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Editorial on the Research Topic

Nanoparticle-Mediated Signaling Rewiring and Reprogramming of Immune Responses

Recent advances on the molecular mechanisms that control immune cells are at the core of the
development of better immunomodulatory therapies. For example, these mechanisms may enable T
cell manipulation interventions to treat and prevent autoimmune disease by rewiring T cells
towards an anti-inflammatory phenotype. Indeed, it has been recently reported that metabolic
sensing in immune cells is coupled to signal transduction pathways that control cell fate. These
phenomena have been linked to the onset and/or progression of several diseases such as multiple
sclerosis, rheumatoid arthritis, diabetes or Alzheimer’s disease, and also exploited therapeutically to
develop cancer immunotherapies (1-4). Unifying our understanding of the molecular pathways that
control the immune response might identify novel efficacious interventions to reprogram immune
cells for therapeutic purposes in diseases associated with immune dysregulation. However, two
important challenges limit the clinical translation of our current knowledge on the regulation of the
immune response by small molecules which could provide the basis for novel immunotherapeutic
drugs. First, the absence of mechanisms to control the specificity of these reprogramming
approaches, resulting in oft-target effects. Second, limitations associated to the short half-life and/
or low bioavailability of immune-modulatory small molecules.

Nanomaterial-based approaches offer a platform for novel immunotherapeutic approaches. In this
sense, nanoparticle (NP) delivery systems are gaining momentum because they allow the development of
precision-based medicines for the reprogramming and dynamic rewiring of signalling pathways in
immune cells. Even without a well-defined cell-targeting strategy, several studies have shown the
feasibility of reprogramming inflammatory immune cells after iv administration of different
nanoparticles based only on their physical properties (5-7). For example, it is possible to differentially
reprogram immune cells to favor their homing to injured locations to promote neuroprotection or to
reduce their recruitment to inflamed areas and limit immunopathology. Immune-reprogramming NPs
have been shown to redirect suppressive macrophages to act as anti-tumor effector cells, and without the
described side-effects linked to checkpoint inhibitors. Indeed, several clinical trials are underway to bring
immune-reprogramming NPs to patients and there is a critical mass of proof-of-concept studies on
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nanoparticles tailored with different biological and chemical
strategies to modify the response of immune cells (8, 9). Also, NP
reprogramming of macrophages and T-cell mediated responses is
having a major impact on the development of new methods for
cancer immunotherapy (10, 11). In this Research Topic, we have
gathered articles covering novel and significant aspects about the
connection between NPs and functional immune responses,
providing a series of updated and insightful views of the potential
mechanisms involved. More specifically, we have arranged this
special issue into three broad subjects, as follows: (A) NP-based
reprogramming to promote infection resolution. (B) NP-based
reprogramming in cancer immunotherapy; (C) NP-based
reprogramming of immune memory.

NP-BASED REPROGRAMMING TO
PROMOTE INFECTION RESOLUTION

Beyond the bactericidal or bacteriostatic effects that were described
in the early days of nanomedicine, an interesting field of research is
related to the long-term effect of NP exposure on trained innate
immunity (12, 13). Swartzwelter et al. report how gold nanoparticles
(AuNPs) loaded with different microbial molecules differentially
reprogram macrophage responses which downregulate or
exacerbate innate immune memory. Although the molecular
mechanisms underlying how AuNPs modulate innate memory
are unknown, it appears to be defined by the pathogenic agent
and the individual’s immune history, independently of the primary
response elicited by AuNPs. An often understudied issue is the
linking of initiation, progression and resolution of inflammation
with the effect of NPs on functional responses by macrophages. Sun
et al. describe a tryptophan-containing hexapeptide-coated AuNP
with opposite immunomodulatory activities in resting and TLR-
stimulated macrophages, targeting NF-xB or IRAK downstream
signalling, respectively. Korshoj et al. provide an insightful review
on how to tackle chronic infections in the central nervous system by
modulating macrophage/microglia polarization using different NP
platforms. Finally, Ernst and Puntes comment on the role of
oxidative metabolism in macrophage function and the potential
of regulatory interventions trough cerium oxide NPs. Interestingly,
it is worth mentioning that inorganic or metallic core NPs are
attracting more attention compared to the reluctance they triggered
a few years ago because of their potential toxicity.

NP-BASED REPROGRAMMING IN
CANCER IMMUNOTHERAPY

The review by Mulens-Arias et al. provides a comprehensive account
of our current understanding on the effects of Iron Oxide
Nanoparticles (IONPs) on macrophage reprogramming in the
tumour microenvironment, including effects on the interactions
between malignant and non-transformed cells. Garland et al. explore
the capacity of cytosolic double-stranded DNA to promote
antitumor immunity by activating the cytosolic DNA sensor
cyclic-GMP-AMP synthase (cGAS) and its downstream effector,

stimulator of interferon genes (STING), which drive the production
of type I interferons and other inflammatory cytokines. A major
bottleneck to activate the cGAS/STING cytosolic pathway with
double-stranded DNA is the combination of both
deoxyribonuclease activity and endosomal escape, which forced
the development of direct STING activators. To overcome the
limitation of a non-physiological stimulation of cGAS-STING
signaling, Garland et al. identified in a DNA library screening a
DNA-based polymeric nanoparticle with enhanced features in terms
of stability and functional activation of the cGAS-STING pathway.
In vitro and in vivo experiments demonstrated the feasibility of
directly targeting cGAS to reprogram macrophages in tumors,
opening new venues for cancer immunotherapy. Alongside, Dey
etal. provide further information on the impact of nucleic acid cargo
in cationic lipid-based delivery systems aimed to induce macrophage
and dendritic cell modulation. Finally, Makhijani and McGaha
review the role of exosomes in myeloid immune cells. These nano-
sized vesicles of endosomal origin (30-150 nm in diameter) are the
smallest type of extracellular vesicles, whose role in cancer
immunology and inflammatory/autoimmune diseases has only
recently started to be fully appreciated.

NP-BASED REPROGRAMMING IN
ADAPTIVE IMMUNE MEMORY

The review by Solé and Santamaria focuses on the reprogramming
capabilities of NPs to generate antigen-specific T-regulatory type 1
(Tr1)-like cells. They pay special attention to Trl-like cell
heterogeneity and its potential molecular characterization. By using
dendritic mesoporous silica nanoparticles, An et al. report the
synthesis and characterization of a peptide-based delivery platform
as a vaccination strategy towards foot-and-mouth disease virus. Also
in the field of modified platforms for new vaccination strategies, Feola
et al. exploit oncolytic viruses as in situ cancer vaccines. In this work,
they developed an alternative approach to generate oncolytic
adenovirus functionalised with tumour antigens in order to obtain
sustained T cell responses while avoiding non-scalable procedures.
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The Use of Iron Oxide Nanoparticles
to Reprogram Macrophage
Responses and the Immunological
Tumor Microenvironment

Viadimir Mulens-Arias, José Manuel Rojas? and Domingo F. Barber’”

" Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnologia (CNB)-CSIC,
Madrid, Spain, 2 Centro de Investigacion en Sanidad Animal, Centro Nacional Instituto de Investigacion y Tecnologia Agraria
y Alimentaria (CISA-INIA)-CSIC, Valdeolmos, Madrid, Spain

The synthesis and functionalization of iron oxide nanoparticles (IONPs) is versatile, which has
enhanced the interest in studying them as theranostic agents over recent years. As IONPs
begin to be used for different biomedical applications, it is important to know how they affect
the immune system and its different cell types, especially their interaction with the
macrophages that are involved in their clearance. How immune cells respond to therapeutic
interventions can condition the systemic and local tissue response, and hence, the final
therapeutic outcome. Thus, it is fundamental to understand the effects that IONPs have on the
immune response, especially in cancer immunotherapy. The biological effects of IONPs may
be the result of intrinsic features of their iron oxide core, inducing reactive oxygen species
(ROS) and modulating intracellular redox and iron metabolism. Alternatively, their effects are
driven by the nanoparticle coating, for example, through cell membrane receptor engagement.
Indeed, exploiting these properties of IONPs could lead to the development of innovative
therapies. In this review, after a presentation of the elements that make up the tumor
immunological microenvironment, we will review and discuss what is currently known about
the immunomodulatory mechanisms triggered by IONPs, mainly focusing on macrophage
polarization and reprogramming. Consequently, we will discuss the implications of these
findings in the context of plausible therapeutic scenarios for cancer immunotherapy.

Keywords: iron oxide nanoparticles, nanoparticle-macrophage interaction, macrophage polarization, tumor
associated macrophages, therapeutic applications

INTRODUCTION

The highly innovative field of nanotheranostics has been expanding now for more than two decades,
with easy-to-scale nanomaterials emerging as potential candidates to treat a variety of pathologies,
such as cancer (1-4), autoimmune diseases (5, 6) or neurodegenerative disorders (7, 8). The
therapeutic interest in nanomaterials, and particularly in nanoparticles, is in part kindled by the
chemical and physical versatility of these materials. Nanoparticles can be functionalized with
targeting moieties (9) or drugs (10), and their surface can be built for specific biomolecule release
using molecular domains responsive to stimuli like pH (11, 12) or reactive oxygen species (ROS (13,
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14). In addition, they also possess physical properties associated
with their core that can be exploited, such as magnetism (15) and
plasmon coupling (16).

Iron oxide nanoparticles (IONPs) are of particular therapeutic
interest due to their magnetic properties and their flexibility for
surface functionalization. IONPs have been used as contrast agents
and as heat-inducers through the application of an external
magnetic field (17, 18). Their versatility in terms of surface
functionalization means they can target diverse molecules and
they can be used to ensure the correct localized delivery of
different cargos, such as drugs, RNAs, cytokines or antibodies
(15). Importantly, IONPs also exhibit intrinsic biological activity
in cellular systems, including the immune system, which can be
exploited to broaden their therapeutic potential. This review
will first outline the main characteristics of the tumor
microenvironment (TME), emphasizing the influence of tumor-
associated macrophages (TAMs), and subsequently, we will address
the impact that IONPs have on macrophage reprogramming and
the implications of this for cancer immunotherapy.

IMMUNOLOGICAL TUMOR
MICROENVIRONMENT

Cancer is a complex and heterogeneous disease that involves the
dysregulation of various cell processes, such as metabolism (19),
proliferation (20), intracellular pH dynamics (21), redox
signaling (22), and migration/invasion (23, 24). The
complexity of this disease is also reflected by the different
ecosystems that constitute a permissive TME (25, 26). A close
inspection of the TME reveals a network of cellular and non-
cellular components that provide the signals that control tumor
cell survival, proliferation, angiogenesis, immune evasion and
metastasis. We can divide the TME landscape into three
ecosystems: 1) the cellular compartment; 2) the soluble factors;
and 3) the extracellular matrix (ECM: Figure 1 and Table 1). The
tumor niche is a very dynamic 3D structure in which stromal
cells play a crucial role in regulating different stages of tumor
development and in which there is also an intricate interplay
among these cells. The TME cell ecosystem also includes a
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FIGURE 1 | Overview of the tumor microenvironment (TME). Three ecosystems contribute to the TME: firstly, the cellular ecosystem that is composed of immune
cells (lymphoid and myeloid), fibroblasts, mesenchymal stem cells (MSCs), pericytes, endothelial cells, and tumor cells. Secondly, the cell-to-cell membrane
interactions and soluble secreted factors that participate in the intricate interplay among these cells, e.g., cytokines, chemokines, growth factors, hormones,
proteolytic enzymes, and metabolites. Thirdly, the extracellular matrix (ECM) bed on which the cellular ecosystem resides, also providing biological signals to the
tumor and stromal cells through ECM-derived peptides and the structural domains of its proteins. The interplay of these signaling networks and ecosystems
promotes tumor cell proliferation, survival, epithelial-to-mesenchymal transition, drug resistance and loco-regional modulation, such that the TME is conducive to
tumor cell invasion and metastatic spreading, angiogenesis and immune cell evasion.
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TABLE 1 | Examples of TME ecosystems and their implications in the progression of three significant cancers: breast, lung and colorectal.

Tumor Component

Cancer-associated fibroblasts
(CAFs)

Breast tumors

Implications

Tumor invasion through stromatogenesis (27)
Tumor EMT through TGF-B1 (28, 29)

Self-renewal of breast cancer stem cells (30)
Tumor progression through growth factors, e.g., SDF-1 (31), FGF-B (32)
Tumor progression through cytokines and chemokines, e.g., CXCL14 (33), CXCL16 (34), IL-4 & IL-6 (35), IL-

33 (36)

Breast tumors Mesenchymal stem cells (MSCs)

Immunosuppression through the CCL5/PD-L1 axis (37)

Enhanced tumor progression through CCL5 and IL-6 (38)

Lung tumors CAFs

Chemoresistance through upregulation of TNFSF4 (39) and/or ANXA3 (40)

Immunosuppression by modulating TIM (41)
Enhanced growth and invasion through VCAM-1 secretion (42) and induction of PD-L1 (43)

Colorectal cancers ~ CAFs

Enhanced metastasis through HGF (44)

Chemoresistance through exosomal INcRNA H19 (45)
Enhanced tumor cell migration/invasion through Wnt2 (46), IL-33 (47), CLEC3B (48) and/or SNAIL-1 (49)

Colorectal cancers
Colorectal cancers

Pericytes
MSCs

Enhanced tumor cell invasion through the TGF-B1/IGFBP-3 axis (50)
Enhanced tumor progression through IL-8 (51), TGF-B1/CXCR4 (52), CCL5/B-catetin/Slug (53)

plethora of non-immune stromal cell types, such as cancer-
associated fibroblasts (CAFs (54), mesenchymal stem cells
(MSCs), pericytes, adipocytes, endothelial and vascular cells.
Notably, these cells exhibit a high degree of plasticity and they
may originate through trans-differentiation. For instance, breast
cancer CAFs may stem from resident fibroblasts, from breast
epithelial cells via the epithelial-to-mesenchymal transition (EMT)
or from pericytes in the perivascular niche (55, 56). CAFs may also
be derived from bone marrow-derived mesenchymal stem cells
(BM-MSCs), as PDGFR-o", CD457, CD34~ BM-MSCs are
recruited into primary breast tumors to differentiate into o-
SMA", PDGFR-0.", CD457, CD34~ CAFs (57). This fact
highlights the complex transcriptional reprogramming that
many stromal cells go through, suggesting that the cellular
ecosystem in the TME is in constant transcriptional flux (58,
59). Indeed, this dynamic transcriptional program is likely to
constantly redefine the immunological landscape of the TME.

The TME is also comprised of tumor-infiltrating immune cells,
both innate immune cells (monocytes, macrophages, and NK cells)
and adaptive immune cells (T and B cells), that define the tumor
immune microenvironment (TIME). Dynamic communication
takes place within this ecosystem that are mediated by cell-to-cell
contacts and cell-derived soluble factors. The intermediates derived
from stromal and tumor cells, such as cytokines, chemokines, and
ROS, promote immune evasion by inducing CD8" T cell anergy/
exhaustion, T regulatory (Tregs) cells, suppressor dendritic cells
(DCs), and M2 macrophage differentiation (60). As a result, tumors
escape immune surveillance and they adopt a metastatic phenotype
through modulation of the EMT, enhanced angiogenesis and
ECM degradation.

The non-cellular TME network is comprised of ECM
components [e.g., collagens (61), fibronectin (62), elastin (63),
and laminin (64)], and soluble cellular derivatives [e.g., cytokines,
chemokines (65), hormones (66), metabolites (67, 68) and growth
factors (69)]. This non-cellular network is responsible for cell-to-
cell crosstalk, ultimately shaping the pro-malignant environment.

However, the immunological landscape within the TME has
emerged as a crucial variable for cancer progression and treatment,
and understanding the TIME has become a critical step in designing

efficient immunotherapies for cancer. Indeed, the TIME defines the
prognosis of cancer patients (70, 71) and their therapeutic response
to immunotherapies like checkpoint inhibitors (72, 73), T-cell
transfer (74), or therapeutic vaccines (75). Driven by tumor cell
plasticity, the TIME is a dynamic system where diverse innate and
adaptive immune cells co-exist, continually changing over time in
response to the reprogramming of tumor cell transcription
(Figure 2). To better comprehend the TIME’s influence on
cancer prognosis, the TIME can be divided into the T cell-
inflammatory microenvironment and non-T cell-inflammatory
microenvironment. The first of these is characterized by the
infiltration of T cell subsets and macrophages, whereas the second
is mainly composed of TAMs. Of all immune cells, TAMs play a
pivotal role in defining the tumor immunological landscape and
thus, they have been the target of various therapeutic approaches.

Immunosuppressive Tumor-Associated
Macrophages

TAMs are tumor-enriched immunosuppressor cells that exert a
pivotal influence on tumor progression and metastasis. Since their
first description 30 years ago (76), TAMs have been characterized
as potent pro-tumorigenic agents that act primarily by modulating
the natural (and induced) anti-tumor response, ECM remodeling,
and inducing angiogenesis, not only leading to tumor cell survival
and proliferation but also, to their dissemination (Figure 3). It is
currently accepted that the TAM phenotype resembles the
alternatively activated macrophage M2 phenotype (Arginase 17,
CD163", CD206", CD209", FIZZ1" and Ym1/2"), which can be
subdivided into four subtypes: M2a, M2b, M2c, and M2d (77).
These subtypes are generated by the stimuli triggering macrophage
differentiation and some specific phenotypic markers (Table 2).
However, it is generally accepted that TAM:s retain a high degree
of plasticity, permitting several different subtypes to co-exist
simultaneously and their trans-differentiation into each different
subtype depending on the TME signals available.

In general, blood monocytes infiltrate the TME, and along with
the tumor-resident macrophages, they represent a source of TAMs.
In this context, tumor cells shape the macrophage’s
immunosuppressive phenotype by secreting anti-inflammatory
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FIGURE 2 | The tumor immune microenvironment (TIME). Several immune cells are found in the TIME, exhibiting either an immunostimulatory (CTLs, cytotoxic T
cells, helper T cells, memory T cells, ¥3 T cells, NK T cells, plasma B cells, memory B cells, NK cells and M1-like TAMs) or immunosuppressive phenotype (Tregs
cells, regulatory B cells, M-MDSCs, monocytic monocyte-derived suppressor cells, PMN-MDSCs, polymorphonuclear monocyte-derived suppressor cells and M2-
like TAMSs). The final immunological response in the TME will depend on the balance between these immunomodulatory populations.

interleukins and other metabolites. The TAM:s then inhibit tumor- ~ secretes pro-inflammatory cytokines like IL-12, thus driving an
infiltrating T cells directly through receptor-ligand cognates [e.g.,  anti-tumor effect. In this context, nanoparticles that modulate TAM
PD-1:PD-L1 (84)] or by releasing anti-inflammatory cytokines (IL- ~  activity, particularly IONPs, provide new and innovative tools to
10, TGF-B1, and IL-6). Concomitantly, the TAMs can produce  prolong anti-tumor responses in situ.

different proteolytic enzymes such as metalloproteinases (MMPs),

cathepsins, and disintegrin and metalloproteinase-like proteases

(ADAMs), thereby producing a profound ECM remodeling. INTRINSIC MODULATION
Consequently, the ECM becomes conducive to invasion, and it ~ OF THE TIME BY IRON OXIDE
facilitates tumor cell dissemination into the surrounding tissueand  NANOPARTICLES (IONPS)

peripheral circulation. TAMs can further enhance tumor

invasiveness by inducing angiogenesis, mediated by various =~ IONPs have been studied extensively as an effective magnetic
cytokines and growth factors like VEGF-A (85) and IL-8 (86). nanocarrier for various cargos, such as drugs (15), cytokines (90,
Since TAMs are involved in tumor progression, the induction of a 91), siRNAs (92), and adjuvants (93). There are several motives

specific phenotype that switches these cells towards a pro-  for the increasing interest in IONPs as nanocarriers. First, the
immunogenic profile has been proposed as an attractive =~ IONP core responds to an external electromagnetic field that
therapeutic tool to enhance local anti-tumor immune responses. permits their use in applications like magnetic targeting,

The modulation of TAM activity is a plausible and promising ~ magnetic resonance imaging (MRI) or the induction of local
therapeutic approach to combat tumors when combined with ~ hyperthermia. Second, mammalian cells have efficient iron
cancer immunotherapies. Indeed, multiple drugs that modulate ~ metabolism that can prevent the cells from suffering iron-
the pro-tumor activity of TAMs have been tested, including  related toxicity. Third, the IONP surface provides a chemical
bisphosphonates (87) and zoledronic acid (88) in particular, or  interface that can be easily modified with a number of polymers

chemotherapeutic drugs like docetaxel and cyclophosphamide (89).  and moieties, which when combined with the high surface-to-
While zoledronic acid can revert the M2 TAM phenotype in breast ~ volume ratio, facilitate the delivery of wide range of cargoes.
tumors into an M1-like phenotype or induce TAM apoptosis, the However, IONPs also produce interesting intrinsic biological

chemotherapeutic drugs can promote an MI-phenotype that  effects that provide added therapeutic benefits to IONP-based
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FIGURE 3 | The role of tumor-associated macrophages (TAMSs) in shaping the tumor microenvironment (TME). (A) TAMs secrete a plethora of enzymes that
degrade ECM components, such as metalloproteinases (MMPs), cathepsins, disintegrin and metalloproteinase (ADAM)-family proteases, and tissue inhibitors of
metalloproteinases (TIMPs). As a result, the ECM becomes destructured and conducive to tumor cell invasion. TAMs also secrete cytokines that support tumor cell
proliferation, e.g., TGF-B1, IL-10, IL-6, IL-1B, and EGF. (B) TAMs secrete various pro-angiogenic factors that induce vessel formation, e.g., VEGF-A, bFGF, IL-6, and
TNFo. Together with ECM degradation, tumor angiogenesis permits the systemic dissemination of tumor cells. (C) TAMs adopt an immunosuppressive phenotype
by secreting many anti-inflammatory cytokines/chemokines, e.g., IL-10, TGF-B1, CCL17, CCL18, and CCL22, inhibiting cytotoxic T cells (CTLs) and attracting or
differentiating T cells into regulatory T cells. TAMs can also exhaust CTLs by direct engagement of anti-inflammatory cognates receptors like PD1-PD-L1.

TABLE 2 | | M2 macrophage subtypes and their involvement in tumor development.

