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Multi-item surveys are frequently used to study scores 
on latent factors, like human values, attitudes and behav-
ior. Such studies often include a comparison, between 
specific groups of individuals, either at one or multiple 
points in time. If such latent factor means and relations 
between constructs are to be meaningfully compared, 
the measurement structures including the latent factor 
and their survey items should be stable across groups 
and/or over time, that is ‘invariant’. Recent develop-
ments in statistics have provided new analytical tools 
for assessing measurement invariance (MI). The aim 
of this special issue is to provide a forum for a discus-
sion of MI , covering some crucial ‘themes’: (1) ways to 
assess and deal with measurement non-invariance; (2) 
Bayesian and IRT methods employing the concept of 
approximate measurement invariance; and (3) new or 
adjusted approaches for testing MI to fit increasingly 
complex statistical models and specific characteristics 
of survey data.

The special issue started with a kick-off meeting where 
all potential contributors shared ideas on potential 

papers. This expert workshop was organized at Utrecht University in The Netherlands and was 
funded by the Netherlands Organization for Scientific Research (NWO-VENI-451-11-008). 
After the kick-off meeting the authors submitted their papers, all of which were reviewed by 
experts in the field. The papers in the eBook are listed in alphabetical order, but in the editorial 
the papers are introduced thematically.

Although it is impossible to cover all areas of relevant research in the field of MI, papers in this 
eBook provide insight on important aspects of measurement invariance. We hope that the dis-
cussions included in this special issue will stimulate further research on MI and facilitate further 
discussions to support the understanding of the role of MI in multi-item surveys.
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If latent factor means (M1 vs. M2) are 
to be meaningfully compared across 
groups or over time, the measurement 
structures including the latent factor 
and their survey items should be stable, 
that is ‘invariant’, across groups or over 
time. Image by Rens Van De Schoot.
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Multi-item surveys are frequently used to study scores on latent factors, like human values,
attitudes, and behavior. Such studies often include a comparison, between specific groups of
individuals or residents of different countries, either at one or multiple points in time (i.e., a cross-
sectional or a longitudinal comparison or both). If latent factor means are to be meaningfully
compared, the measurement structures of the latent factor and their survey items should be stable,
that is “invariant.” As proposed by Mellenbergh (1989), “measurement invariance” (MI) requires
that the association between the items (or test scores) and the latent factors (or latent traits) of
individuals should not depend on group membership or measurement occasion (i.e., time). In
other words, if item scores are (approximately) multivariate normally distributed, conditional on
the latent factor scores, the expected values, the covariances between items, and the unexplained
variance unrelated to the latent factors should be equal across groups.

Many studies examining MI of survey scales have shown that the MI assumption is very hard
to meet. In particular, strict forms of MI rarely hold. With “strict” we refer to a situation in
which measurement parameters are exactly the same across groups or measurement occasions,
that is an enforcement of zero tolerance with respect to deviations between groups or measurement
occasions. Often, researchers just ignore MI issues and compare latent factor means across groups
or measurement occasions even though the psychometric basis for such a practice does not hold.
However, when a strict form ofMI is not established and onemust conclude that respondents attach
different meanings to survey items, this makes it impossible to make valid comparisons between
latent factor means. As such, the potential bias caused by measurement non-invariance obstructs
the comparison of latent factor means (if strict MI does not hold) or regression coefficients (if less
strict forms of MI do not hold).

Traditionally, MI is tested for in a multiple group confirmatory factor analysis (MGCFA) with
groups defined by unordered categorical (i.e., nominal) between-subject variables. In MGCFA,
MI is tested at each constraint of the latent factor model using a series of nested (latent) factor
models. This traditional way of testing for MI originated with Jöreskog (1971), who was the
first scholar to thoroughly discuss the invariance of latent factor (or measurement) structures.
Additionally, Sörbom (1974, 1978) pioneered the specification and estimation of latent factor
means using a multi-group SEM approach in LISREL (Jöreskog and Sörbom, 1996). Following
these contributions the multi-group specification of latent factor structures has become widespread
in all major SEM software programs (e.g., AMOS Arbuckle, 2006, EQS Bender and Wu, 1995,
LAVAAN Rosseel, 2012, Mplus Muthén and Muthén, 2013, STATA STATA, 2015, and OpenMx
Boker et al., 2011). Shortly thereafter, Byrne et al. (1989) introduced the distinction between
full and partial MI. Although their introduction was of great value, the first formal treatment
of different forms of MI and their consequences for the validity of multi-group/multi-time
comparisons is attributable to Meredith (1993). So far, a tremendous amount of papers dealing

5|

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://dx.doi.org/10.3389/fpsyg.2015.01064
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:a.g.j.vandeschoot@uu.nl
http://dx.doi.org/10.3389/fpsyg.2015.01064
http://journal.frontiersin.org/article/10.3389/fpsyg.2015.01064/full
http://loop.frontiersin.org/people/21722/overview
http://loop.frontiersin.org/people/87325/overview
http://loop.frontiersin.org/people/86169/overview
http://loop.frontiersin.org/people/256099/overview
http://loop.frontiersin.org/people/108610/overview


Van De Schoot et al. Editorial: Measurement Invariance

with MI have been published. The literature on MI published in
the 20th century is nicely summarized by Vandenberg and Lance
(2000). Noteworthy is also the overview of applications in cross-
cultural studies provided by Davidov et al. (2014), as well as a
recent book by Millsap (2011) containing a general systematic
treatment of the topic ofMI. The traditionalMGCFA approach to
MI-testing is described by, for example, Byrne (2004), Chen et al.
(2005), Gregorich (2006), van de Schoot et al. (2012), Vandenberg
(2002) and Wicherts and Dolan (2010). Researchers entering the
field ofMI are recommended to first consult Meredith (1993) and
Millsap (2011) before reading other valuable academic works.

Recent developments in statistics have provided new
analytical tools for assessing MI. The aim of this special issue
is to provide a forum for a discussion of MI, covering some
crucial “themes”: (1) ways to assess and deal with measurement
non-invariance; (2) Bayesian and IRT methods employing the
concept of approximate MI; and (3) new or adjusted approaches
for testing MI to fit increasingly complex statistical models and
specific characteristics of survey data.

Dealing with Measurement Non-invariance

If the test for MI indicates that strict MI across groups or time
is not established, no sound psychometric basis is provided for
the comparison of latent factor means. The absence of such
psychometric basic is the first topic dealing with measurement
non-invariance. A nice example of a situation in which such
psychometric basis is absent is provided in the paper by Lommen
et al. (2014). These authors show that comparing posttraumatic
stress in soldiers before and after war-zone related traumatic
events (the wars in Afghanistan or Iraq) is virtually impossible
due to instability in thresholds. For a researcher this conclusion
may be hard to digest, especially if the success of the study
relies entirely on the possibility to make such meaningful
comparisons over time. Within the context of their study the
authors recommend considering pre- and post-symptom scores
as representing separate constructs.

In the same vein, a failure to establish less strict forms of
MI may be worrisome if meaningful comparisons of structural
relationships between latent factor means are important to the
study (e.g., the comparison of the magnitude of a correlation,
regression, or path coefficient across groups/time). Hox et al.
(2015), show how the non-establishment of less strict forms
of MI can (partly) be explained and corrected for. They show
that, in the context of mixed-mode surveys, non-invariance
can be the effect of selection or measurement differences
due to mode (e.g., web survey, telephone survey, face-to-face
interview).

Detecting non-invariant items is the next topic dealing with
measurement non-invariance. In the contribution of de Roover
et al. (2014) a method is proposed based on cluster-wise
simultaneous component analysis (SCA). Their method aims at
detecting non-invariant items. Barendse et al. (2014) examined
a Bayesian restricted (latent) factor analysis (RFA) method for
the same purpose, namely detecting items violating the MI
assumption. They concluded that Bayesian RFA methods are
especially suited for detecting measurement bias.

Our special issue also contains a discussion on the importance
of understanding whether the presence of (in)correctly specified
factorial invariance parameters influences the assessment of other
factor model parameters (e.g., intercepts, error variances, latent
factor variances, and latent factor means). In a simulation study,
Guenole and Brown (2014) investigated whether ignoring the
non-invariant underlying structure of the latent factor leads to
substantial regression parameter bias in categorical item factor
analyses (CIFA). The authors urge researchers to avoid ignoring
sources of non-invariance in CIFA when non-invariance occurs
in both loadings and thresholds even if this occurs in only one
item.

Approximate Measurement Invariance

A relatively new research avenue in the MI literature deals with
the use of Bayesian structural equation models (BSEM) to relax
strict forms of MI (see Muthén and Asparouhov, 2012). In
particular, exact zero constraints on the cross-group differences
between all relevant measurement parameters (e.g., factor
loadings and item intercepts) are substituted by “approximate”
zero constraints. Instead of forcing item intercepts to be exactly
equal across groups, a substantive prior distribution (around
zero) is used to bring the parameters closer to one another,
while allowing for some “wiggle room.” If there are many small
differences between the groups in terms of intercepts or factor
loadings, approximate MI seeks a balance between adherence
to the requirements of MI, making comparisons possible, and
obtaining a well-fitting model (i.e., a model that is more realistic
given the data at hand). When the classical MI tests do not
hold given the data, approximate MI represents a promising
(and more realistic) alternative; the cross-group differences
between all relevant measurement parameters are “hopefully”
close enough to zero to allow making meaningful latent factor
mean comparisons.

A tutorial paper introducing the method of approximate
MI is presented by van de Schoot et al. (2013). Further, our
special issue contains empirical examples comparing the results
of Bayesian approximate MI to the results of the more traditional
ways of MI-testing as applied to specific questionnaires: e.g., the
Portrait Values Questionnaire, using data from the European
Social Survey including data on many countries and many time
points (Cieciuch et al., 2014; Zercher et al., 2015), the Hedonic
and Eudaimonic Motives for Activities scale (Bujacz et al., 2014),
and the Golombok-Rust Inventory of Marital State (Chiorri et al.,
2014).

Furthermore, our special issue contains two extensions
of approximate MI to the field of IRT (see also Fox and
Verhagen, 2010). Instead of using substantive prior distributions
as in the Bayesian approximate MI method, the method
described by Fox establishes a measurement scale across
countries and conceptualizes country-specific non-invariance
in item parameters as random deviations through country-
specific random item effects. In such conceptualization cross-
group comparisons can still be made even in the presence of
non-invariant items. Kelcey et al. (2014) developed a method
based on Fox’s approximate MI approach which is applicable
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whenever measurements are nested within raters and cross-
classified among, for instance, countries. Another contribution to
our special issue byMuthén and Asparouhov (2014) concerns the
use of the alignment method (see also Asparouhov and Muthén,
2014) in IRT models, a method which is essential when applying
approximate MI. This method minimizes a loss function which
makes sure that there are a few large non-invariant measurement
parameters instead of many smaller non-invariant measurement
parameters, an optimal alignment strategy which resembles the
rationale underlying rotation of factor solutions in EFA.

Testing for MI in Increasingly Complex

Statistical Models

For some complex statistical models, the traditional multi-group
(MGCFA) approach to MI-testing has to be adjusted to meet the
specific requirements of the data and/or the model. Examples
of such adjustments can be found in our special issue. An
assumption embedded withinmanymethods to test forMI is that
the grouping (i.e., auxiliary) variable is unordered (i.e., nominal).
Wang et al. (2014) present a method to test for MI in cases in
which the auxiliary variable is ordered or continuous. Verdam
and Oort (2014) illustrate MI-testing for Kronecker restricted
SEMmodels, which constitute parsimonious models that provide
an alternative to longitudinal latent factor models. Adolf et al.
(2014) examine MI in the context of multiple-occasion and
multiple-subject time series models. In such models, MI has to be
established (a) over time within subjects, (b) over subjects within
occasions, and (c) over time and subjects simultaneously. Boom
(2014) investigated MI in the context of children’s development
of increasingly advanced strategies over time, in for instance the
way they deal with mathematical problems (e.g., strategies on
how children learn to multiply numbers below 10). The use of
different strategies is scored as a variable and development is
seen as the movement from one strategy to a more advanced one
and Boom shows how MI plays a crucial role when analyzing
such data. Jak (2014) uses a multi-level framework and proposes
an extension to the SEM framework, moving from models

describing two-level data to models describing three-level data.
Within this framework MI invariance can be tested across level 2
as well as across level 3 clustering variables.

Another application of MI finds its origin in multi-trait
multi-method models (MTMM; Eid and Diener, 2006), in which
multiple methods (or scales) and raters are used to quantify the
set of latent factors under study. Geiser et al. (2014) demonstrate
the advantage of moving from an exclusively covariance- or
correlation-basedMTMM approach to an approach that includes
latent factor means. This approach results in more fine-grained
information about convergent validity and method effects when
testing for MI. Albeit being analyzed differently, a comparable
design to the MTMM is the two-way rating design utilized in
situations where subjects have to judge to what extent a particular
scale or variable pertains to a particular concept or situation.
Kroonenberg (2014) presents an approach applicable to the
assessment of MI in two-way rating designs. In his approach, a

hierarchy of models is proposed, each one conceptualizing a form
of MI, varying in terms of strictness.

Conclusion

Our special issue contains numerous simulation studies aiming
at demonstrating the possibilities and limitations of different
analytical tools to test for various forms of MI; tutorial papers
providing the hands-on support needed when using the recent
developed analytical tools to test for MI, as well as illustrations of
how the analytical tools may be meaningfully applied in different
fields of research when addressing issues related to MI across
groups or time.
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We address the question of equivalence between modeling results obtained on
intra-individual and inter-individual levels of psychometric analysis. Our focus is on the
concept of measurement invariance and the role it may play in this context. We discuss
this in general against the background of the latent variable paradigm, complemented by an
operational demonstration in terms of a linear state-space model, i.e., a time series model
with latent variables. Implemented in a multiple-occasion and multiple-subject setting,
the model simultaneously accounts for intra-individual and inter-individual differences.
We consider the conditions—in terms of invariance constraints—under which modeling
results are generalizable (a) over time within subjects, (b) over subjects within occasions,
and (c) over time and subjects simultaneously thus implying an equivalence-relationship
between both dimensions. Since we distinguish the measurement model from the
structural model governing relations between the latent variables of interest, we
decompose the invariance constraints into those that involve structural parameters and
those that involve measurement parameters and relate to measurement invariance. Within
the resulting taxonomy of models, we show that, under the condition of measurement
invariance over time and subjects, there exists a form of structural equivalence between
levels of analysis that is distinct from full structural equivalence, i.e., ergodicity. We
demonstrate how measurement invariance between and within subjects can be tested in
the context of high-frequency repeated measures in personality research. Finally, we relate
problems of measurement variance to problems of non-ergodicity as currently discussed
and approached in the literature.

Keywords: measurement invariance, ergodicity, state-space modeling, latent variables, intra-individual level of

analysis

INTRODUCTION
Population heterogeneity exists when multiple distinct statis-
tical models are required to adequately describe a population
(Muthén, 1989). Statistical approaches to investigate and accom-
modate heterogeneity include, for instance, multi-group model-
ing (e.g., Jöreskog, 1971; Muthén, 1989), multi-level modeling
(e.g., Hox, 2002), and structural equation mixture modeling
(e.g., Dolan, 2009). In each of these modeling approaches a het-
erogeneous population is stratified into subpopulations whose
members adhere to the same models and differences within are
separated from differences between subpopulations (Muthén,
1989). But how small is the smallest subgroup? One could think
of a scenario in which breaking up a heterogeneous popula-
tion into ever smaller subpopulations leads to the smallest sub-
population that is empirically realizable. This is the individual
person (Millsap, 2011). Consider, for instance, the five-factor-
model (FFM) which states that the dimensions Extraversion,

Neuroticism, Agreeableness, Conscientiousness and Openness to
Experience are the major sources of inter-individual differences in
personality (McCrae and John, 1992). A researcher studying pop-
ulation heterogeneity can now well question, whether the FFM is
generally interpretable in the sense that it holds for each individ-
ual member of the overall population by addressing “universal”
determinants of human behavior (Hamaker et al., 2005).

Questions of this kind have indeed been posed recently and
have been addressed by means of single subject (N = 1) modeling
based on the analysis of repeated measurements over occasions
(Cattell, 1952; Gregson, 1983; Molenaar, 1985). By contrast-
ing intra-individual with inter-individual difference data, it has
been shown that inter-individual modeling results do usually
not generalize to the level of the individual. Rather, individ-
ual specifics, which remain undetected in standard large sam-
ple modeling techniques, seem to be the rule, not the excep-
tion (e.g., Molenaar et al., 2003; Molenaar, 2004; Hamaker
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et al., 2005, 2007; Kelderman and Molenaar, 2007; Molenaar
and Campbell, 2009; Schmiedek et al., 2009; Brose et al.,
2010, 2014; Nesselroade, 2010). The increasing interest in indi-
vidual modeling techniques therefore emphasizes the concep-
tual continuity between approaches to heterogeneous popu-
lations and to the individual. Explicitly stated, single subject
modeling accommodates population heterogeneity in its most
extreme sense as it does not necessarily involve the generaliza-
tion of results to other individuals or subpopulations of indi-
viduals. Each individual can thus potentially represent a sys-
tem that is quantitatively or qualitatively unique (Molenaar,
2004).

We have so far conceived of heterogeneity as heterogene-
ity between individuals, but one may just as well conceive of
heterogeneity as heterogeneity within individuals. That is, an
individual’s system characteristics may display (higher order) sta-
bility or variability over time (Molenaar, 2004). To illustrate this,
suppose a researcher aims at describing a person with respect to
a certain attribute over time. One may now think of an intra-
individual distribution of states rather than of a single trait score.
Considered over a representative set of situations, this distri-
bution may have relatively stable characteristics over time, e.g.,
stable mean and variance. These may then be used to differentiate
among people and may thus themselves be regarded as personal-
ity characteristics (Fleeson, 2001; Hamaker et al., 2007). However,
also within individuals, homogeneity cannot be taken for granted
but constitutes a (restrictedly) testable assumption. Similarly to
questioning to what extent population models generalize to indi-
vidual population members, one could question to what extent
an individual time series model generalizes to (subsets of) single
occasions.

The reorientation toward the individual in differential psy-
chology has been motivated by and motivates an integrative
consideration of the within- and the between-subject perspective.
It therefore provides an optimal setting to address the following
guiding questions: Under what conditions are modeling results
generalizable (a) over occasions within subjects, (b) over subjects
within occasions, and (c) over occasions and subjects simulta-
neously? Question (c) refers to the conditions that establish a
systematic relationship, i.e., equivalence between the structure
of intra- and the structure of inter-individual data (given large
N and T). Borrowing terminology from statistical mechanics,
this situation is termed ergodicity in the psychometric litera-
ture (e.g., Molenaar et al., 2003; Molenaar, 2004; Molenaar and
Campbell, 2009). In the present context, ergodicity is referred to
as a situation in which the statistical behavior of a time series
observed for a single subject is the same as the statistical behav-
ior of a sample of multiple subjects, obtained at a few occasions
(i.e., the definition of an ergodic process according to Molenaar,
2004, p. 208).

Psychological attributes, however, are often represented as
latent variables, the study of which requires psychometric
measurement. In the context of latent variable modeling the
conditions for an ergodic process decompose into invariance con-
straints on the structural part of the model and invariance con-
straints on the measurement model. The latter constraints relate
to the concept of measurement invariance (MI; Mellenbergh,

1989; Meredith, 1993; Millsap, 2011). In this paper, we discuss
how MI ties into the integrated within- and between-subject con-
text. Specifically, we focus on how the concept is to be considered
when one is interested in investigating the generalizability of
latent variable modeling results along the dimensions time and
subject.

The outline of the paper is as follows. Based on the defini-
tion as provided by Mellenbergh (1989), we elaborate on MI in
the between- and within-subject context, in general terms and
operationally in the linear factor model which lends itself well
to integrated modeling, i.e., simultaneous modeling of intra-
and inter-individual differences. We then proceed to address our
guiding questions using a bottom-up approach. That is, in a
multiple-subject, multiple-occasion setting, we set up a linear
multi-subject latent variable time series model that accounts for
intra-individual and inter-individual variability and we imple-
ment the model constraints that imply generalizability of results
along the dimensions time and subject. We consider these con-
straints separately at the level of the measurement process and
at the level of the latent psychological process. The result is
a taxonomy of differently restrictive models ranging from full
heterogeneity to full homogeneity between and within individ-
uals. It can be considered a taxonomy of problems1 a researcher
will potentially face when simultaneously modeling intra- and
inter-individual variation. We show that MI holding simultane-
ously over time and subject can be interpreted as constituting a
mode of structural equivalence between the intra- and the inter-
individual level of analysis that is distinct from full structural
equivalence. Using a real data illustration on intra-individual
variability in the personality domain (Borkenau and Ostendorf,
1998), we show how researchers can test for MI over subjects and
time. In the discussion, we reconsider the assumptions underlying
MI testing and review alternative interpretations of and poten-
tial approaches to measurement variance within and between
subjects.

MEASUREMENT INVARIANCE BETWEEN AND WITHIN
SUBJECTS
GENERAL DEFINITION OF MEASUREMENT INVARIANCE
The present focus on MI is motivated by the latent variable
paradigm which informs conceptual thinking in modern psy-
chology (Bollen, 2002; Borsboom et al., 2003; Borsboom, 2008;
Millsap, 2011). Although not directly observable, an attribute
such as agreeableness can be conceptualized as manifesting in
terms of observable behaviors or reportable attitudes, in this case
along the interpersonal dimensions warmth, kindness, appre-
ciation, and consideration (McCrae and John, 1992; Graziano
and Tobin, 2009). However, inferences about latent variables on
basis of observed indicators are subject to relatively large uncer-
tainty (Borsboom, 2008). MI is one of the psychometric concepts
addressing this uncertainty.

A general formal definition of MI in the latent variable
paradigm was given by Mellenbergh (1989). Suppose we have a
set of indicators Y that together form a psychometric instrument

1This useful notion was suggested by one of the reviewers.
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designed to measure a given latent variable Z, and suppose we
have a variable X. MI of the indicators with respect to X is defined
as independence of the indicators and X conditional on the latent
variable, i.e.,

f (Y |Z = z) = f (Y |Z = z, X = x) (1)

for all values of Z and X, in which f ( · ) denotes the probability
distribution function. Under MI, any effect of X on the indicators
is indirect, i.e., mediated through the latent variable (Lubke et al.,
2003b). Consequently, significant differences in observed indi-
cator scores are attributable to differences in the targeted latent
variable (Z) across units selected on basis of X, e.g., across per-
sons (e.g., Mellenbergh, 1989; Horn and McArdle, 1992; Lubke
et al., 2003b; van der Sluis et al., 2006; Wicherts and Dolan, 2010;
Millsap, 2011).

To illustrate this, imagine we attempted to measure agree-
ableness (Z) in a given sample using questionnaire Y . Let X
be the tendency to respond in a socially desirable manner
(Paulhus and Reid, 1991; Holtgraves, 2004). If Y was mea-
surement invariant with respect X, any two individuals from
the sample having the same level of agreeableness would attain
the same score on each item (apart from measurement error
effects). Importantly, they would do so independent of their
potentially different tendencies to respond in a socially desir-
able manner. Y would then be considered unbiased with respect
to X. On the contrary, if Y was measurement variant or biased
with respect to X, for instance due to item contents trig-
gering socially desirable responding, differences in individual’s
responses would not necessarily be interpretable as differences
in agreeableness. They may as well be interpretable as differ-
ences in socially desirable responding. Measurement variance
or bias thus refers to a replicable difference in item scores
which is not due to the targeted latent variable Z (Millsap,
2011). Meaningful comparisons in terms of the targeted latent
variable are thus not guaranteed on basis of biased item
scores (e.g., Dolan et al., 2004; Hamaker, 2007; Raykov et al.,
2012).

Moreover, biased items can lead to biased estimates of parame-
ters pertaining to the latent variable (Mellenbergh, 1989; Wicherts
and Dolan, 2010). The interpretation of the latent variable is
then rendered problematic. The converse argument would be
that, if MI across persons selected on basis of X holds, the
interpretation of the latent variable is the same across these per-
sons (e.g., Mellenbergh, 1989; Horn and McArdle, 1992; Lubke
et al., 2003a; Dolan et al., 2004; Borsboom and Dolan, 2007;
Nesselroade et al., 2007; Wicherts and Dolan, 2010; Raykov
et al., 2012). This notion of MI as theoretical invariance, as
compared to the above notion of unbiasedness, can mainly be
found for operationalizations of MI in the linear factor model.
It is argued that the interpretation of the factor is determined
by its relation to the observed indicators (the factor loadings)
and that it is unlikely that different factors are related to a
fixed set of indicators in exactly the same way (Lubke et al.,
2003a).

Regardless of which interpretational notion is employed, in
applying the concept of MI, one has to rely on premises which

may appear more or less sensible depending on the context. We
get back to this in more detail in the discussion.

CONCEPTUALIZATION OF MEASUREMENT INVARIANCE BETWEEN
AND WITHIN SUBJECTS
MI has been investigated extensively in the context of multi-group
factor analysis, with groups defined by nominal between-subject
variables, such as sex or ethnic background (e.g., van der Sluis
et al., 2006; Wicherts and Dolan, 2010). Mellenbergh’s defini-
tion, however, is a general one. It is neutral with respect to the
nature and format of the potentially biasing variable, the indi-
cator variables, and latent variables, and is thus independent of
the psychometric model that relates the indicators to the latent
variables (Mellenbergh, 1989; Meredith, 1993; Lubke et al., 2003a;
Wicherts and Dolan, 2010). We can therefore draw two con-
clusions in the present context. First, Mellenbergh’s definition
should be equally applicable at the between-subject and at the
within-subject level (Borsboom and Dolan, 2007). MI can also
be considered with respect to time-varying variables relevant
within subjects, such as mood or work pressure. For instance,
a questionnaire supposed to assess intra-individual fluctuations
in the state agreeableness over time may be biased with respect
to mood. Then, a person’s series of responses over time would
reflect not only variations in the state agreeableness but addi-
tionally variations in mood. The second conclusion based on
Mellenbergh’s general definition is, that it is possible to take a
more general perspective and consider MI with respect to sub-
ject and time (index) itself. This relates back to our introductory
questions 2.

OPERATIONALIZATION OF MEASUREMENT INVARIANCE BETWEEN
AND WITHIN SUBJECTS
Mellenbergh’s general MI definition gives rise to testable model
constraints when implemented in the context of a concrete latent
variable model. The latent variable modeling framework explic-
itly distinguishes between a (reflective) measurement model, in
which the observed indicators are modeled as a function of
the latent variables of psychological interest, and a structural
model, which concerns the latent variables and their interrela-
tionships. The linear factor model may be viewed as a proper
measurement model in which multiple continuous indicators
are linearly regressed upon a single continuous latent variable
(e.g., Mellenbergh, 1994). In the linear factor model, MI has
been associated with the constraints of strict factorial invari-
ance (strict FI; Meredith, 1993) for the standard between-subject
context. However, this measurement model features not only

2The shift in perspective from MI with respect to specific variables
to MI over subjects or time has interesting implications (cf. Meredith,
1993, p. 529, theorem 3). MI over subjects implies MI with respect
to any variable that varies exhaustively over subjects within the popu-
lation considered. Equivalently, and under the assumption of an appro-
priate sampling rate over time, MI over time implies MI with respect
to any variable that varies exhaustively within the period of time con-
sidered. Hence, by taking this perspective, one automatically accounts
for all measured or unmeasured (discrete and finite) background vari-
ables that vary along the dimensions time and subject (cf. Lubke et al.,
2003b).
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in structural equation modeling at the between-subject level
(SEM) but also in state-space modeling of time series data at
the within-subject level (SSM; Oud et al., 1990; Chow et al.,
2010). We argue that strict FI should be equally applicable
at the inter-individual and the intra-individual level. That is,
strict FI over (subsets of) subjects within occasions, i.e., sub-
ject invariant measurement parameters such as factor load-
ings, intercepts and residual variances should almost certainly
imply MI over subjects within occasions. In addition, strict
FI over (subsets of) occasions or time within subjects, i.e.,
time-invariant measurement parameters, should almost certainly
imply MI over time within subjects for the given sampling
rate3.

A BOTTOM-UP APPROACH FROM FULL HETEROGENEITY TO
ERGODICITY
THE BASELINE MODEL
We now demonstrate the relation between ergodicity and MI in
the context of linear stochastic time series models in state-space
format (Harvey, 1989; Oud et al., 1990; Hamilton, 1994; Durbin
and Koopman, 2001; Hamaker and Dolan, 2009; Chow et al.,
2010). Such models primarily account for intra-individual varia-
tion over time. However, by specifying them within many subjects
simultaneously we can extend them to multi-subject models.
The conditions under which modeling results are generalizable
over time, over subjects, and over time and subjects simulta-
neously may then be expressed in terms of specific invariance
constraints. Furthermore, the state-space format incorporates a
measurement model and a latent process model which allows dis-
tinguishing among constraints that apply to the measurement
parameters and constraints that apply to latent parameters. In
the following, subscript i and t refer to subject and discrete
time, respectively. We assume equidistant measurement occasions
throughout.

The latent process model is formulated as

ηi, t = αi, t + Bi, tηi, t−1+ ζi, t (2)

where ηi, t is a q × 1 vector of latent variables, the states, which
are regressed on themselves at the previous time point, Bi, t is a
q × q matrix of latent regression parameters capturing the auto-
and cross-lagged regression relationships among the states over
time, and αi, t is a q × 1 vector of latent regression intercepts.
The vector ζi, t is a q × 1 vector of latent residuals which are
assumed to be multivariate normally distributed with mean zero
and covariance matrix � i, t . The latent residuals are uncorrelated
over time and uncorrelated with ηi, t−1. The model-implied mean
vector of the latent states, νi, t , can be expressed as a function of
αi, t , Bi, t , and νi, t−1. The model-implied covariance-matrix of

3Under the assumptions that multivariate normality holds, it is unlikely
that variation in measurement error variance and variation in specific
factor variance cancel each other out across occasions and subjects
respectively, and it is unlikely that variation in measurement intercepts
and variation in specific factor means cancel each other out across
occasions and subjects respectively (cf. Meredith, 1993; Lubke et al.,
2003a,b).

the latent states, Pi, t , can be expressed as a function of Bi, t , and
Pi, t−1 and � i, t . Note that although the formal process is driven
by a vector autoregressive process of first order, the actual psy-
chological process needs not obey this structure. This so-called
single lag structure renders the model fitting process technically
convenient. However, any uni- or multivariate autoregressive
moving average model can be accommodated (i.e., reformu-
lated in terms of a first order vector autoregressive process) by
extending the state vector by the relevant process components
(e.g., Harvey, 1989; Hamaker and Dolan, 2009; Shumway and
Stoffer, 2011).

The measurement model is formulated as

yi, t = τi, t + �i, tηi, t+ εi, t (3)

where yi, t is a p × 1 vector of manifest indicators, �i, t is a p × q
matrix of factor loadings and τi, t is a p × 1 vector of measure-
ment intercepts. The p × 1 vector εi, t contains measurement
residuals, ideally measurement errors, which are assumed to be
multivariate normally distributed with mean zero and covariance
matrix �i, t . The measurement residuals are uncorrelated over
time and uncorrelated with ηi, t and ζi, t . Here, we additionally
assume zero correlations among the measurement residuals, i.e.,
�i, t is diagonal, satisfying the assumption of local independence.
The model-implied mean vector of the indicators, μi, t can be
expressed as a function of τi, t , �i, t , and νi, t . The model-implied
covariance-matrix of the indicators, �i, t , can be expressed as a
function of �i, t , and Pi, t and �i, t . As noted, this measurement
model is equivalent to the linear factor model as it features in
standard between-subject SEM (Oud et al., 1990; Chow et al.,
2010).

The model in Equations (2) and (3) is our baseline model.
Note that the model is completely unrestricted with respect
to time and subject, meaning that all model parameters can
vary in value over time and subjects, but also that the model
structure can be subject- and time-dependent. This concerns
the dimensionality of the state vector, the pattern of factor
loadings, and in the pattern of interrelationships among latent
states and latent residuals. As a consequence, the model-implied
covariance matrix, and the model-implied mean vector are
subject- and time-dependent. Theoretically, the model does thus
accommodate full heterogeneity within and between subjects.
We now impose increasingly restrictive invariance constraints
relating to the dimensions time and subject. We first con-
sider the model constraints that lead from total heterogeneity
to MI over time and subjects. We then consider the addi-
tional model constraints that eventually result in full invariance
over time and subjects, i.e., an ergodic process, as discussed by
Molenaar and colleagues (e.g., Molenaar, 2004; Molenaar and
Campbell, 2009).The different models are organized in form
of a taxonomy. Figure 1 represents this taxonomy in terms of
model equations and verbal terms. As we are interested in the
conditions that establish equivalence between the intra- and
inter-individual level of analysis, we focus on those models in
which we impose constraints simultaneously within and between
subjects.
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FIGURE 1 | Model taxonomy in terms of model equations and verbalized form.

MODES OF EQUIVALENCE BETWEEN THE INTRA- AND
INTER-INDIVIDUAL LEVEL OF ANALYSIS
We first consider the baseline model as a reference. As presented
in Equations (2) and (3) neither the measurement model nor
the latent process model is restricted over time or over sub-
jects. Note that, technically, the model is not identified until
some sort of time-related pattern is imposed. Assuming some
pattern would also be indicated from a theoretical perspective.
This needs however not involve constraining (measurement)
model parameters to be time-invariant. There is thus no equiv-
alence relationship between the intra- and the inter-individual
level. A model based on pooled data over occasions and sub-
jects would address a process that is a mixture over time and
subjects unconditional and conditional on the latent process

(cf. Muthén, 1989). Applying the interpretation of MI as unbi-
asedness results in the following conclusions. The absence of
MI over time within subjects due to time-varying measurement
parameters indicates that within any given person there is sys-
tematic observed variability over time that is not attributable
to the targeted latent variables in ηi, t . Since MI over subjects
within time points does also not hold due to person-specific
measurement parameters there is systematic observed variabil-
ity between persons that is not attributable to the targeted latent
variables. Different time- and subject-varying variables may cause
measurement variance and these associations may be person-
and indicator-specific and may change over time. As long as
these (unknown) variables and their effects on the indicators are
not accounted for, the interpretation of the latent variables as
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they develop over time and differ over subjects remains compli-
cated. This is in accordance with the notion of MI as theoretical
equivalence which holds that the latent variables in ηi, t are not
necessarily interpretable in an invariant sense over time or sub-
jects. That would become directly apparent in an extreme case,
in which the measurement model would display different factor
loading patterns over time or subjects. In the discussion, we elab-
orate on recently suggested strategies to handle and explore such
a situation.

By constraining all parameters to be invariant over time and
subjects we obtain the extreme opposite. The measurement and
process model reduce to

yi, t = τ + �ηi, t + εi, t (4)

and

ηi, t = α + Bηi, t−1 + ζi, t (5)

with

εi, t ∼ N(0, �) ,

ζi, t ∼ N(0, �) .

An additional requirement ensuring stationarity of the latent pro-
cess, i.e. time-invariant process characteristics, is that all eigenval-
ues of matrix B are less than one in absolute value (Hamilton,
1994; Molenaar, 2004). Note that the model-implied distribu-
tions of observed and latent variables are now independent of
subject and time. This model thus represents an operational-
ization an ergodic process under the assumption of normality
(Molenaar, 2004, p. 208). Under these conditions one (intra-
individual) process model generalizes across the entire time span
and across all subjects in the population considered, i.e., the
individual state-space time series models coincide with a stan-
dard between-subject longitudinal factor model based on at
least two occasions (Molenaar et al., 2003; Molenaar, 2004).
Consequently, the between-subject model provides a descrip-
tion of the intra-individual dynamics of each individual in
the population and over the entire period of time consid-
ered (e.g., Molenaar, 2004; Hamaker et al., 2005; Molenaar and
Campbell, 2009). Pooling over persons and time points is feasi-
ble as modeling results are fully generalizable between and within
subjects.

Between these two extreme variants is the model in which
the invariance constraints only concern the measurement model.
Strict FI imposed simultaneously with respect to time and sub-
ject implies MI with respect to time and subject and results in the
model

yi, t = τ + �ηi, t + εi, t (6)

and

ηi, t = αi, t + Bi, tηi, t−1 + ζi, t (7)

with

εi, t ∼ N(0,�) ,

ζi, t ∼ N
(
0, � i, t

)
.

Note that the conditions for MI over time and subjects con-
cern only the measurement process, that is, invariance of the
model parameters over time and subjects conditional on the
latent process. Simultaneous MI over time and subjects thus
represents a form of structural equivalence between levels of anal-
ysis that still allows for substantial heterogeneity with respect to
the latent variables and their interrelations over time and over
subjects. Consequently, we propose to distinguish between two
modes of structural equivalence. That is, a mode of measure-
ment equivalence, which involves MI over time and subjects but
does not include equivalence of the interrelations among the
latent variables and latent residuals, and a distinct mode of full
equivalence, which is ergodicity. A model based on data pooled
over occasions or subjects would imply a latent process that
is a mixture over time and subjects whereas modeling results
regarding the measurement process would be generalizable over
time and subjects.

Interpreting MI as biasedness of the indicators, this model
implies that systematic observed intra-individual as well as
inter-individual variability is attributable to the targeted latent
variables in ηi, t . The interpretation as theoretical invariance
holds that the same latent variables are measured within and
between subjects. Systematic within- and between-subject vari-
ation can be viewed as variation on the same set of latent
variables (cf. Lubke et al., 2003a). The model would thus cap-
ture intra-individual dynamics and inter-individual differences
therein with respect to the targeted latent variables (cf. Hamaker
et al., 2007). In this sense, measurement equivalence could
be considered a necessary condition for studying intra- and
inter-individual differences pertaining to the latent variables of
interest.

ILLUSTRATION
PURPOSE OF ILLUSTRATION, DATA DESCRIPTION, AND SELECTION
We show how measurement invariance can be investigated (a)
over subjects and (b) over time within a given subject. As we
use a modeling approach for stationary time series data we shall
limit our illustration to time series models which we assume to be
invariant with respect to time. We demonstrate below, that these
models allow us to incorporate measurement variance over time
to a limited extent.

We use data from Borkenau and Ostendorf (1998) that
consist of individual time series of self-ratings on per-
sonality items. On 90 successive days, 22 students indi-
cated the degree to which 30 adjectives applied to their
daily state. Standard between-subject factor analysis showed
that the items measure the inter-individual difference traits
Neuroticism, Extraversion, Agreeableness, Conscientiousness and
Openness to Experience (e.g., Borkenau and Ostendorf, 1990;
McCrae and John, 1992; Borkenau and Ostendorf, 1998).
The response format was a 7 point scale with high scores
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indicating high correspondence between described and perceived
state.

For our present illustration, we consider a subset of items
and subjects with approximately continuously and normally dis-
tributed responses, and the absence of obvious mean-level-trends
or variability-changes in the series over time4 . We focus on
three individuals (subjects 7, 13, and 22), and their responses
to the extraversion (“dynamic,” “sociable,” “shy,” “silent,” “lively,”
“reserved”) and agreeableness marker items (“selfish,” “good-
natured,” “domineering,” “helpful,” “obstinate,” “considerate”).
The individual data and descriptive figures are available as sup-
plementary materials.

DETERMINING THE INDIVIDUAL STATE-SPACE TIME SERIES MODELS
To set up the individual models, we imposed a two-factor mea-
surement model on each individual’s data, such that the extraver-
sion marker items load on one, the agreeableness marker items
on a second factor. Note that there is no guarantee that the two-
factor model, which would be expected to fit the data in standard
inter-individual factor analysis, will fit the individual time series
data (e.g., Molenaar, 2004; Hamaker et al., 2005; Molenaar and
Campbell, 2009). By means of exploratory factor analysis, one
could identify individual factor solutions that would potentially
be person-specific (regarding sets of factors and factor load-
ing patterns) and then conduct within-person fit comparisons
between the individual models and the two-factor model (e.g.,
Hamaker et al., 2005, 2007). Here, we assume configural invari-
ance over individuals, that is, an invariant number of factors and
an invariant factor loading pattern (Meredith, 1993).

We determined the individual process models by modeling
the auto- and cross-lagged relationships among the factors using
the Fortran program MKF (Dolan, 2010)5 . This program can
fit linear stochastic time series models in state-space format to
stationary time series data via the linear, time-invariant Kalman
filter algorithm. For correctly specified state-space models the
Kalman filter provides optimal estimates of the latent variable
states over time and gives rise to ML estimates of the model
parameters. Detailed explanations of the estimation procedure
can for instance be found in the econometric (e.g., Harvey, 1989;
Hamilton, 1994; Durbin and Koopman, 2001) and psychomet-
ric literature (e.g., Oud et al., 1990; Chow et al., 2010). Within
each individual we contrasted vector auto-regressive processes of
first order (VAR(1)), second order (VAR(2)), and of order zero

4We selected subjects based on visual inspection of the frequency distribu-
tions and time series plots of their responses. Although the five factor marker
items may be considered discrete, they are often treated as continuous in the
literature (e.g., Borkenau and Ostendorf, 1998; Hamaker et al., 2005, 2007;
Rammstedt and John, 2005). Indeed, Dolan (1994) demonstrated, that treat-
ing indicators with at least seven ordered response categories as continuous,
does not affect standard errors and overall test statistics of normal theory max-
imum likelihood estimation—if the distribution of each indicator is not too
skewed. Lubke and Muthén (2004) investigated problematic effects of skewed
indicator distributions of pseudo-continuous items in standard confirmatory
factor analysis.
5The program (including documentation) is available by request from
c.v.dolan@vu.nl. All MKF in- and output files for the models fitted are avail-
able as supplementary materials. These also include R-code to set up data and
input files for MKF, execute MKF, and read MKF output files.

(VAR(0)). In the last case, the factors do not display lagged rela-
tionships. We pruned models by fixing to zero non-significant
relationships in Bi and � i (overall-α = 0.05). We imposed scaling
by fixing the latent intercepts to zero and the latent residual vari-
ances to one. The information criteria BIC (Schwarz, 1978) and
AIC (Akaike, 1974) served as main indicators for relative model
fit but we also conducted Log-Likelihood difference tests where
models were nested (α = 0.05). Table 1 provides an overview of
the results and Figure 2 shows path diagrammatic representations
of the individual models.

According to AIC and BIC, subjects 7 and 22 both display a
latent process that involves lagged relationships among the fac-
tors. For subject 7 there is only one auto-regressive effect of first
order for the agreeableness factor, for subject 22 there is the full
set of first- and second-order auto- and cross-lagged regression
effects. In case of subject 13 the latent process does not con-
tain any lagged effects among the factors. Within occasions, both
factors are correlated within each of the three subjects.

With respect to the individual measurement models, the load-
ings relating the extraversion indicators to the corresponding
factor seem to be relatively homogeneous and reasonably large
within each individual (although the measurement residual vari-
ances are consistently large). This is different for the agreeableness
indicators which are associated not only with more heteroge-
neous loadings but also with loadings close to zero as in case
of the item “helpful.” Especially for subject 7 it is questionable
whether one coherent dimension underlies his or her responses to
the agreeableness indicators. However, to test this we would have
to employ a more explorative approach as outlined above. Note
that the loading signs suggest that the factors are inverted in some
cases.

ADDRESSING MI OVER SUBJECTS
To address MI over subjects we made use of the multi-group
modus in MKF treating each individual as a group. FI was then
tested via pairwise comparisons between all three subjects. Since
we scaled in the latent space by standardizing the conditional
latent states, all factor loadings and measurement intercepts are
freely estimated and can thus all be subjected to a test of invari-
ance across groups (Raykov et al., 2012). In order to not confound
FI constraints with invariance constraints pertaining to the latent
level, we freely estimated the latent residual variances in one of
the subjects whenever the factor loadings were constrained to
equality. Equivalently, we freed the latent intercepts in one of the
models, whenever the measurement intercepts were constrained
to equality (Wicherts and Dolan, 2010; Raykov et al., 2012).
Table 2 provides an overview of the results.

For all pairwise comparisons between subjects, the AIC and
the BIC favored the weakly factorial invariant model. Note that a
χ2-difference-test for instance between the configurally invariant
and the strictly factorial invariant model cannot be conducted as
the models are not nested. This is due to the freely estimated latent
parameters in the strictly factorial invariant model (Raykov et al.,
2012). The finding of subject-invariant factor loadings suggests
that the same dimensions underlie the variation within each of the
three individuals (Hamaker et al., 2007). These are however not
necessarily the dimensions underlying the differences between
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Table 1 | Comparison of different process models within individuals.

Process model npars −2LogL AIC BIC χ2-increase (relative to) df p

Subject 7

VAR (0) 37 1089 1163 1255 10.377 (VAR (1)) 4 0.035

6.993 (VAR (1)*) 1 0.008

VAR (1) 41 1079 1161 1263

VAR (1)* 38 1082 1158 1253 3.384 (VAR (1)) 3 0.336

VAR (2) 45 1095 1185 1297

Subject 13

VAR (0) 37 1522 1596 1689 5.221 (VAR (1)) 4 0.265

VAR (1) 41 1517 1599 1702

VAR (2) 45 1515 1605 1718

Subject 22

VAR (0) 37 1212 1286 1378 23.655 (VAR (1)) 4 0.000

VAR (0)* 36 1214 1286 1376 1.815 (VAR (0)) 1 0.178

VAR (1) 41 1188 1270 1373

VAR (1)* 37 1202 1276 1368 13.366 (VAR (1)) 4 0.010

VAR (2) 45 1161 1251 1363.7

VAR (2)* 39 1189 1267 1364.1 27.390 (VAR (2)) 6 0.000

Model variants denoted with an asterisk are pruned with respect to simultaneous and lagged relationships. The relatively best fitting model according to AIC and

BIC is set in italics. χ2-differences are reported for nested models.

individuals (Lubke et al., 2003a; Hamaker, 2007) as, according to
the fit indices used, uniform bias is likely to be present for at least
some of the items. Meaningful comparisons between subjects can
be considered feasible as long as they refer to differences in the
structure of latent intra-individual variation only. The extent and
nature of potential uniform bias between individuals could be the
subject of subsequent analyses.

ADDRESSING MI OVER TIME
Strict FI over occasions cannot be tested directly, as we confined
this illustration to time-invariant models. However, we can inves-
tigate whether strict FI over time is violated in a specific sense. We
do this by testing for uniform bias of the indicators with respect
to a selected time-varying variable X. This can be cast in terms
of a main-effect of X on the indicators additionally to the latent
variables (Lubke et al., 2003b).

We extend the time-invariant model for a given individual
i = i∗ to

yi ∗, t = τi∗ + �i∗ηi∗, t+�i∗ xi∗, t + εi∗, t (8)

and

ηi∗, t = αi∗ + Bi∗ηi∗, t−1 + �i∗ xi∗, t + ζi∗, t (9)

where xi∗, t is a r × 1 vector of (fixed) covariates and �i∗ and �i∗
are p × r and q × r matrices of regression coefficients. If there
is a significant effect of at least one variable in xi∗, t on at least
one of the indicators, measurement invariance over time would
be violated, as—returning to Mellenbergh’s definition—the dis-
tribution of the indicators is dependent on xi∗, t conditional on
the latent variables (Lubke et al., 2003b). However, the absence of
uniform bias with respect to xi∗, t implies neither MI with respect

to these variables (which may still introduce non-uniform bias or
be associated with varying measurement residual variances), nor
MI with respect to other time-varying variables, let alone MI with
respect to time.

We focused on the neuroticism marker item “bad tempered”
as a mood indicator and potentially biasing variable in subject 7.
The results are shown in Table 3 and the path diagrammatic rep-
resentation of the corresponding model is displayed in Figure 3.

The BIC which is more responsive to parsimony than the
AIC (Hamaker et al., 2005) favors the model without direct
effect of the mood indicator on all indicators and the agree-
ableness indicators respectively. Both AIC and χ2-difference test
suggest that uniform bias is present for at least one of the indi-
cators. In a given modeling application one could investigate
whether uniform bias can be accounted or controlled for also with
respect to other potentially biasing covariates. Ultimately how-
ever, one needs to decide whether one is willing to discard other
forms of bias over time as unlikely or whether actually a mod-
eling approach that incorporates time-varying parameters is the
more valid and more interesting alternative. Fitting the “wrong”
model to intra-individual data which could be a measurement-
invariant or more generally a time-invariant model, will also
affect the quality of between-person comparisons. We briefly
outline modeling approaches to time-varying dynamics in the
discussion.

DISCUSSION
In this paper, we showed how MI (e.g., Mellenbergh, 1989), if
present, may facilitate or, if absent, may complicate the gen-
eralizability of modeling results within and between subjects.
Tying into the ergodicity debate (e.g., Molenaar, 2004), we clar-
ified the relationship between the concepts of MI and ergodicity
in the context of general latent variable modeling as well as in
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FIGURE 2 | Relatively best fitting models for subjects 7, 13, and 22. Paths
fixed to zero are not drawn. Note that these include the regression parameters
of the vector eta on the constant, i.e., vector alpha, which are fixed to zero for
scaling purposes. Paths fixed to one are dashed. These include the latent
residual variances in order to provide a latent metric. Freely estimated paths

are drawn in black and parameter point estimates are provided. Items denoted
with e are extraversion marker items, whereas items denoted with a are
agreeableness marker items. The numerical ordering of the items employed
here corresponds to the ordering of the items as given in the data description
section. Index i is dropped as the models describe single individuals.

a linear multi-subject state-space time series model. We con-
cluded that MI holding simultaneously over time and subjects
implies a mode of structural equivalence between the intra-
and the inter-individual level of analysis that is distinct from
full structural equivalence, i.e., ergodicity. That is, measurement
equivalence is a mode of structural equivalence conditional on the
latent process. Following common interpretations of measure-
ment invariance, the mode of measurement equivalence could be
considered an important condition for integrative latent variable

modeling of intra- and inter-individual differences (cf. Ellis and
van den Wollenberg, 1993, who stress the importance of local
homogeneity in IRT-modeling which is tantamount to measure-
ment equivalence; cf. Millsap, 2011). Using intra-individual time
series data from three individuals on daily personality states, we
investigated the tenability of MI constraints over subjects and over
time. Although strict FI over subjects was absent, the presence of
weak FI suggested that between-subject comparisons were feasible
with respect to the structure of latent intra-individual variation.
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Table 2 | Multi-group models with measurement parameters constrained over groups.

Measurement models npars −2LogL AIC BIC χ2-increase (relative to) df p

Comparison between subjects 7 and 13

Configural invariance 75 2604 2754 2942
Weak FI (�invariant) 65 2621 2751 2913
Strong FI (�, τ invariant) 55 2797 2907 3044
Strict FI (�, τ, � invariant) 43 2863 2949 3056 66.087(Strong FI) 12 0.000
Comparison between subjects 7 and 22

Configural invariance 83 2242 2408 2616
Weak FI (�invariant) 73 2255 2401 2583
Strong FI (�, τ invariant) 63 2474 2600 2757
Strict FI (�, τ, � invariant) 51 2516 2618 2745 42.156(Strong FI) 12 0.000
Comparison between subjects 13 and 22

Configural invariance 82 2684 2848 3053
Weak FI (�invariant) 72 2701 2845 3025
Strong FI (�, τ invariant) 62 2787 2911 3066
Strict FI (�, τ, � invariant) 50 6162 6262 6387 3374.630(Strong FI) 12 0.000

The relatively best fitting model according to AIC and BIC is set in italics. χ2-differences are reported for nested models.

Table 3 | Comparison of models incorporating a potentially biasing variable x for subject 7.

Model npars −2LogL AIC BIC χ2-increase (relative to) df p

y, η on x 52 1010 1114 1244
η on x 40 1044 1124 1224 34.250 (y, η on x) 12 0.001
y(a), η(a) on x 45 1034 1124 1237
η(a) on x 39 1049 1127 1225 15.061 (y(a), η(a) on x) 6 0.020

y(a) denotes the agreeableness marker items, and η(a) denotes the agreeableness factor. We allowed for direct effects of x on the latent variables but did not

establish whether these were significant.

χ2-differences are reported for nested models.

FIGURE 3 | Individual model for subject 7 including the neuroticism marker item “bad tempered” as a potentially biasing (fixed) variable. According to
this representation, the neuroticism item possibly affects the agreeableness marker items above the potential effect it has through the agreeableness factor.

We were limited in investigating MI over time due to the time-
invariant models we employed. Consequently, we could test for
specific MI violations but we did not address unbiasedness with
respect to time.

The results of our illustration are in line with a growing body
of empirical work investigating potential relationships between
the structures of intra- and inter-individual variation and means.
So, although we presented measurement equivalence as a less

Frontiers in Psychology | Quantitative Psychology and Measurement September 2014 | Volume 5 | Article 883 | 18

http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Adolf et al. Measurement invariance within and between individuals

restrictive mode of equivalence between levels of analysis than
full structural equivalence, we acknowledge that even this weaker
form of structural equivalence may be overly restrictive. We can
therefore only stress that the problem of non-ergodicity must
in part be viewed as a measurement problem since the viola-
tion of measurement invariance with respect to time and subject
is a source of heterogeneity within and between individuals (cf.
Nesselroade et al., 2007, 2009; Borsboom et al., 2009). It was the
aim of this paper to show that the investigation of measurement
related heterogeneity within and between individuals in latent
variable modeling qualifies as a problem which is related to but
also distinct from the problem of ergodicity.

Regarding a closer examination of measurement related het-
erogeneity, the presented taxonomy is clearly an abstraction. In
practice, the finding of untenable MI constraints is not necessar-
ily the end of an investigation. Modeling application situations
falling in the baseline model category and associated problems
of measurement variance can be of very different nature. For
instance, it may be possible to interpret measurement variance
substantively against a given theoretical background (Millsap and
Hartog, 1988; Kelderman and Molenaar, 2007). As an exam-
ple, consider developmental or interventional effects over time,
which may manifest as quantitative changes in given parameters,
and, more importantly, in changes in the nature or meaning of
the psychological entities of interest (Millsap and Hartog, 1988;
Molenaar, 2004; Kelderman and Molenaar, 2007; Schmiedek
et al., 2009). Also, even if measurement variance is considered a
nuisance factor, only a few indicators may display measurement
variance. Subsequent analyses may then locate the MI violation
in the model and establish whether the number of unbiased indi-
cators is sufficient to proceed with meaningful latent variable
modeling, as we have indicated in the illustration (Byrne et al.,
1989; Wicherts and Dolan, 2010). Likewise, not all subjects within
a sample and not all occasions within a period of time may be
affected by measurement variance. It may then be possible to
identify intra- or inter-individual variables that explain measure-
ment variance (Mellenbergh, 1989). In the present context, this
relates to the concept of conditional equivalence introduced by
Voelkle et al. (2014). In a simulation study these authors show
that full equivalence between inter- and intra-individual model
structures can easily be obscured by incorporating single factors
that introduce subject- and time-related heterogeneity, e.g., linear
mean trends over time, differences between groups of individuals.
Conversely, it might be possible to identify such factors for certain
constructs and control for them in order to establish conditional
equivalence, that is, equivalence for subgroups of individuals
and occasions. In case equivalence is well hidden or absent, one
can still explore the various types of less restrictive (uncondi-
tional) relationships that may arise between intra-individual and
inter-individual model characteristics (cf. Kuppens et al., 2010;
Montpetit et al., 2010; Brose et al., 2014).

These approaches to the links between levels of analysis have
yet to be utilized to specifically address measurement variance
within and between individuals. To further emphasize why these
approaches could be both interesting and necessary given mea-
surement related heterogeneity within and between individuals,
let us return to the assumptions, upon which MI is predicated.

These concern the existence of the latent variables of interest
and the appropriateness of the observed variables as indicators.
The first premise holds, that the indicators are—although possi-
bly imperfect, i.e., biased—valid in principle (cf. Meredith, 1964,
1993). That is, the indicators are to some extent measuring the
variable they were designed to measure (Millsap, 2011) and these
psychometric qualities should hold absolutely true or at least hold
true for the units of analysis we wish to compare, say, a sample
of individuals (Nesselroade et al., 2009). This in turn requires
the assumption that the targeted latent variable is indeed given
(Mellenbergh, 1989) or a theoretically sensible construct across
the selected individuals. As noted by Byrne and Campbell (1999)
these premises may be questionable, for instance in applying a
measurement instrument in a setting, other than the setting in
which it was developed. The setting may be determined by the
cultural background of the examinees or the dimension of anal-
ysis, e.g., the intra-individual dimension. Hence, a violation of
MI with respect to differing setting conditions can be indicative
in the following regard. First, it may be that the given test is not
valid under some conditions although the latent variable is—on
an abstract level—existent or theoretically sensible. The latent
variable simply manifests differently under different conditions
(e.g., Byrne and Campbell, 1999). Nesselroade et al. (2007, 2009)
pointed out that a targeted construct (e.g., athletic performance)
may be a sensible choice for comparing different individuals—
but may require the use of individual-specific indicators (“How
well do you play tennis vs. golf?”). Second, a given test may be
invalid under certain conditions because the construct is not con-
ceptually sensible across conditions. To label these two scenarios,
Byrne and Campbell (1999) refer to the term construct bias as
opposed to item bias which indicates that the problem has shifted
from an “operational” to a “theoretical” problem (Kelderman and
Molenaar, 2007, p. 451). The concept of construct bias seems to
be highly interesting when contrasting intra- and inter-individual
variation. In the light of increasing empirical evidence in favor
of substantive individual specifics (e.g., Hamaker et al., 2005;
Brose et al., 2010) it raises the following question: To what extent
are traditional psychological constructs (and according measure-
ment instruments) that were derived in a between-subject con-
text applicable to intra-individual differences? This is arguably a
philosophical question, which has been addressed intensively by
Borsboom et al. (2003, 2009) and by Cervone (2004, 2005). These
authors argue that between-subject constructs like extraversion
and agreeableness do well in describing inter-individual differ-
ences, but are problematic at the level of the individual, where
they lack “causal force” (e.g., Cervone, 2004; p. 184). That is,
per se, they do not map onto specific psychological mechanisms
or processes within the individual, and are thus not suitable to
feature as explaining factors in a within-subject model of psycho-
logical functioning (van der Maas et al., 2006; Borsboom et al.,
2009). Borsboom et al. (2009) conjecture that there are “infinitely
many ways” (p. 88) to achieve a certain outcome on a standard
between-subject dimension. The associated constructs thus may
lack coherence from an individual-driven perspective, in that they
emerge as abstract aggregates only at the level of the popula-
tion. However, this pessimistic prospect regarding the meaningful
application of inter-individual level constructs to the individual
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can be probed empirically. Millsap employs the term differen-
tial item functioning rather than the term bias to indicate that
“the researcher is unable or unwilling to clearly define the tar-
geted attribute” (Millsap, 2011; p. 9). This can be turned into
a positive message, namely to explore measurement variance—
be it within or between individuals—as a potentially meaningful
phenomenon.

An explorative empirical approach to person- and time-
related heterogeneity at the level of measurement using the above
described strategies and principles can enlighten how measure-
ment instruments that were constructed in the between-subject
context function at the within-subject level. This in turn can
inform (and be informed by) the elaboration of individual-level
concepts and theories (e.g., Cervone, 2005) as well as their imple-
mentation in empirical research in terms of operationalizations,
measurement devices, and modeling techniques (e.g., Schmiedek
et al., 2009). In this sense, it could contribute to building up the
theoretical and conceptual foundation that is needed for a true
reorientation toward the individual in differential psychology
(Molenaar, 2004).

The presented modeling approach has the following limita-
tions, however, that would restrict such an explorative endeavor.
First, we based our modeling on the linear, time-invariant Kalman
filter and ML estimation which led to time-invariant time series
models. Time-varying model parameters can—to some extent—
be accommodated using the extended Kalman filter (e.g., Chow
et al., 2011; Chow and Zhang, 2013) or a Bayesian approach (e.g.,
Del Negro and Otrok, 2008). Second, we employed a multi-group
approach, i.e., a two-step procedure to address inter-individual
differences in intra-individual dynamics. Inter-individual differ-
ences in intra-individual model parameters can be quantified
and modeled directly using a Bayesian multi-level approach (e.g.,
Lodewyckx et al., 2011). Note, however, that multi-group mod-
eling is in principle less restrictive than hierarchical modeling.
In the present context, it did not impose any restrictions across
individuals apart from applying the same modeling framework
to each individual’s data. That is, within individuals, we assumed
continuous, normal variables, at the manifest and latent level,
which were linearly related to each other. Our reliance on the
linear factor model here is expedient, although we are satisfied
linear modeling of 7 point scales is adequate. Generalized lin-
ear modeling of intra-individual time series to accommodate
discrete indicators is possible (cf. van Rijn et al., 2010), but at
present depends on software development. Non-normally dis-
tributed continuous indicators (due to nonlinear effects) can be
approximated by mixtures of (un-)conditional normal distribu-
tions (e.g., Klein and Moosbrugger, 2000). Note that in our case of
single-subject models, mixture models return us to time-varying
models (Hunter, 2014), which are increasingly discussed in the
psychometric literature.
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Measurement bias has been defined as a violation of measurement invariance. Potential
violators—variables that possibly violate measurement invariance—can be investigated
through restricted factor analysis (RFA). The purpose of the present paper is to investigate
a Bayesian approach to estimate RFA models with interaction effects, in order to detect
uniform and nonuniform measurement bias. Because modeling nonuniform bias requires
an interaction term, it is more complicated than modeling uniform bias. The Bayesian
approach seems especially suited for such complex models. In a simulation study we vary
the type of bias (uniform, nonuniform), the type of violator (observed continuous, observed
dichotomous, latent continuous), and the correlation between the trait and the violator
(0.0, 0.5). For each condition, 100 sets of data are generated and analyzed. We examine
the accuracy of the parameter estimates and the performance of two bias detection
procedures, based on the DIC fit statistic, in Bayesian RFA. Results show that the accuracy
of the estimated parameters is satisfactory. Bias detection rates are high in all conditions
with an observed violator, and still satisfactory in all other conditions.

Keywords: Bayesian structural equation modeling, measurement invariance, uniform bias, nonuniform bias,

interaction effects

1. INTRODUCTION
Measurement bias research examines whether different respon-
dents show differences in response behavior to test items. In the
presence of measurement bias, systematic differences between
observed test scores do not validly represent differences in the
trait(s) that the test is supposed to measure. Measurement bias is
formally defined as a violation of measurement invariance (Oort,
1992, after Mellenbergh, 1989). A test is measurement invari-
ant with respect to V , if the following conditional independence
holds:

f1(X|T = t,V = v) = f2(X|T = t), (1)

where X is a set of observed variables, T the trait(s) of interest
measured by X, and V a set of variable(s) other than T, which
possibly violates measurement invariance; function f1 is the con-
ditional distribution of X given values of t and v, and f2 is the
conditional distribution of X given t. If conditional independence
does not hold (i.e., f1 �= f2), the measurement of T by X is said to
be biased with respect to V . This is a general definition of mea-
surement bias in the sense that T and V may be measured on
any measurement level (i.e., nominal, ordinal, interval, or ratio),
and their mutual relationships may be linear or non-linear. In
addition, the violator V may be observed or latent.

Structural equation modeling (SEM) offers a flexible frame-
work to test for measurement bias. If the violator is an observed
discrete variable, e.g., indicating group membership, measure-
ment bias is typically investigated through multigroup factor
analysis (MGFA; Meredith, 1993). In MGFA, differences across
groups in intercepts indicate uniform bias (i.e., the size of bias

is constant across the trait levels) and differences across groups
in factor loadings indicate nonuniform bias (i.e., the size of bias
varies with the trait levels). Because MGFA requires an observed
discrete violator, its use is rather restricted. In the case of a contin-
uous violator, MGFA is sometimes applied using the categorized
version of the violator. However, this practice is to be discour-
aged, because of the known negative consequences of categorizing
variables (e.g., MacCallum et al., 2002; Barendse et al., 2012),
and because an attractive alternative is available. This very gener-
ally applicable alternative is restricted factor analysis (RFA; Oort,
1992, 1998). The advantages of RFA over MGFA are that RFA can
assess measurement bias with respect to any kind of violator (i.e.,
continuous or discrete, observed, or latent) and with respect to
multiple violators simultaneously.

In the linear model associated with RFA, the model for xi, a
vector with the observed scores for subject i on J variables X, with
a single violator and a single latent trait is defined as

xi = u + ati + bvi + ctivi + dei, (2)

where u is a vector of intercepts for the J observed variables,
ti and vi are the scores of subject i on the latent trait T and
the potential violator V , respectively, ei is a vector of subject i’s
scores on the standard residual factors E, and a, b, c, and d are
vectors of regression coefficients; the elements of a and d2 are
typically denoted as the loadings and residual variances, respec-
tively, and b and c express possible bias. In case V is a categorical
variable, dummy variables are used for V . If the relationships
between the potential violator and the observed variables are
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entirely explained by the indirect relationships through the latent
trait, then the observed variables are unbiased with respect to the
possible violator. A non-zero element in b indicates uniform bias,
and a non-zero element in c indicates nonuniform bias. Uniform
bias can thus be investigated by testing the direct effects of a vio-
lator on the observed variables (Oort, 1992, 1998). Non-uniform
bias can be investigated by testing the direct effect of the prod-
uct of the latent trait and the violator on the observed variables
(see Barendse et al., 2010, 2012), either by using latent moderated
structures (Klein and Moosbrugger, 2000) or by using a random
slope parametrization (Muthén and Asparouhov, 2003).

The RFA method is similar to the multiple indicator multiple
cause (MIMIC) method as described by Muthén (1989). They dif-
fer in that in the MIMIC model the violator has a causal effect on
the latent trait, whereas in RFA the two are correlated.

So far, the vast majority of the literature on testing measure-
ment bias concerns frequentist methods. Alternatively, a Bayesian
approach could be used, thereby offering the general advan-
tage that prior knowledge can be incorporated in the analysis.
Recently, the first steps were taken toward a Bayesian approach
in this context. A Bayesian MGA has been shown to prop-
erly detect bias (Lee, 2007). Further, Muthén and Asparouhov
(2012) motivate that the Bayesian approach is more suitable to
reflect substantive theories, because it allows for an approximate
parameter specification, rather than an exact one. As Muthén
and Asparouhov (2013) show, a Bayesian MGFA thus allows for
approximate measurement invariance testing. Because a Bayesian
MGFA is still restricted to cases with a single observed discrete
violator, we consider a Bayesian RFA method here. This method
is appealing, because it shares the general advantages of a Bayesian
approach, while being applicable to assess measurement bias with
respect to multiple violators simultaneously, and of any kind (i.e.,
continuous or discrete, observed or latent).

The purpose of the present paper is to examine the perfor-
mance of the Bayesian approach to estimate RFA models with
interaction effects, in order to detect uniform and nonuniform
measurement bias. An additional advantage of Bayesian RFA is
that it handles the estimation of the interaction term easier than
frequentist (maximum likelihood) RFA. In a simulation study,
we will examine the accuracy of the parameter estimates in the
Bayesian RFA, and we will compare the performance of two bias
detection procedures.

2. METHODS
Measurement bias in simulated data will be investigated with a
Bayesian version of the RFA method. In the data generation, we
vary the type of bias (none, only uniform, only nonuniform,
both uniform and nonuniform), the type of the continuous vio-
lator (observed, latent), and the correlation between the trait
and the violator (ρ(T,V) = 0.0, 0.5). In a fully crossed design
with 100 replications for each condition, this yields 4 × 2 ×
2 × 100 = 1600 simulated datasets. We additionally introduce
a dichotomized violator by performing a median split on the
observed continuous violator, and thus analyze 2400 datasets in
total. Each data set is analyzed using two different bias detection
procedures (to be explained in Section 2.4). The accuracy and effi-
ciency of the parameter estimates is assessed. The performance of

the two bias detection procedures is evaluated by examining the
proportions of true and false positives.

2.1. DATA GENERATION
Each data set consists of the observed scores of 500 subjects on 6
items with continuous response scales, and is generated accord-
ing to the linear model in Equation 2. We draw subject scores t,
v, and e from a multivariate standard normal distribution with
an identity covariance matrix in the condition with ρ = 0.0; in
the condition with ρ = 0.5, the element in the covariance matrix
associated with t and v is set to 0.500. We have chosen the value
of ρ = 0.0 as we presume that an absence of linear dependency
is the easiest condition in this respect; further we have chosen
the value of ρ = 0.5, as its corresponds to a “large correlation,”
according to Cohen’s rules of thumb (Cohen, 1988). The inter-
cepts u are set at zero, and the regression coefficients a and d
are set at 1.000, for all items. Bias is introduced in the first item
only, in such a way that the amount of bias is in line with other
bias detection studies (e.g., Oort, 1998). That is, we set param-
eter b = 0.400 to obtain uniform bias and parameter c = 0.400
to obtain nonuniform bias—the remaining elements of b and c
are fixed at zero. Table 1 gives an overview of the chosen param-
eter values for the first item. With these values, if T and V are
uncorrelated, the expected percentage of total observed item vari-
ance due to the bias is approximately 7% in conditions with only
uniform or nonuniform bias and approximately 14% in condi-
tions with both uniform and nonuniform bias. If T and V are
correlated, these percentages are 6% (in case of uniform bias),
7% (nonuniform bias), and 13% (both uniform and nonuniform
bias).

The violator can either be a continuous latent, a continuous
observed or a dichotomous observed variable. In conditions with
a continuous latent violator, we introduce three observed vari-
ables indicative of the latent violator, which follow a linear factor
model. We draw the scores on the latent violator and the residu-
als independently from a standard normal distribution, and use

Table 1 | Parameter values for 4 (type of bias) × 2 (correlation

between trait and violator) = 8 data generation conditions.

Unstandardized values of Item 1 parameters

a b c d σ 2(X )

ρ(T,V ) = 0.0

No bias 1.000 0.000 0.000 1.000 2.000
Uniform 1.000 0.400 0.000 1.000 2.160
Nonuniform 1.000 0.000 0.400 1.000 2.160
Both 1.000 0.400 0.400 1.000 2.320
ρ(T,V ) = 0.5

No bias 1.000 0.000 0.000 1.000 2.000
Uniform 1.000 0.400 0.000 1.000 2.560
Nonuniform 1.000 0.000 0.400 1.000 2.200
Both 1.000 0.400 0.400 1.000 2.760

u = 0, μ(T) = μ(V) = μ(E) = 0, σ2(T) = σ 2(V) = σ 2(E) = 1; All values pertain to the

parameters of Item 1, which is biased in all conditions with bias; parameters of

all other items have a = 1, b = 0, c = 0, and d = 1 in all conditions. See Appendix

1 in Supplementary Material for the computation of σ2(X).
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factor loadings equal to one. In conditions with a continuous
observed violator, we draw V from a standard normal distribu-
tion. In conditions with a dichotomous observed violator, we
perform a median split on the continuous observed violator and
conveniently choose V = −1 for one group and V = 1 for the
other group to model the interaction effects.

2.2. BAYESIAN STRUCTURAL EQUATION MODELING AND BIAS
DETECTION

Bayesian SEM to detect bias is embedded in Bayesian theory
and the associated computational procedures. Bayesian theory
combines prior information about the distributions of param-
eters (called the prior distributions) and the distributions of
the data under any SEM model (M). Let θ denote a vector of
unknown parameters that are considered to be random. As the
observed data and the parameters are random, we model the
joint probability (called the posterior distribution) as a function
of the conditional distribution of the data given the parame-
ters p(X|θ,M) and the prior distribution of the parameters p(θ).
More formally this is defined in Bayes’ rule:

p(X, θ |M) = p(X|θ,M)p(θ)

p(X)
, (3)

where p(X) normalizes the conditional distribution. As normal-
izing does not involve any model parameters, Equation 3 can be
rewritten as

p(X, θ |M) ∝ p(X|θ,M)p(θ). (4)

Equations 3 and 4 show that the posterior density function
includes sample information and prior information. If the prior
distribution of θ is so-called uninformative, the posterior density
function is proportional to the log-likelihood function. Ideally, a
closed form solution of the posterior can be obtained via inte-
gration. In practice, one simulates a sufficiently large number of
observations from the posterior distribution with Markov Chain
Monte Carlo sampling to approximate statistics such as the mean
or mode of parameters. Tanner and Wong (1987) introduced
the idea to analyze latent variables in a Bayesian context, which
is particularly useful for SEM. Latent variables are then treated
as hypothetical missing data and the posterior distribution is
analyzed on the basis of the complete data.

2.3. BAYESIAN MODEL SELECTION
In Bayesian bias detection we aim at identifying the biased item(s)
and the nature of the bias. We therefore compare competing mod-
els (i.e., models with and without parameters to account for bias)
and select the best fitting model using the deviance information
criterion (DIC; see Spiegelhalter et al., 2002). The DIC is a mea-
sure of model fit that penalizes for complexity. Under a competing
model Mk, the DIC is defined as

DICk = − 2

L

L∑

l = 1

log p(Y |θ (l)
k ,Mk) + 2dk (5)

where θk is a vector of unknown parameters of dimension dk, and
{θ (l) : l = 1, . . . , L} is a sample of observations simulated from

the posterior distribution. The model with the smallest DIC has
the highest chance to predict a replicate data set.

Lee (2007) already concluded that a very small difference in
DIC values of competing models could be misleading. Also, Lunn
et al. (2009) outlines a variety of reasons that could distort the
DIC values. We therefore compare our reference model—to be
defined later—with competing models and apply two different
cut-off values, namely a strict cut-off and a liberal cut-off, to be
defined later.

2.4. MEASUREMENT BIAS DETECTION
In a model accounting for bias, we include a direct effect of the
violator on the item score to account for uniform bias and a direct
effect of the product of the trait and the violator on the item
score to account for nonuniform bias. We consider three types of
violators (latent continuous, observed continuous, and observed
dichotomous), and therefore define three related Bayesian RFA
models to model both uniform and nonuniform bias. A bias
detection model with respect to a continuous latent violator
is graphically displayed in Figure 1. To evaluate the approach,
we will examine the accuracy and efficiency of the parameter
estimates, and the performance in detecting bias with two bias
detection procedures.

2.4.1. Parameter estimates
To evaluate the accuracy and the efficiency of the parameter esti-
mates expressing uniform and nonuniform bias, we estimate for
each simulated data set the model according to Equation 2; here-
with, we fix the elements of b and c associated with items 2–6
(which are non-biased) at zero. Of each converged estimated
model, we consider for the first item the posterior distribution
of b (indicating uniform bias) and the posterior distribution of c
(indicating nonuniform bias). For each posterior distribution, we
compute its mean (denoted as θb for b and θc for c) and the Monte
Carlo standard error (denoted as se(θb) and se(θc), respectively)
using the time series standard error as implemented in CODA
(Roberts, 1996; Plummer et al., 2006).

As the accuracy measure, we compute for each condition the
estimation bias, as the average of the means of the posterior distri-
bution minus the chosen population values [i.e., (m(θb) − b) and
(m(θc) − c)]. (Throughout this paper, we shall use the notation

FIGURE 1 | Bias detection with respect to a continuous latent violator

V , TV ∗ indicates the interaction between T and V .
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m( · ) to denote a mean.) As the efficiency measure, we com-
pute for each condition the standard deviation of the means of
the posterior distribution (i.e., sd(θb) and sd(θc)). To evaluate the
Monte Carlo sampling accuracy, we compute the mean of the
time-series standard errors across the replicates [i.e., m(se(θb))
and m(se(θc))].

2.4.2. Two procedures to detect bias
In the single run procedure, we consider for each of the j (j =
1, . . . , 6) items indicative of the trait, a reference model and
compare that model to five ((j′ = 1, . . . , 6), j′ �= j) competing
models. Both the reference and competing models have parame-
ters accounting for both uniform and nonuniform bias. For each
item j, we consider the model with bias parameters for that item
as the reference model. We compare each reference model to each
of the five competing models ((j′ = 1, . . . , 6), j′ �= j), by consider-
ing each of five DIC differences, as the DIC value of the reference
model minus the DIC value of the competing models. With the
strict cut-off value, the item with bias parameters in the reference
model is indicated as biased if the associated DIC difference is
negative. With the liberal cut-off value, the DIC difference should
be smaller than −10, to flag item j as biased. The value of 10 was
chosen, as it is thought to reflect a substantial difference in model
fit (MRC Biostatistics Unit, 2006).

In the model difference procedure, we consider for each of the j
(j = 1, . . . , 6) items indicative of the trait, a reference model with
bias parameters for item j, and compare that to a nested model,
namely without any bias parameters. We apply a strict cut-off
value, considering item j to be biased whenever the DIC of the
reference model is lower than that of the nested model. With the
liberal cut-off value, item j is indicated as biased when the value
of the DIC of the reference model of item j is at least 10 lower than
that of the nested model.

For each of the two procedures, we calculate proportions of
true and false positives. A true positive is a biased item that is
correctly detected; a false positive is an unbiased item that is
incorrectly detected as biased. Proportions of true positives and
false positives are interpreted similar to power and Type I error,
respectively.

2.5. ANALYSIS
The Bayesian RFA was implemented in R (version 3.02; R Core
Team, 2013), using the packages R2OpenBUGS, BRugs, CODA
(Plummer et al., 2006) and in BUGS (version 3.2.2; Lunn et al.,
2009). All models are fitted to raw data. To estimate non-linear
effects, we employ the approach described by Lee (2007), which
partitions the latent variables into a linear and a non-linear part
with appropriate identification conditions. BUGS uses the Gibbs
sampler and the Metropolis-Hastings algorithm for efficient esti-
mation of the Bayesian RFA.

Measurement bias is detected with respect to a continuous
latent, a continuous observed and a dichotomous observed viola-
tor. Where possible, we use conjugate priors. Conjugate priors are
such that the posterior distribution is of the same family as the
prior, usually lowering the computational demands of the algo-
rithms drastically. The conjugate priors that we use for each of
these models are the normal (for the unknown mean), gamma

(for the variance), and the inverse Wishart (for the correlation
between latent variables) distributions, as these distributions lead
to good results in Bayesian SEM (Lee, 2007; Lee and Song, 2012).
We use informative priors that are based on the chosen popu-
lation values (see Table 1). The software cannot work with an
observed violator directly. As a workaround, we introduce the vio-
lator V as a latent variable with a variance very close to zero, thus
making it “practically observed.” In conditions with a dichoto-
mous observed violator, we use a prior with a strongly peaked
hyperprior for the variance of the violator. Details about the
prior elicitation are provided in Appendix 2 in Supplementary
Material. All scripts used in this paper are available from http://
www.casperalbers.nl.

The number of iterations has been decided upon using the
Raftery and Lewis diagnostic (Raftery and Lewis, 1992, 1995).
We used 4000 iterations for the burn-in phase and 8000 itera-
tions for the model estimation. For models with a latent violator
we used 21000 iterations for the model estimation, as conver-
gence appeared to be slower in these instances in a small pilot
study. For each model, we simulated three chains with differ-
ent initial values for each of the parameters. To decide on the
convergence we inspect the Gelman and Rubin’s convergence
diagnostic (Gelman and Rubin, 1992). This diagnostic compares
the within-chain and between-chain variance and a value above
1.1 is an indication of lack of convergence (Gelman et al., 2013).
Additionally, we inspected the Geweke convergence diagnostic
(Geweke, 1992), which is based on a test for equality of first
and the last part of a single Markov chain with the difference
between sample means devided by the standard errors expressed
in Z-scores.

In addition to the analysis described, we also perform a sen-
sitivity analysis in conditions with a correlated trait and vio-
lator (i.e., ρ(T,V) = 0.5), and both uniform and nonuniform
bias (i.e., Conditions 8, 16, and 24, see Table 2), to examine
to what extent our choice of the priors influences the param-
eter estimates. To study the impact of the prior inputs in the
Bayesian method, we consider the priors associated with param-
eters in the absence of bias as inaccurate priors for the bias
parameters.

3. RESULTS
After applying the Bayesian RFA to each of the 2400 data sets,
we find that the algorithm does not always converge, as indicated
by a value exceeding one on Gelman and Rubin’s convergence
diagnostic (Gelman and Rubin, 1992). Geweke’s convergence
diagnostic (Geweke, 1992) is much more conservative: it has val-
ues larger than the standard threshold value of 2 for at least one
chain (out of three) in the vast majority of the simulated data
sets, in all conditions. We therefore report convergence according
to the Gelman-Rubin diagnostic.

As shown in Tables 2–4, we encounter convergence problems
especially in conditions that contain uniform bias and a latent
violator without a correlation between the trait and the violator
and in conditions with an observed violator with a correlation
between the trait and the violator.

Non-convergence results are not further analyzed and ignored
when assessing the parameter estimates and detecting bias.
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Table 2 | Accuracy and efficiency in the Bayesian RFA.

Bias Cond. Conv. b c

m(θb) − b sd(θb) m(se(θb)) m(θc) − c sd(θc) m(se(θc))

CONTINUOUS LATENT VIOLATOR

ρ(T ,V ) = 0.0 No bias 1 0.95 0.010 0.066 0.001 −0.005 0.073 0.001

Uniform 2 0.59 0.009 0.062 0.001 0.000 0.078 0.001

Nonuniform 3 0.93 0.007 0.065 0.001 0.035 0.079 0.001

Both 4 0.65 0.024 0.065 0.001 0.031 0.087 0.001

ρ(T ,V ) = 0.5 No bias 5 0.97 −0.011 0.081 0.001 −0.004 0.059 0.001

Uniform 6 0.93 0.005 0.082 0.001 0.000 0.059 0.001

Nonuniform 7 0.96 −0.014 0.083 0.001 0.021 0.072 0.001

Both 8 0.92 0.002 0.083 0.001 0.022 0.070 0.001

CONTINUOUS OBSERVED VIOLATOR

ρ(T ,V ) = 0.0 No bias 9 1.00 0.006 0.054 0.001 −0.002 0.054 0.001

Uniform 10 0.91 −0.003 0.047 0.001 0.005 0.057 0.001

Nonuniform 11 0.92 0.000 0.056 0.001 0.008 0.057 0.001

Both 12 0.92 −0.008 0.059 0.001 0.015 0.051 0.001

ρ(T ,V ) = 0.5 No bias 13 0.80 −0.008 0.054 0.001 −0.006 0.047 0.001

Uniform 14 0.55 −0.006 0.068 0.001 0.008 0.053 0.001

Nonuniform 15 0.75 −0.002 0.068 0.001 0.013 0.055 0.001

Both 16 0.52 −0.004 0.063 0.001 0.006 0.046 0.001

DICHOTOMIZED OBSERVED VIOLATOR (AFTER MEDIAN SPLIT OF THE CONTINUOUS OBSERVED VIOLATOR)

ρ(T ,V ) = 0.0 No bias 17 1.00 −0.002 0.041 0.001 −0.004 0.054 0.001

Uniform 18 0.99 −0.089 0.046 0.001 0.003 0.055 0.001

Nonuniform 19 1.00 0.004 0.051 0.001 −0.071 0.063 0.001

Both 20 0.98 0.087 0.063 0.001 −0.062 0.058 0.001

ρ(T ,V ) = 0.5 No bias 21 0.94 −0.009 0.051 0.001 0.006 0.056 0.001

Uniform 22 0.71 −0.112 0.056 0.001 −0.002 0.051 0.001

Nonuniform 23 0.93 −0.004 0.055 0.001 −0.022 0.071 0.001

Both 24 0.68 −0.131 0.054 0.001 0.021 0.067 0.001

Cond., Condition; Conv., proportion of converged solutions (of 100 replicates); All summary measures of the parameter estimates are calculated over the converged

solutions only.

3.1. PARAMETER ESTIMATES
Table 2 gives the measures of accuracy and efficiency of the esti-
mated parameters that are associated with the parameters that
express uniform (i.e., parameter b) and nonuniform (i.e., param-
eter c) bias in the first item: the estimation bias (i.e., (m(θb) − b)
and (m(θc) − c), the efficiency (i.e., sd(θb) and sd(θc)), and the
Monte Carlo accuracy (i.e., m(se(θb)) and m(se(θc))).

As can be seen in Table 2, the estimation bias appears rather
low in the conditions with a continuous latent violator, both for
the parameter expressing uniform bias (i.e., b), and nonuniform
bias (i.e., c), with a maximum observed estimation bias across all
conditions of 0.035. The conditions with a continuous observed
violator show a similar pattern, with the largest estimation bias
being 0.015.

In the conditions with a dichotomized observed violator, we
observe relatively large estimation bias for, firstly, the parameter
expressing uniform bias in those conditions that include uni-
form bias (with a maximum absolute estimation bias of 0.131)
and, secondly, but to a lesser extent, the parameter expressing

nonuniform bias in those conditions that include nonuniform
bias (with a maximum absolute estimation bias of 0.071). With
a dichotomized violator, the parameters that represent bias are
underestimated.

Across all conditions, the efficiency of the parameters related to
uniform and nonuniform bias in the Bayesian RFA is reasonably
good, as indicated by the small values of the efficiency parameters
(sd(θb) and sd(θc)) (ranging from from 0.041 to 0.087). We fur-
ther note that the means of time-series standard errors are small.
We therefore conclude that the Monte Carlo accuracy is high.

3.1.1. Single run procedure to detect bias
Table 3 gives the single run procedure results; the convergence
rates, the quantile (i.e., 5, 50, and 95) values of the DIC differ-
ence between the reference model and the competing model with
the most deviating DIC value, and the proportions of true pos-
itives and false positives at the strict and the liberal DIC cut-off
values. The convergence rates in the single run procedure show
considerable variability across conditions (ranging from 0.07 to
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Table 3 | Bias detection with the single run procedure.

Cond. Conv. Biased itemsa Unbiased itemsb

� DIC TP � DIC FP

Q05 Q50 Q95 Strict Liberal Q05 Q50 Q95 Strict Liberal

CONTINUOUS LATENT VIOLATOR

ρ(T ,V ) = 0.0 No bias 1 0.73 – – – – – −10 0 0 0.304 0.014
Uniform 2 0.45 −100 −70 −42 1.000 1.000 −20 0 0 0.387 0.093
Nonuniform 3 0.67 −110 −70 −40 1.000 1.000 −20 0 0 0.382 0.063
Both 4 0.52 −185 −125 −86 1.000 1.000 −20 0 0 0.423 0.096

ρ(T ,V ) = 0.5 No bias 5 0.75 – – – – – −10 0 0 0.282 0.020
Uniform 6 0.74 −80 −50 −27 1.000 1.000 −20 0 0 0.432 0.081
Nonuniform 7 0.78 −140 −85 −40 1.000 1.000 −20 0 0 0.426 0.079
Both 8 0.75 −193 −130 −70 1.000 1.000 −20 −10 0 0.528 0.157

CONTINUOUS OBSERVED VIOLATOR

ρ(T ,V ) = 0.0 No bias 9 0.96 – – – – – −8 −2 0 0.776 0.016
Uniform 10 0.88 −103 −71 −50 1.000 1.000 −13 −3 0 0.748 0.093
Nonuniform 11 0.89 −110 −71 −44 1.000 1.000 −12 −3 0 0.742 0.079
Both 12 0.88 −175 −138 −93 1.000 1.000 −14 −4 0 0.764 0.143

ρ(T ,V ) = 0.5 No bias 13 0.28 – – – – – −8 −2 0 0.756 0.030
Uniform 14 0.07 −68 −52 −34 1.000 1.000 −14 −2 0 0.657 0.171
Nonuniform 15 0.18 −106 −77 −46 1.000 1.000 −12 −3 0 0.722 0.100
Both 16 0.08 −147 −124 −96 1.000 1.000 −18 −7 0 0.750 0.300

DICHOTOMIZED OBSERVED VIOLATOR

ρ(T ,V ) = 0.0 No bias 17 0.99 – – – – – −9 −2 0 0.791 0.022
Uniform 18 0.99 −70 −45 −28 1.000 1.000 −12 −2 0 0.739 0.089
Nonuniform 19 0.99 −73 −45 −22 1.000 1.000 −11 −3 0 0.737 0.057
Both 20 0.96 −119 −88 −55 1.000 1.000 −13 −3 0 0.760 0.104

ρ(T ,V ) = 0.5 No bias 21 0.69 – – – – – −8 −2 0 0.775 0.017
Uniform 22 0.38 −56 −28 −14 1.000 0.974 −11 −3 0 0.758 0.058
Nonuniform 23 0.62 −78 −50 26 1.000 1.000 −11 −3 0 0.745 0.055
Both 24 0.32 −118 −84 −54 1.000 1.000 −16 −4 0 0.756 0.131

Cond., Condition; Conv., proportion of converged solutions; � DIC denotes the difference in DIC between the reference model and the competing model; aQuantile

DIC difference values (i.e., 05, 50, 95), and proportions of true positives (TP) are calculated over the converged solutions [of 1 (biased item) × 100 (replicates) =
100 solutions]; bQuantile DIC values (i.e., 05, 50, 95), and proportions of false positives (FP) are calculated over the converged solutions, which are 6 (non-biased

items) × 100 (replicates) = 600 solutions in Conditions 1, 5, 9, 13, 17 and 21, and 5 (non-biased items) × 100 (replicates) = 500 solutions in all other conditions.

0.99), with particular low values for the models with a continu-
ous latent violator with a substantially correlated latent trait and
violator.

As can be seen in Table 3, the proportions of true positives (i.e.,
indicating the bias whenever it is present) are 1.000 in all con-
ditions with the strict criterion, and ranges from 0.974 to 1.000
with the liberal criterion. Thus, both criteria are very successful
in detecting the bias. The quantiles of the DIC difference val-
ues give an indication of the power to identify items with bias.
These DIC difference values are highly negative in conditions with
both uniform and nonuniform bias, but also substantial in condi-
tions with only uniform or nonuniform bias. In conditions with a
dichotomous observed violator, we observe smaller negative DIC
difference values, suggesting a lower power.

The proportions of false positives with the strict cut-off value
are very high (ranging from 0.304 to 0.791). With a liberal cut-off
value, the proportions of false positives were reasonably low (from
0.014, with a maximum of 0.300); they appear somewhat higher

in conditions with both uniform and nonuniform bias and a
correlated trait and violator. Considering the performance in
terms of both true positives and false positives, the liberal cut-
off value seems best suited for bias detection with the single run
procedure.

3.1.2. Model difference procedure to detect bias
Table 4 shows the results of the model difference procedure: the
convergence proportions, the quantile (i.e., 5, 50, and 95) val-
ues of the DIC difference between the reference model (i.e., with
parameters to represent bias) and the nested model (i.e., without
parameters to represent bias), and the proportions of true posi-
tives and false positives at the strict and the liberal cut-off values.
The convergence rates show considerable variability across con-
ditions (ranging from 0.49 to 1.00). Overall, the convergence rate
is higher in the model difference procedure than in the single run
procedure, because the former requires only two, and the latter
J = 6 models to be estimated.
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Table 4 | Bias detection with the model difference procedure.

Cond. Biased itemsa Unbiased itemsb

Conv. � DIC TP Conv. � DIC FP

Q05 Q50 Q95 Strict Liberal Q05 Q50 Q95 Strict Liberal

CONTINUOUS LATENT VIOLATOR

ρ(T ,V ) = 0.0 No bias 1 – – – – – – 0.93 −10 0 10 0.102 0.007
Uniform 2 0.59 −100 −60 −40 1.000 1.000 0.86 −10 0 10 0.255 0.042
Nonuniform 3 0.93 −110 −70 −30 1.000 0.989 0.92 −10 0 10 0.219 0.032
Both 4 0.65 −188 −120 −82 1.000 1.000 0.88 −20 0 10 0.305 0.068

ρ(T ,V ) = 0.5 No bias 5 – – – – – – 0.94 −10 0 10 0.115 0.012
Uniform 6 0.93 −80 −40 −20 1.000 0.978 0.93 −10 0 10 0.263 0.045
Nonuniform 7 0.96 −140 −80 −40 1.000 1.000 0.95 −10 0 10 0.213 0.023
Both 8 0.92 −190 −120 −70 1.000 1.000 0.94 −20 0 10 0.383 0.097

CONTINUOUS OBSERVED VIOLATOR

ρ(T ,V ) = 0.0 No bias 9 – – – – – – 0.99 −4 1 5 0.232 0.002
Uniform 10 0.91 −100 −67 −47 1.000 1.000 0.99 −9 0 5 0.485 0.028
Nonuniform 11 0.92 −107 −67 −40 1.000 1.000 0.99 −9 0 4 0.451 0.032
Both 12 0.92 −173 −137 −92 1.000 1.000 0.99 −12 −1 4 0.578 0.073

ρ(T ,V ) = 0.5 No bias 13 – – – – – – 0.77 −5 2 5 0.274 0.009
Uniform 14 0.52 −90 −50 −27 1.000 1.000 0.61 −13 −1 4 0.529 0.082
Nonuniform 15 0.73 −121 −81 −47 1.000 1.000 0.76 −10 0 4 0.479 0.037
Both 16 0.49 −167 −125 −94 1.000 1.000 0.64 −16 −3 4 0.672 0.172

DICHOTOMIZED OBSERVED VIOLATOR

ρ(T ,V ) = 0.0 No bias 17 – – – – – – 1.00 −4 1 5 0.239 0.008
Uniform 18 0.99 −66 −42 −23 1.000 1.000 1.00 −9 0 4 0.390 0.032
Nonuniform 19 1.00 −71 −43 −20 1.000 0.980 0.99 −7 0 4 0.401 0.028
Both 20 0.98 −115 −84 −51 1.000 1.000 0.99 −10 0 4 0.462 0.044

ρ(T ,V ) = 0.5 No bias 21 – – – – – – 0.94 −5 1 5 0.266 0.005
Uniform 22 0.70 −53 −25 −10 1.000 0.943 0.86 −8 0 4 0.456 0.019
Nonuniform 23 0.93 −79 −47 −21 1.000 1.000 0.93 −8 1 4 0.392 0.017
Both 24 0.66 −116 −81 −55 1.000 1.000 0.83 −13 −1 4 0.550 0.099

Cond., Condition; Conv., proportion of converged solutions; � DIC denotes the difference in DIC between the reference model and the competing model; aQuantile

DIC difference values (i.e., 05, 50, 95), and proportions of true positives (TP) are calculated over the converged solutions [of 1 (biased item) × 100 (replicates) = 100

solutions]; bQuantile DIC values (i.e., 05, 50, 95), and proportions of false positives (FP) are calculated over the converged solutions, which are 6 (non-biased items)

× 100 (replicates) = 600 solutions in Conditions 1, 5, 9, 13, 17, and 21, and 5 (non-biased items) × 100 (replicates) = 500 solutions in all other conditions.

As can be seen in Table 4, the proportions of true positives
(i.e., indicating bias when it is present) are very high in all condi-
tions; both using the strict criterion (all 1.000) as using the liberal
criterion (ranging from 0.943 to 1.000).

The quantiles of the DIC difference values give an indication
of the power to identify items with bias. These DIC difference
values are highly negative in conditions with both uniform and
nonuniform bias, for all conditions with a continuous violator.
In conditions with a dichotomous violator, we observe smaller
negative DIC difference values, suggesting a lower power.

In all conditions with a continuous violator, the proportions of
false positives with the strict cut-off value are high (ranging from
0.102 to 0.672), and with the liberal cut-off value reasonably low
(maximally 0.172). For the dichotomized violator a similar pat-
tern is observed. When applying the model difference procedure,
the liberal cut-off value appears to perform better than the strict
cut-off value, in terms of a proper balance between true positives
and false negatives.

3.1.3. Sensitivity analyses
To assess the sensitivity to the choice of the priors for those
parameters that express uniform and nonuniform bias, we rean-
alyzed the simulated data sets in the “most difficult” conditions:
with both uniform and nonuniform bias and a correlated trait
and violator (i.e., Conditions 8, 16, and 24) using clearly incor-
rect priors. That is, for the parameters expressing the bias, we use
priors that reflect an absence of bias (i.e., a normal distribution
with a mean of zero, for b and c). Table 5 shows the measures of
accuracy and efficiency of the estimated parameters, in a similar
way as reported in Table 2. Comparing the results of Tables 2, 5
shows that, in case of a continuous violator, the estimation bias
is still remarkably low when faced with clearly incorrect priors
(all absolute values lower than 0.016). Also the efficiency and
MCM standard errors and the convergence rates of these two
conditions are comparable to those in Table 2. Also in case of a
dichotomized violator, the estimation bias (with values −0.130
and 0.016) is very similar to the corresponding values in Table 2.

www.frontiersin.org September 2014 | Volume 5 | Article 1087 | 29

http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Barendse et al. Bayesian bias detection

Table 5 | Estimation bias of the sensitivity analysis.

Violator Cond. Conv. m(θb) − b sd(θb) m(se(θb)) m(θc) − c sd(θc) m(se(θc))

Continuous latent 8 0.95 −0.002 0.081 0.001 0.016 0.070 0.001

Continuous observed 16 0.48 0.014 0.058 0.001 0.006 0.058 0.001

Dichtomized observed 24 0.75 −0.130 0.056 0.001 0.016 0.061 0.001

Cond., Condition; Conv., proportion of converged solutions; All summary measures are calculated over the converged solutions only and are using the same notation

as in Table 2.

Proportions of true and false positives hardly change when using
the clearly incorrect prior, as has been verified (but not reported).
We conclude that inadequate priors hardly influence the param-
eter estimates in all conditions, at least with the iteration length
used in this simulation study.

