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Editorial on the Research Topic

Unraveling Sleep and Its Disorders Using Novel Analytical Approaches

Despite significant and meritorious research efforts over the last decades, the functions and
evolutionary determinants of sleep remain one of the mysterious and relatively unexplored
dimensions of physiology (Krueger et al., 2016). The recipe for deciphering such an attractive
challenge in biology and medicine most probably includes ingredients such as unraveling the
complexity of brain functioning during sleep (Olbrich et al., 2011), the specific roles of sleep
in coordination of other body systems (Penzel et al., 2016), or defining the specific cellular and
system-related pathways that regulate or are regulated by sleep. In addition, the already established
and novel techniques and technological tools aiming to explore sleep-related systems, e.g.,
electroencephalogram (EEG), magnetoencephalogram, positron emission tomography, functional
magnetic resonance image (fMRI) and several others in the case of the brain, have their own
limitations and advantages (Huster et al., 2012).

This Research Topic aimed to be an overarching framework and instigator for those
sleep-related studies presenting novel conceptual approaches and disruptive ideas in the field.
Manuscripts submitted for this special issue represent high scientific contributions to this topic.
The only drawback in the Editors’ opinion is that most of the studies focused on sleep disorders
rather than on deep and sophisticated analyses of physiological sleep. This Research Topic might
however stimulate further research in this direction.

Among the studies finally incorporated to the Research Topic, four of them focused on
sleep apnea and cardio-pulmonary coupling, four additional articles focused on insomnia, sleep
deprivation, and micro-sleep episodes, one focused on sleep disruption and, finally, another one
focused on depression. Consistent with these topics, we have organized the rest of the document in
four sections.

SLEEP APNEA AND CARDIO-RESPIRATORY COUPLING DURING

SLEEP

The first study we present is an excellent example of the close relationship between sleep research
and the emerging technologies and analytical techniques. Kelly et al. used at-home recordings of
overnight mandibular movements to validate an automated machine-learning approach based on
random forest aimed at diagnosing sleep apnea in adult subjects. Very high accuracy performances
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were reported for several apnea-hypopnea cutoffs, thus
highlighting the approach as a promising alternative to the
standard and labor-intensive diagnostic methodologies.

Karhu et al. explored further on the implications of the
oxygen desaturation episodes in the context of sleep apnea
evolution. They analyzed 805 adults with mild sleep apnea from
the well-known Sleep Heart Health Study to show how the
characteristics of the episodes, rather than their counts number,
may be predictive of sleep apnea worsening 5 years later.

Gutiérrez-Tobal et al. analyzed the overnight
electroencephalogram (EEG) from 294 children to find
sleep apnea-related effects, including cognitive implications.
A correlation network analysis on spectral features from
the EEGs, clinical variables, and cognitive scores unraveled
both general patterns and specific associations that showed
severity-dependent sleep apnea features.

Finally, Al Ashry et al. presented a very interesting review
on cardio-pulmonary coupling during sleep. They showed
how distinct patterns are observed in the cardio-pulmonary
spectrogram, built with heart rate variability and derived
respiratory signals, according to different sleep stages, sleep apnea
endotypes and phenotypes, insomnia, and other sleep-related
conditions.

Insomnia, Sleep Deprivation, and

Micro-Sleep Episodes
Vaziri et al. presented a “Hypothesis and Theory” article
regarding insomnia. Particularly, they propose a novel
conceptual framework for the cognitive implications of insomnia
in a search for more personalized clinical interventions. The
authors argue that their methodology could pave the way to
conceptual frameworks for other cognitive problems.

Xu et al. combined fMRI data, a network centrality analysis,
and machine learning (support vector machines) to predict sleep
deprivation vulnerability. They report remarkable results in the
task while pointing out the brain regions that contribute the most
to such susceptibility in performance.

Another sleep deprivation study is presented by Xiong et
al.. The authors evaluate the effect of the arousal enhanced
drug Modafinil to mitigate the cognitive decline after sleep
deprivation. They used a rat model to report that the drug
suppresses neuronal pyroptosis and inflammation associated to
sleep deprivation.

Finally, a study on micro-sleep episodes detection is presented
by Malafeev et al.. The authors used a combination of
deep-learning techniques (convolutional neural networks and
recurrent neural networks) to identify episodes of wakefulness,
micro-sleep episodes, micro-sleep candidates, and drowsiness on
the EEG and electro-oculogram of 76 patients with excessive
daytime sleepiness. Micro-sleep episodes and wakefulness were
reported to be highly separable, while significant overlap of
these with micro-sleep candidates and drowsiness were also
shown.

Sleep Disruption
A very interesting review on new approaches to improve
sleep disruption definitions is presented by Lechat et
al.. They start by pointing out the limits of current
standards and then go over some of the latest discoveries
and techniques that have helped gain insights into sleep
disruption. The authors highlighted alterations in EEG
(in slow waves, K-complexes, or sleep spindles), oxygen
saturation (hypoxic burden), and other respiratory signals
(low arousal threshold, high loop gain, etc.), while
acknowledging automatic processing techniques such as
spectrogram, signal coupling measures, and environmental
factors.

Depression
A study on the brain activity alterations during sleep caused
by depression is presented by Lian et al.. The authors analyzed
the sleep EEG of 25 healthy controls and 26 depressed patients
using symbolic phase transfer entropy as a measure of effective
connectivity between electrodes, within the common spectral
bands, and in the different sleep stages. Results reported show
how the main way of information transition during sleep is
attenuated in depressed patients.

Altogether, these 10 studies underline the impact of sleep in
our lives, the need for increasing the research efforts on this topic,
as well as on how to develop and apply new powerful tools to
do it.
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Automatic Detection of Microsleep
Episodes With Deep Learning
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Brief fragments of sleep shorter than 15 s are defined as microsleep episodes (MSEs),
often subjectively perceived as sleepiness. Their main characteristic is a slowing in
frequency in the electroencephalogram (EEG), similar to stage N1 sleep according to
standard criteria. The maintenance of wakefulness test (MWT) is often used in a clinical
setting to assess vigilance. Scoring of the MWT in most sleep-wake centers is limited
to classical definition of sleep (30 s epochs), and MSEs are mostly not considered
in the absence of established scoring criteria defining MSEs but also because of the
laborious work. We aimed for automatic detection of MSEs with machine learning, i.e.,
with deep learning based on raw EEG and EOG data as input. We analyzed MWT
data of 76 patients. Experts visually scored wakefulness, and according to recently
developed scoring criteria MSEs, microsleep episode candidates (MSEc), and episodes
of drowsiness (ED). We implemented segmentation algorithms based on convolutional
neural networks (CNNs) and a combination of a CNN with a long-short term memory
(LSTM) network. A LSTM network is a type of a recurrent neural network which has
a memory for past events and takes them into account. Data of 53 patients were
used for training of the classifiers, 12 for validation and 11 for testing. Our algorithms
showed a good performance close to human experts. The detection was very good
for wakefulness and MSEs and poor for MSEc and ED, similar to the low inter-
expert reliability for these borderline segments. We performed a visualization of the
internal representation of the data by the artificial neuronal network performing best
using t-distributed stochastic neighbor embedding (t-SNE). Visualization revealed that
MSEs and wakefulness were mostly separable, though not entirely, and MSEc and
ED largely intersected with the two main classes. We provide a proof of principle
that it is feasible to reliably detect MSEs with deep neuronal networks based on raw
EEG and EOG data with a performance close to that of human experts. The code of
the algorithms (https://github.com/alexander-malafeev/microsleep-detection) and data
(https://zenodo.org/record/3251716) are available.

Keywords: microsleep episodes, excessive daytime sleepiness, drowsiness, deep learning, machine learning
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INTRODUCTION

Excessive daytime sleepiness (EDS) is a common complaint of
many patients (Harrison and Horne, 1996; Hara et al., 2004;
Ford et al., 2015; Hayley et al., 2015) and also reported by the
general population when sleep is chronically curtailed. Accurate
diagnosis of the underlying disorders often requires objective
evaluation of nocturnal sleep and daytime sleepiness in these
patients. State of the art methods to evaluate sleepiness are the
Multiple Sleep Latency Test (MSLT) (Carskadon, 1986) and the
Maintenance of Wakefulness Test (MWT) (Mitler et al., 1982).

Microsleep episodes (MSEs) are considered to be an
objective sign of excessive daytime sleepiness (EDS) (Hertig-
Godeschalk et al., 2020). The MWT is the primarily
used test to quantify the ability to maintain wakefulness
despite the presence of increased sleep pressure subjectively
perceived as EDS.

In most of the studies, the latency to sleep stage N1 or any
other stages of sleep is used as a definition for objective sleepiness
(Correa et al., 2014; Sauvet et al., 2014; Sriraam et al., 2016).
However, it is well accepted that signs of sleepiness appear much
earlier, not only in the EEG but also in behavioral changes and
performance lapses.

Therefore, more sensitive and systematic, but still practically
useful definitions of objective sleepiness are needed. The recently
developed Bern continuous and high-resolution wake-sleep
(BERN) scoring criteria for assessing the wake-sleep transition
zone represent such an approach (Hertig-Godeschalk et al.,
2020). The criteria were developed for visual scoring of MSEs as
short as 1 s, which is time consuming. Moreover, no generally
accepted scoring criteria exist so far. Thus, tools for automated
analysis of such data would be very useful for both clinicians
and researchers in order to reduce the workload and the
subjectivity of scoring.

In a study subsequent to the development of the BERN
scoring criteria, we developed algorithms for machine learning
based automatic detection MSEs using manually engineered
features mainly derived from spectral information of the
electroencephalogram (EEG) (Skorucak et al., 2020b).

Another interesting approach was taken by authors of the
Vigilance Algorithm Leipzig (VIGALL) (Olbrich et al., 2012).
They established scoring criteria for 7 vigilance stages (1 s
resolution; from fully awake to sleep) and developed an algorithm
for the automatic scoring of these stages.

The aim of this work was to implement a deep learning
approach using raw data as input. We think that such an
algorithm resembles human scoring, which is mainly based on
visual pattern recognition. It has also been shown that deep
learning methods perform better than classical machine learning
(ML) methods on various types of data (Goodfellow et al., 2016),
including EEG data (Davidson et al., 2006; Tsinalis et al., 2016;
Supratak et al., 2017; Chambon et al., 2018; Malafeev et al., 2018).
Automatic sleep classification has been extensively developed
mainly due to the advantages in machine learning, and especially
in deep learning (Tsinalis et al., 2016; Supratak et al., 2017;
Chambon et al., 2018; Malafeev et al., 2018; Fiorillo et al., 2019;
Mousavi et al., 2019).

Our Contribution
We developed several artificial neural networks, which work with
raw data as input and compared their performance with the inter-
rater agreement of two experts. Note that inter-rater agreement
was computed only for five recordings, which were scored by two
different experts from the same sleep center. It is also important
to note that the selection of the recordings for double scoring
was not totally random: only recordings containing MSEs were
randomly selected for double scoring. Our networks showed
similar agreement to a human expert as the inter-rater agreement
between two human experts. We also performed visualization of
the hidden representation of the data by one of the networks,
the one performing best, using a t-distributed stochastic neighbor
embedding (t-SNE) method (van der Maaten and Hinton, 2008).

MATERIALS AND METHODS

Data
MWT data from 76 patients with EDS recorded at approximately
15:00 were retrospectively analyzed. The suspected diagnosis
widely varied between patients (Table 1) and included sleep
apnea, narcolepsy, idiopathic hypersomnia, non-organic
hypersomnia, and insomnia (Skorucak et al., 2020b). Patients
were not stratified into subgroups because only few patients
were available with a certain suspected diagnosis due to
their low prevalence. Among other data, recordings included
EEG, electrooculogram (EOG), and video recordings of the
face (Hertig-Godeschalk et al., 2020; Skorucak et al., 2020b).
Electrophysiological signals were sampled at 200 Hz [band pass
filter 0.3–70 Hz; 50 Hz notch filter; RemLogicTM (Embla Systems
LLC)] and exported in the European data format (EDF) for
post processing.

MSEs were visually scored by a sleep expert using both
occipital EEG derivations referenced to contralateral mastoid
electrodes (i.e., channels O1M2 and O2M1), two EOG channels,
both referenced to the left mastoid electrode (i.e., channels E1M1
and E2M1), and video recordings of the face. Video recordings
were not used for automatic detection algorithm, only EEG and
EOG data were considered. MSEs were defined as 1–15 s in
duration with a clear slowing in the EEG resulting in a theta
dominance resembling non-rapid eye movement (NREM) sleep
stage 1 (N1), while at least an 80% eye closure was observed in
the video recording. MSEs were typically preceded by slow eye
movements, visible in the EOG. Apart from clear wakefulness
and MSEs, two poorly defined EEG patterns were categorized
as microsleep episode candidates (MSEc; not fulfilling all of the
criteria for a MSE, e.g., eyes were closed less than 80%) and
episodes of drowsiness (ED; even more vague, not clear wake or
MSE or MSEc) (Hertig-Godeschalk et al., 2020). Approximately
2/3 of the recordings were checked by another expert and
differences were resolved by discussion. The beginning and the
end of each episode was marked continuously, i.e., with the
resolution of the recording (1/200 s).

Each MWT lasted 40 min and was supposed to be terminated
earlier if consolidated sleep occurred (Hertig-Godeschalk et al.,
2020; Skorucak et al., 2020b). However, if the technician missed
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TABLE 1 | Demographics, diagnosis and fraction of time spent in the four stages
of patients contributing to the training, validation, and test set: total number of
patients (N), number of males/females, mean age and standard deviation, number
of patients with a suspected diagnosis of sleep apnea, idiopathic hypersomnia,
non-organic hypersomnia, narcolepsy, insomnia, EDS with unclear cause,
excessive tiredness, and others, and the fraction of time spent in wake,
MSEs, MSEc, and ED.

Training Validation Testing

N 53 12 11

Male/Female 35/18 6/6 9/2

Age (mean ± SD years) 45.99 ± 18.17 44.64 ± 20.56 44.92 ± 14.48

Sleep apnea 20 0 3

Idiopathic hypersomnia 2 1 1

Non-organic hypersomnia 1 0 0

Narcolepsy 4 1 1

Insomnia 1 0 0

EDS with unclear cause 18 4 4

Excessive tiredness 2 3 2

Others 5 3 0

Fraction of time in

Wake 0.89 0.85 0.91

MSEs 0.08 0.09 0.05

MSEc 0.01 0.01 0.01

ED 0.02 0.05 0.03

terminating the recording, data from the entire recording were
used for training, validation and testing (i.e., also including sleep
episodes lasting longer than 15 s; basically, sleep stage N1) to
obtain as much data as possible as the fraction of time covered by
MSEs is small (5–8%; Table 1). In total, 1,262 MSEs and segments
of sleep were scored.

Preprocessing
The signals were bandpass filtered with a Fourier filter in
the band 0.5–45 Hz (FFT of EEG followed by setting of
frequencies < 0.5 Hz and > 45 Hz to 0 and then performing an
inverse FFT). This step is considered as signal conditioning and is
necessary for the application to future data that are recorded with
different devices. We still refer to it as raw data as no features were
derived for the classification.

For each training sample, we used one occipital EEG
derivation and two EOG channels. The EEG derivation for each
training sample was chosen randomly out of two derivations
(O1M2 or O2M1) and we assigned the corresponding scoring.
Thus, we effectively doubled our training set by using both
EEG channels as independent signals. Since both EEG signals
were similar and most of MSEs were observed in both channels
simultaneously we did not gain completely new examples
by this procedure, but it served as data augmentation. Data
augmentation is commonly referred to slight changes to the
data, such as additional noise, cropping or warping. It helps to
avoid overfitting of the networks (Perez and Wang, 2017). Video
recordings were not used for automatic classification. For the
validation and testing we detected the events using only EEG
channel O1M2, the two EOG channels (E1M1 and E2M1), and
the corresponding expert scoring.

ML Methods
Many pattern recognition problems are easy to solve for a
human expert (for example object recognition in images), but
it is incredibly hard to define explicit decision rules for such
tasks. Machine learning methods are proven to be very efficient
for pattern recognition tasks (Murphy, 2012; Bishop, 2016;
Goodfellow et al., 2016), including EEG data (Davidson et al.,
2006; Tsinalis et al., 2016; Supratak et al., 2017; Chambon
et al., 2018; Malafeev et al., 2018; Stephansen et al., 2018; Phan
et al., 2019). The idea behind machine learning is to let the
algorithm learn the patterns in the data. This can be achieved
either in a supervised way, i.e., when there are labels attached
to each datapoint, or an unsupervised way, when there are
no labels and the algorithm should find the structure in the
data on its own. A typical example of unsupervised learning
is clustering (Xu and Wunsch, 2005), and the most common
example of supervised learning is classification (Bishop, 2016).
In this work, we are aiming to detect MSEs. This problem can
be solved in different ways. For example, one can solve it as
object detection problem (Dalal and Triggs, 2005; Girshick, 2015;
Ren et al., 2015; Liu et al., 2016; Redmon et al., 2016), where
the objects are MSEs. Since the MSEs are not overlapping it
can also be considered a segmentation problem. Further, we can
also represent it as a classification problem for every sample,
i.e., we classify each sample of a recording as one of the four
classes: wake, MSE, MSEc or ED. We have chosen to use the
classification approach.

Classification
We developed and implemented automatic classification
algorithms (supervised learning) based on a Convolutional
Neural Network (CNN) (LeCun and Bengio, 1995). Such a
network uses small filters, and every layer of the network has its
own set of filters. Each filter is convolved with an input to the
layer, i.e., the filter is moved across the input and a similarity
measure is computed for every position and stored in a new
matrix. Matrices corresponding to all filters are stacked together
and this stack is the input for the next layer. We used small
filters based on empirical knowledge. Further, it was shown that
deep networks with small filters perform best (Simonyan and
Zisserman, 2014). We applied a small number of filters in the
first layers of the network and more filters in later layers. This
is a common approach used in computer vision (Simonyan and
Zisserman, 2014). Filters in the first layers have a small receptive
field and usually detect simple patterns, thus, there is no need
for many filters in the first layers. The layers located deeper have
larger receptive fields, thus they detect more complex patterns,
and it makes sense to increase the number of filters to extract the
maximal amount of information from the signal. It is common
to use the number of filters equal to a power of two. We used
a similar approach and choose the number of filters as in our
previous EEG analysis paper (Malafeev et al., 2018). Also the
same ladder of convolutional layers was used in Simonyan and
Zisserman (2014) and other works on computer vision. The
number of layers was chosen such that the last layer’s receptive
field covers the whole input window.
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Since we wanted to assign a label to each sample of the
signal, we ran the classification algorithm on a sliding window.
The stride of the sliding window was equal to the segmentation
resolution, i.e., one sample. We could have used a larger
stride and predicted a label not for every sample but for
example every 100 samples. Resolution would be lower, but
computational expenses would be reduced, and the algorithm
would be faster. However, we wanted to avoid coarsening of the
expert’s segmentation resolution (please note that this was done
for CNN-LSTM network architecture; see below). Our CNNs
predicted the label for the central point of each window. We could
minimize the fringe effect in this way, i.e., the different amount
of information available at the edge and in the middle of the
window. The amount of information available at the edge is lower
than in the middle, thus, we chose to work with a sliding window.
The idea of using a convolutional neural network on a sliding
window is illustrated in Figure 1A and its structure in Figure 2A.

We also implemented a combination of convolutional and
recurrent neural networks (RNN; Figure 1B) to test whether
performance could be considerably improved as RNN take into
account the temporal structure of the data (Hochreiter and
Schmidhuber, 1997). We wanted the network to see a certain
window, it can be achieved either by using a CNN with large
input size or a combination of CNN and LSTM. In the latter
case we have an input window size with a much smaller number
of parameters. We first processed the signals with a CNN with
a 1 s window. The windows were overlapping, and the stride
was equal to 50 samples (0.25 s). We chose relatively large
stride to speed up this network. As a consequence of the large
stride, we predicted the label every 50 samples, and the resulting
resolution of the prediction was lower than the resolution of
the other networks used. We do not think this is a problem
since the MSEs are 1–15 s long by definition. Next, we used
a recurrent neural network, namely a long-short term memory
(LSTM) (Hochreiter and Schmidhuber, 1997) network. The
LSTM network received the vectors resulting from the CNN as
input (Figure 2B) and the output was a sequence of labels (MSE,
Wake, ED, or MSEc). Each label was assigned to the center of the
corresponding CNN window.

Most of our networks were convolutional networks working
with a sliding window (CNN) and one network was a
combination of convolutional and LSTM networks (CNN-
LSTM network).

Architecture of the Networks
Figure 2 (A: CNN and B: CNN-LSTM) illustrates the
network architectures.

Raw EEG and EOGs (in µV) served as the input data for CNNs
and they were divided by 100 and clipped to the range [−1; 1]
to keep weights and gradients small. For CNN-LSTM network
similar procedure was performed, however, we first added 100 to
the signals, divided them by 200 and clipped them in the range [0;
1]. In the first layer of the network, we added some Gaussian noise
(SD = 0.0005) to increase robustness of the network to noise.

Convolutional blocks are the basic parts of the networks. They
are composed of convolution followed by batch normalization,

activation and max-pooling, i.e., filtering, non-linear activation
and reduction of the size of the tensors (Figure 2 and Table 2).

We first explored different network configurations based on
our previous experience with sleep stage scoring (Malafeev et al.,
2018) and decided to investigate the ones finally implemented in
detail. However, the parameter space is infinite, and we do not
claim that our choice is the best one. Some of the blocks were
repeated many times because we want to make the network deep
and would like to end up with a vector of size 1 in the temporal
dimension (i.e., the receptive field of the last layer covers the
whole input window) and a large size in the dimension of the
filters (that these filters can contain large amount of information
about the input window). Thus, some of the blocks are repeated
different number of times depending on the size of the sliding
window, i.e., for each doubling of the window size, we repeated
the block one more time to increase the depth of the network
accordingly: 3 times for 2 s, 4 times for 4 s, 5 times for 8 s, 6 times
for 16 s, and 7 times for 32 s windows. In the end we applied
5 different window sizes. We limited the length of the sliding
window to the range of 2–32 s because we explicitly did not want
the networks to learn MSE duration criteria, only the underlying
EEG patterns. For practical applications, duration criteria can
easily be applied post hoc. We also tested a network (16 s long
window) with a single EEG channel as input instead of an EEG
channel stacked together with the two EOG channels. To account
for the imbalance between the stages (Table 1), weights inversely
proportional to the frequency of a class were generally applied.
To test for the impact of the weighting, an additional network
(16 s long window) was trained with equal weights. This resulted
in seven CNN networks and one CNN-LSTM network, in total 8
different network configurations to explore.

The notations used in Figure 2 and the corresponding
parameters are summarized in Table 2. For the parameter values
applied see the corresponding values in Figure 2.

Performance Evaluation
There are several methods to evaluate the performance of
a classification algorithm. The simplest one is to find the
proportion of correctly classified examples, a metric called
accuracy. While it might be a good measure when we have nearly
the same number of examples of each class, it is a very poor
measure in case the dataset contains predominantly examples of
one class. In our case the most frequent class was wakefulness.
Imagine that 90% of the data is labeled as wakefulness, then a
classifier, which labels all the data as wake would result in 90%
accuracy, but such a classifier would be useless.

One can compute measures such as sensitivity and specificity.
These measures consider both true positive and true negative
results. In this case we need two numbers to characterize an
algorithm. However, it is more convenient to have a single
number to measure performance. Many different single-number
measures exist but they always capture only partial information
about the quality of an algorithm.

We used Cohen’s Kappa (Cohen, 1960) to measure the quality
of the algorithms. This measure compares the output of the
classifier with one that would give random answers with the
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FIGURE 1 | Illustration of the idea behind the segmentation (classification) with a CNN (A) and CNN-LSTM (B) network. A sliding window was used in the case of
CNN only networks. Microsleep episodes were inferred corresponding to the middle of the window on every step (sampling resolution). In case of CNN-LSTM
network a sequence of overlapping windows (classified by a CNN) with the stride of 0.25 s inferring microsleep corresponding to the middle window in the sequence
(LSTM classification). Thus, the resulting resolution of the detection was 0.25 s. Green bars: scored MSEs; red bar in (A) classified MSE; red and blue squares in (B)
classification of a sample or window.

probabilities of classes taken according to the proportion of
examples of a corresponding class in the original data.

The main disadvantage of Cohen’s Kappa is the fact that if
our data contains only one class, kappa will be equal to zero. For
example, a kappa for a particular subject who was always awake,
and the algorithm correctly classified the entire recording as wake
will be equal to zero. This would indicate a very bad performance,
despite the fact, that such a segmentation is correct.

There are two important aspects regarding the computation
of Cohen’s Kappa in this work. First, we could not compute
kappa for each patient since in some recordings not all classes
were present. Thus, we concatenated all the recordings and
then computed kappa resulting in an overall performance. As a
consequence, error bars are not available. Second, we computed
kappa for each class separately. To compute kappa for a particular
class k, we assigned the labels of the examples of the class k to 1
and all other labels to 0 and then computed kappa. We repeated
this step for each class.

Training, Validation, and Testing
As mentioned above, our data comprised 76 MWT recordings,
one recording per patient. The data was split into three parts:
70% training (n = 53), 15% validation (n = 12), and 15% testing
(n = 11). Only the best performing network was additionally
evaluated using the test dataset. The demographic data, diagnosis

and fraction of time spent in the four stages of the patients
contributing to the three parts are provided in Table 1. Most of
the time the patients were awake (85–91% of the time) and in
5–9% of the time MSEs occurred.

We used the Keras package (v 2.2.0) (Chollet Fao, 2015) with
the Tensorflow (v 1.8.0) (Abadi et al., 2016) backend to train the
networks and Python 3.5.2 to run the scripts. Data conversion
and filtering was performed with Matlab 2018b.

We trained the networks using the Adam (Adaptive
momentum estimation) optimization algorithm (Kingma and Ba,
2014) with Nesterov momentum (Nesterov, 1983) (Nadam in
Keras with the default parameters, learning rate 0.002). For the
CNN-LSTM network gradient clipping at a value of the gradient
norm equal to 1 was applied.

The batch size (stack of input windows) for CNN networks
was equal to 200 and 128 for CNN-LSTM network. The
input windows were selected randomly for each batch
without repetitions.

We trained every CNN network for 3 training iterations
and the CNN-LSTM network for 8 iterations. Here we use the
term training iteration instead of commonly used training epoch
because epoch is reserved for scoring epoch in the literature
on sleep analyses. It appeared that the performance reached its
maximum already after only one training iteration and did not
improve further. This is not surprising given that our dataset

Frontiers in Neuroscience | www.frontiersin.org 5 March 2021 | Volume 15 | Article 56409812

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-564098 March 18, 2021 Time: 12:14 # 6

Malafeev et al. Microsleep Detection With Deep Learning

FIGURE 2 | Structure of the CNN (A) and the CNN-LSTM (B) networks. Input is on top, output at the bottom. Since we applied several configurations of the CNN
networks the repetitions of the last convolutional and pooling blocks were different. The number of channels in the input may differ for the networks using either an
EEG and two EOG channels or a single EEG channel only. See sections “Architecture of the Networks” and “Materials and Methods” and Table 2 for the description
of the different layers.

included a frame for every sample of the signal. It produced
a lot of redundant data because the frames corresponding to
consecutive samples differ only in the first and the last values
and thus are almost identical. Thus, our networks were able to
converge within one training iteration.

Visualization
Our data contained 4 classes defined by an expert and it was
interesting to see how they are represented in the feature space.
We took the best performing network (with 3 input channels
and a 16 s window) as we used it for solving the classification
problem and added one more convolutional layer with 64 filters
of size 3. The reason to use an additional layer was to reduce
the size of the resulting feature vector. We used the output of
the last convolutional layer as a feature vector. The length of the
vector was 64, which is large. Thus, it was not realistic to look at
the data points in this 64-dimensional space. Fortunately, there
are many dimensionality reduction methods available. We have

chosen the t-distributed stochastic neighbor embedding (t-SNE)
(van der Maaten and Hinton, 2008) to project the data into a 2D
space. This mapping preserves the distance ratios between the
data points. In this way we can see whether separable clusters
of data points exist. It should, however, be kept in mind that
this mapping is reflecting the representation of the data by the
network (internal representation) and not any sort of ground
truth. Thus, the visualization might differ if another network
structure is employed.

RESULTS

How Our Algorithms Performed in
Classification
Detection of the different classes in one recording with one of
the networks (CNN 16s) and the corresponding expert scoring
are illustrated in Figure 3. A good match between the algorithm
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TABLE 2 | Description of the different layers and notions used in the architecture of the networks (Figure 2).

Layers Description

Convolution, N 3 × 1 filters; strides 1 × 1 Convolutional layer (LeCun and Bengio, 1995) with N filters of size 3 × 1, i.e., one-dimensional filters of the length 3 and
the convolution had a stride of length 1. The weights of convolutional filters were initialized with a Glorot normal
distribution (Glorot and Bengio, 2010)

BatchNorm Batch normalization is a way to speed up training and regularize the network (Ioffe and Szegedy, 2015)

ReLU Rectified linear unit (Hahnloser et al., 2000), a non-linear activation function. It makes the activations of a network
sparse and prevents vanishing of the gradients (Hahnloser et al., 2000)

Max-pooling; pool_size 2 × 1 Max-pooling layer (Fukushima and Miyake, 1982) with pooling size 2. It takes a maximum out of every 2 elements of a
tensor. Thus, the size of the resulting tensor will be reduced by a factor of 2. Max-pooling allows us to reduce the size of
the vector, retain most useful information and it also has the property of shift invariance

Flatten Layer which resizes the input tensor and produces a one-dimensional vector with the same number of elements

Dropout (p = q) Dropout layer (Srivastava et al., 2014). It switches off a fraction q of the neurons in the previous layer in the training
phase. Dropout is a good way to regularize the networks, i.e., prevent overfitting (Srivastava et al., 2014)

Dense (N = n) Densely connected layer with n neurons

Softmax (N = n) Densely connected layer with n neurons and a special activation function which produces a probability distribution with
n values (Bishop, 2016). The sum of these values is equal to 1, n is equal to number of classes we want to predict (in
our case it was 4) and every output value is the probability that the sample belongs to the corresponding class

LSTM (N = n) Long short-term memory layer (Hochreiter and Schmidhuber, 1997) with the size of hidden states equal to n. It has a
memory and can use information about the past to make decisions in a current timepoint

For the parameters applied see the corresponding values in Figure 2.

and the expert scoring for wakefulness and MSEs can be seen, but
the detection of MSEc and ED was not successful. Performance
of the network on the other patients in the validation dataset are
illustrated in Supplementary Figure S1 and of patients of the test
set in Supplementary Figure S2.

Our algorithms resulted in Cohen’s Kappa coefficients close
to the ones resulting from the scoring of two experts (5
recordings were scored by two experts; Figure 4). Importantly,
our algorithms did not produce any substantial amount of
false positive MSE detections in most of the recordings (except
one recording). A small number of false positives (high
precision) is especially important for recordings, which do not
contain any MSEs.

Cohen’s Kappa of the algorithms and of the inter-rater
agreement was good for MSEs and wakefulness (∼0.7), but
negligibly low for MSEc and ED (<0.1). The results for the
different network configurations are illustrated in Figure 4 and
summarized in Table 3. We suggest that the CNN with a 16 s
window is an optimal network, as we did not observe any further
improvement with a 32 s window (Figure 4 and Table 3).

The agreement between the experts for MSEc was higher
than the agreement between the algorithm (CNN 16 s) and an
expert (MSEc—0.04). Kappa for ED was the same (0.06) when
computed between experts and between the algorithm and an
expert. Cohen’s kappa for both MSEc and ED was very low
(<0.1) for both interrater comparison and the comparison of an
algorithm with an expert. Such level of agreement is negligible
(McHugh, 2012). There were five recordings in the validation
dataset which contained a very small amount of MSEs or none
at all (Supplementary Figure S1). The CNN with a 16 s window
detected a substantial amount of false positive MSEs in one of the
patients (recording uXdB).

The performance of MSE detection with the best of our
CNNs was slightly better than the one with the CNN-LSTM
architecture. It might be due to different resolution of detection.

We cannot be sure that this result would hold if the temporal
resolution had been the same. The quality of segmentation was
dependent on the length of the window. We think that the
optimal length of the window is 16 s since we did not see
further improvements with a 32 s long window. The network
with uniformly weighted classes (CNN 16s_u; Figure 4) did not
perform better than the ones with balanced weights. The CNN
which did not use the ocular channels as an input, i.e., used
only a single EEG channel as input, performed worse than a
similar network with three input channels (1 EEG and 2 EOG).
This suggests that ocular channels contain information important
for the MSE detection, most likely slow eye movements, eye
blinks and saccades.

We evaluated only the best (optimal) performing algorithm,
the CNN with a 16 s window with the test dataset. Evaluation
resulted in the following Cohen’s kappa values: W—0.59; MSE—
0.69; MSEc—0.05; ED—0.11. These results were very close
to the ones resulting from the validation dataset (Table 3),
and thus suggest, that there was no substantial overfitting to
the validation dataset. Again, we observed no substantial false
positive MSE detections in the test dataset, except for one
recording (patient f8H5; Supplementary Figure S2). Overall,
there were six recordings with no or very little MSEs in the
test dataset and five of them were scored nearly perfectly by
the algorithm (CNN 16s). Moreover, the recordings with a
substantial amount of MSEs were scored with very high quality
(Supplementary Figure S2).

Why Did the Algorithm Not Perform
Equally Well for All Classes?
Visualization (t-SNE) and analysis of the internal representation
of the data in our network (CNN 16s) revealed as expected
for the training data of artificial neural networks, that in the
representation of training data all four stages form clearly
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FIGURE 3 | Expert (top) and automatic soring with one algorithm (CNN with 16-s window; bottom) of an MWT (40 min) in one patient of the validation set (patient
y5We). A good match between the algorithm and an expert scoring for wakefulness (W) and microsleep episodes (MSE) are evident, but a poor match for episodes
of drowsiness (ED) and microsleep episode candidates (MSEc). Scoring was performed with the resolution of one sample; for the illustration, we coarsened the result
to a resolution of 0.5 s (100 samples), i.e., the most frequent class within an interval was plotted. Results for other patients of the validation set are illustrated in
Supplementary Figure S1, those of the test set in Supplementary Figure S2.

FIGURE 4 | Cohen’s kappa of different algorithms along with the agreement between two experts. W, wakefulness; MSE, microsleep episodes; MSEc, microsleep
candidates; ED, episodes of drowsiness. Experts: agreement between two experts computed based on five recordings containing MSEs. 2–16s: comparison
between one expert and convolutional neural networks (CNNs) with window lengths 2, 4, 8, and 16 s. 16s_u: CNN with a 16s window and uniformly weighted
classes. 16s_1c: CNN with 16s window and only one EEG channel as input. 32s: CNN with a 32s window. CNN_LSTM: CNN combined with a long-short term
memory (LSTM) architecture; it has only two classes because this network was trained to detect only MSEs, everything else was considered as wakefulness. If not
mentioned otherwise, one occipital EEG channel and two ocular channels served as input for the networks. Kappa of the neural networks was computed using the
validation dataset (12 recordings). The data of all recordings were concatenated to estimate the overall kappa.
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TABLE 3 | Cohen’s kappa computed on the validation dataset (n = 12) using
different network architectures.

W MSE MSEc ED

Experts 0.71 0.80 0.09 0.06

2s 0.58 0.61 0.02 0.05

4s 0.62 0.65 0.03 0.07

8s 0.63 0.67 0.07 0.11

16s 0.67 0.69 0.04 0.06

16s_u 0.67 0.69 0.03 0.07

16s_1c 0.58 0.64 0.03 0.02

32s 0.66 0.69 0.02 0.07

CNN_LSTM 0.65 0.65

See Figure 4 for the meaning of the network labels.

separated clusters except for very few data points (Figure 5A
and Supplementary Figure S3). However, in the representation
of validation data generally the four classes are not separable. In
most cases there were two clear clusters representing wakefulness
and MSEs with a smooth transition between them (Figure 5B
and Supplementary Figure S4). However, most MSEc and ED
were on the interface between these two classes, which explains
why they cannot be reliably identified by the algorithm. In some
cases (Supplementary Figure S3; patient IhpU), we observed not
only a cloud of MSEs, which was connected with the cloud of
wakefulness but additionally a second clearly separable cluster.
This distinct cluster may not represent MSEs but sleep episodes
longer than 15 s which were marked as microsleep by the expert
(see section “Discussion”).

DISCUSSION

Our algorithms reliably identified MSEs and wakefulness with
a performance close to a human expert and did not produce
any substantial amount of false positive MSEs detection in
recordings of patients, indicating that reliable automatic MSE
detection is feasible based on raw EEG and EOG data recorded
during the MWT in a clinical setting. In one of the recordings
(uXdB; Supplementary Figure S2) we observed a considerable
amount of false positive MSE detections. We do not yet have an
explanation why this happened. Visual inspection of recording
uXdB revealed that it was quite noisy. Thus, it would make sense
to test the algorithm on more data, especially noisy ones to check
if noise poses a problem for the algorithm.

We provide a proof of principle that reliable automatic
detection of MSEs using raw data is feasible and of a high
quality. The performance of the CNN with a 16 s window on
validation and test data was very similar indicating that there
was no substantial overfitting, and the algorithm performs well
independent of any disorder or medication. However, we would
need more recordings double scored by independent experts,
and overall larger datasets to draw a final conclusion. Further,
evaluation of the algorithms on data of healthy subjects and
subjects recorded in a driving simulator should be performed
(Skorucak et al., 2020a).

Performance of our raw data based approach was similar to
the feature-based ones (Skorucak et al., 2020b). The feature-
based algorithms of Skorucak et al. (2020b) detected only bilateral
occurring MSEs, i.e., MSEs occurring in both occipital EEG
channels simultaneously and was not trained to detect MSEc
and ED. It is easier to detect MSEs occurring bilaterally (i.e., in
two channels) than detecting them based in a single channel.
Moreover, the feature-based algorithms worked with a 0.2 s
resolution, and the subdivision into training and testing data sets
were different, i.e., randomization of individuals was different
and there was only a test set (no subdivision into validation
and test). Thus, a direct comparison of the algorithms must
be made with care. The feature based artificial neural network
(Skorucak et al., 2020b) detected wake and MSEs with kappa
values of 0.65 and 0.75, respectively (recalculated as described
in “Performance evaluation”). The same algorithm applied to
MWT recordings of healthy subjects after sleep deprivation
(Skorucak et al., 2020a) revealed kappa values of 0.61 and 0.65,
respectively. Taken together, with our approach (best performing
16-s network) we achieved a similar performance (validation:
0.67 and 0.69; testing: 0.59 and 0.69). In the feature-based
approach (Skorucak et al., 2020b), EEG recordings had first to
be cleaned of electrocardiography (ECG) artifacts to be able to
reliably classify the data as the features were mainly derived from
EEG spectra. Human scorers, however, were not distracted by
these artifacts. Similarly, our raw data based approached worked
well without prior ECG artifact removal. Generally, we expect
that raw data based algorithms would be more robust and better
transferable to other datasets and might be better suited for
on-line processing.

Performance of the CNN algorithms depended on the length
of the sliding window. We think that 16 s is an optimal window
size because we did not observe further improvement with a
32 s compared to a 16 s window. Even the network with a 2 s
long window performed reasonably well. This is an interesting
observation because an expert needs to see 10–20 s of the signals
to score MSEs. Further, training with a 16-s window and weights
inversely proportional to the stage prevalence or with equal
weights resulted in the same performance (Figure 4 and Table 3)
indicating that the low prevalence of MSEs (Table 1) was not an
issue; MSEc and ED could not be detected with both weightings.

One EEG and two EOG channels served as input of the
classifiers, except for one case. Classification based on a single
EEG derivation (16s_1c) worked well, suggesting that the
occipital EEG contains substantial information to score MSEs
at least for our conservatively defined MSEs as short as 1 s
(Hertig-Godeschalk et al., 2020). Nevertheless, a similar network,
which used also EOG signals as input, performed better. This was
expected since the eye closure is a criterion for expert scoring.
Moreover, eye blinks or saccades might be correlated with
wakefulness providing additional information for the algorithm.

Borderline segments between clear wakefulness and MSEs that
were particularly difficult to score were categorized as MSEc or
as ED (Hertig-Godeschalk et al., 2020) in the BERN microsleep
scoring criteria. Both, experts and algorithms performed bad
in scoring these borderline segments (Figure 4 and Table 3).
After visualizing the internal representation of the data in the
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FIGURE 5 | T-distributed stochastic neighbor embedding (t-SNE) was used to illustrate the data and their classification mapped into a 2D space (last layer of the
CNN 16s; arbitrary units). (A) Mapping of training data (patient Nzhl). All stages form clearly separated clusters except for very few data points as expected for the
training data of artificial neural networks. (B) Mapping of validation data (patient y5We; same data as in Figure 3). Basically, two large clusters corresponding to W
and MSE are visible which do not completely separate. MSEc and ED do not form clusters and are not separable from W and MSE. Thus, it illustrates why our
algorithms could not score MSEc and ED reliably. Wakefulness (W): blue; microsleep episodes (MSE): red; microsleep episode candidates (MSEc) green; episodes of
drowsiness (ED): magenta. For the convenience we illustrated only every hundredth datapoint (sample). Please note that this figure only shows the internal
representation of the data in this specific network. Further data are illustrated in supporting information, for training and validation separately (Supplementary
Figures S3, S4).

neural network we came up with a hypothesis why this might
be the case (Figure 5 and Supplementary Figures S3, S4).
Visualization (t-SNE) of the internal representation of the data
in one of the networks (CNN 16 s) revealed that generally the
4 classes were not completely separable. In most cases there
was a smooth transition between the clusters of wakefulness
and of MSEs (Figure 5B and Supplementary Figure S4). Most
MSEc and ED were at the interface between MSE and wake
and overlapped with them considerably. This explains why
they cannot be reliably identified neither by the algorithm nor
by an expert. Thus, in contrast to MSEs, MSEc and ED are
currently far from being practically applicable. Please note that
this visualization only reflects representation of the data in the
particular neural network. For other networks the representation
might be different.

In some cases (Supplementary Figure S3; patient IhpU), we
observed not only a cluster of MSEs, which was connected with
the cluster of wakefulness but also a second clearly separable
cluster of MSEs. These distinct clusters may not represent MSEs,
but sleep episodes longer than 15 s (stage 1), which were marked
as MSEs by the expert as the occurrence of consolidated sleep
was missed by the technician and the recording continued leading
to MSEs lasting longer than 15 s. Note, that we observed such a
cluster only in the training dataset. We did not observe this in the
validation dataset but observed several clusters of points marked
as wakefulness Supplementary Figure S4.

Cohen’s kappa was somewhat higher for the inter-rater
agreement. However, it is important to note that the interrater

agreement was assessed on only five recordings, which were
not selected completely randomly. The experts randomly
selected only recordings, which contained MSEs. Moreover, the
experts were trained in the same laboratory and the second
expert checked the scoring of the first one for about 2/3
of the recordings.

Our CNNs performed classification for every sample, thus the
detected episodes are likely to be fragmented. This issue can be
easily solved with median filtering or splitting the results into
consecutive intervals and assigning the most frequent class to all
samples in the corresponding interval. We used latter approach
for the visualization in Figure 3 using 0.5 s long intervals.
Additionally, classification was performed based on a sliding
window shifted by one sample.

The use of occipital EEG channels was based on clinical
experience since features of the MSEs are often best visible in
this brain region (Hertig-Godeschalk et al., 2020). In particular,
the alpha rhythm observed during rest with eyes closed is best
observed over occipital brain areas. Further, the transition to
sleep is accompanied by a slowing of the EEG, i.e., a loss of alpha
activity and a shift to theta activity which again is best seen in
occipital derivations (Hertig-Godeschalk et al., 2020). Given the
local aspects of sleep, future development of algorithms should
take other brain regions into account.

As a result of this work, we provide a proof of principle that
reliable automatic MSE detection with deep neuronal networks
working with raw EEG and EOG data as input is feasible with a
quality close to the one of human experts. Deep neural networks
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may also be used as a tool to visualize data and thus, foster their
interpretation and gain new insights.
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Are Associated With the Worsening
of Mild Sleep Apnea: The Sleep Heart
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Juha Töyräs1,2,4 and Timo Leppänen1,2

1 Department of Applied Physics, University of Eastern Finland, Kuopio, Finland, 2 Diagnostic Imaging Center, Kuopio
University Hospital, Kuopio, Finland, 3 Division of Medical Informatics, Department of Internal Medicine, University of Kansas
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Study Objectives: Obesity, older age, and male sex are recognized risk factors for
sleep apnea. However, it is unclear whether the severity of hypoxic burden, an essential
feature of sleep apnea, is associated with the risk of sleep apnea worsening. Thus, we
investigated our hypothesis that the worsening of sleep apnea is expedited in individuals
with more severe desaturations.

Methods: The blood oxygen saturation (SpO2) signals of 805 Sleep Heart Health Study
participants with mild sleep apnea [5 ≤ oxygen desaturation index (ODI) < 15] were
analyzed at baseline and after a mean follow-up time of 5.2 years. Linear regression
analysis, adjusted for relevant covariates, was utilized to study the association between
baseline SpO2-derived parameters and change in sleep apnea severity, determined by
a change in ODI. SpO2-derived parameters, consisting of ODI, desaturation severity
(DesSev), desaturation duration (DesDur), average desaturation area (avg. DesArea), and
average desaturation duration (avg. DesDur), were standardized to enable comparisons
between the parameters.

Results: In the group consisting of both men and women, avg. DesDur (β = 1.594,
p = 0.001), avg. DesArea (β = 1.316, p = 0.004), DesDur (β = 0.998, p = 0.028), and
DesSev (β = 0.928, p = 0.040) were significantly associated with sleep apnea worsening,
whereas ODI was not (β = −0.029, p = 0.950). In sex-stratified analysis, avg. DesDur
(β = 1.987, p = 0.003), avg. DesArea (β = 1.502, p = 0.024), and DesDur (β = 1.374,
p = 0.033) were significantly associated with sleep apnea worsening in men.

Conclusion: Longer and deeper desaturations are more likely to expose a patient to the
worsening of sleep apnea. This information could be useful in the planning of follow-up
monitoring or lifestyle counseling in the early stage of the disease.