M2 Subtype Stimuli Phenotype Functions

M2a IL-4/IL13 IL-10, TGF-B1, IL-1R agonist To promote a Th2 response and tumor cell invasiveness (78, 79)

M2b IL-1B, immune complexes and LPS IL-1, IL-6, IL-10, TNFo Pro-Th2 activity, tumor progression and immunotherapy resistance (80)
M2c IL-10, TGF-B1, glucocorticoids IL-10, TGF-B1 ECM remodeling and to promote tumor migration/invasion (81, 82)
M2d IL-6, adenosine IL-10, IL-12, TNFa, TGF-B1 Tumor progression and invasion (83)

nanomedicines. We demonstrated that polyethyleneimine (PEI)-  intracellular iron derived from IONP degradation. While IONP
coated IONPs can inhibit the migration and invasion of tumor  surface microdomains are primarily involved in the
cells (94), and impair angiogenesis (95). More importantly, the ~ nanoparticle’s interaction with cell membrane receptors,
intrinsic biological effects of IONPs arise from their surface  soluble factors, and intracellular components, the released
coating and the surrounding protein corona, as well as the free  intracellular iron actively changes the intracellular redox status
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through the Fenton reaction (96), modulating several iron-
regulated genes. Since macrophages contribute to the TIME,
their interaction with IONPs can define the theranostic outcome
and provide an invaluable tool to reprogram the phenotype of
TAMs. The most recent findings on how IONPs affect
macrophage activation are summarized in Table 3.

To understand how IONPs affect macrophage polarization,
we have to consider the internalization process as at least three
different steps, during which IONPs can engage with different
signaling cascades: 1) IONP interaction with the cell membrane;
2) endocytosis and endolysosomal trafficking; and 3) IONP
degradation. In each step the IONPs are exposed to diverse
biological milieu and ultimately, this determines the indirect or
direct engagement that drives macrophage transcriptional
reprogramming and shifts in phenotype. This effect on
transcriptional reprogramming of macrophages has been
assessed by several groups whereby key transcription factors
such as STAT family (107) and c-Fos/c-Jun complex (107) are
upregulated upon IONP treatment. Noteworthy, IONPs appear
to induce a variety of transcription factors related to MAPK
pathways and the innate response, including the TLR-AP-1
signaling pathway (108). This complex reprogramming was
revealed by Liu Y et al., who observed that the DMSA-coated
IONPs engaged the activation of the signaling pathways
mentioned above (107). Therefore, the IONPs can trigger a
multifactorial transcription reprogramming of macrophages
where several signaling pathways are involved.

It is important to note that among the transcriptional
reprogramming that IONPs can induce in macrophages, some are
related to cell death processes such as apoptosis, ferroptosis, and
autophagy. The balance between all signaling pathways activated by a
particular IONPs will determine the macrophage fate. In this review,
we focus on the transcriptional reprogramming of macrophage
response in terms of the immune response and suggest other
comprehensive and recent studies on the toxicity of IONPs that
can be more thorough in this sense (109, 110).

The coating of IONPs influences their interaction with
cell membrane-associated proteins like receptors, thereby
triggering signaling cascades that can activate macrophages. As
such, IONPs with a positively charged coating consistently
polarize macrophages towards a M1-like phenotype. Indeed,
when macrophages are treated with PEI-coated IONPs, a
straightforward program of M1 activation occurs, enhancing
co-stimulatory receptors like CD40, CD80, and CD86, along
with the secretion of the pro-inflammatory cytokine, IL-12 (101).
When analyzing the transcriptional reprogramming induced by
PEI-coated IONPs, several pro-inflammatory genes were seen to
be upregulated (i.e., Il1b, Tnfa, Ccl2 and 116). However, the most
exciting finding was the involvement of the toll-like receptor 4
(TLR-4) in PEI-coated IONP-induced macrophage activation
(101). The PEI polymer appears to engage TLR-4 activation,
stimulating the mitogen-activating protein kinase (MAPK). Two
commercially available IONPs (carboxydextran-coated Resovist
and carboxylmethyl-dextran coated feraheme) have also been
demonstrated to induce macrophage activation through TLR-4
engagement, indicating that different IONP coatings can activate

macrophages in this way, although activation by these IONPs
induces autophagy (102). Other effects of IONPs were at least
partly associated with different TLRs, including the cell
membrane TLR2, TLR4, and TLR6, and the intracellular TLRS.
Indeed, IONP size influences TLR activation as a relatively small
IONP (10 nm) can enhance TLR2, TLR6, TLR4, and TLRS-
induced cytokine secretion in peripheral blood, whereas a larger
IONP (30 nm) only affects TLR2 and TLR6-dependent cytokine
secretion (108). Although a direct interaction between the IONPs
and the cell surface TLRs has yet to be demonstrated, the
dependence of cytokine enhancement on the formation of a
complex between TLR4/MD2 and the CD14 co-receptor suggests
that a physical interaction between the TLR4 complex and
IONPs could be responsible for the increase in TLR4 activity.
However, elsewhere IONPs were shown to interfere with TLR4
agonist activation, suggesting that this mechanism could depend
on the type of IONP (111).

In addition, it has been shown that IONPs with opposite
surface charges promote similar macrophage repolarization.
Two opposite charged IONPs induced an M1-like phenotype in
RAW 264.7 macrophages, although negatively charged IONPs
appeared to be more potent in promoting this effect (98) and
neutral IONPs have a negligible impact. The crucial role that such
M1-differentiated macrophages can play within the TIME was also
addressed and there was significant tumor growth retardation
when IONP" or IONP" treated macrophages were co-inoculated
with HT1080 human fibrosarcoma cells, reflecting the anti-tumor
effect of these repolarized M1-like macrophages (98).

IONP morphology also plays a critical role in determining the
degree of macrophage activation. Using IONPs with four distinct
morphologies (octopod, plate, cube, and spherical), yet with a
comparable aspect ratios and surface charge, the IONPs with an
octopod or plate morphology were seen to significantly activate
the inflammasome, as measured by IL-1 secretion (112). More
importantly, this dependence on morphology appeared to be
related to the nanoparticle’s capacity to induce ROS production.
IONP size also affected the extent of inflammasome activation in
macrophages, with spherical IONPs of ~30 nm inducing
significantly more IL-1P release than larger spherical IONPs of
~80 and 120 nm (113). ROS production appears to be a common
molecular mechanism for the effect of IONPs on macrophage
activation, although this result also seems to depend on lysosomal
destabilization and may reflect another common phenomenon. The
involvement of ROS in IONP-induced macrophage activation is
related to the central role these metabolites play in macrophage cell
biology as short-lived second messengers. ROS mediate the
oxidation of thiol groups in several proteins, altering their
structure and hence, their function. The MAPK pathway is ROS-
sensitive and it regulates several biological processes like cell
proliferation, apoptosis, and the innate immune response. In this
regard, ROS have been implicated in the induction and
maintenance of an M1-like status of macrophages through the
activation of NFxB and p38 MAPK signaling. In the former
situation, ROS trigger the phosphorylation of the NFxB inhibitor,
IxB, thereby activating NF«xB (114). In the latter, ROS induce the
phosphorylation of the apoptosis signaling-regulating kinase 1
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TABLE 3 | | Example of the effects of iron oxide nanoparticles on macrophage polarization.

Iron oxide nanoparticles

Cell model Mechanisms

Effects exerted

PLGA@Fez0,4 & CD206-Ab-PLGA@Fez0, (97)

Negative charged SPION

Neutral charged SPION (PEG-coated)
Positive charged SPION (98)
Ferumoxytol (Feraheme™) (99)

4-nm amphiphilic (PMA)@Fez0, (100)

Polyethyleneimine@Fe;0, (101)

Resovist™ & Ferumoxytol (FerahemeTM) (102)

DMSA@SPION, APS@SPION, & AD@SPION (103)

Resovist™ (104)

2-kDa PEG@SPIONSs (105)
100 nm large maghemite (Fe.O3) nanoparticles (106)

In vitro: IL-4-stimulated RAW 264.7 cells
In vivo: tumor model 4T1

ROS production

In vitro: RAW 264.7 cells
In vivo: tumor model HT1080

ROS production

In vitro: Co-culture RAW 264.7/MMTV-PyMT tumor cells Tumor cell apoptosis
In vivo: tumor model MMTV-PyMT
In vivo metastasis: tumor model KP1

In vitro: RAW 264.7 cells Vacuolization, lysosomal damage

In vitro: RAW 264.7 cells, mouse peritoneal macrophages, THP1 cells TLR4 activation, ROS production

In vitro: Bone marrow-derived macrophages (BMDMs) TLR4 activation
In vivo: liver

In vitro: ROS production
M2 Macrophages: IL-4-stimulated Bone marrow-derived macrophages (BMDMs)

and PMA-stimulated THP1

In vitro:
M2 Macrophages: IL-4/IL-13-stimulated PMA-differentiated THP1

In vitro: LPS-stimulated RAW 264.7 cells
In vitro: J774A.1 cells

Inhibition of TLR4 signaling
Iron uptake & Fenton reactions

1TNFa, iINOS, IL-1B

lArg1, IL-10, TGF-B1
1CD86" (M1) TAMSs in vivo
1TNFa, INOS

1IL-10, VEGF

1 Tumor growth

1Pro-M1 genes (TNFA, INOS,
CD86, ARGT)

|Pro-M2 genes (IL10, CD206)
1 Tumor growth and lung/liver
metastases-in vivo

TtM1 macrophage polarization in
vivo

1Pro-M1 genes (TNFA, CD86,
NFKB)

|Pro-M2 genes (CD206)
ML-12, IL-10, CD80, CD86, CD40,
I-A/I-E

TMAPK activation
1Pro-inflammatory factors
TAutophagy

1IL-10

TMAPK activation

1Cell invasion

1Cell migration

Induce a shift towards a M1
phenotype

1CD86, TNF-a, Ferritin, Cathepsin L
1IL-6, TNFa, INOS
|Phagocytic rate
|LPS-dependent response
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(ASK1) and the downstream activation of the p38 MAPK (115).
However, ROS can either activate or inhibit NFxB in a context-
dependent manner, highlighting the need to characterize the effect
of IONP-triggered ROS production on NF«xB activation in a cell-
type and context-dependent manner (116). In addition to MAPK,
the phosphoinositide-3 kinase (PI3K) is also regulated by ROS,
sensitizing macrophages to hormone, cytokine, and growth factor
signaling (117).

IONP phagocytosis can lead to autophagy, as is the case for the
two FDA-approved IONPs, resovist and ferumoxytol that induce the
appearance of an early autophagic vacuole and eventually, IONPs-
containing double-membrane autophagic vacuoles, small internal
vesicles, and cellular and membrane debris (102). These events were
accompanied by the accumulation of LC3 puncta and overexpression
of the p62/SQSTM1-positive sequestosome (118-120). In
accordance with the involvement of TLRs in this effect, the TLR4-
p38-Nrf2 pathway appears to mediate IONP-induced autophagy as
opposed to the classic autophagy machinery dependent on ATG5/12.
Indeed, pre-treatment with the TLR4 signaling inhibitor, CLI-095,
prevented IONP-loaded macrophages from inducing the
aforementioned structural changes (102).

Importantly, each macrophage phenotype expresses different
factors involved in iron metabolism, reflected in their distinct
iron sensitivity (121). For instance, M2-polarized THP1
macrophages internalize significantly more IONPs than M1-
polarized and MO macrophages, leading to a higher T1 signal
in M2 macrophages and a higher T2* signal in MO macrophages
(122). In turn, internalized IONPs could also exert effects on
polarization and iron metabolism. Indeed, our group
demonstrated that DMSA-, APS-, and aminodextran-coated
IONPs shifted iron metabolism towards an iron-sequestering
status in M2-like macrophages (103). In the light of the above, we
can propose a general overview of the events induced by IONPs
that precipitates macrophage activation (Figure 4).

IONPs have also been used to track microglia and assayed as a
potential nanocarrier in brain tumors. Microglia are highly
phagocytic cells found entirely in the central nervous system
(CNS) where they protect the nervous tissue from debris and
damaged CNS structures and from viruses, microorganisms, and
tumors (123-126). Therefore, like macrophages, microglia can
phagocytose IONPs and react to them. In this sense, Wu HY et
al. found that the carboxydextran-coated IONP (ResovistTM)
counteract the LPS-induced microglia activation by directly
decrease IL-1P secretion (127), suggesting IONPs can protect
CNS from an exacerbated inflammation. However, other reports
pinpoint the involvement of IONPs in recruiting and activating
microglia in CNS structures such as the olfactory bulb,
hippocampus, and striatum. Indeed, Wang Y et al. found that
Fe,05; IONPs administered intranasally promote the recruitment of
microglia into the above CNS structures and induced microglia
activation and proliferation, with ROS and nitric oxide (NO)
production, as a possible defense mechanism against foreign
particulates (128). Thus, IONPs appear to change CNS
immunological microenvironment toward an inflammatory or
anti-inflammatory phenotype, highlighting the need to
comprehend these effects in the context of brain tumors.

THERAPEUTIC IRON OXIDE
NANOPARTICLE-ENABLED
MODULATION OF TIME

We have discussed the activation of macrophages by IONPs and
the molecular mechanisms mediating these effects. Considering
the intrinsic biological activity of IONPs on macrophages, their
application in therapeutic and prophylactic vaccination schemes
has emerged as an attractive therapeutic approach to treat
cancer. This approach relies on the possibility of combining
the carrier capacity of IONPs with their by-stander activation of
macrophages within the TIME. A general overview of IONP-
based vaccine designs highlights the use of IONPs as an antigen
carrier (primarily associated with the tumor cells)with the
possible addition of adjuvant and/or a targeting moiety.

The use of IONPs as an antigen carrier in a vaccination
schedule takes advantage of the intrinsic capacity of the IONPs to
drive macrophages or DCs towards a pro-inflammatory
phenotype. Consequently, antigen internalization, intracellular
processing, and restricted major histocompatibility complex
(MHC) presentation to T cells within an inflammatory
microenvironment will elicit a robust immune response against
the antigen-expressing tumor cells. A simple vaccine formulation
has been tested by loading ovalbumin (OVA) onto IONPs,
demonstrating that this formulation could activate bone
marrow-derived dendritic cells (BMDCs) and RAW 264.7
macrophages. However, the most exciting finding was that
prophylactic or therapeutic injection of three doses of this
preparation delayed OV A-expressing B16 tumor cell growth.

Interestingly, OV A-coated IONPs eftectively prevented lung
metastasis from OV A-expressing cells (129). Likewise, the sole
conjugation of OVA alone with IONPs was sufficient to elicit
potent DC and macrophage activation, and to reduce the OVA-
expressing CT26 tumor burden in vivo (130). This anti-tumor
effect appeared to be mediated by the induction of pro-
inflammatory cytokines like IL-6, TNF-a,, and IFN-y.

Other studies have addressed the potential of the IONPs as
carriers of tumor-associated antigens in vaccine designs. For
example, the administration of self-assembled MUCI lipo(glycol)
peptide-coated IONPs elicited a strong antibody response,
prompting an antibody profile able to recognize the MUCI-
expressing tumor cell line, MCF7 (131). In this scenario, the anti-
tumor effect seems more likely to be related to the enhanced
activation of plasma B cells due to the high number of lipo
(glycol)peptide copies presented on the IONP surface. However,
we cannot rule out a direct effect on macrophages or DCs.

It is desirable that macrophage-based anti-tumor therapy
induces naive macrophages to adopt a M1 phenotype and that
it switches the resident M2 program into a M1 phenotype,
ensuring a pro-inflammatory and anti-tumor TIME. It was
seen that hyaluronic acid-modified IONPs or bare IONPs
trigger the production of ROS and pro-inflammatory cytokines
(132). Consequently, IONP-treated macrophages exerted an
anti-tumor effect on the murine 4T1 breast-tumor cell line in a
cell contact-independent manner, inducing active caspase 3 and
inhibiting cell proliferation. Notably, hyaluronic acid-modified
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FIGURE 4 | Overview of the effects of IONPs on macrophage polarization. The IONPs can interact with cell surface receptors such as TLRs (1), leading to activation
of the MAPK signaling pathway. Once internalized by macrophages, the IONPs are enclosed within endolysosomes where they are biodegraded. Consequently,
atomic iron is released into the cytoplasm, where it engages the Fenton reaction and produces ROS (2). As a result, transcriptional reprogramming is triggered, such
as that involving NF-xB (e.g., cytokines, chemokines) and NRF2 target genes (e.g., iron metabolism). NRF2, nuclear factor (erythroid-derived 2)-like 2; PIR, Pirin;
FPN1, ferroportin-1, FTH1, ferritin heavy chain; FTL, ferritin light chain; MAPK, mitogen-activated protein kinases; MAF, musculoaponeurotic fibrosarcoma.

IONPs induced M1 macrophages resistant to M2-inducing factors
and M2-to-M1 macrophage reversion (132). IONP intracellular
degradation also increases the labile iron pool, providing another
element that can modulate the TIME. It was shown that red blood
cells (RBCs) were responsible for the presence of iron-loaded
macrophages nesting in the invasive margins of non-small lung
cell tumors, which were in turn correlated with a smaller tumor size
(133). Indeed, hemolytic RBCs triggered TAM polarization toward
a M1-like phenotype, as evident by the expression of M1 marker
transcripts (116, Nos2, and Tnfa) and their increased anti-tumor
activity (133). More importantly, IONPs injected intravenously in
Lewis lung carcinoma (LLC)-bearing mice accumulated within F4/
80 macrophages and reduced tumor growth, indicating that these
IONPs have a similar effect reverting M2 macrophages to a M1
phenotype (133).

Advantages have also been reported when a combination of
antigen-coated IONPs and adjuvant-coated IONPs is used
therapeutically. While IONPs were initially used as antigen carriers,
adjuvant and nanoparticle association enhanced the adjuvant effect
on the respective signaling pathway. Indeed, co-delivery of polyIC-

R837@mPEG-PL-OA-IONPs (as TLR3-7 agonists) and OVA@
mPEG-PL-OA-IONPs (as antigen) delayed tumor growth in
OVA-expressing B16-bearing animals and led to tumor-free
survival in some individuals, probably through an enhanced
agonist effect on TLR signaling. The increase in the ferroptosis
process induced by IONP-derived iron further promoted an
antitumoral TME, indicating that the IONPs provide not only
transport but also an intrinsic potential to change the TME toward
an anti-tumor phenotype (134). Table 4 summarizes the most recent
approaches using IONPs in anti-tumor vaccination regimens.

CONCLUSIONS

IONPs have been studied intensively in recent decades to exploit their
magnetic and surface chemical features. However, only recently has
attention been drawn to their intrinsic immunomodulatory
properties, especially their effects on macrophages. These effects are
particularly important in the context of cancer immunotherapy as
IONPs can provide an efficient vehicle for antigen delivery and elicit a
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TABLE 4 | Use of IONPs in vaccine formulation.

Nano-formulation Tumor model

Ovalbumin@Fez0, (129)

Murine colon carcinoma OVA-
expressing CT26

OVA@Fez0, (130)

OVA/CpG/anti-DEC205 Ab@Fe,0y (135)

Hsp70@SPION (136)
MUC1 Lipoglycopeptide@SPION (131)

Murine C6 glioma
MCF7

Co-delivery of micellar OVA@phospholipid-
PEG-IONP & LOS@ phospholipid-PEG-
IONP (137)

Co-delivery of polylC-R837@mZnSPION &
OVA@mZnSPION (93)

OVA-expressing B16-F10

OVA-expressing B16-F10

Co-delivery of polylC-R837@mPEG-PL-
OA-IONP & OVA@mPEG-PL-OA-IONP
(134)

OVA-expressing B16-F10

Murine melanoma OVA-expressing B16

Effects

Murine melanoma OVA-expressing B16  Bone marrow-derived DC maturation

Therapeutic and prophylactic inhibition of tumor growth

Therapeutic and prophylactic attenuation of lung metastasis

Murine dendritic cell (DC2.4) and macrophage (RAW 264.7) activation (increased
IL-6, TNF-a. and IFN-v)

Therapeutic anti-tumor effect (reduced CT26 tumor growth and increased serum
IL-6, TNF-a. and IFN-y)

In vivo targeting of CD8" DCs

In vivo B16 tumor arrest

DCs, tumor lysate and Hsp70@SPION co-treatment arrests glioma tumor growth
Multivalent engagement of antibody-producing B cells.

Generation of a strong antibody response in vivo.

Tumor cell recognition and cell death by immunized sera.

Increased IL-6 and reduced LOS cytotoxicity

Prophylactic anti-tumor effect & synergetic effect with PD-L1 inhibitor

Micellar ZnSPION enhances TLR3/7 agonist effects

Prophylactic and therapeutic anti-tumor effect & synergetic effect with PD-L1
inhibitor

Enhances TLR agonist effects on DCs

Improves the tumor-free rate over time

Synergistic effects with immunostimulatory antibodies (anti-OX40 & anti-PD-L1)

potent immune response, reprogramming TAMs toward an
immunogenic phenotype. Two main molecular mechanisms can
explain the intrinsic immunomodulatory effect of IONPs: 1) the
production of ROS and consequently, the modulation of redox-
sensitive signaling pathways; and 2) the direct engagement and
activation of immune response-related receptors, such as TLRs,
inducing transcriptional reprogramming in macrophages. The use
of IONPs can provide a reliable platform to reprogram the typical
M2-TAM phenotype toward a pro-immunogenic phenotype,
synergizing with currently used immunotherapies like checkpoint
inhibitors to mount a potent anti-tumor immune response both
locally and systemically.
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Mesoporous silica nanoparticles have drawn increasing attention as promising candidates
in vaccine delivery. Previous studies evaluating silica-based vaccine delivery systems
concentrated largely on macromolecular antigens, such as inactivated whole viruses. In
this study, we synthesized dendritic mesoporous silica nanoparticles (DMSNSs), and we
evaluated their effectiveness as delivery platforms for peptide-based subunit vaccines. We
encapsulated and tested in vivo an earlier reported foot-and-mouth disease virus (FMDV)
peptide vaccine (B,T). The Bo,T@DMSNs formulation contained the peptide vaccine and
the DMSNSs without further need of other compounds neither adjuvants nor emulsions. We
measured in vitro a sustained release up to 930 h. B, T@DMSNs-57 and B, T@DMSNs-
156 released 23.7% (135 pg) and 22.8% (132 pg) of the total BoT. The formation of a
corona of serum proteins around the DMSNSs increased the B, T release up to 61% (348
pug/mg) and 80% (464 pg/mg) for BoT@DMSNs-57 and B, T@QDMSNSs-156. In vitro results
point out to a longer sustained release, assisted by the formation of a protein corona
around DMSNs, compared to the reference formulation (i.e., BoT emulsified in Montanide).
We further confirmed in vivo immunogenicity of B.T@DMSNSs in a particle size-dependent
manner. Since Bo,T@DMSNSs elicited specific immune responses in mice with high IgG
production like the reference Bo,T@Montanide™, self-adjuvant properties of the DMSNs
could be ascribed. Our results display DMSNs as efficacious nanocarriers for peptide-
based vaccine administration.