4. DISCUSSION
In this article, we consider a Bayesian RFA approach for the detec-
tion of uniform and nonuniform bias. Results of a simulation
study show that the parameter estimates of this proposed Bayesian
RFA are reasonably accurate and efficient. With a dichotomized
observed violator we find less accurate results, which is due to
a loss of information and a reduction of the effect size. Our
results thus support the validity of the well-know criticism on the
median split (see, e.g., MacCallum et al., 2002). This suggests that
the use of MGFA in cases with a continuous observed violator,
with its associated necessity to dichotomize, should be discour-
aged. We used informative priors to obtain accurate and efficient
results for the parameter estimates. Our sensitivity analysis shows
that clearly inaccurate priors for the parameters expressing the
bias also yield accurate and efficient estimates. This result might
be different when working with a smaller sample than the n = 500
used in this paper. The smaller the sample size, the larger the
influence of the prior distribution. In practice, to obtain priors
we have to utilize prior information from different sources avail-
able (e.g., knowledge of experts or analyses of similar data), or
perform an auxiliary estimation on a part of the data.

Results show that the Bayesian RFA is hindered by conver-
gence problems, particularly in conditions with uniform bias. We
used the Raftery and Lewis diagnostic to determine the number
of iterations, but noticed in small experiments that doubling the
number of iterations still decreased the number of convergence
problems, according to the Gelman and Rubin diagnostic and
Geweke diagnostics, substantially. For example, for condition 16
in Table 2, doubling the number of iterations increased the con-
vergence rate from 52 to 69%. Thus there are indications that
several of the convergence and estimation problems encountered
in this simulation study, can be overcome in an empirical con-
text through solutions such as choosing more chains, performing
more iterations, and changing the initial values of the chains.
Studying convergence properties for a variety of settings, includ-
ing a variety of sample sizes, would be an interesting topic for
future research.

The bias detection rates of both the single run procedure and
the model difference procedure, calculated with either a strict
or a liberal cut-off value, are very good. In both bias detection
procedures, the distribution of the DIC difference values in the
various conditions shows that the power to detect bias is the

highest in conditions with a continuous observed violator. In con-
ditions with a dichotomous observed violator there is a reduction
of power, indicated by lower DIC difference values. In general,
nonuniform bias is detected about as well as uniform bias is.
However, if we focus on the DIC difference values, conditions
with a independent trait and violator and nonuniform bias have
smaller DIC difference values than conditions with uniform bias.
In conditions with a dependent trait and violator, it is the other
way round. This might be related to the fact that both the depen-
dency between the trait and the violator and the bias are positive
which may amplify each other.

Overall, the false positive rates are too large with a strict DIC
cut-off value. Given the fact that a liberal cut-off value yields satis-
factory bias detection results, we recommend a liberal DIC cut-off
value (see also Lee, 2007). The false positive rates of the lib-
eral DIC cut-off value are acceptable in all conditions and clearly
lower in the model difference procedure. This might be due to a
more precise estimation of the DIC difference procedure, as the
model difference procedure directly compares a model with and
without parameters to assess bias.

As an alternative to a liberal cut-off value, it might be helpful
to detect bias in an iterative procedure. In this iterative procedure,
the item associated with the largest DIC difference value is con-
sidered biased. In a second run, this bias is taken into account by
allowing parameters that express bias in the model, and the bias
test is conducted on the remaining items. As none of the remain-
ing items is considered biased or half of the items are detected as
biased, the iterative procedure stops (see Barendse et al., 2012, for
an implementation in the frequentist framework).

Overall, for bias detection with the Bayesian RFA, both pro-
cedures with a liberal cut-off value are successful under the
conditions studied. The model difference procedure appears to be
more powerful in detecting bias and is therefore preferable over
the single run procedure. The results presented indicate that the
Bayesian RFA method is promising to assess measurement bias.
It can be used to assess measurement bias with respect to multi-
ple violators simultaneously, and of any kind (i.e., continuous or
discrete, observed or latent).

For further research on the Bayesian RFA, it is useful to investi-
gate model performance under other conditions, including larger
numbers of observed items and varying the size of the bias. The
size of the bias can be varied both in terms of severity and num-
ber of biased items. Additionally, more complicated models, with
more than one item with bias, could be investigated. Further,
extending the model with a latent categorical violator might be
a useful extension. It may also be useful to consider alterna-
tive, promising, criteria for bias detection, such as Bayes factors
and path sampling which both can deal with non-linearity (Lee,

Frontiers in Psychology | Quantitative Psychology and Measurement September 2014 | Volume 5 | Article 1087 | 30

http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Barendse et al. Bayesian bias detection

2007). Finally, it would be highly interesting to see whether to the-
oretical advantages of Bayesian RFA are of use in empirical prac-
tice, by applying the methodology of this paper to empirical data.
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longitudinal development:
measurement invariance and change
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The Overlapping Waves Model (OWM) is a metaphor introduced by Siegler (1996)

to illustrate a typical sequence of increasing and decreasing use of strategies during

development. Going beyond metaphor, a new model synthesized from Latent Growth

Modeling (LGM) and Item Response Theory (IRT) will be presented to analyze such

categorical longitudinal data. Use of strategies can be scored as a variable with only a few

ordinal categories. IRT provides the means to relate the usage of strategies to position on

an underlying developmental dimension. LGM allows to model movement of individuals

along this dimension, acknowledging individual differences both in starting point and in

speed of progress. Measuring and modeling such strategy development requires that

at each time point the same categories are used, in the sense that item difficulties

must remain invariant over time. Whether, discrimination can be relaxed is still an issue.

The problem that had to be solved was disentangling the between-person-individual

differences from real intra-individual developmental differences. Figures with polytomous

or multi-category Item Characteristic Curves (ICC’s) resemble the OWM in many

respects. However, such figures are usually taken to represent inter-individual differences,

whereas the OWM usually represents development (so intra-individual differences), and

we cannot have both at the same time. The solution came from creating a framework

with ability differences on one axis and the effect of time on another axis, resulting in a

3-D model. These (orthogonal) dimensions make it possible to adequately conceptualize

measurement invariance in this complex context. As the result is difficult to conceptualize

without extensive visualization, special 3-D figures will be used to illustrate and a dynamic

(rotatable and scalable) version will be made available as Computable Document Format

object (Mathematica). The model was successfully applied in several microgenetic

studies.

Keywords: measurement invariance, strategy development, overlapping waves, latent growth modeling, item

response theory

Introduction

Measurement invariance (MI) is mostly considered in the context of differences between subpop-
ulations (inter-individually), however, measurement invariance is also important in a longitudinal
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context. It might be unfair if an instrument does not measure the
same constructs for all subpopulations. However, in a longitudi-
nal study, if we compare the same sample (ignoring attrition for
the moment) with itself on different occasions, the issue is per-
haps not fairness but whether the study is effective in being able
to identify progress.

The case I want to focus on concerns strategy development.
With development individuals might move from using one strat-
egy to another. Such strategies might be qualitatively different
and hierarchically ordered. Let’s suppose they are and that the
following assumptions about the underlying structure of the data
hold to a sufficient degree.

The first assumption is that the strategies can be ordered in
terms of advancedness. Higher numbered strategies are better
(although it might be difficult to define exactly in what sense)
such that each next strategy may become attractive once the
presently used one is sufficiently mastered. The second assump-
tion is that participants use only one strategy at a time. This
assumption does not necessarily contradict what has become
received view: that there is—and has to be—a broad variation
in strategies from which—like in evolution—the best strategies
are chosen (Siegler, 1996). However, even such a view implies
that there are different strategies. Thus, while participants may
have several strategies at their disposal, the assumption is that
one problem is solved, in the end, by using only one strat-
egy. The next moment, or the next problem, may involve the
use of other strategies, so in that sense “use” still might be a
mixture. The third assumption is closely related to the previ-
ous two and holds that there is a single underlying dimen-
sion which represents advancedness of these strategies. This
implies that the strategies will map on an ability scale with
strategies as markers along this scale and defining the scale.
The intervals between strategies along the scale need not be
regular but the scale is assumed to be one-dimensional only.
Using a strategy can now be scored as an ordinal variable
with few categories and longitudinal development as a vector
of such scores per participant. These assumptions are compat-
ible with many classical developmental theories: developmental
scales, stage theories, skills theory, and hierarchical complexity
theory.

I have proposed a formal statistical model to analyze such data
by connecting group level trends to an underlying developmental
dimension valid on the individual level. Let me explain first why
this is has been a problem so far in developmental psychology
before returning to MI and details.

The Overlapping Waves Model (OWM) was introduced by
Siegler (1996) as a metaphor to illustrate the typical pattern for
many cognitive tasks of a sequence of increasing and decreas-
ing use of strategies, or rules as he called them, during individual
development (Figure 1). Such a pattern might apply, for exam-
ple, to children learning to multiply numbers below 10: Strategy
1 might refer to incorrect approaches such as guessing; Strategy
2 might refer to finger counting; A more advanced strategy is
repeated addition; The most advanced strategy in this example
is retrieval from memory. Compare this model to results from
a famous longitudinal study by Colby et al. (1983) on stage-
wise moral development, in which they reported increasing and

decreasing use of five stages of moral development for the group
level (Figure 2).

A fundamental problem, that has plagued developmental the-
orizing since long, is that it is difficult to infer the shape of
development from group results. Figure 2 refers to actual empir-
ical data, but trends are only valid on the group level; whereas,
Figure 1 suggests being valid on the individual level, but does not
directly reflect empirical data (it’s just hypothetical). On the one
hand, because the shape of non-linear trends need not be com-
parable between group and individual data, referring to group
data as in Figure 2 will not do as support for claims about typ-
ical individual trajectories. On the other hand, actual individual
data (trajectories), as e.g., presented abundantly in Siegler (1996)
and Colby et al. (1983), have not been used to formally confirm
trends as in Figure 1, possibly because the overwhelming individ-
ual variation. Of course, there are likely to be constraints and rela-
tionships between the individual and the group level, but a formal
model of the exact nature of these relationships was lacking
so far.

FIGURE 1 | Overlapping waves depiction of cognitive development.

From “Emerging Minds,” by Siegler (1996).

FIGURE 2 | Percentage use of stages of moral reasoning. Data from

Colby et al. (1983).
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Going beyond metaphor, I developed a new conceptualiza-
tion synthesized from Latent Growth Modeling (LGM) and
Item Response Theory (IRT) to understand such categorical lon-
gitudinal data. The model itself is not new, because Muthén
explored such models extensively (Muthén, 1996; Muthén and
Asparouhov, 2002, 2013), but the application to strategy develop-
ment is entirely new. IRT provides the means to relate the likeli-
hood of use of particular strategies to a position on an underlying
developmental dimension. LGM allows modeling movement of
individuals along this dimension, acknowledging individual dif-
ferences both in starting point and in speed of progress (and
more).

Measurement Invariance must hold in such models in the
sense that strategies themselves do not change with time or age.
What is supposed to change is the use, or the propensity to use
them. MI might be violated if a new factor has become influential
over time, the result would be that we cannot find progression
developmentally. Whether discrimination can be relaxed is an
issue to be discussed below. I will first introduce IRT and LGM.

Item Response Theory Modeling

With the assumptions in place Item Response Theory (IRT)
provides the means to relate the use of strategies to an underlying
ability.

Suppose responses of participants are scored as representing
the use of one of a few strategies, suppose furthermore -following
IRT modeling- that the likelihood of using one of the strategies
depends on a single latent variable by a mathematical function
known as the item response function. The Partial Credit Model
is particularly useful to model responses that are ordered as a
series of steps that must be mastered in sequence (Millsap, 2010).
The latent variable normally represents inter-individual differ-
ences in ability, which in this case translates to being more or less
advanced in terms of strategy use as is illustrated in Figure 3. Fig-
ures are based on a micro-genetic study (Van der Ven et al., 2012)
and just used to illustrate here. The multiplication strategies
examples given earlier are from this study.

The X-axis of Figure 3 can be thought of as representing strat-
egy ability differences between participants (as person character-
istic). In that case a position more to the right represents a higher
ability, more to the left represents less ability. On the Y-axis is
the likelihood of using the particular strategy. For example, like-
lihood of using strategy-5 is higher for persons with high strategy
ability, while strategy-1-use diminishes rapidly with increasing
ability.

Alternatively, the X-axis can be used to represent character-
istics of the strategy; e.g., the peak of each of the middle curves
gives the most typical ability value for that strategy, but it is also
clear there is considerable overlap between strategies.

The result is a latent strategy ability scale that can be used
to represent inter-individual ability differences and strategy
advancedness. The position along this strategy scale is nonlin-
early and probabilistically related to the use of the various strate-
gies. The attractiveness of the transformation of the categorical
scores to this unbounded continuous interval scale is that it opens
up the possibility to use all kinds of regression techniques.

FIGURE 3 | Item characteristic curves for a five-category polytomous

item.

However, one of the key ideas of this paper is that the X-axis
can also be used to represent intra-individual development, as in
Siegler’s Overlapping Waves Model. In other words: also devel-
opment over time can be conceptualized and visualized as a shift
to right in Figure 3. The result in terms of expected strategy use
can be quite complex to describe because it depends on the start-
ing point and the growth rate of the particular subject. Only the
first and the last strategy have a consistent change pattern, the
use of all other strategies goes up and down. The profile of shapes
depends on properties of the item and may be different for dif-
ferent items. For a Partial Credit model version the basic shape
(steepness of the curves) is fixed. Although scaling of X-axis is
arbitrary, location (to the right or left) can vary between items,
and applies to the whole set of curves for an item. Height of
the curves, or area’s beneath it, which can also be expressed as
distance between crossings of curves, may be different within or
between items.

Basic principles of relevant IRT modeling, and some alterna-
tive models, are reviewed by de Ayala (2009) and Embretson and
Reise (2000), more details on polytomous item response mod-
els can be found in Ostini and Nering (2006), and more on
categorical data-analysis in general in Agresti (2002).

Latent Variable Growth Curve Modeling

Whereas, IRT provided the means to relate the use of strategies
to an underlying dimension, development of individuals along
this underlying dimension can be modeled by means of Latent
variable Growth curve Modeling (LGM). LGM is a powerful
and flexible technique, which can be used to model longitudinal
development (Bollen and Curran, 2006; Duncan et al., 2006).
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A linear LGM, for example, presupposes a steady increase or
decrease in the target variable over a small number of equally
spaced measurement occasions for each person. The increase
is assumed to be linear, with an intercept and a slope parame-
ter describing a trajectory for each individual. These intercepts
and slopes are assumed to be different for each respondent and
normally distributed in the population with unknown mean and
variation. In the usual continuous case, the observed scores for
an individual participant will depart from his or her best fitting
straight line, and it is assumed that these residuals are normally
distributed in the population with zero mean and certain vari-
ance for each measurement occasion; moreover, these residuals
are not correlated over measurements occasions. However, in the
present case, where we combine the LGMwith an IRTmodel, the
role of residuals can be treated in other ways too. Because this
has consequences for the issue of MI I will return to the role of
residuals in a moment.

Concluding: a linear LGMmight be suitable to model increas-
ing strategy development over measurement occasions, and, if
the model holds, every participant’s trajectory can be represented
by a straight line, as will be shown shortly.

Three Dimensional Overlapping Waves
Model

The Overlapping Waves model of Figure 1 was originally pre-
sented to visualize development, whereas the polytomous item
response model of Figure 3 is more commonly used to depict
individual differences. With a three-dimensional version of the
Overlapping Waves model both uses can be combined.

In Figure 4 the X-axis refers to individual differences, the Y-
axis to time (measurement occasions = 8 weeks in our empirical
example), and the Z-axis refers to probability of using one of five
strategies. The floor is a two dimensional plane onwhich a growth
curve model can be placed as illustrated in Figure 5.

In Figure 5 estimated (idealized) individual trajectories of
development in strategy use are shown on the floor plane for a

FIGURE 4 | 3D-Overlapping waves model (see text).

subsample of 20 participants. For one individual, as illustration,
the implied category boundaries are also depicted in the Z-plane.
The degree of curvature is limited, which makes sense, because it
represents only a modest increase on the strategy maturity scale
as in Figure 3. Figures 4, 5 are combined in Figure 6 to illustrate
that each individual curve from Figure 5 follows the surface of
the waves in Figure 4.

The more growth, in Figure 6, the more the set of curves for
a particular individual turns away from an orientation parallel
to the week axis, and the more curvature (in the heavy black
lines) will result. No growth, as e.g., for the case with the line
most to the left on the floor of Figure 5, would result in straight
heavy black lines for each of the 5 strategies when projected on
the surfaces. But also a different starting point (different inter-
cept in the growth model part) can lead to completely different
curvatures: imagine the set of curves being shifted along the
difficulty dimension.

FIGURE 5 | LGM trajectories (thin gray lines) and snapshot of Item

Characteristic Curves for one participant (heavy black lines).

FIGURE 6 | 3D-Overlapping waves model with item characteristic

curves for one participant as illustration.
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Measurement Invariance Revisited

Since we are interested in development of using strategies over
time some assumptions had to be made. In principle an assump-
tion cannot be tested (not directly at least). Scoring observations
or verbal material etc. needs to be done first and this often implies
a considerable amount of preprocessing of the raw data. Cate-
gories have to be defined in advance, so that judges can apply
these to the observations. The categories must be defined such
that they are ordered in terms of difficulty. Age of respondents
whose responses are to be assigned to the categories cannot and
may not play a role at all in the definition of the categories. Nor
should time or measurement occasion play a role in the defini-
tion of the categories. Therefore, if we relate these categories to
an underlying ability this relation must remain strictly invariant
over measurement occasions.

Specifying the relation between categories and underlying
ability can be done in many ways, but always involves the differ-
ence between the latent ability score and thresholds. A threshold
τj is the value on the scale where the likelihood for being assigned
category changes from being greater for j to being greater for j+1
(so around p = 0.5) and represent what in IRT parlance would
be the difficulty of the item.

For a weighted least-squares (WLS) estimator with Probit link
and Theta parametrization the Item Characteristic Curves (ICC)
is specified as follows: LetUi be a categorical indicator for a latent
ability factor f with categories j = 0, 1, 2,..., J-1, for item i = 1,
2,... I, and measurement occasion t = 1, 2,... T.

Pitj
(
f
)

= P
(
Uit = j|f

)

= 8

(
τitj − λitf√

θit

)
− 8

(
τitj−1 − λitf√

θit

)
(1)

Where 8 is the standard normal distribution function, τj is the
threshold for category j, λ is the factor loading, θ is the residual
variance. For the first category the second 8 term is zero, for the
last category the first8 term is 1. Note, however, thatMplus offers
not onlyWLS estimators but alsomaximum likelihood (ML) esti-
mators, not only Probit links but also Logit links, and also a Delta
parametrization (seeMuthén, 2010 for an overview), and for each
case the ICC’s are differently specified. Figure 3 is an example of a
ML Logit ICC, however, apart from scaling differences the Figure
would be almost the same as the one obtained from formula 1.

Regarding difficulty; with more items and more measure-
ments occasions the thresholds τij (for each separate category)
are to remain invariant over occasions, but may be different over
items i. Steps may be defined as sj = τij − τij−1 and restricted, or
not, to be equal between items.

Regarding discrimination; dividing by the standard deviation
of the residuals θit in formula 1 allows introducing differences in
discriminations over items and occasions. With ML estimators
this is difficult to achieve and discrimination differences are not
implemented in Mplus for ML. Being able to allow differences
(with WLS) in relative discrimination between items is however
an attractive option that can improve fit. Whether, allowing the
residual variance θit to be variant over measurements occasions,
as is advocated byMuthén and Asparouhov (2002), is a good idea

has to be seen. It will undoubtedly improve fit but interpretation
might be more difficult. In Figures 3, 5 for some occasions the
Figure will in that case be broader or slimmer which is detri-
mental to the intended general applicability of the model: As out-
lined above the intention is to be able to handle large individual
differences in ability with this model.

Example: Stepwise Understanding

Randomness

The general model has been applied to several data sets now (e.g.,
Van der Ven et al., 2012). The pilot study presented below is just
meant as an illustration.

Children’s understanding of randomness was studied using a
microgenetic design in three age cohorts (Grade 1, 3, and 5) of
different primary schools in rural parts of the Netherlands. Dur-
ing 5 weeks four probability-related questions about a marble tilt
box (see Metz, 1998) were administered weekly to 75 children.
A box 30 cm wide and 40 cm long, with edges 5 cm high was
mounted on a support of 5 cm high, affixed to the bottom, such
that it could be tilted from one side to the other such that marbles
would roll from one side to the other. Initially all marbles were
lying in row on the lower side: 5 white on the left and 5 green on
the right. Questions were asked before, during, or tilting of the
box: e.g., “How will the marbles end up on the other side?”; “Can
you be sure”; “What happened?” (After trying it out themselves);
“What if we did tilt the box a 100 times?”; “Can the original dis-
tribution of the marbles (5 and 5 neatly separated) ever occur
again?” Answers given by each child were coded using 4 possible
categories (based on Metz, 1998). Developmental progress was
presumed to go from: (1) No understanding at all to (2) deter-
minism which is denial of chance element (they have to go back
to their places), to (3) unpredictability (you never know, they just
roll), to (4) recognizing some degree of long term predictability
(returning is possible but unlikely). Teaching about randomness
is not a part of curriculum in the Netherlands. Participants were
not given feedback by the test administrators, but were able to
see, of course, the outcomes when the task was eventually played
each week. This resulted in a 75 (participants) by 16 (variables
= 4 question-sets by 4 weeks) raw data-matrix with codes one to
four.

Results

Figure 7 shows that the four items (= topic/question-set) had dif-
ferent profiles. These shapes of the item profiles are fixed over the
4 weeks (to achieve measurement invariance). On the x-axis is
the difficulty of the item (to use the IRT parlance) which in this
case reflects whether the particular question tends to elicit more
advanced or more simplistic responses. Note that children can be
placed on the same x-axis scale: see Figure 8.

Figure 8 shows the expected changes in the use of the cat-
egories (levels of understanding), over weeks, for each item
(topic/question-set), separately. The scale on the x-axis corre-
sponds exactly to Figure 7. The actual abilities, in this case, cover
only small part of the scale (the scale is centered around zero
because the average is arbitrarily set to zero).
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FIGURE 7 | Item profiles for four topic/question sets. On the x-axis is the

latent ability/advancedness scale, as explained earlier.
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FIGURE 8 | Model Implied (expected) week trends of use of categories

(levels of understanding).

Increase over weeks (the slope in the growth model part) was
significant. Nevertheless, seen from a substantive viewpoint, the
result are not all good. Category three has very low occurrence
(never dominant) and might be better removed from the coding
scheme. The range of respondent abilities is not corresponding
to the item categories very well. No substantive conclusions from
this illustration can be drawn. However, seen from a modeling
and analysis viewpoint results are good and interesting. Mplus
7.2 was used to estimate and fit all models (Muthén and Muthén,
1998-2012). Fit for the WLS Probit version with DELTA parame-
terization was acceptable with an RMSEA of 0.075; CFI of 0.911;
TLI of 0.930. More options for analysis were tried out (e.g., MLR-
Logit, WLS-THETA) and all converged to the same kind of Fig-
ures (as in Figures 7, 8). The analysis demonstrates that with a
rather small sample already interesting results are possible and
weaknesses in the data or coding scheme are revealed without fail.

Regarding measurement invariance it might be argued that
there might be systematic differences over 4 weeks, e.g., due to
slightly different testing conditions. Using the scaling option in
the Mplus DELTA parameterization we allowed scaling differ-
ences between measurement points. The resulting scaling factors
were 1 (as anchor) for set 1 and 1069, 0.890, and 1.093, respec-
tively for sets 2–4. Fit for this WLS Probit version with DELTA
parameterization was almost the same with an RMSEA of 0.074;
CFI of 0.914; TLI of 0.932. The scaling option in the DELTA
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FIGURE 9 | Item profiles for four topic/question sets, while allowing for

some measurement differences between weeks. On the x-axis is the

latent ability/advancedness scale, as explained earlier.

parameterization gave slightly better results than the option to
relax the discrimination (requiring the THETA parameteriza-
tion) as mentioned earlier, but has the same kind of effect: intro-
ducing mild between measurement differences by just stretching
or contracting the scale a bit. The result is Figure 9 with four
times as many, and more cluttered, lines than Figure 7.

Discussion

A new 3D Overlapping Waves model is presented, based on a
combination of Latent variable Growth curve Modeling (LGM)
and Item Response Theory (IRT) modeling. The statistical
principles used are long established and sound. It is a formal
model for conceptualizing strategy development which throws
new light on the issue of variability and measurement invariance
in development. It is also an empirically testable model which
might be helpful in longitudinal studies in which the responding
changes fundamentally over development or experience.

All advantages of LGM apply. Predictors can be added to the
LGMpart, it is also possible to test nonlinear growth, or addmore
growers to the model. All advantages of IRT modeling also apply.
The new part is: that what is normally the end result (estimated
individual scores or group indicators thereof) now is -in an addi-
tional step- transformed in a set of thresholds and these can be
visualized as a set of curves (with strong shape constraints). More
hypotheses concerning the relationship between strategies can be
tested by specifying equality constraints between thresholds. Also
the relationship between items (e.g., more or less difficult ones)
can be further investigated and tested. IRT analyses are often
based on much larger datasets; large item banks, and focused on
item selection for a test. The present application of IRT is differ-
ent and more experience with dealing with complex models with
relatively few participants is needed.

The raw data may appear incredibly complex and variable,
but, as shown, it may still be the case that the data are generated
by relatively simple linear growth for each person reflecting an
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underlying dimension of development. Of course, in actual prac-
tice there will always be violations of the assumptions, for all
kinds of reasons, but if there is a consistent pattern over indi-
viduals to a sufficient degree, such an underlying dimension is
plausible. The analysis can be done with commercially avail-
able software and is not difficult to conduct, although it requires
some conceptual work and spatial imagination. The model has
important theoretical implications!

Regarding measurement invariance over weeks, the illustra-
tive example showed that relaxing the strict measurement invari-
ance, by allowing some overall scaling differences, did not lead
to serious improvement in fit, but since all the threshold are dif-
ferent the Figure is more difficult to understand and also difficult
to compare to a more restricted model. Although more studies
are needed before final recommendations can be given, a more
parsimonious model seems preferable.
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Two major goals of this paper were, first to examine the cross-cultural consistency
of the factor structure of the Hedonic and Eudaimonic Motives for Activities (HEMA)
scale, and second to illustrate the advantages of using Bayesian estimation for such
an examination. Bayesian estimation allows for more flexibility in model specification
by making it possible to replace exact zero constraints (e.g., no cross-loadings) with
approximate zero constraints (e.g., small cross-loadings). The stability of the constructs
measured by the HEMA scale was tested across two national samples (Polish and North
American) using both traditional and Bayesian estimation. First, a three-factor model
(with hedonic pleasure, hedonic comfort and eudaimonic factors) was confirmed in both
samples. Second, a model representing the metric invariance was tested. A traditional
approach with maximum likelihood estimation reported a misfit of the model, leading to
the acceptance of only a partial metric invariance structure. Bayesian estimation—that
allowed for small and sample specific cross-loadings—endorsed the metric invariance
model. The scalar invariance was not supported, therefore the comparison between latent
factor means was not possible. Both traditional and Bayesian procedures revealed a
similar latent factor correlation pattern within each of the national groups. The results
suggest that the connection between hedonic and eudaimonic motives depends on which
of the two hedonic dimensions is considered. In both groups the association between
the eudaimonic factor and the hedonic comfort factor was weaker than the correlation
between the hedonic pleasure factor and the eudaimonic factor. In summary, this paper
explained the cross-national stability of the three-factor structure of the HEMA scale. In
addition, it showed that the Bayesian approach is more informative than the traditional
one, because it allows for more flexibility in model specification.

Keywords: hedonia, eudaimonia, well-being, Bayesian structural equation modeling, measurement invariance

INTRODUCTION
The distinctions between hedonic and eudaimonic notions of
happiness has attracted a rapidly expanding group of well-being
researchers (e.g., Keyes et al., 2002; Kopperud and Vittersø, 2008;
Berridge and Kringelbach, 2011; Henderson et al., 2013; Huta,
2013; Huta and Waterman, 2013; Oishi et al., 2013; Ryan et al.,
2013; Bauer et al., 2014; Proctor et al., 2014; Uchida et al., 2014).
Both concepts are derived from ancient philosophy and they came
to prominence within positive psychology as a result of research
that conceptualized well-being in different ways. Proponents of
a strict hedonic approach argue that a good life is properly
accounted for by the presence of pleasure and the absence of pain
(Kahneman, 1999; Tännsjö, 2007), whereas a broader approach
includes positive attitudes and life satisfaction within the idea of
hedonia (e.g., Diener, 1984; Feldman, 2004; Diener et al., 2009).
By contrast, proponents of eudaimonic approaches believe that
there is more to a good life than pleasant feelings and favorable

attitudes (Tatarkiewicz, 1976; Ryff, 1989; Waterman, 1993; Ryan
and Deci, 2001; Deci and Ryan, 2008; Keyes and Annas, 2009;
Vittersø, 2013). In the current study, we enter this debate by look-
ing into an established self-report scale that measures both hedo-
nic and eudaimonic conceptions of well-being—the Hedonic and
Eudaimonic Motives for Activities scale (HEMA; Huta and Ryan,
2010). Our two major aims are, first to examine the cross-cultural
consistency of the factor structure of the HEMA, and second to
illustrate the advantages of using Bayesian estimation for such an
examination.

Existing attempts to quantify the associations between ele-
ments of hedonic and eudaimonic well-being show mixed results.
In a recent review, Huta and Waterman (2013) attributed
some of these inconsistencies to conceptual disagreements. Four
categories of conceptualizations were identified, as Huta and
Waterman observed that well-being has interchangeably been
studied as orientations, as behaviors, as experiences and as
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functioning. Another distinction in the well-being literature
relates to the level of analyses: both trait level measures and state
level measures were frequently observed. In order to avoid some
of these confusions Huta and Waterman argued that it is impor-
tant to clearly specify which category of analysis and level of
measurement is taken into consideration. When focusing specif-
ically on the distinction between eudaimonia and hedonia (as in
a factor analysis) and on the stability of the correlation between
them (as in a multigroup investigation) the confounding effect
of different conceptualizations should be avoided. Therefore, the
current paper operationalizes eudaimonia and hedonia as orien-
tations, measured at the trait level. The HEMA scale fulfills both
these criteria and was thus elected as the measurement instrument
of our study.

The hedonic subscale of the HEMA addresses the two concepts
that appear in most conceptions of hedonia: pleasure and absence
of pain (e.g., Kahneman, 2000). The absence of pain is assessed
in approach terms (as “seeking relaxation” and “seeking to take
it easy”) rather than in avoidance terms to minimize the con-
founding role played by the differential effects of approach and
avoidance motivation (for a review see Elliot, 2008). This cor-
responds with the argument that pleasure—a proactive search
for positive experiences—should be distinguished from com-
fort defined as a state of biological indifference (Scitovsky, 1976;
Cabanac, 2010). For this reason the hedonic scale could actu-
ally be divided into the two dimensions of seeking relaxation and
seeking pleasure (Asano et al., 2014).

The eudaimonic subscale of the HEMA covers three concepts
which focus on personal qualities: authenticity (self-knowledge,
autonomy, and integrity), excellence (virtue, performing to a high
standard), and growth (learning, actualizing one’s unique poten-
tials, and maturing as a person). This operationalization is not
exhaustive, as other concepts are often emphasized in definitions
of eudaimonia (e.g., meaning, engagement). Nevertheless, the
advantage of the HEMA scale is that it allows for a simultaneous
assessment of both hedonic and eudaimonic orientations (mea-
sured together as motives), and therefore provides an opportunity
to study the connection between them.

The relationship between factors of stable hedonic and
eudaimonic orientations to well-being is hardly ever stud-
ied across different samples or national groups. Therefore,
we don’t know whether a particular figure representing the
correlation between the factors is universal or specific for a
national sample or a language version. To confirm a stabil-
ity of connections between well-being constructs multigroup
studies are needed. Yet for such designs the issue of measure-
ment invariance (MI) becomes a crucial concern (e.g., Brown,
2006). This means that when a measurement tool is used
across groups, its internal structure should follow at least two
requirements: (1) the same number of factors should occur in
all groups (configural invariance), and (2) the similar pattern
of factor loadings should be observed across groups (metric
invariance). If a model that imposes both of those require-
ments fits the data well, structural parameters—such as factor
correlations—can be legitimately examined and compared across
groups (e.g., Meredith and Teresi, 2006; Raykov et al., 2012).
Additionally, when a comparison between latent means is of

interest, the similar pattern of item intercepts should be estab-
lished (scalar invariance).

In sum, the aim of this paper is to provide a systematic inves-
tigation of the correlational nature of the HEMA scale in two
different nations. A confirmatory and multigroup factor analytic
design was chosen for this purpose.

THE APPLICATION OF BAYESIAN ESTIMATION
With cross-national data from the HEMA scale, the analysis
presented in this paper utilizes and compares two different esti-
mation methods: (1) a traditional frequentist approach with
maximum likelihood (ML) estimation and (2) a relatively new
technique based on Bayesian structural equation models (BSEM)
(Muthén and Asparouhov, 2012). This double analyses strategy
was chosen in order to compare the results of those two meth-
ods and thereby provide an example that will reveal the possible
advantages offered by Bayesian estimation. Since computational
power nowadays supports the use of the Bayesian approach, it has
been widely recommended due to the fundamental advantages of
this method. Several introductory discussions of Bayesian estima-
tion and inference exist (e.g., van de Schoot et al., 2013a; Zyphur
and Oswald, 2013). The possible advantages of using BSEM can
be found in all three steps of the analysis reported here.

First, BSEM allows the replacing of exact zero constraints
with approximate zero constraints for different parameters of a
model such as cross-loadings or residual covariances (Muthén
and Asparouhov, 2012, 2013). This is possible due to the spe-
cific assumptions underlying Bayesian estimation. Bayesians treat
parameters as variables characterized by a distribution, in con-
trast to the frequentist approach in which samples have distri-
butions while parameters are fixed in the population (Zyphur
and Oswald, 2013). Moreover, in Bayesian analysis a distribution
for each of the parameters can be restricted by specifying priors,
which are usually based on previous knowledge. For example,
in confirmatory factor analyses (CFA) it is often assumed that
each of the items will load on one factor only, hence the errant
loadings (cross-loadings) are fixed at zero. However, the precise
zero constraint has been criticized as unreasonable and unnec-
essary, because researchers usually want those errant-loadings to
be very small (e.g., Golay et al., 2013). In most cases it may
be enough to state that cross-loadings do not exceed a particu-
lar value, for example 0.3 (Brannick, 1995). Bayesian estimation
allows us to place such a constraint by specifying a prior distri-
bution for a cross-loading, in order to have little variance around
the mean set to zero (i.e., an informative prior, e.g., van de Schoot
et al., 2013b). Thanks to this option, the model fit will not suffer
from an unreasonable assumption that does not reflect the true
intention of the researcher.

Secondly, the same advantage of an approximate equality,
rather than a precise one, can be employed for the MI anal-
yses (Muthén and Asparouhov, 2013; Cieciuch et al., 2014).
Traditional MI strategy places strong constraints on the param-
eters of a scale by forcing them to be identical across groups.
Such an approach often leads to the conclusion that a scale is not
invariant across groups, with little information about how big the
differences are. Previous attempts to deal with this problem by
establishing partial MI models remain controversial (e.g., Byrne
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et al., 1989; Millsap and Kwok, 2004; Schmitt and Kuljanin, 2008).
In this study, as in many others, the goal is to show that a scale per-
forms in a very similar way across national groups. Yet, it is not
expected that any particular item will behave differently across the
groups (this could be solved by a partial MI model). Instead, we
assume that all the items in the scale may vary across the nations
and the size of these differences is of interest. BSEM allows the
estimation of their magnitude by specifying limits for their dis-
tribution (which are set up by the informative priors). Thus, we
decided to employ an approximate MI approach based on BSEM,
and assumed that small deviations (i.e., statistically insignificant)
would not jeopardize the comparison between factor covariances.

Thirdly, Bayesian estimation makes the results easier to under-
stand due to its intuitive inference process (van de Schoot et al.,
2013a). In the frequentist approach, a confidence interval is pro-
vided which shows that over an infinity of samples taken from the
population, 95% of these contain the true population value. The
interpretation of such an interval is somewhat counterintuitive, as
it refers to samples rather than an actual parameter of interest. On
the other hand, a Bayesian credibility interval indicates that there
is a 95% chance for a parameter to lay within the limits of the
interval. Taking this paper as an example, the credibility interval
will reflect the most probable range of values for the correlation
between the latent factors reflecting hedonic and eudaimonic pur-
suits of well-being. In other words, Bayesian approach focuses
on the magnitude of the parameter for a provided dataset. Such
information, in contrast to the traditional confidence intervals, is
easier to understand and compare between groups.

In sum, the paper provides a practical application of Bayesian
estimation, and aims at investigating some differences between
the traditional frequentist approach to CFA with that of a
Bayesian approach.

MATERIALS AND METHODS
PARTICIPANTS
In the Polish sample, 386 adults were surveyed, of whom 79%
were female. Their age ranged from 18 to 29 years (M = 21.26,
SD = 1.75). The data collection was conducted in two waves: first
(N = 197) with the full 9-item version of the scale, and second
(N = 189) with the short 8-item version (see the Supplementary
Material for the list of items included in both versions). The
assessment was based on a structured, anonymous question-
naire investigating a number of lifestyle-related variables (see
Kaczmarek et al., 2013). Participation was on a voluntary basis
and administration took place during the respondents’ free time.

The English sample consisted of 429 North American
Anglophone participants. The study involved undergraduates
(75% of women) who completed the questionnaire as part of a
1-h screening survey (including measures submitted by a variety
of researchers) used as a preliminary step before granting students
access to various individual studies. Their age ranged from 18 to
30 years (M = 19.19, SD = 1.92).

INSTRUMENT
The HEMA scale is meant to assess motives for activities that
can be divided into those that are eudaimonic (e.g., “seeking to
develop the best in oneself”) and those that are hedonic (e.g.,

“seeking pleasure”). It is underlined by Huta and Ryan (2010)—
the authors of the scale—that this approach allows the distin-
guishing of hedonia and eudaimonia as forms of well-being pur-
suits from well-being products. It also offers the opportunity to
study both motives as separate variables. Thus, the HEMA mea-
sures eudaimonia and hedonia in parallel terms, operationalizing
both as orientations (Huta and Ryan, 2010).

The HEMA is a 9-item instrument comprising a hedonic
motivation subscale (5 items) and a eudaimonic motivation sub-
scale (4 items). Responses range from 1 (not at all) to 7 (very
much). A back-translation procedure was used to translate the
HEMA scale into Polish by two bilingual psychologists (the orig-
inal English items and their Polish translation are presented in
the Supplementary Table 1). During this process, one of the items
(“seeking enjoyment”), originally belonging to the hedonic sub-
scale, was identified to have different cultural connotations. In
the English language, it reflects striving after pleasant experi-
ences, while in the Polish version, it may have been perceived as
reflecting goal achievement, rather than being specific to hedo-
nia or eudaimonia. Such disparity could be expected due to the
existence of different well-being definitions across nations (e.g.,
Wierzbicka, 2004). In this situation a partial MI that leaves out the
problematic item could have been employed. However, this would
undermine the interpretation of estimated factor correlations (the
item reflected the hedonic construct in the English version only).
Therefore, in this article we tested a possibility to use the 8-item
version of the scale in both language groups.

ANALYSIS
The analysis was conducted in three stages: (1) the dimensional
structure of the scale was established through CFA separately for
the two national samples, (2) the MI was tested between the
countries, and finally (3) the differences between the latent fac-
tors’ correlations were tested. The research question focuses on
the construct validity of the scale, therefore a metric invariance
(equality of factor loadings) was of main interest (Byrne, 2012).
This type of MI indicates whether respondents across groups
attribute the same meaning to the latent construct under the study
(van de Schoot et al., 2012). In other words, indicators that are
central to the construct in one national group, are also central
in the other (Selig et al., 2008). It is assumed here that the sim-
ilar pattern of item intercepts (scalar invariance) is not required
for a meaningful comparison of factor covariances, even though
this claim can be considered controversial by some researchers
(for discussion see Byrne and van de Vijver, 2010). Although of
secondary interest, further analyses of the scalar invariance (i.e.,
invariance of observed variables’ intercepts) were also conducted,
and differences between intercepts were tested. This allowed for
a better illustration of the functioning of the scale in the two
national groups.

All the analyses were performed using Mplus 7.11 (Muthén
and Muthén, 1998–2012). For the traditional analyses, ML
parameter estimates with standard errors and a chi-square test
statistic robust to non-normality was used (MLR, see Muthén and
Muthén, 1998–2012). When ML estimation was employed, for the
evaluation of a model the following fit indices were used with
the respective cut-off values as proposed by Schweizer (2010);
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χ2, normed χ2 (NC, with values below 3 indicating an accept-
able fit and below 2 a good fit), CFI and TLI (acceptable model fit
when higher than 0.90, good fit when higher than 0.95), RMSEA
(acceptable fit when lower than 0.08, good fit when lower than
0.05) and SRMR (expected to stay below 0.10). Chi-square differ-
ence test (using the Satorra-Bentler scaled chi-square), AIC and
BIC values were employed to compare models. In the Bayesian
analyses, two indicators of a model fit were interpreted: (1) the
posterior predictive p-value (PPP, good fit when equal to or higher
than 0.05), and (2) the 95% confidence interval of the repli-
cated chi-square value (which was expected to include zero; for
details please refer to Muthén and Asparouhov, 2012). We addi-
tionally used the deviance information criterion to compare the
model (DIC; Spiegelhalter et al., 2002). Model estimation was
performed with maximum 500,000 and minimum 20,000 itera-
tions using the Markov chain Monte Carlo (MCMC) algorithm
(Muthén and Asparouhov, 2012). MCMC convergence criterion
using potential scale reduction (PSR) was set to 0.01 (Gelman
and Rubin, 1992). The alignment method for the approximate
MI was not employed since it is not yet available for models
with cross-loadings (Muthén and Asparouhov, 2014). The data
and all Mplus output files are available in the Supplementary
Materials.

RESULTS
FACTOR STRUCTURE
In the first step of the analysis a latent structure of the scale had
to be established. Based on the theoretical assumptions under-
lying the HEMA scale, a model separating the hedonic and the

eudaimonic factor was expected. Previous exploratory analyses
revealed the existence of such two-factor structure (Huta and
Ryan, 2010; Anić, 2014). However, a recent confirmatory anal-
ysis of the Japanese version of the HEMA scale revealed that
a three-factor structure is a better representation of the scale’s
structure (Asano et al., 2014). Therefore, our goals were to (1)
determine the factor structure of the scale, and (2) validate the
performance of the short 8-item instrument. In order to do so,
each national sample was divided into two groups. In the Polish
sample the groups were formed according to the waves of the
data collection (in the first wave the 9-item scale was adminis-
tered, in the second wave the 8-item instrument was used). In
the English sample participants were divided at random into two
groups, and for the second group the “seeking enjoyment” item
was removed from the analyses. Then, the one, two and three-
factor solutions were tested in four samples. The analysis was
begun with the traditional frequentist approach, followed by the
Bayesian estimation.

The results acknowledged that the three-factor model was
a better solution (see Table 1, syntaxes 1–7 included in the
Supplementary Materials). In both national groups, and for both
the short and full versions of the scale, splitting the hedonic factor
into two components would notably improve the fit. Due to both
the theoretical and empirical plausibility of such a distinction, we
decided to continue the analyses with the three-factor structure.
The proposed three-factor model categorized the hedonic items
into a comfort (“seeking to take it easy”; “seeking relaxation”)
and a pleasure group (“seeking fun”; “seeking pleasure”; “seek-
ing enjoyment” in the full version of the scale). The confirmatory

Table 1 | The confirmatory factor analyses using maximum likelihood estimation with robust standard errors (ML).

NC χ2 df p RMSEA CFI TLI SRMR AIC BIC

ENGLISH

9-items (N = 223)

1 factor 12.09 326.50 27 < 0.001 0.22 0.55 0.40 0.15 6634 6726

2 factors 5.49 142.67 26 < 0.001 0.14 0.82 0.76 0.09 6430 6526

3 factors 2.13 55.44 26 < 0.001 0.08 0.95 0.93 0.05 6334 6436

8-items (N = 206)

1 factor 8.56 171.15 20 < 0.001 0.19 0.60 0.45 0.13 5682 5762

2 factors 4.86 92.27 19 < 0.001 0.14 0.81 0.72 0.09 5581 5664

3 factors 1.84 31.36 17 0.02 0.06 0.96 0.94 0.05 5507 5597

8-items, full sample (N = 429)

3 factors 3.36 57.16 17 < 0.001 0.07 0.95 0.92 0.05 11,303 11,412

POLISH

9-items (N = 197)

1 factor 4.25 114.90 27 < 0.001 0.13 0.81 0.74 0.10 4967 5056

2 factors 2.39 62.17 26 < 0.001 0.08 0.92 0.89 0.07 4907 4999

3 factors 1.74 41.82 24 0.01 0.06 0.96 0.94 0.06 4889 4987

8-items (N = 189)

1 factor 6.47 129.46 20 < 0.001 0.17 0.65 0.51 0.12 4525 4603

2 factors 3.46 65.73 19 < 0.001 0.11 0.85 0.78 0.07 4451 4532

3 factors 2.39 40.76 17 0.001 0.09 0.92 0.87 0.06 4427 4515

8-items, full sample (N = 386)

3 factors 2.50 42.60 17 < 0.001 0.06 0.96 0.94 0.05 8878 8985
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procedure verified this model by revealing its acceptable fit in
both the English and Polish samples (Table 1). In this traditional
approach to the CFA, no cross-loadings between items were
allowed.

In terms of the short vs. the full version of the scale, the results
were somewhat inconclusive. In the English sample the short ver-
sion (with one item excluded from the analysis) fitted the data
slightly better. In the Polish sample, however, the fit was worse
when the 8-item version of the scale was administered. To check
whether these differences represented the specific variability of a
group, rather than a general tendency, we have retested the chosen
three-factor model on the full English and Polish samples (using
the short version of the scale). This resulted with acceptable fit
in both national samples leading to a conclusion that the 8-item
instrument produces similar factor structure to the one detected
for the full version of the scale.

Bayesian CFA
The factor structure of the HEMA scale was then re-tested using
Bayesian estimation (see Table 2 for results, and syntaxes 8–
11). First, the noninformative prior distribution was specified
using the default prior settings available in Mplus (Muthén and
Muthén, 1998–2012). Therefore, no previous knowledge was
imposed, meaning that every value of a parameter was equally
likely to occur (van de Schoot et al., 2013a). In this case, cross-
loadings were fixed to zero, just as in the ML estimated models.
With this specification, the two-factor and three-factor models
were tested. The one-factor model was omitted for clarity, and
due to its very poor fit as revealed in the previous analysis.

In almost all situations neither the two- nor three-factor model
resulted in a satisfactory fit (i.e., the PPP was significant, and the
95% CI of the replicated chi-square values did not include zero).
The only exception was the 8-item scale in the English group,
where the three-factor model resulted in close to acceptable fit
(i.e., the PPP was significant, but the 95% CI included zero).
We then changed the requirements of the model so that cross-
loadings would be approximately zero rather than exactly zero
(syntaxes 12–16). Using small-variance priors (prior mean = 0;
prior variance = 0.01) all cross-loadings were restricted to having
a value ranging from −0.2 to 0.2 (for more choices please refer to
Muthén and Asparouhov, 2012, p. 316). The goal of this strategy
was to allow for cross-loadings, yet at the same time keep them
small and statistically insignificant. This resulted in an improve-
ment of the three-factor model fit, yet did not help in the case of
the two-factor model (see Table 2). Thus, it was again concluded
that the three-factor model fit the data better and the analyses
were continued employing this structure.

Thanks to the use of weakly informative priors for cross-
loadings the results of the Bayesian CFA provided some interest-
ing insights into the performance of the short and full versions of
the scale. In the English sample both the 9- and 8-item versions
resulted with a good fit when cross-loadings were introduced in
the three-factor solution (PPP was accordingly 0.34 and 0.17).
In the Polish sample the short version of the scale responded
with improvement into an almost acceptable model fit (PPP
= 0.04; 95% CI included zero). However, when cross-loadings
were allowed in the full version the model yielded a satisfactory fit

Table 2 | The confirmatory factor analyses using Bayesian estimation.

#fp 2.5% pp 97.5% pp PPP DIC

ENGLISH

9-items (N = 223)

2 factors NI 28 107.09 157.27 < 0.01 6432

2 factors CL 37 92.71 147.25 < 0.01 6424

3 factors NI 30 6.35 60.21 < 0.01 6335

3 factors CL 48 −20.42 34.94 0.34 6314

8-items (N = 206)

2 factors NI 25 74.39 123.23 < 0.01 5582

2 factors CL 33 49.83 107.29 < 0.01 5564

3 factors NI 27 −0.25 47.65 0.03 5509

3 factors CL 43 −14.84 39.37 0.17 5501

8-items, full sample (N = 429)

3 factors CL 43 −16.71 35.67 0.23 11,265

POLISH

9-items (N = 197)

2 factors NI 28 19.54 70.05 < 0.01 4909

2 factors CL 37 −20.30 37.21 0.28 4877

3 factors NI 30 0.27 55.22 0.02 4895

3 factors CL 48 −24.75 33.42 0.38 4875

8-items (N = 189)

2 factors NI 25 28.94 78.39 < 0.01 4451

2 factors CL 33 19.75 72.00 < 0.01 4447

3 factors NI 27 6.25 53.19 < 0.01 4430

3 factors CL 43 −3.61 54.19 0.04 4427

8-items, full sample (N = 386)

3 factors CL 43 −12.27 37.86 0.14 8864

NI, Noninformative priors; CL, Informative priors on cross-loadings have a zero

mean and a variance of 0.01.

also for the two-factor solution (PPP = 0.28). In both two- and
three-factor models cross-loadings for the problematic “seeking
enjoyment” item were large enough to become significant (see
the Supplementary Table 3 for details). This suggested that in
the Polish sample the 8-item version of the scale represents the
measured constructs in a more clear way. Finally, the analyses con-
ducted on the full English and Polish samples confirmed the fit of
the three-factor model with small cross-loadings.

MEASUREMENT INVARIANCE
In the second step of the analysis, a series of multi-group CFA
were executed in order to test the MI between the Polish and the
English versions of the HEMA scale (syntaxes 17–21). Stepwise
procedures were employed, where the analysis begins with the
least restricted solution and subsequent models with increasingly
restrictive constraints are evaluated (Brown, 2006). Comparisons
were performed with a corrected chi-square differences test due to
the fact that the analyses were based on a robust maximum likeli-
hood method (MLR; Muthén and Muthén, 1998–2012). In order
to identify the model the factor variance was fixed to 1 in one
group only, and in the other group the equality constraints were
placed on the factor loadings while a factor variance was estimated
(Yoon and Millsap, 2007). This method minimizes problems
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Table 3 | The measurement invariance analyses using ML.

NC χ2 df RMSEA CFI TLI SRMR �χ2 adj �df �p

Configural 2.95 100.19 34 0.07 0.96 0.93 0.05 − − −
Metric 2.92 113.73 39 0.07 0.95 0.93 0.06 13.61 5 0.02

Partiala 2.78 105.64 38 0.07 0.95 0.93 0.06 5.98 4 0.20

Scalar 5.55 238.86 43 0.11 0.87 0.83 0.08 179.32 5 < 0.001

Partialb 2.75 107.327 39 0.07 0.95 0.93 0.06 1.38 1 0.24

aFree factor loading of item 1 (relaxation), the partial metric model is compared to the configural model.
bFree intercepts of items 4 (pleasure), 3 (do what you believe), 2 (learn, develop skills), and 1 (relaxation), the partial scalar model is compared to the partial metric

model.

caused by commonly used solutions such as constraining the first
factor loading to one (Bauer and Hussong, 2009).

With a configural invariance model (syntax 17) established
across the two language versions of the HEMA, the next step was
to test for metric invariance (see Table 3). A model constraining
factor loadings to being equivalent across the language versions
(syntax 18) fitted slightly worse than a configural model. Then
a partial metric invariance model (syntax 19) was tested, where
one factor loading was allowed to vary across groups (“seek-
ing relaxation”). This specification represented the data well.
Accordingly, the construct validity of the scale was confirmed
across the national samples enabling a meaningful comparison
between the factor covariances. Finally, a scalar invariance was
tested (syntax 20). The results were not supportive for the scalar
invariance indicating that the intercepts were not equal across the
samples. Partial scalar model (syntax 21) could have been estab-
lished only when half of the intercepts were allowed to vary. We
have therefore retreated to the partial metric MI model and this
one was applied for the final step of the analyses (see Table 5 for
standardized results of the partial metric MI model).

Approximate MI
Then, the MI across groups was re-tested with the Bayesian esti-
mator (see Table 4). We have continued with the model where
weakly informative priors on the cross-loadings were used (i.e.
small cross-loadings were allowed, see syntaxes 22–26). The con-
figural model (syntax 22) fitted the data well as expected, given
the previously confirmed stability of the three-factor model across
the national groups. The full metric model (syntax 23) resulted
in an acceptable fit, yet the PPP-value was still quite low (0.057).
We have proceeded to establish and approximate metric invari-
ance model (syntax 24), resulting in a slightly better fit (higher
PPP-value, 0.078), but the difference in DIC was small (equals
2.1). Therefore, we have decided to employ the metric invari-
ance model, not the approximate one, in the further analysis.
The standardized factor loadings and intercepts estimated for this
model are presented in Table 5. Lastly, the scalar invariance (syn-
tax 25) was tested, but the model did not represent the data well.
Therefore, the strict equality assumption between the intercepts
was released, and the approximate scalar MI (syntax 26) was
implemented (Muthén and Asparouhov, 2013). Allowing all the
intercepts to be at least approximately equal (prior mean = 0;
prior variance = 0.01) did not help to improve the fit. In fact nei-
ther of the methods used (the partial invariance with ML or the

Table 4 | The measurement invariance analyses using Bayesian

estimation.

BSEM #fp 2.5% pp 97.5% pp PPP DIC

Configural 86 −13.57 61.47 0.102 20,133

Metric 81 −10.53 67.75 0.057 20,131

Metric approximatea 89 −10.97 60.773 0.078 20,129

Scalar 76 21.63 91.06 0.001 20,154

Scalar approximatea 84 11.76 86.44 0.005 20,149

aInformative priors on differences between groups have a zero mean and a

variance of 0.01.

approximate invariance with Bayes) supported scalar invariance.
This suggests that the problem of non-invariant intercepts is not
limited to a particular item(s), and that all the items vary to an
extent that cannot be disregarded (only for the item 5 credibil-
ity intervals for the intercepts overlapped) The intercepts in the
Polish sample were higher than the ones of the English sample
(see Table 5). Thus, the comparison of factor means would not be
possible. Yet, in order to compare factor covariances the metric
model could be used (Byrne and van de Vijver, 2010).

CORRELATION BETWEEN HEDONIA AND EUDAIMONIA
The third and final step of the analysis was to quantify and
compare the covariances between the latent factors representing
hedonic and eudaimonic pursuits of well-being (syntaxes 27–28).
To do so, the MODEL CONSTRAINT command was included in
the Mplus code (Muthén and Muthén, 1998–2012). This func-
tion allowed us to create a set of new parameters representing
the differences between the estimated factor covariances across
and within the national groups. Mplus provided us with confi-
dence intervals (using the Delta method standard errors and z-test
for ML estimation) or credibility intervals (for Bayesian estima-
tion) for the newly defined parameters. As a result, the differences
between the factor covariances were tested for statistical signifi-
cance. We continued to use partial metric invariance model for
MI estimation (syntax 27), and metric invariance model with
small cross-loadings specified with weakly informative priors for
Bayes (syntax 28).

Table 6 presents the factor correlations (standardized covari-
ances) for the two national groups and the two estimation
methods, marked for the significant differences between and
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Table 5 | Standardized factor loadings and intercepts for the metric invariance model.

ML Bayes

Polish English Polish English

FL Int FL Int FL Int FL Int

HEDONIC PLEASURE

Item 4 (pleasure) 0.82 5.31 0.80 3.52 0.76 5.28 0.73 3.51

Item 8 (fun) 0.68 3.94 0.80 3.64 0.74 3.88 0.86 3.65

HEDONIC COMFORT

Item 1 (relaxation) 0.93 4.46 0.70 2.70 0.88 4.40 0.82 2.72

Item 6 (easy) 0.75 4.32 0.90 2.65 0.81 4.32 0.77 2.63

EUDAIMONIC FACTOR

Item 2 (learn, develop skills) 0.50 5.37 0.62 3.77 0.55 5.35 0.67 3.74

Item 3 (do what you believe) 0.51 4.81 0.61 3.05 0.51 4.81 0.60 3.02

Item 5 (pursue excellence) 0.57 4.58 0.80 3.80 0.59 4.52 0.82 3.80

Item 7 (use the best in yourself) 0.60 4.83 0.80 3.74 0.56 4.78 0.74 3.74

FL, Factor loadings; Int, Intercepts. Partial metric invariance model in the ML estimation. Cross-loadings omitted for clarity.

Table 6 | Correlations between latent factors of hedonia and eudaimonia as estimated with ML and Bayes.

ML (95% CI) Bayes (BCI)

Polish English Polish English

Hedonic pleasure with hedonic comfort 0.821 (0.74; 0.91) 0.461 (0.32; 0.59) 0.821 (0.72; 0.90) 0.471 (0.28; 0.62)

Hedonic pleasure with eudaimonic 0.292 (0.12; 0.46) 0.541 (0.42; 0.67) 0.262a (0.01; 0.48) 0.501a (0.31; 0.66)

Hedonic comfort with eudaimonic 0.182a (0.03; 0.33) 0.091a ( − 0.01; 0.25) 0.172 ( − 0.06; 0.38) 0.162 ( − 0.03; 0.34)

Correlations marked with superscript letter “a” differ between national groups. Correlations within one column not sharing the same superscript number differ

within national groups. CI, Confidence interval; BCI, Bayesian credibility interval.

within groups. Both the traditional and Bayesian procedures
revealed similar latent factor correlation patterns within each
of the national groups. In the Polish sample the connection
between the two hedonic factors was found to be the strongest
(significantly stronger than each of the other two correlations),
while the correlations between the hedonic factors and the eudai-
monic factor were rather weak. In the English sample the links
connecting the hedonic factors, and the hedonic pleasure with the
eudaimonic factor were moderate. The correlation between the
hedonic comfort and the eudaimonic factor was weak and mostly
insignificant (only in the Polish group with ML p = 0.02). It was
weaker than each of the other two correlations in all cases except
from ML estimation in the English group. Between group dif-
ferences were found in the connection between hedonic comfort
with the eudaimonic factor (with ML) or in the hedonic pleasure
with eudaimonic factor (with Bayes). Even though the correlation
between the hedonic factors was stronger in the Polish group than
the English group, neither ML nor Bayes found this difference
significant.

DISCUSSION
The aim of this paper was to describe the structure of the HEMA
scale and its performance across two different nations. Stepwise
analyses were conducted to establish a factor structure of the scale,

revealing three correlated factors: two hedonic and one eudai-
monic. The eudaimonic factor reflected the pursuit for excellence.
The hedonic factors include items reflecting the pursuit of affec-
tive states and were divided into a comfort factor and a pleasure
factor.

Among the two hedonic factors, the one reflecting pleasure was
closer to the eudaimonic factor than was the hedonic comfort fac-
tor. This pattern was relatively stable across the national groups.
Thus, seeking excellence seems to feel more like pleasure and
fun, than like being relaxed and at ease. In fact, some researchers
include the enjoyment from activities representing the pursuit
of excellence into their definition of eudaimonia (Waterman
et al., 2010). At the same time, both the hedonic factors were
strongly correlated, indicating that these items roughly occupy
the same area of the affective landscape. Splitting hedonia into
the two components shed more light on unclear previous results
regarding its connection to eudaimonia (Huta and Waterman,
2013). This division may be valid for further research, yet build-
ing a dedicated scale to assess hedonic comfort and pleasure is
recommended.

This paper is a first attempt at a systematic examination of
multigroup stability of the HEMA scale components. Future work
should address several issues not answered in this study. First of
all, the conclusions of this paper are based on the models that fit
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acceptably well, yet are not perfect. More national samples should
be taken into consideration to further justify the cross-national
stability of a well-being assessment, including both hedonic and
eudaimonic constructs. Secondly, representative samples are pre-
ferred in order to avoid possible sampling errors. Especially the
lack of gender balance is an important limitation of this study.
Thirdly, the lack of scalar invariance revealed in this study should
be examined more closely. The differences between intercepts are
not surprising when comparing across nations, as they might
occur as a result of different norms of socially-acceptable levels
for expressions of hedonia and eudaimonia (e.g., Diener, 2000).
Detailed analyses of this phenomenon were not within the scope
of this paper, but remain an interesting issue. Finally, the division
of hedonic comfort and pleasure needs further attention, and a
more detailed assessment of those hedonic components could be
considered.

In summary, this paper revealed a similar pattern of correla-
tions between the trait-level pursuits of hedonic and eudaimonic
elements across the two national samples. Further cross-national
studies are needed to confirm the existence of this pattern, as
well as to explain the differences in the items’ intercepts across
the groups (the lack of scalar invariance). It is hoped that using
the HEMA scale in various language versions and across differ-
ent national groups has the potential to substantially advance
the knowledge on hedonic and eudaimonic components of well-
being.

THE PERFORMANCE OF THE BAYESIAN ESTIMATION
Bayesian estimation was employed in this study due to its fun-
damental advantages over the traditional frequentist approach
(e.g., Muthén and Asparouhov, 2012; van de Schoot et al., 2013a;
Zyphur and Oswald, 2013). It was expected that specifying weakly
informative priors would help us to better assess the differences
between groups, and the intuitive inference process would pro-
vide a simpler interpretation of the factor correlations. Several
points regarding the fulfillment of those expectations are dis-
cussed here.

Firstly, Bayesian estimation reported a misfit of the model
when strong assumptions of exact zero were imposed. This is
interesting given that the estimation based on the ML method
reported an acceptable fit. The reason for this lies within the
definition of a model fit used in Bayesian estimation. The pos-
terior predictive checking assesses how well a model is specified
from the viewpoint of predictive accuracy (how well it pre-
dicts the data). Thus, any discrepancies are detected between
the values generated by a model and the observed data, sug-
gesting that the model could be improved (van de Schoot et al.,
2013a).

Consequently, in Bayesian estimation replacing the exact zero
assumption with an approximate zero improved the fit signifi-
cantly, leading to the acceptance of the model with small cross-
loadings. In fact Bayes arrived at a similar outcome to that of the
traditional estimation, yet using a longer route. This detour, how-
ever, was much more informative. While in the ML approach the
CFA is not able to provide information about the reason of model
misfit, Bayesian modeling gives more hints about it. Including
small priors for cross-loadings (or residual covariances which is

also possible, see Muthén and Asparouhov, 2012) helps in verify-
ing why the model does not represent the data well. Yet, it should
be underlined that when large discrepancies were observed, such
as when scalar invariance was imposed, changing the exact zero
assumption into the approximate one (in this case by specifying
an approximate MI) did not help in achieving a satisfactory fit.
Clearly, according to both ML and Bayes, the differences between
the items’ intercepts were too big for scalar invariance to be
established. This shows that the Bayesian approach can be more
informative than ML only when the models are already fairly well
specified. Indeed, this method is advised for analyses with a small
number of groups, continuous variables and close-to-invariant
models (van de Schoot et al., 2013b).

Finally, taking into account the small cross-loadings might
have been the reason why the Bayesian estimation did not dis-
cover any differences between factor loadings (allowing for full
metric invariance). Interestingly, for both methods the estimated
factor correlations were almost identical, even though ML used
only the partial metric MI model. In this case including small
cross-loadings did not influence the structural parameters of the
model. In fact, it helped in establishing the metric invariance. This
might suggest that non-invariant cross-loadings (not included in
the traditionally estimated metric MI model) could actually be the
reason for its misfit. Such possibility opens up an interesting dis-
cussion, but simulation studies are needed to better understand
the role of small and sample specific cross-loadings in multigroup
MI analyses.

To summarize, Bayesian estimation can be a recommended
approach to MI analyses when (1) small differences between
groups are expected and the size of those differences should be
estimated, and (2) when structural parameters are of interest (e.g.,
factor covariances) and a researcher would like to be provided
with easy to interpret credibility intervals for such parameters.
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This study aimed at demonstrating the usefulness and flexibility of the Bayesian
structural equation modeling approximate measurement invariance (BSEM-AMI) approach
to within-couple data. The substantive aim of the study was investigating partner
differences in the perception of relationship quality (RQ) in a sample of intact couples
(n = 435) drawn from the first sweep of the Millenium Cohort Study. Configural, weak and
strong invariance models were tested using both maximum likelihood (ML) and BSEM
approaches. As evidence of a lack of strong invariance was found, full and partial AMI
models were specified, allowing nine different prior variances or “wiggle rooms.” Although
we could find an adequately fitting BSEM-AMI model allowing for approximate invariance
of all the intercepts, the two-step approach proposed by Muthén and Asparouhov (2013b)
for identifying problematic parameters and applying AMI only to them provided less biased
results. Findings similar to the ML partial invariance model, led us to conclude that women
reported a higher RQ than men. The results of this study highlight the need to inspect
parameterization indeterminacy (or alignment) and support the efficacy of the two-step
approach to BSEM-AMI.

Keywords: measurement invariance, Bayesian structural equation modeling, dyadic data, relationship quality,

marital satisfaction

INTRODUCTION
In this study we present a worked example of the usefulness
and flexibility of the recently developed Bayesian structural equa-
tion modeling approximate measurement invariance analysis
(BSEM-AMI, Muthén and Asparouhov, 2013b) in addressing a
common issue in relationship research, i.e., testing mean dif-
ferences in partners’ perception of relationship quality (RQ).
This is a special case of gender differences testing, since the
data from each individual are not unrelated to the data from
every other individual in the study, as partners are nested
within couples. This violates the assumption of independent
errors and implies that, as we discuss in the Analytic strat-
egy section, the unit of analysis has to be the couple, with
women and men being different (but identifiable) raters of the
same relationship. While our aim is not to draw definite con-
clusions about the long debated issue of partner differences
in the perception of RQ, we offer to relationship researchers
an example of a principled analytical approach to address
it. For our didactic purposes we used partners’ scores on a
7-item version of the Golombok-Rust Inventory of Marital State
(Rust et al., 1986, 1990), which is included in the first sweep
of University of London, Institute of Education, Centre for
Longitudinal Studies (2012). As the psychometric properties of
this short version have not been comprehensively tested, this
study also provides evidence of its reliability, unidimensional-
ity and partial measurement invariance across partners in intact
couples.

THE SUBSTANTIVE FOCUS
Relationship quality (RQ), also referred to as marital quality,
marital satisfaction or dissatisfaction, marital characterization,
marital discord, marital conflict or relationship satisfaction is a
key measure in family and developmental research. It has been
linked to personal outcomes such as psychological and physical
health of the partners, and with some crucial family outcomes
such as domestic violence, poor parenting, and poor adjustment
of children (Grych and Fincham, 2001; Fincham, 2003). Partners
who lead a happy relationship are healthier (but see Robles et al.,
2014), tend to communicate well with each other, are good-
enough parents who raise their children authoritatively, and run
less risk of marital breakdown (for more information see Section
Introduction of the Supplementary Materials). Bradbury et al.
(2000) highlighted the crucial role that RQ plays in sustaining
individual and family-level well-being. A society benefits from
such strong marital bonds that are formed and maintained as they
provide a robust basis for bringing up children. Healthy children,
parents and communities provide the rationale behind the need
to “develop empirically defensible interventions for couples that
prevent marital distress and divorce” (p. 964).

It is therefore important to understand with some preci-
sion how we can adequately measure the quality of relationships
within couples. The use of reliable measures could assist prac-
titioners (e.g., family therapists) to draw fine-tuned differences
in partners’ perceptions of their couple-life. In family research
there are models in which the dependencies between partners
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are modeled, such as the Actor-Partner-Interdependence-Model
(APIM; Kenny, 1996; Kenny and Cook, 1999), as well as models
in which within-couple agreement (correlations) or discrepancies
(mean-level differences) are specified (e.g., Luo et al., 2008).

RQ has been operationally defined as a global evaluation of
the relationship along several dimensions, including self-reported
satisfaction with the relationship, attitudes toward one’s part-
ner, and levels of hostile and negative behavior (Robles et al.,
2014). Numerous measures have been developed to assess it, from
single-item measures (e.g., “How happy is your relationship with
your partner, all things considered?” rated on a 7-point Likert-
type scale, included in the National Child Development Study in
UK), to multi-item measures, such as the Locke-Wallace Marital
Adjustment Test (MAT, Locke and Wallace, 1959) or the Dyadic
Adjustment Scale (DAS, Spanier, 1976, revised by Busby and
Christensen, 1995, for use with distress and non-distressed cou-
ples) (for reviews see Child Trends, 2003; Bronte-Tinkew et al.,
2004; Reynolds et al., 2014). In this study we focused on the
Golombok-Rust Inventory of Marital State (GRIMS, Rust et al.,
1986, 1990), whose 7-item shortened version was included in the
first sweep (2003) of the Millenium Cohort Study (MCS). Rust
et al. (1986) developed the GRIMS for use in couple counsel-
ing centers as a measure of change before and after treatment
and was initially intended as a companion to the Golombok-Rust
Inventory of Sexual Satisfaction (GRISS, Rust and Golombok,
1985). The original 28-item GRIMS allows to measure relation-
ship change over time and to highlight relationship difficulties
and focuses on two domains of the relationship, (1) shared inter-
ests, communication, sex, warmth, roles and decision making,
and coping, and (2) beliefs about and attitudes toward rela-
tionships, behavior in the relationship and agreement with the
partner. The 7-item GRIMS was developed to meet the need for
a shorter measure of RQ to be included in the MCS question-
naire while retaining the content validity of the original version.
Using archival data, the items to be included in the final version
were chosen in order to (a) retain the framework of the origi-
nal blueprint as much as possible; (b) obtain a similar number
of positive and negative items and (c) achieve adequate corrected
item-total correlations. The shortened scale was tested on a stan-
dardization sample of 266 individuals, and results showed good
internal consistency (Cronbach’s α = 0.86 in both women and
men), and no significant skewness or kurtosis (Rust, personal
communication, 20141). As for its criterion validity, previous find-
ings from the MCS in relation to outcomes of RQ revealed that,
women more satisfied with their relationship use less harsh dis-
cipline, parents in happier relationships spent more time with
their children, women happier in relationships had children with
higher British Ability Scale naming vocabulary scores and low RQ
is linked to more behavioral problems (Jones, 2010).

One issue that has been extensively investigated in relation to
RQ is whether there are gender differences, i.e., whether partners
systematically experience different levels of RQ. As reported by
Jackson et al. (2014) in their recent meta-analytic study, since
Bernard (1972)’s seminal work it has long been assumed that
women experience significantly less relationship satisfaction than

1Rust, J. (2014). Personal Communication, July 14, 2014.

men, but despite a number of studies supported this assumption,
evidence for a lack of difference has also been provided (see
Jackson et al., 2014 for a review). Jackson et al. (2014) concluded
that there was a high average correlation of RQ scores between
husband and wife pairs (0.51), and that wives were 51% less likely
to be satisfied than their husbands only in couples undergoing
marital therapy, whereas the difference was not significantly dif-
ferent from zero in community-based couples, especially in intact
couples. This meta-analysis did not include studies that used the
GRIMS. Rust et al. (1986, 1990) reported mixed results about
gender differences in the 28-item scale scores: in the 1986 study,
men obtained higher scores than women in the pilot sample and
in clinical samples, while in the 1990 study men’s scores were
lower in clinical samples and equal in a sample of attendees at
a general practitioners clinic. In the development study of the 7-
item GRIMS, Rust (personal communication, 20141) did not find
significant gender differences in raw scores.

THE METHODOLOGICAL FOCUS
Both Jackson et al. (2014) and Rust et al. (1986, 1990) stud-
ies tested gender differences in RQ observed scores under the
untested assumption that all the RQ measures included in the
analysis showed measurement invariance across partners, i.e., the
underlying measurement model of RQ measures was equivalent
for both women and men. In particular, a crucial assumption
in the comparison of RQ scores across spouses is, beyond the
invariance of factor loadings, the invariance of item intercepts,
i.e., whether the mean differences based on the latent construct
are reflected in each of the individual items used to infer it. In
other words, if the level of partner differences in RQ varies sub-
stantially from item to item for different items used to infer the
construct, then the partner differences based on the correspond-
ing latent construct should be considered idiosyncratic to the
particular items used to infer RQ (i.e., differential item func-
tioning). If this turns out to be true, results would suggest that
conclusions about differences in RQ do not generalize over the
set of items used in the instrument and the interpretation of latent
mean comparisons among partners would be compromised (van
de Schoot et al., 2012). In other words, even if partners rate the
same items about the same relationship, their scores cannot be
compared because the instrument does not measure the same
construct in the same way.

Despite the wide use of RQ measures in surveys and research,
very few studies have compared their factor structures across
partners. One exception is South et al. (2009)’s study that demon-
strated support for factorial invariance of the DAS across spouses.
As pointed out by the authors, having established invariance of
the DAS across gender, it can be concluded that any differences
between men and women (as they found for dyadic consensus
and affectional expression, with men scoring lower than women)
can be interpreted as arising from actual differences in relation-
ship adjustment, not that the instrument is measuring different
constructs in the two groups. Besides, being able to reliably estab-
lish that there are systematic differences in scores between women
and men would imply that different norms might be needed to
interpret scores from either spouse. To the best of our knowledge
no study has addressed this issue about the 7-item GRIMS, nor
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whether there are gender differences in scores. To this end, the aim
of this study was to test its measurement invariance and investi-
gate whether there are gender differences in its scores in a sample
of intact couples from the first sweep of the MCS.

One frequent issue about measurement invariance is what to
do when, after finding support for the ability of the a priori model
to fit the data in each group without invariance constraints (con-
figural invariance) and for the invariance of the factor loadings
(weak or metric invariance), the model that imposes equality on
item intercepts (strong or scalar invariance), does not fit, thus pre-
venting a meaningful test of latent score differences. Muthén and
Christoffersson (1981) suggested that it is possible to test invari-
ance when only some of the parameters are invariant, and they
termed this “partial” measurement invariance. Byrne et al. (1989)
argued that full invariance is not necessary for performing further
invariance tests and substantive analyses and proposed that mean
comparisons would be meaningful if weak and strong invariance
have been satisfied for at least two items per latent trait. Actually,
the estimates of trait mean differences will be more accurately
estimated with imposed partial invariance constraints, since the
trait mean estimates are adjusted for the fact that only partial, not
full, invariance characterizes the data: in other words, allowing
the intercepts to vary automatically excludes the non-invariant
items from the estimation of latent means (Cheung and Rensvold,
2000). Another approach to the problem, named Approximate
Measurement Invariance (AMI), has been recently described by
Muthén and Asparouhov (2012a, 2013b) and successfully imple-
mented by van de Schoot et al. (2013). This method uses Bayesian
structural equation models (BSEM) in which exact zero con-
straints can be replaced with approximate zero constraints based
on substantive theories. In other words, differences in item inter-
cepts that in confirmatory factor analysis would be constrained
to be zero, under AMI can be estimated with some so-called
“wiggle room” (Muthén and Asparouhov, 2012b), implying that
very small differences are allowed and thus finding a compro-
mise between zero and no constraints, through which both model
fit and latent mean comparison can be established. A Bayesian
approach involves the use of (1) prior distributions, which rep-
resent background knowledge about the parameters of a model,
(2) the likelihood function of the data containing the information
about the parameters from the data, and (3) a posterior distri-
bution, which contains one’s updated knowledge balancing prior
knowledge with observed data.

If most of the items show small differences in intercepts, the
application of full AMI is recommended, with “small” implying
that parameters of substantive interest do not change in a mean-
ingful way if MI does not fully hold (van de Schoot et al., 2013). In
most applications, however, the number of non-invariant param-
eters might be small with respect to the number of actually
invariant ones, but this does not prevent an unacceptable model
fit. In these cases Muthén and Asparouhov (2013b) and van de
Schoot et al. (2013) recommended a two-step procedure in which
parameters that are different between groups (and hence are the
major sources of misfit) are detected in step 1, for example by
using modification indices provided by the ML estimation, and
are allowed to be non-invariant to the extent imposed by partial
AMI in step 2. A technical description of the statistical features

of these models is beyond the scope of this paper (see Muthén
and Asparouhov, 2013b; van de Schoot et al., 2013, for a gentle
introduction), which is instead to provide a didactic example of
how to establish strong measurement invariance using AMI in the
particular case of within-couple data.

MATERIALS AND METHODS
SAMPLE
The sample for this study was UK-based and drawn from the first
sweep of the Millennium Cohort Study (MCS). The MCS is a
longitudinal study drawing its sample from all live births in the
United Kingdom over 12 months, in England, Wales, Scotland
and Northern Ireland. The first sweep took place in 2003 when
the children were aged 9 months, and later follow-ups at the ages
of 3, 5, 7, and 11 (University of London, Institute of Education,
Centre for Longitudinal Studies, 2012; for details, see Plewis,
2007). In this study we included families which were present at
Sweep 1 (n = 18.552). If families had twin or triplet births the
child coded as cohort member “a” was included in our sample.
As we were interested in ratings of both partners within cou-
ples, we selected two-parent-figure families, in which both parent
figures were present, were of opposite sex, were one generation
older than the child, were not blood relatives, and were biologi-
cal parents (for details, see Malmberg and Flouri, 2011). For the
purpose of our demonstration of the AMI procedure we used
a sub-sample of parents from the Northern Ireland-advantaged
stratum (n = 527). Although the procedure presented here can
handle missing data either with a full information or a multiple
imputation approach, the implications of dealing with missing-
ness were beyond the scope of the paper. As we aimed to provide
a relatively straightforward example of the application of BSEM-
AMI, we screened for missing data on the GRIMS and used a
listwise sample of 435 couples.

MEASURE
The 7-item GRIMS provides a self-reported assessment of the
quality of a couple’s relationship asking participants to rate seven
items [(1) My partner is sensitive to and aware of my needs;
(2) My partner doesn’t listen to me anymore; (3) I’m sometimes
lonely when I’m with my partner; (4) Our relationship is full of
joy and excitement; (5) I wish there was more warmth and affec-
tion between us; (6) I suspect we are on the brink of separation;
(7) We can make up quickly after an argument] on a 5-point,
Likert-type agreement scale (1 = Strongly Agree, 5 = Strongly
Disagree). Scores of items 1, 4, and 7 were reverse scored before
performing the analyses so that higher item scores corresponded
to higher RQ.

ANALYTIC STRATEGY
Before testing measurement invariance across partners, we tested
the fit of the hypothesized one-factor model for the GRIMS
separately for men and women through the “classical” confirma-
tory factor analysis (CFA) using maximum likelihood estimation
with robust standard errors (MLR) to address the relatively non-
normal distributions of item scores (Table S1 in Supplementary
Information). The fit of the models was evaluated consider-
ing the root-mean-square error of approximation (RMSEA), the
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Tucker–Lewis index (TLI), and the comparative fit index (CFI), as
operationalized in Mplus v7 (Muthén and Muthén, 1998-2012) in
association with the MLR estimator. For both the TLI and CFI,
values greater than 0.90 and 0.95, respectively, typically reflect
acceptable and excellent fit to the data. For the RMSEA, values
less than 0.05 and 0.08 reflect a close fit and a reasonable fit
to the data, respectively (Marsh et al., 2004). After finding that
the expected measurement model fitted adequately in both part-
ners, we specified the sequence of invariance models as in the
Meredith (1993) tradition. However, as pointed out by South
et al. (2009), testing measurement invariance on paired groups
of observations as couple data is different from testing it on inde-
pendent groups, since both partners are reporting on the same
relationship. Instead of testing the same, e.g., one-factor mea-
surement model on two different groups defined by a grouping
variable, we therefore modeled the data at the couple level, i.e.,
the unit of analysis was the couple, and partners were treated as
different raters on the same relationship. This means that, for
each couple, both women’s and men’s ratings were on the same
line of data. This model is basically equivalent to a single-group
two-correlated-factor model in which the items of the scale are
considered twice, as indicators of women’s and men’s marital
satisfaction (Figure 1).

This also implies that the systematic residual variance (unique-
ness) in each pair of identical items between parents is expected
to covary because of the identical nature of the item pair (Brown,
2006, chap. 7, e.g., the residual variance in the item “My part-
ner doesn’t listen to me any more” for women should covary
with the same item for men). Hence, the model with correlated
uniqueness (θWiMis in Figure 1) should have resulted in a sub-
stantial improvement in fit over the model without the correlated
uniqueness (e.g., Burns et al., 2008). The fit of invariance models
was evaluated with the same criteria stated above, while model
comparisons were performed using the Satorra-Bentler Scaled
Chi-Square Difference Test (Satorra and Bentler, 2001) but, con-
sidering that this test suffers the same problems (i.e., sample size
dependency) as the chi-square test used to test goodness of fit
that led to the development of fit indices, we also considered as

support for the more parsimonious model a change in CFI of less
than 0.01 or a change in RMSEA of less than 0.015 (Chen, 2007).
In case of rejection of the more parsimonious (i.e., constrained)
model we inspected modification indices in Mplus output to find
the least invariant parameter and re-specified the model letting it
to be non-invariant. This procedure was iterated until no more
parameters were suggested to be non-invariant.

For Bayesian models we used default prior settings, i.e., nor-
mal prior distributions for the intercepts and factor loadings
with a prior mean of zero and a prior variance of 1010, and an
inverse gamma distribution for the (residual) variance terms with
hyperparameters −1 and zero; note that this model is similar to
the configural invariance model because it implies practically no
“real” prior constraint, and the following Mplus Analysis settings:
BCONVERGENCE = 0.01; BITERATIONS = 1,000,000 (20,000);
PROCESSOR = 2; CHAINS = 2; BSEED = 167. As indices of
model fit we used the posterior predictive p-value (PPP) and the
95% confidence interval (CI) for the difference in the f statistic
for the real and replicated data (see Muthén and Asparouhov,
2012a). An acceptably fitting model should have shown a PPP
higher than 0.05 and a 95% CI of the replicated chi-square val-
ues that included zero. Nine different wiggle rooms σ2 (0.50, 0.25,
0.125, 0.05, 0.025, 0.01, 0.005, 0.001, 0.0005) were specified for
non-invariant parameters, with smaller values allowing smaller
wiggle rooms and therefore a closer approximation of the “clas-
sical” invariance model. Given the didactic aim of this paper, we
initially tested full AMI models, in which all parameters of inter-
est were allowed to be non-invariant to the extent allowed by
the wiggle room, and then turned to partial AMI, following the
two-step procedure recommended by Muthén and Asparouhov
(2013b) and described above.

The data and all syntax files are available as supplementary
materials.

RESULTS
If we simply compared women’s and men’s observed scores
on the GRIMS with a paired-sample t-test, we would have
concluded that women (M = 29.23, SD = 3.63, Cronbach’s α =

FIGURE 1 | Baseline model used for the confirmatory factor

analytic invariance analysis between women’s (W subscript) and

men’s (M subscript) ratings of marital satisfaction. Note that

Mplus notation is used, i.e., α, factor mean; β, factor variance;
ψ, factor correlation; λ, factor loading; ν, item intercept; θ, item
uniqueness.
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0.73) tend to be systematically more satisfied than men (M =
28.19, SD = 3.67, α = 0.73) [t(434) = 5.08, p < 0.001, d = 0.29]
and that the two scores are only moderately correlated (r =
0.31, p < 0.001). However, as stated above, this result is mean-
ingful only if strong measurement invariance holds. The one-
factor measurement model for the GRIMS had an acceptable fit
for women [SBχ2(14) = 33.258, p = 0.002, Scaling Correction
Factor [SCF] = 1.071, CFI = 0.944, TLI = 0.916, RMSEA =
0.056) and optimal for men [SBχ2(14) = 16.862, p = 0.264, SCF
= 1.491, CFI = 0.990, TLI = 0.985, RMSEA = 0.022]. Factor
score determinacies, i.e., validity coefficients computed as the
correlation between factor score estimates and their respective
latent factors, were 0.868 and 0.871, respectively, suggesting a high
(>0.80, Gorsuch, 1983) degree of convergence of observed scores
on the scale and the latent individuals’ scores. Raykov (1997)’s
composite reliabilities were in both cases 0.740.

As a first step for testing measurement invariance we compared
the configural invariance models with and without correlated
uniquenesses. As shown in Table 1, the fit of both models was
acceptable, suggesting an adequate ability of the a priori one-
factor measurement model to fit the data in each partner without
invariance constraints. However, the model with the correlated
uniqueness fitted statistically and substantially better than the
one without, and was thus chosen as the baseline model for the
invariance tests.

We then constrained the loadings for identical items to be
equal between parents (weak or metric invariance). If identical
items have statistically equivalent loadings, then the identical
items show the same amount of increase between parents for the
same amount of increase on the latent factor. As shown in Table 1,
this constraint did not significantly affected model fit, hence we
concluded that weak invariance held. However, the comparison
of latent means is appropriate only if it can be shown that also
intercepts of the same items are invariant between partners, i.e.,
strong or scalar invariance holds. When factor loadings and inter-
cepts are invariant, at any point along the factor continuum the
same level of the factor results in statistically equivalent average
scores on identical items between parents, namely, any observed
score differences between parents on identical items is not due to
partner bias but rather to actual differences on the factor mean.
Due to model identification issues it is not possible to estimate
the two latent means simultaneously, hence we fixed at zero the
women’s mean and estimated the men’s mean, which thus rep-
resented the mean difference of men’s RQ scores with respect
to women’s. Table 1 shows that constraining to invariance all
item intercepts led to a substantial and significant decrease of
fit, although this remained acceptable. We concluded that full
strong invariance could not be assumed, thus undermining the
possibility of reliably comparing latent means.

The inspection of modification indices from the strong invari-
ance model indicated that intercept of item 4 should be allowed
to vary across parents. The fit of the model allowing for the par-
tial invariance of this intercept (Partial1 in Table 1) was higher
than the fit of the strong invariance model, but it was still lower
than that of the weak invariance model [SB�χ2(5) = 18.692, p =
0.002 and�CFI> 0.01]. Following the modification indices, in a
subsequent model (Partial2) we permitted the intercept of item 3 T

a
b

le
1

|
G

o
o

d
n

e
s
s

o
f

fi
t

o
f

m
a
x
im

u
m

li
k
e
li
h

o
o

d
w

it
h

ro
b

u
s
t

s
ta

n
d

a
rd

e
rr

o
rs

(M
L
R

)
fu

ll
a
n

d
p

a
rt

ia
l

in
v
a
ri

a
n

c
e

m
o

d
e
ls

.

In
v
a
ri

a
n

c
e

m
o

d
e
l

S
B

χ
2

d
f

p
S

C
F

R
M

S
E

A
C

F
I

T
L
I

cd
T

R
d

�
d

f
p

M
e
a
n

d
if

fe
re

n
c
e

e
s
ti

m
a
te

S
im

u
la

ti
o

n
B

ia
s

α
S

E
p

d
A

V
G

S
D

S
E

9
5
%

%
S

ig
.

M
S

E

a
v
g

C
o

v
e
r

b
ia

s
B

ia
s

(%
)

(%
)

C
on

fig
ur

al
no

C
U

s
97

.9
48

76
0.

04
6

1.
11

2
0.

02
6

0.
97

3
0.

96
7

C
on

fig
ur

al
w

ith
C

U
s

82
.0

52
69

0.
13

5
1.

11
1

0.
02

1
0.

98
4

0.
97

9
1.

11
2

15
.8

89
7

0.
02

6

W
ea

k
w

ith
C

U
s

90
.3

71
76

0.
12

5
1.

11
5

0.
02

1
0.

98
2

0.
97

9
1.

15
4

8.
31

9
7

0.
30

5

S
tr

on
g

w
ith

C
U

s
12

7.
23

8
82

0.
00

1
1.

10
8

0.
03

6
0.

94
4

0.
93

7
1.

01
7

39
.5

34
6

<
0.

00
1

−0
.3

41
0.

07
0

<
0.

00
1

0.
25

−0
.3

44
0.

07
2

0.
06

8
0.

93
8

0.
99

8
0.

79
−5

.5
8

Pa
rt

ia
l1

∧
w

ith
C

U
s

10
8.

19
0

81
0.

02
4

1.
11

0
0.

02
8

0.
96

6
0.

96
2

0.
94

6
22

.0
81

1
<

0.
00

1

Pa
rt

ia
l2

*
w

ith
C

U
s

94
.6

77
80

0.
12

6
1.

11
0

0.
02

1
0.

98
2

0.
97

9
1.

11
0

13
.5

13
1

<
0.

00
1

−0
.5

02
0.

07
5

<
0.

00
1

0.
35

−0
.5

05
0.

07
9

0.
07

5
0.

94
5

1.
00

0
0.

56
−4

.2
0

S
B
χ

2
,

S
at

or
ra

-B
en

tle
r

sc
al

ed
ch

i-s
qu

ar
e;

df
,

de
gr

ee
s

of
fr

ee
do

m
;

S
C

F,
S

ca
lin

g
C

or
re

ct
io

n
Fa

ct
or

;
R

M
S

E
A

,
R

oo
t

M
ea

n
S

qu
ar

e
E

rr
or

of
A

pp
ro

xi
m

at
io

n;
C

FI
,

C
om

pa
ra

tiv
e

Fi
t

In
de

x;
TL

I,
Tu

ck
er

-L
ew

is
In

de
x;

cd
,

di
ffe

re
nc

e
te

st
sc

al
in

g
co

rr
ec

tio
n;

TR
d,

S
at

or
ra

-B
en

tle
r

sc
al

ed
ch

i-s
qu

ar
e

di
ffe

re
nc

e
te

st
;�

df
,d

eg
re

es
of

fr
ee

do
m

di
ffe

re
nc

e;
C

U
,c

or
re

la
te

d
un

iq
ue

ne
ss

es
;∧

In
te

rc
ep

t
of

ite
m

4
w

as
no

t
in

va
ria

nt
;*

In
te

rc
ep

ts
of

ite
m

s
3

an
d

4
w

er
e

no
t

in
va

ria
nt

.S
B

sc
al

ed
ch

i-s
qu

ar
e

di
ffe

re
nc

e
te

st
s

ar
e

re
fe

rr
ed

to
th

e
m

od
el

in
th

e
ab

ov
e

lin
e.

www.frontiersin.org September 2014 | Volume 5 | Article 983 | 53

http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Chiorri et al. Within-couple AMI

be invariant, too. This model fitted significantly and substantially
better than Partial1 model and its fit did not differ from the fit
of the weak invariance model [SB�χ2(5) = 4.264, p = 0.371 and
�CFI< 0.01]. The standardized estimated latent mean difference
was −0.502, and was statistically different from zero, suggesting
that women were more satisfied with their relationship than men,
although with a small (d < 0.50) effect size.

We then turned to Bayesian SEM, and re-analyzed the configu-
ral, weak and strong invariance models (FMI1–FMI3 in Table 2).

As shown in Table 2, the “classical” strong invariance model
(all intercepts constrained to equality across partners, FMI3), did
not fit the data, since the posterior predictive p-value was <0.05,
and the 95% CI of the replicated chi-square values did not include
zero, whereas the configural (FMI1) and weak (FMI2) invariance
model adequately fitted the data, but did not allow to compare the
latent means. We thus resorted to full AMI and we restricted inter-
cept differences by specifying the 9 prior distributions described
above (same “wiggle room” for all intercepts, AFMI1–AFMI9 in
Table 2). Results are shown in the upper part of Table 2, and val-
ues in the median absolute intercept difference column show that
restricting the wiggle room led to smaller intercept differences.
Models with prior variance 0.001 (AFMI8) and 0.0005 (AFMI8)
should be rejected, since either their 95% CI for the difference
between the observed and the replicated χ2 did not include zero
or their ppp-value was lower than 0.05, or both. However, it is
interesting to note that, among the acceptably fitting models, the
estimate of the factor mean difference was not always significantly
different from zero, probably due to alignment (see Discussion).
It became so only when σ2 was 0.05 (AFMI4) or lower, with small
effect sizes.

The Mplus output for Bayesian AMI models provides the
equivalent of modification indices in ML MI models, i.e., the
DIFFERENCE OUTPUT, in which the deviations from the mean
and their significance for non-invariant parameters are shown.
Deviations from the mean were significant for item 4 in model
AMI5, for items 4 and 5 in model AMI6, for items 3, 4, and
5 in model AMI7 and for item 4 in model AMI8 (Table S2 in
Supplementary Materials). In order to compare the results with
the ML partial invariance models, we tested approximate partial
measurement invariance (APMI) models allowing a wiggle room
only for items 3 and 4 (PMI1 and APMI1–APMI9 in Table 2),
while constraining to equality the intercepts of the other items.
Note that instead of the modification index approach of relax-
ing one equality restriction at a time, we followed Muthén and
Asparouhov (2013b)’s suggestion to relax all misfitting equalities,
since when they are not too many they do not have much effect
on the point estimates nor on the identification of the model,
although they might slightly increase the standard errors. As it is
shown in the bottom part of Table 2, an adequate fit was obtained
when σ2 ranged from 0.50 to 0.005 (APMI1–APMI6), and, in
these cases, all estimates of factor mean differences were statis-
tically significant. Effect sizes were larger than in full invariance
models and similar to the effect size of the partial invariance ML
model, but still in the small range.

Given the mixed pattern of results about the estimate of latent
mean differences, we wondered which result should be trusted.
Hence, we investigated the possible bias in the comparison of

latent means through a Monte Carlo simulation study. van
de Schoot et al. (2013) investigated the possible bias in the
comparison of latent means as a result of applying the approx-
imate MI model by performing a simulation study in which
seven populations with different sets of (assumed) true values
were specified. Since we could not know the true population
values, we decided to use the estimates obtained in testing the
model as population values to explore the stability of the mod-
els and the appropriate convergence of parameter estimates to
the assumed population parameters. Results were obtained with
ESTIMATOR = ML and with ESTIMATOR = BAYES. For the
latter we used PROCESSORS = 2; BCONVERGENCE = 0.01;
BITERATIONS = (5000); BSEED = 167; and the default priors
for both full and partial invariance models.

For each population we generated 1000 datasets. We con-
sidered an estimate as acceptably unbiased if (1) the empirical
standard deviation of the 1000 estimated mean differences was
lower than 0.10; (2), the relative mean bias of the estimate defined
as (AVG-α)/α)∗100, where AVG is average mean obtained from
the simulation study and α is the assumed population value, did
not exceed 10% (e.g., van de Schoot et al., 2013); (3) the standard
error bias for the parameter for the mean difference parameter
did not exceed 5% (Muthén and Muthén, 2002); (4) 95% cov-
erage, i.e., the proportion of replications for which the 95% CI
included the population value, was at least 95%; (5), the signifi-
cance criterion, i.e., the proportion of datasets for which the 95%
CI of the factor mean difference estimate did not include zero and
was therefore statistically significant, was close to 1.00. Results are
shown in the rightmost columns of Table 2.

Among the adequately fitting full invariance models, no full
invariance model met the criteria stated above, since the stan-
dard error bias was always higher than 5%. The simulation of
the full strong invariance model with ML did not meet criteria
3 and 4 (Table 1). On the other hand, PMI and APMI models
1–5 appeared to provide sufficiently unbiased results, although
the standard error bias was slightly over the cut-off (Table 2).
The simulation of the partial strong invariance model with ML
basically met all criteria, with only criterion 4 borderline met
(Table 1).

Taken together, these results suggest that there are gender dif-
ferences in the perception of RQ as measured by the 7-item
GRIMS in intact couples, with women reporting higher scores.

It is interesting to note that estimates and significance of the
factor correlation were stable at slightly less than 0.42 through-
out all models, suggesting that a higher relationship satisfaction
in women tends to be associated with a higher relationship satis-
faction in men, and that all the criteria stated above for assessing
bias were basically satisfied (only criterion 4 showed borderline
values; see Table S3 in the Supplementary Materials).

DISCUSSION
The aim of this study was to demonstrate the usefulness and flex-
ibility of the BSEM-AMI for investigating measurement invari-
ance, particularly addressing the issue of possible lack of strong
invariance in within-couple data. Specifically, we provided an
example of how a common issue in relationship research, i.e.,
partner differences in the perception of relationship quality, can
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be addressed with this methodology. We applied BSEM-AMI to
ratings on the 7-item GRIMS in a sample of intact couples drawn
from the MCS database, and the results suggested that women
perceived a higher RQ than men (although with a small effect
size), somewhat contradicting the results of a recent meta-analysis
(Jackson et al., 2014) that showed that in intact couples there are
no substantial differences in RQ. However, this meta-analysis did
not include any study using the 7-item GRIMS, nor could we
screen our sample for couples in marital therapy, for which part-
ner differences in RQ are known to exist, though in the other
direction (Jackson et al., 2014). As a limitation to the general-
izability of the results for the substantive issue of this paper, it
must also be considered that the data used in this study were
collected in a specific subgroup of couples, i.e., Northern-Irish,
advantaged, intact couples 9 months after the birth of a child.
This sample is similar to South et al. (2009)’s study, in which
data from intact couples with long-term marriages included in
the Minnesota Twin Family Study were used and results sim-
ilar to ours were found, as women reported higher levels of
dyadic adjustment. These results are also consistent with those
of Shapiro et al. (2000), who reported that marital satisfaction
was significantly higher for women who became mothers than
for men who became fathers. However, since other studies sug-
gested that marital satisfaction is lower among the individuals
who are most responsible for the child, which in most cases is
the mother (e.g., Hochschild, 1989), and in light of the aforemen-
tioned limitations, we cannot consider our results conclusive as
to the general question of whether women and men differ in the
perception of RQ.

