Cells
Dendritic cells are crucial antigen-presenting and phagocytic
cells responsible for presenting antigens to T lymphocytes,
initiating therefore the process of adaptive immunity (28, 29).
The pivotal study by Heine et al. on ruxolitinib-induced
alterations of DCs function laid the preliminary bases for
understanding the increased infection rate recorded in MPN
patients treated with this JAK inhibitor as well as its anti-
inflammatory and immunomodulating activity. The in vitro
development of human monocyte-derived DCs was almost
completely blocked, and DCs activation was inhibited as
shown by decreased IL-12 production. Dendritic cell migration
both in vitro and in vivo in mice was also reduced, resulting in
impaired T-cell activation (22).

The impact of ruxolitinib on DCs migration and the
identification of target molecules mediating this effect were
further investigated by means of an ex vivo assay. Dendritic cell
migration turned out to be heavily depressed via interference with
Rho-associated coiled-coil kinase (ROCK) that controls non-
muscle myosin activity regulating reorganization and contraction
of cellular actin–myosin filaments. This DCs loss of mobility may
lead to a reduced T cell activation in draining lymph nodes and
might explain the increased number of these proinflammatory
blood cells in ruxolitinib-treated MPN patients (30).

Similar to ruxolitinib, momelotinib impacts on DCs’
functions. In a mouse model of atopic dermatitis, besides
inhibiting mRNA expression of IL-4, IL-5, IFN-g and STAT1,
STAT3 and STAT5 phosphorylation in topically treated skin
TABLE 1 | Immune system components and JAK inhibitors’ effects.

Physiological function JAK inhibitors’ effects References

Dendritic
cells (DCs)

Antigen-presenting/phagocytic cells responsible for presenting antigens to T
lymphocytes

Ruxolitinib: inhibition of DCs development, activation, and
migration
Momelotinib: reduced CD80/CD86 expression involved in
T-cell activation, expansion, and differentiation

(22) (23)

Natural
Killer cells
(NKs)

Cytotoxic lymphocytes that play a critical role in antiviral and antitumor responses Ruxolitinib: impaired maturation as reflected by an
increased ratio in immature to mature NKs; reduced
capacity to form lytic synapses with NK target cells

(24)

CD4+ T
cells

Heterogeneous cell population involved in adaptive immunity, inflammatory
response, and protection against a wide range of both intracellular and
extracellular pathogens

Ruxolitinib: severe, long-lasting reduction of circulating
regulatory T cells not reversible upon drug reduction
or withdrawal
Ruxolitinib/fedratinib: “silence” CD4+ T cells and
decrease cytokine secretion; polarize the immune profile
toward a “Th17 type” response

(25) (26)
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lesions, momelotinib reduced in activated DCs in vitro the
expression of the co-stimulatory molecules CD80 and CD86
involved in T-cell activation, expansion, and differentiation (23).
On the contrary, in a more recent paper, another JAK inhibitor,
pacritinib, exhibited only a mild suppressive effect on DCs.
Pacritinib, at concentrations reflecting patients’ plasma levels,
reduced IL-12 secretion, whereas IL-6 and TNF-a levels were
unchanged, thus producing an immunosuppressive effect on
DCs significantly less pronounced than that of ruxolitinib (31).

2.2 Natural Killer Cells
NaturalKiller cells are cytotoxic lymphocytes of the innate immune
system that play a critical role in antiviral and antitumor responses.
The coordinated action of multiple cytokines is crucial for NKs
development and maturation, and many of these cytokines such as
IL-2, IL-7, IL-12, IL-15, IL-21, IL-27, and IFNs signal via the JAK-
STAT pathway (32). The effects of JAK inhibition on human NKs
was extensively investigated in a study comparing 28MPNpatients
with or without ruxolitinib treatment and 24 healthy subjects. In
ruxolitinib-treated subjects, a decrease in NKs number associated
with clinically relevant infectionsmostlyofviraloriginwas recorded
likely due to impaired maturation as reflected by an increased ratio
in immature to mature NKs. Also, the endogenous defect in NKs
function of MPN patients was further worsened by ruxolitinib.
These in vivo findings were supported by in vitro data showing that
the cytokine-mediated NKs activation was inhibited by ruxolitinib
as suggested by a reduced expression of NKs activation markers
such as CD16, CD69, NKG2D, NKp46, and granzyme B. A
diminished killing activity was also reported due to an impaired
capacity to form lytic synapses with NK target cells. The in vitro
ruxolitinib effects on NKs’ function were restored upon drug
removal, indicating reversibility of this action (24).

The impact of ruxolitinib and fedratinib, a JAK2-specific
inhibitor, on NKs activation and function were then compared
in vitro using gc cytokines and human DCs subtypes. While
ruxolitinib completely blocked IL-2, IL-15, and DC-mediated
STAT5 phosphorylation, along with the capacity of NKs to
secrete IFNg and lyse NK-sensitive targets, fedratinib inhibited
only soluble IL-15-mediated STAT5 phosphorylation, which
Langerhans-type DCs, presenting membrane-bound IL-15 in
trans, could salvage, demonstrating that a selective JAK2
inhibitor better preserves NKs activity (33).

Ruxolitinib effect on NKs was evaluated also in the context of
host immune response against gene therapy viral vectors by
means of a co-culture system with human NKs line,
macrophages, and airway epithelial cells. The increased IFN-g
cytokine expression induced by NKs co-cultured with helper-
dependent adenoviral (HD-Ad) vector-activated macrophages as
well as the kill of HD-Ad vector-transduced bronchial epithelial
cells by activated NKs were both significantly reduced by
ruxolitinib due to a block of IL-12 and IL-15 production (34).

2.3 CD4+ T Cells
CD4+ T cells, a heterogeneous cell population differentiating into
multiple effector subsets such as T-helper and Tregs, play a central
role in adaptive immunity, mediate inflammatory response, and
protect against a wide range of both intracellular and extracellular
Frontiers in Immunology | www.frontiersin.org 379
pathogens by releasing cytokines and chemokines that induce
and/or recruit target cells (35, 36). The effect of JAK inhibition on
CD4+ T cells was firstly investigated by Massa et al. on 18 MF
patients: the administration of ruxolitinib resulted in a severe,
long-lasting reduction of circulating Tregs not reversible upon
drug reduction or withdrawal. It was suggested that decreased
levels of Tregs by disrupting the immune response might explain
the increased frequency of infections, such as tuberculosis, Herpes
zoster, and pneumonia of viral origin reported in ruxolitinib-
treated MF patients (25). Similar results were obtained in a study
on nine MPN patients. After 3 weeks of ruxolitinib treatment, a
decrease in total CD3+ cells, number of Tregs, Th1, and Th17 was
observed; moreover, in T cells isolated from these patients,
TNF-a, IL-5, IL-6, and IL-1B production was downregulated (37).

Frequency and function of CD4+ T cell subsets at baseline
and during treatment with either ruxolitinib or fedratinib were
further investigated in 50 MPN subjects. At baseline, Tregs in
MPN patients were significantly lower than in 23 healthy
controls, and all subgroups of Tregs as defined by CD45RA
expression were further decreased by JAK inhibitors with no
targeting of specific subpopulations. After 6 months of treatment
in responsive subjects, a significant increase in Th17 cells
compared to baseline and an expansion of “dual positive”
IFNg+/IL‐17+ cells were recorded, suggesting a polarization
from a “Th1” to a “Th17” phenotype. A functional “silencing”
of T helper cells both in vivo and in vitro and a significant
decrease of pro‐inflammatory cytokines secretion by CD4+ T
cells were also observed, thus representing a possible explanation
for the increased rate of atypical infections reported in JAK
inhibitors-treated subjects. It was suggested that JAK inhibitors
may display a dual effect on number and function of CD4+ T
cells, the early one being to “silence” CD4+ T cells and decrease
cytokine secretion and the long-term one being to polarize the
immune profile toward a “Th17 type” response (26).

The role of JAK inhibition specificity on T-cell proliferation
and function was also investigated by evaluating the effects of
ruxolitinib and momelotinib as JAK1/2 inhibitors and of BSK805
as selective JAK2 inhibitor. In T-cells derived from ruxolitinib-
treated MPN patients, CD69 expression and proliferative
capacity were almost abrogated in CD8+ and significantly
impaired in CD4+ T cells, confirming that JAK1/2 inhibitors
significantly decrease T-cell reactivity and proliferation in vivo.
Ruxolitinib, together with momelotinib and BSK805, was also
assessed in vitro on healthy donors T cells. In a mixed
lymphocyte culture assay, while JAK1/2 inhibition significantly
decreased T-cell reactivity, JAK2 specific blockage did not have
any inhibitory effect, indicating that the T-cell function
impairment is strictly dependent upon JAK1 inactivation (38).
3 JAK INHIBITORS-ASSOCIATED
INFECTIOUS COMPLICATIONS IN
MPN PATIENTS

Myeloproliferative neoplasms are burdened by a reduced life
expectancy mostly due to an increased risk of thrombo-
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hemorrhagic events, fibrotic progression/leukemic evolution,
and infections. Indeed, an intrinsic MPN propensity to
infectious complications was firstly suggested by Swedish
investigations performed before JAK inhibitors’ introduction.
In a cohort of 9.285 MPN subjects, the 10-year probability of
death from infections was 4.6% in PV, 2.5% in ET, and 10.4% in
PMF compared to 2.3% in 35.769 matched controls (39). In a
further study including 8.363 MPN cases and 32.405 controls,
the hazard ratio (HR) of any infection was 2.0. According to
MPN subtypes, the HR was 3.7 in PMF, and 1.7 in both PV and
ET, with no significant difference between untreated patients and
subjects treated during the years 2006–2013 with HU, IFN-a, or
anagrelide. During the follow-up, however, the rate of infections
raised in patients subsequently treated with ruxolitinib (40).

The issue that the inherent MPN susceptibility to infections
might be increased by JAK inhibitors was addressed in clinical
trials, retrospective series, case reports, and reviews (Table 2).

3.1 Clinical Trials and Retrospective Series
3.1.1 Myelofibrosis
Due to the availability ofmore long-term safety reports, most of the
data on JAK inhibitors-associated infections inMPNs concernMF
patients. In theCOMFORT-I trial, at amedian3-year follow-up, the
incidence of urinary tract and Herpes zoster infections, the most
common ones during randomized treatment with ruxolitinib, were
not increased by long-term therapy, being respectively 10.5% in 0–
12 months, 6.7% in 12–24 months, 7.7% in 24–36 months, 6.0%
after≥36months, and2.1% in0–12months, 3.5% in12–24months,
3.4% in 24–36 months, and 0% after ≥36 months. No other
opportunistic infections occurred with long-term ruxolitinib
therapy (41). According to the final analysis at 5-year follow-up,
while grade 1/2 Herpes zoster infections were recorded at higher
rate in ruxolitinib-treated subjects, other infections, including
pneumonia, sepsis, upper respiratory, and urinary tract infections,
displayed similar rates between ruxolitinib- and placebo-treated
patients (54). In the COMFORT-II trial, the only grade 3/4
infectious AE was pneumonia, 1% in the ruxolitinib group vs. 5%
in the best available therapy (BAT) group, being all other infections
of grade 1/2 (8). At 5-year follow-up the longer exposure to
ruxolitinib did not determine a significant increase in incidence of
Frontiers in Immunology | www.frontiersin.org 480
infections (65). In the JUMP trial, a ruxolitinib single-arm
expanded-access study enrolling 2.233 MF patients, all-grade
infections included urinary tract infection (6.0%), pneumonia
(5.3%), Herpes zoster (3.6%), influenza (3.0%), and oral Herpes
(1.6%). Tuberculosis occurred in three patients and legionella
pneumonia in one; no HBV reactivation was instead observed
(42). The ROBUST phase II study evaluated safety and efficacy of
ruxolitinib in 48 intermediate‐1, intermediate-2, and high‐risk MF
patients. The most common infections were of the urinary tract
(16.7%), lower (14.6%) and upper (10.4%) respiratory tract, and
nasopharyngitis (6.3%), with no reports of Herpes zoster, HBV, or
tuberculosis (43).

In a further real-life investigation, 507 MF patients, 128
treated with ruxolitinib and the remaining with cytoreductive
agents, were retrospectively evaluated to investigate incidence
and risk factors of infectious complications. Overall, 112 (22%)
patients experienced 160 infectious events, most being bacterial
(78%) and affecting mainly the respiratory tract. While the rate of
infections was higher in ruxolitinib‐treated subjects (44 vs. 20%),
attention was raised on the possible impact of confounding
factors such as high IPSS risk category and splenomegaly, both
being the main risk factors for infections and prevailing in the
JAK inhibitor cohort (55). In another series of 446 MF subjects
retrospectively investigated, after a median ruxolitinib exposure
of 23.5 months, 28% of patients experienced 161 infectious
events, involving the respiratory tract in 50% of cases. While
viral (14.9%) and fungal (2.5%) infections were also observed,
bacteria were the most frequent etiological agent (68.9%).
Previous infections and high IPSS risk score still correlated
with higher infectious risk whereas splenomegaly reduction
was associated with a decreased risk of subsequent infectious
complications (56). In 70 MF patients treated with ruxolitinib
according to clinical practice, after a median time of 8 months
from therapy start, 12 subjects experienced 17 grade ≥2
infections, mainly bacterial, including a life‐threatening
tuberculosis (58).

Data on momelotinib-related infectious complications can be
retrieved mainly from the phase III randomized SIMPLIFY-1
and SIMPLIFY-2 trials. In the SIMPLIFY-1 study, grade ≥3
infections occurred in 7% of cases treated with momelotinib
TABLE 2 | JAK inhibitors-associated infectious complications.