Keywords: dendritic mesoporous silica nanoparticles, peptide vaccines, sustained and controlled release,
foot-and-mouth disease virus, nanovaccine, immunogenicity, adjuvancy

INTRODUCTION

Peptide-based vaccines are considered an attractive alternative strategy to overcome many of the
limitations of conventional (inactivated, attenuated) whole virus-based vaccines (1-3). They present
advantages such as reduced toxicity, good definition of T- and B-cell epitopes for targeted immune
responses, cost-effective scale up manufacturing processes, easy handling, storage, and transport (1,
4, 5). These advantages have prompted the progress of many peptide-based vaccines to different
preclinical and clinical stages (1, 6, 7). Nevertheless, peptide-based vaccines tend to be poorly
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immunogenic usually requiring adjuvants, multivalency, and/or
delivery systems to become more effective in vivo. Adjuvants of
different kinds, such as aluminum hydroxide, mineral salts,
water-oil emulsions, or liposome-based formulations have been
developed to enhance efficacy (7). Although these strategies can
boost to a certain extent the low immunogenicity of peptide-
based vaccines, only a limited number are approved for human
and animal applications due to their not well-established mode
of action, as well as to other related toxicity and safety issues
(8,9).

In the last decade, the field of nanovaccines has gained
maturity (10-13). Nanoparticles, especially synthetic ones
made of polymers, phospholipids, metal, carbon, or silica (14)
among other compositions have been extensively studied for
vaccine applications ref (1, 9, 15, 16). Within the variety of
nanomaterials used for vaccine delivery, mesoporous silica
nanoparticles (MSNs), especially dendritic mesoporous silica
nanoparticles (DMSNs), are emerging as promising vaccine
delivery platforms because of their versatile formulation,
boosting abilities, lack of side effects, and depot effect. They
have unique central-radial pore structures with large pore sizes
(17-19) and are characterized by low cross-linking silica
frameworks with fast degradability rate in vivo (20). Studies on
DMSNS show their enhanced loading capacity, sustained release
profile, easy surface functionalization, and potential adjuvant
activity (21, 22). Furthermore, DMSNs have shown effective
immune potentiation in vivo, inducing strong humoral and
cellular immune responses against target antigens (23-25). The
majority of studies on MSNs-based vaccine delivery systems are
focused on carrying large-size immunogens, such as bacterial
recombinants, viral capsid proteins and OVA- and BSA-
conjugated model vaccines (26-29), whereas few papers
explore their use to carry smaller biomolecules, such as
peptides in subunit vaccines.

In this study, we extend the use of DMSNs to delivery
platforms for peptide-based vaccines and evaluate their in vivo
effectiveness. We have encapsulated a peptide construct named
B,T, which confers full protection against foot-and-mouth
disease virus (FMDV) in swine (30, 31). Previous publications
of the authors have shown that inclusion of a T-cell epitope in
the B,T construct provides a rather powerful T-cell response
(lymphoproliferation, y-interferon production) (31-33). B,T is
currently administered emulsified with Montanide' " ISA 50V2
W/O (water in oil) (i.e., BzT@MontanideTM). This formulation
has some drawbacks. For instance, there are several studies
reporting unacceptable local reactions toward the Montanide
adjuvant (34). Moreover, Montanide requires a dedicated
emulsification procedure for each antigen which add
complexity to its industrial production (35). To overcome
these challenges, we have explored the use of DMSNs loaded
with B,T as nanovaccine against FMDYV. Briefly, we have
synthesized DMSNs of different sizes (57 £ 9 nm and 156 + 10
nm) and have loaded them with B,T, naming the resulting
nanoformulation B,T@DMSNs. Both sizes exhibited high B,T
loading capacities (570 pg/mg for DMSNs-57 and 580 pg/mg for

DMSNs-156) and an in vitro sustained B,T release profile over
930 h. Furthermore, RAW 264.7 macrophage cells efficiently
internalized the fluorescent version of both nanoformulations in
a size-dependent manner. Finally, we have confirmed a specific
immune response with high IgG production upon vaccination of
outbred Swiss mice (Swiss ICR-CD1) with two doses of B,T@
DMSNSs, obtaining similar antibody titers than those elicited by
the previous gold standard B,T@Montanide'".

MATERIALS AND METHODS

For a detailed description of the procedures and more results, we
refer the readers to the Supporting Information File.

Synthesis and Characterization of
DMSNs-57 and DMSNs-156

The DMSNs with a diameter of 156 nm (designated as DMSNs-
156) were synthesized using a modified version of a previously
reported method (17). Briefly, 136 mg TEA were added to 50 mL
Milli-Q water and stirred at 500 rpm, 80°C for 0.5 h. Then, 760
mg CTAB and 250 mg sodium salicylate (NaSal) was added to
the above solution and stirred for another 1 h. Next, 4 ml TEOS
was added dropwise to the solution under stirring, which
continued overnight. The products were collected by
centrifugation at 12,000 rpm for 10 min and washed three
times with ethanol. Then, the collected products were extracted
three times with 80 ml of methanol solution containing 4.5 ml of
HCI (37%) at 65°C for 6 h to remove the template. Finally, the
nanoparticles were dried in vacuum at room temperature
overnight. DMSNs with a diameter of 57 nm (designated as
DMSNs-57) were synthesized following the abovementioned
method except for decreasing the amount of structure directing
agent NaSal from 250 to 83 mg.

The structure of both DMSNs types was imaged with a
transmission electron microscope (TEM, JEOL JEM1010) at an
acceleration voltage of 80 kV. TEM specimens were prepared by
evaporating one drop of ethanolic nanoparticle solution on Ted
Pella Formvar carbon-coated copper grids. The z-potential and
hydrodynamic diameter of the samples was determined in a
Malvern Zetasizer ZS instrument at 25°C. Samples were
dispersed in water and transferred into disposable polystyrene
cuvette. The given values are the average of triplicate readings.

See de Supplementary File (section §SI-1.1) for
complementary information.

B,T Synthesis

The dendrimeric B,T immunogen was produced as described
earlier (31), by conjugation of 2 copies of the B-cell epitope
moiety to a maleimide-functionalized T-cell epitope. The
conjugation reaction was clean and practically quantitative,
and the resulting branched peptide was satisfactorily
characterized by HPLC and mass spectrometry. See section
§SI-1.2 for complementary information and section §SI-2.1 for
the synthesis of fluoro-B,T@DMSNSs.
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B,T Loading in DMSNs-57 and DMSNs-156
and Quantification of Peptide Loading

We followed the same methodology to load B,T into both
DMSNs sizes. The resulting products were named, B,T@
DMSNs-57 and B,T@DMSNs-156. Briefly, 1.5 mg B,T and 2.0
mg DMSNs were mixed in 2.0 mL DPBS bufter solution (pH 7.4)
and then properly dispersed by sonication for 5 min. The
resulting mixture was gently shaken at 200 rpm for 5 h at RT.
Afterward, the products were separated by centrifugation at
12,000 rpm for 10 min and washed twice with PBS. B,T
encapsulation efficiency (EE%) was defined as follows:

B, T encapsulation efficiency (EE % )

= (weight of loaded B, T /weight of total B,T) x 100 %

where the amount of loaded B,T was determined by subtracting
the free B,T in the supernatant from the total amount, and the
amount of free B,T in the supernatant was calculated based on
the B,T calibration curve obtained in DPBS (section $§SI-1.3,
Figure SI-3). See section §SI-1.4 for complementary information
on the impact of key parameters (ionic strength, peptide
structure, and DMSNs charge) on the loading efficiencies, and
section §SI-2.1 for the loading of fluoro-B,T into DMSNS.

B,T Calibration Curve

A B,T stock solution (1,000 pg/ml) was prepared by dissolving 2
mg lyophilized B,T powder in 2 ml DPBS. From this stock
solution serial dilutions in DPBS (31.3, 62.5, 125, 250, and 500
1g/ml) were prepared and measured on a Biochrom' " Ultrospec
2100 Pro UV/Vis spectrophotometer using a quartz cuvette with
a 1-cm path length (with DPBS as blank). The calibration curve
was constructed by plotting the absorbance at 225 nm against the
corresponding B,T concentrations. See section §SI-1.3 for
complementary information.

B>T Release Kinetics From the DMSNs
Release experiments were carried out in 1.5 ml Eppendorf tubes
containing 1.0 mg DMSNs loaded with B,T and 1.0 ml DPBS
(pH 7.4). Samples were gently shaken at 37°C and, at
predetermined time points, the suspension was centrifuged at
12,000 rpm for 10 min. We took the supernatant and measure
the absorbance (225 nm) of B,T released. The procedure was
repeated for each time point and for both DMSNs. Fresh DPBS
(same volume than aliquot of supernatant taken) was added to
redisperse the pellet. All release measurements were performed
in duplicate.

Imaging the Cellular Uptake of
B,T@DMSNSs

RAW 264.7 cells in RPMI 1640 medium (containing 2 mM L-
glutamine, 10% heat-inactivated FBS, and 1% penicillin and
streptomycin) were seeded in Ibidi p-slide 8 well at a density
of 50 x 10* cells/well. Cells were incubated at 37°C in an
atmosphere of 5% CO, for 24 h. Then, 30 pug/ml of fluoro-
B,T@DMSNs was added to the cells. Following 0.5, 1, 2, 4, 8, and
16 h incubation, cells were washed three times with PBS, and

fresh growth medium containing CellMask deep red plasma
membrane was added and incubated for 8 min. After three
washes with PBS, fresh PBS was added, and cells were imaged by
confocal laser scanning microscopy (CLSM). See section §SI-2.2
for complementary information.

Flow Cytometry Analysis of

Cellular Uptake

RAW 264.7 cells were seeded in six-well plates in RPMI 1640
medium (containing 2 mM L-glutamine, 10% heat-inactivated
FBS, and 1% penicillin and streptomycin) at a density of 1.0 x 10°
cells/well. Cells were incubated at 37°C in an atmosphere of 5%
CO; for 24 h. Then, 30 pug/ml fluoro-B,T@DMSNs was added.
Following 0.5, 1, 2, 4, 8, and 16 h incubation, cells were washed
three times with PBS, new PBS was added, and cells were
carefully detached from the plates with a Falcon cell scraper.
The collected cells were transferred to tubes, were placed in ice,
and the nuclear dye, DAPI was added to a final concentration of
1.0 pg/ml, and incubated for 2 min. The labelled cells were then
measured by flow cytometry (FC) in a BD LSRFortessa X-50 flow
cytometer. The mean fluorescence intensity (MFI) and
percentage of cells with a positive fluorescent signal compared
to the control (untreated cells) were determined on 5,000 gated
single-living cells. FACS data were processed by the method
described in section §SI-2.3.

Mice Immunization

Experiments were carried out in the animal facility of the CSIC
Center for Research and Development (CID-CSIC), in
agreement with EU (Directive 2010/63/EU on the protection of
animals used for scientific purposes) and domestic (Real Decreto
53/2013) regulations. The protocol to produce antibodies was in
accordance with institutional guidelines under a license from the
local government (DAAM 7463) and was approved by the
Institutional Animal Care and Use Committee at the CID-CSIC.

All formulations were prepared on the day of injection. Mice
were randomized into groups and inoculated by two
subcutaneous injections over the interscapular area at day 0
and day 21. All mice were euthanized at day 40 by carbon dioxide
inhalation. Animals were monitored three times per week for
health during the study.

To assess immunogenicity of B, T@DMSNs in mice, two trials
were performed (section §SI-3). In the first one, mice were
divided into three groups as shown in Table SI-1. The first
group was the positive control group (4 mice) which was
immunized with 200 ul of Montanide ISA 50V2 emulsion
containing 100 ug B,T (B,T@Montanide ™), following earlier
studies (30); the second (six mice) and third (four mice) groups
were the sample groups. The second group was treated with 100
pg B,T loaded in DMSNs-156 (B,T@DMSNs-156) in 200 pl
DPBS, and the third group was treated with the same amount of
DMSNss alone (163 ug DMSNs-156) in 200 pl DPBS. All groups
were boosted at day 21. Blood samples were collected before
vaccination (day 0) and at days 14, 20 (pre-boost), and 40
(euthanize, sample obtained by cardiac puncture). In the
second trial, aimed at assessing the impact of DMSNs size on
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mice immunization, mice were divided into three groups as
shown in Table SI-2. The first group was again the positive
control group (BZT@MontanideT ; three mice). The second (five
mice) group was treated with the formulation B,T@DMSNs-57
and the third (five mice) group with B,T@DMSNs-156. All mice
were treated with the same dose of peptide vaccine (100 pug B,T).
Blood sample collection was extended until day 80, to study the
long-term immune effect of B,T@DMSNss.

Detection of Specific Anti-B,>T Antibodies
by ELISA

Specific antibodies were detected by enzyme-linked
immunosorbent assay (ELISA). 96-well Costar® plates were
coated with 50 pl B,T (15.4 pg/ml) in bicarbonate/carbonate
coating buffer (0.05 M, pH 9.6) and incubated at 4°C overnight.
After washing three times with DPBS, 50 ul of diluted serums
(two-fold dilution series of each collected serum sample were
prepared, starting at 1/150, and each dilution sample in
duplicate) were incubated for 1 h at 37°C, followed by four
DPBS washes. Pre-immune sera from mice were used as negative
controls. Next, 50 pl of a 1:4,000 dilution of HRP-labeled rabbit
anti-mouse IgG were added and incubated for 1 h at 37°C
followed by five washings with DPBS. Then, 100 pl of TMB
substrate solution was added for 20 min at RT in the dark.
Finally, the reaction was stopped by adding 100 pl of 1 M H,SO,.
The optical density (OD) of the samples was measured in an
ELISA reader (BioRad, CA, USA) at 450 nm. Titers in a logl0
scale were expressed as the reciprocal of the last dilution giving
the absorbance recorded in the control wells (serum at day 0)
plus 2 SD. See section §SI-3.2 for complementary information on
the individual response of each mice to the treatment.

Statistical Analysis

Differences among B,T@DMSNs-immunized groups in B,T-
antibody titers were analyzed by one-way ANOVA, followed
by Tukey’s post-hoc comparisons tests. Values are cited in the
text as means + SD. All p values are two-sided, and p values <
0.05 were considered significant. Statistical analyses were
conducted using GraphPad Prism Software 5.0 (San Diego,
CA, USA).

RESULTS

DMSNs Synthesis and Physicochemical
Characterization

TEM measurements showed that both types of DMSNs have an
inorganic core diameter of 57 + 9 nm (DMSNs-57) and 156 + 10
nm (DMSNs-156) (Figure 1A, B; §SI-1.1, Figures SI-1A-D).
DLS measurements indicated that the averaged hydrodynamic
diameter of DMSNs-57 was 75 nm with a polydispersity index
(PDI) of 0.060 and the averaged hydrodynamic diameter of
DMSNs-156 was 227 nm with a PDI of 0.061 (Figure 1C; §SI-
1.1, Figure SI-1.E). The low PDIs for both nanoparticles
demonstrate excellent monodispersity and uniformity which
are consistent with TEM images. As expected, the DLS

measurement showed higher size values for the DMSNs than
those measured by TEM. This is due to the DMSNs’ surface
hydration in aqueous solution (36). The z-potential values of
DMSNs-57 and DMSNs-156 were -30.2 mV and -37.1 mV,
respectively (Figure 1C). These results indicate colloidal
stability and homogenous size distribution.

Loading B,T Vaccine Into Differently Sized
DMSNs (Bo,T@DMSNSs) and In Vitro
Characterization of B>T Release Kinetics
After synthesizing DMSNs-57 and DMSNs-156, we performed
their loading with the B,T peptide vaccine (see section §SI-1.2,
Figure SI-2 for B,T structure). The B,T amount loaded into both
types of DMSNs was quantified based on its absorbance at 225
nm (section §SI-1.3, Figure SI-3A) and using a calibration curve
(section §SI-1.3, Figure SI-3B). We quantified 1.14 mg and 1.16
mg of B,T loaded in 2.0 mg of DMSNs-57 and DMSNs-156,
respectively. The loading capacities were 570 ug/mg DMSNs for
DMSNs-57 and 580 pug/mg DMSNs for DMSNs-156, and the
encapsulation efficiencies (EE%) reached 76% and 77%,
respectively. Regardless the differences in DMSNs sizes, we
measured similar loading efficiencies. We attribute this to their
close z-potential values and to the equivalent hydrogen bonds
and polar interactions with the peptide (37). The high B,T
loading capacities obtained are probably related to the strong
electrostatic interaction between the anionic DMSNs and the
positively charged B,T (pI 10.88) in DPBS (pH 7.4) and to the
DMSN s central-radial pore structures with large surface areas
(17, 18).

We performed the loading under different conditions (section
§SI-1.4) (38, 39) to evaluate the impact of ionic strength (Figure
SI-4), peptide (cargo) structure (dendrimer vs. linear) (Figure
SI-5) and DMSNs charge (Figure SI-6) on the loading efficiency
of the DMSNs. We used, for comparison, 168 nm solid silica
nanoparticles (SNSs-168) (Figures SI-4 and SI-5). Results on
section §SI-1.4 (Figures SI-4, SI-5, SI-6) displayed that the
higher the ionic strength, the more B,T was loaded into all
silica nanoparticles. Being DMSNs more efficient than SNSs. The
trend was maintained for the dendrimer B,T and a linear control
peptide (O PanAsia B epitope B) regardless of DMSNs charge.
Up to 5x ionic strength, DMSNs-156 were more efficiently
loading the peptide. Note that within this work the ionic
strength was set at 1x. Furthermore, we observed that our
synthesized, negatively charged DMSNs were significantly
more effective in loading the B,T peptide than their positively
charged counterparts (Figure SI-6).

Next, we investigated the B,T release kinetics from the
DMSNs. To this end B,T@DMSNs were dispersed in a saline
buffer (1x DPBS). At given time points, we collected the
supernatants after centrifugation, we measured their
absorbance at 225 nm and with help of the calibration curve
(Figure SI-3.B), we quantified the amount of B,T released from
the DMSNs. Figure 2 shows a sustained release of B,T up to
1000 h (41 days). After 700 h, the release curve reached a plateau.
Both B,T@DMSNs-57 and B,T@DMSNs-156 showed similar
release kinetics. The B,T amount released in B,T@DMSNs-57
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and B,T@DMSNs-156 corresponds to 23.7% (135 pg) and 22.8%
(132 pg) of the total amount loaded.

Albumin is one of the most frequent proteins in physiological
fluids and a major component of the protein corona of
biomedical nanomaterials dispersed in such fluids (40-44). It is
also known that the protein corona formed on nanoparticles is a
dynamic system. Following typical nanoparticle behavior, we
expected a protein corona around our DMSNs upon their in vivo
administration. We therefore wanted to elucidate the impact of
the protein corona on the B,T release kinetics (Figure 2). To this
end, we dispersed the B,T@DMSNs in medium containing
albumin (BSA 250 pg/ml in DPBS), allowed the DMSNs to
build their protein corona and measured the B,T release (section
§SI-1.5) following the procedure described before. We took
advantage of the distinct absorption peaks for B,T at 225 nm
(section §SI-1.3) and for albumin at 280 nm (section §SI-1.5,
Figure SI-7) to build calibration curves. In this case we could
also track changes on the protein corona formed around the
B,T@DMSNs. Our methodology enabled the concomitant
quantification of the release of both components, B,T and
albumin, from the DMSNs to the medium. We validated this
technology with HPLC (section §SI-1.5, Figure SI-8). Then we

]
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3
= 3x108
]
5 2108
(=]
o
1x10°
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{-potential (mV)
— DMSNs-57 —DMSNS-156

FIGURE 1 | TEM and DLS analysis of DMSNs-57 and DMSNs-156. TEM image of 57 nm DMSNs (A) and of 156 nm DMSNs (B). Scale bar, 200 nm. The insets
show the DMSNs with higher magnification revealing the dendritic structure. Scale bar, 100 nm. (C) DMSNs-57 and DMSNs-156 hydrodynamic size (75 + 9 nm and

quantified the B,T release from the protein coated DMSNs
(Figure 2) and correlated the results with the amount of
albumin released from the protein corona (section §SI-1.5,
Figure SI-9).

After the formation of the protein corona, B,T release
increased 158% on B,T@DMSNs-57 and 252% on B,T@
DMSNs-156. This corresponds to 61% (348 ug/mg) and 80%
(464 ug/mg) of the total B, T loaded within B,T@DMSNs-57 and
B,T@DMSNs-156, respectively. It seems evident, that the
presence of BSA significantly enhances B,T release. We
ascribed this effect to a competitive interaction towards the
DMSNs in favor of BSA resulting in B,T displacement and
release (45, 46). To prove this, we monitored the changes of BSA
concentration in the dispersed medium in the presence of the
DMSNs (Figure SI-9). As seen in Figure SI-9, during the first
66.5 hours, both B,T@DMSNs-57 and B,T@DMSNs-156 kept
absorbing BSA from the medium, probably due to forming BSA
protein corona on DMSNs, which resulted in lower BSA
concentrations (< 250 pg/mL) in the supernatants. Afterwards,
the BSA level in both formations kept fluctuating around 250 pg/
ml (initial concentration added) which points out to an absence
of protein corona around the DMSNs. Although longer
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FIGURE 2 | B.T release profiles from B,T@DMSNs-57 and from B,T@DMSNs-156 dispersed in DPBS or BSA-DPBS. After each time point, the supernatants were
collected for UV-vis analysis and the pellets were redispersed in the same volume of medium. The procedure was repeated during 1,000 h.

experiments would be required to draw a conclusion, these
results may indicate a long-term sustained release promoted by
the DMSNs. At any rate, they confirm vaccine release from the
DMSNSs in physiological complex media as the one in the cell.

Internalization of Bo,T@DMSNSs by
Macrophages

Cellular uptake of antigens by innate immune cells provides
antigen-processing and subsequent costimulatory signals that are
crucial to trigger acquired immune responses, especially for low
immunogenic peptide antigens. Macrophage-like RAW 264.7
cells (47) are often used to study cellular responses to microbes
and their products (48). We selected this cell model to assess in
vitro cellular internalization of our nanoformulations, using 1 mg
DMSNs-57 and 1 mg DMSNs-156 loaded with 200 pg B,T
labeled with a dye (i.e., fluoro-B,T) (see section §SI-2 and
Figure SI-10). Similar to other nanoparticles (49), cellular
uptake of fluoro-B,T@DMSNs occurred in a size-dependent
manner (Figure 3). The maximum uptake level was observed
after 4 h for the fluoro-B,T@DMSNs-57 (57 nm size) and after
8 h for the fluoro-B,T@DMSNs-156 (156 nm size) (Figures 3A,
B, and §SI-2 and Figures SI-11, SI-12 and SI-13). During the
first 4 h, the amount of B,T@DMSNs-57 interacting with the
cells was approximately two times the amount of B,T@DMSNs-
156 (Figure 3B). We can conclude that at least after an acute
exposure, the smaller DMSNs-57 are faster internalized by RAW
264.7 cells than larger DMSNs-156. It is noteworthy that after the
cellular uptake reached the maximum value, longer incubation
times resulted in reduced uptake values. We suppose that it is due
to the fast cell growth and division of RAW 264.7 cells (50) which
resulted in the “dilution effect” of fluorescence intensity per cell.