In pursuing the substantive focus of this investigation, we
showed how BSEM-AMI can be successfully applied to address
it. As we found lack of support for a strong invariance model, i.e.,
a model that assumes that all item intercepts, along with factor
loadings, are perfectly invariant across partners and allows a valid
comparison of latent scores, through BSEM-AMI we could release
the assumption of a zero difference between intercepts and allow
a “wiggle-room” for it, i.e., an approximately zero difference. AMI
models that allowed this wiggle room for all intercepts showed
an acceptable fit and suggested that differences in GRIMS scores
could exist between partners. However, as shown in Table 2, the
significance of the mean difference parameter α increased as the
wiggle room got smaller. This result might be due to alignment,
i.e., a parameterization indeterminacy (Muthén and Asparouhov,
2013b). In other words, the BSEM-AMI tries to find a solution
in which the variance across partners for a measurement param-
eter is small. Since the wiggle room is prior variance distribution,
and thus allows a pre-determined range of variation for param-
eter estimates, the method is more effective when there is a large
degree of minor non-invariance and parameters deviations from
invariance are in opposite directions and can largely cancel each
other out (Muthén and Asparouhov, 2013b). In specifying full
AMI models, we assumed that the wiggle room was the same for
all intercepts: in these cases, however, if there is an item with a
relatively large difference whereas the difference is relatively small
in all the others, the BSEM small-variance prior for the param-
eter differences tends to pull the deviating parameter toward the
average of the parameters for both partners. This means that the

deviating parameter will be smaller and the invariant parameters
larger than their true values. With intercepts misestimated, the
factor means and factor variances are misestimated too (Muthén
and Asparouhov, 2013b). Our simulation studies suggested that
this might have been the case of the present investigation (due
to the relatively large difference in intercepts for items 3 and 4),
given the BSEM analysis we used is not expected to always recover
parameter values used to simulate the data. Although the mean
difference estimates showed a negligible bias, the standard error
bias was large. Muthén and Asparouhov (2013a) noted that this
does not necessarily mean that the model does not fit the data,
but that an equally well-fitting solution with a possibly simpler
interpretation due to another simplicity criterion may be avail-
able. They also suggest to detect non-invariant items and relax
equalities only on them, since this will lead to the recovering of the
parameter values. When we resorted to partial invariance mod-
els, and we identified in intercepts of items 3 and 4 the major
sources of lack of fit, results were much more stable and unbi-
ased, although it seemed that a very small wiggle room still lead
to inadequately fitting models (see AMPI models 8–9 in Table 2).
Actually, the ML partial invariance model also provided a good
fit and unbiased estimated of mean difference and its standard
error, suggesting that, in this case, a more “classical” approach
would have led to similar conclusions as the “new” Bayesian
approach.

The results of this study seem to support the efficacy of the
two-step approach suggested by Muthén and Asparouhov (2013b)
and van de Schoot et al. (2013), in which parameters that are dif-
ferent between groups are detected in step 1 through modification
indices and are allowed to be non- (or approximately) invariant
in step 2. However, it should be noted that partial measure-
ment invariance has the main shortcoming that the parameters
to be freed are identified with an ex-post facto procedure. This
might raise the issue of capitalization on chance when the sam-
ple is small and/or not representative of the population, and
undermine the generalizability of the results, especially in those
studies in which the measurement model of a scale is investi-
gated. Muthén and Asparouhov (2012a) pointed out that while
ML modification indices inform about model improvement when
a single parameter is freed and can lead to a long series of mod-
ifications, BSEM can inform about model modification when all
parameters are freed and does so in a single step: their simula-
tions showed sufficient power to detect model misspecification
in terms of 95% Bayesian credibility intervals not covering zero.
Nontheless, they also warn that, as with ML model modification,
BSEM model modification should be supported by substantive
interpretability. However, in most research contexts (e.g., devel-
oping a new questionnaire) one cannot know in advance the
sources of non-invariance and whether deviations from invari-
ance will eventually bias the substantive conclusions or not: hence
we recommend to carefully check the stability of model estimates
through simulation studies.

Another issue that it is worth noting, although not a focus
of this study, is that the indices of model fit for Bayesian and
ML SEM do not always overlap. The reason for which we chose
the Northern Ireland-advantaged subsample of the whole MCS
dataset is that it was the only one in which the fit indices of
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the one-factor measurement model for the GRIMS were ade-
quate for both estimation methods. When we considered the
largest stratum of the MCS, i.e., the England advantaged stratum
(n = 3830), the configural invariance model fitted adequately
with ML, but it was not even remotely adequate with BSEM (see
Table S4 in Supplementary Materials). As an example, we drew
random smaller subsamples and retested model fit, finding no
substantial changes in ML indices, but a gradual approach to
acceptable values for BSEM. Muthén and Asparouhov (2012a)
warn that the posterior PPP does not behave like a p-value for
a chi-square test of model fit (e.g., Hjort et al., 2006), hence
the Type I error is not 5% for a correct model. Since there is
not a theory for how low the PPP can be before the model is
significantly inadequately fitting at a certain level, Muthén and
Asparouhov (2012a) consider it more akin to an SEM fit index
rather than a chi-square test. Using simulations they found that
PPP performed better than the ML likelihood-ratio chi-square
test at small sample sizes where ML typically inflates chi-square
and that it was less sensitive than ML to ignorable deviations from
the correct model thus concluding that PPP seems to have suf-
ficient power to detect important model misspecifications, that
might go unnoticed when using ML.
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One of the most frequently used procedures for measurement invariance testing is
the multigroup confirmatory factor analysis (MGCFA). Muthén and Asparouhov recently
proposed a new approach to test for approximate rather than exact measurement
invariance using Bayesian MGCFA. Approximate measurement invariance permits small
differences between parameters otherwise constrained to be equal in the classical exact
approach. However, extant knowledge about how results of approximate measurement
invariance tests compare to the results of the exact measurement invariance test is
missing. We address this gap by comparing the results of exact and approximate
cross-country measurement invariance tests of a revised scale to measure human values.
Several studies that measured basic human values with the Portrait Values Questionnaire
(PVQ) reported problems of measurement noninvariance (especially scalar noninvariance)
across countries. Recently Schwartz et al. proposed a refined value theory and an
instrument (PVQ-5X) to measure 19 more narrowly defined values. Cieciuch et al. tested
its measurement invariance properties across eight countries and established exact scalar
measurement invariance for 10 of the 19 values. The current study applied the approximate
measurement invariance procedure on the same data and established approximate scalar
measurement invariance even for all 19 values. Thus, the first conclusion is that the
approximate approach provides more encouraging results for the usefulness of the scale
for cross-cultural research, although this finding needs to be generalized and validated
in future research using population data. The second conclusion is that the approximate
measurement invariance is more likely than the exact approach to establish measurement
invariance, although further simulation studies are needed to determine more precise
recommendations about how large the permissible variance of the priors may be.
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MEASUREMENT INVARIANCE
Measurement invariance is a psychometric property of a scale
developed to measure a latent construct. The instrument is mea-
surement invariant when the same construct is measured in
the same way across different groups, such as countries, cul-
tural units, time points, or regions within countries (Horn
and McArdle, 1992; Meredith, 1993; Vandenberg and Lance,
2000; Vandenberg, 2002; Millsap, 2011; Davidov et al., 2014).
Measurement invariance is necessary for conducting meaning-
ful comparisons across groups. The most widely used method
to establish measurement invariance is multigroup confirmatory
factor analysis (MGCFA; Jöreskog, 1971; Bollen, 1989). Usually

one distinguishes between three levels of measurement invari-
ance: configural (where all groups have the same pattern of factor
loadings), metric (where the factor loadings are constrained to be
equal across the compared groups), and scalar (where the factor
loadings and the indicator intercepts are constrained to be equal
across groups) (Vandenberg and Lance, 2000). Metric invari-
ance is sufficient for comparing covariances and unstandardized
regression coefficients across groups. A meaningful comparison
of latent means across groups, however, requires the scalar level
of measurement invariance.

Some researchers have argued that partial (metric or scalar)
measurement invariance is sufficient for meaningful comparisons
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(Byrne et al., 1989; Steenkamp and Baumgartner, 1998). Partial
invariance is supported when the parameters of at least two indi-
cators (loadings at the metric level and loadings plus intercepts at
the scalar level of the measurement) are equal across groups.

Measurement invariance is becoming an increasingly impor-
tant and disputed topic in the social sciences. To illustrate, in
April 2014, the term “measurement invariance” yielded about
239,000 hits in a Google Scholar search. This abundance of scien-
tific papers falls into three categories. The first category includes
methodological papers that introduce, discuss, and evaluate var-
ious methods and approaches to measurement invariance. The
second includes papers that test the measurement invariance of
a given construct across groups as a precondition for further
comparative analysis. These papers assess measurement invari-
ance as a preliminary analysis that allows for a meaningful test of
the substantive hypotheses. The third category of papers reports
the measurement invariance properties of specific questionnaires
that were developed to measure specific latent constructs. These
papers assess the quality of the questionnaires for analyses within
and across countries or time points. They seek to improve ques-
tionnaire validity and reliability by identifying weaknesses and
problems in the formulation of questions, in translation, in
culture appropriateness, and so on. Establishing measurement
invariance in one study does not signify that a questionnaire is
always measurement invariant. Measurement invariance should
be repeatedly tested across groups, because noninvariance can be
caused by external features of the study in addition to internal
features of the instrument.

The aim of the present study is two-fold. First, we try to estab-
lish the measurement invariance properties of Schwartz et al.’s
(2012) newly developed scale to measure human values. This goal
locates the present study in the third category of studies listed
above. Second, we apply two methods (exact and approximate)
for establishing measurement invariance and compare their find-
ings. This goal locates the present study in the first category of
studies listed above. The approximate approach for testing mea-
surement invariance is more liberal than the exact approach.
However, extant knowledge about how results of approximate
measurement invariance tests compare to the results of the exact
measurement invariance test is missing. We address this gap by
comparing the results of exact and approximate (Bayesian) cross-
country measurement invariance tests of the revised scale to
measure human values. We query whether the approximate (more
liberal) approach yields higher levels of measurement invariance
for the values scale than the exact approach.

SCHWARTZ’S THEORY OF BASIC HUMAN VALUES
Schwartz (1992), Schwartz et al. (2012) defines values as broad,
trans-situational goals that vary in importance and serve as
guiding principles in the life of a person or group. Schwartz dis-
tinguishes between value hierarchies and value structure. Value
hierarchies refer to the relative importance of the set of values
to different individuals. The central claim of Schwartz’s value
theory concerns the value structure. It asserts that values form
a circular motivational continuum. This means that values that
are located in adjacent regions on the continuum are motiva-
tionally similar. Behavior that expresses one value is likely to

express the adjacent values at the same time. In contrast, values
that are located on opposing sides of the circle express conflict-
ing motivations; hence, behavior that expresses one value is likely
to simultaneously challenge or block the expression of opposing
values in the circle.

The claim that values form a continuum implies that the circle
of values can be partitioned in any number of ways. Depending on
the aims of a study, one can differentiate between fewer broadly
defined values or many more narrowly defined values. There
are two common ways of partitioning the circular continuum,
the classic version and the refined version. The classic version
(Schwartz, 1992) partitions the circle into 10 basic human val-
ues. The refined version (Schwartz et al., 2012) partitions the
circle into 19 more narrowly defined values. The 19 values in the
refined version are subdimensions of the 10 basic human val-
ues (Schwartz et al., 2012). The values in both versions can be
grouped into sets of four higher-order values: person-oriented
vs. socially-oriented values or self-protection vs. growth values.
Thus, the refined version of the theory and the classic version both
describe the same circular motivational continuum. However, the
refined theory provides a more discriminate partitioning of the
continuum, thus allowing more fine-tuned predictions and expla-
nations. Figure 1 depicts the value circle with its 19 narrowly
defined values, and the definition of each value is presented in
Table 1.

MEASUREMENT OF BASIC HUMAN VALUES
The problem of measurement invariance is especially important
for values because researchers often use them to describe differ-
ences between demographic, occupational, cultural, and national
groups (Inglehart and Baker, 2000; Schwartz, 2006). Several
methods have been developed to measure the values in Schwartz’s

FIGURE 1 | The circular motivational continuum of 19 values in the

refined value theory (Cieciuch et al., 2014).
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Table 1 | Nineteen more narrowly defined values in the refined theory

of values (Schwartz et al., 2012).

Value Conceptual definitions in terms of

motivational goals

Self-direction—Thought Freedom to cultivate one’s own ideas and
abilities

Self-direction—Action Freedom to determine one’s own actions

Stimulation Excitement, novelty, and change

Hedonism Pleasure and sensuous gratification

Achievement Success according to social standards

Power—Dominance Power through exercising control over
people

Power—Resources Power through control of material and
social resources

Face Security and power through maintaining
one’s public image and avoiding
humiliation

Security—Personal Safety in one’s immediate environment

Security—Societal Safety and stability in the wider society

Tradition Maintaining and preserving cultural, family,
or religious traditions

Conformity—Rules Compliance with rules, laws, and formal
obligations

Conformity—Interpersonal Avoidance of upsetting or harming other
people

Humility Recognizing one’s insignificance in the
larger scheme of things

Benevolence—Dependability Being a reliable and trustworthy member
of the ingroup

Benevolence—Caring Devotion to the welfare of ingroup
members

Universalism—Concern Commitment to equality, justice, and
protection for all people

Universalism—Nature Preservation of the natural environment

Universalism—Tolerance Acceptance and understanding of those
who are different from oneself

approach. Currently, the most commonly used questionnaires
are several versions of the Portrait Value Questionnaire (PVQ).
The original version (PVQ-40) includes 40 items (Schwartz
et al., 2001; Schwartz, 2003). A shorter version, implemented in
the European Social Survey (ESS), includes 21 items (PVQ-21,
Schwartz, 2003). The most recent version, developed to mea-
sure the 19 values of the refined value theory, includes 57 items
(PVQ-57, Schwartz et al., 2012).

Several studies have tested the measurement invariance
across countries of the PVQ-21 with data collected in the
ESS (e.g., Davidov, 2008, 2010; Davidov et al., 2008). These
studies succeeded in identifying only seven values at the con-
figural level; it was necessary to unify some pairs of adja-
cent values in the confirmatory factor analyses. Davidov et al.
(2008) established metric invariance for these seven values,
but not scalar invariance. The lack of scalar invariance even
for these seven was problematic because it meant that com-
parisons of means across cultures or countries may not be
meaningful.

Cieciuch and Davidov (2012) addressed this problem when
they compared the invariance properties between the PVQ-21 and
PVQ-40 across Poland and Germany. They found that the PVQ-
40 displayed a higher level of measurement invariance than the
PVQ-21; it attained scalar invariance for all of the values except
stimulation. They attributed the superiority of the PVQ-40 to the
larger number of indicators available to measure the latent fac-
tors. With more items, the possibility of establishing partial scalar
invariance increases. The reason for this is that, when establishing
partial invariance, researchers need to identify at least two items
with equal parameters across groups. When the number of indi-
cators measuring a construct increases, chances also increase to
identify two such items.

To measure all of the narrowly defined values that are differen-
tiated in the refined theory, Schwartz et al. (2012) developed the
PVQ-57. This version introduced three important changes com-
pared to previous versions of the PVQ: (1) Single sentences were
used for all items, replacing the two-sentence items of earlier ver-
sions. This avoided the dangers associated with double-barreled
questions and improved overall clarity. (2) All items referred to
the “importance” of a valued goal or characteristic to the respon-
dent, replacing terms that referred to desires and feelings in earlier
versions. This increase in consistency ensured that all items fit the
conception of values as goals that vary in importance. (3) Three
items measured each of the 19 values, which is in contrast to the
varying number of items for each value in the PVQ-40 and the
two items in the PVQ-21.

CFA analyses of the revised PVQ instrument successfully iden-
tified all 19 values in eight countries (Finland, Germany, Israel,
Italy, New Zealand, Poland, Portugal, and Switzerland), establish-
ing both configural and metric invariance (Cieciuch et al., 2014).
Moreover, Cieciuch et al. (2014) established scalar measurement
invariance for items measuring 10 of the 19 values across the
eight countries. Table 5 presents the detailed results of these anal-
yses. Encouraging as these findings are in allowing comparison of
means across countries for 10 values, a problem remains with the
other nine values for which scalar invariance was not established.
Perhaps, however, the method used to test measurement invari-
ance test was overly strict. We therefore asked whether a more
liberal test would yield more invariant results.

THE CURRENT STUDY
Several researchers have recently argued that, although measure-
ment invariance is necessary for meaningful comparisons across
groups, the criteria for evaluating measurement invariance are
too strict (Muthén and Asparouhov, 2013; Van de Schoot et al.,
2013; Muthén, 2014). This may lead to rejecting the possibil-
ity of comparison and needlessly discourage research in some
cases. Adopting this view, Muthén and Asparouhov (2013) pro-
posed the concept of approximate rather than exact measurement
invariance, which is based on Bayesian analysis.

APPROXIMATE (BAYESIAN) MEASUREMENT INVARIANCE
Bayesian analysis allows researchers to introduce existing knowl-
edge into their analyses, especially the amount of uncertainty. The
current practice within the dominant frequentist approach is to
use existing knowledge in the theoretical introduction of papers
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and in the discussion but seldom in the analyses. Often the test-
ing of null hypotheses ignores the existence of prior knowledge.
Bayesian analysis allows testing informative hypotheses, that is,
hypotheses that take prior knowledge into account. This logic
may also be applied to testing measurement invariance.

In the Bayesian approach, parameters (e.g., loadings or inter-
cepts) are considered to be variables with a specific distribu-
tion. The parameters of this distribution are called priors and
can be defined by the researcher based on previous knowledge
or assumptions (Muthén and Asparouhov, 2013). In the exact
measurement invariance approach, researchers assume that the
differences between loadings (or intercepts) across groups are
zero or, in other words, that the loadings (or intercepts) are
exactly equal across groups. The Bayesian measurement invari-
ance approach introduces the concept of approximate equality.
Thus, for testing approximate measurement invariance, one can
expect that some differences in loadings (or intercepts) can occur,
however, the mean of the differences between loadings (or inter-
cepts) across groups is zero. Because the low variability is rather
random, a normal distribution of the differences in loadings (or
intercepts) with zero mean and small variance is assumed. Several
simulation studies have shown that small variations (variance
equal to 0.01 or 0.05) in the distribution of the differences in
loadings or intercepts do not bias substantive conclusions for
comparative research (Muthén and Asparouhov, 2013; Van de
Schoot et al., 2013). Consequently, it makes sense to regard a
small amount of variation as acceptable. Approximate measure-
ment invariance differs from the partial measurement invariance
approach, because in the latter some parameters are constrained
to be exactly equal and others are released entirely, while in the
former all parameters are constrained; however, the restrictions
are more liberal and refer to the concept of approximate equality.

In the next section we test for approximate measurement
invariance of the 19 values from the refined value theory of
Schwartz et al. (2012). We then compare the findings to those
established in previous studies that used exact measurement
invariance testing.

Approximate measurement invariance is a relatively new
approach. Therefore, there are few comparisons in the literature
of the results that this approach yields with those obtained by
the classic, exact measurement, invariance approach. We expect
that the new scale to measure 19 values will exhibit a higher
invariance level than the one reported by Cieciuch et al. (2014)
when approximate measurement invariance is applied, because it
allows for small differences between parameters that are otherwise
constrained to be exactly equal in the exact measurement invari-
ance approach. This would justify doing additional cross-cultural
comparisons.

METHODS
PARTICIPANTS AND PROCEDURE
We used the same data employed for testing exact measure-
ment invariance in Cieciuch et al. (2014). Data were from the
following countries: Finland (N = 334, 65% female, Mage =
42.3, SDage = 6.1), Germany (N = 325, 77% female, Mage =
23.4, SDage = 5.0), Israel (N = 394, 65% female, Mage = 25.7,
SDage = 6.2), Italy (N = 388, 59% female, Mage = 35.6, SDage =

14.5), New Zealand (N = 527, 68% female, Mage = 19.5, SDage =
4.2), Poland (N = 547, 66% female, Mage = 27.0, SDage = 10.0),
Portugal (N = 295, 58% female, Mage = 27.0, SDage = 10.4), and
Switzerland (N = 201, 70% female, Mage = 28.8, SDage = 7.7).
All participants were contacted by researchers or instructed assis-
tants in person or online and completed the value instrument
voluntarily and anonymously. Data were collected in a writ-
ten format in Finland, Germany, Italy, Poland, and in half the
Portuguese sample. Data were collected online in the remaining
samples. All data are available from the first author upon request.

QUESTIONNAIRE
Data were collected with the PVQ-5X (Schwartz et al., 2012)
developed to measure 19 more narrowly defined values. Items
described a person in terms of what is important for him or
her (gender matched). The respondents were asked to answer
the question “How much is this person like you” on a scale rang-
ing from 1 (not like me at all) to 6 (very much like me). For
example, the question “Freedom to choose what he does is impor-
tant to him” measured the self-direction value. The question
“Obeying all the laws is important to her” was used to measure
the value conformity rules. All items are presented in Table 4. We
excluded nine items which did not load satisfactorily on their cor-
responding value in the study of Schwartz et al. (2012). Thus, our
analyses included exactly the same items included in the exact
measurement invariance test of Cieciuch et al. (2014). Ten of the
values were measured by three indicators and nine values by two
indicators. Missing values for all items were below 0.7% with
the exception of one achievement item (AC1) which had 2.9%
missing values.

ANALYSIS
TESTING FOR APPROXIMATE MEASUREMENT INVARIANCE IN Mplus
(VERSION 7.11)
The approximate measurement invariance test procedure is
included in Mplus (Muthén and Muthén, 1998–2012) in the mix-
ture analysis framework. Mixture modeling means that besides
the latent variables included in the model, there are also one
or more latent categorical variables that describe membership
of respondents to a certain class. These latent categorical vari-
ables represent homogenous subpopulations of the studied het-
erogeneous population (Muthén, 2002). In principle, mixture
modeling assumes that the division into subpopulations and sub-
population membership are not known but can be inferred from
the data. However, in our case this was a straightforward infer-
ence, because the population membership was deduced by the
country where data on the individuals were collected. Thus, this
categorical variable was known, since it was simply the variable
that described membership in groups (countries). In terms of
mixture models, this situation is known as a single-class mixture
model because there is only one class (one categorical variable).
According to Asparouhov and Muthén (2010), if the categorical
variable is observed, the single-class mixture model is essentially
the same as a multigroup model. Kim et al. (2013) also argue that
the two models (i.e., the multigroup model and the single-class
mixture model with known class membership) are in principle
the same.
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Table 2 presents the syntax, briefly explains the various steps
of the analysis, and provides a description of the statements used
in the syntax.

EVALUATION OF THE MODEL
The fit of the Bayesian model can detect whether actual devia-
tions are larger than those that the researcher allows in the prior
distribution. The model fit can be evaluated based on the poste-
rior predictive probability (ppp) value and the confidence interval
(CI) for the difference between the observed and replicated chi-
square values. According to Muthén and Asparouhov (2013) and
Van de Schoot et al. (2013), the Bayesian model fits the data
when the ppp is higher than zero1 and the CI contains zero. We
defined the mean of the differences in loadings and intercepts
across countries as zero and the variance of these differences as
0.01 (Van de Schoot et al., 2013). If the model was unacceptable
based on the ppp and the CI, we slightly increased the variance to
determine the level of variation in the priors for the difference
between loadings and intercepts that would lead to acceptable
model fit coefficients2 . Additionally, Mplus lists all parameters
that significantly differ from the priors. This feature is equiva-
lent to modification indices in the exact measurement invariance
approach. While the model is assessed based on ppp and CI,
these values provide global model fit criteria that are similar to
the criteria in the exact approach (Chen, 2007). Although several
parameters have been identified as exactly equal in Cieciuch et al.
(2014), we did not constrain them to equality and allowed a wig-
gle for the differences between all factor loadings and intercepts.
The reason is that we wanted to assess whether a liberal model
would establish invariance for all values.

RESULTS
Table 3 presents the fit coefficients of the approximate multigroup
CFA for each value separately. For most of the values, the ppp
was not significant, and the 95% CI for the difference between
the observed and replicated chi-square values contained zero,
which means that the approximate scalar invariance models for
these values are acceptable. The only three exceptions were stim-
ulation, achievement, and humility. Therefore, we increased the
variance prior for these values to 0.02. With this adjustment, all
three approximate scalar invariance models were also acceptable
for these values. In other words, the model fit criteria suggest
that approximate invariance could be established for all 19 values
across eight countries.

Several loadings and intercepts in various countries deviated
from the defined priors. For example, the intercept of the first
item measuring Self-direction–Thought (SDT1) deviated from
the defined prior in two countries, Finland and Poland. The load-
ing of the first item measuring Stimulation (ST1) deviated in two
countries, Italy and Poland, and its intercept deviated from the
defined prior in two countries as well, Italy and New Zealand.
Table 4 presents all deviations of loadings and intercepts from the

1Simulation studies are still required to determine what level of probability
researchers may rely on.
2There are still no established cut-off criteria in the literature about the
maximal level of variability that may be used for the priors.

Table 2 | Mplus syntax for approximate measurement invariance test

and explanations (this is an example for a single factor—UNC).

VARIABLE:

Names are country
UNC1 UNC2 UNC3;

This indicates the variables in the data: the
countries and the items for each value
(Universalism-concern in this example).

classes = c(8); This option specifies that there is one latent
categorical variable (named c) that has 8 latent
classes. The number 8 refers to 8 countries in
the analysis.

knownclass =
c(country = 1 2 3 4 5
6 7 8);

This option defines the categorical latent variable
by the observed variable. There are 8 classes and
respondents with value 1 in variable “country”
belong to the first one; respondents with value 2
in variable “country” belongs to the second
country, etc. If all values from the variable are to
be analyzed, the statement can be shortened:
knownclass = c (country).

ANALYSIS:

type = mixture; Approximate measurement invariance is
included in Mplus within the mixture modeling
analysis framework. The number of classes is
known because it corresponds to the number of
groups to be compared.

Estimator = bayes; Bayesian analysis will be performed and priors
can be defined.

chains is 5; The number of chains in Markov chain Monte
Carlo (MCMC) algorithms. The default in Mplus
is 2 chains and the researcher can increase the
number of chains by this statement.

Processor = 5; To increase the speed of computation, one can
use more processors if they are available in the
hardware. It is possible to specify the number of
processors that is equal to number of chains. In
this case one can specify also 8 processors. If
that many processors are not available, each
available processor carries out one chain and
after it is completed starts with the next chain.

Biterations =
500,000(20,000);

This option is used to specify the maximum and
minimum number of iterations for each Markov
chain Monte Carlo algorithm. In this case, it
specifies that a minimum of 20,000 and a
maximum of 50,000 iterations will be used.

Bconvergence =
0.01;

Specification of the convergence value criterion
to be used for determining convergence of the
Bayesian estimation.

bseed 100; Specification of the seed to be used for a
random number generation in the Markov chain
Monte Carlo (MCMC) algorithm (the default in
Mplus is zero).

model = allfree; Factor means, variances, and covariances are
freely estimated across groups with the
exception of factor means in the last group
which are fixed to 0.

(Continued)
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Table 2 | Continued

MODEL:

%overall% UNC by
UNC1* UNC 2 UNC 3
(lam#_1-lam#_3);
[UNC 1 UNC 2 UNC
3] (nu#_1-nu#_3);

In the mixture models, the label “%overall%”
introduces the model description which is
common for all groups. In this case the latent
variable is loaded by three indicators (UNC1,
UNC2, and UNC3). The asterisk after UNC1
implies that the loadings of the first indicator,
which is usually constrained by default to 1, is
freed.
Following the “by” statement, the names of the
factor loadings are listed in parentheses. One
row below, after the brackets, the names of the
intercepts are listed. It is necessary to list these
so that one can later define their priors.

MODEL PRIORS:

do(1,3) diff(lam1_#-
lam8_#)∼N(0,0.01);
do(1,3) diff(nu1_#-
nu8_#)∼N(0,0.01);

The statement defines priors for loadings and
intercepts. The distribution of loadings and
intercepts is normal with mean = 0 and
variance = 0.01

%c#8%
[UNC @0];
UNC @1;

The label “%c#8%” refers to the part of the
model for class 8 that differs from the overall
model. In this case, the latent mean of UNC in
the last group is constrained to 0 and the
variance to 1 in order to identify the model
according to the proposal of Muthén and
Asparouhov (2013).

defined priors. Despite the deviations listed in Table 4, the ppp
and CI reached acceptable levels, which suggests that approximate
metric and scalar measurement invariance are supported by the
data for all values.

Table 5 presents a comparison of Cieciuch et al.’s (2014) results
using the exact approach and the results in the current study
obtained using the approximate approach. Whereas exact scalar
invariance was previously supported only for a subset of the 19
values, in the present analysis, approximate measurement invari-
ance was established for all values, including those values where
exact measurement invariance testing failed to display scalar
invariance. In the next section we are going to discuss in more
detail the results, their implications, and limitations.

SUMMARY AND CONCLUSIONS
Measurement invariance is a precondition for meaningful cross-
group comparisons. Assuming rather than empirically testing
whether the precondition is satisfied can be dangerous and can
lead to wrong conclusions. Therefore, an empirical test of mea-
surement invariance of a study’s measures is necessary. However,
the classic (exact) test is very demanding and very often leads
to the rejection of measurement invariance and to precluding
group comparisons. Van de Schoot et al. (2013) metaphori-
cally described this situation as traveling between Scylla and
Charybdis. Scylla represents the situation in which a model lacks
measurement invariance, whereas Charybdis represents the sit-
uation in which the model was not tested for measurement
invariance. In both situations, the researcher cannot know
whether the differences between groups are real and substantive

Table 3 | Model fit coefficients of Bayesian multigroup confirmatory

factor analysis for each value.

ppp 95% CI

Self-direction–-Thought 0.201 (−19.478) – (49.818)

Self-direction–-Action 0.112 (−12.931) – (57.474)

Stimulation 0.001 (25.824) – (110.628)

Stimulation, prior of variance = 0.02 0.081 (−9.495) – (64.259)

Hedonism 0.258 (−18.255) – (35.833)

Achievement 0.004 (20.132) – (98.707)

Achievement, prior of variance = 0.02 0.103 (−13.481) – (62.092)

Power–-Resources 0.367 (−22.056) – (30.480)

Power–-Dominance 0.208 (−15.653) – (37.917)

Face* 0.128 (−11.916) – (45.275)

Security–-Personal 0.361 (−20.384) – (32.179)

Security–-Societal 0.135 (−13.923) – (55.015)

Tradition 0.028 (−0.594) – (76.570)

Conformity–-Rules 0.352 (−20.444) – (30.633)

Conformity–-Interpersonal 0.083 (−11.226) – (65.544)

Humility* 0.009 (6.575) – (70.861)

Humility, prior of variance = 0.02 0.121 (−11.877) – (46.340)

Benevolence–-Caring 0.506 (−34.843) – (33.737)

Benevolence–-Dependability* 0.149 (−12.476) – (43.798)

Universalism–-Concern 0.235 (−25.179) – (47.297)

Universalism–-Nature 0.167 (−18.021) – (51.002)

Universalism–-Tolerance 0.395 (−23.183) – (31.304)

ppp = posterior predictive p-value; 95% CI = Confidence interval for the dif-

ference between the observed and the replicated chi-square values, *because

of estimation problems, the latent means were constrained to 0 and variances

to 1 in two countries for this value rather than in one country. These additional

constraints were not rejected by the model.

or a result of methodological artifacts. We followed Van de Schoot
et al. (2013) suggestion to choose a third option for traveling
between Scylla and Charybdis. This option is the approximate
Bayesian approach to measurement invariance. Approximate
measurement invariance is a rather new approach and applica-
tions using it and comparing its findings to those of the exact
approach are rare. Using data on human values in eight coun-
tries, we tried to fill this gap by comparing the findings of
an earlier analysis using the exact approach to measurement
invariance by analyzing the same data using the approximate
approach.

The approximate approach established measurement invari-
ance across eight countries for the new PVQ-5X scale to measure
human values even in cases in which the exact approach did
not. In other words, the approximate method is less restrictive
than the exact, and our findings suggest that—as expected—the
results align with this, i.e., the less restrictive method (approxi-
mate invariance testing using the Bayesian procedure) produces
stronger invariance than the exact approach did. These findings
provide, for the first time, initial encouraging results that the
PVQ-5X scale may be used for conducting meaningful cross-
cultural research with all 19 values. The exact approach to assess-
ing invariance has often shed doubt on the invariance of many
questionnaires. The current findings provide hope that empirical
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Table 4 | Deviations of loadings and intercepts from prior defined parameters (mean = 0, variance = 0.01).

Finland Israel Italy New Zealand Poland Portugal Switzerland Germany

Lo Int Lo Int Lo Int Lo Int Lo Int Lo Int Lo Int Lo Int

SDT1 Being creative is important to him x x

SDT2 It is important to him to form his own
opinions and have original ideas

x

SDT3 Learning things for himself and
improving his abilities is important to him

x x x x

SDA1 It is important to him to make his own
decisions about his life

x x x x

SDA2 Doing everything independently is
important to him

x x x x x

SDA3 Freedom to choose what he does is
important to him

x x

ST1 He is always looking for different kinds
of things to do

x x x x

ST2 Excitement in life is important to him x x x x x

ST3 He thinks it is important to have all
sorts of new experiences

x x x x x

HE1 Having a good time is important to him x x x

HE2 Enjoying life’s pleasures is important
to him

AC1 He thinks it is important to be
ambitious

x x x x x

AC2 Being very successful is important
to him

AC3 He wants people to admire his
achievements

x x x x

POR1 Having the feeling of power that
money can bring is important to him

POR2 Being wealthy is important to him

POD1 He wants people to do what he says x

POD3 It is important to him to be the one
who tells others what to do

x

FAC1 It is important to him that no one
should ever shame him

x

FAC2 Protecting his public image is
important to him

x

SEP2 His personal security is extremely
important to him

SEP3 It is important to him to live in secure
surroundings

SES1 It is important to him that his country
protect itself against all threats

SES2 He wants the state to be strong so it
can defend its citizens

x

SES3 Having order and stability in society is
important to him

x x x x x

(Continued)
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Table 4 | Continued

Finland Israel Italy New Zealand Poland Portugal Switzerland Germany

Lo Int Lo Int Lo Int Lo Int Lo Int Lo Int Lo Int Lo Int

TR1 It is important to him to maintain
traditional values or beliefs

x x x x x x x

TR2 Following his family’s customs or the
customs of a religion is important to him

x x x x

TR3 He strongly values the traditional
practices of his culture

x

COR2 It is important to him to follow rules
even when no one is watching

x

COR3 Obeying all the laws is important
to him

COI1 It is important to him to avoid
upsetting other people

x x x x x x x

COI2 He thinks it is important never to be
annoying to anyone

x x x x

COI3 He always tries to be tactful and avoid
irritating people

x x x

HU2 It is important to him to be humble

HU3 It is important to him to be satisfied
with what he has and not to ask for more

BEC1 It’s very important to him to help the
people dear to him

x

BEC2 Caring for the well-being of people he
is close to is important to him

x x

BEC3 (BED1) it is important to him to be
loyal to those who are close to him

x

BED2 He goes out of his way to be a
dependable and trustworthy friend

x x

BED3 He wants those he spends time with
to be able to rely on him completely

x x x x x x x

UNC1 Protecting society’s weak and
vulnerable members is important to him

x x

UNC2 He thinks it is important that every
person in the world have equal opportunities
in life

UNC3 He wants everyone to be treated
justly, even people he doesn’t know

x x x x

UNN1 He strongly believes that he should
care for nature

x x x x x

UNN2 It is important to him to work against
threats to the world of nature

x x

UNN3 Protecting the natural environment
from destruction or pollution is important
to him

x

UNT2 It is important to him to listen to
people who are different from him

UNT3 Even when he disagrees with people,
it is important to him to understand them

Lo = loading; Int = intercept; x—deviation of a given parameter in a given group from the defined priors (mean = 0, variance = 0.01).

Frontiers in Psychology | Quantitative Psychology and Measurement September 2014 | Volume 5 | Article 982 | 66

http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Cieciuch et al. Exact and approximate measurement invariance

Table 5 | Comparison of exact and approximate measurement invariance of 19 values across eight countries.

Exact (Cieciuch et al., 2014) Approximate (the current study)

Metric Scalar Metric and scalar

Self-direction thought Full in all countries Partial in all countries Full in all countries

Self-direction action Full in five countries, partial in Finland
and Portugal, absent in Italy

Full in all countries Full in all countries

Stimulation Full in all countries Full in all countries Full in all countries*

Hedonism Full in seven countries, Absent in
Switzerland

Full in six countries, absent in
Switzerland, Poland

Full in all countries

Achievement Full in six countries, partial in Finland
and Poland

Absent in all countries Full in all countries*

Power dominance Full in all countries Full in six countries, absent in Portugal,
Italy

Full in all countries

Power resources Full in all countries Full in seven countries, absent in Poland Full in all countries

Face Full in all countries Absent in all countries Full in all countries

Security personal Full in all countries Full in six countries, absent in Israel and
Switzerland

Full in all countries

Societal security Full in seven countries, partial in
Portugal

Partial in all countries Full in all countries

Tradition Full in all countries Absent in all countries Full in all countries

Conformity rules Full in all countries Absent in all countries Full in all countries

Conformity interpersonal Full in all countries Absent in all countries Full in all countries

Humility Full in all countries Absent in all countries Full in all countries*

Universalism nature Full in all countries Full in four countries, partial in Israel,
Italy, and New Zealand, absent in
Switzerland

Full in all countries

Universalism concern Full in all countries Full in five countries, partial in New
Zealand, Portugal, absent in Germany

Full in all countries

Universalism tolerance Full in all countries Full in six countries, absent in Poland and
Portugal

Full in all countries

Benevolence caring Full in all countries Full in seven countries, partial in Finland Full in all countries

Benevolence dependability Full in all countries Absent in all countries Full in all countries

*The allowed variance for the cross-country difference between intercepts and the loadings was 0.02. In all other cases it was 0.01.

testing for measurement invariance in questionnaires is not nec-
essarily doomed to failure. Researchers may now put their scales
to even a stricter test and examine whether some of the parame-
ters may be constrained to be exactly (rather than approximately)
equal.

Findings raise the question whether other established scales
to measure human values such as the PVQ-21 scale included in
the ESS will display higher levels of equivalence across countries
when using the approximate Bayesian (rather than an exact)
approach for the test. Future research should address this ques-
tion by investigating the cross-country comparability of other
scales to measure human values using the Bayesian approximate
invariance approach.

This study is not without limitations. First, we used conve-
nience student samples and data were collected using different
modes of data collection (online and offline). Although previous
studies (e.g., Davidov and Depner, 2011) demonstrated that
online and offline modes of data collection produce invariant
value measurements, future studies should address this issue by
trying to validate and generalize our findings using country pop-
ulation samples. Second, we do not know whether and to what

extent the different sample sizes across countries (e.g., 547 in
Poland vs. 201 in Switzerland) may have disproportionally biased
the fit measures. In his simulations, Chen (2007) provided rec-
ommendations for model fit evaluation for different sample sizes
when testing for exact measurement invariance. However, we are
not aware of any such simulations for the Bayesian approach.
Future research should address the robustness of the model fit cri-
teria to different sample sizes. Furthermore, it is not clear whether
and to what extent the fact that the outcomes are ordinal might
affect the results. Whereas exact measurement invariance tests can
take the ordinal character of item scores into account in the esti-
mation, unfortunately, the Bayesian approach does not deal with
this problem appropriately and assumes that scores are contin-
uous. We can only speculate that this may bias our conclusions
but it is difficult to judge in which direction. Future research
should address this problem by developing Bayesian procedures
that allow testing for approximate measurement invariance while
taking into account the ordinal character of the data. Yet it should
be noted that our response scale included six categories, one more
than the common five-point Likert scales, so this should have
hopefully mitigated the problem.
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In spite of our encouraging findings, an important unanswered
question remains to be resolved: What is the magnitude of the
variance that should be specified for the priors? Specifying a small
variance may result in failure to establish invariance while speci-
fying a larger variance may lead to establishing invariance. We set
a magnitude of 0.01 and in three cases increased it to 0.02 in order
to establish invariance. These seem like small magnitudes, but are
they too liberal? This technical question is extremely important
from an applied point of view. Finally, it is too early to claim that
researchers should now switch to testing for approximate mea-
surement invariance (instead of testing for exact measurement
invariance). It is still a rather unexplored field, and further studies
are needed before such a claim can be fully justified. In addition to
the promising results reported here, further research and simula-
tion studies should focus on these questions to provide guidelines
for applied researchers.
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The issue of measurement invariance is ubiquitous in the behavioral sciences nowadays as
more and more studies yield multivariate multigroup data. When measurement invariance
cannot be established across groups, this is often due to different loadings on only
a few items. Within the multigroup CFA framework, methods have been proposed to
trace such non-invariant items, but these methods have some disadvantages in that they
require researchers to run a multitude of analyses and in that they imply assumptions
that are often questionable. In this paper, we propose an alternative strategy which
builds on clusterwise simultaneous component analysis (SCA). Clusterwise SCA, being
an exploratory technique, assigns the groups under study to a few clusters based on
differences and similarities in the component structure of the items, and thus based
on the covariance matrices. Non-invariant items can then be traced by comparing
the cluster-specific component loadings via congruence coefficients, which is far more
parsimonious than comparing the component structure of all separate groups. In this paper
we present a heuristic for this procedure. Afterwards, one can return to the multigroup
CFA framework and check whether removing the non-invariant items or removing some
of the equality restrictions for these items, yields satisfactory invariance test results. An
empirical application concerning cross-cultural emotion data is used to demonstrate that
this novel approach is useful and can co-exist with the traditional CFA approaches.

Keywords: measurement bias, configural invariance, weak invariance, metric invariance

INTRODUCTION
To assess the quality of psychological instruments (e.g., surveys,
questionnaires, etc.), confirmatory factor analysis (CFA; Lawley
and Maxwell, 1962) is often applied. CFA tests whether or not
a particular latent variable model, specifying which latent vari-
ables (i.e., factors) are measured by which items, complies with
the observed item scores. When the instrument is used among
several groups, quality testing becomes more intricate, as the
equality of different aspects of the latent variable model has to
be verified (i.e., the configuration and size of the loadings of the
items on the factors, item intercepts, unique variances), before the
factor scores of the different groups can be compared meaning-
fully. For instance, when investigating cross-cultural differences
in emotional experience, one has to make sure that the items
of the emotion questionnaire behave the same across cultural
groups. The different tests involved pertain to different levels of
measurement invariance (Meredith, 1993; Meredith and Teresi,
2006) and can be performed using multigroup CFA (Jöreskog,
1971; Sörbom, 1974). In this paper, we propose a new procedure
to detect which items violate configural and/or weak measure-
ment invariance. Thus, we focus on equality of within-group
covariance structures and do not consider invariance of intercepts

or unique variances, or structural invariance (i.e., invariance
of factor means, variances, and covariances). The novel proce-
dure is rooted in component analysis1 and circumvents some
disadvantages of the existing solutions in the multigroup CFA
framework.

Configural invariance, which usually is the baseline model
in invariance testing, implies that the same number of factors
and the same pattern of zero and free loadings is imposed in
all groups. The configural invariance test examines whether the
items are associated with the same factors in all groups or, in other
words, whether the same latent variables are measured across the
groups. Weak invariance (also referred to as “metric invariance”)
additionally investigates between-group agreement in how these
latent variables are manifested. Specifically, it tests whether all
factor loadings are equal across groups.

Traditionally, measurement invariance testing relied on con-
ducting likelihood ratio tests (LRT) to evaluate whether adding

1Although the theoretical comparability of component and factor analyses has
been heavily debated (e.g., Gorsuch, 1990), Velicer and Jackson (1990) estab-
lished that component and factor loadings usually are highly similar and lead
to the same interpretations with respect to underlying constructs.
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invariance constraints caused a significant difference in the χ2

fit statistics. This approach has two drawbacks, however. First,
its performance heavily depends on sample size (Brannick, 1995;
Kelloway, 1995). Second, in large samples even tiny violations,
that are not interesting from a substantive point of view, result
in a rejection of measurement invariance (Note that this is exactly
what a hypothesis test ought to do). To circumvent the two draw-
backs associated with LRT testing, alternative goodness-of-fit
indices, such as the comparative fit index (CFI; Bentler, 1990) and
the root mean square error of approximation (RMSEA; Steiger,
1989), have been developed. Criteria have been proposed for
deciding whether these fit indices indicate good fit (Bentler, 1990;
Hu and Bentler, 1999; Tabachnick and Fidell, 2005) and whether
changes in these fit indices are meaningful or “practically signif-
icant” in the context of measurement invariance (Cheung and
Rensvold, 2002). Throughout this paper, following Cheung and
Rensvold (2002), we will use the CFI and consider a multigroup
CFA model to have a good fit when the CFI is larger than 0.95
and a more constrained model to have a “significantly” worse fit
than a less constrained model when the difference in CFI (�CFI)
is larger than 0.01.

When configural and/or weak invariance cannot be estab-
lished, different latent variables appear to be measured across the
groups (i.e., no configural invariance) or the same latent variables
are measured differently in these groups (i.e., no weak invari-
ance), implying that factor scores cannot be sensibly compared
across groups (note that the computation of factor scores has been
vastly debated; e.g., Green, 1976; Gorsuch, 1983; Grice, 2001). In
the multigroup CFA framework some solutions to this problem
have been proposed, which aim at detecting which restrictions on
the factor loadings should be removed.

A popular strategy 2 is the sequential model modification pro-
cedure (MacCallum, 1986; MacCallum et al., 1992), which uses
modification indices to assess whether in specific groups sec-
ondary loadings are needed for some items (to solve the lack of
configural invariance) and/or to detect which loadings should
be allowed to vary across groups in the weak invariance model
(leading to partial weak invariance; Byrne et al., 1989); such mod-
ifications are implemented one by one. A disadvantage of this
method is that in each step of the procedure, the calculation
of the modification indices is based on the assumption that all
other loadings (except for the ones that were deemed to be non-
invariant in the previous modification steps) are invariant. When
this is not the case, the modification indices are inaccurate and
may lead to incorrect modifications (Williams and Thomson,
1986; Cheung and Rensvold, 1999). Also, progressively modifying
the factor model until it fits the data of all groups, increases the
risk of capitalization on chance (MacCallum et al., 1992; Stuive
et al., 2009).

Another strategy for dealing with violations of weak measure-
ment invariance, is item-level invariance testing (Cheung and
Rensvold, 1999). Assuming configural invariance, this method

2In this paper we focus on the frequentist framework when discussing differ-
ent methods to investigate the lack of invariance. Note that also in the Bayesian
framework, methods exist with a similar aim (e.g., Muthén and Asparouhov,
2012, 2013).

first checks whether some of the factors are non-invariant with
respect to their loadings. Next, it examines for each of the n
non-zero loadings on a non-invariant factor whether or not it
can be restricted to be equal across groups. This entails conduct-
ing n(n − 1)/2 invariance tests (i.e., one for each non-redundant
combination of an invariant item and a reference item3) per non-
invariant factor and integrating the results of these tests by means
of a “triangle” heuristic. Specifically, an item is considered to be
invariant with respect to the factor in question if restricting its
loading to be equal across groups yields a CFI decrease smaller
than 0.01, whichever of the other invariant items is used as a
reference item (for more details, see Cheung and Rensvold, 1999).

Finally, Byrne and van de Vijver (2010) propose to delete all
items one by one and to re-evaluate each time the goodness-of-fit
of the multigroup CFA model. An item is flagged as non-invariant
when its deletion causes the CFI to increase more than 0.01.

All three strategies become cumbersome if the number
of items grows larger, because they are prone to chance-
capitalization and are computationally demanding, and because
their validity stands or falls with the validity of some stringent
assumptions. Hence, although CFA solutions exist and are often
used, these solutions are not without problems.

In this paper, we propose an alternative procedure for detect-
ing items that are non-invariant with respect to the structure or
size of their factor loadings. Our procedure circumvents some dis-
advantages of the CFA solutions in that it is fast and does not
entail assumptions with respect to the invariance of certain items
or loadings. It builds on the results of a clusterwise simultane-
ous component analysis (SCA; De Roover et al., 2012). Being an
exploratory technique, clusterwise SCA assigns the groups under
study to a few clusters based on differences and similarities in
the component structure and thus in the covariance matrices of
the items. Next, non-invariant items can be traced by compar-
ing the cluster-specific component loadings (which is far more
parsimonious than comparing the component structure of all
separate groups). To do this in a consistent way, we present a
heuristic that is based on the Tucker’s congruence coefficient
(Tucker, 1951), an index that is often used in, amongst others,
cross-cultural psychology, to make statements about the simi-
larity of group-specific factor structures (Lorenzo-Seva and ten
Berge, 2006). Afterwards, one can return to the multigroup CFA
framework and check whether removing the non-invariant items
or removing some of the equality restrictions for these items,
yields satisfactory invariance test results.

Clustering the groups based on their component structure is a
unique feature of our approach, that makes it especially appeal-
ing when the number of groups is large. Indeed, in such cases the
clustering parsimoniously reveals the most important structural
differences whereas the CFA solutions discussed above quickly
become very tedious and impractical. Vice versa, when the data
comprise only a few groups, it makes less sense to cluster the
groups and the traditional approaches may be preferred.

The remainder of this paper is organized into three sections: in
the Methods section, we introduce some notation regarding the

3The item for which the factor loading is fixed to one in each population for
model identification.
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data and discuss preprocessing. Next, we recapitulate clusterwise
SCA and present the heuristic for the detection of non-invariant
items. Then, the Applications section illustrates the procedure
using an empirical data set from research on emotional accul-
turation including emotional patterns from 13 different cultural
groups. Finally, the Discussion will address some limitations and
strengths of the presented method as well as directions for future
research.

METHODS
DATA
In this paper we will be working with multivariate multigroup
data, consisting of a Nk (subjects) × J (items) data matrix Xk

(k = 1, . . . , K) for each of the K groups under study. Since clus-
terwise SCA aims to cluster the groups based on the within-group
component structure and not on differences in group-specific
item means, it is essential that the data of each group are centered
per item. Moreover, since items with a higher amount of variance
may dominate the obtained components, it will often be wise to
rescale the data to eliminate differences between the items in mea-
surement scale or variability4. As configural and weak invariance
pertain to the covariance structures of the groups, we advocate to
normalize the items over all groups, implying that (co)variance
differences among the groups are retained in the data. That is, we
recommend to analyze the Xk matrices, computed from the raw
(i.e., unpreprocessed) data matrices Xr

k as follows:

Xk = (Xr
k − 1Nk x̄k)S−1 (1)

where 1k is a K × 1 vector of ones, x̄k is a 1 × J vector containing
the group-specific item means, S is a diagonal matrix containing
the standard deviations of the items over all groups.

CLUSTERWISE SCA-P
Simultaneous component analysis (SCA; Kiers and ten Berge,
1994; Timmerman and Kiers, 2003) reduces the data of all groups
simultaneously, summarizing the observed items by means of a
few components according to the item covariances. SCA assumes
that the same components underlie the data of the different
groups and thus that the same loading matrix can be used for all
groups. Specifically, the SCA model is given by:

Xk = FkB′ + Ek (2)

where Fk (Nk × Q) denotes the component score matrix of
the k-th group, B (J × Q) denotes the loading matrix which is

4One may argue that this advice is somewhat inconsistent with the fact that
measurement invariance testing is usually done on raw data. Multigroup CFA
is less sensitive to between-item differences in variability, however, due to the
many restrictions on the factor loadings (i.e., zero or equality constraints).
Moreover, if the variance differences are relatively small, analyzing unrescaled
data (i.e., data that is only within-population centered) will yield very similar
results to those obtained when overall rescaling is performed. For instance,
for our illustrative data set (see Application section), the clustering of the
groups was identical and the subset of non-invariant items consisted of the
items reported below with the exception of “proud about myself.” The CFI
indices of the multigroup CFA models that are obtained when these six items
are removed, are almost identical to the reported ones.

identical for all groups and therefore does not have an index k, and
Ek (Nk × J) denotes the matrix of residuals. In SCA-P, the most
general variant, the variances of the component scores over all
groups are fixed at one. This restriction only partly identifies the
solution, in that the components of an SCA solution can be freely
rotated without altering the fit of the solution. In SCA-P, the vari-
ances of and the correlations between the retrieved components
may vary across the groups. Consequently, it may occur that a
specific component has little variance within particular groups, or
that two components have a very high correlation for one group
and almost no correlation for the other groups. Apart from that,
SCA-P leaves no room to find differences in covariance structure
between groups.

To more extensively trace between-group differences and sim-
ilarities in the component structure, clusterwise SCA (De Roover
et al., 2012) was developed. Clusterwise SCA partitions the K
groups into C clusters and models the data of the groups within
each cluster with a simultaneous component model. In this paper,
we will use the most general clusterwise SCA variant, i.e., clus-
terwise SCA-P (De Roover et al., 2013b), which applies SCA-P
(see above) within each cluster. In this paper, given that we
assume that each group is characterized by the same latent fac-
tor structure (apart from differences in the factor variances and
covariances), we restrict the number of components Q of the
cluster-specific SCA-P models to be the same across the clusters
(for other purposes, clusterwise SCA extensions exist that allow
the numbers of components to vary across clusters; see De Roover
et al., 2013a).

Formally, clusterwise SCA-P models the data of one group as
follows:

Xk =
C∑

c = 1

pkcFkB(c)
′ + Ek (3)

where pkc denotes the entries of the binary partition matrix
P (K × C) which equal 1 when group k is assigned to clus-
ter c and 0 otherwise and B(c) (J × Q) is the loading
matrix of cluster c (c = 1, . . . , C). Given that the SCA-
P models per cluster are independent of one another, the
cluster-specific components can be freely rotated within each
cluster.

To fit a clusterwise SCA-P solution with C clusters and Q com-
ponents to a given data set, the sum of the squared residuals is
minimized by means of an alternating least squares (ALS) algo-
rithm (more details can be found in De Roover et al., 2013b). A
multistart procedure is used to reduce the probability of ending
up in a local minimum.

MODEL SELECTION
When applying clusterwise SCA-P analysis, the number of clus-
ters C and components Q need to be specified by the user. In the
context of measurement invariance analysis, the number of com-
ponents Q is equal to the number of latent variables under study,
but the most appropriate number of clusters is usually unknown.
To deal with this model selection problem, clusterwise SCA-P
solutions are estimated using 1 to Cmax clusters. Next, a scree test
(Cattell, 1966) is performed to determine the number of clusters
after which the increase in fit levels off: Cbest. Specifically, Cbest
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is the C-value that maximizes the following scree ratio sr(C) (see
also Ceulemans and Kiers, 2006, 2009):

sr(C) = VAFC − VAFC − 1

VAFC + 1 − VAFC
(4)

where VAFC is the percentage of variance-accounted-for of a solu-
tion with C clusters (and Q components; for software to perform
the scree test; see Wilderjans et al., 2013). VAFC is calculated as
the fitted sum of squares divided by the total sum of squares:

VAFC = 100 ×

K∑

k = 1

C∑

c = 1
pkc

∥
∥FkB(c)

∥
∥2

K∑

k = 1
‖Xk‖2

(5)

Of course, differences in VAFC-values may be very small when
the data contain only a few non-invariant items. Therefore, when
in doubt about the optimal number of clusters, it is advised to
perform the detection procedure (see below) using different C-
values to examine the stability of the obtained set of non-invariant
items, taking into account that the higher the C-value, the larger
the number of non-invariant items may become.

DETECTION OF NON-INVARIANT ITEMS
To detect non-invariant items, we propose to apply the following
procedure5, which consists of four steps:

1. Rotate cluster-specific loadings toward the postulated factor
structure: Since clusterwise SCA-P solutions have rotational
freedom (see above), the comparability of the cluster-specific
component loadings is optimized by orthogonally rotating
them toward a target matrix that corresponds to the factor
model specification that was used in the measurement invari-
ance testing (taking loadings equal to one if an item is assumed
to load on a factor and zero otherwise).

2. Screen for the presence of non-invariant items: Calculate, for
each cluster pair and for q = 1, . . . , Q, the Tucker’s congru-
ence coefficient ϕ (Tucker, 1951) between the qth cluster-
specific components. The congruence coefficient is an index
of similarity between components (or factors). It takes values
between −1 and 1, where a negative value indicates that one of
the components should be reflected, a value of zero indicates
no agreement, a value between 0.85 and 0.95 indicates high
similarity, and a value higher than 0.95 corresponds to vir-
tual identity (Lorenzo-Seva and ten Berge, 2006). Therefore,
in what follows, we will assume that components are identi-
cal if the congruence value is 0.96 or larger. Next, the minimal
ϕ-value ϕmin across these C(C − 1)/2 × Q congruence coeffi-
cients is calculated. When ϕmin is less than 0.96, this suggests
that the data contain non-invariant items and the procedure
continues. When ϕmin is 0.96 or larger, there is no indication
that non-invariant items are present. Thus, the procedure is
stopped and it is concluded that the clusterwise SCA-P analysis

5The procedure as well as the clusterwise SCA-P analyses are implemented in
a Matlab R2013b function which can be obtained freely from the first author.

endorses weak measurement invariance. Note that the congru-
ence coefficient measures the proportionality of two sets of
component loadings and is thus insensitive to differences in
component scale (which influence the loading sizes due to the
restrictions on the component variances).

3. Detect which items are non-invariant: Remove each item one
by one (i.e., with replacement) from the loading matrices and
recompute the minimum congruence coefficient ϕmin (across
all cluster pairs and components), re-rotating the remaining
loadings toward the corresponding subset of the target matrix.
The item for which the absolute value of this ϕmin is the high-
est (which indicates that the between-cluster congruence of
the components improves the most when omitting this item)
is considered non-invariant and permanently removed. This
step is repeated until the resulting ϕmin value exceeds 0.96,
indicating weak invariance.

4. Re-estimate the cluster-specific SCA-P models for the remain-
ing subset of items and repeat steps 1–3 to check whether
additional non-invariant items are found. Continue until no
more non-invariant items seem to be present (i.e., ϕmin >

0.96). Note that the clustering is fixed in this step. Allowing an
update of the clustering would often lead to a different, non-
sensical clustering, because the removal of non-invariant items
diminishes the differences driving the initial clustering.

This procedure differs in three important respects from the
CFA procedures that were discussed in the introduction: firstly,
our procedure examines the non-invariance of complete items,
whereas the sequential model modification procedure and item-
level invariance testing focus on the non-invariance of each load-
ing separately. Secondly, whereas the CFA tests examine either
configural or weak invariance, the procedure proposed above
captures both simultaneously. Thirdly, clusterwise SCA is more
parsimonious than the three CFA procedures in that it examines
differences between clusters of groups rather than between sepa-
rate groups, which possibly lowers the capitalization on chance.

APPLICATIONS
DATA DESCRIPTION
In this section, we will illustrate our method for detecting non-
invariant items by means of data that were originally collected
to investigate emotional acculturation. Emotional acculturation
refers to the process by which immigrants’ patterns of emotional
experience assimilate to those of the host culture (De Leersnyder
et al., 2011). To investigate the robustness of the phenomenon, the
researchers examined two different host cultures, and included
minority groups from different heritage cultures (the cultures
from which the immigrants stem). Moreover, to compare the
emotional patterns of the immigrants with those of their heritage
culture, two heritage groups were inspected as well (see Table 1
for an overview of the groups involved).

First, as previous research found emotional differences
between independent and interdependent cultural contexts (e.g.,
Mesquita, 2001; Kitayama et al., 2006), the host and heritage cul-
tures under study differ along the independent-interdependent
dimension, with both host cultures (European American and
Belgian contexts) on the independent end and all heritage cultures
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Table 1 | The 13 cultural groups under consideration and associated host country, design and sample size (note: each situation-subject

combination counts as one observation).

Cultural group Host country Design Removed observations due to missing data Retained observations (Ni) Partition

European Americans 1 USA 1 12 120 1

Korean immigrants USA 1 21 126 1

Mexican immigrants USA 1 16 188 1

East-Asian immigrants USA 2 5 159 1

Latino immigrants USA 2 1 142 1

European Americans 2 USA 2 10 122 1

Koreans Korea 2 22 298 1

Flemish students 1 Belgium 3 5 183 2

Flemish students 2 Belgium 3 20 516 2

Belgian community Belgium 3 26 166 2

Turkish 2nd generation immigrants Belgium 3 17 157 2

Turkish 1st generation immigrants Belgium 3 22 143 3

Turkish students Turkey 3 119 699 3

The last column indicates to which cluster the cultural group is assigned in the clusterwise SCA-P model with three clusters and two components per cluster.

(Korea/East Asia, Mexico/Latino, and Turkey) on the interdepen-
dent end. A second reason for focusing on these host and heritage
cultures is that they differ considerably from an acculturation
point of view. The US and Belgian cultural contexts have different
migration histories that translate in different policies and differ-
ent collective ideas on immigrants and immigration (Van Acker,
2012). Within the US context, Korean/East Asian minorities differ
from Mexican/Latino minorities in terms of both education and
employment; the former are highly educated, and work white col-
lar jobs, whereas the latter are typically less educated, and occupy
blue collar jobs. Within the Belgian context, Turkish minorities
tend to have little education and occupy more working class (as
opposed to middle class) jobs than majority members. One of
the Belgian majority samples was matched with respect to educa-
tion and socio-economic status to the Turkish minority sample;
the other two Belgian majority samples consisted of Belgian
(Flemish) university students.

The participants reported on one to four specific situations
that differed on the dimensions of valence (positive, negative),
social engagement (socially engaged, socially disengaged), and
social context (with friends, at home/with family, at school/work).
They then rated on a 7-point Likert scale to what extent they
experienced each of 17 different emotions (see Table 3). The situ-
ations were chosen according to three types of design. In Design
1, participants received three emotional prompts that pertained
to the same type of emotional situation (e.g., positive disengag-
ing situation), but that differed with respect to social context. In
Design 2, participants received four emotional prompts that per-
tained to the same social context (e.g., family), but that differed
with respect to type of emotional situation (i.e., positive disengag-
ing situation, positive engaging situation, negative disengaging
situation, negative engaging situation). Design 3 was similar to
Design 2, but due to time constraints, participants only completed
two types of emotional prompts for the same social context.
The design was fixed within each group (see Table 1), which
implies that differences between cultural groups may have been
confounded with differences in design. Note that we removed

observations (i.e., subject-situation combinations) with missing
data from the data set (see Table 1).

Of course, the fact that the data contain up to four observa-
tions per subject may introduce some dependencies among the
observations within a group, violating the independence assump-
tion of the CFA framework. Retaining only one observation per
subject would drastically reduce the sample size per group, lead-
ing to convergence problems when performing (multigroup) CFA
analyses. However, given that for the majority of the subjects only
one or two observations are included in the data (i.e., 289 subjects
with one observation and 819 subjects with two observations)
and that varying the type and context of the emotional situa-
tions causes substantial within-subject differences, we deem the
degree of dependence in the data to be limited and not prohibitive
for using the current data as an illustration for our proposed
procedure.

The questionnaires (i.e., the prompts) were developed in
English and then translated from English into Korean, Spanish,
Dutch and Turkish, and then back-translated into English by
bilingual researchers. In this pragmatic type of translation
(Brislin, 1980), the accuracy of meaning is emphasized, rather
than a literal, word-for-word translation.

CONFIGURAL AND WEAK INVARIANCE TESTING
A latent variable structure that seems reasonable for this data set
is one with a positive emotions factor and a negative emotions
one (Kuppens et al., 2006). Therefore, we tested the configural
and weak invariance of this latent variable structure by means
of the R packages Lavaan 0.5–15 (Rosseel, 2012) and SemTools
0.4–0). To take the ordinal nature of the Likert scale ratings into
account, we used the diagonally weighted least squares (DWLS)
estimator (Jöreskog and Sörbom, 1996, pp. 23–24). Table 2 con-
tains the comparative fit indices (CFI) for the CFA model for each
group separately, as well as for a multigroup CFA model with-
out imposing further equality restrictions (to evaluate configural
invariance) and a multigroup CFA model with equal loadings for
all groups (to evaluate weak invariance). We focused on the CFI
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Table 2 | Comparative fit indices (CFI) for multigroup CFA analyses

imposing positive affect and negative affect factors for the emotional

acculturation data.

All 17 emotions Seven non-invariant

emotions removed

GROUP-SPECIFIC FIT

European Americans 1 0.91 0.99

Korean immigrants 0.87 0.97

Mexican immigrants 0.81 0.90

East-Asian immigrants 0.93 1.00

Latino immigrants 0.89 0.97

European Americans 2 0.97 1.00

Koreans 0.96 0.99

Flemish students 1 0.97 0.99

Flemish students 2 0.95 0.99

Belgian community 0.94 0.99

Turkish 2nd generation
immigrants

0.97 1.00

Turkish 1st generation
immigrants

0.98 1.00

Turkish students 0.97 0.98

OVERALL FIT

Multigroup CFA 0.95 0.98

Multigroup CFA with
equal loadings across
groups

0.86 0.96

CFI values lower than 0.95 are in bold face.

because it is a fit index that also performs well in small samples
(Hu and Bentler, 1999), which is an advantage considering the
small sample size for some of the cultural groups. A CFI value of
0.95 suggests a good fit of the model to the data (Hu and Bentler,
1999), a CFI between 0.90 and 0.95 corresponds to a reasonable
fit (Bentler, 1990; Tabachnick and Fidell, 2005), and a CFI value
lower than 0.90 indicates a bad fit (Bentler, 1990).

First, we examined configural invariance by looking at the CFI
value of the unconstrained multigroup model. The CFI value is
0.95; thus, at first sight the baseline model with the positive and
negative affect factors seemed to be appropriate (i.e., configural
invariance confirmed). However, the CFI values for the separate
groups conveyed that this model had an excellent fit for some
groups but not for all, with CFI < 0.90 for the Korean, Mexican,
and Latino immigrants.

Second, we looked at the overall fit of the weak invariance
model (i.e., equal loadings across all groups). The CFI value of
0.86, and also the difference of 0.09 in CFI with the overall con-
figural invariance model, indicated a bad fit of the model to the
data and, thus, a flat out rejection of weak invariance.

CLUSTERWISE SCA AND THE DETECTION OF NON-INVARIANT ITEMS
To investigate whether the lack of invariance is due to the presence
of non-invariant items, we centered the data per group and nor-
malized them over groups and applied clusterwise SCA-P analyses
with 1–6 clusters and two components per cluster. A scree plot
with the VAF values of the resulting models is presented in

Figure 1. Although fit differences are small, the increase in fit
clearly levels off after three clusters. This is also confirmed by the
scree ratio’s, which amount to 1.9, 2.3, 1.3, and 1.1 for two, three,
four, and five clusters, respectively. Thus, we proceeded with the
clusterwise SCA-P model with three clusters and two components
per cluster.

The corresponding partition of the cultural groups is
shown in Table 1. The cultural groups living in the USA are gath-
ered in Cluster 1, together with the Koreans. Cluster 2 consists
of the indigenous Belgian groups, together with the second gen-
eration Turkish immigrants in Belgium. Cluster 3 contains the
Turkish students living in Turkey and the first generation Turkish
immigrants in Belgium. The fact that the second generation
Turkish immigrants were assigned to the Belgian cluster suggests
that these immigrants acculturated with respect to the meaning
of their emotions. The assignment of the Korean immigrants as
well as the Koreans to the USA cluster, indicates that—in case of
three clusters and two components—neither of them stands out
enough in terms of their covariance structure to end up in a sep-
arate cluster. Note that all the data in cluster 1 were gathered by
means of Designs 1 and 2, whereas the data in clusters 2 and 3
were collected using Design 3 only. Thus, it is possible to clearly
interpret the differences between cluster 2 and 3 as differences in
cultural groups, whereas the differences between cluster 1 on the
one hand and clusters 2 and 3 on the other, may be due to design
differences, in addition to cultural differences.

The target (i.e., positive emotions component and negative
emotions component) rotated loadings of the three clusters are
given in Table 3. At first sight, the component structure in all
three clusters closely resembles this target structure: a first com-
ponent that mainly corresponds to the positive emotions and a
second component that is mainly constituted by negative emo-
tions. Similarity to the target structure was corroborated by the
congruence values between the cluster-specific components and
the corresponding columns of the target structure, which always
exceeded 0.85 indicating high similarity—but not identity—to
the target structure (see Table 4).

However, we did notice some remarkable between-cluster dif-
ferences for specific items. For instance, “surprised” has a high
loading on the “positive” component in the Turkish cluster and
a moderately high positive loading on the “negative” compo-
nent in the USA cluster. These differences were confirmed by
the Tucker’s congruence coefficients between the correspond-
ing cluster-specific components (see Table 4), which lay between
0.90 and 0.95, indicating between-cluster differences in loading
structure.

Applying the procedure described in the Methods section,
yielded the following seven non-invariant items: “strong,” “proud
about myself,” “surprised,” “relying,” “resigned,” “bored,” and
“indebted.” After removing the seven non-invariant items and
estimating a new SCA-P model per cluster for the retained sub-
set of variables, the congruence coefficients of the components
between clusters ranged from 0.96 to 0.99. Against the back-
ground of other research on the cultures of comparison, it is pos-
sible to meaningfully interpret some of these non-invariant items.
For instance, “proud about myself” has a higher negative loading
on the “negative” component in the Belgian cluster. This indicates
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FIGURE 1 | Percentage of explained variance for clusterwise SCA-P

solutions for the emotional acculturation data, with the number

of components equal to 2 and the number of clusters varying

from 1 to 6. The favored number of clusters is 3 (indicated by
the arrow), because the increase in fit levels off after three
clusters.

that when Belgians experience negative emotions, they feel less
proud about themselves than people belonging to the other cul-
tural groups. The association between negative emotions and feel-
ing less proud is also, to a lesser extent, observed in the USA and
Koreans cluster. The different meaning of “proud about myself”
between the Turkish cluster on the one hand, and the Belgian
and USA and Koreans cluster may be understood in the light of
the specific meaning that this concept takes on in cultures that
emphasize “independence” (e.g., Markus and Kitayama, 1991): in
these cultures, pride has the connotation of being successful and
superior (Roseman, 2013), and thus may be seen as compromised
by failure which is associated with negative emotions.

As another example, “relying” has a moderately high positive
loading on the “negative” component in the USA and Koreans
cluster. Follow-up analyses showed that the negative connotation
of “relying” in this cluster is mainly driven by the clear negative
connotation among the European Americans (in an SCA-P model
for the two groups of European Americans “relying” had a load-
ing of 0.42 on the negative component), which is less outspoken in
the USA immigrant groups (loading of 0.27) and among Korean
natives (loading of 0.24). The feeling of relying on someone
else may have a negative connotation (and co-occur with neg-
ative emotions) for the European Americans, because it clashes
with central ideals of personal autonomy and self-reliance (e.g.,
Markus and Kitayama, 1991).

Another interesting difference is the fact that “resigned” has a
lower loading on the “negative” component in the Belgian and

Turkish clusters in comparison to the USA and Koreans cluster.
Moreover, in the Turkish cluster, “resigned” loads primarily on
the “positive” component. The different meanings of “resigned”
may be associated with different ideas on control. Personal con-
trol is a central value in middle class American culture, where it
is considered instrumental to an individual’s independence and
autonomy (Markus and Kitayama, 1991); in this context, resigna-
tion is likely to have the negative connotation of giving up. On the
other end of the spectrum, Turkish culture emphasizes “kismet”
or fate: Turkish people tend to have a strong belief in both fate
(e.g., Ergüder et al., 1991) and authority (Dağ, 1991; Lester et al.,
1991). Therefore, feeling resigned may be regarded as positive in
the Turkish culture, as it denotes that one accepts an event and
one’s fate.

To summarize, important differences in component structure
were found, indicating that a subset of the emotions covary dif-
ferently with the other emotions or are even valued differently
in some of the cultural groups. Surely, these cross-cultural dif-
ferences are interesting in itself. Furthermore, these differences
may be what’s hampering the measurement invariance testing,
as they pertain to both the primary (e.g., “surprised” being less
strongly associated with the “positive” component in the USA
and Turkish clusters) and secondary loadings (e.g., “resigned”
being part of positive affect in the Turkish cluster), which may,
respectively, explain the rejection of the weak invariance model
and the bad fit of the configural invariance model for some of the
groups.
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Table 3 | Cluster-specific loadings for the clusterwise SCA-P model

with three clusters and two components per cluster, orthogonally

Procrustes rotated toward a positive and negative target structure.

Emotions Cluster 1

(USA and Koreans)

Cluster 2

(Belgian)

Cluster 3

(Turkish)

Pos. Neg. Pos. Neg. Pos. Neg.

Respect 0.76 −0.18 0.72 −0.20 0.86 −0.19

Interested 0.69 −0.24 0.63 −0.26 0.69 −0.11

Helpful 0.75 −0.17 0.63 −0.12 0.61 −0.14

Close 0.64 −0.23 0.74 −0.02 0.79 −0.24

Strong 0.66 −0.28 0.47 −0.46 0.75 −0.28

Proud about
myself

0.64 −0.43 0.49 −0.58 0.68 −0.34

Relying 0.53 0.30 0.76 −0.01 0.78 −0.09

Surprised 0.26 0.30 0.31 −0.12 0.72 −0.13

Ill feelings −0.35 0.51 −0.39 0.55 −0.39 0.69

Upset −0.35 0.74 −0.37 0.62 −0.47 0.69

Irritated −0.25 0.69 −0.57 0.54 −0.20 0.67

Embarrassed −0.12 0.79 −0.18 0.60 −0.18 0.73

Ashamed −0.09 0.81 −0.19 0.77 −0.16 0.65

Guilty −0.22 0.73 −0.14 0.82 −0.26 0.69

Bored 0.07 0.40 −0.25 0.35 −0.51 0.74

Indebted 0.45 0.42 0.27 0.74 0.27 0.53

Resigned −0.08 0.60 0.06 0.32 0.40 0.33

Loadings larger than 0.40 in absolute value are indicated in bold face. Non-

invariant items are indicated in italic.

Table 4 | Tucker’s congruence coefficients between the cluster-specific

component loadings in Table 3 and the target structure (per

component), as well as between the cluster-specific components

mutually (per component and per cluster pair), when including all

variables.

Cluster 2 Cluster 3 Target structure

Positive Negative Positive Negative Positive Negative

Cluster 1 Positive 0.94 - 0.90 - 0.89 -

Negative - 0.93 - 0.93 - 0.90

Cluster 2 Positive 0.94 - 0.86 -

Negative - 0.95 - 0.88

Cluster 3 Positive 0.89 -

Negative - 0.94

MODIFIED CONFIGURAL AND WEAK INVARIANCE TESTING
To examine whether the detected non-invariant items were
indeed contributing to the violations of measurement invariance,
we removed these seven items from the data and re-evaluated the
configural and weak invariance CFA models mentioned above.
Regarding configural invariance, the resulting CFI values for the
separate groups were higher (see Table 2), leaving only one group
(i.e., Mexican immigrants) in the reasonable fit range (i.e., CFI
between 0.90 and 0.95) and none in the bad fit range (i.e., CFI <
0.90). The same holds for the CFI value of the multigroup model,

which amounted to 0.98 and suggested an excellent overall fit.
Regarding weak measurement invariance, the corresponding CFA
model had a good CFI of 0.96, as compared to 0.86 when all items
were included. Surely, the fit decrease of 0.02 when going from
the configural invariance model to the weak invariance model
(i.e., from 0.98 to 0.96) was still large enough to reject weak
invariance, but clearly our procedure pinpointed some interest-
ing differences in emotion covariances that were interfering with
weak invariance.

Another strategy for incorporating the results of our proce-
dure in the CFA testing is freeing some of the loadings of the
non-invariant items. Regarding configural invariance, we added
secondary loadings (instead of zero ones) for the non-invariant
items. The overall CFI for the resulting multigroup CFA model
was 0.98, whereas the group-specific fit values were very similar to
those in Table 2. Regarding weak invariance, allowing both load-
ings of the non-invariant items to vary across groups yielded a
partial weak invariance model with a CFI value of 0.96.

RESULTS OF CFA METHODS FOR DEALING WITH INVARIANCE
VIOLATIONS
To compare our results to those of popular CFA methods for deal-
ing with invariance violations, we applied the three procedures
discussed in the Introduction. In the sequential modification pro-
cedure (MacCallum et al., 1992; Stuive et al., 2009), we confined
ourselves to modifying the weak invariance model by allowing
primary loadings to differ in certain groups or adding sec-
ondary loadings for certain groups, because several authors have
reported that this modification procedure outperforms meth-
ods which allow for other modifications (e.g., including residual
covariances; MacCallum, 1986; Silvia and MacCallum, 1988). We
continued freeing or adding loadings for specific groups, as spec-
ified by the modification indices, until the resulting increase in fit
(�CFI) no longer exceeded 0.01. As a result, the primary load-
ing of “bored” was freed for group 4 and a secondary and free
loading was added for “resigned,” also for group 4. The CFI of the
resulting partial weak invariance model is 0.86.

The item-level invariance testing (Cheung and Rensvold,
1999) entailed no less than 66 additional invariance tests (see
Introduction); i.e., two factor-specific tests, 28 tests for the non-
zero loadings on the positive factor and 36 tests for the non-zero
loadings on the negative factor. The integrated results of these
tests indicate that the primary loadings of “surprised,” “relying,”
“resigned,” “bored,” and “helpful” have to be freed across the
groups. The CFI of the thus obtained partial weak invariance
model is 0.92.

The strategy presented by Byrne and van de Vijver (2010)
involved two times 17 additional multigroup CFA analyses; i.e.,
deleting one item at a time, for configural invariance on the one
hand and for weak invariance on the other hand. With respect
to configural invariance, only one item yielded a CFI increase of
more than 0.01 upon deletion: “indebted.” Thus, for “indebted,”
there seemed to be some misfit with respect to the imposed fac-
tor structure, possibly due to the need for a secondary loading
of indebted on the positive component for some of the groups.
Deleting “indebted” led to an overall CFI of 0.97 and group-
specific fit values ranging from 0.85 to 0.99 with only the Mexican
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immigrants having a CFI below 0.90 (i.e., 0.85, implying bad
fit). With respect to items “interested”, “helpful”, “close”, “relying”,
“ill feelings”, “embarrassed”, and “ashamed”, no decision could
be made, since the corresponding multigroup CFA analyses (i.e.,
with one of these items being deleted) did not converge. With
respect to weak invariance, five non-invariant items were traced
by this approach: “surprised,” “relying,” “resigned,” “bored,” and
“indebted.” When deleting this subset of items the overall CFI of
the multigroup CFA with equal loadings across groups amounted
to 0.96.

CONCLUSION WITH RESPECT TO THE CROSS-CULTURAL EMOTION
DATA
This application demonstrated that using clusterwise SCA to
investigate what is causing a lack of measurement invariance
makes sense, because (1) the fit of the multigroup CFA mod-
els improved greatly when the detected non-invariant items were
removed or when the models were modified by allowing for
specific secondary loadings or by letting particular primary load-
ings vary across the groups, and (2) the detected set of non-
invariant items largely overlapped with those resulting from the
three multigroup CFA procedures. Also, the unique aspect of
the proposed approach—the clustering of the groups—was nicely
illustrated, i.e., meaningful clusters of groups were found and the
non-invariant items could be traced by comparing the loadings
between these clusters, without having to inspect the loadings of
each group separately. Moreover, the total CPU time of the clus-
terwise SCA-P analyses, i.e., including the model selection and the
detection procedure was about 33 s only (using Matlab R2013b
on an Intel® Core™ i7-3770K processor of a personal computer,
with a clock frequency of 3.4–3.9 GHz and a RAM speed of 1600
MHz) while the item-level invariance testing and the Byrne and
van de Vijver (2010) approach were much more cumbersome
and time-consuming (on the same computer, the former proce-
dure took more than 24 h to run and the latter about 2 h and a
half, using the R-packages Lavaan 0.5–15 and SemTools 0.4–0).
Applying the sequential model modification procedure took only
8 min, but this was because it led to only two modifications with
a�CFI> 0.01 (and, consequently, did not improve the model fit
very much).

GENERAL DISCUSSION
The issue of measurement invariance is ubiquitous in the behav-
ioral sciences nowadays as more and more studies yield mul-
tivariate multigroup data. Although CFA based methods have
been proposed to trace which items are hampering measurement
invariance, these methods have some disadvantages in that they
require researchers to run a multitude of analyses and in that they
imply assumptions that are often questionable. In this paper, we
proposed an alternative strategy which consists of running clus-
terwise SCA and comparing the resulting loadings via congruence
coefficients to quickly trace possible non-invariant items. The
cross-cultural application demonstrated that this novel approach
is useful and can co-exist with the traditional CFA approaches.

As also holds for the discussed CFA approaches, it may some-
times occur that invariance is still rejected after removing the
items indicated as non-invariant by the new approach. In such

cases, one may consider the following actions to further pursue
invariance.

Firstly, it may be that the number of clusters was too small to
detect all non-invariant items. Thus, it may be useful to examine
a clusterwise SCA solution with more clusters—for the complete
set of items—and repeat the detection heuristic.

Secondly, when the overall fit of the baseline multigroup CFA
model is still bad, this suggests that the CFA model is misspeci-
fied. For example, additional factors may be needed to approach
a good fit, the postulated latent variable model may be com-
pletely off or distributional assumptions may be violated. If so,
the clusterwise SCA based detection approach will not be able
to remedy this problem and neither can the CFA approaches. To
get more grip on what is going on, exploratory factor analysis
may be used to examine the factor structure. Moreover, prob-
lems with regard to the target structure can be easily traced from
the clusterwise SCA results by checking whether the congru-
ence coefficients between the cluster-specific components and the
postulated factors are low.

Thirdly, when the fit of the baseline CFA model remains below
standards for only one or a few of the groups after removing
the detected non-invariant items, it may be that the group(s) in
question need other CFA model modifications such as residual
covariances. To this end, one may resort to the group-specific
modification indices.

Fourthly, when configural invariance is established but weak
invariance is still rejected, a more strict congruence criterion may
be needed for the data at hand (e.g., 0.97 instead of 0.96) to
detect all subtle size differences in loadings which may be causing
the rejection of weak invariance. Especially when the number of
invariant items is much larger than the number of non-invariant
items, it may happen that the congruence criterion is not strict
enough to detect the most subtle differences.

Fifthly, it may be the case that the factor structure is appro-
priate for most groups but incorrect for a minority of outlying
groups. Clusterwise SCA will conveniently assign these outlying
groups to one or more separate clusters, with the congruence
coefficients between the corresponding cluster-specific and the a
priori factor structure being low. For such data, one may want to
remove the outlying groups and repeat the measurement invari-
ance testing. In this regard, Byrne and van de Vijver (2010)
specified a set of criteria to identify groups that are possibly outly-
ing in terms of their item scores and evaluated the goodness-of-fit
of the multigroup CFA model when deleting these groups one
by one (i.e., with replacement). However, these criteria are based
on the level of the items6 rather than on their factor structure.
This implies that this approach is not ideal to track groups with
outlying factor structures.

Finally, it may be that measurement invariance simply can-
not be established because the groups form a few clusters that
are characterized by a distinct factor structure. Using clusterwise
SCA, one can conveniently discern such clusters and perform the
measurement invariance testing within the clusters. Since, up to

6Note that a convenient approach for identifying countries that are deviant
with respect to item level was proposed by Ceulemans et al. (2013). This
approach was based on robust principal component analysis.
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now, no factor analytic counterpart exists, clusterwise SCA is the
only method to find clusters of groups based on within-group
component or factor structure without having to resort to tedious
pairwise comparisons of group-specific structures.

As a final remark, an attractive feature of the proposed
approach is that its applicability, unlike the CFA based methods,
largely surpasses the context of measurement invariance. Indeed,
the approach can also be used when researchers do not have an a
priori idea about the underlying structure of the items and about
possible differences across groups (e.g., Krysinska et al., in press).
To this end, a standard SCA-P analysis (i.e., without clustering)
is run on the data and the resulting component loadings—the
“common component structure”—are used as the target structure
toward which the cluster-specific loadings are rotated.
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Dağ, I. (1991). Rotter’in iç-diÕ kontrol oda.i ölçe.inin üniversite ö.rencileri için
güvenirli.i ve geçerli.i [The reliability and validity of Rotter’s Internal-External
Locus of Control Scale for university students]. Turk. Psychol. Assoc. J. 7, 10–16.

De Leersnyder, J., Mesquita, B., and Kim, H. S. (2011). Where do my emotions
belong? A study of immigrants’ emotional acculturation. Pers. Soc. Psychol. Bull.
37, 451–463. doi: 10.1177/0146167211399103

De Roover, K., Ceulemans, E., Timmerman, M. E., Nezlek, J. B., and Onghena,
P. (2013a). Modeling differences in the dimensionality of multiblock data

by means of clusterwise simultaneous component analysis. Psychometrika 78,
648–668. doi: 10.1007/s11336-013-9318-4

De Roover, K., Ceulemans, E., Timmerman, M. E., and Onghena, P. (2013b). A
clusterwise simultaneous component method for capturing within-cluster dif-
ferences in component variances and correlations. Br. J. Math. Stat Psychol. 86,
81–102. doi: 10.1111/j.2044-8317.2012.02040.x

De Roover, K., Ceulemans, E., Timmerman, M. E., Vansteelandt, K., Stouten, J., and
Onghena, P. (2012). Clusterwise simultaneous component analysis for analyzing
structural differences in multivariate multiblock data. Psychol. Methods 17,
100–119. doi: 10.1037/a0025385
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Models of confirmatory factor analysis (CFA) are frequently applied to examine the
convergent validity of scores obtained from multiple raters or methods in so-called
multitrait-multimethod (MTMM) investigations. We show that interesting incremental
information about method effects can be gained from including mean structures and
tests of MI across methods in MTMM models. We present a modeling framework for
testing MI in the first step of a CFA-MTMM analysis. We also discuss the relevance of
MI in the context of four more complex CFA-MTMM models with method factors. We
focus on three recently developed multiple-indicator CFA-MTMM models for structurally
different methods [the correlated traits-correlated (methods – 1), latent difference, and
latent means models; Geiser et al., 2014a; Pohl and Steyer, 2010; Pohl et al., 2008] and
one model for interchangeable methods (Eid et al., 2008). We demonstrate that some of
these models require or imply MI by definition for a proper interpretation of trait or method
factors, whereas others do not, and explain why MI may or may not be required in each
model. We show that in the model for interchangeable methods, testing for MI is critical
for determining whether methods can truly be seen as interchangeable. We illustrate the
theoretical issues in an empirical application to an MTMM study of attention deficit and
hyperactivity disorder (ADHD) with mother, father, and teacher ratings as methods.

Keywords: multitrait-multimethod (MTMM) analysis, measurement invariance, measurement equivalence, mean

and covariance structures, mean differences across raters, random vs. fixed methods, rater agreement

Multitrait-multimethod (MTMM) analysis is frequently used to
examine the convergent and discriminant validity of psycho-
logical measurements based on measurement designs in which
multiple constructs or traits are assessed by multiple meth-
ods (Campbell and Fiske, 1959; Widaman, 1985; Millsap, 1995;
Dumenci, 2000). In the classical MTMM design, multiple (typi-
cally at least three) methods are used to assess multiple (typically
at least three) constructs or traits. The analysis of MTMM data
has historically focused on the interpretation of the so-called
MTMM matrix, which summarizes the correlations between
variables in an MTMM design. The MTMM matrix approach
was developed by Campbell and Fiske (1959) who also pro-
posed heuristics for the interpretation of MTMM correlations
in terms of convergent and discriminant validity. Over the
years, confirmatory factor analysis (CFA) has become a popu-
lar tool for analyzing data obtained from MTMM designs, given
the greater flexibility of the CFA framework compared to the
original MTMM matrix approach (for a detailed discussion of
the advantages of the CFA approach to MTMM analyses, see
Eid et al., 2006).

Whereas Campbell and Fiske’s original approach focused
exclusively on correlation structures, CFA models allow analyzing
not only correlation, but also covariance and mean structures
(e.g., Little, 1997). Moreover, CFA models allow for the analy-
sis of multiple (instead of just a single) indicators (e.g., items or
scales) per trait-method unit (TMU). For example, self-, parent,
and teacher-reports on three or more items or scales could be
used to assess depression. Using multiple indicators per TMU has
the advantage that researchers can study the factorial validity at
the item level for each type of method, that method effects can
be analyzed separately for different traits to examine the poten-
tial trait-specificity of method effects, and that measurement
error influences (unreliability) can be more properly estimated
(Marsh and Hocevar, 1988; Eid et al., 2003). Despite the fact that
modern CFA methods allow for an analysis of covariance and
mean structures in the same model, most applied MTMM studies
so far have focused exclusively on modeling covariance struc-
tures. In addition, most MTMM studies still use single-indicator
designs (i.e., just a single observed variable per TMU; e.g.,
Servera et al., 2010).
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In the present article, we show that by moving from an exclu-
sively covariance- or correlation-based MTMM approach to an
approach that includes latent means, more fine-grained infor-
mation about convergent validity and method effects can be
gained in CFA-MTMM analyses. In this context, we highlight
a specific advantage of multiple-indicator MTMM designs that
has received little attention in the MTMM literature so far: the
possibility to test for measurement invariance (MI) across mul-
tiple raters or methods when the different methods provided
scores on comparable measurement instruments (e.g., equivalent
questionnaires).

Analyzing mean structures in MTMM models and the inves-
tigation of mean method effects in MTMM models has been
proposed in previous work (Eid, 2000; Pohl et al., 2008; Pohl
and Steyer, 2010). The new aspect in the current paper is the
investigation of MI across methods, which facilitates a proper
interpretation of mean method effects. Examining MI is a novel
aspect in MTMM research and considering MI itself as well as
for the interpretation of mean method effects adds important
information when evaluating MTMM data.

Although some MTMM studies have examined MI in the
context of multiple-group comparisons (i.e., for comparing mea-
surement structures across different populations; e.g., Cole and
Maxwell, 1985; Marsh et al., 1992), the issue of MI across methods
within the same population seems to have received little atten-
tion in the literature. For example, although Woehr et al. (2005)
tested for configural, metric, and residual invariance across dif-
ferent raters, they did not examine intercept invariance or latent
mean differences across raters.

In the present paper, we focus on MTMM designs that (1)
use multiple raters as methods and (2) equivalent questionnaires
across raters. Such designs are common in the applied MTMM
literature. For example, Cole et al. (1997) used equivalent child
and parent versions of questionnaires measuring depression and
anxiety in children. Similarly, Grigorenko et al. (2010) used self-
report, parent-report, and teacher-report versions of the same
questionnaire to assess problem behaviors in children. Burns et al.
(in press) assessed symptoms of hyperactivity, impulsivity, inat-
tention, and academic impairment in 5th graders by mother,
father, and teacher ratings, all of which filled out equivalent forms
of a questionnaire.

We show that by studying MI across raters, additional informa-
tion about method effects can be obtained that cannot be revealed
through purely correlational MTMM analyses. By testing for MI,
researchers can first of all examine whether the same factor struc-
ture holds across methods (configural invariance, see discussion
below)—an assumption that is often implicitly made in MTMM
studies, but rarely formally tested. In addition, researchers can
examine whether different methods (e.g., different raters) use the
questionnaire scales in a similar way (i.e., whether the scales have
equal difficulty and discrimination across raters in the sense of
item response theory). For example, when the same symptoms
of attention deficit and hyperactivity disorder (ADHD) are rated
by parents and teachers, different loadings or intercepts may be
obtained, showing that the observed symptom scores differ in
difficulty or discrimination between raters. This could, for exam-
ple, indicate that teachers are more lenient than parents in their

ratings or that certain symptoms are only weakly related to the
latent variable for a specific type of rater. Therefore, the finding of
measurement non-invariance across raters can reveal additional
insights into more subtle forms of method effects.

In addition to the general relevance of MI testing across meth-
ods, researchers may be uncertain as to the relevance of MI in
different CFA-MTMM models with method factors. With the
present article, we also want to contribute to a better under-
standing of the issue of MI in the context of recently developed
CFA-MTMM models. In line with modern MTMM approaches,
we focus on models that use multiple indicators per TMU (Marsh
and Hocevar, 1988; Eid et al., 2003, 2008; Geiser et al., 2012).

We first explain why the inclusion of means in addition to
covariances and testing for MI can reveal useful incremental
information in MTMM studies in general. We then present a
modeling framework for testing MI in MTMM studies that use
multiple indicators per TMU. Subsequently, we turn to four
different models with method factors that have recently been
proposed for the analysis of MTMM data. For each of the four
models, we discuss which level of MI these models require for a
proper interpretation of the model parameters.

ANALYZING MEAN STRUCTURES IN MTMM ANALYSES:
INTERESTING INCREMENTAL INFORMATION
The reported outcome of most MTMM studies are statistical
indices that provide information on the convergent validity (or
consistency) of different methods or raters in terms of the rank
order of the individuals that were assessed by the different meth-
ods. As a simple example, researchers often interpret a correlation
between, say parent and teacher ratings of child behavior in terms
of convergent validity, following Campbell and Fiske’s (1959)
guidelines. In terms of individual differences, such a correlation
coefficient indicates to which extent different raters agree as to
the rank order of children on the outcome variable (e.g., depres-
sion, externalizing problem behavior, ADHD). This information
is clearly useful, as it informs us about how much variability is
shared between raters or methods for the same construct.

Here, we argue that covariance-based information on multi-
ple raters’ agreement as to the relative standing of individuals
on a construct (which is typically the focus of MTMM stud-
ies) is not the only useful information that can be gained from
MTMM studies. This is because information about the overall
level (mean) is usually also of interest. That is, we argue that
researchers often want to know, for instance, whether parent
ratings of problem behaviors result in the same or similar con-
clusions about the overall level of these behaviors in a population
as do teacher ratings. Such questions can be addressed by ana-
lyzing mean structures in CFA-MTMM models in addition to
covariance structures, which is a relatively novel aspect in MTMM
research. Comparing means across raters requires a certain level
of MI across raters. That is, for such comparisons to be meaning-
ful, the measurement parameters that link the observed scores to
the latent variables should be equal across raters to ensure com-
parable scales. This issue parallels the comparison of latent means
across groups in multigroup CFA and structural equation model-
ing (SEM) as well as the examination of mean changes across time
in longitudinal studies (e.g., Little, 1997).
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THE MEANING OF MI FOR MTMM DATA
Formally, MI can be said to hold in an MTMM study if (1) a
similar factor structure is found for different methods used to
assess multiple traits or constructs using multiple indicators per
TMU and/or (2) certain parameters of the measurement model
(e.g., factor loadings, intercepts, or residual variances) that relates
the observed scores to latent variables are equal across meth-
ods. Condition (1) requires only that (a) the same number of
factors be found across methods and (b) the pattern of load-
ings (which variable loads onto which factor) be the same across
methods. For Condition 1, the term configural invariance has
been coined in the general MI literature (e.g., Meredith, 1993;
Widaman and Reise, 1997; Millsap, 2011). Condition 2 is more
restrictive and requires that not only the basic factor structure be
equivalent across methods, but also specific parameters such as
factor loadings, intercepts, or residual variances.

Even though it seems clear that establishing at least configural
invariance (equal factor structure) across methods is a necessity
for a meaningful comparison across methods, even configural
invariance is typically not formally tested in MTMM studies (for
exceptions, see Woehr et al., 2005; Burns et al., in press). Here,
we argue that testing for MI is useful when different methods
were scored on comparable scales (e.g., multiple raters taking
the same questionnaire), because such analyses (1) provide addi-
tional insights into method effects and (2) allow researchers to test
whether it is meaningful to compare latent means across raters. A
meaningful comparison of latent means across methods requires
that at least strong MI be established across methods (i.e., equal
loadings and intercepts). Strong MI ensures that the origin and
units of measurement are the same across raters.

A MODELING FRAMEWORK FOR TESTING MI IN MTMM
STUDIES
Marsh and Hocevar (1988) proposed a general target or baseline
model for MTMM studies that use multiple indicators per TMU.
In the present article, we show that this model as well as an exten-
sion of it can be used for testing MI across methods in MTMM
studies. Marsh and Hocevar’s model is depicted in Figure 1 as
a path diagram. For simplicity, here we consider only a single
construct (or trait; j = 1) that is measured by just two methods
(k = 1, 2). Each TMU jk is represented by three indicators (i = 1,
2, 3). Focusing on this simple design is sufficient to explain the
general MI issues, which can then easily be generalized to larger
MTMM designs. (In our empirical application presented later on,
we used a design with one trait and three methods).

Note that in our path diagrams, we represent both the
covariance and mean structure, following the RAM conven-
tions introduced by McArdle (1980). The model proposed by
Marsh and Hocevar (1988) includes a separate common fac-
tor (or true score variable) for each TMU (e.g., one factor for
mother ratings of hyperactivity and one factor for teacher ratings
of the same construct). All TMU factors are allowed to corre-
late. Marsh and Hocevar’s model has a number of advantages
for MTMM analyses in general. First, the model allows testing
the appropriateness of the latent factor structure for each TMU.
For example, the assumption of unidimensionality may be vio-
lated for some or all methods, thus providing evidence against

configural invariance across methods, which is fundamental to
MTMM analysis. Second, the model allows examining Campbell
and Fiske’s (1959) MTMM correlations at the latent level. That
is, rather than inspecting observed correlations that are attenu-
ated by measurement error as in Campbell and Fiske’s original
approach, the model in Figure 1 provides the same correlations at
the level of common true score variables. Therefore, the MTMM
correlations are corrected for random measurement error. This
has the advantage that the estimated correlations are less biased
and easier to compare between constructs with different scale
reliabilities1.