Keywords: sleep apnea, intermittent hypoxemia, hypoxic burden, desaturation, progression, risk factor, oxygen
saturation, disease worsening
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INTRODUCTION

Sleep apnea is a common nocturnal breathing disorder in which
breathing is interrupted numerous times during sleep. These
interruptions are usually associated with transient drops in blood
oxygen saturation (SpO2) and/or arousals from sleep. The apnea–
hypopnea index (AHI) is the most widely used parameter in
sleep apnea diagnostics and is derived from polysomnography
(PSG) (Kapur et al., 2017). However, PSG is a labor-intensive and
expensive method and experienced technicians are required to set
up and monitor patients during in-laboratory PSGs or instruct
patients using in-home PSG equipment. Therefore, alternative
recording setups containing fewer channels have been developed
(Krishnaswamy et al., 2015). The oxygen desaturation index
(ODI), determined from the SpO2 signal, could be alternatively
used as a parameter in sleep apnea screening (AASM, 1999).
The ODI is a good AHI predictor due to its high correlation
(Tsai et al., 1999). Furthermore, the AHI and ODI can be
accurately determined from the SpO2 signal using neural
networks (Nikkonen et al., 2019). Therefore, screening of sleep
apnea and monitoring of disease progression could be based on a
simple and low-cost pulse oximetry measurement.

Male sex, obesity, and older age are known risk factors for
sleep apnea (Young et al., 1993; Young et al., 2004). In addition,
neck circumference (NC) (Ahbab et al., 2013; Caffo et al., 2010)
and the neck circumference/height ratio (NC/H) (Davies et al.,
1992; Ho et al., 2016) are independent risk factors for sleep
apnea. However, assessing the risk of sleep apnea progression by
body mass index (BMI), NC, age, snoring, and/or upper airway
structure is challenging. For example, both positive (Redline et al.,
2003; Tishler et al., 2003; Lin et al., 2015) and negative (Sforza
et al., 1994; Pendlebury et al., 1997; Berger et al., 2009) results on
whether the BMI is a factor for sleep apnea worsening have been
reported. Similarly, there are conflicting results about whether
higher baseline ODI values are associated with an expedited
worsening of sleep apnea (Sforza et al., 1994; Lin et al., 2015).

Patients with mild sleep apnea are not systematically treated,
especially if symptomless, despite being the most prone to the
worsening of the disease (Sforza et al., 1994; Berger et al., 2009).
Moreover, even though the severities of individual respiratory
events vary within mild sleep apnea patients (Kulkas et al.,
2013a,b) and are generally associated more strongly with severe
health consequences than the AHI (Muraja-Murro et al., 2013,
2014), the severity of individual events are ignored in current
sleep apnea diagnostics. To address these shortcomings, we have
introduced novel SpO2-derived parameters (Kulkas et al., 2013a)
to quantify the severity of the hypoxic burden and physiological
stress experienced by a patient. An elevated hypoxic burden has
been associated with several sleep apnea-related comorbidities
(Stone et al., 2016; Azarbarzin et al., 2019, 2020), while the AHI
and ODI have not. Therefore, novel parameters considering the
severities of individual desaturation events could describe the
true severity of sleep apnea better than the AHI and ODI (Otero
et al., 2012; Kulkas et al., 2013a). However, it is unknown whether
mild sleep apnea patients with deep and long desaturations
have an elevated risk of expedited worsening of the disease.
We hypothesize that mild sleep apnea patients with severe

desaturations at baseline experience an expedited worsening of
sleep apnea severity. To investigate this, we evaluated the effect
of baseline hypoxemia markers on the progression of mild sleep
apnea in 805 Sleep Heart Health Study participants.

MATERIALS AND METHODS

Dataset
The Sleep Heart Health Study (SHHS) is a multicenter cohort
study implemented by the National Heart, Lung, and Blood
Institute to determine the consequences of sleep-disordered
breathing, such as cardiovascular diseases (CVD). The SHHS
dataset is available through the National Sleep Research Resource
(Quan et al., 1997; Zhang et al., 2018; The National Sleep Research
Resource, 2021). Participants were recruited from nine existing
parent cohort studies and provided informed consent for data
collection. Successful baseline PSG examination was performed
for 6,441 participants between 1995 and 1998, who met the
following inclusion criteria: (1) age ≥40 years; (2) no history
of sleep apnea treatment; (3) no tracheostomy; and (4) no
current home oxygen therapy. The follow-up PSG was performed
between 2001 and 2003 for 3,295 participants who were not
treated for sleep apnea with positive continuous airway pressure,
oral device, or oxygen therapy 3 months prior to the follow-up
PSG. Due to the sovereignty issues with one of the parent studies
(Strong Heart Study), data from approximately 600 participants
are not available. Moreover, due to data corruption over time,
data have been lost from a few participants. Therefore, 5,793
baseline and 2,651 follow-up PSGs are available; out of these,
2,647 participants have both recordings available. More details
on the SHHS dataset are available elsewhere (Quan et al., 1997;
Redline et al., 1998; Dean et al., 2016).

Polysomnography and Covariates
In-home PSGs were performed with Compumedics P-series
portable monitors (Abbotsford, Australia) (Quan et al., 1997;
Redline et al., 1998). The finger pulse oximeters (Nonin XPOD
model 3011, Minneapolis, MN, United States) were used to
record SpO2 with a 1-Hz sampling frequency. Mercury gauge
sensors were used to record the body position during sleep. Total
sleep time was determined based on 30-s epochs in which the
sleep stage was scored as non-rapid eye movement sleep (N1, N2,
or N3) or rapid eye movement sleep (REM).

Each PSG recording was supplemented with a sleep habits
questionnaire, medical history, medication usage, blood pressure,
and anthropometric measurements. NC was measured just
below the laryngeal prominence. The existence of hypertension
was defined if the systolic blood pressure was ≥140 mmHg,
diastolic blood pressure was ≥90 mmHg, or medication for
hypertension was in use. At the medical history interview, history
of CVD, consisting of myocardial infarction, heart failure, stroke,
coronary angioplasty, and coronary artery bypass graft, was
inquired. In addition, the existence of diabetes was defined based
on self-reported diabetes status and usage of insulin or oral
hypoglycemic agents.
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Oxygen Desaturation Parameters
Oxygen saturation signals were reanalyzed due to known issues
of data corruption and loss of scored event data in the SHHS
(The National Sleep Research Resource, 2021). To improve
data consistency, desaturations were automatically re-scored
using Noxturnal software (version 5.1.19824, Nox Medical,
Reykjavík, Iceland). The scoring criteria for desaturations were:
(1) minimum of 3% drop in the SpO2 signal; (2) minimum
event duration of 3 s; (3) maximum plateau duration of 45 s;
and (4) values lower than 50% were considered as artifacts
(no desaturations were scored in these parts of the signal).
The maximum plateau duration denotes the maximum period
within the desaturation event during which the SpO2 signal
values do not change. If this period is exceeded, the end point
of the desaturation is determined to be the starting point of
the plateau. It was observed that the software started automatic
event scorings systematically one data point too early, and thus,
this was corrected in the parameter calculations. To validate
the accuracy of the automatic scorings, 30 SpO2 signals were
randomly selected from the available SHHS dataset of 8,444
recordings and scored manually. Correlations and Bland–Altman
plot agreements between manual and automatic scorings of the
desaturation events were calculated. In addition to the ODI, novel
SpO2 signal-based parameters consisting of desaturation severity
(DesSev), desaturation duration (DesDur), average desaturation
duration (avg. DesDur), and average desaturation area (avg.
DesArea) were calculated (Table 1; see Kulkas et al., 2013a). These
parameters describe the hypoxic burden by taking into account
the duration and depth of the desaturation events.

Sleep Apnea Severity Classification
The severity of sleep apnea was determined based on the ODI
4% criterion for several reasons. First, only desaturation events

TABLE 1 | Descriptions and formulas of desaturation parameters.

Parameter Description Formula

ODI (1/h) Average number of desaturation
events per hour of sleep

ndesat events
TST

DesDuri (s) Desaturation duration of a single
desaturation event

t2 − t1

DesAreai (s%) Desaturation area of a single
desaturation event

∫ t2
t1

SpO2 (t) dt

DesSev (%) Total desaturation area normalized
with total sleep time

∑
i DesAreai

TST

DesDur (%) Total desaturation duration
normalized with total sleep time

∑
i DesDuri

TST × 100%

Avg. DesArea (s%) Average area of individual
desaturation events

∑
i DesAreai

ndesat events

Avg. DesDur (s) Average duration of individual
desaturation events

∑
i DesDuri

ndesat events

ndesat events is the number of desaturation events and TST is the total sleep
time. t1 and t2 denote the start and end time points of a single desaturation
event, respectively, in the SpO2 signal. ODI, oxygen desaturation index; DesSev,
desaturation severity parameter; DesDur, desaturation duration parameter; avg.
DesArea, average area of individual desaturation events; avg. DesDur, average
duration of individual desaturation events.

fulfilling the minimum transient drop of 4% were included in the
analysis as the 4% criterion was considered more reliable than the
3% criterion, as the desaturations were scored automatically and
separately from respiratory events. Second, the ODI is known
to be a good predictor of AHI (Tsai et al., 1999; Chung et al.,
2012; Fabius et al., 2019). Third, originally apneas and hypopneas
were scored based on the thermistor, respiratory belts, or some
combination of them (The National Sleep Research Resource,
2021). Therefore, scored respiratory events are not in line with
the current standards. In addition, the hypoxic burden is an
important feature of sleep apnea pathophysiology (Dempsey
et al., 2010), and thus, the usage of ODI in the assessment of
sleep apnea severity can be justified. In the present study, the term
“progression” refers to a change in ODI (either an increase or a
decrease) between the two PSG recordings, whereas “worsening”
refers to an increase in ODI.

Out of the 2,647 participants with both PSG recordings, 832
had mild sleep apnea (5 ≤ ODI < 15) at baseline, from which
27 were excluded due to the missing covariate data. Therefore,
805 (441 men and 364 women) participants were included
for further analyses (Table 2). The results utilizing the ODI
3% criterion are presented in Supplementary Tables 1–5 and
Supplementary Figure 1.

Statistical Analysis
The statistical significance of the differences in the demographic
and desaturation parameters between the baseline and follow-
up were evaluated within men and women using the Wilcoxon
signed-rank test, and between men and women with the Mann–
Whitney U test and Chi-squared test for continuous and
categorical variables, respectively. Linear regression was used
to investigate the association between the baseline desaturation
parameters and the progression of mild sleep apnea with and
without covariate adjustment. Change in the ODI between the
PSG recordings was used as a continuous dependent variable.
Baseline BMI, change in BMI during the follow-up, age, NC/H,
the existence of hypertension, diabetes, and CVD, percentage
of time slept in the supine position, percentage of time slept
in REM, change in the time slept in REM between the PSGs,
and follow-up time were used as covariates in the adjusted
models. Desaturation parameters at baseline were standardized
to enable comparisons between parameters. Thus, regression
coefficients (β values) correspond to the expedited increase in
ODI between the PSG recordings that were associated with
a one standard deviation (SD) change in the desaturation
parameter values at baseline. In addition, we investigated whether
the desaturation parameter values at baseline differed between
the participants whose sleep apnea severity remained in the
healthy-to-mild state (i.e., ODI < 15) and the participants
whose disease worsened to moderate (15 ≤ ODI < 30) or
severe (ODI ≥ 30) sleep apnea during the follow-up. Finally,
to address the possibility of selection bias, we investigated
whether there were differences in the baseline parameter values
between the participants with mild sleep apnea who underwent
only baseline PSG and those with both PSGs. Analyses were
conducted in MATLAB R© (version 2018b, MathWorks, Natick,
MA, United States). To address the multiple comparisons,
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due to five investigated desaturation parameters, a Bonferroni-
corrected p-value threshold of <0.01 was used to indicate
statistical significance, whereas p-values < 0.05 were considered
as nominal evidence.

RESULTS

During the follow-up, the ODI, DesSev, and DesDur values
increased for both sexes (p < 0.001), whereas avg. DesArea
decreased (p < 0.001 for men, p = 0.004 for women) (Table 2).
The increase in ODI (p = 0.002), DesSev (p = 0.002), and DesDur
(p < 0.001) was greater in men than in women.

Linear regression analyses revealed that the baseline ODI was
not associated with the worsening of mild sleep apnea either in
the unadjusted or in the adjusted model (Table 3). However,
in men and in the group consisting of both sexes, all novel
desaturation parameters were significantly (p < 0.05) associated
with sleep apnea worsening in the unadjusted models. In the
covariate-adjusted models for the group consisting of both sexes,
avg. DesArea (p = 0.001) and avg. DesDur (p = 0.004) were
significantly associated with sleep apnea worsening by fulfilling
the Bonferroni-corrected threshold, while DesSev (p = 0.040) and
DesDur (p = 0.028) reached the limit of nominal significance.
Moreover, in men, avg. DesDur was associated with sleep apnea
worsening at the Bonferroni-corrected threshold (p = 0.003),
while avg. DesArea (p = 0.024) and DesDur (p = 0.033) reached

nominal association. Overall, in men and in the group consisting
of both sexes, a one SD unit increase in avg. DesDur resulted in
the greatest expedited increase in ODI during the follow-up (i.e.,
largest β values), followed by avg. DesArea.

Men and women whose mild sleep apnea worsened to
moderate sleep apnea during the follow-up had significantly
higher ODI (p < 0.001 for men, p = 0.008 for women), DesSev
(p < 0.001 for men, p < 0.001 for women), and DesDur
(p < 0.001 for men, p < 0.001 for women) at baseline compared
to the participants who remained in the healthy-to-mild state
(Table 4). Similar findings were observed in men (p < 0.001
for ODI, DesSev, and DesDur) and women (p < 0.001 for ODI,
p = 0.001 for DesSev, and p = 0.001 for DesDur) whose mild
sleep apnea worsened to severe sleep apnea during the follow-
up. In addition, avg. DesArea (p < 0.001) and avg. DesDur
(p = 0.021) were significantly higher at baseline in women whose
disease worsened to moderate sleep apnea. The only statistically
significant difference between the participants who worsened
to moderate sleep apnea and those who worsened to severe
sleep apnea was observed in ODI (p = 0.039) in the group
consisting of both sexes.

No statistically significant differences in the baseline
desaturation parameters were observed between the participants
with mild sleep apnea who underwent only baseline PSG and
those who underwent both PSGs (Table 5).

The automatic scoring of the desaturation events was very
well in line with the manual scoring. For all five desaturation

TABLE 2 | Demographic, anthropometric, and desaturation parameter values for men and women participants with mild sleep apnea at baseline and after a mean
follow-up time of 5.2 years.

Parameter Men Women

Baseline Follow-up Change during the follow-up Baseline Follow-up Change during the follow-up

Number of patients, n 441 364

Follow-up time (years) 5.2 (0.3) 5.2 (0.2)

Age (years) 64.1 (9.7) 69.4 (9.5)a 5.2 (0.6) 65.0 (10.3) 70.1 (10.2)a 5.1 (0.6)b

BMI (kg/m2) 28.9 (3.7) 29.0 (4.0) 0.1 (1.7) 29.7 (5.7) 29.5 (5.9) −0.2 (2.4)

TST (h) 6.0 (1.0) 6.0 (1.2) 0.0 (1.2) 6.1 (1.1) 6.2 (1.2) 0.1 (1.3)

Supine time (%) 23.3 (0.0–52.9) 25.0 (8.0–55.0) 1.9 (38.8) 32.7 (1.1–63.6)b 36.0 (12.3–60.8) 2.6 (44.0)

NC (cm) 40.9 (3.0) 40.7 (2.9) −0.2 (2.3) 35.8 (2.9)b 35.7 (3.1) −0.1 (2.2)

NC/H (%) 23.5 (1.8) 23.6 (1.8) 0.1 (1.4) 22.3 (1.9)b 22.5 (2.0)a 0.2 (1.4)

REM (%) 19.6 (5.9) 19.6 (6.6) 0.0 (7.8) 19.7 (6.9) 20.1 (6.7) 0.4 (8.4)

Hypertension, n (%) 219 (49.7) 252 (57.1) 203 (55.8) 216 (59.3)

Diabetes, n (%) 42 (9.5) n.a. 29 (8.0) n.a.

CVD, n (%) 74 (16.8) 107 (24.3) 25 (6.9)b 43 (11.8)

ODI (1/h) 8.7 (6.8–11.5) 16.4 (10.3–25.1)a 10.6 (14.5) 8.0 (6.3–10.7)b 13.0 (7.9–20.4)a 7.4 (11.3)b

DesSev (%) 0.27 (0.11) 0.58 (0.55)a 0.31 (0.52) 0.24 (0.11)b 0.44 (0.34)a 0.19 (0.31)b

DesDur (%) 8.3 (2.9) 17.1 (12.3)a 8.8 (11.6) 7.4 (2.8)b 13.4 (9.1)a 6.0 (8.6)b

Avg. DesArea (s%) 107.2 (29.6) 103.2 (30.0)a −3.9 (32.0) 100.9 (29.9)b 96.7 (28.2)a −4.1 (27.2)

Avg. DesDur (s) 31.8 (6.8) 31.5 (6.8) −0.3 (7.4) 29.9 (6.9)b 30.0 (6.6) 0.1 (7.1)

Data are presented as means and standard deviations for normally distributed variables, as medians and interquartile ranges for non-normally distributed variables,
and as n and percentages for categorical variables. BMI, body mass index; TST, total sleep time; NC, neck circumference; NC/H, neck circumference/height ratio;
REM, rapid eye movement sleep; CVD, cardiovascular disease (consisting of heart failure, stroke, myocardial infarction, coronary artery bypass graft, and coronary
angioplasty); ODI, oxygen desaturation index; DesSev, desaturation severity parameter; DesDur, desaturation duration parameter; avg. DesArea, average area of individual
desaturation events; avg. DesDur, average duration of individual desaturation events; n.a., not available. aStatistical significance (p < 0.05) between baseline and follow-
up measurements was determined with Wilcoxon signed-rank test. bMann–Whitney U and Chi-squared tests were used to compare the baseline parameter values for
continuous and categorical variables, respectively, and changes in the parameter values during the follow-up between the sexes.
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parameters, the correlations between the manual and automatic
scorings were excellent (ρ ≥ 0.94), the median differences in the
parameter values were minimal (Table 6), and agreements in the
parameter values were strong (Figure 1).

DISCUSSION

In this study, we investigated whether the desaturation
parameters at baseline were associated with the worsening of mild
sleep apnea. We provide novel evidence showing that especially
avg. DesDur and avg. DesAreas are associated with the expedited

TABLE 3 | Linear regression analyses for the estimation of mild sleep apnea
progression based on the desaturation parameter values at the baseline.

Unadjusted Adjusteda

β SD error p-value β SD error p-value

ODI (1/h)

Men 0.705 0.691 0.308 0.021 0.646 0.974

Women −0.079 0.593 0.894 −0.246 0.614 0.688

Both 0.519 0.466 0.266 −0.029 0.458 0.950

DesSev (%)

Men 1.652 0.687 0.017 1.169 0.644 0.070

Women 0.616 0.592 0.299 0.447 0.595 0.453

Both 1.378 0.464 0.003 0.928 0.450 0.040

DesDur (%)

Men 1.948 0.685 0.005 1.374 0.644 0.033

Women 0.473 0.592 0.425 0.278 0.599 0.643

Both 1.518 0.463 0.001 0.998 0.453 0.028

Avg. DesArea (s%)

Men 1.506 0.688 0.029 1.502 0.661 0.024

Women 0.988 0.590 0.095 0.951 0.593 0.110

Both 1.428 0.464 0.002 1.316 0.454 0.004

Avg. DesDur (s)

Men 1.914 0.685 0.005 1.987 0.661 0.003

Women 0.986 0.590 0.096 0.888 0.603 0.142

Both 1.696 0.463 <0.001 1.594 0.458 0.001

β values correspond to the expedited increase in ODI between the PSG
recordings that is associated with a one standard deviation change in the
desaturation parameter values at the baseline. Standard deviations for men,
women, and the group consisting of both sexes were respectively: for ODI = 2.8,
2.7, and 2.7; for DesSev = 0.11, 0.11, and 0.12; for DesDur = 2.9,
2.8, and 2.9; for avg. DesArea = 29.6, 29.9, and 29.9; and for avg.
DesDur = 6.8, 6.9, and 6.9. ODI, oxygen desaturation index; DesSev, desaturation
severity parameter; DesDur, desaturation duration parameter; avg. DesArea,
average area of individual desaturation events; avg. DesDur, average duration
of individual desaturation events. aAdjusted for age, body mass index, change
in body mass index during the follow-up, neck circumference/height ratio, the
existence of hypertension, diabetes, and cardiovascular diseases (consisting of
heart failure, stroke, myocardial infarction, coronary artery bypass graft, and
coronary angioplasty), percentage of time slept in the supine position, percentage
of time slept in rapid eye movement sleep, change in rapid eye movement sleep
between the polysomnography recordings, and follow-up time.

worsening of sleep apnea. Notably, the baseline ODI values did
not appear to be associated with the worsening of mild sleep
apnea. These findings suggest that a detailed analysis of the
oxygen desaturation signal that considers the morphology of
the desaturation events is relevant in the risk assessment of
sleep apnea progression. More importantly, this study focused
on patients with mild sleep apnea as these patients are not
systematically treated especially when symptomless. Therefore,
our results implicate that mild sleep apnea patients with deeper
and longer desaturation events might benefit from regular follow-
up monitoring.

Previously, Lin et al. (2015) demonstrated that baseline ODI
is a significant predictor of the worsening of sleep apnea, which
is partially contradictory to our findings. On one hand, it
represents the same biological concept where increased nocturnal
hypoxemia is a predictor of disease worsening. However, based

TABLE 4 | Desaturation parameter values at baseline in participants whose sleep
apnea severity remained in the healthy-to-mild state (ODI < 15) and in those
whose disease worsened to moderate (15 ≤ ODI < 30) or severe (ODI ≥ 30) sleep
apnea during the follow-up.

ODI < 15 15 ≤ ODI < 30 ODI ≥ 30

ODI (1/h)

Men 7.9 (6.3–10.3) 9.7 (7.1–12.0)a 9.9 (7.5–12.2)a

Women 7.5 (6.1–9.8) 8.5 (6.4–10.9)a 9.8 (7.6–12.0)a

Both 7.8 (6.2–10.0) 9.2 (6.8–11.7)a 9.9 (7.5–12.2)ab

DesSev (%)

Men 0.24 (0.11) 0.29 (0.11)a 0.31 (0.13)a

Women 0.22 (0.10) 0.27 (0.12)a 0.29 (0.13)a

Both 0.23 (0.10) 0.28 (0.11)a 0.30 (0.13)a

DesDur (%)

Men 7.5 (2.7) 8.8 (2.8)a 9.3 (3.1)a

Women 6.8 (2.7) 8.0 (2.8)a 8.6 (3.0)a

Both 7.2 (2.7) 8.4 (2.8)a 9.0 (3.1)a

Avg. DesArea (s%)

Men 104.0 (28.1) 110.7 (31.7) 108.2 (28.2)

Women 96.5 (28.7) 108.4 (31.5)a 101.5 (26.9)

Both 100.2 (28.6) 109.7 (31.6)a 106.1 (27.9)a

Avg. DesDur (s)

Men 31.3 (6.9) 32.4 (6.9) 32.2 (6.5)

Women 29.1 (6.8) 31.3 (7.4)a 29.9 (5.0)

Both 30.2 (6.9) 31.9 (7.1)a 31.5 (6.1)

Data are presented as means and standard deviations for normally distributed
variables and as medians and interquartile ranges for non-normally distributed
variables. Mann–Whitney U test was used to determine the statistical significance
(p < 0.05) between the participants who remained in the healthy-to-mild state
(nMen = 206, nWomen = 209) and those who worsened to moderate (nMen = 158,
nWomen = 119) or severe (nMen = 77, nWomen = 36) sleep apnea (a) and
between participants who worsened to moderate sleep apnea and those who
worsened to severe sleep apnea (b). ODI, oxygen desaturation index; DesSev,
desaturation severity parameter; DesDur, desaturation duration parameter; avg.
DesArea, average area of individual desaturation events; avg. DesDur, average
duration of individual desaturation events.
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TABLE 5 | Comparison between participants with mild sleep apnea at baseline
who participated only to the baseline PSG and those who participated also to
the follow-up PSG.

Participants with
only baseline

PSG

Participants with
both PSGs

p-value

n (men, women) 871 (458, 413) 805 (441, 364)

Age (years) 67.0 (10.7) 64.5 (10.0) <0.001

BMI (kg/m2) 29.0 (5.0) 29.2 (4.7) 0.083

Supine time (%) 22.9 (0.0–58.9) 26.6 (0.1–57.2) 0.421

NC (cm) 38.7 (3.9) 38.6 (3.9) 0.604

NC/H (%) 23.1 (1.9) 22.9 (1.9) 0.177

REM (%) 18.6 (7.1) 19.7 (6.4) 0.015

Hypertension, n (%) 557 (63.9) 422 (52.4) <0.001

Diabetes, n (%) 91 (10.4) 71 (8.8) 0.260

CVD, n (%) 159 (18.3) 99 (12.3) 0.001

ODI (1/h) 8.6 (6.6–11.0) 8.4 (6.5–11.0) 0.636

DesSev (%) 0.26 (0.12) 0.26 (0.12) 0.739

DesDur (%) 7.9 (3.0) 7.9 (2.9) 0.859

Avg. DesArea (s%) 104.3 (32.7) 104.3 (29.9) 0.765

Avg. DesDur (s) 30.8 (7.2) 31.0 (6.9) 0.406

Values are presented as means and standard deviations for normally distributed
parameters, as medians and interquartile ranges for non-normally distributed
parameters, and as n and percentages for categorical variables. Statistical
comparison of the observed differences between the populations was investigated
with Mann–Whitney U test for continuous variables and with Chi-squared test for
categorical variables. BMI, body mass index; NC, neck circumference; NC/H, neck
circumference/height ratio; REM, rapid eye movement sleep; CVD, cardiovascular
diseases (consisting of myocardial infarction, heart failure, stroke, coronary
angioplasty, and coronary artery bypass graft); ODI, oxygen desaturation index;
DesSev, desaturation severity parameter; DesDur, desaturation duration parameter;
avg. DesArea, average area of individual desaturation events; avg. DesDur, average
duration of individual desaturation events.

TABLE 6 | Automatically and manually scored oxygen saturation signal-derived
parameters were highly similar and strongly correlated.

Parameter Automatic
scorings

Manual
scorings

Difference Spearman’s
correlation

ODI (1/h) 3.6
(2.0–11.1)

3.7
(2.0–11.1)

0.0
(0.0–0.2)

1.00

DesSev (%) 0.09
(0.05–0.32)

0.08
(0.06–0.32)

0.00
(−0.01–0.00)

0.98

DesDur (%) 3.1
(1.6–10.1)

2.9
(1.2–9.8)

0.0
(0.0–0.3)

0.98

avg. DesArea (s%) 90.6
(76.3–118.6)

94.2
(73.1–121.1)

−1.8
(−5.3–1.1)

0.95

avg. DesDur (s) 28.7
(24.2–34.8)

28.5
(22.8–35.3)

−0.4
(−1.2–0.4)

0.94

For this analysis, 30 oxygen saturation signals were randomly selected from
the Sleep Heart Health Study dataset of 8,444 available recordings. Values are
presented as medians (interquartile range). Statistical significance (p < 0.05) of
the observed difference between the scorings was investigated with Wilcoxon
signed-rank test (no statistically significant differences were observed). ODI, oxygen
desaturation index; DesSev, desaturation severity parameter; DesDur, desaturation
duration parameter; avg. DesArea, average area of individual desaturation events;
avg. DesDur, average duration of individual desaturation events.

on the present results, the ODI alone might not be a robust
marker for assessing the progression of mild sleep apnea; a more
detailed morphological assessment of individual desaturation

events could provide more accurate estimates. Furthermore, the
opposing findings could be partly explained by differences in the
study populations and the lengths of the follow-up periods. Our
study population size is significantly larger than that in the study
by Lin et al. (n = 805 vs. n = 50), and we had a longer follow-
up period (5.2 vs. 3 years). In addition, their study population
consisted of patients who were suffering from more severe sleep
apnea at baseline (ODI mean ± SD = 20.8 ± 13.4), whereas we
focused only on patients with mild sleep apnea. Nevertheless,
the present results are consistent with other previously reported
findings (Sforza et al., 1994) with a similar follow-up period
(5.7 years), but with a small population (n = 32) of patients with
more severe sleep apnea (mean AHI = 52.2 at baseline).

Moreover, it has been shown that AHI does not change over
time (mean follow-up period of 5.1 years) in severe sleep apnea
patients, and the ones whose AHI increased have initially mild or
moderate disease (Berger et al., 2009). It was suggested (Berger
et al., 2009) that this is due to the ceiling effect of sleep apnea.
Another explaining factor could be the “regression toward the
mean” phenomenon, where initially extreme AHI values get
closer to the mean at the follow-up measurement, and vice versa.
Therefore, it seems that it is highly dependent on the severity
of sleep apnea whether baseline ODI or AHI values can be
used in the risk assessment of sleep apnea progression; thus, the
generalization of our findings should be done with caution.

We observed that mild sleep apnea patients with longer
and deeper desaturations experience an expedited worsening of
the disease. However, in the sex-stratified analyses, significant
findings were observed in men when the ODI 4% criterion was
used, whereas the associations were stronger in women with
the ODI 3% criterion (Supplementary Material). In addition,
we noted that men had more severe desaturations than women,
which is supported by previous studies (Ware et al., 2000;
Schwartz et al., 2008; Peppard et al., 2009). Therefore, it could
be speculated that the 4% criterion might be too strict to assess
the progression of sleep apnea severity in women. Furthermore,
the ODI values increased, while the avg. DesArea decreased
for both sexes during the follow-up. Thus, our findings suggest
that individuals whose desaturation events are more severe at
baseline develop more of these less severe events. Azarbarzin
et al. have also shown that the severity of hypoxic burden
predicts cardiovascular mortality (Azarbarzin et al., 2019) and
incident heart failure (Azarbarzin et al., 2020). Therefore, the
nocturnal hypoxic burden seems to play a potential prognostic
role in the worsening of sleep apnea and the development of
related comorbidities.

The present study has limitations. First, the desaturations
were autoscored using a commercial software without further
manual adjustment by specialists. However, the correlations and
agreements between the subset of manual and automatic scorings
were excellent and the median differences minimal (Table 6
and Figure 1). Therefore, we were convinced that the used
automatic desaturation scoring methods can be assumed to be
valid. New scoring was required since part of the manually
scored desaturation events had been lost due to the SHHS data
corruption over time (The National Sleep Research Resource,
2021). Moreover, there are no current standardized criteria
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FIGURE 1 | Comparison of automatically and manually scored desaturation parameter values of 30 randomly selected oxygen saturation signals using Bland-Altman
plots. ODI, oxygen desaturation index; DesSev, desaturation severity parameter; DesDur, desaturation duration parameter; avg. DesArea, average area of individual
desaturation events; avg. DesDur, average duration of individual desaturation events.

for scoring desaturation events, in addition to a minimum
transient drop of 3 or 4% in the SpO2 signal. For example,
the minimum or the maximum durations of the desaturation
events are not specified in the rules of the American Academy
of Sleep Medicine (AASM), unlike in the case of hypopneas
and apneas (Berry et al., 2017). Furthermore, no instructions
for the maximum duration of the plateau in the middle of the
event exist. In this study, a minimum event duration was set
to 3 s and a maximum plateau duration set to 45 s based on
visual inspection in which this criterion was observed to be
appropriate. However, no fine-tuning to obtain an optimized
desaturation scoring criterion was performed. With a shorter
plateau length, some of the events might not have filled the
minimum rule of transient drop in the SpO2 signal, or one
longer event might have been split into multiple shorter events.
In contrast, with longer plateau criteria, short events could fuse
into a longer one. All these aspects affect the number (ODI)
and severity (novel parameters) of the events and, therefore, the
determined parameter values. Furthermore, we decided to use

the 4% criterion for our primary analysis as, without associating
desaturation events to the respiratory events, the 3% criterion was
assumed to be too sensitive.

Apnea–hypopnea index was not used for the severity
categorization in this study because the scoring criteria have
changed since the apneas and hypopneas were originally scored
in the late 1990s and early 2000s. The biggest difference is
in the channels used for hypopnea scoring. At the time the
recordings were conducted, hypopneas could have been scored
based on signals from the thermistor, respiratory belts around the
thorax or abdominal region, or some combination of them (The
National Sleep Research Resource, 2021). The current AASM
recommendation for apnea scoring is an oronasal thermal airflow
sensor, while a nasal pressure transducer is recommended for
hypopnea scoring (Berry et al., 2017). Moreover, in addition
to the desaturation events, the Noxturnal software is capable
of scoring apneas and hypopneas automatically. However, the
accuracy of the detection of hypopnea and apnea events without
manual adjustment was found to be insufficient, and manual
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re-scoring of the massive SHHS dataset was not feasible.
Furthermore, the oximetry used in the SHHS data acquisition
differs from the current clinical recommendations. For example,
the oximetry used in the SHHS utilized a sampling frequency of
1 Hz, while the current minimum recommendation for routine
clinical recordings is 10 Hz (Berry et al., 2017). However, the use
of a sampling frequency of 1 Hz can be considered sufficient as
it has been shown not to affect the accuracy to detect sleep apnea
(Nigro et al., 2011).

Using the ODI to characterize the severity of OSA has certain
limitations. As the SpO2 is not a direct measure of breathing,
the ODI cannot be used as a direct measure of the frequency
of respiratory events. In addition, the ODI cannot distinguish
between obstructive and central respiratory events. Furthermore,
no standardized criteria exist to score desaturations, as discussed
above. The ODI can also potentially underestimate the AHI, as
hypopneas can be scored with an association to desaturation or
arousal (Berry et al., 2017). In addition, apneas can be scored
without desaturation or arousal, or multiple respiratory events
can be associated with a single desaturation. However, using
the ODI for the severity categorization is adequate as it has
been shown that only 6.3% of apneas are not associated with
desaturations and 4.7% of desaturations are not associated with
respiratory events (Fabius et al., 2019). Thus, misclassification
due to unmatched events can be assumed to be minor.

Another limitation is the potential influence of night-to-night
variability in the assessment of sleep apnea severity. It has been
shown that there is significant intra-patient variability in the AHI
between two consecutive nights (Roeder et al., 2020). However,
no such night-to-night variability was observed at the group level
(Roeder et al., 2020). Therefore, it is likely that such variations are
averaged out in our relatively large study population. Finally, the
study population was relatively old and could be enriched with
participants with CVD, due to the study design of the SHHS, thus
potentially causing selection bias.

Our present findings give a new perspective on the risk
assessment of whether mild sleep apnea will worsen over time.
The consideration of individual desaturation event severities
could be an additional tool in the planning of regular follow-
up monitoring, initiation of treatment, or lifestyle counseling.
With these preventive actions, sleep apnea worsening could be
slowed or prevented earlier. Adequate management of mild sleep
apnea patients with severe desaturation events could further
lower the risks of sleep apnea-related comorbidities and generally
improve the quality of life. However, regular monitoring of all
mild sleep apnea patients would be complicated and expensive
with the current diagnostic methods (i.e., polysomnography). In
addition, treating a large number of mild sleep apnea patients
would be costly while not providing significant benefits for many
of the patients, thus being a waste of resources. Therefore, using
novel SpO2-derived parameters in the risk assessment of sleep
apnea worsening and planning of the follow-up monitoring and
interventions could be a practical approach. This would allow
cost-efficient regular monitoring of sleep apnea using a simple
pulse oximeter often included, e.g., in many consumer-grade
wearable devices. This could also enable reducing the effect
of night-to-night variability on sleep apnea severity estimation

(Stöberl et al., 2017; Roeder et al., 2020), allowing more reliable
diagnosis and prognosis.

CONCLUSION

The present results indicate that, in the risk assessment of mild
sleep apnea worsening, the severity of the desaturation events is
more useful than the exact number of the events. Based on the
present findings, sleep apnea can be understood as a progressive
disease, and many of the mild patients develop more severe
disease in 5 years.
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Sleep deprivation (SD) has become very common in contemporary society, where
people work around the clock. SD-induced cognitive deficits show large inter-individual
differences and are trait-like with known neural correlates. However, few studies
have used neuroimaging to predict vulnerability to SD. Here, resting state functional
magnetic resonance imaging (fMRI) data and psychomotor vigilance task (PVT) data
were collected from 60 healthy subjects after resting wakefulness and after one night
of SD. The number of PVT lapses was then used to classify participants on the
basis of whether they were vulnerable or resilient to SD. We explored the viability
of graph-theory-based degree centrality to accurately classify vulnerability to SD.
Compared with during resting wakefulness, widespread changes in degree centrality
(DC) were found after SD, indicating significant reorganization of sleep homeostasis with
respect to activity in resting state brain network architecture. Support vector machine
(SVM) analysis using leave-one-out cross-validation achieved a correct classification
rate of 84.75% [sensitivity 82.76%, specificity 86.67%, and area under the receiver
operating characteristic curve (AUC) 0.94] for differentiating vulnerable subjects from
resilient subjects. Brain areas that contributed most to the classification model were
mainly located within the sensorimotor network, default mode network, and thalamus.
Furthermore, we found a significantly negative correlation between changes in PVT
lapses and DC in the thalamus after SD. These findings suggest that resting-state
network measures combined with a machine learning algorithm could have broad
potential applications in screening vulnerability to SD.

Keywords: sleep deprivation, vulnerability, functional magnetic resonance imaging, machine learning,
psychomotor vigilance task

INTRODUCTION

Cognitive ability and healthy brain function rely on sufficient sleep, during which metabolic waste
products are cleared away (Xie et al., 2013; Fultz et al., 2019). Lack of sleep, however, can impact
nearly all aspects of cognitive and emotional function, including attention, working memory, and
affect (Durmer and Dinges, 2005). Notably, functional magnetic resonance imaging (fMRI) studies
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measuring blood oxygen level–dependent (BOLD) signals have
demonstrated that sleep deprivation (SD) is associated with
widespread brain network alterations (Chee and Chuah, 2008).
These include changes in interhemispheric connectivity (Zhu
et al., 2016, 2020), connectivity between the thalamus and
prefrontal cortex (Shao et al., 2013), and compromised anti-
correlation between the Default Mode Network (DMN) and
dorsal attention network (Kaufmann et al., 2016).

While cognitive deficits have been well documented and
reliably related to SD, large inter-individual differences in
cognitive deterioration after SD have been noted (Hudson
et al., 2020). For some cognitive domains, such as sustained
attention, SD-induced differences in performance are stable
within a given individual even when assessed months or years
apart (Rupp et al., 2012). Previous studies have indicated that
differences in the vulnerability/resistance of individuals to SD-
induced deficits in cognition and performance are trait-like
(Van Dongen et al., 2004). Thus, the underlying mechanisms
of these individual differences are a current research focus. For
instance, many recent brain imaging studies have attempted
to identify the neural correlates of vulnerability/resistance to
SD. Using the hierarchical regression model, our previous
study found that the white matter integrity of the upper
longitudinal tract fibers connecting the frontal and parietal
lobes was negatively associated with individual differences
in psychomotor vigilance task (PVT) performance after SD
(Zhu et al., 2017). Another study found that stronger anti-
correlations among several networks (such as between DMN
and Attention networks) during rested wakefulness could
predict the vulnerability of PVT performance during SD
(Yeo et al., 2015).

However, as traditional approaches are based on average
estimates of differences at the group level, a reliable predictive
marker of cognitive vulnerability to SD has been elusive. The
translational applicability of such data to clinical practice should
be based on inferences at the individual rather than group level.
With recent advancements in the field of machine learning, such
as the support vector machine (SVM) model, a multivariate
pattern recognition machine learning (ML) technique especially
well-suited for discriminating high-dimensional rsFC fMRI data,
measurements derived from fMRI combined with artificial
intelligence algorithms have led to improvements in diagnoses,
classification, and treatment outcome prediction for a range of
situations (Zhao et al., 2018; Liu et al., 2020). Furthermore,
multivariate machine learning techniques are more sensitive to
differences that are subtle and spatially distributed because they
consider inter-regional correlations, which might be undetectable
using group comparisons (Liu et al., 2020). Because SD is
associated with widespread changes in functional networks,
graph-based measurements of network organization, such as
degree centrality (DC) (Wang et al., 2011), might have potential
in predicting vulnerability to SD-induced deficits in function.

In the current study, we adopted supervised machine learning-
based SVM algorithms to investigate whether baseline resting
wakefulness (RW) DC measures could predict inter-individual
differences in PVT lapses after SD. We hypothesized that the
baseline DC in hub regions of the DMN, frontal-parietal network,

and thalamus could be used to accurately classify participants as
vulnerable or resistant to SD.

MATERIALS AND METHODS

Subjects
This study was approved by the clinical trial ethics committee
of Xijing Hospital at the Air Force Medical University. Written
informed consent was obtained from each subject prior to
the study. All participants were recruited via advertisements
distributed in the local community. The exclusion criteria were as
follows: (1) having a history of alcohol or drug abuse; (2) having
a history of psychiatric or neurological illness; (3) sleep disorders;
(4) sleep later than 24 o’clock or get up earlier than 5 o’clock; and
(5) claustrophobia. The Pittsburgh sleep quality index (PSQI) was
used to evaluate sleeping quality (Guo et al., 2016), and subjects
who scored more than five points on the PSQI test were also
excluded. Hence, the final sample comprised 60 participants.

Study Procedure
All subjects were asked to make three visits to the laboratory.
During the first visit, they were briefed about the study protocol
and signed the informed consent form. All subjects agreed to
undergo an MRI scan after normal sleep and after 24 h of
SD, which occurred on the last two visits to the laboratory.
To minimize the influence of the scanning sequence on the
experimental results, the experimental condition in the last two
visits was presented in a pseudo-random order. The interval
between these two visits was at least 1 week. The SD process began
at 8:00 AM on 1 day and ended at 8:00 AM on the following day.
During SD, the participants could read books or use their mobile
phones. The SD took place in a room with standard light (340
lux) and the temperature was maintained at approximately 23◦C.
No snack food was given after midnight. The entire SD process
was monitored by two researchers to prevent the subjects from
falling asleep. All of the MRI scans were scheduled between 8:00
AM and 10:00 AM.

Psychomotor Vigilance Task
A 10-min PVT was used in the current study (Basner and Dinges,
2011). The PVT task was rendered using E-prime (version 3.0)
software. During the task, participants were asked to focus on
a blank box in the middle of a computer screen. A millisecond
counter then began to scroll at a random interval of 2–10 s.
The participants were required to press the space bar to stop
the counter as quickly as possible. Reaction time was displayed
for 1 s as feedback so that the participants could monitor
their performance. Reaction times longer than 500 ms were
recorded as a lapse in performance (Zhu et al., 2017). The
participants completed 10 min of the PVT every hour from
8:00 PM to 6:00 AM.

MRI Data Acquisition
MRI data were collected using a GE Discovery MR750 3.0T
scanner with a standard 8-channel head coil at Xijing Hospital.
The subjects were instructed to lie quietly on the scan flatbed,
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wear earplugs, open their eyes, stay awake, and try to avoid
sleeping (Song et al., 2020). Cotton pads and tape were used
to minimize head motion. During each scan, the subjects were
reminded via a microphone to stay awake, and the heart and
respiratory rates of the subjects were recorded. Resting-state
functional images were collected via an axial gradient-echo EPI
sequence with the following parameters: TR/TE: 2,000/30 ms,
FOV: 240 × 240 mm2, matrix size: 128 × 128, slices: 45, and
a total of 210 volumes. The structural MRI data were obtained
using a sagittal 3D Bravo T1-weighted scan sequence with the
following parameters: TR/TE: 8.2/3.2 ms, FOV: 256 × 256 mm2,
matrix: 256 × 256, slice thickness: 1.0 mm, slices: 196.

MRI Data Analysis
The fMRI data were preprocessed using Data Processing
and Analysis for Brain Imaging (DPABI)1 with the statistical
parameter mapping software package (SPM12)2 and the Resting-
State Functional MR imaging toolkit (REST)3 (Yan et al., 2016).
First, the initial 10 volumes were discarded to stabilize the
signal. Then, the remaining 200 volumes were realigned to the
first volume after correcting for the differences in acquisition
times, during which the mean frame-wise displacement (FD)
was calculated. Data were excluded if head motion exceeded
2 mm and 2◦. Two participants were excluded because of
heavy head motion. The effects of nuisance signals and head
motions (Friston-24 model) were also regressed out. Then, the
diffeomorphic anatomical registration through exponentiated Lie
algebra (DARTEL) tool was used for normalization (Asami et al.,
2012), and the normalized data were finally band-pass filtered
(0.01–0.08 Hz).

Degree Centrality
The correlation matrix was obtained by calculating the Pearson
correlation coefficient between the time course of one voxel
within the predefined gray matrix mask and the time courses of all
other voxels. Then, an undirected adjacency matrix was obtained
by eliminating the weak correlation caused by noise through
threshold processing of each correlation item at r > 0.25. Finally,
z-score maps were obtained by converting the individual voxel-
wise DC. The z-score maps were registered with 3-mm3 cubic
voxels into the MNI space using the transformation information
obtained from DARTEL and smoothed using a kernel of 6 mm.

Statistical Analysis
Demographic data were analyzed using IBM SPSS Statistics
(IBM SPSS Statistics for Windows, version 18.0, IBM Corp.).
For detection of between-group differences in DC, the General
Linear Model (GLM) with a paired t-test (resting wakefulness
(RW) vs. SD) was used to identify regional DC changes. The
threshold for significance was P < 0.05, corrected with the
false discovery rate (FDR) criterion. The mean FD calculated
during the preprocessing step was accounted for by including this

1http://rfmri.org/dpabi
2https://www.fil.ion.ucl.ac.uk/spm/
3http://www.restfmri.net

term as a covariate. The differences between RW and SD were
binarized as a mask for further machine learning analysis.

Support Vector Machine Analysis
Trait-like individual differences in vulnerability to SD were
defined using the same methods stated in our previous study
(Zhu et al., 2017). Vulnerability to SD was computed on the basis
of the extent of change in the number of lapses in each individual
after SD. The participants were then ranked from highest to
lowest per the vulnerability value. Finally, the participants were
categorized into a vulnerability group and a resilience group.

The SVM was applied using the Pattern Recognition for
Neuroimaging Toolbox (PRoNTo)4 to investigate whether the
DC during RW could classify vulnerability to SD (Schrouff
et al., 2013). In the first step (feature selection) the feature
vector encoded the pattern of baseline DC values masked by the
aforementioned mask. Feature selection comprised identifying
brain regions that were expected to differ between the two
sub-groups. These procedures were processed in the “Prepare
feature set” program. In the second step, Leave-one-out cross-
validation (LOOCV) was used to evaluate the performance of
the classifier (Liu et al., 2020). In LOOCV, data from one
subject was used as test data and the classifier is trained on
the remaining dataset. These procedures were processed in the
“Specify model” program. Next, once the SVM algorithm had
been established, a 1,000-times permutation test was used to
evaluate the performance of the SVM model. The corresponding
accuracy, sensitivity, specificity, and area under the receiver
operating characteristic curve were obtained. One advantage
of the PRoNTo is that the weight map can be built at the
voxel level. According to the contribution in the classification
model, the region contributions can be ranked and presented for
illustration. Finally, for each region, we used Pearson correlation
to examine the associations between the changes in DC and
PVT lapses using SPSS. Correction for multiple comparisons
was accomplished using the FDR criterion (“mafdr” script
implemented in MATLAB) (Zhu et al., 2019).