Sustained Mice Immunogenicity Provided
by B,T@DMSNs

We next validated B,T@DMSNs performance by testing in vivo
their immunogenicity. To this end, we performed two sets of
vaccination trials in mice (see section §SI-3 for a detailed
description). In both trials, we injected subcutaneously samples
containing the same amount of B,T antigen (100 pg) at day 0 and
boosted with the same dose at day 21. We performed an ELISA to
detect specific anti-B,T antibodies in sera collected following
the schedule shown in Tables SI-1 and SI-2 (section §SI-2). In
the first trial (Table SI-1 and Figure 4), mice were vaccinated
with BZT@MontanideTM (positive control), B,T@DMSNs-156,
and bare DMSNs-156 (negative control). Results in Figure 4
show that B,T@DMSNs treatment elicits a consistent response
with all treated mice, presenting an increase in anti-B,T IgG
production values after the boost (day 40). Although the anti-
B,T IgG level from B,T@DMSNs-156 is slightly lower than
B,T@Montanide, these results confirm that B,T@DMSNs-156
successfully stimulates anti-B,T-specific immune response in
mice. On the contrary, as expected, no enhancement of the
immune response was found in mice treated with bare
DMSNs-156.

Once we confirmed the immunogenic effect of B,T@DMSNs
and considering their long-time sustained release profile
obtained in vitro (Figure 2), we performed a second trial
(section §SI-2, Table SI-2). In this case, mice vaccinated with
either B,T@DMSNs-57 or B,T@DMSNs-156 particle sizes were
subjected to a longitudinal analysis of serum-IgG responses up to
80 days. As shown in Figure 5, anti-B, T IgG titers were clearly
boosted up among all tested formulations at day 40, although this
time we also detected serum-IgG responses in some mice
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FIGURE 3 | RAW 264.7 macrophage cellular interactions of fluoro-B,T@DMSNs-57 and fluoro-B,T@DMSNs-156. (A) CLSM images showing a time- and DMSNs
size-dependent internalization. (Note: Green correspond to BodiFluor-488 conjugated to the B,T loaded within the DMSNs whereas the magenta color corresponds
to the dye, cell mask deep red used to stain the plasma membrane of the cells). (cf. §SI-11, Figures SI-11, SI-12, and SI-16) (B) Flow cytometry analysis of cellular
interactions. The columns represent the mean fluorescence intensity of fluoro-BoT@DMSNs-57 and fluoro-B,T@DMSNs-156. (cf. §SI-2.3, Figures SI-13).

immunized with B,T@DMSNs-156 already at day 20 before the
boost. We do not have a clear explanation for these different
results between trials, so we attribute it to the intrinsic variability
of in vivo studies (section §SI-3, Figures SI-14, SI-15, and SI-16).
B,T@DMSNs-57 and B,T@DMSNs-156 showed slightly
lower post-boosting titers than the positive control, B,T@
Montanide'™. However, in the case of the B,T@DMSNs-57
mice group, their serum titers increased over time until
reaching comparable IgG levels to the positive control group at
days 60 and 80 with high consistency among individuals. These
results with the DMSNs-57 formulation are in consonance with
published works reporting nanoparticle traffic to the draining
lymph node in a size-dependent manner, with small 20~50 nm
nanoparticles being more efficiently drained than bigger ones (9,
23, 25). We can confirm the efficiency of DMSNs to induce
sustained Ab responses in a size dependent manner comparable
to the emulsified version B,T@Montanide ", pointing to
demonstrable adjuvant properties of DMSNs. Finally, it is
worth noting that, as not all B,T is released from the DMSNs

at day 80, one could possibly expect a sustained immunogenic
effect beyond that time point.

CONCLUSIONS

Biopharmaceutical companies are now actively focused on the
development of sustained release drug delivery systems, in view of
their inherent benefits. Sustained release formulations designed to
maintain the required therapeutic concentrations over an extended
period of time present several advantages over conventional dosage
forms, including less frequent drug dose, reduced concentration
fluctuations, minimal side effects, reduced healthcare costs,
improved efficiency and/or immune responses (51, 52). In this
context, DMSNs are gaining increasing interest as effective delivery
system because they are tunable, exhibit high loading capacity for
therapeutic agents, and their release can be controlled. In this work,
we evaluate the applicability of these nanocarriers in vaccination
and long-term protection using a peptide-based vaccine with
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FIGURE 4 | In vivo functional validation. ELISA-determined anti-B,T peptide responses of mice vaccinated with B,T@Montanide™ (red circle, n=4), B,T@DMSNs-
156nm (green down triangle, n=6), DMSNs-156nm (blue squares, n=4) from sera collected at days 14, 21 (pre-boost) and 40 (post-boost) post-immunization. Each
point depicts mean antibody titers (calculated as described in Materials and methods) + SD for each group. No individual spontaneous reactivity was observed in the
titers determined at day 0. (cf. §SI-3; Table SlI-1, and Figures SI-14, SI-15, and SI-16).
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FIGURE 5 | Sustained in vivo immune response performed by the DMSNs. ELISA-determined anti-B,T peptide responses obtained in vaccination trial Il (Table SI-
2) of mice vaccinated with B,T@Montanide ™ (red circle, n=3), B,T@DMSNSs-57nm (purple up triangle, n=5) and B,T@DMSNs-156nm (green down triangle, n=5)
from sera collected on the indicated days post-immunization (20, 40, 60, and 80 pi). Each point depicts mean antibodly titers (calculated as described in Materials
and methods) + SD for each group. No individual spontaneous reactivity was observed in the titers determined at day O. (cf. §SI-3; Table SI-2, and Figures SI-14,
SI-15, and SI-16).

previously reported protective immunity against FMDV. Our  that both DMSNs formulations increased specific B,T antibody
results demonstrate that DMSNs are colloidally stable and titers in a similar manner. However, results revealed a trend toward
monodisperse, with high loading capacities for a bioactive peptide ~  higher antibody titers in the animal group immunized with DMSNs
such as B2T, besides being reported as non-toxic (53-56). The of smaller particle size (57 nm) in agreement with previous literature
B,T@DMSNss resulting formulations present long-term sustained in (57, 58). Taken together, these results indicate that DMSNSs is an
vitro release properties, enhanced in the presence of BSA. Trackinga  excellent carrier for peptide vaccine which favors the internalization
fluoro-labeled version of B,T within DMSNs formulations we could ~ of the antigen by immune cell. Besides, they also delay or slown
observed acute differences (within 16 h) in the internalization of the ~ down their in vivo release, finally leading to a long-lasting sustained
B,T@DMSNs by macrophage cells in a size dependent manner. ~ immune response activation. Therefore, DMSNs may be a suitable
Finally, the effectivity of B,T@DMSNs as nanovaccine was validated ~ vaccine delivery system alternative to conventional adjuvanted
in vivo by comparing the inmunogenic response to that of the  vaccines not only for whole viruses or protein antigens but also
positive control B,T@Montanide""". Mice vaccination trials showed ~ for synthetic peptide-based subunit candidates.
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The blood-brain barrier (BBB) selectively restricts the entry of molecules from peripheral
circulation into the central nervous system (CNS) parenchyma. Despite this protective
barrier, bacteria and other pathogens can still invade the CNS, often as a consequence of
immune deficiencies or complications following neurosurgical procedures. These
infections are difficult to treat since many bacteria, such as Staphylococcus aureus,
encode a repertoire of virulence factors, can acquire antibiotic resistance, and form
biofilm. Additionally, pathogens can leverage virulence factor production to polarize host
immune cells towards an anti-inflammatory phenotype, leading to chronic infection. The
difficulty of pathogen clearance is magnified by the fact that antibiotics and other
treatments cannot easily penetrate the BBB, which requires extended regimens to
achieve therapeutic concentrations. Nanoparticle systems are rapidly emerging as a
promising platform to treat a range of CNS disorders. Nanoparticles have several
advantages, as they can be engineered to cross the BBB with specific functionality to
increase cellular and molecular targeting, have controlled release of therapeutic agents,
and superior biocavailability and circulation compared to traditional therapies. Within the
CNS environment, therapeutic actions are not limited to directly targeting the pathogen,
but can also be tailored to modulate immune cell activation to promote infection
resolution. This perspective highlights the factors leading to infection persistence in the
CNS and discusses how novel nanoparticle therapies can be engineered to provide
enhanced treatment, specifically through modulation of immune cell polarization.

Keywords: central nervous system, infection, biofilm, immunometabolism, nanoparticles, blood-brain barrier,
leukocytes, microglia

INTRODUCTION

The blood-brain barrier (BBB) represents a double-edged sword in the context of central nervous
system (CNS) infectious diseases. On the one hand, tight junctions between brain capillary
endothelial cells, reinforced with astrocyte end feet and pericytes, act as a defense to restrict
pathogen invasion into the CNS from the periphery (1, 2). However, the same tight junctions also
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hinder the delivery of therapeutics to the brain parenchyma in
situations where the BBB is breached. A wide range of bacteria,
viruses, fungi, and parasites can traverse the BBB with
neurotropism for CNS meningeal, ventricular, and parenchymal
compartments (1-3). These pathogens are responsible for severe
clinical conditions including meningitis, encephalitis, and
pyogenic infections. Patients with CNS infections often require
lengthy hospitalization, critical care support, complex diagnostic
tests, and invasive treatment procedures. Globally, more than 1.2
million individuals are affected by meningitis annually, with
bacterial meningitis responsible for 120,000 deaths (4, 5). Many
of the pathogens that invade the CNS are opportunistic and
exploit patients with primary immune deficiencies that worsen
disease severity (6, 7). Other CNS infections can arise from
complications following neurosurgical procedures, such as
craniotomy and cerebrospinal fluid (CSF) shunt placement (8-
10). The expanded use of therapeutics targeting immune effector
mechanisms, such as monoclonal antibodies to inhibit cytokine
action or leukocyte trafficking, can increase susceptibility to CNS
infection (11-13). In the CNS, pathogens can tightly regulate
virulence factor and metabolite production to promote their
survival (3, 14-16). In bacterial strains such as Staphylococcus
aureus, this includes biofilm formation and antibiotic tolerance
(17). Additionally, host-pathogen crosstalk can polarize immune
cells towards an anti-inflammatory phenotype to promote chronic
infection. Although CNS infections are generally less frequent
compared to the periphery, their high morbidity and mortality
rates necessitate better understanding and management to
improve patient outcomes.

Treatments for CNS infection depend on the suspected
pathogen, but one commonality exists — time is essential. As
infections can be rapidly fatal, it is imperative that therapeutic
interventions are initiated as soon as a diagnosis is made. For
drugs, CNS entry is dependent on size, charge, lipophilicity,
plasma protein binding, affinity for active transport mechanisms
at the BBB, as well as edema and CSF flow (18). With these
stringent requirements, it is no surprise that the BBB is the
bottleneck of the pharmaceutical industry for CNS therapeutics.
Around 98% of brain-targeting drug candidates have impeded
ability to pass the BBB, including new classes of biotherapies
such as RNAs (19, 20). Current treatment options for many
bacterial, fungal, and viral pathogens are highly empirical due to
a lack of clinical trial-based evidence and few approved therapies
(3). Administration routes are also empirical, and due to the
difficulty in achieving therapeutic concentrations of compounds
in the CNS following intravenous injection, more invasive
transcranial delivery is often required. This includes intrathecal
and intraventricular injection of anti-infection agents dosed as
high as 10-fold in excess of the minimum inhibitory
concentration to achieve clearance, and ventricular catheters
must be maintained for 24-48 h or substantially longer (21). A
growing number of CNS infections with multi-drug resistant
(MDR) bacteria such as Acinetobacter baumannii, Pseudomonas
aeruginosa, and Klebsiella pneumoniae present a serious problem
as these superbugs are only sensitive to select classes of
polymyxin last-resort antibiotics, severely limiting treatment

options (22). Further complicating treatment is that many
drugs, such as the antibiotics for MDR bacteria, are associated
with neurotoxicity due to the need for high therapeutic
concentrations, non-specific targeting, and only small amounts
of drug reaching the infection site within the CNS. As such,
treatments must include neuroprotective agents to alleviate
harmful side effects.

Engineered nanoparticle systems have emerged as a promising
therapeutic path to circumvent BBB restrictions and provide
targeted delivery of drugs to the CNS (23, 24). Additionally, the
concept of using immunometabolic modulation to treat
neurological disorders such as Alzheimer’s disease (AD),
Parkinson’s disease (PD), and multiple sclerosis (MS) has gained
traction in recent years (25, 26). We believe that using nanoparticle
delivery systems with immunometabolic therapies could provide a
paradigm shift for the successful treatment of life-threatening CNS
infections. This approach has the potential as a dual-action
therapeutic bolstering the host defenses and synergizing with anti-
infection agents, ultimately improving patient outcomes (Figure 1).

PATHOGENIC AND IMMUNE
CHARACTERISTICS OF CNS INFECTIONS

Mechanisms of Pathogen Entry

Into the CNS

A variety of routes facilitate pathogen entry into the CNS (4).
One common path is through the meninges and CSF. Bacterial
species including Streptococcus pneumoniae and Listeria
monocytogenes access the blood and CSF after colonization in the
nasopharynx or gastrointestinal tract, respectively (27, 28). Once in
the subarachnoid space, interactions between bacterial and host
proteins facilitate invasion into the CNS parenchyma. For example,
S. pneumoniae uses the adhesion molecule RrgA to bind the
polymeric immunoglobulin receptor plgR or platelet-associated
cell adhesion molecule (PECAM)-1 on endothelial cells (27).
L. monocytogenes uses the internalin InlF to interact with the
cytoplasmic intermediate filament protein vimentin that is also
expressed on the surface of brain endothelial cells (28). Fungal
invasion of the CNS can also occur through the CSF in cases of
congenital, acquired, or drug-mediated T cell dysfunction (29, 30).
Direct infection and replication inside BBB endothelial cells
provides another route for pathogen entry to the CNS. For
example, Zika virus is known to have tropism for vascular
endothelial cells though mechanisms involving the AXL tyrosine
kinase receptor family, and the protozoan Toxoplasma gondii
utilizes parasite adhesion microneme protein-2 (MIC2) for
growth in brain endothelial cells (31, 32). Upon replication, these
pathogens are released into the CNS parenchyma after endothelial
cell lysis. Microbes can also use host endocytic machinery to reach
the CNS via transcytosis. For example, S. pneumoniae can cross
endothelial barriers by clathrin- and caveolae-mediated
micropinocytosis (33). West Nile virus (WNV) can invade the
CNS through the use of lipid rafts and caveolae-facilitated
endocytosis (34). Fungal species such as Cryptococcus neoformans
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FIGURE 1 | Integrating immunometabolism and nanoparticle systems for the treatment of CNS infection. Immune activation is controlled by the metabolic pathways
needed to generate the energy and intermediates required for effector responses. Research continues to uncover the metabolic pathways that regulate inflammatory
polarization of all Key immune cell types during CNS infection, including microglia and infiltrating leukocytes. Nanoparticle carriers can be engineered with
different Functionalization to safely, and non-invasively transport therapeutic Payloads across the BBB to the CNS with a variety of tunable compositions,
chemical ligands, and physiological characteristics. Together, nanoparticle systems provide a multi-tool kit of customizable parts for delivering immunometabolic

also leverage host proteins for transcytosis, including cysteinyl
leukotrienes and the glycoprotein receptor CD44 (35). Another
notable entry route to the CNS for pathogens is via a “Trojan-horse”
mechanism, whereby microbes are transported across the BBB
within phagocytic leukocytes (36, 37). Research has demonstrated
that WNV is carried to the brain via infected neutrophils, and CNS
infection with T. gondii is associated with migration of infected

monocytes and dendritic cells (DCs) (38, 39). Finally, foreign bodies
introduced into the CNS provide direct routes for pathogen
colonization, often leading to infection with skin flora such as S.
aureus or S. epidermidis (40, 41). Later, we will discuss how the same
biological mechanisms exploited by pathogens to enter the CNS can
be used for designing new classes of nanoparticle therapeutics with
enhanced BBB permeability.
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The Host Immune Response

to CNS Infection

The immune response to pathogen invasion of the CNS is an
organized and dynamic process. Microbes are sensed by microglia
and astrocytes in the CNS parenchyma as well as macrophages
within the choroid plexus, meninges, and perivascular space (42,
43). Activation occurs through the recognition of pathogen-
associated molecular patterns (PAMPs) by a range of pattern
recognition receptors (PRRs), the most well studied being the
Toll-like receptor (TLR) family (44, 45). Microglial and CNS
macrophage activation in response to TLR stimulation is
characterized by increased major histocompatibility complex
class II (MHCII) and costimulatory molecule (CD80 and CD86)
expression. Additionally, pro-inflammatory cytokines and
chemokines including TNF-o, IL-1B, CCL2, and CCL5 are
secreted concomitant with nitric oxide and reactive oxygen
species (ROS) production. Changes in phagocytosis, cell motility,
and proliferation are also observed. These attributes serve to limit
pathogen expansion, and recruit and activate peripheral blood
leukocytes into the CNS to mitigate the infection. Ideally, activation
is tightly regulated and short-lived before resolving into a
homeostatic state characterized by the secretion of anti-
inflammatory signals, including IL-10 and transforming growth
factor-beta (TGF-P) that support neurorepair (44, 46, 47). Given
the high mortality rates associated with CNS infections, it is clear
that immune activation can become dysregulated, leading to
bystander damage of surrounding normal brain parenchyma and
increased disease severity.

In recent years, the rapidly expanding field of immunometabolism
has demonstrated that immune activation is controlled by the
metabolic pathways needed to generate the energy and
intermediates required for effector responses (26, 48, 49). The
major pathways identified to date that dictate leukocyte function
include glycolysis, the tricarboxylic acid (TCA) cycle, oxidative
phosphorylation (OXPHOS), fatty acid oxidation and synthesis
(FAO and FAS, respectively), the pentose phosphate pathway
(PPP), and amino acid metabolism (50). During normal resting
conditions, leukocytes tend to display a basal activity of all major
metabolic pathways. Glucose is converted to pyruvate to fuel the
TCA cycle and generate adenosine triphosphate (ATP) for energy as
well as nicotinamide adenine dinucleotide (NADH) and flavin
adenine dinucleotide (FADH,) as electron donors for OXPHOS.
Upon activation, cells undergo metabolic reprogramming
characteristic of altered fuel consumption, modified mitochondrial
structure and dynamics, preferential use of specific metabolic
pathways, and metabolite flux (48-50). In response to pro-
inflammatory signals, many leukocytes undergo Warburg
metabolism that is typified by increased glycolysis under aerobic
conditions (51). This glycolytic bias enhances the synthesis of
nucleotides, amino acids, fatty acids, and other metabolic
intermediates to promote proliferation and cytokine production,
including rapid ATP generation. Cells in an anti-inflammatory state
tend to favor OXPHOS since their biosynthetic demands are less
pronounced. However, it is important to note that the concept
of metabolic bias is not an “all-or-none” phenomenon but
instead exists on a spectrum since metabolic pathways are highly

integrated (50). Furthermore, unique metabolic pathways have been
linked to specific cell types, revealing another layer of complexity
(52-54). Metabolic programming is also highly dependent on
substrate availability. This provides an opportunity for pathogens
to manipulate host defenses through substrate competition that
can ultimately suppress pro-inflammatory responses by biasing
leukocytes towards an anti-inflammatory state (55, 56). For
example, S. aureus biofilm promotes an anti-inflammatory milieu
through depletion of key nutrients such as glucose, preferential
recruitment of granulocytic-myeloid-derived suppressor cells
(G-MDSCs), and release of lactate to drive production of the anti-
inflammatory cytokine IL-10 (57). The CNS has a distinct nutrient
environment compared to the periphery, which likely influences the
immunometabolic status of resident microglia and infiltrating
leukocytes during infection. While comprising only 2% of the
total body mass, the brain utilizes approximately 25% of the
glucose consumed by the human body (58). Under conditions of
diminished glucose supply, such as infection or ischemia, CNS cells
can adapt to use alternative energy sources generated from FAO or
glutaminolysis (53). The concept of metabolically reprograming
cells to promote infection clearance presents an exciting therapeutic
opportunity. To realize this idea, it is important to understand the
relationships between inflammatory polarization and metabolic
status for the various immune cell populations within the CNS
and how this changes in the context of infection.

Immunometabolism of Glial and

Leukocyte Populations

The key players in controlling CNS infections are resident
microglia and macrophage populations along with infiltrating
leukocytes. These cell types share many similarities in terms of
TLR usage but also significant heterogeneity in effector functions.
Microglia originate from the primitive yolk sac during development
and comprise 5-10% of the total cell population in the brain
parenchyma (59). During normal steady-state conditions,
microglia survey the brain parenchyma detecting neuronal
activity and maintain homeostasis through synaptic pruning,
clearance of apoptotic cells, and regulating neurogenesis (60, 61).
In response to pro-inflammatory stimuli, microglia undergo
Warburg metabolism, shifting from OXPHOS in the resting state
to aerobic glycolysis (62, 63). As a result, specific metabolite
transporters and glycolytic genes are upregulated, notably the
glucose transporter GLUT-1 and hexokinase, respectively, leading
to protein acetylation due to acetyl-CoA accumulation and release
of IL-1P. Further, superoxide generation is used to kill pathogens,
and it is suggested that histone deacetylase (HDAC) activity links
epigenetic changes with metabolism (25, 62). Non-immune cells,
such as CNS resident astrocytes and oligodendrocytes also play key
metabolic roles to support neuron homeostasis. Under
physiological conditions, astrocytes provide neurons with
metabolic substrates for neurotransmission, maintain neural
electrical activity, and support energy balance and synaptic
pruning (64, 65). Upon activation, astrocytes have been shown to
undergo aerobic glycolysis to promote pro-inflammatory signals
(54, 63). Oligodendrocytes form the lipid-rich myelin supporting
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the propagation of neuronal action potentials, where cells respond
to glutamatergic signals by increasing glycolysis to support axonal
energy metabolism (26, 66). The metabolic changes that occur in
astrocytes and oligodendrocytes during CNS infection and how this
shapes neuronal survival remain to be determined.