MPN subtype References

Urinary tract infection MF (41–47)
Herpes zoster MF

PV
(41, 42, 48, 49)
(9, 10, 50–53)

Herpes simplex reactivation MF (42)
Pneumonia/Upper respiratory tract infection MF (8, 42, 43, 48, 54–57)
Influenza MF (42)
Tuberculosis MF

PV
(42, 49, 58–61)

(61)
Hepatitis B reactivation MF

PV
(59, 62, 63)
(62, 64)

Pneumocystis jirovecii pneumonia MF
PV

(62)
(62)
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and in 3% of patients who received ruxolitinib (66). In the
SIMPLIFY-2 trial, grade 3 urinary infection frequencies were 2%
in the momelotinib and 0% in the BAT groups (44).

As far as fedratinib is concerned, in a double-blind,
randomized phase III study enrolling 289 intermediate-2 or
high-risk MF subjects assigned to fedratinib at a daily dose of
400 mg or 500 mg or to placebo, infections occurred in 42 and
39% of patients, respectively, in the 400 and 500 mg groups
compared with 27% in the placebo group, the urinary tract
infections being the most reported AE (45). In a phase II open-
label randomized study on 31 MF patients treated with
fedratinib, infections of any grade were recorded in 11 (35%)
patients and of grade 3/4 in six (19%) subjects, the most frequent
being of the urinary tract (46). Urinary tract infections, usually of
grade 1/2, were the most common infectious complication (12
cases) also in the JAKARTA-2 trial, a single-arm phase II study
assessing fedratinib in 97 MF patients (47).

In the PERSIST-1 trial enrolling 327 patients with higher-risk
MF randomly assigned to pacritinib or BAT, the incidence of
serious opportunistic infections in the pacritinib group was low:
Herpes zoster infections were reported in 1% of patients, whereas
pneumonia (three cases) was among the most frequent AEs
leading to death (48). Also, in a further phase III clinical trial on
311 MF subjects randomized to pacritinib 400 mg once daily,
pacritinib 200 mg twice daily, or BAT, pneumonia was a serious
AE with 4, 7, and 3% of cases, respectively, in the pacritinib once
daily, twice daily, and BAT groups (57).

3.1.2 Polycythemia Vera
Data on ruxolitinib-associated infectious complications in PV
are derived from the RESPONSE, RESPONSE-2, and RELIEF
clinical trials (67). In the RESPONSE study addressed to HU-
resistant or -intolerant PV patients with splenomegaly, the rate
of any grade infections was 41.8% in the ruxolitinib group and
36.9% in the standard-therapy arm, while grade 3/4 infections
were respectively 3.6 and 2.7%. Herpes zoster infections, all of
grade 1/2, were recorded in seven (6.4%) patients in the
ruxolitinib group as compared with no cases on standard
therapy (9). At 80-week follow-up the rate of all infections was
29.4 per 100 patient-years of exposure in the ruxolitinib group,
27.8 in the cross-over cohort and 58.4 in the BAT arm. The rate
of Herpes zoster infection was higher in patients originally
randomized to ruxolitinib or treated with ruxolitinib after
crossover than in BAT (50). The long-term ruxolitinib safety
was then evaluated at 5 years. In the ruxolitinib arm, except
Herpes zoster, which was more frequent in this group, the rate of
infections was lower, 18.9 per 100 patient-years of exposure vs.
19.1 in the crossover population and 59.8 in the BAT cohort (51).
The RESPONSE-2 study randomized to ruxolitinib or BAT PV
patients resistant or intolerant to HU without splenomegaly. In
the ruxolitinib group, grade 3/4 infections were reported in 3% of
patients and grade 1/2 Herpes zoster infection in 1% of subjects
while in the BAT cohort occurred respectively in 1% and in none
of the cases (10). At week 80 the rates of all grade and grade 3/4
infections per 100 patient-years of exposure were 24.9 and 2.3,
respectively, in the ruxolitinib arm vs. 33.7 and 3.7 in the BAT
cohort. Frequency of Herpes zoster infections was higher in
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patients receiving ruxolitinib; in this group, however, no
pneumonia or tuberculosis reactivation was reported (52). In
the RELIEF trial, recruiting patients with an adequate hematocrit
control on HU but still experiencing PV‐related symptoms
randomized to ruxolitinib or HU, the ruxolitinib safety profile
was similar with that reported in the RESPONSE and
RESPONSE-2 studies. Infectious complications were generally
grade 1/2, with Herpes zoster infection being observed in only
one patient in the ruxolitinib arm (53).

3.1.3 Unselected MPNs
In a retrospective study enrolling 202 cases treated with ruxolitinib
and a control cohort of 73 ruxolitinib-naïve MPN subjects,
infections usually of grade 1/2 occurred in 38.4% of ruxolitinib-
naïve and 42.6% of ruxolitinib-treated patients, with upper
respiratory infections, urinary tract infections, and pneumonia
being the most frequent ones. Rate of Herpes zoster infection was
3.9and2.7%, respectively, in the ruxolitinib-treatedandruxolitinib-
naïve groups. After propensity score weighting, there was no
difference in risk of infection between the ruxolitinib-treated and
ruxolitinib-naïve cohorts (68).

3.2 Reviews, Case Reports, and
Registries Database
Being the JAK inhibitor with the longest time since approval,
both exhaustive systematic reviews (27, 62) and numerous case
reports have been published on ruxolitinib-associated infectious
complications. Together with a review of the literature, Lussana
et al. also performed a meta‐analysis of interventional phase III
studies on MF and PV patients. In the PV trials RESPONSE,
RESPONSE-2, and RELIEF, as well as in the pooled analysis of
the extended COMFORT-I and COMFORT-II studies,
ruxolitinib turned out to be associated with a statistically
significant increased risk of Herpes zoster infection. In the 28
case reports collected in the same review, the most frequent
ruxolitinib-associated infections were tuberculosis, followed by
HBV reactivation and Pneumocystis jirovecii pneumonia (62).

In a literature and institutional records search on ruxolitinib-
treated subjects, 32 cases of opportunistic infection mainly in MF
patients were retrieved, the most common being tuberculosis
followed by cryptococcal infection and HBV reactivation (59).
The issue of ruxolitinib-associated Mycobacterial tuberculosis
infect ions was also invest igated in a retrospective
pharmacovigilance review based on the FDA Adverse Events
Reporting System. Between January 2011 and December 2018,
out of 4.666 reports of typical Mycobacterial tuberculosis
recorded in the database, 91 were due to ruxolitinib compared
with 4.575 cases due to all other drugs with a significant odds
ratio (OR) at 9.2. Also, for atypical mycobacterial infections, the
OR for ruxolitinib compared to all other drugs was significant at
8.3, indicating that patients on ruxolitinib were at increased risk
of developing mycobacterial infections (60). In a similar
retrospective study based on the French Pharmacovigilance
database, between August 2012 and August 2017, in 24 MPN
subjects and two GVHD cases all treated with ruxolitinib, 30
cases of infections were reported: nine were bacterial, five
mycobacterial, ten viral, four fungal, one protozoan, and one
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non-specified opportunistic infection, being Herpes zoster the
most frequently identified pathogen (49). A retrospective study
on 65 MF/PV patients treated with ruxolitinib between July 2011
and June 2018 recorded two mycobacterial infections (3% of
patients), one due to Mycobacterial tuberculosis and one to
Mycobacterium avium complex, a higher rate than reported in
the original randomized studies (61). The several cases of
tuberculosis reported in clinical trials as well as in registries
database and in case reports indicate an increased risk of
developing this infectious complication in ruxolitinib-treated
subjects. Therefore, before starting ruxolitinib, a tuberculosis
history and, in the presence of significant risk factors, a screening
with Tuberculin Skin Test or preferably IFN-g Release Assay
should always be performed. During ruxolitinib treatment, a
regular follow-up aimed at early diagnosis of tuberculosis is also
advisable, followed by an appropriate therapy when
required (69).

Also, the risk of HBV reactivation in ruxolitinib-treated MPN
patients, ranging from asymptomatic virus replication to severe
hepatitis, was highlighted in several case reports (63, 64, 70, 71).
Screening procedures including HBsAg, anti-HBs, and anti-HBc,
and HBV-DNA if anti-HBc is positive are recommended (72,
73). HBV-seropositive patients should be treated with antiviral
drugs such as entecavir and tenofovir due to their low viral
resistance rate. Patients negative for HbsAg, anti-HBs, and anti-
HBc should instead be considered for immunization (69).
Recommendations of the German Standing Committee on
Vaccinations (STIKO) also suggest vaccinations against
influenza, Herpes zoster, and Streptococcus pneumoniae for
individuals beyond the age of 60 and Neisseria meningitidis for
those with a pre-existing disorder of the immune system (74).
3.3 JAK Inhibitors and COVID-19
The management of the potential immunosuppressive effects
and the relative risk of infectious complications during therapy
with JAK inhibitors represent an even more pressing problem at
a time like the current one dominated by the COVID-
19 pandemic.

The SARS-CoV-2 coronavirus infection causing the
coronavirus disease 2019 (COVID-19) is a highly contagious
and life-threatening disease. The latter is critically associated
with a high rate of respiratory failure, thrombo-hemorrhagic
complications, and death, mainly due to an abnormal
inflammatory response. Recent data have indeed highlighted a
pivotal role for pulmonary immuno-thrombosis in the
pathogenesis of severe COVID-19. SARS-CoV-2 enters airway
epithelial cells via ACE2 receptors and subsequently triggers
monocytes, macrophages, and T cells infiltration into the alveoli
(75). This is then accompanied by local cytokine and chemokine
generation, leading to elevated systemic levels of cytokines,
including TNF-⍺, IL-1b, IL-6, and IL-8 (75).

Considering its pronounced anti-inflammatory properties,
ruxolitinib was, therefore, hypothesized to be an effective
therapy for COVID-19 (76). In a prospective study of 34 aged
and high-risk comorbidity patients with severe COVID-19
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infection, ruxolitinib was shown to be safe and associated with
significant clinical improvement, especially in the lung
function (77).

As MPN patients are prone to both thrombosis and bleeding,
they call for special care during COVID-19. With this aim, the
GIMEMA (Gruppo Italiano Malattie Ematologiche dell’Adulto)
group conducted a survey of 34 Italian centers to study the
prevalence of infections in this specific setting (78). A total of
1,095 patients were treated with ruxolitinib, 829 for MF (75.7%)
and 266 for PV (24.3%), with 36 of them found positive for
COVID-19: 13 (36%) were asymptomatic, 13 (36%) had flu-like
symptoms, and 10 (27.8%) were affected by COVID-19-related
pneumonia. Eight COVID-19-positive patients died with a death
rate of 22%. As a result of this survey, it was found that the
incidence of COVID-19 infection in MPN patients is rather low,
and a certain protective function of ruxolitinib could not be
ruled out.

A subsequent study by the European LeukemiaNet collected
175 MPN patients with COVID-19 during the first wave of the
pandemic, from February to May 2020, in 38 international
hematologic centers (79). Among the MPN phenotypes,
patients with MF were the great majority (44%). Furthermore,
they were at higher risk of mortality (48%) in comparison with
both ET (25%) and PV (19%). When compared with the general
COVID-19 population, the mortality ratio in this study was at
least two to three times higher than the mortality rates reported
by Johns Hopkins University in the same period and comparable
to that reported in other hematologic malignancies (80–82).
With regards to therapy ongoing at COVID-19 diagnosis, HU
did not show significant correlations. In contrast, multivariable
and propensity score matching analyses found an increased risk
of death in patients who abruptly discontinued ruxolitinib
treatment (79). Accordingly, JAK inhibitors should not be
adjusted or discontinued in MPN patients to reduce the risk of
COVID-19. On the contrary, stopping ruxolitinib in the event of
COVID-19 infection may be harmful and should be avoided if
clinically feasible. Otherwise, if ruxolitinib needs to be stopped, it
should be tapered cautiously (27, 83).

Due to the immunomodulatory properties of ruxolitinib, the
question arises whether response to SARS-CoV-2 vaccination
might be impaired in MPN patients, in particular those under
ruxolitinib therapy.

A recent study has already demonstrated that only a low
proportion (17%) of solid organ transplant recipients mounted a
positive antibody response to the first dose of SARS-CoV-2
mRNA vaccines, with those receiving anti–metabolite
maintenance immunosuppression less likely to respond (84).
In a subsequent study from the same authors, most of the
patients had detectable antibody responses after the second
dose, although participants without a response after dose 1 had
generally low antibody levels. Consequently, a substantial
proportion of transplant recipients likely remain at risk for
COVID-19 after two doses of mRNA vaccine (85).

Focusing on hematological malignancies, different studies have
already demonstrated a substantially reduced seroconversion rate
post-COVID-19 vaccination in these patients, particularly in
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heavily treated patient groups, those with aggressive disease,
marked cytopenias, and B-cell neoplasms (86–88).

On the contrary, patients with chronic myeloid neoplasms,
including MPN, chronic myeloid leukemia, and myelodysplastic
syndromes, seemed to show higher seroconversion rates than
those reported in the former groups: more in details, reasonably
high seroconversion rates following a single vaccine dose were
observed in patients with CML and in MPN patients receiving
interferon. However, humoral responses in certain MPN
patients, especially in those receiving ruxolitinib, were found to
be substantially impaired as compared to healthy adults of a
similar age group (89–92). Even though the exact mechanism for
this is not yet known, it could be suggested to be the result of
both disease- and treatment-mediated immune dysfunction.
4 JAK INHIBITORS’ POSITIVE EFFECTS
ON INFLAMMATION IN MPNs AND
GRAFT-VERSUS-HOST DISEASE (GVHD)

The majority of MPN patients harbor mutations of the genes
encoding for JAK2, CALR, or MPL, which result not only in the
constitutive activation of the JAK-STAT signaling pathway but
also of other pro-inflammatory signaling, in particular tumor
necrosis factor (TNF)/nuclear factor k-light-chain-enhancer of
activated B cells (NF-kB) pathways, in mutated hematopoietic
stem cells and their progeny (93–95). In vitro studies have shown
that the increased production of pro-inflammatory cytokines
results from both an increase in the percentage of cytokine-
secreting cells, as well as augmented cytokine secretion per cell
(93). In addition to production of inflammatory cytokines by the
MPN clone, immune dysregulation also results from paracrine/
endocrine effects on non-clonal hematopoietic and stromal cells
(96–99).

