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Patient-specific computational fluid dynamics (CFD) simulations can provide invaluable insight into the interaction of left atrial appendage (LAA) morphology, hemodynamics, and the formation of thrombi in atrial fibrillation (AF) patients. Nonetheless, CFD solvers are notoriously time-consuming and computationally demanding, which has sparked an ever-growing body of literature aiming to develop surrogate models of fluid simulations based on neural networks. The present study aims at developing a deep learning (DL) framework capable of predicting the endothelial cell activation potential (ECAP), an in-silico index linked to the risk of thrombosis, typically derived from CFD simulations, solely from the patient-specific LAA morphology. To this end, a set of popular DL approaches were evaluated, including fully connected networks (FCN), convolutional neural networks (CNN), and geometric deep learning. While the latter directly operated over non-Euclidean domains, the FCN and CNN approaches required previous registration or 2D mapping of the input LAA mesh. First, the superior performance of the graph-based DL model was demonstrated in a dataset consisting of 256 synthetic and real LAA, where CFD simulations with simplified boundary conditions were run. Subsequently, the adaptability of the geometric DL model was further proven in a more realistic dataset of 114 cases, which included the complete patient-specific LA and CFD simulations with more complex boundary conditions. The resulting DL framework successfully predicted the overall distribution of the ECAP in both datasets, based solely on anatomical features, while reducing computational times by orders of magnitude compared to conventional CFD solvers.

Keywords: geometric deep learning, left atrial appendage, convolutional neural network, thrombus-atrial fibrillation, computational fluid dynamics, principal component analysis


1. INTRODUCTION

Atrial fibrillation (AF) is the most common clinically significant arrhythmia, with a cumulative lifetime development risk above 30% in individuals of European ancestry (Benjamin et al., 2019). AF is defined by a quivering or irregular heartbeat (arrhythmia) caused by chaotic electric activity, which leads to irregular contraction and wall rigidity of the left atrium (LA), preventing effective flow of the blood to the ventricles. Such hemodynamic alterations, alongside factors such as endothelial or endocardial dysfunction, including a state of hypercoagulability, increase the risk of cerebrovascular accidents by allowing thrombus formation within the LA (Watson et al., 2009); if dislodged, such thrombi can occlude the cerebral circulation, causing a thromboembolic (ischemic) stroke. In fact, non-valvular AF is responsible for 15–20% of all cardioembolic ischemic strokes, which preferentially form at the left atrial appendage (LAA) (Cresti et al., 2019), an heterogeneous, tubular structure derived from the anterior wall of the LA.

In this regard, researchers have explored the correlation between LAA morphology and the risk of stroke (Yaghi et al., 2020; Dudzińska-Szczerba et al., 2021; Słodowska et al., 2021). Nonetheless, so far the results have been ambiguous, as the current classifications and associated morphological parameters of the LAA are often entirely subjective, hand-crafted features; there is a need for more systematic shape analysis of the LAA with advanced and observer-independent computational tools such as statistical atlases (Slipsager et al., 2019).

Besides, due to the critical role of blood stasis in thrombogenesis, the interest in the analysis of LA hemodynamics is gaining momentum. Yet, the intricate behavior of the left atrium as a modulator of left ventricular filling (reservoir, conduit, and booster pump function; Vieira et al., 2014), coupled to a substantial anatomical heterogeneity, makes modeling left atrial hemodynamics a notoriously difficult task. Consequently, computational fluid dynamics (CFD) analyses have emerged as an invaluable tool in analyzing the mechanistic relationship between patient-specific organ morphology and blood stasis (García-Isla et al., 2018; Masci et al., 2019; García-Villalba et al., 2021). Nevertheless, conventional CFD methods are renowned for their large memory requirements and long computing times (Liang et al., 2018), which also involve extensive pre-processing of each patient-specific mesh, resulting in studies with very limited sample sizes and severely hindering its suitability for time-sensitive clinical applications.

As a response, neural networks have increasingly been employed in complex dynamical systems such as fluid dynamics, resulting in highly accurate surrogate models that can be evaluated with significantly less computational resources and several orders of magnitude faster than conventional finite element solvers (Hennigh, 2017). Recently, deep learning (DL) has made its way into biological fluid modeling, aiming at predicting blood velocity vector fields or derived hemodynamic parameters that play a crucial role in the diagnosis and development of several cardiovascular diseases (Liang et al., 2018; Li et al., 2021). Nevertheless, most studies have mostly focused on structures such as the aorta, which present a less complex morphology and hemodynamic profile than the LA and LAA. That being said, applying conventional DL models to non-Euclidean domains, such as graphs and meshes, in which medical data is often best represented, is not a trivial task, as most widespread neural networks can only operate over regular data such as images (Fey et al., 2018). In this regard, geometric deep learning approaches, which are tailored to operate over graph data, have already been applied to biomedical meshes, especially in cardiac electrophysiological models (Grandits et al., 2021; Meister et al., 2021).