Infiltrating leukocytes are the other key contributors to CNS
infection. Macrophages, neutrophils, DCs, and natural killer
(NK) cells are rapidly recruited into the infected CNS where
they can influence glial activation through release of
inflammatory cytokines and other factors such as ROS (25, 26,
67-69). Macrophages and monocytes are found in the CNS
meningeal and perivascular interfaces as well as the infected
brain and experience a metabolic shift from OXPHOS to
glycolysis upon pro-inflammatory activation, similar to
microglia (70-72). The most comprehensive immunometabolic
studies to date have been conducted on macrophages, wherein
two major breakpoints in the TCA cycle result in succinate and
citrate accumulation and nitric oxide, IL-6, and IL-1f3 production.
Citrate accumulation also leads to the generation of itaconate,
which exerts bactericidal activity (73). However, chronic
production of itaconate can elicit anti-inflammatory effects and,
as such, this balance must be tightly regulated. Similar to
macrophages, pro-inflammatory DCs exhibit a metabolic shift
towards glycolysis; however, DCs continue to use the TCA cycle
for generating ATP as opposed to heavily relying on glycolysis
which differs from macrophages (74, 75). There are numerous DC
subsets, and it is important to recognize that each may undergo
unique metabolic programs during activation in a context-
dependent manner (76). Activated neutrophils favor glycolysis
as well as the PPP to produce NADPH for redox reactions. Their
low mitochondrial abundance reflects their reduced reliance on
OXPHOS (77). NK cells do not experience a glycolytic bias upon
activation but instead enhance both glycolysis and OXPHOS,
where glucose remains the primary fuel (78). With regard to
adaptive immunity, T cells also play important roles in many CNS
infectious diseases, ranging from cytotoxic activity during viral
infections to promoting innate immunity through the release of
cytokines such as IFN-y and IL-17 (79). Like their innate
counterparts, T cell activation is highly dependent on glycolytic
metabolism for their effector functions. However, metabolic
variability exists for dictating T cell subset fate. For example, the
OXPHOS pathway is important for Th17 differentiation, and the
absence of OXPHOS during differentiation leads to regulatory T
cell (Treg) development (79, 80). B cells are rather unique in their
metabolic program compared to other immune cells, relying
heavily on FAO and minimally on glycolysis (81, 82). There are
few reports on the role of B cells during CNS infections, but
available evidence shows important contributions for pathogen
neutralization by enhanced opsonophagocytosis and complement
activation (83). The metabolic diversity of infiltrating leukocytes
during CNS infectious diseases and how this shapes not only their
intrinsic properties but also extrinsic effects on surrounding
leukocytes and resident glia represents a complex scenario, and
one that is ripe for interrogation to exploit pathways that promote
infection resolution without excessive bystander damage to
normal brain parenchyma.

Modulating Immune Cell Polarization
Extensive evidence has shown that immune cell polarization is
linked to metabolism, supporting the idea of manipulating
metabolism as a means to direct immune cells towards
pathways that promote infection clearance, which has been
coined metabolic reprogramming (50). Most current research
into immune modulation in the CNS has targeted inflammation
associated with AD, PD, and MS; however, the same concepts
can be leveraged for CNS infectious diseases. In the context of
neurodegenerative disorders, T cell activation has been targeted
to attenuate chronic inflammation. Initial work showed that
inhibition of glycolysis limited T cell pathogenicity by favoring
Treg development (84, 85). Tetramerization of pyruvate kinase
M2, the enzyme catalyzing the last step in glycolysis, inhibited
the glycolytic activity of pro-inflammatory T cells to ameliorate
experimental autoimmune encephalomyelitis (EAE), the mouse
model of MS (86). Other work demonstrated that the TCA
derivative itaconate also reduced EAE severity by suppressing T
cell and microglial activation (87). Further studies have shown
metabolic polarization effects in T cells with cytokines such as
IFN- and targeting mitochondrial respiratory chain enzymes
(88, 89). A growing body of literature is beginning to uncover the
mechanisms driving microglial plasticity in the brain, where the
mechanistic target of rapamycin (mTOR) pathway has been
identified and has clear links with metabolism (90). As critical
metabolic nodes emerge, a variety of approaches relying on
pharmacological agents, cytokines, lipid messengers, and
microRNAs have all been shown to be effective metabolic
modulating agents (91).

Insights into how metabolic status may shape CNS immune
activation can also be drawn from research in the periphery,
where much focus has been on macrophages. Studies have
uncovered mechanisms behind mitochondrial repurposing
during activation, and how resulting mitochondrial reactive
oxygen species (mtROS) production can be blocked to
promote anti-inflammatory states (92). Other work has
demonstrated that metabolic reprogramming of monocytes via
the OXPHOS inhibitor oligomycin reduced bacterial burden in a
S. aureus biofilm model of prosthetic joint infection (93). The
effectiveness of this treatment resulted from inhibiting the anti-
inflammatory OXPHOS bias, shifting cells towards a pro-
inflammatory glycolytic state to promote biofilm clearance.
Pertinent to CNS infection, similar immune-based approaches
have been used with exogenous application of IL-1f or grafted
pro-inflammatory macrophages, both of which lowered bacterial
burden in a S. aureus biofilm model of craniotomy infection (94,
95). As another layer of complexity, a recent study demonstrated
the influence of microenvironment in shaping immunomodulatory
attributes, where macrophage expression of glycolytic markers was
suppressed upon migration into the brain parenchyma (71). More
specifically, lactate dehydrogenase A (LDHA; converts pyruvate to
lactate) and monocarboxylate transporter 4 (MCT-4; exports lactate
from glycolytic cells) expression was significantly reduced in
macrophages that invaded the brain parenchyma in EAE,
whereas these molecules were elevated in macrophages associated
with perivascular cuffs. This suggests a failure of macrophages to
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maintain their pro-inflammatory properties upon entering the
CNS, which the authors attributed to differences in metabolic
demand. While a specific mechanism for this reprogramming is
unknown, it could be influenced by local nutrient or metabolite
availability, such as lactate itself, which is known to be produced by
astrocytes and oligodendrocytes for supporting proper axonal
function (58, 96), or it may provide balance to the local
inflammatory response. Collectively, these findings support the
idea that immune cell function could be tailored by modulating
metabolism to overcome deficiencies in CNS metabolites, such that
infiltrating leukocytes remain in a pro-inflammatory state to
fight infection.

The aforementioned examples reflect only a small amount of
the growing literature on metabolic modulation. Ongoing work
continues to identify molecular agents targeting aspects of key
metabolic pathways. Overall, strong evidence supports the use of
metabolic modulation therapy for controlling immune cell
activation states and effector functions (84-86, 89, 91, 94). The
heterogeneity between different cell types highlights the need to
uniquely target select immune populations. Additionally, more
work should aim to investigate how immunometabolic therapies
can synergize with existing anti-infection drugs to enhance
clearance from the CNS. Such an immunometabolic approach to
treating CNS infections has potential to improve disease outcomes,
depending on the availability of suitable delivery mechanisms.

THE PROSPECT OF NANOPARTICLE
SYSTEMS FOR MODULATING IMMUNE
CELL POLARIZATION

Shortcomings of Current CNS

Infection Treatments

As previously discussed, the BBB is a cooperative interaction
between brain capillary endothelial cells, astrocytes, and pericytes
that maintains brain homeostasis and controls nutrient influx into
the parenchyma. Transport through the BBB can occur through a
variety of routes, generally classified as passive transport, carrier-
mediated, and vesicular trafficking (Figure 1) (97). Passive
transport is mostly limited to small substances. Small
hydrophilic compounds may pass paracellularly through the
tight junctions between endothelial cells likely by means of
transient relaxation of the junctions, while small lipophilic
substances can use transcellular passive diffusion to reach the
brain (97). Carrier-mediated transport exploits diverse solute
transporters for traversing the BBB, such as those for glucose or
amino acids. Receptor-mediated and adsorptive-mediated
transport utilize antibody binding or plasma proteins for
crossing via endocytosis and pinocytosis (98).

Expectedly, delivery of anti-infection agents to the CNS is
strongly hindered by the BBB, and more invasive transcranial
delivery via intrathecal and intraventricular injection is often used
as a bypass (99, 100). However, bypass strategies are complicated by
limited drug diffusion, which reduces biodistribution to the target
location in the parenchyma. Osmotic disruption of the BBB with

vasoactive substances, exposure to high intensity focused
ultrasound, and electromagnetic pulses have also been explored
to improve drug permeability to the CNS (101-103). However, BBB
disruption can lead to unwanted entry of other molecules into the
CNS or drugs becoming trapped in brain endothelial cells rather
than distributing to target sites. Engineered nanoparticles represent
a promising approach to improve non-invasive delivery of CNS
therapeutics by ferrying drugs across the BBB. Nanoparticles can be
designed to perform multiple, targeted functions aimed at both the
pathogen and host, and their biodegradable properties have the
added advantage of self-clearance (20, 23, 24, 100).

Design Variables of Nanoparticle
Therapies

Nanoparticles are small structures ranging from 1 to 1000 nm in
diameter. They can be generated by a wide array of biodegradable
and non-biodegradable substances and readily modified to deliver
therapeutic agents, as discussed in the following sections (24).
There are several approaches for transporting nanoparticles across
the BBB, all facilitated by harnessing the physiological properties of
endogenous molecules required for proper brain function (98, 104).
For example, carrier-mediated transport allows nanoparticles to
use essential nutrient transporters, such as GLUT-1 for glucose and
L1 and y+ for large amino acids. Through adsorptive-mediated
transcytosis, electrostatic interactions between cationic ligands and
negatively charged endothelial cell membranes lead to vesicle-based
endocytosis. Perhaps the most effective approach, receptor-
mediated transcytosis, relies on luminal plasma membrane
receptors of endothelial cells for endocytosis. Examples include
the lactoferrin and transferrin receptors (LfR and TIR,
respectively), low density lipoprotein receptor-related protein 1
and 2 (LRP-1 and -2), insulin receptor, and folate receptor
(98, 104).

To exploit the endogenous transport machinery of the BBB,
nanoparticles must be designed to mimic physiologically active
compounds. Several key characteristics can be leveraged to
optimize nanoparticle entry into the CNS. First, nanoparticle size
is crucial for endocytosis, with a critical limit of approximately 200
nm or less for efficient cellular uptake via clathrin-mediated
endocytosis (23, 105). Charge is another important factor
affecting both internalization and circulation time. Due to the net
negative charge on endothelial cell membranes, positively charged
nanoparticles can more readily use adsorptive transcytosis. On the
contrary, neutral and negatively charged nanoparticles remain in
circulation longer because of reduced protein adsorption.
Zwitterionic nanoparticles can provide a balance between uptake
and circulation requirements (106). Functionalization through
incorporation of surface ligands provides the most flexibility to
engineered nanoparticles. The main objective in selecting surface
ligands is increasing BBB passage and cell-specific targeting
through carrier- and receptor-mediated transcytosis. Studies have
demonstrated the ability to decorate particles with ligands for
GLUT-1, albumin transporters, LfRs and TfRs, and more (107-
110). The use of cell-penetrating peptides as surface ligands can be
used to bypass endocytosis, leading to direct nanoparticle entry to
the cytoplasm (111). Studies have also demonstrated the use of
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ligands such as insulin for targeting affected brain regions in
neurodegenerative and neuropsychiatric disorders (105). Not
only the ligand itself, but its density or avidity are also important
factors, as too many high affinity ligands can hinder endocytosis by
anchoring nanoparticles to cell membranes (110).

Intravenous injection is the most widely utilized route for
nanoparticle administration. However, the rapid clearance of
particles from circulation can limit the concentrations reaching
the CNS (23). New non-invasive routes of administration are
being explored to improve CNS bioavailability. Intranasal delivery
is a major alternative route, which could facilitate direct nose-to-
brain delivery in a matter of minutes via olfactory and trigeminal
nerves (112-117). The functional diversity and customization
possibilities in designing CNS-targeting nanoparticles makes
them multi-tool kits with options for tailoring transport routes,
targets, and payload release kinetics. Researchers continue to
discern the relative importance of the variables governing
nanoparticle characteristics and how one property may modify
another attribute (118). One such study examining these
relationships determined that for the specific polymeric
nanoparticles used, the most influential parameter for efficient
BBB penetration was the surfactant type, whereas size and zeta
potential had little impact (119). Continued efforts advancing
CNS-targeting nanoparticles will only enhance their potential
for personalized medicine applications.

Nanoparticles for the CNS

Significant work has identified a wide range of polymeric, lipid-
based, cell-derived, and inorganic nanoparticles as viable
therapeutic options to promote CNS uptake. While most of the
current research and select examples discussed below have
focused on cancer, neuroinflammation, and neurodegenerative
diseases, the same nanoparticle systems can be leveraged to treat
CNS infections by simply changing the therapeutic payload. Both
in vitro and in vivo studies have been conducted to demonstrate
the vast potential of nanoparticle therapeutics. While in vitro
systems are useful for isolating specific research variables and
uncovering transport mechanisms, the use of in vivo models
provides much greater measures of physiological relevance (97).
The fact that a majority of the examples described below are from
in vivo models shows the exciting success of many nanoparticle
systems and the impending progression toward clinical trials.
Polymers, both artificially- and naturally-derived, have
received the most attention for CNS delivery (24, 100, 120).
The most widely used polymer is poly(D,L-lactide-co-glycolic
acid) (PLGA), which is FDA approved and can undergo
hydrolysis within the body to form biocompatible metabolites
(121). PLGA nanoparticles have proven effective at increasing
the half-life and stability of drugs such as the chemotherapeutic
agent cisplatin, in comparison to the raw drug counterpart (122).
Another study demonstrated that PLGA encapsulation of the
anti-inflammatory and anti-oxidant compound curcumin
dramatically improved BBB permeability and stimulated
hippocampal neurogenesis to reduce cognitive decline in a rat
model of AD (123). PLGA can also be conjugated and
functionalized for specific targeting. In one example, researchers

used Lf-conjugated polyethylene glycol (PEG)-PLGA nanoparticles
containing the peptide urocortin to increase blood circulation time
and promote specific uptake in the striatum and substantia nigra as
a neuroprotective therapeutic for PD (124, 125).

Poly(alkyl cyanoacrylate) (PACA) is another nanoparticle
polymer with proven ability to cross the BBB. PACA nanoparticles
can be coated with surfactants for improved BBB permeability
and have demonstrated promise as potential AD therapeutics from
in vitro studies showing limited effects on vascular homeostasis and
inflammatory response (126). Poly(butyl cyanoacrylate) (PBCA)
nanoparticles are closely related to PACA, but degrade more
rapidly in the body due to their higher water solubility (127).
Other classes of biocompatible polymers include copolymer-poly
(methylmethacrylate-sulfopropylmethacrylate) (PMMA-SPM),
which have been loaded with anti-retroviral drugs for transport
across the BBB (128). Natural polymers such as chitosan have also
been explored as nanoparticle materials with CNS permeability.
Tripolyphosphate cross-linked chitosan nanoparticles delivered the
anti-inflammatory compound piperine to the CNS following
intranasal administration in a rat model of sporadic dementia,
which reduced inflammation by decreasing TNF-o0 and activated
caspase-3 concomitant with increased superoxide dismutase activity
(129). Another study used chitosan-coated lipid nanoparticle carriers
conjugated to the transactivator of transcription (TAT) cell-
penetrating peptide to enhance CNS delivery of glial cell-derived
neurotrophic factor (GDNF) in a mouse model of PD, leading to
decreased dopaminergic neuron loss and improved motor
function (130).

Lipid-based nanoparticles include solid lipid and nanoemulsions,
both of which are biocompatible, stable, and BBB-permeable (131,
132). Solid lipid nanoparticles consist of glycerides, waxes, and fatty
acids stabilized with emulsifiers, and nanoemulsions are similar but
with a liquid lipid core. Both are best suited for carrying lipophilic
and hydrophobic drugs. A recent study used solid lipid nanoparticles
loaded with doxorubicin for treating glioblastoma, which
demonstrated excellent tumor cell toxicity (131).

Cell-derived nanoparticles consist of liposomes and
exosomes. Liposomes have an aqueous core surrounded by a
phospholipid bilayer, making them suitable for both
hydrophobic and hydrophilic drugs. Phase III clinical trials are
underway using cytarabine-carrying liposomes for treatment of
neoplastic meningitis. The liposomal nanoparticles showed
increased therapeutic concentrations of cytarabine in the CSF
for up to 14 days post-administration (133). Another study has
used cationic nanoliposomes with TfR-affinity ligands to deliver
oligonucleotides and siRNA to the brain within 6 hours
following intravenous injection. These nanoparticles reduced
neuroinflammation when the siRNA targeted TNF-o (132).
Exosomes are small vesicles secreted from all cell types that
contain a wide range of biological molecules, including surface
proteins, ligands, cytokines, and RNAs. They are beginning to be
studied for therapeutic applications based on their ability to be
loaded with drugs, BBB permeability, and potential for nasal
administration (134).

Other unique nanoparticle formulations continue to be
developed (135, 136). For example, biodegradable anti-TfR
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monoclonal antibody (OX26)-PEGylated selenium nanoparticles
were shown to suppress pathological inflammation and oxidative
metabolism associated with cerebral stroke (137). Additionally,
inorganic gold nanoparticles with varying surface ligands have
shown promise for treating CNS bacterial infections due to both
the inherent bactericidal properties of gold and conjugated
antibiotics (138). The nanoparticle examples noted here merely
represent a small snapshot of the wealth of possibilities for
designing therapeutic carriers for improved treatment of
CNS infections.

Cell-Specific Targeting With Nanoparticles
A final goal of nanoparticle therapies is cell-specific targeting
(139, 140). In the context of CNS parenchymal infection,
microglia represent a logical candidate. For microglial specificity,
nanoparticles can leverage receptor-targeting ligands and the
inherent phagocytic properties of microglia, while maintaining
biocompatibility (140). An early study of microglial targeting used
liposomal nanoparticles modified with the TLR4 ligand
lipopolysaccharide (LPS), which significantly increased uptake of
the encapsulated drug compared to non-targeted liposomes (141).
In a later study, ceria-zirconia nanoparticles decorated with
CD11b antibody showed preferential uptake by microglia
compared to other cell types in the brain and higher
internalization compared to nanoparticles conjugated to an
isotype-matched control antibody (142). Other promising
surface receptors exist to target microglia, including triggering
receptor expressed on myeloid cells 2 (TREM2), Tmem119, and
P2RY12 (143). Recent work has highlighted the significant
transcriptional heterogeneity of leukocyte subpopulations within
the CNS during S. aureus craniotomy infection, including
microglia (144). The tunability of nanoparticle systems has
exciting potential to target this diversity within a given cell type,
where typical molecular therapies fall short. Of note, several of the
receptors that have been exploited to deliver nanoparticles to
microglia are also expressed on macrophages and neutrophils that
infiltrate the CNS during infection. Therefore, targeting a single
cell type with these receptors is unlikely. However, with the
increasing abundance of next-generation sequencing datasets for
CNS diseases, including infection, the identification of receptors
that are enriched on a given phagocyte population is likely.
Ultimately, nanoparticles targeting all of the key immune cell
populations would fully complement the multi-tool kit of carriers
for precisely modulating metabolic activity for the treatment of
CNS infections.

DISCUSSION

Many bacteria, viruses, fungi, and parasites can invade the CNS
and cause severe meningitis, encephalitis, and pyogenic infections.
These conditions can become exceedingly dangerous as pathogens
can acquire drug resistance, form biofilm, and leverage virulence
factors that disrupt the host immune response and reprogram

immune cells towards an anti-inflammatory bias. These challenges
are exacerbated by the fact that therapeutic agent delivery to the
CNS is hindered by the BBB, the same defense meant to exclude
harmful pathogens. As such, treatment of CNS infections remains
highly empirical and difficult, relying on extended and/or invasive
delivery of anti-infection agents often with deleterious side effects.

We propose that together, the fields of immunometabolism
and nanotechnology have the potential for a paradigm shift in
novel treatments for CNS infections (Figure 1). The rapidly
expanding field of immunometabolism has demonstrated that
immune activation is controlled by the metabolic pathways
needed to generate the energy and intermediates required for
effector responses. The metabolic pathways that elicit pro-
inflammatory activity have been described for all the key
immune players in CNS infection, including microglia and
infiltrating leukocytes but primarily in the context of
neurodegeneration. It remains to be determined whether
similar metabolic programs are observed during infection,
which may differ based on nutrient competition with the
pathogen. A variety of pharmacological agents, cytokines, lipid
messengers, and microRNAs have been shown to modulate
metabolism and could serve as potential therapeutics. In the
realm of nanotechnology, nanoparticles can be engineered with a
host of tunable structures, chemical ligands, and physiological
characteristics to safely, and non-invasively deliver therapeutics
to the CNS by transporting drugs across the BBB. Nanoparticle
applications and design will continue to improve with
increased knowledge of the precise interactions between
structure, BBB penetration, and efficacy. Overall, merging
therapeutic approaches with metabolic modulating agents and
nanoparticles as delivery vehicles warrants the need for more
focused research efforts given the promise for improving patient
outcomes associated with CNS infections.

Research into metabolic reprogramming in the CNS to date
has mainly focused on AD, PD, and MS, but more emphasis
should be placed on infectious diseases, particularly in the
current era of increasing antimicrobial resistance. Compared to
peripheral tissues, the use of nanoparticles is especially important
for CNS infections because of the BBB exclusivity. In the
periphery, the major objective of nanoparticle usage is to target
specific cell types and enhance cellular uptake of the drug or
payload. In the CNS, these same attributes hold with the
additional requirement of BBB penetration, which adds
complexity to any potential therapeutic application.
Nanoparticle-mediated metabolic modulation therapy could
bolster endogenous cellular effector mechanisms to better fight
infections compared to the introduction of compounds with
harmful side effects throughout the CNS and periphery.
Alongside future work into nanoparticle-based treatments for
CNS infections, we anticipate the need for more long-term
studies to address potential nanoparticle toxicity. Finally, we
predict that the most effective nanoparticle therapeutics for CNS
infections will be realized in a combinational platform leveraging
not only metabolic modulation but also nanoparticle-
encapsulated or intravenous anti-infection agents. The optimal
metabolic modulation therapy may also not take the form of a

Frontiers in Immunology | www.frontiersin.org

38

June 2021 | Volume 12 | Article 670931


https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

Korshoj et al.

Nanoparticle Systems for CNS Infection

single re-polarization event, but instead a series of controlled
toggling between pro- and anti-inflammatory states to adjust to
the temporal nature of inflammation as the infection subsides.
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Systemic delivery of peptide-major histocompatibility complex (pMHC) class lI-based
nanomedicines can re-program cognate autoantigen-experienced CD4+ T cells into
disease-suppressing T-regulatory type 1 (TR1)-like cells. In turn, these TR1-like cells
trigger the formation of complex regulatory cell networks that can effectively suppress
organ-specific autoimmunity without impairing normal immunity. In this review, we
summarize our current understanding of the transcriptional, phenotypic and functional
make up of TR1-like cells as described in the literature. The true identity and direct
precursors of these cells remain unclear, in particular whether TR1-like cells comprise a
single terminally-differentiated lymphocyte population with distinct transcriptional and
epigenetic features, or a collection of phenotypically different subsets sharing key
regulatory properties. We propose that detailed transcriptional and epigenetic
characterization of homogeneous pools of TR1-like cells will unravel this conundrum.