Consequently, MPN patients, particularly those with MF,
exhibit both uncontrolled myeloproliferation and abnormally
elevated levels of circulating pro-inflammatory cytokines causing
disease-related systemic symptoms (100).

More precisely, plasma cytokine profile, especially in the setting
of PMF or post-PV/ET myelofibrosis have already been shown to
be significantly altered (101), and high levels of IL-8, IL-2 receptor,
IL-12, and IL-15 were suggested as prognostic indicators of inferior
survival and increased rate of leukemic transformation (102).
Interestingly, it has also been shown that TNF-a, a pro-
inflammatory cytokine, can facilitate clonal expansion of
JAK2V617F-positive cells in MPNs (103). Besides their direct
influence on the neoplastic clones, it is well known that cytokines
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can profoundly influence the bone marrow microenvironment, in
MPNs as well as in other myeloid neoplasms.

In such a context, although potentially responsible for the
immunosuppressive effect of ruxolitinib, its anti-JAK1 inhibitory
action also leads to a reduction of pro-inflammatory cytokines,
with a consequent improvement of symptoms, quality of life, and
ultimately, bone marrow fibrosis (104, 105). The clinical
response has already been shown to be independent of the
JAK2 mutational status, but it was linked to suppression of
increased serum levels of pro-inflammatory cytokines such as
IL-6 and TNF-a (37).

Inaddition, JAK inhibitors’ immunomodulatorypropertiesmay
also be beneficial in other specific settings, as highlighted using
ruxolitinib inGVHD(106–110). A recentmulticenter retrospective
analysis of ruxolitinib as salvage treatment in patients with steroid-
resistant (SR) acute or chronic GVHD found an overall response
rates (ORR) of >80% and 6-month survival rates ranging from79%
(acute disease) to 97% (chronic disease) (108). Based on the
evidence supporting a role in preventing GVHD, ruxolitinib
received in 2016 Breakthrough Therapy Designation from the US
FDA for the treatment of GVHD (111).

In a more recent phase II study (REACH1) involving patients
with grades II to IV SR acute GVHD, an overall response was
achieved by 54.9% of the patients at day 28, including 26.8% with
complete responses. Best ORR at any time was 73.2%, with a
median duration of response of 345 days, thus producing durable
responses and encouraging survival compared with historical
data in patients with an otherwise dismal prognosis (112). In a
subsequent randomized, open-label, phase III trial (REACH2)
comparing the efficacy and safety of ruxolitinib with the
investigator’s choice of therapy in the same patients’ setting,
ORR at day 28 was higher in the ruxolitinib group than in the
control group (62 vs. 39%; p<0.001), with a median overall
survival of 11.1 vs. 6.5 months, respectively (113).

Accordingly, even though the treatment of acute GVHD has
remained disappointing for decades, ruxolitinib and a few other
agents seem to finally offer better therapeutic options, thus leading
to a paradigm shift in the treatment of SR GVHD (114, 115).
5 CONCLUSIONS

The clinical use of JAK inhibitors in MPNs has led to a dramatic
improvement of symptoms control, organ involvement, and
quality of life. While JAK inhibitors are usually well tolerated,
the issue of an increased risk of infections was raised by several
clinical trials, retrospective series, and case reports (62). Indeed,
JAK inhibitors may impair the immune response by mechanisms
involving DCs, NKs, and CD4+ T cells as previously summarized.
TABLE 3 | Proposal for the most frequent antiviral and antibiotic prophylaxis for ruxolitinib-treated MPN patients.

Proposed prophylaxis References

Herpes zoster To evaluate a case-by-case basis (acyclovir) (62)
Hepatitis B virus Specialist referral (lamivudine vs. entecavir or tenofovir) (116)
Tuberculosis Specialist referral (isoniazid) (117)
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Even considering the intrinsic MPNs’ propensity to infectious
complications, and other possible contributing factors such as
previous treatments, concurrent immunosuppressive therapies, or
comorbidities, available data suggest that incidence, and
sometimes severity, of bacterial and viral infections in JAK
inhibitors-treated MPN subjects are remarkable. Owing to the
crucial therapeutic role of these drugs, their use must therefore be
coupled with specific preventive measures (Table 3). Before JAK
inhibitors therapy, screening for chronic HBV infection should be
performed together with antiviral prophylaxis during treatment
for suitable subjects. Monitoring of anti-HBc positive, HBsAg-
negative patients is also indicated. Screening for latent tuberculosis
is necessary, followed by therapy when needed. Antiviral and anti-
pneumocystis prophylaxis could be considered in patients with
Frontiers in Immunology | www.frontiersin.org 884
specific risk factors (117). An adequate infections risk control is
mandatory to fully exploit the JAK inhibitors’ therapeutic efficacy
in MPNs.
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Systemic mastocytosis (SM) is a rare neoplasm resulting from extracutaneous infiltration
of clonal mast cells (MC). The clinical features of SM are very heterogenous and treatment
should be highly individualized. Up to 40% of all SM cases can be associated with another
hematological neoplasm, most frequently myeloproliferative neoplasms. Here, we present
a patient with indolent SM who subsequently developed a myeloid neoplasm with
PDGFRA rearrangement with complete response to low-dose imatinib. The 63-year-old
patient presented with eosinophilia and elevated serum tryptase level. Bone marrow
analysis revealed aberrant MCs in aggregates co-expressing CD2/CD25 and KIT D816V
mutation (0.01%), and the FIP1L1-PDGFRA fusion gene was not identified. In the absence
of ‘B’ and ‘C’ findings, we diagnosed an indolent form of SM. For 2 years after the
diagnosis, the absolute eosinophil count progressively increased. Bone marrow
evaluation showed myeloid hyperplasia and the FIP1L1-PDGFRA fusion gene was
detected. Thus, the diagnosis of myeloid neoplasm with PDGFRA rearrangement was
established. The patient was treated with imatinib 100 mg daily and rapidly obtained a
complete molecular remission. The clinical, biological, and therapeutic aspects of SM
might be challenging, especially when another associated hematological disease is
diagnosed. Little is known about the underlying molecular and immunological
mechanisms that can promote one entity prevailing over the other one. Currently, the
preferred concept of SM pathogenesis is a multimutated neoplasm in which KITmutations
represent a “phenotype modifier” toward SM. Our patient showed an evolution from KIT
mutated indolent SM to a myeloid neoplasm with PDGFRA rearrangement; when the
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eosinophilic component expanded, a regression of the MC counterpart was observed. In
conclusion, extensive clinical monitoring associated with molecular testing is essential to
better define these rare diseases and consequently their prognosis and treatment.
Keywords: systemic mastocytosis, myeloid neoplasm with PDGFRA rearrangement, imatinib, KIT D816V mutation,
clonal evolution
INTRODUCTION

Systemic mastocytosis (SM) is a heterogeneous group of
neoplasms characterized by abnormal expansion of clonal mast
cells (MCs) in the bone marrow (BM) and other extracutaneous
organ-systems (1).

According to the World Health Organization (WHO)
classification, the diagnosis of SM is established in presence of
the major criterion and one minor criterion or at least three
minor criteria. The major criterion is fulfilled by the detection of
multifocal clusters of MCs (aggregates ≥15) in one or more
extracutaneous organs (usually BM), while the minor criteria
include aberrant MC expression of CD25 and/or CD2, abnormal
morphology of MCs, KIT mutation D816V, and a persistent
serum tryptase level ≥20 ng/ml (1, 2).

There are five subtypes of SM: indolent SM (ISM), smoldering
SM (SSM), SM with an associated hematological (non-MC
lineage) neoplasm (SM-AHN), aggressive SM (ASM), and mast
cell leukemia (MCL) (1).

The diagnosis of ISM can be established if <2 B findings and
no C findings are detected; SSM is defined by ≥2 ‘B’ findings and
no ‘C’ findings. ASM is characterized by one or more C findings,
while MCL is defined by MCs ≥20% on marrow smears (1, 2).

There are three types of ‘B’ findings: MC infiltration >30% on
bone marrow biopsy and serum total tryptase >200 ng/mL;
hepatomegaly with normal liver function, palpable splenomegaly
without hypersplenism, and/or lymphadenopathy; signs of
dysplasia or myeloproliferation in non-MC lineage. The six ‘C’
findings are cytopenias; hepatomegaly with impairment of liver
function, ascites, and/or portal hypertension; palpable splenomegaly
with hypersplenism; malabsorption with weight loss due to
gastrointestinal MC infiltrates; large osteolytic lesions (1, 2).

The goals of ISM treatment are symptom control, severe
anaphylaxis prophylaxis, and osteoporosis treatment, while the
advanced forms may require cytoreductive therapy. Historically,
cytoreductive agents include interferon-a and cladribine.
Allogeneic stem cell transplant could be considered in SM-
AHN when the associated hematologic neoplasm has an
indication of transplantation and in relapsed/refractory ASM
or acute MCL (2). With the advent of the tyrosine kinase
inhibitors, many efforts have been made to find a proper
inhibitor of SM KIT–driver mutation. Imatinib still plays a role
in the treatment of rare SM cases that are KIT D816V-
unmutated, while more recently midostaurin has been shown
to induce major clinical responses in advanced SM regardless of
KIT mutational status (2, 3).

Among the myeloid neoplasms, the WHO classification
recognizes the family of the myeloid/lymphoid neoplasms with
289
eosinophilia and rearrangement of PDGFRA, PDGFRB, and
FGFR1, or with PCM1-JAK2. These are rare diseases
characterized by a fusion gene or a mutation resulting in the
expression of aberrant tyrosine kinases. Eosinophilia (≥1.5x109/L)
is one of the most common features of these neoplasms. In the
subgroup associated with PDGFRA rearrangement, the most
common genetic abnormality is the FIP1L1-PDGFRA gene
fusion, caused by 4q12 deletion (Figure 1) (1, 4–6). Patients
frequently complain of fatigue, pruritus, and symptoms related to
eosinophilic infiltrates in different organs; splenomegaly and
hepatomegaly are common findings (4–6).

The natural history of PDGFRA-rearranged neoplasms has
been dramatically altered by imatinib and the dosage of 100 mg
daily could be sufficient to elicit a complete molecular response
in most of the patients (7–9).

Herein, we report the clinical features and the management of
a patient with KIT D816V-positive SM who subsequently
developed a myeloid neoplasm with PDGFRA rearrangement
with a complete molecular response to low-dose imatinib.

All procedures were in accordance with the ethical standards
of the responsible committee on human experimentation
(institutional and national) and with the Helsinki Declaration
of 1975, as revised in 2013.
CASE REPORT

A 63-year-old Caucasian male patient was referred to
hematological investigation because of eosinophilia.

His medical history was unremarkable except for post-
infectious glomerulonephritis in childhood and flushing
episodes that started one year before the hematological
evaluation. No pathological findings were reported at physical
examination. Previous blood tests revealed a gradual increase of
absolute eosinophils count over two years. Recent laboratory
examinations showed white blood count (WBC) 8.2x109/L with
absolute eosinophil count 2.2x109/L (27%), serum tryptase level
26 ng/mL (normal level <5 ng/mL), normal serum lactate
dehydrogenase (LDH), and normal liver and renal function.

A bone marrow biopsy detected 60% of cellularity, with
myeloid hyperplasia, increased eosinophils and reticulin, and
the presence of multifocal clusters of spindle-shaped MCs co-
expressing CD25 and CD2 (>15 cells). Karyotype analysis was
normal. Polymerase chain reaction (PCR) detected the D816V
KITmutation on bone marrow (variant allele frequency – VAF -
0.01%), while the FIP1L1-PDGFRA fusion transcript was absent.

Overall, these findings were consistent with a diagnosis of SM
for the presence of the major criterion (BM MCs infiltrates) and
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3 minor criteria (aberrant MCs, KIT D816V mutation, tryptase
level >20 ng/mL). Abdominal ultrasound showed normal liver
and spleen dimensions and an absence of lymphadenopathy.
Dual-energy X-ray absorptiometry scan detected osteoporosis
(lumbar T score -3.3, lumbar Z-score -2.6, femoral neck T-score
-1.5, femoral neck Z-score -0.5).

In the absence of ‘B’ and ‘C’ findings, we concluded with an
indolent form of SM. The patient did not receive specific therapy
other than osteoporosis treatment.

Two years later the patient complained of a worsening of
flushing and a recurrent headache. Blood examinations
revealed an increase of WBC (13x109/L) with an absolute
eosinophil count of 5.1 x 109/L. Suspecting a myeloid
neoplasm with eosinophilia, a new bone marrow evaluation
was performed. The histological analysis confirmed myeloid
hyperplasia with a marked increase of eosinophils and 3% of
MCs in rare aggregates. Aspirate smear revealed 36% of
eosinophils and 6% of MCs. No aberrant MCs were detected
with flow cytometry. Cytogenetic analysis showed normal male
karyotype and a digital PCR was negative for KIT D816V
Frontiers in Oncology | www.frontiersin.org 390
mutation. Real-time PCR performed on peripheral blood
detected the FIP1L1-PDGFRA fusion transcript and serum
tryptase was 20 ng/ml. Thus, the final diagnosis was myeloid
neoplasm with PDGFRA rearrangement.

Imatinib 100 mg daily was started, and after 3 months all
symptoms resolved and blood tests showed WBC 5.96x109/L
with normal eosinophil count (0.09x109/L).

BM analysis revealed the absence of eosinophils and the
presence of rare MCs with normal morphology, corresponding
to 4% of cellularity at the aspirate smear. Flow cytometry showed
a normal MCs phenotype. FIP1L1-PDGFRA and KIT D816V
mutations were negative on BM and peripheral blood.

A subsequent BM analysis, performed after 12 months of
imatinib treatment, confirmed complete remission of the
myeloid neoplasm, absence of aberrant MCs, and negative
FIP1L1-PDGFRA and KIT D816V mutations.