RESULTS

A total of 58 subjects successfully completed the SD experiment.
Sleep diaries and Actiwatches confirmed that all subjects
normally had good quality, habitual sleep. On the basis of the
differences in the PVT lapses between the SD and RW conditions,
subjects were divided into a vulnerable group and resilience
group. The average number of PVT lapses for each group was
8.47 and 1.69, respectively. As expected, significant differences
in PVT lapses were found between the two groups (t = 5.39,
p < 0.001). No significant differences were found for gender,
age, body mass index, or objective sleep measures observed via
Actiwatches. Detailed sleep information is listed in Table 1.

A paired t-test was used to investigate the significant changes
in DC measures after SD. As shown in Figure 1, we observed
significantly increased DC within the bilateral inferior temporal

4http://www.mlnl.cs.ucl.ac.uk/pronto
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TABLE 1 | Demographic characteristics, objective sleep measures, and
PVT performance.

Vulnerable Resilience p-value

Gender (male/female) 15/14 15/14 1

Age (years) 22.4 ± 1.9 22.2 ± 1.6 0.43

Body mass index 23.7 ± 2.8 23.5 ± 2.3 0.81

Objective sleep characteristics from Actiwatch

Time of falling asleep 00:05 ± 0:22 00:06 ± 0:27 0.86

Number of wakening each night 27.2 ± 6.4 27.4 ± 6.8 0.94

Sleep duration all night 6:45 ± 1:10 6:43 ± 1:25 0.91

Night sleep durations before
work days

6:27 ± 0:52 6:25 ± 0:59 0.94

Night sleep durations before
free days

7:06 ± 1:18 7:01 ± 1:19 0.83

Sleep efficiency in% 84 ± 2.8 83 ± 2.2 0.31

Sleep latency in minutes 16.6 ± 13.8 16.4 ± 14.3 0.84

PVT performance

Number of lapse 8.47 (6.01) 1.69 (3.15) <0.001

Values represent mean ± SEM (n = 58); PVT, psychomotor vigilance task.

gyrus, left insula, left inferior frontal gyrus, and bilateral
precentral gyrus. We found significantly reduced DC within the
bilateral cerebellum, thalamus, putamen, middle occipital gyrus,
and right supramarginal gyrus.

We obtained an accuracy of 84.75% with a sensitivity of
82.76% and specificity of 86.67% for classification of the two
groups. The area under the curve was 0.939 (Figure 2). The brain
regions that contributed most to the classification are shown in
Figure 3 and listed in Table 2. The top 10 regions were the
right supplementary motor area, right cerebellum, left inferior
occipital gyrus, left precentral gyrus, left supramarginal gyrus, left
thalamus, left middle temporal gyrus, left inferior parietal lobule,
right middle frontal gyrus, and right middle occipital gyrus; their
corresponding discriminative weights are also listed in Table 2.

FIGURE 2 | ROC curve of the classifier.

Finally, the mean DC changes (SD-RW) within each region
were extracted and plotted against the changes in PVT lapses. We
found a significantly negative correlation with the left thalamus
(see Figure 4).

DISCUSSION

Using a multivariate pattern classification method, the present
study demonstrates that degree centrality derived from fMRI data
collected during RW can be used to classify subjects on the basis
of whether they are vulnerable or resilient to SD. With excellent

FIGURE 1 | Areas of significant degree centrality differences between resting wakefulness state and sleep deprivation state.
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FIGURE 3 | Brain regions of interest that contributed mostly to the accurate classification.

accuracy, the brain regions that showed the most discriminatory
power were mainly located within the sensorimotor network
(SMN), DMN, and thalamus. Furthermore, we found a significant
negative correlation between the changes in PVT lapses and DC
in the thalamus after SD. These findings suggest that graph-
theory-based measures, such as DC, combined with machine-
learning algorithms, can help to predict vulnerability to SD.

Because SD has become very common in contemporary 24/7
society, efficient screening for resilient and vulnerable people has
social significance. Although previous studies have used baseline
measures of psychomotor vigilance and the drift diffusion model

TABLE 2 | The top ten ranked regions that contributed mostly to the classification.

Brain regions Cluster
size

Peak coordinates (MNI) Discriminative
weight (%)

X Y Z

Supplementary
motor area R

290 9 −15 57 5.02

Cerebellum R 1402 6 −63 −12 3.84

Inferior occipital
gyrus L

46 −21 −99 −12 3.81

Precentral gyrus L 80 −24 −12 51 3.53

Supramarginal R 92 48 −24 36 2.98

Thalamus L 403 −12 −3 6 2.58

Middle temporal
gyrus L

88 −63 −27 0 2.44

Inferior parietal
lobule L

21 −42 −30 39 2.31

Middle frontal gyrus
R

21 24 −21 54 2.22

Middle occipital
gyrus R

92 36 −84 3 1.85

to classify vulnerability to SD (Patanaik et al., 2014), the accurate
classification rate was around 77–82%, which was less than
satisfactory. Vulnerability to SD has been shown to be stable
and trait-like, with characteristic neural correlates that have
been identified. Therefore, neuroimaging data combined with
state-of-the-art artificial intelligence algorithms might enable
greater classification performance. Our results verified that SD
leads to significant DC reductions in the cerebellum, thalamus,
and putamen. This indicates that functional connections within
subcortical regions are compromised, which is consistent with

FIGURE 4 | Correlation between change of lapse of psychomotor vigilance
task and change of degree centrality within left thalamus.
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previous studies (Nechifor et al., 2020). A significant increase in
DC was mainly found within the SMN and DMN, which suggests
that SD affects lower functional network segregation and higher
network integration (Yu et al., 2017).

The brain regions that contributed most to the classification
model include the supplementary motor area, middle temporal
gyrus, and middle frontal gyrus, which are core regions of
the DMN. The DMN is more active during passive tasks than
during externally orientated tasks, and has been extensively
examined in SD research (Gujar et al., 2010). Furthermore, the
anti-correlation between sub-networks of the DMN and frontal-
parietal networks subserves working memory performance
during the mid-point of night in the regular biological sleep cycle
(Zhu et al., 2019). These consistent findings highlight the role of
the DMN in predicting vulnerability to SD.

Apart from that related to the DMN, another interesting
finding of the present study is that the thalamus also exerts an
important role in modulating SD vulnerability. The thalamus is
one of the core network brain regions that subserves vigilant
attention in humans (Avanzini et al., 2000). Previous studies
have indicated that the thalamus is involved in sensory gating
and attentional modulation by acting as a bridge between
sensory perception and cognition (Saalmann and Kastner, 2011).
Increased thalamus activation has been frequently reported in
SD studies (Hershey et al., 1991; Gent et al., 2018). However, the
activity pattern in the thalamus has been found to be correlated
significantly with mean melatonin levels, and therefore, the
thalamus is modulated more by circadian rhythms than by sleep
debt (Muto et al., 2016; Zhu et al., 2020). Previous studies have
indicated that SD vulnerability is stable after total SD or short
periods of sleep restriction, suggesting that SD vulnerability is
not solely modulated by sleep debt (Van Dongen et al., 2004;
Rupp et al., 2012). The common patterns found in thalamus
activity and vulnerability to SD, coupled with the discriminative
weight and negative correlation found in the current study, imply
that baseline activity within the thalamus has broad potential
applications in screening for SD vulnerability.

Several limitations are present in the current study. First, the
sample size was relatively small. However, we selected the SVM
algorithm for classification because it has good efficiency when
used with small sample sizes. Second, although it is possible
that micro-sleep occurred during the SD period, two research
assistants were present to prevent subjects from falling asleep, so
this is unlikely. Furthermore, the subjects were required to stay
awake and keep their eyes open during the scanning procedure,
and their heart rate and breathing frequency were collected
concurrently to verify that they were not asleep.

CONCLUSION

Our study demonstrates that graph-theory-based DC measures
combined with machine learning algorithms have the potential to
predict vulnerability to SD. Brain regions within the SMN, DMN,
and thalamus contributed most to the accurate classification
model. Future studies may benefit from the integration of white
matter connectivity or other imaging modality measurements.
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Insomnia is a widespread neuropsychological sleep-related disorder known to
result in various predicaments including cognitive impairments, emotional distress,
negative thoughts, and perceived sleep insufficiency besides affecting the incidence
and aggravation of other medical disorders. Despite the available insomnia-related
theoretical cognitive models, clinical studies, and related guidelines, an evidence-based
conceptual framework for a personalized approach to insomnia seems to be lacking.
This study proposes a conceptual cognitive framework (CCF) providing insight into
cognitive mechanisms involved in the predisposition, precipitation, and perpetuation
of insomnia and consequent cognitive deficits. The current CCF for insomnia relies
on evaluative conditional learning and appraisal which generates negative valence
(emotional value) and arousal (cognitive value). Even with the limitations of this study, the
suggested methodology is well-defined, reproducible, and accessible can help foster
future high-quality clinical databases. During clinical insomnia but not the neutral one,
negative mood (trait-anxiety) causes cognitive impairments only if mediating with a
distorted perception of insomnia (Ind-1 = 0.161, 95% CI 0.040–0.311). Further real-life
testing of the CCF is intended to formulate a meticulous, decision-supporting platform
for clinical interventions. Furthermore, the suggested methodology is expected to offer
a reliable platform for CCF-development in other cognitive impairments and support
the causal clinical data models. It may also improve our knowledge of psychological
disturbances and complex comorbidities to help design rehabilitation interventions and
comprehensive frameworks in line with the “preventive medicine” policies.

Keywords: cognitive model, insomnia, evaluative conditional learning, mediator model, distorted perception,
appraisal, valence, conceptual cognitive framework
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INTRODUCTION

Behavioral sleep disturbances are classified into various types
of insomnia, excessive daytime somnolence (EDS), sleep phase
disorders, and parasomnias. These are potentially rooted
in psychophysiological, cognitive, emotional, and behavioral
abnormalities resulting in impaired sleep efficacy, disintegrated
sleep cycles, and/or arousal instability (Cormier, 1990; Sateia,
2014). Insomnias are characterized by poor subjective sleep
quality, difficulty in falling asleep and maintaining sleep at
bed-time, wakes after sleep onset (WASO), or unprompted
early morning awakening. The consequent diurnal symptoms
may then present as inadequate cognitive functions, declined
cognitive aptitude, fatigue, hampered productivity, depression or
irritability, impaired decision-making, low motivation, and mood
dysregulation (Mai and Buysse, 2008; Nami, 2014).

Recently, cognitive-vulnerability models, which theoretically
justify the interrelation between sleeplessness and mood
dysregulation or cognitive insufficiencies, have drawn the
attention of the research community. When insomnia becomes a
chief complaint, the vicious cycle of insomnia-anxiety-insomnia
starts to emerge. Undeniably, affective dysregulation, impulsivity,
restlessness, EDS, disrupted vigilance, and cognitive decline are
some consequences of long-term sleep insufficiency in many
instances (Nami, 2014).

Among the theoretical and cognitive-computational models
related to insomnia, the cognitive vulnerability model for
insomnia induced mood disturbances (CVMIMD), the sleep-
specific cognitive vulnerability (SSCV), the behaviorally induced
insufficient sleep syndrome with restricted and extended sleep
opportunity (BIISS-RESO), and the global cognitive vulnerability
to insomnia (GCVI) (Bei et al., 2015) are the main highlights.
These models are addressed subsequently.

Cognitive Vulnerability Model for
Insomnia Induced Mood Disturbances
From the neurocognitive standpoint, the prefrontal cortex (PFC),
which plays a pivotal role in affect-regulation and cognitive-
control, develops intensely throughout the neurodevelopment
phase and adolescence owing to neuroplasticity. When the
hypnic tone is decreased either due to poor sleep hygiene or
socio-behavioral and psychophysiological stressors, a proposed
explanation is the activation of PFC’s maladaptive processes as
a potential neurocognitive mechanism underlying the affective

Abbreviations: ABM, attentional bias modification; BIISS-RESO, behaviorally
induced insufficient sleep syndrome with restricted and extended sleep
opportunity; CAAP, conscious attended awareness perception; CBT, cognitive-
behavioral therapy; CBT-I, cognitive-behavioral therapy for insomnia;
CCF, conceptual cognitive framework; CEOF, Centro Especializado de
Otorrinolaringologia e Fonoaudiologia; CS, conditioned stimulus; CVMIMD,
cognitive vulnerability model for insomnia induced mood disturbances;
DBAS, dysfunctional beliefs and attitudes about sleep; ECL, evaluative conditional
learning; EDS, excessive daytime somnolence; GCVI, global cognitive vulnerability
to insomnia; Ind, Indirect; MBCT, mindfulness-based cognitive therapy; MSQ,
mini-sleep questionnaire; MSQ-R, mini-sleep questionnaire result; PFC,
prefrontal cortex; SSCV, sleep-specific cognitive vulnerability; STAI, state-trait
anxiety inventory; US, unconditioned Stimulus; WASO, wakes after sleep onset.

consequences of insomnia and inefficient sleep, in general
(Freeman et al., 2005).

The body of psycho-behavioral and neurocognitive empirical
evidence describing the precise mechanisms that underlie
the link between insomnia and negative mood is thin.
However, subjective sleep insufficiencies and dysregulated mood
observations exhibited more robust relationship as compared
to objective findings from polysomnography or even full-setup
sleep electroencephalography data. This points to the fact that
psychological factors that hinder sleep efficiency might play
significant roles in justifying the sleep-mood crosstalk. Yet some
of these insomnia-related cognitive vulnerability factors are
now acknowledged as erroneous beliefs, cognitive biases, and
thought patterns that increase the likelihood of the predisposed
individuals toward psychopathology (Freeman et al., 2005).

Sleep Specific Cognitive Vulnerability
In some instances, the erroneous beliefs and attitudes represent
exclusive sleep-related problems in which case, the distressing
worries related to insomnia-continuation are usually evaluated
using the dysfunctional beliefs and attitudes about sleep (DBAS)
Scale. Harvey’s cognitive model (Harvey, 2002) described the
impact of the DBAS-related cognitive vulnerability on insomnia
complaints. According to this model, insomniacs are generally
worried about poor sleep and its daytime consequences,
and such strong, negatively toned thoughts trigger selective
attentional-emotional bias, wherein individuals over-monitor
their sleep-related threat cues. Previous investigations proposed
a strong connection between DBAS and poor sleepers, which
happens to play a key role in DBAS-driven disturbances in
sleep perception and sleep safety behaviors such as napping
(Harvey, 2002).

Behaviorally Induced Insufficient Sleep
Syndrome With Restricted and Extended
Sleep Opportunity
This condition refers to a typical complaint reported by the
patients as “at nights I cannot sleep, in the morning, I cannot
wake up.” Habitual sleep episodes are usually shorter (confirmed
by history, sleep log, or actigraphy) for patients experiencing
initial or maintenance insomnia compared to the normative
values from age-adjusted groups. Such patients also report
sleep-inertia in the morning and complain about EDS for a
minimum of 3 months before the interview. However, they
tend to sleep considerably longer on weekends or during
vacation. In general, the reported objective sleep efficiency as
detected by polysomnography is below 80%, besides the mean
initial nocturnal sleep latency which takes a longer time, more
than 45 min. Also, these patients report repeated WASOs
(Bastien et al., 2008).

Global Cognitive Vulnerability to
Insomnia
Cognitive vulnerability is defined as global when the
dysfunctional beliefs and attitudes are general and not
necessarily focused on a distinct behavioral or experiential
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area. According to Beck’s cognitive model, psycho-traumas
in the early years of life combined with a complicated past
can foster negative attitudes and biases concerning both
self, world and the future. Such beliefs yield maladaptive
schemas that may trigger cognitive vulnerabilities and negative
tendencies based on depression later in life (Beck, 2008).
A few studies on GCVI suggest strong links between sleep
predicaments (mainly insomnias) and negatively toned cognitive
constructs. For instance, complaints of chronic insomnia in
young adults were found to be associated with anxiety and
depression-related cognitive factors (Alfano et al., 2009).
In the same vein, Sadler et al. (2013) claimed hopelessness,
a global cognitive-vulnerability factor in older adults, can
amplify the effects of insomnia on depressive symptoms
(Sadler et al., 2013).

The various types of insomnia (more than 10) require
personalized treatment approaches. Some of the broadly
described types include adjustment insomnia, drug or
substance-induced insomnia, comorbid insomnia, onset
insomnia, middle insomnia, late insomnia, conditioned,
or psychophysiological insomnia, behavioral insomnia of
childhood, idiopathic insomnia, paradoxical insomnia, and
sleep hygiene insomnia (Dzierzewski et al., 2018). Based on the
severity of sleep insufficiency, we have categorized insomnia
patients into Neutral (with a mild to moderate perception of
sleep difficulties) and Clinical (with a severe perception of sleep
difficulty) types.

Gross (1998) designed the modal model of emotion as
a conceptual framework to illustrate how emotions can be
generated and evolve over time. The emotion-generation
process begins with internal or external goal-relevant situations
that draw attention to specific features of the situation,
appraisals emerge to make meaning of the situation resulting
in multi-faceted emotional responses and feedback to modulate
the current situation perpetually. Collectively, the modal
model reflects the dynamic nature of the emotions and
suggests possible emotion-regulation strategies comprising
of situation selection, situation modification, attention
deployment, cognitive change, and response modulation
(Gross, 2013).

To the best of our knowledge, the aforementioned studies have
little mention of causality (mediation) relationships, which can
easily mislead interpretations of the findings. Thus, necessitating
the design of an approach to conceptualize these theories and
hypotheses. A novel insomnia theoretical-conceptual framework
would enable the drawing of data models for testing mediational
relationships between independent variables and outcomes
within retrospective studies. Besides, it may also help suggest
research strategies and predictions designing prospective studies
on insomnia. The present study aims to fill this void in
the literature by proposing and validating a novel conceptual
cognitive framework (CCF) for insomnia in light of the above-
mentioned models. The CCF illustrates how cognitive processes
and their interactions can generate annoyance-distress reactions,
which in turn, lead to the development or maintenance of
insomnia. The insomnia numerical model is also demonstrated
through multi-mediatory (causality) modeling approaches.

PROPOSED CONCEPTUAL COGNITIVE
FRAMEWORK

Fundamental Ideas and Postulations of
the Conceptual Cognitive Framework
• Conceptual cognitive framework aims at illustrating

the interaction between cognitive processes that cause
annoyance-distress reactions in insomnia.
• Conceptual cognitive framework rests mainly on evaluative

conditioning, assuming a conscious attended awareness
perception (CAAP) to both unconditioned stimulus (US)
and conditioned stimulus (CS), and their contingencies
essential for attitude formation.
• Either or both, cognitive-value and emotional-value, can

cause annoyance; however, they can also affect each
other merely through annoyance. Furthermore, annoyance
distorts the corresponding perception of sleep quality by
affecting cognitive and emotional values.
• Lower levels of cognitive-emotional values such

as those encountered in the Neutral stage might
generate annoyance, yet not sufficient enough to
trigger distress reactions. Consequently, annoyance
and distress are considered two different concepts in the
current framework.
• Cognitive processes for sleep-initiation and

sleep-maintenance difficulties are presumed to
occur analogously.

Hypothetically, CCF compartments include situation,
attention bias, cognitive value (arousal), emotional value
(valence), annoyance-distress reaction, and distorted perception.
The proposed CCF aims at illustrating how the interaction
among cognitive processes contributes to distress reactions.

This paper focuses on insomnia experienced before sleep,
and the associated “situation” is restricted to the night-
time silence period. According to the CCF, when insomnia-
related stimuli capture attentional resources, either directly or
through corresponding cognitive and emotional values, distress
is triggered resulting in a distorted perception. Distress, in
turn, feeds back and influences the situation. Similarly, distress
reaction fuels back corresponding cognitive and emotional
values. The proposed CCF is illustrated in Figure 1.

Toward providing a proof of concept for the proposed
CCF, we primarily present some supporting evidence from the
Insomnia literature.

COMPARTMENTS AND COGNITIVE
PROCESSES

Situation
Nighttime silence in the pre-sleep period can facilitate
CAAP of internal (body sensation or thoughts) and external
(environmental sounds, light, and heat) stimuli. Bootzin and
Rider (1997) noted that “bedtime may often be the first quiet
time during the day available to think about the day’s events and
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FIGURE 1 | Conceptual Cognitive Framework of Insomnia: During the pre-sleep situation, when attentional resources are captured by insomnia-related stimuli, either
directly or through insomnia-related cognitive and emotional values, distress is triggered, thus resulting in a distorted perception of sleep quality, which, in turn,
worsens the sleep-initiation process. Likewise, insomnia distress strengthens the negative cognitive-emotional value of difficulty in sleep.

to worry and plan for the next day.” Therefore, bed and bedtime
tend to be cues for arousal rather than for sleep.

Attention Bias
Consciously attended internal and external stimuli develop an
individual’s predictions and expectations from the pre-sleep
situation. Therefore, an attention bias takes place if any novelty
or change occurs in the features of such stimuli (Horstmann and
Herwig, 2016). Similarly, Roberts et al. (2013) have supported the
notion that “discrepancy between an expectation and upcoming
stimuli can bias attention” (Horstmann and Herwig, 2016).
Additionally, emotion-laden or threat-related stimuli would be
prioritized over other stimuli leading to an attentional bias. The
same rationale applies to cognitive theories of anxiety disorders
(Beck and Clark, 1997), according to which prioritized attention-
allocation to threat cues would trigger the development and
maintenance of anxiety (Dalgleish and Watts, 1990). Threat cues
for patients with insomnia might be related to sleep quality
(arising secondarily to bodily sensations such as palpitation,
muscle tension, or attention bias toward noises outside and inside
the house), which impairs the process of falling asleep.

One of the commonly used paradigms for experimental
assessment of attentional bias is the Dot-Probe task. In this, a pair
of stimuli (e.g., words or pictures) are presented simultaneously
at different locations (up/down or top/bottom) on the screen.
The stimuli pair disappear after a fixed time window and a probe
appears in the location of emotional (congruent presentations)
or neutral (incongruent presentations) stimuli. Subjects are asked
to detect and respond to the location of the probe as fast as
possible, and the attentional bias is measured through their
reaction time in responding to the probe location. A faster probe
detection for congruent trials is believed to indicate vigilance, and
a slower probe detection for the incongruent trials is suggestive
of difficulty in disengaging attention from emotional stimuli
(Koster et al., 2004).

Several studies have investigated the impact of the
emotional-attentional bias on sleep-related threatening cues
through different attentional paradigms, including Dot-probe
(MacMahon et al., 2006; Jansson-Fröjmark et al., 2012), flicker
(Jones et al., 2005), Posner (Woods et al., 2009), emotional
Stroop (Barclay and Ellis, 2013), and eye-tracking (Woods
et al., 2013). Most of these studies have endorsed the notion
that poor sleepers display attentional bias to sleep-related cues
compared with controls. Jansson-Fröjmark et al. (2012) used
a dot-probe task to demonstrate that individuals with primary
insomnia had a considerably prolonged reaction-time when
shifting attention away from insomnia-associated pictures paired
with neutral pictures, in comparison to neutral-neutral paired
picture presentations as control. Their findings suggest that
insomniacs have more difficulty in shifting attention away from
insomnia-related stimuli, but are not more vigilant to those
stimuli than normal sleepers (Jansson-Fröjmark et al., 2012).
However, results reported by Spiegelhalder et al. (2010) yielded
no statistically significant preferential attentional-allocation
to sleep-related stimuli. Inconsistent results from studies on
insomnia may have emerged due to confounding factors and
possible bias, impeding their methodologies and study design.

Emotional Value
The emotional value gets shaped through the evaluative
conditional learning (ECL) mechanism which plays a crucial
role in liking and disliking stimuli (Ghodratitoostani et al.,
2016a,b). Based on ECL, neutral stimuli (CS) can obtain either
positive or negative valence after being repeatedly paired with
emotion-laden stimuli (US) (De Houwer et al., 2001). Valence
represents emotional states varying along a spectrum, ranging
from positive to negative feelings with a neutral center-point
(Bradley and Lang, 1994). Based on the CCF, CAAP of both
CS and US, and their contingencies are required at the time
of EC-learning formation. Additionally, evaluative conditioning
is an accumulative procedure through which different valenced
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USs can add to CS valence after being repeatedly paired (Stahl
and Unkelbach, 2009). Therefore, EC-learning is resistant to
extinction so that neither individual CS/US presence alone, nor
pairing CS with different USs would cause the extinction of
previously shaped evaluative conditioning (De Houwer et al.,
2001). Applying the CCF, the ECL mechanism suggests that
the negative valence of other USs fuels a negative sleep-related
emotional-value leading to annoyance or distress reaction.
Different negative USs can also frequently get paired with internal
(bodily sensations) and external (environmental sounds, light,
or heat) sleep-preventing stimuli. Thereafter, attending to sleep-
preventing cues alone might trigger distress reactions due to the
learned USs’ valence.

Cognitive Value
The cognitive value related to internal and external stimuli is
built through an appraisal process. This process initiates when the
meaning of an object or event is evaluated in a particular situation
according to pre-existing beliefs, desires, and intentions (Scherer
et al., 2001). However, not all information but that relevant to
individuals’ concerns (Frijda, 1987), can trigger a cognitively
aroused state followed by the appraisal. Accordingly, attention
bias to sleep-preventing cues (as concern-relevant stimuli) can
trigger a cognitively aroused state with subsequent appraisals
about insomnia, “I am never going to get to sleep,” “I am not
coping with the amount of sleep I get,” and “I am going to lose
my job” (Harvey, 2002). Negative thoughts through this appraisal
mechanism further fuel the negative sleep-related cognitive value,
leading to annoyance or distress reaction.

Self-reported questionnaires are widely used for collecting
patients’ thoughts and beliefs about events, situations, or objects
that require conscious appraisals of conditions, and their
corresponding consequences. Pre-Sleep Arousal Scale (Nicassio
et al., 1985), Sleep Disturbance Questionnaire (Espie et al.,
1989), and DBAS Scale (Morin, 1993) are commonly applied for
assessing thoughts and beliefs related to insomnia. The latter is
greatly helpful in clinical practice since it distinguishes salient
irrational, and often emotionally loaded thoughts that disturb
sleep onset. Nicassio et al. (1985) and Lichstein and Rosenthal
(1980) evaluated the intensity of cognitive and somatic arousal
at bedtime through the Pre-Sleep Arousal Scale and reported
cognitive arousal was more strongly associated with sleeping
difficulty. Similarly, Espie et al. (1989) used the Sleep Disturbance
Questionnaire and observed “My mind keeps turning things over”
and “I am unable to empty my mind” were the most often
endorsed statements among insomniacs (Espie et al., 1989).

Several authors have assessed characteristics of pre-sleep
thoughts in terms of content (Harvey, 2000; Wicklow and Espie,
2000), frequency (Barclay and Gregory, 2010), and valence (Kuisk
et al., 1989). For instance, Wicklow and Espie (2000) conducted
an experimental study on people with clinically significant sleep
difficulties using audiotape to record their pre-sleep thoughts and
wrist-actigraphy to obtain sleep patterns. The authors indicated
that the more frequent thoughts were related to “rehearsing,
planning and problem-solving” and “sleep and its consequences,”
which strongly correlated with unpleasant emotions and could
predict objective sleep latency. Contrarily, Barclay and Gregory

(2010) observed that the orientation of catastrophic thoughts
in poor sleepers may not be necessarily sleep-specific, instead it
was linked to a general tendency to be in an iterative manner
regardless of the content or emotional valence. Sleepers were
asked to catastrophize their thoughts into three topics namely
sleep quality, current personal worries, and hypothetical positive
topics. Poor sleepers exhibited greater catastrophic thoughts on
every single topic in comparison with good ones, however, no
difference was observed in occurrence of catastrophic worry
about each topic among poor sleepers. Davey and Levy (1998)
suggested that the tendency for repetitive thinking in insomniacs
is similar to that of worriers who hold dysfunctional beliefs about
the benefits of worrying. In other words, insomniacs believe the
ongoing worry helps them find solutions and prevent adverse
outcomes. Using DBAS, Morin et al. (1993) reported that not
only excessive cognitive activity, but the valence of thoughts
also plays a crucial role in provoking emotional reactions to
sleep impairment.

Annoyance-Distress Reaction
Consistent with many cognitive-behavioral studies, the CCF
suggests that negative appraisals of insomnia trigger the
annoyance-distress reactions. According to the cognitive model
of insomnia, excessively negative thinking in the pre-sleep
time provokes autonomic arousal, and emotional distress
(Harvey, 2002). Tang and Harvey (2004a) have reported that
the manipulation of psychological and physiological arousal
produces adverse effects on the perception of sleep quality. For
illustrative purposes, Baglioni et al. (2010) presented five blocks
showing neutral, negative, positive, sleep-related negative and
sleep-related positive pictures to evaluate the psychophysiological
reactivity to emotional stimuli, both related and unrelated to
sleep, in people with primary insomnia and normal sleepers.
facial electromyography, heart rate, and cardiac vagal tone
were recorded during the picture presentation. The insomnia
group indicated an enhanced physiological “craving” response
for positive sleep stimuli (e.g., picture of a person asleep in
bed), prolonged physiological arousal in response to all stimuli,
and increased subjective arousal for negative sleep stimuli (e.g.,
picture of a person lying awake in bed) when compared to normal
sleepers (Baglioni et al., 2010).

Distorted Perception
According to the CCF, valence and cognitive-arousal as two
components of emotion can affect patients’ judgment about
sleep quality perception. The following findings lend support
to this proposal.

Yoo and Lee (2015) explored the effect of modulating arousal
and valence on time-perception in subjects with social anxiety,
comparing the time duration of the presented stimuli with the
standard duration in training sessions. The perceived duration
of negative-stimuli against positive-stimuli was longer with
high arousal, but shorter with low arousal levels, suggesting
that modifications in the type and magnitude of both valence
and arousal modulate time-perception (Yoo and Lee, 2015).
This may also be analogous to the distortion in sleep quality-
perception in insomniacs.
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Using self-reported subjective sleep quality, Tang and Harvey
(2004a) observed that experiencing anxious cognitive and
physiological arousal in the pre-sleep period resulted in the
perception of a longer sleep-onset latency and shorter total sleep
time. Moreover, actigraphy results showed contradictions to the
reported subjective sleep quality, thus corroborating distorted
perception (Tang and Harvey, 2004a).

On the contrary, Herbert et al. (2017) inspected the
psychophysiological predictors of subjective/objective sleep
discrepancy in Total Sleep Time (Manconi et al., 2010) and
Sleep Onset Latency (Herbert et al., 2017) indices among poor
sleepers. They reported that excessive pre-sleep cognitive activity
and lower mood at the awakening time of the following day are
predictors of distortion in time estimation.

Hypotheses of Conceptual Cognitive
Framework
The primary speculation was that the CAAP of internal and
external sleep-preventing stimuli captures attentional resources
preferentially and triggers the appraisal process, ending with
annoyance and distress in the pre-sleep situation. A secondary
hypothesis was that intermittent distress experienced in the
Clinical stage leads to a misperception about sleep quality.

We applied the multi-mediation insomnia model based on
clinical data toward putting the CCF into practice and provide
supporting evidence for the proposed causality relationship
between the cognitive processes in different stages of insomnia.

METHODS

For the CCF assessment, data were collected from the participants
of (1) a randomized crossover three-session double-blind study
and (2) an observational prospective cohort study. Both studies
were approved by the Ethics Committee for Analysis of Research
Projects, Specialized Center of Otorhinolaryngology and Speech
Therapy, Hospital das Clínicas de Ribeirão Preto, University of
São Paulo, Brazil (HCRP no 55716616.1.1001.5440, and HCRP
no 09813519.1.0000.5440; internationally registered with U1111-
1236-5441). All participants gave written informed consent.

Two-hundred fifty-three participants (123 female, 130 male)
aged 27–72 years (54.43 ± 10.31 years) were recruited for this
study. Before the sessions in both studies, participants filled up a
Portuguese version of a battery of questionnaires that included
(a) a six-item state-trait anxiety inventory (STAI) (Gorenstein
and Andrade, 1996) for measuring the presence and severity of
anxiety symptoms in the current moment (State anxiety) and a
generalized predisposition to be anxious (Trait anxiety), and (b)
a mini-sleep questionnaire (MSQ) (Falavigna et al., 2011), i.e.,
a short screening for sleep disturbances in clinical populations
for the assessment of insomnia and sleep difficulties (Table 1).
Table 1 shows the items selected from each questionnaire for the
development of the insomnia Mediator-Causality model.

Pre-processing of the Data
The data were anonymized to ensure blinding. Initially, those
with missing values were omitted, which resulted in 112 and 134

TABLE 1 | List of selected questions from state-trait anxiety inventory (Gorenstein
and Andrade, 1996) and mini-sleep questionnaire (Falavigna et al., 2011) for each
model’s component.

Questionnaire Items Model Component

State-Trait

St-Q2. I am tense State Anxiety-

Anxiety

St-Q4. I feel nervous Negative items

Inventory (STAI)

St-Q6. I am worried [STAI-1N]

Tr-Q2. I worry too much over
something that really doesn’t
matter

Trait Anxiety Negative

Tr-Q4. I get in a state of tension or
turmoil as I think over my recent
concerns and interests

items [STAI-2N]

Tr-Q5. I feel nervous and
restless

|

Mini-Sleep

MS-Q1. Difficulty falling asleep Insomnia Perception
Factors [Ins_Per]|

Questionnaire

MS-Q2. Wake up and do not go back
to sleep

|

(MSQ)

MS-Q3. Use of sleeping pills | Confounding Factors

MS-Q4. Sleep during the day | [MSQ_Cof]

MS-Q6. Snore | Physiological

MS-Q7. Wake up and go back to
sleep

| Factors

MS-Q10. Restless sleep | [MSQ-Phy]

MS-Q5. Waking up tired in the
morning

|

Insomnia
MS-Q8. Wake up with a
headache

| Consequences

MS-Q9. Tiredness for no
apparent reason

|

[MSQ_Conq]

session-wised questionnaires from the first and second studies,
respectively. The datasets were then aggregated and segmented
based on the insomnia severity stage. For insomnia, scores of
the MSQ-questionnaire lower than 30 (MSQ-R < 30; mild to
moderate sleep difficulties) were labeled as Neutral insomnia,
and MSQ-R ≥ 30 (severe sleep difficulty) were denoted Clinical
insomnia (Natale et al., 2014). Such segmentations provided two
sub-datasets (Neutral Insomnia, and Clinical Insomnia) for the
statistical analysis. Figure 2 illustrates the correlation matrix of
the variables in the mediator model.

Statistical Analysis
Every segment of the dataset was tested for multicollinearity/
autocorrelation by the Durbin-Watson test and showed
independence in residuals in general. SPSS v.26 and PROCESS
macro (Hayes, 2017) were used for the data analysis. Within the
macro, customized models and 5.000 bias-corrected bootstrap
samples were set for all tests with the fixed random-seed
(“12020”). A 95% confidence level was chosen, with significance
at for P < 0.05 was set. A hierarchical regression analysis
investigated the evidence for insomnia CCF within the data-
segments, and multiple mediation models were constructed for
determining the mediating effects of insomnia-related cognitive
items and emotional factors for insomnia. PROCESS macro
generated standard errors, P-values, and confidence intervals
for direct effects, as well as bootstrap confidence intervals for
conditional indirect effects.
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FIGURE 2 | Correlation Matrix of variables used in the multi-mediation model of insomnia to support CCF of insomnia.

Datasets and analyzed details are available on “Zenodo”
repository with the DOI: http://doi.org/10.5281/zenodo.4145224.

Fundamental Ideas and Postulations for
Mediator Models
• Insomnia-perception-factors (Ins_Per) variable contains

difficulty in sleep initiation and maintenance.
• The employed dataset was unable to test hypotheses related

to the distorted perception of sleep quality.

Proposed Mediator Model
The insomnia mediator model aims to illustrate that negative
trait-anxiety can affect the perception of deficits in sleep
quality. Concurrently, Insomnia-perception-factors can directly or
through state-anxiety affect insomnia consequences. The insomnia
model is depicted in Figure 3.

Several studies introduced trait-anxiety as an important
predisposing factor for both the development and maintenance
of insomnia (Sadigh et al., 2014; Bavafa et al., 2018; Lauriola et al.,
2019). Harvey (2002) argued that anxious individuals tend to
interpret ambiguous situations in a threat-related fashion which,
in turn, promotes over-thinking about sleep-related threat cues.
This process maintains individuals in a cognitively aroused state
which is in contradiction to the relaxed state needed for getting
to sleep (Harvey, 2002; Lancee et al., 2017a).

RESULTS

Multi-mediation regression analysis with the conventional least-
squares method revealed that trait-anxiety can only indirectly
influence the insomnia consequences. As shown in Figure 3

and Table 2, in the full-dataset, trait-anxiety can lead to
insomnia consequences through either insomnia perception, or
cascade mediators from insomnia perception to state-anxiety.
The 95% confidence interval of bootstrap results revealed “Ind-
1” [I01 × I10 = 0.303] and “Ind-2” [I01 × I12 × I20 = 0.025]
were significantly different from zero (0.183–0.432) and (0.006–
0.057), respectively, but there was not enough evidence for
trait-anxiety (Ic ′ = 0.088, P = 0.32) that might directly lead to
insomnia consequences.

According to Table 3, trait-anxiety in the Clinical insomnia
segment leads to insomnia consequences only through insomnia
perception. The 95% confidence interval of bootstrap results
revealed a significant difference in “Ind-1” [I01 × I10 = 0.161]
different from zero (0.040–0.311), but not in “Ind-2.” Moreover,
there was not enough evidence of trait-anxiety (Ic ′ = 0.2,
P-value = 0.104) might directly lead to insomnia consequences.

Table 4 shows trait-anxiety neither directly, nor indirectly
can lead to insomnia consequences within the Neutral
insomnia segment.

Clinical Implications
Insomnia per se is a clinical issue with short-term and long-term
consequences affecting both physiological and psychological
systems. It has been associated (at least partly in terms of duration
and severity) with increasing the incidence and worsening the
state of many pre-existing clinical conditions (Schutte-Rodin
et al., 2008). Hence, the need for formulating a conceptual
and concurrently pragmatic framework toward an individualized
approach for people suffering from insomnia.

The proposed CCF, together with insomnia mediator models,
explained the contribution of cognitive processes to the
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FIGURE 3 | Insomnia mediator model includes the direct effect of trait-anxiety on Insomnia consequences (Ic′ ); Ind-1 [I01 → I10]: Trait-anxiety→ Insomnia
perception factors→ Insomnia consequences;

Ind-2 [I01 → I12 → I20]: Trait-anxiety→ Insomnia perception factors→ State-anxiety→ Insomnia consequences;
Covariates: Confounding factors and Physiological problems.

development and maintenance of clinical insomnia. The CCF
proposes the following predictions and target-oriented clinical
implications:

Decreasing Attentional Bias
Conceptual cognitive framework predicts that attentional bias
modification (ABM) training can decrease the attentional bias
to insomnia. In practice, the ABM treatment encourages the

TABLE 2 | Mediator model of insomnia in full-dataset.

Paths and Effects Coefficient SE t LLCI ULCI

Effect of trait-anxiety on
insomnia perception factors
(I01 path)

0.363 0.074 4.891 0.217 0.509

Covariate: Effect of confounding
factors on insomnia perception
factors

0.164 0.075 2.194 0.017 0.311

Covariate: Effect of physiological
problems on insomnia
perception factors

0.219 0.056 3.903 0.109 0.330

Effect of insomnia perception
factors on insomnia
consequences (I10 path)

0.835 0.068 12.308 0.701 0.968

Effect of insomnia perception
factors on state-anxiety
(I12 path)

0.239 0.051 4.709 0.139 0.339

Covariate: Effect of confounding
factors on state-anxiety

0.241 0.060 4.015 0.123 0.360

Effect of state-anxiety on
insomnia consequences
(I20 path)

0.292 0.094 3.120 0.108 0.476

Direct effect

Effect of trait-anxiety on
insomnia consequences (Ic ′
path) [P-value = 0.32]

0.088 0.089 0.997 −0.086 0.263

Bootstrap results for indirect
effects

Seed number “12020”
Bootstrap samples “5000”

Bootstrap 95% confidence
estimate interval

Effect SE Lower Upper

Total indirect effect 0.328 0.072 0.196 0.473

“Ind-1”: I01→I10 0.303 0.064 0.183 0.432

“Ind-2”: I01→I12→I20 0.025 0.013 0.006 0.057

insomniacs to shift attention away from the negative sleep-
related words toward a neutral one, thus reducing attention
bias toward sleep-related threatening cue. Such a simple task
enables patients to consciously and repeatedly select unbiased
information over negative information, thereby progressively
help to develop a tendency to not focus on negative information
related to insomnia in their daily life (Clarke et al., 2016).

Milkins et al. (2016) conducted a crossover study in which 18
insomniacs alternatively fulfilled an ABM task and a non-ABM
control task before sleep across six successive nights. At nights
on which the subjects performed the ABM task, they reported
shorter sleep-onset latencies and lower pre-sleep worry, than the
nights on which they performed the control task. Likewise, in
a parallel design (Clarke et al., 2016), 36 students with sleep

TABLE 3 | Mediator model of insomnia in clinical insomnia segment.

Paths and Effects Coefficient SE t LLCI ULCI

Effect of trait-anxiety on
insomnia perception factors (I01

path)

0.223 0.090 2.480 0.045 0.401

Effect of insomnia perception
factors on insomnia
consequences (I10 path)

0.723 0.105 6.863 0.514 0.931

Effect of insomnia perception
factors on state-anxiety (I12

path)

0.227 0.092 2.456 0.044 0.410

Covariate: Effect of confounding
factors on state-anxiety

0.254 0.086 2.950 0.084 0.425

Effect of state-anxiety on
insomnia consequences (I20

path)

0.230 0.114 2.013 0.004 0.455

Direct effect

Effect of trait-anxiety on
insomnia consequences (Ic ′
path) [P-value = 0.104]

0.200 0.122 1.637 −0.042 0.442

Bootstrap results for indirect
effects

Seed number “12020”
Bootstrap samples “5000”

Bootstrap estimate 95% confidence
interval

Effect SE Lower Upper

Total indirect effect 0.173 0.078 0.042 0.344

“Ind-1”: I01→I10 0.161 0.069 0.040 0.311

“Ind-2”: I01→I12→I20 0.012 0.012 −0.000 0.046
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TABLE 4 | Mediator model of insomnia in neutral insomnia segment.

Paths and Effects Coefficient SE t LLCI ULCI

Effect of trait-anxiety on
insomnia perception factors (I01

path)

0.177 0.109 1.622 −0.042 0.396

Effect of insomnia perception
factors on insomnia
consequences (I10 path)

0.881 0.188 4.681 0.503 1.259

Effect of insomnia perception
factors on state-anxiety (I12

path)

0.095 0.113 0.840 −0.131 0.320

Effect of state-anxiety on
insomnia consequences (I20

path)

0.370 0.271 1.365 −0.175 0.914

Direct effect

Effect of trait-anxiety on
insomnia consequences (Ic ′
path) [P-value = 0.626]

−0.088 0.178 −0.491 −0.446 0.271

Bootstrap results for indirect
effects

Seed number “12020”
Bootstrap samples “5000”

Bootstrap 95% confidence
estimate interval

Effect SE Lower Upper

Total indirect effect 0.162 0.126 −0.038 0.456

“Ind-1”: I01→I10 0.156 0.119 −0.039 0.433

“Ind-2”: I01→I12→I20 0.006 0.015 −0.007 0.049

problems underwent ABM or control training sessions across
five nights. Compared with the control condition, subjects who
underwent ABM training reported less pre-sleep arousal, fell
asleep faster, woke less often during the night, reported better
overall sleep quality, and had significant reductions in sleep-
related anxiety (Clarke et al., 2016). These findings support the
above-mentioned proposition.

In contrast, the results of Lancee et al. (2017b) showed no
added benefit of the ABM training over the placebo training
on sleep-related indices and outcome measures. The authors
believe it was probably due to the absence of attentional bias at
baseline and hence no change could be deduced after training
(Lancee et al., 2017b).

Employing Attention-Distraction Techniques Can
Help Deviate Attention From Concerns-Relevant
Topics to Neutral Ones
Addressing the issue of attentional bias toward relevant topics,
Haynes et al. (1981) observed that engagement with a challenging
mental arithmetic problem reduced subjective sleep latency
among insomniacs (Haynes et al., 1981). Similarly, practicing
crossword puzzles, reading, and listening to audiobooks could
provide sufficient distraction so that the patient would no longer
attend to or think about their inability to sleep. Troxel et al. (2012)
recommended patients should keep doing those activities until
they feel sleepy enough to return to bed. And, if they cannot
fall asleep after returning to bed, the process should be repeated
(Troxel et al., 2012).

Preventing Annoyance and Distress-Reaction
Conceptual cognitive framework draws attention to the crucial
role of appraisal and ECL mechanisms in reducing negative
cognitive and emotional value.

Cognitive-behavioral therapy (CBT) to reduce the negative
cognitive-value related to insomnia
Sleep difficulties are commonly accompanied by dysfunctional
beliefs, unrealistic expectations, and worries, which contribute
to distress and maladaptive sleep habits producing an anxious
state opposite to the relaxation required for sleeping. Therefore,
patients’ beliefs regarding sleep and insomnia must be explored
and attempts be made to change them eventually. Cognitive
therapy aims at the identification of dysfunctional beliefs
and attitudes related to sleep and their replacement with
more adaptive substitutes. Cognitive therapies also address
catastrophizing the consequences of poor sleep to help patients
reconceptualize the realities of their beliefs, thereby reducing
the upcoming distress and arousal that impedes sleeping
(Perlis et al., 2006). Through cognitive-behavioral therapy
(CBT) a combination of cognitive reconstruction and behavioral
techniques are delivered to encourage patients to develop more
adaptive coping skills and stop self-criticizing (Perlis et al., 2006).
The European guideline for diagnosis and treatment of insomnia
(Riemann et al., 2017) recommends CBT for insomnia (CBT-I) as
the first-line of treatment for chronic insomnia.

Furthermore, several systematic reviews and meta-analyses
(Taylor and Pruiksma, 2014; Mitchell et al., 2019) have reported
strong empirical support for CBT-I on different subjective and
objective sleep parameters. CBT-I’s common approaches for non-
comorbid insomnia were cognitive therapy, stimulus control,
sleep restriction, sleep hygiene, and relaxation. The results
indicated that CBT-I improved sleep onset latency, wake after
sleep onset, total sleep time, and sleep efficiency. The changes
persisted over time alleviating the symptoms (Wang et al., 2005;
Trauer et al., 2015).