Keywords: T-regulatory type 1 (TR1) cells, peptide-MHC class ll-coated nanoparticles, T-cell reprogramming,
interleukin 10 (IL10), autoimmune disease, therapy

INTRODUCTION

Interleukin 10 (IL-10)-producing regulatory T cells (Tregs) are key to immune homeostasis and play
opposing roles in autoimmunity versus cancer. While the FoxP3+ Treg cell subset has been
thoroughly described, FoxP3 and CD25 double-negative T cells producing IL-10 in the context of
low IL-4 secretion are generally known as T-regulatory type 1 (TR1) cells (1). Given the lack of
specificity of these phenotypic descriptors, the literature has considered as TR1-like cells what
appears to be a rather heterogeneous collection of cell types (1), thus clouding our understanding of
the true lineage identity of this regulatory T-cell subset. Production of IL-10, coupled to the
expression of Latency-Associated Peptide (LAP), Lymphocyte Activation Gene 3 (LAG-3) or CCR5
and Programmed cell death protein 1 (PD-1) in the absence of CD25, or CD4+ cells lacking IL-7R
expression, as well as cells induced by vitamin D3 or CD46-stimulation are some of the examples of
cell types identified as TR1 (1, 2). Recently, co-expression of CD49b and LAG-3, accompanied by
the expression of ICOS and PD-1, has been associated, in both humans and mice, with TR1-ness (3,
4), but these markers are not sufficiently specific or sensitive. Other surface markers have been
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found to be variably upregulated by IL-10-producing T-cell
subsets (5-8), including Cytotoxic T-Lymphocyte antigen 4
(CTLA-4), T-cell immunoglobulin and mucin-domain
containing-3 (TIM-3) or TIGIT, as well as transcription factors
(TFs) like T-bet, Aryl hydrocarbon receptor (AhR) or Nuclear
Factor Interleukin 3-regulated (Nfil3).

Because of the lack of specific markers, it remains unclear
whether the various IL-10 producing ‘TR1-like’ subsets
correspond to multiple different cell types, or to cells at
different stages of differentiation. Many studies implicating a
role for Treg/TRI1 cells in the therapeutic activity of various
immunotherapies have often done so solely based on an increase
in IL-10 expression by splenic CD4+ T cells. It is entirely possible
that the various phenotypes associated to IL-10-producing
FoxP3-negative CD4+ T-cell subsets correspond to cells at
different stages of TR1 cell differentiation, or to distinct subsets
of terminally differentiated cells with distinct phenotypic and/or
functional properties. Unfortunately, the transcriptional and
epigenetic profiles associated with true TR1-ness remain
incompletely defined, a fact compounded by our incomplete
knowledge on the developmental biology of the TR1 subset(s).

We have shown that treatment of various mouse models of
autoimmune disease with nanoparticles (NPs) coated with
disease-relevant peptide-major histocompatibility complex class
II (pMHCII) molecules (9) suppresses organ inflammation and

disease progression without impairing systemic immunity (10-
12). This approach has shown clear therapeutic efficacy in animal
models of type 1 diabetes (T1D), experimental autoimmune
encephalomyelitis (EAE), collagen-induced arthritis (11), as
well as primary biliary cholangitis (PBC), primary sclerosing
cholangitis (PSC) and autoimmune hepatitis (AIH) (12, 13).
PMHCII-NP therapy triggers the formation and expansion of
TR1-like CD4+ T cells from autoantigen-experienced CD4+ T-
cell precursors of as yet undefined identity. pMHCII-NPs bind
directly to TCRs on cognate T cells, resulting in prolonged
pPMHCII-TCR interactions, the assembly of large TCR
microclusters on such T cells, and rapid, robust and prolonged
TCR signaling. In turn, this results in the acquisition of
immunoregulatory properties, including the upregulation of
the cytokines IL-10, IL-21 and Transforming Growth Factor [
(TGF-B) (but neither IL-2 nor IL-4), the co-inhibitory receptors
LAG-3, CTLA-4 and PD-1, the Inducible T-cell Costimulator
(ICOS) and the transcription factors T-bet and c-Maf, among
others, in the absence of FoxP3 expression (Figure 1).

Here, we review our current understanding of the phenotype,
function and development of TR1-like cells in different
experimental settings, including pMHCII-NP-treated mice. We
identify knowledge gaps and propose that detailed
transcriptional and epigenetic characterization of homogeneous
pools of TRI1-like cells will help define both, a true state of

naive CD4+ T cell

activated CD4+ T cell

antigen-experienced
CD4+ T cell

Tr1 cell

cognate B cell

Breg cell

pMHC-NP

APC

antigen-loaded
APC

suppressed
APC

FIGURE 1 | Pharmacodynamic activity of pMHCII-NPs. pMHCII-NPs target autoantigen-experienced CD4+ T cells and induce their differentiation into memory
TR1-like cells followed by their systemic expansion. This process involves IFN-y and IL-10 signaling, but does not require IL-27. pMHCII-NP-induced TR1-like cells
carry out their regulatory function by suppressing other autoreactive T-cell specificities via IL-10, IL-21 and TGF-. IL-10 and TGF-B have immunosuppressive effects
on autoantigen-loaded APCs, inhibiting their proinflammatory function and thus avoiding the activation of other non-cognate autoreactive T cells. pMHCII-NP-induced
TR1-like cells can also interact with cognate B-cells, promoting their differentiation into Bregs in part via IL-21. Figure adapted from Clemente-Casares et al. (11).
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TR1-ness as well as the identity of the TR1-poised cell precursors
that give rise to TR1-like cells.

A BRIEF HISTORICAL PERSPECTIVE

The TRI cell subset was first described in 1997 by Groux et al.
(14). Previously, others (15, 16) had described a suppressor T-cell
population that secreted IL-10 and protected patients against
graft-versus-host disease (GvHD). This population displayed a
cytokine profile that was distinct from those of common T-helper
cell subsets, and involved the expression of IL-10, IL-5, TGF-f,
and IFN-y in the absence of IL-4 or IL-2 secretion (17). In 1997,
TR1 cells were generated in vitro and their suppressive activity
was documented both in vitro and in vivo, in a model of colitis.

Currently, all the regulatory CD4+ T cells that are FoxP3-
negative and secrete IL-10 and low levels or no IL-4 are
considered to be “TR1’. Unfortunately, this characterization
lacks specificity and likely includes phenotypically, functionally
and developmentally heterogeneous T cells. This is compounded
by the variety of protocols that can trigger the formation of
IL-10-producing cells with regulatory properties. In some cases,
TR1-like cells were generated from naive CD4+ T cells. For
example, in vitro TCR stimulation of human naive CD4+/
CD45RA+ T cells in the context of IL-10 secreted by dendritic
cells (DCs) triggered their conversion into anergic, IL-10- and
TGF-B-expressing T cells capable of suppressing effector T cells
(14, 18). Likewise, in vitro culture of murine CD4+/CD44-/
CD62L+ T cells with IL-10 or IL-27 can induce their
differentiation into IL-10 producing TR1-like cells [reviewed in
(19)]. Other lines of experimentation have suggested that IL-10-
producing TR1-like cells can also be generated from memory
CD4+ T cells, in the absence of polarizing cytokines in the culture
(20, 21). In mice, induction of transplantation tolerance via anti-
CD45RB mAD therapy is associated with the presence of antigen-
specific IL-10-producing CD4+ T cells in the memory T-cell
compartment (22, 23). There are also data supporting the view
that TR1-like cells can develop from differentiated T-helper cell
subsets. For example, Gagliani et al. provided evidence suggesting
that a fraction of the regulatory T cells that are found in the gut
arise from Th17 cells and display a TR1-like phenotype,
including the production of IL-10 and some IFN-y, and the
expression of CD49b and LAG-3, while lacking expression of IL-
4 and CCR6 (24). Moreover, there is also evidence that culture of
Th17 cells in the presence of IL-27 and TGF-P can trigger the
formation of IL-10-producing TR1-like cells in vitro (24, 25).
Likewise, stimulation of Th1 cells with CXCL12 in vitro (26), or
in the context of malaria infection (27), can promote their
differentiation into CD4+/CD25-/FoxP3-/IL-10+ T cells.
Human allergen-specific Th2 cells can also differentiate into
IL-10-producing CD49b+/LAG3+ cells with regulatory
properties (28, 29).

Unfortunately, these various “TR1-like’ cell types of different
developmental origin were not thoroughly characterized at the
phenotypic, transcriptional or functional levels. Accordingly,
whether the various TR1-like cells that were generated in these

studies correspond to one or several different cell types, or to cells
at different stages of differentiation, remains unclear.

DISTINCT PHENOTYPES

Several surface phenotypes have been attributed to TR1-like cells
(Table 1). Whether all these subsets correspond to one single,
incompletely characterized population, or comprise a collection
of phenotypically and/or functionally distinct subsets remains to
be determined.

LAP+/CD25-/CD4+ T Cells

CD4+ CD25+ Treg cells express TGF-3 on their surface and one
of their mechanisms of suppression involves TGF-3 recognition
by target cells upon cell-to-cell contact (47). Weiner et al.
reported a population of regulatory T cells that suppressed
murine colitis in a TGF-B-dependent manner, but where
CD25-negative and LAP-positive (30). LAP is the amino-
terminal domain of the TGF-3 precursor peptide that contains
the TGF-J peptide within its latent complex (48). CD4+/CD25-/
LAP+ cells are positive for thrombospondin, which can convert
latent TGF-B to its active form. CD4+/CD25-/LAP+ cells
represent ~3-5% of murine splenocytes and express high levels
of TGF-B and IL-10, as well as IL-2, IL-4 and IFN-y. A similar
population was generated after oral anti-CD3 treatment and had
a suppressive effect against autoimmune encephalomyelitis (31).

NKG2D+/CD25-/CD4+ T Cells

A small population of human CD4+ T cells that produce IL-10
and TGF- express the natural killer receptor NKG2D. These
cells are FoxP3-, CD103- and LAG-3-negative. They also express
Fas ligand (FasL), which appears to be a main contributor of
suppression by inhibiting the growth of bystander T cells (32).
Although these T cells can be found in the peripheral blood of
healthy individuals (~1-3%), they appear to increase
substantially in cancer patients (to ~6-70%). They have also
been described in patients with rheumatoid arthritis (33). One
ligand of the NKG2D receptor is the MHC class I-related chain A
(MICA), which is upregulated in tissues undergoing
inflammation or in epithelial tumors. The role of NKG2D with
regards to the immunoregulatory properties of these cells
remains unclear.

CD127'°/CD25-/CD4+ T Cells

The IL-7 receptor (IL-7R) at-chain (CD127) is important for the
survival of conventional CD4+ T cells (49) but is expressed at low
levels in CD4+CD25+ T cells (50). Héringer et al. found a
population of adaptive Treg cells that were CD25-, FoxP3- and
IL-7R-negative. These cells comprised ~1% of the total CD4+
population from human peripheral blood. They expressed low
levels of Bcl-2 and high levels of Ki-67 and ICOS, suggesting that
they had been recently activated, and had a suppressive function
mediated primarily by the secretion of IL-10 in response to
potent T-cell receptor stimuli (34). However, only 10% of this T-
cell pool produced IL-10 upon stimulation, compatible with the
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TABLE 1 | Summary of phenotypes ascribed to TR1-like cells.

Markers Where

LAP+/CD25-/CD4+ ~3-5% of murine splenocytes

After oral anti-CD3 treatment

In peripheral blood of healthy individuals
(~1-83%). Increased in cancer (~6-70%)
In patients with rheumatoid arthritis

~1% of CD4+ of human PBMCs

NKG2D+/CD25-/CD4+

CD127°%/CD25-/CD4+

CD49b+/CD25-/CD4+ In mice

LAG-3+/CD25-/CD4+ In the spleen (2%), lymph nodes (1%)
and Peyer’s patches (PP) (8%)

CD49b+/LAG-3+/ CD25-/CD4+ Peripheral blood

CCR5+/PD-1+/ CD25-/CD4+ LLamina propria

CD44"/CD62L"°/IL-7R~/

LAG-3+/CD49b+/ LAP+
Other markers

TIGIT

TIM-3

CD226

Spleen and draining lymph nodes of
PMHCII-NP-treated mice

ROG

Egr-2

c-Maf and AhR
IRF4

LXR

Bhihe40

IL-27-induced TR1-like cells
Activin-A stimulated human TR1-like cells

Phenotype Species  Reference

High levels of TGF-B and IL-10, IL-2, IL-4 and IFN-y Mouse (30)

Suppressive effect in autoimmune encephalomyelitis Mouse (81)
Human (82)
Human (83)

Low levels of Bcl-2 and high levels of Ki-67 and ICOS Human (34)

Secretion of IL-10 upon TCR engagement

Secretion of IL-10 TGF-B and IFN-y. Anti-diabetogenic Mouse (35-38)

and anti-arthritogenic

Anergic upon TCR ligation, secrete IL-10 and IFN-vy, and Human (39

low amounts of IL-2 and IL-4. Expression of Egr-2 and

Blimp-1

IL-10 producing suppressive cells Human/ ()]
mouse

Secretion of IL-10- and IFN-y. Expression of LAG-3 Human (2, 40)

upon stimulation

Secretion of IL-10, IL-21, TGF-B and IFN-v, but no IL-2, Mouse (11)

IL-4 or IL-17. Expression of c-Maf, T-bet and Blimp-1.
Mouse 5)
Mouse (S)]
Human/ (3, 41)
mouse
Mouse (42)
Mouse (43)
Mouse (44, 45)
Human (46)
Human (7)
Human (7)

presence of a small subset of TR1-like cells within the CD25-/
FoxP3-/IL-7R- pool.

CD49b+/CD25-/CD4+ T Cells

Several studies have identified a population of CD4+ T cells with
regulatory activity that express CD49b. These cells had anti-
diabetogenic (35) and anti-arthritogenic properties in mice (36),
were both FoxP3- and CD25- and secreted the regulatory
cytokines IL-10 and TGE-p, as well as IFN-y. In later studies, it
was shown that these T cells suppressed CD8+ T-cell responses
and IFN-y production by CD4+ T cells, presumably via IL-10
(37, 38).

LAG-3+/CD25-/CD4+ T Cells

LAG-3 is known to suppress T-cell proliferation (51). Despite
being required for the maximal regulatory activity of
conventional CD4+CD25+ Treg cells, LAG-3 protein can
hardly be detected on the surface of CD4+CD25+ T cells. In
contrast, LAG-3 was found to be expressed by a subset of CD4+
CD25- T cells (39) found at low frequencies in the spleen (2%)
and lymph nodes (1%) but at higher frequencies in Peyer’s
patches (PP) (8%). These T cells are anergic upon TCR
ligation, but they secrete high quantities of IL-10, moderate
amounts of IFN-y and low amounts of IL-2 and IL-4. These
cells do not express FoxP3 and, unlike CD4+/CD25-/LAP+ cells,
express low levels of CD103 and LAP. They are further
characterized by expression of the Early response gene 2 (Egr-2),
a transcription factor that is a negative regulator of T-cell

activation, inducing an anergic state (52). These CD4+/CD25-/
LAG-3+ cells were also found to express the Prdml gene,
encoding the B lymphocyte-induced maturation protein
(Blimp)-1.

CD49b+/LAG-3+/CD25-/CD4+ T Cells

In 2013, Gagliani et al. provided evidence indicating that co-
expression of LAG-3 and CD49b can be used to enumerate
human and mouse TRI-like cells (3). CD49b had been
previously described as a marker for regulatory CD25- T
cells, but cannot be used in isolation to identify this T-cell
subset, because it can also be expressed by Thl7 cells and
certain memory CD4+ T-cell subsets (53). Likewise, LAG-3 is
associated with T-cell activation and IL-10 production, but its
expression is not unique to any particular T-cell subset; it
can be upregulated by conventional T cells upon activation
and is also expressed by FoxP3+ Tregs (51).

CCR5+/PD-1+/CD25-/CD4+ T Cells

Geginat and coworkers used the C-C chemokine receptor type 5
(CCR5) and PD-1 as markers to purify TR1-like IL-10- and IFN-
v-producing cells from the human intestine (2, 40). They
demonstrated that the majority of IL-10+/CD4+/CD25-/
IL-7R- T cells found in the lamina propria co-expressed CCR5+
and PD-1+ (2). Despite expressing Lag3 mRNA, only a small
percentage of cells displayed LAG-3 protein in the steady state.
In vitro stimulation triggered the upregulation of surface LAG-3
protein expression (2).
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Other Markers

TRI1-like cells express several other surface molecules and
transcription factors, albeit none of them specifically. For
example, both murine and human IL-10 producing TR1-like
cells can express the immune checkpoint molecules TIGIT (5)
and TIM-3 (8), but conventional FoxP3+ Treg cells and T-
follicular regulatory (Tfr) cells (54, 55) can also express these
markers. CD226, presumably involved in the cytotoxic activity of
at least some TRI1-like cells, is another example of such lack of
specificity (3, 41).

With regards to transcription factors, ROG (the repressor of
GATA-3), a regulator of Th differentiation and cytokine
production upon activation (56), has also been described in
TR1-like cells (42). Since expression of Egr-2 in CD4+ T cells
induces IL-10 production by binding to the Blimp-1 promoter
(57), Okamura et al. proposed that this transcription factor
might be involved in the acquisition of a suppressor phenotype
by CD4+/CD25-/LAG-3+ T cells (43). However, purified TR1-
like cells from the gut of anti-CD3 mAb-treated mice, as well as
those induced in vitro, express levels of Egr-2 that are no different
than those seen in effector T cells (3). Likewise, the transcription
factors c-Maf and AhR, which are expressed by IL-27-induced
TR1 cells and bind to the /10 promoter in TR1 cells (44, 45), are
also expressed by non-TRI1 cell types, including human and
murine Th17 subsets (58, 59). The interferon regulatory factor 4
(IRF4) is yet another non-TRI1 cell-specific transcription factor
that presumably plays a role in the developmental biology of
TR1-like cells, as a downstream effector of the inducible tyrosine
kinase (ITK) (60). Since IRF4 regulates Blimp-1, it is probably
involved in the regulation of IL-10 expression in these cells, along
with other transcription factors. Activin A-induced IRF4
activation has been suggested to promote human TR1-like cell
formation in vitro (46). The liver X receptor (LXR) and Bhlhe40
are other transcription factors found to be expressed in at least
some TRI-like cells (7).

PMHCII-NP-Induced TR1-Like Cells

When compared to other TR1-like subsets, the IL-10-producing
CD44"/CD62L"°/IL-7R~/CD25-/FoxP3- TRI-like cells that
arise in vivo in response to pMHCII-NP therapy co-express
several of the markers previously identified in different TR1-like
cell subsets, including LAG-3, CD49b, ICOS, LAP, c-Maf, T-bet,
and Blimp-1. These cells produce the cytokines IL-10, IL-21 and,
to a lesser extent, IFN-v, but no or very low levels of IL-2, IL-4 or
IL-17 (11). Thus, these cells appear to embody the phenotypic
properties of most other TR1-like cells, begging the question of
whether different IL-10-expressing CD4+CD25- TR1-like cell
subsets, as described in the literature, correspond to one single
cell subset rather than to a phenotypically heterogenous
collection of distinct cell types.

MECHANISMS OF ACTION

In order to affect regulatory activity, TR1 cells need to be
activated by antigen recognition. Upon activation, they target
effector T cells and/or professional APCs via cytokines, direct cell

contact, metabolic disruption and/or cytolysis (Figure 2).
Although TCR activation is antigen-specific, TR1-mediated
suppression of APCs or neighboring T cells is antigen-agnostic
(bystander immunoregulation).

Interleukin 10

Upon activation, TR1 cells secrete the immunoregulatory cytokines
IL-10 and TGF-B (Figure 2). IL-10 has effects on different cell
populations. Although IL-10 expression is a hallmark of TR1-like
cells, this cytokine can also be produced by other CD4+ T-cell
subsets, as well as CD8+ T cells, macrophages, DCs and B
cells (61). IL-10 suppresses T-cell responses by inhibiting T-cell
proliferation (62) and cytokine production by effector T cells,
including IL-2, IEN-y, IL-4, IL-5 and TNF-o. Moreover, IL-10
can downregulate MHC class II and costimulatory molecule
expression in APCs, and reduce the production of pro-
inflammatory cytokines (IL-l1o. and -B, IL-6, IL-12, IL-18, and
TNF-o) and chemokines (CCL2, CCL5, CCL12, CXCL2, CXCL10,
and IL-8) by these APCs (61). In humans, IL-10 can elicit the
generation of tolerogenic DCs by upregulating immunoglobulin-
like transcripts 3 and 4 (ILT3, ILT4) and the non-classical HLA-G
molecule (63). On B-cells, IL-10 promotes proliferation, MHC II
expression and isotype switching to 1gG4 (64). IL-10 also amplifies
regulatory T-cell formation. IL-10 stimulation of CD4+ T cells can
induce the expression of IL-10, T-cell anergy or TRl-like cell
differentiation in a STAT3-dependent manner. STAT3 promotes
IL-10 expression and represses pro-inflammatory cytokine
expression (65). It is unclear whether the phenotype of full-
fledged (i.e. fully differentiated) TR1-like cells is stable. However,
pMHCII-NP-induced, antigen-specific TR1-like cells can persist
for several months post-treatment withdrawal without any obvious
loss of key phenotypic properties or acquisition of pathogenic
activity (11).

Transforming Growth Factor

Like IL-10, TGF-B inhibits APC function and T-cell
proliferation, differentiation and cytokine production
(Figure 2). TGF-P suppresses T-cell proliferation by inhibiting
IL-2 production and downregulating cyclins while upregulating
cyclin-dependent kinase (CDK) inhibitors. It also inhibits the
differentiation of both CD4+ and CD8+ T cells into effectors, by
inhibiting master transcriptional regulators of each phenotype
(GATA-3, T-bet, IL-12RB2). The main effect of TGF-$ on APCs
involves inhibition of their maturation, in part by upregulating
indoleamine 2,3-dioxygenase (IDO) expression and by inhibiting
MyD88-mediated TLR signaling (66). As shown in (11, 12), the
therapeutic effects of pMHCII-NP-induced TRI1-like cells are
dependent on IL-10 and TGF-f. The blockade of these cytokines
with monoclonal antibodies abrogates the suppression of
autoantigen crosspresentation by pMHCII-NP-expanded TRI-
like cells and thus the therapeutic properties of pMHCII-NP
treatment in several models, including T1D, EAE and
liver autoimmunity.

Costimulatory and Co-Inhibitory Molecules
TR1-like cells can also inhibit APCs in a cell contact-dependent
manner upon engagement of co-inhibitory receptors such as
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FIGURE 2 | Mechanisms of action. TR1-like cells can suppress effector T cells directly or indirectly, by modulating the phenotype and function of APCs via IL-10
and TGF-B. IL-10 also induces a regulatory phenotype in APCs, by triggering the upregulation of tolerogenic molecules (i.e. ILT3, ILT4 and HLA-G) and the
production of IL-10, further amplifying TR1-like cell formation. TR1-like cells can also make direct cell-to-cell contacts with APCs via cell surface CTLA-4 and PD-1,
inhibiting APC-induced effector T-cell activation. TR1-like cells can kill myeloid APCs via granzyme-B (GZMB) and perforin (PRF). In addition, they can suppress T-cell
activation via metabolic disruption.