Hence, in the present study, we have leveraged a collection of distinct DL models, which are well-tailored to deal with mesh data, to develop a CFD surrogate capable of learning the complex relationship between the heterogeneous LAA morphology and the endothelial cell activation potential (ECAP), parameter linked to an increased risk of thrombosis. By employing neural networks, there is no need to manually craft morphological features, ensuring that the model only learns the most relevant anatomical characteristics toward the automatic prediction of ECAP. Moreover, once trained, neural networks allow the prediction of ECAP maps in new unseen patients, orders of magnitude faster than it is possible with current CFD solvers. The implemented DL approaches included principal component analysis (PCA) based shape analysis coupled to fully connected layers, flattening the LAA morphology to a UV space to leverage convolutional neural networks (CNN) and geometric deep learning, which is perfectly suited to non-Euclidean data such as meshes. All the mentioned methods were first tested on a simplified LA model containing 256 real and synthetic LAA (dataset 1). In addition, the best performing model was further tested on a second, more realistic 114 patient dataset, which incorporated the entire patient-specific LA anatomy (dataset 2).



2. METHODS

The overall pipeline employed to generate the ground-truth data (i.e., the in-silico ECAP index from CFD simulations in the whole dataset of 370 geometries) is shown in Figure 1. Preprocessing slightly differed between the two datasets: LAA comprising dataset 1 were all assembled to an oval LA, while in dataset 2, which considered the whole patient-specific LA anatomy, all pulmonary veins (PV) were trimmed at the first branching to define the inlets and outlets. Later, tetrahedral volumetric meshes were generated to run the CFD simulations and compute the ground truth ECAP maps. For the networks to capture the most relevant morphological features, the triangular meshes employed to describe the anatomy of each LAA had to be transformed according to the prerequisites of each of the implemented DL methods. Lastly, the neural networks were trained to learn the arbitrary non-linear function linking the geometry of the LAA and its corresponding ECAP maps. Model prototyping and fine-tuning were completed on the synthetic LA dataset (dataset 1). Afterward, the best-performing network was further tested in the more realistic, complete LA dataset (dataset 2).


[image: Figure 1]
FIGURE 1. Pipeline to generate the ground truth ECAP maps for the two datasets. LA, left atrium; LAA, left atrial appendage; PV, pulmonary veins; CFD, computational fluid dynamics; ECAP, endothelial cell activation potential.



2.1. Data

The first dataset (dataset 1) was derived from computed tomography (CT) images provided by the Department of Radiology at Rigshospitalet (Copenhagen, Denmark) acquired as part of the Copenhagen General Population Study (Nordestgaard et al., 2012). It was comprised of 256 LAA, combining 54 real patients and 202 synthetic LA geometries. The latter, being borrowed from a preceding study (Morales et al., 2020), stem from a statistical shape model (SSM) based on 103 real LAA surfaces (Slipsager et al., 2019). In this synthetic LA model, only the geometry of the LAA was considered, as incorporating the highly heterogeneous LA anatomy would qualitatively increase the inter-subject variability of the hemodynamic parameters. Thus, all appendages were assembled to a common oval approximation of the LA (García-Isla et al., 2018), reducing the complexity of the maps to be predicted, and ensuring that the LAA morphology remained the only independent variable affecting the ECAP values.

Conversely, the second dataset considered the complete patient-specific LA morphology during CFD simulations (dataset 2). The data was provided by Hospital Haut-Lévêque (Bordeaux, France), originating from pre-procedural high-quality CT scans from 114 AF patients that underwent a left atrial appendage occlusion (LAAO) intervention. Both studies were approved by the local Institutional Ethics Committees, and all patients provided informed consent.