Table 1 and Figure 2 report the main hematological
findings at diagnosis of SM, diagnosis of myeloid neoplasm
with PDGFRA rearrangement, and after 3, 6, and 12 months of
imatinib treatment.
A

B

FIGURE 1 | Schematic representation of FIP1L1–PDGFRA rearrangement. (A) Normal 4q12 region with sites of deletion in cases with the FIP1L1–PDGFRA fusion.
The four green bars denote probes that can be used to detect the deletion by fluorescence in situ hybridization. (B) The consequences of deletion: FIP1L1 usually
breaks within an intron, while PDGFRA always breaks within exon 12. To obtain splicing between FIP1L1 and PDGFRA, cryptic splice sites need to be used,
because the normal splice site in the exon 12 is removed by the deletion. This cryptic splice site could be located either within exon 12 of PDGFRA (type I fusion) or
within the intron of FIP1L1 (type 2 fusion).
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DISCUSSION

The clinical features of SM are very heterogenous, ranging from
indolent forms to more aggressive diseases which require
cytoreductive therapy (1, 2).

MCs derive from CD34+/CD117+ pluripotent hematopoietic
progenitor cells in BM. They are normal residents in mucosal
tissues and skin with a key role in IgE-associated disorders and
acquired or innate immunity (10). More than 90% of SM patients
carried a somatic mutation in different regions of KIT which led
to structural alteration of the protein with a constitutive
activation of the receptor. The KIT D816V mutation is the
most common (11). KIT median VAF strongly correlates with
disease activity as represented by serum tryptase level, disease
subtype (indolent versus advanced), and survival (12).

Up to 40% of all SM cases are associated with another
hematological disease, which rarely can be a myeloid/lymphoid
neoplasm with eosinophilia (2, 4).

Myeloid/lymphoid neoplasms with eosinophilia and
rearrangements of PDGFRA, PDGFRB, and FGFR1 were
recognized as a standalone category in the 2008 WHO
classification. Subsequently, PCM1-JAK2 was added to this family
as a new provisional entity in the 2016 WHO classification (1).
Besides the rare cases of SM associated with a myeloid/lymphoid
neoplasm with eosinophilia, peripheral eosinophilia may affect up
to 28%of all SMpatients (2). A paper from2007 comparedD816V-
positive SM and FIP1L1/PDGFRA-positive chronic eosinophilic
leukemia (13). The distinguishing features for chronic eosinophilic
leukemia included the degree of eosinophilia in relation to the
tryptase level, the absence of denseMC aggregates, and pulmonary
and cardiac symptoms. The authors concluded that the FIP1L1/
PDGFRA gene fusion and D816V-KIT mutation cause different
clinical syndromes and a distinction is essential for therapeutic
decisions (13).

Herein, we reported a case of indolent KIT D816V-positive
SM with eosinophilia at diagnosis, which after two years showed
an evolution to myeloid neoplasm with PDGFRA rearrangement.
Frontiers in Oncology | www.frontiersin.org 491
At disease onset, the clinical scenario was characterized by a
moderate increase of eosinophils and serum tryptase. Genetic
data revealed KIT D816V mutation, while rearrangements for
eosinophilia were not identified. SM and myeloid neoplasms
with eosinophilia were considered in the differential diagnosis.

Similar to SM, myeloid neoplasms with eosinophilia and specific
rearrangements can show dysplastic eosinophils and spindle-
shaped MCs. The MCs can also be CD25 positive, but do not
form compact aggregates, express CD2, or carry the KIT D816V
mutation (14). Our patient displayed all these characteristics;
therefore a diagnosis of SM seemed to be the most likely despite
a low KIT VAF.

During the follow-up, the patient complained of a worsening
of flushing, headache, and eosinophilia. Detection of the FIP1L1-
PDGFRA mutation and absence of diagnostic criteria for SM led
u s t o a d i a g n o s i s o f m y e l o i d n e o p l a sm w i t h
PDGFRA rearrangement.

When the PDGFRA rearrangement was identified the
eosinophilic component became predominant either in the
peripheral blood and bone marrow; Pardanani et al. described
12 cases of SM and chronic eosinophilic leukemia with FIP1L1-
PDGFRA. These patients with eosinophilia were more likely to be
males and exhibit a “loose” pattern of MC infiltration in BM
trephines; 8 of them were also screened for KIT D816V and all
tested negative (15).

A clonal relationship between the MC and the associated
hematologic non-MC component has been sought using KIT and
other mutations as markers of clonality (13, 14). Various studies
conducted in patients with concomitant diagnosis of acute myeloid
leukemia and SM demonstrated evidence that neoplastic MC and
myeloid leukemic blasts are likely to develop from common
hematopoietic progenitors (16, 17). Subsequent studies supported
the concept of advanced SM pathogenesis as a multimutated
neoplasm, in which KIT D816V mutation represents a “phenotype
modifier”ofclonalhematopoietic stemcelldisorders towardSM(18).
Thesefindings challenged the concept that the SMand the associated
non-MC-hematological disease arise uniformly from a pre-
TABLE 1 | Relevant blood and bone marrow parameters in the main time-points from diagnosis of systemic mastocytosis.

SM Diagnosis Myeloid neoplasm
with PDGFRA
rearrangement

Diagnosis

+3 mo of
Imatinib

Treatment

+6 mo of
Imatinib

Treatment

+12 mo of
Imatinib

Treatment

WBC count, x109/L 8.2 13.03 5.96 6.48 6.48
Eos. in blood, x109/L (%) 2.2 (27%) 5.1 (39.6%) 0.09 (1.5%) 0.15

(2.3%)
0.18 (2.8%)

Serum tryptase, ng/mL 26 20 5
MCs in bone marrow, histological analysis, % CD25+ CD2+, in aggregates,

not quantified
3% 2% 1% 1%

MCs in bone marrow, aspirate smear, % Not performed 6% 4% 0% 0%
MCs in bone marrow, flow cytometry, % Not performed 0.3% 2% 1% 0.2%
Genetic markers (mononuclear cells of peripheral
blood or bone marrow)

Bone marrow:
PDGFRA -

KIT D816V + (0.01%)

Peripheral blood:
PDGFRA +

Bone marrow: KIT
D816V -

Bone marrow and
peripheral blood:

PDGFRA -
KIT D816V -

Bone
marrow:
PDGFRA

-
KIT

D816V -

Bone marrow:
PDGFRA -
KIT D816V -
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committed neoplastic progenitor cell harboring a KITmutation and
suggest that this category is highly heterogeneous (18).

Our case corroborates data by Maric and Pardanani (13, 15)
who considered eosinophilic disorders and systemic
mastocytosis as clinically distinct entities with different
therapeutic needs. On a molecular level, further studies of
next-generation and single-cell sequencing may be of benefit to
clarify whether or not KIT mutation and PDGFRA
rearrangement should be considered as different clones.

At the time of identification of the FIPL1-PDGFRA transcript,
our patient did not meet the diagnostic criteria for SM: on bone
marrow, MCs formed rare aggregates, no cytofluorimetric
Frontiers in Oncology | www.frontiersin.org 592
abnormal markers or KIT D816V mutation were identified,
and serum tryptase was 20 ng/ml.

According to the literature, only skin diseases in adult
patients with SM could regress, in approximately 10% of the
cases, while there is no evidence of spontaneous disappearance of
bone marrow findings (19). In our case, the expansion of the
eosinophilic component was associated with the regression of the
MC counterpart, which could be masked or really disappeared
during the two years after the SM diagnosis.

ISM has a nearly normal life expectancy; symptom-directed
treatment should be considered in all symptomatic patients.
These therapies are directed at MC degranulation symptoms,
A B

C D

E F

FIGURE 2 | (A) (Giemsa, 200x) depicts a hypercellular bone marrow, featuring expansion of the eosinophilic lineage, comprising maturing to fully mature eosinophils,
while tryptase stain [(B); 200x] delineates the presence of scattered aggregates of epitheliod to spindled mast cells, featuring at least partial CD25-positivity (inset,
400x). Bone marrow biopsy at 3 months from Imatinib initiation [(C); Giemsa, 200x] shows a reduction of cellularity, eosinophilic compartment, and mast cells [(D);
tryptase, 200x], which appear scattered. Restitutio ad integrum of the hematopoiesis is steadily apparent in subsequent biopsies [(E, F); Giemsa, 200x], with only
scattered tryptase+ cells [(E, F) insets].
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symptomatic skin disease, and osteopenia/osteoporosis.
Cytoreductive therapy could be required for advanced SM; in
this patient setting, novel agents with potent inhibitory activity
against KIT demonstrated significant clinical benefit and
reduction of bone marrow MC burden (2).

Initially, our patient received only symptomatic therapy directed
towards osteoporosis treatment. When the myeloid neoplasm with
PDGFRA rearrangement was diagnosed, low-dose imatinib was
started to avoid organ damage related to eosinophilia.

The durable hematologic and molecular remissions induced
by imatinib in FIP1L1-PDGFRA–positive myeloid neoplasms
have been corroborated by many studies; generally, 100 mg
daily may be sufficient to achieve and maintain a long-term
molecular response (7–9).

In our case report, after 3 months from the start of imatinib
treatment bone marrow evaluation and peripheral blood tests
showed normal findings with complete molecular remission of
the FIP1L1-PDGFRA–associated neoplasm. Therapy was well-
tolerated, and the patient is still in complete molecular response
after 18 months of therapy.

In conclusion, SM is a rare disease with an unpredictable clinical
course, especially when another associated hematological disease is
diagnosed. Little is known about the underlying molecular and
immunologicalmechanisms that can promote one entity prevailing
over the other one. Extensive clinical monitoring associated with
molecular testing is essential to better define the disease and
consequently its prognosis and treatment.
PATIENT PERSPECTIVE

With the diagnosis of SM, the patient seemed very concerned. He
struggled to accept that only symptomatic therapy was necessary
for his rare medical condition; his concern increased even more
once flushing worsened, headache became recurrent, and
Frontiers in Oncology | www.frontiersin.org 693
eosinophilia led to a diagnosis of myeloid neoplasm with
PDGFRA rearrangement. The patient’s perspective completely
changed when the low dose imatinib was started; the treatment
was well-tolerated and a complete molecular response with
symptom remission was obtained.
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Myeloid neoplasms (MN) are heterogeneous clonal disorders arising from the expansion of
hematopoietic stem and progenitor cells. In parallel with genetic and epigenetic dynamics,
the immune system plays a critical role in modulating tumorigenesis, evolution and
therapeutic resistance at the various stages of disease progression. Single-cell
technologies represent powerful tools to assess the cellular composition of the complex
tumor ecosystem and its immune environment, to dissect interactions between neoplastic
and non-neoplastic components, and to decipher their functional heterogeneity and
plasticity. In addition, recent progress in multi-omics approaches provide an
unprecedented opportunity to study multiple molecular layers (DNA, RNA, proteins) at
the level of single-cell or single cellular clones during disease evolution or in response to
therapy. Applying single-cell technologies to MN holds the promise to uncover novel cell
subsets or phenotypic states and highlight the connections between clonal evolution and
immune escape, which is crucial to fully understand disease progression and therapeutic
resistance. This review provides a perspective on the various opportunities and challenges
in the field, focusing on key questions in MN research and discussing their translational
value, particularly for the development of more efficient immunotherapies.

Keywords: single-cell sequencing, myelodysplastic syndromes, acute myeloid leukemia, clonal hematopoiesis,
immunotherapies, immune microenvironment
INTRODUCTION

Myeloid neoplasms (MN) consist of a heterogeneous group of hematological cancers, arising from
the hematopoietic stem cell (HSC) or progenitors in the bone marrow (BM) and sharing phenotypic
features of the myeloid lineage (1). They include myeloproliferative neoplasms (MPN), which are
featured by the hyperproliferation of near-normal maturing blood-cells; myelodysplastic syndromes
(MDS), characterized by ineffective hematopoiesis, abnormalities in cell maturation and cytopenias;
and acute myeloid leukemia (AML), which represents the most aggressive clinical phenotype, whose
prominent features are the uncontrolled proliferation of immature hematopoietic precursors (i.e.,
blasts) and life-threatening BM failure (1).
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The pathogenesis of MN is driven by the progressive selection
of multiple genetic mutations (clonal evolution) (2–4). Somatic
mutations can be identified in the peripheral blood of healthy
subjects, a phenomenon known as clonal hematopoiesis (CH)
that reflects the expansion of mutated HSC; by years or decades,
CH may evolve to AML, eventually involving clinically
recognizable pre-leukemic syndromes, such as MDS or MPN
(5–10). In parallel, growing evidence also points to a prominent
role of the immune system in shaping the evolution and clinical
pictures of MN (11–13). The tumor immune microenvironment
consists of multiple players, including adaptive and innate
immune cells and stromal components, which may either
antagonize or promote tumor progression; cancer cells
themselves exhibit immunomodulatory properties and interact
with microenvironmental components of the tumor niche (11–
14). The connections between genetic evolution, changes in the
immune microenvironment and clinical correlations, however,
are poorly understood.

Single-cell sequencing technologies appear as ideal tools to
investigate the highly-connected and plastic immune system.
These technologies overcome the limited resolution of DNA and
RNA sequencing of entire cell-populations (“bulk” sequencing),
allowing deconvolution of heterogeneous populations and
identification of rare cell types. Importantly, this is achieved by
analyses of individual-cell transcriptional states, thus enabling
the characterization of functional states while avoiding the bias of
predefined lineage-markers (15, 16). Applications of single-cell
technologies is continuously expanding with improving
throughput, accuracy and reproducibility, thus making them
widely adopted in cancer research, and being currently
exploited for precision oncology (16, 17).