CTLA-4, PD-1, LAG-3 or TIGIT and the costimulatory molecule LAG-3 is another negative regulator of T-cell activation. This
ICOS (Figure 2). molecule is structurally similar to CD4 and binds MHC class 1I

Like other members of the CD28 family, CTLA-4 can bind  molecules with higher affinity than CD4 (39). Okazaki’s work has
CD80/86, but it does so with higher affinity than the co-  recently shown that LAG-3 does not universally bind to all MHC
stimulatory molecule CD28. In the presence of CTLA-4,  class II molecules, but rather recognizes stable pMHC class II
CD80/86 engagement by CD28 on T cells is inhibited. In  complexes (72). LAG-3 signals intracellularly, transducing
addition, CTLA-4 can signal into T cells through Src  inhibitory signals that hinder T-cell activation (72). Inhibitory
homology region 2-contatining protein tyrosine phosphatase 2 signals through the LAG-3 intracytoplasmic region are mediated
(SHP-2), dephosphorylating TCR and CD28 signaling by a FXXL motif in the membrane-proximal region and the EX

intermediates and promoting T-cell inactivation (67). repeat in the C-terminal region (73). In addition, the LAG-3-
However, engagement of CTLA-4 on T cells by its ligands on ~ pMHCII interaction inhibits DC activation (74).

APCs can also have inhibitory effects on the latter, such as by PD-1 is a co-inhibitory receptor that belongs to the Ig
triggering the downregulation of CD80 and CD86 (68-70), or by  superfamily containing ITIM and ITSM motifs and signals
upregulating IDO expression by APCs (71). after interacting with its ligands PD-L1 or PD-L2. PD-LI is
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expressed on leukocytes, non-hematopoietic cells and non-
lymphoid tissues, and can be induced in parenchymal cells by
inflammatory cytokines (e.g. IFN-y) or tumorigenic signaling
pathways. PD-L1 expression is also found on different tumor
types and is associated with an increased number of tumor-
infiltrating lymphocytes (TILs) and poor prognosis. PD-L2 is
primarily expressed on professional APCs (DCs and monocytes)
but can be induced in other immune and non-immune cell types.
PD-1 has a higher binding affinity for PD-L2 than for PD-L1, a
difference that might be responsible for the differential
contributions of these two ligands to immune responses. It has
an inhibitory function similar to that of CTLA-4, by recruiting
SHP-1 and SHP-2 phosphatases, reducing T-cell activation and
inducing Treg differentiation (75). There is also emerging
evidence for ‘reverse signaling’ through PD-L into DCs. PD-1
binding to PD-L2 decreases the expression of DC maturation
markers, such as CD40, CD80 and CD86, and increases IL-10
production by DCs, resulting in a suppressive DC
phenotype (76).

TIGIT is another immune checkpoint inhibitor that interferes
with the activation of T and NK cells. It has an extracellular IgV
domain and an intracellular ITT domain that recruits SHIP-1 to
mediate T-cell inactivation (77). TIGIT competes with the
immunoactivator receptor CD226 (DNAM-1) for the same
ligands: CD155 (poliovirus receptor, PVR) and CD112
(Nectin-2 or PVRL2), expressed on APCs, T cells and some
non-hematopoietic cell types like tumor cells (78). TIGIT
binding to its ligands on APCs has an effect on DC cytokine
production, inducing IL-10 expression and inhibiting the
expression of IL-12, reducing T-cell activation (79).

ICOS is a costimulatory molecule with structural homology to
CD28 and CTLA-4 that binds to ICOS-L on DCs, B cells, and
macrophages. ICOS-ICOS-L engagement regulates antigen
presentation and secretion of regulatory cytokines such as
IL-10 by APCs (80-82).

Metabolic Disruption

TR1-like cells can also inhibit effector T cells via metabolic
disruption mechanisms, similar to those used by FoxP3+
Tregs. In TR1-like cells, the main proteins involved in this
process are the ectoenzymes ectonucleoside triphosphate
diphosphohydrolase 1 (CD39) and ecto-5"-nucleotidase
(CD73). These enzymes hydrolyze extracellular 5-adenosine
triphosphate (ATP) to adenosine, disrupting the metabolic
state of T cells. ATP released during T-cell activation (83) has
an effect on T-cell and APC activation (Figure 2). First, CD39
degrades ATP and ADP into AMP (84), which is then further
degraded to adenosine by CD73 (85). Adenosine can bind to A,
receptors, inhibiting T-cell proliferation and cytokine production
of effector T cells (86). Binding of adenosine to these receptors on
APCs inhibits their maturation and the secretion of pro-
inflammatory cytokines, while inducing the secretion of IL-10 (87).

Killing
Another mechanism via which TR1-like cells can inhibit T-cell
responses is by killing APCs, particularly APCs of myeloid
origin. TR1-like cells can express both granzyme A and B

proteins, which, together with perforin, mediate cell-mediated
cytotoxicity (88) (Figure 2). In humans, granzyme expression
has been shown to be induced by IL-10 signaling (89). Unlike
NK-mediated killing, which takes place when target cells lack or
downregulate MHC class I, TR1-mediated cytolysis is antigen-
dependent and only takes place when there is TCR engagement
with cognate pMHC on the APC (it also requires recognition of
other surface molecules expressed by the APC, including CD54
(ICAM-1), CD58, CD155 and CD112) (41). In addition to direct
effects on the activation of antigen-specific CD4+ T-cell
responses, APC killing indirectly impairs the activation of
bystander T cells. Although pMHCII-NP-induced TRI-like
cells can express granzymes, they lack cytolytic activity against
peptide-pulsed B-cells or DC cells (11).

DRIVERS OF TR1-LIKE CELL FORMATION
TCR Signaling

TCR stimulation is essential, but not sufficient for the generation
of TRI1-like cells. pMHC multimers (90-92) or superantigens
(93, 94) have been found to induce IL-10-production in some
T-cell populations, although it is not clear whether the resulting
cells were bona fide TR1-like cells. Several studies have suggested
that the strength of the TCR interaction plays an important role;
high avidity interactions favor IL-10 production (95), in
particular the number of IL-10-producing cells and the cells’
suppressive properties (96). The dose of antigen appears to play a
lesser role, as high doses of ligands were not enough to induce IL-
10 unless they were administered simultaneously with IL-12 (97,
98). Nevertheless, repeated high-dose stimulation was indeed
sufficient to induce IL-10. One study pointed to Nfil3 as a
transcription factor involved in the upregulation of IL-10
production in response to repeated antigenic stimulation (99).
However, as noted above, it is unclear whether these cells were
true TR1-like cells or simply Thl cells that have acquired the
ability to produce IL-10. Singha et al. have shown that the ability
of pMHCII-NP to elicit TR1 cell formation is dependent on high
pMHCII densities onto the NPs. High densities promote
sustained pMHC-NP-TCR interactions and formation of TCR
microclusters, amplifying the duration and magnitude of TCR
signaling, which is associated with their pro-TR1-like cell-
differentiation properties (9).

Interleukin 10

IL-10 has been associated with the induction and maintenance of
TR1-like cells (14, 100), although some studies have suggested
that it is dispensable (101). In the absence of IL-10 (in I/10 gene
knockout mice) pMHCII-based nanomedicines could readily
trigger the expansion of cognate T cells, but these cells
upregulated IL-4, suggesting a role for IL-10 in the acquisition
of the full-fledged TR1-like cell phenotype (11). Tolerogenic DCs
are the main source of IL-10 in vivo and they may play a role in
the induction of TR1-like cells under physiological conditions
(102, 103). Indeed, human IL-10-producing DCs have the ability
to induce TRI1-like cell differentiation in vitro in an IL-10-
dependent manner (63, 104).
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Interleukin 27

IL-27, largely produced by activated APCs (105), can support the
generation of IL-10-producing TR1-like cells and CD8+ T cells
(106, 107). It is a member of the IL-12 family and is a
heterodimer composed by the Epstein-Barr virus-induced gene
3 (Ebi3)-encoded IL-12-related p40 and the IL-27 p28 (or IL-
27a) chains. IL-27 binds to the IL-27 receptor (IL-27R) on DCs,
monocytes, macrophages, T and B lymphocytes, NK cells, mast
cells, and endothelial cells. This receptor is a heterodimer
composed by the orphan cytokine receptor WSX-1 (also
known as T-cell cytokine receptor (TCCR)) and a signal-
transducing chain, the glycoprotein 130 (gp130).

IL-27 has inhibitory effects on Th1, Th2 and Th17 subsets as
well as on APCs (108-110). Several studies have shown that it is
capable of inducing both murine (111, 112) and human (106,
113) IL-10-producing T cells. Signaling through the IL-27R
primarily induces STAT1 and STAT3 activation, promoting
the expression of AhR and c-Maf transcription factors, which
in turn control IL-10 and IL-21 production, hallmarks of the
TR1-like cell phenotype (44). STAT3 further upregulates Egr-2,
which as noted above contributes to IL-10 production by
promoting Blimp-1 expression (57) (Figure 3).

Notwithstanding the positive role of IL-27-IL-27R
signaling in TR1-like cell differentiation in vitro, pMHCII-
NP-induced TR1-like cell formation in vivo is IL-27R-
independent (11).

Interleukin 21

IL-21 is a type I cytokine that is produced by antigen-stimulated
CD4+ T cells as well as NKT cells, and it has pleiotropic effects
targeting T, B, NK, and myeloid cells (114). IL-21 binds to a
heterodimeric receptor that is composed by the IL-21Ro chain
(115) and the common cytokine receptor Y. chain and signals
through STAT3 and, to a lesser extent, STAT1 and STATS5. IL-21
plays a critical role in the regulation of Ig production and in the
differentiation of B-cells into antibody-producing plasma cells
(116, 117), in part by inducing T-follicular helper (TFH) cells
(118), and has been implicated in the promotion of CD8+
T-cell and NK cell responses (119). IL-21 can also have
negative effects on immune responses, such as by inducing B-
cell apoptosis (120) and inhibiting DC maturation and function
(121). c-Maf, expressed by TR1-like cells, contributes to IL-21
expression (59), and IL-27 promotes IL-21 expression in TRI-
like cells by upregulating c-Maf (44). Furthermore, IL-21
functions as an autocrine growth factor that facilitates the
expansion and homeostasis of IL-27-derived TR1-like cells
(44), in part by promoting the upregulation of IL-10 (122)
and, in turn, c-Maf expression. Like their IL-27-induced
counterparts, pMHCII-NP-induced TR1-like cells express and
secrete high levels of IL-21 upon recognition of cognate pMHCII
on professional APCs (11, 123), which then plays a critical role in
the TR1-like cell-induced differentiation of conventional B-cells
into IL-10/IL-35-producing Breg cells and in the recruitment/re-
programming of neutrophils into myeloid-derived suppressor-like
cells, as downstream effectors of pMHCII-NP-induced
immunoregulation (11, 123).

Inducible Costimulator

The ICOS molecule, a member of the B7 superfamily, is a
glycosylated disulfide-linked homodimer that is expressed by
certain T-cell subsets, including TFH- and TR1-like cells, upon
productive TCR ligation. The ICOS-L is expressed on a wide
range of lymphoid and non-lymphoid cells types, including
APCs (124). ICOS signaling has been implicated in IL-10
production (80), as well as in IL-6-induced TFH cell
specification (125, 126), although it can also stimulate the
production of Thl and Th2 cytokines in vivo. There is also
evidence that c-Maf is a downstream target of ICOS engagement
(59, 127), suggesting that ICOS engagement on TR1-like cells
plays a role in the stabilization of the TR1-like cell phenotype, in
part by sustaining IL-21 and IL-10 expression.

Interleukin 6

IL-6 is a pleotropic cytokine with both pro- and anti-inflammatory
effects. It has been associated with the development/progression of
certain autoimmune diseases, such as EAE, rheumatoid arthritis
and psoriasis (128-130), in part by promoting Th17, TFH and B-
cell responses (131). However, it has suppressive effects on the
development of T1D, dextran sodium sulfate (DSS)-induced
colitis and inflammatory bone destruction (132-134). IL-6,
together with TGF-3, was found to induce expression of IL-10
in Th17 cells without suppressing IL-17 production (112, 135). It
has also been shown that IL-6 can upregulate IL-21 production
and, together with IL-2, can induce IL-10 expression and thus
promote TR1-like cell generation (136), even in the absence of IL-
27 or TGF-B. It is worth noting that IL-6 shares certain structural
homology with IL-27 and that, like IL-27, binds to the gp130
receptor. Both cytokines signal through STAT1 and STAT3. IL-6
can upregulate the TR1-like transcription factors c-Maf, AhR and
IRF4 which, as noted above, play a role in IL-10 and IL-21
production (136).

Type | Interferons

The type I interferons IFN-o and -B, constitute the first barrier
against viral infections by inducing an ‘antiviral state’ in target
cells which seeks to blunt protein synthesis, degrade mRNA and
promote cell death in order to prevent viral replication. Type I
interferons also induce upregulation of MHC I and adhesion
molecules to enhance cytotoxic T lymphocyte (CTL)-mediated
killing of virus-infected cells. However, IFN-o. also has anti-
inflammatory properties, such as the suppression of IL-8 and IL-1
production or the upregulation of the IL-1R antagonist (IL-
1RA). By signaling via STAT1, STAT2 and STAT3 (137, 138),
type I IFNs can promote the expression of IL-10 by CD4+ T cells
(139-142), including memory T cells. When administered
with anti-CD3 and IL-10, IFN-o promoted the development of
TR1-like cells (100).

Interleukin 2 and Interleukin 15

IL-2 and IL-15 function as T-cell growth factors (143, 144). IL-15
was initially shown to play a critical role in the preservation of
the memory repertoire, by preventing T-cell apoptosis (145) and
promoting the survival of resting memory T cells (146, 147).
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FIGURE 3 | Transcriptional regulation of TR1-like cell formation. TR1-like cell differentiation requires the integration of different stimuli. TCR signaling, through IRF4,
can activate IL-10 expression. Many cytokines, including IL-10, IL-21, IL-6, type-I interferons and IL-27 signal via STAT1 and/or STATS proteins, activating several

transcription factors that regulate IL-10 and IL-21 expression. ICOS signaling is also a direct regulator of IL-21 expression, while IL-2 or IL-15 cytokines can induce
IL-10 directly via STAT5 binding to //70 or via STAT5-mediated activation of Blimp-1.

Some years later, Bacchetta et al. described IL-15 as a growth The IL-15R shares its B and 7y chains with the IL-2R (150,
factor capable of inducing and supporting TR1-like cell ~ 151). Although similar, IL-2 and IL-15 have non-overlapping
proliferation in the absence of TCR ligation (148). Culture of  functions. While IL-2 is mainly produced by T cells and plays a
TRI1-like cell clones with IL-15 supported their in vitro  major role in the homeostasis of IL-2Ra. (CD25)-expressing T
proliferation. A recent report has suggested that IL-15 may  cells, like activated T cells or nTregs (143, 152), IL-15 is produced
inhibit the production of IL-10 by DCs, thus preventing the  during the innate immune response by cell types other than
generation of IL-10-producing CD4+ T cells (149). T cells (151). Stimulation with IL-2 can reverse clonal anergy
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(153). IL-2 and other y-chain cytokines, such as IL-15 or IL-21,
signal through STATS5. The presence of a STAT5-responsive
intronic enhancer in the 1110 locus suggests that these cytokines
might also contribute to IL-10 expression by CD4+ T cells
(154, 155).

Role of Antigenic Experience and TR1-
Relevant Cytokines in pMHCII-NP-Induced
TR1 Cell Formation

The pMHCII-NP-induced TR1 population specifically develops
from autoantigen-experienced precursors (11). For example,
whereas diabetic NOD.G6pc2™'~ mice (which lack IGRP)
responded to BDC2.5mi/IA¥-NPs like wild-type NOD mice,
they did not respond to IGRP, ,,/IA¥ -NPs. In vitro, BDC2.5
TCR-transgenic anti-CD3/anti-CD28 mAb-activated but not
naive T cells upregulate both CD49b, LAG-3 and IL-10 in
response to BDC2.5mi/IA¥ -NPs, indicating that ligation of
cognate TCRs by NP-bound pMHCII complexes can trigger
these events only in antigen-experienced cells.

Studies using diabetic NOD.Ifng”~ and NOD.II10”~ mice
revealed that development of the TR1 precursors and/or TR1-
like cells that expand in response to this therapy requires IFN-y
in addition to IL-10 (11). The memory-like phenotype and the
upregulation of T-bet mRNA in the expanded TR1-like cells,
coupled with the inability of pMHC-NPs to trigger expansion of
cognate TR1-like cells in non-diseased mice or NOD.Ifng '~ mice
suggested that the TR1 precursors might be autoantigen-
experienced effector/memory T cells of an as yet unknown identity.

As noted above, although IL-27 plays a role in the induction
of TR1-like cells from naive T-cell precursors, where it triggers
expression of the transcription factor c-Maf, IL-21 and ICOS
(44), IL-27 is dispensable for pMHCII-NP-induction of TR1-like
cells (11). Since, unlike IL-27, pMHC class II-NPs can only
trigger TR1-like cell formation from antigen-experienced but not
naive T cells (11), these observations are compatible with the
possibility that pMHCII-NPs operate downstream of IL-27.

The specific roles of ICOS, IL-2, IL-6, IL-15 and type I IFNs in
the development of pMHCII-NP-induced TR1-like cells remains
to be determined.

TRANSCRIPTIONAL REGULATION

Transcription factors translate different TR1-like cell-promoting
stimuli into transcriptional regulation of key TR1-like cell genes,
thus playing a critical role in TR1-like cell specification (Figure 3).

IRF4

The IL-2 inducible T-cell kinase (ITK) plays an essential role in
T-cell activation, differentiation and function in response to TCR
ligation (156). Although the lack of ITK impairs the development
of IL-27-induced TR1-like cells, constitutive expression of the
IRF4 (a downstream target of ITK signaling) overcomes this
effect (60). Of note, IRF4 expression has been linked to the
expression of IL-4 and IL-10 in Th2 cells (157), IL-21, Blimp-1
and Bcl-6 in TFH cells (158) and IL-10 expression in Treg cells
(159) or Thl cells (157).

c-Maf and AhR

c-Maf has context-dependent effects on IL-4, IL-10 and IL-21
expression. c-Maf positively regulates IL-4 production in both
TFH and Th2 cells (160, 161), induces IL-21 expression in both
TFH and Th17 cells (59) and contributes to the expression of
CXCRS5 (162). c-Maf is expressed early on during IL-27-induced
TR1-like cell induction, and its expression progressively
increases with time (44). IL-27 stimulation also upregulates the
expression of AhR, implicated in FoxP3+ Treg and Thl7
differentiation (44). c-Maf and AhR have been shown to
transactivate both 1110 and II2I gene expression in TR1-like
cells (45).

Egr-2 and Blimp-1

Egr-2 is a transcription factor that plays a role in T-cell anergy
(163) and has been associated with the acquisition of regulatory
activity by CD4+ T cells (52). Egr-2 expression can be induced by
TCR ligation in the absence of costimulation, as well as by IL-27
stimulation (via STAT3). In turn, Egr-2 promotes IL-10 and
LAG-3 expression via Blimp-1 (57).

The Blimp-1 protein, encoded by the Prdml gene, is a zinc
finger-containing transcriptional regulator of plasma cell
differentiation (164), but has also been implicated in IL-10
production by CD4+ T cells (165), including both TRI-like
(25, 57, 166) and FoxP3+ Treg cells (159).

IRF1 and BATF

Whereas IL-27R signaling promotes TR1-like cell formation, in
part via the transcription factors c-Maf, AhR, Egr-2 and Blimp-1,
access of these transcription factors to their binding sites on
target genes, such as II10 or II21, is enabled by pioneering
transcription factors, such as BATF and IRF1 (167). BATF had
been previously defined as a pioneer factor for Th2, Th17 and
effector CD8+ T-cell differentiation, by modifying the chromatin
landscape of precursor cells (168-172). BATF also plays a role
in TFH differentiation, by regulating Bcl-6 and c-Maf
expression (173).

Other Transcription Factors

Other transcription factors, such as Eomes (174, 175) and Rora
(176), have also been proposed to transactivate the II10 gene in
CD4+ T cells in a context-dependent manner. For example,
Eomes requires co-expression of T-bet, the key Thl
transcription factor.

Figure 3 summarizes the main stimuli leading to TR1-like cell
induction, integrating transcriptional regulation of the key TR1-
associated genes, 1110 and II21.

Although pMHCII-NP-induced, antigen-specific TR1-like
cells can persist for several months post-treatment withdrawal
without any obvious loss of key phenotypic properties or
acquisition of pathogenic activity, the cues responsible for their
homeostatic survival remain unclear. Cytokines produced by the
TR1-like cells themselves or by downstream regulatory cell types
(e.g. Breg cells), including IL-10, IL-21 and IL-35, may play a
role. Studies employing cell-specific cytokine receptor knock-out
mice should help address this knowledge gap.
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IL-10 UPREGULATION VERSUS TR1-NESS

To date, the TR1-ness of specific T-cell types has generally been
ascribed to IL-10 expression. However, IL-10 can be expressed by
differentiated Th subsets without the need to invoke a true TR1/
regulatory phenotype.

For instance, whereas the 1110 locus lies in a closed
conformation in naive CD4+ T cells (177), all differentiated T-
helper subsets expose accessible regions along the locus (178),
together with deposition of H3K4me3 in the absence of
H3K27me3 marks (171, 179), promoting a transcriptionally-
competent state. The chromatin remodeling processes that lead
to a poised or active 1110 transcription state in Th subsets is
mediated by pioneering transcription factors.

In TRI1-like cells, BATF and IRF1 are thought to function as
pioneering factors responsible for eliciting some of the
chromatin accessibility changes that are required for TR1-like
cell differentiation. Only after certain loci, such as 1110, become
accessible, other TR1-like cell-associated transcription factors,
such as AhR and c-Maf, can then bind the /10 promoter (167).
In Th17 cells, BATF, in association with IRF4, induces II10
transcription (180). IRF4 is also involved in eliciting II10
expression in Th2 (157, 181) and Treg cells (159). STAT
proteins also contribute to I/10 expression in various Th cell
subsets, such as by priming the locus with H3K4mel. STAT4,
and STAT6 and GATA-3, induce IL-10 production in Thl and
Th2 cells, respectively (98, 182). GATA-3 induces H3 and H4
acetylation and an increase in chromatin accessibility in the 1110
locus (183). In Tregs, FoxP3 regulates IL-10 expression, but this
process is independent of DNA binding (184). Rather, FoxP3
recruits HAT1 complexes to the locus where they induce the
acetylation of H4K5 and H5K12 at the 1110 promoter, making it
more permissive for STAT3 binding (185). Nfil3 is another
transcription factor linked to IL-10 production in Thl, Th2,
Treg and NK cells, by promoting acetylation of H3 in the II10
locus (99). In contrast, in both Thl and Th2 cells, Etsl
suppresses IL-10 production, by recruiting the de-acetylase
HDACI to the I110 promoter and enhancer regions (186, 187).
Importantly, transcription factors involved in T-helper subset
specification, such as T-bet, GATA-3 or RORyt can enhance
IL-10 expression.