Mindfulness-based cognitive therapy (MBCT) for reducing
the negative cognitive and emotional value related to
insomnia
Mindfulness-based cognitive therapy (MBCT), as an emotion-
regulation based psychotherapy, is a purposeful and unbiased
form of therapy directing attention to the present moment as
a way of self-regulation that promotes mind-body relaxation
(Ludwig and Kabat-Zinn, 2008). The approach educates people
toward changing their relationship with their thoughts and
negative emotions. Patients must be aware of their thoughts
and are inspired to take a non-judgmental perspective on
them rather than a negative, self-referential assessment that
intensifies both negative thoughts and emotions (Ludwig
and Kabat-Zinn, 2008). In concordance with suggestions put
forth by the CCF, Shallcross and Visvanathan (2016) have
explained that experiential awareness, attentional control, and
acceptance techniques used in MBCT interventions improve
rumination, arousal, selective attention, and the distorted
perception involved in the development and maintenance of
insomnia (Shallcross and Visvanathan, 2016).
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The MBCT protocol tailored for insomniacs showed
significant pre–post improvements in self-reported total
sleep time and various thought-control domains, along with
reductions in sleep-related monitoring and worry (Heidenreich
et al., 2006). MBCT was also effective for individuals with a
history of depression or anxiety accompanied by sleep difficulty
or insomnia (Ree and Craigie, 2007; Yook et al., 2008; Britton
et al., 2010). Ree and Craigie (2007) reported decreased scores
of insomnia severity symptoms lasting for about 3 months with
the MBCT. Similarly, MBCT protocol in older adults showed a
14.5% improvement in self-reported sleep problems (Foulk et al.,
2014). Self-regulation of attention and orientation to experience
to achieve better sleep are the proposed mechanisms of actions
for MBCT (Larouche et al., 2014). A recent comprehensive
meta-analysis reported significantly improved insomnia
symptoms as measured by the Pittsburgh Sleep Quality Index
(Wang et al., 2020).

ECL mechanism for modifications in negative
emotional-value related to insomnia
Positive emotion-induction techniques can reduce the negative
valence of insomnia when paired with positively valenced and
high arousal pictures, films (Uhrig et al., 2016), audio (Bergman
et al., 2016), music, and video clips (Lazar and Pearlman-Avnion,
2014; Siedlecka and Denson, 2019). Game-like design, app-
based format, goggles of virtual reality, or a screen are different
ways to present stimuli to provide cost-effective home-based
individualized treatments.

Rectifying the Distorted Perception of the Quality of
Sleep Deficit
Digital-technology approaches are believed to provide an online
measurement of sleep duration and correct the distorted
perception of sleep deficit. Since we have established that negative
emotions might influence the perception of insomniacs about
their sleep deficit, interventions aiming at emotion-regulation
or modifications of dysfunctional beliefs may help prevent
the formation of the distorted perception. Furthermore, Holter
monitoring of rest/activity cycle of sleep, smartphone gadgets
(Izmailova et al., 2018), actigraphy, and sleep diary (Tang and
Harvey, 2004b) might help insomniacs correct misperception.
In contrast, parts of the literature studying the time-perception
concept (Thomas and Cantor, 1975, 1976) have revealed that
when more information is processed, time is perceived as
longer. A high level of cognitive arousal and repetitive thought
patterns distorts time perception for insomniacs, leading to
an overestimation of sleep onset latency (Tang and Harvey,
2004a). Another implication is that during sleep onset, cognitive
arousal maintains an enhanced sensory and memory processing
level obscuring the distinction between sleep and wakefulness
(Perlis et al., 1997).

Future Trends
The clinical recommendations provided in this paper can be
applied separately or in combination, to plan treatment for
individuals with insomnia. The CCF builds upon a general
assumption that patients should be consciously and actively

involved in the rehabilitation process. Subsequently, new
treatments can be developed aimed at encouraging patients
to be consciously aware of their negative thoughts related to
sleep-difficulty and contingencies for intervention. Moreover,
the inclusion of surrogate measurements is recommended
for guaranteeing the patient’s conscious attended-awareness.
Collectively, the CCF can provide a decision-support platform for
clinicians to deliver more targeted interventions, and eventually,
the methodologies suggested can provide a reliable platform
to build a CCF for other cognitive disorders and support the
causal clinical data models. This novel approach can improve
our knowledge of psychological disturbances and complex
comorbidities toward the design of rehabilitation interventions
and suggestions in line with the “preventive medicine” policies.

Limitation
The CCF of insomnia, its predictions, and the corresponding
suggested interventions do not include patients with organic
sleep disorders, general cognitive distortion, and psychotic
problems. MSQ was obtained from patients with complaints
of tinnitus at the clinic during the day, and not before sleep.
Despite their importance, daytime cognitive processes were not
taken into account in the presented framework. Lastly, to achieve
clinical endpoints, repeated measures and longitudinal studies
are required to improve predictabilities.
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Current approaches to quantify and diagnose sleep disorders and circadian rhythm
disruption are imprecise, laborious, and often do not relate well to key clinical and
health outcomes. Newer emerging approaches that aim to overcome the practical
and technical constraints of current sleep metrics have considerable potential to better
explain sleep disorder pathophysiology and thus to more precisely align diagnostic,
treatment and management approaches to underlying pathology. These include more
fine-grained and continuous EEG signal feature detection and novel oxygenation
metrics to better encapsulate hypoxia duration, frequency, and magnitude readily
possible via more advanced data acquisition and scoring algorithm approaches. Recent
technological advances may also soon facilitate simple assessment of circadian rhythm
physiology at home to enable sleep disorder diagnostics even for “non-circadian rhythm”
sleep disorders, such as chronic insomnia and sleep apnea, which in many cases
also include a circadian disruption component. Bringing these novel approaches into
the clinic and the home settings should be a priority for the field. Modern sleep
tracking technology can also further facilitate the transition of sleep diagnostics from
the laboratory to the home, where environmental factors such as noise and light could
usefully inform clinical decision-making. The “endpoint” of these new and emerging
assessments will be better targeted therapies that directly address underlying sleep
disorder pathophysiology via an individualized, precision medicine approach. This review
outlines the current state-of-the-art in sleep and circadian monitoring and diagnostics
and covers several new and emerging approaches to better define sleep disruption and
its consequences.

Keywords: sleep disordered breathing, sleep apnea, insomnia, circadian rhythm, polysomnography, signal
processing, apnea/hypopnea index, precision medicine

INTRODUCTION

Sleep, along with diet and exercise, is essential for optimal health and wellbeing. However, globally,
nearly 2 billion people are estimated to have one or both of the two most common clinical sleep
disorders–sleep apnea (Benjafield et al., 2019) and insomnia (Roth et al., 2011). Most people with
sleep disorders remain undiagnosed and untreated, and thus vulnerable to the major adverse health
and safety consequences associated with untreated sleep disorders.
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Current sleep apnea diagnostic approaches rely on traditional
labor-intensive overnight sleep tests and subjective manual
scoring approaches developed around the constraints of paper-
based methods from the 1960’s. This approach, in combination
with the advent of continuous positive airway pressure (CPAP)
to reverse airway collapse during sleep (Sullivan et al., 1981),
led to rapid advances in the modern field of sleep medicine.
Although efficacious irrespective of underlying mechanisms,
sub-optimal patient acceptance and use of CPAP remain
problematic and warrant personalized treatments that better
target underlying causal mechanisms. However, traditional sleep
assessment methods fail to identify the specific underlying causes
and consequences of sleep disorders for individual patients. For
example, relationships between perceived sleep quality and/or
sleepiness and objective sleep measures derived from traditional
gold-standard polysomnography are either absent, weak, or
inconsistent (Buysse et al., 2008; Sforza et al., 2015; Adams
et al., 2016). In the case of insomnia, diagnosis relies on clinical
evaluation since traditional objective sleep measures do not relate
to disorder incidence, severity, or recovery. While the gold
standard treatment, cognitive behavioral therapy for insomnia
(CBT-I) is efficacious for many, it is ineffective or only partially
effective for some patients (Trauer et al., 2015). This is potentially
because, like CPAP for sleep apnea, CBT-I is a one-size-fits-
all treatment regardless of the underlying causal mechanisms
(Harvey and Tang, 2003). As such, usual care for sleep disorders
typically relies on a trial-and-error treatment approach which
often fails to identify the underlying causes of sleep disruption or
adequately address patient symptoms and health consequences
for which individuals seek treatment. Accordingly, this review
focuses on highlighting new and emerging approaches to
better define sleep and circadian disruption that underpins
sleep disorders based on their underlying pathophysiology and
accompanying health impacts.

CURRENT STATE OF THE ART FOR
SLEEP RECORDING

Current gold-standard methodology to quantify sleep relies
on overnight polysomnographic (PSG) recordings. This
includes collection of a wealth of neurophysiological data
from electroencephalography (EEG), electrooculography
(EOG), electromyography (EMG), electrocardiography (ECG),
body position and movement, and respiratory-related signals
including airflow, chest and abdominal motion, and oximetry.
These signals are then manually reviewed and analyzed to classify
wake, light through to deep non-rapid eye movement (NREM)
(N1, N2, and N3), and rapid eye movement (REM) sleep in
30-s epochs. Transient cortical arousals (3–15 s) and longer
awakening (>15 s) events are also manually scored on the basis
of internationally standardized American Academy of Sleep
Medicine (AASM) EEG criteria (Berry et al., 2017).

Traditional polysomnography scoring evolved from
observations of behavioral responsiveness changes coincident
with changes in EEG patterns of activity at a time when
chart recorders necessitated manual scoring, quite literally

page-by-30-s-page (Rechtschaffen, 1968). This pattern-matching
“bottom-up” approach to sleep medicine was based on the
practical constraints with the technology available at the time,
rather than being driven by an understanding of underlying sleep
neurobiology. Although computerized systems have replaced
paper-based recordings, and despite exponential advances in
modern computing, sleep medicine remains predominantly
based on these manual scoring methods from the 1960s. Manual
scoring is labor intensive, and therefore costly, and captures
only gross visually discernible EEG features with much poorer
time and frequency resolution than is available within the data
(Figure 1). Thus, EEG scoring into discrete 30-s epochs ignores
that wake and sleep are continuous and dynamic states, whereby
physiological features within epochs classified as wake can be
present during sleep, and vice versa (Prerau et al., 2014; Scott
et al., 2020). Manual scoring also has large intra- and inter-scorer
variability, which remains problematic in sleep medicine despite
AASM scoring criteria updates that attempt to reduce scoring
variability (Ruehland et al., 2009; Magalang et al., 2013).

A New Way of Thinking: Top-Down Sleep
Signal Features Based on Underlying
Neurobiology Rather Than Bottom-Up
Measurement Convenience Guided
Approaches
Automated sleep scoring methods using advanced signal
processing and machine learning approaches to analyze
polysomnography signals have been widely developed and can
achieve good agreement against consensus-based traditional
human scoring (Fiorillo et al., 2019). However, most of the
focus has been on reproducing existing manual approaches
(Tsinalis et al., 2016; Supratak et al., 2017; Chambon et al., 2018;
Olesen et al., 2021). Thus, while these approaches are more
standardized and time efficient, the fundamental limitations of
traditional sleep metrics remain. Robust evidence to support
causal relationships and clinical utility of most existing sleep
metrics also remains sparse. Thus, the finer-grained quantifiable
features within polysomnography data that may ultimately be
more informative regarding underlying sleep mechanisms and
quality continue to be largely ignored.

For example, EEG delta waves are tightly coupled in
time and precede pulsatile changes in cerebral blood volume
and cerebrospinal fluid flow during deep sleep (Fultz et al.,
2019). Furthermore, a single night without sleep in healthy
volunteers leads to β-amyloid accumulation (Shokri-Kojori
et al., 2018). These findings support that delta waves during
deep NREM sleep are a major driver of glymphatic clearance
of metabolites from the central nervous system (Benveniste
et al., 2020; Braun and Iliff, 2020). Wake/sleep transitions,
such as potentially fatal microsleeps while driving, and a range
of other physiological changes during sleep also occur on
shorter timescales than assessed through traditional manual
sleep scoring methods. For example, traditional scoring most
likely misses potentially clinically informative neurophysiological
features of synaptic downscaling, re-organization, memory
and learning processes thought to occur during NREM and
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FIGURE 1 | Electroencephalography activity during sleep.

REM sleep (Tononi and Cirelli, 2006). Thus, conventional
sleep scoring can only provide relatively superficial insights
into brain activity and other physiological changes during
sleep that are unlikely to be as sensitive or specific to
underlying mechanisms as shorter-time scale features of
sleep. Accordingly, a more physiologically guided, top-down
measurement approach is clearly needed to provide greater
neurobiological insight into sleep health and disease, and how
sleep disturbance features relate to clinically relevant outcomes
(Léger et al., 2018).

Defining evidence-based electrophysiological sleep markers is
important in the age of precision medicine, particularly following
rapid growth in minimally intrusive recording and consumer
wearable devices that allow for sleep-related monitoring over
prolonged periods in the home environment (Liu et al., 2017;
Kim et al., 2019). These and other emerging technologies are
likely to change many aspects of polysomnography, such as via
printed electrodes (Norton et al., 2015) or tripolar concentric
ring EEG (Besio et al., 2006), by helping to uncover aspects of
sleep health not routinely measured. For example, markers of
circadian misalignment are technically difficult to monitor, so
remain notably absent from conventional sleep studies. Emerging
evidence highlights the potential to estimate circadian phase
using non-intrusive physiological data such as skin temperature,

heart rate variability and activity (Suárez et al., 2020; Cheng
et al., 2021). Blood pressure surges along with vasoconstriction
and heart rate responses occur frequently during sleep, especially
with swallowing (Burke et al., 2020), but are not currently
routinely captured or assessed. Continuous measurement of a
range of biomarkers such as cortisol secretion during sleep
through skin sensor devices (Parlak et al., 2018) may also have
clinical utility.

Together, a range of new and emerging devices could routinely
generate large volumes of sleep measurements over extended
periods. This approach will require evidence to support clinical
use and value, and software tools to assist clinicians to assess,
analyze, and interpret sleep-omics (Redline and Purcell, 2021). To
increase the uptake of new technologies in research and clinical
settings, greater communication between sleep medicine experts
and device manufacturers is needed. Rigorous standards for
validation and evidence-based advances in medicine are required
to ensure that new methods provide clinically useful insights
that effectively and cost-effectively improve key patient outcomes
(Depner et al., 2020). While not a complete list of all available
approaches, the sections below highlight several examples of
existing approaches and notable promising new and emerging
methods based on underlying pathophysiology/neurobiology
to move beyond key limitations of current sleep metrics.
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A schematic representation of some of these examples is provided
in Figure 2.

KEY COMPONENTS OF THE
POLYSOMNOGRAPHIC

Electroencephalography
This review focuses on novel sleep metrics derived from
EEG collected clinically using routine polysomnography. Other
reviews regarding potential neurobiological insights of sleep

physiology and circadian rhythms through high density EEG and
intra-cranial/depth EEG are available elsewhere (Mosqueiro et al.,
2014; Saper and Fuller, 2017; Scammell et al., 2017).

Slow Waves
Slow waves (0.5–4.5 Hz) are the main feature of deep
sleep and one of the fundamental electrophysiological features
of synchronous neuronal “down states” of relative neuronal
inactivity and “up states” as activity resumes (Nir et al., 2011).
These waves are thought to play a major role in synaptic recovery
and down-scaling to compensate for daily high neuronal activity

FIGURE 2 | Schematic overview of the current metrics derived from standard polysomnography and the potential to make better use of these extensive
neurophysiological signals provide novel insight into sleep neurobiology, treatment prediction and to better link with key clinical and health outcomes. Refer to the
text for further detail. CPAP = continuous positive airway pressure, CV = cardiovascular, EEG = electroencephalography, EMG = electromyography,
EOG = electrooculography, ECG = electrocardiography, HGNS = hypoglossal nerve stimulation, MAS = mandibular advancement splint,
PPG = Photoplethysmography, REM = rapid eye movement, SpO2 = estimated arterial blood oxygen saturation and UA = upper airway.
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and synaptic potentiation during wake (Tononi and Cirelli, 2006)
and glymphatic system removal of metabolic waste products
from the central nervous system (Benveniste et al., 2020; Braun
and Iliff, 2020). Slow waves are ubiquitous during sleep, and
decrease in quantity and magnitude with age (Chinoy et al.,
2014). Several techniques have been developed to study specific
aspects of slow waves, such as slow wave slope, absolute power,
amplitude and phase in response to a range of experimental
or naturalistic (e.g., aging) conditions (Massimini et al., 2004;
Bersagliere and Achermann, 2010; Lazar et al., 2015; Lendner
et al., 2020; Djonlagic et al., 2021). For example, the slope of
half slow-waves (i.e., the slope between the up- and down-
states) and slow wave amplitude/absolute power increase with
sleep restriction and decrease with circadian phase, suggesting
that sleep need and circadian rhythms have an effect on the
shape and distribution of slow oscillations (Massimini et al.,
2004; Bersagliere and Achermann, 2010; Lazar et al., 2015).
Using the same features, reduced slow oscillations during sleep
(low amplitude/absolute power) have recently been associated
with poorer cognitive performance on a digit symbol coding
test and the Trails B test in a large cross-sectional study of
∼3800 participants (Djonlagic et al., 2021). Many of these tools
are available in open-source packages. With standardization,
clinical validation and implementation, these novel metrics
have substantial potential to provide unique insight into inter-
individual vulnerability to specific health consequences in people
with sleep disruption (Léger et al., 2018).

K-complexes
K-complexes are a form of isolated slow waves that provide
unique insight into sleep stability and sleep disruption. They
can occur spontaneously during sleep. However, K-complexes
can also provide a sensitive marker of sensory disturbance to
noise, respiratory and vibratory stimuli during sleep (Colrain,
2005; Scott et al., 2020; Lechat et al., 2021). Abnormal K-complex
morphology (lower amplitude) and lower K-complex density
(# per minutes) have been associated with the progression
of amnestic mild cognitive impairment (pre-clinical phase of
Alzheimer’s disease) in ∼70 patients (Liu et al., 2020). Abnormal
K-complex morphology has also been associated with greater
lapses in next-day alertness as measured using a psychomotor
vigilance task (Parekh et al., 2019, 2021). At a population
level, cross-sectional studies have suggested that a decrease in
K-complex density may be a biomarker of sleep disorders, such
as sleep apnea (Lechat et al., 2020). Further evidence regarding
the functional significance of K-complexes is still emerging and
warrants future investigation. This is likely to be facilitated
via recent open-source tool developments (Parekh et al., 2015;
Lechat et al., 2020).

Sleep Spindles
Sleep spindles are bursts of 11–15 Hz EEG activity and are
another characteristic feature of NREM sleep that may provide
a useful biomarker of sleep regulation and cognitive functioning
(Diekelmann and Born, 2010; Djonlagic et al., 2021). Sleep
spindles are influenced by genetics and vary widely across the
lifespan and different demographics (Purcell et al., 2017). Higher

spindle occurrence (and density) have been associated with
better memory performance and vigilance (Lafortune et al., 2014;
Hennies et al., 2016) in cross-sectional studies with moderate
sample sizes (n < 100). In a clinical population of 47 patients
with obstructive sleep apnea (OSA), greater sleep spindle activity
was associated with better implicit learning (Stevens et al.,
2021). A recent analysis of two large US-cohorts (n∼3800) also
supported an association between higher spindle occurrence and
spindle power with greater performance on multiple cognitive
tests (Djonlagic et al., 2021). In addition, the coupling (proximity
and phase differences) between slow oscillations and spindles
was also predictive of cognitive performance, further supporting
a role of spindles in memory formation (Hahn et al., 2020)
and consolidation (Helfrich et al., 2019; Muehlroth et al.,
2019). Together, these results may explain, at least in part, the
association between abnormal spindle activity during sleep and
neurodegenerative diseases such as Alzheimer’s disease (Gorgoni
et al., 2016) and Parkinson’s diseases (Christensen et al., 2015).
However, spindle detection is still a challenge and algorithm
refinements on public benchmark datasets remain warranted
(Warby et al., 2014; Lacourse et al., 2020). Furthermore, recent
evidence suggests that the current definition of sleep spindles may
be too restrictive and traditionally defined spindles may only be
a small subset of a more generalized class of sigma oscillations
during sleep (Dimitrov et al., 2021).

Fourier-Based Analysis of Sleep Signals: Quantitative
Electroencephalography
Sleep EEG is ideally suited to frequency and time-frequency
analysis, since different stages or micro-elements (such as
spindles, K-complexes, slow waves) have specific frequency
characteristics (Steriade, 2006; Scammell et al., 2017), as shown
in Figure 3. Power spectral analysis of EEG (sometimes referred
to as quantitative EEG [qEEG]) provides a more sensitive and
objective marker of neurophysiological features of sleep, some of
which may be unique to specific patient phenotypes. For example,
several studies have used qEEG to calculate the mean absolute
power of given frequency bands (delta, alpha, theta, sigma, and
beta), usually averaged over NREM and REM sleep, some of
which have been shown to be predictive of insomnia (Krystal
et al., 2002; Krystal and Edinger, 2010; Lunsford-Avery et al.,
2021; Zhao et al., 2021) and OSA (D’Rozario et al., 2017; Appleton
et al., 2019). Emerging evidence also suggests that qEEG markers
are associated with vigilance and cognitive performance (Vakulin
et al., 2016; Djonlagic et al., 2021; Mullins et al., 2021).

The Odds Ratio Product
The odds ratio product (ORP) is a novel EEG-derived metric
that provides a continuous index of sleep depth and alertness
(Younes et al., 2015; Younes and Hanly, 2016). ORP is calculated
as a ratio of absolute power of different frequency bands over
3-s segments. The ratio ranges from 0 to 2.5, where 0 indicates
very deep sleep and 2.5 is wide awake, and correlates well with
the visual appearance of EEG across the night (Younes et al.,
2015, 2020). ORP derived metrics may be useful for a wide range
of clinical applications, such as phenotyping sleep disorders and
associated health consequences (Younes and Giannouli, 2020;
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FIGURE 3 | Spectrogram of sleep EEG signals using methods developed in Prerau et al. (2017). A transition from slow wave sleep (1) to N2 sleep (3) with an arousal
in the middle (2) is observed. Slow wave sleep is characterized by high absolute power at frequencies less than 4 Hz and very little power at high frequencies, thus
making identification of high frequency (8–16 Hz) arousals straight-forward. The transition from arousal to N2 sleep is also very specific, with a reduction in high
frequency power, a sparse low frequency burst (likely reflecting K-complexes), sometimes followed by a burst of 12–16 Hz activity.

Azarbarzin et al., 2021; Younes et al., 2021). For example, sleep
depth coherence between C3 and C4 channels measured using the
ORP is associated with risk of motor vehicle crashes (Azarbarzin
et al., 2021). A higher ORP during NREM sleep is also associated
with the presence of OSA and insomnia, consistent with a
more “alert” brain during NREM sleep in people with OSA and
insomnia (Younes et al., 2021).

Scale-Free/Rapid Eye Movement Biomarkers
The scale-free component of neural activity (sometimes called
“background brain activity” or “1/f” activity) is a further EEG
component that may be an important biomarker of arousal level
in human sleep (Lendner et al., 2020). Consistent with neuronal
homeostatic and synaptic reorganization activity that takes place
during REM sleep, 1/f activity is higher during REM sleep
episodes. This observation may be especially important given the
lack of targeted metrics designed to capture key physiological
features of REM sleep. Eye movements, theta waves and atonia
components require further investigation to test for relationships
more comprehensively against other markers of REM sleep
homeostasis and key clinical outcomes.

A limitation of all current biomarkers is the reliance on
traditional manual scoring to express and evaluate summary
values against conventional metrics with uncertain relationships
with clinical endpoints. For example, absolute delta power, or
ORP values, are usually averaged in NREM sleep. Spindles
may be only detected in N2 sleep, and K-complex densities
calculated in N2 and N3 sleep do not consider fluctuations in
neurophysiological features across sleep cycles. EEG dynamics
across sleep cycles are highly likely to be regulated by
physiological processes such as circadian rhythms, brain
metabolism, motor control learning, and memory consolidation
processes (e.g., Figure 4). While averaging over traditionally
scored sleep stages is convenient, it likely masks more subtle and
potentially functionally important sleep-dependent changes over
both short (<30 s) and longer cumulative time scales (minutes
or hours). Secondly, current clinical utility of these biomarkers
has mainly been studied cross-sectionally. Thus, well-designed
randomized trials to investigate their potential additive benefit

FIGURE 4 | Cyclical variation in delta power across the night.

to sleep disorders management to improve health outcomes is
warranted. Thirdly, methodologies used to calculate qEEG, ORP
and other more fine-grained EEG elements are not standardized
across research groups. Some methods are also not available
under common license terms and therefore, independent cross-
validation remains challenging.

Oxygenation Measures
Pulse oximeters can continuously and minimally intrusively
estimate blood hemoglobin oxygen saturation (SpO2) and are an
almost ubiquitous device in the hospital environment (Jubran,
2004). Overnight pulse oximetry also provides a key requisite
measure for the evaluation of sleep apnea (Netzer et al., 2001;
Terrill, 2020). Standard traditional time-series measures derived
from the oxygen saturation signal include mean and nadir
overnight SpO2, time spent below SpO2 of 90% and the oxygen
desaturation index (ODI), typically calculated as the number
of 3 or 4% desaturations below baseline levels per hour of
sleep. However, these metrics have their limitations and agreed
standards for their calculation remain lacking. For example,
the ODI is partly dependent on the criteria used to define
SpO2 dip onsets, offsets, and duration. The ODI also only
reflects the frequency of hypoxemic events and fails to reflect
the degree and duration of hypoxemia and further oxidative
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stress through rapid reoxygenation (Punjabi et al., 2008). The
physiological consequence of a 3 or 4% drop is also likely
dependent on the baseline saturation level and temporal pattern
of desaturation which can vary widely between individuals and
comorbidities (Ayache and Strohl, 2018). Nonetheless, worse
overnight hypoxemia derived from these traditional metrics has
been associated with adverse health outcomes, such as increased
blood pressure (Pengo et al., 2016; Su et al., 2021) and more
recently atrophy of cortical and subcortical brain areas (Marchi
et al., 2020). However, relationships with traditional hypoxia
measures and important health/physiological outcomes are often
weak, with inconsistent reproducibility between studies and
cohorts (Pretto et al., 2014; Baumert et al., 2020; Linz et al., 2020;
Terrill, 2020).

Other non-traditional parameters from SpO2 such as the delta
index measures the mean absolute difference between successive
points at constant time intervals (Levy et al., 1996; Magalang et al.,
2003; Lin et al., 2009), saturation impairment index computed
as the time integral over which SpO2 is below certain threshold
levels (i.e., baseline, 90, 80, 70, 60, and 50% saturation) (Kirby
et al., 1992), and the hypoxic burden index computed as the
area under the time versus desaturation curve (SpO2 < 90%)
divided by total sleep time (Azarbarzin et al., 2019; Baumert
et al., 2020) have been derived and used in research settings.
Some of these parameters have been associated with important
health outcomes. For example, hypoxic burden measures that
incorporate frequency, duration and magnitude of hypoxemia
have recently been shown to predict cardiovascular disease
mortality in different cohorts, whereas traditional PSG metrics
such as the AHI and ODI do not (Azarbarzin et al., 2019; Baumert
et al., 2020). Quantification of an easily measured index of
sleep apnea-related hypoxemia has recently been used to predict
incident heart failure (Azarbarzin et al., 2020). Accordingly,
there remains considerable scope to better understand the
precise mechanisms and characteristics by which hypoxemic and
reoxygenation events during sleep contribute to cardiovascular
and other end-organ damage, and to derive sensitive metrics
to quantify these and other important health consequences.
These recent findings highlight the potential for improvement
beyond current traditional metrics. Through pulsatile changes in
light absorption, oximeters can also provide potentially clinically
useful markers of vasoconstriction responses during sleep
(Catcheside et al., 2001; Jordan et al., 2003) that may be clinically
useful predictors of cardiovascular risk (Hirotsu et al., 2020).

Autonomic Signals
Assessment of autonomic nervous system activity during sleep
is facilitated using photoplethysmography and ECG. The use of
these signals in sleep medicine including new analytical methods
and the potential insights they can provide has been covered in
recent in-depth reviews (Fischer and Penzel, 2019; Ucak et al.,
2021).

High increases in heart rate following apneic events are
associated with 30–60% increases in mortality risk and non-
fatal/fatal cardiovascular disease compared to normal heart
rate responses (Azarbarzin et al., 2020). New evidence also
suggests that heart rate variability during wakefulness could

be a useful marker of OSA severity and excessive daytime
sleepiness, whereby OSA severity is associated with reduced and
less complex dynamics of heart rate variability (Qin et al., 2021).
Pulse wave amplitude (a marker of vasoconstriction in the finger)
features (e.g., amplitude, frequency) have been associated with
hypertension, cardiovascular events and diabetes (Hirotsu et al.,
2020). Similarly, a decrease in pulse arrival time (time delay
of pulse propagation between two points such as heart and
finger) as a result of apneic events, is a predictor of subclinical
cardiovascular disease and future cardiovascular events (Kwon
et al., 2021). Pulse wave amplitude and heart rate responses are
also sensitive markers to sensory disturbances during sleep such
as noise (Catcheside et al., 2002; Griefahn et al., 2008) and may
therefore provide unique insights into downstream health effect
of environmental sleep disturbances.

Signal Coupling and Other Approaches
While an exhaustive list of sleep metrics is not the objective of
this review, and recent detailed reviews are available elsewhere
(Mendonça et al., 2019; Lim et al., 2020), a few key metrics
warrant brief coverage.

Motor system disorders such as periodic limb movement
(PLM) and REM sleep behavior disorders (RBD) are associated
with adverse outcomes. For example, PLMs are associated
with stroke and cardiovascular risk factors in certain patient
populations (Lindner et al., 2012). RBD may be an early
biomarker of subsequent synucleinopathies such as Parkinson’s
disease (Claassen et al., 2010) and may increase the risk of
stroke (Ma et al., 2017). RBD in people with Parkinson’s disease
is also associated with faster motor progression and cognitive
decline (Pagano et al., 2018). However, diagnosis of motor
system disorders can be challenging. For example, screening
questionnaires for RBD have variable sensitivity and specificity
(Stiasny-Kolster et al., 2007; Li et al., 2010; Boeve et al., 2011).
Thus, there is a need for better diagnostic approaches for motor
system disorders. These include leg actigraphy for PLMs (Plante,
2014), more standardized quantifiable approaches using EMG
signals during polysomnography (Frauscher et al., 2012) and
novel 3D video analysis approaches (Waser et al., 2020).

The cyclic alternating pattern (CAP) is an additional sleep
scoring system beyond traditional AASM sleep scoring which
aims to quantify NREM discontinuity by characterizing phases
of activation (A phases) and periods of inactivity (B phases)
(Terzano et al., 2001). Automatic methods of CAP scoring have
been proposed (Hartmann and Baumert, 2019) and have been
applied to study and define NREM instability in large population-
based studies (Buysse et al., 2010; Hartmann et al., 2020) and
may provide unique insight into sleep neurobiology. CAP and
its potential utility is discussed in detail in recent comprehensive
reviews (Mendonça et al., 2019; Lim et al., 2020).

Several research groups have investigated the coupling
between multiple physiological signals, such as heart rate with
respiratory signals (named cardio-pulmonary coupling) (Thomas
et al., 2005, 2018; Bartscha et al., 2012; Penzel et al., 2016).
Coupling-based analyses have also been applied between sleep
EEG and heart rate (Brandenberger et al., 2001). The theoretical
concept of coupling-functions between different physiological

Frontiers in Neuroscience | www.frontiersin.org 7 October 2021 | Volume 15 | Article 75173056

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-751730 November 16, 2021 Time: 16:18 # 8

Lechat et al. Redefining Sleep Disruption to Improve Outcomes

systems has been recently generalized under the framework of
network physiology (Bashan et al., 2012; Ivanov et al., 2016).
A more in-depth review of these techniques and their potential
to provide insight into sleep neurobiology and consequences of
impaired coupling is available in the literature (Ivanov et al., 2016;
Penzel et al., 2016; de Zambotti et al., 2018b).

OSA ENDOTYPES

The underlying causes of the most common sleep-related
breathing disorder, OSA, vary considerably between patients.
Current evidence indicates that there are at least four
key pathophysiological “phenotypes,” more recently termed
“endotypes,” that contribute to OSA pathophysiology (Eckert
et al., 2013; Eckert, 2018a; Malhotra et al., 2020). While
impaired pharyngeal anatomy is the most influential endotype,
the magnitude of impaired pharyngeal anatomy varies widely
between patients. In addition, approximately 70% of patients also
have one or more non-anatomical endotypes that contribute to
their OSA (Eckert et al., 2013; Eckert, 2018a). These include
impaired pharyngeal dilator muscle function during sleep,
unstable control of breathing (high loop gain) and waking up
too easily to minor airway narrowing events during sleep (low
respiratory arousal threshold) (Figure 5). These advances in
knowledge in OSA pathophysiology have major implications for
targeted therapy through “precision medicine.” For example,
detailed physiological studies in which the key OSA endotypes
have been quantified and non-CPAP interventions delivered to
improve one or more of the non-anatomical treatable traits
can reduce OSA severity (Eckert et al., 2011; Edwards et al.,
2012, 2016b; Sands et al., 2018a; Aishah and Eckert, 2019;
Taranto-Montemurro et al., 2019; Op de Beeck et al., 2021).
Identification of patients with a low respiratory arousal threshold
endotype may be an important physiological predictor of CPAP
treatment failure (Gray et al., 2017; Zinchuk et al., 2021) and the
presence of a low arousal threshold endotype is associated with
mortality (Butler et al., 2019). Similarly, identification of patients
impairment in endotypes such as high loop gain and highly
collapsible pharyngeal airways may be important predictors for
non-CPAP treatment failure including upper airway surgery,
mandibular advancement splint therapy, hypoglossal nerve
stimulation, pharmacotherapy (Edwards et al., 2016a; Li et al.,
2017; Aishah and Eckert, 2019; Op de Beeck et al., 2021) and
potentially positional therapy (Eckert, 2018b).

However, current detailed physiological quantification
of OSA endotypes is intrusive and far more complex and
time-consuming to perform and analyze than standard
polysomnography (Eckert, 2018a). Thus, this approach is
impractical for clinical use. Accordingly, novel approaches to
estimate the key OSA endotypes have been developed. These
include more scalable advanced signal processing techniques
(Sands et al., 2018a,b), machine learning approaches (Dutta et al.,
2021) and algorithms (Edwards et al., 2014) which simply make
better use of the existing rich neurophysiological and respiratory
information acquired from diagnostic polysomnography
recordings and standard clinical metrics such as age and BMI.

Other strategies to estimate specific OSA endotypes include
estimates based on a simple intervention during a CPAP titration
study (Osman et al., 2020), the therapeutic CPAP level (Landry
et al., 2017) and wakefulness upper airway physiology testing
(Wang et al., 2018; Osman et al., 2019). These principles and
recent proof-of-concept findings have opened multiple new lines
of investigation for the development of more clinically feasible
and scalable approaches to help better guide targeted therapy
and precision medicine for OSA.

CIRCADIAN RHYTHMS

The Need to Assess Circadian Rhythms
to Define Sleep Disruption
Aside from advances in PSG sleep and breathing metrics,
new approaches are emerging in the assessment of circadian
rhythms; another key determinant of sleep and its disorders
(Borbély, 1982; Daan et al., 1984). These endogenous rhythms are
ubiquitous, with nearly every cell in the human body influenced
by a biological “clock.” The suprachiasmatic nucleus in the
hypothalamus, colloquially termed the “master” clock, governs
the timing of many circadian rhythms influential for sleep,
including melatonin secretion, core body temperature (Cajochen
et al., 2003), gene transcription and translation regulated clock
behavior of nucleated cells throughout the body (Kondratova
and Kondratov, 2012). Even non-nucleated red blood cells show
circadian cycling of redox activity (O’Neill and Reddy, 2011).
The effects of circadian rhythms on sleep disruption are most
evident in circadian rhythm sleep disorders, such as delayed
and advanced sleep-wake phase disorder, shift-work disorder,
and non-24-h sleep disorder where the circadian phase (timing
relative to clock time), amplitude of the rhythm, and/or period
(duration of the circadian cycle) are poorly aligned with wake
activities and environmental time cues, leading to disrupted
sleep (Micic et al., 2016; James et al., 2017). Fortunately,
disrupted circadian rhythms are treatable to improve sleep
(Dodson and Zee, 2010).

Given the major role of circadian rhythms in mediating sleep
patterns and behavior, methods to assess circadian rhythms
across the different manifestations of sleep disruption are
likely to be insightful. In chronic insomnia, circadian rhythm
factors may importantly contribute to the underlying etiology
and pathophysiology (Lack et al., 2008). Chronobiological
interventions, such as bright light therapy, have been
administered as a stand-alone treatment and combined
with CBT-I to moderate effect (Jankù et al., 2020). Circadian
rhythms could also play a role in OSA (von Allmen et al.,
2018) and comorbid insomnia and OSA (COMISA) (Sweetman
et al., 2021). Effects of circadian rhythms on respiratory
control (Stephenson, 2003; Yamauchi et al., 2014) and hypoxia
(von Allmen et al., 2018) have also been hypothesized and
supported by recent evidence of circadian modulation of
the key OSA endotypes (El-Chami et al., 2014, 2015; Puri
et al., 2020). Circadian rhythms also have an influential
effect on metabolism, diabetes, cardiovascular disorders,
obesity, and the efficacy of a range of pharmacological
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FIGURE 5 | Schematic of the four key endotypic traits that contribute to OSA pathophysiology. (A) Impaired pharyngeal anatomy/collapsible upper airway.
Non-anatomical endotypes include: (B) Poor pharyngeal dilator muscle function including poor responsiveness/activation to negative pharyngeal pressure/airway
narrowing, (C) a low respiratory arousal threshold (waking up too easily to minor pharyngeal narrowing events); and (D) Unstable respiratory control/increased
sensitivity to minor changes in CO2 (high loop gain). Each of these endotypes is a target for therapy or a “treatable trait.” Adapted from Carberry et al. (2018) and
Aishah and Eckert (2019).

interventions; factors often applicable to sleep disorder cohorts
(Guo and Stein, 2003; Frazier and Chang, 2020; Ayyar and
Sukumaran, 2021). Therefore, strategies to better define sleep
disruption that incorporate circadian rhythm assessments
have significant potential to improve diagnostic and targeted
therapy outcomes.

Current and Emerging Methods to
Assess Circadian Rhythms
The current “gold standard” measure of circadian rhythms
is salivary or blood dim-light melatonin onset (Arendt et al.,
1985; Benloucif et al., 2008). This method involves measuring
the concentration of melatonin (in pmol/mL) via a blood
draw or via half-hourly saliva samples for at least 3–4 h before
bedtime, under dim-light conditions (light intensity < 10 lux)
while the individual remains relatively stationary and avoids
consuming food and drinks (Sletten et al., 2018). Samples
are processed and analyzed to estimate the clock time of

melatonin rise onset (>10 pmol/mL), which is a marker
of circadian phase. Another common measure of circadian
rhythms in sleep research is core body temperature via an
ingestible capsule or rectal thermistor. Frequent sampling
of temperature across an extended period (>24 h), where
conditions and activities that affect body temperature are
controlled (e.g., air temperature, body movement, food
consumption, and hot drink consumption), enables assessment
of several aspects of the underlying core body temperature
rhythm, including circadian phase, amplitude, and period.
However, these assessments require carefully controlled
laboratory conditions and access to specialized equipment
generally infeasible for routine administration outside of
circadian rhythm-focused sleep research studies. Fortunately,
technologies and analytical methodologies are emerging that
promise to facilitate simpler and improved assessments of
circadian rhythms.

Emerging methods include advanced monitoring devices and
biomathematical modeling to infer circadian rhythm metrics
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(Reid, 2019). Newer technologies include skin temperature
sensors incorporated into consumer sleep trackers that detect
the peripheral temperature rhythm to estimate circadian phase
(Hasselberg et al., 2013). Electronic chips that can be implanted
in body patches are also being developed to assess the
cortisol rhythm via sweat (Upasham and Prasad, 2020), as
well as other important clinical indicators such as the cortisol
awakening response (Law and Clow, 2020). Rather than direct
assessment of circadian rhythms, another approach is to infer
circadian timing via the measurement of factors associated
with circadian rhythms. Sleep timing data collected from
wearable and non-wearable sleep trackers over an extended
period are being incorporated into biomathematical models to
infer circadian timing, since rest-activity rhythms are highly
correlated with circadian timing (Cheng et al., 2021). Light
sensors incorporated into newer wearable devices are also
being used to infer circadian timing (Stone et al., 2020),
since light is the strongest exogenous influencer (zeitgeber) of
circadian rhythms. This information, potentially coupled with
pupillometry assessment of an individual’s retinal responsiveness
to light, enables inference of circadian timing, which may
be useful for the diagnosis of circadian disruption in sleep
disorders. More recent discoveries of genes with circadian
oscillations (clock-controlled genes) raises the possibility that
certain aspects of circadian rhythms may be amenable to

assessment from blood samples (Cogswell et al., 2020). As these
newer technologies mature, their implementation in clinical and
research practice may result in new discoveries regarding the
role of circadian rhythms in sleep disorders and their health-
related consequences.

NOVEL MEASURES OF ENVIRONMENTAL
FACTORS THAT CAN AFFECT SLEEP

The sleeping environment affects sleep ability, but is minimally
assessed in routine clinical practice. Consequently, sleep
disruption may be misattributed to endogenous factors alone,
ignoring the potential impact of exogenous factors. These
include noise, light, temperature, and other factors that
impact comfort within the sleep context. In a laboratory
environment, these factors are typically well-controlled
and designed to be conducive for sleep. However, as the
assessment of sleep disruption shifts from the laboratory to
the less well-controlled home environment, the assessment
and consideration of environmental factors becomes
increasingly important to understand mechanisms of
sleep disruption.

Potentially the strongest exogenous influencer of sleep
is noise, which can adversely affect sleep attainment and

FIGURE 6 | Schematic of novel and emerging approaches to monitor the sleeping environment and track key health measures via “the bedroom of the future.” Refer
to the text for further detail.
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maintenance and fragment sleep to reduce total sleep time and
quality (Muzet, 2007; Basner et al., 2014). The most common
self-reported outcomes in response to road, rail and aircraft noise
exposure are awakenings from sleep, increased sleep latency, and
disruption to sleep continuity (Basner and McGuire, 2018). For
example, patients in hospital intensive care units consistently rate
noise as the most sleep disturbing factor (Freedman et al., 2001;
Gabor et al., 2003; Elliott et al., 2013) and polysomnography
results indicate poor and fragmented sleep, with a median of
only 5 h sleep/24 h, only 3 min of uninterrupted light sleep
and almost total abolition of deep and REM sleep (Elliott et al.,
2014). However, to date, noise is rarely assessed as a potential
sleep disturbing factor in either clinical or home setting contexts.
Studies that have investigated the effects of noise on sleep quality
have employed generalized metrics that focus on overall noise
levels only and/or do not consider specific noise characteristics
such as spectral content, time varying noise components, tonality
and noise intermittency. These factors are important contributors
to noise annoyance (Ioannidou et al., 2016; Schäffer et al.,
2016; Oliva et al., 2017), are thus likely to contribute to sleep
disturbance, and warrant assessment to better inform clinical
decision-making.

SCALABLE APPROACHES TO MEASURE
SLEEP INCLUDING MULTI-NIGHT
ASSESSMENTS

There are two seemingly opposing challenges regarding sleep
monitoring and diagnostics. There is a need for greater in-depth
insight into the underlying neurobiology of sleep, yet there is also
a need for less intrusive and user-friendly technology. Detailed,
in-depth assessments and monitoring approaches as well as
smarter use of existing signals and information derived from
traditional polysomnography approaches are required to better
understand sleep pathology. Yet, given the burden of disease and
the scale of sleep disruption in the community, there is also a
pressing need for less intrusive sleep tracking technology that can
be readily and easily adopted in a home-based setting.

A plethora of technologies have emerged to track sleep
in the home setting (Figure 6). These include bedside
Doppler (Zakrzewski et al., 2015; Tuominen et al., 2019) and
instrumented mattresses for ballistographic assessment of heart
rate, respiratory rate and body movements/position, which
perform relatively well compared to polysomnography and
are considerably easier to implement and use (Laurino et al.,
2020). Similarly, wearable devices such as smart watches, rings,
simplified EEG headbands, and actigraphy devices also provide
similar performance in sleep/wake assessment (Griessenberger
et al., 2013; de Zambotti et al., 2018a; Arnal et al., 2020;

Chee et al., 2021; Scott et al., 2021). Infrared video has also been
used to classify body motion to automatically score sleep and
wake states (Wang et al., 2013), as well as monitor respiration,
head posture, and body posture to detect abnormal breathing
(Deng et al., 2018). Together, these devices open new pathways
for non-invasive multi-night assessments in various sleep settings
to support the clinical diagnosis and management of sleep
disorders. This is especially important given that sleep disorder
pathophysiology may show large variability between nights
(Punjabi et al., 2020), and that variability and irregularity in
some sleep components has been associated with downstream
effects on health such as cardio-metabolic conditions (Linz et al.,
2019a,b; Huang et al., 2020).

FINAL SUMMARY/CONCLUSION

New and emerging approaches to better define sleep and
circadian disruption and its consequences offers considerable
promise to move beyond the limitations of current sleep metrics
and management. To improve outcomes, these approaches
need to be underpinned by consideration for underlying
neurobiology and will likely require a multisystem approach to
capture the diverse impacts that sleep and circadian disruption
can have on health and wellbeing. Development of practical,
inexpensive methods to assess sleep and circadian disruption,
its key contributors, and consequences at scale, including
comprehensive, long-term remote monitoring has the potential
to transform sleep medicine and management. This includes
implementation of precision sleep medicine and targeted
therapy approaches.
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Due to production errors, several corrections were omitted.
In “Key Components of The Polysomnographic,” “K-Complexes,” the sub-title should be “K-

complexes.”
In “Key Components of The Polysomnographic,” “Sleep Spindles,” a sentence appears as follows:

“In a clinical population of 47 patients with Obstructive sleep apnea (OSA) Headers are correct
Confirmed, greater sleep spindle activity was associated with better implicit learning (Stevens
et al., 2021).” This should instead read as follows: “In a clinical population of 47 patients with
obstructive sleep apnea (OSA), greater sleep spindle activity was associated with better implicit
learning (Stevens et al., 2021).”