This review covers state-of-the-art single-cell technological
applications with associated analysis methods; we aim to provide
a perspective on the various opportunities to study the immune
system and tumor microenvironment - for both experimental
research and clinical translation - with a focus on specific issues
relevant to MN.
CURRENT STATE-OF-THE-ART IN
MYELOID NEOPLASMS AND OPEN
CHALLENGES

The immune microenvironment shapes MN through different
branches of the immune system. A large body of pre-clinical
and clinical studies indicate a key role of innate-immune cells
and inflammation in the establishment of preleukemic states and
their progression toward AML (13, 14, 18). For instance, the
epigenetic reprogramming of aged HSC influences their response
to inflammatory and immune-mediated signals, directly impacting
on their division rate, myeloid-lineage skewing and survival
advantage (5, 6). Adaptive immunity also plays a major role, as
the presence of T cells at the tumor site is mandatory for
recognition and elimination of transformed cells. Interestingly, its
function changes according to the disease phase: in low-risk MDS,
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anti-leukemia cytotoxic (CD8+), helper (Th17) T cells andNK cells
are expanded, in the presence of low counts of pro-leukemia
T-regulatory lymphocytes (Treg); in high-risk MDS and AML,
instead, Treg prevails over CD8+, Th17 and NK cells, suggesting
that tumor clones acquire immune tolerance during disease
progression (19, 20). In established AML, higher percentages of
BM CD3+ and CD8+ T cells correlate with improved survival (21,
22) and response to the checkpoint inhibitor nivolumab (23).
Importantly, expression of the checkpoint inhibitory receptor
PD-1 and its ligand PD-L1 increases with disease progression of
MN and AML relapse, as an immune-escape mechanism (24).
Finally, leukemic blasts themselves modulate T- and NK-cell
responses and are implicated in multiple mechanisms of immune
evasion (25–28), in the context of an immunosuppressive
microenvironment (Figure 1).

Prognosis and treatment of MN patients are extremely varying,
depending on the disease entities and their associated clinical and
molecular characteristics. Beyond achieving clinical control of
hyperproliferation or cytopenias, the focus of management and
research in MPN and MDS resides in predicting - possibly
preventing - the evolution to AML. This is because, once
leukemia is established, most AML patients ultimately succumb
to their disease, despite some recent implementation of available
treatments beyond the backbone of 7 + 3 chemotherapy. In fact,
primary chemoresistance and relapse are the major causes of poor
survival in high-risk MDS and AML patients (29–31).

The dynamics of leukemic progression, resistance to treatments
and relapse have been mostly described in terms of genetic and
epigenetic events, as associated to diverse synergistic combinations
of mutations (2, 32–34); however, it is increasingly appreciated that
genetic/epigenetic alterations do not entirely explain the complexity
and heterogeneity of MN (35–37), as also inferred from the limited
success of drugs targeting single genomic variants [e.g., FLT3 (38,
39) or IDH inhibitors (40, 41)] or epigenetic traits [e.g.,
hypomethylating agents, HMA (42, 43)]. Indeed, as featured
above, there is increasing evidence of multiple mechanisms of
immune-evasion during MN development; as a clinical correlate,
the immunological eradication of therapy-resistant leukemia stem
cells (LSC) by allogeneic hematopoietic stem cell transplant
(alloHSCT) is the only strategy to overcome chemoresistance and
obtain sustained remission (29, 44, 45). Therefore, a first major
challenge in MN research is understanding the molecular
mechanisms of immune-tolerance and the cellular relationships
between the immune microenvironment and tumor clones during
leukemic progression and therapeutic resistance; highlighting the
connections between genetic evolution and immune escape seems
particularly meaningful.

Although alloHSCT is an effective treatment, post-transplant
relapse is a common occurrence, due to several leukemia-driven
immune-escape mechanisms (12); also, its anti-tumor activity is
rather poor in patients with active disease and, in general, it
comes at the cost of high morbidity and mortality (46). These
observations point toward the strong need of developing more
potent, specific and possibly less toxic immunotherapeutic
strategies for MN patients. These include harnessing T and
NK-cell-mediated tumor clearance by checkpoint inhibitors,
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monoclonal antibodies, bispecific antibodies or chimeric antigen
receptor (CAR) T cells; however, their effect has been less
successful in MN than in other cancers (12, 47), despite the
clear involvement of the immune system in MN pathogenesis.
Reasons for this failure include a limited power of the currently
used immunological markers to predict clinical response, the
absence of a suitable target antigen and elusive resistance
mechanisms. Thus, ongoing research efforts are committed to
the discovery of druggable targets or mechanisms and more
effective therapeutic combinations, which would benefit from a
better understanding of the various cellular and functional
components of the immune microenvironment.
OVERVIEW OF STATE-OF-THE-ART
SINGLE-CELL TECHNOLOGIES

Limits of Bulk Sequencing and Promises
of Single-Cell Technologies to Deconvolve
the Immune Microenvironment of
Myeloid Neoplasms
Traditional “bulk”-sequencing approaches rely on the analysis of
whole samples through next-generation sequencing platforms,
which generate multiple sequencing reads covering individual
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RNA or DNA molecules. Genomic and transcriptomic bulk data
from the Cancer Genome Atlas (TCGA) Research Network have
been crucial for our initial understanding of the tumor
microenvironment and tumor-immune interactions. For example,
Thorsson et al. (48) performed an extensive immunogenomic
analysis of more than 10,000 tumors comprising 33 cancer types,
and identified six immune subtypes that span cancer tissue and
molecular subtypes, and differ by somatic aberrations,
microenvironment, and survival; results from this study are
available for exploration through the interactive Cancer Research
Institute iAtlas portal (49). However, such resource is poorly
applicable to MN research, as no MDS or MPN patients were
included and limited data are available for AML, with no direct
clues on tumor microenvironment composition, lymphocyte
infiltration, immune features/modulators, immuno-oncology
targets and associations with driver mutations (48). Furthermore,
the output of bulk sequencing represents an “average” of the
transcriptomic or genomic features of all sample cells, which
poses a challenge in the precise deconvolution of intra-tumor
heterogeneity. Dedicated bioinformatic tools have been developed
to determine the composition of cancer microenvironments,
including CIBERSORT, a method for estimating the relative
proportions of cell types of interest in complex tissues from their
gene expression profiles (50). However, this tool systematically over-
or underestimates some cell types and requires a reference of gene
FIGURE 1 | The immune microenvironment of myeloid neoplasms. Summary of the main interactions occurring between neoplastic cells and immune microenvironment
in the bone marrow (BM) niche. (A) Impaired T- and NK-cell effector function by overexpression of inhibitory ligands (PD-L1, Gal-9, CD155, CD112, CD86, NKG2DL)
and interaction with their respective receptors (TIGIT, TIM-3, PD1, CTLA-4, NKG2A); T-cell exhaustion and apoptosis driven by cytokine changes. (B) Expansion of
immunosuppressive cells (regulatory T cells and myeloid-derived suppressor cells), switch of macrophages to tumor-associated macrophages by altered cytokine milieau
and release within the BM niche of other soluble factors, such as reactive oxygen species (ROS), indoleamine 2,3- dioxygenase-1 (IDO1), arginase II (ArgII), and extracellular
vesicles (EV). (C) Escape from macrophages and dendritic cells by decreased expression of antigen presentation molecules (HLA I and HLA II). (D) Stromal cells inhibiting
the function of dendritic and T cells, influencing tumor proliferation and metabolic properties. (E) Vascular remodeling and hypoxia modifying immune cells’ homing and
adhesion (11, 12, 14).
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expression signatures, which might bias the imputation of cells
undergoing phenotypic plasticity or disease-induced dysregulation.
Also, low intensity signals from rare cell populations might result
undetectable with bulk sequencing approaches, which precludes the
identification of rare (yet possibly functionally-relevant) cell
populations. Therefore, deconvolution of the immune
microenvironment can’t be comprehensively achieved from
bulk studies.

Conversely, single-cell approaches allow the characterization of
individual cells, thus providing a more faithful representation of the
heterogeneity of tumor ecosystems (15, 51, 52). The use of single-
cell technologies for research purposes is rapidly spreading, favored
by combined academic and industrial efforts to improve
standardization, develop several different applications and
technological platforms and decrease costs. Some key aspects offer
relevant advancement in the characterization of the immune tumor
microenvironment: tumor and immune cells can be acquired in
parallel without prior marker-based sorting, the high resolution of
the approach allows the analysis of even small groups of cells with
shared features, while the throughput of some sequencing platforms
(up to thousands of cells) provides unprecedented statistical power.
Moreover, cells can be investigated for both their phenotypic traits
(e.g., surface markers, cell types) and functional states (e.g., over-
expressed pathways, genomic features, activation of signalling
pathways), which potentially opens perspectives on new
mechanistic hypotheses (16, 52).

Main Applications of Single-Cell
Technologies
A comparative summary of single-cell methods for genomic
studies is provided in Table 1.

• Single-cell transcriptomics (scRNA-seq). Recent advances in
cell isolation methods and automated micro-fluidics
techniques have improved tremendously the accuracy,
sensitivity, reproducibility, and throughput of scRNA-seq, by
which it is now possible to measure and model gene expression
profiles from thousands of cells (64–67). A few scRNA-seq
platforms are available on the market, differing by protocol
complexity, costs, number of output cells, sequencing depth
and full or partial coverage of transcripts (67). Such elements,
as well as downstream analysis-pipelines, should be considered
in view of the specific research-question. For instance, library
construction methods that allow full transcript coverage (54,
68) are optimal for scoring expressed mutations, splicing
isoforms (69) and T/B-cell receptor sequence (70–73), while
molecular-counting methods based on the sequence the 5’ or 3’
end transcripts are better suited for cost-effective profiling of
high numbers of cells and transcripts (64, 74). The introduction
of unique molecular identifiers during library preparation
allows counting and grouping of specific mRNA molecules
prior to PCR amplification, thus increasing accuracy and
reducing technical artifacts (75). High-dimensional scRNA-
seq data need to be processed with specific computational
algorithms, which incorporate various steps of quality control,
normalization and dimensionality reduction to enable spatial
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representation (76–78). Opportunities from downstream
analyses include unbiased clustering to identify groups of
transcriptionally related cells, differential gene expression,
and reconstructing dynamic biological processes, such as
cellular differentiation and immune response, by inferring
developmental ‘trajectories’ to reveal transitional states and
cell fate decisions of distinct cell subpopulations (79–81).

• Single-cell DNA sequencing (scDNA-seq). scDNA-seq
overcomes the limits of bulk sequencing allowing the direct
identification of intratumoral genetic subclones - as defined by
mutations co-occurring within the same cell - including rare
clones, which may significantly impact tumor evolution and
the acquisition of therapeutic resistance (3, 4, 82). The
technique’s core involves whole-genome amplification
(WGA) of single cells, which allows detection of single
nucleotide variations, chromosomal copy number alterations
or more complex genomic rearrangements. Droplet-based
platforms currently enable high-throughput and cost-effective
characterization of hundreds of amplicons in thousands of cells
(59). However, a drawback of scDNA methods is the high rate
of false negative and false positive hits, due to artifacts
introduced during genomic amplification, non-uniform
genome-coverage and allelic dropout events.

• Single-cell epigenomics. Bulk epigenomic techniques have
been recently adapted to single-cell applications; analyses of
chromatin organization and regulation enable to elucidate cell
lineage and differentiation state in even thousands of individual
cells simultaneously. Reported technologies allow scoring
DNA-methylation patterns (by bisulfite-based sequencing
such as scRRBS, scBS-seq, scWHBS) (60, 83, 84), chromatin
regions available for transcription factors activity (scATAC-
seq) (61), chromosomal conformations (scHi-C) (63) and
histone modifications/binding sites (scChIC-seq) (85).
However, these methods are limited by the low coverage of
specific regulatory regions (such as enhancers).

• Single-cell proteomics. Though multiparameter flow-cytometry
allows characterization of individual cells with multiple
antibodies, the design of specific antibody-panels can be
laborious and implicitly prevents unbiased and system-wide
analyses. Predicting protein expression through scRNA-seq
data, however, might be unreliable due the great extent of
regulation of mRNAs and proteins at post-translational level.
Recent technologies [such as CITE-seq (86) and REAP-seq (87)]
partially overcame this limitation by combining oligonucleotide-
labeled antibodies against cell surface proteins, thus enabling the
simultaneous detection of gene expression patterns and protein
levels in thousands of single cells in parallel. More than this,
significant improvements were recently introduced into mass
cytometry techniques (52). Mass cytometry uses antibodies
labeled with heavy metals, whose presence and abundance are
detected by a mass spectrometer; a key advantage over flow
cytometry resides in the simultaneous detection of around 40
parameters per cell, for up to millions of cells, with significantly
less spectral overlap. Thus, this high-dimensional assay enables a
more thorough characterization and higher resolution of cellular
sub-populations and individual cells, which can be especially
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TABLE 1 | Overview of selected single-cell technologies for genomic studies.