In the present article, we focus on the possibility to for-
mally test for MI across methods within each construct or trait
by estimating constrained versions of the model. In these con-
strained versions, parameters of the measurement model such
as loadings, intercepts, or residual variances are constrained to
be equal across methods to test whether and to which extent
such MI assumptions are tenable. In order to test for MI,
we can examine the following series of models in line with
Widaman and Reise (1997)2:

1. A model of configural invariance postulates the same factor
structure (number of factors and pattern of loadings) across
methods, but does not impose any formal equality constraints
on non-zero factor loadings, intercepts, or residual variances.

2. A model of weak invariance postulates the same factor struc-
ture plus equal factor loadings for corresponding indicators
across methods.

3. A model of strong invariance postulates the same factor struc-
ture, equal factor loadings, and equal intercepts for corre-
sponding indicators across methods.

4. A model of strict invariance postulates the same factor struc-
ture, equal factor loadings, equal intercepts, and equal mea-
surement error (residual) variances for corresponding indica-
tors across methods.

One drawback of the model presented in Figure 1 is that it will
only fit MTMM data when the indicators are strictly homoge-
neous in the sense that within each method, all indicators have
perfectly correlated true score variables that differ only in scal-
ing (i.e., have potentially different intercepts and loadings). This
assumption is frequently violated in practice, because different
items or subscales often measure slightly different facets of a con-
struct and therefore do not share exactly the same common true
score variable in the sense of classical test theory models. For
example, one item for measuring the construct depression may
refer to sadness, whereas another item meant to measure the same
construct may refer to sleeping problems. Therefore, although both

1Latent correlations are less biased than observed correlations only if cor-
related errors of measurement do not exist or if such correlated errors are
properly modeled.
2In addition to full invariance that requires all corresponding parameters to
be equal across raters, models of partial invariance have also been discussed
in the general MI literature. Partial MI means that invariance is tenable only
for a subset, but not all indicators (e.g., Byrne et al., 1989). In addition, in the
MTMM case, measurement parameters may be invariant across some, but not
all methods as shown in the empirical example section.
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FIGURE 1 | CFA measurement model for multiple-indicator MTMM data. Each latent factor Tjk represents the error-free (true) scores of a specific TMU.
The picture shows an example in which three indicators Yijk (i = 1, 2, 3) are used to measure one construct or trait (j = 1) by two methods (k = 1, 2).

items measure facets of depression, they may not share exactly
the same true score variable. As another example, consider item
wording effects due to positive and negative item wording (e.g.,
Vautier et al., 2003), which can also cause a common true score
model to show misfit.

If such inhomogeneities generalize across methods (e.g., if par-
ent ratings of sadness are more strongly correlated with teacher
ratings of sadness than with teacher ratings of sleeping problems),
then the model in Figure 1 likely will not fit the data very well,
because this model assumes a homogeneous correlation struc-
ture across methods for the same construct. We therefore present
an extension of the model in Figure 1, in which this issue is
addressed by including indicator-specific residual factors for all
but a reference indicator (see Figure 2). An equivalent approach
has been presented previously to account for indicator hetero-
geneity in longitudinal studies, in which the same issues occur
when the same indicators are repeatedly measured across time in
single-method designs (Eid et al., 1999).

The model in Figure 2 uses a reference-indicator approach
in which I – 1 (of a total number of I) indicators are con-
trasted against a reference indicator (without loss of generality,
the first indicator i = 1 in Figure 2 is chosen as reference
indicator). This is done by introducing residual method (or
indicator-specific) factors ISij for all except the reference indi-
cator. These indicator-specific factors have means of zero and
are by definition uncorrelated with the true score that repre-
sents the reference indicator (see Appendix A in Supplementary
Material for the formal definition of these factors). The ISij

factors reflect indicator-specific variance that is not shared
with the reference indicator, but is shared across methods.
Indicator-specific factors can be correlated with each other
in principle, reflecting potential shared deviations of non-
reference indicators from the reference indicator (e.g., the
reference indicator measuring the sadness aspect of depres-
sion, whereas the remaining two indicators both refer to

sleeping problems). Whether or not these correlations are
meaningful and should be estimated depends on the specific
application.

The model with indicator-specific factors can be used for MI
testing in the same way as the model in Figure 1. If at least strong
MI (i.e., equal reference factor loadings λijk and intercepts αijk)
can be established in either the model in Figure 1 or the model in
Figure 2, latent mean differences across methods can be meaning-
fully interpreted3. In the model with indicator-specific factors, it
is also possible to test for invariant loadings γijk of the ISij factors
(in addition to the reference factor loadings λijk).

Establishing invariant ISij factor loadings is not necessary for
a meaningful comparison of the reference factors T1jk across
methods (for more detailed explanations see Appendix A in
Supplementary Material). In many applications, only the factors
T1jk and their invariance across methods will be of substantive
interest. Nonetheless, comparisons of the γijk loadings across
methods can reveal interesting information about the extent to
which indicator-specific effects are reflected in different methods.
For example, some methods may not be as sensitive to sub-
tle differences in item content as others. This can be reflected
in non-invariant γijk loadings across methods. In the follow-
ing section, we examine the issue of MI in the context of more
sophisticated CFA-MTMM models with method factors that
researchers often use in a second step of an MTMM analyses.
Subsequently, we present applications of all models to an actual
data set.

3Some authors have recommended that strict invariance be established before
latent mean comparisons are conducted (see, e.g., Wu et al., 2007). Strict
invariance is only necessary, however, when correlated errors of measurement
exist and are not properly modeled. We recommend that researchers pay care-
ful attention to tests of model fit to detect potential error correlations and that
such correlations—if they exist—be properly modeled with additional latent
variables.
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FIGURE 2 | Extended CFA measurement model for multiple-indicator

MTMM data. In contrast to Figure 1, the extended model contains I – 1
indicator-specific factors ISij to reflect shared indicator-specific effects

across raters. The latent factors T1jk are now specific to the reference
indicator Y1jk and therefore carry an additional index for the reference
indicator.

DIFFERENT MTMM MODELS
More sophisticated CFA-MTMM models are often employed
because the simple CFA models in Figures 1, 2 do not directly
express method effects in terms of latent variables (i.e., method
factors), except for indicator-specific effects. In contrast, more
complex CFA-MTMM models contain additional latent vari-
ables that directly reflect method effects in terms of latent
methods factors. Such models allow explicitly contrasting dif-
ferent methods against a gold standard method (e.g., Eid,
2000; Pohl et al., 2008) or against a common trait (Pohl and
Steyer, 2010). Furthermore, more complex models allow relat-
ing method effects to external variables, which is not possible
in Marsh and Hocevar’s (1988) simple CFA model discussed
above.

In this article, we focus on four CFA-MTMM models that are
relatively new: (1) Eid et al.’s (2003) multiple indicator CT-C(M –
1) model, (2) Pohl et al.’s (2008) latent difference model, (3) Pohl
and Steyer’s (2010) latent means model, and (4) Eid et al.’s (2008)
CFA-MTMM model for interchangeable methods. Whereas the
first three models were developed for use with structurally differ-
ent methods (e.g., different fixed types of raters such as mothers,
fathers, and teachers, which are not drawn from the same set of
raters), Eid et al.’s (2008) CFA-MTMM model was developed for
interchangeable (random) methods (e.g., randomly selected cus-
tomers rating a product or service). Furthermore, whereas the
first three models can all be defined as equivalent versions of
Marsh and Hocevar’s (1988) simple CFA model, the CFA-MTMM
model for interchangeable raters in general implies a different
covariance and mean structure.

We focus on the above models, because all of them can
be formulated based on the well-defined concepts of clas-
sical testy theory (CTT). This ensures that in all of the
models, the trait and method factors have a clear mean-
ing and interpretation (Geiser et al., 2014a). Given the fact
that the CT-C(M – 1), latent difference, and latent means
approaches each imply the exact same measurement model as

the simple CFA model presented previously, we show only the
structural parts of the models for simplicity and parsimony in
Figure 3.

THE CT-C(M – 1) APPROACH
Presentation of the model
Figure 3A shows the structural part of the CT-C(M – 1) model
in the version first presented by Geiser et al. (2008) and dis-
cussed in detail in Geiser et al. (2012)4 . In the CT-C(M – 1)
model, one method serves as gold standard or reference method.
This could either be a method that a researcher has most con-
fidence in or that is most different from the remaining meth-
ods (for guidelines as to the choice of the reference method,
see Geiser et al., 2008, 2012). For example, Geiser et al.
(2014b) examined the convergent validity of giftedness assess-
ments in children using the CT-C(M – 1) approach. They
selected a maximum-performance test battery to serve as refer-
ence method, given that the test battery provided a more objective
measure of abilities relative to more subjective ability ratings
provided by the children themselves, their parents, and their
teachers.

In Figure 3A, without loss of generality, the first method (k =
1) was chosen as reference. The second and any additional meth-
ods are regressed on the true score variable pertaining to the
reference method using a latent regression analysis:

E
(
T1jk|T1j1

) = β0jk + β1jkT1j1

4The CT-C(M – 1) model version is slightly more restricted than Eid et al.’s
(2003) original model version. We chose to present the more restricted version
here, given its direct correspondence to and mathematical equivalence with
the latent difference and latent means models. The differences between Eid
et al.’s (2003) model and the version presented here are explained in Geiser
et al. (2012); the general MI issues discussed below apply to either version of
the model.
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All three approaches imply the same covariance and mean structure

at the latent level, but differ in terms of which level of MI they
require (see discussion in the text). The measurement part of the
models is the same as in Figures 1, 2 and therefore not shown in
this figure.

where β0jk and β1jk indicate regression coefficients and k �= 1. The
residuals of these regressions

Residual1jk = T1jk − E
(
T1jk| T1j1

)

serve as method factors in the CT-C(M – 1) model. Note that the
CT-C(M – 1) model has the same number of parameters in the
structural model as the simple CFA model. For one construct and
two methods, there are five structural parameters: the reference
factor mean and variance, the regression coefficients β0jk and β1jk,
and the latent residual [method factor] variance. Note that for
more than two traits or methods, admissible covariances among
latent factors would be additional parameters to be estimated in
the structural model.

Even though mathematically equivalent, the CT-C(M – 1)
model represents a useful extension of the simple CFA model,
because it allows us to express the information about method
effects (defined relative to a reference method) in terms of
latent method factors that are residuals with respect to the ref-
erence factors. Given that the method factors are defined as

residuals relative to the reference factors, they are by defini-
tion uncorrelated with the reference factors and thus represent
independent variance components (Eid et al., 2003). It also fol-
lows from their definition as residuals that the method factors
have means of zero. Hence, it would not be meaningful to make
statements about method factor means in the CT-C(M – 1)
model.

The CT-C(M – 1) model allows us to (a) quantify what
percentage of the observed or true score variance in different
methods is shared vs. not shared with the reference method and
(b) directly relate method effects to other variables (e.g., by cor-
relating method factors with external variables). The proportion
of observed variance that is shared with the reference method is
expressed by the consistency coefficient:

Con
(
Yijk

) = λ2
ijkβ

2
1jkVar

(
T1j1

)
/ Var

(
Yijk

)
.

The consistency coefficient is often used as an indicator of con-
vergent validity relative to the reference method or “gold stan-
dard.” The proportion of observed variance that is not shared
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with the reference method is expressed by the method-specificity
coefficient:

MSpe
(
Yijk

) = λ2
ijkVar

(
Residual1jk

)
/ Var

(
Yijk

)
.

The method-specificity coefficient is used to indicate which por-
tion of the observed variance is unique to a specific method
and not shared with the reference method. Correlations between
method factors are allowed in the CT-C(M – 1) model. These
correlations are partial correlations between non-reference meth-
ods from which variance shared with the reference method has
been partialled out. Therefore, method factor correlations reflect
a shared perspective (or “bias”) of non-reference methods relative
to the reference method.

MI in the CT-C(M – 1) model
The CT-C(M – 1) model allows contrasting different meth-
ods against a reference method by means of a latent regression
approach. For this purpose, strictly speaking, MI across meth-
ods beyond configural invariance is not required. That is, for
the interpretation of the standardized regression coefficients as
well as the coefficients of consistency and method-specificity, it
does not matter whether different methods were measured on the
same scale, because the coefficients of interest are standardized.
This makes the CT-C(M – 1) model very flexible for examining
the convergent validity of different methods. For example, Geiser
et al. (2014b) examined the convergent validity of objective abil-
ity tests and subjective ability ratings. Objective and subjective
assessments were made on completely different scales; nonethe-
less the CT-C(M – 1) model allowed examining the degree of
convergent validity across these methods.

On the other hand, the interpretation of the unstandardized
regression coefficients β0jk and β1jk can in some cases be difficult
if the different methods used different scales. This issue parallels
the potential difficulty of interpreting unstandardized regression
coefficients in standard ordinary least squares regression analysis
when predictor and criterion variables used different or arbitrary
metrics. Furthermore, if a researcher wants to make comparisons
of latent means across methods based on the latent mean of the
reference factor and the unstandardized regression coefficients,
strong MI is required in the same way as in Marsh and Hocevar’s
(1988) model.

THE LATENT DIFFERENCE APPROACH
Presentation of the model
The latent difference approach is closely related to the CT-C(M
– 1) approach in that different methods are contrasted against
a reference method. However, in the latent difference approach,
method effects are defined as simple deviations (differences) from
a reference method true score variable rather than as regression
residuals (Pohl et al., 2008). Latent difference factors (T1jk − T1j1)
are introduced that reflect method effects in terms of the differ-
ence between a true score of a non-reference method and the true
score pertaining to the reference method (see Figure 3B):

T1jk = 1T1j1 + 1
(
T1jk − T1j1

)
.

The latent difference model again has the same number of param-
eters in the structural model as Marsh and Hocevar’s (1988)
simple CFA model (five parameters in the case of two methods:
the reference factor mean and variance, the latent difference fac-
tor mean and variance, and the covariance between reference and
latent difference factor). In contrast to the CT-C(M – 1) model,
a correlation between reference and method factor is allowed in
the latent difference model, because the method factor is not
defined as a regression residual with respect to the reference fac-
tor. Moreover, in contrast to the CT-C(M – 1) approach, the mean
of the method factor can be estimated as well and reflects the
latent mean difference between two methods. A more detailed
comparison of the latent difference and CT-C(M – 1) models can
be found in Geiser et al. (2012).

MI in the latent difference model
In the latent difference model, convergent validity is assessed in
terms of the latent difference between true score variables per-
taining to different methods. Smaller differences indicate greater
convergent validity relative to the reference method. MI plays a
more important role in the latent difference model than in the
CT-C(M – 1) model. Given that method effects are defined in
terms of difference scores between the true score variables per-
taining to different methods, strong MI is critical for a meaningful
interpretation of the structural model parameters in the latent
difference model. When strong MI does not hold, the interpre-
tation of the latent difference scores can become difficult, because
a violation of strong MI indicates that the true score variables
pertaining to different methods may not be measured with com-
parable origin or units of measurement. In this case, persons’
individual difference scores as well as the mean and variance of
the latent difference factor would be difficult to interpret.

THE LATENT MEANS APPROACH
Presentation of the model
In the latent means model, method effects are defined as devia-
tions from an average across true score variables (Pohl and Steyer,
2010). In the first step, a common trait factor Tj is defined by aver-
aging across the true score variables that reflect different TMUs.
In our example with just one trait and just two methods, we
obtain:

Tj := (
T1j1 + T1j2

)
/ 2,

where the “:=” sign indicates a definition. The method factors are
defined as deviations from the common trait:

M1j1 := T1j1 − Tj,

M1j2 := T1j2 − Tj.

Given their definition as deviations from the same average, the
method factors sum up to zero (i.e., M1j1 + M1j2 = 0). Therefore,
in the case of two methods, we obtain the following deterministic
relationship between the two method factors:

M1j1 = −M1j2.
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It is thus sufficient to include only M – 1 method factors as in the
CT-C(M – 1) and latent difference models (i.e., the last method
factor is fully determined by the implicit sum-to-zero constraint
and therefore redundant). Here, without loss of generality, we
dropped the first method factor so that we obtain the following
structural model shown in Figure 3C:

T1j1 = Tj − M1j2,

T1j2 = Tj + M1j2.

All trait and all method factors in the latent means model can
be correlated. As in the CT-C(M – 1) and latent difference mod-
els, for two TMUs, we obtain a structural model with five free
parameters (the common trait factor mean and variance, the
method factor mean and variance, and the covariance between
the common trait and the method factor).

MI in the latent means model
The latent means model defines a common trait Tj as the aver-
age of true score variables T1jk that pertain to the same construct
j. Such an average is typically only meaningful when the true
score variables are measured on the same scale. A similar argu-
ment applies to the interpretation of the method factors in the
model: A deviation of a particular method from the grand average
is only meaningful if all methods used the same scale. Moreover,
as in the latent difference model, establishing at least strong MI
is crucial for the interpretation of the model parameters in the
latent means model. One difference between the latent difference
and latent means models in this regard is that the latent differ-
ence model allows for partial MI, whereas the latent means model
does not. That is, as long as at least one non-reference method
shows MI relative to the reference method, the latent difference
between the two can be meaningfully interpreted. In the latent
means model, however, the common trait will typically only have
a clear interpretation if all methods show at least strong MI.

THE CFA-MTMM MODEL FOR INTERCHANGEABLE METHODS
Presentation of the model
Eid et al. (2008) showed that measurement designs with inter-
changeable methods imply different measurement models for
modeling trait and method effects than do designs with struc-
turally different methods. This is because the underlying random
experiment differs for designs with structurally different vs. inter-
changeable methods. Eid et al. (2008) presented a multilevel CFA
approach for modeling interchangeable methods each of which
used the same items to rate each trait. Nussbeck et al. (2009)
showed that the same model can also be estimated within the
single-level CFA framework. Here, we consider Nussbeck et al.’s
single-level CFA approach (rather than the multilevel version) for
two reasons: (1) The single-level version of the model is easier to
compare to the previously described models for structurally dif-
ferent methods, and (2) the single-level CFA approach is more
flexible in terms of explicitly testing assumptions of MI than is
the multilevel approach (this parallels the issue of testing MI in
longitudinal latent state-trait models in the single- vs. multilevel
CFA framework as described in detail in Geiser et al., 2013).

When methods are interchangeable, they are considered ran-
domly drawn from a set of equivalent methods (Eid et al., 2008).
Eid et al. (2008) as well as Nussbeck et al. (2009) showed that
this structure implies a CFA model with M uncorrelated method
factors (i.e., a separate method factor for each interchangeable
method; see Figure 4). As can be seen in Figure 4, for one trait
and two methods, we obtain measurement models that have
the same structure as longitudinal latent state-trait models (e.g.,
Geiser et al., 2013) for multiple indicators and that are similar to
so-called bifactor models (e.g., Reise, 2012).

Figure 4A is a version of the model for homogeneous indica-
tors all of which measure exactly the same common trait factor
Tj. Figure 4B shows a model version with indicator-specific trait
factors Tij. Indicator specific traits are useful to capture inho-
mogeneities among indicators in a similar way as was done
with indicator-specific factors in the previously discussed mod-
els for structurally different methods. The method factors Mjk are
defined as residuals with respect to the trait factor(s). As a con-
sequence, the trait factors are by definition uncorrelated with all
Mjk pertaining to the same construct j, and all Mjk factors have
means of zero by definition. Similar to the CT-C(M – 1) model,
method effects are defined as regression residuals. In contrast to
the CT-C(M – 1) model, however, the trait factors are common
to all methods (rather than specific to a reference method), and
the method factors are uncorrelated across methods. This makes
sense, because of the interchangeable nature of the ratings. In
contrast to structurally different methods, with interchangeable
methods, there is no one method that is particularly outstanding
or special (or seen as a gold standard). Therefore, it makes sense
to include general trait factors and uncorrelated method factors
for each method.

Note that the common factors and the method factors in the
interchangeable model have a different meaning than the trait and
method factors in the latent means model. The common trait in
the latent means model is defined as an average of true scores, and
the method factors are defined as differences from this average. In
contrast, the common factor in the interchangeable model is not
an average and the method factors are not differences from an
average, but residuals with respect to a common factor.

MI in the CFA model for interchangeable methods
The interchangeable model is an interesting case with regard to
the issue of MI, because it is less obvious whether or not MI across
methods is required or should be established in the model. For
the interpretation of the traits and method factors in the model,
MI does not appear to be necessary, because the traits are not
defined as an average of true scores, and the method factors are
not defined as difference scores relative to a reference true score
or an average of true scores as in the latent difference and latent
means models. Nonetheless, testing for invariant loadings and
intercepts across methods is critical in this model as well, albeit
for different, somewhat more subtle reasons.

If different supposedly interchangeable methods result in dif-
ferent loadings or intercepts for the same indicator, this can ques-
tion the assumption that these methods are truly interchangeable
in the sense that they represent “random samples” drawn from
a set of uniform methods. For example, a researcher may ask a
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FIGURE 4 | CFA-MTMM models for interchangeable methods. (A) Version
with a general trait factor for homogeneous indicators. (B) Version with
indicator-specific traits for heterogeneous indicators. In the pictures, we

show the recommended specification, in which loadings and intercepts are
set equal across methods for identical indicators. In model version B, all trait
factor loadings are fixed to 1 and all intercepts are fixed to zero.

person to come to a laboratory and bring two randomly selected
friends to provide ratings of the person with respect to psycho-
logical variables (e.g., personality variables such as agreeableness
etc.). The target person may not be sure whom to bring and may
select his or her best friend as well as a more distant acquaintance.
In this case, the “best friend” may have access to different infor-
mation about the target person than the acquaintance. Hence,
the two ratings may be considered structurally different rather

than interchangeable. Non-interchangeable ratings may result in,
for example, different latent means. This may result in a misfit
of a model with equal loadings or intercepts, providing evidence
against the assumed interchangeable nature of the two raters.

Strictly speaking, a researcher dealing with truly interchange-
able methods (in the sense that the ratings represent random
draws from a population of equivalent methods) would not only
expect to find equal trait and method factor loadings as well as
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equal intercepts across methods, but also equal error and equal
method factor variances for each type of rater.

Obviously, the issue of MI in the CFA-MTMM model for
interchangeable methods can often be resolved by making sure
the methods are truly selected at random from a set of uni-
form methods. In this case, by definition, the measurement
parameters are equivalent in the population (although they may
differ in a sample due to sampling fluctuations). However, in
practice, a random selection of raters or other methods may
not always be feasible. Tests of MI can then provide a way to
scrutinize whether the assumption of interchangeable methods
is warranted or whether the chosen methods should better be
treated as structurally different. In the latter case, the use of
one of the three previously discussed models for structurally
different methods would be preferable. Below we present an
application of all five models to an MTMM study on ADHD
symptoms.

EMPIRICAL ILLUSTRATION
SAMPLE AND MEASURES
The participants were mothers, fathers, and teachers of 1045 first
grade children from 22 randomly selected elementary schools on
the island of Majorca in the Balearic Islands and eight schools
from Madrid (Spain). Assessments one and two occurred in the
spring with assessment three occurring 12-months later. For the
present illustration, we used data from the third assessment for
which N = 709 (HI; j = 1) and N = 710 (IN; j = 2) cases with
mother ratings (k = 1), father ratings (k = 2), and teacher rat-
ings (k = 3) were available. The average age of the children was
approximately 8 years with approximately 90% of the children
being Caucasian and 10% North African.

Mothers, fathers, and teachers completed Child and
Adolescent Disruptive Behavior Inventory (CADBI, Burns
and Lee, 2010a,b). This study used the nine symptoms on the
attention-deficit/hyperactivity disorder-inattention (ADHD-IN)
and the nine symptoms on the ADHD-hyperactivity/impulsivity
(HI) subscales. The ADHD symptoms were rated on a 6-point
scale [i.e., nearly occurs none of the time (e.g., 2 or fewer times per
month), seldom occurs (e.g., once per week), sometimes occurs (e.g.,
a few times per week), often occurs (e.g., once per day), very often
occurs (e.g., several times per day), and nearly occurs all the time
(e.g., many times per day)].

For the purpose of this demonstration, item parcels were used
as indicators rather than individual symptoms, given that earlier
research provided justification for the use of parcels (Burns et al.,
in press).

MODELING STRATEGY
In Step 1 of our analyses, we attempted to establish a well-
fitting baseline model for conducting subsequent MI analyses.
For this purpose, we fit both Marsh and Hocevar’s (1988) simple
CFA model (Figure 1) and the extended model with indicator-
specific factors (Figure 2) to the data and compared their fit to
test whether homogeneity of the indicators (parcels) as well as
configural invariance (equal factor structure) across raters could
be assumed in the present application. None of the initial mod-
els included any formal equality constraints on measurement

parameters. If the model in Figure 1 for homogeneous indica-
tors had fit the data well, it would have been the preferable model
for further invariance tests relative to the more complex model in
Figure 2, because the latter model is less parsimonious. In case of
a substantially better fit of the more complex model in Figure 2,
the more complex model is preferred, indicating a certain degree
of indicator heterogeneity.

In Step 2, we proceeded with tests of MI across raters, using
the best-fitting model from Step 1. The analyses in Step 2
began with a model of weak factorial invariance (only equal
loadings across raters), then tested a strong invariance model
(equal loadings and equal intercepts across raters), and finally
a model of strict invariance (equal loadings, equal intercepts,
and equal residual variances across raters). Given that all sub-
sequent models were nested within previous models, we per-
formed chi-square difference tests to compare the fit of the
models directly. In cases in which one of the subsequent mod-
els showed a significantly worse fit than the preceding model,
we further investigated issues of partial MI. That is, we tested
in these cases whether there was invariance across some of the
raters (e.g., mother and father, but not teacher ratings). Given
that mother and fathers rated the children in the same context
(at home), our hypothesis was that mother and father ratings
may satisfy a stricter level of MI than parent and teacher rat-
ings. In the final step, we tested for latent mean differences
across raters if at least strong MI could be established for at least
one pair of raters (e.g., mother and father ratings). In Step 3,
we fit more complex CFA-MTMM models with method factors
if this was warranted given the level of MI achieved in Steps
1 and 2.

All models were fit in Mplus 7 using maximum likelihood esti-
mation. Examples of the Mplus specification for all models can be
found in Appendix B in Supplementary Material. Global model
fit was evaluated using the chi-square test, root mean square
error of approximation (RMSEA), comparative fit index (CFI),
Tucker-Lewis index (TLI), and standardized root mean square
residual (SRMR). For a review and detailed discussion of these
fit indices, see Schermelleh-Engel et al. (2003). Relative model fit
was assessed via the chi-square difference test for nested models
and Akaike’s information criterion (AIC).

RESULTS OF THE MI ANALYSES
Table 1 shows global and relative model fit statistics for both the
HI and IN constructs in the analyses of the Figure 1, 2 mod-
els. It can be seen that for both HI and IN, based on global
model fit and the AIC, Model 1 (the configural invariance model
without indicator-specific factors) clearly had to be rejected in
favor of Model 2 (configural invariance with indicator-specific
factors) as a baseline model. The configural invariance model
with indicator-specific factors fit the data very well overall, show-
ing a non-significant chi-square value for both HI and IN as
well as excellent results based on other fit indices. An inspec-
tion of the model parameters revealed that for both HI and
IN, the indicator-specific factors had significant (albeit relatively
small) loadings (see Table 2), showing that the parcels were
essentially, but not perfectly homogeneous. We therefore used
the model with indicator-specific factors as the baseline model
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Table 1 | Goodness of fit statistics for different models fit to the HI and IN multirater data set.

Model χ2 df p RMSEA CFI TLI SRMR χ2� df� p(χ2�) AIC

HYPERACTIVITY/IMPULSIVITY

Figure 1 configural invariance 269.91 24 <0.001 0.12 0.963 0.944 0.02 9773

Figure 2 configural invariance 17.70 17 0.41 0.01 1.000 1.000 0.01 —a —a —a 9535

Figure 2 weak invariance 21.40 21 0.44 0.01 1.000 1.000 0.02 3.7 4 0.45 9531

Figure 2 strong invariance 29.85 25 0.23 0.02 0.999 0.999 0.02 8.45 4 0.08 9531

Figure 2 strict invariance 52.60 31 0.009 0.03 0.997 0.996 0.02 22.75 6 <0.001 9542

Figure 2 strong invariance
with equal means

104.27 27 <0.001 0.06 0.988 0.984 0.08 74.42b 2b <0.001b 9602

Figure 2 strong invariance
with equal means only for
mother and father reports

30.52 26 0.25 0.02 0.999 0.999 0.02 0.67b 1b 0.41b 9530

INATTENTION

Figure 1 configural invariance 196.64 24 <0.001 0.10 0.975 0.962 0.02 9386

Figure 2 configural invariance 16.09 17 0.52 0.00 1.000 1.000 0.01 —a —a —a 9219

Figure 2 weak invariance (all
raters)

28.18 21 0.14 0.02 0.999 0.998 0.02 12.09 4 0.02 9223

Figure 2 weak invariance
(mothers and fathers only)

17.66 19 0.55 0.00 1.000 1.000 0.01 1.57c 2c 0.46c 9217

Figure 2 strong invariance (all
raters)

193.63 25 <0.001 0.10 0.976 0.965 0.04 165.45 4 <0.001 9381

Figure 2 strong invariance
(mothers and fathers only)

29.20 23 0.17 0.02 0.999 0.999 0.02 11.54d 4d 0.02d 9220

Figure 2 strict invariance (all
raters)

230.73 31 <0.001 0.10 0.971 0.966 0.04 9406

Figure 2 strict invariance
(mothers and fathers only)

30.39 26 0.25 0.02 0.999 0.999 0.02 1.19e 3e 0.76e 9215

Figure 2 strict invariance
across mothers and fathers
only with equal means only
for mother and father reports

34.81 27 0.14 0.02 0.999 0.998 0.02 4.42 1 0.04 9218

Note: RMSEA, root mean square error of approximation; CFI, comparative fit index; TLI, Tucker-Lewis index; SRMR, standardized root mean square residual; AIC,

Akaike’s information criterion. All chi-square difference tests refer to the previous model in the preceding row unless otherwise indicated. Bold-face indicates best-

fitting models for which detailed results are presented.
a No chi-square difference test reported, because model nesting involves boundary constraints in this case.
b Relative to the strong invariance model with unequal means.
c Relative to the configural invariance model.
d Relative to the model of weak invariance for mother and father reports only.
e Relative to the model of strong invariance for mother and father reports only.

for subsequent MI tests involving equality constraints on load-
ings, intercepts, residual variances, and latent means for both HI
and IN.

For HI, the assumptions of weak and strong MI across raters
did not lead to a significant decline in model fit as indicated by
chi-square difference tests5. The strong MI model also showed a

5Indicator-specific loadings γijk were not invariant across methods in the
present application, indicating that different methods reflected indicator-
specific effects differently. In particular, as can be seen from Table 2, teacher
ratings showed much weaker (and partly insignificant) loadings on the ISij

factors compared to parents, indicating that teachers did not differentiate as
much between different facets of ADHD as did parents. This could potentially
be explained by Halo effects that may have been more significant for teacher
as compared to parent ratings in the present application.

very good global fit (non-significant chi-square). In contrast, the
model of strict invariance was rejected by the chi-square differ-
ence test and also showed an increased AIC value relative to the
strong invariance model. We concluded that error variances dif-
fered significantly across raters, whereas loadings and intercepts
did not. Given that strong MI is sufficient for demonstrating scale
equivalence and for meaningful comparisons of latent means, we
proceeded with the strong-MI model and tested for latent mean
differences across all three rater types for the HI construct.

The strong-MI model with equal means across all three rater
types was clearly rejected for HI, showing that there were true
mean differences across some of the raters (indicating a lack
of convergent validity with respect to the true means or true
mean differences between the home vs. school contexts). We addi-
tionally tested whether the means for mother and father ratings

www.frontiersin.org October 2014 | Volume 5 | Article 1216 | 90

http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Geiser et al. Measurement invariance in MTMM analysis

Table 2 | Parameter estimates of the measurement models fit to the HI and IN multirater data set.

Parameter label Hyperactivity/impulsivity (j = 1) Inattention (j = 2)

Estimate SE Standardized estimate Estimate SE Standardized estimate

TRAIT FACTOR LOADINGS

λ1j 1.00a — 0.96b; 0.95b; 0.97b 1.00a — 0.96b; 0.96b; 0.98b

λ2j 0.93 0.01 0.90b; 0.90b; 0.94b 0.13 0.01 0.91b; 0.92b; 0.96b

λ3j 0.92 0.01 0.90b; 0.90b; 0.94b 0.95 0.01 0.88b; 0.89b; 0.93b

INDICATOR-SPECIFIC FACTOR LOADINGS

γ2j1 1.00a — 0.37 1.00a — 0.33

γ2j2 0.88 0.21 0.34 0.96 0.08 0.31

γ2j3 0.17 0.06 0.07 0.31 0.07 0.09

γ3j1 1.00a — 0.24 1.00a — 0.35

γ3j2 1.57 0.56 0.40 0.94 0.08 0.32

γ3j3 0.13 0.08 0.03 0.06 0.08 0.02

INTERCEPTS

α1j1 0.00a — 0.00a —

α2j1 −0.09 0.02 0.06 0.02

α3j1 0.08 0.02 0.16 0.02

α1j2 0.00a — 0.00a —

α2j2 −0.09 0.02 0.06 0.02

α3j2 0.08 0.02 0.16 0.02

α1j3 0.00a — 0.00a —

α2j3 −0.09 0.02 0.01 0.02

α3j3 0.08 0.02 −0.15 0.02

ERROR VARIANCES

Var (ε1j1) 0.09 0.01 0.08c 0.07 0.01 0.09c

Var (ε2j1) 0.07 0.04 0.06c 0.08 0.01 0.07c

Var (ε3j1) 0.15 0.02 0.13c 0.09 0.01 0.11c

Var (ε1j2) 0.10 0.01 0.09c 0.07 0.01 0.08c

Var (ε2j2) 0.09 0.03 0.08c 0.08 0.01 0.07c

Var (ε3j2) 0.02 0.06 0.02c 0.09 0.01 0.10c

Var (ε1j3) 0.07 0.01 0.06c 0.06 0.01 0.05c

Var (ε2j3) 0.11 0.01 0.11c 0.10 0.01 0.06c

Var (ε3j3) 0.13 0.01 0.12c 0.15 0.01 0.13c

Note: For hyperactivity/impulsivity, a model of strong invariance for all raters and equal means across mother and father ratings was chosen. For inattention, a model

of strict invariance for mother and father ratings was chosen. λijk , trait factor loading (i, indicator; j, trait; k, method/rater); γijk , indicator-specific factor loading; αijk ,

intercept; Var(εijk ), error variance. The methods used here are mother report (k = 1), father report (k = 2), and teacher report (k = 3).
a Parameter fixed for identification.
b Standardized loadings differed between raters for the same variable, because error variances and latent factor variances were allowed to differ in the final models.

The standardized loadings are therefore given separately for each rater type in the following order: (1) mothers, (2) fathers, (3) teachers.
c Standardized residual variances indicate 1 – R2 and can be interpreted as coefficients of unreliability [(1 – Rel(Yijk )] for each variable.

Dashes indicate fixed parameters for which no standard errors are computed.

were significantly different from one another, or whether the
parent means only differed from the teacher means. A model with
latent means constrained equal across mother and father (but not
teacher) ratings was not rejected by the chi-square difference test
relative to the strong MI model with unconstrained latent means.
Therefore, we concluded that mothers and fathers did show con-
vergent validity of mean levels for the HI construct, whereas the
latent mean for teacher ratings was significantly smaller than for
mothers and fathers. This indicated a lack of convergent validity
with regard to the HI mean level across parent and teacher ratings
or true differences in the mean HI levels between contexts (home

vs. school; more details are provided later on when we discuss the
parameter estimates of the final models).

Our analyses of the IN construct yielded different findings with
regard to MI. In the IN case, already the weak invariance model
showed a statistically significant (albeit relatively modest) increase
in the chi-square relative to the configural invariance model, indi-
cating at least partly non-invariant loadings across some of the
raters. We tested whether the loadings were equivalent at least
across mother and father ratings, as mothers and fathers were rat-
ing the same context (home). This hypothesis was not rejected by
the chi-square difference test.
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The strong-MI model for all raters showed a marked and
highly significant increase in the chi-square relative to the full
weak invariance model. We again tested whether strong invari-
ance could at least be assumed across mothers and fathers. This
hypothesis was also rejected according to the chi-square difference
test, although the resulting chi-square difference was relatively
modest and the global chi-square for this model was still non-
significant. The strong-MI model for mothers and fathers also
showed a very good global model fit, as indicated by a non-
significant overall chi-square goodness of fit test. We therefore
decided to proceed with the “partial strong-MI” model and to
also test for strict MI across mother and father ratings only (leav-
ing the intercept and residual variance parameters for teachers
unconstrained). The strict-MI model for mothers and fathers
showed a good overall model fit in terms of the chi-square and did
not fit significantly worse than the partial strong-MI model. We
therefore used the partial strict-MI model to test for mean differ-
ences across mothers and fathers. The resulting model with equal
means across mothers and fathers showed a significant, albeit
rather small chi-square difference value, indicating that there was
a small difference in the latent means between mother and father
ratings of IN.

A key finding of the IN analyses was the clear non-invariance of
teacher intercepts relative to mother and father intercepts for this
construct. The parameter estimates for the final models (strong
MI across all three raters and equal latent means across mother
and father reports for HI; strict MI across mother and father rat-
ings only and unconstrained latent means across all raters) are
presented in Tables 2, 3. Table 2 contains the parameter estimates
related to the measurement models (i.e., the loadings, inter-
cepts, and error variances). Table 3 shows the structural (latent
variable model) parameter estimates (i.e., the latent covariances,
correlations, variances, and means).

From Table 2, it can be seen that for IN, the intercepts for
teacher ratings were markedly lower than the parent intercepts,
indicating that teachers generally found it more “difficult” to
endorse the symptoms on each of the IN indicators than did
parents. One explanation could be that teachers in general are
perhaps more used to seeing a broad spectrum of symptoms of
IN and distraction in class than are parents at home. Therefore,
the teachers in our sample may have used a different frame of ref-
erence (and a higher “threshold”) when making their ratings of
IN compared to parents. As a consequence, a more serious level
of observed IN symptoms was required for teachers to produce
the same score on the latent variable of IN as would be obtained
from parent ratings. Interestingly, this difference was only found
for IN, but not HI. This shows us that MI analyses in the context
of MTMM data can reveal quite interesting information about
differences between methods and how they may or may not use
rating scale in a different way that may lead to scores that are not
directly comparable. This information goes beyond what is typi-
cally assessed in MTMM studies and what can be obtained from
an MTMM matrix alone.

From Table 3, we can see that there was substantial convergent
validity in terms of the rank order of children for both HI and
IN. Latent correlations ranged between 0.78 and 0.81 for mother

Table 3 | Estimated latent covariances, correlations, means, and

variances in the final models.

1. 2. 3. 4. 5.

HYPERACTIVITY/IMPULSIVITY

1. T111 — 0.85 (0.06) 0.45 (0.05) —a —a

2. T112 0.81 (0.02) — 0.43 (0.05) —a —a

3. T113 0.42 (0.04) 0.42 (0.04) — — —a

4. IS21 —a —a —a — 0.03 (0.01)

5. IS31 —a —a —a 0.29 (0.07) —

Means 1.10b (0.04) 1.10b (0.04) 0.71 (0.04) —a —a

Variances 1.11 (0.07) 0.99 (0.06) 1.05 (0.06) 0.16 (0.04) 0.07 (0.03)

INATTENTION

6. T121 — 0.60 (0.04) 0.41 (0.04) —a —a

7. T122 0.78 (0.02) — 0.44 (0.05) —a —a

8. T123 0.45 (0.04) 0.44 (0.04) — —a —a

9. IS22 —a —a —a — 0.05 (0.01)

10. IS32 —a —a —a 0.44 (0.07) —

Means 0.97 (0.04) 1.03 (0.04) 0.88 (0.04) —a —a

Variances 0.74 (0.05) 0.80 (0.05) 1.17 (0.07) 0.12 (0.02) 0.10 (0.02)

Note: Covariances are shown above the diagonal, correlations below the

diagonal.
a Covariances, correlations, or means that are set to zero by definition of the

model. Standard errors are given in parentheses.
b Latent means for hyperactivity/inattention were set equal across mother and

father reports.

and father ratings and between 0.42 and 0.45 between parents
and teachers. Latent means for mother and father ratings of HI
were set equal, given that this constraint was supported by the
goodness-of-fit tests. In contrast, teacher ratings of HI resulted in
a significantly smaller latent mean than parent ratings (0.71 vs.
1.10). The standardized mean difference was about 0.35, which
can be seen as a small effect. It could be that teachers again use
a different frame of reference for problems of HI, as they may be
used to seeing a much larger array of problem behaviors at school
than what most parents experience at home. Another explanation
could be that the possibly more structured school context relative
to less structure at home reduces the occurrence of HI symptoms
in school relative to home for children within the normal range
on HI.

For IN, the latent mean based on father reports was slightly
larger than the mother-report mean (1.03 vs. 0.97, which rep-
resented a standardized mean difference below 0.10 and hence
a very small effect). Our MI analyses for IN had indicated that
the teacher mean could not be directly compared to the parent
means, given the finding of intercept non-invariance for teacher
as compared to parent ratings.

CT-C(M – 1) model
Our analyses with the CT-C(M – 1) model allowed us to estimate
the consistency and method-specificity coefficients relative to a
reference method. For the present example, we chose to select
mother reports (k = 1) as reference method and contrast father
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reports (k = 2) and teacher reports (k = 3) against this refer-
ence. This also made it possible to examine correlations between
the father and teacher method factors, Corr(Mj2, Mj3). These
correlations reflect whether fathers and teachers shared a com-
mon perspective that theses rater types did not share with mother
reports.

Our results revealed high consistency and relatively low
method-specificity coefficients for father reports for both HI
and IN [range of consistency coefficients: 0.53 ≤ Con(Yi12) ≤
0.60 for HI; 0.48 ≤ Con(Yi22) ≤ 0.55 for IN; range of method-
specificity coefficients: 0.27 ≤ MSpe(Yi12) ≤ 0.31 for HI;
0.32 ≤ MSpe(Yi22) ≤ 0.36 for IN], indicating that there was
high convergent validity between mother and father reports.
This finding reflected the high correlations found between the
mother and father trait factors in the baseline CFA model that
we reported above. Consistency coefficients were lower (and
method-specificity coefficients higher) for teacher ratings [range
of consistency coefficients: 0.15 ≤ Con(Yi13) ≤ 0.16 for HI; 0.17 ≤
Con(Yi23) ≤ 0.19 for IN; range of method-specificity coefficients:
0.73 ≤ MSpe(Yi13) ≤ 0.77 for HI; 0.70 ≤ MSpe(Yi23) ≤ 0.76 for
IN], showing that mother and teacher ratings shared less vari-
ance with each other than did mother and father ratings. The
latent correlations between the father and teacher method fac-
tors were estimated to be ϕ = 0.15 for HI and ϕ = 0.19 for
IN (both p-values were < 0.001). These correlations can be
interpreted as partial correlations between father and teacher rat-
ings after partialling out the common variance that both rater
types shared with mother reports. In this case, the method fac-
tor correlations were rather small. This indicated that there was
not much of a shared perspective between fathers and teachers
above and beyond what fathers and teachers both shared with
mothers.

Latent difference model
In the present example, a latent difference approach could be used
for HI for all three rater types (mothers, fathers, and teachers),
given that strong MI had been established across all three rater
types for this construct. Given intercept non-invariance of teacher
ratings as compared to parent ratings for IN, a latent difference
approach would have been easily interpretable only for mother
vs. father ratings for IN (excluding teacher ratings). We therefore
only present the results for HI here as an example, for which we
could meaningfully include all three rater types.

The latent difference model for HI yielded a latent dif-
ference factor mean of E(T112 – T111) = −0.02 [Var(T112 –
T111) = 0.40] for father vs. mother ratings. This latent dif-
ference factor mean was not significantly different from zero
(p = 0.41), showing that mother and father ratings of HI did
not differ significantly in their latent means. The latent dif-
ference factor mean for teachers vs. mothers was estimated
to be E(T113 – T111) = −0.40 [Var(T113 – T111) = 1.26],
which was statistically significantly different from zero (p <

0.001). This again showed that mother and teacher ratings
resulted in significantly different estimates of the overall level
of HI in our data example. The correlations of father and
teacher latent difference factors with the mother reference fac-
tor were ϕ = −0.40 and ϕ = −0.56, respectively. The latent

difference factors for father and teacher ratings were correlated
ϕ = 0.33.

Latent means model
The latent means model defines a common trait as the average
across method-specific true score variables. Therefore, a latent
means approach is only interpretable if all methods show at least
strong MI. Otherwise, the “grand mean” of methods will be dif-
ficult to interpret. Therefore, we decided not to estimate the
latent means model for IN because of intercept non-invariance
for teacher ratings. The model was meaningful for HI, however,
because all three rater types were shown to have invariant load-
ings and intercepts for this construct. The latent means model
for HI yielded a common latent mean estimate of E(T1) = 0.97
[Var(T1) = 0.73]. The method factors in the latent means model
represent deviations from the common latent mean factor. Their
means indicate to which extent methods (on average) deviate
from the grand mean across methods. The means of the method
factors were estimated to be E(M12) = 0.12 [Var(M12) = 0.21] for
father reports and E(M13) = −0.26 [Var(M13) = 0.50] for teacher
reports. This reflected the fact that the latent mean of teacher rat-
ings was substantially lower than the latent means for mother and
father ratings of HI. The common trait was correlated ϕ = 0.06
with M12 and ϕ = −0.15 with M13. The correlation between M12

and M13 was estimated to be ϕ = −0.73.

CFA-MTMM model for interchangeable methods
We fit both the general and the indicator-specific trait ver-
sions of Eid et al.’s (2008) CFA-MTMM model for interchange-
able methods to our data example to test whether the rat-
ings would satisfy the restrictions implied by the interchange-
able model (i.e., invariant loadings and intercepts as shown in
Figures 4A,B). Note that from a measurement theoretical point
of view, mother, father, and teacher ratings would typically not be
seen as interchangeable methods, because they are not sampled
from the same “universe” of methods; here, we use these data
merely to illustrate MI analyses in the interchangeable MTMM
model and do not imply that the ratings should be treated as
interchangeable.

The fit statistics are presented in Table 4. Parameter estimates
for the final models are given in Table 5. We found that a model
with invariant loadings and intercepts for all three types of raters
(mother, father, and teacher) was not tenable for either HI or IN,
even if the less restrictive version of the model with indicator-
specific traits was used. One reason was that in this model, the
latent means are implicitly assumed to be equal across all inter-
changeable methods—this assumption was already rejected in
our initial analyses of the simple CFA model.

In contrast, an indicator-specific trait model for mother and
father reports only (dropping teacher reports from the analysis)
fit both the HI and IN data well, showing that mother and father
ratings satisfied the conditions of interchangeability implied by
the model in this application. This parallels our findings from the
previous analyses according to which mother and father ratings
were more similar to one another than they were compared to
teacher ratings. For both HI and IN, mothers and fathers shared
the same or very similar means as indicated by previous analyses.
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Table 4 | Goodness of fit statistics for different versions of the CFA-MTMM model for interchangeable methods fit to the HI and IN multirater

data set.

Model χ2 df p RMSEA CFI TLI SRMR χ2� df� p(χ2�) AIC

HYPERACTIVITY/IMPULSIVITY

All three raters; equal
loadings and intercepts

378.01 31 <0.001 0.13 0.948 0.939 0.16 9867

Mothers and fathers only;
equal loadings and intercepts

7.34 8 0.50 0.00 1.000 1.000 0.01 6102

Mothers and fathers only;
equal loadings, intercepts,
and residual variances

12.70 11 0.31 0.02 1.000 0.999 0.01 5.36 3 0.15 6102

Mothers and fathers only;
equal loadings, intercepts,
residual variances, and
method factor variances

16.81 12 0.16 0.03 0.999 0.999 0.03 4.11 1 0.04 6104

INATTENTION

All three raters; equal
loadings and intercepts

381.16 31 <0.001 0.13 0.949 0.941 0.09 9556

Mothers and fathers only;
equal loadings and intercepts

9.42 8 0.31 0.02 1.000 0.999 0.01 5648

Mothers and fathers only;
equal loadings, intercepts,
and residual variances

10.10 11 0.52 0.00 1.00 1.00 0.01 0.68 3 0.88 5643

Mothers and fathers only;
equal loadings, intercepts,
residual variances, and
method factor variances

11.15 12 0.52 0.00 1.000 1.000 0.02 1.05 1 0.31 5642

Note: In order to save space, we only present results for the model version with indicator-specific traits (Figure 4B), given that the model version with a single trait

(Figure 4A) did not fit well for any rater combination. RMSEA, root mean square error of approximation; CFI, comparative fit index; TLI, Tucker-Lewis index; SRMR,

standardized root mean square residual; AIC, Akaike’s information criterion. For both constructs, the initial model included all three rater types. Subsequent models

included only mother and father ratings (dropping teacher ratings from the analysis). Bold-face indicates best-fitting models.

(The baseline model for IN yielded a significant mean differ-
ence between mother and father reports; this was likely because
there was more statistical power to detect mean differences in
the combined model with all three raters. Nonetheless, the mean
difference between mothers and fathers was very small also in the
initial analysis).

We also tested more strict models of interchangeability for
mother and father ratings, in which we also constrained (a)
the error variances and (b) the method factor variances to be
equal across mother and father ratings. Chi-square difference
tests revealed that for HI, equal error variances were tenable, but
not equal method factor variances. In contrast, for IN, both the
assumption of equal error variances and the assumption of equal
method factor variances were acceptable according to the chi-
square difference test. In summary, mother and father ratings
of IN could be viewed as strictly interchangeable in the sense
of the model, whereas for HI the ratings could be viewed as
interchangeable except for the amount of method factor variance.

DISCUSSION
Researchers frequently use different raters as methods in MTMM
studies. Often, ratings are provided on comparable items or
scales. In these cases, one can examine whether (1) different raters
use the items or scales in equivalent ways (i.e., whether MI holds

across methods) and (2) whether there is convergent validity of
latent mean levels across methods. This opens up new possibilities
for studying method effects in more detail. Whereas traditional
approaches to MTMM analyses (such as Campbell and Fiske’s,
1959; MTMM matrix or conventional CFA-MTMM models) have
typically focused exclusively on (observed or latent) relation-
ships (correlations) between different TMUs, the MI approach
presented here first of all examines the relationships between indi-
cators and latent variables within each TMU. In this article, we
proposed to analyze MI using a baseline MTMM model without
method factors in the first step of the analysis. Using this model,
researchers can first of all test whether the proposed factor struc-
ture holds within corresponding TMUs and second, whether the
way indicators relate to latent factors within a TMU is compara-
ble across methods. This allows researchers to examine whether
supposedly equivalent concepts that are measured by the same
indicators (but different methods) have similar relationships with
their indicators for different methods. (This may be termed an
examination of the “convergent validity of measurement proper-
ties.”). If they do, this may increase a researcher’s confidence that
similar concepts are indeed measured by each method or at least
that the indicators “function” similarly across methods. If they
don’t, then a researcher may question whether the concepts can
be seen as equivalent across methods, warranting further study
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Table 5 | Parameter estimates in the CFA-MTMM models for interchangeable methods fit to mother and father ratings of HI and IN.

Parameter label Hyperactivity/impulsivity (j = 1) Inattention (j = 2)

Estimate SE Standardized estimate Estimate SE Standardized estimate

TRAIT FACTOR LOADINGS

λ1j 1.00a — 0.84; 0.89b 1.00a — 0.84

λ2j 1.00a — 0.88; 0.91b 1.00a — 0.87

λ3j 1.00a — 0.84; 0.88b 1.00a — 0.85

METHOD FACTOR LOADINGS

γ1j 1.00a — 0.37 1.00a — 0.47

γ2j 0.88 0.05 0.34 1.05 0.05 0.41

γ3j 0.99 0.05 0.07 0.98 0.05 0.43

ERROR VARIANCES

Var (ε1j ) 0.09 0.01 0.08; 0.08b,c 0.07 0.01 0.08c

Var (ε2j ) 0.09 0.01 0.07; 0.08b,c 0.09 0.01 0.08c

Var (ε3j ) 0.09 0.01 0.08; 0.09b,c 0.09 0.01 0.10c

LATENT MEANS

E(T1j ) 1.09 0.04 0.98 0.03

E(T2j ) 0.95 0.04 1.17 0.04

E(T3j ) 1.08 0.04 1.09 0.04

LATENT VARIANCES

Var (T1j ) 0.86 0.06 0.58 0.04

Var (T2j ) 0.92 0.06 0.88 0.06

Var (T3j ) 0.78 0.06 0.66 0.05

Var (Mj1) 0.26 0.04 0.18d 0.02

Var (Mj2) 0.14 0.03 0.18d 0.02

For hyperactivity/impulsivity, a model of strong invariance for all raters and equal means across mother and father ratings was chosen. For inattention, a model of

strict invariance for mother and father ratings was chosen. λijk , trait factor loading (i, indicator; j, trait; k, method/rater); γijk , indicator-specific factor loading; αijk ,

intercept; Var(εijk ), error variance. The methods used here are mother report (k = 1), father report (k = 2), and teacher report (k = 3).
a Parameter fixed for identification.
b Standardized loadings and standardized error variances for HI differed between raters for the same variable, because the method factor variances were allowed

to differ in the final model. The standardized loadings and error variances are therefore given separately for each rater type in the following order: (1) mothers, (2)

fathers.
c Standardized residual variances indicate 1 – R2 and can be interpreted as coefficients of unreliability [(1 – Rel(Yijk )] for each variable.
d Method factor variances were set equal across mother and father reports in this model.

Dashes indicate fixed parameters for which no standard errors are computed.

of what exactly is measured by each method and in which ways
concepts or item meanings might differ across methods.

Non-invariant intercepts or loadings across methods can indi-
cate that the scales have a different meaning for different methods.
For example, a certain behavior may be less relevant for the def-
inition of a construct for one type of rater than for another.
Consider, for instance, symptoms of ADHD. A specific ADHD-
IN symptom may be highly relevant for parents’ view of their
children, but not so critical for teachers’ view (maybe because it
does not occur in the school context), thus leading to different
factor loadings or intercepts for the same symptom. The find-
ing of measurement non-invariance can thus shed more light on
how different indicators (e.g., ADHD symptoms) “function” for
different types of raters.

It is interesting to note that our approach of beginning an
MTMM analysis with a thorough investigation of the measure-
ment properties within and across TMUs seems to be well in
line with Fiske and Campbell’s (1992) later view of the original

Campbell and Fiske (1959) MTMM approach. In their 1992
review, Fiske and Campbell proposed to “settle for the practice
of studying ‘TMUs’,” given that “method and trait or content are
highly interactive and interdependent” (p. 394). Examining MI
across TMUs is one component of such an analysis strategy that
places more emphasis on what is measured within each TMU
rather than just on correlations between TMUs.

While traditional MTMM analyses focus exclusively on cor-
relation or covariance structures (Campbell and Fiske, 1959), we
propose to routinely consider means in the analyses as well, which
is a novel aspect in MTMM research. By including means in
the analysis, MI across methods can be more fully tested and,
if strong MI can be established, latent means can be compared
across methods to examine the degree of convergent validity
of mean levels across methods. When using just the covariance
matrix (and no means), researchers can test for loading (weak
factor) invariance and invariant error variances, but not for inter-
cept (strong) MI. In our empirical example, we found that the
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intercepts were non-invariant across some methods for one of the
constructs, indicating differences in scale difficulty across meth-
ods. This information could not have been obtained without
including means in the analysis.

In addition, when only covariances or correlations are ana-
lyzed, latent means cannot be compared across methods. Strong
MI is a prerequisite for interpreting latent mean differences across
methods in a straightforward way. With non-invariant intercepts
and/or loadings, latent mean differences across methods may be
difficult to interpret, because the measurements would not be in
the same metric in this case. In cases of non-invariance, mean
differences would represent a mixture between rater biases and
measurement bias (differences in scale use). This was the case
for parent vs. teacher ratings of IN in our empirical example. Of
course, the question of interpretability depends on the particu-
lar substantive application and is also a matter of degree rather
than “all or nothing.” For example, if violations of MI are small,
approximate MI (van de Schoot et al., 2013) may still hold, war-
ranting a proper interpretation of latent mean differences across
methods.

If strong MI can be established across methods (such as in our
empirical application to the HI construct), then a researcher can
meaningfully test whether methods converge in the assessment
of the latent mean level of a construct in a given population. In
our HI example, this was the case for mothers vs. fathers, but
not for parents vs. teachers. This showed that there was a lack
of convergent validity of mean levels across methods (or a true
difference between the home and school contexts), even though
the convergent validity in terms of the correlations between par-
ents and teachers was quite strong. This issue is especially critical
when researchers want to draw conclusions about, for example,
the overall level of a problem such as HI. In this case, they would
come to different conclusions based on parent vs. teacher ratings
in the present example. It is therefore important to examine the
convergent validity of mean levels across raters in such cases.

Of course, testing for MI and comparing latent means only
makes sense when methods used comparable measurement
instruments (items and response scales) to begin with. When very
different methods are used (e.g., ratings vs. physiological mea-
sures of stress), tests of MI are typically not meaningful, especially
when scoring procedures differ between methods (e.g., 4-point
Likert scale vs. cortisol concentration in nmol/L). When different
methods used similar response scales as in the examples presented
in this paper, but strong MI cannot be established, observed mean
differences for corresponding indicators across methods still pro-
vide valuable information, as they indicate method effects at the
measurement level (i.e., differences in scale use; see discussion
above).

DIFFERENT MODELS
In this article, we demonstrated that including mean structures
and testing for MI is not only an issue of potential substan-
tive interest in MTMM analyses. With respect to more complex
CFA-MTMM models with method factors, we showed that MI is
relevant to these models especially for two reasons: (1) the def-
inition of trait and method factors may require strong MI for a
meaningful interpretation of structural parameters such as latent

trait and method factor means and variances as well as individ-
ual scores on these latent variables or (2) at least strong MI is
implied by a CFA model for interchangeable methods. Therefore,
MI is not just something that researchers may or may not be inter-
ested in when analyzing MTMM data; instead, depending on the
model, MI can be a prerequisite for the proper interpretation of
one’s MTMM model or for conclusions about whether methods
can be seen as interchangeable or not.

We showed that among the more complex models for struc-
turally different methods discussed here, the CT-C(M – 1) model
makes the least restrictive assumptions in terms of MI. That is, for
calculating coefficients of convergent validity (consistency) and
method specificity in this model or for the interpretation of trait
and method factors in general, MI beyond configural invariance
is not required. The only case in which MI can become relevant
in the CT-C(M – 1) model is when researchers want to interpret
unstandardized structural regression coefficients or latent mean
differences derived from these coefficients.

In contrast, the latent difference and latent means models
require MI across methods by definition. When different meth-
ods used comparable items that were measured on the same
scale (or rescaled to the same metric) and provided that strong
MI across methods can be established, then the latent difference
and latent means models provide a meaningful and straightfor-
ward estimation of mean method effects, because means can be
directly estimated for the method factors in these models. In con-
trast, in the CT-C(M – 1) model, mean method effects are not
directly estimated in terms of method factor means, because the
method factors in this model have means of zero by definition.
Nonetheless, mean method effects can also be analyzed in the CT-
C(M – 1) model as shown in detail in Geiser et al. (2012). An
advantage of the CT-C(M – 1) model is that it can be used even
when different methods used completely different metrics (e.g.,
self-reports on a 4-point Likert scale vs. cortisol concentrations as
measures of stress) or when MI does not hold.

The latent difference model is less restrictive with regard to MI
than the latent means model, as the latent difference model can
still be used in cases of partial MI (when at least one non-reference
method shows strong MI relative to the reference method). In
contrast, a proper interpretation of the common trait in the
latent means model requires that strong MI between all methods
be established. Despite these differences between the CT-C(M –
1), latent difference, and latent means models, all three models
provide meaningful definitions of trait and method factors. The
choice of a particular model depends in part on a researcher’s
specific goals in a given application.

Another area of MTMM research for which MI plays a role is
when researchers study interchangeable methods. We considered
Eid et al.’s (2008) CFA-MTMM model for interchangeable meth-
ods separately, because it is designed for a different data structure
(interchangeable methods) than the CT-C(M – 1), latent differ-
ence, and latent means models (which are designed for struc-
turally different methods). If, for example, a researcher wants to
test whether methods that, based on theory, are conceived of as
interchangeable truly are interchangeable in a statistical sense, he
or she should use an appropriate CFA-MTMM model for inter-
changeable methods and test for MI. If this assumption is rejected,
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the methods in question may be better viewed as structurally dif-
ferent. In this case, one of the models for structurally different
methods [CT-C(M – 1), latent difference, or latent means] may
be more appropriate.

CONCLUSION
Most MTMM studies so far have focused on assessing conver-
gent validity in terms of correlations between methods or raters
selected to measure the same constructs. We argued that use-
ful incremental information about method effects can be gained
from including mean structures in MTMM models and testing
for MI across methods. Furthermore, we showed that MI is rele-
vant in more complex CFA-MTMM models with method factors,
either because the definitions of trait and method factors imply
MI for a meaningful interpretation of structural parameters or
because the type of method (interchangeable vs. structurally dif-
ferent) may or may not imply MI across methods. We hope that
researchers will find our article useful as a guide for future, more
fine-grained studies of method effects.
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We report a Monte Carlo study examining the effects of two strategies for handling
measurement non-invariance – modeling and ignoring non-invariant items – on structural
regression coefficients between latent variables measured with item response theory
models for categorical indicators. These strategies were examined across four levels
and three types of non-invariance – non-invariant loadings, non-invariant thresholds, and
combined non-invariance on loadings and thresholds – in simple, partial, mediated and
moderated regression models where the non-invariant latent variable occupied predictor,
mediator, and criterion positions in the structural regression models. When non-invariance
is ignored in the latent predictor, the focal group regression parameters are biased in the
opposite direction to the difference in loadings and thresholds relative to the referent group
(i.e., lower loadings and thresholds for the focal group lead to overestimated regression
parameters). With criterion non-invariance, the focal group regression parameters are
biased in the same direction as the difference in loadings and thresholds relative to the
referent group. While unacceptable levels of parameter bias were confined to the focal
group, bias occurred at considerably lower levels of ignored non-invariance than was
previously recognized in referent and focal groups.

Keywords: measurement equivalence/invariance, categorical indicators, structural equation modeling

INTRODUCTION
Methodologists in the social sciences differentiate between two pri-
mary forms of psychometric equivalence, or ways of showing that
a psychometric instrument functions similarly in a probabilistic
sense across multiple populations. Measurement invariance exists
when two individuals sampled from different sub-populations but
with the same standing on the latent continuum have the same
expected test score (Drasgow, 1982, 1984; Mellenbergh, 1989;
Meredith, 1993; Vandenberg and Lance, 2000; Kankaraš et al.,
2011; Davidov et al., 2014). Today measurement invariance is con-
sidered a fundamental issue in psychological testing (Lubke et al.,
2003) that has social as well as statistical consequences (Beucke-
laer et al., 2007; Borsboom et al., 2008). In studies of measurement
invariance, the groups under study are designated as either the ref-
erent or focal group (Holland and Thayer, 1988). Next, the equiva-
lence of measurement model parameters, usually the item loadings
and intercepts or thresholds, is examined using approaches based
on either item response theory (IRT) or multiple group confir-
matory factor analysis (CFA). In the CFA approach, which is the
focus of the present article, a series of competing models is fitted
to response data, where the group membership acts as a potential
categorical moderator (e.g., French and Finch, 2011). Equivalent
measurement model parameters across groups are required for
comparable measurement, a consideration identical to the use of
equal measurement scales (say, degrees centigrade) when compar-
ing temperatures in two different regions. For a recent description
of the process of examining measurement invariance see French
and Finch (2011) or van de Schoot et al. (2012).

Relational invariance, the second form of equivalence, exam-
ines whether the same structural relationships hold between
variables across two or more subpopulations (Mellenbergh, 1989;
Meredith, 1993). When variables under study are latent, the slopes
of structural regression paths in multiple group analyses are exam-
ined for invariance1. Drasgow (1984) has argued that there is a
logical sequence to testing measurement equivalence: measure-
ment invariance should first be tested, followed by relational
invariance. If non-invariance is observed in the measurement
model, the researcher might want to delete “offending” items. This
might not be appropriate if the questionnaire is a well-established
instrument. Remaining options include freely estimating the
parameters for the non-invariant items to achieve partial invari-
ance (Byrne et al., 1989), or to ignore the non-invariance. The
challenge faced by the researcher who allows partial invariance
is how much non-invariance can be tolerated whilst still claim-
ing that the same construct is measured across groups or between
current and past research. The challenge faced by the researcher
ignoring the non- invariance is whether the results of the misspec-
ified model can be trusted. In practice, applied researchers should
make a decision based on the expected threats to the validity of
their conclusions under each course of action.

Sometimes, the primary focus of the researcher is to exam-
ine structural relations across groups of interest. Wasti et al.

1There is a well-developed literature on relational equivalence where regressions are
conditioned on the observed variable composite. See, for example Drasgow (1982,
1984) and the duality theorems of Millsap (1995, 1998).
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(2000) for example, examined whether the antecedents and con-
sequences of sexual harassment were the same between the United
States and Turkey. If it was certain that ignoring measurement
non-invariance across populations would lead to negligible dif-
ferences in relationships between latent variables, it could be
tempting to do so. On the other hand, it would be necessary
to model the non-invariance if ignoring it would result in a
substantial regression parameter bias. There have been at least
three calls for Monte Carlo studies of such issues in the liter-
ature (Chen, 2008; Schmitt and Kuljanin, 2008; Schmitt et al.,
2011). The present article addresses this call for a Monte Carlo
study of measures employing categorical indicators. Our approach
broadly follows the recommendations of Paxton et al. (2001) and
Boomsma (2013).

PAST RESEARCH ON THE EFFECT OF MEASUREMENT INVARIANCE ON
RELATIONAL INVARIANCE
Chen (2008) reported a Monte Carlo investigation of the impact
of ignoring measurement non-invariance in the slopes of lin-
ear factor models on the relative bias in regression parameters
of structural models. She found that when referent group load-
ings were higher on the exogenous latent variable, the referent
group regression parameter was overestimated, i.e., the rel-
ative bias was positive, and the regression parameter in the
focal group was underestimated, i.e., the relative bias was
negative. The pattern was reversed when the non-invariant
construct was the latent criterion variable. The relative bias
in the regression parameters was always greater in the focal
group. However, extreme levels of non-invariance had to be
ignored before adverse effects on regression coefficient accuracy
emerged.

Oberski (2014) used Monte Carlo studies to examine the
expected change in the parameter of interest statistic (EPC-
Interest: Satorra, 1989; Bentler and Chou, 1992) as a method
for examining the sensitivity of parameters under study to mis-
specification of invariance constraints. This method has the
advantage of avoiding the unnecessary rejection of the measure-
ment invariance model, and alerting the researcher to doubtful
substantive conclusions about parameters when measurement
invariance appears to hold. Unlike the more familiar expected
parameter change (EPC: Saris et al., 1987), EPC-Interest exam-
ines the change in parameters of interest other than the parameter
being fixed or freed. Obserski examined changes in regression
parameters of a random effects model due to ignoring versus
modeling non-invariant loadings. The effects on the regression
coefficient in the empirical example used in that article were
generally small.

THEORETICALLY DERIVED RESEARCH QUESTION
We extend the work of Chen (2008) and Oberski (2014)
in several new directions. While Oberski (2014) evaluated a
method for examining the impact of the non-invariance prob-
lem in specific models, this study examines the extent of these
effects in general structural relationships under typical condi-
tions. Whereas Chen examined the impact of measurement
non-invariance on simple regression parameters, structural mod-
els in practice are usually more complex. We examined the

effect of ignoring non-invariance on partial regression coef-
ficients, i.e., regression with covariates, mediated regression
coefficients, and moderated regression coefficients. In each case,
we examined the effect of ignoring the invariance when the
latent variable with non-invariant parameters was the predic-
tor, when it was the criterion, and when the latent variable
with non-invariance occupied the mediator position in the
model.

The current investigation extends the work of Chen (2008) and
Oberski (2014) in a further important way. We generalize these
authors’ earlier results to models incorporating categorical factor
indicators, thus focusing on loadings and thresholds in categorical
item factor analyses (CIFA: Forero and Maydeu-Olivares, 2009)
rather than linear factor analyses. This meets the call of Chen
who stated “one direction in future research is to systematically
examine bias under various levels of invariance for categorical
variables” (p. 1017).

HYPOTHESES
The primary objective of this study is to examine the impact of
misspecified measurement parameters on structural relations in
commonly used regression models. The impact is expected to
depend on the role that the latent factor with non-invariant mea-
surement part plays in the model – whether it is an independent
or a dependent variable in structural relationships. The secondary
objective is to examine whether the patterns of results for either
role are similar across simple regression, regression with covariates,
moderated regression, and mediation models. Based on previous
research (e.g., Chen, 2008; Oberski, 2014), we hypothesize the
following basic effects pertaining to misspecified factors.

Loading parameters
When factor loadings in the focal group are lower than in
the referent group, and this is ignored, the variance of the
latent factor in the focal group will be underestimated. The
net effect will be an overestimation of the regression coeffi-
cient in the focal group when the mis-specified factor is the
latent X-variable (independent, or predictor variable) in the
structural model. Conversely, the net effect is an underestima-
tion of the regression coefficient in the focal group when the
misspecified factor is the latent Y -variable (dependent, or cri-
terion variable). The effects will be reversed for the referent
group.

Threshold parameters
When item thresholds in the focal group are lower (i.e., an
acquiescent response style exists in the focal group: Cheung and
Rensvold, 2000), and this is ignored, the latent factor mean
in the focal group will be overestimated. While the effect on
the mean is the strongest expected effect of the distorted fac-
tor metric, a distortion to the latent factor variance in the focal
group is also expected, with the variance underestimated in the
focal group. The net effect will be an overestimation of the
regression coefficient in the focal group when the misspecified
factor is the latent X-variable (independent, or predictor vari-
able) in the structural model. Conversely, the net effect will
be an underestimation of the regression coefficient in the focal
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group when the misspecified factor is the Y -variable (dependent,
or criterion variable). The effects are reversed for the referent
group.

Loading and threshold non-invariance
When item thresholds are lower in the focal group (i.e., acquies-
cence is present) and factor loadings are also lower in the focal
group the bias is expected be accentuated.

EXPERIMENTAL CONDITIONS
Modeling approach
Two approaches were compared; namely, (1) modeling measure-
ment non-invariance, whereby non-invariant item parameters
across groups were freely estimated, and (2) ignoring measure-
ment non-invariance, whereby non-invariant item parameters
were constrained equal across groups. Variances / residual vari-
ances of the latent factors were set to 1 in the referent group,
and freely estimated in the focal group. Structural regression
parameters were freely estimated in both groups.

Type of measurement non-invariance studied
Three types of item non-invariance were considered in the study.
First, we examined the effect of factor loading (a.k.a. metric) non-
invariance. Second, we examined the effect of threshold (a.k.a.
scalar or strict) non-invariance in the form of an acquiescent
response style. Finally, we considered the simultaneous effect of
both the loadings and thresholds non-invariance.

Types of structural model
The first model considered is a simple regression model illustrated
in Figure 1. Two regression coefficients, γ11,1 and γ11,2, quantify
the paths linking the latent predictor variable to the latent criterion
variable in the referent and the focal group, respectively.

Second, we considered a multiple regression model illustrated
in Figure 2. In each group, the first regression coefficient represents
the relationship between the predictor (target of our analysis) and
the criterion, referred to as γ11,1 and γ11,2 in the referent and the
focal group, respectively, while the second coefficient represents
the relationship between the covariate and the criterion, referred
to as γ12,1 and γ12,2. The population covariance of the predictors
was fixed at zero, as it was not expected to impact results.

The third model examined was the mediated regression model
illustrated in Figure 3. Four regression coefficients capture the
structural relationships between variables. One coefficient per
group, γ11,1 and γ11,2, link the predictor variables to the medi-
ators in the referent and the focal group, respectively, and one
coefficient per group, β21,1 and β21,2, link the mediators to the
criterion variables.

Finally, we examined a moderated regression model illustrated
in Figure 4. Two regression coefficients, γ11,1 and γ11,2, quantifying
the path linking the predictor and criterion latent variables in the
referent and the focal group, respectively, summarize the variable
relations here.

Test length and rating scale
We opted for a six-item measurement model for the target
construct in our study. This is consistent with the test length
reported by Meade and Lautenschlager (2004a,b) and Kim and

Yoon (2011). We chose the polytomous items with three rating
categories. This format is common in questionnaire research; for
example, three response options (not true – somewhat true –
certainly true) are used in the Strengths and Difficulties Ques-
tionnaire (Goodman, 1997), among many others. We used four
indicators to model the auxiliary latent constructs in structural
models, and this decision was not expected to impact the results
of the analysis. Four item scales are often used in SEM research
because four items is the minimum number of indicators required
for a factor to be independently over-identified (Bollen, 1989). For
these constructs, we opted for five-point Likert scales. Five point
scales are often used due to the increased reliability that more scale
points per item affords and is typical in personality questionnaire
research (Furnham et al., 2013).

Proportion of non-equivalent items
We simulated four levels of invariance: zero non-invariant items
(0%), one non-invariant item (16.67%), two non-invariant items
(33.33%), and three non-invariant items (50%) out of six for mea-
suring our target construct. With any greater non-invariance than
this, researchers would likely be uncomfortable using the scale
across subpopulations.

Sample size
We fixed sample size in all conditions at 1,000 respondents per
group. The effect of sample size is out of scope for the present
research, which focuses on model parameters and assumes that
there is enough power in the study to estimate them. Limited
information estimators that are required for speed in the context
of models with categorical indicators are generally acknowledged
to require larger sample sizes than linear factor models (Flora
and Curran, 2004). Moreover, sample sizes of this magnitude
are becoming more and more common in survey research due
to advancing data collection technology.

Number of replications
A review of previous Monte Carlo research into measurement
equivalence revealed that the number of replications ranged
between a low of 50 replications per cell by Stark et al. (2006) and
high of 500 replications per cell by Kim and Yoon (2011). We exe-
cuted 1000 replications per cell, the highest number of replications
of any of the studies reviewed.

Summary of experimental design
The Monte Carlo design involved 2 (modeling approaches)∗3
(types of non-invariance)∗4 (levels of non-invariance) ∗9 (types
of structural models = 3 models where the latent variable assumed
two structural positions, plus one model where the target latent
variable assumed three structural positions) equals 216 conditions.

CREATING REPRESENTATIVE MODELS
Structural coefficient population values
We based the structural components of our models on an empir-
ical study drawn from the applied literature. We searched for an
example that contained the four different types of effects typi-
cally studied in psychological research, namely, simple regression
coefficients, partial regression coefficients, mediated regression
coefficients, and moderated regression coefficients. Wasti et al.
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FIGURE 1 | Simple regression.

FIGURE 2 | Partial regression.
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FIGURE 3 | Mediated regression.

FIGURE 4 | Moderated regression.
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(2000) presented a study with all four types of coefficient. These
authors examined the structural equivalence of the relationship
between the antecedents and consequences of sexual harassment
between the United States and Turkey.

Sexual harassment was defined as an organizational cause
of stress with performance related consequences. It was
comprised of gender harassment (e.g., offensive, misogynist
remarks), unwanted sexual attention, and sexual coercion.
The relevant subsection of the model from Wasti et al. (2000)
is shown in Figure 5. The model suggests that the two
most important determinants of sexual harassment are job-
gender context and organizational context. Job-gender context
refers to how gender stereotyped the work is, while orga-
nizational context describes the features of the organization
that communicate acceptance of sexual harassment. Sexual
harassment, in turn, is negatively associated with job satisfac-
tion.

We set the population structural regression values for all
conditions based on paths from Wasti et al. (2000). The pop-
ulation simple regression effect was set at 0.22, the mag-
nitude of the path between job-gender context and sexual
harassment. The population partial regression coefficients were
set at 0.22 and 0.37, which are the values of the paths
between job-gender context and sexual harassment and organiza-
tional climate, respectively. The population mediation structural
regression paths were set at 0.22 and −0.22, which corre-
spond to the path from job-gender context to sexual harass-
ment and from sexual harassment and job satisfaction. Wasti
et al. (2000) also included the separate estimates of the rela-
tions between job-gender context and sexual harassment, at
0.47 for the United States sample and 0.18 for the Turk-
ish sample. These values were used for moderated popu-
lation structural regression values. The population variances
for latent predictor variables were simulated equal to one,
while population residual variances of latent criterion variables
were simulated equal one minus the square of the structural
coefficient.

Population factor loadings and simulated non-invariance
All simulated item loadings are presented in Appendix A. Tar-
get construct loadings were selected as representative of many

FIGURE 5 | Nomology of sexual harassment based on Wasti et al.

(2000).

questionnaire items using rating scales. These parameters are
in the metric used with normal ogive IRT models, where the
latent trait is scaled as having the mean of 0 and the vari-
ance of 1(i.e., the “theta” parameterization in Mplus; Muthén,
2013). Non-invariance was introduced by reducing focal group
loadings on the second, fourth and sixth items by 50%. Our
rationale for the 50% effect was that to be detectable in the
structural relationship the impact of non-invariance needed
to be at least moderate to strong, because existing empiri-
cal research suggests the effect of ignoring non-invariance on
beta is small (Chen, 2008; Schmitt et al., 2011). For invari-
ant indicators on auxiliary constructs, we followed Meade and
Lautenschlager (2004a) by simulating loadings from a normal
distribution with mean of 0.6 and a variance of 0.1. Error vari-
ances were set at one minus the square of the factor loadings.
We then transformed these parameters to the IRT metric for the
theta parameterization, by using formulas described by Wirth
and Edwards (2007). While several authors have made a distinc-
tion between mixed and invariant patterns of loading differences
across groups, Chen’s (2008) literature review found just 7% of
studies revealed mixed patterns of non-invariance. We focused
on the so-called uniform pattern of invariance, the dominant
outcome whereby all non-invariant items are lower in the focal
group.

Population thresholds and simulated non-invariance
All simulated item thresholds are presented in Appendix A.
Item thresholds of the target construct were representative of
many questionnaire items using rating scales. We simulated non-
equivalence on the second, fourth and sixth indicators on the
focal construct by subtracting 0.8, 1.00, and 1.2 from the bottom
threshold of the referent group. This did not disturb the rela-
tive ordering of the thresholds. For the auxiliary constructs, we
followed Meade and Lautenschlager (2004b) to create thresholds
by first drawing the lowest threshold from a normal distribu-
tion with mean of −1.7 and a standard deviation of 0.45. The
remaining three thresholds were then created by adding constants
to the lowest threshold for each item to give four thresholds per
item. The constants were 1.2, 2.4, and 3.6. Threshold and load-
ings were transformed to the IRT metric using formulas from
Wirth and Edwards (2007).

MATERIALS AND METHOD
ANALYSES
Model identification
To identify the metric of the latent factors, the loading of the first
item of each factor was fixed at its population value in both groups.
This allowed the latent variable variances and residual variances to
be freely estimated in both groups. The means / intercepts of the
latent factors were set to zero in the referent group and estimated
freely in the focal group.

Specification of invariant and non-invariant conditions
Under the theta parameterization in Mplus the model where
measurement invariance is imposed sees thresholds and loadings
constrained equal across groups, error variances fixed at one in
the referent group and free in the focal group, and factor means
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fixed at zero in the referent group and freely estimated in the focal
group. This setup was adopted in conditions where measurement
non-invariance was ignored. The alternative models had the load-
ings and / or thresholds for the items known to be non-invariant
freely estimated across groups.

Estimation
All models were fitted to polychoric correlations of the sim-
ulated item responses in MPlus 7.11 (Muthén and Muthén,
1998–2010) using the diagonally weighted least squares (DWLS)
estimator with robust standard errors (denoted WLSMV in
MPlus). Several simulation studies have shown that this esti-
mator compares favorably to full information maximum like-
lihood (FIML) in comparable contexts to the current study
(Muthén et al., Unpublished; Flora and Curran, 2004; Beaudu-
cel and Herzberg, 2006; Forero and Maydeu-Olivares, 2009).
The simulations were executed by calling MPlus from the
statistical computing environment R 3.0 using the pack-
age MPlusAutomation (Hallquist, 2011). All MPlus and R
scripts are available at the following link: http://figshare.com/
articles/Apples_Oranges_Monte_Carlo_Study/1060341.

Model performance
We examined five indicators of model performance. These
included (1) the proportion of non-converged and inadmissi-
ble solutions; (2) how well the empirical chi-square distribution
approximated the theoretical chi-square distribution; (3) the
impact of the experimental conditions on power to reject the null
hypothesis that the regression parameters were not significantly
different from zero; (4) the relative bias, defined as the observed
regression parameter minus the true parameter divided by the
true parameter (Schunn and Wallach, 2005), and finally; (5) the
coverage rate for all regression coefficients. Following Forero and
Maydeu-Olivares (2009), we interpreted relative bias of less than
10% as acceptable, between 10 and 20% as substantial, and greater
than 20% as unacceptable, and we considered coverage accept-
able where the true parameter was captured by between 92.5 and
97.5% of 95% confidence intervals. We describe our results in
the text; where boundary points are visible, we present results
graphically.

RESULTS
MODEL ADMISSIBILITY AND GLOBAL FIT
Broad patterns observed following execution of the simulations
greatly simplify presentation of results. First, all models con-
verged to admissible solutions, indicating that the simulations
ran well. We do not discuss model convergence further. The
large sample size meant that power to detect whether regres-
sion parameters were significantly different from zero remained
above 90% for all conditions of the study. We do not dis-
cuss power further. A clear difference emerged between the
global fit results for models where increasing levels of non-
invariance was modeled and where it was ignored. In all conditions
where the non-invariance was modeled, the χ2 test consis-
tently approximated the theoretical chi-square distribution well
at the first, second, fifth, and tenth percentiles. When the
increasing level of non-invariance was ignored, χ2 correctly

rejected all models. We do not discuss χ2 goodness of fit
further.

We turn now to discuss relative bias and coverage of regres-
sion coefficients for all conditions. These results summarized in
Tables 1 and 2. They are also graphically summarized and are
available at http://dx.doi.org/10.6084/m9.figshare.1060341. How-
ever, we include a few typical graphical illustrations in the results
sections that follow.

MODELED NON-INVARIANCE ON THRESHOLD, LOADING, AND
COMBINED CONDITIONS
In the conditions where the measurement non-invariance was
modeled, the regression parameters had acceptable coverage and
relative bias. Based on this pattern, we further simplify reporting
of results, describing coverage and relative bias only for models
where the measurement non-invariance was ignored.

IGNORED NON-INVARIANCE OF THRESHOLDS
Under the threshold only non-invariance condition when
non-invariance was ignored, relative bias always fell into
the range defined as acceptable, i.e., less than 10% (one
cell of the design showed 11%). When the non-invariance
existed in the latent predictor, positive relative bias was
observed in the focal group indicating over-estimation of the
regression coefficient. When the latent variable with non-
invariance occupied the mediator position, the path linking
the predictor to the mediator in the focal group was over-
estimated and the path linking the mediator to the ulti-
mate criterion was underestimated. The opposite patterns
of bias to those just described were observed in the ref-
erent group. The result for this condition is illustrated in
Figure 6.

The effects of ignoring threshold only non-invariance on
coverage, for the most part, parallel the results for relative
bias. That is, there were minimal negative effects on param-
eter recovery for the regression coefficient. The coverage was
acceptable in all but a small handful of conditions, i.e., with
between 92.5 and 97.5% of 95% confidence intervals contain-
ing the true parameter. There was no discernible pattern in
relation to whether the non-invariant construct occupied the
position of the predictor or the criterion, or to whether the
departure from acceptable coverage was on the target construct
that exhibited bias or, in the case of the partial and medi-
ated models, involved measurement invariant constructs. We
thus conclude that structural coefficient coverage should not be
a primary concern for researchers ignoring non-invariant item
thresholds.

IGNORED NON-INVARIANCE OF LOADINGS
Simple regression with predictor non-invariance
Ignoring loading only non-invariant items led to acceptable neg-
ative relative bias for γ11,1 (referent group) when one or two
non-invariant loading were ignored, and substantial negative rela-
tive bias when three non-invariant loadings were ignored. Ignoring
a single non-invariant item led to positive but acceptable relative
bias for the regression parameter γ11,2 (focal group). Bias for the
focal group became positive and substantial for two non-invariant
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Table 1 | Relative bias for ignored non-invariance conditions.

Thresholds Slopes Thresholds and Slopes

Items γ11,1 γ11,2 γ11,1 γ11,2 γ11,1 γ11,2

Simple,predictor

0 0.00 –0.01 0.00 0.01 0.00 0.01

1 –0.03 0.04 –0.05 0.06 –0.07 0.13

2 –0.04 0.09 –0.09 0.16 –0.12 0.35

3 –0.03 0.11 –0.11 0.23 –0.11 0.44

Simple,criterion

0 0.00 0.01 0.01 0.01 0.01 0.00

1 0.03 –0.03 0.06 –0.06 0.09 –0.11

2 0.06 –0.06 0.13 –0.13 0.15 –0.25

3 0.06 –0.07 0.14 –0.18 0.13 –0.30

Items γ11,1 γ12,1 γ11,2 γ12,2 γ11,1 γ12,1 γ11,2 γ12,2 γ11,1 γ12,1 γ11,2 γ12,2

Partial,predictor

0 0.01 0.01 0.01 0.01 0.01 0.00 0.02 0.01 0.01 0.01 0.00 0.01

1 –0.03 0.00 0.05 0.01 –0.05 0.01 0.07 0.01 –0.08 0.00 0.13 0.01

2 –0.05 0.00 0.09 0.01 –0.09 0.01 0.17 0.01 –0.12 0.01 0.34 0.01

3 –0.04 0.01 0.10 0.00 –0.11 0.00 0.23 0.00 –0.13 0.00 0.44 0.01

Partial,criterion

0 0.01 0.01 0.00 0.02 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01

1 0.04 0.05 –0.03 –0.03 0.07 0.06 –0.05 –0.05 0.09 0.10 –0.10 –0.10

2 0.06 0.07 –0.05 –0.07 0.12 0.12 –0.12 –0.14 0.16 0.15 –0.24 –0.25

3 0.05 0.04 –0.06 –0.06 0.14 0.13 –0.19 –0.19 0.14 0.15 –0.29 –0.29

Items γ11,1 β21,1 γ11,2 β21,2 γ11,1 β21,1 γ11,2 β21,2 γ11,1 β21,1 γ11,2 β21,2

Mediation,predictor

0 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.02 0.02 0.02 0.01

1 –0.03 0.01 0.04 0.00 –0.05 0.01 0.07 0.01 –0.08 0.00 0.12 0.02

2 –0.04 0.01 0.09 0.01 –0.09 –0.09 0.18 0.01 –0.13 0.02 0.32 0.00

3 –0.03 0.01 0.09 0.00 –0.11 0.01 0.22 0.01 –0.11 0.03 0.43 0.01

Mediation,mediator

0 0.00 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.02 0.00 0.01

1 0.04 –0.02 –0.03 0.04 0.05 –0.04 –0.06 0.05 0.10 –0.09 –0.09 0.12

2 0.05 –0.04 –0.07 0.09 0.10 –0.10 –0.13 0.17 0.16 –0.12 –0.26 0.33

3 0.06 –0.04 –0.07 0.10 0.14 –0.12 –0.19 0.23 0.13 –0.12 –0.31 0.45

Mediation,criterion

0 0.01 0.02 0.00 0.01 0.01 0.02 0.00 0.01 0.02 0.01 0.00 0.01

1 0.01 0.05 –0.01 –0.02 0.01 0.07 0.01 –0.06 0.01 0.09 0.02 –0.10

2 0.01 0.07 0.00 –0.07 0.01 0.10 0.01 –0.14 0.00 0.15 0.00 –0.25

3 0.01 0.06 –0.01 –0.06 0.01 0.14 0.01 –0.18 0.02 0.14 0.01 –0.31

(Continued)
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Table 1 | Continued

Thresholds Slopes Thresholds and Slopes

Items γ11,1 γ11,2 γ11,1 γ11,2 γ11,1 γ11,2

Moderation,predictor

0 0.01 0.01 0.01 0.00 0.02 0.00

1 –0.03 0.04 –0.04 0.06 –0.07 0.11

2 –0.04 0.08 –0.10 0.15 –0.14 0.30

3 –0.04 0.09 –0.13 0.20 –0.14 0.39

Moderation,criterion

0 0.00 0.02 0.01 0.00 0.02 0.01

1 0.04 –0.03 0.07 –0.05 0.11 –0.10

2 0.08 –0.06 0.12 –0.13 0.17 –0.23

3 0.05 –0.07 0.16 –0.17 0.19 –0.27

Regression parameter labels correspond to Figures 1–4; group 1 is the referent group, group 2 is the focal group.

Table 2 | Coverage rates for ignored non-invariance.

Thresholds Slopes Thresholds and Slopes

Items γ11,1 γ11,2 γ11,1 γ11,2 γ11,1 γ11,2

Simple,predictor

0 0.95 0.96 0.95 0.95 0.95 0.95

1 0.94 0.95 0.93 0.94 0.92 0.93

2 0.93 0.96 0.90 0.94 0.86 0.82

3 0.92 0.94 0.89 0.90 0.88 0.75

Simple,criterion

0 0.95 0.93 0.95 0.96 0.96 0.96

1 0.95 0.93 0.94 0.92 0.94 0.89

2 0.95 0.92 0.94 0.83 0.92 0.62

3 0.95 0.92 0.94 0.77 0.95 0.50

Items γ11,1 γ12,1 γ11,2 γ12,2 γ11,1 γ12,1 γ11,2 γ12,2 γ11,1 γ12,1 γ11,2 γ12,2

Partial,predictor

0 0.95 0.93 0.95 0.95 0.93 0.93 0.96 0.95 0.95 0.95 0.94 0.95

1 0.94 0.95 0.94 0.94 0.93 0.94 0.95 0.95 0.89 0.95 0.93 0.95

2 0.93 0.95 0.95 0.95 0.88 0.95 0.91 0.94 0.86 0.95 0.82 0.95

3 0.94 0.95 0.95 0.95 0.87 0.95 0.89 0.93 0.86 0.95 0.75 0.94

Partial,criterion

0 0.95 0.95 0.94 0.95 0.95 0.93 0.94 0.95 0.95 0.94 0.95 0.95

1 0.94 0.95 0.94 0.93 0.95 0.93 0.94 0.95 0.95 0.94 0.89 0.84

2 0.96 0.95 0.92 0.88 0.95 0.93 0.94 0.95 0.91 0.91 0.65 0.42

3 0.94 0.94 0.93 0.89 0.95 0.93 0.94 0.95 0.93 0.92 0.50 0.28

(Continued)
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Table 2 | Continued

Thresholds Slopes Thresholds and Slopes

Items γ11,1 β21,1 γ11,2 β21,2 γ11,1 β21,1 γ11,2 β21,2 γ11,1 β21,1 γ11,2 β21,2

Mediation,predictor

0 0.95 0.96 0.95 0.95 0.95 0.94 0.95 0.94 0.95 0.95 0.95 0.96

1 0.94 0.95 0.96 0.94 0.93 0.95 0.95 0.95 0.91 0.95 0.95 0.95

2 0.94 0.95 0.94 0.95 0.91 0.91 0.91 0.95 0.87 0.94 0.84 0.94

3 0.92 0.94 0.94 0.95 0.89 0.95 0.90 0.96 0.87 0.94 0.78 0.95

Mediation, mediator

0 0.94 0.96 0.94 0.94 0.95 0.95 0.94 0.95 0.95 0.95 0.96 0.95

1 0.95 0.94 0.94 0.95 0.94 0.92 0.92 0.95 0.96 0.89 0.88 0.93

2 0.95 0.95 0.92 0.94 0.94 0.91 0.87 0.91 0.92 0.85 0.61 0.84

3 0.94 0.95 0.93 0.94 0.93 0.88 0.76 0.88 0.94 0.87 0.49 0.74

Mediation,criterion

0 0.95 0.95 0.95 0.95 0.94 0.95 0.94 0.94 0.94 0.92 0.94 0.95

1 0.95 0.94 0.94 0.94 0.93 0.95 0.94 0.91 0.95 0.95 0.95 0.88

2 0.94 0.94 0.94 0.94 0.95 0.95 0.95 0.85 0.96 0.92 0.95 0.63

3 0.95 0.94 0.93 0.93 0.94 0.95 0.95 0.77 0.95 0.92 0.95 0.48

Items γ11,1 γ11,2 γ11,1 γ11,2 γ11,1 γ11,2

Moderation,predictor

0 0.95 0.96 0.94 0.93 0.95 0.94

1 0.94 0.94 0.94 0.95 0.92 0.92

2 0.94 0.93 0.91 0.88 0.87 0.62

3 0.94 0.93 0.87 0.79 0.87 0.44

Moderation,criterion

0 0.95 0.95 0.94 0.95 0.94 0.95

1 0.96 0.92 0.94 0.88 0.94 0.79

2 0.96 0.89 0.94 0.74 0.94 0.38

3 0.96 0.83 0.93 0.55 0.93 0.18

loadings, and unacceptable for three non-invariant loadings. Cov-
erage for γ11,1 fell slightly below acceptable levels when two
and three non-invariant items are ignored, and for γ11,2, it fell
slightly below acceptable when three non-invariant loadings were
ignored.

Simple regression with criterion non-invariance
Relative bias for γ11,1, (referent group) was positive but accept-
able for one ignored non-invariant loading and substantial and
positive for two and three ignored non-invariant loadings. Non-
invariant items led to negative relative bias for γ11,2 (focal
group) that was acceptable for a single item and substantial
for two and three non-invariant items. Coverage for γ11,1 was
acceptable for all ignored non-invariance. Coverage for γ11,2

dropped to an unacceptable level for even a single non-invariant

item and progressively worsened with further ignored non-
invariance.

Partial regression with predictor non-invariance
The referent group parameter γ11,1 was characterized by negative
but acceptable relative bias for one or two ignored non-invariant
loadings, and substantial relative bias for three non-invariant
items. The focal group parameter γ11,2 showed acceptable positive
relative bias for a single non-invariant item, reaching substantial
and unacceptable levels of positive bias for two and three non-
invariant items. Relative bias for γ12,1 and γ12,2 was acceptable
across all levels of ignored non-invariance. Coverage for γ12,1 and
γ12,1 remained acceptable for all levels of ignored non-invariance
while coverage for both γ12,2 and γ12,2 fell just below acceptable
levels when two or three non-invariant items were ignored.
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FIGURE 6 | Impact of mediator variable threshold non-invariance on

relative bias of mediation betas.

Partial regression with criterion non-invariance
Relative bias for the referent group parameter γ11,1 was positive
and acceptable for one ignored non-invariant loading, and sub-
stantial for two and three ignored non-invariant loadings. The
focal parameter γ11,2 showed acceptable negative relative bias with
one ignored non-invariant item, and substantial negative relative
bias for two ignored non-invariant items, and unacceptable rela-
tive bias for three ignored non-invariant items. Relative bias for
γ12,1 was positive but acceptable for one ignored non-invariant
item, and substantial for two or three ignored non-invariant items.
Relative bias for γ12,2 was negative and acceptable for one invari-
ant item and substantial for two and three non-invariant items.
Coverage for γ11,1 and γ12,1 was acceptable for all levels of ignored
non-invariance. The same was true for γ11,2 and γ12,2.

Mediated regression with predictor non-invariance
Relative bias for the referent group parameter γ11,1 was negative
but acceptable for one and two ignored non-invariant loadings
and substantial for three non-invariant loadings. Relative bias
for the focal group parameter γ11,2 was acceptable for a single
non-invariant item, substantial for two non-invariant items and
unacceptable for three non-invariant items. Relative bias of the
coefficients β21,1 and β21,2 was acceptable for all levels of non-
invariance. Coverage for all regression coefficients in referent and
focal groups was acceptable except for γ11,1 and γ11,2 when two or
three invariant items were ignored and β21,1 and β21,2 when two
and three non-invariant items were ignored.

Mediated regression with mediator non-invariance
Relative bias for the referent group parameter γ11,1 was posi-
tive but acceptable for one ignored non-invariant loading and
substantial for two and three ignored non-invariant loadings. Rel-
ative bias for the focal group parameter γ11,2 was negative and
acceptable for a single non-invariant loading and substantial for
two and three ignored non-invariant loadings. Relative bias of
β21,1 was negative and acceptable for one and substantial for
two and three ignored non-invariant loadings, while relative bias
for β21,2 was positive and acceptable for a single non-invariant

loading, substantial for two and unacceptable for three ignored
non-invariant items. These results are presented graphically in
Figure 7. Coverage rates for γ11,1 were acceptable. Coverage for
β21,1 was acceptable for a single ignored loading but unacceptable
for two and three ignored loadings. Coverage for γ11,2 and β21,2

reached unacceptable levels when two or three non-invariant items
were ignored.

Mediated regression with criterion non-invariance
Relative bias for the referent group parameter γ11,1 was pos-
itive and acceptable. Relative bias for the focal group param-
eter γ11,2 was also positive and acceptable. Relative bias
for β21,1 was positive and acceptable for one ignored non-
invariant loading, and substantial for two or three ignored
non-invariant loadings. Relative bias for β21,2 was negative
and acceptable for one non-invariant item, becoming substan-
tial for two and three non-invariant items. Coverage rates
for all coefficients were acceptable except for β21,2 where it
became unacceptable when a single non-invariant items was
ignored.