In “Circadian Rhythms,” “The Need to Assess Circadian Rhythms’ to Define Sleep Disruption,”
a sentence appears as follows: “Chronobiological interventions, such as bright light therapy, have
been administered as a stand-alone treatment and combined with CBT-I combined with CBT-I
to moderate effect (Jankù et al., 2020).” This should instead read as follows: “Chronobiological
interventions, such as bright light therapy, have been administered as a stand-alone treatment and
combined with CBT-I to moderate effect (Jankù et al., 2020).”

The publisher apologizes for this mistake. The original version of this article has been updated.
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David Gozal3*† and Roberto Hornero1,2*†

1 Biomedical Engineering Group, University of Valladolid, Valladolid, Spain, 2 Centro de Investigación Biomédica en Red en
Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valladolid, Spain, 3 Department of Child Health, Child Health
Research Institute, The University of Missouri School of Medicine, Columbia, MO, United States, 4 Pneumology Service, Río
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Pediatric obstructive sleep apnea (OSA) is a prevalent disorder that disrupts sleep and
is associated with neurocognitive and behavioral negative consequences, potentially
hampering the development of children for years. However, its relationships with sleep
electroencephalogram (EEG) have been scarcely investigated. Here, our main objective
was to characterize the overnight EEG of OSA-affected children and its putative
relationships with polysomnographic measures and cognitive functions. A two-step
analysis involving 294 children (176 controls, 57% males, age range: 5–9 years) was
conducted for this purpose. First, the activity and irregularity of overnight EEG spectrum
were characterized in the typical frequency bands by means of relative spectral power
and spectral entropy, respectively: δ1 (0.1–2 Hz), δ2 (2–4 Hz), θ (4–8 Hz), α (8–13 Hz), σ

(10–16 Hz), β1 (13–19 Hz), β2 (19–30 Hz), and γ (30–70 Hz). Then, a correlation network
analysis was conducted to evaluate relationships between them, six polysomnography
variables (apnea–hypopnea index, respiratory arousal index, spontaneous arousal
index, overnight minimum blood oxygen saturation, wake time after sleep onset, and
sleep efficiency), and six cognitive scores (differential ability scales, Peabody picture
vocabulary test, expressive vocabulary test, design copying, phonological processing,
and tower test). We found that as the severity of the disease increases, OSA broadly
affects sleep EEG to the point that the information from the different frequency bands
becomes more similar, regardless of activity or irregularity. EEG activity and irregularity
information from the most severely affected children were significantly associated with
polysomnographic variables, which were coherent with both micro and macro sleep
disruptions. We hypothesize that the EEG changes caused by OSA could be related
to the occurrence of respiratory-related arousals, as well as thalamic inhibition in the
slow oscillation generation due to increases in arousal levels aimed at recovery from
respiratory events. Furthermore, relationships between sleep EEG and cognitive scores
emerged regarding language, visual–spatial processing, and executive function with
pronounced associations found with EEG irregularity in δ1 (Peabody picture vocabulary
test and expressive vocabulary test maximum absolute correlations 0.61 and 0.54)
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and β2 (phonological processing, 0.74; design copying, 0.65; and Tow 0.52). Our
results show that overnight EEG informs both sleep alterations and cognitive effects of
pediatric OSA. Moreover, EEG irregularity provides new information that complements
and expands the classic EEG activity analysis. These findings lay the foundation for the
use of sleep EEG to assess cognitive changes in pediatric OSA.

Keywords: sleep apnea, pediatrics, electroencephalography, cognition, correlation networks

INTRODUCTION

Pediatric obstructive sleep apnea (OSA) is not only prevalent
among children but also carries a significant risk for long-
term morbidities primarily affecting cognitive and behavioral
functioning, as well as inducing cardiovascular and metabolic
dysfunction (Marcus et al., 2012). OSA-induced night time
perturbations such as intermittent hypoxia, hypercapnia,
and sleep fragmentation are often accompanied by systemic
inflammation and oxidative stress, the latter being implicated
in the neurocognitive and behavioral deficits that could
hamper their intellectual and emotional development (Marcus
et al., 2012; Hunter et al., 2016). Cognitive impairments
have indeed been recognized as one of the major morbidities
of OSA during childhood, with the most severe patients
showing a higher risk of being affected (Hunter et al., 2016).
Nevertheless, cognitive testing is not routinely administered
to children being clinically evaluated for suspected OSA.
Adenotonsillectomy has shown the reversibility of cognitive
deficits associated with OSA, as well as improvements in
academic results (Gozal, 1998), with suggested neurocognitive
enhancements even in mild patients receiving timely
treatment (Tan et al., 2017). Hence, objective identification
of cognitive impairments in OSA-affected children is of
paramount importance to minimize their impact and maximize
their reversibility.

Sleep EEG has shown the potential to provide physiologically
based cognitive information (Weichard et al., 2016; Brockmann
et al., 2018, 2020; Christiansz et al., 2018) that would
obviate the need for traditional neurocognitive tests, yet
secure an estimate of risk for OSA-associated morbidities.
However, all previous studies exploring sleep EEG and cognition
focused on very specific EEG attributes, such as spindles
or delta activity (Weichard et al., 2016; Brockmann et al.,
2018, 2020; Christiansz et al., 2018). Consequently, how
OSA alters the overnight electrical behavior of the brain of
children, and whether such alterations indicate cognitive deficits,
remains unclear. If such were the case, however, the intrinsic
informative value of the PSG-derived EEG recordings would
add further incentive to the use of PSG since it would provide
not only the necessary respiratory information required for
clinical treatment decision making but would also provide
inferences as to the cognitive susceptibility of the patients, i.e.,
would enable more personalized approaches. We, therefore,
hypothesized that pediatric OSA and its cognitive implications
are reflected in a differential behavior of the overnight EEG.
Furthermore, the recurrent nature of apneic events suggests

an examination in the frequency domain. Accordingly, our
main objective was to characterize new relationships between
the information obtained from the overnight EEG spectrum,
pediatric OSA-related polysomnographic perturbations, and
cognitive functions.

To this effect, we extracted information from the conventional
spectral bands of 294 EEG recordings from children, not
only using the activity-based classic approach (relative spectral
power, RP) but also the analysis of their irregularity (spectral
entropy, SpecEn). Connections between these complementary
analyses, applied to eight EEG channels, six polysomnographic
variables, and six cognitive scores, were assessed using correlation
networks, as they allow for an easy visualization of relationships
in high-dimensional data and have been successfully used in
the study of different pathological conditions (Liu et al., 2009;
Barabási et al., 2011; Epskamp et al., 2012; Kwapiszewska
et al., 2018; Jimeno et al., 2020). Our analytical approach is
expected to identify how EEG activity and irregularity evolve
as pediatric OSA worsens, while concurrently assessing their
interrelationship with sleep variables and cognitive outcomes.

MATERIALS AND METHODS

Pediatric Cohort and Sleep Studies
Community nonreferral children (169 boys/125 girls, 5–9 years
old) were recruited in Chicago, Illinois, after obtaining an
informed consent from their parents or legal caregivers in
accordance with the Declaration of Helsinki. The protocol
was approved by the Ethics Committee of the University of
Chicago (protocol # 09-115-B). Polysomnography (PSG) was
conducted using commercial digital equipment and scored
according to the recommendations of the American Academy
of Sleep Medicine (AASM) (Grigg-Damberger et al., 2007; Iber
et al., 2007; Berry et al., 2012). The apnea–hypopnea index
(AHI) from PSG was used as the OSA diagnostic standard.
AHI common cutoffs were used to split the cohort in three
subgroups: controls (AHI ≤ 1 event/h, N = 176), mild OSA
(1 e/h ≤ AHI ≤ 5 e/h, N = 98), and moderate/severe OSA (5
e/h ≤ AHI, N = 20). Children were recruited from the sleep
clinic and the pediatric otolaryngology clinics as well as by flyers
posted in the community. Those children who had genetic or
craniofacial syndromes and chronic diseases such as cardiac
disease, diabetes, cerebral palsy, and chronic lung disease of
prematurity or cystic fibrosis were excluded. In addition, any
child with a known neuropsychiatric condition or developmental
delay was also excluded.
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Polysomnographic Variables and
Neurocognitive Tests
Six PSG-related variables were included in the study: AHI,
respiratory event-related arousals (AR), minimum oxygen
saturation value (NadirSpO2), spontaneous arousals (AS), the
number of minutes awake after sleep onset (WASO), and
the sleep efficiency (SleepEff). AHI refers to the number of
apneas and hypopneas per hour of sleep, and was used to
establish the presence and severity of OSA (Berry et al., 2012).
AR is the number of arousals per hour of sleep caused by
abnormal respiratory events, thus, reflecting associated micro
sleep disruptions. Respiratory arousals are involved in hypopnea
definition, and therefore, they are also related to AHI. NadirSpO2
is the lowest value of oxygen saturation during the night. It
is very often associated with the occurrence of desaturations,
which are also involved in hypopnea definition. AS is the number
of spontaneous arousals. It has been included to contrast the
evaluation of AR. Finally, WASO are the minutes awake after
sleep onset, and SleepEff is the percentage of minutes spent asleep
divided by the total of minutes in bed. Both are associated with
macro sleep disruptions.

Six neurocognitive tests were administered to the children
under study in the morning immediately after the PSG night
(Hunter et al., 2016). Differential ability scales (DAS) is composed
of a battery of subtests with ability to measure the performance of
several intellectual activities of children in the range 2–17 years
(Elliott, 1990b). However, in this study, it was only used as a
measure of global intellectual ability by means of a composite
score termed “general conceptual ability.” It merges the scores
from each subtest, with a proper age standardization, showing
high agreement with other common general tests (Elliott,
1990a,b). The third edition of the Peabody Picture Vocabulary
Test (PPVT3) was used to assess the verbal ability of the
children under study (Restrepo et al., 2006). It is a test in
which children point to a picture they think that shows a word
previously said aloud, i.e., it is focused on receptive verbal skills.
The Expressive Vocabulary Test (EVT) is complementary to
PPVT3 when evaluating language (Restrepo et al., 2006; Hunter
et al., 2016). During EVT, children have to articulate the word
representing the image shown in a picture, so it assesses the
expressive part of language (Restrepo et al., 2006). The three
remaining cognitive tests are included within NEPSY (for A
Developmental NEuroPSYchological Assessment) series. Design
Copying (DesCop) is intended for measuring visual–spatial
processing (Ahmad and Warriner, 2001; Miller, 2007). Children
are asked to copy geometrical figures, and credit is given for each
partial drawing (Miller, 2007). Phonological processing (PhPro)
from NEPSY assesses language in a different way than PPVT3
and EVT. While the last two refer to receptive and expressive
language, respectively, PhPro measures the third subcomponent
of language, called indeed phonological processing (Miller, 2007).
It consists of two parts. In the first one, children have to identify
words from word segments using graphic and verbal indications.
In the second part, children are required to repeat a word and
create a new one from the original. Finally, Tower (Tow) test
is the NEPSY variant of the well-known Tower of London. It
is intended for assessing executive functions, such as planning

or problem solving (Baron, 2018). In less than six movements,
children are asked to imitate with real pieces a given state shown
in a figure (Miller, 2007).

Signal Acquisition and Analysis
Eight EEG channels referenced to mastoids (F3, F4, C3, C4,
O1, O2, T3, and T4) were acquired during PSGs at a sampling
rate of 200 Hz (Grigg-Damberger et al., 2007; Iber et al., 2007).
Pre-processing consisted of a four-stage methodology: (i) re-
referencing to the average of the eight EEG channels; (ii) stop-
band filter in 60 Hz and band-pass filter from 0.1 to 70 Hz using a
Hamming window; (iii) automatic rejection of artifacts following
an epoch-adaptive thresholding approach (Bachiller et al., 2015);
and (iv) rejection of first and last parts of the EEG to avoid initial
and final awake states.

The Blackman–Tukey method was used to estimate the power
spectral density (PSD) of the eight EEG channels from each
subject under study. A rectangular nonoverlapping window was
used, with a length of 6,000 samples (30 s). The PSDs of the
epochs of the whole night were averaged to estimate one PSD
for each channel. Then these PSDs were normalized (PSDn)
dividing its amplitude values by the total spectral power of the
corresponding channel. The relative power (RP) and spectral
entropy (SpecEn) of delta 1 (δ1: 0.1–2 Hz), delta 2 (δ2: 2–4 Hz),
theta (θ: 4–8 Hz), alpha (α: 8–13 Hz), sigma (σ: 10–16 Hz), beta 1
(β1: 13–19 Hz), beta 2 (β2: 19–30 Hz), and gamma (γ: 30–70 Hz)
were obtained from the PSDn of each channel (Uhlhaas and
Singer, 2010). The split of delta is predicated on their different
behavioral characteristics during sleep (Benoit et al., 2000), as well
as in OSA presence (Gutiérrez-Tobal et al., 2019b). Sigma band
was specifically analyzed because of its well-known relationship
to sleep spindles (Iber et al., 2007). RPs were obtained per
convention as it accounts for EEG activity and were computed
as the sum of the PSDn amplitude values within each band:

RP =
∑f 2

f = f 1
PSDn(f ) (1)

where f 1 and f 2 are the limits of each spectral band. SpecEn
reflects EEG irregularity within these frequencies, regardless
of total activity, thus, affording additional useful information
(Inouye et al., 1991; Gutiérrez-Tobal et al., 2019a). It was obtained
as follows (Inouye et al., 1991):

SpecEn = −
1

log N

∑f 2

f = f 1
PSDn

(
f
)
· log

(
PSDn

(
f
))

(2)

which is the application of Shannon’s entropy equation to the
PSDn values within f 1 and f 2, with N being the number of
values within these limits. As Shannon’s entropy represents
the uniformity of a given distribution, SpecEn quantifies the
uniformity of a given spectrum in terms of its peakedness/flatness
(Inouye et al., 1991). Consequently, SpecEn values equal to 0, the
minimum in Equation (2), are reached when a single spectral
component is present. This would be the case of a sinusoid in
time domain, that is, a completely regular (predictable) signal. In
contrast, SpecEn values equal to 1, the maximum in Equation (2),
are reached when the power of the spectrum is equally distributed
among frequencies as in the case of white noise, which is
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a completely irregular (unpredictable) signal in time domain
(Inouye et al., 1991). According to these features, SpecEn should
be able to characterize a redistribution of the within-band spectral
power caused by OSA regardless of RP remaining the same
in the given band.

Correlation Network Analysis
Correlation networks are graphs based on pairwise relationships
between variables (Borsboom et al., 2011). Such associations
are represented as nodes—the variables—and edges—their
connections—where the width and color of the later show
the intensity of the correlation and its sign (in this study,
red/negative and green/positive). The abovementioned six PSG
outcomes and six cognitive scores were used as variables along
with the activity (RP) and irregularity (SpecEn) of each EEG
channel and band. A total of six correlation networks (three
for RP and three for SpecEn) were dedicated to show the
relationships of polysomnographic and cognitive data with the
overnight EEG information in each OSA severity subgroup.
Accordingly, the first step was to calculate the Spearman’s
partial correlation (adjusted by sex and age) between all the
variables included in the networks to form the corresponding
correlation matrices. In order to cope with the different number
of subjects in each OSA severity group, the correlation matrices
used to estimate the networks were composed after a 1.000-
run bootstrap procedure (correlation matrices with 2.5 and 97.5
percentiles are provided in the file “correlation matrices.xlsx”
of the Supplementary Material). Thus, 1.000 bootstrap samples
with 20 subjects from each OSA severity group were used to
compute the relationship between each node of each correlation
network. The subjects were randomly selected with replacement
and uniform probability, and the median value of the 1.000 runs
was chosen to build each network. Then, these were obtained
using the R package qgrah (Epskamp et al., 2012). Particularly,
the Fruchterman–Reingold algorithm was applied (Fruchterman
and Reingold, 1991), which forced embedded network layouts
after 500 iterations. Newman’s maximized algorithm was used
to conduct a modularity analysis to show possible clusters in
the networks (Newman, 2006; Rubinov and Sporns, 2010). It
measures the degree in which a network can be divided into
different related and nonoverlapping clusters and, at the same
time, provides the composition of such clusters (Rubinov and
Sporns, 2010), i.e., the nodes assigned to each of them. An
ancillary analysis of centrality of the nodes was assessed using
strength, closeness, and betweenness (Rubinov and Sporns, 2010),
whose results can be seen as Supplementary Figures.

Statistical Analysis
Mann–Whitney nonparametric U-test was used to evaluate
differences between OSA severity groups in age, body mass index,
clinical variables, and cognitive scores. Fisher’s exact test was
conducted to evaluate these differences in sex. Spearman’s partial
correlation (ρ), adjusted by the sex and age of children, were
used in the correlation networks. R package qgraph was used to
obtain the corresponding network graphs (Epskamp et al., 2012).
Only non-negligible absolute correlation values (| ρ| ≥ 0.30) were
shown in the correlation networks (Mukaka, 2012).

RESULTS

Polysomnography Variables and
Cognitive Scores
Table 1 shows the summary of the PSG variables and
cognitive scores (median and interquartile range) in the 294
subjects divided according to OSA subgroups. Sociodemographic
characteristics (age, sex, and body mass index) are also presented.
As would be anticipated from the delineation of the groups, AHI,
AR, and NadirSpO2 showed statistically significant differences (p-
value < 0.05, Mann–Whitney U-test) between them, while AS
was significantly lower in moderate/severe OSA. All cognitive
scores showed a decreasing tendency as OSA severity increases,
with DAS, PhPro, and Tow reaching significant differences. No
statistically significant differences emerged for age, sex (Fisher’s
exact test), WASO, and SleepEff.

Averaged Electroencephalogram
Spectrum of the Three Obstructive Sleep
Apnea Severity Categories
Figures 1A–D show the averaged EEG PSDn’s from the three
OSA severity degrees considered. First, the normalized spectrum
from the eight EEG channels was averaged for each subject.
Then, the median and quartile values within each OSA group
were obtained for each frequency to be illustrated in the figure.
As shown in Figure 1A, a peak coherent with the typical
slow oscillation (SO) wave from δ1 gradually decreases in
frequency and increases in relative power as OSA severity is
higher. In addition, the spectrum from δ2 onward (except for
α band) tends to flatten (notice the scale of the Figures 1B–D)
with OSA severity, particularly when comparing controls and
moderate/severe OSA.

Overall Evolution of the
Electroencephalogram Relationships
With Polysomnography Variables and
Cognitive Scores
The three networks built using the activity of EEG channels
(RPs) show high relationships within and between spectral
bands (Figures 2A–C), i.e., a compact behavior in the
activity information that reflects its similarity. However, major
associations with PSG and cognitive nodes only arise for
moderate/severe OSA (Figure 2C). In the corresponding
irregularity (SpecEn) networks (Figures 3A–C), the behavior of
the EEG nodes progresses from disaggregated by spectral bands
(controls) to strong relationships between these (moderate/severe
OSA). Similarly, only a few non-negligible relationships arise
between irregularity nodes and PSG or cognitive variables
in controls, but this behavior disappears as OSA worsens,
reaching the maximum correlations in the moderate/severe
group. Therefore, in both activity and irregularity networks, the
development of OSA increases the absolute correlations between
EEG and non-EEG nodes, as well as between EEG nodes from
different spectral bands.
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TABLE 1 | Sociodemographic data, polysomnography (PSG) variables, and cognitive scores in the three groups.

Data Controls (N = 176) Mild obstructive sleep apnea (OSA) (N = 98) Moderate/severe OSA (N = 20) p < 0.05

Age (years) 6.92 (6.50, 7.42) 6.92 (6.50, 7.42) 6.81 (6.37, 7.29) n.s

Sex (M/F) 104/72 (59%) 55/43 (56%) 10/10 (50%) n.s

BMIz 0.65 (−0.11, 1.47) 0.76 (−0.14, 2.04) 1.70 (−0.08, 2.24) b

AHI (e/h) 0.40 (0.10, 0.60) 1.50 (1.20, 2.20) 9.20 (7.30, 17.20) a,b,c

AR (e/h) 0.30 (0.05, 0.80) 1.00 (0.40, 2.82) 7.30 (4.88, 9.55) a,b,c

AS (e/h) 6.70 (4.70, 9.00) 6.60 (4.20, 9.00) 3.10 (1.52, 6.88) b,c

NadirSpO2 (%) 94.00 (92.00, 95.00) 91.00 (89.00, 94.00) 84.00 (75.00, 87.00) a,b,c

WASO (min) 45.50 (27.00, 79.50) 37.50 (23.30, 64.30) 41.00 (19.80, 75.40) n.s

SleepEff (%) 90.60 (84.03, 94.10) 91.00 (85.23, 94.50) 91.00 (85.45, 95.05) n.s

DAS 101.50 (92.00, 111.50) 100.50 (86.00, 111.00) 97.00 (85.00, 104.00) b

PPVT3 99.00 (89.50, 110.00) 98.00 (89.80, 109.30) 96.00 (88.25, 101.50) n.s

EVT 100.00 (89.30, 108.00) 97.00 (85.50, 105.00) 96.50 (91.00, 99.00) n.s

DesCop 11.00 (8.00, 13.00) 10.00 (7.00, 12.00) 9.00 (7.50,11.00) n.s

PhPro 10.00 (8.00, 12.00) 9.00 (8.00, 13.00) 7.50 (5.50, 10.00) b,c

Tow 12.00 (10.00, 14.00) 11.00 (9.00, 14.00) 9.50 (7.00, 11.50) b,c

AHI, apnea–hypopnea index; AR, respiratory arousal index; AS, spontaneous arousal index; BMIz, standardized body mass index; DAS, differential ability scales;
DesCop, design copying; EVT, expressive vocabulary test; NadirSpO2, overnight minimum oxygen saturation value; PhPro, phonological processing; PPVT3, Peabody
picture vocabulary test; SleepEff, sleep efficiency, WASO, time awake after sleep onset; Tow, Tower test aControls vs. mild OSA comparison. bControls vs.
moderate/severe OSA comparison. cMild OSA vs. moderate/severe OSA comparison. n.s, not significant.

All correlation values between nodes are in the
Supplementary Material (“correlation matrices.xlsx”), along
with the networks corresponding to 95% confidence interval
derived from the bootstrap procedure. The most relevant
correlation values are also shown in the next sections.

Spectral Band Average Associations
With Polysomnography Variables and
Cognitive Scores
Figures 4A,B,D,E are radar (spider) charts showing channel-
averaged correlations between the EEG spectral bands and the
non-EEG variables. As expected, the overall tendency reflects
higher absolute correlations with PSG and cognitive variables
as OSA severity increases, for both EEG activity (RP) and
irregularity (SpecEn). The tendency is only somehow different for
the relationships between RP and PSG nodes (Figure 4A), where
the averaged absolute correlation is generally higher in controls
than in mild OSA.

Average relationships between EEG irregularity and PSG
variables of mild and moderate/severe OSA are higher than the
equivalent for EEG activity, as reflected by the values of the
corresponding radar charts (Figures 4A,D). The highest absolute
averaged correlations, reached in the moderate/severe group, are
mainly influenced by EEG activity from δ1 (0.28), δ2 (0.31), and
β1 (0.27), and EEG irregularity from δ1 (0.25), σ (0.31), and
γ (0.27).

Relationships between EEG irregularity and activity with
cognitive scores are more similar (Figures 4B,E), but still more
spectral bands show higher averaged correlations in the case
of SpecEn for both mild and moderate/severe OSA, the latter
reaching the maximums values again in δ1 (0.25) and δ2 (0.29),
and σ (0.25) for EEG activity, and δ1 (0.30), σ (0.29), and β2 (0.26)
for EEG irregularity.

Radar charts with the relationships between PSG and cognitive
variables were also generated for completeness of the analysis
and are shown in Figures 4C,F. As can be observed, the
relationship between PSG variables and cognitive scores also
increases with OSA severity.

Modularity Analysis and Specific
Relationships
Coherent with its compact behavior, a low number of groups
of especially related nodes (termed modules or clusters) were
obtained after applying the modularity analysis to the EEG
activity networks: five modules for controls, four for mild
OSA, and three for the moderate/severe group (Figures 5A–
C). This was summarized and quantified in the maximized
modularity measure that reached very low values, meaning a low
expected modular behavior (0.12, 0.14, and 0.07, respectively)
(Newman, 2006). Node distribution through modules agrees
with the evolution of the relationships of EEG activity and
PSG/cognitive variables from controls to moderate/severe OSA,
the latter showing a module shared by all non-EEG nodes and
the C3 channels of β2 and γ bands.

The EEG irregularity networks showed a more modular
behavior (Figures 5D–F). Controls, mild OSA, and
moderate/severe OSA showed eight, six, and five modules,
respectively, with concordant maximized modularity values
(0.35, 0.29, and 0.19) that quantify the vanishing of the clustering
tendency. OSA worsening implied modules more shared by EEG
and non-EEG nodes, as well as by EEG nodes from different
spectral bands because of increased absolute correlations
between them. Interestingly, four out of the five modules of
moderate/severe OSA (Figure 5F) are shared by both EEG and
non-EEG nodes. AHI, PPVT3, EVT, and Tow are with all the σ

band nodes and most of δ1. Similarly, AR, DAS, and PhPro are
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FIGURE 1 | Electroencephalogram (EEG) normalized spectrum (PSDn) averaged for the three obstructive sleep apnea (OSA) severity groups (median, 25%, and
75% quartiles), showing (A) δ1 and δ2, (B) θ, (C) α, σ, and β1, and (D) β2 and γ.

with all θ nodes and one node from δ1 and δ2. AS, WASO, and
SleepEff are with most of β1 and β2. DesCop is with all α and
γ nodes and most of δ2. Finally, NadirSpO2 is the single node of
the last module.

Supplementary Figures 1–8 show further assessment on
the networks based on stability and centrality measures
(Rubinov and Sporns, 2010).

DISCUSSION

The approaches undertaken to process the overnight EEG
signal show the overall evolution of the activity (RP) and
irregularity (SpecEn) of the overnight EEG as a function of
pediatric OSA severity. Implicitly, we have also assessed the
ability of RP and SpecEn to characterize the effects of pediatric
OSA in the sleep EEG, with SpecEn being specifically used
for the first time toward this goal. As such, current findings
obtained using correlation networks unravel the existence of
novel specific relationships between both activity and irregularity
of the EEG, PSG variables, and cognitive scores in children

with OSA. These initial observations open the door to more
intense explorative analyses of the PSG as a source of not only
clinical information regarding respiratory disturbance but also
to provide improved phenotyping of cognitive morbidity in
such patients, thereby allowing for tailored and personalized
interventions and follow-up.

Electroencephalogram Correlation
Networks Evolves With Obstructive
Sleep Apnea Worsening
The behavior of the networks showed higher absolute
correlations between the nodes as OSA severity increased,
regardless of whether these were related to PSG, cognition, or
EEG. Such evolution was supported by higher network densities,
decreasing number of modules, and lower maximized modularity
values. These results support the idea of a gradual pathological
expression of OSA in the overnight EEG spectrum, with only
the step between controls and mild OSA in the activity networks
slightly disagreeing with this general tendency. This a priori
incongruence might be explained by the AHI range represented
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FIGURE 2 | EEG activity (RP) correlation networks with polysomnography (PSG) variables [apnea–hypopnea index (AHI), AE, respiratory event-related arousals (AR),
minimum oxygen saturation value (NadirSpO2), the number of minutes awake after sleep onset (WASO), and sleep efficiency (SleepEff)] and cognitive scores
[differential ability scales (DAS), Peabody Picture Vocabulary Test (PPVT3), Expressive Vocabulary Test (EVT), design copying (DesCop), phonological processing
(PhPro), and Tower (Tow)] for (A) controls, (B) mild OSA, and (C) moderate/severe OSA. Wider edges are higher Spearman’s correlation absolute values | ρ|, with red
color meaning negative correlation and green positive correlation. Solid lines represent | ρ| ≥ 0.50.

FIGURE 3 | EEG irregularity (SpecEn) correlation networks with PSG variables (AHI, AE, AR, NadirSpO2, WASO, and SleepEff) and cognitive scores (DAS, PPVT3,
EVT, DesCop, PhPro, and Tow) for (A) controls, (B) mild OSA, and (C) moderate/severe OSA. Explanations regarding the construction of the networks are
analogous to those from Figure 2.

in our mild OSA group, whose median value (1.5 e/h) is much
closer to control threshold (1 e/h) than to the low limit of
moderate/severe OSA (5 e/h). This is a potential limitation of
our study, whereby the absence of equally distributed AHI values
in mild OSA may be hiding higher correlations with the EEG
information. However, further investigation would be required
to confirm these premises.

Activity RP networks were denser and less modular than
irregularity SpecEn networks. This finding reveals the presence
of more similarities among the information offered by RP
than the corresponding one provided by SpecEn, suggesting

the representation of a broader variety of information by the
latter. However, in both activity and irregularity networks, the
information contained in the overnight EEG spectrum became
more similar as OSA worsened. Although this effect is clearer
for irregularity spectral bands, it is also present in activity ones,
which suggests that OSA affects EEG over a wide range. This
finding is consistent with recent studies on continuous influence
on the EEG of OSA-affected children due to different abnormal
respiratory patterns during sleep (Guilleminault et al., 2019).

The moderate/severe OSA group showed the strongest
correlations between EEG and non-EEG nodes. This is not
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FIGURE 4 | Radar charts summarizing the averaged absolute correlation values between the sleep EEG, the PSG variables, and the cognitive scores. (A,B)
correspond to relationships with EEG activity (RP). (D,E) correspond to relationships with EEG irregularity (SpecEn). (C,F) correspond to averaged correlations of
PSG variables with each cognitive score and averages cognitive scores with each PSG variable. The distances from the center represent the average absolute
correlations for controls (blue), mild OSA (yellow), and moderate/severe OSA (green).

surprising for the PSG variables, since they either directly
reflect pathophysiological events (AHI, AR, and NadirSpO2),
or they are indirectly affected by the occurrence of these
(WASO, SleepEff, and AS). Regarding cognitive scores, only EEG
irregularity in β2 showed non-negligible (but weak) relationships
in networks other than those from the moderate/severe group.
The combined indication of these weak associations and the
stronger correlations found for the highest severity degree, may
be suggesting that sleep EEG does not robustly reflect cognition,
in general, at least in an overnight scale, but reflects cognitive
alterations in the presence of the most severe degrees of OSA.
These results agree with the decreasing tendencies in all our
cognitive scores as OSA worsens and the significantly lower
values in some of these measures. Our findings also agree with
previous reports pointing to a higher risk of cognitive deficits in
moderate/severe OSA children (Hunter et al., 2016).

Electroencephalogram Activity and
Irregularity Characterize Specific
Relationships
Correlation network and modularity analyses highlighted
interesting associations of the EEG with PSG and cognitive
variables in moderate/severe OSA. EEG δ1 and δ2 bands played
a key role in both activity and irregularity networks. As reflected

in Figures 2C, 5C, activity in these bands was mainly associated
with the PSG variables AHI, SleepEff, (δ1 and δ2), and AR (δ2)—
absolute correlation through the EEG channels in the ranges
0.35–0.58, 0.26–0.48, and 0.31–0.43, respectively, as well as the
cognitive scores PPVT3, EVT, and Tow—ranging 0.30–0.53,
0.31–0.53, and 0.31–0.42. Similarly, irregularity in δ1 and δ2 was
mainly related to AHI (δ1), AR (δ1 and δ2), and AS (δ1 and δ2),
ranging 0.41–0.48, 0.31–0.66, and 0.31–0.52, respectively, with δ1
being also associated with DAS (0.33–0.38), PPVT3 (0.49–0.61),
and EVT (0.32–0.54). EEG σ band also exhibited meaningful
associations in both networks, with activity being principally
related to PSG variables AS (0.19–0.48) and SleepEff (0.11–
0.50) and with the cognitive score PPVT (0.31–0.49). Likewise,
σ irregularity was mainly related to AHI (0.35–0.58), SleepEff
(0.28–0.51), PPVT3 (0.43–0.59), and EVT (0.36–0.46).

Interestingly, EEG irregularity also showed major absolute
correlations beyond δ1, δ2, and σ: with PSG variables in θ

(AHI: 0.30–0.57, AR: 0.46–0.67) and γ (AHI: 0.34–0.61, WASO:
0.40–0.55), and with cognitive scores in β2 (DesCop: 0.31–
0.65, PhPro: 0.32–0.74, Tow: 0.32–0.52). These irregularity
further associations reached the strongest correlations of any
single EEG node with AHI (0.61), AR (0.67), PhPro (0.74),
and Tow (0.52), or were very close to the strongest for
WASO (0.57) and DesCop (0.66), which were also obtained
using irregularity. The EEG activity nodes, thus, reached
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FIGURE 5 | Modularity analysis of the correlation networks of each group using (A–C) EEG activity (RP) and (D–F) EEG irregularity (SpecEn). The color of the
external circles represents belonging to the same module within each correlation network.

higher maximum absolute correlations with non-EEG variables
only in relationships with DAS (0.58) and NadirSpO2 (0.60).
This suggests the usefulness of irregularity measured by
SpecEn to characterize both physiological perturbations and
cognitive effects, which adds novelty to the classic activity-
based analysis.

Another interesting comparison arose when assessing the
maximum absolute correlations found for the PSG variables and
cognitive scores in the moderate/severe OSA group. Whereas
radar charts (Figure 4) showed half of the averaged correlations
between PSG/Cog and Cog/PSG higher than those with EEG
nodes, only AHI, PPVT3 and Tow reached the highest values
in nodes other than RP or SpecEn. Accordingly, 14, 7, 3, 5,
and 14 EEG nodes (either RP or SpecEn) reached absolute
correlations higher than the highest with non-EEG nodes
for AR, AS, NadirSpO2, WASO, and SleepEff, respectively.
Similarly, 6, 33, 32, and 1 EEG nodes reached absolute
correlations higher than the highest with non-EEG nodes for
DAS, EVT, DesCop, and PhPro, respectively. Moreover, the
maximum absolute values for AHI (0.65 with PPVT3), PPVT3
(0.65 with AHI), and Tow (0.58 with AHI) were almost
reached by EEG nodes too (0.61, 0.62, and 0.52, respectively).
These figures highlight that the information contained in

the EEG reaches a more complete characterization of the
cognitive performance than PSG variables in moderate/severe
OSA, as well as a more complete characterization of this
disease state than cognitive scores. Moreover, in contrast to
the PSG variables and cognitive scores, the SpecEn and RP
computing is automated.

Correlation Networks Help Expand
Current Knowledge
The found relationship between δ activity and AHI agrees
with previous studies reporting differences in slow wave sleep
activity (SWS) in OSA-affected children (Bandla and Gozal,
2000; Christiansz et al., 2018). Moreover, we have shown that
not only activity in δ but also irregularity in δ, θ, σ, and γ

reflects AHI. These bands have been previously associated with
arousals and other different wakefulness states (De Gennaro
et al., 2001; Scholle and Zwacka, 2001; Cantero et al., 2004;
Vanhatalo et al., 2004; Le Van Quyen et al., 2010), suggesting
that the most consistent relationships between moderate/severe
OSA and EEG activity and irregularity are related to micro
and macro sleep disruptions. Coherent with this idea are
the also uncovered associations between the EEG information
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and AR (δ1, δ2, and θ), SleepEff (δ1, δ2, θ, σ, and γ), and
WASO (γ ).

A few studies exist assessing relationships between δ and
cognition during sleep in either healthy or OSA-affected children.
Weichard et al. (2016) analyzed the EEG of 42 children
(13 controls, 15 resolved OSA, and 14 unresolved OSA).
They found associations between increased verbal performance
and late SWS, which agrees with the relationships of EEG
activity in δ1/δ2 with PPVT3 (receptive language) and EVT
(expressive language) shown in this study. Interestingly, we found
stronger relationships between δ1 and receptive and expressive
language using EEG irregularity. Similarly, neither their study
nor ours report strong associations of δ activity with DesCop
(visual–spatial processing) and PhPro (phonological processing).
However, we do expose robust associations of EEG irregularity in
β2 with both cognitive scores. Christiansz et al. (2018) extended
the previous work to 72 children and found associations between
SWS activity and impaired executive function in OSA presence,
showing absolute correlations of 10 different tests in the range
0.33–0.78 (Christiansz et al., 2018). Their observations agree
with the non-negligible correlations found between Tow test and
δ1/δ2 activity of moderate/severe OSA (0.31–0.42). Moreover, our
method allowed us to find the strongest correlation with Tow
score using β2 irregularity (0.52).

Brockmann et al. (2018) implemented a different approach
by assessing the spindle pattern of 14 controls and 19 mild
OSA children. Spindle density was significantly lower in the
latter, which also showed associations with Wechsler Intelligence
Test for Children total IQ, verbal comprehension, working
memory, and processing speed (Brockmann et al., 2018). Spindle
frequencies in children (≈10–16 Hz.) are within σ band
(Purcell et al., 2017; Markovic et al., 2020), which showed
only negligible associations in our mild OSA group. This
discrepancy may be due to the different cognitive tests used
and that sleep spindles occur mostly in N2 non-rapid-eye
movement (NREM) sleep. However, we found some robust
relationships between the cognitive scores of moderate/severe
OSA with the corresponding σ activity and irregularity values
(see “correlation matrices.xlsx”), thus, pointing again to the
overrepresented low AHI values in our mild OSA group as
the cause for the differences with their results. Brockmann
et al. (2020) complemented their previous study by assessing
spindle differences in 20 control children and 20 primary snorers,
who showed decreased spindle density. This is an interesting
finding that agrees with the decreased activity and regularity
of our σ band as OSA degree is higher. However, we are
precluded from further comparisons since the inclusion of
a primary snoring group is both a limitation of our study
and a future goal.

Interpretations of the SpecEn
Characterization on Sleep
Electroencephalogram
A preliminary effort focused on the analysis of overnight
EEG activity in the context of pediatric OSA (Gutiérrez-Tobal
et al., 2019b) laid the foundation for the in-depth evaluation

conducted in this study, including the use of SpecEn, a wider
range of sleep cognitive scores, and common sleep indices
from the PSG. As a result, SpecEn demonstrated its ability to
characterize both PSG variables and cognitive scores, particularly
in the case of moderate/severe OSA children, enabling higher
absolute correlations than RP with most of the non-EEG
nodes considered.

According to the correlation network and modularity
analyses, the SpecEn ability to characterize a wider range of EEG
information may underlie these improvements in the strength of
the associations identified herein. One reason for such superiority
as shown by SpecEn may be related to the finite nature of RP.
Spectrum normalization by its total spectral power is a common
tool to avoid the characterization of features different from the
object of the study, which, in this case, are the OSA effects
on sleep EEG. However, this technique leads to the sum of all
RPs from the same EEG being 1, thus, providing the RP from
each spectral band with a competitive essence. Consequently,
the RP from one spectral band may be related to the others
either because a genuine subjacent event is reflected in several
spectral bands or, if this shared event does not exist, because
an increase in the RP of one spectral band means a decrease in
the RP in the others (to end up with a total sum of 1). This
characteristic would also explain the less modular behavior of
the RP networks. In contrast, the shape of the spectrum (its
peakedness or flatness) does not impose the same limitation,
since a dominant peak in one spectral band does not imply
changes in the occurrence of dominant peaks in other spectral
bands. Consequently, one possibility is that SpecEn relationships
between spectral bands may be reflecting only genuine subjacent
events. One example would be the positive relationships between
δ1, σ, and γ found in the SpecEn correlation network of controls,
which would be coherent with the hierarchical relationships
between SO, spindles, and ripples described in the literature
(Staresina et al., 2015). Another example in the same network
would be the negative relationships found in the occipital
channels of θ and α, which are coherent with the transitions
between N1 and “wake” stages in which they are involved,
respectively (Iber et al., 2007).

Assuming that the SpecEn sleep EEG characterization indeed
reflects genuine subjacent events, interesting physiological
interpretations can be derived from our results. First, as
mentioned above, Figure 1A shows a decrease in SO frequency
with OSA severity. In the control group, SO is located within its
normal range: ≈0.75 Hz and within (0.55–0.95 Hz) (Achermann
and Borbély, 1997). However, the frequency gradually slows
down for mild OSA (0.417 Hz) and moderate/severe OSA
(0.267 Hz). A progressive increase in the amplitude of the SO
peak can be also observed from 0.0081 1/Hz in controls to
0.0100 1/Hz, and 0.0127 1/Hz in mild and moderate/severe
OSA. SOs are sleep waves characterized by periods in which
cortical and thalamic neurons alternate states of intense synaptic
activity, or up states, with the almost complete absence of
activity, or down states (Neske, 2016). The functions of SO
are still under discussion, but growing evidence suggests that
they comprise at least the synchronization of higher frequency
oscillations, memory consolidation, and biochemical regulation
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of neurons during down states (Neske, 2016). Both cortex and
thalamus are involved in SO, the latter playing key roles in
generating the up state (i.e., the generation of the oscillation
period) and the synchronization of faster oscillations (David
et al., 2013; Neske, 2016). It has been also observed that the
suppression of the thalamic role leads to a deceleration of the
typical SO frequency in rodents, suggesting cortical attempts to
mimic the role of thalamus (David et al., 2013; Neske, 2016).
Accordingly, our results may be showing that OSA inhibits the
role of thalamus in SO, with this inhibition becoming more
intense as the illness is more severe. Moreover, the increased
normalized power in the corresponding SO frequencies of mild
and moderate/severe OSA may be reflecting that more time is
spent overnight in these frequencies compared with controls.
This increased time could be related to an inefficiency of
the cortex when assuming the abovementioned thalamus roles.
Concurrently, SpecEn in δ1 may be characterizing an increasing
regular behavior of the cortex when trying to compensate the
absence of the thalamus as this is more inhibited. Why thalamus
function is inhibited with OSA remains unclear. However, it
might be related to an increase in the consciousness/arousal
degree that would be needed to recover from respiratory events.
In the absence of a proper evaluation of this hypothesis,
it would be supported by the fact that the cortex activity
is increased, as well as by previous studies reporting that
the power in δ band is higher and the EEG irregularity is
lower when recovering from OSA-related respiratory events
(Huang et al., 2018).

A second interpretation can be derived from the flattening
experimented in most of the spectral bands beyond δ1,
particularly in the moderate/severe OSA group. A significant
increased number of respiratory arousals per hour (see Table 1)
may be one possible explanation. These EEG events are known
to present frequencies in the range of θ, α (except spindles),
β1, β2, and γ (Iber et al., 2007). They have been also related
to some changes in δ band (Bandla and Gozal, 2000; Bruce
et al., 2011). Therefore, they can contribute to the spectral
power of almost the whole frequency range in a white noise-
like behavior. This means that adding these events to the
normal EEG could make all its spectral components to be
more distributed or flatter, thus, increasing the information
similarity among the affected spectral bands. In our study, the
meaningful correlations found in all the spectral bands between
SpecEn and AR make respiratory arousals one of the most
central nodes of the moderate/severe correlation network (see
Supplementary Figure 6), thus, supporting this explanation.
In addition, previous works have reported positive correlations
between entropy measures on hypnogram and traditional sleep
fragmentation measures such as arousal index and sleep efficiency
(Kirsch et al., 2012). Another explanation, which does not
exclude the previous one, is related to the abovementioned
inefficiency of cortex when mimicking the role of thalamus to
synchronize higher-frequency oscillations (Neske, 2016). If such
synchronization is not properly conducted in moderate/severe
patients, a regular behavior is lost (or at least reduced),
thus, increasing the EEG irregularity and, consequently, the
flatness of the affected spectral components. Further ad hoc

studies would be required to assess whether any of these two
explanations are right.

Finally, to complete the SpecEn interpretation, we propose
a connection with our cognitive results. A recent systematic
review has established speech and language problems in children
suffering from OSA (Mohammed et al., 2021). This is aligned
with the maximum correlations found between SpecEn in δ1
and PPVT3 (+0.61) and EVT (+0.54) of moderate/severe OSA
children, which could be indicating that the impairment of these
verbal skills could be measured through the increased regularity
(increased peakedness) in this spectral band. Accordingly,
the language problems could be somehow associated with
the abovementioned thalamus inhibition in SO due to OSA.
Interestingly, the third language ability score evaluated in this
study, PhPro, was strongly associated with irregularity in β2
(+0.74), suggesting a different physiological process involved.
This idea would be supported by the other correlations found
between β2 and DesCop (+0.65) and Tow (+0.52) scores, which
account for visuospatial processing and executive function,
respectively. Beta oscillations are common in REM sleep (Vijayan
et al., 2017). Although the role of REM sleep and cognition
has not been completely delineated, it has been linked to neural
network reorganization leading to new neural associations and an
increased creativity (Cai et al., 2009; Mason et al., 2021). However,
whether these results are associated with altered REM sleep must
be further assessed.

Other Limitations and Future Steps
Despite the large database used, the number of moderate/severe
subjects is relatively low when comparing with the other groups.
We have implemented a bootstrap procedure to account for
the median of the correlation distributions and minimize the
effect of the imbalance. However, future analyses on children
with moderate/severe OSA would improve the statistical power
of our results. It would also be very interesting to assess our
analyses in symptomatic children referred for clinical evaluation.
Moreover, there is substantial skepticism as to the validity of
AHI and OSA symptomatology or morbidity (Penzel et al., 2015).
This AHI limitation may explain why some cognitive scores
do not reach significant differences among our OSA severity
groups. The cognitive morbidity of OSA is well established
(Gozal, 1998; Marcus et al., 2012; Hunter et al., 2016; Tan et al.,
2017; Cardoso et al., 2018), and indeed, all our scores exhibit
decreasing tendency as OSA worsens. However, the combination
of an unclear association between AHI and OSA symptoms and
the assessment of a general community-based nonreferral cohort
may have resulted in the inclusion of children with AHI ≥ 1 e/h
but without any symptoms or morbidity. Another limitation is
the specific EEG arrangements we followed. We used the typical
EEG channel configuration of sleep studies and the Common
Averaged Reference method to minimize the influence of the
other channels in each electrode (Cox and Fell, 2020). However,
other configurations may lead to different results. On the other
hand, we included NadirSpO2 in our analyses because it has
been observed that the depth of desaturations is associated with
increased OSA-related negative consequences in adults (Kulkas
et al., 2013; Karhu et al., 2021). However, it would be an
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interesting future goal to assess other oximetric variables such
as oxygen desaturation index or hypoxic burden. Similarly, the
inclusion of children’s subjective sleepiness scores in the analysis
could complement our findings. Other interesting future goal
would be to analyze the EEG recordings by separating REM
and NREM sleep stages. In this study, we have shown that
OSA-related changes in EEG were evident even without the labor-
intensive task of defining REM and NREM sleep. However, this
further analysis would help interpret some of our findings. In
addition, it could enhance relationships between cognitive scores
and specific EEG information in control subjects. Ultimately,
another limitation is the age range of the subjects involved in the
study. We have conducted several actions to avoid a bias of our
results toward age-related natural brain development. First, the
age range is not wide (5–9 years). Second, our control and OSA
groups are matched in age. Finally, all the correlations used in the
study were controlled for age (and sex). However, EEG changes
are present in sleep as a consequence of typical development
(Gaudreau et al., 2001; Kurth et al., 2010; Gorgoni et al., 2020),
which is the reason why our findings should be evaluated in
other age ranges.