Method Overview Library construction Features

Single-cell transcriptome sequencing
Chromium (10×
Genomics)

3’-end mRNA transcripts GemCode (53) Microdroplet-based method
Advantages
• automatic cell isolation, cDNA synthesis, and

amplification
• high number of cells (500-10,000/run)
• cell size up to 40 mm
• suitable to study individual cells in a large population
• use of UMIs mitigates amplification bias
Drawbacks
• libraries of selected cells cannot be reanalyzed

because libraries are mixed after barcoding
• diverse coverage across cells (5,000-10,00 reads/

cell)
C1 Single-Cell Auto Prep
system (Fluidigm)

Full-length cDNA Smart-seq2 (54) Microwell-based method
Advantages
• automatic cell isolation, cDNA synthesis, and

amplification
• can perform additional sequencing of libraries in

user-selected wells
• stable coverage across cells (100-1,000 x 106

reads/cell)
• suitable to study individual cells in detail
Drawbacks
• limited number of cells (96-800/run)
• limited cell size (up to 25 mm)
• no UMI

5′end mRNA transcripts C1-CAGE (55)

RamDA-seq (56) Total RNA (full-length transcripts, long
noncoding RNAs and enhancer RNAs)

RamDA retrotranscription Advantages
• information on splicing events and enhancers
• possibility of automation with C1 Fluidigm platform
Drawbacks
• no UMI
• high coverage requested
• high fraction of ribosomial RNA

Single-cell genome sequencing
MDA (57) SNVs WGA; isothermal amplification Advantages

• >99% genome coverage
• reduced representation bias as compared to PCR-

based methods
Drawbacks
• few tens of cells
• high rate of allelic dropouts

MALBAC (58) SNVs, CNVs preamplification + WGA Advantages
• quasi-linear preamplification reduces WGA

amplification bias
• 93% genome coverage
• 25x mean sequencing depth
Drawbacks

* few hundreds of cells
Tapestri (MissionBio) (59) SNVs, CNVs on targeted loci target amplification + barcoding

for parallel processing
Microdroplet-based method
• uniform amplification across amplicons
• 20x mean sequencing depth
• thousands of cells
• suitable for clonal architecture reconstruction

Single-cell epigenomics
scRRBS (60) DNA methylation • hundreds/thousands of single-cells

• up to 1.5 million CpG sites (10% of genome)
• high rate of DNA degradation during bisulfite

conversion

(Continued)
Frontiers in Oncology | ww
w.frontiersin.org
 599
 February 2022 | Volume 11 | Article 796477

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Caprioli et al. Single-Cell Technologies and Immune Microenvironment in MN
useful when the total number of cells for evaluation is limited.
Mass cytometry is particularly suitable for the study of tumor
immune microenvironments, because it can characterize novel
subpopulations of immune cell subsets and previously
unrecognized aberrancies. Markers can be studied in
combination, also through unsupervised clustering, and
generate signatures that may incorporate relative abundance of
different cell subsets, expression levels of different proteins, and/
or activation states of various cellular signalling pathways. This
can be exploited to discover biomarkers for disease classification
and prognostication, and for predicting response to therapy.
Mass cytometry also uniquely offer the important opportunity of
unbiased identification of HLA-presented neoantigens (88),
which are attractive target for immunotherapy as they are
expected to drive highly specific and effective anti-cancer
immune responses.
Challenges
Along with scientific opportunities, the adoption of single-cell
technologies implies dealing with specific experimental and
computational/statistical challenges, which are often shared
across the different single-cell applications (89).

From the experimental point of view, the generation of single-
cell data from a biological sample typically requires some
common key steps (67, 89), including dissociation of cells from
the tissue of interest, cell purification and isolation, library
construction and sequencing. Each step impacts significantly
the output results for downstream analyses. For instance, in
scRNA-seq protocols, sample preparation and handling have to
be carefully planned to avoid unnecessary stressful conditions,
which are known to induce extensive cellular responses, thus
introducing artifactual modifications of transcriptional states
(90). The emergence of microfluidics techniques for cell
isolation and combinatorial indexing strategies scaled up the
number of cells being sequenced in one experiment and recently
enabled multiplexing of different samples. Experimental steps,
however, may result in considerable batch effect during later
analysis and become the source of technical noise; this might be
the case with protocols that use whole genome amplification, or
the with carrying over of empty droplets during library
preparation, cell doublets or dying cells.

In parallel, recurring computational challenges exist, due to
inherent features of the sequencing data. The amount of material
sequenced from single cells is considerably less than that
available from bulk experiments, which leads to high levels of
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missing data. Missings may be due to technical dropouts
(depending on platform and sequencing depth) or reflect true
biological signal (as for variations in expression levels of a gene).
This condition requires strategies to impute missing values,
which have been more successful for genotype data than for
transcriptomic data (89, 91). Conversely, any increase in the
number of analyzed cells and features translates in the need of
scalable data analysis models and methods. As a further
complication, high-dimensional single-cell data have to be
processed for easier tractability, while preserving the salient
biological signals of the overall dataset.

Another common challenging task is the integration of
multiple datasets for comparative analyses across multiple
samples (even from different experiments or experimental
conditions) (92–94). Computational approaches have been
devised to score pairwise correspondences between single cells
across datasets, enabling batch-effect correction and identification
of populations with common sources of variation. This procedure,
however, brings the inherent risk of overcorrection (95) and
should be applied cautiously.

Finally, combining multiple types of information (such as
DNA, RNA, proteins, epigenomics) on the same cell is crucial to
get a more holistic view of cellular processes, but it requires the
development of specific experimental settings and dedicated
computational strategies to integrate complementary, possibly
interdependent measurements. These approaches will be treated
in a separate paragraph (see “Integrating Complementary
Cellular Information by Single-Cell Multi-Omics”).
UNRAVELLING THE CELLULAR
COMPOSITION OF INTRA-TUMORAL
HEALTHY AND PATHOLOGICAL IMMUNE
MICROENVIRONMENTS

The intra-tumoral immune microenvironment contains many
different cell types, which exert their functions both
independently and within cooperative networks (Figure 1).
Hematopoietic cells include the adaptive (e.g., CD4+ and CD8+
T lymphocytes, B lymphocytes) and innate (e.g., NK lymphoid
cells and macrophages) compartments of the immune system
along with dendritic and myeloid-derived suppressor cells. Non-
hematopoietic cells, instead, comprise mesenchymal stromal
cells, adipocytes, osteoblasts, and cells from the vascular and
neural niche. Malignant myeloid cells are themselves part of the
TABLE 1 | Continued

Method Overview Library construction Features

scATAC-seq (61) Chromatin accessibility • possibility of automation with C1 and Chromium
platforms

• thousands of cells
Drop-ChIP (62) Histone modification Hundreds of cells
Single-cell Hi-C (63) Chromatin structure Few tens of cells
UMI, unique molecular identifier; SNV, single-nucleotide variant; WGA, whole-genome amplification; MDA, multiple displacement amplification; MALBAC, multiple annealing and looping-
based amplification cycles; CNV, copy-number variation; scRRBS, single-cell reduced representation bisulfite sequencing; scATAC, single-cell assay for transposase-accessible
chromatin; ChIP, chromatin immunoprecipitation; Hi-C, high-throughput chromosome conformation capture.
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immune microenvironment, as they crosstalk with other
immune-competent cells (11, 13, 18). A better understanding of
the immune tumor microenvironment requires the deconvolution
of its cellular composition, which is preliminary for many
secondary analyses.

The isolation of blood cancer cells for single-cell analysis is
relatively simple as compared to solid tumors, since MN samples
are most commonly collected as fresh mononuclear cells (MNC)
isolated by Ficoll density gradient-centrifugation of the BM, thus
not requiring tissue dissociation and preserving intra-tumoral
hematopoietic cells. Non-hematopoietic cells, instead, are by far
less abundant in the BM and peripheral blood and may require
processing of larger samples (undigested BM or enzymatically
digested bones) or specific purification steps, including depletion
of the more abundant hematopoietic cells or positive selection
using predefined lineage-markers (96). For these reasons, while
these procedures have been used for the murine BM (97–99), the
human counterpart currently remains uncharacterized.
Innovation Given by Single-Cell
Technologies
Single-cell technologies - mostly single-cell transcriptomics and
proteomics - allow the analysis of both cell types (defined by
phenotypic markers) and functional states, which spares the bias of
using predefined lineage-markers (15, 16, 52) and opens innovative
perspectives on our ability to classify the cellular components of
immune processes. Indeed, emerging evidence from scRNA-based
studies suggests that the physiological stages of hematopoietic
differentiation, so far identified as discrete and homogenous
subpopulations, are instead functionally heterogeneous and display
lineagemarkers that overlap across different cell types, upon different
biological conditions (100, 101). Also, the high resolution of single-
cell transcriptional and proteomic data enables the recognition of
intermediateor transitioning cell states, highlighting the continuityof
biological processes. Given the plasticity of the immune system, these
features are particularly attracting when applied to study the tumor
microenvironment. The possibility of multimodal characterization,
as obtained by quantifying bothRNAand surface protein abundance
(86), is especially promising for the discovery of previously unknown
cell-subtypes and associated markers or gene-signatures (94).
Challenges
Different computational approaches have been developed for the
reconstruction and imputation of cell identities within both
tumor and normal immune populations. A first, reference-free
method consists in unsupervised clustering of scRNA-seq data
followed by manual cell-type annotation according to cluster-
level expression profiles (92, 102, 103). This approach, however,
is time-consuming, limited in reproducibility and suffers from
limited scalability to large datasets (104).

Specific cell-states might be more easily identified through a
supervised analysis guided by an appropriate reference dataset.
Such approach relies on mapping the query dataset onto an
existing reference from pre-annotated and purified cell types,
ideally characterized via the same technology (105). To this end,
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efforts to characterize the landscape of each human tissue and
cell type at single-cell level are under the way, converging on the
Human Cell Atlas project (106). Cell atlases are reference
‘coordinates’ that allow for the systematic mapping of cell
types and states; for instance, comprehensive single-cell
reference datasets are being developed for the human healthy
BM and immune system, including both steady-state and
perturbed conditions (107–113) (Table 2). The creation of a
detailed “table of immune elements” including all immune types
and states would be particularly useful to the purpose of
classifying tumors according to immune subtypes, to make
prognostic correlations and guide therapeutic assignment (16).

However, this is currently hard to achieve, due to the inherent
plasticity of the immune system and the high variability between
individuals. Also, tumor and microenvironment cells may show
several and dynamically changing aberrancies, as compared to
the healthy tissue counterpart. This poses a limit to our ability to
recognize rigidly distinct cell types. In fact, as less-characterized
disease entities and large patient cohorts are being studied, many
yet-uncharacterized immune cells and pathways will emerge,
further challenging current models of immune identity.
Analytical pipelines should account for the uncertainty of
mapping unknown cell type/state; for instance, a recently
published tool for cell-type annotation (CellAssign) (116)
leverages prior knowledge of lineage-specific marker genes to
annotate scRNA-seq data into predefined or novel cell types,
based on a probabilistic model. Orthogonal validation with flow
and mass cytometry data, as well as integrating transcriptional
data with protein expression and scDNA-seq, are expected to
further refine current single-cell classifications.
Application in the Current MN Research
The ability to assign cell identity in hematopoietic tissues has
been validated for both scRNA-seq and mass spectrometry,
although the latter is more precise in distinguishing immune
cells with closely overlapping transcriptional profiles, such as T
and NK cell subsets (108). In a recent work, such a technology
has been used to classify subsets of NK cells in 48 newly
diagnosed AML and 18 healthy subjects (117). AML samples
showed an accumulation of aberrant CD56−CD16+ NK cells,
which was associated with an adverse clinical outcome and
decreased overall survival. High-dimensional characterization
of this NK subset highlighted a decreased expression of some
receptors required for antileukemic activation, such as
NKG2D, DNAM-1, and CD96; the Authors concluded that
the accumulation of CD56−CD16+ NK cells, combined with
the reduced frequency of conventional NK subtypes, may be the
consequence of escape from innate immunity during AML
progression. Subsets of monocytes were found to be decreased
in MDS BM, which mediated the expansion of a specific T cell
pool (118). Mass spectrometry also enables recognizing aberrant
myeloid differentiation patterns, as recently demonstrated on
MDS samples compared to healthy donors (119).

Importantly, dissecting the cellular composition of the immune
microenvironment can be applied to highlight changes across
disease and/or treatment phases. For instance, the seminal study
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from van Galen et al. (120) employed scRNA-seq to characterize
BM MNC from 16 AML patients at diagnosis and during
treatment. Results showed great variations in the proportions of
cell types during the clinical course, consistently with
immunohistochemistry; AML BM generally presented with
fewer cytotoxic T cells than healthy donors, yet greater numbers
of Tregs, which confirmed previous findings and established the
existence of an immunosuppressive tumor microenvironment in
AML. Further mechanistic studies are needed to link changes in
immune subsets or immune targets to dynamics of relapse. As LSC
are deemed to be responsible for AML relapse, their identification
and characterization is particularly critical for the development of
efficient immunotherapies. In this regard, Levine et al. published
PhenoGraph, a software for analyzing mass cytometry data that
enabled better identification and characterization of LSC (102).
Moreover, one recent paper used mass cytometry and RNA-seq to
feature CD200 as a LSC–specific immune checkpoint
overexpressed in AML LSC (121).
DISCOVERING FUNCTIONAL
PHENOTYPES, MOLECULAR
MECHANISMS AND BIOMARKERS

Immune responses are plastic and can be extremely heterogenous,
depending on tissues, environmental contexts, healthy or
pathological conditions (122–124). Commonly-used small sets of
markers fail to describe the full spectrum of functional states and
inherent gene expression programs, which, instead, can be
optimally captured by high-dimensional single-cell analyses (16,
125, 126). In contrast to marker-based methodologies that seek for
rigid separation of defined entities, single-cell technologies allow to
set broadly inclusive experiments without a priorimarker selection,
enabling data-driven analyses on all cell populations involved in a
given condition. The first large-scale ‘ecosystem-wide’ scRNA-seq
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studywasperformedbyTiroshet al. onmelanomapatients (127). In
the context of MN research, Van Galen’s paper is a paradigmatic
example for this approach.

In order to define functional subsets among AML-associated
immune cells, Guo et al. (128) re-analyzed the scRNA-seq
dataset from the aforementioned study (120), focusing on non-
blasts AML cells and 4 healthy BM donors. The study concluded
that AML coexists with highly heterogeneous immune effectors
and suppressive subsets, which showed common features of
functional aberrancy and exhaustion of possible prognostic
significance. To the same aim, one group developed an
integrated functional approach coupling mass cytometry
coupled to cytokines profiles (129) and applied it to 49 AML
patients, confirming functional impairment of AML-associated
T cells mediated by immune checkpoints (130). Single-cell
transcriptomic has been applied in both animal models (131)
and cancer patients (132, 133) to investigate changes in the
tumor microenvironment upon treatment with immune
checkpoint inhibitors, to the end of finding response-associated
signatures. Following the same approach, one small study used
mass cytometry on serially collected samples from 9 AML
patients treated with HMA and avelumab, a PD-L1 inhibitor;
the ratio of CD4/CD8 and composition of residual T cells
emerged as the most important predictors of response to
treatment, and AML cells expressed a variety of other immune
checkpoints (such as PD-L2, OX40, TIM3) that might be
considered for future combination therapy (134).