Thus, IL-10 expression per se is not a cell subset- but rather a
functional state-defining property and IL-10 expression can co-
exist with an effector cell program within a given T-cell subset.

A ROLE FOR EPIGENETIC REMODELING
OF THE CHROMATIN IN TR1-LIKE
CELL FORMATION?

Transcriptional features alone do not invariably define a final
differentiated cell state. Like in other T-cell developmental or
differentiation steps, cell fate decisions require both transcriptional
changes and epigenetic remodeling of the chromatin.

For example, during development, the epigenome of the
parental gametes progressively evolves to acquire the specific

epigenome of the zygote (188). The chromatin of the zygote
further undergoes additional waves of epigenetic changes,
including DNA demethylation and methylation, modifications
in histones, and changes in chromatin accessibility (189, 190).
Epigenetic reprogramming is also essential for differentiation of
embryonic stem cells (ESCs) into distinct cell populations (190-
192). Pluripotent cells display an open chromatin configuration
that is progressively restricted during development (193),
accompanied by an increase in DNA methylation and the
redistribution of histone marks. The gene expression changes
that are associated with such chromatin remodeling processes
are not unique to the germline and also take place in somatic cells
in response to stimuli. For example, cytokine stimulation induces
chromatin changes in APCs, such as DCs or macrophages (194).
This phenomenon has also been reported for cytokine-
challenged pancreatic -cells (195), where cytokine stimulation
triggers the appearance of new regulatory elements (neo-IREs).

It is becoming increasingly clear that susceptibility of the
chromatin to undergo certain epigenetic modifications is affected
by the underlying nucleotide sequence. A significant number of
disease-associated single nucleotide polymorphisms (SNPs) lie in
fact in non-coding, regulatory regions (196). For example, T1D-
associated variants appear to be enriched in T- and B-cell
enhancers (196, 197), in some cases promoting a three
dimensional chromatin architecture that facilitates changes in
gene expression in immune cells that might be able to promote
the autoimmune pathology (198). Type 2 diabetes (T2D) is
another example of a disease whose genetic susceptibility is
commonly associated with non-coding variants (199, 200). In
this case, many risk variants locate in enhancers or super-
enhancers of genes involved in islet cell function and
differentiation (201-204).

T cells are known to undergo extensive epigenome
remodeling in response to activation/differentiation cues,
enabling the acquisition of phenotypic and functional stability
(Figure 4). The first epigenetic decision takes place when the T-
cell fate is defined in developing thymocytes (205). T-cell
activation (206) and T-helper cell polarization also involve
epigenetic modifications along with changes in transcription
factor expression. For example, Thl development involves the
upregulation of STAT1 in response to IFN-y and IL-27, leading
to the expression of T-bet, which upregulates the expression of
IFN-y, H2.0-like homeobox (HLX) transcription factors and
Runt-related transcription factor 3 (Runx3), and suppresses the
expression of GATA-3 (207-209). In turn, T-bet and Runx3
repress the /4 gene to prevent Th2 differentiation. The Ifng gene
harbors multiple regulatory elements around the locus, including
enhancers at conserved non-coding sequences and an insulator.
This locus is found in a poised, de-methylated state marked by
bivalent histone modifications (poised for either expression or
silencing) in naive CD4+ T cells, which produce low levels of this
cytokine. Th1 differentiation involves H3K4me2, H3 and H4
acetylation and the creation of accessible chromatin at regulatory
elements within the Ifng locus, together with loss of H3K27me3
throughout the locus, followed by DNA demethylation (210-
213). T-bet transactivates expression of Ifng by binding to its
promoter as well as several enhancers and by recruiting histone
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FIGURE 4 | Gene regulation in T cells. Epigenetic modifications play key roles during T-cell development, differentiation and Th polarization. In the periphery, the
epigenome regulates Th cell lineage stability/plasticity as well as IL-10 expression competency.

acetyltransferases (HATs) (214) and histone demethylases
(HDMs) (215).

In contrast, activation of the Th2 program results in the loss
of permissive histone modifications and H3K27 trimethylation
along the Ifng locus, coupled to DNA methylation (210, 216,
217). The Th2 program is induced by IL-4-mediated activation
of STAT6, which in turn activates GATA-3 (218). GATA-3
induces the expression of c-Maf, regulating IL-4 expression,
and together with STAT6 enhances the transcription of Il4, II5
and II13 (218). In mice, Il4, II5 and Il13 (encoding Th2
cytokines), together with the Rad50 gene, co-localize near a
Locus Control Region (LCR). Expression of the Il4 gene is
regulated by enhancers (overlapping with DNAse I
hypersensitive sites) that bind NFAT and Th2-promoting
transcription factors. In naive T cells, there are few accessibility
and histone modifications at these DN Ase I hypersensitive sites,
and the cytokine gene promoters and enhancers are hyper-
methylated (219). Upon Th2-polarizing stimulation, the loci
acquire permissive histone modifications and lose H3K27me3
(220, 221). In Thl cells, the Th2-cytokine locus is all covered
with H3K27me3 (222). GATA-3 induces most of these
epigenetic modifications, as it can recruit HATs and histone
H3K4 methyltransferases (218, 223), inhibit histone deacetylases
(HDACs) (224) and DNA (cytosine-5)-methyltransferase 1
(DNMT1) (219, 225), and recruit chromatin-remodeling
factors (226). In addition, the Ifng locus in Th2 cells is silenced
by H3K27me3 deposition (217).

TGF-B induction of Th17 and Treg lineage formation
represents another example. This cytokine induces both the
expression of FoxP3 and retinoic-acid-receptor-related orphan
receptor-yt (RORyt) (227-230). The context determines if the
Treg or the Th17 program is induced: in the absence of IL-6,
FoxP3 inhibits RORyt and leads to Treg formation. If IL-6 is
present, STAT3 is activated, inhibiting the expression of FoxP3
and enhancing Th17 formation. IL-17A and IL-17F are both co-
expressed by Th17 cells and the genes encoding these cytokines
co-localize and may be regulated by shared regulatory elements.
The Il17 locus contains eight different gene regulatory elements
(231). When naive CD4+ T cells are cultured under Thl7-
polarizing conditions, STAT3 (227) and RORyt (232) induce the
appearance of permissive H3 acetylation changes in the I/17a and
I117f gene regulatory elements (231), enabling their expression.

The fate of TFH and non-TFH (Th1, Th2, Th17) effector cells
is regulated by Bcl-6 and Blimp-1, which are reciprocal
regulators of each other (233). Bcl-6 binds promoters and
enhancers regulating genes involved in T-cell migration (Ebi2,
CCR6, CCR7, S1prl, Klf-2, PSGL-1, CXCR5, CXCR4, PD-1 and
SAP) (126, 234). Ascl-2 also controls TFH differentiation by
upregulating CXCR5 and CXCR4, while downregulating CCR7
and PSGL-1 expression. The Bcl6 locus in TFH cells displays
positive histone modifications, but it also contains permissive
marks in Thl, Th2 and Th17 cells (235). Other TFH-related
genes, such as c-Maf, BATF and IRF4, are also associated with
H3K4me3 in all subsets. In contrast, the Ascl2 locus is uniquely
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marked with the active chromatin mark H3K4me3 in TFH cells.
Prdml (encoding BLIMP-1), which is downregulated in TFH
cells, displays bivalent modifications, allowing re-programming
between TFH and other Th effector subsets (236).

Acquisition of Treg-cell-specific epigenetic marks during
thymocyte development (237, 238), along with FoxP3
expression, determines the regulatory phenotype of nTregs
(239). Once in the periphery, Treg cells can be divided into
subpopulations that locate in different tissues, and each acquires
an additional level of epigenetic modification that defines a
tissue-specific epigenetic footprint (240). The expression of
some Treg-function associated molecules, such as CTLA-4 or
CD25, is clearly associated with DNA de-methylation and can
occur in the absence of FoxP3. In contrast, expression of 112, Ifng
or Zap70 is lost if FoxP3 is not present. Several regulatory
elements control Foxp3 gene expression (237). The Foxp3
promoter is de-methylated upon TCR signaling, facilitating the
binding of FoxP3-inducing transcription factors (241).

Moreover, there is increasing evidence that Th subsets are
plastic. To name a few examples, T-cell populations have been
described that stably express both T-bet and GATA-3 and produce
both IFEN-yand IL-4 (242), produce both Th1 and Th17 cytokines
(243, 244), or have a Th1/Th17 phenotype but can switch to Th2
during helminth infections (245). This observed plasticity can be
regulated by different mechanisms. First, certain environmental
stimuli may be able to modify epigenetic marks responsible for
maintaining lineage stability; for example, prolonged activation of
Treg cells in vitro can lead to demethylation of the Rorc locus in
FoxP3+ Tregs and allow IL-17 production (246). Second, Th
subsets display an intrinsic plasticity potential. Although the
various lineage-specific cytokines present active histone marks in
the corresponding cell lineages and repressive marks in the others,
some transcription factors are not so strictly marked. For example,
in Thl cells, Tbx21, encoding T-bet, bears activating H3K4me3
marks in the promoter. In other Th cell subsets, on the other hand,
the Tbx21 promoter bears bivalent modifications. Likewise,
the Gata3 promoter carries H3K4me3 marks in Th2 cells, but
bivalent marks in other Th cell subsets. The same is true for Rorc
or Bcl6 genes in non-Th17 or non-TFH cells, respectively (235,
247). Third, polarized T-cell types might represent stable lineages
yet comprise a continuum of different epigenotypes with
differential susceptibility for lineage conversion in response to
external signals.

To date, the study of TRI-like cell specification is largely
based on phenotypic and transcriptional studies. Based on the
data summarized above, it is reasonable to suspect that the cues
responsible for TR1-like cell formation operate on a precursor
cell type that either has a TR1-poised epigenome or responds to
TRI1-inducing signals by undergoing further epigenetic
modifications enabling the acquisition of a stable TR1-like cell
phenotype, including DNA hypomethylation (248-250). Thus,
detailed characterization of TR1-like cells at the transcriptional
and epigenetic levels, including analysis of their chromatin
status, three-dimensional structure and interactions, as well as
DNA methylation status (Table 2), should provide unique clues
about the true identity of this cell lineage and the identity of their
cellular precursors.

CONCLUDING REMARKS

Currently, TR1-like cells are defined as a regulatory CD4+ T-cell
subset that lacks FoxP3 expression (unlike conventional FoxP3+
Treg cells) and secretes IL-10 and low levels or no IL-4. However,
this Treg cell subset lacks cell-specific markers and their
developmental origin remains a mystery. Moreover, the
signaling, genetic and epigenetic mechanisms that are
responsible for the acquisition of the TRI-like cell phenotype
in vivo remain unclear.

We posit that detailed transcriptional and epigenetic studies
will enable a better understanding of the role of this T-cell subset
in immunity, autoimmunity and cancer, the identification of
biomarkers capable of accurately track its development in vivo, as
well as a detailed understanding of gene regulatory mechanisms
responsible for TR1-like cell specification. In turn, this will help
pinpoint specific areas of the genome that might be impacted by
genetic polymorphisms associated with susceptibility and/or
resistance to specific immune-mediated diseases, and the
development and testing of compounds capable of triggering
the formation of antigen-specific TR1-like cells in vivo, for
therapeutic purposes.

TR1 cell formation in response to pMHCII-NPs afford a
unique opportunity to address the above knowledge gaps. These
compounds trigger the formation of relatively large numbers of
mono-specific TR1-like cells, thus enabling this type of studies
with unprecedented resolution. Transcriptional studies at the

TABLE 2 | Summary of epigenetic modifications and their effects on gene expression.

Epigenetic modification Found in Relation to gene transcription Study methods

Chromatin accessibility Promoters and GREs Activating ATAC-seq
DNAse-seq
MNase-seq

H3K27ac Active enhancers and TSS Activating

H3K4me3 TSS Activating

H3K4me1 Gene body Primed enhancers Activating ChiP-seq
Cut&Run

H3K27me3 Bivalent/inactive enhancers, promoters and intergenic regions Repressing Cut&Tag

H3K9me3 Constitutive heterochromatin Repressing

DNA methylation Enhancers, promoters, gene body (CpG rich regions) Repressing Bisulfite sequencing
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bulk and single cell levels should help determine the
homogeneity or heterogeneity of the resulting cognate T-cell
pools, and pinpoint developmentally-related cell subsets with
poised TR1-like cell transcriptional programs. Epigenetic studies
shall include screening for histone modifications, chromatin
accessibility and 3D chromatin maps, to enumerate the
genome-wide distribution of active promoters and enhancers,
define the epigenomic architecture underpinning the TR1-like
cell state, describe the various steps underlying TR1-like cell re-
programming, identify key TR1-like cell epigenetic signatures,
and potentially expose new targets for therapeutic intervention.

Collectively, these studies should provide a comprehensive set
of functional, phenotypic, transcriptional and epigenetic markers
capable of specifically identifying TR1 cells. These markers
would likely play a pivotal role in guiding the clinical
translation of compounds capable of promoting TR1 cell
formation in vivo for the treatment of autoimmunity, including
pMHCII-based nanomedicines. They should also prove useful to
enumerate the contribution of this cell type to tumor progression
in the context of cancer.
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Nonviral systems, such as lipid nanoparticles, have emerged as reliable methods to
enable nucleic acid intracellular delivery. The use of cationic lipids in various formulations of
lipid nanoparticles enables the formation of complexes with nucleic acid cargo and
facilitates their uptake by target cells. However, due to their small size and highly
charged nature, these nanocarrier systems can interact in vivo with antigen-presenting
cells (APCs), such as dendritic cells (DCs) and macrophages. As this might prove to be a
safety concern for developing therapies based on lipid nanocarriers, we sought to
understand how they could affect the physiology of APCs. In the present study, we
investigate the cellular and metabolic response of primary macrophages or DCs exposed
to the neutral or cationic variant of the same lipid nanoparticle formulation. We
demonstrate that macrophages are the cells affected most significantly and that the
cationic nanocarrier has a substantial impact on their physiology, depending on the
positive surface charge. Our study provides a first model explaining the impact of charged
lipid materials on immune cells and demonstrates that the primary adverse effects
observed can be prevented by fine-tuning the load of nucleic acid cargo. Finally, we
bring rationale to calibrate the nucleic acid load of cationic lipid nanocarriers depending on
whether immunostimulation is desirable with the intended therapeutic application, for
instance, gene delivery or messenger RNA vaccines.

Keywords: nanostructured lipid carrier, antigen presenting cells, nucleic acid delivery, immunotoxicity assessment,
surface charge (zeta potential)

INTRODUCTION

In recent years, advances in field of nanotechnology have demonstrated potential for precision
medicine. For instance, lipid nanoparticles (LNPs) can be used for the targeted delivery of
therapeutic molecules, increasing their bioavailability and pharmacokinetic properties beyond the
Lipinski rules (1). Indeed, the development of nucleic acid therapeutics has long been hampered by
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the inherent hydrophilic nature, large size, and poor membrane
permeability of nucleic acids (2). LNPs can be a potent
alternative to viral-mediated nucleic acid delivery, with an
extensive range of applications such as RNA interference
(RNAi) therapy or RNA-based vaccines through intracellular
delivery, respectively, of short interfering RNA (siRNA) or
messenger RNA (mRNA) (3).

One of the primary advantages associated with LNPs is their
biocompatibility that enables their use in vivo for human therapy
(4, 5). LNPs are made of two major components: a lipid phase
and a water phase containing surfactants. LNPs are generally
divided into liposomes with an aqueous core or other LNPs; the
latter could be solid lipid nanoparticles (SLNs) with a solid core
and nanostructured lipid carriers (NLCs) featuring a core that is
a mixture of solid and molten lipids (6). This subclass of LNPs
was initially designed to improve the colloidal stability of lipid
carriers and increase the drug payload into the core by controlling
the release profile (7). Moreover, they are considered advantageous
because their manufacturing processes can be easily scaled up for
large production (8).

Due to the nature of their lipid core, these particles are not
well adapted for nucleic acid encapsulation. The loading of
biomacromolecules such as siRNA or mRNA, therefore, occurs
through the association with their shell either by chemical
modifications of Polyethylene glycol (PEG) residues (9) or by
incorporation of cationic lipids at the level of phospholipid
monolayer, thus allowing electrostatic interactions with
negatively charged nucleic acids (9-12). The most chosen
cationic lipids are quaternised cationic lipids, such as Dioleoyl-
3-trimethylammonium propane (DOTAP), which are added to
the formulation at the appropriate ratio (13). The NLCs with
DOTAP present thereby a globally positive charge; thus, their
toxicity and their impact on the immune systems need to be
assessed. A previous study has reported that positively charged
nanocarriers induce some systemic toxicity and pro-
inflammatory effects (14). The microenvironment is known to
drive distinct antigen-presenting cell (APC) fates by affecting
functions of macrophages and dendritic cells (DCs) by activating
different metabolic pathways. For example, while
lipopolysaccharides (LPS) classically activated macrophages
(M1), displaying pro-inflammatory activity, rely on glycolysis,
Interleukin 4 (IL-4) alternatively activated macrophages (M2),

Abbreviations: APCs, antigen presenting cells; DCs, dendritic cells; LNPs, Lipid
nano particles; RNAi, RNA interference; siRNA, small interfering RNA, mRNA,
messenger RNA; SLN, solid lipid nanoparticles; NLCs, nanostructured lipid
carriers; PEG, polyethylene glycol; DOTAP, Dioleoyl-3-trimethylammonium
propane; M1, pro-inflammatory macrophages; M2, anti-inflammatory
macrophages; BMDCs, bone marrow derived dendritic cells; BMDMs, bone
marrow derived macrophages; cNLCs, cationic lipid carrier; CD, cluster of
differentiation; FAO, fatty acid oxidation; ECAR, extracellular acidification rate;
IL, interleukin; PDI, polydispersity index; DLS, dynamic light scattering; ELS,
electrophoretic light scattering; SD, standard deviation; CBA, cytometric Bead
Array; LDH, lactate dehydrogenase; LPS, lipopolysaccharide; LC, lipid
nanocarrier; OCR, oxygen consumption rate; OXPHOS, oxidative
phosphorylation; NLC,nano structured lipid carrier; ¢cNLCs, cationic
nanostructured lipid carriers; nNLCs, neutral nanostructured lipid carriers; NPs,
nano particles; ROS, reactive oxygen species; SLN, solid lipid nanoparticles; TNF,
tumor necrosis factor.

displaying anti-inflammatory activity, primarily utilise fatty acid
oxidation (FAO) and oxidative phosphorylation (OXPHOS)
(15). DCs, like macrophages, respond differently in the
presence of LPS and IL4 (16).

The exposition to cationic lipid carriers (cNLCs) has been
shown to affect the functions of APCs. For instance, cNLCs were
shown to activate bone-marrow-derived dendritic cells (BMDCs)
partially by inducing the expression of two costimulatory
molecules, CD80 and CD86, but without inducing the
secretion of pro-inflammatory cytokines (17).

DOTAP itself could interact directly with ligands on the
surface of the immune system (18). In the cationic NLCs
formulation, we describe here that the phospholipid layer
incorporating cationic lipids is covered by a dense PEGylated
coating that contributes to the stability and also is known to
reduce the interaction with proteins and other biological entities
(14, 19, 20).

Moreover, how the positive charge of lipid particles
modulates the metabolic fitness of APCs and how this is
related to the cellular function have not yet been elucidated.
Therefore, understanding the impact of positively charged
particles on immune responses and particularly on APCs
metabolism, fate and cytokine secretion is crucial to control
the use of nanocarriers fully.

In the present study, we analysed the effect of NLCs surface
charge on primary APCs using BMDCs and bone-marrow-
derived macrophages (BMDMs), as cellular models. We
evaluated the impact of neutral lipid carriers (nNLCs) and
cNLCs on the secretion of different signalling factors and
mitochondrial metabolism and glycolysis. Furthermore, we
used negatively charged siRNA to reverse the net charge on
cNLCs and evaluate the effect of different surface charges on
cell function.

MATERIALS AND METHODS
Cell Culture

The murine macrophage cell line (J774.1A) was purchased from
ATCC; the cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal bovine serum
and 1% penicillin-streptomycin.

As previously described (21), BMDCs were generated from
the bone marrow extracted from C57BL/6 mice (Charles River,
I'Arbresle, France). Bone marrow cells were isolated by flushing
from the tibia and femur. Erythrocytes and GR1 positives cells were
removed by incubating with Ly-6G/Ly-6C (BD Pharmingen,
#553125) and TER-119 (BD Pharmingen, #553672) antibodies,
and the remaining negatively sorted cells were isolated using
Dynabeads isolation kit (ThermoFisher, #11047) by magnetic cell
sorting; then the remaining negatively sorted cells were resuspended
at 5x10° cells/ml in complete Iscove’s modified Dulbecco’s medium
supplemented with Granulocyte-macrophage colony-stimulating
factor (GM-CSF) (PeproTech, #315-03), FLT-3L (PeproTech,
#250-31L) and Interleukin 6 (IL-6) (Peprotech, #216-16)
according to Table 1. The transformation of the progenitors into
tully active DCs was performed over a 10-day time frame.
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TABLE 1 | Concentration of GM-CSF, FLT-3L and IL-6 for BMDCs culture.

Cells are cultured in a 100-mm TC-treated cell culture dish with 15 mL culture media

Day 0 Day 3 Day 5 Day 7 Day 10
Cell concentration 0.6 x 10%mL 0.5 x 10%mL 0.5 x 10%/mL 0.5 x 10%/mL According to cell plating
Supplement IL-6 5 ng/mL 2.5 ng/mL 2.5 ng/mL - -
FLT-3L 50 ng/mL 40 ng/mL 30 ng/mL 25 ng/mL 25 ng/mL
GM-CSF 5 ng/mL 5 ng/mL 5 ng/mL 5 ng/mL 5 ng/mL

Culture of BMDCs: BMDCs were seeded into a 100-mm TC-treated cell culture dish with 15 mL culture media. Culture media is supplemented with variable concentrations of GM-CSF,
FLT-3L and IL-6 on day O, day 3, day 5, day 7 and day 10 to harvest fully differentiated BMDCs on day 11.

BMDMs were also generated from bone marrow extracted Physical Characterisation of NLCs

from C57BL/6 mice as previously described (22). Briefly, the  The hydrodynamic diameter and polydispersity index (PDI) of
erythrocytes were removed by the RBC lysis buffer, and the the NLCs were determined by dynamic light scattering (DLS),
remaining cells were cultured in a complete DMEM with 20%  and the zeta potential was determined by electrophoretic light
L929 (Sigma, #85011425) in conditioned medium (source of  scattering (ELS) using a Zetasizer Nano ZS instrument (Malvern).
macrophage colony-stimulating factor) fo