2.2. CFD Simulations

A total of 370 CFD simulations were run to generate the ground-truth data, 256 of which corresponded to the synthetic LA dataset, while the remaining 114 were part of dataset 2. All synthetic LAA simulations on dataset 1 were borrowed from a preceding study, adjusting the setup of the simulations for the remaining 54 real morphologies accordingly (Morales et al., 2020). First, an input velocity profile was set in the PV, based on clinical observations (Fernández-Pérez et al., 2012). Second, the mitral valve (MV) was considered as a wall boundary during diastole, while an outlet pressure of 1,067 Pa was set through systole. The motion of the LA was based on a diffusion-based dynamic mesh emanating from the MV ring plane, adjusted according to literature (Veronesi et al., 2008; Mill et al., 2019). Only a single heartbeat was completed for each simulation.

On the other hand, simulations from dataset 2 featured more complex boundary conditions (BC), with the inlet being defined at the PV based on pressure wave measurements from an AF patient; the velocity outlet was set on the MV based on Doppler ultrasound velocity profiles derived from a single patient. Therefore, while the LA morphology was completely patient-specific, the same boundary conditions were shared among all cases. However, all BCs were synchronized to their corresponding patient's electrocardiogram. The dynamic mesh governing LA motion was changed to a spring-based model. Unlike in dataset 1, three full heartbeats were completed for each simulation, aiming to reach a steady state. Only the last heartbeat was considered when computing the risk indices of thrombosis. Lastly, whereas final tetrahedral volumetric meshes for dataset 1 consisted of ~350 k elements, each mesh from dataset 2 doubled that figure at around 800 and 900 k elements, after a mesh convergence study that included meshes up to 1 M elements.

Simulations were computed on Ansys Fluent 19 R32 (ANSYS Inc,USA)1 and automatized leveraging the MATLAB AAS toolbox,2 while post-processing was performed in Paraview3 alongside in-house python scripts. The blood was treated as a Newtonian fluid, with a density of 1,060 Kg/m3 and a viscosity of 0.0035 Pa/s, while using time-steps of 0.1 s.

The endothelial cell activation potential (ECAP), proposed by Di Achille et al. (2014), was the parameter chosen to evaluate the risk of thrombosis in the LAA. Since the pathophysiology of thromboembolism in AF is based upon the formation of mural thrombi, the ECAP focuses on hemodynamic behavior in the proximity of the vessel wall. More precisely, the ECAP is defined as the ratio between the oscillatory shear index (OSI) and the time-averaged wall shear stress (TAWSS).

[image: image]

Thereby, a dimensionless parameter related to thrombosis is obtained, thus, avoiding the need for a more complicated neural network architecture capable of handling temporal sequential data. High ECAP values result from low TAWSS and high OSI values, indicating the presence of low velocities and high flow complexity, which is associated with endothelial susceptibility and risk of thrombus formation.



2.3. Deep Learning Architectures
 
2.3.1. Principal Component Analysis—Fully Connected Model

Although it is gradually being replaced by more sophisticated non-linear models, principal component analysis (PCA), has long been employed to learn a linear latent space of 3D registered meshes, for tasks such as compression, reconstruction, and animation (Zhou et al., 2020). Nevertheless, PCA requires all meshes to be registered to a common template so that the same topology and connectivity are shared among them. In our case, this step was completed through non-rigid volumetric registration of signed distance fields, based on the work by Slipsager et al. (2019), registering all meshes to a common template comprised of 2,466 vertices. For the PCA analysis, the spatial coordinate of the nodes composing the mesh were employed as the input features. Thus, the morphology of each LAA can be expressed by a small set of scalar values through truncated PCA following:

[image: image]

where [image: image] is the mean shape, Wi and λi being the set of eigenvectors and eigenvalues of the covariance matrix for the retained number, i, of principal components (PC). Hereby, if the variability of the dataset is explained by a small set of PCs, each LAA anatomy can be expressed by a number i, of αi scalars that can be fed directly to any regular neural network. For our dataset, a total of n = 32 PCs were kept, provided that the training dataset was large enough. By doing so, 97.6% of the morphological variability was retained for the synthetic cases and 94.1% for the real LAA geometries. Afterward, the non-linear mapping between the low dimensional representation of LAA morphology and its corresponding ECAP maps was completed through a fully connected feed-forward neural network (FCN). It comprised five hidden layers, as shown in Figure 2A, sequentially increasing the size of each layer. The whole model was implemented in Keras,4 using TensorFlow5 as backend.