CONCLUSION

Pediatric OSA broadly affects overnight EEG and progressively
equates the information of its different spectral bands, regardless
of whether it refers to activity or irregularity. Such effects on
EEG are coherent with the occurrence of micro and macro sleep
disruptions. They also reflect cognitive morbidity, particularly in
domains involving language processes, visual–spatial processing,
and executive function. Sleep EEG irregularity characterizes
a wider range of OSA-related information than the classic
activity analysis, which results in more numerous and enhanced
robustness in their associations with both physiological and
cognitive variables. The results from our correlation network
approach were coherent with the previous studies, while
expanding the knowledge about the EEG classic spectral bands.
Thus, our findings illustrate that the EEG spectrum echoes
physiological perturbations during sleep and adverse cognitive
consequences of pediatric OSA. It may therefore provide a tool to
identify children with OSA who are at increased risk of cognitive
deficits, thereby enabling a more personalized approach to its
evaluation and management.
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The interactions of heart rate variability and respiratory rate and tidal volume fluctuations
provide key information about normal and abnormal sleep. A set of metrics can be
computed by analysis of coupling and coherence of these signals, cardiopulmonary
coupling (CPC). There are several forms of CPC, which may provide information about
normal sleep physiology, and pathological sleep states ranging from insomnia to sleep
apnea and hypertension. As CPC may be computed from reduced or limited signals
such as the electrocardiogram or photoplethysmogram (PPG) vs. full polysomnography,
wide application including in wearable and non-contact devices is possible. When
computed from PPG, which may be acquired from oximetry alone, an automated apnea
hypopnea index derived from CPC-oximetry can be calculated. Sleep profiling using
CPC demonstrates the impact of stable and unstable sleep on insomnia (exaggerated
variability), hypertension (unstable sleep as risk factor), improved glucose handling
(associated with stable sleep), drug effects (benzodiazepines increase sleep stability),
sleep apnea phenotypes (obstructive vs. central sleep apnea), sleep fragmentations due
to psychiatric disorders (increased unstable sleep in depression).

Keywords: cardiopulmonary coupling (CPC), heart rate variability, sleep apnea, stable sleep, insomnia

INTRODUCTION

The prevalence of sleep disorders has been increasing over the last two decades (Acquavella et al.,
2020). Disorders like insomnia and sleep apnea have a prevalence of as much as 20% in the general
population (Franklin and Lindberg, 2015; Acquavella et al., 2020). There is a need for nimble sleep
state estimation, diagnostics, and tracking. One approach seeing increasing utilization both in
formal medical and consumer wearable devices is through analysis of heart rate and respiration.
There is a strong correlation between changes in heart rate variability and sleep during health and
disease (Tobaldini et al., 2013). High frequency (HF) components mainly present parasympathetic
activity, while low frequency (LF) components is partly a quantitative marker of sympathetic
modulation. LF and the LF/HF ratio are high in Wake and decrease in NREM sleep, peaking once
more during REM sleep, while HF follows the opposite trend. Deep NREM sleep (N3) typically
has the greatest HF power. Sleep disruptive influences such as sleep apnea (Qin et al., 2021; Ucak
et al., 2021), insomnia (Spiegelhalder et al., 2011; Dodds et al., 2017; Cosgrave et al., 2021), and
depression (Hyunbin et al., 2017; Gao et al., 2019; Eddie et al., 2020) are associated with an increase
in the LF components.
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Different techniques have been used to assess for such
changes one of which is analysis of cardiopulmonary coupling
and coherence (CPC) patterns. In this technique a single lead
electrocardiogram (ECG) or photo plethysmogram (PPG) is used
to extract heart rate variability and ECG or PPG signal derived
respiration (EDR/PDR) (Thomas et al., 2005; Hilmisson et al.,
2020). Contrary to the stage/grade approach to conventional
sleep characterization, CPC analysis based on coupling and
coherence provides a novel and complementary view of sleep,
that of bistability, which are particularly well defined during
NREM sleep. Thus, distinct patterns of CPC are observed: high
frequency coupling (HFC) which is associated with stable NREM
sleep and low frequency coupling (LFC) which is associated
with unstable and often fragmented NREM sleep (Thomas
et al., 2005). A third CPC pattern named very low frequency
coupling occur in both REM sleep and wake, which may be
differentiated by analysis of signal quality and motion artifact
(Al Ashry et al., 2021). High and low frequency coupling are
mutually exclusive and shift logically with disease states and
treatments. For example, there is an increase LFC in patients
with insomnia and this can be tracked in the ambulatory setting
(Thomas et al., 2017a,b). There is increased LFC during sleep in
unmedicated patients with major depression and improvement
with therapy of major depression (Yang et al., 2011). Integrating
CPC with oximetry allows generating a true FDA approved
apnea-hypopnea index (AHI), which shows good correlation
with conventional polysomnogram-derived AHI (Hilmisson
et al., 2020; Al Ashry et al., 2021).

The overall goal of this article is to review physiological basis,
techniques, and applications of CPC spectrograms in sleep in
health and disease. There are three aims for this review, to show
that—(a) CPC shows a fundamental characteristic of NREM
sleep—bimodality, across a number of physiologies; (b) CPC has
several uses in sleep apnea care—diagnosis, phenotype, tracking
outcomes; (c) CPC can diagnose and track non-apneic sleep
fragmentation and medication effects, and should be used in the
appropriate clinical context.

PHYSIOLOGY BACKGROUND

Entrainment between heart rate and respiration in humans
has been described since the early twentieth century (Galletly
and Larsen, 1998). It has been suggested that such synchrony
between heart rate and respiration improves pulmonary gas
exchange and computational models have shown that healthy
cardiopulmonary coupling minimizes the heart workload while
maintaining adequate ventilation (Yasuma and Hayano, 2004;
Ben-Tal et al., 2012). Such strong cardiopulmonary coupling
is seen at its best during deep sleep, sedation, and anesthesia
(Dick et al., 2014). There is a critical influence of the autonomic
nervous system on cardiopulmonary coupling (Bartsch et al.,
2012). Non-rapid eye movement (NREM) sleep is associated
with decreased sympathetic activity, a decrease in heart rate,
and a decrease of average blood pressure and blood pressure
variability in comparison to the wake state (Somers et al., 1993).
Respiratory sinus arrythmia is a phenomenon in which the heart

rate variability is synchronized beat-to-beat with respiration and
is most pronounced during deep NREM sleep (Zemaityte et al.,
1984; Yasuma and Hayano, 2004). In contrast, during rapid
eye movement (REM) sleep there is dominance of sympathetic
control and a burst frequency of sympathetic activity that is
actually higher than during wakefulness leading to increases
in blood pressure variability and heart rates similar to what is
seen during wakefulness (Somers et al., 1993). Using spectral
analysis, a frequency of 0.1 Hz and above has been associated
with parasympathetic activity dominance and frequencies below
0.1 Hz have been associated with dominance of sympathetic
activity (Appel et al., 1989; Cui et al., 2020).

CARDIOPULMONARY COUPLING
METHODOLOGY

Cardiopulmonary sleep spectrograms were first obtained from
a single lead ECG (Thomas et al., 2005, 2007). ECG-derived
respiration (EDR) is obtained either by using R-S wave
amplitudes or variations in QRS complexes area (Zheng et al.,
2016). Several studies have looked at improving the accuracy of
deducing EDR from single lead ECG and reducing noise but is
beyond the scope of this paper (Thayer et al., 1996; Leanderson
et al., 2003; Liu et al., 2012; Zheng et al., 2016). In parallel to
extracting the EDR, ectopic beats are identified and removed
and normal sinus—normal sinus (NN) intervals are extracted
and outliers are filtered (Thomas et al., 2005). After extracting
the N-N interval series on ECG and its associated EDR, the
signals are then resampled using cubic splines at 2 Hz. The
Fast Fourier Transform is applied to 3 overlapping 512 sample
sub-windows within the 1,024 coherence window. The 1,024
coherence window is then advanced by 256 samples (2.1 min) and
the calculation repeated until the entire N-N interval/EDR series
is analyzed. Thus, the cross-spectral power and coherence of these
two signals are calculated over a 1,024 sample (8.5 min) window.

For each 1,024 window the product of the coherence and
cross-spectral power is used to calculate the ratio of coherent
cross power in the low frequency (0.01–0.1 Hz.) band to that
in the high frequency (0.1–0.4 Hz.) band. The logarithm of
the high to low frequency cardiopulmonary coupling ratio [log
(HFC/LFC)] is then computed to yield a continuously varying
measure of cardiopulmonary coupling (Al Ashry et al., 2021).
While originally the ECG signal was used as input, any signal or
signal set which encodes respiration and heart rate variability may
be used to compute the CPC sleep spectrogram. Figure 1 shows
the steps in computing CPC.

DISTINCT CARDIOPULMONARY
COUPLING PATTERNS IN SLEEP

Sleep Stages and Cyclic Alternating
Pattern
The conventional characterization of sleep stages dictates a
“graded” approach to NREM sleep, from lightest (N1) to
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FIGURE 1 | Schematic for CPC analysis. ECG, Electrocardiogram; PPG, Photoplethysmogram; EDR, ECG-derived respiration; PDR, Photoplethysmogram derived
respiration R-S and QRS are ECG waveforms; N-N intervals, Normal sinus to normal sinus intervals; Hz, frequency; HFC, high frequency coupling; LFC, low
frequency coupling.

deepest (N3). The difference between N2 and N3 are relatively
arbitrary, dependent on the proportion of high amplitude slow
waves (20% threshold) for a given epoch. However, there is
a great variability of depth of NREM sleep, as can be readily
objectively demonstrated by techniques such as the Odds Ratio
Product (Younes et al., 2015). A unique and key feature of
CPC sleep states is poor correlation of HFC and LFC with
conventional NREM sleep stages. Thus, in health, the majority
if N2 is also HFC, N3 is usually HFC but at times LFC,
while N1 is always LFC. There is a moderate correlation with
a well-described stability dimension of NREM sleep, Cyclic
Alternating Pattern (CAP) (Thomas et al., 2005). CAP is a
distinct pattern that can be seen on electroencephalography
(EEG) during unstable NREM sleep. High frequency coupling
dominates when CAP is sparse or absent, while LFC is reliably
associated with CAP. Conventional NREM stage N3 is usually
HFC, but so is the majority of healthy N2, where non-
CAP periods also dominate. Thus, CAP and CPC capture
significantly overlapping domains of NREM sleep stability
while both measures correlate only partially with conventional
measures of sleep depth.

Slow Wave (Delta) Power
Slow-wave power in the sleep EEG has highly characteristic
spatial and temporal evolution patterns across a night. Power
in the 1–4 Hz frequencies dominates the first half of the night,
but the ebb and flow of slow-wave power continues throughout
the night. High frequency coupling strongly covaries with slow-
wave power across the whole night, while low frequency power
in heart rate variability is inversely related to EEG delta power
(Brandenberger et al., 2001; Ako et al., 2003; Thomas et al.,
2014). One interesting finding when aligning HFC with delta
power is that there is a consistent lag of delta power after
HFC where HFC usually precedes an increase in delta power
by an average of 6 min, suggesting that subcortical/brain-stem
mechanisms may lead large-scale cortical synchrony during sleep
(Thomas et al., 2014).

Sleep Blood Pressure
A key dimension of health is a reduction of blood pressure
during sleep (blood pressure “dipping”). Sleep blood pressure
is known to dip during stage N3, and rise during REM
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sleep, yet the majority of sleep is N2, and dipping profiles
occupy the entire sleep period, not just N3-enriched zones.
This discrepancy has been solved by correlating blood
pressure during sleep with stable sleep as determined by
CPC (high frequency coupling). Blood pressure dipping

occurs only during HFC periods (Wood et al., 2020). In a
randomized trial targeting sleep apnea treatment in patients
with cardiovascular risk factors, it was shown that those
who were treated with CPAP had more HFC during sleep,
which was in turn associated with improvement in blood

FIGURE 2 | Photoplethysmogram/oximetry-based CPC-heart rate analysis. The oximetry-based analysis provides a full CPC-sleep spectrogram, an
apnea-hypopnea index by integrating CPC LFC and oxygen desaturation events, and a profile of heart rate across the night. In the upper segment of the figure,
“dipping” of heart rate is noted along with abundant high frequency coupling/stable sleep. In the lower sample, there is less stable state, but the heart rate profile is
distinctly abnormal, with an elevation even during stable state. Such relative tachycardia during stable NREM sleep may suggest obstructive hypoventilation. In both
examples, oxygen desaturation itself is mild. Stable and unstable sleep (HFC and LFC, respectively) occur intermittently through the night. HFC, high frequency
coupling; LFC, low frequency coupling; e-LFC, elevated low frequency coupling; HR, heart rate; CHVR, cyclic heart rate variation.
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pressure dipping and mean arterial pressures during sleep
(Magnusdottir and Hilmisson, 2018).

Autonomic Regulation During Sleep
There is normally a reduction of the heart rate (HR) during
sleep, a HR-dip, which roughly follows the blood pressure
dipping pattern. Heart rate during sleep is, however, far simpler
to measure than blood pressure and provides a window into
cardiovascular health. By aligning heart rate profiles with the

CPC spectrogram (Figure 2), unique insights and cardiovascular
risk profiles are potentially extractable, and can be tracked over
time. Normally, HR dipping occurs during HFC periods.

Vertically Integrated Multi-Component
Sleep States
Cardiopulmonary coupling analysis established that sleep is
bimodal than graded. That is, while conventional NREM sleep
stages moves across the N1 to N3 grades, the CPC-spectrogram

FIGURE 3 | The oximeter-extracted CPC spectrogram. The basic graphical representation of the CPC-spectrogram has high, low, and very low frequency coupling
(HFC, LFC, and VLFC, respectively) components. Actigraphy is integrated, and VLFC without movement is considered REM sleep, whereas VLFC with movement is
Wake. Cyclic variation of heart rate is also displayed, as well as e-LFC as a measure of sleep fragmentation. The oximeter signal itself provides standard oximetry
metrics, such as an oxygen desaturation index. As shows, periods of HFC and LFC alternate throughout the night. LFC, low frequency coupling; VLFC, very low
frequency coupling; HFC, high frequency coupling; CHVR, cyclic heart rate variation.
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TABLE 1 | Studies that used cardiopulmonary coupling to diagnose and follow treatment response in various sleep disorders.

Study year Number of subjects Results

Section A: Studies that used cardiopulmonary coupling analysis to generate automated apnea-hypopnea index

Roche et al. (2003) 147 Sensitivity of 92.4% and a specificity of 90.1%

Roche et al. (2004) 63 Receiver operating characteristic (ROC) showed area under the curve of 0.848

Vazir et al. (2006) 33 Sensitivity of 85%, specificity of 65%, positive predictive value of 61%, and a negative predictive
value of 87%.

Heneghan et al. (2008) 92 Correlation coefficient between the CPC AHI and PSG AHI is: (r = 0.88, p < 0.001)

Chang (2009) 60 sensitivity of 68.97% and specificity of 100%

Al-Abed et al. (2009) 14 sensitivity, specificity and accuracy were 100.0, 99.9, and 99.9%, respectively

Hayano et al. (2011) 862 Receiver operating characteristic (ROC) showed area under the curve (AUC) of 0.913 for
subjects with AHI 15 or higher

Guo et al. (2011) 63 children (mean age 6.2
years; range 2–12 years)

Compared CPC AHI to AHI from portable sleep testing device and found correlation coefficient
of 0.70

Liu et al. (2012) 69 Receiver operating characteristic (ROC) showed area under the curve of 0.79 in detecting
apneas and hypopneas

Magnusdottir and
Hilmisson (2018)

47 subjects with moderate to
severe OSA with AHI 15 or
higher

Sensitivity 89%, specificity 79%, agreement 85%, PPV (positive predictive value) 0.86, and NPV
(negative predictive value) 0.83

Hilmisson et al. (2019a) 42 subjects with moderate to
severe OSA with AHI 15 or
higher

Sensitivity of 100%, specificity of 81%, and agreement of 93%

Lu et al. (2019) 179 ROC showed AUC 0.79 in mild OSA, 0.79 in moderate OSA, and 0.86 in severe OSA

Hilmisson et al. (2020) 805 children with mean age of
6.8 years

ROC demonstrated strong agreement in all OSA categories: 91.4% in mild OSA; 96.7% in
moderate OSA; 98.6% in severe OSA

Ma et al. (2020) 205 Correlation coefficient between the CPC AHI and PSG AHI is: (r = 0.851, p < 0.001)

Seo et al. (2020) 194 Correlation coefficient between the CPC AHI and PSG AHI is: (r = 0.973, p < 0.001)

Al Ashry et al. (2021) 833 ROC demonstrated strong agreement in all OSA categories: 98.5% in mild OSA; 96.4% in
moderate OSA; 98.5% in severe OSA

Study year Number of subjects Results

Section B: Studies that used cardiopulmonary coupling in phenotyping and following response of treatment of sleep apnea

Roche et al. (1999) Cohort of 14 patients with OSA treated with CPAP for 3 months Follow up PSGs showed that AHI decreased from average of 50 to
2/h and this was associated with significant reduction in the
LFC/HFC ratio

Gilman et al. (2008) Randomized control study in 19 patients with heart failure The group treated with CPAP for 1 month had significant increase in
HFC compared to the group not treated with CPAP

Shiina et al. (2010) Cohort of 50 patients with AHI > 20/h tested before and after 3
months of CPAP therapy

There was significant decrease in LFC/HFC ratio and C-reactive
protein after 3 months of CPAP

Schramm and Thomas
(2012)

Case report of patient with mild OSA. Multiple ECG recording nights
obtained. No therapy, dental device, oxygen therapy, and positional
therapy were compared

HFC/LFC ratio significantly improved on the night of dental device
as compared to oxygen therapy and positional therapy.

Lee et al. (2012) Cohort of 37 children with OSA after adenotonsillectomy AHI determined by PSG decreased significantly after
adenotonsillectomy. This was associated with significant
improvement in HFC/LFC ratio

Harrington et al. (2013) Cohort of 24 patients undergoing CPAP titration PSG for OSA.
A successful titration was defined as AHI < 5/h.

HFC was decreased and LFC was increased in subjects with
unsuccessful CPAP titrations.

Ramar et al. (2013) Cohort of 106 patients with complex sleep apnea undergoing ASV
titration

No correlation was found between percentage of LFCNB and ASV
titration success

Lee et al. (2014) Cohort of 52 patients with OSA treated with dental devices. PSG
and CPC were obtained at baseline and 3 months into treatment

The reduction in AHI as assessed by PSG was associated with
increase in HFC and decrease in LFC

Choi et al. (2015) Cohort of 62 patients with OSA treated with surgery. 36 patients had a successful surgical outcome defined as 50%
reduction of AHI to AHI < 20/h and were found to have significant
increase in HFC and significant decrease in LFC compared to those
who didn’t have a successful surgical outcome

Lee et al. (2016) Cohort of 98 patients with OSA treated with surgery or dental
device. PSG and CPC were obtained at baseline and 3 months into
treatment

Patients who had > 50% reduction in their AHI 3 months after
treatment were found to have significant reduction in LFC and
significant increase in HFC

(Continued)
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TABLE 1 | (Continued)

Study year Number of subjects Results

Cho and Kim (2017) Cohort of 62 patients tested in the sleep lab for OSA In those who met criteria for split night the CPAP titration portion
was associated with significant increase in HFC and significant
decrease in LFC

Chen and He (2019) Case control study in a pediatric population with OSA. The control
group underwent adenoidectomy only whereas the intervention
group underwent drug-induced sleep endoscopy (DICE) and
tonsillectomy was performed in addition to adenoidectomy if
tonsillar obstruction was seen on DICE

Both groups had improvement in AHI as determined by CPC but
AHI improvement in the DICE group after 1 year was better as
compared to the control group.

Study year Number of subjects Results

Section C: Studies that used cardiopulmonary coupling in sleep disorders other than sleep apnea

Sforza et al. (2005) Cohort of 14 patients with periodic limb movements (PLMs) was
studied. Periods of PLMs were compared to periods without PLMs

Periods with PLMs were associated with significant increase in LFC
compared to periods without PLMs

Thomas et al. (2010) Prospective case control study. 14 patients with fibromyalgia were
compared to 13 matched controls

Elevated-low frequency coupling was significantly increased in
Fibromyalgia patients and there was a trend toward less HFC in
those patients as compared to controls

Yang et al. (2011) 100 patients with major depression (50 of which were on hypnotics
due to insomnia) were compared to 91 healthy subjects

HFC% was significantly lower and LFC% significantly higher in
patients with depression not on hypnotics compared to patients
with depression on hypnotics and healthy subjects

Chien et al. (2013) Sleep quality of 156 nurses was assessed using the Chinese edition
of Pittsburgh sleep quality index

CPC were analyzed and classified into stable vs. unstable sleep.
Patients deemed as poor sleepers according to the Chinese edition
of Pittsburgh sleep quality index had a significant inverse correlation
with the stable sleep ratio as determined by CPC

Lin et al. (2013) CPC patterns were studied in 13 medical interns and nights when
being on call were compared to nights when they were off duty

HFC% significantly decreased during on call nights when sleep
deprivation is expected compared to off duty nights

Schramm et al. (2013) CPC variables were compared between 50 patients with primary
insomnia and 36 good sleepers

Primary insomnia patients had lower HFC%, low HFC/LFC ratio,
and higher LFC% when compared to good sleepers

Jarrin et al. (2016) Single arm cohort study of 65 patients with chronic insomnia before
and after 6 weeks of cognitive behavioral therapy

Improvement in sleep parameters were associated with lower
HFC% contrary to what would be expected. Study is limited by
absence of control arm

Thomas et al. (2018) CPC variables from 128 nights were collected from10 healthy
volunteers and compared to 121 nights in 20 patients with
insomnia.

Patients with insomnia had increased LFC specifically increased
broad-band LFC (LFCBB)

Hilmisson et al. (2019a) Prospective cohort of 110 patients with chronic insomnia that have
been treated with prescription pharmacological agents for > 3
months and not previously tested for OSA. Home sleep testing
showed that 25% had moderate to severe OSA coexistent with
their insomnia diagnosis.

Patient with insomnia who were found not to have OSA had less
percentage of LFC specifically less LFCNB when compared to
patients with insomnia who were found to have moderate to severe
OSA. There were no significant differences in CPC parameters in
patients with insomnia without OSA when compared to patients
with insomnia who have mild OSA

Sun et al. (2019) 41 patients with depression studied before and after 2 weeks of
antidepressant medications

Increase in HFC was associated with improvement in psychiatric
questionnaire scores

Zhang et al. (2021) CPC variables were compared between 3 groups: 22 insomnia
patients with cognitive impairment, 21 insomnia patients with
normal cognition, and 15 healthy volunteers

Insomnia patients with cognitive impairment had less HFC and
more LFC/HFC ration when compared to insomnia patients with
normal cognition and healthy volunteers

shows that NREM sleep has only two distinct and completely
non-overlapping forms—stable and unstable (HFC and LFC,
respectively), which intermittently switch across the entire night.
While N3 dominates in the first half of the night, HFC occurs
throughout (Figure 3). This bimodality or stability domain is
especially clear when incorporating autonomic and respiratory
variables with electrocortical activity, specifically, delta power
and the < 1 Hz slow oscillation. Stable NREM is characterized
by high probability of occurrence of the < 1 Hz slow oscillation,
high delta power, non-CAP EEG, stable breathing, blood pressure
dipping, strong sinus arrhythmia and vagal dominance, and high
frequency CPC. Conversely, unstable NREM exhibits opposite
features: a fragmented and discontinuous < 1 Hz slow oscillation,

CAP patterns on the EEG, non-dipping of blood pressure,
unstable respiration, cyclic variation in heart rate, and low
frequency CPC (Wood et al., 2020).

CARDIOPULMONARY COUPLING IN
SLEEP APNEA

Diagnosis of Sleep Apnea
Sleep apnea reliably induces strongly coupled low-frequency
oscillations in heart rate and respiration. This results in strong
ECG or PPG amplitude fluctuations, besides cyclic variation
in heart rate, enabling computing an AHI. This computation
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requires knowing the number of oxygen desaturation events,
the amount of time in coupled low-frequency oscillations,
the mean frequency of these computed oscillations, and the
total sleep period.

The first step in using CPC for sleep apnea detection involves
a second-levels analysis of the LFC zone, where a spectral
band designated as elevated-LFC (e-LFC) was found which
correlated highly with scored apneas and hypopneas. Within
e-LFC, two further patterns were discernable, one with a wide
dispersion of coupling spectra and another with a narrow band
of coupling spectra (broad and narrow-band e-LFC, or e-LFCBB
and e-LFCNB). However, other causes of sleep fragmentation may
also cause similar patterns, especially e-LFCBB, a limitation which
may be minimized by integrating oxygen saturation fluctuations
into the computation. In two recent large studies combining CPC
AHI with oximetry desaturation index events in one index have
improved the accuracy of derived AHI in comparison to PSG
AHI (Hilmisson et al., 2020; Al Ashry et al., 2021). This derived
AHI was approved to be equivalent to PSG AHI in adults and
children in 2019 by the FDA (K182618).

These LFCNB and LFCBB indices have been used in several
studies in the adult and pediatric populations for automated
detection of sleep apnea (Table 1, section A). There are several
advantages for using CPC through wearable devices, especially
the current embodiment of a ring-form oximeter, in the sleep
apnea population. These include: (1) cost-effective screening
of high risk adult and pediatric populations; (2) minimizing
patient (wearing) and system (scoring) burdens; (3) detection of
expressed high loop gain (central apnea and periodic breathing),
which can be a risk stratification approach, as such patients
are at risk for treatment-emergent central sleep apnea, reduced
adherence to therapy, and persistent respiratory instability
during apnea therapy.

Sleep Apnea Treatment Effects
Successful sleep apnea treatment is expected to increase HFC
relative to LFC, including following oral appliance therapy and

upper airway surgery (Schramm and Thomas, 2012; Lee et al.,
2014, 2016; Choi et al., 2015). A similar pattern is noted in
pediatric patients with OSA after adenotonsillectomy (Lee et al.,
2012; Chen and He, 2019). The same results are seen with
CPAP treatment of OSA (Harrington et al., 2013; Cho and Kim,
2017). Successful treatment of OSA with CPAP is associated
with improvement in HFC/LFC ratio (Roche et al., 1999; Shiina
et al., 2010). Gilman et al. (2008) randomized patients with heart
failure (ejection fraction less than 45%) who had moderate to
severe OSA to CPAP vs. usual care. After 1 month the CPAP
treated group showed an increase in HFC compared to the
control group (Gilman et al., 2008). Harrington et al. (2013)
looked at CPAP titration studies and defined successful CPAP
titration and optimum CPAP pressures as AHI less ≤ 5 / h of
sleep for 30 min during supine REM; higher HFC was found in
successful CPAP PSGs and higher LFC in unsuccessful titrations
(Harrington et al., 2013).

Endotyping and Phenotyping Sleep
Apnea
Endotypes are the mechanisms which drive pathology, while
phenotypes are the expression of these endotypic effects. Multiple
driver endotypes are now recognized as important in the
pathogenesis of obstructive sleep apnea, including high loop
gain, low arousal threshold, airway collapsibility, impaired
negative pressure response, and sleep fragmentation resulting in
amplified wake-sleep transitional instability (Dutta et al., 2021;
Finnsson et al., 2021). Thus, what is considered “obstructive
sleep apnea” can be caused by one or more of the above
driving mechanisms, which can be classified into anatomical and
non-anatomical. High loop gain, reflecting respiratory control
instability and an imbalance between input (oxygen and carbon
dioxide levels) and output (neural drive to respiratory muscles
and upper airway) of the respiratory system, is perhaps the
most important non-anatomical endotype. When loop gain
is more than 1, self-sustained oscillations are inevitable. The

FIGURE 4 | Sleep apnea phenotyping. 3-Dimensional graphical view of the CPC- spectrogram in a patient with severe sleep apnea and no stable (HFC) sleep. Color
code: orange = VLFC, blue = e-LFCBB (broadband coupling), and red = e-LFCNB (narrowband coupling). The offset view (right) shows the narrow dispersion of
coupling frequencies induced by periodic breathing toward the end of the recording period, while earlier in the night the e-LFC spectra are “broadly dispersed,”
consistent with predominantly obstructive sleep apnea. On the figure to the right the time axis is cut off and the figure is off set to show the narrow band best.
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importance of high loop gain is that treatment failure risk
is high and options such as oxygen (Edwards et al., 2016;
Sands et al., 2018) and acetazolamide (Edwards et al., 2012)
can be beneficial. Though mathematical methods can accurately
quantify endotypes, analysis of the expressed phenotypes can also
accurately identify sleep apnea with high loop gain.

When high loop gain is manifested, the polysomnographic
patterns include classic central sleep apnea, periodic breathing,
complex apnea with codominant loop gain and airway
pathology, treatment-emergent central sleep apnea, and NREM-
dominant obstructive sleep apnea. A common theme across all
these conditions is self-similar (metronomic timing, identical
morphology of consecutive events) of respiratory abnormality
(Oppersma et al., 2021), which induce e-LFCNB, which is a
marker of this expressed high loop gain (Figure 4; Thomas
et al., 2007). In a study of 671 subjects with sleep apnea which
compared CPC indices to conventional PSG scoring (Thomas
et al., 2007), e-LFCNB was associated with respiratory instability
during CPAP titration. Since e-LFCNB is a marker of expressed
high loop gain and “central” sleep apnea, Ramar et al. (2013)
evaluated if could be used as a marker of adaptive servo-
ventilation titration success in 106 patients with complex sleep
apnea. Overall ASV titration success as defined as AHI < 10/h
on ASV was found in 81% of patients and no correlation was
found between percentage of LFCNB and ASV titration success
(Ramar et al., 2013). One limitation of this study was the use of
opiates, which causes ataxic breathing, and is unlikely to cause the
exact self-similarity needed to induce e-LFCNB. Table 1 (section
B) summarizes the studies that used CPC in phenotyping and
following response of treatment of sleep apnea.

CARDIOPULMONARY COUPLING IN
OTHER SLEEP DISORDERS

CPC has been used to study other sleep disorders beyond OSA.
Patients with insomnia have been shown to exhibit increased
LFC even in the absence of sleep disordered breathing (Thomas
et al., 2018). It appears that LFCBB is the main LFC pattern
seen in pure insomnia so the coexistence of LFCNB should
raise the suspicion for coexisting sleep apnea (Hilmisson et al.,
2019b). Schramm et al. (2013) studied CPC in a group of
primary insomnia and compared to a group of good sleepers.
They found increased LFC and a lower HFC/LFC ratio among
the insomnia group (Schramm et al., 2013). Zhang et al.
(2021) studied insomnia patients with cognitive impairment
and found decreased HFC indicating predominance of unstable
sleep compared to insomnia patients with normal cognition.
However, Jarrin et al. (2016) found that improvements in some

sleep parameters in insomnia patients subjected to 6 weeks of
cognitive behavior therapy was associated with decreased HFC.
One of the limitations of this study was absence of control
group. A systematic review of cardiovascular autonomic activity
in insomnia patients showed that increased LFC/HFC ratio is a
consistent finding in those patients (Nano et al., 2017). Similar
findings of increased LFC/HFC ratio were also seen in CPC
studies of populations with conditions that would predispose
them to secondary insomnia/short sleep durations including:
sleep deprivation, fibromyalgia, and periodic limb movement
disorder (Sforza et al., 2005; Thomas et al., 2010; Chien et al.,
2013; Lin et al., 2013).

Since insomnia is common in patients with uncontrolled
psychiatric disorders (Sateia and Nowell, 2004); CPC could
be used in studying and tracking treatment response in such
patients. In comparison to controls, patients with untreated
major depression have reduced HFC and increased LFC (Yang
et al., 2011). Sun et al. (2019) studied 41 patients with depression
and showed that the increase in HFC following 2 weeks
of antidepressant medications treatment was associated with
improvement in psychiatric questionnaire scores and suggested
that this can be used to predict early response to treatment in
such patients. Table 1 (section C) summarizes the studies that
used CPC in sleep disorders other than sleep apnea.

CONCLUSION

The CPC sleep spectrogram provides a novel window into sleep
physiology and key information about sleep during health and
disease. Because such data can be obtained from simple/reduced
and even contactless signal acquisition methods, it allows
studying sleep in greater numbers, and with greater ease, in a
wider range of conditions, with nearly limitless repeatability, than
typically possible with traditional polysomnograms or current
home sleep apnea testing devices.
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Depression is a prevalent mental illness with high morbidity and is considered the
main cause of disability worldwide. Brain activity while sleeping is reported to be
affected by such mental illness. To explore the change of cortical information flow
during sleep in depressed patients, a delay symbolic phase transfer entropy of scalp
electroencephalography signals was used to measure effective connectivity between
cortical regions in various frequency bands and sleep stages. The patient group and the
control group shared similar patterns of information flow between channels during sleep.
Obvious information flows to the left hemisphere and to the anterior cortex were found.
Moreover, the occiput tended to be the information driver, whereas the frontal regions
played the role of the receiver, and the right hemispheric regions showed a stronger
information drive than the left ones. Compared with healthy controls, such directional
tendencies in information flow and the definiteness of role division in cortical regions
were both weakened in patients in most frequency bands and sleep stages, but the
beta band during the N1 stage was an exception. The computable sleep-dependent
cortical interaction may provide clues to characterize cortical abnormalities in depressed
patients and should be helpful for the diagnosis of depression.

Keywords: sleep, depression, electroencephalography, effective connectivity, delay symbolic phase transfer
entropy

INTRODUCTION

Depression is a prevalent mental illness with high morbidity and encompasses abnormal
performances such as anhedonia, low self-esteem, and even self-mutilation, which is considered
the main cause of disability worldwide (World Health Organization [WHO], 2019). Cumulative
neuroscience research on resting state and various cognitive tasks have suggested that the
dysregulated cortical and subcortical functional network, which is considered to affect brain
function integration and information interaction, was found in depressed patients (Furman et al.,
2011; de Kwaasteniet et al., 2013; Ma et al., 2021). Moreover, brain activities while sleeping were
also reported to be affected by such mental illness (Steiger and Pawlowski, 2019).

Sleep is significant for the regulation of brain function, including the adjustment of cerebral
cortex activity to preserve the homeostasis of the functional network (Tononi and Cirelli, 2006;
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Krueger et al., 2016). During sleep, brain’s response to external
stimuli is weakened and, thus, specific spontaneous pathological
information of neurological or mental diseases can be observed
(Berry, 2012). The majority of studies regarding depression
during sleep have investigated the polysomnographic alterations
and some typical differences have been found: the longer sleep
latency, the decreased sleep efficiency, prolonged first rapid
eye movement (REM) stage, and reduced slow wave sleep
(Tsuno et al., 2005; Sculthorpe and Douglass, 2010; Murphy and
Peterson, 2015). However, scant research worked on exploring
sleep functional network of depressed patients. Synchronous
likelihood was utilized on sleep electroencephalography (EEG)
signals to find that lower mean level of global synchronization
was present in depressed patients (Leistedt et al., 2009).
According to linear Granger causal analysis, small-world network
organization in patients with depression was altered during
REM sleep (Hein et al., 2019). Moreover, Zhang B. T. et al.
(2020) used connectivity metrics derived from two sleep EEG
channels to obtain sound results in depression screening. In
light of the existing research background, the special relationship
between depression and sleep should not be overlooked. Further
investigation on the sleep cerebral functional network of
depression may help us more comprehensively understand the
pathological mechanism of depression.

In virtue of noninvasive high time resolution, long-range
timely recording, and relatively low physiological load, EEG is
deemed as an ideal tool for studying cerebral activity during sleep.
The current functional network analyses based on cortical EEG
include functional connectivity (FC) and effective connectivity
(EC), which are both based on the functional properties of
the various cortical regions (Friston, 2011; Stam, 2014). FC
represents the temporal correlations that imply direct or indirect
interactions between brain regions (Cai et al., 2018), whereas EC
refers to a kind of directional causal influence that neural masses
exert upon each other, which should be more comprehensive
to illuminate the cerebral activity (Valdes-Sosa et al., 2011).
Currently, informatics methods were widely applied to EC
analysis for further directional brain network investigation, and
based on which, transfer entropy (TE) was proposed as an EC
measure to study the information flow in the cortical network
(Vicente et al., 2011). Since the cortical EEG is easily affected
by the volume conduction (He et al., 2019), in recent years,
constantly improved algorithms have been proposed to reduce
this effect on scalp estimates of EC and improve the reliability
and stability of the calculations, and related applications on
research unveiled anomalous cerebral information interaction in
depressed patients. Cukic et al. (2020) applied transfer entropy
on resting EEG and found that the frontal, parietal, and temporal
lobes of patients are relatively isolated. A more randomized brain
network structure was found in patients in accordance with phase
transfer entropy analysis (Hasanzadeh et al., 2020). Zhang Y. et al.
(2020) used multivariate symbolic transfer entropy to find that
the connection strength of patients between the left occipital area
and the frontal lobe area under the stimulation of positive and
neutral emotional pictures was significantly different from that of
healthy controls. Recently, delay symbolic phase transfer entropy
(dSPTE), a new extension of TE incorporating the advantages of

phase information analysis and symbolic scheme, was proposed
to quantify brain activity EC, which has better noise robustness
and more accurate identification of EC (Wang and Chen, 2020).
With the advantages of nice stability and accuracy, dSPTE was
applied in this study to investigate the functional interactive
network in depressed patients during sleep.

Studies have implied the cerebral functional asymmetries in
depressed patients, and the anomalous functional network may
lead to the aberrant symptoms such as abnormal information
processing and excessive rumination (Rotenberg, 2008; Bruder
et al., 2012). However, insufficient investigations committed to
reveal and characterize the asymmetries of cortical information
flow in depressed patients during sleep, the topic of which was
considered to provide valuable information for the abnormal
cerebral function in patients. Moreover, previous studies have
tried to explore different inter-regional features to quantify
different patterns of cortical information flow, such as left–right
index and anterior–posterior rate (Zhou et al., 2020; Ekhlasi
et al., 2021; Pan et al., 2021). To discover the difference in sleep-
dependent information flow patterns in patients, analysis on
various EC asymmetry patterns was included in this research.

In this study, we tried to explore the changes in the interactive
functional network in patients with depression during sleep.
The information transfer between cortical regions and two
information flow patterns (left–right pattern, posterior–anterior
pattern) in different sub-bands and sleep stages were considered
to analyze the differences between patients with depression and
healthy controls. We expect to provide new insights into the
understanding of pathological mechanisms in depression.

MATERIALS AND METHODS

Participants
Twenty-five patients with depression and twenty-six age-
matched healthy controls were enrolled in our study, and the
clinical characteristics of participants are listed in Table 1.
Patients from Guangdong 999 Brain Hospital were diagnosed

TABLE 1 | Demographic and clinical data for participants.

Variables Healthy controls Depressed patients p-value

Age (years) 20 ± 1.50 21.6 ± 7.04 0.947

Gender, male/female 13/13 14/11 0.668

HAMD score 2.08 ± 1.57 25.5 ± 6.28 <0.001

SDS score 40.92 ± 6.99 67.3 ± 9.91 <0.001

Total Analysis Time (min) 458.13 ± 96.84 583.75 ± 55.17 /

NREM1 Time (min) 25.17 ± 12.45 22.89 ± 15.58 0.205

NREM2 Time (min) 181.71 ± 41.39 253.81 ± 82.91 0.001

NREM3 Time (min) 141.21 ± 37.31 146.45 ± 55.56 0.445

REM Time (min) 82.03 ± 22.17 103.22 ± 50.08 0.220

Total Sleep Time (min) 429.40 ± 41.59 526.33 ± 74.11 /

All data are presented as mean ± standard deviation, except for gender. HAMD,
Hamilton Depression Scale; SDS, Self-rating Depression Scale. The comparison
of gender was assessed with chi-squared test and the other comparisons were
assessed using the Mann–Whitney U test.
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by two experienced psychiatrists based on criteria of Diagnostic
and Statistical Manual of Mental Disorders, Fourth Edition
(DSM-IV). Patients with depression were also assessed by
the Hamilton Depression Scale (HAMD) and the Self-Rating
Depression Scale (SDS). The exclusion criteria for patients
with depression included the presence of drug abuse, suicide
risk, pregnancy, present or history of head injuries, seizures,
or epilepsy. Healthy participants were recruited from Sun
Yat-sen University and had no history of nerve damage, no
family history of psychiatric disorders, no history of sleep
disorders, and no history of drug or alcohol abuse. Participants
in the experiment were not interfered by medications under
the judgment of an experienced clinical psychiatrist, and had
not experienced sleep deprivation and other disturbances.
This study had the approval of the Ethics Committee of
Guangdong 999 Brain Hospital (approval number: 2020-010-
059). All procedures performed in this study were in accordance
with the 1964 Helsinki declaration and its later amendments.
All participants voluntarily signed an informed consent form
before the experiment and were appropriately remunerated
after the experiment.

Polysomnography
All participants underwent overnight polysomnography (PSG)
examination using a Compumedics Profusion EEG recording
system with Neuvo amplifier, and the recording lasted for 9–10 h.
Six scalp EEG channels (F3/M2, F4/M1, C3/M2, C4/M1, O1/M2,
and O2/M1) following the 10–20 system were selected for the
study at a sampling rate of 500 Hz. The reference electrodes
(M1 and M2) were placed on contralateral auricle and a ground
electrode was on Fpz according to the recommendation of the
American Academy of Sleep Medicine (AASM) criteria (Berry
et al., 2017). Moreover, electrooculography, electrocardiography,
electromyography, oral and nasal respiratory airflow, chest
and abdomen breathing movement, blood oxygen saturation,
snoring, leg movement, and body position were also recorded.
Sleep stages (REM, N1, N2, N3, and Wake) were then
scored by two experienced sleep technicians according to
the AASM criteria.

Electroencephalography Signal
Pre-processing
The EEG recordings were divided into 30-s epochs for sleep
scoring. Segments with obvious artifacts were excluded by visual
inspection. Finally, 18,422 segments from depressed patients (694
W epochs, 4,571 R epochs, 421 N1 epochs, 6,973 N2 epochs, and
5,763 N3 epochs) and 18,691 segments from healthy controls (563
W epochs, 2,997 R epochs, 540 N1 epochs, 7,737 N2 epochs, and
6,854 N3 epochs) were obtained. Then, middle 10-s segments
from these epochs were extracted for analysis, and a fourth-order
zero phase shift Butterworth band-pass filter (0.5–60 Hz) was
used to denoise the raw EEG signals.

Directionality Analysis
To determine the directed information flow between cortical
regions, dSPTE was estimated based on EEG signals. Under

the framework of directional dynamic analysis, TE evaluates the
degree of influence of the driving time series on the target one
(Schreiber, 2000). Suppose a causal relation between source signal
X and target signal Y, uncertainty of the target signal prediction
would be reduced when adding both its own past information and
that of the source signal:

TEX→Y =
∑

P (Yt,Yt−δ,Xt−δ) log
(

p(Yt|Yt−δ,Xt−δ)

p(Yt|Yt−δ)

)
Developed from TE, the dSPTE has better noise robustness
and can correctly identify the EC, and its calculation procedure
contains phase information extraction, symbolic process, and
true delay search. For phase information extraction, a combined
Morlet wavelet was used to obtain the instantaneous phase (Liao
et al., 2019). The definition of a single Morlet complex wavelet is:

σ (t) =
1√
πfb

e2iπfcte
−

t2
fb

where fc is the center frequency of the wavelet and fb is
the bandwidth parameter. Then, Morlet complex wavelets with
different center frequencies fn were superimposed to obtain the
combined Morlet wavelet, and the fn can be expressed as:

fn = fL + n×4f , n = 0 . . . N − 1

where4f was the center frequency spacing of wavelet, and fL and
N were the central frequency of the first wavelet and the number
of wavelets, respectively. The combined Morlet wavelet is defined
as:

9c (t) =
1
C

N−1∑
n=0

σfn (t) =
1

C
√

πfb
e
−

t2
fb

N−1∑
n=0

e2iπfnt

where C is the correction coefficient that makes the amplitude-
frequency characteristic passband of the combined wavelet equal
to 1. For the EEG signal S(t), its phase information ϕ (τ) can be
obtained after convoluting with the combined Morlet wavelet.
The wavelet coefficient at time τ is defined as:

WS (τ) =

∫
∞

−∞

S (t)9∗C (t − τ) dt = A (τ) eiϕ(τ)

In this study, the fb = 2 and 4f = 0.05, and the parameters
fL and N were fL = 0.5 and N = 70 for delta (0.5–4 Hz), fL = 4
and N = 80 for theta (4–8 Hz), fL = 8 and N = 80 for alpha
(8–13 Hz), and fL = 12 and N = 400 for beta (13–32 Hz).
Then, we performed a symbolic process based on permutation
entropy (Staniek and Lehnertz, 2008), assuming θx

t is the phase
series extracted from random time series x(t). To better capture
the underlying dynamics of the series, the past space state is
reconstructed through a time embedding method, so the space
state of θx

t is approximated as:

θxd
t = [θ

x (t) , θx (t − l
)
, . . . θx (t − (m− 1) l

)
]

where m and l are the embedding dimension and
delay, respectively. Then, the values are arranged in an
ascending order [θx (t − (j1 − 1

)
l
)
≤ θx (t − (j2 − 1

)
l
)
≤
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. . . ≤ θx (t − (jm − 1
)

l
)
], and the symbol is defined as

Sθx
t = [j1, j2, . . . , jm]. In this study, m = 5 and l = 62, 31,

19, and 7 were selected for the delta, theta, alpha, and beta
frequency bands, respectively (Li et al., 2017; Zubler et al., 2018).
For two discrete time series X and Y, the information transfer
from X to Y will be the maximal under the real delay (Wang
and Chen, 2020). To obtain the optimal dSPTE, the interaction
lag parameter µ between the driving and driven systems was set
from 1 to 15 to find the optimal dSPTE. The dSPTE is expressed
as:

dSPTEX→Y =
∑

p(Sθy

t , Sθy

t−1, Sθx

t−µ)log
p(Sθy

t |S
θy

t−1, Sθx
t−µ)

p(Sθy
t |S

θy
t−1)

Inter-Regional Effective Connectivity
Pattern
Based on the dSPTE, left–right index (LR) and anterior–posterior
ratio (AP) were introduced to assess the different information
flow patterns in the cortical regions. To obtain these indices,
normalized dSPTE was used:

ndSPTExy =
dSPTEx→y

dSPTEx→y + dSPTEy→x

where ndSPTExy ranging from 0.5 to 1 means the information
flows preferentially from X to Y, and ndSPTExy ranging from
0 to 0.5 means the reverse situation. For each EEG channel,
we averaged its ndSPTExy with all the other channels to
get its regional ndSPTE values, which indicated whether the
information transmission role of a cortical area was a driver
(0.5 < ndSPTE < 1) or a receiver (0 < ndSPTE < 0.5). LR
represented the relative transmission direction of information
and the degree of difference in information exchange between the
left and right hemisphere (Zubler et al., 2018), which was defined
as follows:

LR =
{
λ

ndSPTELR − ndSPTERL

ndSPTELR + ndSPTERL

}
average

where λ = 1, and ndSPTELR (ndSPTERL) was the normalized
dSPTE from left to right (right to left), and was calculated
with the electrode pairs of left and right hemispheres, including
F3-F4, C3-C4, and O1-O2. LR > 0 indicated the left-to-right
hemispheric information flow and vice versa. The closer the
LR value was to 0, the smaller the difference between inter-
hemispheric information flows.