Moderated regression with predictor non-invariance
Relative bias for the referent group parameter γ11,1 was positive but
acceptable for one ignored non-invariant loadings and substantial
for two and three ignored non-invariant items. Relative bias for
the focal group parameter γ11,2 was negative and acceptable for
one ignored non-invariant item and substantial for two and three
ignored non-invariant items. Coverage for γ11,1 was acceptable
for one and two ignored non-invariant items but unacceptable for
three ignored non-invariant loadings, and the same was observed
for γ11,2.

Moderated regression with criterion non-invariance
Bias for the referent group parameter γ11,1 was positive and
acceptable for one ignored non-invariant loading and substan-
tial for two and three items. Relative bias for the focal group
parameter γ11,2 was negative. It was acceptable for one and two

FIGURE 7 | Impact of mediator variable loading non-invariance on

relative bias of mediation betas.
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ignored non-invariant items and substantial for three items. Cov-
erage for γ11,1 became unacceptable when two non-invariant
items were ignored. Similarly, the coverage for γ11,2 fell to
unacceptable levels when two or three non-invariant items were
ignored.

THRESHOLD AND LOADING NON-INVARIANCE
Simple regression with predictor non-invariance
Non-invariant items caused negative relative bias for the ref-
erent group parameter γ11,1. This bias was acceptable for
one ignored non-invariant item and substantial for two and
three ignored non-invariant items. Ignoring a single non-
invariant item led to positive and substantial relative bias
for the focal group regression parameter γ11,2. This posi-
tive bias was unacceptable when two or three non-invariant
items were ignored. Coverage for γ11,1 was unacceptable
for all levels of ignored non-invariance. Coverage for γ11,2

deteriorated to unacceptable levels with two non-invariant
items.

Simple regression with criterion non-invariance
Relative bias for γ11,1 was positive and ranged from acceptable
for a single non-invariant item to substantial for two and three
non-invariant items. Non-invariant items led to negative rel-
ative bias for γ11,2 that was substantial for a single item and
unacceptable for two and three ignored non-invariant items. Cov-
erage for the regression parameter γ11,1 was acceptable for all
ignored non-invariance except for two ignored items when it was
marginally unacceptable. Coverage for γ11,2, however, dropped
to unacceptable levels as soon as a single non-invariant item is
ignored. Coverage progressively worsened with further ignored
non-invariance.

Partial regression with predictor non-invariance
Relative bias for γ11,1 was negative and acceptable for a sin-
gle item and substantial for two and three items. γ11,2 suffered
from substantial positive relative bias when even a single ignored
non-invariant item was ignored. Relative bias increased to unac-
ceptable levels for two and three non-invariant items. The relative
bias of coefficients γ12,1 and γ12,2 was acceptable. Coverage for
γ12,1 and γ12,2 remained acceptable for all levels of ignored non-
invariance. However, the coverage rate for γ11,1 was unacceptable
for even one ignored non-invariant item, and coverage for γ11,2

became unacceptable when two or three non-invariant items were
ignored.

Partial regression with criterion non-invariance
Relative bias for γ11,1 was positive and acceptable for one ignored
item, becoming substantial when two or three items were ignored.
γ12,1 suffered from substantial negative relative bias with when
one, two or three non-invariant items are ignored. Relative bias
for γ11,2 was negative and substantial for a single ignored item, and
negative and unacceptable when two or three items were ignored.
Relative bias for γ12,2 was substantial when a single non-invariant
item was ignored and unacceptable when two or three such items
were ignored. Coverage for referent group parameters γ11,1 and
γ12,1 became unacceptable when even a single non-invariant item

FIGURE 8 | Impact of mediator variable combined non-invariance on

relative bias of mediation betas.

was ignored and the coverage for γ11,2 and γ12,2 fell to unacceptable
levels as soon as a two or three non-invariant items were ignored.

Mediated regression with predictor non-invariance
Relative bias for γ11,1 was negative and acceptable for a sin-
gle ignored non-invariant item and substantial for two or three
ignored non-invariant items. Relative bias for this coefficient in
the focal group, γ11,2 was positive and substantial for a single
ignored item and unacceptable when two or three non-invariant
items are ignored. Relative bias of the coefficients β21,1 and β21,2

was near zero for all levels of non-invariance. Coverage for γ11,1

fell below acceptable when one, two and three items are ignored,
while the rate for γ11,2 falls also falls below the acceptable thresh-
old when two or three non-invariant items are ignored. Coverage
for coefficients β21,1 and β21,2 remained acceptable for all levels of
invariance.

Mediated regression with mediating non-invariance
Relative bias for γ11,1 was positive and substantial for one, two
or and three invariant items. Relative bias for γ11,2 was neg-
ative and acceptable with one non-invariant item, worsening
to unacceptable further non-invariance. Relative bias of β21,1

was negative and acceptable for a single item and substan-
tial for two or three items. Relative bias for β21,2 was positive
and substantial for one non-invariant item and this worsened
with further non-invariance to unacceptable levels for two and
three items. These results are presented graphically in Figure 8.
Coverage rates for γ11,1 with one ignored non-invariant item
and unacceptable for two or three items. Coverage rates for
γ11,2 are unacceptable when even a single non-invariant item
is ignored. Coverage rates for β21,1 are also unacceptable when
one or more non-invariant items are ignored while coverage for
β21,2 is unacceptable when two or three non-invariant item are
ignored.

Mediated regression with ultimate criterion non-invariance
Relative bias for γ11,1 was acceptable. Relative bias for γ11,2 was also
acceptable. Relative bias for β21,1 was positive and acceptable when
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one non-invariant item was ignored but positive and substantial
when two or three non-invariant items are ignored. Relative bias
for β21,2 was negative and substantial with one non-invariant item
and unacceptable for two or three non-invariant items. The cover-
age rate for all regression coefficients in this condition is acceptable
except for β21,2 where it deteriorates to unacceptable levels as soon
as two non-invariant items are ignored and β21,1 where cover-
age is unacceptable for one, two and three ignored non-invariant
items.

Moderated regression with predictor non-invariance
When the non-invariant construct is the predictor, relative
bias for γ11,1 is negative but acceptable for a single item
and substantial for two and three items. Relative bias for
γ11,2 is positive and substantial for a single ignored non-
invariant item and becomes unacceptable for two and three
ignored non-invariant items. Coverage for γ11,1 and γ11,2

became unacceptable as soon as a single non-invariant item
was ignored and progressively worsened with increased ignored
non-invariance.

Moderated regression with criterion non-invariance
Relative bias for γ11,1 was positive and substantial for one to
three ignored non-invariant items. Relative bias for γ11,2 was
negative and substantial as soon as a single non-invariant item
is ignored becoming unacceptable when two or three items are
ignored. Coverage for γ11,1 is acceptable, while in the focal group
the coverage for γ11,2 falls away to unacceptable levels as soon
as any non-invariance is ignored, worsening with further ignored
non-invariance.

DISCUSSION
The issue of measurement invariance is important to any research
or practice setting where the same measurement instrument is
being used to assess individuals from different populations. Until
now the focus of methodological work, looking at strategies
for dealing with non-invariant measurement has mainly been
restricted to measurement models and latent mean differences,
with notable exceptions from Chen (2008) and Oberski (2014).
The focus of the current article was on the implications of ignoring
measurement non-invariance for accurate recovery of regression
coefficients in full structural equation models. The results for
the threshold conditions, loading conditions, and threshold and
loading conditions showed that unacceptable relative bias and cov-
erage were limited to the focal group regression parameter. While
bias was observed for referent group parameters, this was never
unacceptable. This pattern holds across simple, partial, mediated
and moderated regression models. Under the conditions stud-
ied, i.e., lower focal group loadings, an acquiescent response
style, or both, any path going into the non-invariant factor will
yield an overestimated regression coefficient in the focal group,
while any path coming out of the non-invariant factor will yield
an underestimated regression coefficient in the focal group. The
bias in the regression parameters emerged due to errors in the
estimation of latent variances due to ignoring non-invariance.
When predictor non-invariance is ignored due to lower focal load-
ings or acquiescent responding, focal regression coefficients are

over-estimated (i.e., relative bias is positive) and when criterion
non-invariance is ignored focal regression coefficients are under-
estimated (i.e., relative bias is negative). When the non-invariant
latent construct is in the mediator position, we see the path to
it under-estimated and from it to the ultimate criterion variable
overestimated. The aforementioned patterns were reversed in the
referent group

IMPLICATIONS OF RESULTS REGARDING THRESHOLD
NON-INVARIANCE
When either one or two items with non-invariant thresholds
were not modeled, relative bias occurred in the aforementioned
directions. However, ignoring the non-invariance led to rela-
tive bias below 10%, a level considered acceptable by Forero
and Maydeu-Olivares (2009). Coverage rates were relatively unaf-
fected. It is tempting for the applied researcher to conclude that
they can ignore threshold non-invariance with impunity and argue
that measures are consistent both across groups and past studies
unless the number of non-invariant items is extreme. However,
researchers must be careful to note that this is only the case if latent
means are not a focus of the research (Steinmetz et al., 2009).

IMPLICATIONS OF RESULTS REGARDING LOADING NON-INVARIANCE
Across all types of structural models ignoring predictor non-
invariance leads to over-estimation of focal regression coefficients,
ignored criterion non-invariance leads to underestimation of focal
regression coefficients, and when the non-invariant latent variable
is in the mediating position the path to the mediator is under-
estimated while the path from the mediator in overestimated.
The important difference between the loading only and threshold
only conditions is that whereas relative bias never hit unaccept-
able levels in the threshold only condition, the relative bias in
the loading condition routinely exceeded substantial and unac-
ceptable thresholds when three non-invariant loadings were not
modeled. Whereas coverage was not an issue for threshold only
non-invariance, coverage became an issue in the loading only
condition. The implications for the researcher are that ignor-
ing non-invariance to permit scale comparability with previous
research is okay for a single item with a non-invariant loading.
However, when the non-invariance is on the loadings of two or
more items and relational invariance is of critical importance,
modeling the non-invariance is the best approach.

IMPLICATIONS OF RESULTS REGARDING LOADING AND THRESHOLD
NON-INVARIANCE
Again we see consistency with the general pattern of the impact
of ignored non-invariance on predictor latent variables lead-
ing to focal group positive relative bias, non-invariance on
criterion latent variables leading to negative relative bias, and
non-invariance on mediating latent variables producing mixed
relative bias consistent with the role of the target variable (either
independent or dependent). The main difference here is that
the non-invariance causes problems for relative bias in the dis-
cussed directions at even lower levels of ignored non-invariance
than for the thresholds only and slope only conditions. Serious
problems are observed for relative bias when even one item with
non-invariant loading and thresholds is not freely estimated across
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groups. From this early stage the estimation accuracy of the regres-
sion parameters have unacceptable relative bias, a problem that
worsens with further ignored non-invariance.

LIMITATIONS, FUTURE DIRECTIONS, AND CONCLUSION
This study only simulated data for three-point scales. While
this number of scale points is regularly used in non-cognitive
research, it is important that these results eventually be extended
to dichotomous rating scales used in cognitive ability question-
naires, for example. This study also only simulated measure-
ment invariance conditions for scales comprized of six items.
While past Monte Carlo studies of measurement equivalence
have also used six item scales, it would be beneficial to include
the effect of ignoring measurement non-invariance on longer
scales in terms of model recovery of regression parameters
using alternate methods that are sometimes recommended to
deal with longer scales in structural models (e.g., Yang et al.,
2009).

We studied the impact of ignoring lower focal group load-
ings and focal group acquiescence. While Chen (2008) found
lower focal group loadings were observed in over 90% of cases
of measurement non-invariance, and acquiescence is a common
response style, examining other conditions such as mixed loading
non-invariance and extreme response styles are also important
directions for future research. The current study also examined
the impact of ignoring measurement non-invariance on regression
parameter recovery assuming the distribution of the underlying
latent variables is multivariate normal. It will be interesting to
examine whether the results shown here generalize to conditions
where this assumption is violated (c.f., DeMars, 2012). Finally,
it is also important to examine the accuracy of Oberski’s (2014)
method in the context of regressions between factors indicated by
categorical items.

Despite these limitations, the current study has important
practical implications for researchers measuring constructs across
multiple populations. The principal message from this study is
that researchers must take the issue of measurement equivalence
of the measures of latent variables seriously if they are interested
in accurately estimating between construct relations using latent
regression models. This is evident from the deteriorating trend in
the accuracy of regression parameters as more non-invariance was
introduced into the models. The current special issue and a rapidly
expanding literature on measurement invariance both suggest that
statisticians and psychometrics experts take the issue of measure-
ment invariance extremely seriously. No doubt numerous applied
researchers have caught themselves asking the question “does it
really matter?” The short answer is to this question is “yes.”
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APPENDIX A. MONTE CARLO MEASUREMENT MODEL
PARAMETERS

Table A1 | Loadings.

Target construct Auxiliary construct

Item Referent Focal Both

1 0.85 0.85 0.55

2 1.40 0.70 1.40

3 1.25 1.25 1.10

4 2.00 1.00 0.80

5 0.50 0.50 –

6 0.75 0.38 –

Table A2 | Thresholds.

Target construct Auxiliary construct

Referent Focal Both

Item t1 t2 t1 t2 t1 t2 t3 t4

1 –1.70 1.50 –1.70 1.50 –2.00 –0.80 0.20 1.70

2 –0.40 1.90 –1.20 1.90 –2.50 –0.90 0.30 1.90

3 0.70 2.30 0.70 2.30 –1.50 –0.20 0.80 2.30

4 –0.45 2.75 –1.45 2.75 –1.70 0.30 1.00 2.50

5 0.80 2.20 0.80 2.20 – – – –

6 1.20 2.00 –0.20 2.00 – – – –
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Surveys increasingly use mixed mode data collection (e.g., combining face-to-face and
web) because this controls costs and helps to maintain good response rates. However, a
combination of different survey modes in one study, be it cross-sectional or longitudinal,
can lead to different kinds of measurement errors. For example, respondents in a
face-to-face survey or a web survey may interpret the same question differently, and
might give a different answer, just because of the way the question is presented. This
effect of survey mode on the question-answer process is called measurement mode
effect. This study develops methodological and statistical tools to identify the existence
and size of mode effects in a mixed mode survey. In addition, it assesses the size and
importance of mode effects in measurement instruments using a specific mixed mode
panel survey (Netherlands Kinship Panel Study). Most measurement instruments in the
NKPS are multi-item scales, therefore confirmatory factor analysis (CFA) will be used as
the main analysis tool, using propensity score methods to correct for selection effects.
The results show that the NKPS scales by and large have measurement equivalence,
but in most cases only partial measurement equivalence. Controlling for respondent
differences on demographic variables, and on scale scores from the previous uni-mode
measurement occasion, tends to improve measurement equivalence, but not for all scales.
The discussion ends with a review of the implications of our results for analyses employing
these scales.

Keywords: mixed mode survey, measurement equivalence, measurement invariance, mode effect, selection bias,

propensity score adjustment

INTRODUCTION
Mixed mode surveys, which combine different modes of data col-
lection, such as, face-to-face, telephone, and web, are becoming
standard data collection tools (Biemer and Lyberg, 2003, p. 208;
De Leeuw, 2005; De Leeuw et al., 2008; Dillman et al., 2014, p. 13).
Mixed mode survey designs are attractive, because they are cost
effective and because they can be successful in reaching different
kinds of respondents (De Leeuw, 2005; Blyth, 2008). As a result,
they have the potential to decrease both coverage errors and non-
response errors, thereby increasing the representativeness of the
final (combined) sample at affordable costs (Couper, 2011).

However, a combination of different modes in one survey, be
it cross-sectional or longitudinal, can lead to different kinds of
measurement errors (De Leeuw and Hox, 2011). An important
distinction is in errors caused by the design and implementa-
tion of the survey and in mode inherent errors (De Leeuw, 2005;
Dillman and Christian, 2005; Roberts, 2007). The former can be
prevented; for instance, in the design phase survey questions are
sometimes constructed differently for each mode (e.g., offering
do-not-know in one mode but not in another). As a result respon-
dents in particular modes are presented with different question
formats, which will produce differences in responses. To avoid
these question-format mode effects, Dillman et al. (2014, chapter
11) advocate the uni(fied)-mode design where equivalent ques-
tionnaires are developed for each mode in a mixed mode study.

Mode effects can and should be reduced in the design phase as
far as possible (see also De Leeuw et al., 2008 on designing for
mixed-mode studies).

Mode inherent errors are part of the mode itself (Berzelak,
2014) and are not avoidable by clever design. A clear example is
the way questions are presented to the respondent; this can be
done visually or aurally; furthermore when questions are pre-
sented visually, the visual lay-out may convey extra information
(e.g., Christian et al., 2007). As a consequence respondents in
an interview survey may interpret the same question differently
from respondents in an online survey and give a different answer,
just because of the mode used. Another example is the presence
or absence of an interviewer and its influence on sensitive ques-
tions (Dillman et al., 2014, chapter 8; Tourangeau et al., 2000,
chapter 10).

We distinguish two different types of mode inherent effects on
measurement (De Leeuw, 1992, chapter 7; Jäckle et al., 2010).
First there are mode effects that only shift the response dis-
tribution; this produces differences in the mean or variance of
scale scores between survey modes, but does not change correla-
tions. The second mode effect is a change in the question-answer
process and as a consequence the question is interpreted and
answered differently. This can be the result of avoidable mode
differences in wording, but also of mode inherent differences
between aural and visual presentation. The latter has the potential
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to produce measurements of constructs that are not equivalent
between modes. In the worst case the instruments reflect qualita-
tively different constructs across modes. Both types of mode effect
will be investigated in this study.

In addition to the measurement effect of survey mode on
the response process, differential nonresponse across modes may
play a role. Due to differential nonresponse, different types of
respondents tend to end up in the different modes, even in
randomized mode experiments. If these differences in sample
composition across modes coexist with mode effects, this leads to
confounding of substantive and methodological effects (Klausch
et al., 2013; Vannieuwenhuyze and Loosveldt, 2013). For example,
assume that we use a mixed mode web–interview survey to study
drinking behavior. Web surveys attract younger respondents than
traditional interviews (Couper, 2000; Mohorko et al., 2013). In
addition, web surveys also elicit less socially desirable responses
(e.g., Link and Mokdad, 2005). Since in our example the web
mode is confounded with age, if the web respondents report more
extreme drinking behavior we cannot distinguish whether the
mixed mode data reveal a real relation between extreme drinking
and age or if this is just the result of less socially desirable answers
over the web.

Panel surveys pose their own challenge in this respect. Given
the high costs of longitudinal panel surveys, there is a growing
interest in applying mixed-mode data collection methods in such
surveys (Dex and Gumy, 2011). Obviously, in longitudinal sur-
veys that focus on measuring and explaining change, assessing
and correcting mode effects is essential for a correct interpreta-
tion of trends over time. Compared to cross-sectional surveys,
longitudinal surveys are in a special position. To assess selection
effects, access is needed to auxiliary data not affected by mode
effects. These data may come from elsewhere (e.g., a register), or
the specific data are simply assumed to be unaffected by mode.
Often the assumption is made that biographic information, such
as, sex and age are measured without error. Even if that assump-
tion is true, or if we have access to this information from a register,
the problem remains that biographic variables usually are only
weakly related to the substantive variables of interest and are
therefore not very effective in assessing or correcting mode effects
(Vannieuwenhuyze and Loosveldt, 2013). In longitudinal surveys
that incorporate mixed mode data collection, preferably the first
data collection occasion uses a single mode face-to-face interview,
because this mode has the highest response rate compared to
other or mixed modes (Hox and De Leeuw, 1994; Lozar Manfreda
et al., 2008). The subsequent measurement occasions then shift to
a less expensive mixed mode data collection. When this longitu-
dinal survey design is followed, the first round of data collection
provides a single mode data set that contains the substantive vari-
ables of interest measured with a constant mode effect. As a result,
analysts have access to strong information to assess and correct
mode effects.

Mode effects have been studied extensively for the traditional
modes: face-to-face, telephone, and self-administered (e.g., mail)
surveys not involving Internet. Most of these studies investigate
simple mode effects, such as shifts in the response distributions
of single questions, amount of missing data, or effects on sensi-
tive questions. These studies typically find small differences, often

indicating a dichotomy between survey modes with and with-
out an interviewer (Groves, 1989; De Leeuw, 1992). When web
surveys are added to the comparison, they tend to behave as self-
administered paper-and-pen surveys. For an overview of such
studies we refer to Christian et al. (2008), De Leeuw and Hox
(2011), and Tourangeau et al. (2013, chapter 7).

Investigating measurement effects of data collection modes is
difficult when individual questions are examined; repeated mea-
sures designs with several repeated measurement occasions are
needed to distinguish between systematic and random measure-
ment errors and true change over time. Alwin (2007) discusses the
requirements for such designs, but also notes that their applica-
tion to mode effect studies remains a challenge. When multi-item
scales are involved, measurement equivalence can be investigated
using models based on Item Response Theory (IRT) or Structural
Equation Modeling (SEM). Since these models are closely related
(Glockner-Rist and Hoijtink, 2003), we will only discuss mea-
surement equivalence in mixed mode surveys using SEM. Given
the potential confounding of selection effects by differential non-
response in modes and by mode effects on measurement, we
review only studies that also pay attention to differences in sample
composition (i.e., selection effects) between the modes.

The question if measurement equivalence may be assumed,
naturally occurs in cross-cultural comparisons across countries,
where this is generally investigated in a Multigroup Confirmatory
Factor Analysis (MCFA) using multigroup SEM. The assessment
of measurement equivalence typically proceeds in steps (Jöreskog,
1971; Meredith, 1993; Vandenberg and Lance, 2000). The first
step tests if the same factor model applies in different groups,
traditionally countries, but in this particular study, modes are
seen as groups. This is the weakest form of equivalence, con-
figural equivalence, merely assuming that the different groups
display the same pattern of factor loadings, i.e., the same num-
ber of factors, and these factors can be interpreted as similar
because they have comparable loadings for their empirical indi-
cators. The second step tests if (most of) these factor loadings
can be constrained to be equal across all groups. If this holds we
have (partial) metric equivalence (Vandenberg and Lance, 2000).
When (partial) metric equivalence is achieved, one can validly test
if the same structural model holds in all groups. The third step
tests if (most of) the measurement intercepts can be constrained
equal across all groups. If this holds we have (partial) scalar equiv-
alence (Vandenberg and Lance, 2000). Full scalar equivalence is
called strong measurement invariance in the psychometric litera-
ture (Meredith, 1993) and implies that the relationship between
the observed score and the unobserved score on the latent factor
of a person does not depend on group membership (Mellenbergh,
1989). Full scalar equivalence or strong measurement invariance
allows variances and covariances between latent and observed
scores to be different across groups. The psychometric litera-
ture also distinguishes strict measurement invariance, where the
residual variances are also identical across groups (Millsap and
Meredith, 2007). Since strict invariance is not necessary for valid
comparisons across groups, we do not pursue strict invariance
here.

When (partial) scalar equivalence is achieved, one can then
investigate whether the latent means or actual sum scores differ
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across the groups (step 4). For a valid comparison of groups it
is not necessary that error variances be constrained equal (strict
measurement equivalence), but if this constraint holds, this has
the advantage that we are measuring with equal precision across
groups. Regarding the minimal requirements for partial invari-
ance, both Byrne et al. (1989) and Steenkamp and Baumgartner
(1998) state that for each construct, in addition to the marker
item that defines the scale –with marker item loading fixed at
1 and intercept fixed at 0–, at least one more indicator must
have invariant loadings and intercepts across the groups. When
the groups to be compared are different modes in a random-
ized mixed mode survey, the fourth step is extremely important.
This fourth step tests if the latent mean or sum scores in different
modes are equal. If not, we may have measurement equivalence,
but the different modes still result in a response shift, with some
modes reporting higher scores than other modes. This response
shift points toward either a systematic bias in one of the modes or
different systematic biases across modes.

What is known about measurement (in)equivalence across dif-
ferent modes? Probably the first mode experiment employing
multigroup SEM is De Leeuw (1992, see also De Leeuw et al.,
1996), who analyzed data from a national Dutch probability sam-
ple. They find non-equivalence, particularly between the mail
survey mode on the one hand and the interviewer based face-to-
face and telephone modes on the other. Although this study used
random assignment to modes, there were small differences on age
and gender, which were not controlled for in the SEM analyses.

Klausch et al. (2013) review empirical studies that evaluate
measurement equivalence using MCFA following the sequence
of steps outlined above. They report that comparisons of web
and paper-and-pen surveys generally find full scalar equivalence
and that measurement differences (i.e., nonequivalence) are more
often found in comparisons of modes that do with modes that do
not involve interviewers. However, most of the reviewed studies
involve small samples of specific populations such as students or
employees and not all of these studies control for potential selec-
tion effects. Below, we review in more detail studies that involve
general populations and exert good control of selection effects.

Klausch et al. (2013) report a mode experiment in a crime
victimization study using a random sample from the general
population in The Netherlands. The respondents were randomly
assigned to one of four modes: face-to-face, telephone, mail, and
web; propensity scores based on eight socio-demographic vari-
ables were used to control for selection effects. The response cate-
gories formed either a three- or a five-point Likert scale. The data
were analyzed with a MCFA specifying the variables as categorical
and employing weighted least squares estimation. This approach
involves estimation of thresholds for the observed variables,
which allows an evaluation of the way respondents choose specific
categories in the different modes. Klausch et al. (2013) report that
interviewer-based surveys differ from self-administered surveys
in measurement characteristics, with different systematic bias and
different amounts of random error. The self-administered modes
(i.e., mail and web) have lower category thresholds, indicating
a greater tendency to agree to questions. Furthermore, the self-
administered modes have lower error variances, which results in
higher reliabilities for these modes.

Revilla (2013) compares data from two different large scale sur-
veys in the Netherlands (the Dutch LISS internet panel and the
Dutch contribution to the face-to-face ESS survey), both using
large random samples from the general adult population. Using
MCFA, she finds full scalar equivalence, including equal means
on the latent variables, for four separate concepts. Although there
is no explicit control for selection, Revilla (2013) reports that
the two samples are very similar with respect to gender, age and
education. Saris and Revilla (2013) analyze six Multi-Trait Multi-
Method (MTMM) matrices from the same data sources. They
focus on the quality of the responses, which they define as the
strength of the relationship between the latent variable and the
corresponding responses (Saris and Revilla, 2013, p. 2). They
report finding few and small differences, if differences are found
the questions in the LISS web survey have a higher quality than
the corresponding questions in the face-to-face ESS survey.

Gordoni et al. (2012) investigate mode effects in a general
survey of the Arab population in Israel, using face-to-face and
telephone interviews. The survey topics concerned coexistence
among the Arab minority in Israel, a topic that is potentially sen-
sitive. For each survey mode an independent probability based
sample was drawn. In addition, relevant demographic variables
were included in the analysis as covariates. Gordoni et al. (2012)
report full metric and partial scalar equivalence across the two
modes. Measurement errors tended to be higher in the telephone
mode than in the face-to-face mode.

Heerwegh and Loosveldt (2011) compare Likert scale responses
in a national crime victimization study in Belgium. They use
a mixed-mode design with telephone, mail and web modes.
Assignment to modes was not random, but depended on the
availability of a landline telephone number in the sampling frame.
To control for differences between the modes, gender, age, edu-
cation, job, and type of residence are included in the model
as covariates. Conditional on these covariates, Heerwegh and
Loosveldt (2011) report complete scalar equivalence between the
combined mail/web and telephone modes. However, they do find
a difference in the latent factor means: in the telephone mode the
respondents show a more favorable attitude toward the police.
Heerwegh and Loosveldt (2011) interpret these findings as the
result of social desirability in the interviewer-based telephone
survey.

Chang and Krosnick (2009) describe a national field experiment
where the same questionnaire is administered to an RDD tele-
phone sample, an Internet probability sample, and an Internet
nonprobability, volunteer panel. After weighting all samples
toward national demographics, they report that the two proba-
bility samples were more representative than the nonprobability
sample, a difference that did not completely disappear after
weighting. Compared to the probability based Internet sample,
the telephone sample produced data that contained more ran-
dom measurement error, more satisficing behavior, and more
social desirability bias. These results were confirmed in a later
laboratory study using students (Chang and Krosnick, 2010).

Summarizing: our review of large scale mode experiments that
examine measurement equivalence across survey modes shows
that all studies confirm configural measurement equivalence. This
is not surprising, since all mode experiments investigated the
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measurement equivalence of well-established scales, scales with
proven reliability and validity. It would in fact be rather shocking
if any mode would completely alter the structure of a reliable and
valid scale that has been established in previous research. Many
of the studies reviewed report full or at least partial scalar equiva-
lence. When partial equivalence is found, the problems are more
often situated in the intercepts or with ordinal measurement with
the thresholds, which indicates just a shift in the response dis-
tributions across modes, and not in the factor loadings. Several
studies report that error variances tend to be larger in interviewer
based modes, especially in telephone surveys. It can be argued that
the higher reliability in self-administered and especially internet
modes simply reflects a common method effect, because in web
and mail surveys several questions are usually presented together
on one screen/page, instead of sequentially as is the case in inter-
views. This can enhance the intercorrelations between questions
and thus increase the reliability, without increasing the validity.
However, the studies of Saris and Revilla (2013) and Chang and
Krosnick (2010) both suggest that the validity also increases.

Finally, all studies that report on demographics find small but
systematic differences between the modes, even in randomized
experiments. This finding confirms the importance of control-
ling for sample differences between modes in all survey mode
experiments. In our study, we use propensity scores with covariate
adjustment, a method that is suitable for controlling a poten-
tially large number of covariates simultaneously. Our application
of propensity score adjustment is described in detail in the next
section of this paper.

The study reported here addresses three related research ques-
tions. The data source is a large longitudinal survey, which in
its third wave of data collection changed over from single mode
face-to-face to a mixed mode data collection. The first research
question is whether the scales used do show measurement equiv-
alence. If measurement inequivalence is found, this can be the
effect of selection or of measurement differences due to mode.
The second research question therefore is to what extent measure-
ment equivalence improves if selection on demographic variables
is controlled, and the third research question is to what extent
measurement equivalence improves if scale scores from the earlier
single mode data collections are added to the control variables.

DATA AND ANALYSIS METHODS
DATA
The data are from the Netherlands Kinship Panel Study (NKPS).
The NKPS is a large-scale, nationally representative panel study
on kinship in the Netherlands. Three waves of data collection have
been conducted: wave 1 in 2002–2004, wave 2 in 2006–2007, and
wave 3 in 2010–2011. Below we describe the data collection proce-
dures briefly; full detail on design and fieldwork is available in the
codebooks and questionnaires published on the NKPS homepage
(www.nkps.nl), which also explains how researchers can obtain
access to the NKPS data files. The NKPS data collection is funded
by the Netherlands Organization for Scientific Research (NWO)
and complies with standard NWO ethical requirements such as
voluntary participation and informed consent.

The main NKPS wave 1 net sample consists of 8161 individuals
who had responded to a face-to-face computer assisted interview

(CAPI). Self-completion paper questionnaires were used to col-
lect additional data from family members. In our analysis, we
use only the data provided by the primary respondents, which
are denoted as anchor in the NKPS files. In the second wave, a
mixed mode design was introduced, where respondents were first
approached for a face-to-face interview (CAPI), and computer
assisted telephone interviewing (CATI) or computer assisted web
interviewing (CAWI) were offered only at the end of the data col-
lection period to sample members who had previously refused to
participate or who had not been reached. This resulted in a net
sample of 6091 individuals for the second wave. Very few respon-
dents used the alternative options: about 3% used CATI and about
2% used CAWI. In our analysis, we have used only the face-to-face
data from wave 2.

The NKPS wave 3 data collection was a fully sequential mixed
mode design. The respondents were first offered to respond
online by web mode (CAWI). CATI was offered at a later stage of
data collection to sample members who had not responded to the
web invitation. Next, CAPI was offered to those respondents who
had not participated by Web or CATI. In the end, about 55% of
the data was collected by web, 27% by telephone, and 18% by face-
to-face interviews. The CAPI interviews employed show cards for
some of the questions. The final response to the third wave of
data collection was 4390 respondents. Since we are mainly inter-
ested in the mode effects in the third wave, we analyze the data
of respondents who have responded to the third wave and also
to the previous waves, leaving out nonrespondents on wave 2 or
wave 3.

ANALYSIS METHODS
From the multi-item measures, we have selected 14 multi-item
instruments that are assumed to be scales that measure a single
underlying characteristic. Measuring an underlying character-
istic by a scale has been referred to as reflective measurement
(Bollen and Lennox, 1991). Some multi-item sets are not expected
to form a scale, they are mere inventories of events or expe-
riences that are expected to have an effect on respondents
without reflecting an underlying characteristic. Such indices are
referred to as formative measurement (Bollen and Lennox, 1991).
Supplementary Material lists the multi-item scales used in our
analysis.

When items are grouped in a scale, a Confirmatory Factor
Analysis (CFA) can be used to check if they are indeed unidimen-
sional and measure a single underlying characteristic. Multigroup
CFA (MCFA) is then applied to evaluate their measurement
equivalence across groups (research question 1). If the groups
differ on some covariates, which indicates a selection process, var-
ious forms of adjustment are available. The correction approach
used most often is conditioning on covariates that are related
to the selection process and the target variables of the sur-
vey. Vannieuwenhuyze and Loosveldt (2013) call this approach
calibration. The covariates are incorporated in the model by
regressing the observed indicators on the covariates with equal-
ity constraints on the regression coefficients in all analyses, but
allowing different intercepts (thresholds) across indicators and
groups in the configural model. This follows the ANCOVA model
described by Muthén (2002).
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By regressing the observed indicators on the covariates, we
assume that in the mixed mode design there is a selection on the
observed variables. If the selection is on the latent variable instead,
application of the Pearson–Lawley selection formulas leads to the
conclusion that latent selection leads to an invariant factor model
(Lawley and Maxwell, 1963; Meredith, 1964), even if the selection
process is unknown. If the selection is on the observed indicators,
application of the Pearson–Lawley selection formulae leads to the
conclusion that the model is not invariant (Lawley and Maxwell,
1963; Muthén, 1989). We model the selection on the observed
variables because in a general survey mostly demographics are
available, which are expected to have only a small relationship
with the latent variables. In a longitudinal survey we have access to
measures from earlier measurement occasions, but we view these
at best as proxies for the latent variables at later measurement
occasions. By regressing the observed variables on the covariates,
we expect that the factor model will change, in the direction of
stronger measurement invariance.

When scale indicators have fewer than five categories we
employ the ordered categorical variable methodology (Finney
and DiStefano, 2006) as implemented in Mplus 7.1 (Muthén and
Muthén, 1998-2012). For the measurement equivalence analysis,
the consequence is that for categorical items the location param-
eter is no longer the intercept but a set of thresholds, which
for scalar equivalence must be constrained equal across groups.
Supplementary Material indicates which scales have categorical
indicators, and provides reliability estimates (coefficient alpha)
and some descriptive statistics for the scales.

If we have a large number of potential covariates, the covari-
ate adjustment becomes unwieldy and also results in a complex
model that estimates many regression coefficients for the covari-
ates. To reduce the complexity of the model, that is, the number
of covariates, propensity score methods can be used. Propensity
scores were introduced by Rosenbaum and Rubin (1983) as a
method to equalize an experimental and a control group on a
set of covariates. The propensity score for a specific subject is the
conditional probability of being assigned to treatment vs. con-
trol, given a set of covariates X. It can be viewed as a balancing
score; a function f (X) of the covariates, such that the conditional
distribution of the set of covariates X given f (X) is the same in
both groups. The propensity score is used as a substitute for the
entire set of covariates, thus considerably reducing the complexity
of the model. Controlling for propensity scores can be performed
by using them as covariates in an analysis (i.e., regression adjust-
ment), or weights can be constructed based on the inverse of the
propensity score (i.e., weighting adjustment). In our case we use
regression adjustment. For a general overview of propensity score
methods see Guo and Fraser (2010), for a review of propensity
scores in surveys see Lee (2006).

Propensity scores are usually based on socio-demographic
variables. This raises the question whether these are sufficient;
propensity score methods assume that the propensity model
includes all relevant variables. In longitudinal surveys, such as
the NKPS, researchers have access to much richer information,
namely the scores of respondents on the same variables collected
on previous measurement occasions. For this reason we con-
struct two different propensity scores: one based only on the

socio-demographic variables and one based on the scales under
investigation, measured in the previous wave that uses one sin-
gle mode (face-to-face). Constructing a propensity score on the
basis of observed sum scores in the first wave of data collection
treats the scale scores as proxies for the latent variable scores at the
first measurement occasion, which represents a stronger correc-
tion method than correcting on demographic information. Since
having two sets of weights in one multivariate analysis is a com-
plicated issue, we prefer applying the propensity score correction
via regression adjustment. The first propensity score, based on
demographics, is applied to answer research question two: “to
what extent does measurement equivalence improve if selection
on demographic variables is controlled for.” The second propen-
sity score, based on previously measured scale scores, is added to
the covariate based on demographics, to answer the third research
question: “to what extent does measurement equivalence improve
if scale scores from the earlier single mode data collections are
added to the control variables.”

RESULTS
The Results section consists of two subsections. The first describes
the construction of the propensity scores and the second presents
the results of the measurement equivalence analyses.

CONSTRUCTION OF THE PROPENSITY SCORES
There are several methods to construct propensity scores, the
most popular being logistic or probit regression (Guo and Fraser,
2010), which results in one optimal regression equation predict-
ing group membership. The propensity scores are the regression
based predicted probabilities of group membership, which can
then be used as a single covariate or as a weighting variable. This
works well in a two group context where an experimental and
a control group must be balanced. In our case, there are three
groups (the three modes CAPI, CATI, CAWI) and using multino-
mial logistic regression therefore produces always two regression
equations, each contrasting one mode with the reference mode
in the coding system. In order to establish if one optimal equa-
tion for each set of predictors may be sufficient to calculate a
single propensity score, we decided to use discriminant analy-
sis, as this has the potential to produce fewer relevant regression
equations. In a discriminant analysis of three groups, a discrim-
inant function is constructed, basically a regression function,
that maximally discriminates between these three groups simul-
taneously. Next, a second discriminant function is constructed
that maximally discriminates the three groups under the con-
straint that the second discriminant function is uncorrelated with
the first discriminant function. Since the discriminant functions
maximize discrimination between groups, successive discrimi-
nant functions decrease in importance, and it is usual to find
fewer significant discriminant functions than there are degrees
of freedom (the number of groups minus one). For a detailed
description of discriminant analysis we refer to Tabachnick and
Fidell (2013).

The first discriminant analysis used only the demographic
variables gender, age, education, and urbanization, as measured
in wave 1. Urbanization was not a significant predictor, and the
final discriminant analysis is based on the demographic variables
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gender, age and education. The first discriminant function cap-
tures 93.7% variance of the demographic variables, and a high
score on this function reflects high age, being female and hav-
ing a lower education. The second discriminant function explains
6.3% variance, and reflects being female with a high education.
The high age, female and lower educated respondents represented
by the first discriminant function are overrepresented in the CATI
and CAPI modes and underrepresented in the CAWI mode in
wave 3; the canonical correlation between this discriminant func-
tion and survey mode is 0.29. The female respondents with high
education represented by the second discriminant function are
underrepresented in CAPI, which indicates that they prefer to
respond by telephone or web. Since the second discriminant func-
tion covers only 6% of the variance of the demographic variables,
and since the associated canonical correlation with survey mode
is only 0.08, it was decided to use only the first discriminant func-
tion as propensity score to correct for demographic differences.
This propensity score is labeled D1 in the text and tables.

The second discriminant function is based on the scale scores
in the second wave for those respondents who were interviewed
using face-to-face. To avoid an accumulation of missing values in
the scale scores, when some items of a scale were missing, scales
were assigned the mean value on the available items. This was
done after appropriate recoding for negatively worded questions
and only if not more than 30% of the items of a scale were miss-
ing. If more items were missing, the scale score was assigned a
missing value. A more serious missing value problem posed scales
that apply only to a subsample of the respondents. For example,
some scales enquire after parenting behavior, which of course only
apply to respondents in certain age groups who actually have chil-
dren. For all other respondents, such scales are assigned a missing
value. Since SPSS Discriminant analysis uses listwise deletion to
deal with missing values, simply specifying all available scales
as potential predictors in a discriminant analysis would result
in selecting only the small subgroup to which all of the scales
apply. This not only dramatically reduces the number of respon-
dents available for the analysis, but also restricts the analysis to
a very specific subgroup of respondents. To avoid this, the dis-
criminant analysis was carried out in a stepwise fashion. The first
step includes as potential predictors all scales that apply to the
entire sample, using forward selection to select only significant
predictors. In the next steps, scales about partners and children
were added. The scales about partners proved to be significant
but the scales about children were not. Finally, a discriminant
analysis was performed using all significant predictors. For the
scales on partners, the missing values were imputed by the overall
mean of the available values, and a dummy variable was added to
indicate those cases where such imputation had taken place. As
a result, the respondents to which these scales do not apply were
not dropped from the analysis. The results of this discriminant
analysis are summarized in Table 1.

The first discriminant function captures 89.1% variance of the
wave 2 scales. A high score on this function reflects having a
partner, feeling parental obligations, and division of homemak-
ing tasks. The canonical correlation of this discriminant function
with survey mode is 0.22. The second discriminant function
explains 10.9% variance, and reflects having no partner combined

Table 1 | Standardized canonical discriminant function coefficients.

Scale Function

1 2

Parental obligations 0.39 0.35

Parenthood 0.21 0.33

Loneliness −0.20 −0.57

Conflicts partner 0.21 −0.00

Conflicts partner _missing −0.79 0.43

Division homemaking tasks 0.30 −0.37

Division homemaking tasks _missing 0.07 0.08

with a low score on loneliness. Since the second discriminant
function explains only 11% of the variance in the scales and the
canonical correlation with survey mode is only 0.08, only the first
discriminant function is used as propensity score. This propensity
score is labeled D2 in the text and tables.

Summarizing: the first propensity score D1 reflects differences
in the sample composition of the three modes in demographic
characteristics, and the second propensity score D2 reflects dif-
ferences between the three modes in their scale scores on the
previous, single mode, measurement occasion.

MEASUREMENT EQUIVALENCE TESTS
To simplify interpretation of the equivalence tests, the dis-
criminant scores were standardized. The propensity scores were
included in the measurement model by treating them as observed
covariates; that is, regressing all observed indicators on the
propensity scores, with equality constraints on the regression
coefficients across the three modes (Muthén, 2002). Partial mea-
surement models were investigated only if full equivalence did
not hold and if the modification indices suggested that a par-
tial equivalence model could improve the model fit. In Table 2,
the qualification of the measurement equivalence includes partial
equivalence. Decisions on model fit were done using the chi-
square difference test (Jöreskog, 1971) because the models tested
against each other are nested. In the case of categorical variables
(<5 categories) the adjusted chi-square was applied using the
DIFFTEST option in Mplus.

Table 2 indicates that full scalar measurement equivalence is
rare for these scales. Correction for demographics (D1), or demo-
graphics plus wave two scales (D1+D2), in general improved
the measurement equivalence. To explain the models behind the
summaries in Table 2, we use (1) the Division Homemaking Tasks
scale (scale 4), as example of a scale that has only configural equiv-
alence; (2) the Parental Obligations scale (scale 9), as example
of a scale where measurement equivalence clearly improves after
propensity score correction; and (3) the Division of Childrearing
Tasks scale (scale 6), as example of a scale that shows good
measurement equivalence throughout.

CONFIGURAL EQUIVALENCE: THE DIVISION HOMEMAKING TASKS
SCALE
The Division Homemaking Tasks scale showed only configu-
ral invariance, meaning that the same factor structure can be
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Table 2 | Summary of results equivalence testing; (p) indicates partial equivalence.

Scale items (cat.) is categorical Scale No correction Correction for D1 Correction for D1+D2

8A – 8E (cat.) Support partner Scalar (p) Scalar (p) –a

9A – 9E (cat.) Conflicts partner Scalar (p) Scalar (p) Scalar (p)

10A – 10D Quality partner relationship Scalar (p) Scalar (p) Scalar (p)

11A – 11E Division homemaking tasks Configural Configural Configural

13A – 13D (cat.) Activities with children No scaleb Configural Configural

14A – 14D Division childrearing tasks Metric Scalar Scalar

24A – 24D Family responsibility expectations Scalar (p) – a Scalar (p)

24E – 24H Filial responsibility expectations Configural Configural Configural

24I – 24L Parental obligations Configural Configural Scalar

24M – 24P Parenthood Scalar (different means) Scalar (different means) Scalar (different means)

30A – 30D (cat.) State vs. family No scaleb No scaleb No scaleb

32A – 32E MHI-5 Metric Configural Metric

33A – 33K (cat.) Loneliness Metric (p) Scalar (p) Metric (p)

35M – 35P Satisfaction with life Scalar (p) (different means) Scalar (p) Metric (p)

The χ2 difference test for categorical analyses is computed using DIFFTEST.
a“–” Indicates that after imposing full scalar equivalence, the model did not fit adequately, but modification indices did not point to specific improvements to the

model.
bRMSEA>0.10 and CFI\TLI < 0.90.

imposed on these five items. The chi-square for the data with
no correction is χ2

(15) = 170.9, p < 0.001, and values of the
fit indices are RMSEA = 0.10 and CFI = 0.96. The model fit
improved when corrections for selection effects were made. When
we correct for demographics (D1) the chi-square is χ2

(23) = 183.0,
p < 0.001 with RMSEA = 0.07 and CFI = 0.96. When both
propensity scores (i.e., demographic D1 and previous wave scale
scores D2) are used for correction, the chi-square for the config-
ural equivalence model becomes χ2

(31) = 189.4, p < 0.001, with
RMSEA = 0.06 and CFI = 0.96. Even with propensity score
corrections, stronger levels of measurement equivalence than
configural were not reached. Table 3 presents the factor loadings
and error variances for all data collection modes for the final con-
figural equivalence model including the D1+D2 propensity score
correction.

Although the data for this scale do not support either metric
or scalar equivalence, it is clear that the loadings are nevertheless
rather similar across the measurement modes. In fact, the cor-
relation between any two columns of loadings is above 0.99. So
it is tempting to invoke some kind of robustness and claim that
modes can be combined and analyzed together, because the errors
that are induced by this formally incorrect combination proce-
dure are small and can be safely ignored. We come back to this in
our discussion.

IMPROVEMENT WITH PROPENSITY SCORE CORRECTION: THE
PARENTAL OBLIGATIONS SCALE
The Parental Obligations scale provides a nice example of
improvement in measurement quality when the propensity score
correction for selection is taken into account. Without adjust-
ment, the chi-square for the configural equivalence model is
χ2

(6) = 25.5, p < 0.001, and the fit indices are RMSEA = 0.05 and
CFI = 1.00. Metric or scalar equivalence cannot be established.
When we correct for demographics (D1) the chi-square for the

Table 3 | Factor loadings and intercepts Division Homemaking Tasks

after D1+D2 propensity score correction: Configural equivalence.

Item Loadings Intercepts

CAPI CATI CAWI CAPI CATI CAWI

11A 1.00 1.00 1.00 2.82 2.55 2.48

11B 0.66 0.65 0.78 2.83 2.68 2.58

11C 0.75 0.69 0.72 2.69 2.55 2.45

11D −0.10 −0.05 −0.11 2.87 3.03 2.81

11E −0.41 −0.47 −0.54 3.00 3.20 3.12

configural equivalence model is χ2
(12) = 38.8, p < 0.001, and the

fit indices are RMSEA = 0.04 and CFI = 1.00. Again, no metric
or scalar equivalence can be established. With adjustment for both
propensity scores (i.e., demographic D1 and previous wave scale
scores D2) the chi-square for the strong scalar equivalence model
becomes χ2

(32) = 69.2, p < 0.001 with fit indices RMSEA = 0.03
and CFI = 0.99. The fit indices are well within conventional lim-
its for good fit, and we conclude that after D1+D2 correction
full scalar equivalence is reached. To illustrate the effect of adding
the correction for scale scores on the previous wave to the demo-
graphics, Table 4 shows the factor loadings for the three modes in
the configural model after D1 correction and under the heading
All the common loadings in the final full scalar equivalence model
(after D1+D2 correction).

In this example it is clear that using propensity score adjust-
ment based on both demographics and previous wave scale scores
leads to full scalar equivalence, which allows analyzing all data dis-
regarding mode effects. It is interesting that without correction
for the D2 propensity scores this is not the case. Again, we could
argue that the loadings are very similar across the three modes,
but in this case it is obviously better to use SEM analysis for
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Table 4 | Factor loadings and intercepts error variances Parental

Obligations Scale, for configural model after D1 correction and full

scalar equivalence model after D1+D2 correction (All).

Item Loadings Intercepts

CAPI CATI CAWI All CAPI CATI CAWI All

24I 1.00 1.00 1.00 1.00 2.41 2.48 2.53 2.49

24J 1.26 1.15 1.19 1.19 2.95 3.01 3.08 3.03

24K 1.02 1.02 1.18 1.14 2.66 2.69 2.81 2.74

24L 0.72 0.67 0.78 0.71 3.40 3.40 3.50 3.45

the substantive research questions, including the two propensity
scores as covariates in all analyses.

FULL METRIC AND SCALAR EQUIVALENCE THROUGHOUT: THE
DIVISION OF CHILDREARING TASKS SCALE
The Division of Childrearing Tasks scale shows full metric equiva-
lence without correction, and reaches full scalar equivalence with
either correction for only D1 (i.e., demographics) and for correc-
tion for both D1 and D2 (i.e., demographic plus previous wave
scale) propensity scores. Without adjustment the chi-square for
the metric equivalence model is χ2

(12) = 15.2, p = 0.23, and the
fit indices are RMSEA = 0.02 and CFI = 1.00. After correction
for demographics (D1) we have a scalar equivalence model with
χ2

(26) = 36.5, p = 0.08, and the fit indices are RMSEA = 0.02 and
CFI = 0.99. After correction for both demographics (D1) and pre-
vious wave scale scores (D2) this marginally improves into a scalar
equivalence model with χ2

(32) = 41.3, p = 0.13, and the fit indices
are RMSEA = 0.01 and CFI = 1.00.

Table 5 shows the loadings and intercepts of the models with-
out correction (metric equivalence) and with correction for
D1+D2 (full scalar equivalence). It is clear that adding covari-
ates to the model brings the intercepts closer together, but from
one model to the next the changes are very small.

CONCLUSION AND DISCUSSION
In this study, we addressed three related research questions. The
first question is if the examined NKPS scales show measure-
ment equivalence. The answer is that by and large they do, but
in most cases we reach only partial measurement equivalence.
The second research question is to what extent measurement
equivalence improves if selection on demographic variables is
controlled, and the third research question is to what extent mea-
surement equivalence improves if scale scores from earlier, single
mode, data collections are added to the control variables. In gen-
eral, our analyses show that measurement equivalence improves if
selection is controlled for, and that these measurement improve-
ments improve more if in addition to demographics also previous
wave scale scores are controlled for. Apparently, besides stan-
dard demographics, responses on an earlier wave play a role too.
However, controlling for selection is not a panacea; there are a
few cases where it does not improve the measurement equivalence
at all, and one case (i.e., scale with items on activities with chil-
dren) were adding the previous scale scores as covariate actually
produces a weaker level of measurement equivalence.

One reviewer raised the question why correcting for propen-
sity scores, which are a summary of demographic differences and
scale score differences on the previous wave, only improves mea-
surement equivalence in four out of 14 scales. One reason is that
propensity score adjustment aims to correct for differential selec-
tion of respondents into specific modes. In addition to selection,
our results point toward real mode effects in the measurement
process. Berzelak (2014) makes a very useful distinction between
mode inherent factors and context specific and implementation
specific characteristics (see also De Leeuw and Berzelak, 2014).
Mode inherent factors are given; examples are the involvement
of interviewers in face-to-face and telephone surveys, absence of
visual design elements in aural survey modes. Such factors are
always present in specific modes. Context specific characteristics
depend on social and cultural factors, such as familiarity with
technology in the target population. These characteristics are dif-
ficult to influence, although they are likely to change over time.
Implementation specific characteristics depend on the way a spe-
cific mode is actually implemented, such as the use of specific
visual design elements in paper and web surveys. These are in
principle under control of the researchers, and may be managed
in a way to counteract context specific or mode inherent factors.
The relatively small impact of our adjustment on the level of mea-
surement equivalence suggests that mode inherent and context
and implementation factors may be more important in mixed
mode surveys than differential selection processes. If this is the
case, research into mode effects and adjustment methods should
attempt to include these characteristics, for example by collecting
and using more paradata (Kreuter, 2015).

The results that we find depend of course on particularities
of the instruments, data collection procedures, and sampling
design employed in the NKPS. As large scale studies tend to
make the switch from the expensive face-to-face mode to other
modes, including mixed mode designs, other data will become
available to investigate the generalizability of our results. In addi-
tion, it would be informative to carry out simulation research
that manipulates potential selection mechanisms and employs
different correction strategies.

The ideal situation is, of course, full scalar equivalence across
modes. If full scalar equivalence is reached, we are justified in
using scale sum scores in our analysis. If partial scalar equivalence
is reached, such sum scores can be misleading, but scale means
can be compared in structural equation models that include
a partially equivalent measurement model. When only metric
equivalence is reached, statements about differences in means,
whether observed sum scores or factor means in a structural
equation model, are not supported and cannot be validly made,
but statements about covariances and correlations are still valid.
When merely configural equivalence is reached, even statements
about correlations can be invalid. In our analysis of the 14 NKPS
scales, we find seven instances of (partial) scalar equivalence and
three instances of (partial) metric equivalence. In three instances
we find configural equivalence, and in one instance (state versus
family support) the analysis shows that the items are not forming
a scale according to any reasonable criterion.

If configural equivalence is established, we are measuring the
same construct, but we measure it in slightly different ways in the
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Table 5 | Loadings and intercepts division childrearing tasks scale.

Item Uncorrected item scores Correction D1 Correction D1 + D2

Loadings Intercepts Loadings Intercepts Loadings Intercepts

CAPI CATI CAWI

14A 1.00 2.57 2.66 2.76 1.00 2.39 1.00 2.32

14B 1.21 2.63 2.48 2.67 1.27 2.45 1.27 2.34

14C 0.63 2.79 2.72 2.79 0.66 2.68 0.66 2.63

14D 1.10 2.74 2.56 2.70 1.13 2.48 1.11 2.37

different modes. If the actual values of the intercepts and loadings
are close to each other across survey modes, as is the case in our
example of the Division of Homemaking Tasks scale, it becomes
very tempting to argue for some kind of robustness, even when
metric or partly scalar equivalence does not hold. If the inter-
cepts and loadings are very close, analysts might make a leap of
faith, simply ignore any differences in intercepts and loadings, and
work with SEM analyses of the combined data set or even com-
pute sum scores for the scales and work with these, again on the
entire data set. In our view, this may be defensible from a prac-
tical standpoint, but the burden of proof is on the researchers.
They should make an attempt to estimate the amount of distor-
tion produced by ignoring the real differences between intercepts
and loadings across modes and demonstrate that the substantive
effects they want to interpret are clearly larger than these measure-
ment differences. Since analyses that follow this approach work
by sweeping some real but hopefully small differences under the
carpet, robust standard errors or bootstrapping should always be
used to assess the real uncertainty in this case, since asymptotic
statistical methods will underestimate the sampling variance.

A different way to deal with small measurement differences
between survey modes is to employ a model that allows them and
includes them explicitly in the model. Bayesian estimation is actu-
ally able to accomplish this, by introducing difference parameters
in the model and by posing a prior distribution with a small vari-
ance for the difference parameters. For an example we refer to van
de Schoot et al. (2013). This is a new and promising approach, but
this is also an area that in our view needs more simulations and
robustness studies to investigate when this approach works well
and when it does not. We recommend that analysts that follow
this approach carry out a sensitivity analysis to demonstrate that
the specific choice of a prior does not have a large effect on the
results for the substantive research questions.

There is a different approach to lack of measurement equiv-
alence, which we have not explored in this study, because in
our data the number of items in a scale was rather small (4-
5). If there are enough items to form a scale there is always the
option of dropping an item to improve the scale properties. The
bare minimum to have a testable measurement model is four
items for each latent variable and the bare minimum for testing
measurement equivalence is three items (cf. Hair et al., 2010).
Hence, if the number of items is larger than three or four, there
is the option of finding the item that shows the largest amount
of measurement non-equivalence and removing that particular
item from the analysis. It follows that if the study is in a phase

of developing measurement instruments and a mixed mode data
collection is considered, it makes perfect sense to design mea-
surement instruments with more than four or five items. From
a SEM measurement point of view, this produces a number of
potential superfluous items, that can in the analysis stage be sac-
rificed on the altar of measurement equivalence, and still leave a
measurement model large enough that it can be tested.

A limitation in our discussion is that we have addressed mainly
the issues that arise after the mixed mode data collection has been
carried out. There is a large literature on designing questionnaires
and fieldwork procedures that are aimed at minimizing mode
effects by careful design. This is a broad topic, which is beyond
the scope of this paper; for an extensive review of the issues that
arise in designing mixed mode surveys we refer to De Leeuw et al.
(2008) and Dillman et al. (2014).

Finally, we note that to distinguish between selection and
mode measurement effects we need auxiliary information. In
our analyses we used demographic data and data from a previ-
ous single-mode measurement occasion. Often the assumption
is made that questions on factual demographic data are insensi-
tive to mode measurement effects; in our case this information
came from register data available from Statistics. Netherlands.
Auxiliary information is also needed when attempts are made
to adjust for mode measurement effects. Vannieuwenhuyze et al.
(2011) discuss methods that use auxiliary data from a single-
mode reference survey. Klausch et al. (in preparation) present a
framework that uses a repeated single-mode survey on the same
respondents, a design that in fact applies to panel surveys such
as the NKPS where at least one measurement occasion is single-
mode. De Leeuw (2005) and De Leeuw and Hox (2011) suggest
to embed r real experimental design in the mixed-mode survey
by assigning a subset of respondents at random to survey modes
instead of allowing self-selection. All these approaches provide
information needed to disentangle selection and measurement
effect, which is a prerequisite to adjustment. Again, adjustment
is a broad topic, and beyond the scope of this paper. However, it
is important that when survey researchers design a mixed mode
study, they anticipate the possible emergence of selection and
measurement effects, and they must design the data collection
in such a way that the necessary auxiliary information is made
available.
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Within structural equation modeling, the most prevalent model to investigate
measurement bias is the multigroup model. Equal factor loadings and intercepts
across groups in a multigroup model represent strong factorial invariance (absence of
measurement bias) across groups. Although this approach is possible in principle, it is
hardly practical when the number of groups is large or when the group size is relatively
small. Jak et al. (2013) showed how strong factorial invariance across large numbers of
groups can be tested in a multilevel structural equation modeling framework, by treating
group as a random instead of a fixed variable. In the present study, this model is extended
for use with three-level data. The proposed method is illustrated with an investigation of
strong factorial invariance across 156 school classes and 50 schools in a Dutch dyscalculia
test, using three-level structural equation modeling.
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INTRODUCTION
The purpose of this study is to show how three-level structural
equation modeling (SEM) can be used to test for measurement
invariance across the Level 2 and Level 3 clustering variables.
The method is illustrated by testing measurement invariance
across school classes and schools in a dyscalculia screening
instrument.

MEASUREMENT INVARIANCE
In order to meaningfully compare test scores across groups, the
test should be measurement invariant with respect to group mem-
bership. When a test is measurement invariant, the differences in
test scores across groups can be attributed to differences in the
constructs that were intended to be measured. The importance
of measurement invariance is widely recognized (Mellenbergh,
1989; Millsap and Everson, 1991; Meredith, 1993; Vandenberg
and Lance, 2000). In order to establish whether a test is mea-
surement invariant across groups, one should test the equality
of measurement parameters across groups. With continuous nor-
mally distributed test scores and continuous normally distributed
latent variables (factors), the linear factor model is the suit-
able measurement model (Mellenbergh, 1994). If the relation
between the factors and the test scores are equivalent across
studies (i.e., if factor loadings are equal across groups), weak
factorial invariance (also labeled as metric invariance) holds. If
in addition the intercepts are equivalent across groups, strong
factorial invariance (also labeled as scalar invariance) holds.
With strong factorial invariance, the means of the factors can
be meaningfully compared across the groups. If in addition the
residual variances are equivalent (strict factorial invariance), the
observed means can be compared across groups (Meredith, 1993;
Widaman and Reise, 1997). In this study I focus on strong
factorial invariance.

STRONG FACTORIAL INVARIANCE ACROSS MANY GROUPS
With a small number of groups, multigroup confirmatory fac-
tor analysis can be used to test the equality of measurement
parameters (e.g., Wicherts and Dolan, 2010). If the number of
groups is large, it may be convenient to view group as a ran-
dom mode of variation, and use multilevel modeling (De Jong
et al., 2007; Fox, 2010). See Muthén and Asparouhov (2013) for
an overview of several fixed and random approaches to the study
of measurement invariance across many groups.

Jak et al. (2013) showed how invariance restrictions across
groups in a fixed model imply across level restrictions in a mul-
tilevel model. In a multilevel structural equation model, the
covariance matrix is modeled as the sum of the covariance matri-
ces at different levels (Muthén, 1990; Rabe-Hesketh et al., 2004).
For a two-level model (for example, if the test scores are from stu-
dents nested in school classes), the total covariance matrix can be
decomposed in two independent covariance matrices:

�TOTAL = �LEVEL2 + �LEVEL1. (1)

The (pooled, within class) differences between students’ scores are
modeled by �LEVEL1. The average score of the school classes may
also differ, these differences are modeled by �LEVEL2. At the dif-
ferent levels, distinct measurement models can be used to describe
the covariances between the test scores. In this study we use linear
factor models:

�LEVEL2 = �LEVEL2�LEVEL2�
t
LEVEL2 + �LEVEL2, (2)

�LEVEL1 = �LEVEL1�LEVEL1�
t
LEVEL1 + �LEVEL1.

With p observed variables and k common factors, �LEVEL2 and
�LEVEL1 are k by k covariance matrices of common factors,
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�LEVEL2 and �LEVEL1 are p by p (diagonal) matrices with resid-
ual variances, and �LEVEL2 and �LEVEL1 are p by k matrices with
factor loadings at Level 2 and Level 1, respectively.

METHODS
STRONG FACTORIAL INVARIANCE IN TWO-LEVEL MODELS
As explained by Jak et al. (2013), with two-level data, strong
factorial invariance across clusters implies:

�LEVEL2 = ��LEVEL2�
t,

and

�LEVEL1 = ��LEVEL1�
t + �LEVEL1. (3)

This means that if there is strong factorial invariance across clus-
ters (so the factor loadings and intercepts are equal across school
classes), the factor loadings are equal across levels, and there is
no residual variance at Level 2 (�LEVEL2 = 0). All differences at
the cluster (school class) level are thus differences in the common
factor(s). If strong factorial invariance does not hold (i.e., if the
intercepts differ across clusters), this results in residual variance
at Level 2 (�LEVEL2 �= 0). Strong factorial invariance across clus-
ters can thus be investigated by testing the significance of Level
2 residual variance in a factor model with equal factor loadings
across levels. This test is denoted the test for cluster bias. The
cluster bias model can test whether strong invariance holds, but
cannot differentiate between violations of weak and strong fac-
torial invariance. The focus of this study is therefore on testing
whether strong factorial invariance holds.

STRONG FACTORIAL INVARIANCE IN THREE LEVEL MODELS
With three-level data, such as test scores from students, nested
in school classes, nested in schools, one may employ three-level
structural equation modeling (Rabe-Hesketh et al., 2004). The
total covariance matrix can be decomposed into three covariance
matrices:

�TOTAL = �LEVEL3 + �LEVEL2 + �LEVEL1. (4)

Here, �LEVEL3 refers to the covariance matrix of school averages,
�LEVEL2 refers to the covariance matrix of class deviations from
the school average, and �LEVEL1 is a covariance matrix of students
deviations from the class average.

In a three-level factor model, the common factors also exist
(have variance) at the third level. For example, with data from
children in school classes in schools, the school averages in the
test scores may be different. If strong factorial invariance across
schools and across school classes holds, then the following model
holds:

�LEVEL3 = ��LEVEL3�
t,

�LEVEL2 = ��LEVEL2�
t,

and
�LEVEL1 = ��LEVEL1�

t + �LEVEL1, (5)

Where �LEVEL3 is a k by k covariance matrix of the common fac-
tors at Level 3. In this model, the common factor is the only source
of variance at the class and at the school level (Rabe-Hesketh et al.,
2004). If other variables than the common factor have influence
at the school level, this will lead to residual variance at Level 3
(�LEVEL3 �= 0), which means that measurement invariance across
schools does not hold.

ILLUSTRATION
INTRODUCTION
Testing measurement invariance across in three-level models
will be illustrated by testing strong factorial invariance across
school classes and across schools in a dyscalculia screening
test. Developmental dyscalculia is a learning difficulty specific
to mathematics learning (Butterworth, 2005; Devine et al.,
2013). Children with developmental dyscalculia have deficits in
understanding basic concepts such as quantity conservation and
reversibility, despite otherwise typically developing mental abili-
ties (Kosc, 1974; Gross-Tsur et al., 1996). Dyscalculia is estimated
to affect between 1.3 and 10% of the population, which is equiv-
alent to the prevalence of dyslexia (Devine et al.). The screening
of dyscalculia will often take place in the school, where a teacher
administers the test to all children in the class. This way, the
teacher can have influence on the test scores of the children. For
example, one teacher may give better instructions than the other,
leading to better test scores (less findings of dyscalculia) in the last
school class. If this happens, the test is not measurement invari-
ant across school class, as differences in test scores are not fully
attributable to differences in dyscalculia (but to differences in
quality of the instruction). At the school level, the school system
may have influence on the test scores. For example, one school
may have a curriculum that involves a different method to teach
mathematics than another school. Or some schools may use more
paper and pencil tests than other schools, leading to more expe-
rience of the students with a testing situation than others. If this
is the case, two students that are equal in their levels of dyscalcu-
lia, may score differently on a screening test, depending on the
school they are in. It is therefore important to establish mea-
surement invariance of an instrument across school classes and
schools. In this example, strong factorial invariance of a Dutch
screening instrument for dyscalculia is tested across school classes
and schools.

METHODS
Data
Respondents were 4527 students from 156 school classes in 50
schools in the Netherlands, of which 20 secondary schools and
30 primary schools. In all schools, the parent-teacher association
or the teacher gave permission for the administration of the test.
The test was administered by the teacher during regular school
time. The students were in the first grade of the secondary school,
or in the last 3 years of primary school. The schools were located
across the country in a way that is representative of the distribu-
tion of people living in The Netherlands. For some schools, the
class identifier was missing, in which case we treated all observa-
tions to be in one cluster. The average number of respondents per
class was 29.02, the average number of respondents in each school
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was 90.54. The mean age of the students was 11.42 (SD = 1.27),
and 49.1% was a boy.

Instrument
The NDS (Nederlandse Dyscalculie Screener; Milikowski and
Vermeire, 2013) is a screening instrument for dyscalculia. The
screening instrument consists of eight subtests with a large set of
items. For each subtest, the respondents try to answer as much
items correctly as possible within 1 min. The score on each sub-
test is the amount of items answered correctly. The tests are long
enough to ensure that no one can finish all questions in 1 min. See
Appendix A for an overview of the content of the eight subtests.
Before the respondents made the eight subtests they performed
a control task, which does not involve numbers, to practice with
the testing situation. The higher the score on each subtest, the
lower the level of dyscalculia is assumed to be. As the scores are
not recoded, the common factor that is assumed to underlie the
test scores is actually the opposite of dyscalculia.

Analysis
All analyses were performed in the program Mplus 7 (Muthén and
Muthén, 1998–2012) using full information maximum likelihood
estimation. In addition to the χ2 - statistic, the root mean squared
error of approximation (RMSEA) and the comparative fit index
(CFI) were used as measures of overall goodness-of-fit. RMSEA
values smaller than 0.08 are satisfactory, values smaller than 0.05
indicate close fit (Browne and Cudeck, 1992). CFI values over 0.95
indicate reasonably good fit (Hu and Bentler, 1999).

First, the intraclass correlations and the significance of the
variance at the class level and school level were inspected to decide
whether multilevel modeling is actually necessary. Next, a mea-
surement model is constructed at Level 1, with a saturated Level
2 and Level 3 model, so that all misfit stems from Level 1. Based
on the final measurement model, a model with equal factor load-
ings across the three levels is fitted. Next, the significance of the
Level 2 residual variance for all indicators is tested, by fixing all
residual variance at Level 2 at zero. A significant chi-square dif-
ference in comparison with the free model indicates significant
measurement bias across school classes. Finally, significance of
Level 3 residual variance is tested by comparing the fit of a model
with the residual variances at Level 3 fixed at zero with the model
from the previous step. All tests are performed using a significance
level of 5%.

Testing variances with the chi-square difference test in this way
is not strictly correct Stoel et al. (2006). Correct testing requires
the derivation of an asymptotic distribution of the likelihood ratio
test statistic, which is a complex mixture of chi-square distribu-
tions. As this is beyond the scope of this work, I accept that the
testing procedure is not correct, and keep in mind that it leads to
an overly conservative test.

RESULTS
The intraclass correlations at the class level varied between 0.19
(Test 4) and 0.43 (Test 8), meaning that 19% to 48% of the vari-
ance in test scores is at the class level. At the school level the
ICC’s were much smaller, varying between 0.4% (Test 5) and 2%
(Test 8). All variables showed significant variance at the class level,

but not at the school level. Based on these results, one could
decide to use two-level modeling instead of thee-level model-
ing. For the purpose of illustration, and because the interest is
in differences between schools, I will continue the analyses using
a three-level model.

First, the goal was to construct a measurement model at Level 1
with a saturated Level 2 and Level 3 model. Unfortunately, the
model estimation did not converge when the Level 3 model
was saturated, presumably because the saturated Level 3 model
was overparameterized (i.e., some Level 3 correlations are actu-
ally zero). As a solution, the measurement model was specified
with a saturated Level 2 model, and with corrections on the
chi-square and standard errors to account for the dependency
due to the school level (using “Type = Twolevel Complex” in
Mplus). A one-factor model fitted the data satisfactory accord-
ing to the RMSEA, χ2

(20) = 304.51, p < 0.05, RMSEA = 0.056,
CFI = 0.93. There was a modification index of a size 10 times
larger than the others for the relation between Test 1 and Test 2.
These tests are indeed quite similar (they both involve choos-
ing the largest number, see Appendix A), so it seems to make
sense that these tests share some specific variance. Adding a
residual covariance between Test 1 and Test 2 leads to a bet-
ter fitting model, χ2

(19) = 135.69, p < 0.05, RMSEA = 0.037,
CFI = 0.97, with close fit according to the RMSEA and good fit
based on the CFI. This model was accepted as the measurement
model. Because it is not possible to model residual correlations
at the higher levels in the next steps, the model was reparam-
eterized by adding a factor on which Test 1 and Test 2 loaded.
This factor was uncorrelated with the common factor, and both
factor loadings are fixed at 1, so the model is equivalent with
the model containing the correlated residuals (the estimate of
the factor variance will be equal to the estimate of the residual
covariance).

Using this measurement model, strong factorial invariance
across school classes and schools is investigated. A model with
equal factor loadings across levels fitted the data satisfactorily (see
Model 1 in Table 1). Fixing the Level 2 residual variance at zero
deteriorated the model fit significantly [�χ2

(8) = 2089.82, p <
0.05], indicating that strong factorial invariance across school
classes does not hold. Constraining the residual variance at Level 3
to be zero (and freely estimate Level 2 residual variance) did not
lead to a significant deterioration of model fit, �χ2

(8) = 6.50,
p = 0.59. This indicates that strong factorial invariance across
schools holds. The Mplus syntax for the final model can be found
in Appendix B.

Table 1 | Fit measures of the three-level models.

Model df χ2 RMSEA CFI

1. Baseline model
(equal factor loadings
across levels)

71 731.95 0.045 0.96

2. Strong factorial
invariance at Level 2

79 2821.77 0.088 0.84

3. Strong factorial
invariance at Level 3

79 738.45 0.043 0.96
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Figure 1 shows the final model (Model 3) with unstandard-
ized parameter estimates. By inspecting the significance of the
residual variance for each indicator at Level 2, it appears that there
is significant measurement bias across school classes for Test 1,
Test 6, and Test 7. Using the parameter estimates, it can be calcu-
lated how much of the variance in these indicators is caused by

class level variables other than (dys)calculia. The proportion of
residual variance with respect to the total Level 2 variance is calcu-
lated as: Residual variance at Level 2/Total variance at Level 2. For
Test 1 for example, the total variance at Level 2 is: 0.01+ 0.682×
0.56 + 0.02 = 0.28, and the Residual variance at Level 2 is 0.02,
so the proportion would be 0.02/0.28 = 0.071. The proportion of

FIGURE 1 | A three-level factor model with equal factor loadings across levels and no residual variance at Level 3. Parameter estimates are

unstandardized. Non-significance is indicated by an apostrophe (′).
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residual variance with respect to the total variance is calculated
as: Residual variance at Level 2/Total variance at Level 1 + Level
2 + Level 3. Table 2 gives an overview of these proportions for the
three biased tests. Test 6 shows the most bias, followed by Test 7
and Test 1. However, the proportions of bias can be considered
quite small in all tests.

Equality of factor loadings brings the factors on the same scale
across levels, which means that the ICC of the factor can be cal-
culated (Mehta and Neale, 2005; Kim et al., 2012). The ICC at
Level 2 is equal to 0.56/ (1 + 0.56 + 0.003) = 0.358, indicating
that 35.8% of the variance in dyscalculia is at the school class level.
At the school level, the ICC is 0.003/ (1 + 0.56 + 0.003) = 0.002,
so only 0.2% of the variance in dyscalculia is at the school level.

CONCLUSION
The analyses indicated that the screening instrument for dyscal-
culia cannot be considered fully measurement invariant across
school classes. That is, in three of the eight subtests, differences
across school classes cannot be fully attributed to differences in
the average level of dyscalculia in the school classes. An expla-
nation for the measurement bias can be found by looking at the
content of the tests, and trying to distil the class level biasing
factor. This is seldom easy, especially if the bias is small. In the cur-
rent example, an explanation for class level bias in general could
be the quality of the instruction that the teachers gave to the chil-
dren. This is supported by the fact that Test 1 and Test 2 are quite
similar (crossing out the largest number) and Test 7 and Test 8 are
quite similar (subtraction and addition), but measurement bias
across school classes is only found for the first tests of these pairs.
In the second tests of each pair, the children already practiced with
the type of assignment, rendering quality of the instruction less
influential. Test number 6 is about filling in a number on a line,
which can be viewed as a different from the other tests in that it
forces respondents to visualize numbers on a straight line, which
may not match the way students learn mathematics from their
teacher. These is no cluster bias detected at the school level. As
the number of schools, as well as the number of classes per school
in this dataset are very small, a possible explanation of this non-
finding is that the test for cluster bias did not have much power to
detect bias at the school level.

DISCUSSION
In this study I illustrated how strong factorial invariance across
the Level 2 and Level 3 clustering variable can be investigated. The
employed method is only suitable to test strong factorial invari-
ance, by rejecting models with zero residual variance at Level 2 or
Level 3. However, the test cannot differentiate between violations
of weak and strong factorial invariance. If �LEVEL2 �= 0, this can

Table 2 | Proportions of variance caused by biasing variables at

Level 2.

Test Proportion bias

Level 2

Proportion bias

Total

Test 1 0.071 0.019
Test 6 0.146 0.031
Test 7 0.090 0.020

also be caused by a difference in factor loadings across school
classes, which is a violation of weak factorial invariance (Jak et al.,
2013). So, if non-zero residual variance is detected, we know that
strong factorial invariance does not hold, but we do not know
if weak factorial invariance holds. An advantage of the current
method is that factorial invariance with respect to Level 2 and
Level 3 variables can be tested, even without having measured
these variables. Non-zero residual variance at a level indicates
bias with respect to some variable at that level, and can thus be
viewed as a global test of measurement invariance with respect
to any variable. If bias with respect to the clustering variable is
found, covariates could be added to the model to explain the bias
(Verhagen and Fox, 2012; Jak et al., 2014). In the current dataset
this was not possible, as we did not have a measure of the sup-
posed biasing factor, and other covariates at Level 2 did not have
significant variance.

THE INTERPRETATION OF RESIDUAL VARIANCE IN MULTILEVEL
MODELS
With equal factor loadings across levels, at the higher levels
of a multilevel factor model, non-zero residual variance always
represents measurement bias. This is not the case in single
level data (or at Level 1), as we cannot distinguish variance
caused by item specific factors from random measurement error
variance.

In a factor model, residual variance stems from a residual
factor (δ) that consists of two components, a structural compo-
nent, s, and a random component, e (Bollen, 1998). With VAR()
denoting variance:

VAR(δ) = VAR(s) + VAR(e), (6)

in which s represents a specific component, that is unique to
the indicator, causing systematic variance in the test score. The
remaining part of the residual variance is caused by a random
component, e, representing measurement error. The expected
value, denoted E(), of the structural component s may be non-
zero, and could be interpreted as the intercept in a factor model:

E(s) = τ. (7)

The random component is unsystematic and has an expected
value of zero:

E(e) = 0. (8)

The residual variance of each indicator is thus equal to the sum of
the variance of the two components, and the mean of the residual
factor is equal to the mean of the structural component.

Zero structural residual variance represents invariance of the
indicator with respect to all variables. As mentioned, in a sin-
gle level model we cannot distinguish structural residual variance
from measurement error variance, rendering it impossible to
identify non-zero residual variance as measurement bias. At the
second (and higher) level of a multilevel model, it is possible to
test whether structural variance is present. Given that the cluster
mean of the random component is expected to be zero (Equation
8), all residual variance at aggregated levels represents structural
variance. Of course, if the number of observations per cluster is
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very small, some random error variance may be aggregated to the
higher level.

ALTERNATIVE APPROACHES WITH TWO-LEVEL DATA
The test for cluster bias is a useful addition to the existing set of
structural equation modeling tools to investigate measurement
bias. However, it is not the only test that can be used to inves-
tigate measurement invariance across clusters in multilevel data.
One of the alternatives to is to test for measurement bias in a fixed
effects model, i.e., in a multigroup model in which each clus-
ter is a group. The equal factor loadings and intercepts across
groups (clusters) in a multigroup model represent absence of
cluster bias. Although this approach is possible in principle, it is
hardly practical when the number of clusters is large. Muthén and
Asparouhov (2013) describe an alternative way to circumvent the
cumbersome strategy of multigroup modeling with large num-
bers of groups, using a 2-step procedure with Bayesian estimation.
They introduce the concept of “approximate measurement invari-
ance,” referring to the analysis of measurement invariance across
several groups using Bayesian SEM (BSEM), see also Van De
Schoot et al. (2013). In Step 1 of the procedure (the analysis of
approximate measurement invariance), in each group the differ-
ence between the group specific measurement parameter (factor
loading or intercept) and the average of the particular parameter
across all groups is estimated. The researcher can then identify
the group with the largest difference between its measurement
parameter and the average parameter as the most deviant group.
In the next step, using BSEM, one estimates a model in which all
factor loadings and intercepts are equal across groups, except for
the groups that were identified as deviant in the previous step.
This is similar to the use of modification indices with maximum
likelihood estimation in a multigroup model, where the most
deviant group will show the largest modification index in an anal-
ysis with equal factor loadings and intercepts. An advantage of the
BSEM method is that it works well for the analysis of categorical
variables, while maximum-likelihood estimation with categori-
cal variables often leads to computational problems due to the
numerical integration involved. A disadvantage of the approxi-
mate measurement invariance approach is that it relies on prior
distributions for the model parameters, and different priors may
yield different outcomes. Muthén and Asparouhov recommend
zero-mean, small-variance priors for the difference parameters.
However, the optimal size of the small-variance of the priors is
a subject of debate. When trying to analyse the dyscalculia data
using the BSEM method, it was unsuccessful due to the enor-
mous computational load with 156 groups. Indeed, I have not
seen applications of the BSEM method with large numbers of
groups.

A framework for the detection of measurement bias across
large numbers of groups within Bayesian Item Response Theory
(IRT) is given by Verhagen and Fox (2012), using multilevel ran-
dom item effects models (De Jong et al., 2007; Fox and Verhagen,
2010). Verhagen and Fox estimate a random effects parameter
for all measurement parameters in the model (i.e., discrimina-
tion parameters and difficulty parameters in an IRT model), and
test which of the measurement parameters have significant vari-
ance across clusters using Bayes factors or using the Deviance

Information Criterion (DIC). Consequently, the cluster level
variance in item parameters may be explained by adding covari-
ates to the model. The approach of Verhagen en Fox is similar
to the approach in this article in some respects. Both approaches
treat groups as randomly drawn from a population of groups.
Both approaches test the hypothesis of zero variance of param-
eters at the cluster level, and both allow for the explanation of
non-zero variance by cluster level variables. The main differences
between the two approaches relate to the modeling framework
(multilevel IRT vs. multilevel SEM), and the estimation method
[Bayesian estimation vs. frequentist (maximum likelihood) esti-
mation]. It is an interesting topic of future research to compare
the outcomes of the two methods.

ALTERNATIVE APPROACHES WITH THREE-LEVEL DATA
Although it seems straightforward to analyse three-level data
with the before mentioned approaches as well, I am not aware
of any published articles in which measurement invariance with
respect to the Level 2 and Level 3 cluster variables is inves-
tigated. One option would be to treat the Level 3 clustering
as fixed, and impose the measurement invariance restrictions
on the two-level models for every school. That is, first mea-
surement invariance across school classes can be investigated
using the test for cluster bias (Jak et al., 2013) for each school
separately, and next the equality of factor loadings and inter-
cepts can be tested across schools (see Muthén et al., 1997).
This approach is not considered very useful, as within each
school, the number of school classes will never be large enough
to obtain stable estimates and have acceptable power to reject
measurement invariance. The BSEM approach can probably be
extended to three-level data, by including difference parame-
ters for the intercepts and factor loadings at the school level
as well as at the class level. One difference parameter would
then reflect how the specific school average differs from the
overall average, and another difference parameter would reflect
how the specific class deviation from the school average differs
from the average class deviation from the school average. The
method of Verhagen and Fox could also be extended to three-level
data, by estimating school level variance for each measurement
parameter.

Although the three-level SEM method is not the only option
to investigate measurement bias in three-level data, it is shown
in this article that it is at least a relatively simple method to use.
At the higher levels of multilevel data, the power of the statistical
tests may not be very large, as the number of higher level units is
often small. In the current example there were 50 schools at Level
3. From simulation research with two-level data (Jak and Oort,
under review), we know that with 50 clusters of size 5, the power
to detect large bias is only 50%. Extrapolating this to the three-
level situation indicates that that in our example, we did not have
high power to detect bias at Level 3. Nevertheless, the illustration
can be useful as an example of how the detection of measurement
invariance in three-level data may be executed.
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An important assumption underlying meaningful comparisons of scores in rater-mediated
assessments is that measurement is commensurate across raters. When raters
differentially apply the standards established by an instrument, scores from different
raters are on fundamentally different scales and no longer preserve a common
meaning and basis for comparison. In this study, we developed a method to
accommodate measurement noninvariance across raters when measurements are
cross-classified within two distinct hierarchical units. We conceptualized random item
effects cross-classified graded response models and used random discrimination and
threshold effects to test, calibrate, and account for measurement noninvariance among
raters. By leveraging empirical estimates of rater-specific deviations in the discrimination
and threshold parameters, the proposed method allows us to identify noninvariant items
and empirically estimate and directly adjust for this noninvariance within a cross-classified
framework. Within the context of teaching evaluations, the results of a case study
suggested substantial noninvariance across raters and that establishing an approximately
invariant scale through random item effects improves model fit and predictive validity.

Keywords: measurement invariance, random item effects, multilevel item response models, teaching,

measurement equivalence

The use of rater inferential judgment is a common and persis-
tent feature of assessments designed to measure latent constructs
across many different fields of research (e.g., Engelhard, 2002).
In these types of assessments, raters typically conduct evaluations
by interpreting evidence (e.g., responses, behaviors) using their
trained, but subjective, judgments. For this reason, the use of
raters to assign scores has been described as an indirect or rater-
mediated process because measurements are not directly observed
but rather inferred through raters’ judgments (Bejar et al., 2006).

An important assumption underlying meaningful compar-
isons in rater-mediated assessments is that measurement is invari-
ant across raters. Measurement invariance across raters suggests
that raters use items similarly so that the relationships between a
latent trait and the manifest items with which it is measured do
not depend upon which rater conducted an evaluation1. When
items function differently across raters, ratings no longer pre-
serve a common meaning and basis for comparison across raters
because scales are rater-specific. In this way, the extent to which
a common scale can be formed across raters depends largely on
the extent to which raters share a common basis for assigning
scores.

Research has shown that a significant source of construct-
irrelevant variation in many rater-mediated assessments arises
from differences among raters in how they apply the standards
established by an instrument (e.g., Hill et al., 2012). Although

1We use the term “item” to describe indicators of a latent trait in a broad sense.

findings of rater differences are not surprising, the magnitude and
item-specific nature of these differences found by recent reports
have demonstrated just how critical of an issue rater variability
can be and raises questions about the degree to which scores from
different raters are on commensurate scales (Kane and Staiger,
2012). Despite extensive and consistent evidence of rater differ-
ences across a broad array of assessments, scores from different
raters are routinely treated as if they were exchangeable across
raters and are often used to make high-stakes comparative deci-
sions (e.g., Baumgartner and Steenkamp, 2001; Engelhard, 2002;
Linacre and Wright, 2002; Eckes, 2009a,b; Schochet and Chiang,
2010; Kane and Staiger, 2012).

In this study, we developed a method to accommodate mea-
surement noninvariance across raters when measurements are
nested within raters and (optionally) cross-classified among other
distinct hierarchical units (e.g., countries). To do so, we extend
cross-classified (multilevel) graded response models to incorpo-
rate random item (discrimination and threshold) effects to test,
calibrate, and account for measurement noninvariance among
raters. By leveraging empirical estimates of rater-specific devi-
ations in the item parameters, the proposed method affords
identification of noninvariant items and empirical estimation
and direct adjustment for noninvariance within a multilevel or
cross-classified framework.

To explore the value of the approach, we applied the pro-
posed method to a case study of repeated classroom measures of
teaching quality using three primary questions. First, we inves-
tigated the extent to which there was evidence of measurement
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noninvariance among raters in cross-classified rater-mediated
assessments of teaching. Second, we examined the extent to which
allowing item parameters to vary across raters improved the rel-
ative and absolute fit of the measurement model as compared to
models that assume invariant item parameters. Finally, because
a primary criterion for the validity of classroom observations is
their efficacy in predicting student achievement gains, we assessed
the extent to which allowing item parameters to vary across
raters improved the predictive efficacy of observation scores as
compared to more conventional approaches.

BACKGROUND
RATER-MEDIATED ASSESSMENTS
Raters have played a critical role in evaluating a wide range of
psychological, cognitive, and physical traits. For example, teach-
ers have been used as raters to assess students’ medication use
and deviant behavior (Conners, 1969; Werry et al., 1975); teachers
have been used to rate children’s levels of hyperactivity (Gordon,
1979); college instructors have been used to rate students’ writing
quality (Sudweeks et al., 2004); school principals or trained raters
have been used to describe and evaluate teaching through port-
folios, instructional diaries, and classroom observations (Brophy,
1986; Kane and Staiger, 2012).

The impetus for the use of rater-mediated assessments stems
largely from the position that they often allow for more authen-
tic and relevant assessments, thereby improving support for the
validity of an assessment. Despite the flexibility and authentic-
ity offered by rater-mediated assessments, they are often paired
with features that, without proper treatment, can undermine
their validity and reliability. In particular, a key threat to their
validity is the construct-irrelevant variance introduced by the
differences among raters in how they award scores (Messick,
1989).

Research across multiple disciplines has demonstrated that
such differences manifest in a number of common ways. Perhaps
the most commonly cited rater effect is the differences among
raters in terms of the severity with which they apply their eval-
uations. Differences in severity occur when some raters provide
ratings that are consistently more severe relative to other raters
(Linacre and Wright, 2002). More complex differences of this
type can also take root when, for example, rater severity varies
across items and/or categories within items. For instance, for a
given item some raters may perceive the implied proficiency lev-
els of two adjacent ratings to be further apart than other raters
do (Eckes, 2009b). Other common rater effects include a halo
effect and a central/extreme tendency effect. Rater halo effects
can occur when raters place undue emphasis on a specific com-
petency (Engelhard, 2002). Central/extreme tendencies manifest
when raters avoid or use only the extreme categories of a scale
(Baumgartner and Steenkamp, 2001).

Together these and other inconsistencies across raters poten-
tially introduce measurement noninvariance because the cat-
egories of a scale may no longer have a consistent meaning
across raters. Left untreated, rater noninvariance has the poten-
tial to unfairly affect outcomes and undermine the relia-
bility and validity of rater-mediated assessments (Messick,
1989).

ANALYSIS OF RATER-MEDIATED ASSESSMENTS
There are a wide variety of approaches to analyzing rater-
mediated assessments (e.g., Baumgartner and Steenkamp, 2001;
Engelhard, 2002; Patz et al., 2002; Wolfe, 2004; Bejar et al., 2006;
De Jong et al., 2007; Lahuis and Avis, 2007; Hill et al., 2012;
Carlisle et al., 2013). We focus our discussion on one common
treatment of rater-mediated assessments that draws on multilevel
measurement models to track rater differences through random
effects (e.g., Lahuis and Avis, 2007). We consider two general data
structures that are relevant to the proposed model and conceptu-
ally outline the application of multilevel measurement models to
these data structures.

Hierarchically nested assessments
In studies focused on the comparative evaluation of individu-
als (e.g., examinees, respondents), assessments are often obtained
through the judgmental scoring of participants on targeted indi-
cators (e.g., behaviors, responses) by individual judges. The
structure of this design is often considered to have a multilevel
organization because participants are hierarchically nested within
raters. As previously noted, an important implication of this
design is that, to the extent that raters vary in their application of
the instrument standards, participants judged by the same rater
share construct-irrelevant variation owing to differences among
raters. As a result, the nested structure of this design potentially
confounds variation in the underlying construct with differences
among raters because variation in awarded scores incorporates
variation owing to both of these components.

Because the goal of rater-mediated assessments is to assess par-
ticipants free of rater influence, research has accounted for rater
differences by introducing rater effects through, for example, a
multilevel item response theory framework (e.g., Lahuis and Avis,
2007). For instance, using an item response model (IRM) where
items are incorporated as fixed effects, associations among items
are decomposed into a component due to the targeted latent
trait and a component designed to capture persistent differences
among raters in terms of their relative severity across all items.
Given dichotomous items, we might express the probability of
receiving a rating of one on item i in for participant t rated by
rater r as following a multilevel IRM (where � is the normal
cumulative distribution function).

P(Yitr = 1) = �(aiθt + aiγr − di) (1)

Here, the probability of obtaining a one on an item is specified as
a function of the level of the targeted construct for participant
t, θt , and the severity of the assigned rater, γr , with associated
item parameters, ai as the discrimination parameter and di as the
threshold parameter. Both latent variables are generally assumed
to have a normal distribution and the scale can be set by fixing the
distribution of θt ∼ N(0, 1).

Cross-classified assessments
Separate from the nesting of participants in raters, rater-mediated
assessments frequently introduce, or sustain other design fea-
tures that further contribute to construct-irrelevant variance.
For instance, repeated measures designs are often purposefully
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employed in conditions where measurement is known to be unre-
liable or sensitive to context (Hill et al., 2012). Similarly, many
measurement designs operate within larger multilevel struc-
tures. For example, participants may be nested within schools or
nested within countries (Steenkamp and Baumgartner, 1998; Fox,
2010).

A common result of these design features is that they introduce
a cross-classified dependence structure in the data because each
participant or observation is simultaneously nested within a rater
and a second distinct non-hierarchical unit (Baayen et al., 2008).
For example, under a repeated measures design, each participant
is observed across multiple observations and each observation is
rated by a different rater. Observations are thus nested within or
cross-classified among participants and raters.

Under the repeated measures design, research has found evi-
dence that scores among items within the same observation are
likely to display excess variance arising from rater differences
and idiosyncratic features of an observation (e.g., participant
had a bad day). Because such excess variance is specific to an
observation and rater and does not generalize beyond a sampled
observation and rater, research has accounted for these effects
by introducing observation- and rater-specific random effects
(e.g., Carlisle et al., 2013). The introduction of random effects
for each mode of the distinct hierarchies gives rise to a cross-
classified (multilevel) IRM. Variation in the targeted latent trait is
now decomposed into three components: a targeted participant
component which persists across observations, an observation-
specific component, and a rater component. Extending the mul-
tilevel IRM in Equation (1), we can now express the probability
of obtaining a particular rating as

P(Yiotr = 1) = �(aiθt + aiαot + aiγr − di) (2)

Equation (2) follows the aforementioned notation but now
expands to accommodate (a) repeated measurements such that
Yiotr is the score on item i in observation o for participant t rated
by rater r and (b) observation-specific deviations for observation
o in participant t (αot).

APPROACHES TO MEASUREMENT INVARIANCE
To assess and substantiate invariance in these applications or cor-
rect for noninvariance, there have been three typical approaches:
full, partial, and approximate invariance. Below we briefly outline
their structure, application, and limitations as they may apply to
rater-mediated assessments.

Full invariance
The conventional approach to assessing/establishing invari-
ance across subgroups is through multiple group analyses. For
instance, continuing with the aforementioned notation from
the repeated measures cross-classified model (2), full invariance
across raters supports

P(Yiotr = 1|R, θ) = P(Yiotr = 1|θ) (3)

(Mellenbergh, 1989). Put differently, for participants with the
same level of the latent trait, the probabilities of a particular

score on an item should not depend on which rater rated an
observation (Millsap and Everson, 1993).

Partial invariance
Measurement becomes noninvariant when the relationships
between a latent trait and items depend on which group an obser-
vation belongs to [e.g., the equality in Equation (3) no longer
holds]. When there is evidence of measurement noninvariance, a
common alternative approach is to adjust for noninvariant items
using a partial measurement invariance approach (Steenkamp
and Baumgartner, 1998). With partial measurement invariance,
multiple group (e.g., rater-specific) measurement models are esti-
mated and linked to form a common scale (across groups) by
capitalizing on items that are invariant across all groups (i.e.,
anchor items). Despite the potential of the partial measurement
invariance approach, literature has highlighted several impor-
tant limitations (e.g., Holland and Wainer, 1993; Vandenberg,
2002; Steinmetz, 2013). Perhaps most germane to multilevel
and cross-classified rater-mediated assessments is that empirical
application of a partial invariance approach requires invariant
items across all groups in order to bridge groups-specific scales.
Lacking invariant items to anchor the scale across raters, multi-
group partial invariance approaches are poorly suited to establish
a common scale across groups (e.g., Holland and Wainer, 1993).
Furthermore, even if two invariant items existed, estimating and
testing for such invariance with a multigroup model would con-
ceptually require estimating a separate measurement model for
each rater. Given a large number of raters, stable estimation of
item parameters would likely require large sample sizes and be
computationally demanding because of the number of estimated
parameters.

Approximate measurement invariance
When full or partial measurement invariance is intractable, a
more flexible approach recently developed is to accommodate
measurement noninvariance through hierarchically defined ran-
dom item effects (Fox, 2010; Rijmen and Jeon, 2013). The proto-
typical application involves cross-national comparisons of latent
traits with respondents nested within countries (Fox, 2010). To
facilitate cross-national comparisons, measurement invariance
requires items to function similarly in each country. When items
are not invariant across countries, the approximate measure-
ment invariance approach uses random item effects to model
the extent to which item parameters vary across countries. This
approach establishes an international measurement scale across
countries using the mean of item parameters across all countries.
Country-specific noninvariance in item parameters is then con-
ceptualized as deviations from the international item parameters
and captured through country-specific random item effects.

There are two primary practical advantages to this frame-
work. First, in theory, a common scale can be established and
cross-group comparisons can be made even when no items are
strictly invariant across countries (Fox, 2010). Second, because
the framework draws on random instead of fixed item effects,
it presents a much more parsimonious representation of the dif-
ferences among groups in terms of estimated model parameters.
Investigations that include many groups are more feasible because

www.frontiersin.org December 2014 | Volume 5 | Article 1469 | 135

http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Kelcey et al. Invariance in rater-mediated assessments

the number of estimated parameters does not increase rapidly
with the number of groups.

A nascent but growing body of research has demonstrated
the potential of this approach (De Boeck, 2008; Muthén and
Asparouhov, 2013). Simulation studies have shown that the mul-
tilevel random item effects framework recovers both overall and
group-specific item parameters well in a variety of settings (Fox
and Verhagen, 2010). Similarly, simulations assessing the com-
parative performance of invariance approaches have suggested
that the approximate measurement invariance approach out-
performs full and partial invariance approaches when there are
many small differences in item parameters (Van de Schoot et al.,
2013). Substantive applications have also emphasized the value
of multilevel random item effects methods in accounting for
response heterogeneity across groups (De Jong et al., 2008; Fox
and Verhagen, 2010).

MODEL FORMULATION
When an IRM, such as those noted above, fit the data, we can
separate estimates of the targeted latent trait from the distribu-
tional properties of items such that estimates generalize beyond
the sampled observations and raters (Linacre, 1989). The criti-
cal assumption that allows for the separation of the latent trait
from item characteristics is that measurement is invariant across
subgroups of a population (Van de Schoot et al., 2013). Given a
multilevel or cross-classified data structure, the conditions under-
lying the validity of this separation require invariance across each
facet (e.g., participants, raters, observations).