[image: Figure 2]
FIGURE 2. (A) Scheme of the principal component analysis model (PCA). Once each shape was parameterized, the ECAP values were predicted through a simple multilayer perceptron formed by fully connected layers (FCN). Numbers below each layer represent the number of nodes in each of them. (B) The LAA morphology is flattened to a new 2D UV space in which the new axes are represented by the geodesic apical-ostium distance and the angle formed with respect to the centroid of each isoline, using the closest point to the circumflex artery as reference. ECAP, endothelial cell activation potential.




2.3.2. UV Mapping—U-Net Model

Although PCA models have been extremely successful (Tewari et al., 2017), they often struggle to capture finer details, since the resulting latent space is a linear combination of the input features. Alternative models such as convolutional neural networks (CNN) are widely employed to capture spatial features in regular grids (Zhou et al., 2020), which owing to a combination of desirable properties, such as local connectivity, weight sharing, and displacement invariance, became the backbone of fields such as computer vision. That being said, due to the irregular nature of mesh data, spatially-shared convolution kernels cannot be directly leveraged, unless the 3D mesh data is mapped to a UV space, also known as flattening.

Consequently, the LAA were “flattened” based on the approach described in Acebes et al. (2021). First, each LAA was divided into an equivalent number of isolines, based on the geodesic distance from the ostium to the LAA apex, which was computed through a heat equation method (Crane et al., 2013). Subsequently, an equivalent number of vertices were sampled from each isoline, through an angular mapping performed by pivoting around the centroid of each isoline. Meanwhile, the points closest to the position of the circumflex artery, which was manually marked from the CT images, were chosen as the reference 0–360° angle. Once polar coordinates had been derived, each LAA mesh was represented as a 2D image either as a circumferential polar plot, also known as a Bull's eye plot (Cerqueira et al., 2002), with the apex of the LAA located in the center of the circumference (see Figure 2B), or as a rectangular image whose two axes consist in the apical-ostium distance and angular mapping. Even though the outer ring of the bull's eye plot undergoes distortion, it better preserves the LAA topology avoiding the cut-off produced by the flattening process. Conversely, the Cartesian grid representation faces much stronger warping in the area close to the apex, which is far overrepresented relative to its actual surface area in the 3D mesh. Therefore, both flattened representations were included to weigh up their trade-offs. Lastly, as shown in Figure 3, the bull's eye plot was padded to a rectangular image before feeding it to the neural network. During training, the padded regions were not taken into account when performing the loss calculation and subsequent accuracy measurements.


[image: Figure 3]
FIGURE 3. Each left atrial appendage (LAA) went through UV mapping, more colloquially known as flattening, and represented as a 2D image either as Bull's eye plot or a polar coordinate-based Cartesian grid representation. The U-Net architecture based on the work by Thuerey et al. (2020), received the spatial coordinates of the vertices sampled during the flattening process as the input features and then performed regression to predict their corresponding ECAP maps.


With regards to the DL model, we opted for a conventional U-Net architecture which is comprised of overlapping convolutional layers arranged in a typical encoder-decoder bowtie structure (Ronneberger et al., 2015), consisting in sequential pooling operations that ensure that multi-scale features are learned from the input data. In addition, skip connections, encourage the network to reuse low-level features in the decoding layers, which result in state-of-the-art performance in several tasks such as medical segmentation. The vanilla U-Net provided by Thuerey et al. (2020) was leveraged, which was implemented to predict turbulent flow over a set of distinct airfoils. In our case, the input features consisted in the spatial coordinates of the vertices sampled from each LAA mesh during UV mapping, arranged as a three-channel depth tensor, analogous to an RGB image in computer vision tasks. Similarly to the original paper, seven convolutional blocks were employed (Figure 3), each including batch normalization layers and ReLU activations after convolution layers, as is the standard practice.



2.3.3. Geometric Deep Learning

While UV mapping enables the direct leveraging of CNNs over meshes, the resulting 2D image suffers from distortion as the original mesh data must be cut and warped. Moreover, it cannot be easily extended to more general volumetric data. Whilst alternative workarounds such as voxelization exist, the most efficient way of representing 3D surface shapes and topologies is through polygonal meshes (Hanocka et al., 2019). As a response, a set of emerging methods, under the umbrella term of Geometric DL, are succeeding in generalizing DL models to non-Euclidean domains such as polygonal meshes, seamlessly extending operations such as convolutions to the native form of the data (Bronstein et al., 2017).