Anterior–posterior ratio (AP) was defined to assess the
anterior-to-posterior pattern of the information flow (Numan
et al., 2017):

AP =

{
ndSPTEAP

}
average{

ndSPTEPA
}

average

where ndSPTEAP (ndSPTEPA) was the normalized dSPTE from
anterior to posterior (posterior to anterior), and was calculated
with the electrode pairs of anterior and posterior regions,
including F3-C3, F3-O1, C3-O1, F4-C4, F4-O2, and C4-O2.
The information flow direction is anterior-to-posterior, AP > 1,

whereas the opposite direction retrieves 0 < AP < 1, and a
balanced direction retrieves AP = 1. The closer the AP value was
to 1, the smaller the difference between anterior and posterior
information flows.

Statistical Analysis
Statistical tests were conducted to address discrepancies in
the cortical interactive network between the healthy controls
and depression groups during sleep in various frequency
bands and researched sleep stages. Since dSPTEs, LRs, and
PAs did not satisfy the normal distribution or the variance
homogeneity test, a non-parametric test (Mann–Whitney U
test) was used to test the significant difference (p < 0.05 was
considered statistically significant). Furthermore, the Friedman
test was utilized to test the null hypothesis that the features
of EC between different sleep stages were the same, and
the Bonferroni correction was conducted to access the stage-
dependent significant differences if the Friedman test showed a
significant difference (p < 0.05). All analyses were performed
using IBM statistical software version 22.0.

RESULTS

Information Transfer Across Cortical
Regions
The EC networks during sleep were represented by the
dSPTE between EEG channels. Figures 1, 2 show the EC
network of the healthy controls and that of the depressed
patients, respectively. Through the color of the arrows,
the advantage transfer directions between channels can be
obtained. As shown in Figures 1A, 2A, in delta, theta,
and beta bands, most information flow between the two
channels has an obvious advantage direction, which means
the information transfer in one direction was obviously
larger than the other.

In terms of the inter-hemispheric information flow, except for
the alpha band, the information transfer into the left hemisphere
was larger than the other direction. We also observed that
the information transition of occipital regions had a uniform
directional tendency, except for the alpha band, where the
information transferred from occipital regions was larger than
the opposite direction.

The information transition of frontal regions also indicated
directional tendency, but the results depended on frequency
bands and stages. For the low-frequency bands, delta and
theta, the information transfer into the frontal regions was
larger, but in delta during N3 sleep, this tendency slightly
weakened. The information transferred from occipital
regions to frontal regions was slightly larger than the other
direction during sleep in the alpha band. For the beta band,
such tendency differed during various sleep stages. During
Wake, R, and N1, the information into frontal regions was
larger, but during N3 stages, information transfer from
the frontal regions to central regions was larger than the
other direction. We also calculated the average dSPTE in
the whole cortical network in different sleep stages for

Frontiers in Neuroscience | www.frontiersin.org 4 January 2022 | Volume 15 | Article 73642697

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-736426 January 6, 2022 Time: 10:41 # 5

Lian et al. Sleep-Dependent Cortical Interaction in Depression

FIGURE 1 | dSPTE of healthy controls during five stages in four frequency bands. (A) Overall dSPTE across cortical regions. Each monodirectional arrow indicates
the directed influence of one cortical region to another. The warmer the color of the line with the arrow, the stronger the intensity of EC. (B) The average dSPTE
across six electrodes in five stages. Asterisks denote the significant difference between two stages. ∗p < 0.05, ∗∗p < 0.005, and ∗∗∗p < 0.001 (Bonferroni
correction).

reference (Figures 1B, 2B; the specific values were listed in
Supplementary Table 1).

Differences in Information Transfer
Across Cortical Regions Between
Patients With Depression and Healthy
Controls
Figure 3 indicates all the significant difference between groups.
For delta and theta bands, except for a few compression results,
such as the inter-hemispheric information transfer between
frontal and occipital regions (O2-F3 and O1-F4), the significant
difference weakened the advantage information transfer direction
in depressed patients. For example, the advantage direction
between F3 and F4 was F4 to F3, but the depressed patients
indicated a stronger information transfer from F3 to F4 or weaker
transfer from F4 to F3.

For the alpha band, its advantage direction during sleep
was not so obvious as other bands. During R and N1 stages,
the anterior-to-posterior information flow increased and the
opposite information flow decreased, and the information
transfer from the left hemisphere increased in patients. However,
during N2 and N3 stages, it seemed that the information transfers
in the whole cortical network increased in patients, except for O1
to O2. For the beta band, during Wake, R, N2, and N3 stages,
the advantage direction weakened in patients like the results of
delta and theta bands. However, during N1, these significant
differences further enhanced the directional tendency in patients,
which may be the result we should notice.

Anterior-to-Posterior Pattern and
Left-to-Right Pattern of Information Flow
AP and LR were constructed to summarize the information
flow tendency between hemispheres and the anterior–posterior
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FIGURE 2 | dSPTE of depressed patients during five stages in four frequency bands. (A) Overall dSPTE across cortical regions. Each monodirectional arrow
indicates the directed influence of one cortical region to another. The warmer the color of the line with the arrow, the stronger the intensity of EC. (B) The average
dSPTE across six electrodes in five stages. Asterisks denote the significant difference between two stages. ∗p < 0.05, ∗∗p < 0.005, and ∗∗∗p < 0.001 (Bonferroni
correction).

pattern of EC network, the group differences of which are
shown in Figures 4, 5, respectively. Supplementary Figure 1
in the Supplementary Material shows the difference in AP
and LR values across different sleep stages; the specific values
of AP and LR are listed in Supplementary Table 2. Except
for the alpha band, the other three bands had an obvious
hemispheric bias (LR < 0). The overall information flow
was from the right to the left cerebral hemispheres, and the
information flow tendency was from posterior to anterior
(AP < 1). During N3 in delta and during N2 and N3 stages in
beta, this hemispheric bias and posterior-to-anterior tendency
weakened. During wake in alpha band, this hemispheric bias
and anterior-posterior information flow pattern were reversed.
The above hemispheric bias and posterior-to-anterior tendency
both weakened in patients; the LRs were closer to 0 and APs
were closer to 1 in the patient group. With the following

exceptions, during the N1 stage, the AP and LR of beta in patients
further decreased.

Difference in Regional Information
Between Patients With Depression and
Healthy Controls
Figure 6 indicates the information transition roles of various
cortical regions. Except for the converse results in the wake
stage of the alpha frequency band, in most cases, the occipital
areas tended to be the sender, whereas the frontal areas were
the information receivers. Besides, the right hemisphere showed
a stronger information drive than the left hemisphere. These
information transition roles slightly weakened in the alpha band
during sleep stages and in beta bands during N2 and N3 stages.
For delta, theta, and beta bands, the order from receiver to driver
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FIGURE 3 | Differences in dSPTE between depressed patients and healthy controls. In each subgraph, the red arrows indicate the significantly stronger flow in
depressed patients compared with healthy controls, whereas the blue arrows indicate the opposite condition.

was basically as follows: F3, F4, C3, C4, O1, and O2. C4 was
the closest to the balance of information sending and receiving
(ndSPTE = 0.5). Both groups had the results above.

In regard to the difference between groups, except in beta
during N1, nearly all the significant differences made the ndSPTE
closer to 0.5 in patients. The ndSPTE increased in frontal
regions and decreased in occipital regions, which meant that the
definiteness of role division in cortical regions was weakened
in depressed patients. However, decreased ndSPTE in frontal

regions and increased ndSPTE in occipital regions were found in
beta during N1, which was an exception.

DISCUSSION

Delay symbolic phase transfer entropy was used to estimate
the cortical EC network in patients with depression during
sleep. Several features such as LR, AP, and regional ndSPTE
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FIGURE 4 | Differences in AP between groups. Red asterisks indicated that the AP of depressed patients significantly increases compared to the controls, whereas
the opposite is observed in the other case (blue). ∗p < 0.05, ∗∗p < 0.005, and ∗∗∗p < 0.001. The red dotted line is the baseline of AP (AP = 1).

FIGURE 5 | Differences in LR between groups. Red asterisks indicated that the LR of depressed patients significantly increases compared to the controls, whereas
the opposite is observed in the other case (blue). ∗ p < 0.05, ∗∗p < 0.005, and ∗∗∗p < 0.001. The red dotted line is the baseline of LR (LR = 0).

were constructed to evaluate the information directions of inter-
hemisphere, anterior–posterior, and the roles of information
transition of various cortical regions, respectively. We observe
obvious information flows to the left hemisphere and to the
anterior cortex. For regions, the occiput tended to be the
information driver, whereas the frontal regions played the role
of the receiver. Such directional tendencies in information flow
and the definiteness of role division in cortical regions were both
weakened in patients.

Compared with previous studies (Zhou et al., 2020; Pan
et al., 2021), our method provided detailed differences in
information flow between brain regions, and clearly characterized
the role of regions in information transmission (as a receiver or
driver). It has been reported that the occipital region and the
parietal region are considered to be related to visual information
(Heo et al., 2018) and somatosensory information (Fogassi
and Luppino, 2005), respectively, while the frontal area has a
bearing on senior cognitive functions, emotions, and information
integration functions (Fogassi and Luppino, 2005; Alvarez and
Emory, 2006). Previous research indicated that the top-down
information interaction during sleep was significant for memory
consolidation (Axmacher et al., 2009; Miyamoto et al., 2016). The
strong forward information flow and the difference in the role
of anterior–posterior information communication that we found
may reflect the integration and reprocessing of information from
the episodic memory during sleep (De Gennaro et al., 2004).

Thanks to the high resolution of dSPTE for information
transmission evaluation, we found that the difference in the
regional role and in information flow of patients was weaker
during sleep compared with healthy controls. Functional research
implied that impaired bottom-up limbic cortex regulation led to
abnormal mood regulation in patients with depression (Ochsner
et al., 2009; Ramasubbu et al., 2014), which may also suggest
such abnormal anterior–posterior information interaction in
patients. A previous study showed that the information in
visual working memory was presented in the occipital, parietal,
and frontal cortex (Yu and Shim, 2017). In addition, a
physiological study found that increased microRNA-132 levels,
which were widely reported in patients with depression, were
associated with impaired visual memory (Liu et al., 2016).
The anomalous occipital–parietal–frontal information transfer
we found may reflect the abnormality of the patient’s visual
information pathway.

Similarly, such reduction in the difference in information
flow was also found between the left and right hemispheres in
patients. Studies found that the right hemisphere was regarded
as having a relative advantage during sleep, playing a function
of vigilance and control of external information (Casagrande
and Bertini, 2008b,a). The strong information flow to the left
presented in our results may reflect this right hemisphere
superiority. Most depressed patients have sleep disorders, such
as difficulty in falling asleep, unsustainable sleep, and getting up
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FIGURE 6 | The ndSPTE for each cortical area. The regional ndSPTE represents the information transmission ability of the corresponding cortical area relative to the
whole brain. In each subgraph, twelve stacked bars with error bars are included, and six colors represent six cortical locations, and two textures represent two
groups. Asterisks denote the significant difference between two groups. ∗p < 0.05, ∗∗p < 0.005, and ∗∗∗p < 0.001. The red dotted line is the baseline
(ndSPTE = 0.5) to distinguish the role of cortical areas in information transmission.

early (Weaver et al., 2018). The weakened role difference between
the left and right regions in patients may affect the brain’s
vigilant and control function of external information during
sleep, making it hard for the brain to maintain sleep homeostasis,
which may be one of the reasons for sleep disorders in patients
with depression.

Different brain regions play their own functions in various
functional collaborations (Genon et al., 2018), and the clear
distinction between regional roles presented in our results
confirms this to a certain extent. Previous studies on sleep brain
dynamics found that different brain regions may fall asleep at
different speeds and exhibit different sleep intensities, which
may reflect the regional function differences in sleep regulation
and indicate that the process of sleep is neither spatially nor
temporally a uniform state (Vecchio et al., 2017; Fernandez
Guerrero and Achermann, 2019). However, we found that the
information communication roles of different brain regions
in patients tend to be blurred during sleep. Such blurring
may reflect the abnormal brain function coordination, which

provides possible reasons for the impairments of the ability to
process information, emotional regulation, and sleep quality in
depressed patients.

In addition, the abnormal change of information flow in N1 of
the beta band was found in depressed patients, which may be an
important indicator and require further research to investigate.

The present study still has some limitations. The number of
participants in this study was relatively small, and the patients
we employed were mainly patients with major depression. In
order to find an effective characterization of depression, it is
necessary to further consider including patients with different
severities of depression for research, and explore the relationship
between depression scale indicators and EEG characteristics.
Moreover, only six EEG channels were included in this study;
higher density EEG recording should lead to more accurate
results. Due to the spatial limitations of the cortical EEG, in
order to further accurately explore the study of sleep brain
function in patients with depression, high spatial resolution
monitoring methods will be considered in future work. It is
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worth noting that our research focuses on the differences in
different sleep stages, and the time dynamics of the characteristics
throughout the night required further research. We also explored
the possible relationship between information flow and brain
function, and more experimental exploration and verification
are needed in the future. The clinical application value of the
features extracted in this work will be further explored in future
work. Since depression is also accompanied by changes in heart
rate variability (Koch et al., 2019), respiration pattern variability
(Zamoscik et al., 2018), and parasympathetic activity (An
et al., 2020), research on the multi-physiological system (central
nervous system–cardiorespiratory interaction) of depression
will be further investigated. Furthermore, although different
information theory methods may reach various conclusions,
we believe these methods have their respective advantages in
tapping different physiological phenomena, and the relations and
differences between them need more research.

Overall, the application of dSPTE reveals the information
transmission during sleep. Our results mainly include the right-
to-left and posterior-to-anterior superiority in information
transmission during sleep, and such directional bias of
information flow was attenuated in depressed patients. Our
findings may provide new insights for understanding the impact
of sleep abnormalities on cognitive function and neuropsychiatric
deficits in depressed patients, and provide new clues for the
quantitative characterization of depression.
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Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China, 3 Tianjin Neurological Institute, Tianjin, China

Sleep deprivation (SD) induces systemic inflammation that promotes neuronal
pyroptosis. The purpose of this study was to investigate the effect of an
antioxidant modafinil on neuronal pyroptosis and cognitive decline following SD.
Using a mouse model of SD, we found that modafinil improved learning and
memory, reduced proinflammatory factor (IL-1β, TNF-α, and IL-6) production, and
increased the expression of anti-inflammatory factors (IL-10). Modafinil treatment
attenuated inflammasome activity and reduced neuronal pyroptosis involving the
NLRP3/NLRP1/NLRC4-caspase-1-IL-1β pathway. In addition, modafinil induced an
upregulation of brain-derived neurotrophic factor (BDNF) and synaptic activity. These
results suggest that modafinil reduces neuronal pyroptosis and cognitive decline
following SD. These effects should be further investigated in future studies to benefit
patients with sleep disorders.

Keywords: modafinil, sleep deprivation, pyroptosis, inflammasome, synaptic plasticity

INTRODUCTION

Sleep is a universal physiological phenomenon in a variety of mammals, including humans. A large
number of studies have shown that a lack of sleep can harm health. In mammals, long-term
sleep deprivation (SD) can lead to inattention, emotional instability (Yoo et al., 2007), increased
sensitivity to pain (Alexandre et al., 2017), induction of metabolic and cardiovascular diseases
(Broussard et al., 2012; Huang et al., 2020), and immune dysfunction (Bryant et al., 2004). In
extreme cases, it can lead to death. While the pace of life has increased, a scientific understanding of
healthy sleep management is currently lacking. In addition, most people rely on sedatives and sleep
drugs. It is true that sleep drugs can effectively improve sleep in the early stage, but their effects
continuously decline, leading to a need for increased drug dosage and long-term use, which leads
to drug addiction. Thus, drugs that can not only reduce the incidence of adverse reactions during
treatment but also help patients recover quickly are needed.

Modafinil is an arousal enhancer originally approved for the treatment of paroxysmal narcolepsy
(Bastuji and Jouvet, 1988). Recently, modafinil was shown to be effective in treating Parkinson’s
disease (Adler et al., 2003), attention-deficit/hyperactivity disorder (Turner et al., 2004), depression,
and drug addiction (Martinez-Raga et al., 2008; Kaser et al., 2017). Moreover, modafinil can protect
hippocampal neurons by inhibiting excessive autophagy and apoptosis in mice subjected to SD
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(Cao et al., 2019). Most recently, the effect of modafinil
on changes in lipid composition in the brain was
studied in Drosophila melanogaster by mass spectrometry
imaging. Modafinil was found to decrease the contents of
phosphatidylcholine and sphingomyelin and increase the
contents of phosphatidylcholine and PI. It was found that
modafinil enhances attention and improves learning, memory,
and cognitive function (Philipsen et al., 2021). However, to date,
the mode of action of modafinil is not completely clear, and
whether modafinil exerts effects similar to those of antioxidants
to effectively regulate neuronal inflammation in the brain after
SD and modulates neuronal pyroptosis after SD is unknown.
Therefore, in this study, we hypothesized that modafinil can
alleviate neuroinflammation and cognitive impairment such
as learning and memory deficits in mice subjected to SD by
inhibiting neuronal pyroptosis.

MATERIALS AND METHODS

Adult male C57BL/6 mice (10 weeks old, weighing 20–25 g)
were purchased from the Chinese Academy of Military Sciences
(Beijing). All animal husbandry and experimental procedures
complied with the newly revised regulations on the management
of experimental animals issued by the State Science and
Technology Commission on March 1, 2017, and were performed
in accordance with a protocol approved by the Animal Protection
and use Committee of Tianjin Medical University.

Sleep Deprivation Model
The treadmill SD model selected in this experiment was first
established at the United States Naval School of Aeronautics
(WEBB, 1957). This method has been continuously improved,
and scientists have gradually recognized that the experimental
results are relatively reliable and that this method decreases
the amount of stress imposed on the tested animals (Xu et al.,
2010). This method causes much less damage to animals than a
traditional water environment or electrical stimulation. Based on
the above factors, the treadmill SD method was used to establish
an animal model of acute SD (DB036, Beijing). The treadmill
conveyor belt was divided into equal-sized squirrel cages with
Plexiglas (30 cm × 30 cm × 40 cm). A fence-type squirrel cage
lid that was able to feed and water bottles was fastened to the
top of the cage, and the treadmill conveyor belt formed the
bottom of the squirrel cage. The mice were given free access to
food and water while exercising on the treadmill and housed in
a quiet animal room on a 12/12 h light/dark cycle with lights
on from 6: 00 to 18: 00 at a temperature of 20–22◦C and a
humidity of 60–65%. The treadmill speed was set to 2.5 m/min,
the running time was 3 s, and the rest time was 12 s. The
mice were made to run and stop on a cycle. To study the effect
of modafinil on the learning and memory of mice subjected
to SD, 36 mice were randomly divided into four groups: the
control group, SD group, and SD + modafinil (13 mg kg−1)
group. Studies have shown that modafinil can effectively alleviate
learning and memory deficits induced by SD in mice at three
doses (6.5, 13, and 26 mg kg−1) (Cao et al., 2019). The mice in

the control group were not given any treatment, the mice in the
SD+modafinil group and Control+modafinil group were given
13 mg kg−1 intragastrically, and the mice in the SD group were
given the same volume of normal saline for 3 consecutive days as
shown in Figure 1.

Morris Water Maze Test
The Morris Water Maze (MWM) apparatus used in this
experiment consisted of four parts: a circular pool (diameter
of 120 cm, height of 50 cm), a circular platform (diameter of
12 cm, height of 30 cm), a behavior tracking system and Morris
Water Maze analysis software. The experiment was carried
out 1 h after intragastric administration as follows: (1) In the
positioning navigation test, the circular pool was divided into
four equally sized quadrants (I, II, III, and IV) and the duration
of the experiment was 90 s. The circular platform was placed
in quadrant I, and then the mice were placed in the water
close to the pool wall with their backs to the circular platform.
The behavior tracking system was started simultaneously. Morris
Water Maze analysis software was used to record the swimming
time, swimming distance, and swimming trajectory of the mice
in searching for the circular platform over 90 s. If a mouse could
not find the target platform within 90 s, it was manually guided
to the platform and kept there for 15 s. Each animal was trained
four times a day with an interval of at least 30 min between
the two sessions for 6 consecutive days. The mice were blow-
dried immediately after each training and returned to the cage.
SD began on the seventh day and lasted for a total of 3 days,
and formal tests were conducted on the 10th day. (2) In the
spatial exploration test, the experimental parameters were the
same as those used in the positioning navigation test except that
the circular platform was removed. The experimenter placed the
mice in the water close to the pool wall with their backs to the
circular platform. At the same time, the behavior tracking system
was activated, and Morris Water Maze analysis software was used
to record the number of times the mice crossed the location of
the circular platform, the amount of time spent in the target
quadrant, the swimming speed, the total swimming distance,
and the swimming trajectory over at 90 s. After the last spatial
exploration test, all mice were sacrificed for tissue collection.

qRT-PCR
According to the manufacturer’s instructions, total RNA
was extracted from mouse hippocampal tissue using TRIzol
reagent (Invitrogen, Carlsbad, CA, United States). The
concentration of RNA was quantified with a NanoDrop ND-2000
spectrophotometer (Thermo Fisher Science). A FastKing RT Kit
was used for reverse transcription, and the SuperReal PREMix
Plus kit was used for qRT-PCR. The amplification conditions for
real-time PCR instrument were 95◦C for 15 min and 40 cycles of
95◦C for 10 s, and 60◦C for 32 s. The data were analyzed by the
2−11Ct method.

Western Blotting
Mouse hippocampal tissues were weighed, and protein extraction
buffer was added to each sample at a weight–volume ratio of
1:6 (1 ml RIPA cell lysis buffer was supplemented with 10 µl

Frontiers in Neuroscience | www.frontiersin.org 2 March 2022 | Volume 16 | Article 816752107

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-816752 February 25, 2022 Time: 15:46 # 3

Xiong et al. Modafinil Reduces Pyroptosis After SD

FIGURE 1 | The schematic representation of the experimental design. In the Morris Water Maze (MWM) test, mice were trained for adaptability on the first day,
followed by formal training for 2–6 days, positioning navigation testing for 7–10 days (also at the SD stage), and additional space exploration testing after positioning
navigation testing on the 10th day. The aim of testing all mice on the morning of day 7 was to exclude those with large individual differences. At the end of the day,
they were randomly divided into four groups: the normal group, the Control + MD group, the SD group, and the SD + MD group; subsequently, the sleep
deprivation stage was initiated, and the Control + MD group and SD + MD group were treated with modafinil. After the last spatial exploration test, all mice were
sacrificed for tissue collection.

PMSF and 10 µl protein phosphatase inhibitor). Then, the
samples were homogenized with grinding instrument (KZ-III-
F; Servicebio; China). The cleavage product was centrifuged
at 4◦C and 13,200 × g for 20 min, and the supernatant was
collected. Finally, the protein concentration was determined
with a BCA protein detection kit (Thermo, United States). The
proteins were then separated by SDS-PAGE (8, 10, or 12%) and
transferred onto a PVDF membrane for 1.5 h, and the membrane
was blocked with blocking buffer (TBST buffer containing 5%
skimmed milk powder) for 2 h. The membrane was incubated
overnight with NLRP1 (1:1,000; ab98181; Abcam), NLRP3 (1:250;
PA5-20838; Thermo Fisher Scientific), NLRC4 (1:1,000; 06-
1125; MilliporeSigma), GSDMD (1:1,000; ab209845; Abcam),
ASC (1:1,000; sc-22514-R; Santa Cruz Biotechnology, Dallas,
TX, United States), cleaved caspase-1 (1:1,000; 67314; CST),
IL-1β (1:1,000; 12242; CST), IL-18 (1:1,000; ab71495; Abcam),
brain-derived neurotrophic factor (BDNF) (11,000; OSB00018G;
Thermo Fisher Scientific), β-actin (1:5,000; 4971; CST), and
GAPDH (1:5,000; 2118; CST) primary antibodies at 4◦C. After
being washed with TBST, the membrane was incubated with the
respective secondary antibodies. For densitometry, a ChemiDo
XRS + imaging system (Bio-Rad, CA, United States) was used.
The average pixel density of each band was measured using
Quantity One software (Bio-Rad, CA, United States).

Immunofluorescence Staining
The mice were anesthetized by intraperitoneal injection of
5% chloral hydrate. After successful anesthesia, the mice were
perfused with 4◦C PBS until their livers turned white and then

decapitated. After overnight immersion in 4% paraformaldehyde,
the mice were fixed and then subjected to gradient dehydration
in 15 and 30% sucrose solution. After successful dehydration, the
olfactory bulbs and brain stems of the mice were excised, and the
brain tissues were embedded in OCT compound. Hippocampal
sections were fixed, permeabilized, and incubated with mouse
anti-caspase-1 (1:200) and rabbit anti-NeuN (1:200) antibodies
at 4◦C overnight. The next day, the sections were rinsed with
PBS and incubated with a mixture of secondary antibodies
(FITC-conjugated goat anti-mouse and TRITC-conjugated goat
anti-rabbit) for 1 h at room temperature. Finally, the sections
were sealed after incubated with DAPI, and the numbers of
cells coexpressing caspase-1 and neurons were counted under an
immunofluorescence microscope.

Golgi Staining
A Golgi staining kit (PK401, FD Neuro Technologies, Inc.,
United States) was used according to the manufacturer’s
instructions. (1) At least 24 h before brain extraction, equal
volumes of solutions A and B were mixed, and the mixture was
kept at room temperature. (2) For brain extraction, the mice
in each group were decapitated. The blood on the surface of
the brain was quickly washed away with double distilled water,
and the tissues were soaked in the solution A and B mixture.
(3) After the tissues were incubated for 6 h or on the next
day, fresh solution A and B mixture was added, and the tissues
were incubated in the dark at room temperature for 2 weeks.
(4) The tissues were transferred to solution C and placed in
a dark environment at room temperature for at least 72 h
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(up to 1 week). The solution was replaced once after 24 h.
(5) A cryostat was used to cut the tissues into thick 100 µm
sections, and then the sections were placed glass slides and
dripped with solution C to unfold them. (6) The slices were dried
naturally in a dark and dry environment at room temperature.
(7) Then the sections were washed twice with double-distilled
water for 5 min each. (8) The slices were placed in a 1:1:2
mixture of solution D, solution E, and double-distilled water for
10 min. (9) Then, the slices were washed twice with double-
distilled water for 5 min each. (10) The slices were dehydrated
successively in 50, 75, and 95% ethanol for 5 min each, and
(11) with anhydrous ethanol four times for 5 min each. (12)
The sections were cleared in xylene, three times for 5 min each,
and (13) sealed with neutral resin, placed in the dark box to

dry, photographed, and analyzed. Finally, ImageJ software was
used to observe and record the morphology of dendritic spines
of hippocampal CA3 pyramidal neurons, record the number
and length of dendritic spines, and calculate the density of the
dendritic spines.

Statistical Analysis
The statistical analysis of all measurement data was carried out
by using GraphPad Prism 7 statistical software, and the data are
expressed as the mean ± SD. Groups were compared by one-
way analysis of variance (ANOVA) or two-way ANOVA. The
significance level was set as α = 0.05, and significant differences
are expressed as P-values (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001,
and ∗∗∗∗P < 0.0001).

FIGURE 2 | The effect of modafinil on learning and memory of SD. (A) The escape latency to reach the platform during the training sessions of the MWM test was
detected. ∗P < 0.05, ∗∗∗∗P < 0.0001, significantly different from Control; #P < 0.05, ##P < 0.01, ###P < 0.001, significantly different from Control + MD group;
HP < 0.05, significantly different from SD group; uP < 0.05, significantly different from SD + MD group. (B) The number of entries in the spatial acquisition trial was
decreased. (C) The time spent in the target quadrant in the probe trail was increased by modafinil treatment. (D) The swimming path length was recorded after SD.
(E) There was no significant difference in swimming speed among the four groups. (F) Representative swimming tracks of mice after SD for 72 h. All data presented
are means ± SD; N = 9–15 mice per group. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.
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FIGURE 3 | Pyroptosis induced by SD was inhibited by modafinil. (A,B) Western blot data showing that modafinil suppressed the increase in the expression of
NLRP3, NLRC4, NLRP1, ASC, caspase-1, GSDMD, and the downstream pro-inflammatory cytokines IL-1β and IL-18 in mice subjected to SD. All data presented
are means ± SD; N = 4–5 mice per group. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001.

FIGURE 4 | Modafinil decreased the expression of caspase-1 in the hippocampi of mice subjected to SD mice. (A) Representative pictures of double staining of
caspase-1 and NeuN in the hippocampi of mice obtained by a fluorescence microscope. (B,C) Western blot analysis of caspase-1 expression in the hippocampi of
mice subjected to SD and treated with vehicle or modafinil. All data presented are means ± SD; N = 4–5 mice per group. (D) Immunofluorescence analysis and
quantification of the expression level of caspase-1. All data presented are means ± SD; N = 5–10 mice per group. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.
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RESULTS

Modafinil Alleviates Cognitive
Impairment in Sleep Deprivation Mice
Before SD, all mice were subjected to the Morris Water Maze.
The mice exhibited the same level of performance in the
spatial exploration and positioning navigation tests. As shown in
Figure 2A, modafinil treatment alleviated memory deterioration
in mice in the hidden platform test (P < 0.01). SD obviously
impaired the spatial memory of the mice (P < 0.001). As shown
in Figures 2B–E, after 72 h of SD, the number of times of
passing through the hidden platform (P = 0.0197), the time
of staying in the target quadrant (P = 0.0176), and the total
distance of swimming (P = 0.0005) in the SD group were less
than those in the control group. However, after administration
of modafinil, the mice in the modafinil group passed through
the hidden platform more often (P = 0.0401), stayed longer in

the target quadrant (P = 0.0414), and swam longer (P = 0.0447).
There was no significant difference in swimming speed among
the four groups (P > 0.05). The typical swimming trajectories of
each group are shown in Figure 2F. Interestingly, although there
was a tendency of memory enhancement in the Control + MD
group compared with the Control group, there was no statistical
significance. Therefore, in this study, we focused on the related
mechanisms of modafinil in animals with sleep disorders as
opposed to in healthy animals.

Modafinil Reduces Pyroptosis in
Hippocampus Tissues of Sleep
Deprivation Mice
As our understanding of pyroptosis has improved, pyroptosis has
been gradually associated with the pathophysiological processes
of many diseases. However, there are few reports on the
relationship between pyroptosis and SD. In this experiment, the

FIGURE 5 | Modafinil altered the expression of inflammatory cytokines in the hippocampi of mice subjected to SD. Modafinil upregulated the expression of IL-1β IL-6
and TNF-α and downregulated the expression of IL-10. All data presented are means ± SEM; N = 5–8 mice per group. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗∗P < 0.0001.
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expression of many proteins involved in pyroptosis was altered
in the hippocampi of SD mice. As shown in Figure 3, the
expression of NLRP3 (P < 0.0001), NLRC4 (P = 0.0004), NLRP1
(P = 0.0048), ASC (P = 0.0246), GSDMD (P = 0.0125), IL-1β

(P = 0.0004), and IL-18 (P < 0.0001) in the hippocampus was
increased in the SD group compared with the control group.
Modafinil antagonizes the effects of SD on the expression of
NLRP3 (P = 0.0003), NLRC4 (P = 0.003), NLRP1 (P = 0.0007),

FIGURE 6 | Modafinil decreased BDNF expression and alleviated dendritic spine loss in hippocampal CA3 pyramidal neurons in mice subjected to SD. (A,B)
Western bot analysis of BDNF expression in the hippocampus. All data presented are means ± SD; N = 3–5 mice per group. (C,D) The density of CA3 pyramidal
neurons, as measured by Golgi staining, was decreased in mice subjected to SD, and modafinil reversed this decrease. All data presented are means ± SD; N = 7–8
mice per group. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗∗P < 0.0001.

FIGURE 7 | The canonical inflammasome pathway. SD can activate inflammasomes in cells and further recruit ASC and pro-caspase-1 to form inflammasome
complex. Active caspase-1 cleaves GSDMD to produce GSDMD pores on the cell membrane; active caspase-1 can activate pro-IL-1β and pro-IL-18, and then
IL-1β and IL-18 are released from the GSDMD pores.
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ASC (P = 0.0356), GSDMD (P = 0.0468), IL-β (P = 0.0428), and
IL-18 (P = 0.0002).

Modafinil Alleviates Pyroptosis in
Hippocampal Neurons of Sleep
Deprivation Mice
We found that the pyroptotic cells in SD model mice were
mainly neurons. Next, we evaluated neuronal pyroptosis in mice
subjected to SD. Weak caspase-1 immunoreactivity was observed
in the normal group, but strong caspase-1 immunoreactivity
was observed in the cytosol in mice subjected to SD. The
neuronal markers NeuN and caspase-1 were detected by double
immunofluorescence. The number of caspase-1-positive neurons
in the mouse hippocampus was significantly higher in the
group subjected to SD for 72 h than in the control group
(P = 0.0458). There were significantly fewer caspase-1-positive
neurons in the modafinil group than in the SD group (P = 0.0392)
(Figures 4A,D). This finding was consistent with the western
blot results. Caspase-1 expression was significantly increased
in the SD group (P = 0.0054), and modafinil treatment
effectively decreased the expression of this protein (P = 0.0003)
(Figures 4B,C).

Modafinil Suppresses Inflammatory
Activity in Hippocampus of Sleep
Deprivation Mice
In recent years, the relationship between IL-1β, TNF-α, IL-6, and
SD has been widely discussed. It was found that the expression of
IL-1β and TNF-α in the serum, heart, liver, kidney, and pancreas
is significantly increased in mice subjected to SD (Periasamy
et al., 2015). There was a significant correlation between the
degree of synaptic damage and synaptic transmission. As shown
in Figure 5, qRT-PCR showed that the expression of IL-1β

(P = 0.0083) (Figure 5A), TNF-α (P = 0.0043) (Figure 5B),
and IL-6 (P = 0.0119) (Figure 5C) was increased and that the
expression of IL-10 (P = 0.0246) (Figure 5D) was decreased
in the hippocampus in mice subjected to SD compared with
control mice. Accordingly, modafinil decreased the expression
of IL-1β (P = 0.023) (Figure 5A), TNF-α (P = 0.0021)
(Figure 5B), and IL-6 (P = 0.0319) (Figure 5C) and increased
the expression of IL-10 (P < 0.0001) (Figure 5D) in the mouse
hippocampus after SD.

Modafinil Promotes Brain-Derived
Neurotrophic Factor Expression and
Synaptic Plasticity in Hippocampus of
Sleep Deprivation Mice
Brain-derived neurotrophic factor is thought to be the most
important neurotrophin in the central nervous system and is
associated with learning and memory (Parkhurst et al., 2013).
As shown in Figures 6A,B, Western blotting showed that the
protein expression of BDNF in the hippocampus was significantly
decreased after 72 h of SD (P = 0.0481). The protein expression
of BDNF in the hippocampus was significantly increased in the
modafinil group compared with the model groups (P = 0.0001).

Similarly, as shown in Figures 6C,D, dendritic spines on neurons
in the CA3 region of the hippocampus were abundant and highly
dense in the control group. The density of dendritic spines on
neurons in the CA3 region was significantly decreased in the SD
group (P = 0.0045). Compared with that in the SD group, the
density of dendritic spines on hippocampal CA3 neurons in the
modafinil group was increased (P = 0.0416).

CONCLUSION

This study focused for the first time on the role and mechanism
of pyroptosis mediated by the NOD-like receptors (NLRs)
inflammasome in SD as shown in Figure 7. The major discoveries
are that: (1) modafinil alleviates NLRs inflammasome-
mediated pyroptosis in mice subjected to SD; (2) modafinil
alleviates inflammation induced by neuronal pyroptosis
in mice subjected to SD; (3) modafinil promotes BDNF
activation in the hippocampi of mice subjected to SD, which
is beneficial for synaptic plasticity; and (4) modafinil improves
learning and memory in mice subjected to SD. In summary,
targeting the regulation of impaired neuronal pyroptosis and
neuroinflammation may be a promising therapeutic strategy for
the future treatment of SD.

The term “pyroptosis” was originally to describe a particular
type of regulatory cell death (Cookson and Brennan, 2001).
That is somewhat similar to apoptosis but is dependent on
the inflammatory molecule caspase-1 (Galluzzi et al., 2018).
Pyroptosis has been a hot topic in recent years, and an increasing
number of studies have shown that it is closely related to a
variety of diseases. Pyroptosis is widely involved in intestinal
diseases (Bulek et al., 2020), liver diseases (Liu et al., 2020),
kidney diseases (Komada and Muruve, 2019), hematological
diseases (Johnson et al., 2018), nervous system diseases (Feng
et al., 2020), atherosclerotic diseases (Fidler et al., 2021),
cancer, and metabolic diseases (Sharma and Kanneganti, 2021).
Inflammasome activation is also a key process in severe COVID-
19 (Vora et al., 2021). Consistent with previous studies, SD does
induce the activation of pyroptosis, but research in this area is
relatively insufficient (Fan et al., 2021). Unlike in previous studies,
modafinil was able to protect hippocampal neurons by inhibiting
excessive autophagy and apoptosis in sleep-deprived mice (Cao
et al., 2019). In this study, modafinil inhibited the further
activation of pyroptosis and reduced cognitive impairment in
sleep-deprived mice. In-depth study of pyroptosis is helpful
for elucidating its role in the occurrence, development and
prognosis of related diseases and provides new ideas for clinical
prevention and treatment.

Early research has shown that modafinil has a variety of
positive effects on awakening, movement, and cognitive ability
(Minzenberg and Carter, 2008). The new study also found that
modafinil enhances attention and improves learning, memory,
and cognitive function (Philipsen et al., 2021). At the same time,
SD inhibits the expression of BDNF in the hippocampus, which
in turn disrupts synaptic plasticity, leading to neurologic decline
in the hippocampus and, ultimately, a decline in learning and
memory (Zagaar et al., 2016). However, the mechanism has not
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been fully identified. In this study, an inflammatory response
that inhibited the expression of BDNF and the development
of synaptic plasticity in the hippocampus was found to be
activated in sleep-deprived mice. Modafinil reduced further
inflammation, boosting BDNF activation in the hippocampus
and synaptic plasticity in mice. Moreover, behavioral tests
showed that modafinil significantly alleviated learning
and memory impairment in sleep-deprived mice, possibly
through inhibition of neuronal pyroptosis and inflammatory
activation.

Studies have shown that skeletal muscle, as an endocrine
organ, can release many muscle cytokines during exercise
and play an anti-inflammatory role (Hoffmann and Weigert,
2017). As a simple and convenient aerobic exercise, treadmill
exercise can inhibit neuroinflammation and microglial activation
(Mee-Inta et al., 2019). Treadmill exercise can also prevent
inflammation and learning and memory impairment caused
by acute SD and reverse the cognitive decline caused by
SD (Kojima et al., 2020). In addition, treadmill exercise
reduced chronic allergic lung inflammation and airway
remodeling in mice (Vieira et al., 2007). Treadmill exercise
could increase myeloid-derived suppressor cells (MDSCs)
by stimulating the secretion of IL-10 from macrophages
through the IL-10/STAT3/S100A9 signaling pathway, thereby
achieving heart protection (Feng et al., 2021). Depression
symptoms were alleviated by reducing the number of microglia
and inhibiting microglial activation and neuroinflammation
in the hippocampus. Treadmill exercise lessens hepatic
inflammation during non-alcoholic steatohepatitis by reducing
the accumulation of hepatic monocyte-derived inflammatory
macrophages and bone marrow precursor cells (Fredrickson
et al., 2021). Treadmill exercise plays a beneficial role in
promoting neurogenesis and functional recovery by activating
the CD200/CD200R signaling pathway and improving the
inflammatory environment after stroke (Sun et al., 2019).
These studies suggest that treadmill exercise has a favorable
effect on the balance between pro- and anti-inflammatory
and reinforce its potential therapeutic role in reducing
the risk of neuroinflammation-related diseases. However, it
takes a long time for treadmill exercise to exert its anti-
inflammatory effects. In this experiment, intermittent and
brief treadmill exercise was mainly used to disturb the sleep
of mice, and whether it affected the inflammatory process
needs further study.

In conclusion, our study demonstrates that modafinil
suppresses neuronal pyroptosis and inflammation following SD.

The potential benefit of modafinil in patients with sleep disorders
may deserve further investigation in future studies.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories
and accession number(s) can be found in the article/
supplementary material.

ETHICS STATEMENT

The animal study was reviewed and approved by the Animal
Protection and Use Committee of Tianjin Medical University.
Written informed consent was obtained from the owners for the
participation of their animals in this study.

AUTHOR CONTRIBUTIONS

PL and YZu were responsible for study design. XX developed
methodology. XX, YZu, LC, ZY, TH, MG, ZH, XG, WL, YW,
and DW carried out the experiments. FC and QL provided
technical support. XX and YZu interpreted the results, performed
data analysis, and prepared the figures and tables. XX wrote
the manuscript. PL supervised the study. All authors read and
approved the final manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China (Grant Nos. 81772060, 82072166, and
82102318); the Key Projects of Science and Technology support
of Tianjin Key R&D Plan (Grant No. 20YFZCSY00030);
the Natural Science Foundation of Tianjin (Grant No.
19JCQNJC10200); and the Tianjin Health and Health Committee
Foundation (Grant No. KJ20177).

ACKNOWLEDGMENTS

We appreciate Chunsheng Kang, Shu Zhang, Xiao Liu, Hao
Liang, Weiyun Cui, and Lei Zhou from Tianjin Neurological
Institute for their technical support.

REFERENCES
Adler, C. H., Caviness, J. N., Hentz, J. G., Lind, M., and Tiede, J. (2003).

Randomized trial of modafinil for treating subjective daytime sleepiness in
patients with Parkinson’s disease. Mov. Disord. 18, 287–293. doi: 10.1002/mds.
10390

Alexandre, C., Latremoliere, A., Ferreira, A., Miracca, G., Yamamoto, M.,
Scammell, T. E., et al. (2017). Decreased alertness due to sleep loss increases
pain sensitivity in mice. Nat. Med. 23, 768–774. doi: 10.1038/nm.4329

Bastuji, H., and Jouvet, M. (1988). Successful treatment of idiopathic
hypersomnia and narcolepsy with modafinil. Prog. Neuropsychopharmacol.