Regarding the direct role of malignant cells in shaping the
immune microenvironment, van Galen et al. found that AML
cells exhibited marked intra-tumoral heterogeneity, with
“primitive-like” cell-types showing dysregulated co-expression of
stemness andmyeloid commitment genes, and more differentiated
“monocyte-like” cell-types showing immunomodulatory
properties linked to T-cell suppression (120). These two different
cell states were obtained by classifying malignant cells according to
their similarity to normal hematopoietic cell types and resulted
TABLE 2 | Selected scRNA-seq datasets for the healthy and pathological human immune microenvironment.

Dataset Tissue and cell
populations

Condition N cells/N individuals Core features

Human Cell Atlas
(107)

BM MNC Healthy 103,000/8 • Marker genes for cellular classification and trajectories
• Interactive web portal available

GSE120221,
GSE120446 (108)

BM MNC Healthy 76,645/20 • Largest number of individuals
• Broad age range of donors
• Orthogonal validation by flow and mass cytometry
• Discrepancies in T and NK subsets

Human Cell
Landscape (113)

BM MNC Pathologic (cytopenias) 8,704/2 • Atlas for cell-type identification
• Interactive web portal available
• Low sequencing depth

PB MNC Healthy 17,331/4

TMExplorer (114) BM MNC Pathologic [AML (102),
CML (115)]

AML: 38,410/40CML:
2,287/20

• Collection of microenvironment datasets from 12 different
cancer types

• R package interface to access datasets and metadata
• Provides gene expression data, cell type annotations and

gene-signature information
GSE126030 (110) T cells (lungs, lymph nodes,

BM and PB)
Healthy (resting and

activated)
50,000/4 • Reference map of human T cells functions related to

tissue site vs PB
• Applied to score distinct tumor-associated phenotypes
BM, bone marrow; MNC, mononuclear cells; AML, acute myeloid leukemia; CML, chronic myelogenous leukemia; PB, peripheral blood.
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associated to specific gene signatures. Specifically, the direct
comparison of leukemic versus normal cells revealed 296 genes
that were preferentially expressed inmalignant monocyte-like cells
from one or more AML samples, including genes associated with
myeloid-derived suppressor cells, antigen presentation
components and leukocyte immunoglobulin-like receptors, such
as tumor necrosis factor and interleukin-10 pathway genes or
regulators of reactive oxygen species. Although expression of
these genes markedly varied among patients, most samples
expressed high levels of CD206/MRC1 and CD163, two surface
markers associated with immunosuppressive myeloid cells (132),
whose expression was also found to be associated with poor
outcome in the TCGA AML-cohort (135). Thus, though highly
heterogenous, the different expression programs identified by
scRNA-seq might converge on common functional pathways of
prognostic and therapeutic interest. Tightly correlated gene
modules can reveal how specific pathways and cellular functions
(e.g., proliferation, antigen presentation, exhaustion,
differentiation, etc.) are distributed across cell types, thus defining
specific immunomodulatory patterns. Thereafter, detailed analyses
can be restricted to cells expressing common transcriptional
modules, an approach that may lead to the identification of new
surface markers, immunoregulatory molecules or tumor-specific
antigens for therapeutic exploitation. A catalogue of AML-specific
antigens and corresponding HLA ligands has been previously
obtained by mass spectrometry characterization (88).

Additional molecular mechanisms for tumor-related immune
changes include epigenetic dysregulation, which may affect T cell
differentiation and functions by remodeling active-enhancer
landscape and transcription factor binding (136–141). One notable
example is the documented increased chromatin accessibility at the
enhancer site of PDCD1, the gene encoding the checkpoint inhibitor
PD-1 (142). A proper T cell functionality is needed to convey the
effect of many immunotherapeutics; in this context, a recent study
applied scATAC-seq to characterize chromatin profiles of ~200,000
single cells in both peripheral blood and basal cell carcinoma samples
before and after PD-1 blockade therapy, which identified chromatin
regulators of therapy-responsive T cell subsets at the level of
individual genes and regulatory DNA elements (143). This is a
critical field of investigation in MN research, since studies have
shown that during disease progression the adaptive immune
microenvironment switches from cytotoxic to regulatory,
suggesting the appearance of immune tolerance (19, 20) and
immune-escape mechanism (24); also, T cell exhaustion has been
recognized as a cause of failure of autologous CARTs (136).
SHAPING THE IMMUNE
MICROENVIRONMENT BY
CELL-TO-CELL INTERACTIONS

In either the physiological or tumor microenvironments, immune
cells should not be considered as functionally separate entities, as
immuneprocesses aremediated bynetworks of tissue-resident and/
or circulating cell types. These interactions respond dynamically to
Frontiers in Oncology | www.frontiersin.org 9103
environmental stimuli, possibly driving disease progression and
sensitivity or resistance to immunotherapies (137). Thus,
identifying critical signalling pathways underlying the network of
immune-cell interactions is critical to predict cancer phenotypes,
identify druggable genes or manipulate the immune system for
therapeutic purposes (138) (for example, by genome editing (139)
and cell engineering to control how pairs of cells interact). A critical
startingpoint is the analysis of the coordinated expressionof known
ligands and their cognate receptors across different cell types. This
can be achieved, for example, by combining information from
protein–protein interaction databases (140, 141, 144, 145) and
single-cell technologies. Alternative strategies for deciphering
cell–cell interactions incorporate downstream signalling, gene
regulatory networks and metabolite secretion coupled with
advanced statistical methods [reviewed by Armingol et al. (137)].

A further application of single-cell transcriptomic is
represented by the integration of transcriptomic profiles of
single cells with their spatial position in tissue contexts, an
approach that allows mapping tumor cells with respect to
other cell types or relevant tumor areas, such as vessels or the
tumor edge, and that can be used as a guide for refining cell type
identification, monitoring cell abundance, behavior and
interactions upon different disease or treatment phases (146–
148). Various technologies and computational tools exist to
profile hundreds to thousands of transcripts at different
resolutions, which have been mostly applied to generate spatial
transcriptomic maps of solid tumors (149–157). Of note in the
context of MN, Baccin et al. developed LCM-seq, a laser-capture
microdissection and sequencing protocol specifically designed to
capture the three-dimensional organization of BM cell
populations and their location within distinct niches (98).
Alternative approaches are based on the recovery of specific
neighboring cells, as in the PIC-seq (158) and NICHE-seq (159).
In the PIC-seq, tissues are mildly dissociated to retain in situ
cellular structures, physically interacting cells (PICs) are then
recovered by FACS-sorting using specific markers and subjected
to scRNAseq (158). In the NICHE-seq, instead, cells interacting
with specialized niches within organs are identified in model
systems using photoactivatable fluorescent reporters (159).

Finally, alternative single-cell technologies are emerging
to overcome the limits of RNA analyses, e.g. the lack of
information on post-transcriptional and post-translational
processing (160). Spatial resolution, in fact, can also be achieved
by immunohistochemistry coupled to mass spectrometry, a
technology that allows the detection of up to 40 proteins with a
subcellular resolution of 1mm (161, 162). One recent study, as an
example, applied multispectral imaging to understand the spatial
relationship between CD34+ hematopoietic cells and immune cell
subpopulations in the BM of MDS and secondary AML samples.
CD8+ and FOXP3+ T cells were regularly seen in close proximity of
CD34+MDS/AML,yetnot in controls; thisfindingcorrelated toblast
counts butnot to genetics, and the frequencies of immune cell subsets
also differed in MDS and sAML when compared to controls,
providing novel insights in the dynamics of immune deregulation
during MN evolution (163). Methods that allow an accurate view of
intercellular communication include Nativeomics (164), which
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detects intact ligand–receptor assemblies using mass spectrometry,
single-cell proteomics (165) andINs-seq (166),whichcouple scRNA-
seqwith intracellularproteinmeasurements to simultaneouslyprofile
transcription factors, signalling activity and metabolism. In all cases,
mechanistic hypotheses generated by computational inferences of
single-cell data should undergo careful validation using orthogonal
technologies, including confirmation of the expression of candidate
proteins (e.g., with proteomics, enzyme-linked immunosorbent
assay, western blot or immunohistochemistry), or direct
visualization of interacting cells.
INTEGRATING COMPLEMENTARY
CELLULAR INFORMATION BY
SINGLE-CELL MULTI-OMICS

Several emerging single-cell technologies are committed to
recording complementary types of cellular and molecular
information from the same cell, including its transcriptome,
genome, epigenome, proteome and spatial localization
(Table 3). The application of multi-omics approaches enables
the integration of different molecular layers within single cells at
the same time and, possibly, with respect to their surrounding
environment, thus providing an unprecedent description of the
cancer ecosystem.
Genomic Data Combined With
Transcriptome/Proteins
Because of the prominent role of genetics in cancer biology and
clinical management, most efforts have converged on the
development of technologies that jointly capture a single cell’s
genomic profile along with its phenotypes defined by either
surface markers or functional features. A number of strategies
have been published, each with its own strengths and limits
(Table 2), which hold enormous potential for the study of the
immune microenvironment in MN. Direct approaches analyzing
genomic DNA along with mRNA are technically limited by the
low DNA sequencing coverage that can be achieved at single-cell
level, and are consequently hampered in their sensitivity (167,
175). This limit can be circumvented using indirect approaches,
which aim at identifying expressed genomic variants in scRNA-
seq data and allow the analysis of high numbers of cells, thus
preserving the biological heterogeneity of the sample (115, 120,
169–171, 176, 177). Experimental and computational methods
are under continuous development to achieve the broadest
applicability. Another approach was featured in the seminal
paper by Miles et al. and consists in combining scDNA-seq
with cell-surface protein expression, which the Authors exploited
to characterize CH, MPN and AML patients (3).

A first application of combined genomic/phenotypic
approaches is the distinction of neoplastic from non-neoplastic
cells within tumors, which remains inaccurate when solely based
on the expression of specific genes or surface markers, due to the
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occurrence of technical artifacts in scRNA-seq or aberrant
expression in either cell-populations. Mapping single-nucleotide
variants and/or copy-number variations across phenotypically
defined cells can enhance the confidence of such imputation
(51). In principle, the acquisition of thousands of unselected
cells (e.g., total CD34+ or BM/PB MNCs) would allow the
characterization of both neoplastic and non-neoplastic/immune
compartments in parallel, to study the functional properties
specific to each compartment and clone. Only a few studies
have exploited such approaches in MN, focusing on the
mapping of single mutations. Giustacchini et al. obtained
scRNA-seq profiling of BCR-ABL positive vs negative HSC from
patients with chronic myeloid leukemia, and found restricted
expression in BCR-ABL negative HSC of inflammatory genes
with suppressor functions on HSC (i.e., IL6 and its downstream
mediators, TGF-b and TNF-a pathways) (176). Another study
used transcriptional and mutational single-cell data to feed a
machine-learning model for the identification of malignant vs
non-malignant AML cells, and found heterogenous malignant
cell-types whose abundance correlated with genotypes and
survival (120). Indeed, future studies employing multi-omics
single-cell strategies will be instrumental to detail the molecular
mechanisms by which tumor cells harboring specific genomic
alterations interact with their own immune microenvironment,
potentially driving immune escape and response to immune-
therapies. Preliminary evidence supports this perspective with
different mechanisms, such as the expansion of specific immune
populations [e.g. in MDS, where chromosome 8 trisomy and
consequent WT1 overexpression fuel CD8+ expansion (178)];
the up/downregulation of immune effectors activity [e.g., fusion
proteins PML-RARa and AML1-ETO impair NK cytolytic
activity by downregulating their receptor’s ligand CD48 on
AML cells (179)]; enhancement of specific signalling and
immune activation pathways [such as for mutations in JAK2
(180–182) or spliceosome genes (12, 183), which are early
genetic events in MN, or for signalling effector mutations, which
occur in late AML subclones (3)].

Immunomodulation by either tumor or micro-environment
cells has been recognized as a further mechanism that influences
the dynamics of clonal expansion in MN. Dysregulation of innate
immune and inflammatory cells and signalling contributes to the
competitive advantage of CH-mutant HSC during aging,
particularly in the context of TET2, DNMT3A and JAK2
mutations (5, 6, 182, 184–186). In addition, mutations associated
with CH are nearly always present in circulating innate immune
cells and, less frequently, in the T and B lymphoid compartment,
which might affect immune surveillance against emerging tumor
cells and response to immune therapies (187). Understanding the
molecular and cellular relationships between the immune
microenvironment and preleukemic clones remains a crucial step
to efficiently track - and possibly intercept - the evolution to AML,
as the risk of leukemic transformation varies significantly across
CH-individuals and pre-leukemic patients and is associated to
diverse synergistic combinations of mutations. Although not
specifically focusing on the immune microenvironment, Miles
et al. observed differential skew to the myeloid, B or T cell
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TABLE 3 | Overview of selected single-cell multi-omics methods.