More conceptually, construct-irrelevant variation can be split
into two principal sources—latent trait side variation and item
side variation. Latent trait side construct-irrelevant variation
arises when the actual latent trait varies across design facets such
as raters and/or observations. In contrast, item side variation
arises when the underlying relationships between items and a
latent trait vary across, for example, raters.

Under this division of construct-irrelevant variation, the afore-
mentioned measurement models (Equations 1, 2) solely address
latent trait variation across facets because they (only) decom-
pose the variation in a latent trait into components uniquely
attributable to each facet and do not address how item parame-
ters vary across facets. Put differently, the latent trait side random
effects models presented above account for the extent to which the
latent trait of a participant is deflected by, for example, the relative
severity of a rater and/or the atypical nature of an observation.
In this way, latent trait side random effects models accommo-
date threshold differences among raters and observations only
if these differences manifest consistently and uniformly for all
items. If rather threshold differences among raters/observations
vary across items or if discrimination parameters differ, latent
trait side random effects models will not be sufficient to separate
the latent trait from item characteristics because measurement is
not invariant across facets.

Rather, in the presence of item side variance, separation of the
latent trait from item characteristics would require direct treat-
ment of measurement noninvariance. Applied to cross-classified
rater-mediated assessments, conventional approaches, such as the
partial invariance approach, are however particularly challenging
because studies tend to draw on large number of raters and only a

small number of items per latent trait. To relax assumptions of
measurement invariance across raters, we developed a random
item effects cross-classified (multilevel) graded response model.
Our specification first drew on a graded response model parame-
terization such that observed item scores were treated as fallible
ordinal ratings stemming from a targeted latent trait. Second,
because many rater-mediated assessments operate within cross-
classified (multilevel) designs, we leveraged a cross-classified
(multilevel) graded response model to introduce random effects
for distinct hierarchical units (e.g., raters). Third, we accom-
modated noninvariance across raters by permitting item dis-
crimination and threshold parameters to vary across raters (and
potentially another hierarchical unit) using random item effects
(Fox, 2010). Under a repeated measures design, we express our
model as

P(Yiotr = k) = �(aiθt + airαot + airγr − dk−1
ir )

− �(aiθt + airαot + airγr − dk
ir) (4)

Here Yiotr is the ordinal score for item i in observation o for par-
ticipant t rated by rater r, ai represents the average discrimination
parameter for item i across all raters, θt represents a participant’s
persistent level of the targeted latent trait (i.e., across all observa-
tions), air is item i’s discrimination parameter under rater r, αot

is the latent trait deviation specific to observation o for partic-
ipant t, and γ r is the deviation capturing consistent differences
among raters in terms of their relative severity across all items.
Let K represent the number of categories items are graded on

with k as a specific category and let d(1)
ir ,..., d(K − 1)

ir be a set of
K–1 ordered item thresholds. That is, γ subsumes threshold dif-
ferences among raters that are consistent across items, whereas d
captures threshold differences among raters that are item-specific.
To set the scale, let θ ∼ N(0, σ 2

t ), α ∼ N(0, 1), γ ∼ N(0, σ 2
r ),

air ∼ N(ai, σ
2
a,i), and dk

ir ∼ N(dk
i , σ

2
d,i).

In this particular specification, we used an independent ran-
dom item effects structure and restricted item parameters to vary
across only a single level two unit (raters). However, the model
could be further extended to consider covariance among ran-
dom item effects parameters and/or to allow item parameters to
vary across both level two units (e.g., raters and participants).
Similarly, we applied the mean item parameters across raters
as the inter-rater item parameters and use these to construct
an inter-rater scale. However, there are many reasonable and
potentially more appropriate alternatives.

For instance, one alternative specification estimates the dis-
crimination parameter applied to a participant’s persistent level
of the targeted latent trait (θt) separate from the observation level
discrimination parameter (air).

P(Yiotr = k) = �(a(t)
i θt + a(o)

ir αot + airγr − dk − 1
ir ) − �(a(t)

i θt

+ a(o)
ir αot + airγr − dk

ir) (5)

Here we now use a(o)
ir as the observation level discrimination

parameters (where a(o)
ir ∼ N(a(o)

i , σ 2
a,i)) and introduce a(t)

i as the
participant level discrimination parameters which are nonran-
dom and unconnected to the observation level discrimination
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parameters. Under this specification, the scale of θt can be set by
fixing its distribution to θ ∼ N(0, 1).

The proposed model can also be adapted to accommodate
other cross-classified or multilevel structures. For example, as
noted earlier, many measurement designs operate within larger
multilevel structures. Consider for example a design in which par-
ticipants are cross-classified among raters and schools in which
we track measurement noninvariance across raters. Under this
design, the targeted latent trait of a participant now operates at
lowest level of the hierarchy. With some slight changes in notation
we can modify Equation (4) so that

P(Yitsr = k) = �(aiθs + airαts + airγr − dk − 1
ir )

− �(aiθs + airαts + airγr − dk
ir) (6)

Here Yitsr is the ordinal score for item i of participant t in
school s rated by rater r, ai represents the average discrimina-
tion parameter for item i across all raters, θs represents the school
effect or school-specific deviation in the latent trait, air is item
i’s discrimination parameter under rater r, αts is participant t’s
level of the targeted latent trait, and γr is the deviation spe-
cific to rater severity. Remaining notation and constraints are
unchanged.

Our formulation of approximate measurement invariance
models for rater-mediated assessments within a cross-classified
(multilevel) structure is an extension of the multilevel IRM
with random item effects (Fox, 2007). The proposed method
first conceptualizes rater-mediated assessments and differential
item functioning across raters within a multilevel random item
effects framework. In turn, the method extends strictly hierar-
chical structures to accommodate cross-classified data structures
where level one units (e.g., observations) are simultaneously
nested within two independent level two units (e.g., raters and
participants). Subsequently, we used this cross-classified frame-
work to introduce hierarchically defined latent variables for both
the targeted construct and the items to capture their respective
variability across distinct level two units.

As noted earlier, construct-irrelevant variation can be con-
ceptually split into two principal sources—latent trait and item
side variation. Latent trait random effects (e.g., Equations 1, 2)
serve to decompose the variation in a latent trait across facets.
In contrast, item side random effects serve to capture the extent
to which items function differently across hierarchical units. By
simultaneously introducing latent trait and item side random
effects, we permit a latent trait to vary across hierarchical units
and items to function differently across those hierarchical units.
When the proposed model fits the data, decomposing the latent
trait and adjusting for differential item functioning across raters
through random effects can establish an inter-rater scale such
that the latent trait is separable from construct-irrelevant varia-
tion. In this way, estimates of a targeted latent trait from models
that accommodate both latent trait and item side variation are
more likely to generalize beyond the sampled observations and
raters.

The key addition in the approach is the introduction of
item side random effects across raters within a cross-classified

framework. Random item effects are intended to not only identify
noninvariance but also to track it through empirical estimates of
the differences among raters. Under a Bayes approach, empiri-
cal estimates of rater-specific differences in item parameters are
obtained using a mix of the inter-rater item parameters, which
are based on all observations, and rater-specific item parameters,
which are based on the particular observations a rater has rated.
Rater-specific differences in item parameters are estimated using
a shrinkage estimator where the amount of shrinkage toward the
inter-rater estimates is a function of how precisely we can iden-
tify raters’ differences from the mean. In this way, random item
effects allow us to borrow strength from the larger pool of raters
to improve estimates for individual raters, especially those for
which we have little information. The shrinkage of rater-specific
item parameters toward inter-rater parameters has been shown
to reduce the mean-squared error of rater-specific estimates and
is widely used elsewhere (Lindley and Smith, 1972; Raudenbush
and Bryk, 2002; Fox, 2010).

In situating the proposed repeated measures model (Equation
4) among more conventional models, a single level IRM assumes
that associations among items derive solely from a targeted latent
trait. A multilevel IRM with observations nested within partic-
ipants (ignoring raters) suggests that associations among items
derive from a persistent component of a targeted latent trait and
observation-specific deviations. Use of a cross-classified IRM with
observations cross-classified among raters and participants sug-
gests associations among items are a function of a persistent
component of a targeted latent trait, observation-specific devi-
ations, and deflections due to consistent differences in severity
among raters. In these latent trait side (only) random effects mod-
els, item parameters are assumed to remain equal across raters. If
we further introduce random item effects into the cross-classified
model (Equation 4), we relax this assumption of equality of
item parameters across raters and allow the discrimination and
threshold parameters to vary.

ESTIMATION
The cross-classified structure of this model combined with the
potential for a large number of latent variables renders max-
imum likelihood estimation computationally challenging with
even a few items because it would require high dimensional
numerical integration. A more practical option in this context is
Bayesian methods (Gelman et al., 2004; Fox, 2007; Asparouhov
and Muthén, 2012). Albert and Chib (1993) described a Gibbs
sampler for a graded response model by using normally dis-
tributed latent item responses, Ziotr . Under this formulation, an
observed ordinal response, Yiotr , is used as an item of a nor-
mally distributed latent item response, Ziotr , which is placed into
a response category defined by threshold parameters dk

ir such that
Ziotr is defined as

Ziotr|Yiotr = k, θt, αot, γr, dk
ir, dk − 1

ir , air, ai ∼ N(aiθt

+ airαot + airγr, 1)I(dk − 1
ir < Ziotr ≤ dk

ir) (7)

This framework and its variations have been extended to
incorporate multilevel structures and can be implemented in, for
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example, Mplus (De Jong et al., 2007; Asparouhov and Muthén,
2010a,b; Fox, 2010; Muthén and Muthén, 1998–2012).

TESTING FOR NONINVARIANCE
Having introduced random item effects to accommodate mea-
surement noninvariance across raters, a relevant question is how
we might test for evidence of (non)invariance. If measurement
invariance holds, the variance of the random item effects across
raters should be zero (e.g., σ 2

a,i = 0). That is, if the variance of the
random item effects is zero, item parameters are consistent across
raters and measurement is invariant. However, departures from
zero for specific items suggest that measurement is noninvariant
across raters because the relationship between an item and the
latent trait is not consistent across raters.

To examine evidence for measurement invariance and assess
relative model fit, we can employ Bayesian tests of measurement
invariance (Verhagen and Fox, 2013). These tests evaluate the
variance components of the random item effects by using the
Bayes factor to compare the ratio of the marginal likelihood of
the null model (invariance) with the marginal likelihood alterna-
tive (noninvariance). Within the context of random item effects
models, Bayesian tests of measurement invariance can be used
to test invariance for each item parameter simultaneously by
comparing models estimated with a diffuse prior against those
using an informative prior concentrated at zero (e.g., inverse
gamma distribution with a small scale parameter). Such com-
parisons potentially identify differential item functioning and
directly assess the extent to which the fit of a model with fixed
item parameters is improved upon by allowing item parameters
to vary. Additional tests of, for example, factor variance invari-
ance can also be investigated (e.g., Steenkamp and Baumgartner,
1998).

APPLICATION
To probe the potential value and utility of the proposed meth-
ods, we applied our proposed model to a study of teaching quality
using repeated classroom observations of mathematics teach-
ing. As noted earlier, we investigated three questions focused on
(a) evidence of noninvariance, (b) improvements in relative and
absolute fit, and (c) improved predictive validity. Although we use
this application as an initial case study of the proposed method,
we are cautious to note that the correct underlying model is
unknown because it is an empirical investigation. For this reason,
the extent to which differences among approaches represent true
gains or the extent to which these gains might be generalizable is
unknown and needs to be studied further.

DATA DESCRIPTION
In assessments of teaching quality, classroom observations of
teaching are generally carried out by having trained raters evalu-
ate teachers across multiple observations using a fixed set of items.
Teaching evaluation instruments typically focus raters’ attention
on behaviors that exemplify an implicit theory of effective teach-
ing. For each item, the guiding rubric that accompanies each
instrument typically provides specific examples and descriptive
anchors for each category of a scale and raters typically provide
ordinal assessments for each item in each observation.

Like other types of rater-mediated assessments, a significant
source of construct-irrelevant variation in classroom observa-
tions is differences among raters in their judgments (Kane and
Staiger, 2012). The issue of rater differences can be especially
pronounced in modern classroom observation systems because,
unlike their historical counterparts, modern systems go beyond
simple low inference checklists and rely more on inferential
judgments. Recent investigations have demonstrated that even
with extensive rater training, substantial differences among raters
persist (Bell et al., 2012; Hill et al., 2012; Kane and Staiger, 2012).

Our data on teaching quality came from the National Center
for Teacher Effectiveness study, which focused on identifying
teacher characteristics and teaching practices that correlate with
teacher effects as measured through student test score outcomes.
Data for this analysis focus on classroom observations across two
academic years of 150 fourth- and fifth-grade mathematics teach-
ers and their students situated within across four large urban
school districts in the Eastern United States. Each observation
lasted about an hour and teachers were observed over three differ-
ent occasions across an academic year. For each of these occasions,
teachers were rated using the Mathematical Quality of Instruction
(MQI) classroom observation system (Hill et al., 2008).

Teacher quality measure
The MQI observation system is a subject-specific observation
instrument that was designed to provide a balanced view of
mathematics instruction (Hill et al., 2008). In the current inves-
tigation, we focused our analyses on a general teaching qual-
ity domain which was captured using four ordinal items. The
first item measured the extent to which the observed classroom
work was consistently and directly connected to mathematics
content (CWCM). The second item, richness of the mathemat-
ics instruction (RICH), captured the depth of the mathematics
offered to students (Hill et al., 2008). The third item, Working
With Students (WWS), captured the quality with which teachers
understand and respond to students’ mathematically substan-
tive productions. The final item measured student participation
in meaning-making and reasoning (SPMMR). This item cap-
tured students’ involvement in cognitively demanding tasks and
the extent to which students participated in and contributed to
meaning-making and reasoning.

For each observation, raters independently evaluated teachers’
instruction along each of the items by grading them on an ordinal
scale ranging from a low of one to a high of three according to the
descriptive anchors provided by the MQI rubric. The only excep-
tion was the CWCM item which was dichotomous. As a result,
evaluations for each observation consisted of ordinal scores on
a fixed set of items with each observation cross-classified by two
hierarchical grouping structures—teachers and raters.

Each of the 39 raters in this study completed an online MQI
training program (approximately 16 h) and then passed a subse-
quent certification exam. Raters also completed weekly calibra-
tion exercises where their scores were compared to master scores
on clips of instruction. These scores were discussed in weekly
webinars with master raters to help prevent rater drift. Raters who
demonstrated problematic scores or rationales were remediated
by master raters.
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Student achievement measure
To measure student achievement, we used a researcher developed
test administered to students in all four districts during the fall
and spring semesters of the 2010–11 and 2011–12 school years.
Items on this low-stakes mathematics assessment were designed
to align with fourth and fifth grade Common Core mathematics
standards, and covered topics such as numbers and operations,
algebra, and geometry and measurement. Reliability of the test
ranged from 0.82 to 0.89, depending on the form (Hickman et al.,
2012).

To measure the average student achievement gains associated
with each teacher in our sample, we estimated the following
hierarchical linear model.

aj,t,f = Aj,t,f −1π + Xj,f β + ξ + μt + ζt,f + εj,t,f (8)

The outcome variable, aj,t,f , represents the performance on the
mathematics assessment of student j taught by teacher t, at time
f. The model conditioned on a vector of prior achievement mea-
sures, Aj,t,f −1, which includes a cubic polynomial term for prior
achievement on the same assessment2 , a standardized English
assessment, and their classroom aggregates; time varying demo-
graphic indicators, Xj,f , for student j at time f (which include race,
gender, subsidized-lunch eligibility, English language learner sta-
tus, and special education status; and indicators for district, grade,
and year of the assessment, ξ); and residual effects for the teacher
(μt), time(ζt,f ), and student (εj,t,f ). To estimate the underlying
teacher effect or “value-added” score, we used the empirical Bayes
residual for each teacher.

METHOD
We applied the previously described random item effects cross-
classified graded response model (Equation 4). We estimated the
models in Mplus using the default diffuse prior distributions (see
Appendix). Prior distributions for the discrimination parameters
were normal with mean zero and variance five; for the thresh-
olds the prior distributions were normal with mean zero and
infinite variance, and for the variance parameters the prior dis-
tributions were log uniform bounded by negative and positive
infinity. Subsequent inferences were conducted on the posterior
medians and standard deviations. For each model, we ran two
chains using a burn-in of 25,000 MCMC iterations and up to
100,000 post-burn-in iterations with convergence determined by
the default potential scale reduction criteria implemented in Mplus
and Gelman-Rubin diagnostics (Gelman and Rubin, 1992).

To assess evidence of measurement noninvariance, we first
examined the variances of the item effects and their poste-
rior distributions. To further appraise evidence for measurement
invariance and assess relative fit, we employed the aforementioned
Bayesian tests of measurement invariance for the null hypoth-
esis that the variance of each item parameter was zero. To do
so, we re-estimated the random item effects models using an
inverse gamma (informative) prior with a shape parameter value

2One district did not take the study distributed assessment in the fall semester
of school year 2010–11 (pretest), so we used student performance on the state
standardized math exam in its place for this prior achievement control.

of one and a scale parameter value of 0.005. We then explored
the absolute fit using simple posterior predictive checks (Gelman
et al., 2004). Finally, we evaluated the predictive capacity of the
models by correlating teaching quality with value-added scores.
Throughout the analyses we compared the results of the ran-
dom item effects cross-classified graded response model with
the results of alternative models which assume measurement
invariance to assess the potential differences across models.

RESULTS
Table 1 presents the posterior item parameter estimates (on a
probit scale) from a single level, a multilevel (occasions nested
within teachers), a cross-classified (occasions nested within teach-
ers and raters), and a random item effects cross-classified graded
response models (Equation 4). For each model without random
item effects, we present the item parameters and their uncertainty
as captured by the posterior standard deviation. For the model
which incorporates random item effects, we include the inter-
rater item parameters and the uncertainty of those means using
the posterior standard deviation. In addition, we summarize the
variability of the item parameters across raters and 95% poste-
rior intervals because the distributions of variance estimates are
frequently skewed.

The results of the random item effects model suggested that
the item discrimination and threshold parameters varied across
raters and thus were noninvariant (Table 1). Based on their pos-
terior distributions, 95% posterior intervals suggested that the
variance of their discrimination and threshold parameters was
significantly different than zero. When the magnitude of item side
variation across raters for each item is placed alongside the vari-
ance of the latent trait attributable to raters, the results suggested
item side variation for each item was about half as large. That is,
the variance in the latent trait across raters was about 0.26 (see last
row of Table 1) whereas the average variance of item parameters
among raters across all items was 0.13 (average of item variances
in Table 1).

To put this into context, consider the Richness item. The esti-
mated variance implies that although the item discrimination
parameter was on average about 1.05 across all raters, the discrim-
ination parameter for this item varied depending on who rated an
observation (Table 1). For a rater who is two standard deviations
above average, the estimated discrimination parameter could be
as high 1.67 (using double the square root of the “Item Variance
Across Raters” column in Table 1). In contrast, a rater who is two
standard deviations below average, the estimated discrimination
parameter for the same item could be as low as 0.43.

To illustrate the implications of this noninvariance, Figure 1
describes the item characteristic curves across raters for the rich-
ness item for the first threshold. In this figure, the dark curve
represents the inter-rater item characteristic curve which is the
average across all raters. In contrast, the gray curves describe the
item characteristic curves for raters who are approximately one
or two standard deviations above or below the average discrim-
ination and threshold estimates for this item. Evident from this
figure, which rater rates an observation has important implica-
tions for the scale of ratings and the extent to which teachers are
placed on a similar scale.
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Table 1 | Discrimination and threshold parameters.

Single Multilevel Cross-classified Random item effects cross-classified

Parameter Est SD Est SD Est SD Est SD Item variance Low High

across raters

DISCRIMINATION (ai)

RICH 1.14 0.04 1.08 0.04 0.99 0.05 1.05 0.07 0.10 0.05 0.20

WWS 1.39 0.07 1.18 0.06 1.15 0.05 1.46 0.11 0.19 0.08 0.44

CWCM 0.79 0.06 0.78 0.07 0.76 0.06 0.74 0.09 0.08 0.02 0.21

SPMMR 1.33 0.06 1.23 0.05 1.17 0.06 1.16 0.07 0.11 0.05 0.23

THRESHOLD (di)

RICH(1) 0.61 0.03 0.72 0.07 0.74 0.12 0.56 0.12 0.12 0.06 0.24

RICH(2) 2.57 0.06 2.88 0.08 2.93 0.14 2.71 0.13

WWS(1) 0.53 0.04 0.57 0.04 0.64 0.13 0.48 0.15 0.07 0.01 0.24

WWS(2) 2.75 0.10 2.80 0.07 2.94 0.14 3.12 0.20

CWCM(1) −1.98 0.06 −2.24 0.12 −2.25 0.15 −2.39 0.15 0.09 0.02 0.25

SPMMR(1) 0.83 0.04 0.94 0.08 1.03 0.16 0.83 0.13 0.25 0.13 0.49

SPMMR(2) 2.78 0.09 3.06 0.12 3.24 0.19 2.97 0.15

LATENT TRAIT VARIANCE

Observations 1.00 — 1.00 — 1.00 — 1.00 —

Teachers — — 0.34 0.05 0.40 0.06 0.32 0.06

Raters — — — — 0.28 0.09 0.26 0.09

Est, estimate; SD, standard deviation; Item Variance Across Raters, the item-specific random effect variance across raters (σ 2
a,i , σ

2
d,i ); Low and High, the lower and

upper bounds of the 95% posterior interval respectively.

FIGURE 1 | Item characteristic curve for a single item across different

raters.

To formally test measurement invariance across raters for
each item and to assess relative fit, we re-estimated the random
item effects model using an inverse gamma prior distribution of
IG(1, 0.005) for the variance of each item parameter to test the
null hypotheses that each of the variances was less than 0.001,
0.01, or 0.1. Using a common cutoff of about three for Bayes
factor, the results for each threshold and discrimination param-
eter uniformly indicated that the variance of the random effects

was different than zero (Jeffreys, 1961). In Table 2, we present
the estimated variance along with the bounds of its 95% credi-
ble intervals and the Bayes factors for each item parameter under
the hypotheses that the respective variance is less than 0.001, 0.01,
or 0.1.

We further examined the fit of the models using posterior pre-
dictive checks for items. Overall, we found little difference across
models. Table 3 contrasts the observed probability for each cate-
gory by each item with the model based predicted probability for
each model. In each case, the model largely recovers the observed
probabilities. The multilevel model slightly misestimated proba-
bilities for the RICH and CWCM items, the cross-classified model
without random item effects slightly misestimated the RICH
and SPMMR items, and the random item effects cross-classified
model slightly misestimated the CWCM item.

To further contrast the methods, we examined the correspon-
dence of their teaching quality estimates. We first examined the
correlation among scores from alternative methods. Results indi-
cated that estimates from alternative methods were correlated
with the proposed method between 0.89 and 0.93 (Table 4). Next,
we considered the discrepancy among implied teacher classifica-
tions. Current and forthcoming policy often requires that teachers
be stratified into about four categories (e.g., Hansen et al., 2013).
For each set of scores we classified teachers into quartiles and
identified the percentage of discrepant classifications. Results
indicated that discrepancy rates between the proposed method
and the alternative methods were relatively high and ranged from
23 to 37% (Table 5). Put differently, based on a sample size of 150
teachers, approximately 35 to 56 would be classified differently
across methods.
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As noted earlier, a primary benchmark for the validity of
classroom observations is their efficacy in predicting student
achievement gains. To examine our final research question,
we investigated the extent to which allowing item parameters
to vary across raters improved the predictive validity of the
teaching observation scores as compared to more conventional
approaches. To get a sense of the extent to which improvements
in predictive validity were attributable specifically to random item
effects across raters, we examined correlations for models that
sequentially introduced key features. Table 6 displays the corre-
lations between teachers’ value-added scores and their teaching
quality estimates from the single level, multilevel, cross-classified,
and random item effects cross-classified models.

The results suggested gains as models increasingly took into
account integral features of classroom observation data. Using
simple averages, the correlation between observation and value-
added scores was 0.11. By applying item response theory and
acknowledging the ordinal nature of the scale, this correlation
increased by about 10%. By introducing random observation
effects through a multilevel model to account for the dependence

Table 2 | Test of measurement invariance for item parameters.

Parameter Variance Low High BF < 0.001 BF < 0.01 BF < 0.1

THRESHOLD

RICH 0.12 0.06 0.24 0.000 0.000 0.576

WWS 0.07 0.01 0.24 0.623 0.668 1.009

CWCM 0.09 0.02 0.25 0.053 0.276 0.884

SPMMR 0.25 0.13 0.49 0.000 0.000 0.009

DISCRIMINATION

RICH 0.10 0.05 0.20 0.000 0.000 0.858

WWS 0.19 0.08 0.44 0.000 0.000 0.353

CWCM 0.08 0.02 0.21 0.172 0.256 0.986

SPMMR 0.11 0.05 0.23 0.000 0.001 0.783

BF, Bayes factor for each item parameter under the hypotheses that the respec-

tive variance is less than 0.001, 0.01, or 0.1; Low and High, the lower and upper

bounds of the 95% posterior interval respectively.

of items within an observation, the correlation increased an addi-
tional 30%. In contrast, further introducing a random effect
for raters through a cross-classified model (but restricting item
parameters to be invariant across raters), decreased the correla-
tion by about 10%. However, once we allowed for random item
effects, the cross-classified model again increased the correspon-
dence between observation and value-added scores. Moreover,
although 95% intervals for the correlation between observation
and value-added scores included zero across models without ran-
dom item effects, the 95% interval for the correlation excluded
zero for the model with random item effects.

DISCUSSION
Although strict measurement invariance across raters is optimal,
the reality is that it will rarely hold in rater-mediated assessments.
Developing measurement models that are more tightly attuned
to the types of measurement errors present in rater-mediated
assessments is likely to improve the validity and comparability
of scores across raters and other sources of construct-irrelevant
variation. The proposed method relaxes assumptions of measure-
ment invariance in cross-classified (multilevel) rater-mediated
assessments by introducing random item effects to test for non-
invariance and empirically construct an inter-rater scale. More
conceptually, the approach helps to identify the “ruler” each rater
uses to conduct his/her assessments, construct an inter-rater scale,

Table 4 | Correlation among observation scores from different

methods.

Method RIE-CC CC ML Single Averages

RIE-CC 1.00 0.93 0.91 0.90 0.89

CC 0.93 1.00 0.92 0.91 0.92

ML 0.91 0.92 1.00 0.96 0.95

Single 0.90 0.91 0.96 1.00 0.99

Averages 0.89 0.92 0.95 0.99 1.00

RIE-CC, random item effects cross-classified graded response model; CC, cross-

classified graded response model; ML, multilevel graded response model;

Single, single level graded response model

Table 3 | Posterior predictive checks for item fit (95% posterior intervals).

Item category Observed Single level Multilevel Without random item effects With random item effects

Low High Low High Low High Low High

RICH0 0.656 0.649 0.663 0.648 0.692 0.637 0.709 0.618 0.69

RICH1+ 0.344 0.337 0.351 0.308 0.352 0.291 0.363 0.31 0.382

RICH2 0.044 0.042 0.047 0.031 0.043 0.027 0.042 0.034 0.052

WWS0 0.622 0.613 0.629 0.604 0.65 0.597 0.676 0.573 0.656

WWS1+ 0.378 0.371 0.387 0.35 0.396 0.324 0.403 0.344 0.427

WWS2 0.053 0.05 0.057 0.043 0.058 0.038 0.059 0.045 0.071

CWCM0 0.060 0.058 0.062 0.042 0.052 0.041 0.061 0.035 0.05

CWCM1 0.940 0.938 0.942 0.948 0.958 0.939 0.959 0.95 0.965

SPMMR0 0.691 0.683 0.698 0.678 0.723 0.676 0.749 0.668 0.738

SPMMR1+ 0.309 0.302 0.317 0.277 0.322 0.251 0.324 0.262 0.332

SPMMR2 0.047 0.044 0.05 0.034 0.048 0.027 0.044 0.03 0.047
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Table 5 | Discrepant classification rates among methods.

Method RIE-CC CC ML Single Averages

RIE-CC 0.00 0.23 0.32 0.37 0.33

CC 0.23 0.00 0.26 0.30 0.32

ML 0.32 0.26 0.00 0.24 0.23

Single 0.37 0.30 0.24 0.00 0.09

Averages 0.33 0.32 0.23 0.09 0.00

RIE-CC, random item effects cross-classified graded response model; CC, cross-

classified graded response model; ML, multilevel graded response model;

Single, single level graded response model.

Table 6 | Correlation between observations scores and value-added

scores.

Estimate Low High

Averages 0.11 −0.05 0.27

Single 0.12 −0.04 0.28

Multilevel 0.15 −0.01 0.31

CC 0.14 −0.02 0.30

RIE-CC 0.17* 0.01 0.33

*Interval excludes zero.

RIE-CC, random item effects cross-classified graded response model; CC, cross-

classified graded response model; ML, multilevel graded response model;

Single, single level graded response model.

and make adjustments to observed scores in order to place them
on this inter-rater scale.

Evidence from the case study on teaching quality suggested
the promise of random item effect models in addressing nonin-
variance in rater-mediated assessments. The results indicated that
measurement was noninvariant across raters for each item and
suggested that direct adjustments for this noninvariance through
random item effects improved model fit and the predictive valid-
ity of the teaching quality. These results are consistent with prior
literature in that they suggest that ignoring measurement nonin-
variance can obscure both the psychometric properties of a scale
and the underlying relationships among variables.

As noted previously, the results presented in this study are
only based on a single case study and do not necessarily imply
these findings will generalize. However, although the authority
of the proposed model over alternative models is unclear in our
empirical application, the more flexible assumptions of the pro-
posed model with regard to measurement noninvariance would
seem to lend greater credence to its results. Nevertheless, the
circumstances under which the proposed method outperforms
alternative methods need to be systematically studied in greater
detail to understand the extent to which findings are robust to
key assumptions.

In this regard, we highlight four areas that warrant further
study. First, the flexibility of the proposed framework suggests
many different alternative forms and we have presented just a
few limited forms. For instance, we chose to define inter-rater
parameters as the average of item parameters and apply those

values to the teacher level construct. However, there are many
reasonable alternatives including not linking parameters at hier-
archical levels to those at the lower level at all and independently
estimating them. Future research will need to investigate alterna-
tives, develop tests for comparing the fits of non-nested models,
and examine the extent to which results are robust to these
choices.

Second, in our application we assumed random item effects
were independently normally distributed. For our case study,
post-hoc analyses examining the tenability of the normality
assumption for each item parameter using the Shapiro–Wilks
test of normality were conducted. Each test suggested that we
could not reject the null hypothesis that the random item effects
came from a normal distribution. However, this assumption may
be untenable if, for example, items are invariant across most
raters but demonstrate substantial invariance for a handful of
raters. In this case fixed multiple group approaches are poten-
tially more appropriate. Similarly, its reasonable to suspect that
random item effects may not be independent. In post-hoc analyses
we re-estimated the proposed model using a multivariate normal
distribution for the random item effects. Our results indicated
virtually no correlation among the random effects. However, for
many assessments, its reasonable to suspect that a rater who is
above average at discriminating on one item may also be above
average at discriminating on other items.

Third, having established noninvariance, an important follow-
up question examines the extent to which rater characteristics
systematically predict noninvariance. For example, do raters with
more years of experience demonstrate a greater capacity to dis-
criminate among quality levels? To address this line of inquiries,
the proposed model can be further extended to include explana-
tory components such that random item effects are modeled as a
function of fixed rater characteristics through a latent regression
framework (De Boeck and Wilson, 2004).

Fourth, the results of our case study suggested that adjust-
ment for persistent differences in severity among raters actually
decreased the correspondence between observation and value-
added scores. More specifically, when we compared the results of
the multilevel model that did not adjust for rater effects at all with
that of the cross-classified model with rater severity adjustments
(but no random item effects), the correlation between teach-
ing and value-added scores decreased (see Multilevel vs. CC in
Table 6). These differences could be spurious but they raise ques-
tions concerning the value of uniform adjustments for rater sever-
ity. In another post-hoc analysis, we re-estimated the random item
effects cross-classified model (Equation 4) but omitted the overall
adjustment for rater severity (γr). Our results indicated that abso-
lute fit remained the same but that the correlation between obser-
vation and value-added scores increased to 0.20. Again, although
the authority of these differences is unknown, these results ques-
tion the conventional wisdom of including broad sweeping and
uniform adjustments for rater severity. Future investigations
should examine the fidelity of such adjustments and further con-
sider the efficacy of interactions among the facets. For instance,
literature has found that raters function differently across sub-
groups so that they are more severe within certain subgroups than
others.
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In conclusion, meaningful comparisons among participants
on latent traits in rater-mediated assessments require measure-
ment to be invariant across raters. In many instances, this
assumption will be unrealistic. The proposed method offers a
flexible alternative that can accommodate measurement nonin-
variance within multilevel and cross-classified frameworks even
when there are no invariant items. Our results suggest the
approach is promising and flexible but that it needs more investi-
gation.
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APPENDIX
EXAMPLE Mplus CODE

TITLE: Random item effects;
DATA: FILE IS data.dat;
VARIABLE: NAMES ARE tid rid rich wws cwcm spmmr;
CATEGORICAL =r ich wws cwcm spmmr;
CLUSTER = rid tid;
ANALYSIS: ESTIMATOR = BAYES;
TYPE = CROSSCLASSIFIED RANDOM;
Process=2;

MODEL:
%WITHIN%
s1-s4 |fw by orich* owws cwcm ospmmr;
fw@1;

%BETWEEN TID%
ft BY orich* owws cwcm ospmmr (p1-p4);
s1-s4@0;

%BETWEEN RID%
[s1-s4] (p1-p4);
fw;
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Assessing the factorial invariance of two-way rating designs such as ratings of concepts
on several scales by different groups can be carried out with three-way models such
as the Parafac and Tucker models. By their definitions these models are double-metric
factorially invariant. The differences between these models lie in their handling of the links
between the concept and scale spaces. These links may consist of unrestricted linking
(Tucker2 model), invariant component covariances but variable variances per group and
per component (Parafac model), zero covariances and variances different per group but
not per component (Replicated Tucker3 model) and strict invariance (Component analysis
on the average matrix). This hierarchy of invariant models, and the procedures by which to
evaluate the models against each other, is illustrated in some detail with an international
data set from attachment theory.

Keywords: stimulus-response data, Tucker3 model, Tucker2 model, Parafac model, three-mode analysis, rating

scales, semantic differentials, Ainsworth strange situation

1. INTRODUCTION
Two-way rating designs may consist of, for instance, ratings of
concepts on several rating scales. In this paper we tackle the
problem of the invariance of the factorial structure of data aris-
ing from such designs when the data have been collected from
several groups. In particular we will show that three-mode com-
ponent models are ideally suited to assess factorial invariance for
such designs. We will specify a hierarchy of models with increas-
ing restrictions on the parameters resulting in more and more
invariant factorial structures across groups.

Because in this paper we are dealing with component mod-
els we will use the term “components” rather than “factors,”
unlessfactors are explicitly indicated. However, to stay within
the standard terminology we will use the term factorial invari-
ance, rather than subspace invariance or component invariance. A
detailed treatment of the differences between factor analysis and
component analysis for two-way data can for instance be found
in Widaman (2007).

1.1. FACTORIAL INVARIANCE IN TESTS
Most of the research on factorial invariance assumes that an
investigator wants to evaluate whether a test with a particular
dimensional structure operates in the same way for different
groups, so that the test, or the factors underlying it, can be used
for all kinds of groups; a detailed technical exposition of measure-
ment invariance, factorial invariance and their relationship can
be found in Meredith (1993). Factorial invariance is typically of
interest, for instance, when intelligence tests have been translated
into other languages and researchers want to establish whether
the translated tests function in the same manner as the original.
Alternatively, a researcher may want to know whether a test has

the same structure for different groups, say both for regular and
for clinical samples.

In a literature survey Vandenberg and Lance (2000, pp. 12–13)
synthesized common practices in a list of sequential tests to assess
the extent of factorial invariance. The steps in their hierarchy of
hypotheses are listed below, but we have listed their first step as
the final one, because it is the most restrictive of all invariance
schemes, i.e., there is no intergroup variability. Here we present
a compact version of their descriptions. Finally, we have added a
new first step: Lack of factorial invariance. We need this step later
on as a reference point or baseline for our analyses. Note that each
next step introduces additional restrictions on the parameters of
the models.

1. Lack of invariance: All groups have different factor
patterns.

2. Configural invariance: Invariant patterns of factor loadings
across groups.

3. Metric invariance : Invariant values of factor loadings for like
items across groups.

∗a Scalar invariance: Invariant intercepts of like items regressions
on the factor.

∗b Unique variances invariance: Invariant unique variances of
like items across groups.

c Invariant factor variances: Invariant factor variances across
groups.

4. Invariant factor covariance matrices: Invariant factor
covariance matrices across groups.

∗d Invariant factor means: Invariant factor means across groups.
5. Strict invariance: Invariant factor means and covariance

matrices across groups.
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The hierarchy is primarily based on investigations using factor
analysis within the context of structural equation modeling with
and without estimation of the factor means. This means that it
contains concepts and parameters characteristic of such models,
such as unique variances, factor means and intercepts of regres-
sions of items on factors. In this paper such concepts do not play
a role, because our proposals are based on component analysis. In
the sequel, the starred steps are therefore excluded for the follow-
ing reasons: (∗a, ∗d) all scales will be centered across concepts for
each group (see below), so that means and factor means do not
enter into the models; (∗b) the concept of unique variances does
not play a role in component analysis. Note that when referring
to Step 5, “Strict invariance,” we will assume only that the covari-
ance matrices are equal across groups, again because the means
have already been removed by centering.

The major analytical techniques for establishing the increas-
ingly stricter types of invariance have primarily been structural
equation modeling and item response theory as is evident in this
special issue. In the hierarchy of hypotheses about factorial invari-
ance it is implied that the models are nested, so that they can
be evaluated, or in the context of structural equation models,
tested against each other. This means that an a priori choice has
to be made about the factor model itself: How many factors and
which items are to be regressed on which factors. Therefore, a
two-factor model may be invariant in a different way than a three-
factor model for the same data. In this paper we will concentrate
on series of both two-factor and three-factor models, but we
will not attempt to make detailed comparisons between the two
series.

Regarding the component models in this paper, comparisons
between models are primarily based on the error sums of squares
in relation to their degrees of freedom. These degrees of freedom
are calculated as the number of data points minus the number of
parameters to be estimated (Nparm) where the means subtracted
during the centering of the data are also counted as parame-
ters. Details and formulas for calculating the degrees of freedom
for three-way models can for instance be found in Kroonenberg
(2008, Section 8.4, p. 177ff).

1.2. TWO-WAY RATING DESIGNS
In psychology a specific kind of measurement design is commonly
used, i.e., a two-way rating design in which concepts are judged on
scales by a number of judges such as in Osgood’s classical seman-
tic differential design (Osgood et al., 1957). Alternative two-way
rating designs generate stimulus-response data or situation-scale
data. Characteristic for the designs is that a subject has to judge to
what extent a particular scale or variable pertains to a particular
concept or situation. For instance, in a study by Murakami and
Kroonenberg (2003), a student had to judge the characteristics of
the 24 preludes of Chopin on a number of scales. As example,
the student had to indicate whether a prelude of Chopin (con-
cept) is tempestuous or tranquil (scale). Another example, which
will be our guiding explanatory case, is the two-way design in
which a person with a multiple personality in each personality
was asked to judge on a number of scales to what extent a number
of concepts pertained to her personal situation. For instance, to
what extent she considered her doctor to be good or bad (Osgood

and Luria, 1954). The aim in their study was to see whether each
personality (Eve White, Eve Black and Jane; each measured twice)
used the scales in the same way to rate the concepts.

Yet another kind of two-way rating data results from a design
in which for several situations the mean characteristics of groups
rather than of individual subjects are described by means of a
number of variables. For our detailed example we analyzed a col-
lection of two-way data sets consisting of episodes by variables
obtained from several different countries. The data were collected
using the Strange Situation, a procedure within the attachment
theory paradigm (Ainsworth et al., 1978) (see Section 3).

A two-way rating design seems comparable to multitrait-
multimethod (MTMM) designs where the traits and the methods
mostly form a fully-crossed design for the response variables. An
important difference with the MTMM design is that the two-way
rating design is more like a two-way (concept×scale) analysis-of-
variance design with the intensity or strength of the judgment by
a personality as the response variable.

1.3. TWO-WAY RATING DESIGNS AND THREE-WAY DATA
Two-way rating designs produce three-way data because they con-
sist of three ways, i.e., concepts, scales and groups or individuals.
For a more detailed discussion of such three-way rating data aris-
ing from two-way rating designs see Kroonenberg (2008, Chapter
14). As far as we have been able to trace, there is no or hardly
no explicit literature on the topic of factorial invariance for two-
way rating designs, and with this paper we aim to fill this gap. In
particular, our aim is to look for both a consensus structure about
the relations between the concepts and scales (i.e., invariance over
groups) and for group differences, i.e., deviations from invari-
ance. Even though we will primarily focus on the situation with a
limited number of groups or individuals, also larger numbers can
be analyzed. The emphasis in the present paper is an exploratory
one, even though the comparative evaluation of different aspects
of factorial invariance using fit measures is a central concern.
However, the sizes and relevance of these differences have to be
evaluated subjectively both by comparing fit/degrees of freedom
ratios and by looking at substantive relevance and interpretability.
Formal statistical testing is not part of the procedure.

1.4. INVARIANCE IN TWO-WAY RATING DESIGNS
A problem for the invariance analysis of two-way rating designs
is that there are often only a limited amount of judges or groups
rather than large samples from a population so that there is no
clear stochastic element in the data. The judges or groups need to
be treated as another fixed factor in the analysis-of-variance sense,
so that we really have a three-way design of concepts × scales ×
groups or concepts × scales × individuals. Even apart from the
extremely small samples, this lack of stochastics in two-way rat-
ing designs makes using confirmatory factor analysis for testing
invariance within the standard structural equation modeling con-
text virtually impossible. Therefore, we propose to seek recourse
to variants of component analysis, but it should be noted that
the procedures discussed in this paper can handle large random
samples as well.

Factorial invariance for two-way rating designs is cast here
in a non-stochastic component framework in which we have
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separate component spaces for the scales and the concepts. This
has a disadvantage because components are generally not in
themselves meaningful quantities but only maximum variance
directions in the component space. What are invariant are the
subspaces spanned by the components, rather than the compo-
nents themselves. Therefore, we cannot automatically assume that
the components themselves have intrinsic meaning like factors in
confirmatory common factor analysis.

Only in some very specific models, such as the Parafac mod-
els which have unique solutions (see below), the components can
validly be said to have intrinsic meaning. This will limit the kinds
of invariances we can consider. Thus, generally we will have to
discuss the invariance of subspaces across groups rather than the
invariance of the components themselves. As already indicated
in the introduction rather than refer to subspace invariance or
componential invariance, we will use the standard term factorial
invariance.

The two central questions in two-way rating designs are (1)
how to define factorial invariance and (2) how to evaluate it.
In contrast with the standard situation of assessing whether fac-
torial invariance exists for a particular test across groups, in a
two-way design one has to deal with the fact that groups or indi-
viduals use the rating scales to judge concepts. A definition of
factorial invariance in this case must include three aspects of
the data: (1) the component space or structure of the scales; (2)
the component space or structure of the concepts and (3) the
way the concepts (or the concept components) and the scales
(or scale components) are linked for each group. The consid-
eration of three different aspects of factorial invariance makes
the situation for two-way rating designs fundamentally differ-
ent from the standard situation. Both because of the design and
the fact that we are dealing with component spaces rather than
factors, makes that the Vandenberg and Lance steps have to be
reformulated.

1.4.1. Preprocessing
Variances of components in standard component analysis are rep-
resented by the eigenvalues. Whether they are actual variances
or merely corrected or uncorrected sums of squares depends
on the preprocessing, i.e., centering and normalization of the
data. Standardization is more or less automatically carried out
in regular component analysis but in two-way rating designs
there are several options for preprocessing. Each option has
different consequences for the data to be assessed for invari-
ance, because it influences which part of the data is analyzed
(see e.g., Kroonenberg, 2008, Chapter 6). To avoid such com-
plications we will ignore the influence of preprocessing in this
paper, and we will use the terms sums-of-squares and variances
indiscriminately.

1.5. INVARIANCE HIERARCHY
When adapting the steps in the invariance hierarchy for two-way
rating designs, we will assume from the start that we are attempt-
ing to approximate the centered data with lower-rank component
spaces for the concepts and for the scales. This is in contrast
with confirmatory factor analysis where covariance matrices are
approximated.

Given the definition of a component, i.e., a linear combina-
tion of the original variables, any component is always present in
a data set with the same variables given its coefficients; a property
called perfect congruence; for a detailed discussion of this property
see Ten Berge (1986a,b). What is generally different in differ-
ent data sets with the same variables is the amount of variance
explained by the components in each group. When it is not the full
component space that is under consideration but only a limited
number of (maximum variance) components, these group com-
ponent spaces can be spanned by different linear combinations of
the variables, so that component spaces of different groups may
even be orthogonal to each other. The maximum variance com-
ponents of one group, may account for very little variability in
another group.

1.5.1. Step 1. Lack of invariance
The most extreme form of lack of invariance is that each group
has its own low-dimensional subspace. For two-way designs we
take as our starting point the separate analyses of the group data
without imposing any restrictions on the component subspaces
other than considering a limited number of components, the
same number for each group. The fitted sum of squares of the
groups together, the combined fit, is calculated by summing their
individual fitted sums of squares.

1.5.2. Step 2. Configural invariance
Because every component returns in each data set with the same
variables, i.e., components are always perfectly congruent across
groups, configural invariance is not a limiting restriction in com-
ponent analysis and is automatically true. Thus, it cannot be used
as a limiting concept in a hierarchy of models, even though in
different groups the same components may account for different
amounts of variance and have different correlations.

1.5.3. Step 3. Metric invariance
Of the models used to inspect factorial invariance, metric invari-
ance is part of their definition. Thus, the component spaces (for
the concepts and scales) specified in the models are such that
the component coefficients are identical across groups. Three
models can be used to investigate metric invariance. They have
either (3a) an invariant concept component space, (3b) an invari-
ant scale space or (3c) both. Metric invariance can be compared
with a total lack of invariance by comparing the metric-invariant
model fit with the combined fit. In addition, the metric invariant
space can be compared with the separate spaces of the groups, for
instance via Procrustes techniques (see, for instance, Gower and
Dijksterhuis, 2004); see also Section 4.

For the component models under consideration we will use the
terms links and interactions to indicate the parameters which link
the concepts and scales components. The links are contained in
a so-called core array H (see Figure 1). For each group this array
contains a slice, Hk, with the group’s links between the compo-
nents of the scales and the concepts. If both the concept and the
scale space are orthogonal, the sizes of these links are the square
roots of variation accounted for by the components. The invari-
ance of the factor covariance matrices across groups translates
into the equality of the core slices Hk for k = 1, · · · , K.
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FIGURE 1 | A general three-mode model for two-way rating designs.

A = metric invariant concept space; B = metric invariant scale space; Hk =
(hk

pq ) = core slice for the kth group; hk
pq is the link between the pth

component of A and the qth component of B.

1.5.4. Step 4. Invariant component covariance matrices or core
slices

As no common three-way models have restrictions on the
variances without restrictions on the covariances, such models
will not be discussed here; see Harshman and Lundy (1984)
for detailed considerations about this issue. We will, how-
ever, consider (4a) models with invariant covariances (off-
diagonal elements of the core slices) for all groups but with
different variances (diagonal elements of the core slices).
Even more restricted are models in which (4b) the invari-
ant scale and/or concept components are uncorrelated in all
groups.

1.5.5. Step 5. (Weighted) strict invariance
The equality of the covariance matrices in Vandenberg and
Lance’s Step 5 translates into the equality of the centered data
matrices of the groups. Such an equality implies equality of ran-
dom errors which is of course nonsensical. However, a further
tightening of the invariance in Step 4 is achieved in Step (5a) by
restricting the slices of the core array to be identical, apart from a
size coefficient (in the following referred to as a weight). Finally,
the strictest factorial invariance situation is created in Step (5b)
by specifying that also the weights are invariant across groups. In
that case the structure of the scales and the concepts, as well as
their linkages, are identical in all groups.

1.6. RELATED RESEARCH
Thus, for the two-way rating design the investigation of invari-
ance is concentrated on the linkages between the invariant com-
ponents for all groups. The discussion of the hierarchy of increas-
ingly invariant three-mode models in this paper is strongly related
to the hierarchy of three-mode models for fully-crossed raw
data (Kiers, 1991). In addition, a similar hierarchy can be found
in connection with simultaneous component analysis of covari-
ance and correlation matrices (Timmerman and Kiers, 2003).
However, in those papers the concept of factorial invariance is

not the focus of the investigation nor is the emphasis on two-way
rating data.

2. MODELING FACTORIAL INVARIANCE
This section deals with three-way models for analysing data two-
way rating designs. These models have as a common characteristic
that the scale space and the concept space are invariant for all
groups. However, they differ in the nature of the linkages between
concept and space components. The models in Step 3a and 3b
have metric invariance in one mode and all other models are
characterized by double-metric invariance.

2.1. MODELS FOR TWO-WAY RATING DESIGNS
Table 1 provides an overview of appropriate models, together
with listing the nature of their invariances. To discuss these mod-
els in some detail we need some notation. A and B indicate the
I × P invariant concept space and the J × Q invariant scale space,
with P and Q the number of components, respectively. A sub-
script k indicates that a particular matrix belongs to the kth of K
groups or levels of the third way; for instance, Xk is the concept ×
scale data matrix of the kth group. Hk = (hk

ss) is the linkage matrix
for the concept and the scale components for the kth group, Dk

is a diagonal matrix of links used in the SVD as well as in the
Parafac model. In the next section we will discuss these mod-
els in detail and indicate how they embody factorial invariance.
As indicated in Table 1 the Tucker2 model in principle allows for
different numbers of components for the scales and the concepts,
but as it is the only three-way model in Table 1 for which this
is the case, we will assume in the following that S = P = Q, i.e.,
that the numbers of components for the two spaces are the same
throughout, so that A has size I × S and B has size J × S .

2.2. STEP 1: SINGULAR VALUE DECOMPOSITION PER GROUP
The singular value decomposition (SVD) is the motor of many
multivariate techniques. For any Xk it may be written as:

Xk = AkDkB′
k + Ek = X̂k + Ek k = 1, · · · , K (1)

where for the SVD to have the form in Equation (1), the con-
cept spaces Ak and scale spaces Bk have to have orthogonal
components and the linkage matrices Dk have to be diagonal.
The Ek contain the errors of approximation. X̂k = AkDkB′

k, and
Ek = 0 if all components are used. We will refer to the collection
of independent analyses for each group as the separate-analyses
model with abbreviations SVD_2 and SVD_3 for the two- and
three-component models, respectively.

Thus, each data matrix Xk has its own decomposition as in
Equation (1), and this decomposition is unrelated to that of
any of the other data matrices. The total variance of a group
k is equal to the sum of the squares of the singular values dk

ss
that make up the diagonal of Dk in the full decomposition, i.e.,
SS(Total)k = ∑

k dk
ss. Adding the SS(Total)k of the groups gives

the total amount of variance of the groups indicated by SS(Total).
In general, we will use only a limited number of components, here
either 2 or 3. The components (columns) of Ak and Bk succes-
sively account for the largest amount of variance so that, given
the dimensionality, the components for the concepts and those
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Table 1 | Models for two-way rating designs and their invariance.

Model Concepts Scale P = Q? Interaction Abbreviation

STEP 1: LACK OF INVARIANCE

SVD per group - - yes no explicit invariance restrictions SVD_s

STEP 3: METRIC INVARIANCE

Tucker1 - concepts invariant x - no concept space invariant; single metric invariance T1A_s

Tucker1 - scales invariant - x no scale space invariant single metric invariance T1B_s

Tucker2 x x no concept and scale spaces invariant;

double-metric invariance T2_ss

STEP 4: INVARIANT COMPONENT COVARIANCES

Parafac x x yes + component covariances invariant; variances free PFs

Parafac - Orthogonal x x yes + component covariances invariant; variances free;

components orthogonal for one or both ways PFs_Orth

STEP 5: (WEIGHTED) STRICT INVARIANCE

Tucker3 - Free x x yes metric invariance of orthogonal components

variances invariant; group weights unrestricted T3_ss1

Tucker3 - Fixed x x yes + group weights fixed and constant T3_ss1Fixed

x = invariant; S-S = not invariant; SVD, Singular Value Decomposition; P = number of concept components; Q = number of scale components; s = 2 or 3 number

of components; ss1 = the first two ways have s components, the third way 1 component.

for the scales span the subspaces with the highest variance. Thus,
we can use this variance accounted for, SS(Fit)separate, as an upper
bound for the variance accounted for from any other model given
the number of components. If the SS(Fit) is the fit for a common
model for all K groups, then if SS(Fit)model � SS(Fit)separate the
component space(s) are invariant. However, if there is a sizeable
difference, the invariance restrictions on the common model are
in doubt. We may also investigate group invariance by comparing
the fitted variance of a particular group SS(Fit)k with the similar
quantity calculated via the parameter estimates from one of the
fitted models. Given the number of components, this will provide
information on which groups fit well and which groups do not
and are thus not invariant with respect to the other groups.

2.3. STEP 3A AND STEP 3B: SINGLE METRIC INVARIANCE - TUCKER1
MODELS

The first step into imposing restrictions on the solutions to inves-
tigate possible invariance is to demand that either the concept
spaces can be properly represented by a single space (i.e., for all
k the concept spaces are equal: Ak = A), or that for all k the scale
spaces are equal: Bk = B if there are s components. This can be
investigated with the Tucker1 model, here referred to as Tucker1A
(or T1A_s) for concept space equality and Tucker1B (T1B_s) for
scale space equality. Metric invariance exists for the concepts if

Xk = ADB′
k + Ek k = 1, · · · , K. (2)

Thus, there is a single orthogonal concept space for all k and sep-
arate scale spaces for each group. Metric invariance exists for the
scales if

Xk = AkD̆B′ + Ek k = 1, · · · , K. (3)

Thus, there is a single orthogonal scale space for all k and separate
concept spaces for each group.

To compute the parameters, the three-way array is first con-
verted to a two-way matrix of (Groups × Scales) by Concepts or
(Groups × Concepts) by Scales, and these matrices are then sub-
jected to a SVD. Note that the resulting Ak and Bk are no longer
orthogonal because they are parts of a single orthogonal matrix
of left and right singular vectors, respectively. We may compare
the fitted variance of these models SS(Fit)model with the combined
results of the separate SVDs, SS(Fit)separate, to investigate the met-
ric invariance of either the concept or the scale spaces. However,
it seems a bit odd to have an invariant concept space without hav-
ing an invariant scale space, so we will not include the Tucker1A
model further in our deliberations.

2.4. STEP 3C: DOUBLE-METRIC INVARIANCE - TUCKER2 MODEL
The next step in imposing invariance is to require double-metric
invariance, i.e., for all k and given a number of components
s both Ak = A and Bk = B, where both matrices orthogonal.
Furthermore, the group linkage matrices Hk are unrestricted and
thus in general not diagonal. The model equation for the Tucker2
model (Tucker, 1972), as the model is commonly known (see
Kroonenberg, 2008, Section 4.5.2) becomes

Xk = AHkB′ + Ek k = 1, · · · , K. (4)

In other words, the metric invariance is present on both the con-
cept space and the scale space, and the only differences between
the groups can occur in the K interaction or linkage matrices, Hk.
The linkages matrices Hk have sizes S × S, where S is the num-
ber of components for both the scale and the concept spaces. An
element hk

pq of Hk represents the link between the pth component
of the concepts and the qthe component of the scales for the kth
group. So apart from their error terms, the variability between the
groups lies in the strengths of their links between the concept and
scale components or the sizes of the hk

pq.
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We can again compare the fitted variance of these mod-
els SS(Fit)model with the combined results of the separate
SVDs, SS(Fit)separate, to investigate the double-metric invariance.
Similarly we can make comparisons at group level.

2.5. STEP 4: DOUBLE-METRIC INVARIANCE WITH INVARIANT
CORRELATIONS - PARAFAC MODEL

By requiring Hk = Ck, where the latter are diagonal matrices, and
dropping the orthogonality restriction on the component spaces,
we get the standard Parafac model with s components (PFs) which
is a double-metric invariant model with as its model equation

Xk = ACkB′ + Ek k = 1, · · · , K. (5)

The model can also be written by filling the rows of a K × S
matrix C̃ with the diagonals of the Ck, i.e., c̃ks = ck

ss k = 1, · · · , K.

In that case C̃ is considered a component matrix and is normal-
ized like A and B, i.e., the lengths of the components in all three
matrices are equal to one. The sizes of the S components are then
contained in a diagonal matrix D = (dss). However, for this paper
we will stick with the Ck.

Harshman (1970) that has shown this model implies that
the groups have the same correlations between the components,
which is a further imposition of factorial invariance. When at
least one of the component matrices is orthogonal the d2

ss are the
variances of the S components.

One can even impose further restrictions on the compo-
nents and so make the invariance even stricter by reintroducing
orthonormality, non-negativity, or unimodality on one or both
component matrices (see, e.g., Bro and Sidiropoulos, 1998).

Compared to other three-way models, Parafac models have
a special characteristic in that their parameters are uniquely
determined under rather mild conditions. This implies that the
parameters in Equation (5) cannot by altered, for instance by
rotation, without lowering the fit. The consequence is that the
model has the parallel proportional profile property; (see Cattell
and Cattell, 1955; Harshman, 1970; Harshman and Lundy, 1984).
The only lack of invariance in these models consists of different
strengths of the links between the concepts and scales, i.e., the ck

ss
vary between the groups. From the parallel proportional profile
property and the uniqueness of the models it is the components
themselves, not only the subspaces they span which are invariant;
see Harshman (1970) or Harshman and Lundy (1984).

2.6. STEP 5: STRICTLY INVARIANT MODELS - TUCKER3 MODELS
To study factorial invariance with even more restrictions, we can
demand that for each k ck

ss = ckdss. In other words the weights for
the components are invariant across groups apart from a group
weight ck.

Xk = A(ckD)B′ + Ek = ck(ADB′) + Ek k = 1, · · · , K. (6)

This model equals a simplified version of the full Tucker3 model
(Tucker, 1966), and has been referred to as the Replicated PCA
model by Van IJzendoorn and Kroonenberg (1990) and Weighted
PCA by Krijnen and Kiers (1995). The only variable parts are the
weights ck for the group applicable to both components, and the

error terms Ek. In other words, all groups have the same concept
and scale spaces and the orthogonal components of each way are
linked such that each concept component is linked exclusively to
a particular scale component. The part between brackets has the
form of a SVD valid for all groups. The only differences between
the groups are their weights, ck. This is in contrast with the Parafac
model where each group has different link weights for the concept
and scales component combinations, i.e., the ck

ss are different for
each group k and each pair of components s.

The ultimate invariant model is that in which we assume that
all ck are all equal with weight c̄ = √

1/K, which is computation-
ally equivalent to first averaging over groups and then carrying
out a SVD on the average data matrix X̄, i.e.,

Xk = c̄(ADB′) + Ek k = 1, · · · , K. (7)

Thus, in this case the only variable parts are the error terms and
we may speak of strict invariance. We could reduce even further
the number of parameters by specifying further restrictions on
the concept and scale component spaces (see Takane et al., 1995),
but this will not be considered here.

2.7. SUMMARY EVALUATING INVARIANCE
The conclusion from the above subsections is that one can define
a hierarchy of models with an ever increasing number of parame-
ters which are invariant over groups. By comparing the models
with each other and with the combined separate analyses, it
becomes possible to evaluate which models still provide an ade-
quate fit to the data compared to separate analyses, and hence
which type of invariance can be safely adopted. The two lead-
ing types of information for this purpose are the overall fitted
variance and the fitted variance of each group.

In order to carry out model comparisons the number of
parameters estimated for each of the models is determined. The
models are compared by constructing a variant of the three-mode
scree plot, in which the fitted sum of squares are plotted against
the number of parameters estimated (see Section 3.3). Details
on how to calculate the number of parameters can be found in
Kroonenberg (2008, Section 8.4).

3. EXAMPLE: THE STRANGE SITUATION ACROSS THE
WORLD

3.1. RESEARCH DESIGN
Attachment between adults, especially mothers, and infants is
a lively research area—(see Cassidy and Shaver, 1999, 2008.
Three types of bonds between adults and infants are gen-
erally considered: Avoidant attached, Securely-attached, and
Resistant/Ambivalent attached, indicated by the letters A, B, and
C, respectively. Here we will only look at attachment bonds with
mothers, but those with other adults, especially other caregivers,
have also been investigated (see, e.g., Sagi et al., 1985). The
measurement procedure consists of a series of episodes of approx-
imately 3 min, during each of which the infant is in a standardized
room together with the mother (M), the stranger (S), both (MS),
or alone (A); the episodes are the following: M1, MS2, S3, M4, A5,
S6, M7. The idea is to increase the stress on the infant, especially
by introducing the stranger and leaving the child alone, so that
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the attachment relationship between mother and infant is put to
the test. During the episodes, except when the infant is alone (A5),
five core variables of an infant’s reaction to an adult are measured:
Proximity seeking, Contact maintaining, Avoidance, Resistance,
and Distance interaction.

3.1.1. Strange situation data set
The data set under consideration consists of 11 samples:
US-Belsky (USBel), US-Thompson (USTho), Germany-Berlin
(GerBe), Germany-Bielefeld (GerBi), Israel-Kibbutz (IsrKi),
Israel-City (IsrCi), Japan-Miyake (JapMi), Japan-Takahashi
(JapTa), Netherlands-Younger infants (NLYng), Netherlands-
Older infants (NLOld) and Sweden (Swed). The data set was put
together by Sagi and Lewkowicz, and in their publication (Sagi
and Lewkowicz, 1987) they supply full details of the origins of the
different samples. For each of the samples the original investiga-
tors independently determined the infants’ type of attachment.
Earlier analyses can be found in Sagi and Lewkowicz (1987) and
Kroonenberg and Van IJzendoorn (1987).

3.1.2. Invariance
The research question for this paper is whether the structure
of the scales and that of the episodes, as well as the way these
components are linked, are invariant across samples. The more
parameters in the models are invariant, the more evidence this
presents that the Strange Situation is a valid procedure across
countries and researchers. For this example we only examine the
average scores of the samples securely attached infants (B). These
samples were chosen because each contained a sufficient number
of B infants to make the average scores reliable. Thus, the two-way
rating design consists of 7 episodes by 5 scales for 11 samples. This
three-way data set was subjected to the models described above
and their fit measures were compared.

3.2. RESULTS: THREE-WAY ANALYSIS OF VARIANCE
To acquire an initial perspective on the differences between sam-
ples, we carried out a three-way analysis of variance of the Strange
Situation data. For this analysis the response variable was con-
sidered to be intensity of a reaction, and the Three-Ways were
conceived as fixed factors in the ANOVA sense. This view is fea-
sible because the samples are not exchangeable or drawn from
a population. Moreover, it is the individual differences between
the samples which are the focus of the analysis. Furthermore, the
scales all had the same range from 1 to 7, so that averaging across
scales is feasible and interpretable.

Table 2 shows that the largest variability is between scales,
indicating that the scale scores of the infant-mother dyads are
effective in differentiating between behaviors across samples and
episodes. On the other hand, the sample variability is com-
paratively very small (2.2% of the total), indicating that the
investigating factorial invariance is a worthwhile exercise. This
is confirmed by the size of the episode × scale interaction com-
pared to the interactions involving samples. Finally, the residuals
(or the three-way interaction) only take up 7.5% of the total
variability.

Parallel with standard component analysis, before the three-
way analyses the data were centered but not normalized.

Table 2 | Three-Way analysis of variance (with a single observation

per cell).

Source SS % SS(Total) df MS F

MAIN EFFECTS

Episodes 79.3 16.4% 6 13.2 88.1

Scales 211.4 43.6% 4 52.8 324.0

Samples 10.7 2.2% 10 1.1 6.5

TWO-WAY INTERACTIONS

Episodes × Scales 105.2 21.7% 24 4.4 26.9

Episodes × Samples 9.9 2.0% 60 0.2 1.0

Scales × Samples 29.5 6.1% 40 0.7 4.5

THREE-WAY INTERACTION

Residuals 39.1 8.1% 240 0.2

TOTAL 485.1

df = degrees of freedom; MS = Mean Sum of squares.

Normalization was not deemed necessary because all the scales
had the same range. Moreover, scales with more variability should
be allowed to have more influence on the analysis than scales with
little variability.

With respect to centering, the common type of centering for
three-way rating scale data (averaging across the concepts) was
used, i.e., x̃ijk = (xijk − x̄.jk). In other words, the scale means for
each sample k were removed. In general, centering across samples
is undesirable because it will eliminate the consensus configura-
tion of the scales and concepts from the three-way analysis. Thus,
due to this type of centering the means of the scales for each of the
samples were not included in the invariance analysis, but depend-
ing on the purpose of a study, these means can be analyzed for
invariance separately.

3.3. RESULTS: INVESTIGATING TYPE OF INVARIANCE VIA MODEL FIT
Because the procedure outlined for assessing factorial invariance
for two-way rating designs is an exploratory one, deciding on
the degree of invariance is a substantive and subjective mat-
ter, of course based on numerical information. Table 3 provides
the information on the series of more and more restricted, and
hence more invariant, models. Any additional restriction on the
parameters is going to incur a certain amount of additional
loss compared to the separate analyses. However, the question
is whether the decrease in fit can be acceptable, given that by
restricting the number of parameters interpretability is enhanced.
It is less useful to compare the two-component models with the
three-component models, because they have different starting
points, i.e., different separate solutions. Therefore, it seems best
to first decide on the number of components one wants to use
to model the data, and only after that to investigate the invari-
ance. This is incidentally also the standard practice in structural
equation modeling. Of course, one may come to the conclusion
that a two-component model is more, or less, invariant than a
three-component model and vice versa.

In Table 3 we see that the most restrictive models are the
Tucker3 models with a constant component for the samples (T3-
221Fixed and T3-331Fixed), i.e., the strictly invariant models.
At the other extreme the individual three-component SVDs are
not much use in terms of data reduction, because the model for
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each sample has only three degrees of freedom, and the rank of
the centered data matrices is at most four. From a data-analytic
point of view, it is doubtful whether a model with unrestricted
three-component solutions for the separate samples is really use-
ful because the three components fit about 97% of the total
variability.

To decide upon the most appropriate model for these data, and
thus on the extent of the invariance, it is useful to construct a vari-
ant of the three-mode deviance plot of the fitted sums of squares
vs. the number of parameters (Figure 2); see Kroonenberg, 2008,

Section 8.5. The models with two components and those with
three have been connected by part of a convex hull. Models on
a convex hull are generally preferred to the models inside such a
hull because of their more favorable SS(Fit)/NParms ratios. It is
preferable to consider only models on or very close to the con-
vex hull; the PF3-Orth model is less attractive because there are
models with more favorable ratios (PF3 and T3-331) in the neigh-
borhood. The more horizontal a hull, the more a model on the
right is a good alternative for the models to the left on the hull,
because the decrease in the number of parameters (i.e., increase

Table 3 | Overall sums-of-squares for the Strange Situation data.

Model Abbreviation SS(Fit) SSS(Fit) df NParms

TWO-COMPONENT SOLUTIONS

Step 1 SVD per group (SVD_2) 205.78 0.89 110 275

Step 3 Tucker1 - Scales invariant (T1B_2) 187.94 0.81 227 158

Tucker2 (T2_22) 177.78 0.76 270 115

Step 4 Parafac (PF2) 173.54 0.74 288 97

Parafac - Orthogonal scale components (PF2_Orth) 173.36 0.74 290 95

Step 5 Tucker3 + Variable weights (T3_221) 169.18 0.72 302 83

Tucker3 + Fixed weights (T3_221Fixed) 164.77 0.71 312 73

THREE-COMPONENT SOLUTIONS

Step 1 SVD per group (SVD_3) 227.05 0.97 33 352

Step 3 Tucker1 - Scales invariant (T1B_3) 219.53 0.94 154 231

Tucker2 (T2_33) 206.57 0.88 213 172

Step 4 Parafac (PF3) 200.40 0.86 267 118

Parafac - Orthogonal scale components (PF3_Orth) 195.26 0.84 273 112

Step 5 Tucker3 + Variable weights (T3_331) 185.43 0.79 299 86

Tucker3 + Fixed weights (T3_331Fixed) 181.23 0.78 309 76

NParms = Number of parameters (includes 55 removed means due to centering); The Total Sum of Squares of the centered data: SS(Tot) = 233; SSS(Fit) =
SS(Fit)/SS(Tot); df = degrees of freedom = number of data points (I × J × K = 385) − NParms.

FIGURE 2 | Model comparisons. The two-component and
three-component models are connected by separate convex hulls. The
horizontal axis is reversed because the investigation starts with the
individual models. Legend : SVD_s = separate SVDs with s components;
T1B_s = Tucker1 model with s components; T2_ss = Tucker2 model

with s components for way 1 and 2; PFs = Parafac model with s
components; PFs_Orth = Parafac model with s orthogonal scale
components; T3_ss1 = Tucker3 model with s components for way 1
and 2 and 1 component for way 3; T3_ss1Fixed = T3_ss1 with a fixed
value for way 3.
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in the df ) does not seriously decrease the fitted sum of squares. In
contrast, the steeper the hull turns downward for the next model
to the right, the less attractive the model, because there is a large
loss in fitted sum-of squares for only a limited decrease in param-
eters. Note that a smaller number of parameters increases power
and potentially simplifies interpretability.

For the Strange Situation data we see in Figure 2 that for the
three-component models the convex hull declines slowly at first,
and a steeper downturn is observed only for the Tucker3 models,
so that the Parafac model with three components seems a good
choice. The choice for a two-component model is less clear. The
relationship between the SS(Fit) and the number of parameters is
nearly linear. Again the Parafac models (PF2 and PF2-Orth) seem
to be the best choice, and even though the orthogonal variant
is marginally better, we decided to opt for the regular Parafac
model. With respect to factorial invariance, the Parafac models
incorporate invariant concept and scale spaces, and the correla-
tions between scale components are constant over samples. The
appropriateness of the Parafac models suggests that there is a con-
siderable double-metric factorial invariance across the samples,
only the size of the variances is different.

3.4. RESULTS: NON-INVARIANT SAMPLES
For three-way models with double-metric invariance which are
not necessarily invariant with respect to their links, we can
compute the model fit for each sample. These fit measures can
then be compared with the separate-analyses model to determine
whether overall lack of interaction invariance is due to specific
samples or whether differences are present between all samples.

3.4.1. Differences in proportional fit of samples.
For selected two-component models we calculated the propor-
tional residual sums-of-squares PrSS(Resk) for each sample and
connected these values per model in Figure 3. In the figure we
have arranged the samples such that the lack of fit is increasing
for the two-component Parafac model.

The solid line for the PrSS(Res) represent SVDs of the sep-
arate samples. We see that their PrSS(Res) fluctuate around the
average value drawn as a horizontal line. In other words, a two-
component SVD have about the same fitted sums of squares in
all samples, but their concept spaces and their scale spaces are not
necessarily equal.

In the case of strict model invariance all lines would be more or
less horizontal because the lack of fit would be equal for all sam-
ples. This is not the case here. The relative difference in fit varies
between the solutions for the separate samples and those of the
models displayed in the figure. Thus, for the US samples on the
left-hand side of the figure the metric invariant subspaces for the
concepts and the scales are more alike to their own separate spaces
than to the subspaces for the younger Dutch sample and Israel-
City sample on the right-hand side. In particular, the PrSS(Res)
for the two US samples is around 0.10 while it is around 0.30 for
the younger Dutch and the Israel City sample.

All three metric invariant models displayed in Figure 3 show
more or less the same pattern with an increasing loss of fit from
left to right. Given that the models are more or less equivalent, we
may choose to interpret the most restricted and thus most invari-
ant model, i.e., the T3-221 or PF2 models. Figure 3 shows that the
most right-hand samples fit marginally better, which is consistent
with our earlier choice for this model. The Parafac model allows
the components per sample to have a common oblique orien-
tation with separate weights (ck

ss) for the links between these
common components. In this data set the younger Dutch sample
and the Israel City sample need further investigation, because it
is their configurations that are deviating most from the common
pattern.

3.4.2. Differences in strengths of links between concept and scale
spaces across samples

In Figure 4 we have plotted the link strengths ck
ss between the

concept and scale components from the Parafac model with
two components. The solid line represents the strengths of the

FIGURE 3 | Proportional Residual sums of squares per sample for four

two-component models: Separate-analysis model (SVD-2), Parafac model

(PF2), Tucker2 model (T2-22), and Tucker3 model (T3-221). The samples
are ordered on their fit based on the Parafac model with two components.

Legend: US-Belsky (USBel), US-Thompson (USTho), Germany-Berlin (GerBe),
Germany-Bielefeld (GerBi), Israel-Kibbutz (IsrKi), Israel-City (IsrCi),
Japan-Miyake (JapMi), Japan-Takahashi (JapTa), Netherlands-Younger infants
(NLYng), Netherlands-Older infants (NLOld) and Sweden (Swed).
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FIGURE 4 | The strength of the Parafac component links (ck
ss) for each of the samples in principal coordinates. The dotted line represents the weight or

strength of the links from the T3_221 model (ck ) in principal coordinates. For the abbreviations of the samples names see Figure 3.

links between the first components, ck
11 and the dotted line the

strength of the links for the second components, ck
22. To pro-

vide a proper comparison these parameters have been depicted
in principal coordinates. The third, dashed, line represents the
weight parameter for each group according to the T3-221 model,
ck; also in principal coordinates. The samples have been ordered
so that the values for the first components, ck

11, are increasing
monotonically. The figure shows that ck

11 and the ck are almost
equal, but that there is a small compensation of the ck for the
absence of the links for the second components ck

22. Thus, the
choice between the models should take into account whether the
fluctuations of the ck

22 are interpretable. At the same time the
differences in the ck

22 point to where we should look for lack of
invariance.

If we want to find out what exactly are the differences between
the samples, we have to explicitly compare the invariant concept
and scale spaces with the separate sample spaces. Thus, this anal-
ysis could be extended to find the causes of the differences by
examining the Tucker1 model for scales (T1B), and possibly the
Tucker1 model for concepts (T1A), to assess whether it is the scale
space or the concept space which is not invariant. We will not
pursue this here. The procedure described above should primarily
be seen as a proof of concept, rather than a detailed analysis of a
particular case (see, however, the Appendix for a more substantive
interpretation).

4. RESULTS: AN ADDITIONAL APPROACH TOWARD
ASSESSING INVARIANCE

In a paper comparing Japanese and Australian children in the way
they show respect to adults, Kroonenberg and Kashima (1997)
tackled assessing invariance in a different way, even if they did not
explicitly refer to factorial invariance. The children were given a
questionnaire in which they had to indicate both to what extent
they did show a number of respectful behaviors (greet, help, stick
up for, etc.) toward a number of adults (father, mother, teacher,
etc.), and to what extent they felt they should do so. This resulted

in a 5 (adults) × 7 (behaviors) × 4 (groups; Australian do,
Australian should, Japanese do, Japanese should) three-way data
set. Apart from a complete three-way analysis, the invariance was
also assessed by first carrying out separate analyses for each of the
four groups, and then using the adult space and/or the behav-
ior space of one group as a restriction for the solution of another
group. Essentially, of course, this is a cross-validating procedure,
checking to what extent the parameter estimates in one group can
also explain the variability in another group, or to what extent the
two groups had invariant subspaces. However, one may equally
see this as a procedure for establishing invariance. This proce-
dure was referred to as external analysis by Van der Kloot and
Kroonenberg (1985), because externally determined values for the
parameters were used in fitting a particular data set.

For the Strange Situation data, this procedure could be used
to investigate to what extent the separate solution of a sample is
similar to that of another sample. In particular, the nature of the
difference of the Dutch sample with respect to the other samples
could be a focus of further analysis.

5. CONCLUSION
In this paper we have presented an approach toward assessing
factorial invariance in two-way rating designs such as stimulus-
response and semantic differential designs. Such designs generate
fully-crossed three-way data which can be analyzed by three-
way component models. True three-way models like the Parafac
and Tucker models and their variants already incorporate vari-
ous aspects of factorial invariance, in particular the double-metric
invariance of the concept and scale spaces. The models vary in
how they treat the relationships or links between the components.
A hierarchy of models with increasing factorial invariance is out-
lined, running from no invariance for separate SVDs for each
group, via single metric invariance for Tucker1 models, double-
metric invariance for Tucker2 models, double-metric invariance
and correlational invariance of Parafac models, to strict invari-
ance for a very restricted Tucker3 model.
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These models, and hence the nature of the invariance, can be
assessed and compared via deviance plots showing the sum of
squares of fit against the degrees of freedom. By connecting the
relevant models by convex hulls in the plot, a comparative eval-
uation can be made and an appropriate model can be selected.
Moreover, information supplied by the three-way analysis can be
used to assess which group is more deviant from the invariant
solution, and what the nature of such differences are.

The descriptive approach toward model selection, rather than
using a formal testing paradigm, has been shown to work well
for the example presented here. Data from a multinational col-
lection of Strange Situation sessions (Sagi and Lewkowicz, 1987)
were analyzed to demonstrate the effectiveness and usefulness of
the model hierarchy for two-way rating data.

By investigating data from two-way rating designs we have
extended the concept of factorial invariances beyond its stan-
dard definition. The future will have to show to what extent this
extension is going to make an impact on the research on factorial
invariance. For the present it seems that using the conceptual-
ization presented here and the proposed hierarchy of three-way
models, can shed light on differences and similarities between the
invariance in two-way rating designs.
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APPENDIX
This appendix is presented here to offer some idea of the substan-
tive outcomes of the invariance analysis of the Strange Situation.

For the Parafac model with two components, Figure A1 shows
the normalized components of the three modes in two panels,
both for the first and the second component as well as the strength
of the links between them.

If there was complete strict invariance, the samples would
have been superimposed in both panels at the value(c̄dss (the
T3-221Fixed model). If there would have been weighted strict
invariance, the rank order and spacing of the samples for each
of the components would have been equal i.e., at the values ckdss

(the T3-221 model). As the figure shows, neither of these options
was realized in the present data set, so that we must conclude that
a double-metric invariant model (PF2) is the most restricted or
invariant model that can be obtained.

The variances (or link strengths) of the components are d11 =
11.5 and d22 = 6.4, respectively (see Equation 5), so that the ratio
of their importance in reconstructing the model is 1.8. Thus, the
differences between the samples with respect to link strengths of
the first components are about twice as large as those for the
second components.

A.1. FIRST COMPONENT
The left-hand panel of Figure A1 shows that securely attached (B)
children show increasing Proximity seeking and Contact main-
taining during the Mother episodes of the Strange Situation,
as is evident from the increasingly higher coefficients on the
first component. Seeking closeness to the mother is indicative of
increasing stress during the procedure, which the B children try
to alleviate by showing more and more proximity to the mother,

i.e., showing a stronger secure attachment behavior. Treating the
stranger with suspicion by staying at a distance is evident in the
Stranger episodes; the coefficients remain negative but less so in
S6 than in S3. Children’s suspicion is decreasing slightly during
the procedure but it is never absent. The other three scales all
hover around zero, indicating that these behaviors of the chil-
dren are not related to the two behaviors mentioned first. The
US securely-attached children show the described patterns to
the largest extent and the Dutch children the least. It is inter-
esting to see that samples from the same country are generally
close together with the largest difference between the two Israeli
samples.

A.2. SECOND COMPONENT
The second components in the right-hand panel of Figure A1
describe mainly the avoidance, resistance and distance interaction
behaviors toward the stranger, or stranger wariness. Such behav-
ior is not typically present in the first two episodes but is present
to a limited extent in the other episodes except for Episode 6,
when it is the Stranger who returns rather than the Mother after
the child has been alone in the fifth episode. With respect to the
mother the situation is more complicated. There is a clear contrast
between the earlier and later episodes, in that negative behavior
toward the mother is not present in the beginning, but the chil-
dren show a certain reserve when mother and child are reunited
after the child has been alone with the stranger (Episodes M4
and M7).

These patterns are strongest in the Dutch and Japanese sam-
ples, as well as Belsky’s US sample. Again, samples from the
same country are generally close together except for the US
samples.

FIGURE A1 | Two-component Parafac analysis: Invariant components plus link strength of samples. Mi = Mother episode i; Si = Stranger episode i. For
sample abbreviations, see Figure 3.
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A.3. INVARIANCE CONCLUSION WITH RESPECT TO THE B-CHILDREN
The original research question was whether the structure behind
the data from the two-way rating design for the secure B-children
was the same across samples. The double-metric invariance
embodied in the well-fitting two-component Parafac model indi-
cates that this is indeed the case. However, the samples show a lack
of invariance with respect to importance of the linkage between
the components of the episodes and the scales. This difference
is primarily a matter of relative importance of the two com-
ponents. The first component embodies the increasingly secure

attachment behaviors (Proximity seeking and Contact maintain-
ing) over episodes, which is stronger in the US samples, especially
in contrast with the Dutch samples. The second component rep-
resents ‘stranger wariness’ (Avoidance, Resistance and Distance
interaction) which is especially strong in Episode 6, when the
stranger rather than the mother returns, after the child as been
alone in the fifth episode. To a lesser degree it also represents
reservation toward the mother in the reunion episodes. These pat-
terns are especially strong in the Dutch and Japanese samples and
Belsky’s US one.
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Studies that include multiple assessments of a particular instrument within the same
population are based on the presumption that this instrument measures the same
construct over time. But what if the meaning of the construct changes over time due
to one’s experiences? For example, the experience of a traumatic event can influence
one’s view of the world, others, and self, and may disrupt the stability of a questionnaire
measuring posttraumatic stress symptoms (i.e., it may affect the interpretation of items).
Nevertheless, assessments before and after such a traumatic event are crucial to
study longitudinal development of posttraumatic stress symptoms. In this study, we
examined measurement invariance of posttraumatic stress symptoms in a sample of
Dutch soldiers before and after they went on deployment to Afghanistan (N = 249).
Results showed that the underlying measurement model before deployment was different
from the measurement model after deployment due to invariant item thresholds. These
results were replicated in a sample of soldiers deployed to Iraq (N = 305). Since the
lack of measurement invariance was due to instability of the majority of the items, it
seems reasonable to conclude that the underlying construct of PSS is unstable over
time if war-zone related traumatic events occur in between measurements. From a
statistical point of view, the scores over time cannot be compared when there is a
lack of measurement invariance. The main message of this paper is that researchers
working with posttraumatic stress questionnaires in longitudinal studies should not take
measurement invariance for granted, but should use pre- and post-symptom scores as
different constructs for each time point in the analysis.

Keywords: measurement invariance, posttraumatic stress disorder, trauma, threshold instability, multiple

assessments

INTRODUCTION
Questionnaires are often used at different time points to assess
mean or individual change over time. For example, a question-
naire to assess posttraumatic stress symptoms can be rated at
different time points after a traumatic event to study the course
of problematic responses. Although statisticians have stressed the
importance of testing measurement invariance when comparing
latent mean scores over time (e.g., Byrne et al., 1989; Steenkamp
and Baumgartner, 1998; Vandenberg and Lance, 2000), the
assumption that factor loadings and intercepts (or thresholds
when dealing with dichotomous or categorical scores instead of
continuous scores) of the underlying items are equal over time
often seems to be taken for granted. By comparing latent mean
scores over time, we aim to capture true latent score changes
(i.e., alpha change; Brown, 2006). However, in case of measure-
ment non-invariance, increases or decreases in latent mean scores
may also reflect changes in the construct itself (gamma change)
or changes in the measurement proportions of the indicators
(beta change). Therefore, it is important that factor loadings and
intercepts are “measurement invariant” to claim true latent score

change over time and to avoid bias in the parameter estimates
(Guenole, 2014). But what should one do in case of measurement
non-invariance? Is it then still possible to draw meaningful con-
clusions or should mean scores over time not be compared? In
this article we discuss a measure that, from a theoretical perspec-
tive, is expected to lack measurement invariance. In such cases
the solutions of establishing partial invariance (Byrne et al., 1989)
or approximate invariance (van de Schoot et al., 2013; Muthén,
2014) are not a valid solution. We will test for measurement
invariance in two samples, and investigate causes of measurement
non-invariance and interpretations of the results in this situation.

THE CASE OF THEORETICAL MEASUREMENT NON-INVARIANCE
The experience of a traumatic event can lead to psychological
distress, which may manifest as posttraumatic stress disorder
(PTSD). PTSD is characterized by re-experiencing symptoms
(e.g., intrusions or nightmares related to the event), avoidance
of reminders of the event, negative cognitions and mood, and
hyperarousal symptoms (e.g., sleep and concentration problems;
APA, 2013). One way to check the presence of PTSD symptoms
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is by using self-report questionnaires. Although it is often not
possible to include a pre-trauma assessment of symptomatol-
ogy, several prospective longitudinal studies, typically in military
or firefighter samples, have done this and showed that PTSD
symptoms after a traumatic event may partially be explained by
symptoms endorsed at baseline (e.g., Engelhard et al., 2007b;
Rona et al., 2009; Vasterling et al., 2010; Rademaker et al., 2011;
van Zuiden et al., 2011; Berntsen et al., 2012; Bonanno et al., 2012;
Franz et al., 2013; Lommen et al., 2013, 2014). High scores at
baseline could represent symptoms that are not exclusively related
to PTSD (e.g., sleep or concentration problems, negative mood;
Engelhard et al., 2009b), or they may reflect already existing PTSD
symptoms resulting from earlier traumatic experiences. So when
prospectively studying, for instance, predictors for the develop-
ment of PTSD symptoms, it seems useful to take symptoms that
were already present before trauma into account.

However, it may be hypothesized that the experience of a trau-
matic event1 (APA, 2013) can actually change the way items of
the questionnaire are interpreted. That is, after experiencing a
traumatic event, the probability of answering “yes” to a specific
questions may increase or decrease (gamma change), and the
relative importance of questions may change (beta change).

Consider, for example, soldiers who complete a questionnaire
for PTSD symptoms before and after deployment. Before deploy-
ment, soldiers may be instructed to rate the items in reference to a
recent event that made them feel especially upset or distressed, in
reference to a distressing event that bothered them the most in the
last month, or without reference to a specific event. After deploy-
ment, the soldier may be instructed to fill out the questionnaire
with respect to most distressing event during the recent deploy-
ment, or to rate the symptoms without reference to a specific
event. Before deployment, the presence of symptoms could relate
to a range of events or stressors. After deployment, the symp-
toms are likely a reaction to the warzone experiences in which
life-threatening situations are experienced or witnessed, like being
shot at, being exposed to the explosion of an improvised explo-
sive device (IED), or having to help with the removal of human
remains. Such experiences can drastically change one’s view on
the world, like perceiving the world as a dangerous place, and
one’s evaluative reactions (e.g., Foa and Rothbaum, 1998; Ehlers
and Clark, 2000; Engelhard et al., 2009a, 2011). Moreover, com-
mon posttraumatic symptoms like having unexpected, distressing
thoughts about the event, nightmares, and sleeping problems
can be negatively interpreted and may lead to a change in the
soldier’s view on his/her self, such as “I am a weak person,”
or “My reactions since the event mean that I am going crazy”

1Exposure to actual or threatened death, serious injury or sexual violation.
The exposure must result from one or more of the following scenarios, in
which the individual:

• directly experiences the traumatic event;
• witnesses the traumatic event in person;
• learns that the traumatic event occurred to a close family member or close

friend (with the actual or threatened death being either violent or acciden-
tal); or

• experiences first-hand repeated or extreme exposure to aversive details of
the traumatic event (not through media, pictures, television or movies
unless work-related).

(Foa et al., 1999). The question that arises is whether it is realistic
to expect measurement invariance for the situation as described
here.

In sum, assessing levels of PTSD symptoms at baseline as well
as after the traumatic events is essential to model the development
of PTSD symptoms, but may be statistically problematic at the
same time because of expected measurement non-invariance.

THIS STUDY
In the current study, we tested measurement invariance in two
datasets that were part of two larger prospective studies about
resilience and vulnerability factors involved in PTSD symptoms
(see Lommen et al., 2013 for sample 1, and Engelhard et al., 2007b
for sample 2). Using Sample 1, we investigated the source of the
measurement non-invariance, including the effect of the pres-
ence or absence of prior deployment experiences. Arguably, those
with prior deployment experiences are more likely to fill out the
questionnaire with regard to deployment related traumatic expe-
riences at both time points. Expecting measurement invariance
may therefore be specifically unrealistic for the group without
prior deployment experience. Sample 2 was used to test whether
the results of sample 1 would be replicated. Finally, solutions for
dealing with non-invariant data will be discussed.

MATERIAL AND METHODS
Sample 1 consisted of 249 Dutch soldiers [Task Force Uruzgan
(TFU) 11], who completed the Dutch version (Engelhard et al.,
2007a) of the Posttraumatic Symptom Scale—Self Report (PSS;
Foa et al., 1993) about 2 months before their 4-month deploy-
ment to Afghanistan (N = 249), and about 2 months after their
return home (n = 241). The PSS is a self-report questionnaire
with 17 items that represent the 17 symptoms of PTSD according
to the DSM-IV (American Psychiatric Association, 2000), which
includes (a) re-experiencing symptoms, such as intrusions, flash-
backs, and nightmares (b) avoidance symptoms (e.g., avoidance
of reminders of the traumatic event) and numbing, and (c) hyper-
arousal symptoms, such as hypervigilance, sleep disturbances,
and concentration problems. Before their deployment, partici-
pants were asked to rate the questions with respect to their most
aversive life-event that troubles them the most in the last month.
After deployment, participants were instructed to complete the
PSS with respect to their deployment-related event(s) that trou-
bled them the most in the last month. Items were rated on a 0
(not at all) to 3 (almost always) scale. For convenience, scores were
dichotomized into 0 (symptom absent) to 1 (symptom present) for
the analyses.

Sample 2 consisted of 305 Dutch soldiers, derived from a larger
study in which 481 soldiers were included [stabilization Force Iraq
(SFIR) 3, 4, and 5; Engelhard et al., 2007b]. Since only SFIR 3 and
5 were asked to complete the PSS before their deployment, these
two groups were included in this study (N = 310). Only soldiers
who completed the PSS at least at one of the two time points were
included in this study (n = 305). Before their deployment to Iraq,
291 soldiers filled out the PSS, and 242 soldiers completed the PSS
about 5 months after their return home.

At the post-deployment assessment, both samples completed a
Dutch version of the Potentially Traumatizing Events Scale (PTES;
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Maguen et al., 2004), which assessed the frequency of exposure to
war-zone related stressors. For sample 1, the questionnaire was
adjusted to the situation in Afghanistan, resulting in 24 stres-
sors (cf. Lommen et al., 2013). For sample 2, the questionnaire
was adjusted to the situation in Iraq, resulting in 22 stressors
(cf. Engelhard and van den Hout, 2007). Participants indicated
whether they had experienced each stressor, and the negative
impact (no, mild, moderate, or severe).

Participation was strictly voluntary without financial com-
pensation. Both prospective projects were approved by the
Institutional Review Board of Maastricht University.

DATA ANALYSIS
Analyses were conducted with Mplus 7.11 (Muthén and Muthén,
2010). First, using Sample 1, two confirmatory factor analyses
(CFA) for the PSS at the two time points were assessed. Second,
measurement invariance was tested, as suggested by Raykov et al.
(2012) by comparing the model fit of four competing, but
nested, models: the unconstrained CFA model (factor loadings
and thresholds of the latent variable were freely estimated), the
CFA model with threshold invariance (constrained thresholds),
the CFA model with loading invariance (constrained factor load-
ings), and the CFA model with scalar invariance (constrained
factor loadings and thresholds). The tests for determining mea-
surement invariance were repeated for Sample 2 to investigate
whether the results for Sample 1 could be replicated. Third, to
investigate whether the measurement invariance test would be
different for soldiers with and without prior deployment expe-
riences, the previous step was repeated for these two groups
separately. Fourth, to gain insight in the source of potential mea-
surement non-invariance we applied two methods: (1) differences
in factor loadings and thresholds were tested using a Wald test;
and (2) we employed the method of Raykov et al. (2013). For
the first method we used the loading invariance model and tested
each pair of thresholds using the MODEL TEST option in Mplus.
This procedure resulted in 17 Wald tests. For the second method,
of Raykov et al., we first tested the chi square difference (using
the DIFFTEST option of Mplus) between the scalar model and 17
models (17 items) where one pair of thresholds was left uncon-
strained at a time (Method 2A). This resulted in 17 chi square
difference tests. If all tests in comparison to the scalar model are
non-significant, then measurement invariance holds. If some tests
are significant whereas others are not, we can conclude that par-
tial invariance holds and we know which items are causing the
non-invariance. Since the CFA models indicated that the load-
ing invariance model showed the best fit (with thresholds freely
estimated), we also computed the chi difference tests between
the loading invariance model and 17 models where one set of
thresholds was constrained (Method 2B). This latter procedure is
a replication of the first method, with the MODEL TEST option,
but this time with chi square values instead of Wald tests. The
two methods (i.e., 2A and 2B) can be considered as the for-
ward and backward methods of sequential regression analyses and
will probably result in slightly different solutions just like with
sequential analyses.

For the Raykov method we applied the Benjamini-Hochberg
multiple testing procedure as described in Raykov et al. (2013).
That is, we calculated a corrected alpha value, indicated by l in

the tables. The p-values of the chi square difference tests should
then be smaller than l instead of the default alpha of.05. After
computing the chi square differences, the resulting p-values are
ordered from small to large and for each row a different l value
is computed. For more details, how to compute l and syntax-
examples we refer to Raykov et al. (2013). In the appendix of our
paper we provide our Mplus syntax for the final model of method
1 (all other syntax files can be found at the website of the sec-
ond author: www.rensvandeschoot.com) and in the footnote of
Table 3 we provide the code for obtaining l.

The root mean square error of approximation (RMSEA,
Steiger, 1990), comparative fix index (CFI; Bentler, 1990), and
Tucker-Lewis index (TLI; Tucker and Lewis, 1973) were used to
evaluate model fit. RMSEA values of <0.08, CFI, and TLI values
of>0.90 were considered to reflect adequate model fit (see Kline,
2010 for an overview of fit statistics). To compare models, we used
Chi square difference test, Akaike Information Criterion (AIC;
Akaike, 1981) and Bayesian Information Criterion (BIC; Schwarz,
1978) values.

RESULTS
EXPERIENCED EVENTS ON DEPLOYMENT
The most commonly experienced deployment-related events in
all samples (TFU 11 of sample 1, SFIR 3 and SFIR 5 of sam-
ple 2) were “Going on patrols or performing other dangerous
duties” (90–94%), “Fear of being ambushed or attacked” (65–
95%), and “Fear of having unit fired on” (61–95%). Amongst
those events that participants rated as having a moderate to severe
negative impact were “Being informed of a Dutch soldier who got
killed” (21–51%), “Witnessing an explosion” (9–25%), “Seeing
dead or injured Dutch soldiers” (0–24%), and “Having to aid in
the removal of human remains” (0–13%).

SAMPLE 1
CFA models including the latent variable PSS loading on 17 indi-
cators showed acceptable model fit at both time points [before
deployment: χ2

(119) = 175.027, p < 0.001, RMSEA (90% CI) =
0.044 (0.029–0.058), CFI = 0.961, TLI = 0.955; after deployment:
χ2

(119) = 175.237, RMSEA (90% CI) = 0.044 (0.029–0.058),
CFI = 0.921, TLI = 0.909]. Table 1 presents an overview of the
fit indices used to evaluate the CFA-models including PSS at
both time points. The CFA including PSS at both time points
with freely estimated factor loadings and the CFA with load-
ing invariance showed acceptable model fit. The model fit of the
unconstrained CFA was better according to the chi square dif-
ference test, CFI, TLI, and RMSEA, but the CFA with loading
invariance (see Appendix 1 for Mplus syntax of model statement)
was better according to the AIC and BIC. The CFA that imposed
threshold invariance and the one imposing scalar invariance both
showed unacceptable model fit. The results of all fit indices indi-
cate that the measurement non-invariance has mainly to do with
the instability of the thresholds over time.

SAMPLE 2
Similar to sample 1, the CFA models including the latent vari-
able PSS in sample 2 showed acceptable model fit at both time
points [before deployment: χ2

(119) = 160.476, p = 0.007, RMSEA
(90% CI) = 0.035 (0.019–0.048), CFI = 0.941, TLI = 0.933; after
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Table 1 | Model fit information for CFA including PSS before and after deployment in sample 1 and 2.

χ2(df) CFI TLI RMSEA (90% CI) AIC BIC

SAMPLE 1

Unconstrained 640.821 (526) 0.924 0.919 0.030 (0.020–0.037) 5974.361 6217.065

Threshold invariance 751.535 (543) 0.862 0.857 0.039 (0.032–0.046) 6034.422 6217.330

Loading invariance 674.540 (543) 0.913 0.910 0.031 (0.023–0.039) 5965.915 6148.823

Scalar invariance 772.401 (560) 0.859 0.859 0.039 (0.032–0.046) 6218.945 6342.056

SAMPLE 2

Unconstrained 630.235 (526) 0.961 0.959 0.025 (0.017–0.033) 6639.398 6896.100

Threshold invariance 763.777 (543) 0.918 0.915 0.037 (0.030–0.042) 6715.873 6909.330

Loading invariance 618.640 (543) 0.972 0.971 0.021 (0.011–0.029) 6621.558 6815.014

Scalar invariance 726.491 (560) 0.938 0.938 0.031 (0.024–0.037) 6830.930 6961.140

AIC and BIC through MLR, rest: WLSMV.

deployment: χ2
(119)=219.654, RMSEA (90% CI) = 0.059 (0.047–

0.071), CFI = 0.963, TLI = 0.957]. Although in this sample all
CFA models with varying constrains showed acceptable model fit,
AIC and BIC were lowest for the loading invariance model (see
Table 1). Again, the measurement non-invariance seems to arise
from instability of the thresholds.