Biol. Psychiatry 12, 695–700. doi: 10.1016/0278-5846(88)90
014-0

Broussard, J. L., Ehrmann, D. A., Van Cauter, E., Tasali, E., and Brady, M. J.
(2012). Impaired insulin signaling in human adipocytes after experimental sleep
restriction: a randomized, crossover study. Ann. Intern. Med. 157, 549–557.
doi: 10.7326/0003-4819-157-8-201210160-00005

Bryant, P. A., Trinder, J., and Curtis, N. (2004). Sick and tired: Does sleep have a
vital role in the immune system? Nat. Rev. Immunol. 4, 457–467. doi: 10.1038/
nri1369

Bulek, K., Zhao, J., Liao, Y., Rana, N., Corridoni, D., Antanaviciute, A., et al.
(2020). Epithelial-derived gasdermin D mediates nonlytic IL-1beta release

Frontiers in Neuroscience | www.frontiersin.org 9 March 2022 | Volume 16 | Article 816752114

https://doi.org/10.1002/mds.10390
https://doi.org/10.1002/mds.10390
https://doi.org/10.1038/nm.4329
https://doi.org/10.1016/0278-5846(88)90014-0
https://doi.org/10.1016/0278-5846(88)90014-0
https://doi.org/10.7326/0003-4819-157-8-201210160-00005
https://doi.org/10.1038/nri1369
https://doi.org/10.1038/nri1369
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-816752 February 25, 2022 Time: 15:46 # 10

Xiong et al. Modafinil Reduces Pyroptosis After SD

during experimental colitis. J. Clin. Invest. 130, 4218–4234. doi: 10.1172/JCI13
8103

Cao, Y., Li, Q., Liu, L., Wu, H., Huang, F., Wang, C., et al. (2019). Modafinil protects
hippocampal neurons by suppressing excessive autophagy and apoptosis in
mice with sleep deprivation. Br. J. Pharmacol. 176, 1282–1297. doi: 10.1111/
bph.14626

Cookson, B. T., and Brennan, M. A. (2001). Pro-inflammatory programmed
cell death. Trends Microbiol. 9, 113–114. doi: 10.1016/s0966-842x(00)01
936-3

Fan, K., Yang, J., Gong, W. Y., Pan, Y. C., Zheng, P., and Yue, X. F. (2021). NLRP3
inflammasome activation mediates sleep deprivation-induced pyroptosis in
mice. PeerJ 9:e11609. doi: 10.7717/peerj.11609

Feng, L., Li, G., An, J., Liu, C., Zhu, X., Xu, Y., et al. (2021). Exercise training
protects against heart failure via expansion of myeloid-derived suppressor cells
through regulating IL-10/STAT3/S100A9 Pathway. Circ. Heart Fail 2021:8550.
doi: 10.1161/CIRCHEARTFAILURE.121.008550

Feng, Y. S., Tan, Z. X., Wu, L. Y., Dong, F., and Zhang, F. (2020). The involvement
of NLRP3 inflammasome in the treatment of Alzheimer’s disease. Ageing Res.
Rev. 64:101192. doi: 10.1016/j.arr.2020.101192

Fidler, T. P., Xue, C., Yalcinkaya, M., Hardaway, B., Abramowicz, S., Xiao,
T., et al. (2021). The AIM2 inflammasome exacerbates atherosclerosis in
clonal haematopoiesis. Nature 592, 296–301. doi: 10.1038/s41586-021-03
341-5

Fredrickson, G., Barrow, F., Dietsche, K., Parthiban, P., Khan, S., Robert, S.,
et al. (2021). Exercise of high intensity ameliorates hepatic inflammation and
the progression of NASH. Mol. Metab. 53:101270. doi: 10.1016/j.molmet.2021.
101270

Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Agostinis, P.,
et al. (2018). Molecular mechanisms of cell death: recommendations of the
Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541.
doi: 10.1038/s41418-017-0012-4

Hoffmann, C., and Weigert, C. (2017). Skeletal muscle as an endocrine organ: the
role of myokines in exercise adaptations. Cold Spring Harb. Persp. Med. 7:29793.
doi: 10.1101/cshperspect.a029793

Huang, T., Mariani, S., and Redline, S. (2020). Sleep irregularity and risk of
cardiovascular events: the multi-ethnic study of atherosclerosis. J. Am. Coll.
Cardiol. 75, 991–999. doi: 10.1016/j.jacc.2019.12.054

Johnson, D. C., Taabazuing, C. Y., Okondo, M. C., Chui, A. J., Rao, S. D., Brown,
F. C., et al. (2018). DPP8/DPP9 inhibitor-induced pyroptosis for treatment of
acute myeloid leukemia. Nat. Med. 24, 1151–1156. doi: 10.1038/s41591-018-
0082-y

Kaser, M., Deakin, J. B., Michael, A., Zapata, C., Bansal, R., Ryan, D., et al.
(2017). Modafinil improves episodic memory and working memory cognition
in patients with remitted depression: a double-blind, randomized, placebo-
controlled study. Biol. Psychiatry Cogn. Neurosci. Neuroimag. 2, 115–122. doi:
10.1016/j.bpsc.2016.11.009

Kojima, S., Abe, T., Morishita, S., Inagaki, Y., Qin, W., Hotta, K., et al. (2020). Acute
moderate-intensity exercise improves 24-h sleep deprivation-induced cognitive
decline and cerebral oxygenation: A near-infrared spectroscopy study. Respir.
Physiol. Neurobiol. 274:103354. doi: 10.1016/j.resp.2019.103354

Komada, T., and Muruve, D. A. (2019). The role of inflammasomes in kidney
disease. Nat. Rev. Nephrol. 15, 501–520. doi: 10.1038/s41581-019-0158-z

Liu, J., Du, S., Kong, Q., Zhang, X., Jiang, S., Cao, X., et al. (2020). HSPA12A
attenuates lipopolysaccharide-induced liver injury through inhibiting caspase-
11-mediated hepatocyte pyroptosis via PGC-1alpha-dependent acyloxyacyl
hydrolase expression. Cell Death Differ. 27, 2651–2667. doi: 10.1038/s41418-
020-0536-x

Martinez-Raga, J., Knecht, C., and Cepeda, S. (2008). Modafinil: a useful
medication for cocaine addiction? Review of the evidence from
neuropharmacological, experimental and clinical studies. Curr. Drug Abuse
Rev. 1, 213–221. doi: 10.2174/1874473710801020213

Mee-Inta, O., Zhao, Z. W., and Kuo, Y. M. (2019). Physical exercise inhibits
inflammation and microglial activation. Cells 8:691. doi: 10.3390/cells8070691

Minzenberg, M. J., and Carter, C. S. (2008). Modafinil: a review of neurochemical
actions and effects on cognition. Neuropsychopharmacol. 33, 1477–1502. doi:
10.1038/sj.npp.1301534

Parkhurst, C. N., Yang, G., Ninan, I., Savas, J. N., Yates, J. R., Lafaille, J. J., et al.
(2013). Microglia promote learning-dependent synapse formation through
brain-derived neurotrophic factor. Cell 155, 1596–1609. doi: 10.1016/j.cell.2013.
11.030

Periasamy, S., Hsu, D. Z., Fu, Y. H., and Liu, M. Y. (2015). Sleep deprivation-
induced multi-organ injury: role of oxidative stress and inflammation. Excli J.
14, 672–683. doi: 10.17179/excli2015-245

Philipsen, M. H., Ranjbari, E., Gu, C., and Ewing, A. G. (2021). Mass spectrometry
imaging shows modafinil, a student study drug, changes the lipid composition
of the fly brain. Angew. Chem. Int. Ed. Engl. 60, 17378–17382. doi: 10.1002/anie.
202105004

Sharma, B. R., and Kanneganti, T. D. (2021). NLRP3 inflammasome in cancer
and metabolic diseases. Nat. Immunol. 22, 550–559. doi: 10.1038/s41590-021-
00886-5

Sun, H., Li, A., Hou, T., Tao, X., Chen, M., Wu, C., et al. (2019). Neurogenesis
promoted by the CD200/CD200R signaling pathway following treadmill
exercise enhances post-stroke functional recovery in rats. Brain Behav. Immun.
82, 354–371. doi: 10.1016/j.bbi.2019.09.005

Turner, D. C., Clark, L., Dowson, J., Robbins, T. W., and Sahakian, B. J. (2004).
Modafinil improves cognition and response inhibition in adult attention-
deficit/hyperactivity disorder. Biol. Psychiatry 55, 1031–1040. doi: 10.1016/j.
biopsych.2004.02.008

Vieira, R. P., Claudino, R. C., Duarte, A. C., Santos, A. B., Perini, A., Faria, N. H.,
et al. (2007). Aerobic exercise decreases chronic allergic lung inflammation
and airway remodeling in mice. Am. J. Respir. Crit. Care Med. 176, 871–877.
doi: 10.1164/rccm.200610-1567OC

Vora, S. M., Lieberman, J., and Wu, H. (2021). Inflammasome activation at the
crux of severe COVID-19. Nat. Rev. Immunol. 2021:588. doi: 10.1038/s41577-
021-00588-x

WEBB, W. B. (1957). Antecedents of sleep. J. Exp. Psychol. 53, 162–166. doi:
10.1037/h0043239

Xu, A., Sakurai, E., Kuramasu, A., Zhang, J., Li, J., Okamura, N., et al. (2010).
Roles of hypothalamic subgroup histamine and orexin neurons on behavioral
responses to sleep deprivation induced by the treadmill method in adolescent
rats. J. Pharmacol. Sci. 114, 444–453. doi: 10.1254/jphs.10177fp

Yoo, S. S., Gujar, N., Hu, P., Jolesz, F. A., and Walker, M. P. (2007). The human
emotional brain without sleep–a prefrontal amygdala disconnect. Curr. Biol. 17,
R877–R878. doi: 10.1016/j.cub.2007.08.007

Zagaar, M. A., Dao, A. T., Alhaider, I. A., and Alkadhi, K. A. (2016). Prevention
by regular exercise of acute sleep deprivation-induced impairment of late phase
LTP and related signaling molecules in the dentate gyrus. Mol. Neurobiol. 53,
2900–2910. doi: 10.1007/s12035-015-9176-4

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Xiong, Zuo, Cheng, Yin, Hu, Guo, Han, Ge, Li, Wang, Wang,
Wang, Zhang, Zhang, Liu, Chen and Lei. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 10 March 2022 | Volume 16 | Article 816752115

https://doi.org/10.1172/JCI138103
https://doi.org/10.1172/JCI138103
https://doi.org/10.1111/bph.14626
https://doi.org/10.1111/bph.14626
https://doi.org/10.1016/s0966-842x(00)01936-3
https://doi.org/10.1016/s0966-842x(00)01936-3
https://doi.org/10.7717/peerj.11609
https://doi.org/10.1161/CIRCHEARTFAILURE.121.008550
https://doi.org/10.1016/j.arr.2020.101192
https://doi.org/10.1038/s41586-021-03341-5
https://doi.org/10.1038/s41586-021-03341-5
https://doi.org/10.1016/j.molmet.2021.101270
https://doi.org/10.1016/j.molmet.2021.101270
https://doi.org/10.1038/s41418-017-0012-4
https://doi.org/10.1101/cshperspect.a029793
https://doi.org/10.1016/j.jacc.2019.12.054
https://doi.org/10.1038/s41591-018-0082-y
https://doi.org/10.1038/s41591-018-0082-y
https://doi.org/10.1016/j.bpsc.2016.11.009
https://doi.org/10.1016/j.bpsc.2016.11.009
https://doi.org/10.1016/j.resp.2019.103354
https://doi.org/10.1038/s41581-019-0158-z
https://doi.org/10.1038/s41418-020-0536-x
https://doi.org/10.1038/s41418-020-0536-x
https://doi.org/10.2174/1874473710801020213
https://doi.org/10.3390/cells8070691
https://doi.org/10.1038/sj.npp.1301534
https://doi.org/10.1038/sj.npp.1301534
https://doi.org/10.1016/j.cell.2013.11.030
https://doi.org/10.1016/j.cell.2013.11.030
https://doi.org/10.17179/excli2015-245
https://doi.org/10.1002/anie.202105004
https://doi.org/10.1002/anie.202105004
https://doi.org/10.1038/s41590-021-00886-5
https://doi.org/10.1038/s41590-021-00886-5
https://doi.org/10.1016/j.bbi.2019.09.005
https://doi.org/10.1016/j.biopsych.2004.02.008
https://doi.org/10.1016/j.biopsych.2004.02.008
https://doi.org/10.1164/rccm.200610-1567OC
https://doi.org/10.1038/s41577-021-00588-x
https://doi.org/10.1038/s41577-021-00588-x
https://doi.org/10.1037/h0043239
https://doi.org/10.1037/h0043239
https://doi.org/10.1254/jphs.10177fp
https://doi.org/10.1016/j.cub.2007.08.007
https://doi.org/10.1007/s12035-015-9176-4
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-726880 March 9, 2022 Time: 16:24 # 1

ORIGINAL RESEARCH
published: 15 March 2022

doi: 10.3389/fnins.2022.726880

Edited by:
Roberto Hornero,

University of Valladolid, Spain

Reviewed by:
Jitse P. Van Dijk,

University Medical Center Groningen,
Netherlands

Gonzalo C. Gutiérrez-Tobal,
Centre for Biomedical Network

Research (CIBER), Spain

*Correspondence:
Jean-Louis Pépin

jpepin@chu-grenoble.fr

†These authors have contributed
equally to this work and share first

authorship

‡These authors have contributed
equally to this work and share last

authorship

Specialty section:
This article was submitted to

Sleep and Circadian Rhythms,
a section of the journal

Frontiers in Neuroscience

Received: 17 June 2021
Accepted: 22 February 2022

Published: 15 March 2022

Citation:
Kelly JL, Ben Messaoud R,

Joyeux-Faure M, Terrail R, Tamisier R,
Martinot JB, Le-Dong N-N,

Morrell MJ and Pépin J-L (2022)
Diagnosis of Sleep Apnoea Using

a Mandibular Monitor and Machine
Learning Analysis: One-Night

Agreement Compared to in-Home
Polysomnography.

Front. Neurosci. 16:726880.
doi: 10.3389/fnins.2022.726880

Diagnosis of Sleep Apnoea Using a
Mandibular Monitor and Machine
Learning Analysis: One-Night
Agreement Compared to in-Home
Polysomnography
Julia L. Kelly1†, Raoua Ben Messaoud2†, Marie Joyeux-Faure2,3, Robin Terrail2,3,
Renaud Tamisier2,3, Jean-Benoît Martinot4,5, Nhat-Nam Le-Dong6, Mary J. Morrell1‡ and
Jean-Louis Pépin2,3*‡

1 National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, London, United Kingdom, 2 HP2
Laboratory, Inserm U1300, Grenoble Alpes University, Grenoble, France, 3 EFCR Laboratory, Thorax and Vessels Division,
Grenoble Alpes University Hospital, Grenoble, France, 4 Sleep Laboratory, CHU Université Catholique de Louvain (UCL)
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Background: The capacity to diagnose obstructive sleep apnoea (OSA) must be
expanded to meet an estimated disease burden of nearly one billion people worldwide.
Validated alternatives to the gold standard polysomnography (PSG) will improve access
to testing and treatment. This study aimed to evaluate the diagnosis of OSA, using
measurements of mandibular movement (MM) combined with automated machine
learning analysis, compared to in-home PSG.

Methods: 40 suspected OSA patients underwent single overnight in-home sleep
testing with PSG (Nox A1, ResMed, Australia) and simultaneous MM monitoring
(Sunrise, Sunrise SA, Belgium). PSG recordings were manually analysed by two expert
sleep centres (Grenoble and London); MM analysis was automated. The Obstructive
Respiratory Disturbance Index calculated from the MM monitoring (MM-ORDI) was
compared to the PSG (PSG-ORDI) using intraclass correlation coefficient and Bland-
Altman analysis. Receiver operating characteristic curves (ROC) were constructed
to optimise the diagnostic performance of the MM monitor at different PSG-ORDI
thresholds (5, 15, and 30 events/hour).

Results: 31 patients were included in the analysis (58% men; mean (SD) age: 48
(15) years; BMI: 30.4 (7.6) kg/m2). Good agreement was observed between MM-ORDI
and PSG-ORDI (median bias 0.00; 95% CI −23.25 to + 9.73 events/hour). However,
for 15 patients with no or mild OSA, MM monitoring overestimated disease severity
(PSG-ORDI < 5: MM-ORDI mean overestimation + 5.58 (95% CI + 2.03 to + 7.46)
events/hour; PSG-ORDI > 5–15: MM-ORDI overestimation + 3.70 (95% CI −0.53
to + 18.32) events/hour). In 16 patients with moderate-severe OSA (n = 9 with PSG-
ORDI 15–30 events/h and n = 7 with a PSG-ORD > 30 events/h), there was an
underestimation (PSG-ORDI > 15: MM-ORDI underestimation −8.70 (95% CI −28.46
to + 4.01) events/hour). ROC optimal cut-off values for PSG-ORDI thresholds of 5, 15,
30 events/hour were: 9.53, 12.65 and 24.81 events/hour, respectively. These cut-off
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values yielded a sensitivity of 88, 100 and 79%, and a specificity of 100, 75, 96%. The
positive predictive values were: 100, 80, 95% and the negative predictive values 89,
100, 82%, respectively.

Conclusion: The diagnosis of OSA, using MM with machine learning analysis, is
comparable to manually scored in-home PSG. Therefore, this novel monitor could be a
convenient diagnostic tool that can easily be used in the patients’ own home.

Clinical Trial Registration: [https://clinicaltrials.gov], identifier [NCT04262557].

Keywords: sleep apnoea, polysomnography, mandibular monitor, in-home diagnosis, one-night agreement,
performance, automated machine learning analysis

INTRODUCTION

Obstructive sleep apnoea (OSA) is a major burden worldwide,
affecting nearly one billion people (Benjafield et al., 2019; Grote,
2019; Lyons et al., 2020). Alongside symptoms of sleepiness, and
impaired memory and mood, untreated OSA is associated with a
range of cardiovascular and metabolic morbidities and increased
mortality (Knauert et al., 2015; Levy et al., 2015; Reutrakul and
Mokhlesi, 2017; Linz et al., 2018). Moreover, the prevalence is set
to rise with ageing populations and a global obesity pandemic.
Additionally, recent data supporting treatment of mild OSA has
created further burden, with over half of patients with OSA
experiencing a mild form of the disease (Benjafield et al., 2019;
Wimms et al., 2020). Finally, an acute need has arisen to re-
evaluate OSA diagnosis and treatment, due to the COVID-19
pandemic, which has reduced resources and increased waiting
lists (Patel and Donovan, 2020; Schiza et al., 2021).

Attempts to expand diagnostic capacity in the face of
increasing demand have utilised technological advances. In
particular, portable monitors have focused on minimally invasive
measurements and automated analysis, for ease of use by both
patients and staff (Collop et al., 2007). Additionally, the COVID-
19 pandemic has resulted in the need for disposable diagnostic
monitors that can be used safely in the patients’ home, to facilitate
remote healthcare pathways (Grote et al., 2020). However, despite
the obvious need for new diagnostic tools, monitors must
be evaluated for reliability, since issues typically occur in the
classification of breathing events as central or obstructive, plus
the overall event count, in the absence of sleep monitoring
(Randerath et al., 2018).

Mandibular movements (MM) have been established as a
surrogate bio-signal for the detection of breathing effort during
sleep (Martinot et al., 2015, 2017b, 2020). Analysis of the MM
signal has enabled the identification of specific breathing patterns
associated with sleep-disordered breathing (Senny et al., 2008;
Maury et al., 2013, 2014; Martinot et al., 2017a). MM analysis
has also been shown to differentiate between sleep and wake
states, allowing for the identification of total sleep time, which
may be of value in the calculation of sleep-disordered breathing
indices (Senny et al., 2009, 2012; Maury et al., 2014). In a recent
study, machine learning was used to homogenise the quality
of the scoring of respiratory events, linked with cloud-based
data transfer; this automated analysis was equivalent to that of
in-laboratory PSG (Pépin et al., 2020).

The aim of the current study was to evaluate the use
a novel monitor (Sunrise, Sunrise SA, Belgium) using MM
for the diagnosis of OSA in real world conditions. MM
and PSG data were recorded simultaneously in the patients’
home. MM was analysed automatically and compared to PSG
analysed manually by experts at two clinical centres. We
hypothesised that the Obstructive Respiratory Disturbance Index
(ORDI)(Nordigarden et al., 2011) calculated using MM with
machine learning analysis would not be significantly different to
the ORDI obtained using manually scored PSG.

MATERIALS AND METHODS

Study Design
A prospective, diagnostic, open study in 40 adult patients referred
with a suspicion of OSA to a single centre (Grenoble Alpes
University Hospital) was conducted. The study was approved
by an independent Ethics Committee (Comité de Protection
des Personnes, Sud-Ouest et Outremer III, Bordeaux, France,
ID-RCB: 2019-A02965-52) and registered on Clinicaltrials.gov
(NCT04262557). All 40 patients were recruited from the
Grenoble centre and signed written informed consent. The
study was conducted in accordance with Good Clinical Practice,
and all applicable laws and regulations. This study followed
the Standards for Reporting of Diagnostic Accuracy (STARD)
reporting guideline.

Forty consecutive adult patients undertaking a diagnostic
home sleep study for suspicion of OSA were invited to
participate. Participants had to be able to use portable devices
and smartphones. All 40 participants underwent an overnight
PSG (the reference method) with simultaneous MM recordings
using the Sunrise system (Sunrise SA, Belgium). Two visits were
scheduled; the first to verify the eligibility of the patient and to
collect baseline data. The second visit was at end of the study, with
the patient and clinician, for sharing of the final diagnostic report.

Overnight Sleep Study and Scoring of
Polysomnography
In-home PSG was recorded with a portable acquisition
system (Nox A1, ResMed, Saint-Priest Cedex, France).
Measurements used to determine sleep were electro-
oculogram, electroencephalogram, electromyogram, and
electrocardiogram. Oxygen saturation was also monitored by
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a digital oximeter displaying pulse waveform (Nonin, Nonin
Medical, United States). Airflow was measured using nasal
pressure associated with the sum of oral and nasal thermistor
signals. Respiratory effort was monitored with abdominal
and thoracic bands.

Polysomnography recordings were initially scored by experts
from the recruiting centre (Grenoble Alpes University Hospital,
France). PSG were anonymized, converted in European data
format (EDF) and sent via a secured platform for blinded
scoring to the second reference centre (Imperial College London,
United Kingdom). Scoring was performed according to the
recommended criteria established by the American Academy
of Sleep Medicine (AASM) Manual for the Scoring of Sleep
and Associated (Berry et al., 2012). Apnoeas were defined as a
complete cessation of airflow ≥ 10 s and classified as obstructive,
central, or mixed according to the presence or the absence of
respiratory effort. Hypopneas were scored using the AASM-
recommended hypopnoea definition, requiring at least a 30%
decrement in airflow lasting 10 s or longer and associated with
a decrease of at least 3% in oxygen saturation as measured
by pulse oximetry, or an arousal (Berry et al., 2012, 2017).
ORDI was defined as the total number of obstructive respiratory
disturbances accompanied by respiratory effort divided by the
total sleep time (TST) (PSG-ORDI). PSG recordings were
analysed blinded to the MM data and the two centres scored the
PSG recordings independently.

Obstructive sleep apnoea diagnosis was established according
to the third edition of the International Classification of
Sleep Disorders (ICSD-3) (Sateia, 2014). Apnoea-Hypopnoea
Index (AHI) thresholds of 5, 15 and 30 events/hour were
used to define OSA severity levels of mild, moderate, and
severe, respectively.

Mandibular Movement Recordings and
Description of the Sunrise Monitoring
System
The Sunrise monitoring system is a certified medical device used
for the diagnosis of sleep apnoea using MM analysis (Sunrise
SA, Namur, Belgium). The MMs were monitored using inertial
measurement units and data was transferred via Bluetooth Low
Energy to a smartphone application. For more information on
MM analysis see Appendix.

Participants first downloaded the application and then
performed a device association, before attaching the monitor
to their chin, in the mentolabial sulcus. The recorded MM
data were automatically transferred from the smartphone to
a cloud-based infrastructure at the end of the night. These
data were then analysed using a dedicated machine learning
algorithm. The algorithm identified obstructive and mixed
apnoeas and hypopnoeas, plus respiratory effort–related arousals,
through stereotypical MM patterns. Respiratory disturbances
were identified by periods of respiratory effort ended by an
arousal or an awakening. A full description of the Sunrise
System and algorithm have been previously reported (Pépin
et al., 2020). The MM-ORDI was defined as the total number of

obstructive respiratory disturbances accompanied by respiratory
effort divided by the TST, estimated from the Sunrise analytics.

Statistical Analysis
Data analysis was conducted using scientific computing packages
(numpy, scipy) in the Python programming language.

Firstly, we evaluated the agreement between the MM-ORDI
and the PSG-ORDI. For this, we compared the MM-ORDI with
the PSG-ORDI calculated by scorers in Grenoble and in London
and we also calculated the combined PSG-ORDI by averaging
the ORDI scores from the two centres. Then, we used Pearson’s
linear correlation matrix and regression plots to evaluate the
linear relationship between MM-ORDI and PSG-ORDI. Next, we
calculated ORDI Intraclass Correlation Coefficients (ICC) using
a 2-way fixed model for single measures (ICC, 3,2) to evaluate the
agreement between MM-ORDI and PSG-ORDI. Additionally, we
used a complete and groupwise Bland-Altman plot to estimate
the 95% limits of agreement and the systematic bias of MM-
derived indices compared with their PSG counterparts.

Secondly, we evaluated the diagnostic performance of MM-
ORDI for OSA based on receiver operating characteristic (ROC)
curves. We performed an area under the curve (AUC), and a
post hoc analysis to optimise the cut-off points of MM-ORDI
for diagnostic decisions, compared with the criterion-standard
cut-off values of obstructive PSG-ORDI recommended in ICSD-
3 (5 events/hour and 15 events/hour). The optimal MM cut-
offs were assessed at the highest value of the Youden index
(sensitivity plus specificity minus 1). Finally, we calculated the
metrics of clinical utility and accuracy for the optimal detection
thresholds and the post-test probability for each cut-off point
recommended by the Portable Monitoring Task Force of the
AASM (Collop et al., 2007).

Statistical inference was based on null-hypothesis testing at
significance threshold of p < 0.05.

RESULTS

Participants
Forty participants were recruited to the study and data from
31 participants were included in the analysis. Two participants
withdrew, and there were three technical failures of PSG (poor
quality signals) and four technical failures of the Sunrise device
(Bluetooth connection was lost for three patients and for one
patient the Sunrise sensor became disconnected). Participants
were 58% men, with a mean (SD) age of 48 (15) years and body
mass index (BMI) of 30.4 (7.6) kg/m2.

Evaluation of the Agreement Between
Mandibular Movement Monitoring
System and in-Home Polysomnography
for Measuring Respiratory Disturbances
The median value of PSG-ORDI, determined by averaging the
ORDI scores from the two centres, was 15.45 (IQR: 1.75 to 61.38)
events/hour. The median of MM-ORDI was 16.80 (IQR: 3.50 to
42.50) events/hour. Overall, there was a good agreement between
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FIGURE 1 | Bland-Altman analysis for MM-ORDI versus average PSG-ORDI. Bland-Altman plot shows the disagreement between average PSG-ORDI and
MM-ORDI (y axis) as a function of the average PSG ORDI (x axis), with individual cases stratified into three clinical groups. Bidimensional kernel density estimation
plots are superimposed to show the joint distribution of measurement bias within each subgroup. The blue horizontal lines indicate the median, lower and upper
bound (5th and 95th centiles) of the measurement bias in the whole sample. The distribution of the disagreement between the two methods, stratified by group, is
shown on the right, with three horizontal lines indicating the median bias within each group. MM: mandibular movement; ORDI: obstructive respiratory disturbance
index; PSG: polysomnography.

MM-ORDI and PSG-ORDI with a median bias of 0.00 (95% CI
−23.25 to + 9.73) events/hour (Figure 1). However, there was
systematic bias across the disease severity spectrum. In patients
with no OSA (<5 events/hour, n = 6) and mild OSA, (5–15
events/hour, n = 9), MM-ORDI over-estimated by a random
and normally distributed bias, with medians of + 5.58 (95%
CI: + 2.03 to + 7.46) and + 3.70 (95% CI −0.53 to + 18.32)
events/hour, respectively. In patients with moderate-severe OSA
(ORDI score > 15, n = 16) MM-ORDI underestimated by −8.70
(95% CI−28.46 to+ 4.01) events/hour.

Evaluation of the Agreement Between
Two Expert Centres for Measuring
Obstructive Respiratory Disturbance
Index From in-Home Polysomnography
The PSG-ORDI from the two expert sleep centres were: London
median 13.60 (IQR: 0.65 to 53.75) and Grenoble 15.9 (IQR:
2.15 to 69.00) events/hour. Overall, the London PSG-ORDI was
lower: median −3.40 (95% CI −22.80 to + 14.00) events/hour
compared to Grenoble (Figure 2). In patients with no OSA
(ORDI < 5 events/hour) and those with mild OSA (ORDI 5–15
events/hour) there was a random and low median bias between
the two centres of −0.60 (95% CI −2.58 to −0.03). However, in

moderate-severe patients with ORDI > 15, the variation became
more and unpredictable: mean bias−13.00, varying from−31.36
to+ 13.22 events/hour.

There were significant linear correlations and high
intraclass correlation coefficients among all the ORDI scores
(p-values < 0.001) (see Appendix).

Diagnostic Performance of the
Mandibular Movement Monitoring
System
The ROC analysis at OSA thresholds of 5, 15 and 30 events/hour
corresponding to mild, moderate, and severe OSA is shown in
Figure 3. The AUCs showed high global performance for each
threshold; 0.928 (95% CI: 0.84 to 1.0), 0.902 (95% CI: 0.80 to 1.0)
and 0.918 (95% CI: 0.79 to 1.0), respectively.

Optimal cut-offs were determined for the MM-ORDI. Mild
OSA (PSG-ORDI > 5 events/hour) was detected with an
optimal cut-off of 9.53 events/hour with a good balance between
sensitivity and specificity (F1 = 0.94, BAC = 0.94). A previously
reported cut-off of 7.63 events/hour yielded a high sensitivity, but
lower specificity (Pépin et al., 2020). There was good diagnostic
agreement for moderate OSA (>15 events/hour) using a cut-off
of 12.65 events/hour (F1 = 0.89, BAC = 0.88). This cut-off was the
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FIGURE 2 | Bland-Altman analysis for London PSG-ORDI versus Grenoble PSG-ORDI. Bland-Altman plot shows the disagreement between average PSG-ORDI
(London) and PSG-ORDI (Grenoble) (y axis) as a function of Grenoble PSG-ORDI (x axis), with individual cases stratified into three clinical groups. Bidimensional
kernel density estimation plots are superimposed to show the joint distribution of measurement bias within each subgroup. The blue horizontal lines indicate the
median, lower and upper bound (5th and 95th centiles) of the measurement bias in the whole sample. The distribution of the disagreement between the 2 methods,
stratified by group, is shown on the right, with 3 horizontal lines indicating the median bias within each group. PSG: polysomnography; ORDI: obstructive respiratory
disturbance index.

same as observed previously (Pépin et al., 2020). MM-ORDI was
also effective for detecting severe OSA (>30 events/hour) at cut-
off of 24.81 events (F1 = 0.86, BAC = 0.87). At these cut-offs, the
post-test probabilities of obtaining a true positive diagnosis were
100, 80, and 95% respectively (Table 1).

DISCUSSION

Our study aimed to answer the question “is the Obstructive
Respiratory Disturbance Index (ORDI) calculated using MM
with machine learning analysis similar to the ORDI obtained
using manually scored in-home PSG?” The main findings of this
study are that the use of MM with machine learning analysis
to diagnose OSA produced good agreement compared to in-
home PSG-derived ORDI. The best agreement was observed at
the mild end of the disease spectrum. Additionally, agreement
in ORDI, between the MM monitor and in-home PSG, was
similar to the agreement for the scoring of PSG between by the
two expert centres.

Mandibular movement-derived respiratory disturbance
measures and automated analysis demonstrated comparable
performances than in-home PSG, suggesting that MM
monitoring is an effective and practical way of testing for
OSA in the patients’ own home. There is an expanding need for
simple, automated tools for the diagnosis of OSA that can be

used remotely (Randerath et al., 2018). However, it is important
for these monitors to be accurate and reliable. Previously, the
novel Sunrise device, using MM-derived respiratory disturbance
measures and automated analysis, has been shown to have
reliable agreement with PSG data recorded in-laboratory (Pépin
et al., 2020). The findings of the present study show similar
agreement using PSG recorded in the patients’ own home.
Moreover, the high diagnostic performance, sensitivity and
specificity compare favourably with other portable devices for
the in-home detection of OSA (Mendonça et al., 2018). The
advantages of using home-recorded data include reduced patient
stresses, associated with travel and overnight hospital stays,
plus a potential reduction in waiting times and clinical costs
(Collop et al., 2007). A systematic review is currently underway
to determine the cost-effectiveness of limited channel tests
compared to laboratory and home PSG in diagnosing OSA
(Natsky et al., 2021). Empirical studies support the use of limited
channel tests carried out in the patients’ own home, suggesting
similar efficacy, at lower costs, compared to PSG (Masa et al.,
2014; Corral et al., 2017). These advantages of remote data
collection, however, are balanced against the risk of technical
failure. In the present study there were technical issues with the
MM-monitor and smartphone application in 10% of studies,
which is comparable to previously reported in-home PSG failure
rate of 10–20% (Bruyneel and Ninane, 2014). This may be
easily addressed by repeating limited channel studies at home
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FIGURE 3 | ROC curve analysis for MM-ORDI versus average PSG-ORDI. Cut-off calibration and ROC curves evaluating the global performance of 3 binary
classification rules to detect patients with OSA with polysomnography-derived respiratory disturbance index (PSG-ORDI) of at least 5, 15 or 30 events/hour, using
MM-ORDI. The 95% CIs of the area under the curve (AUC) were obtained by bootstrapping. The diagonal dotted line serves as a reference and shows the
performance if OSA detection was made randomly. ROC: receiver operator characteristic; MM: mandibular movements; ORDI: obstructive respiratory disturbance
index; OSA: obstructive sleep apnoea; 95% CIs: 95% confidence intervals; AUC: area under the curve.
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over several nights, therefore reducing technical concerns and
improving night-to-night variability estimation (Roeder et al.,
2020, 2021).

In the current study, comparing PSG scored by experts
from Grenoble and London, the ICC was 0.90. The magnitude
of this difference was similar to the difference between the
ORDI scored by the MM-analysis, compared to the mean ORDI
calculated from both the Grenoble and London PSG scoring
(ICC 0.85). The manual analysis of PSG data is time consuming.
There is also variability between experts, despite the use of
standardised scoring criteria. Inter-scorer agreement is generally
between 70–80%, however, this figure increases when combined
with automated scoring in an auto-edited approach (Magalang
et al., 2013; Rosenberg and Van Hout, 2013; Younes et al.,
2016). Machine learning for automatic sleep scoring presents
many advantages including the removal of the subjectivity
and unconscious bias associated with manual scoring. Machine
learning algorithms have demonstrated a high level of accuracy
and agreement, on average around 85%, between computer and
manual scoring (Fiorillo et al., 2019).

Overall agreement between MM-ORDI and PSG-ORDI
in the current study was good, with an overestimation of
ORDI in mild disease. New technologies that do not use
neurophysiological data to identify sleep, typically underestimate
respiratory disturbance indices, such as AHI and ODI (Bianchi
and Goparaju, 2017). This is due to the number of respiratory
events being calculated across the total recording time, rather
than total sleep time. Data from the ESADA study, showed
that the AHI of patients investigated by polygraphy was
approximately 30% lower, compared to patients investigated by
PSG (Escourrou et al., 2015). Analysis of MM has previously been
shown to reliably detect sleep and wake, which potentially leads
to a more accurate calculation of ORDI (Senny et al., 2009, 2012;
Maury et al., 2014).

In patients with severe OSA, however, the MM with machine
learning analysis underestimated the ORDI. This is similar to
results of a previous study, comparing MM analysis to in-lab
PSG (Pépin et al., 2020). The scoring discrepancy in more

TABLE 1 | Diagnostic performance of MM-ORDI versus PSG-ORDI.

Detecting
PSG-ORDI >5

events/hr

Detecting
PSG-ORDI >15

events/hr

Detecting
PSG-ORDI >30

events/hr

Optimal cut-off
(9.53)

Optimal cut-off
(12.65)

Optimal cut-off
(24.81)

Sensitivity 0.88 1.00 0.79

Specificity 1.00 0.75 0.96

F1 0.94 0.89 0.86

BAC 0.94 0.88 0.87

Positive predictive value 1.00 0.80 0.95

Negative predictive value 0.89 1.00 0.82

Positive likelihood ratio Inf 4.00 19.0

Negative likelihood ratio 0.12 0.00 0.22

Youden J index 0.88 0.75 0.75

BAC, balanced accuracy; MM, mandibular movement; ORDI, obstructive
respiratory disturbance index; PSG, polysomnography

severe OSA patients, may have been due to the use of the 2012
AASM recommended hypopnoea definition (Berry et al., 2012).
Specifically, hypopnoeas can be scored when airflow reduction is
followed either by a 3% oxygen desaturation, or an arousal from
sleep. Therefore, cortical arousals detected by the occurrence of
brisk and abrupt MM, typically associated with mouth closure,
are reliably scored. However, hypopnoea events scored on PSG
due to the presence of a 3% oxygen desaturation, may have been
excluded by MM analysis. Ongoing algorithmic developments
are likely, specifically to address the scoring of hypopnoeas. In
a clinical setting, however, these patients represent the more
severe end of the disease spectrum and therefore relatively small
differences in ORDI may not impact diagnosis and treatment
options, because treatment is usually recommended for patients
with moderate-severe OSA (McDaid et al., 2009).

Recently, an international expert group have reinforced the
need to move toward outcomes beyond the AHI for the diagnosis
and classification of OSA (Randerath et al., 2018). Specifically,
they recommend consideration of diagnostic criteria to reflect
phenotypic variation. The use of a bio-signal such as MM may
provide surrogate sleep data, alongside breathing data to improve
the diagnosis of OSA.

Strengths and Limitations
This is the first study to compare MM monitoring to PSG
recording in the patients’ own home. Moreover, the OSA patients
were recruited from a clinical referral population, enabling
investigation of diagnosis across the disease spectrum. The PSG
data was also independently analysed by experts in two centres.
However, to fully interpret these data, several limitations need
to be considered.

Firstly, the small sample size may have led to a type 2
error. Secondly, the increasing use of technology in healthcare
can lead to issues associated with lack of access, either due
to reduced internet availability in remote regions, or lack of
familiarity e.g. in those who did not use mobile devices when they
were younger, or other socioeconomic factors. There were three
(7.5%) technical failures due to Bluetooth connection loss in the
current study. Refinement of the technology and more access to
training may ameliorate some of these issues. However, in-home
studies require the ability to understand in-depth instructions,
thus information must be given to patients in a clear, concise
format (Medicines and Healthcare products Regulatory Agency
[MHRA], 2021).

CONCLUSION AND IMPLICATIONS

For future routine clinical practice, MM with machine learning
analysis had good agreement with manually scored PSG recorded
in the patients’ own home and is a promising option for home-
based, automated assessment for OSA. Further studies will
evaluate the use of the monitor in different care pathways, the
patient experience and cost-effectiveness of this new technology.
For policy makers, it is time to consider reimbursement and
large-scale development of such simplified techniques for sleep
apnoea diagnosis.
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APPENDIX

Machine Learning Analysis
The obstructive respiratory disturbance index (ORDI) was calculated based on a combination of awake/sleep and respiratory
effort/arousal/quiet sleep classification tasks. These are handled by stacked classifiers: a binary Random Forest classifier for awake/sleep
detection based and a multiclass Random Forest classifier for respiratory effort/arousal/quiet sleep detection based on 30 s epochs.

Input features consisted of a combination of axes of the accelerometer/gyroscope, processing modes (filter with several frequency
bands, moving average) and statistical functions. The statistics applied to the above features were tendency toward centrality (mean,
median), extreme values (min, max), quartiles, standard deviation, as well the normal standardised version of all above features.

The hyper-parameters of Random Forest classifiers were optimised through a grid-search based 10 × 10 cross-validation, which
aimed to minimise the logarithmic losses. Following hyper-parameters were considered for tuning: tree depth, minimum sample split
and tree number.

Choice of the machine learning (ML) approaches:
Machine learning approaches can be classified into 2 main categories: (a) deep learning or (b) conventional methods on structured

data, depending on two factors: (1) how to extract input features from the raw signals? and (2) what algorithm should be used?
Based on literature review and previous experiments, there remains uncertainty about the superiority of any specific algorithm

among tree-based ensemble algorithms (XGBoost, Random Forest) or deep learning models.
The only advantage of deep learning framework is allowing for automatic feature extraction from raw signal. However, on a

well determined problem, with appropriate pre-processing techniques and carefully validated labels, there would be no difference
in performance between deep learning and tree-based models.

Instead of using the deep learning models, it was decided to use the features extraction framework, which allows better control and
understanding of input data compared to black-box models like convolutional neural networks in deep learning.

Due to the large training data size, complexity of the output and high dimensionality of input features, Random Forest algorithm
has been adopted. This algorithm offers several advantages over the classical methods (linear discriminant, support vector machine),
including better performance, high efficiency in computation, ability of detecting important features, fast training, and execution
speeds. Compared with XGboost, the Random Forest model would have the same level of performance on tabular data, with less
complexity in tuning process, as they have less hyper-parameter than XGBoost.

Frontiers in Neuroscience | www.frontiersin.org 10 March 2022 | Volume 16 | Article 726880125

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact 

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover

	Frontiers eBook Copyright Statement
	Unraveling Sleep and Its Disorders Using Novel Analytical Approaches

	Table of Contents
	Editorial: Unraveling Sleep and Its Disorders Using Novel Analytical Approaches
	Sleep Apnea and Cardio-Respiratory Coupling During Sleep
	Insomnia, Sleep Deprivation, and Micro-Sleep Episodes
	Sleep Disruption
	Depression

	Author Contributions
	Funding
	Acknowledgments
	References

	Automatic Detection of Microsleep Episodes With Deep Learning
	Introduction
	Our Contribution

	Materials and Methods
	Data
	Preprocessing
	ML Methods
	Classification
	Architecture of the Networks
	Performance Evaluation
	Training, Validation, and Testing
	Visualization

	Results
	How Our Algorithms Performed in Classification
	Why Did the Algorithm Not Perform Equally Well for All Classes?

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Longer and Deeper Desaturations Are Associated With the Worsening of Mild Sleep Apnea: The Sleep Heart Health Study
	Introduction
	Materials and Methods
	Dataset
	Polysomnography and Covariates
	Oxygen Desaturation Parameters
	Sleep Apnea Severity Classification
	Statistical Analysis

	Results
	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Classifying Vulnerability to Sleep Deprivation Using Resting-State Functional MRI Graph Theory Metrics
	Introduction
	Materials and Methods
	Subjects
	Study Procedure
	Psychomotor Vigilance Task
	MRI Data Acquisition
	MRI Data Analysis
	Degree Centrality
	Statistical Analysis
	Support Vector Machine Analysis

	Results
	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Conceptual Framework for Insomnia: A Cognitive Model in Practice
	Introduction
	Cognitive Vulnerability Model for Insomnia Induced Mood Disturbances
	Sleep Specific Cognitive Vulnerability
	Behaviorally Induced Insufficient Sleep Syndrome With Restricted and Extended Sleep Opportunity
	Global Cognitive Vulnerability to Insomnia

	Proposed Conceptual Cognitive Framework
	Fundamental Ideas and Postulations of the Conceptual Cognitive Framework

	Compartments and Cognitive Processes
	Situation
	Attention Bias
	Emotional Value
	Cognitive Value
	Annoyance-Distress Reaction
	Distorted Perception
	Hypotheses of Conceptual Cognitive Framework

	Methods
	Pre-processing of the Data
	Statistical Analysis
	Fundamental Ideas and Postulations for Mediator Models
	Proposed Mediator Model

	Results
	Clinical Implications
	Decreasing Attentional Bias
	Employing Attention-Distraction Techniques Can Help Deviate Attention From Concerns-Relevant Topics to Neutral Ones
	Preventing Annoyance and Distress-Reaction
	Cognitive-behavioral therapy (CBT) to reduce the negative cognitive-value related to insomnia
	Mindfulness-based cognitive therapy (MBCT) for reducing the negative cognitive and emotional value related to insomnia
	ECL mechanism for modifications in negative emotional-value related to insomnia

	Rectifying the Distorted Perception of the Quality of Sleep Deficit

	Future Trends
	Limitation

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	New and Emerging Approaches to Better Define Sleep Disruption and Its Consequences
	Introduction
	Current State of the Art for Sleep Recording
	A New Way of Thinking: Top-Down Sleep Signal Features Based on Underlying Neurobiology Rather Than Bottom-Up Measurement Convenience Guided Approaches

	Key Components of the Polysomnographic
	Electroencephalography
	Slow Waves
	K-complexes
	Sleep Spindles
	Fourier-Based Analysis of Sleep Signals: Quantitative Electroencephalography
	The Odds Ratio Product
	Scale-Free/Rapid Eye Movement Biomarkers

	Oxygenation Measures
	Autonomic Signals
	Signal Coupling and Other Approaches

	Osa Endotypes
	Circadian Rhythms
	The Need to Assess Circadian Rhythms to Define Sleep Disruption
	Current and Emerging Methods to Assess Circadian Rhythms

	Novel Measures of Environmental Factors That Can Affect Sleep
	Scalable Approaches to Measure Sleep Including Multi-Night Assessments
	Final Summary/Conclusion
	Author Contributions
	Funding
	References

	Erratum: New and Emerging Approaches to Better Define Sleep Disruption and Its Consequences
	References

	Pediatric Sleep Apnea: The Overnight Electroencephalogram as a Phenotypic Biomarker
	Introduction
	Materials and Methods
	Pediatric Cohort and Sleep Studies
	Polysomnographic Variables and Neurocognitive Tests
	Signal Acquisition and Analysis
	Correlation Network Analysis
	Statistical Analysis

	Results
	Polysomnography Variables and Cognitive Scores
	Averaged Electroencephalogram Spectrum of the Three Obstructive Sleep Apnea Severity Categories
	Overall Evolution of the Electroencephalogram Relationships With Polysomnography Variables and Cognitive Scores
	Spectral Band Average Associations With Polysomnography Variables and Cognitive Scores
	Modularity Analysis and Specific Relationships

	Discussion
	Electroencephalogram Correlation Networks Evolves With Obstructive Sleep Apnea Worsening
	Electroencephalogram Activity and Irregularity Characterize Specific Relationships
	Correlation Networks Help Expand Current Knowledge
	Interpretations of the SpecEn Characterization on Sleep Electroencephalogram
	Other Limitations and Future Steps

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Cardiopulmonary Sleep Spectrograms Open a Novel Window Into Sleep Biology—Implications for Health and Disease
	Introduction
	Physiology Background
	Cardiopulmonary Coupling Methodology
	Distinct Cardiopulmonary Coupling Patterns in Sleep
	Sleep Stages and Cyclic Alternating Pattern
	Slow Wave (Delta) Power
	Sleep Blood Pressure
	Autonomic Regulation During Sleep
	Vertically Integrated Multi-Component Sleep States

	Cardiopulmonary Coupling in Sleep Apnea
	Diagnosis of Sleep Apnea
	Sleep Apnea Treatment Effects
	Endotyping and Phenotyping Sleep Apnea

	Cardiopulmonary Coupling in Other Sleep Disorders
	Conclusion
	Author Contributions
	Funding
	References

	Sleep-Dependent Anomalous Cortical Information Interaction in Patients With Depression
	Introduction
	Materials and Methods
	Participants
	Polysomnography
	Electroencephalography Signal Pre-processing
	Directionality Analysis
	Inter-Regional Effective Connectivity Pattern
	Statistical Analysis

	Results
	Information Transfer Across Cortical Regions
	Differences in Information Transfer Across Cortical Regions Between Patients With Depression and Healthy Controls
	Anterior-to-Posterior Pattern and Left-to-Right Pattern of Information Flow
	Difference in Regional Information Between Patients With Depression and Healthy Controls

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Modafinil Reduces Neuronal Pyroptosis and Cognitive Decline After Sleep Deprivation
	Introduction
	Materials and Methods
	Sleep Deprivation Model
	Morris Water Maze Test
	qRT-PCR
	Western Blotting
	Immunofluorescence Staining
	Golgi Staining
	Statistical Analysis

	Results
	Modafinil Alleviates Cognitive Impairment in Sleep Deprivation Mice
	Modafinil Reduces Pyroptosis in Hippocampus Tissues of Sleep Deprivation Mice
	Modafinil Alleviates Pyroptosis in Hippocampal Neurons of Sleep Deprivation Mice
	Modafinil Suppresses Inflammatory Activity in Hippocampus of Sleep Deprivation Mice
	Modafinil Promotes Brain-Derived Neurotrophic Factor Expression and Synaptic Plasticity in Hippocampus of Sleep Deprivation Mice

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Diagnosis of Sleep Apnoea Using a Mandibular Monitor and Machine Learning Analysis: One-Night Agreement Compared to in-Home Polysomnography
	Introduction
	Materials and Methods
	Study Design
	Overnight Sleep Study and Scoring of Polysomnography
	Mandibular Movement Recordings and Description of the Sunrise Monitoring System
	Statistical Analysis

	Results
	Participants
	Evaluation of the Agreement Between Mandibular Movement Monitoring System and in-Home Polysomnography for Measuring Respiratory Disturbances
	Evaluation of the Agreement Between Two Expert Centres for Measuring Obstructive Respiratory Disturbance Index From in-Home Polysomnography
	Diagnostic Performance of the Mandibular Movement Monitoring System

	Discussion
	Strengths and Limitations

	Conclusion and Implications
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References
	Appendix
	Machine Learning Analysis


	Back Cover