Method Overview Throughput (N cells
with multiomics
characterization)

Features Limits

Genome + Transcriptome
G&T-seq (167) Experimental methodPhysical separation of RNA and

DNA with subsequent parallel amplification and
sequencing

-/+ • CNV (direct scoring)
• SNV (direct scoring)
• Full-length transcriptome

(including fusions)

• Low throughput
• Low coverage

HoneyBADGER
(168)

Computational methodIntegration of normalized scRNA-
seq profiles as compared to:- putative diploid reference
of comparable cell type- allelic frequency of
heterozygous germline SNP

• CNV (inferred from
scRNA-seq)

• LOH (inferred from
scRNA-seq)

• Transcriptome

• No information on DNA
alterations smaller than 10
megabases

• Best performance with
scRNA-seq protocols that
achieve full-transcript
coverage

Scmut (115) Computational methodVariant calling implemented to
both scRNA-seq and WES data

• Expressed SNV (inferred
from scRNA-seq)

• Transcriptome

• Relies on quality of the
alignment and transcript
annotation

• Detection sensitivity of a
mutation depends on the
corresponding gene
expression

• High rate of false positives
and negatives

Van Galen et al.
(120)

Experimental methodTarget amplification of transcript
and locus of interest, integration with long-read
sequencing

+ • Expressed SNV (inferred
from scRNA-seq),
insertions, deletions and
fusions

• Transcriptome

• Depends on expression for
mutation detection

Petti et al. (169) Experimental methodVariants scored in WGS and then
detected in scRNA-seq data

++ • Expressed SNV (inferred
from scRNA-seq), indels

• Transcriptome
• High-throughput that

preserves biological
complexity

• General applicability

• 5’-end bias
• Heavily depends on

expression for mutation
detection

• No clonal reconstruction
(wild-type status not
defined)

GoT (170) Experimental methodTarget amplification and
circularization of transcript and locus of interest

++ • Expressed SNV (inferred
from scRNA-seq)

• Transcriptome
• Overcomes end bias by

transcripts circularization

• Depends on expression for
mutation detection
(mitigated by target
amplification)

TARGET-seq
(171)

Experimental methodRelease of gDNA and mRNA
followed by target amplification

+ • SNV, indels
• Transcriptome
• Parallel information from

coding and non-coding
DNA

• Clonal reconstruction
• Low allelic dropout

• End-bias with ‘high-
throughput’ protocol

Genome + Proteins
Tapestri
(Mission Bio,
Inc) (3, 59)

Experimental methodMicrofluidic workflow for target
amplification of DNA amplicons and proteins

++ • SNV
• CNV
• Cell-surface proteins
• Standardized commercial

platform
• Customizable gene and

antibody panel
• Clonal reconstruction at

single-cell level
• Integrated pipeline for

multi-omics analysis

• No information on gene
expression and regulatory
networks

Transcriptome + Epigenome
scM&Tseq (172) Experimental methodPhysical separation of RNA and

DNA, which allows for bisulfite conversion of DNA
without affecting the transcriptome

-/+ • Transcriptome
• Methylome

• Low sequencing depth
• Low throughput

(Continued)
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lineages, depending on which CH gene was mutated; genotype-
driven changes in cell-surface protein expression were also reported
in the leukemic phase, with signaling effector mutations leading to
increased CD11b expression (3). In established AML, the same
information might instead aid in understanding the molecular basis
of chemoresistance and the jeopardized response to various
immunotherapeutic strategies. In this context, common AML-
associated translocations (AML1-ETO, DEC-CAN, PML-RARa,
BCR-ABL) or mutations (FLT3-ITD, NPM1, IDH1R132H,
mutations in spliceosome genes and some TP53 hotspots, JAK2,
CALR) produce MN-specific immunogenic proteins that may
become ideal antigen targets for the development of
immunotherapies (12, 188).
Transcriptomic Data Combined With T Cell
Receptor Information
Finally, the T- or B-cell receptor repertoire of individual
lymphocytes can be scored in parallel with their gene expression
profiles, using properly devised experimental and computational
methods on scRNA-seq data (73, 111), thus providing connections
between lymphocyte clonality and functional responses, which can
inform the discovery of antigen-reactive antibody candidates,
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antigen targeting efficiency of T cell clonotypes, and evolution
and response to various immunotherapies.
Transcriptomic Data Combined With
Proteomic Data
Technologies are also available that allow concomitant analyses
of protein and transcripts at single-cell levels. They are
particularly useful to investigate post-translational regulatory
events and to relate functionally-defined phenotypes to protein
markers, which might assist tumor classification, biomarker
assessment for prognostic purposes, and development of
therapeutic targets. Surface proteins can be detected by
implementing gene-expression libraries with oligonucleotide-
labeled antibodies, as for the above-mentioned CITE-seq (94)
and REAP-seq (87). Notably, the CITE-seq workflow is
compatible with the most frequently used commercial
platforms for scRNA-seq, and there’s no upper limit to the
number of antibodies that can be used. PLAYR, instead, relies
on mass spectrometry and allows the detection of up to 40
proteins (174). This technique might be critical when high-
quality antibodies are unavailable; also, it can be deployed for
index sorting and imaging approaches to enable spatial
TABLE 3 | Continued

Method Overview Throughput (N cells
with multiomics
characterization)

Features Limits

Paired-seq
(173)

Experimental methodLigation-based tagging of both
open chromatin fragments and cDNA

+++ • Transcriptome
• Chromatin accessibility
• Extremely high throughput

(up to millions of cells)

• Non optimal library
complexity

Transcriptome + Proteins
CITE-seq (86) Experimental methodAntibody-bound oligos act as

synthetic transcripts that are captured during most
large-scale oligodT-based scRNA-seq library preparation
protocols

++ • Transcriptome
• Surface proteins
• Adaptable to RNA

interference assays,
CRISPR, and other gene
editing techniques.

• No upper limit in number
of antibodies

• No spatial information
• No intracellular proteins

PLAYR (174) Experimental methodLabelling of RNA and proteins with
isotope-conjugated probes andantibodies for mass
spectrometry detection

+ • Transcriptome
• Surface and intracellular

proteins

• No spatial information-
Limited number of proteins

Transcriptome + T cell receptor
Tessa (111) Computational methodBayesian model trained on bulk

and scRNA-seq of TCR and T cells
• TCR sequences
• Transcriptome

• No information on splicing
isoforms

RAGE-seq (73) Experimental methodCombined targeted capture and
long-read sequencing of full-length transcripts

++ • TCR/BCR sequences
• Transcriptome
• Splicing isoforms
• Accurate antigen receptor

sequences at nucleotide
resolution

• Information on splicing
isoforms

• Adaptable to any scRNA-
seq platform using 3′ or
5′ cell-barcode tagging

• Low recovery of cell
barcodes due to low
accuracy of long-read
sequencing

• Possible PCR artifacts
February 20
CNV, copy number variation; LOH, loss of heterozygosity; SNP, single nucleotide polymorphism; SNV, single nucleotide variant; WES, whole exome sequencing; WGS, whole genome
sequencing; gDNA, genomic DNA; cDNA, coding DNA; PCR, polymerase chain reaction; TCR, T cell receptor; BCR, B cell receptor.
-/+, tens of cells; +, tens of cells; ++, hundreds of cells; +++, thousands of cells.
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resolution. Using other techniques, intracellular proteins can be
accessed as well with scaling throughput (189, 190).
Transcriptomic Data Combined With
Epigenomic Data
Various single-cell technologies are becoming available for the
simultaneous analyses of expression, DNA methylation or
chromatin accessibility (Table 2). This level of investigation
would be particularly important to characterize MN, as
epigenomic changes occurring in either tumor or immune cells
are relevant to aberrant hematopoietic differentiation (191),
genetic-independent disease progression (32) and immune
functions (132, 142, 192–194). Moreover, HMA [which are
typically used in older MDS or AML patients (29)] have been
found to potentiate the immunogenicity and the immune
recognition of neoplastic cells by up-regulating the expression
of molecules that are crucial in host-tumor immune interactions
(195–197), which makes them an ideal partner for combination
with immunotherapeutic agents (23).
Triple-Omics
Finally, although preliminary, recent studies have reported the
development of single-cell triple-omics sequencing techniques,
such as for the joint capture of the transcriptome, genome and
DNA methylome [scTrio-seq (198)]; transcription, DNA
methylation and chromatin accessibility [scNMT-seq (199)]; or
transcription, chromatin accessibility and surface proteins (200).
OPEN PERSPECTIVES AND
FUTURE DIRECTIONS

Despite the number of single-cell approaches that have been
developed in the last few years, and the fewer proof-of-concept
applications, most of the relevant questions in the field of MN
remain to be addressed (Figure 2).

So far, single-cell studies aiming to describe the immune
microenvironment in MN have mainly focused on AML, while
a thorough characterization of CH, MDS and MPN samples is
currently lacking. To formally address questions about disease
progression, therapeutic resistance and relapse, more informative
research should be performed by prospective monitoring of MN
evolution. Following the history of MN patients at multiple time-
points should allow tracing of evolving cellular clones across
different disease stages, as well as residual disease [scored by
immunophenotypic markers, genetic markers or both (6)] after
treatment and donor chimerism after alloHSCT, in the context of
surrounding immune cells. It is envisioned that such prospective
biobanks for single-cell characterization might uncover immune-
related pathways that can be targeted for reducing the selective
advantage of the CH or MDS transforming clones, an approach
supported by proof-of-concept studies in murine models (185,
186). Also, the same strategy could detail the molecular
Frontiers in Oncology | www.frontiersin.org 13107
mechanisms of resistance and immune evasion and monitor
variability in treatment response. Finally, given the association
of immunomodulatory features with both disease progression and
survival, there is also a rationale for studying the inclusion of
immunologic parameters to refine prognostic models currently
used for MDS (201, 202) and AML (22, 29, 203) patients.

Resistance to treatment (including chemotherapy or HMA,
target therapies and immunotherapies) represents the main cause
for poor survival in AML, which is the final stage of the MN’s
natural history (29, 30, 46). Resistance and relapse involve genetic
and epigenetic dynamics of cell clones in parallel with changes in
the immunomodulatory properties of both tumor and immune
cells (204–207), whose interplay can be best understood by single-
cell multi-omics approaches. Novel single-cell approaches to
tackle therapy-resistant cells in model systems include the use of
expressed barcodes, which enable the simultaneous recording of
clonal evolution and transcriptional phenotypes, eventually
coupled to genetic perturbations (74, 208, 209), to study
mechanisms of immune evasion. Similarly, other methods can
score specific cell clones (including HSC, preleukemic and
leukemic stem cells) via lineage barcoding and tracing (101, 210,
211), while pulse-chase, inducible lineage tracing methodologies
can record past events, such as cell divisions, enabling analyses of
cell cycle properties (212, 213). LSC are more frequently quiescent
(i.e., not proliferating) than normal HSC, a state that may mediate
chemoresistance and relapse; regulation of quiescence can be
driven by cell-autonomous genetic or epigenetic changes, but
also interactions with the BM immune microenvironment (11,
214, 215), which provides another important hint for
clinical translation.

Finally, a further major challenge in MN-related research is the
development of effective immunotherapeutic approaches. As
discussed above, scRNA-seq and mass cytometry have the
capability to identify cell populations with specific functional
properties in both tumor and immune compartments. Describing
associated molecular markers might aid the process of selecting
target antigens in the design of immunotherapies, especially when
scRNA-seq is coupled to surface proteins detection in CITE-seq
(86) or other platforms for the analyses of cell-to-cell and spatial
interactions (137). Since MN are not featured by a single and
common surface-antigen with druggable characteristics, as it is, for
example, CD19 in B lymphoblastic leukemia (216), multi-omics
represent promising strategies to identify different combinations of
candidate targets and/or involved pathways.

With the advancement of innovative methodologies, the
number and scale of publicly available datasets are continuously
increasing (217–220); this offers the opportunity to integrate and
interrogate multiple datasets for the validation of previous
discoveries or, conversely, the generation of new hypotheses to
be experimentally validated, and will possibly allow the
construction of a specific cell-type atlas for both cancer and
immune cells. Proper curation, quality control and reliable
computational strategies for integration are essential to the full
exploitation of available data. However, comprehensive integration
is challenging because datasets are typically generated through a
variety of different approaches and heterogeneous study designs
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(95). To this aim, achieving standardization of experimental
protocols will play an important role. Ongoing and future efforts
are committed to identify and benchmark optimal computational
methods for data integration, and to improve data sharing and
accessibility (221).
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CONCLUSIONS

In conclusion, although very few data exist specific to MN, single-
cell technologies - especially those providing multi-omic
measurements of the same single cell - hold the promise to yield
FIGURE 2 | Opportunities of applying single-cell technologies to characterize myeloid neoplasms. Established and novel single-cell technologies can provide manifold
information to address clinically relevant questions and contribute to therapy development. (A) Isolating cell subsets from transcriptional data could score functional
populations (whose markers can be defined in the same context by either gene expression or proteomic data) that might be associated to prognostic features or
treatment response. Also, T or B cell receptor clonality can be studied in parallel with associated transcriptome, which would shed light on expansion dynamics of T and
B populations in physiology and tumor or upon treatment. (B) Inferring molecular pathways (at gene expression or epigenetic level) from such populations might reveal
distinct or convergent functional modules, potentially simplifying disease heterogeneity with implications for therapeutic exploitation. (C) Cell-cell crosstalk and spatial
reconstruction by transcriptomics are fundamental notions to score cancer and immune cells interactions in their proper environmental context, enabling more precise
mechanistic and regulatory insights. (D) Clonal reconstruction is one core objective of single-cell DNA analysis in myeloid neoplasms, and a mainstay to understand (and
potentially prevent) disease evolution. (E) Different coexisting molecular layers can be complemented, experimentally and/or computationally, to uncover previously hidden
information and mechanistic hypotheses. (F) Perturbation assays offer experimental ways to tackle specific functional processes (such as drug response), which can be
further dissected by coupling experimental read-out with omics. (G) Integration of different datasets are expected to increase statistical power and accuracy of previous
observations. (H) All of the generated knowledge might enable the creation of an atlas for tumor and immune cell types and states, which would represent a
comprehensive reference resource for future studies.
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comprehensive insights into how pre-leukemic and leukemic cells
interact with the different players of the associated immune
microenvironment. The spreading availability and scaling of the
various single-cell approaches is expected to enable the
characterization of large clinical cohorts involving patients with
different MN types, upon different treatment conditions, as well as
more focused experimental models. Despite many challenges to
solve, these efforts will build a detailed ecosystem-level picture of
MN to help highlight new hypotheses and research directions,
inform dynamics of progression, select targeted drugs and rational
combinations, and predict efficacy of immunotherapy.
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