PRIOR DEPLOYMENT EXPERIENCE
It could be argued that measurement non-invariance would be
driven by those participants who have not been deployed before,
because they may refer to different types of stressors before and
after this particular deployment when rating the items. For those
participants who have been deployed before, the meaning of the
construct might have already changed with the experience of
the prior deployment. Therefore we tested measurement invari-
ance in the group with (56.63 and 41.64% in Sample 1 and
2, respectively) and without prior deployment experience sepa-
rately. Nevertheless, based on AIC/BIC comparison, the results
showed a similar pattern for both groups, suggesting that thresh-
old instability underlies measurement non-invariance in our
samples, regardless of the presence or absence of prior deploy-
ment experience. The results can be found in the online available
supplementary materials.

THRESHOLD INSTABILITY
To gain insight in the instability of the thresholds for both sam-
ples, we explored the difference in thresholds for each item
between the two time points. For descriptive purposes, the thresh-
old before deployment was subtracted from the threshold after
deployment difference to define threshold difference for each
item. The threshold represents the mean score on the latent vari-
able that is related to the “turning point” where an item is rated
as present instead of not present. Thus, a positive difference score
means that compared to the PSS mean score before deployment, a
higher PSS mean score was needed to rate an item as present after
deployment. Threshold values and difference scores are presented
in Table 2.

The first method we used to test for threshold differences
is to compute a Wald test whether, for each item, the thresh-
old after deployment significantly increased or decreased com-
pared to the threshold before deployment. As can be seen in

Table 2, where significant differences are indicated with an aster-
isk, the majority of the threshold values changed significantly
(11 and 9 out of the 17 thresholds for sample 1 and 2, respec-
tively). A decrease in threshold means that the possibility of
answering “yes” after deployment was higher than the possi-
bility of a “yes” before deployment, whereas the possibility of
answering “yes” was lower after deployment compared to before
deployment for those thresholds that increased. According to this
method, four items changed significantly in the same direction
in both samples: thresholds for “Recurrent distressing dreams
of the event,” “Restricted range of affect,” and “Hypervigilance”
decreased, while “Sense of foreshortened future” increased. Only
the threshold of three items (i.e., “Acting or feeling as if the
event were recurring,” “Difficulty falling or staying asleep,” and
“Difficulty concentrating”) did not change significantly in either
sample.

The second method was based on chi square differences
between either the scalar (method 2A; see Table 3) or the loading
invariance model (method 2B; see Table 4) and 17 models where
one combination of thresholds is released or fixed, respectively.
Method 2A showed more items with stable thresholds over time,
but there was almost no overlap on item level between the two
samples. The results of method 2B were similar to the results of
method 1, with the only difference that some item thresholds that
significantly changed over time according to method 1, did not
significantly change according to the l value, but only when a p
value of.05 was used.

In sum, the three methods resulted in different items being
problematic and not all items were similarly problematic across
the two samples. Looking at the subscales of the PSS (sub-
scales according to the DSM-IV and psychometric studies), each
subscale included one or more unstable items. So the main
conclusion is that the instrument assessing posttraumatic stress
symptoms has way too many non-invariant items to justify latent
mean comparison over time.

DISCUSSION
To compare latent mean scores over time, the latent vari-
able should be measurement invariant. However, it might not
always be realistic to expect measurement invariance. In the
current study we tested whether the underlying construct of
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Table 2 | Threshold and threshold difference (threshold after deployment minus threshold before deployment) per item of the Posttraumatic

Symptom Scale—Self Report (PSS).

THRESHOLD

Item Sample 1 Sample 2

Pre Post Diff Pre Post Diff

1. Recurrent and intrusive distressing recollections of the event 0.221 1.411 1.190* 0.895 0.908 0.049
2. Recurrent distressing dreams of the event 1.440 1.130 −0.310* 1.462 0.990 −0.472*

3. Acting or feeling as if the event were recurring 1.054 1.306 0.252 1.005 0.940 −0.065
4. Intense psychological distress at exposure to cues of event 1.036 1.569 0.533* 1.820 1.060 −0.760*

5. Physiological reactivity on exposure to cues of event 1.258 1.643 0.385* 1.264 1.135 −0.129
6. Avoidance of thoughts, feelings, or conversations associated with event 0.623 1.836 1.213* 1.435 0.762 −0.673*

7. Avoidance of activities, places, or people associated with event 1.036 1.647 0.611* 1.345 1.415 0.070
8. Inability to recall an important aspect of event 0.919 1.356 0.437* 1.191 1.197 0.006
9. Diminished interest or participation in significant activities 0.801 1.021 0.220 1.209 0.668 −0.541*

10. Feeling of detachment or estrangement from others 0.987 1.216 0.229 1.191 0.776 −0.415*

11. Restricted range of affect 1.113 0.890 −0.223* 0.869 0.630 −0.239*

12. Sense of a foreshortened future 1.019 1.359 0.340* 1.017 1.385 0.368*

13. Difficulty falling or staying asleep 0.921 0.830 −0.091 0.820 0.665 −0.155
14. Irritability or outbursts of anger 0.258 0.221 −0.037 0.856 0.273 −0.583*

15. Difficulty concentrating 0.552 0.745 0.193 0.650 0.655 0.005
16. Hypervigilance 0.830 0.330 −0.500* 1.245 −0.166 −0.411*

17. Exaggerated startle response 1.608 0.704 −0.904* 0.694 0.484 −0.210

*p < 0.05.

Table 3 | Chi square difference values, p-, and l-values for the scalar

model where the model number refers to the item number of which

the thresholds between the two time points is estimated

unconstrained (all factor loadings and other thresholds are

constrained).

Sample 1 Sample 2 I

Model χ2 p Model χ2 p

M1 77.719 <0.0001* M16 106.308 <0.0001* 0.00085
M2 17.674 <0.0001* M12 29.885 <0.0001* 0.00171
M17 54.284 <0.0001* M15 18.237 <0.0001* 0.00256
M6 48.995 <0.0001* M6 9.874 0.001* 0.00342
M16 45.051 <0.0001* M14 9.741 0.001* 0.00427
M11 15.203 0.001* M4 9.139 0.002* 0.00513
M7 9.590 0.002* M7 7.512 0.006** 0.00598
M4 7.017 0.008** M8 6.412 0.011** 0.00684
M14 6.755 0.009** M9 5.176 0.022** 0.00769
M13 6.493 0.011** M5 4.235 0.039** 0.00855
M8 5.450 0.020** M3 3.935 0.047** 0.00940
M5 3.146 0.076*** M13 3.363 0.066*** 0.01026
M12 2.296 0.130*** M2 2.789 0.094*** 0.01111
M3 1.477 0.224*** M17 1.156 0.282*** 0.01197
M10 1.128 0.288*** M10 0.580 0.446*** 0.01282
M9 1.088 0.297*** M11 0.485 0.486*** 0.01368
M15 0.005 0.942*** M1 0.005 0.941*** 0.01453

*significant when p ≤ l.
**significant when p ≤ 0.05.
***never significant.

l = {0.05/[17*(1+1/2+1/3+1/4+1/5+1/6+1/7+1/8+1/9+1/10+1/11+1/12+1/13+
1/14+1/15+1/16+1/17)]}*c where c = 1,. . .,17 to obtain a new alpha value for

each new test.

Table 4 | Chi square difference values, p-, and l-values for the loading

invariance model where the model number refers to the item number

of which the thresholds between the two time points is constrained

(all factor loadings are constrained and other thresholds are

unconstrained).

Sample 1 Sample 2 I

Model χ2 p Model χ2 p

M1 92.568 <0.0001* M16 130.2250 <0.0001* 0.00085
M6 56.579 <0.0001* M14 27.0260 <0.0001* 0.00171
M16 22.125 <0.0001* M6 23.6180 <0.0001* 0.00256
M17 35.555 <0.0001* M9 21.8750 <0.0001* 0.00342
M7 13.277 <0.0001* M4 21.0990 <0.0001* 0.00427
M4 11.135 0.001* M10 13.6190 <0.0001* 0.00513
M8 9.798 0.002* M2 13.4300 0.001* 0.00598
M5 5.807 0.016* M12 8.4590 0.003* 0.00684
M12 5.232 0.022** M11 5.9620 0.014** 0.00769
M2 4.890 0.027** M17 4.3380 0.037** 0.00855
M11 3.969 0.046** M13 1.8990 0.168*** 0.00940
M15 3.960 0.046** M3 1.2580 0.262*** 0.01026
M9 3.890 0.048** M5 1.0110 0.314*** 0.01111
M10 3.497 0.061*** M15 1.0020 0.316*** 0.01197
M3 2.777 0.095*** M7 0.2040 0.651*** 0.01282
M14 1.132 0.287*** M1 0.1580 0.690*** 0.01368
M13 0.607 0.436*** M8 0.0020 0.963*** 0.01453

*significant when p ≤ l.
**significant when p ≤ 0.05.
***never significant.

l = {0.05/[17*(1+1/2+1/3+1/4+1/5+1/6+1/7+1/8+1/9+1/10+1/11+1/12+1/13+
1/14+1/15+1/16+1/17)]}*c where c = 1,. . .,17 to obtain a new alpha value for

each new test.
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a posttraumatic stress questionnaire changed over time by the
experience of a traumatic event. This change seems likely, since
such a major life experience challenges someone’s beliefs about
others, the world, and themselves (e.g., Foa and Rothbaum, 1998;
Ehlers and Clark, 2000). At the same time, however, assessment of
posttraumatic stress before and after a traumatic event is impor-
tant to study the development op posttraumatic stress disorder
after a specific event; that is, already existing symptoms should be
taken into account. In the present study, measurement invariance
of the posttraumatic symptom scale (PSS; Foa et al., 1993) was
tested in two samples of Dutch soldiers who completed the PSS
before and after deployment.

According to our first statistical method, results from our test
for measurement invariance in Sample 1 showed instability of
the thresholds of almost all indicators (the items). Analyses in
Sample 2 replicated these findings, but other indicators appeared
to be causing the non-invariance. Results were also similar when
only those soldiers with or without prior deployment experience
were included. Taking both samples into account, only 3 item
thresholds showed no significant changes over time. The instabil-
ity of thresholds was replicated with two other statistical methods,
although not all thresholds were similarly problematic across the
different methods and the two samples. Since the lack of mea-
surement invariance is due to threshold instability of the majority
of the items, it seems reasonable to conclude that the underlying
construct of PSS is unstable over time if war-zone related trau-
matic events occur in between measurements. This finding might
also explain the lack of measurement (scalar) invariance found in
a study that compared soldiers who had or had not been recently
deployed (Mansfield et al., 2010).

From a statistical viewpoint, based on the findings of this
study it could be argued that any PTSD-related questionnaire is
expected to fail the test for measurement invariance. As a result,
measurement invariance should never be taken for granted,
but should be tested. Moreover, if non-invariance is found, an
increase or a decrease of PSS cannot be interpreted in a straight-
forward way in a prospective longitudinal study in which the
PSS is assessed before and after trauma e.g., using, longitu-
dinal models like repeated measure analyses or latent growth
(mixture) models. One solution is to treat the pre-trauma assess-
ment as a different construct. Giving the constructs before and
after the traumatic event different names can emphasize this:
the pre-deployment score could be named “baseline symptoms”
(Lommen et al., 2014) and the post-deployment score could be
named “PTSD symptoms.”

A few points should be taken into consideration with regard
to this study. First, although we cross-validated our results in
two samples and with different statistical methods, the find-
ings should be replicated in samples from different countries
to exclude country specific effects. Also, the results should be
replicated in samples with different DSM-classified traumatic
events to find out whether the results are specific for military
forces or that the results can be generalized to all traumatic
events. Moreover, other, more efficient, methods of detecting
non-invariant items could be used (de Roover et al., 2014), but
at least our conservative method of pairwise testing provides a
first step. Future studies may focus on identifying more stable

items to construct a questionnaire to use in prospective stud-
ies that include measurements before and after trauma exposure.
Second, in this study, PTSD was used as a latent construct. The
idea that PTSD symptoms are indicators of an underlying latent
variable is widespread. According to this view, the PTSD con-
struct denotes a latent variable that functions as the root cause of
PTSD symptoms. This presumption has directed psychopathol-
ogy research for decades, but rests on problematic psychometric
premises (Borsboom and Cramer, 2013; McNally et al., in press).
Recently, alternative, network approaches have been proposed
that conceptualize mental disorders as systems of causally con-
nected symptoms (Borsboom and Cramer, 2013; McNally et al.,
in press). Future studies might investigate change in PTSD symp-
toms from a network approach perspective.

RECOMMENDATIONS
Our advice for PTSD researchers who use PTSD as a latent con-
struct in pre-trauma and post-trauma designs is to always test
for measurement invariance for measures. Since measurement
non-invariance is highly likely to be found if a traumatic event
occurred in between two assessments, it is important to inves-
tigate the source of the construct instability, and treat the pre
and post scores as different construct for each time point in the
analysis.
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1. INTRODUCTION
Asparouhov and Muthén (2014) presented a new method for
multiple-group confirmatory factor analysis (CFA), referred to as
the alignment method. The alignment method can be used to esti-
mate group-specific factor means and variances without requir-
ing exact measurement invariance. A strength of the method is
the ability to conveniently estimate models for many groups, such
as with comparisons of countries. The method is a valuable alter-
native to the currently used multiple-group CFA methods for
studying measurement invariance that require multiple manual
model adjustments guided by modification indices. Multiple-
group CFA is not practical with many groups due to poor model
fit of the scalar model and too many large modification indices.
In contrast, the alignment method is based on the configural
model and essentially automates and greatly simplifies measure-
ment invariance analysis. The method also provides a detailed
account of parameter invariance for every model parameter in
every group.

This paper focuses on IRT applications of the alignment
method. An empirical investigation is made of binary knowledge
items administered in two separate surveys of a set of countries.
A Monte Carlo study is presented that shows how the quality of
the alignment can be assessed. Mplus inputs are provided in the
Supplementary Material.

2. MULTIPLE-GROUP IRT
Consider the response to item y expressed by the two-parameter
logit model for individual i in group g,

P(yig = 1|ηig) = 1

1 + exp[−ag(ηig − bg)] , (1)

where g = 1, . . . ,G and G is the number of groups, i = 1, . . . ,Ng

where Ng is the number of independent observations in group g,
and ηig is a latent variable, ηig ∼ N(αg, ψg). Using item response
theory (IRT) language, ag is the discrimination parameter and

bg the difficulty parameter. For a recent overview of IRT for
psychologists, see e.g., Reise et al. (2013).

Measurement invariance for ag and bg (referred to as “item
bias” and “DIF” in IRT) has traditionally been concerned with
comparing a small number of groups such as with gender or eth-
nicity using techniques such as likelihood-ratio chi-square testing
of one item at a time (see e.g., Thissen et al., 1993). Two common
approaches have been discussed (Stark et al., 2006; Lee et al., 2010;
Kim and Yoon, 2011):

• Bottom-up: Start with no invariance (configural case), impos-
ing invariance one item at a time.

• Top-down: Start with full invariance (scalar case), freeing
invariance one item at a time.

Neither approach is scalable—both are very cumbersome when
there are many groups, such as 50 countries (50 × 49/2 = 1225
pairwise comparisons for each item). The correct model may well
be far from either of the two starting points, which may lead to the
wrong model. Asparouhov and Muthén (2014) proposed a new
method referred to as alignment which is suitable for analysis of
many groups. The alignment method is based on the idea of start-
ing from the configural model with no invariance and attempting
to find as much invariance as possible by letting the factor means
and variances vary across groups.

3. THE ALIGNMENT METHOD
Asparouhov and Muthén (2014) considers the model for a con-
tinuous item yipg ,

yipg = νpg + λpgηig + εipg, (2)

where p = 1, . . . , P and P is the number of observed indica-
tor variables, g = 1, . . . ,G and G is the number of groups,
i = 1, . . . ,Ng where Ng is the number of independent obser-
vations in group g, ηig is a latent variable and we assume that
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εipg ∼ N(0, θpg), ηig ∼ N(αg, ψg). This expression is relevant
also for binary outcomes when letting the dependent variable
in (2) be a continuous latent response variable y∗

ipg underly-
ing the observed binary variable yipg , where using a threshold
parameter τ ,

yipg =
{

0, if y∗
ipg ≤ τpg

1, if y∗
ipg > τpg

and the variance of the residual εipg is standardized as π2/3 in
line with the logistic model (with the alternative probit modeling,
the residual variance is standardized as one). Using (2), the IRT
parameters of (1) are obtained as

apg = λpg, (3)

bpg = τpg/λpg . (4)

Asparouhov and Muthén (2014) illustrates the reason for the
choice of the term alignment for this new method as in Figure 1
using continuous items. Consider group-invariant intercepts and
loadings for 10 items and two groups with factor means 0 and −1
and factor variances 1 and 2. The configural model of the first
step of alignment fixes the factor means and variances to 0 and 1,
respectively, in both groups. The plot at the top shows the config-
ural intercept parameters which due to group differences in factor
means and variances are not equal across the two groups despite
the perfect measurement invariance of the original parameters.
The plot at the bottom shows the invariance across groups of the
original parameters where the correct factor means and variances
have been taken into account. Going from the top to the bottom
plot, the intercept parameters have been aligned.

3.1. THE ALIGNMENT FITTING FUNCTION
Denote the estimates of the configural model by νpg,0 and λpg,0.
Asparouhov and Muthén (2014) show that for every set of param-
eters αg andψg there are intercept and loading parameters νpg and
λpg that yield the same likelihood as the configural model. These
parameters can be obtained as follows

λpg,1 = λpg,0√
ψg
, (5)

νpg,1 = νpg,0 − αg
λpg,0√
ψg
. (6)

We want to choose αg and ψg so that we minimize the amount
of measurement non-invariance. The αg and ψg parameters are,
however, not identified in the configural model and are fixed to
zero and one, respectively for each group. Adding a simplicity
function gives the necessary restrictions to identify the model.
The simplicity function minimizes with respect to αg and ψg

the total loss/simplicity function F which accumulates the total
measurement non-invariance over the items,

FIGURE 1 | Unaligned and aligned intercept parameters axes

correspond to intercept values for the two groups. Unaligned:
Configural model (mean = 0, variance = 1 in both groups). Aligned: Taking
into account the group differences in means and variances.

F =
∑

p

∑

g1 < g2

wg1,g2 f (λpg1,1 − λpg2,1) (7)

+
∑

p

∑

g1 < g2

wg1,g2 f (νpg1,1 − νpg2,1).

The function F implies that for every pair of groups and every
intercept and loading parameter we add to the total loss function
the difference between the parameters scaled via the component
loss function (CLF) f . CLF has been used in EFA analysis, see for
example Jennrich (2006) and it is used similarly here. One good
choice for the CLF is

f (x) =
√√

x2 + ε

where ε is a small number such as 0.0001. Thus, the total loss
function F will be minimized at a solution where there are a few
large non-invariant measurement parameters and many approx-
imately invariant measurement parameters rather than many
medium-sized non-invariant measurement parameters. This is
similar to the fact that EFA rotation functions aim for either large
or small loadings, but not mid-sized loadings.
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The alignment method is carried out using maximum-
likelihood estimation of the configural model. In addition to the
logit model, probit can also be handled. More than one factor can
also be accommodated in which case the alignment is done for
each factor. Cross-loadings are not, however, allowed. To handle
national surveys, the estimation allows complex survey data with
stratification, weights, and clustering, where standard errors are
computed using the Huber-White sandwich estimator.

Muthén and Asparouhov (2013a) make a comparison of the
alignment method and two-level IRT modeling. In the former
approach the groups are viewed as a fixed mode of variation,
whereas in the latter approach they are viewed as a random
mode of variation. A key advantage of the alignment method
is that a specific distributional assumption such as normal-
ity of the item parameter distributions across groups is not
required. For example, a subset of the groups may show large
non-invariance, whereas the remaining groups may show lit-
tle invariance. Information about which groups contribute to
non-invariance is also more readily available with the alignment
method.

3.2. ALIGNMENT QUALITY AND DEGREE OF NON-INVARIANCE
In discussing the quality of the alignment results, Asparouhov and
Muthén (2014) stated

“The alignment method will always estimate the simplest model
with the largest amount of invariance, but if the assumption of
approximate measurement invariance is violated the simplest and
most invariant model may not be the true model. For example, if
data are generated where a minority of the factor indicators have
invariant measurement parameters and the majority of the indi-
cators have the same amount of non-invariance, the alignment
method will choose the non-invariant indicators as the invariant
ones, singling out the other indicators as non-invariant.”

The Asparouhov and Muthén (2014) simulation results show that
alignment parameter biases increase with increasing degree of
measurement non-invariance, decreasing group sample size, and
increasing number of groups. For 60 groups, satisfactory results
were obtained with groups sizes of 1000 and at most 20% non-
invariant measurement parameters. A key issue is the quality of
the ranking of groups based on factor means. Monte Carlo sim-
ulations in Muthén and Asparouhov (2013a) focused on the cor-
relation between the population factor means and the estimated
alignment factor means computed over groups and averaged over
replications. Correlations of at least 0.98 were deemed to produce
reliable factor mean rankings. Correlations of this magnitude
were seen even in cases with higher than 20% non-invariant mea-
surement parameters. As a rough rule of thumb, a limit of 25%
non-invariance may be safe for trustworthy alignment results,
while with higher percentages a Monte Carlo simulation study is
recommended. Such a study is illustrated below.

4. AN ILLUSTRATION COMPARING COUNTRIES IN TWO
CROSS-SECTIONAL SURVEYS

The IEA (International Association for the Evaluation of
Educational Achievement) civic knowledge test of 1999 consists
of 38 dichotomously scored items. This test, referred to as CIVED,

was administered to nearly 90,000 14-year-old students in 28
countries (Torney-Purta et al., 2001; Schultz and Sibberns, 2004).
A later survey referred to as ICCS (International Civic and
Citizenship Education Study) was carried out in 2009 including
17 link items to make scores comparable to those of 1999 (Schultz
et al., 2010). ICCS surveyed over 140,000 eight grade students in
38 countries. 17 countries had comparable national samples and
test items and therefore allow comparisons to be made between
CIVED achievement and ICCS achievement. Three of these coun-
tries had missing data for everyone on at least one of the items at
one of the surveys, leaving 14 countries to be compared between
the 1999 CIVED and the 2009 ICCS in the current analyses. To
further sharpen the comparison, the analyses are restricted to
14-year olds. The IRT alignment analyses to be reported thereby
focus on the 17 link items and 29,449 students in 14 countries
of CIVED and 10,643 students in 14 countries of ICCS. The
14 countries (country number and country acronym given in
parentheses) are: Chile (04; CHL), Colombia (05; COL), Czech
Republic (07; CHE), England (09; ENG), Finland (11; FIN),
Greece (13; GRC), Italy (16; ITA), Latvia (17; LVA), Norway (19;
NOR), Poland (20; POL), Slovak Republic (24; SVK), Slovenia
(25; SVN), Sweden (26; SWE), and Switzerland (27; CHE).

Before doing the alignment analysis it is of interest to study
measurement invariance using traditional methods, namely com-
paring the configural, metric, and scalar models (see Muthén
and Asparouhov, 2013a). The metric model specifies invariant
loadings. The scalar model is of particular interest because it spec-
ifies measurement invariance of both thresholds and loadings, a
requirement for comparing factor means using traditional meth-
ods. Table 1 shows the results for the 1999 CIVED data, the 2009
ICCS data, and the combined data. It is clear that both the metric
and the scalar models are rejected by the likelihood-ratio chi-
square tests. Part of the reason for this is that the sample sizes are
large so there is considerable power to reject invariance. Although
criteria such as difference in global fit indices like CFI or RMSEA
(Chen, 2007) or detection of local misspecification (Saris et al.,
2009) have been proposed to somewhat mitigate this power issue,
they are not available with the maximum-likelihood estimation
of binary items considered here.

Whatever step-wise non-invariance search method is applied,
a large effort is required to find subsets of items that fulfill scalar
invariance sufficiently well in different subsets of the groups. The
advantage of the alignment method is that metric and scalar
invariance are not required. Instead, factor means are made
comparable while minimizing measurement non-invariance.

A 14-group alignment analysis of the 17 items is performed
for the 14 countries in each of the two surveys, followed by
a 28-group alignment analysis of the two surveys jointly. The
joint analysis makes it possible to compare factor means and fac-
tor variances not only across countries but also across the two
surveys. The survey-specific analyses are used to check that the
ordering of countries is not largely affected by considering the
two surveys together. It was found that the country ordering was
almost exactly the same within studies as in the joint 28-group
alignment analysis.

The results of the 28-group joint analysis are shown in
Tables 2, 3 in factor analysis metric for thresholds and loadings,
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Table 1 | Configural, metric, and scalar invariance.

INVARIANCE TESTING - CIVED1999 (14 GROUPS)

Model Number of Loglikelihood

parameters

Configural 489 −343840.898

Metric 281 −344830.191

Scalar 73 −354806.259

Models compared Chi-square Degrees of P-value

freedom

Metric against configural 1331.149 208 0.0000

Scalar against configural 13535.800 416 0.0000

Scalar against metric 11375.032 208 0.0000

INVARIANCE TESTING - ICSS2009 (14 GROUPS)

Model Number of Loglikelihood

parameters

Configural 489 −126423.673

Metric 281 −126779.127

Scalar 73 −130742.955

Models compared Chi-square Degrees of P-value

freedom

Metric against Configural 580.862 208 0.0000

Scalar against Configural 7110.001 416 0.0000

Scalar against Metric 6573.006 208 0.0000

INVARIANCE TESTING - CIVED1999 AND ICSS2009 (28 GROUPS)

Model Number of Loglikelihood

parameters

Configural 979 −493498.177

Metric 547 −494909.372

Scalar 115 −509271.808

Models compared Chi-square Degrees of P-value

freedom

Metric against configural 2083.617 432 0.0000

Scalar against configural 22223.702 864 0.0000

Scalar against metric 19349.849 432 0.0000

respectively. The tables indicate which item parameters are non-
invariant in which groups by putting groups in parentheses. It is
seen that even after alignment many item parameters remain sig-
nificantly non-invariant in many of the groups. An interesting
feature of alignment is that this does not invalidate the align-
ment method. Thirty three percent of the thresholds and 11%
of the loadings are found non-invariant, averaging to 22% non-
invariance. Using the 25% rule of thumb mentioned earlier, this
implies trustworthy alignment results. To support this conclusion,
Monte Carlo simulations reported in Section 5 based on these
parameter estimates show that the factor means are well estimated
so that a group comparison can be made.

The results in Tables 2, 3 can be augmented by the con-
tributions each item and each group makes to the simplicity

Table 2 | Invariance results for aligned threshold parameters for items

Y1 to Y17 (numbers in parentheses refer to countries that show

significant non-invariance for the parameter).

Y1 (104) 105 (107) (109) 111 113 116 117 119 120 124 125 (126) 127 (204)

205 (207) 209 (211) 213 216 217 219 (220) 224 225 226 227

Y2 (104) (105) 107 (109) 111 (113) (116) 117 (119) 120 (124) (125) (126) (127)

(204) (205) 207 (209) 211 (213) (216) 217 (219) 220 224 225 (226) (227)

Y3 (104) (105) 107 109 111 113 (116) 117 119 120 124 125 (126) 127 (204)

(205) (207) 209 211 213 216 (217) 219 220 224 225 226 227

Y4 104 (105) 107 (109) 111 113 (116) (117) 119 120 124 125 126 127 204 205

207 209 211 213 216 217 219 220 224 225 226 227

Y5 104 105 107 109 111 113 116 117 (119) 120 124 125 (126) 127 (204) (205)

207 209 (211) (213) 216 (217) (219) 220 224 225 (226) 227

Y6 (104) (105) 107 (109) 111 (113) (116) 117 119 120 (124) 125 126 (127)

204 205 207 209 211 (213) (216) 217 219 220 (224) 225 226 227

Y7 (104) (105) 107 109 111 113 116 117 119 120 124 125 126 (127) 204 205

(207) 209 211 213 216 (217) 219 220 224 225 226 227

Y8 (104) 105 107 109 111 113 116 117 119 (120) 124 (125) (126) 127 (204)

205 (207) 209 211 213 216 217 219 (220) (224) 225 226 (227)

Y9 (104) (105) (107) (109) (111) (113) 116 (117) (119) 120 (124) 125 (126)

(127) (204) (205) (207) 209 (211) 213 216 (217) (219) 220 (224) 225
(226) 227

Y10 104 105 107 (109) (111) (113) 116 117 (119) 120 124 125 (126) 127 204

205 (207) 209 (211) 213 216 217 219 220 224 225 (226) 227

Y11 104 (105) 107 109 111 113 116 (117) 119 (120) 124 125 126 127 204 (205)

(207) (209) 211 213 216 217 219 220 224 225 (226) 227

Y12 (104) (105) (107) (109) (111) 113 (116) 117 119 (120) 124 (125) 126 (127)

204 205 207 (209) 211 213 216 217 219 220 224 225 226 227

Y13 (104) (105) 107 (109) 111 (113) 116 (117) 119 120 124 (125) 126 127 204

205 (207) 209 211 213 216 217 219 220 224 225 226 227

Y14 104 (105) 107 (109) 111 (113) 116 117 (119) 120 (124) (125) 126 127 204

(205) 207 209 211 (213) 216 217 219 220 224 225 226 227

Y15 104 105 (107) (109) (111) 113 116 (117) (119) 120 124 (125) 126 (127)

204 (205) 207 (209) 211 213 216 (217) (219) 220 224 225 (226) 227

Y16 104 105 107 109 111 (113) 116 (117) 119 120 124 125 (126) (127) (204)

205 207 209 211 213 216 (217) 219 220 224 225 (226) 227

Y17 (104) (105) 107 109 111 113 (116) 117 119 120 124 (125) 126 127 204 205

(207) (209) 211 213 216 217 (219) 220 (224) 225 226 227

The group values correspond to the country coding, where a first digit 1 refers

to the CIVED survey, a first digit 2 refers to the ICCS survey, and the next two

digits correspond to the country codes given in the text.

function (7). It is of interest to see which items and which
groups contribute the most and the least to the non-invariance
as quantified by this function. The results can be studied for
thresholds and loadings separately or together for an item. It
is found that the two least invariant items are items 2 and 9
and the most invariant item is item 4. This largely agrees with
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Table 3 | Invariance results for aligned loadings for items Y1 to Y17

(numbers in parentheses refer to countries that show significant

non-invariance for the parameter).

Y1 104 105 107 (109) 111 113 (116) 117 (119) 120 124 125 126 127 204 205

207 209 211 213 216 217 219 220 224 225 226 227

Y2 104 (105) 107 109 111 113 (116) 117 119 120 124 125 126 (127) 204 205

207 209 211 213 216 217 219 220 224 225 226 227

Y3 104 105 107 109 111 113 116 117 (119) (120) (124) (125) 126 127 204 205

207 209 211 213 216 217 219 220 224 225 226 227

Y4 104 105 107 109 111 113 116 117 119 120 124 125 126 127 204 205 207 209

211 213 216 217 219 220 224 225 226 227

Y5 104 105 107 109 111 113 116 117 (119) 120 124 125 (126) 127 204 205 207

209 211 213 216 217 219 220 224 225 226 227

Y6 104 105 107 109 111 (113) 116 117 (119) (120) 124 125 126 127 204 205

207 209 (211) 213 216 217 219 220 224 225 226 227

Y7 104 105 107 109 (111) (113) 116 117 119 120 124 125 126 127 204 205 207

209 211 (213) (216) 217 219 220 224 225 226 227

Y8 104 105 (107) 109 (111) 113 116 117 (119) 120 124 125 126 (127) 204 205

(207) 209 211 213 216 217 219 220 224 225 226 (227)

Y9 104 105 107 109 (111) (113) 116 117 119 120 124 (125) 126 127 (204) 205

(207) 209 (211) 213 216 217 219 220 224 225 226 227

Y10 104 105 107 109 111 113 116 117 119 120 124 125 126 127 204 (205) 207

209 211 213 216 217 219 220 224 225 226 227

Y11 104 105 107 (109) 111 113 116 117 119 120 124 125 126 127 204 (205) 207

209 211 213 216 217 219 220 224 225 226 227

Y12 (104) 105 107 (109) 111 113 (116) 117 119 120 124 125 126 127 (204) 205

207 209 211 213 216 217 219 220 224 225 226 227

Y13 104 105 107 109 111 113 116 117 119 120 124 125 126 127 204 205 207 209

211 213 216 217 219 220 224 225 226 227

Y14 104 105 107 109 111 (113) 116 117 119 120 124 125 126 127 204 205 207

209 211 213 216 217 219 220 224 225 (226) 227

Y15 104 105 (107) (109) (111) (113) 116 117 119 (120) 124 125 126 127 204

205 (207) (209) 211 213 216 217 219 220 224 225 226 227

Y16 104 105 107 109 111 113 116 (117) 119 120 124 (125) (126) 127 204 205

207 209 211 213 216 217 219 220 224 225 (226) 227

Y17 104 105 107 109 111 113 116 117 119 120 124 125 126 127 204 205 207 209

211 213 216 217 219 220 224 225 226 227

The group values correspond to the country coding, where a first digit 1 refers

to the CIVED survey, a first digit 2 refers to the ICCS survey, and the next two

digits correspond to the country codes given in the text.

the significance findings in Tables 2, 3. Further inspection of
these items is therefore warranted. None of the 28 groups stands
out as contributing substantially more to the simplicity func-
tion, while three groups stand out as contributing the least to
the simplicity function: 225 (Slovenia at the second survey), 213
(Greece at the second survey), and 219 (Norway at the second
survey).

FIGURE 2 | Factor means for CIVED 1999 and ICCS 2009.

The aligned factor means are shown in Table 4. The tables
also show results of testing for significant factor mean differences
between the countries. Figure 2 gives a graphic representation of
factor means at the two surveys. It is seen that a majority of the
countries decrease in achievement over the 10 years. Exceptions
are Finland, the Czech Republic, Sweden, Columbia, and Chile.
The variation in the factor means is also diminished such that
fewer countries are at the high end on the factor in 2009 as com-
pared to 1999. It is of interest for test developers to investigate if
the causes of these features are partly due to testing artifacts. Such
an investigation may include studying differences in item order in
the testing booklets, different missing data patterns, and different
motivation among the students.

5. MONTE CARLO INVESTIGATION
A useful augmentation of the alignment analysis is to carry out
a Monte Carlo simulation study to check how well the factor
means are captured. Studies may show a large degree of mea-
surement non-invariance, that is, many measurement parameters
show large non-invariance in many groups. The concern may
then be that the factor means are not well enough estimated to
afford a trustworthy comparison across the groups.

The Monte Carlo study can be done using the same features as
in the real-data analysis. The features include the degree of mea-
surement non-invariance, the group-varying factor means and
variances, the number of items, the number of groups, and the
sample sizes in the groups. Such a Monte Carlo analysis is easily
carried out using Mplus. The estimated parameters in the real-
data alignment analysis can be saved and used for data generation.
A large number of replications (random samples of observations)
is used. Summary statistics are provided that include the corre-
lation between the generated and estimated factor means for the
countries. A near-perfect correlation is required for the ordering
of groups with respect to the factors to be trustworthy. Muthén
and Asparouhov (2013a) observed that a correlation of at least
0.98 is needed. For the current 28-group analysis a correlation of
0.996 is observed suggesting excellent alignment despite the non-
invariance. The parameter values are also well recovered. Mplus
input excerpts for both the real-data and Monte Carlo analyses
are shown in the Supplementary Material.
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Table 4 | Factor means.

Ranking Group Factor Groups with significantly

value mean smaller factor mean

1 120 2.055 113 124 111 220 107 125 216 119 227 127

226 224 126 225 109 205 207 204 209 219

105 117 213 217 104

2 16 1.754 220 107 125 216 119 227 127 226 224 126

225 109 205 207 204 209 219 105 117 213

217 104

3 211 1.737 220 107 125 216 119 227 127 226 224 126

225 109 205 207 204 209 219 105 117 213

217 104

4 113 1.649 220 107 125 216 119 227 127 226 224 126

225 109 205 207 204 209 219 105 117 213

217 104

5 124 1.589 107 125 216 119 227 127 226 224 126 225

109 205 207 204 209 219 105 117 213 217

104

6 111 1.550 107 125 216 119 227 127 226 224 126 225

109 205 207 204 209 219 105 117 213 217

104

7 220 1.345 216 119 227 127 226 224 126 225 109 205

207 204 209 219 105 117 213 217 104

8 107 1.318 216 119 227 127 226 224 126 225 109 205

207 204 209 219 105 117 213 217 104

9 125 1.140 127 226 224 126 225 109 205 207 204 209

219 105 117 213 217 104

10 216 1.005 109 205 207 204 209 219 105 117 213 217

104

11 119 0.965 109 205 207 204 209 219 105 117 213 217

104

12 227 0.898 209 219 105 117 213 217 104

13 127 0.874 209 219 105 117 213 217 104

14 226 0.869 204 209 219 105 117 213 217 104

15 224 0.854 209 105 117 213 217 104

16 126 0.838 209 219 105 117 213 217 104

17 225 0.821 105 117 217 104

18 109 0.745 105 117 217 104

19 205 0.723 217 104

20 207 0.699 117 217 104

21 204 0.655 217 104

22 209 0.608 104

23 219 0.608 104

24 105 0.493 104

25 117 0.477 104

26 213 0.474 104

27 217 0.428 104

28 104 0.000

The group values correspond to the country coding, where a first digit 1 refers

to the CIVED survey, a first digit 2 refers to the ICCS survey, and the next two

digits correspond to the country codes given in the text.

6. CONCLUSIONS
The alignment method provides a convenient and powerful
method to study IRT modeling in many groups. In recent research
92 groups has proved feasible (Munck et al., 2014). With country
comparison it is expected that a large degree of non-invariance
is present due to cultural and other country differences. Existing
methods are simply not practical for handling such complexity.
In the current paper maximum-likelihood estimation was used
but Bayesian analysis is also available as discussed in Muthén and
Asparouhov (2013a). Bayesian analysis also makes it possible to
relax the assumptions of the configural IRT model, for exam-
ple by allowing certain residual correlations among the items.
Bayesian analysis also makes it possible to base the alignment on
a model with approximate measurement invariance as discussed
in Muthén and Asparouhov (2013b).

Future developments of the alignment method for IRT appli-
cations include allowing for different booklets administered to
different student groups, adding covariates to the alignment
method, and the possibility to create plausible values of the fac-
tor scores for secondary analyses. These developments should
make IRT alignment an even more valuable addition to the IRT
methods arsenal.
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Measurement invariance (MI) is a pre-requisite for comparing latent variable scores across
groups. The current paper introduces the concept of approximate MI building on the work
of Muthén and Asparouhov and their application of Bayesian Structural Equation Modeling
(BSEM) in the software Mplus. They showed that with BSEM exact zeros constraints can
be replaced with approximate zeros to allow for minimal steps away from strict MI, still
yielding a well-fitting model. This new opportunity enables researchers to make explicit
trade-offs between the degree of MI on the one hand, and the degree of model fit on
the other. Throughout the paper we discuss the topic of approximate MI, followed by an
empirical illustration where the test for MI fails, but where allowing for approximate MI
results in a well-fitting model. Using simulated data, we investigate in which situations
approximate MI can be applied and when it leads to unbiased results. Both our empirical
illustration and the simulation study show approximate MI outperforms full or partial MI
In detecting/recovering the true latent mean difference when there are (many) small
differences in the intercepts and factor loadings across groups. In the discussion we
provide a step-by-step guide in which situation what type of MI is preferred. Our paper
provides a first step in the new research area of (partial) approximate MI and shows that
it can be a good alternative when strict MI leads to a badly fitting model and when partial
MI cannot be applied.

Keywords: measurement invariance, Bayesian structural equation modeling, Mplus, informative/subjective prior,

prior variance

INTRODUCTION
If scores on a latent variable are to be compared across groups
or time in a meaningful way, the underlying measurement model
should be equivalent. Measurement invariance (MI) implies that
(for continuous observed variables), conditional on the latent
trait scores, the covariances and the intercepts are equal across
groups (cf. Mellenbergh, 1989). In other words, the relation-
ships between the latent trait scores and the observed variables
do not depend on group membership. Studies of so-called “mea-
surement invariance” have often shown that the underlying
constructs are, however, not equivalent (e.g., Vandenberg and
Lance, 2000; Schmitt and Kuljanin, 2008; Millsap, 2011). The cur-
rent paper discusses approximate MI as a possible solution to
these situations, thereby building on the work of Muthén and
Asparouhov (2012b, 2013). Muthén and Asparouhov describe a
novel method where, using Bayesian structural equation models
(BSEM), exact zero constraints can be replaced with approxi-
mate zero constraints based on substantive theories. For example,
cross-loadings in confirmatory factor analysis are traditionally
constrained to be zero, but using the procedure of Muthén and

Asparouhov (2012b) these parameters can be estimated with
some, as we call it, “wiggle room” (Muthén and Asparouhov,
2012a), implying that very small cross-loadings are allowed. The
novel possibility of approximate zero constraints is an interest-
ing alternative to the use of exact zeros which has proven to be
unrealistic at times (see for example van Zuiden et al., 2011). The
current paper discusses another area where approximate zeros
might have an advantage: when full MI across groups is too strict
and small differences in factor loadings or intercepts are allowed
to make the model fit well. Possibly differences in use of the
response scale are described in Morren et al. (2011).

Muthén and Asparouhov (2013) use the BSEM approach as a
way to get the non-invariance information as you would get by
Maximum Likelihood (ML) modification indices. They propose
a two-step procedure where one first uses BSEM’s approximate
MI analysis to get modification indices and then free those non-
invariant parameters in a regular Bayes run as a final, second
step. BSEM modification indices are helpful, for example, when
having categorical items where no ML modification indices exist,
or with a large number of groups. This is often the case in the

www.frontiersin.org October 2013 | Volume 4 | Article 770 | 173

http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/about
http://www.frontiersin.org/Psychology
http://www.frontiersin.org/journal/10.3389/fpsyg.2013.00770/abstract
http://www.frontiersin.org/people/u/21722
http://www.frontiersin.org/people/u/33955
http://www.frontiersin.org/people/u/103786
http://community.frontiersin.org/people/PeterLugtig/115143
http://www.frontiersin.org/people/u/102173
http://www.frontiersin.org/people/u/97063
mailto:a.g.j.vandeschoot@uu.nl
http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


van de Schoot et al. Approximate measurement invariance

context of large scale international studies. In the current paper
we focus on the benefits or dangers when applying approximate
invariance when it is actually applied in a CFA model. As we will
show with both an empirical illustration and a simulation study,
approximate MI enables the researchers to make explicit trade-
offs between the degree of MI on the one hand, and the degree
of model fit on the other. However, as our simulation results
demonstrate, some bias in the estimated parameters occurs due
to the alignment issue (see also Muthén and Asparouhov, 2013),
which can be corrected using a method available in Mplus v7.1
(Asparouhov and Muthén, 2013).

In what follows we first illustrate issues with applying MI,
followed by an introduction of approximate MI. Thereafter, we
provide an empirical illustration where the test for strict MI fails,
but where approximate MI results in a well-fitting model. Then,
with a simulation study, we investigate whether approximate MI
can lead to unbiased estimates for differences in latent scores
across groups. Thereafter, we introduce the correction method
and show its influence on the parameters in our simulation study.
We conclude with a discussion and practical recommendations
for scholars who aim to meaningfully compare scores on latent
variables. Note that the application of approximate MI in the cur-
rent paper is limited to situations with a small number of groups,
continuous variables, and “almost” invariant models. For a more
general approach see Muthén and Asparouhov (2013).

THE ISSUE OF APPROXIMATE MEASUREMENT INVARIANCE:
SCYLLA OR CHARYBDIS
Questionnaires are often used to assess latent constructs, such as
human attitudes and behavior, with the goal to compare groups.
For such a comparison to be valid MI should apply, see (Millsap,
2011) or Vandenberg and Lance (2000) for a comprehensive
overview on possible methods testing MI. That is, a question-
naire should measure identical constructs with the same factor
structure across different groups. Stated differently, factor load-
ings, intercepts, and residual variances should be identical to get
the label “full measurement invariance.” If one wants to com-
pare latent means the intercepts are of major importance and
therefore, we focus on the intercepts.

Van de Schoot et al. (2012) stated that “When MI does not
hold, groups or subjects [. . .] respond differently to the items
and as a consequence factor means cannot reasonably be com-
pared” (p. 487). This statement refers to a potential bias in
the latent mean comparison when full MI is assumed, but not
supported by the data, or when MI is not assumed and the
latent means are (incorrectly) compared. In order to meaning-
fully compare latent means across groups, at least the factor
loadings and intercepts should be equal; this is the situation
of scalar invariance (Vandenberg and Lance, 2000). Henceforth,
when (full) MI is used we refer to scalar invariance. After test-
ing for scalar MI it might be that such a model does not fit the
data. What to do in such a situation? One solution is to allow
for partial MI. Steenkamp and Baumgartner (1998) suggested
that as long as at least two of the factor loadings and intercepts
are constrained to be equal across groups or time, the differ-
ence in the latent mean between the groups is unbiased (see
also Steinmetz, 2013). However, this procedure has been debated

much (Vandenberg, 2002), for example how to choose the ref-
erence category (Rensvold and Cheung, 2001). At least partial
invariance for the factor loadings before one can proceed to test
invariance of the intercepts (Steenkamp and Baumgartner, 1998).
This paper focuses on comparison of latent means, so we present
approximate MI in the context of the intercepts.

To sum up, if MI is used to either see if measurement instru-
ments are equivalent across populations, or to compare the latent
means to each other, possible outcomes of MI are:

(1) (full or) scalar MI, where all intercepts are constrained to be
equal across groups.

(2) partial MI, where some of the intercepts between groups are
allowed to be freely estimated, while others are held constant
(see e.g., Steenkamp and Baumgartner, 1998; Steinmetz,
2013); or

(3) No invariance, where all intercepts between groups are
freely estimated, because such a model fits the data best.
Consequently, the questionnaire cannot be used for compar-
ing groups.

In the current paper we add a fourth option, initiated by Muthén
and Asparouhov (2012b, 2013) and introduced in more detail
below:

(4) Approximate MI, a Bayesian solution allowing for some wig-
gle room for the intercept differences between groups, where
the wiggle room is determined by the degree of precision of
the prior.

Metaphorically speaking, in testing for MI one has to choose
between Scylla and Charybdis, two mythical Greek sea monsters1.
In the current paper we apply this metaphor to the procedure of
testing for MI. On the one hand, there is the six-headed sea mon-
ster Scylla, who metaphorically represents imposing full MI on
the model with as a result that the model fit indices indicate a bad
fit to the data. On the other hand, however, we could fall victim
to Charybdis if we release the constraints. By not imposing MI,
our model will fit the data, but it will be impossible to compare
groups. This paper illustrates the third option, using approximate
MI, which could turn out to be the way to escape both threats.

Consider a CFA model with two groups, see Figure 1. Suppose
the difference between the intercepts of item 1 is 0.10. Now, we
impose MI on this model, by constraining the two intercepts to
be equal. As a result, the difference between both will be exactly
zero, that is, we are imposing a difference of zero on the parame-
ter estimates for the intercepts. In Figure 2 the likelihood function
(which is a function of the distribution of the data) is shown for

1The two monsters occur in an episode of the adventures of Odysseus; their
location is believed to have been at the Strait of Messina between Sicily and
the Italian mainland. Scylla, a six-headed sea monster, lived on one end of
this strait, while on the other Charybdis resided, causing huge whirlpools.
The two monsters were living so close to each other that they created an
inescapable threat. Sailors who avoided Charybdis were doomed to meet
Scylla and vice versa; it seemed almost impossible to pass the sea strait without
being confronted with either of the two mythical monsters.

Frontiers in Psychology | Quantitative Psychology and Measurement October 2013 | Volume 4 | Article 770 | 174

http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


van de Schoot et al. Approximate measurement invariance

FIGURE 1 | A hypothetical model.

FIGURE 2 | The influence of applying MI while the difference between

factor loading is clearly not zero.

the difference between both intercepts, which is denoted by δ.
In this case there is a small difference in the intercepts between
both groups. When applying MI, the difference is forced to be
zero (δ = 0). By doing this, we have established MI and we are
allowed to compare the latent factor means between the two
groups. However, the estimated intercepts no longer resembles
their unconstrained counterparts. Stated differently, δ is forced
to be zero, whereas in the data δ > 0. The discrepancy between δ

in our model and δ in the data will probably result in poor model
fit. A bad model fit means we have to reject our model and cannot
interpret our model parameters.

Meanwhile, on the other side of the narrow channel between
Italy and Sicily, Charybdis lurks, forced to live in a cave beneath
the sea causing whirlpools. If we would analyze our hypotheti-
cal model without any constraints on the intercepts the model
will fit the data. As a consequence, however, we are lost in the
whirlpools caused by the furious Charybdis, because we can no
longer compare the latent means due to different intercepts across
the groups.

There we are, trapped between Scylla and Charybdis, and are
forced to choose between either a model with MI and a terri-
ble fit to the data, or a well-fitting model that we cannot use
for comparing the latent means across groups. However, just like
Odysseus, we believe we can pass in safety through the narrow
channel. One passage may be provided by imposing partial MI
allowing for one or two differences. Partial MI seems attractive

when relatively large differences (δ >> 0) exist for one or only
a few items. However, when differences are small and occur for
multiple items in a factor analysis, partial MI is not able to provide
a safe passage and approximate MI offers an attractive alternative.
With approximate MI, instead of forcing intercepts to be exactly
equal across groups, see Figure 2, a substantive prior distribution
is used to bring the parameters close to one another while allow-
ing for some wiggle room. Such a model falls in between full and
no MI, which could mean that we can still compare the means (as
MI holds approximately) while the model also fits well, allowing
an escape from Scylla and Charybdis. But how does this work?

USING BAYESIAN PRIORS ON INTERCEPT DIFFERENCES
To estimate a model with approximate MI we need Bayesian
statistics, which has been discussed in many papers and textbooks
(see, among others, Kruschke et al., 2012; Van de Schoot et al.,
2013). There are three essential ingredients underlying Bayesian
statistics. The first ingredient is prior distributions which repre-
sent background knowledge about the parameters of a model;
for example that the difference between two intercepts is close
to zero. Second, there is the likelihood function of the data con-
taining the information about the parameters from the data.
Thirdly, both prior and likelihood are summarized by the so-
called posterior distribution, which is a compromise of the prior
knowledge and the likelihood function. Stated otherwise, the pos-
terior distribution contains one’s updated knowledge balancing
prior knowledge with observed data.

The crucial ingredient of Bayesian statistics is the specifica-
tion of the prior distribution. In Figure 3, four different priors
are specified and combined with the likelihood function of the
difference between two intercepts which is denoted by δ. When
combining prior and likelihood, the posterior difference score is
obtained, denoted by δ′. Figure 3A displays a flat uninformative
prior for the difference between the two intercepts. Because such
a prior does not contain any information, the posterior estimate
for the difference will not be influenced and the results are similar
to a model without MI, that is δ = δ′. If, for example, a normal
prior distribution is used, see Figure 3B, the posterior estimate
for the difference, δ′, will be slightly pulled toward the mean of
the prior, in this case zero. If we decrease the prior variance, see
Figure 3C, the posterior difference comes closer to zero. If the
prior variance is very small, the posterior difference will approxi-
mate zero, δ′ ∼ 0, and we establish approximate MI allowing for
some wiggle room. To get back to our metaphor: if a small differ-
ence between the intercepts is allowed, we can escape Charybdis
because the difference between intercepts is smaller than in the
unconstrained model, Figure 3A. We also escape Scylla, because a
model with some wiggle room is less restrictive than full MI and
will therefore, still fit the data acceptably well, Figure 2. In con-
clusion, approximate MI finds a compromise between zero and
no constraints, through which both model fit and latent mean
comparison can be established.

Approximate MI is expected to be especially useful when
there are many small deviations from strict MI (De Boeck, 2008;
Muthén and Asparouhov, 2013). In the current paper we focus on
studying the differences between strict, partial and approximate
MI in a set of populations. In the current paper we assume
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FIGURE 3 | Four different prior distributions to demonstrate the influence of the prior on the posterior parameter estimates. (A) Uninformative prior;
(B) Wide normal prior; (C) Narrow normal prior; (D) Highly peaked prior.

that the main goal of applying MI is to compare latent means
and, therefore, focus on the potential bias in the latent mean
comparison when different degrees of MI are applied. There are
two indicators to keep in mind: (1) model fit and (2) a small
enough difference between either factor loadings or intercepts.

EMPIRICAL ILLUSTRATION
INTRODUCTION
The empirical illustration looks at the experiences of psychol-
ogists (group 1) and psychiatrists (group 2) with a new policy
in Dutch mental healthcare: Diagnosis Related Groups (DRGs;
Tummers et al., 2012). Diagnosis Related Groups were intro-
duced in January 2008 and were part of a process to convert the
Dutch healthcare system into one based on a regulated market.
The DRG policy differs significantly from the prior method in
which each medical action resulted in a financial claim, a so-
called fee-for-service system. Before 2008, the number of sessions
a professional had with a patient related directly to the amount of
money claimed from the health insurer. According to some stand-
points, this could lead to inefficiencies (Busse et al., 2011). The
DRG policy changed the situation by stipulating a standard rate
for each disorder. For instance, for a mild depression, the mental
healthcare professional gets a standard rate for treating the patient
(direct and indirect time) between 250–800 min.

Psychologists and psychiatrists had to implement these DRGs,
and we will investigate their willingness to do so. This is

important, as many of them opposed the DRG policy, set up
websites agitating against it, or even in a few cases quit their jobs
(Palm et al., 2008). The following quote of a healthcare profes-
sional [cited in Tummers (2012): 516], illustrates their point of
view:

“We experience the DRG policy as a disaster. I concentrate as much
as possible on treating my own patients, in order to derive some
satisfaction from my work.”

Furthermore, psychiatrists were far more resistant than psychol-
ogists. One of the reasons was that especially psychiatrists con-
sidered the DRGs as a threat to their autonomy (Smullen, 2013).
It is important to analyze the difference between the two groups,
in order to provide guidance to policy makers in their attempts
to adapt the policy and increase the satisfaction of professional
health workers. We would expect minor violations of MI given
that the both groups of professionals were expected to be quite
negative about the specific policy and also have slightly differ-
ent attributes to the concepts used in the questionnaires because
of their professional training and working environment (see for
instance Palm et al., 2008; Neukrug, 2011; Smullen, 2013).

METHODS
The sampling frame consisted of 5199 professionals, all members
of the two main nationwide mental healthcare associations: the
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Dutch Association of Psychologists (NIP) and the Netherlands
Association for Psychiatry (NVvP), who would, in principle, all
of them be required to work with the DRG policy. Using an
email and two reminders, 1307 questionnaires were returned; a
response rate of 25% with 1074 valid cases for the specific scale
we used. Despite the select sample the demographical composi-
tion of the respondent group was representative for the Dutch
population of mental healthcare professionals (Palm et al., 2008).

Willingness to implement the DRG policy was measured using
a validated four-item scale developed by Metselaar (1997), which
is based on the notion of “intention to act” in the theory of
planned behavior (Ajzen, 1991). The items use five-point Likert-
scale response categories (strongly disagree, disagree, neutral,
agree, and strongly agree). The items use templates in which one
can specify the change being assessed, for example, the item “I
intend to make time to implement the change” was changed into
“I intend to make time to implement the DRG-policy.” All item
descriptions, its means, variances, and correlations are included
in Table 1 and the data and all syntax files are available on the
website of the first author.

RESULTS
If we want to compare psychologists and psychiatrists on the
willingness to implement DRGs, we could simply compare
the mean scores based on the four items. It appeared that,
using a T-test in SPSS, psychiatrists (M = 2.23; SD = 0.81; n =
504) indeed scored significantly lower compared to psycholo-
gists (M = 2.46; SD = 0.76; n = 570; Mdif = 0.23; t = 4.83; p <
0.001). However, by using the mean score we assume that each
item reflects the underlying construct in the same way and, even
more importantly, that there is no measurement bias (Steinmetz,
2013). To accommodate these unwanted side-effects we con-
ducted a series of confirmatory factor analyses (CFA) using the
software Mplus v7 (Muthén and Muthén, 1998-2012). The data
and all syntax files are available as supplementary materials.

In the first model, a 2-group configural model, because
of the (slightly) non-normal distributed items estimated
with ML estimator with robust standard errors (i.e., MLR),
we allowed the factor loadings and intercepts to vary across
groups resulted in a well-fitting model (χ2 = 12.982; df = 4;
p = 0.011; RMSEA = 0.065; CFI = 0.992; TLI = 0.976)
with standardized factor loadings ranging between 0.56–
0.87. We tested for MI using the new option in Mplus v7.11
ANALYSIS: MODEL = CONFIGURAL METRIC SCALAR.

A model forcing scalar MI, i.e., factor loadings and intercepts
were constrained across groups, appeared to fit the data well
(χ2 = 32.032; df = 10; p < 0.001; RMSEA = 0.064; CFI = 0.980;
TLI = 0.976), but not better compared to the configural model
(�χ2 = 19.479; �df = 6; p = 0.003). Also the metric model,
where only the factor loadings were held equal across groups,
fitted the data (χ2 = 18.605; df = 7; p = 0.009; RMSEA =
0.056; CFI = 0.990; TLI = 0.982) and not any worse compared
to the configural model (�χ2 = 5.019;�df = 3; p = 0.170). We
also ran a comparison between the scalar and metric model and
it appeared that the scalar model fits the data worse compared
to the metric model (�χ2 = 13.988; �df = 3; p = 0.003).
According to most fit indices (e.g., χ2 not significantly worse
than the configural model, but significantly better than the
scalar model) the best model appeared to be the metric model
where the factor loadings are constrained while the intercepts are
allowed to differ across groups.

A solution offered by, for example Byrne et al. (1989; see also
Steenkamp and Baumgartner, 1998), is to apply partial MI. To
establish partial invariance, one studies the size of the uncon-
strained loadings and/or intercepts, and constrains all loadings
and intercepts except for the one loading/intercept with the largest
unstandardized difference, which is released. It appeared that psy-
chiatrists have lower intercepts than the psychologists, with the
differences being 0.193, 0.235, 0.167, and 0.324, respectively. We
applied partial MI, that is, constraining the intercepts of items 1
and 3 while releasing the constraints on intercepts 2 and 4 (χ2 =
20.271; df = 8; p = 0.009; RMSEA = 0.053; CFI = 0.989; TLI =
0.983). Using the procedure described on the website of Mplus to
compute MLR chi-square difference testing, it appeared that the
partial model did not result in a better fit compared to the metric
model (�χ2 = 1.502;�df = 1; p = 0.203), but better compared
to the scalar model (�χ2 = 12.313;�df = 2; p = 0.002).

We re-analyzed the two models, constrained and uncon-
strained intercepts, using the ML and Bayesian estimator using
the default prior settings [i.e., normal prior distributions for
the intercepts and factor loadings with a prior mean of zero
and a prior variance of 1010, and an inverse gamma distribu-
tion for the (residual) variance terms with hyperparameters −1
and zero], but with a stricter cut-off value for convergence
to reduce any bias caused by precision [i.e., Chains = 8,
Bconvergence = 0.01 and Biterations(20000)].
Table 2 shows the results for the intercepts, the difference between
the intercepts, and the Bayesian model fit information. These

Table 1 | Correlation matrix for Psychologists (n = 570) and Psychiatrists (n = 504) with the means (variances) on the diagonal.

1 2 3 4

1. I intend to try to convince employees of the benefits the DRG-policy 2.023 (0.727)/
1.831 (0.730)

2. I intend to put effort into achieving the goals of the DRG-policy 0.589/0.549 2.651 (1.040)/
2.414 (1.137)

3. I intend to reduce resistance among employees regarding the DRG-policy 0.727/0.737 0.616/0.599 2.353 (0.763)/
2.186 (0.950)

4. I intend to make time to implement the DRG-policy 0.451/0.470 0.442/0.492 0.483/0.514 2.795 (0.939)/
2.472 (1.091)

www.frontiersin.org October 2013 | Volume 4 | Article 770 | 177

http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


van de Schoot et al. Approximate measurement invariance

T
a
b

le
2

|
T

h
e

re
s
u

lt
s

fo
r

th
e

in
te

rc
e
p

ts
o

f
th

e
la

te
n

t
v
a
ri

a
b

le
W

ill
in

g
n

es
s

to
Im

p
le

m
en

t
D

R
G

s.

M
o

d
e
l

A
M

o
d

e
l
B

M
o

d
e
l
C

M
o

d
e
l

D
M

o
d

e
l

E
M

o
d

e
l

F
M

o
d

e
l
G

M
e
a
s
u

re
m

e
n

t
N

o
c
o

n
s
tr

a
in

ts
A

p
p

ro
x

im
a

te
M

I
A

p
p

ro
x

im
a

te
M

I
A

p
p

ro
x
im

a
te

M
I

A
p

p
ro

x
im

a
te

M
I

A
p

p
ro

x
im

a
te

M
I

in
v
a
ri

a
n

c
e

o
n

th
e

in
te

rc
e

p
ts

σ
2

=
0
.5

0
σ

2
=

0
.0

5
σ

2
=

0
.0

1
σ

2
=

0
.0

0
5

σ
2

=
0
.0

0
0
5

ν
(S

E
)

9
5
%

C
I

ν
(S

E
)

9
5
%

C
I

ν
(S

E
)

9
5
%

C
I

ν
(S

E
)

9
5
%

C
I

ν
(S

E
)

9
5
%

C
I

ν
(S

E
)

9
5
%

C
I

ν
(S

E
)

9
5
%

C
I

In
te

rc
ep

ts
gr

ou
p

=
ps

yc
ho

lo
gi

st
s

It
em

1
2.

02
2

(0
.0

32
)

1.
96

1–
2.

08
5

2.
02

2
(0

.0
35

)
1.

95
5–

2.
09

1
2.

02
0

(0
.0

34
)

1.
95

4–
2.

08
8

2.
00

6
(0

.0
34

)
1.

94
3–

2.
07

2
1.

97
9

(0
.0

34
)

1.
95

7–
2.

09
0

1.
96

1
(0

.0
30

)
1.

90
4–

2.
02

1
1.

93
5

(0
.0

27
)

1.
88

5–
1.

99
0

It
em

2
2.

63
4

(0
.0

37
)

2.
56

3–
2.

70
9

2.
65

0
(0

.0
42

)
2.

56
9–

2.
73

3
2.

64
7

(0
.0

42
)

2.
56

5–
2.

73
1

2.
63

1
(0

.0
41

)
2.

55
0–

2.
71

2
2.

59
7

(0
.0

41
)

2.
56

9–
2.

72
9

2.
57

7
(0

.0
37

)
2.

50
6–

2.
64

9
2.

54
5

(0
.0

33
)

2.
48

3–
2.

61
0

It
em

3
2.

37
2

(0
.0

34
)

2.
30

8–
2.

44
0

2.
35

2
(0

.0
36

)
2.

28
1–

2.
42

5
2.

34
9

(0
.0

37
)

2.
27

8–
2.

42
0

2.
33

4
(0

.0
36

)
2.

26
4–

2.
40

2
2.

30
5

(0
.0

35
)

2.
28

5–
2.

42
4

2.
28

6
(0

.0
32

)
2.

22
4–

2.
34

9
2.

26
9

(0
.0

29
)

2.
21

2–
2.

72
3

It
em

4
2.

72
4

(0
.0

35
)

2.
65

7
(2

.7
92

)
2.

79
5

(0
.0

41
)

2.
71

3–
2.

87
6

2.
79

2
(0

.0
41

)
2.

71
3–

2.
86

8
2.

77
5

(0
.0

40
)

2.
69

7–
2.

85
1

2.
73

9
(0

.0
40

)
2.

70
4–

2.
85

9
2.

71
6

(0
.0

36
)

2.
64

2–
2.

78
3

2.
66

0
(0

.0
32

)
2.

59
6–

2.
72

3

In
te

rc
ep

ts
gr

ou
p

=
ps

yc
hi

at
ris

ts
It

em
1

2.
02

2
(0

.0
32

)
1.

96
1–

2.
08

5
1.

83
0

(0
.0

39
)

1.
75

7–
1.

90
8

1.
83

1
(0

.0
38

)
1.

75
8–

1.
90

5
1.

84
7

(0
.0

37
)

1.
77

1–
1.

91
9

1.
88

1
(0

.0
62

)
1.

91
7–

2.
16

2
1.

89
6

(0
.0

32
)

1.
83

6–
1.

96
1

1.
92

5
(0

.0
27

)
1.

87
3–

1.
97

8

It
em

2
2.

63
4

(0
.0

37
)

2.
56

3–
2.

70
9

2.
41

3
(0

.0
48

)
2.

32
3–

2.
50

8
2.

41
5

(0
.0

48
)

2.
32

3–
2.

50
9

2.
43

4
(0

.0
46

)
2.

34
6–

2.
52

6
2.

47
7

(0
.0

66
)

2.
50

3–
2.

76
5

2.
49

6
(0

.0
40

)
2.

42
0–

2.
57

8
2.

53
3

(0
.0

34
)

2.
46

8–
2.

60
0

It
em

3
2.

37
2

(0
.0

34
)

2.
30

8–
2.

44
0

2.
18

5
(0

.0
43

)
2.

10
3–

2.
27

0
2.

18
6

(0
.0

43
)

2.
10

3–
2.

26
9

2.
20

4
(0

.0
41

)
2.

12
4–

2.
28

5
2.

24
1

(0
.0

69
)

2.
28

7–
2.

56
2

2.
25

7
(0

.0
36

)
2.

18
8–

2.
32

9
2.

27
5

(0
.0

30
)

2.
21

7–
2.

33
6

It
em

4
2.

72
4

(0
.0

35
)

2.
65

7
(2

.7
92

)
2.

47
2

(0
.0

46
)

2.
38

3–
2.

56
2

2.
47

2
(0

.0
46

)
2.

38
2–

2.
56

3
2.

49
2

(0
.0

45
)

2.
40

4–
2.

58
1

2.
53

9
(0

.0
58

)
2.

54
9–

2.
77

7
2.

56
4

(0
.0

39
)

2.
48

9–
2.

64
3

2.
62

9
(0

.0
33

)
2.

56
6–

2.
69

5

D
iff

er
en

ce
in

in
te

rc
ep

t
It

em
1

0
0.

19
2

0.
18

9
0.

15
9

0.
09

8
0.

06
5

0.
01

0

It
em

2
0

0.
23

7
0.

23
2

0.
19

7
0.

12
0

0.
08

1
0.

01
2

It
em

3
0

0.
16

7
0.

16
3

0.
13

0
0.

06
4

0.
02

9
−0

.0
06

It
em

4
0

0.
32

3
0.

32
0

0.
28

3
0.

20
0

0.
15

2
0.

03
1

M
od

el
fit

95
%

C
If

or
th

e
di

ffe
re

nc
e

be
tw

ee
n

th
e

ob
se

rv
ed

an
d

th
e

re
pl

ic
at

ed
χ

2

5.
12

8
44

.1
54

−4
.1

64
34

.5
66

−5
.5

16
–4

0.
19

9
−4

.3
69

–3
8.

36
4

−5
.5

43
–3

9.
92

1
3.

57
3–

48
.9

79
18

.2
48

–6
0.

60
0

Po
st

er
io

r
pr

ed
ic

tiv
e

p-
va

lu
e

0.
00

8
0.

06
7

0.
05

7
0.

06
2

0.
03

1
0.

01
2

0.
00

0

Frontiers in Psychology | Quantitative Psychology and Measurement October 2013 | Volume 4 | Article 770 | 178

http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


van de Schoot et al. Approximate measurement invariance

results show that a model with strict MI assumed does not fit the
data. This is shown by the fact that (1) the posterior predictive
p-value is significant, and (2) the 95% CI of the replicated Chi
Square values does not include zero. Hence, the model without
MI does fit the data, but we are not allowed to compare the latent
means between psychiatrists and psychologist.

The new option is to use approximate MI. Using Bayesian
statistics parameters can be restricted by specifying a prior dis-
tribution. We would like the difference between the intercepts
to approximate zero, but to allow for some wiggle room (prior
variance) to maintain a fitting model. That is, the difference in
an intercept between the two groups is allowed to exist, but is
restricted to be very small, which is established by specifying a
specific prior distribution of that difference. We used the new
DIFF option available in Mplus v7 within the MODEL PRIOR
part of the syntax where subjective priors can be specified. The
full syntax is shown in the Appendix A, but the most important
part is:

MODEL:[Veran1- Veran4] (nu#_1 - nu#_4);

MODEL PRIOR: DO(1,4) DIFF(nu1_#-nu2_#)~N(0,0.50);

where (nu#_1 - nu#_4) defines labels for the four inter-
cepts. Because we used #,the labels are automatically specified
for both groups separately. The DO(1,4) option is a loop state-
ment telling Mplus to apply the function which comes after the
DO statement for items 1 through 4: #=1 to #=4. The DIFF
statement refers to the difference between the first intercept of
the psychiatrists, for example nu1_1, and the same intercept
for psychologists, for example nu1_2. Because we used the
DO option this is automatically repeated for all four intercepts.
Furthermore, ~N(0, 0.50) indicates the intercept differences
between groups to be normally distributed (N) with mean 0
and prior variance of 0.5 for all pairs of items. Note that we
parametrized the model by forcing both latent means to zero and
the variance to one.

The results for this specific model are shown in Table 2 in the
column labeled Model C. We varied the prior variance by using
σ2 = 0.05 (Model D), σ2 = 0.01 (Model E), σ2 = 0.005 (Model
F), and σ2 = 0.0005 (Model G).In Model C, with a large prior

variance, the difference between intercepts appeared not to be
smaller compared to the unconstrained Model B. In Model D,
however, the influence of the prior specification can be observed:
the difference between intercepts becomes smaller. In Model E
the intercepts are even closer, in Model F they are very close
and in Model G they are almost similar. However, the latter
two models do not fit the data very well; i.e., the 95% CI for
the difference between the observed and the replicated χ2 does
not include zero and the ppp-value (i.e., posterior predictive p-
value) is < 0.01. In sum, allowing for a prior variance of 0.01
between the intercepts, as is the case in Model E, resulted in an
acceptable model fit. Also, the confidence interval of �χ2 does
include zero. However, the posterior predictive p-value is signifi-
cant, and preferably should be closer to 0.50. A larger reduction,
which would be a model closer to scalar invariance, did not fit
the data.

To summarize, we have established MI using the newly avail-
able approximate MI method. Now, we can finally conclude
that psychiatrists score significantly lower on the willingness to
implement DRGs than psychologists. The mean difference equals
0.21 (p < 0.001), which would indeed be somewhat different
had we used full MI (Mdif = 0.19) or an unconstrained model
(Mdif = 0.14).

However, little is known about the bias of parameters as a
result of approximate MI. Therefore, in the next section we will
conduct a simulation study to find out if we are truly allowed to
interpret the mean difference of the latent mean between groups
if we apply approximate MI.

SIMULATION STUDY
METHOD
To investigate the possible bias in the comparison of latent means
as a result of applying the approximate MI model we performed a
simulation study. Seven populations were specified from which
we obtained 1000 datasets each. The difference in intercepts
between both groups varied across these seven populations, see
Table 3. All other parameters were kept constant across popula-
tions; see Appendix B for the syntax and model specifications.
Most importantly, the mean of the latent variable in group 1 was
set to 0 and in group 2 to 0.5. Both latent factors were speci-
fied to have a population variance of 1. All items are standardized

Table 3 | Population values for the intercepts.

Intercepts

Item 1 Item 2 Item 3 Item 4

Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

Population 1 0 0 0 0 0 0 0 0

Population 2 0 0 0 0 −0.01 0.01 −0.01 0.01

Population 3 0 0 0 0 −0.1 0.1 −0.1 0.1

Population 4 0 0 0 0 −0.5 0.5 −0.5 0.5

Population 5 −0.01 0.01 −0.01 0.01 −0.01 0.01 −0.01 0.01

Population 6 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1

Population 7 −0.5 0.5 −0.5 0.5 −0.5 0.5 −0.5 0.5
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making the latent mean difference between the two groups of 0.5
a medium effect size (Cohen, 1992). The sample size per group
was specified as being 500.

The seven populations described in Table 3 were confronted
with a set of models:

– Model 1: scalar MI is applied to the intercepts and factor
loadings. Results were obtained with ESTIMATOR = ML
and with ESTIMATOR = BAYES. For the latter we used
BCONVERGENCE = 0.01, BITERATIONS = (5000),
and the default priors [i.e., normal prior distributions for the
intercepts and factor loadings with a prior mean of zero and a
prior variance of 1010, and an inverse gamma distribution for
the (residual) variance terms with hyperparameters −1 and
zero].

– Model 2: partial MI is applied to those intercepts that are not
similar in the population. For population 1 no partial MI can
be applied, since all intercepts are similar in the population, for
populations 2–4 partial MI is applied to the intercepts of items
3 and 4, and for populations 5–7 partial MI is applied to all
intercepts. Note that the factor loadings are held equal across
groups. Results were obtained with ESTIMATOR = ML
and with ESTIMATOR = BAYES. For the latter, we used
BCONVERGENCE = 0.01, BITERATIONS = (5000),
and the default priors.

– Model 3: approximate MI is applied only to the intercepts.
We varied the prior variance: σ2 = 0.5 (Model 3a), σ2 = 0.05
(Model 3b), σ2 = 0.01 (Model 3c), and σ2 = 0.005 (Model
3d). For all other parameters we used the default prior settings.

– Model 4: partial approximate MI, where wiggle room is applied
only to those intercepts that are not equal in the population;
populations 2–4. We varied the amount of prior variance: σ2 =
0.5 (Model 4a), σ2 = 0.05 (Model 4b), σ2 = 0.01 (Model 4c),
and σ2 = 0.005 (Model 4d).

The simulated differences in intercepts may cause an alignment
issue, i.e., a biased estimate of the latent mean difference across
groups, which will be discussed in more details in the next section.
Because researchers usually wish to compare latent means across
groups, we focus on whether or not the estimated difference in
latent means is biased. We focused on four outcome criteria that
might indicate the degree to which the mean difference is biased:

(1) the empricial standard deviation of the 1000 estimated mean
differences, which should be<0.10.

(2) the relative mean bias defined as ((M − 0.5)/0.5)∗100, where
M is the average mean obtained from the simulation study.
We used a cut-off value of <10% as a criterion, as sug-
gested by Hoogland and Boomsma (1998) for “reasonable”
accuracy.

(3) The proportion of replications with a ppp-value smaller than
pre-specified cut-off values. 95% coverage of the population
value and its 95% significance.

Note that, concerning (3), the ppp-value, which defined as the
proportion of chi-square values obtained in the simulated data

that exceed that of the actual data and ppp-values around 0.50
indicate a well-fitting model.

To determine whether the simulation results resemble a good
model fit, the proportion of replications where the critical value of
0.05 is exceeded should be close to 0.05, as p-values are expected
to be uniformly distributed. The 95% coverage is defined as the
percentage of replications for which the 95% CI included the pop-
ulation value of�M = 0.5. The significance criterion was defined
as the percentage of datasets for which the 95% CI did not include
zero, i.e., the percentage of datasets for which we would have con-
cluded that�M is larger than zero in the population, which it was
for all populations.

RESULTS
Table 4 provides the results for Model 1 and 2 with ML and
Bayesian estimation, Table 5 provides the results for Models 3a–
3d and Table 6 provides the results for Models 4a–4d. We will first
discuss the results row wise, i.e., per model, followed by a column
wise comparison, i.e., per population.

When full MI (Model 1) is applied to populations where there
are differences on the intercepts between the groups (Pop. 2–7)
there is a bias in the latent factor means, which does not occur
when applied to a population with no differences (Pop. 1). The
only exception is Population 5 with many small intercept differ-
ences. However, the coverage is smaller than 95% in this case.
When partial MI (Model 2) is applied to populations with inter-
cept differences between all intercepts (Pop. 5–7) there is a large
bias, which does not occur when applied to populations with only
2 intercepts having differences between the groups (Pop. 2–4)
or without any intercept differences (Pop. 1). Applying approx-
imate MI to all intercepts (Model 3) leads to no bias when
applied to a population with no differences (Pop. 1), or a pop-
ulation with small differences (Pop. 5). It does lead to a bias in
the other populations with moderate or large intercept differ-
ences no matter which prior variance was used (Pop. 2,4,6,7).
Applying approximate MI to only those intercepts that are dif-
ferent in the population (Model 4 applied to Pop. 2 and 3) leads
to a bias, where the magnitude of the bias is dependent on the
prior variance specified.

In population 1, with no intercept differences, the bias is small-
est for the Model with strict MI, but the coverage is higher for the
models with approximate MI and a high precision of the prior
(Models 3c and 3d). In the population with 2 small differences,
approximate MI with a high precision of the prior (Models 3c and
3d) modestly outperforms strict and partial MI in terms of bias
and coverage. For the populations with moderate and large differ-
ences, and invariance on either 2 or 4 items, partial MI is clearly
the best model. Also, for the model with many small differences,
approximate MI with a high precision of the prior (Models 3c
and 3d) just outperforms strict MI and clearly outperforms par-
tial MI. The models with a low precision of the prior were never
unbiased.

As pointed out by one of the reviewers, comparing Table 3 and
Table 4 on Population 5, partial MI using both ML and Bayes gave
smaller relative bias, smaller standard errors, and more accurate
95% coverage than model 3c and model 3d. Indeed, the coverage
of model 3c and 3d is too high because in an ideal situation the
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Table 5 | Simulation results for Model 3.

Model Outcome Population 1: Population 2: Population 3: Population 4: Population 5: Population 6: Population 7:

No differences 2 items 2 items 2 items 4 items 4 items 4 items

with small with moderate with large with small with moderate with large

differences differences differences differences differences differences

#3a N∼(0, 0.5) Estimated �M
and SE

0.0404
(0.5161)

0.8537
(0.5923)

0.6417
(0.6627)

1.1153
(0.7033)

0.8779
(0.5924)

0.9018
(0.6975)

2.3347
(0.7101)

Convergence 100% 100% 100% 100% 100% 99.4% 99.8%

Relative bias
�M(%)

−91.92 70.74 28.34 123.06 75.58 80.36 366.94

95% coverage 92.9% 100% 100% 100% 100% 100% 0%

95% significance 0% 0.1% 0% 2.1% 0.1% 0% 100%

#3b N∼(0, 0.05) Estimated �M
and SE

0.4143
(0.2294)

0.5378
(0.2239)

0.6125
(0.2393)

1.1672
(0.2612)

0.5622
(0.2240)

0.8560
(0.2409)

2.3644
(0.2709)

Convergence 100% 100% 100% 100% 100% 100% 100%

Relative bias
�M(%)

−17.14 7.56 22.5 133.44 12.44 71.2 372.88

95% coverage 100% 100% 99.9% 7.3% 99.9% 87.6% 0%

95% significance 45.9% 89.5% 97.1% 100% 94.2% 100% 100%

#3c N∼(0, 0.01) Estimated �M
and SE

0.4554
(0.1246)

0.5124
(0.1352)

0.6167
(0.1320)

1.6506
(0.2169)

0.5368
(0.1353)

0.8596
(0.1368)

2.4984
(0.2011)

Convergence 100% 100% 100% 100% 100% 100% 100%

Relative bias
�M(%)

−8.92 2.48 23.34 230.12 7.36 71.92 399.68

95% coverage 98.2% 99.7% 94.7% 0% 99.7% 17.2% 0%

95% significance 99.4% 99.8% 100% 100% 99.9% 100% 100%

#3d N∼(0, 0.005) Estimated �M
and SE

0.4671
(0.1072)

0.5084
(0.1173)

0.6218
(0.1122)

1.9494
(0.2205)

0.5328
(0.1175)

0.8611
(0.1142)

2.5453
(0.1900)

Convergence 100% 100% 100% 100% 100% 100% 100%

Relative bias
�M(%)

−6.58 1.68 24.36 289.88 6.56 72.22 409.06

95% coverage 97.3% 98.9% 86.9% 0% 98.6% 7.7% 0%

95% significance 99.8% 100% 100% 100% 100% 100% 100%

95% confidence interval should cover the true parameter value in
exactly 95% of the times. The coverage of almost 100% is probably
caused by the standard error in model 3c to be overestimated,
which can result in the reduction of statistical power. In conclu-
sion, approximate MI should not be applied when full MI holds
in the population. If large differences exist in the population on
only a few intercepts, partial MI outperforms approximate MI,
but partial approximate MI with a large prior variance can also
be used. If moderate or small differences exist in the population
on only a few intercepts, partial approximate MI is preferred.
If small differences exist in the population on many intercepts,
approximate MI outperforms applying full MI.

RESOLVING THE ALIGNMENT ISSUE
In the previous section we have seen that some of the parame-
ter values, in our case the difference between the latent means,
that generated the data are not recovered due to the alignment
problem, which reflects an indeterminacy in the CFA. Applying
approximate invariance using the DIFF statement tends to pull

the deviating parameter toward the average of the parameters
across all groups. As a result the deviating parameter will be
underestimated and the invariant parameters overestimated, see
also the simulation results in Asparouhov and Muthén (2013).
With biased intercepts the latent factor means will be biased as
well and this is what we call the alignment issue (Asparouhov
and Muthén, 2013; in preparation). If one would use plain BSEM
the results of the CFA model might be biased in the estimates of
the latent mean difference scores, especially when the precision of
the DIFF prior is low (i.e., large prior variance), which is unde-
sirable. There are two options to deal with the alignment issues:
(1) Freeing the parameters found not invariant (as in Asparouhov
and Muthén, 2013), or (2) using the alignment methods available
in Mplus v7.1. In the current paper we will focus on the second
option, for a comparison of both methods see Asparouhov and
Muthén (in preparation for the special issue).

In Mplus v7.1 the alignment-method handles the issue of
alignment through rotation. The rotation for the alignment-
method uses the same principles as for EFA (Jennrich, 2006) and
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Table 6 | Simulation results for Model 4.

Model Outcome Population 2: Population 3: Population 4:

2 items with 2 items with 2 items with

small differences moderate differences large differences

#4a (N∼(0, 0.5)) Estimated �M and SE 0.4926 (0.0993) 0.4939 (0.0994) 0.4998 (0.1000)

Convergence 100% 100% 100%

Relative bias �M(%) −1.48 −1.22 −0.04

95% coverage 95% 95% 95.5%

95% significance 99.9% 99.9% 99.9%

#4b (N∼(0, 0.05)) Estimated �M and SE 0.4931 (0.0985) 0.5051 (0.0996) 0.5703 (0.1072)

Convergence 100% 100% 100%

Relative bias �M(%) −1.38 1.02 14.09

95% coverage 95.7% 95.6% 90.9%

95% significance 99.9% 99.9% 100%

#4c (N∼(0, 0.01)) Estimated �M and SE 0.4952 (0.0966) 0.5403 (0.0999) 1.4388 (0.2410)

Convergence 100% 100% 100%

Relative bias �M(%) −0.96 8.06 187.76

95% coverage 96.4% 93.6% 3.6%

95% significance 100% 100% 100%

#4d(N∼(0, 0.005)) Estimated �M and SE 0.4971 (0.0954) 0.5656 (0.0999) 1.9635 (0.2390)

Convergence 100% 100% 100%

Relative bias �M(%) −0.58 13.12 292.7

95% coverage 96.4% 91.4% 0%

95% significance 100% 100% 100%

is described in more details in Asparouhov and Muthén (2013).
As stated in the version 7.1 Mplus language addendum (Muthén
and Muthén, 2013, p. 2): “the alignment optimization method
consists of three steps:

(1) Analysis of a configural model with the same number of
factors and same pattern of zero factor loadings in all groups.

(2) Alignment optimization of the measurement parameters,
factor loadings and intercepts/thresholds according to a sim-
plicity criterion that favors few non-invariant measurement
parameters.

(3) Adjustment of the factor means and variances in line with the
optimal alignment.”

The third step in this procedure is expected to decrease the bias
in the latent variable means as we discussed above. We included
the syntax ANALYSIS: ALIGNMENT = FIXED (BSEM);
where FIXED enforces the first latent mean to be zero and
the second latent mean to be estimated. When FREE would
have been specified all latent means would have been estimated,
which is only recommended if more than two groups are speci-
fied (Asparouhov and Muthén, 2013. p. 16). Furthermore, BSEM
refers to the combination of the alignment-method with the
DIFF statements.

To explore the performance of the BSEM-alignment method
we ran additional models on population 5 where groups exhibit
small differences on the intercepts of all four items (see Table 3).

Recall that the bias for this population when applying plain BSEM
was 7.36% (SE = 0.1353) with the DIFF statement imposed upon
all intercepts, but where the factor loadings were constrained
across groups (denoted by Model 5a). When population 5 was
confronted with a model that imposed plain-BSEM with the
DIFF statement on both intercepts and factor loadings (Model
5b) we encountered a bias of 3.62% (SE = 0.1279). When the
ALIGNMENT = FIXED(BSEM) command was added on top
of DIFF statements (Model 5c) the bias appeared to be 4.28%
with a lower SE of 0.1174. Thus, in this situation the alignment
method leads to less bias. Note that these findings are all con-
ditional on normal priors for the DIFF statements with a prior
variance of 0.01.

Since prior variance turned out to influence bias and SE’s in
previous runs we ran Model 5b and Model 5c with prior vari-
ances of 0.5 and 0.05 in the DIFF statements. Model 5b with a
prior variance of 0.05 yielded a bias of −1.35% (SE = 0.2039)
and Model 5c yielded a bias of 4.02% (SE = 0.1413). Just as with
a prior variance of 0.01, if the ALIGNMENT command is added
to the DIFF commands, the standard error decreased. When the
prior variance of the DIFF statements is increased to 0.5 Model 5b
yielded a bias of −43.46% (SE = 0.4035), whereas Model 5c with
the alignment method performed much better in terms of relative
bias and SE : −1.34% and a SE of 0.1413.

Similar findings were obtained for a population with large
differences on all intercepts across groups (Population 7). For
this population the bias and SE’s were even higher: 399%
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(SE = 0.2011), 391% (SE = 0.1940) and 394% (SE = 0.3057)
for Models 5a, 5b, and 5c with prior variances of 0.01, respec-
tively. It appeared the alignment method, just like plain BSEM,
does not resolve the incurred bias when group intercept differ-
ences are moderate or high, especially if many items are affected.
Since we only used four items in our simulation design more
research is needed to investigate whether it is the magnitude of
the non-invariance or the number of items affected.

Finally, we ran simulations with models 5a, 5b and 5c for
the populations where only two of the items in the pop-
ulation were dissimilar (Populations 1–3, see Table 3), again
with a prior variance of 0.01 for the DIFF priors. The results
were comparable with the results discussed above (results not
shown but these can be requested from the first author).
With the ALIGNMENT command we obtained slightly smaller
SEs with only small differences in the population com-
pared to approximate MI without the ALIGNMENT com-
mand. However, with moderate or large intercept differences
between groups the bias and SE for all models were once more
too high.

Taken together, DIFF statements imposed upon parameters
without the support of an ALIGNMENT command (i.e., plain
BSEM) introduced slightly higher standard errors compared
to DIFF statements that are combined with the ALIGNMENT
command.

CONCLUSION
If a researcher wants to compare latent means across groups or
over time one has four options:

(1) Impose (full or) scalar MI. When a full MI structure results
in approporiate model fit any difference in latent means resp-
resents true, unbiased difference between groups/timepoints.

(2) Impose partial MI, where one studies the size of the differ-
ences between unconstrained loadings and/or intercepts, and
constrains all loadings and intercepts except for the one load-
ing/intercept with the largest difference, which is released.
If the fit statistics are satisfied, any difference in the latent
means is indicative of true mean differences. Sumscores,
however, are biased due to the items where differences in the
intercepts/factor loadings are allowed (Steinmetz, 2013).

(3) Impose no MI, leading to the conclusion that the latent
means cannot be used for comparing groups because any
difference in the latent means can be caused by many differ-
ences.

With Muthén and Asparouhov’s introduction of approximate MI
(2012a; 2012b; 2013), a fourth option for testing MI became
available.

(4a) Approximate MI salvages MI in the case of seemingly ignor-
able (i.e., near zero) differences between parameters.

Or when combined with partial MI:

(4b) Partial approximate MI, which is a hybrid form of partial
MI and approximate MI.

The results of our paper have shown that applying approximate
MI might provide a safe passage through the narrow channel
between Italy and Sicily in order to facilitate the escape from
the mythical sea monsters Scylla and Charybdis, just as Odysseus
was able to. The whirlpools caused by Charybdis, who dislikes
comparing latent mean scores if the factor loadings/intercepts
are dissimilar across groups, can be avoided. The reason is that
with approximate MI, parameters are restricted to be closer to
each other than with partial MI. The use of Bayesian statistics
on the difference in parameters introduces a posterior distribu-
tion, which tries to find a compromise between the ideal situation
(difference = zero) and the situation we find in the data. The
willingness to compromise between ideology and reality has the
following effect: the posterior difference in parameters across
groups is close enough to its ideal zero to allow latent mean com-
parisons, yet close enough to the reality of the data to result in
acceptable model fit. As was noted by one of the reviewers, a cru-
cial distinction between partial invariance factor models and the
Bayesian approach involving priors is that the former typically is
coupled with a substantive interpretation of the group differences
in the parameters of interest. Although substantive considera-
tions may certainly help inform the nature of group differences,
there is always a risk of ad hoc reasoning in applications. The
Bayesian approach may do more justice to the unexpected and
possibly inexplicable failures of invariance. In a related vein, par-
tial measurement models have often been criticized for lacking
specificity in the sense that large modification indices of certain
items/indicators may actually reflect failures of invariance of other
items/indicators (see e.g., Reise et al., 1993).

Likewise it is possible to avoid Scylla, who will devour badly
fitting models resulting from forcing scalar MI on a model where
differences do exist. Both our empirical example and the simu-
lation study have taught us that there seems to be an optimum
specification of the prior variance. The alignment method pro-
vides promising results for decreasing the influence of the prior
specifications, but more research is warranted.

We recommend the following procedure if the test for full
MI fails. First, determine which parameters are different between
groups, for example by using modification indices or by using
the DIFFERENCE OUTPUT which is obtained when the DIFF
statement is used in Mplus. The latter output provides each
parameter with a significance test for its deviance with its con-
strained counterpart. Do not impose MI when there are large
parameter differences across groups, or impose approximate MI
when you are able to locate just a few deviating parameters.
If there are (many) small differences we recommend to apply
full approximate MI. Use the ALIGNMENT method when you
don’t want to use small prior variances in the DIFF statements.
We acknowledge the issue of defining “small differences.” With
“small” we imply that parameters of substantive interest do not
change in a meaningful way if MI does not fully hold (cf. Oberski,
2013). We note that the choice of the priors is extremely impor-
tant and since the field of approximate MI is rather unexplored
we advise always do sensitivity analyses and never just “choose”
a prior value. One aspect influencing the definition of a “small
difference” is that the prior are sensible for a given data set,
and hence, that the choice of the prior variance does have huge
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implications on the parameter estimates. In particular, because
the difference in intercepts is a function of the scaling of the
observed variable, as was noted by one of the reviewers, it may
be helpful to relate the variances of the normal priors to the scal-
ing (or variability) of the observed variables. For example, for a
prior with hyperparameters N (0, 0.01) indicates there is a (sub-
jective belief of) 95% chance that the absolute intercept difference
is equal or smaller than 0.01 [i.e., sqrt(0.01) = 0.1].

Since the field of approximate MI is relatively new we pro-
pose the following research agenda. First, there are two variables
influencing the performance of MI: (1) the number of items with
differences on the factor loading or intercepts and (2) the size
of the difference itself. What we do not know is what the exact
cut-off values are for these decisions (number of items and mag-
nitude of differences). This topic needs further attention, given
that it can help researchers make informed choices about apply-
ing partial or approximate MI without having to test them both.
Second, more simulation studies have to be performed to find
out which prior specification in which model is to be advised,
since the optimum prior specification is model and data depen-
dent. Third, the bias in substantive results if the incorrect type of
MI is used should be investigated in more detail. Fourth, more
research is needed to study the effects of the alignment method.
Fifth, misspecification of the baseline model should be further

investigated. A fifth area for further exploration is the comparison
of the approximate MI procedure with alternative approaches, for
example the commonly used delta-goodness-of-fit-indexes (i.e.,
�GFI; Cheung and Rensvold, 2002; Chen, 2007). And finally, in
our simulation study we used a relative large sample size in rela-
tion to the degrees of freedom. It should be investigated which
sample sizes vis-à-vis model DFs are needed for the Bayesian anal-
ysis to work properly. It is expected that the Bayesian test for MI
can deal with smaller sample sizes compared to the ML counter-
parts, as was also the case for regular SEM models, see Lee and
Song (2004) and Van de Schoot et al. (submitted).

It should be noted that approximate MI might be an interest-
ing alternative approach for testing MI, but it does not replace
the original MI test which is based on, for example chi-square
difference testing. Approximate MI, as introduced in our paper
provides a first step in this challenging and promising new area of
testing and exploring MI if the chi-square test, or any other test,
rejects the invariance model. Also, our paper provides a warning
not to use approximate MI in all situations where MI is tested, but
this warning message also applies to strict MI and partial MI.
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APPENDIX A

DATA:
FILE IS data Tummers.dat;

VARIABLE:
NAMES ARE CaseNR BCPsych Veran1 Veran2 Veran3 Veran4
mean;
USEVARIABLES ARE Veran1 Veran2 Veran3 Veran4;
MISSING ARE ALL (-9999);
KNOWNCLASS IS g (BCPsych=0 BCPsych=1);
CLASSES IS g(2);

ANALYSIS:
MODEL IS allfree;
TYPE IS is mixture;
ESTIMATOR IS BAYES;
Bconvergence=0.01;
Biterations = 500000 (20000);
processor is 8;
chains is 8;
bseed 100;

MODEL:
%overall%
Willingness by Veran1-Veran4∗(1-4);
Willingness@1;
[Willingness@0];
[Veran1- Veran4] (nu#_1 - nu#_4);

MODEL PRIORS:
DO(1, 4) DIFF(nu1_#-nu2_#) ∼ N(0, 0.5);

OUTPUT:
SAMPSTAT TECH1 TECH8 STAND(STDYX);

PLOT:
type is plot2;

APPENDIX B
The population input file for the population 3:

MODEL POPULATION:
f1 by y1@.7 y2@.6 y3@.4 y4@.2;
f1@1; [f1@0];
y1-y4@1;
[y1@0]; [y2@0];
[y3@-.1]; [y4@-.1];

MODEL POPULATION-g2:
f1 by y1@.7 y2@.6 y3@.4 y4@.2;
f1@1; [f1@.5];
y1-y4@1;
[y1@0]; [y2@0]; [y3@.1]; [y4@.1]
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Highlights

• Application of Kronecker product to construct parsimonious structural equation models
for multivariate longitudinal data.

• A method for the investigation of measurement bias with Kronecker product restricted
models.

• Application of these methods to health-related quality of life data from bone metastasis
patients, collected at 13 consecutive measurement occasions.

• The use of curves to facilitate substantive interpretation of apparent measurement
bias.

• Assessment of change in common factor means, after accounting for apparent
measurement bias.

Longitudinal measurement invariance is usually investigated with a longitudinal factor
model (LFM). However, with multiple measurement occasions, the number of parameters
to be estimated increases with a multiple of the number of measurement occasions.
To guard against too low ratios of numbers of subjects and numbers of parameters, we
can use Kronecker product restrictions to model the multivariate longitudinal structure
of the data. These restrictions can be imposed on all parameter matrices, including
measurement invariance restrictions on factor loadings and intercepts. The resulting
models are parsimonious and have attractive interpretation, but require different methods
for the investigation of measurement bias. Specifically, additional parameter matrices
are introduced to accommodate possible violations of measurement invariance. These
additional matrices consist of measurement bias parameters that are either fixed at zero
or free to be estimated. In cases of measurement bias, it is also possible to model
the bias over time, e.g., with linear or non-linear curves. Measurement bias detection
with Kronecker product restricted models will be illustrated with multivariate longitudinal
data from 682 bone metastasis patients whose health-related quality of life (HRQL) was
measured at 13 consecutive weeks.

Keywords: Kronecker product, multivariate longitudinal data, measurement invariance, structural equation

modeling (SEM), longitudinal three-mode model (L3MM), health-related quality of life (HRQoL)

A valid assessment of change requires that the meaning of the con-
struct stays the same across measurement occasions (Meredith,
1993). Longitudinal measurement invariance is usually investi-
gated with the longitudinal factor model (LFM). When R latent
variables are measured with K observed variables at J measure-
ment occasion, the mean, and covariance structures are given by:

μ = τ + �κ, (1)

and:

� = ���′ + �, (2)

where τ is a JK-vector of intercepts, � is a JK × JR matrix of
common factor loadings, κ is a JR-vector of common factor
means, � is a JR × JR symmetric matrix containing the variances
and covariances of the common factors, and � is a JK × JK
symmetric matrix containing the variances and covariances of the
residual factors. Although the LFM can be used to model multiple
measurement occasions, these models become progressively large
and unmanageable when the number of occasions increases.

One solution to this problem is the imposition of Kronecker
product restrictions that profit from the three-mode structure of
multivariate longitudinal data (Oort, 2001). The modes refer to
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the variables, the measurement occasions and the subjects, and
the resulting longitudinal three-mode models (L3MMs) are more
parsimonious and have attractive interpretation. For example,
Kronecker product restrictions can be imposed on factor loadings
and intercepts to comply with measurement invariance, using:

� = I ⊗ �0, (3)

and:
τ = u ⊗ τ0, (4)

where �0 is a K × R matrix of invariant common factor load-
ings, τ0 is a K × 1 vector of invariant intercepts, I is a J ×
J identity matrix, u is a J × 1 vector of ones, and the sym-
bol ⊗ denotes the Kronecker product. These restrictions imply
that factor loadings �0 and intercepts τ0 apply to all measure-
ment occasions. Although Kronecker product restrictions are
convenient to model measurement invariance, they require spe-
cial methods for the investigation of violations of measurement
invariance (i.e., measurement bias).

Specifically, to detect measurement bias in Kronecker prod-
uct restricted models, we introduce additional matrices A and B
to accommodate possible violations of measurement invariance,
using:

� = I ⊗ �0 + A, (5)

and:

τ = u ⊗ τ0 + B. (6)

These additional matrices consist of measurement bias param-
eters that are either fixed at zero or free to be estimated. This
method thus enables the detection of measurement bias in indi-
vidual parameters of � and τ. In this way, it is possible to establish
partial measurement invariance (Byrne et al., 1989). Moreover,
in cases of measurement bias, it is also possible to model the
bias over time, e.g., with linear or non-linear curves, which can
facilitate interpretation.

The aim of the present paper is to illustrate the detection
of measurement bias with Kronecker product restricted models
using multivariate longitudinal data from 682 bone metasta-
sis patients whose health-related quality of life (HRQL) was
measured in 13 consecutive weeks.

METHODS
Patients with painful bone metastases from a solid tumor were
enrolled from 17 radiotherapy institutes in The Netherlands.
Patients were randomized to receive radiotherapy of a single
fraction vs. multiple fractions as palliative treatment for pain.
Inclusion criteria were having one or more painful bone metas-
tases treatable in one target volume and having a pain score of
at least 2 on an 11-point scale from 0 (no pain at all) to 10
(worst imaginable pain) at time of admission to the radiotherapy.
Exclusion criteria were having metastases of malignant melanoma
or renal cell carcinoma, having metastases in the cervical spine,
having previously been irradiated for the same metastases, or
having a pathological fracture that needed surgical fixation or a
spinal cord compression. Side effects from radiation therapy vary
depending on the part of the body being treated, and may include

skin changes (dryness, itching, peeling, or blistering), fatigue,
loss of appetite, hair loss, diarrhea, nausea, and vomiting. Most
of these side effects go away within a few weeks after radiation
therapy.

HRQL questionnaires were administered at 13 measurement
occasions, before (T0) and every week after treatment with radio-
therapy (T1 through T12). These data are a subset of data from
the Dutch Bone Metastasis Study (Steenland et al., 1999; Van
der Linden et al., 2004). For the current study only patients
who survived at least 13 weeks from the start of treatment were
included, which resulted in a total sample size of 682 patients
(354 women). Patients’ primary tumor was either breast cancer
(n = 321), prostate cancer (n = 181), lung cancer (n = 106), or
other (n = 74). Ages ranged from 33 to 90, with a mean of 64.2
(standard deviation 11.5).

Treatment progression, therapeutic effects and/or side effects
may influence patients’ health status. In the area of HRQL a theo-
retical framework of measurement bias has been developed which
describes how changes in patients’ health status may prompt
behavioral, cognitive, and affective processes that affect patients’
response tendencies (Sprangers and Schwartz, 1999). Therefore, it
seems worthwhile to investigate measurement bias in our sample
of bone metastases patients.

MEASURES
HRQL was assessed with multiple questionnaires (for more infor-
mation see Verdam et al., submitted). Forty-five Items were
grouped using confirmatory factor analyses and substantive con-
siderations to compute eight health-indicators: physical function-
ing (PF; 4 items), mobility (MB; 5 items), social functioning (SF;
2 items), depression (DP; 8 items), listlessness (LS; 6 items), pain
(PA; 4 items), sickness (SI; 6 items), and treatment related symp-
toms (SY; 11 items). All scale scores were calculated as mean item
scores, ranging from 1 to 4, with higher scores indicating more
symptoms or dysfunctioning.

Intermittent missing item- and scale scores were imputed
using expectation-maximization. Per assessment, 29–35% of
respondents showed missing item scores and 1–3% of respon-
dents showed intermittent missing scale scores. Cronbach’s alpha
coefficients indicated moderate to good internal consistency reli-
ability (PF, alpha = 0.93; MB, alpha = 0.91; SF, alpha = 0.80; DP,
alpha = 0.94; LS, alpha = 0.72; SI, alpha = 0.74; PA alpha = 0.74;
SY, alpha = 0.69).

STRUCTURAL EQUATION MODELING
Structural equation models were fitted to the means, variances
and covariances of the eight observed health indicators using
OpenMx (Boker et al., 2011). OpenMx syntax is available in
Appendix I1. To achieve identification of all model parameters,

1OpenMx was used for statistical analyses because it provides a matrix
algebraic approach to structural equation modeling that facilitates the decom-
position of matrices that is required for the imposition of Kronecker product
restrictions. Other statistical software (e.g., LISREL and Mplus) could also
be used for statistical analyses presented in this article, but these programs
require a much longer, more complicated script as they only allow inequality
constraints on individual parameters.
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scales and origins of the common factors were established by
fixing the factor means at zero and the factor variances at one.
When factor loadings and intercepts were constrained to be equal
across occasion, only first occasion factor means and variances
were fixed. Model parameters of the additional matrices A and
B can be freely estimated, with the restriction that the computed
matrices of factor loadings and intercepts do not violate the gen-
eral guidelines for identification as described above. Identification
of model parameters of matrices that feature in the Kronecker
product restriction imposed on residual factor variances and
covariances was achieved by using the guidelines described by
Oort (2001).

Detection of measurement bias
The structural equation modeling procedure for the detection
of measurement bias included the following steps: (1) estab-
lishing an appropriate measurement model, (2) fitting a model
of measurement invariance, (3) detection of measurement bias,
(4) modeling the bias that was detected, and (5) assessment of
change.

Step 1: measurement model. The Measurement Model was estab-
lished on the basis of results of exploratory factor analyses and
substantive considerations. To take into account the multivariate
longitudinal structure of the data, the longitudinal three-mode
model (L3MM; Oort, 2001) was applied. To reduce the com-
plexity of the model (i.e., the number of parameter estimates)
Kronecker product restrictions were imposed on residual vari-
ances and covariances, using � = �T ⊗ �V. This restriction
entails that the matrix of residual variances and covariances
(�) is estimated indirectly by using a symmetric matrix that
contains the relationships between measurement occasions (�T,
of dimensions 13 × 13; with �T(1,1) = 1 for identification pur-
poses) and a diagonal matrix that contains the residual vari-
ances of only one measurement occasion (�V, of dimension
8 × 8). This implies that the changes in residual factor vari-
ances and covariances across occasions are proportionate for
all residual factors (for more details see Verdam et al., submit-
ted). The Measurement Model has no equality constraints across
occasions.

Step 2: measurement invariance model. The assumption of
longitudinal measurement invariance entails that factor load-
ings and intercepts are constrained to be equal across occa-
sions. These restrictions were imposed using the Kronecker
product with Equations (3) and (4), yielding the Measurement
Invariance Model. To test the assumption of measurement invari-
ance the model fit of the more restricted model can be com-
pared to the model fit of the model with no equality constraints
across occasions. When there is no significant deterioration in
model fit, the assumption of measurement invariance can be
retained.

Step 3: partial measurement invariance model. Detection of
measurement bias was done using a step-by-step modifica-
tion of the Measurement Invariance Model, to yield the Partial
Measurement Invariance Model which included all occurrences

of measurement bias. Measurement bias was operationalized as
differences across measurement occasions in parameter estimates
of factor loadings or intercepts. An iterative procedure was used,
where each invariant factor loading and intercept was investi-
gated one-by-one. Using Equations (5) and (6) all measurement
bias parameters across occasions that were associated with one
invariant parameter were freely estimated. The violations of mea-
surement invariance that yielded the largest improvement in
model fit were incorporated in the model. To test whether par-
tial measurement invariance is tenable the model fit of this model
can be compared to the model fit of the model with no equal-
ity constraints across measurement occasions. When there is no
significant deterioration in model fit, the assumption of partial
measurement invariance can be retained. The final model, the
Partial Measurement Invariance Model, thus includes measure-
ment invariance restrictions on most, but not all, factor loading
and intercept parameters.

Step 4: modeling occurrences of measurement bias. In case
of measurement bias, the bias was modeled using linear or
non-linear curves. The measurement bias parameters were
modeled as a function of the time of measurement (using
a time-coding), yielding estimates of intercept- and slope-
parameters that describe the trend of the bias. When the model
fit of the more restricted model did not significantly deteriorate
compared to the model fit of the model with freely estimated mea-
surement bias parameters, we retained the model which describes
the bias using a linear or non-linear curve. Interpretation of
parameter estimates provides insight in the trend of the bias that
was detected.

Step 5: assessment of change. Change in the common factor
means was assessed in the model where all measurement biases
were taken into account. A test of invariance was used to inves-
tigate differences in common factor means across occasions. To
evaluate the impact of measurement bias on the assessment of
change, we inspected the trajectories of common factor means,
before and after taking into account measurement bias.

Evaluation of model fit
To evaluate goodness-of-fit the chi-square test of exact fit
(CHISQ) was used, where a significant chi-square indicates a
significant difference between model and data. However, in the
practice of structural equation modeling, exact fit is rare, and with
large sample sizes and large numbers of degrees of freedom the
chi square test generally turns out to be significant. Therefore,
we also considered alternative measures of fit. The root mean
square error of approximation (RMSEA; Steiger and Lind, 1980;
Steiger, 1990) was used as a measure of approximate fit, where
RMSEA values below 0.05 indicate “close” approximate fit and
values below 0.08 indicate “reasonable” approximate fit (Browne
and Cudeck, 1992). Additionally, the expected cross-validation
index (ECVI; Browne and Cudeck, 1989) was used to compare
different models for the same data, where the model with the
smallest ECVI indicates the model with the best fit. For both
the RMSEA and ECVI, 95% confidence intervals were calculated
using the program NIESEM (Dudgeon, 2003).
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To evaluate differences between hierarchically related models
the chi-square difference test (CHISQdiff ) was used, where a sig-
nificant chi-square difference indicates a significant difference in
model-fit. The chi square difference test applied to hierarchically
nested models has essentially the same strengths and weaknesses
as the chi square test applied to a single model. Therefore, we
additionally considered the ECVI difference test (ECVIdiff ), where
the deterioration in model fit of the more restricted model is sig-
nificant when the value of the ECVI difference is significantly
larger than zero.

RESULTS
MEASUREMENT MODEL
Eight health-indicators were modeled to be reflective of two com-
mon factors: functional limitations and health impairments (see
Figure 1). Functional limitations was measured by three observed
variables, health impairments was measured by six observed
variables, with one observed variable in common. The squares
represent observed variables (scale scores), the circles on the top
represent the common factors, and the circles on the bottom
represent residual factors.

Classification of the common factors was based on the
International Classification of Functioning, Disability and Health
(World Health Organization, 2002) that provides a framework for
the description of health and health-related states. In this frame-
work, the term functioning refers to all body functions, activities
and participation, while disability refers to impairments, activ-
ity limitations and participation restrictions. These concepts are
reflected in the two common factors functional limitations (e.g.,
limitations of bodily functioning) and health impairments (e.g.,
health restrictions or symptoms). As social functioning is also

considered to be an important factor of HRQL, this scale was
added to the measurement and modeled to be influenced by both
functional limitations and health impairments (which agrees with
participation being a factor of both functioning and disability in
the WHO framework).

The Measurement Model yielded a chi-square test of exact fit
that was significant but the RMSEA measure indicated close fit
(see Model 1, Table 1).

DETECTION OF MEASUREMENT BIAS
To test the assumption of longitudinal measurement invari-
ance, factor loadings and intercepts were held invariant across
occasions using the Kronecker product restriction. The overall
fit of the Measurement Invariance Model showed reasonable fit
(RMSEA = 0.037, see Table 1), but comparison with the fit of the
model with no across occasions equality constraints showed a sig-
nificant deterioration in fit [CHISQdiff (156) = 735.2, p < 0.001;
ECVIdiff = 0.54, 95% CI: 0.39–0.71]. This indicates a violation of
measurement invariance.

To investigate which of the equality constraints across occa-
sions on factor loadings and intercepts were not tenable, an
iterative measurement bias detection approach was used. Step by
step modification of the Measurement Invariance Model yielded
the Partial Measurement Invariance Model, which showed three
cases of measurement bias. Each of the measurement biases that
was detected will be explained in more detail below. The fit of
the Partial Measurement Invariance Model was good (RMSEA =
0.035, see Table 1), and significantly better than the fit of
the Measurement Invariance Model [CHISQdiff (36) = 511.7, p <

0.001; ECVIdiff = 0.63, 95% CI: 0.50–0.77]. Moreover, compar-
ison with the Measurement Model showed that although there

FIGURE 1 | The measurement model. Circles represent latent variables
(common and residual factors) and squares represent observed variables (the
scale scores). FUNC, functional limitations; HEALTH, health impairments; PF,

physical functioning; MB, mobility; SF, social functioning; DP, depression; LS,
listlessness; PA, pain; SI, sickness; SY, treatment related symptoms; and
Res., Residual factors.
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Table 1 | Goodness of overall fit of models in the four-step measurement bias detection procedure.

Model Description DF CHISQ RMSEA [95% CI] ECVI [95% CI]

Model 1 Measurement model 4920 9094.7 0.035 [0.034;0.036] 15.59 [15.11; 16.09]

Model 2 Measurement invariance model 5076 9829.9 0.037 [0.036;0.038] 16.13 [15.62; 16.66]

Model 3 Partial measurement invariance model 5040 9318.2 0.035 [0.034;0.037] 15.50 [15.01; 16.01]

Model 4 Curves partial measurement invariance model 5070 9380.8 0.035 [0.034;0.037] 15.49 [15.00; 16.00]

n = 682.

Table 2 | Measurement invariant parameter estimates of the Partial

Measurement Invariance Model.

PF MB SF DP LS PA SI SY

INTERCEPTS (τ0)

3.03 2.12 2.25 1.98 2.29 Bias Bias 1.46

FACTOR LOADINGS (�0)

FUNC 0.90 0.70 0.29

HEALTH 0.27 0.39 0.43 0.35 Bias 0.19

N = 682; parameter estimates are unstandardized.

was still a significant difference in fit according to the chi-
square difference test, comparison of approximate fit using the
ECVI difference test indicated that the models can be con-
sidered approximately equivalent [CHISQdiff (120) = 223.5, p <

0.001; ECVIdiff = −0.09]. Therefore, the Partial Measurement
Invariance Model was retained. All invariant parameters of �0 and
τ0, and the measurement bias parameters of the three cases of
bias, are given in Tables 2,3, respectively.

Measurement bias intercept “pain”
The first bias that was detected was a measurement bias of the
indicator “pain.” The model where the intercept of the indicator
“pain” was freely estimated across occasions yielded the largest
improvement in model fit [CHISQdiff (12) = 287.7, p < 0.001;
ECVIdiff = 0.38, 95% CI: 0.28–0.49]. Inspection of the measure-
ment bias parameters shows that the estimate of the intercept
decreases over the first five measurement occasions and stabi-
lizes around the sixth measurement occasion (see Table 3). This
indicates that, given equal health impairments, patients report
decreasing pain over the first 4 weeks after treatment, after which
they report stable pain over time.

To get more insight in the trend of this bias, the measurement
bias parameters were modeled as a function of the time of mea-
surement. First, a linear curve was fitted to the bias. This model
yielded an intercept and slope parameter that can give insight in
the trend of the bias across occasions (see Figure 2), but the model
did not show a good fit to the data [CHISQdiff (11) = 189.9,
p < 0.001; ECVIdiff = 0.24, 95% CI: 0.16–0.33]. In addition, a
selection of non-linear curves was fitted to the measurement
bias parameters (see Figure 2) of which the quadratic curve
showed significant deterioration in fit [CHISQdiff (10) = 61.0,
p < 0.001; ECVIdiff = 0.05, 95% CI: 0.02–0.11], but the inverse
curve showed equivalent fit to the model with free intercepts
[CHISQdiff (10) = 18.7, p = 0.044; ECVIdiff = −0.01]. The slope

parameter gives an indication of the steepness and direction of the
measurement bias for the first five measurement occasions.

Measurement bias intercept “sickness”
The second step of the measurement bias detection proce-
dure showed that the equality constraint on the intercept
of the indicator “sickness” across occasions was not tenable
[CHISQdiff (12) = 141.9, p < 0.001; ECVIdiff = 0.17, 95% CI:
0.10–0.25]. Inspection of the measurement bias parameters shows
that the intercept of the indicator “sickness” increases over the
first four measurement occasions, after which it decreases and
stabilizes around the seventh measurement (see Table 3). Thus,
given equal health impairments, patients report more sickness in
the first 3 weeks after treatment, then report less sickness, and
after the sixth week after treatment report a stable, above baseline
level of sickness.

A model with a linear curve was fitted to the data, which
yielded a non-significant slope parameter estimate (see Figure 3),
and showed significant deterioration in fit compared to the
model with free intercepts [CHISQdiff (11) = 138.2, p < 0.001;
ECVIdiff = 0.16, 95% CI: 0.10–0.25]. As it can be seen from the
data that different parts of the trajectory of the intercept fol-
low different trends (i.e., first an increase and then a decrease
across measurement occasions), we modeled these trajectories in
the bias using piece-wise curves. Piece-wise curves were modeled
using additional time coding that applied to only part of the tra-
jectory. In this example, linear piece-wise curves were fitted to
the measurement bias parameters of “sickness” (see Figure 3),
where the model with two piece-wise curves did not show a good
fit to the data [CHISQdiff (10) = 64.7, p < 0.001; ECVIdiff =
0.06, 95% CI: 0.02–0.12], but the model with three piece-wise
curves showed equivalent fit to the model with free intercepts
[CHISQdiff (10) = 11.0, p = 0.274; ECVIdiff = −0.02]. The slope
parameters give an indication of the steepness and direction of the
measurement bias for the first three measurement occasions, and
the deviations from this trend for the fourth to sixth measurement
occasions, and the seventh to thirteenth measurement occasions
(see Figure 3).

Measurement bias factor loading “sickness”
The third bias that was detected was a measurement bias of the
indicator “sickness,” as freeing the equality constraint on the
factor loading across occasions yielded the largest improvement
in model fit [CHISQdiff (12) = 82.0, p < 0.001; ECVIdiff = 0.08,
95% CI: 0.03–0.14]. Inspection of the measurement bias param-
eters shows that the factor loading increases over the first four
measurement occasions, after which it decreases again toward
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Table 3 | Measurement bias parameter estimates of the Partial Measurement Invariance Model.

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

INTERCEPT “PAIN”

2.56 2.41 2.33 2.27 2.22 2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21

INTERCEPT “SICKNESS”

1.37 1.49 1.56 1.56 1.52 1.49 1.47 1.46 1.46 1.46 1.45 1.43 1.44

FACTOR LOADING “SICKNESS”

0.28 0.35 0.40 0.41 0.37 0.34 0.34 0.33 0.33 0.33 0.32 0.29 0.31

N = 682; parameter estimates are unstandardized.

FIGURE 2 | Curves fitted to the measurement bias parameters of the

intercept “pain.” The black line (circles) represents measurement bias
parameter estimates when they are freely estimated across occasions, the
blue line (triangles) when they are modeled using a linear curve, the red line
(squares) when they are modeled using a quadratic curve, and the purple
line (stars) when they are modeled using an inverse curve.

baseline level, although it shows a somewhat fluctuating pat-
tern (see Table 3). Thus, sickness becomes more important for
patients’ health impairments in the first 3 weeks after treatment,
but then its importance decreases again toward baseline level.

This occurrence of measurement bias was modeled using
a linear curve and a piece-wise linear curve (see Figure 4).
The model with the linear curve showed significant deteriora-
tion in fit [CHISQdiff (11) = 69.7, p < 0.001; ECVIdiff = 0.06,
95% CI: 0.02–0.12], but the model with two piece-wise curves
showed equivalent fit to the model with free factor loadings
[CHISQdiff (10) = 31.1, p < 0.001; ECVIdiff = 0.01, 95% CI:
−0.01–0.05]. The slope parameters give an indication of the
steepness and direction of the measurement bias for the first three
measurement occasions, and the deviations from this trend for
the fourth to thirteenth measurement occasions (see Figure 4).

CURVES PARTIAL MEASUREMENT INVARIANCE MODEL
The final model, the Curves Partial Measurement Invariance
Model, includes the three curves described above to model the
measurement biases that were detected. The overall fit of the
model was good (RMSEA = 0.035, see Table 1) and showed
equivalent model fit when compared to the model with no curves
fitted to the measurement biases [CHISQdiff (30) = 62.5, p <

0.001; ECVIdiff = −0.01].

FIGURE 3 | Curves fitted to the measurement bias parameters of the

intercept “sickness.” The black line (circles) represents measurement bias
parameter estimates when they are freely estimated across occasions, the
blue line (triangles) when they are modeled using a linear curve, the red line
(squares) when they are modeled using two piece-wise linear curves, and
the purple line (stars) when they are modeled using three piece-wise linear
curves.

ASSESSMENT OF CHANGE
The trajectory of the common factor functional limitations (see
Figure 5) indicates that patients showed a more or less con-
stant trajectory [CHISQdiff (12) = 39.8, p < 0.001; ECVIdiff =
0.02, 95% CI: −0.01–0.06]. As the biases that were detected con-
cern the measurement of health impairments, taking into account
measurement bias did not affect the trajectory of functional
limitations.

The trajectory of health impairments (see Figure 6) shows
that patients significantly improved [CHISQdiff (12) = 51.5, p <

0.001; ECVIdiff = 0.03, 95% CI: 0.001–0.085], although it seems
that patients slightly deteriorated again in the last 3 weeks of
measurement. Taking into account the measurement biases of
the indicators of health impairments affected the trajectory,
as it can be seen that health impairments would be generally
underestimated across occasions.

DISCUSSION
Measurement invariance is a prerequisite for a valid assessment
of change. Longitudinal measurement invariance is usually inves-
tigated with a LFM. However, in the situation when there are
many measurement occasions the LFM can become of unman-
ageable size. One solution to this problem is the imposition of
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FIGURE 4 | Linear curve of measurement bias parameters of the factor

loading “sickness.” The black line (circles) represents measurement bias
parameter estimates when they are freely estimated across occasions, the
blue line (triangles) when they are modeled using a linear curve, and the red
line (squares) represents measurement bias parameter estimates when
they are modeled using two piece-wise linear curves.

FIGURE 5 | Latent trajectories of functional limitations before and after

accounting for measurement bias. The dotted black line (circles)
represents estimates of the Measurement Invariance Model, and the solid
blue (squares) line represents parameter estimates of the Partial
Measurement Invariance Model, where all measurement biases are
incorporated in the model.

Kronecker product restrictions to model the multivariate longi-
tudinal structure of the data. In these models Kronecker product
restrictions also imply measurement invariance across measure-
ment occasions. As a result, measurement bias across occasion
cannot be investigated in the usual way, by testing equality con-
straints on individual parameters (intercepts and factor loadings).
Therefore, to investigate which measurement parameters show
violations of measurement invariance (i.e., measurement bias)
in Kronecker product restricted models, we propose a mod-
eling procedure that uses additional matrices to accommodate
possible bias. This enables the investigation of measurement
bias, to account for apparent bias, and use partial measurement
invariance to investigate change in common factor means.

The procedure that we propose enables the investigation of
measurement invariance in Kronecker product restricted models
for multivariate longitudinal data when the number of mea-
surement occasions is large. The procedure of measurement

FIGURE 6 | Latent trajectories of health impairments before and after

accounting for measurement bias. The dotted black line (circles)
represents estimates of the Measurement Invariance Model, and the solid
red (triangles) line represents parameter estimates of the Partial
Measurement Invariance Model, where all measurement biases are
incorporated in the model.

invariance investigation is not different from the usual proce-
dure, but requires alternative modeling as the usual LFM cannot
be applied in the situation when invariance restrictions on factor
loadings and intercepts are imposed using the Kronecker product.
Moreover, with additional matrices that are used to accommodate
possible violations of measurement invariance, it is possible to
further investigate and model detected biases. This paper there-
fore contributes to the existing literature on measurement bias
detection using structural equation modeling by: (1) using the
imposition of Kronecker product restrictions to enable factor
analyses of data from a large number of measurement occasions,
(2) describing a procedure that enables measurement invari-
ance investigation with Kronecker product restricted models,
and (3) modeling the measurement bias parameters to facilitate
interpretation of detected biases.

In case of bias, the detected measurement bias can be modeled
as a function of the time of measurement using linear or non-
linear curves. It should be noted that this technique was used in
an exploratory way, e.g., the curve that was fitted to the bias was
chosen after inspection of the trajectory of the measurement bias
parameters. Interpretation of bias is then facilitated by decreasing
the number of parameters to be interpreted, i.e., a slope parame-
ter indicates direction and strength of the trend of the bias across
time. Moreover, additional information could be used to test spe-
cific hypotheses, for example by incorporating the time of an
event (e.g., start of treatment) in modeling the curves.

In our illustrative sample of bone metastases patients impo-
sition of Kronecker product restrictions enabled the analyses of
multivariate data from 13 measurement occasions, and the pro-
posed procedure for the investigation of measurement invariance
enabled the detection of measurement bias, to account for appar-
ent bias, and use partial measurement invariance to investigate
change in HRQL. We found that patients showed a constant tra-
jectory of functional limitations and an improvement of health
impairments over time. If measurement bias had not been taken
into account, patient’s health impairments would generally be
underestimated. Moreover, measurement bias was detected in
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the intercept of the indicator pain, and in both the intercept
and factor loading of the indicator sickness. Given equal health
impairments, patients reported decreasing pain over the first
4 weeks after treatment, after which they reported stable pain
over time. In addition, given equal health impairments patients
reported more sickness in the first 3 weeks after treatment, after
which they again reported less sickness. Similarly, the impor-
tance of sickness became more important for patients’ health
impairments in the first 3 weeks and then decreased again toward
baseline level. A possible explanation for the bias in pain as a
measurement of health impairments could be that the radiother-
apy treatment led to a larger decrease in pain than in the other
indicators of health impairments. In the measurement of health
impairments, patients’ reporting of pain would then decrease rel-
ative to the other indicators. A possible explanation for the biases
in sickness could be that patients experienced side-effects from
radiotherapy and that symptoms related to sickness were rela-
tively more prevalent than the other symptoms. Sickness could
therefore have become more important to the measurement of
health impairments, relative to the other symptoms. As these side-
effects usually disappear after a few weeks, this could explain the
subsequent decrease in both the reporting of sickness relative to
the other symptoms and its importance in the measurement of
health impairments. These occurrences of measurement bias and
their impact on the assessment of change emphasize the impor-
tance of investigating measurement invariance when analyzing
longitudinal data. Our proposed procedure enables the investiga-
tion of measurement invariance in Kronecker product restricted
models, and therefore allows for a more complete interpretation
of findings from multivariate longitudinal data.

PRACTICAL GUIDELINES
The introduction of parameter matrices that can accommo-
date possible violations of measurement invariance enables the
investigation of bias in individual factor loading and intercepts.
Further investigation of cases of bias is possible through mod-
eling the measurement bias using linear and non-linear curves.
The proposed methods not only enable the investigation of mea-
surement bias with longitudinal three-mode models, but can also
enhance our understanding of occurrences of measurement bias
in multivariate longitudinal data.
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In this paper, we consider a family of recently-proposed measurement invariance tests that
are based on the scores of a fitted model. This family can be used to test for measurement
invariance w.r.t. a continuous auxiliary variable, without pre-specification of subgroups.
Moreover, the family can be used when one wishes to test for measurement invariance
w.r.t. an ordinal auxiliary variable, yielding test statistics that are sensitive to violations
that are monotonically related to the ordinal variable (and less sensitive to non-monotonic
violations). The paper is specifically aimed at potential users of the tests who may wish
to know (1) how the tests can be employed for their data, and (2) whether the tests
can accurately identify specific models parameters that violate measurement invariance
(possibly in the presence of model misspecification). After providing an overview of the
tests, we illustrate their general use via the R packages lavaan and strucchange. We then
describe two novel simulations that provide evidence of the tests’ practical abilities. As
a whole, the paper provides researchers with the tools and knowledge needed to apply
these tests to general measurement invariance scenarios.

Keywords: measurement invariance, factor analysis, lavaan, parameter stability, ordinal variable, structural

equation modeling

1. INTRODUCTION
Some of the papers in this special issue focus on the topic
of approximate measurement invariance: we know that strict
hypotheses of measurement invariance do not hold exactly across
different groups, and this should be reflected in corresponding
tests of measurement invariance. Under a Bayesian approach, we
may implement the idea of approximate invariance (e.g., Muthén
and Asparouhov, 2013) by replacing across-group equality con-
straints on parameters with informative prior distributions. In
this paper, we describe an alternative approach: the development
of test statistics that are especially sensitive to violations that are
monotonic w.r.t. the variable of interest (and less sensitive to vio-
lations that are non-monotonic w.r.t. the variable of interest).
Because monotonic violations are more likely to be interpretable
and interesting to the researcher, we can gain more power to
detect these violations by de-emphasizing other types of viola-
tions. The resulting test statistics are specifically applicable to
situations where one wishes to test for measurement invariance
with respect to an ordinal variable, and they are special cases of a
family of tests that may be used to study measurement invariance
w.r.t. continuous, categorical, and ordinal variables.

The study of measurement invariance w.r.t. categorical aux-
iliary variables (via, e.g., likelihood ratio tests) is popular and
well known, and ordinal auxiliary variables are typically treated
as categorical in measurement invariance contexts. The study of
measurement invariance w.r.t. continuous variables is newer and
less known: along with the family described here, other meth-
ods include moderated factor models (Purcell, 2002; Bauer and
Hussong, 2009; Molenaar et al., 2010) and factor mixture models
(Dolan and van der Maas, 1998; Lubke and Muthén, 2005). These

methods require estimation of a model of greater complexity,
while the tests described in this paper work solely on the output
of a traditional factor model (see Merkle and Zeileis, 2013, for
further comparison of these methods). These methods all assume
that the estimated model is correctly specified, save possibly for
differences in parameter values between individuals.

The family of tests described here have recently been applied to
the study of measurement invariance (Merkle and Zeileis, 2013;
Merkle et al., 2014), though their practical application has been
limited to a small set of simulations and data examples. In this
paper, we provide a detailed illustration of the tests’ use and per-
formance under scenarios likely to be encountered in practice.
While the previous papers have described and studied the tests
under ideal conditions, we focus here on two topics of interest
to the applied researcher: software considerations for carrying
out the tests, and test performance under model misspecification.
The latter issue is particularly important because, in practice, all
models are misspecified. Hence, practically-useful tests of mea-
surement invariance should be robust to model misspecification.

In the following sections, we first briefly review the theoreti-
cal framework of the proposed tests and provide a short tutorial
illustrating the use of the tests in R (R Core Team, 2013). Next, we
study the tests’ performance in simulations that mimic practical
research scenarios. Finally, we provide some further discussion on
the tests’ use in practice.

2. BACKGROUND
This section contains background and discussion of the proposed
statistics as applied to structural equation models (SEMs); for a
more detailed account, see Merkle and Zeileis (2013) and Merkle
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et al. (2014). For details on the statistics’ application to general
statistical models, see Zeileis and Hornik (2007).

As currently implemented for SEM, the statistical tests
described in this paper can be applied to models that are esti-
mated via a multivariate normal or Wishart likelihood (or dis-
crepancy) function, with extension to other discrepancy functions
being conceptually straightforward. The tests are carried out fol-
lowing model estimation, making use of output associated with
the fitted model. In general, we fit a model that restricts param-
eters to be equal across observations, then carry out a post hoc
test to examine whether specific parameters vary across obser-
vations. This procedure is similar in spirit to the calculation of
modification indices (Bentler, 1990) and to Lagrange multiplier
tests (Satorra, 1989), and, in fact, those statistics can be viewed as
special cases of the family described here.

Following model estimation, the tests primarily work on the
scores of the fitted model; these are defined as

s(θ; xi) =
(
∂�(θ; xi)

∂θ1
, . . . ,

∂�(θ; xi)

∂θk

)�
, i = 1, . . . , n, (1)

where �(θ; xi) is the likelihood associated with individual i and
θ is a k-dimensional parameter vector. The corresponding max-
imum likelihood estimate θ̂ solves the first order condition:∑n

i = 1 s(θ̂; xi) = 0.
To verbally describe Equation (1), each individual has k scores

describing the extent to which the fitted model describes that par-
ticular individual. These scores are similar to residuals and, in
fact, the tests can be applied directly to residuals in other con-
texts (see Zeileis and Hornik, 2007): we can roughly interpret
scores near zero as providing a “good” description of an indi-
vidual, with scores far from zero providing a “bad” description
of an individual. This is only a rough interpretation as, even
when measurement invariance holds, some individuals’ scores
will be further from zero than others. However, under measure-
ment non-invariance, the scores will differ for different subgroups
of individuals (say, scores in subgroup A tend to be negative and
scores in subgroup B tend to be positive). Each of the k scores rep-
resents one model parameter, which, as further described below,
allows us to test subsets of model parameters for invariance. While
scores can be obtained under the multivariate normal likelihood
(discrepancy) function and alternatives such as generalized least
squares, most SEM software fails to supply the scores to the user.

To use the scores for testing, we order individuals according
to an auxiliary variable V (the variable against which we are
testing measurement invariance) and look for “trends” in the
scores. For example, imagine that we are testing for measurement
invariance w.r.t. age. If there exists measurement non-invariance
w.r.t. age, then some parameter estimates may be too large for
young individuals and too small for old individuals (say). This
result would be reflected in the scores, where young individuals’
scores may be greater than zero and old individuals’ scores less
than zero (though the sign of the scores will depend on whether
a function is being minimized or maximized). Conversely, if
measurement invariance holds, then all individuals’ scores will
fluctuate randomly around zero.

To formalize these ideas, we define a suitably scaled cumulative
sum of the ordered scores. This may be written as

B(t; θ̂) = Î
−1/2

n−1/2
�n·t�∑

i = 1

s(θ̂; x(i)) (0 ≤ t ≤ 1) (2)

where Î is an estimate of the information matrix, �nt� is the inte-
ger part of nt (i.e., a floor operator), and x(i) reflects the individual
with the i-th smallest value of the auxiliary variable V . While the
above equation is written in general form, we can restrict the value
of t in finite samples to the set {0, 1/n, 2/n, 3/n, . . . , n/n}. We
focus on how the cumulative sum fluctuates as more individu-
als’ scores are added to it, e.g., starting with the youngest and
ending with the oldest individual if age is the auxiliary variable
of interest. The summation is premultiplied by an estimate of
the inverse square root of the information matrix, which serves
to decorrelate the fluctuation processes associated with individ-
ual model parameters while preserving the behavior of individual
parameters’ fluctuations.

Under the hypothesis of measurement invariance, a central
limit theorem can be used to show that the fluctuation of the
above cumulative sum follows a Brownian bridge (Hjort and
Koning, 2002). This result allows us to calculate p-values and crit-
ical values for test statistics under the hypothesis of measurement
invariance. We can obtain test statistics associated with all model
parameters and with subsets of model parameters.

Multiple test statistics are available, depending on how one
summarizes the behavior of the cumulative sum of scores. For
example, one could take the absolute maximum that the cumula-
tive sum attains for any parameter of interest, resulting in a double
max statistic (the maximum is taken across parameters and indi-
viduals). Alternatively, one could sum the (squared) cumulative
sum across parameters of interest and take the maximum or the
average across individuals, resulting in a maximum Lagrange mul-
tiplier statistic and Cramér-von Mises statistic, respectively (see
Merkle and Zeileis, 2013, for further discussion). These statistics
are given by

DM = max
i = 1,...,n

max
j = 1,...,k

|B(θ̂)ij| (3)

CvM = n−1
∑

i = 1,...,n

∑

j = 1,...,k

B(θ̂)2
ij, (4)

max LM = max
i = i,...,ı

{
i

n

(
1 − i

n

)}−1 ∑

j = 1,...,k

B(θ̂)2
ij. (5)

Critical values associated with DM can be obtained analytically,
while critical values associated with the other statistics can be
obtained from direct simulation (Zeileis, 2006) or from more
refined techniques (Hansen, 1997). This issue should not be
important to the user, as critical values are obtained directly from
the R implementation described later.

Importantly, the above statistics were derived for situations
where individuals are uniquely ordered according to the auxiliary
variable. This is not always the case for measurement invariance
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applications, where the auxiliary variable is often ordinal. To rem-
edy this situation, Merkle et al. (2014) extended the framework to
situations where one has an ordinal auxiliary variable of interest.
Essentially, one allows all individuals with the same value of the
auxiliary variable to enter into the cumulative sum at the same
time. Analogous test statistics are then computed, with modified
critical values being adopted to reflect the change in the statistics’
computation.

For an ordinal auxiliary variable with m levels, these modifica-
tions are based on t� (� = 1, . . . ,m − 1), which are the empirical,
cumulative proportions of individuals observed at the first m − 1
levels. The modified statistics are then given by

WDMo = max
i∈{i1,...,im − 1}

{
i

n

(
1 − i

n

)}−1/2

max
j = 1,...,k

|B(θ̂)ij|, (6)

max LMo = max
i∈{i1,...,im − 1}

{
i

n

(
1 − i

n

)}−1 ∑

j = 1,...,k

B(θ̂)2
ij, (7)

where i� = �n · t�� (� = 1, . . . ,m − 1). Critical values associated
with the WDMo statistic can be obtained directly from a multi-
variate normal distribution (see Hothorn and Zeileis, 2008), while
critical values associated with max LMo can be obtained via sim-
ulation. This simulation is somewhat computationally intensive
and, in practice, takes about 10 min on the authors’ comput-
ers when 50,000 replications are sampled from the approximate
asymptotic distribution. However, the wait is often worth it, as
Merkle et al. (2014) found the performance of the max LMo

statistic to have more power than the WDMo statistic and the
traditional likelihood ratio test statistic when the measurement
invariance violation is monotonic with the ordinal variable.

Finally, if the auxiliary variable V is only nominal/categorical,
the cumulative sums of scores can be used to obtain a Lagrange
multiplier statistic. This test statistic can be formally written as

LMuo =
∑

�= 1,...,m

∑

j = 1,...,k

(
B(θ̂)i�j − B(θ̂)i�− 1j

)2
, (8)

where B(θ̂)i0j = 0 for all j. This statistic is asymptotically equiva-
lent to the usual, likelihood ratio test statistic, and it is advanta-
geous over the likelihood ratio test because it requires estimation
of only one model (the restricted model). We make use of this
advantage in the simulations, described later.

3. TUTORIAL
In this section, we demonstrate how the above tests can be car-
ried out in R, using the package lavaan (Rosseel, 2012) for model
estimation and strucchange (Zeileis et al., 2002; Zeileis, 2006)
for testing. We use data from Froh et al. (2011) concerning the
applicability of adult gratitude scales to youth, available in the R
package psychotools (Zeileis et al., 2013). The data consist of
responses to three adult gratitude scales from n = 1401 youth
aged 10–19 years. The original authors were specifically interested
in whether the scales were measurement invariant across age.
Because the sample size at each age was unbalanced, the authors
created age groups of approximately equal sample size. In the

examples below, we test for measurement invariance across these
age groups. For illustrative purposes, we conduct multiple tests
and compare them to the traditional significance level of 0.05.
In practice, however, one should generally adjust the significance
level for the number of tests carried out. Additionally, because
measurement invariance researchers often have large sample sizes,
cross-validation methods can be useful to help verify the test
results.

We focus on measurement invariance of the factor loadings
associated with one of the scales in the dataset, the GQ-6 scale
(McCullough et al., 2002). This scale consists of five Likert scale
items (there is a sixth item that is omitted from analyses, follow-
ing Froh et al.) with seven points each. We fit a one-factor model
to these items, examining whether the factor model parameters
are invariant with respect to age group. While the age group vari-
able is best considered ordinal, for demonstration we consider its
treatment as categorical, continuous, and ordinal. Each of these
treatments is described below in a separate section.

3.1. CATEGORICAL TREATMENT
Measurement invariance is most often tested using multiple
groups models (see, e.g., van de Schoot et al., 2012). This
amounts to assuming that our auxiliary variable is categorical
(i.e., unordered), which is not true for the age groups in the data.
However, we demonstrate the procedure for completeness.

To conduct the analysis, we first load the data and keep only
complete cases for simplicity (though the tests can be applied to
incomplete data).

R> data("YouthGratitude", package = "psychotools")
R> compcases <- apply(YouthGratitude[, 4:28], 1,
+ function(x) all(x %in% 1:9))
R> yg <- YouthGratitude[compcases, ]

Next, we fit two models in lavaan: a one-factor model where load-
ings are restricted to be equal across age groups, and a one-factor
model where loadings are free across age groups. This allows us
to test a hypothesis of weak measurement invariance that was of
interest to the original researchers (though, for ordinal variables,
all types of measurement invariance can be examined via the tests
described previously). By default, the code below sets the scale by
fixing the first loading to 1.

R> restr <- cfa("f1 =~ gq6_1 + gq6_2 + gq6_3 + gq6_4 +
+ gq6_5",
+ data = yg, group = "agegroup",
+ meanstructure = TRUE,
+ group.equal = "loadings")
R> full <- cfa("f1 =~ gq6_1 + gq6_2 + gq6_3 + gq6_4 +
+ gq6_5",
+ data = yg, group = "agegroup",
+ meanstructure = TRUE)

Finally, we can get the results of a likelihood ratio test via the
anova() function, which implies that the GQ-6 violates mea-
surement invariance.

R> anova(full, restr)

Chi Square Difference Test
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Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
full 30 18947 19414 139
restr 50 18945 19308 177 38.1 20 0.0087

To obtain the asymptotically equivalent LMuo (Equation 8), we
can use the sctest() function from strucchange:

R> sctest(restr, order.by = yg$agegroup, parm = 1:4,
+ vcov = "info", functional = "LMuo")

M-fluctuation test

data: restr
f(efp) = 31.4, p-value = 0.05018

This command specifies that we assess the parameters 1–4 of
model restr after ordering the observations according to
agegroup. Additionally, the observed information matrix is
used as the variance-covariance matrix. Note that the model
parameters 1–4 are the factor loadings supplied by lavaan, which
can be seen by inspecting coef(restr). This also leads to
somewhat smaller test statistics that are very close to being
significant at the 5% level.

Because our sample size is large, the likelihood ratio test is
known to be sensitive to small measurement invariance viola-
tions (Bentler and Bonett, 1980). That is, the LRT and LMuo test
from Equation (8) are sensitive to small measurement invariance
violations that are not likely to be of interest to researchers. For
example, imagine that the 15-year-olds’ parameters are slightly
different than the other age groups. The 15-year-olds are in
the middle of the age groups, and there is not likely to be
any theoretical justification for 15-year-olds differing from every
other age group. One solution to this problem would be the
Bayesian, approximate invariance methods described in the intro-
duction (Muthén and Asparouhov, 2013). Alternatively, we can
use the “ordinal” score-based statistics (from Equations (6), (7))
to obtain tests that are sensitive to the ordering of age.

3.2. CONTINUOUS TREATMENT
If we are interested in measurement invariance violations that
are monotonic with the age groups, it is perhaps simplest to
treat the age groups as continuous. In doing so, we can use
the statistics from Equations (3–5). That is, we can fit a model
whose parameters are restricted to be equal across all individu-
als and then examine how individuals’ scores s(θ̂; xi) fluctuate
with their age (where age ties are broken arbitrarily, using the
original order of the observations within each age group). This
is demonstrated below, with similar code being useful when
one is testing for measurement invariance w.r.t. truly continuous
variables.

Again, we employ the sctest() function to assess param-
eters 1–4 from the restricted model restr after ordering w.r.t.
agegroup:

R> dm <- sctest(restr, order.by = yg$agegroup,
+ parm = 1:4, vcov = "info",
+ functional = "DM")
R> cvm <- sctest(restr, order.by = yg$agegroup,
+ parm = 1:4, vcov = "info",
+ functional = "CvM")

R> maxlm <- sctest(restr, order.by = yg$agegroup,
+ parm = 1:4, vcov = "info",
+ functional = "maxLM")
R> c(dm$p.value, cvm$p.value, maxlm$p.value)

[1] 0.03804 0.11557 0.00414

We see that two of the three p-values output at the end of the
code are larger than that associated with the LRT (with the CvM
statistic being non-significant).

The tests carried out here assume a unique ordering of indi-
viduals by age, but this is obviously not the case. To compute
the statistics and p-values, the strucchange package implicitly
employed the (arbitrary) ordering of individuals who are tied on
age. If we were to change this ordering, the resulting statistics
and p-values would also change, potentially switching signifi-
cant results to being non-significant and vice versa. Clearly, this
is problematic. To accurately account for the multiple observa-
tions at the same age level, we must use the ordinal tests from
Equations (6) and (7). These are described next.

3.3. ORDINAL TREATMENT
The main difference between the ordinal test statistics and
their continuous counterparts is that the ordinal statistics are
unchanged when re-ordering individuals within the same age
group. To compute the test statistics, we allow the scores of all tied
individuals to enter the cumulative sum (Equation (2)) simulta-
neously. This results in modified critical values and test statistics
that are sensitive to measurement invariance violations that are
monotonic w.r.t. age group.

To carry out the tests, we can rely on the same function that we
used for the continuous test statistics. As mentioned previously,
calculation of the max LMo statistic (Equation (7)) can be lengthy
from the need to simulate critical values (though see the end of
this section, which provides a partial speed-up).

R> wdmo <- sctest(restr, order.by = yg$agegroup,
+ parm = 1:4, vcov = "info",
+ functional = "WDMo")
R> maxlmo <- sctest(restr, order.by = yg$agegroup,
+ parm = 1:4, vcov = "info",
+ functional = "maxLMo")

R> c(wdmo$p.value, maxlmo$p.value)

[1] 0.0588 0.0970

In computing the ordinal test statistics, we obtain p = 0.059
and p = 0.097, respectively.1 Both p-values are clearly larger than
that of the likelihood ratio test and neither is significant at α =
0.05. This provides evidence that there is no measurement invari-
ance violation that is monotonic with age group. Instead, given
the large sample size, the likelihood ratio test may be overly sen-
sitive to anomalous, non-monotonic violations at one (or a few)
age groups.

1To replicate both p-values exactly, R’s random seed needs to be set by
set.seed(1090) prior to each sctest() call.
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In addition to test statistics, “instability plots” can be gener-
ated by setting plot = TRUE in the sctest() calls above.
Figure 1 displays the resulting plots, which represent the ordi-
nal statistics’ fluctuations across levels of age group. The x-axis
reflects age group and the y-axis reflects test statistic values
(larger values reflect more instability), with the dashed horizon-
tal lines reflecting critical values. The hypothesis of measurement
invariance is rejected if the sequence of test statistics crosses
the critical value. While the measurement invariance tests are
non-significant, the plots imply some instability in the older age
groups (15, 16).

Finally, if the user anticipates multiple calculations of the
max LMo statistic for a specific dataset, it is possible to save time
by simulating critical values once and re-using them for multiple
tests. We can use the ordL2BB() function to generate critical
values and store them in an object mLMo, say. Then, this object
can be employed to obtain the test statistic in the usual manner.

R> mLMo <- ordL2BB(yg$agegroup)
R> maxlmo <- sctest(restr, order.by = yg$agegroup,
+ parm = 1:4, vcov = "info",
+ functional = mLMo)

The ordL2BB() command automatically generates critical val-
ues for testing 1–20 parameters at a time. If only a smaller number
of parameters (e.g., only up to 6) is to be tested, some computa-
tion time can be saved by setting the nproc argument accord-
ingly (e.g., nproc = 1:6). In the same way, nproc can be
employed to simulate higher-dimensional fluctuation processes
suitable for testing more parameters. One can re-use mLMo in
this manner for further tests of the youth gratitude data. Critical
values must be resimulated for new data, however, because they
depend on the proportion of individuals observed at each level of
the ordinal variable (denoted t� for Equation (7)).

In the above sections, we have illustrated the score-based tests’
computation in R. We suspect that the ordinal tests will be most
popular with users, because measurement invariance tests are typ-
ically carried out across categories (ordered or not), as opposed
to continuous variables. Thus, in the sections below, we conduct

novel simulations to study the ordinal statistics’ expected behav-
ior in practice. In particular, we wish to study (1) the extent to
which the ordinal statistics attribute measurement invariance vio-
lations to the correct parameter(s), and (2) the extent to which the
tests are robust to model misspecification. These issues are espe-
cially important to examine because SEMs are typically complex,
with many inter-related parameters that may exhibit measure-
ment invariance. Previous applications of score-based tests have
typically focused on regression-like models with only a small
number of parameters that may exhibit instability (e.g., Zeileis
and Hornik, 2007). Thus, the simulations here provide general
evidence about the extent to which the tests accurately capture
instabilities in complex models.

4. SIMULATION 1
In Simulation 1, we examined the extent to which the proposed
tests can “localize” a measurement invariance violation. If, say, a
factor loading violates measurement invariance, it is plausible that
this violation impacts other parameter estimates, including factor
covariances, intercepts or the unique variance associated with the
manifest variable in question. Thus, the goal of the Simulation 1
is to examine the extent to which the proposed tests attribute the
measurement invariance violation to the parameters that are truly
in violation.

4.1. METHODS
To examine these issues, we generated data from a two-factor
model with three indicators each (see Figure 2). The measure-
ment invariance violation occurred in one of four places: the fac-
tor loading associated with Scale 1 (λ11), the intercept (μ11), the
unique variance (ψ11), or the factor covariance (φ12). Note that
the latter violation is not necessarily a measurement invariance
(e.g., Meredith, 1993), but it is still a parameter instability that
can occur in this type of model. We then tested for measurement
invariance (parameter instability) in seven subsets of parameters:
each of the four individual parameters noted above, all six factor
loadings, all six unique variances and all six intercepts.

Power and Type I error were examined across three sam-
ple sizes (n = 120, 480, 960), three numbers of categories (m =

FIGURE 1 | Fluctuation processes for the WDMo statistic (left panel) and the max LMo statistic (right panel).
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FIGURE 2 | General model used for the simulations.

4, 8, 12), and 17 magnitudes of invariance violations (described
in the following sentences). The measurement invariance vio-
lations began at level 1 + m/2 of the auxiliary variable V and
were consistent thereafter: individuals below level 1 + m/2 of V
deviated from individuals at or above level 1 + m/2 by d times
the parameters’ asymptotic standard errors (scaled by

√
n), with

d = 0, 0.25, 0.5, . . . , 4 (see replication code for specific values
of the standard errors). For each combination of sample size
(n) × violation magnitude (d) × violating parameter × cate-
gories (m), 5000 datasets were generated and tested. Statistics
from Equations (6–8) were examined. As mentioned previously,
Equation (8) is asymptotically equivalent to the usual likelihood
ratio test. Thus, this statistic provides information about the
relative performance of the ordinal statistics vs. the LRT.

In all conditions, we maintained equal sample sizes in each
subgroup of the ordinal variable. Aside from the parameter
changes that reflect measurement invariance, the fitted models
matched the data generating model.

4.2. RESULTS
Full simulation results are presented in Figures 3–6. Figure 3 dis-
plays power curves as a function of violation magnitude in the fac-
tor loading λ11, with the parameters being tested changing across
rows, the number of levels m of the ordinal variable V across
columns, and lines reflecting different test statistics. Figures 4–6
display similar power curves when the factor covariance φ12, error
variance ε11, and intercept μ11 violate measurement invariance,
respectively. In these figures, we generally show tests associated
with parameters that exhibited non-zero power curves. For exam-
ple, in Figure 3, the middle row shows that power for tests of ψ11

stays near zero for all values of m and d. Similar rows have been
omitted from this figure and other figures.

Within each panel of Figures 3–6, the three lines reflect the
three test statistics. It is seen that the two ordinal statistics exhibit
similar results, with max LMuo demonstrating lower power across
all situations. This demonstrates the sensitivity of the ordinal
statistics to invariance violations that are monotonic with V .
In situations where only one parameter is tested, WDMo and
max LMo exhibit equivalent power curves. This is because, when
only one parameter is tested, the statistics are equivalent.

From these figures, one generally observes that the tests isolate
the parameter violating measurement invariance. Additionally,
the tests have somewhat higher power to detect measurement
invariance violations in the factor loading, factor covariance, and
intercept parameters, as opposed to the error variance parame-
ter. Finally, simultaneous tests of all factor loadings, all intercepts,
or all error parameters result in decreased power, as compared
to the situation where one tests only the violating parameter.
This occurs because, in testing a subset of parameters (only one
of which violates measurement invariance), we are dampening
the signal of a measurement invariance violation. This “damp-
ening” effect is more apparent for the max LMo statistic, because
it involves a sum across all tested parameters (see Equation 7).
Conversely, WDMo takes the maximum over parameters
(Equation 6), so that invariant parameters have no impact on this
statistic.

In summary, we found that the proposed tests can attribute
measurement invariance violations to the correct parameter. This
provides evidence that, in practice, one can have confidence in
the tests’ abilities to locate the measurement invariance viola-
tion. Of course, this statement is qualified by the fact that, in
this simulation, the model was correctly specified. In the follow-
ing simulation, we examine the tests’ performance in the likely
situation of model misspecification.
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FIGURE 3 | Simulated power curves for max LMo , WDMo, and LMuo

across three levels of the ordinal variable m and measurement

invariance violations of 0–4 standard errors (scaled by
√

n), Simulation 1.

The parameter violating measurement invariance is λ11. Panel labels denote
the parameter(s) being tested and the number of levels of the ordinal
variable m.

FIGURE 4 | Simulated power curves for max LMo , WDMo, and LMuo

across three levels of the ordinal variable m, and measurement

invariance violations of 0–4 standard errors (scaled by
√

n), Simulation 1.

The parameter violating measurement invariance is φ12. Panel labels denote
the parameter(s) being tested and the number of levels of the ordinal
variable m.

5. SIMULATION 2
In Simulation 2, we examine the extent to which the results of
Simulation 1 are robust to model misspecification. Specifically, we
generate data from the factor analysis model used in the previous

section, except that the model contains an extra loading from
the second factor to Scale 1. The estimated model matches that
displayed in Figure 2, however, resulting in model misspecifi-
cation. The goal of this simulation is to examine the proposed
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FIGURE 5 | Simulated power curves for max LMo, WDMo, and LMuo

across three levels of the ordinal variable m and measurement

invariance violations of 0–4 standard errors (scaled by
√

n), Simulation 1.

The parameter violating measurement invariance is ψ11. Panel labels denote
the parameter(s) being tested and the number of levels of the ordinal
variable m.

statistics’ power to detect measurement invariance violations (and
to attribute the violation to the correct parameter) under this
misspecification.

5.1. METHOD
A measurement invariance violation could occur in each of the
four parameters from Simulation 1 (factor loading, factor covari-
ance, unique variance, and intercept), and a violation could also
occur in the extra, unmodeled loading. In each condition, a single
parameter exhibited the violation. Sample size and magnitude of
measurement invariance violation were manipulated in the same
way as they were in Simulation 1. The tested parameters were also
the same as Simulation 1.

5.2. RESULTS
Results of primary interest are conditions where the unmodeled
loading violates measurement invariance. A subset of results is
displayed in Figure 7. One can generally observe that tests of the
first loading and unique variance exhibited high “power,” which
is actually a high Type I error rate here. This Type I error is
also observed when testing all loadings and all unique variances
(see the Supplementary Material). Tests associated with the factor
covariance and intercept did not demonstrate this error, however.
In terms of specific statistic performance, max LMo and WDMo

demonstrated higher Type I error than LMuo in each panel, espe-
cially with increasing levels. This is likely because the unmodeled

loading’s non-invariance was monotonic with V ; if it were not
monotonic, we would expect LMuo to have higher Type I error.

When the parameter violating measurement invariance was
modeled, results were generally the same as Simulation 1. When
the modeled factor loading, λ11, violated measurement invari-
ance, the statistics were generally able to pick up the violation
despite the misspecification. Similar results were observed when
the unique variance, intercept and factor covariance parameters
violated measurement invariance; these results are all shown in
the Supplementary Material. In particular, power of the ordered
statistics was higher than power of the unordered statistic in each
panel.

In summary, the proposed test statistics appear robust to
unmodeled loading parameters, when the unmodeled loading
does not violate measurement invariance and when the rest of the
model is correctly specified (save for the measurement invariance
violation). If the unmodeled loading does violate measurement
invariance, the tests can still detect measurement invariance vio-
lations. The violations are assigned to modeled parameters that
do not violate measurement invariance, however. The impacted
parameters include the error variance and other loadings associ-
ated with the manifest variable that has an unmodeled loading.
Thus, as for other tests of measurement invariance, it is impor-
tant to study the extent to which the hypothesized model includes
all parameters of importance (i.e., the extent to which the model
is well specified).
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FIGURE 6 | Simulated power curves for max LMo , WDMo, and LMuo

across three levels of the ordinal variable m and measurement

invariance violations of 0–4 standard errors (scaled by
√

n), Simulation 1.

The parameter violating measurement invariance is μ11. Panel labels denote
the parameter(s) being tested and the number of levels of the ordinal
variable m.

One could begin to study model misspecification by fitting
models with different discrepancy functions (say, a multivari-
ate normal function and a generalized least squares function).
If parameter estimates differ greatly across the functions, then
this implies model misspecification. Additionally, if one has a
large sample size, one could split the data into subgroups and
examine consistency of results across subgroups. These issues
are important for all the tests discussed here (score-based or
otherwise).

6. GENERAL DISCUSSION
In this paper, we first described a novel family of test statistics for
measurement invariance and illustrated their use via the R pack-
ages lavaan and strucchange. Next, we examined these statistics’
abilities to identify the parameter violating measurement invari-
ance under well-specified and misspecified models. We found that
the proposed statistics could generally isolate the model param-
eter violating measurement invariance, so long as the violating
parameter is included in the model.

In the remainder of the paper, we first compare the use these
tests to the use of traditional tests in practice. We then discuss test
extension to other fit functions and to other specialized models.

6.1. APPLICATIONS
Many of the applications in this volume, along with many mea-
surement invariance applications in general, focus on testing

across unordered categories such as nations or gender. As dis-
cussed earlier in this paper, the score-based tests for unordered
categories are equivalent to the usual likelihood ratio test. Given
a measurement invariance violation across these unordered cat-
egories, however, researchers typically wish to know why the
violation occurred. At this point, researchers may examine educa-
tion level, socioeconomic status, income levels, and so on across
the unordered categories. These variables are often ordinal or
continuous in nature, so that the family of tests described in this
paper are applicable. This is a first step toward describing why
measurement invariance violations occur, as opposed to simply
detecting measurement invariance violations. The tests described
here are convenient for this purpose, as they do not require a
new model to be estimated for each ordinal variable. Instead,
each ordinal variable defines an ordering of observations, which
in turn yields a test statistic that is specific to that ordinal variable.

6.2. EXTENSION
In this paper, we focused on testing for measurement invari-
ance in factor analysis models that assume multivariate normality
and that are estimated via maximum likelihood (ML). The fam-
ily of tests described here generally apply to estimation methods
that maximize/minimize a fit function, however (see Zeileis and
Hornik, 2007), so they are potentially applicable to alternative
SEM discrepancy functions such as generalized least squares
(e.g., Browne and Arminger, 1995). Score calculation for these
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FIGURE 7 | Simulated power curves for max LMo, WDMo, and LMuo

across three levels of the ordinal variable m and measurement

invariance violations of 0–4 standard errors (scaled by
√

n), Simulation 2.

The parameter violating measurement invariance is the unmodeled loading.
Panel labels denote the parameter(s) being tested and the number of levels
of the ordinal variable m.

alternative discrepancy functions has not been implemented (to
our knowledge), though the calculation could be implemented.
Test statistic calculation and inference would then proceed in
exactly the same manner as the calculation and inference illus-
trated in this paper. Study of the proposed tests’ application to
larger SEMs is warranted.

In addition to alternative fit functions, the tests can be
extended to other models estimated via ML. Of primary relevance
to the topic of measurement invariance, the tests can be extended
to item response models to examine differential item functioning.
In particular, Strobl et al. (2014) studied application of these tests
to the Rasch model, using them as the basis of a recursive par-
titioning procedure that segments subgroups of individuals who
exhibit DIF. Further study and extension of these tests for IRT are
warranted.

COMPUTATIONAL DETAILS
All results were obtained using the R system for statistical
computing (R Core Team, 2013), version 3.1.0, employing

the add-on package lavaan 0.5–16 (Rosseel, 2012) for fit-
ting of the factor analysis models and strucchange 1.5–0
(Zeileis et al., 2002; Zeileis, 2006) for evaluating the param-
eter instability tests. R and both packages are freely available
under the General Public License 2 from the Comprehensive
R Archive Network at http://CRAN.R-project.org/. R code
for replication of our results is available at http://semtools.
R-Forge.R-project.org/ and also in an online supplement to this
article.
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The accompanying zip file contains R code for replication of all
analyses and simulations from the article. File descriptions appear
below.

• mz-frontiers.R: Model estimation functions for simulations.
• sim-frontiers.R: Functions for data generation, power evalua-

tion, and power summaries.
• replication-frontiers.R: Code for the tutorial and simulations,

utilizing the other two files.
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Over the last decades, large international datasets such as the European Social

Survey (ESS), the European Value Study (EVS) and the World Value Survey (WVS)

have been collected to compare value means over multiple time points and across

many countries. Yet analyzing comparative survey data requires the fulfillment of

specific assumptions, i.e., that these values are comparable over time and across

countries. Given the large number of groups that can be compared in repeated

cross-national datasets, establishing measurement invariance has been, however,

considered unrealistic. Indeed, studies which did assess it often failed to establish

higher levels of invariance such as scalar invariance. In this paper we first introduce

the newly developed approximate approach based on Bayesian structural equation

modeling (BSEM) to assess cross-group invariance over countries and time points and

contrast the findings with the results from the traditional exact measurement invariance

test. BSEM examines whether measurement parameters are approximately (rather than

exactly) invariant. We apply BSEM to a subset of items measuring the universalism value

from the Portrait Values Questionnaire (PVQ) in the ESS. The invariance of this value

is tested simultaneously across 15 ESS countries over six ESS rounds with 173,071

respondents and 90 groups in total. Whereas, the use of the traditional approach only

legitimates the comparison of latent means of 37 groups, the Bayesian procedure allows

the latent mean comparison of 73 groups. Thus, our empirical application demonstrates

for the first time the BSEM test procedure on a particularly large set of groups.

Keywords: European Social Survey, approximate vs. exact measurement invariance, Portrait Value Questionnaire,

universalism, Bayesian estimation, cross-national research, repeated cross-sections

Over the last decades, considerable research on values has taken place (Hitlin and Piliavin, 2004).
These theoretical and empirical research contributions have been inspired especially by Inglehart
and his colleagues (Inglehart, 1977; Inglehart and Welzel, 2005) and Schwartz and colleagues
(Schwartz, 2003; Schwartz et al., 2012). Inglehart’s value measurement instruments have been
implemented in the World Value Survey (WVS), whereas a short version of Schwartz’s Portrait
Values Questionnaire (PVQ) with 21 items has been included in the European Social Survey (ESS).
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Comparisons of the two theoretical conceptions and the
measurement instruments based on them were undertaken by
Datler et al. (2013) and Beckers et al. (2012).

To date, the PVQ has been the object of extensive comparative
research in the social sciences. Studies have focused, for example,
on the relation between values and political behavior, left-
right orientation, attitudes toward immigration, attitudes toward
homosexuality and sociodemographic characteristics (Davidov
et al., 2008, 2014b; Piurko et al., 2011; Meuleman et al., 2012;
Schwartz et al., 2012; Kuntz et al., 2015) by making use of
increasingly available cross-national data sources, such as the
ESS or the WVS. The cross-national orientation in the study
of values offered the advantage of introducing a stricter test of
propositions (Popper, 2005), thereby expanding our knowledge
about the validity of theories in different societies and allowing
us to acquire insights into macro-micro effects (Opp, 2011).
However, in comparative research, the issue of comparability
across countries must be addressed (Davidov et al., 2014a).
Respondents in different countries may understand survey
questions in various ways (Latcheva, 2011; Braun et al., 2013) or
respond in systematically different ways to the same questions
(Harkness et al., 2010). This may lead to biased means, factor
loadings and regression coefficients. Therefore, the assumption
of cross-cultural measurement invariance needs to be tested
(Meredith, 1993; Vandenberg and Lance, 2000; Davidov and
Siegers, 2010; Millsap, 2011; Sarrasin et al., 2012; van de Schoot
et al., 2012; Davidov et al., 2014a).

Davidov et al. (2008) and Davidov (2008, 2010) tested the
measurement invariance properties of values across countries
in three rounds of the ESS and could establish only metric
invariance within the rounds across most countries and
longitudinal scalar invariance within countries1. However, it
remains to be answered if value measurements are invariant both
across countries and over time and whether such an extensive
test is feasible with real data. After all, various researchers who
use values as explanatory or as explained constructs wish to test
propositions referring simultaneously to different countries (“the
cross-cultural aspect”) and time points (“the dynamic aspect”).
Such an endeavor requires that measurement invariance is given
simultaneously over time and across countries. However, such
a measurement invariance test has not been performed in the
past. Moreover, such a test becomes increasingly important
considering the continuous growth in the number of countries
and time points in the large data-generating programsmentioned
before. Thus, our research question is whether it is feasible to test
and establishmeasurement invariance across a very large number
of groups.

In the current study we would like to focus on the universalism
value because it is the only value which was measured in the
PVQ-21 with three (rather than only two) items, thus allowing us
to control for all forms of random and nonrandommeasurement
errors (Bollen, 1989). Furthermore, this universalism scale has
also been used in a considerable number of empirical studies
using ESS data (Jowell et al., 2007; Beierlein et al., 2012; Davidov

1For an invariance test of a new scale to measure human values, see Cieciuch et al.

(2014a,b).

et al., 2012; Saris et al., 2013) and other datasets (Schwartz
et al., 2012; van de Schoot et al., 2012). We will examine its
simultaneous comparability across 15 countries and six time
points using the new procedure for assessing approximate
invariance using Bayesian estimation (van de Schoot et al., 2013).
To the best of our knowledge, no previous study has assessed
invariance across so many groups simultaneously2. We will
demonstrate the application of the two approaches on the same
large set of time/country groups. Given previous findings, we
expect to find metric invariance at best for the universalism scale
but no scalar invariance across countries using the traditional
exact method. However, we expect to establish scalar invariance
at least for a subset of countries using the approximate approach.

We begin by briefly presenting the traditional exact approach
and then describe the new approximate approach to test for
measurement invariance across groups. Next, we describe our
data and the three items that measure universalism. In the
empirical part we report the results of the two approaches to test
for invariance. We finalize with a discussion of the pros and cons
of the traditional exact approach vs. the approximate approach to
test for measurement invariance in cross-national research.

The Traditional Approach to Measurement

Invariance Testing: Multi-Group

Confirmatory Factor Analysis (MGCFA)

Multi-group confirmatory factor analysis (Jöreskog, 1971; Bollen,
1989; Brown, 2006) has been the most common method used
to test for measurement invariance. There are three distinct
and hierarchically ordered levels of measurement invariance.
Each level is defined by the parameters constrained to be equal
across groups. The first and lowest level is configural invariance
(Horn and McArdle, 1992; Meredith, 1993; Vandenberg and
Lance, 2000). Configural invariance requires that each construct
is measured by the same items. The second level is metric
invariance, and it guarantees that the measured construct
essentially has the same meaning in the different groups under
study. Full metric invariance is tested by constraining the
factor loadings to be equal across the groups to be compared
(Vandenberg and Lance, 2000). If full metric invariance is
established, a one-unit increase in the latent construct has
the same meaning across groups. Subsequently, covariances
and unstandardized regression coefficients may be meaningfully
compared across samples (Steenkamp and Baumgartner, 1998).
However, it is still uncertain whether the construct is measured
on the same scale (Horn and McArdle, 1992; Steenkamp
and Baumgartner, 1998; Vandenberg and Lance, 2000). Scalar
invariance requires, in addition, that the intercepts are equal
across groups. It is tested by constraining both the factor
loadings and the intercepts to be equal across the groups to be
compared (Vandenberg and Lance, 2000). If full scalar invariance

2In the study of van de Schoot et al. (2013), only a small number of groups was

studied. Cieciuch et al.’s (2014a) studies contained eight groups, and Davidov et al.

(2015) contained 15 groups in six separate tests. None of these studies performed a

simultaneous test over countries and time points, which would have led to a much

higher number of groups.
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is established, also the means may be meaningfully compared
across groups (Steenkamp and Baumgartner, 1998).

Below, the corresponding three sets of constraints for the
three levels of invariance are defined for a particular item in
a one-factor case for individual i in group j (see Muthén and
Asparouhov, 2013).

Configural invariance yij = vj + λj fij + εij
E

(
fi
)

= αj,V
(
fj
)
= ψj (1)

Where v is a measurement intercept, λ is a factor loading, f is a
factor with mean α and variance9 , and ε is a residual with mean
zero and variance θ , uncorrelated with f. The configural model
has subscript j for both intercepts and loadings.

Metric invariance yij = vj + λfij + εij
E

(
fi
)

= αj = 0,V
(
fj
)
= ψj (2)

The metric model drops the subscript j for the loadings because
they are assumed to be equal.

Scalar invariance yij = v + λfij + εij
E

(
fi
)

= αj,V
(
fj
)
= ψj (3)

The scalar model drops the subscript j for both intercepts and
loadings because they are assumed to be equal3.

In practice, it is particularly difficult to reach full scalar
invariance. Variations in the way respondents react to questions
or systematic response biases such as social desirability or
acquiescence (Billiet et al., 2003; Oberski et al., 2012), which may
be individually or culturally determined, could possibly distort
responses to the extent that scalar invariance will not exist in
most empirical applications (Davidov et al., 2014a). There have
been basically two major approaches to handling the issue of
measurement noninvariance (Jouha and Moustaki, 2013; van de
Schoot et al., 2013; Davidov et al., 2014a):

(1) Ignoring it. This is what the overwhelming majority of
researchers have done as is evident in publications using
cross-national and multigroup data, repeated cross-sections
and panel data (see Davidov et al., 2014a). This line of
literature has typically used sum scores instead of first testing
whether the assumption of invariance can be supported by
the data. As Steinmetz (2013) demonstrated in aMonte Carlo
study, the use of sum scores is not an adequate procedure
without invariance testing, as sum score differences are only
warranted in conditions of full measurement invariance.

(2) Byrne et al. (1989) and Steenkamp and Baumgartner (1998)
proposed the concept of partial invariance as a sufficient
condition for meaningful cross-group comparisons. This
approach has become a standard approach among various
researchers. Partial invariance is given if the parameters
of at least two indicators per construct (i.e., loadings
for partial metric invariance and loadings plus intercepts
for partial scalar invariance) are equal across groups.

3In the Analytical Strategy section we shortly describe our approach to identify the

models.

Several scholars rely on partial invariance when comparing
countries, cultures or other units of analysis. However, even
partial scalar invariance may often be rejected.

Three common procedures in the MGCFA literature which rely
on global fit measures have been proposed to evaluate whether
measurement invariance is established:

(1) To rely on the chi-square difference test and compare the
configural, metric and scalar invariance models, which form
nested models (Jöreskog, 1978; Bollen, 1989; Meredith, 1993;
Brown, 2006). According to this procedure, the chi-square
difference test is used to assess the correctness of the model.
However, the use of the chi-square difference test has been
criticized because of its sensitivity to sample size (among
other reasons) (Jöreskog, 1993; Cheung and Rensvold, 2002).

(2) To use cut-off values for the difference in the comparative fit
index (CFI), the root mean square error of approximation
(RMSEA) and the standardized root mean square residual
(SRMR) (Chen, 2007; for alternative cut-off values see
Meade et al., 2008). According to this procedure, if the
change in model fit is smaller than the criteria proposed
in the literature, measurement invariance for that level
is established. According to the results of Chen’s (2007)
simulation study, the following recommendations have been
proposed:

(a) If the sample size is larger than 300, metric
noninvariance is indicated by a change in CFI larger
than 0.01 supplemented by a change in the RMSEA
larger than 0.015 or a change in SRMR larger than 0.03
compared with the configural invariance model.

(b) Scalar noninvariance is evidenced by a change in CFI
larger than 0.01 supplemented by a change in RMSEA
larger than 0.015 or a change in SRMR larger than 0.01
compared with the metric invariance model.

(3) The third procedure suggests employing the Akaike
information criterion (AIC) and the Bayesian information
criterion (BIC) information theoretic measures to compare
the configural, metric and scalar invariancemodels (Kass and
Raftery, 1995). Following the criteria proposed by Kass and
Raftery (1995), a very strong difference is indicated when the
AIC or BIC difference is greater than 14.

Since empirical tests often fail to establish measurement
invariance based on these criteria, it has been argued that
the criteria for testing measurement invariance may be too
strict (Muthén and Asparouhov, 2013) and that more liberal
criteria should be used to assess approximate (rather than exact)
measurement invariance.

4A more detailed analysis of the issue of robustness against violations of metric

and scalar invariance is given in Jouha and Moustaki (2013), Oberski (2014), and

Meuleman (2012). See also Saris et al. (2009) for an alternative procedure to assess

whether exact measurement invariance is given which relies on identifying local

misspecifications while taking the power of the test into account. Furthermore,

Thompson and Green (2013) argue that it might be better to rely on theory and

past empirical findings and to be less dependent on empirical methods like the

global fit measures and the modification indices when deciding whether to accept

or reject a given level of invariance. This issue has not been settled yet.
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The Bayesian Approach to Test for

Approximate Measurement Invariance

Recently, Muthén and Asparouhov (2013) and van de Schoot
et al. (2013) proposed an alternative approach to test for
measurement invariance by applying approximate Bayesian
measurement invariance testing. The exact procedure, which
constrains factor loadings and intercepts to be exactly equal
to establish measurement invariance, is very restrictive and
rarely establishes invariance (Jouha and Moustaki, 2013; van
de Schoot et al., 2013). Approximate measurement invariance
permits “small” differences between parameters (van de Schoot
et al., 2013). The parameters specified in a Bayesian approach
are considered to be variables, and their distribution is described
by priors. The assignment of prior distributions to unknown
parameters reflects the researcher’s uncertainty about them
regardless of whether one conceives of a parameter as having
one true value or not (Levy and Choi, 2013). Such uncertainty
may be applied for various parameters both in single-group
CFA and MGCFA. In invariance testing one may assume that
differences between parameters (factor loadings, intercepts) are
approximately equal. Thus, we would allow the introduction of
some uncertainty by specifying a small variance of, for example,
0.01 or 0.05 around the difference in factor loadings or intercepts
(van de Schoot et al., 2013).

Figure 1 delineates the difference between the traditional
exact approach to test for measurement invariance and
the Bayesian approximate approach. In the traditional exact
approach, the differences of factor loadings (λ) or intercepts
(v) between groups are assumed to be exactly zero, while
in the Bayesian approach the differences are assumed to be
approximately zero with a mean of zero and some small variance
delta (δ). Thus, we allow small variations in a given interval
between the parameters as part of the measurement model5

(see also Kruschke et al., 2012; Muthén and Asparouhov, 2012,
2013; Levy and Choi, 2013). Simulations suggest that “small”
variations may be allowed without risking invalid conclusions in
comparative research (van de Schoot et al., 2013).

The difference between the traditional exact approach and
the Bayesian approximate approach is also evident in the

FIGURE 1 | Difference in parameter estimation between Maximum

Likelihood (ML) and the Bayesian approach (see Muthén and

Asparouhov, 2013; van de Schoot et al., 2013).

5Whether and to what extent our analysis procedure corresponds with the

common concept of using prior knowledge in the same way as in Bayesian statistics

is debatable, since our priors actually correspond to an assumption testing of

approximate invariance rather than strictly to prior knowledge.

definitions of the confidence interval (used in the traditional
exact approach) and the credibility interval (CI) (used in the
Bayesian approximate approach). The confidence interval over
an infinite number of samples taken from the population
expresses that 95% of these contain the true population value. By
way of contrast, the CI expresses that there is a 95% probability
that the population value is within the limits of the interval.

A number of fit measures have been proposed to specifically
assess Bayesian models (Gelman, 2003, 2013; Levy, 2011). These
fit measures can detect if the actual deviations are larger than
those allowed by the researcher in the prior distribution. First,
the model fit can be evaluated based on the posterior predictive
probability value (ppp). The ppp is computed by comparing
two types of information: the discrepancy between the model
and the observed data and the discrepancy between the model
and the posterior predicted data (Levy and Choi, 2013, p. 597)6.
According to Muthén and Asparouhov (2012) and van de Schoot
et al. (2013), the ppp value of a model that fits the data should be
nonsignificant, and if it is around 0.50, it indicates a well-fitting
model.

A second fitmeasure refers to the CI for the difference between
the observed and the replicated chi-square values. According to
Muthén and Asparouhov (2012) and van de Schoot et al. (2013),
the CI should contain zero. Finally, the BIC (Schwarz, 1978)
and the deviance information criterion (DIC) (Spiegelhalter
et al., 2002) were also proposed for the assessment of model
comparison in a Bayesian framework (Kass and Raftery, 1995).
BIC is computed using the following formula:

BIC = −2ℓ
(
θ̂|X

)
+ p ∗ ln(n) (4)

where ℓ
(
θ̂|X

)
is the maximized log-likelihood, p is the number

of parameters, and n is the number of observations. Building
on this tradition of comparing values of information criteria,
Spiegelhalter et al. (2002) introduced the DIC:

DIC = D (θ)+ pD = 2D (θ)− D(θ)+ 2pD (5)

where D (θ) is the posterior mean of the deviation (negative of
twice the log-likelihood function), pD is a complexity measure
defined as the difference between the posterior mean of the
deviance and the deviance evaluated at the posteriormean,D(θ)7.

Testing for approximate measurement invariance consists of
two steps. The first identifies the noninvariant parameters while
fitting the model to data. Noninvariant parameters are those
parameters which are found to be outside of the “wiggle room”
allowed for the parameter differences. In the second step the
noninvariant parameters are freed and the model is recalculated
(Muthén and Asparouhov, 2013; van de Schoot et al., 2013). In
the next section we are going to provide a practical application by
demonstrating a test for approximate invariance using ESS data.

6This procedure corresponds to the comparison between the observed variance-

covariance matrix (S) and the expected variance-covariance matrix (
∑

) using

maximum likelihood estimation in structural equation modeling (Bollen, 1989).
7For a discussion of other fit measures for Bayesian SEM, see Kaplan (2014) and

Levy and Choi (2013). Indeed, as Levy and Choi(2013, p. 599) argue, little research

has been conducted on the relative merits and limitations of these fit measures to

evaluate model comparisons in BSEM.
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TABLE 1 | ESS sample sizes for the selected 15 countries over six ESS rounds (2002–2012).

1st Round

(2002/3)

2nd Round

(2004/5)

3rd Round

(2006/7)

4th Round

(2008/9)

5th Round

(2010/11)

6th Round

(2012/13)

N

Belgium 1899 1778 1798 1760 1704 1869 10,808

Switzerland 2040 2141 1804 1819 1506 1493 10,803

Germany 2919 2870 2916 2751 3031 2958 17,445

Denmark 1506 1487 1505 1610 1576 1650 9334

Spain 1729 1663 1876 2576 1885 1889 11,618

Finland 2000 2022 1896 2195 1878 2197 12,188

United Kingdom 2052 1897 2394 2352 2422 2286 13,403

Hungary 1685 1498 1518 1544 1561 2014 9820

Ireland 2046 2286 1800 1764 2576 2628 13,100

Netherlands 2364 1881 1889 1778 1829 1845 11,586

Norway 2036 1760 1750 1549 1548 1624 10,267

Poland 2110 1716 1721 1619 1751 1898 10,815

Portugal 1511 2052 2222 2367 2150 2151 12,453

Sweden 1999 1948 1927 1830 1497 1847 11,048

Slovenia 1519 1442 1476 1286 1403 1257 8383

N 29,415 28,441 28,492 28,800 28,317 29,606 173,071

Method and Data

For the analysis we employ data from the ESS measuring the
universalism value (Schwartz, 2003; Schwartz et al., 2012)8.
The ESS is a biannual cross-national European survey that
is administered to representative samples from approximately
30 countries. Since its inception in 2002/2003, it has included
questions that measure values in its core module. These questions
have been repeated in each round and used extensively in cross-
national research. In the present analysis we have included 15
countries which participated in all six rounds. Table 1 presents
the sample sizes for each country/time point combination
between 2002 and 2012.

Three items were used to measure the universalism value.
Respondents were presented with a descriptive portrait of a
person (gender matched), and they were requested to indicate
to what extent they were similar to this person. The response
scale ranged from 1 (very much like me) to 6 (not like me at all).
These responses were reversed so that higher scores represented
greater similarity to enable a more straightforward interpretation
of the scores. The correlations between items were considerable
and ranged approximately between 0.3 and 0.4. The rate of
missing values for these items ranged from 4.0 to 4.2% only for
each country/time point combination. Table 2 presents the item
formulations.

Analytical Strategy

Testing for Exact (Full or Partial) Invariance
In the first step we performed six MGCFAs (one for each round)
across 15 countries, and after that, the analysis was performed
on all 15 countries and six rounds (with a total of 90 groups)

8The raw data is available at the official site of the European Social Survey: http://

www.europeansocialsurvey.org/downloadwizard.

TABLE 2 | Formulation of universalism items.

“Now I will briefly describe some people. Please listen to each description and tell

me how much each person is or is not like you. Use this card for your answer…”

Universalism Item1–“…She/he thinks it is important that every person in the

world should be treated equally. She/he believes everyone should have equal

opportunities in life.”

Universalism Item2–“…It is important to her/him to listen to people who are

different from her/him. Even when she/he disagrees with them, she/he still wants

to understand them.”

Universalism Item3–“…She/he strongly believes that people should care for

nature. Looking after the environment is important to her/him.”

simultaneously. In both cases, the full information maximum
likelihood (FIML) procedure was used to deal efficiently with the
problem of missing values (Schafer and Graham, 2002). We used
the robustifiedmaximum likelihood estimation procedure to deal
with the ordered categorical character of the data9.

Each analysis contained assessments for configural, metric
and scalar invariance, with the corresponding constraints for
each level of the measurement invariance10. In a second step,
when full measurement invariance was not established, we tried
to assess partial measurement invariance. In order to establish
partial scalar invariance (where at least two items are constrained
to be exactly equal), the intercept of only one item was released,
because partial scalar invariance requires that parameters of at
least two items are constrained to be equal across all groups.

9Only standard errors and chi-square differ between MLR and FIML.
10To identify the model we used the marker variable method (MVM; see Little

et al., 2006). We constrained the factor loading of one item to one and its intercept

to zero. To test the robustness of our findings, we re-ran the model two more

times, and each time with a different item as the marker item. The results remained

essentially the same.
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Testing for Approximate Invariance
Following Muthén and Asparouhov (2013) and van de Schoot
et al. (2013), we ran models with informative priors with a
mean of zero and variances of 0.005, 0.01, 0.05, and 0.5 for the
differences between factor loadings or intercepts across groups11.
Next, we identified in each model with the different priors those
factor loadings and intercepts which were different. In the next
step we freed all parameters which were considerably different
across groups and left the informative priors for all the other
equality parameters intact (Muthén and Asparouhov, 2013).
Table 3 summarizes the steps undertaken in each approach.
These analyses were conducted on all ESS rounds and countries
simultaneously.

Results

The Traditional Exact Approach
Table 4 presents the global fit measures of the accepted models
after dropping countries using the traditional exact approach.
The first part of the table presents the global fit measures
of the accepted model in each round separately. The last
part of the table presents the global fit measures for the
accepted model in the simultaneous analysis across countries and
rounds. After releasing the equality constraint on the intercept
that had the highest modification index in most country/time
point combinations (Byrne et al., 1989), we identified in the
simultaneous analysis 53 country/time point combinations in

TABLE 3 | Analytical steps for the exact and the approximate

measurement invariance approaches.

Traditional exact

approach

Approximate approach

Steps 1. Configural model

2. Metric model

3. Scalar model

4. Partial scalar model

1. Setting different

informative priors for the

cross-group differences of

loadings and intercepts

2. Releasing (approximate)

equality constraints (of

loadings and intercepts) that

are not supported by the

data

Additional steps12 5. Deleting groups which

are not fully or partially

scalar invariant

3. Deleting groups which

are not fully or partially

approximately invariant

As metric invariance could be established in the exact approach, we did not need to fall

back to partial metric invariance.

11When running the Bayesian procedure, we first ran a model where the difference

between factor loadings or intercepts across groups has a normal distribution prior

with a mean of 0 and a very large variance of 1010 (the so-called noninformative

prior). This allows us to firstly detect whether there are any calculation problems

in the Bayesian analysis (van de Schoot et al., 2013).
12After we were unable to achieve partial measurement invariance using the

common ways of model fitting, we had to delete countries/time points (groups)

based on the modification indices for the exact approach and based on the single

group ppp for the approximate approach.

which at least two items were noninvariant. These country/time
point combinations had to be dropped from further analysis
because, for these units, even partial invariance could not
be established. For example, the items which measured the
importance to understand different people and to take care of
the environment were scalar noninvariant in Switzerland and
Denmark at all measurement time points. Consequently, we
dropped these countries from further analysis. Thus, in total, 37
of the country/time point combinations displayed partial exact
scalar invariance13.

Furthermore, we employed AIC and BIC comparisons of
the metric invariance and partial scalar invariance models
(see Table 5) in the separate analyses for each round and
in the simultaneous analysis. Following the criteria proposed
by Kass and Raftery (1995) to compare BIC differences, we
can conclude that all differences between the metric and the
partial scalar model, in a reduced number of countries, are very
large.

The results have two important implications. On the one
hand, findings of partial scalar invariance allow meaningful
mean comparison across 37 country/time point combinations for
the universalism construct. However, it is discouraging to find
out that mean comparisons of the universalism value may be
problematic in so many of the country/time point combinations.
Next, we turn to the approximate invariance test.

TABLE 4 | Global fit measures of the traditional exact approach.

Chi2(df) RMSEA SRMR CFI Countries/

Timepoints14

ROUND 1

Partial scalar 64.89 (24) 0.029 0.029 0.985 8

ROUND 2

Partial scalar 53.28 (28) 0.022 0.027 0.992 9

ROUND 3

Partial scalar 53.78 (27) 0.024 0.033 0.988 8

ROUND 4

Partial scalar 87.43 (24) 0.040 0.041 0.978 8

ROUND 5

Partial scalar 90.10 (21) 0.044 0.039 0.972 7

ROUND 6

Partial scalar 69.26 (21) 0.034 0.036 0.980 7

COUNTRIES AND ROUNDS SIMULTANEOUSLY

Partial scalar 348.23 (126) 0.031 0.035 0.983 3715

RMSEA, root mean square error of approximation; SRMR, standardized root mean square

residual; CFI, comparative fit index; the partial scalar model corresponds to step 5 in

Table 3.

13Discussing possible explanations why specific countries are not comparable to

others is beyond the scope of the present study. See Davidov et al. (2012) for using

multilevel structural equation modeling for explaining noninvariance.
14For the single rounds this refers to countries; for all rounds this is combination

of countries and time points.
15Countries still included are: Belgium 2002–2012; Spain 2002–2006; Finland

2006–2010; United Kingdom 2012; Hungary 2002–2008; Ireland 2008, 2010;

Netherlands 2002–2012; Norway 2004–2012; Poland 2006; Portugal 2004–2008;

Sweden 2012; Slovenia 2002, 2006.
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TABLE 5 | AIC and BIC fit measures of the traditional exact approach16.

AIC BIC

Round 1 Metric 232453.884 233335.682

Partial scalar 133004.879 133373.601

Round 2 Metric 218452.710 219328.143

Partial scalar 134813.330 135221.803

Round 3 Metric 222284.379 223163.765

Partial scalar 106349.111 106687.021

Round 4 Metric 225469.593 226350.568

Partial scalar 109976.943 110337.466

Round 5 Metric 226639.903 227520.419

Partial scalar 98034.755 98344.903

Round 6 Metric 237036.130 237923.153

Partial scalar 113273.097 113589.931

All rounds Metric 1362329.608 1368665.132

Partial scalar 537676.482 539559.803

The Bayesian Approximate Approach
Here, too, we first tested each round separately and then all
rounds simultaneously17. Approximate measurement invariance
across all countries was established in only two rounds (2002
and 2004). Next, as recommended by van de Schoot et al.
(2013), we ran the model that included all time points and
countries, using several prior variances to compare them. We
released equality constraints on those loadings and intercepts
which were different18 . Finally, we deleted groups which were
not approximately invariant. Table 6 reports the results for the
model with a prior of 0.05 (Muthén and Asparouhov, 2013; van
de Schoot et al., 2013).

Accordingly, 73 countries/time points remained in the model.
Thus, the results suggest that the exact and approximate
measurement invariance approaches produce quite different
findings. Whereas, partial approximate scalar measurement
invariance was established in 73 ESS country/time point
combinations, exact scalar measurement invariance was only
established in 37 country/time point combinations. In other
words, the approximate test allows us to perform mean
comparisons of universalism across a very large set of countries
and time points.

Mean Comparison

We compared the country means obtained from theMGCFA and
Bayesian analyses with each other as well as with those based on
the raw sum scores for the 73 comparable country/time point
combinations. This was done by estimating mean scores based
on the exact and approximate approaches and comparing them

16The partial scalar model corresponds to step 5 in Table 3.
17An example of the syntax can be found in the SupplementaryMaterial.Wewould

like to thank Bengt and Linda Muthén very much for making it possible to run

such amodel in theMplus 7.3 version (Muthén andMuthén, 1998–2014). Previous

versions did not allow the inclusion of this number of groups.
18A detailed report of the results is beyond the scope of the present study and may

be provided by the first author upon request.

TABLE 6 | Global fit measures for the approximate invariance test (mean =

0 and variance = 0.05).

ppp ppp after releasing

misspecified parameters

CI after releasing

misspecified parameters

90 groups 0.000 0.000 125.830–346.761

73 groups19 0.026 0.052 −10.834–171.115

ppp, posterior predictive probability; CI, credibility interval.

TABLE 7 | Correlations between latent means computed using sum

scores (1), the exact (2) and the approximate (3) measurement invariance

models for 73 county/time points.

Sum scores (1) Exact test20 (2) Approximate Bayesian test (3)

1 1

2 0.997** 1

3 0.851** 0.844** 1

** p < 0.01 (pairwise deletion).

to each other and to those computed using the raw data. Finally,
we estimated the correlation between the means computed in
the country/time point combinations based on each of the three
procedures.

As Table 7 demonstrates, the correlation is highest between
sum scores and the exact test (0.997), and the correlation between
the Bayesian approximate test and the exact test (0.844) is lowest.
Since the latent means from the approximate test are the only
ones which rely on an acceptable model fit, we conclude that
latent means based on the other approaches (the exact and
the sum scores) are biased. Figure 2 presents the differences
in the means between the sum scores and the scores from the
approximate approach on a scatter plot. If the scores in the two
methods were equal, they would all be on the diagonal. Stated
another way, increased distance from the diagonal indicates
increased differences between the scores.

Conclusions may also be biased when sum scores are
compared for the same country longitudinally. Figure 3 presents
the mean over time and within countries. For example, as
Figure 3 demonstrates, when comparing the sum scores in
Poland, one would assume that the means considerably increased
between 2002 and 2012. However, based on the approximate
approach, the data show that there was no mean difference
between 2002 and 2012 for the universalism value scores in
Poland. By way of contrast, the sum scores indicate no mean
difference between 2002 and 2012 in Ireland. However, according
to the approximate test, there was a slight increase in the
universalism mean in Ireland between the two rounds. We thus
conclude that if a researcher would draw conclusions based on
the composite scores, either to compare countries with each other

19Countries/time points not included are Denmark 2002, 2004, 2010, 2012; Spain

2008, 2010, 2012; Finland 2002, 2004; United Kingdom 2010; Hungary 2008;

Ireland 2012; Norway 2008; Poland 2008, 2010; Sweden 2012; Slovenia 2010.
20To illustrate the comparison, these latent means are based on the model with all

countries from the exact test that did not achieve scalar invariance.
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FIGURE 2 | Relationship between sum scores and scores based on the

Bayesian estimation in 73 country/time point combinations.

or to compare scores within the same country and over time, they
might be misled by the scores and reach wrong conclusions. In
Figure 3 one can see the variance of the latent means over the six
time points. The length of the line shows the variation and the
colored circles show the latent mean of universalism at in each
round.

Finally, Figure 4 displays the mean development of
universalism over time in each of 15 countries and how
this compares to the overall mean level of universalism across all
countries and rounds.

To visualize the latent means over different time points and
different countries, we split the countries into three groups
comprising five countries each. The straight, dotted horizontal
line is the mean over all country/time point groups. The graphs
depicted in Figure 4 suggest that the mean of universalism
increases over time in most countries, while it remains more or
less stable in Portugal, Ireland, Finland, and Belgium.

Summary and Conclusions

In most published cross-national studies, metric and scalar
measurement invariance is implicitly assumed without testing
this assumption. This may lead to biased mean comparisons and
biased comparisons of covariances and regression coefficients
(Vandenberg and Lance, 2000; Jouha and Moustaki, 2013;
Oberski, 2014). However, the traditional estimation procedures
used in MGCFA to test for measurement invariance and the
corresponding global fit measures, especially in the case of
scalar invariance assessments, mostly lead to a rejection of the
assumption of even partial invariance. This often results in a
considerable reduction in the number of countries and/or time
points whose means can be meaningfully compared.

In the current study we assessed the comparability of the
universalism value in six rounds of the ESS between 2002
and 2012 across all ESS countries, with 90 country/time point

FIGURE 3 | Latent mean differences between 2002 and 201221.

combinations in total. To the best of our knowledge, this
is the first time in which so many groups are included in
such a test. Using the traditional exact measurement invariance
test procedure, metric invariance could be established across
all country/time point combinations although partial scalar
invariance could not, and we were required to drop almost two
thirds of the countries/time points based on the reason that their
mean scores on the scale might not be comparable.

21In the figure with the Bayesian latent means not all countries and time points

are included. Countries/time points which are not included are Denmark 2000,

2002, 2010, 2012; Spain 2008, 2010, 2012; Finland 2000, 2002; United Kingdom

2010; Hungary 2008; Ireland 2012; Norway 2008; Poland 2008, 2010; Sweden 2012;

Slovenia 2010.
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FIGURE 4 | Latent means over different time points and different countries22.

To solve this problem we applied the newly proposed
approximate measurement invariance procedure. In these
analyses only 17 country/time point combinations had to
be excluded. We could demonstrate that the assumption of
(approximate) scalar invariance was tenable using this alternative
procedure on the remaining countries. As a consequence, the
latent means of universalism could be legitimately compared
across many more countries and time points.

Having said that, we believe that the traditional exact approach
should always be applied as a first step in invariance testing.
After all, it could well be the case that measurements are exactly
invariant and it is not necessary to apply approximate (rather
than exact) constraints. Using only the exact approach may
circumvent not only using the (technically more challenging)
approximate approach but a practical problem we encountered
while analyzing the data applying the approximate approach as
well: Using it for so many groups with large sample sizes led to a
computation time of between 12 and 16 h! However, where even
partial exact measurement invariance does not hold, it would
be useful to apply the approximate approach using Bayesian
estimation (van de Schoot et al., 2013). This may be a relevant
assessment especially in the case of comparisons of many groups
such as in cross-national research with repeated cross-sections.
As previous studies have demonstrated, in such cases it may
be particularly difficult to establish full or partial (exact) scalar
invariance.

It should be noted, however, that such a result in
which so many country/time point combinations demonstrate
approximate invariance may not necessarily be replicated with
other data and other scales. Indeed, it could well be the case
that both exact and approximate approaches fail to demonstrate
cross-country and over time invariance. In other words, the
approximate approach does not establish invariance where it is
not given. It is, however, more liberal than the exact approach
and may establish approximate invariance although the exact test
fails to do so.

22Note that when certain time points were not available we extrapolated the data.

Future research may analyze various cross-national datasets
with large samples to evaluate the approximate comparability of
various scales and the practical usefulness of the approximate
approach used here. In addition, it would be desirable if
further simulation studies would be performed to evaluate which
priors may be used in approximate invariance tests and which
ppp values should be considered supportive for the assessed
models. Such simulations could also explore how increasing
the number of groups and the number of respondents in the
groups may influence the results. This issue is particularly
relevant because the number of groups (such as countries,
cultural groups, language groups, etc.) in large data-generating
programs such as the ESS, EVS, Eurobarometer, WVS, or the
PISA study is continuously increasing. Furthermore, given that
very often invariance cannot be established, it would be desirable
if future studies would seek explanations for the absence of
measurement invariance (see, e.g., Davidov et al., 2012, 2015).
Finally, future research which includes a large number of
groups may also apply other recent developments of testing
for measurement invariance such as the alignment procedure
(see, e.g., Muthén and Asparouhov, 2013) and examine the
comparability of their findings to those of other more established
approaches to test for invariance. Hopefully these methods
and our empirical demonstration will encourage and support
substantive researchers in their endeavor to conduct meaningful
comparative research.
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