Among the array of available graph CNN layers, we opted for SplineCNN (Fey et al., 2018), since being a spatial method, it offers several advantages when dealing with meshes. In particular, it avoids the need of establishing mesh correspondence. Additionally, defining the spatial relations between vertex features becomes trivial by employing pseudo-coordinates. In our use case, pseudo-coordinates were obtained by computing the relative distance in Cartesian coordinates between the vertices of each edge. During the training process, these edge attributes define how the input features will be aggregated in the neighborhood of a given node. Additionally, the vertex-wise curvature and normals were fed to the network as vertex features.

As aforementioned, besides convolution, operations such as pooling and strided convolutions play a key role in the success of CNNs, by allowing the network to sequentially extract larger scale and abstract features. Consequently, a PointNet-inspired (Qi et al., 2016) architecture was implemented, in which a series of consecutive layers focus on learning local features. Subsequently, the resulting feature arrays are concatenated and fed to a multilayer perceptron that generates a vector of global features using max-pooling, as shown in Figure 4. An almost identical model was employed by Meister et al. (2021) to estimate left ventricular depolarization times, albeit using a distinct convolutional operator. By swapping the multilayer perceptrons employed on the original PointNet (Qi et al., 2016) for graph convolutional layers, we expect to better exploit local correlations and weight sharing, while providing topological information to the network, which is explicitly absent in point cloud data.


[image: Figure 4]
FIGURE 4. General overview of the geometric deep learning network architecture. The input vertex features consisted of the point-wise curvature and normal vectors. The spatial relations between the nodes were stored as edge attributes through Cartesian pseudo-coordinates. Twelve consecutive SplineConv layers (Fey et al., 2018) were employed in the local feature module, while a 1,024 feature vector was obtained after max pooling, representing the global features of each mesh. Numbers adjacent to each layer indicate the number of output features.


The model was constructed by using PyTorch Geometric (PyG),6 a Geometric DL extension of PyTorch.7 PyG offers a broad set of convolution and pooling operations that extend the capabilities of traditional CNNs to irregularly structured data such as graphs and manifolds. With this in mind, the mesh dataset resulting from the simulations were converted into individual graphs. Together with PyVista,8 we converted each mesh to a graph represented by G = (V, E), with [image: image] being the set of nodes, and E corresponds to the set of edges of the triangular faces. For each vertex, we computed the curvature and surface normal vectors, totaling four input feature channels.




2.4. Hyperparameter Tuning

A thorough grid search was carried out to fine-tune the models by iteratively swapping several hyperparameters while keeping a fixed seed in the dataset split. In the PCA-FCN and U-Net model, ReLU activations were employed coupled with a learning rate of lr = 0.01 and lr = 0.0005 and trained during 150 and 300 epochs, respectively. Concerning general hyperparameters of the geometric DL model, the exponential linear unit (ELU) provided the best results among all activation functions, as it is standard in many mesh-related tasks. In addition, the training loop was carried out through 300 epochs with a batch size of 16 and a learning rate of 0.001. In regards to the parameters of the SplineConv layer, a B-spline basis of degree 1 and a kernel size of k = 5 were chosen, following suggestions by the authors (Fey et al., 2018). All models employed a dropout of 0.1 and included Adam as the optimizer. Similarly to Thuerey et al. (2020), while alternative loss functions such as L2 Loss and smooth-L1 yielded similar results, the L1 loss still had an edge over them.



2.5. Experimental Setup

All of the above-presented models were first tested on the synthetic LA dataset (dataset 1). Some of the experiments aimed to determine whether the synthetic data resulting from the statistical shape model were sufficiently representative of real patient data. If so, synthetic data could be of help with the data-hungry nature of neural networks in the face of data scarcity, which is a recurring issue in the medical field. On the one hand, k-fold cross-validation was performed, first training in the real (n = 54) and synthetic (n = 202) cases separately, and later combining both datasets. We have called these experiments “Cross real,” “Cross synth,” and “Cross,” respectively. The experiment in the real dataset was divided into 6-folds while the latter two experiments run 8-folds to ensure the groups were even. In addition, as only the areas of high ECAP values are pro-thrombotic, we wanted to assess the capability of the models in predicting the areas with the highest ECAP. For this purpose, a binary classification was performed taking the 90th percentile of the distribution as the threshold, which roughly equated to 4, following a similar approach to Di Achille et al. (2014) in abdominal aortic aneurysms.

On the other hand, the second set of experiments was conducted in which the amount of training data was sequentially scaled, to monitor the generalization and accuracy improvement (or lack thereof) on the testing dataset. Therefore, the testing scheme from the cross-validation experiments was maintained, but several runs were completed for each testing fold, changing the amount of available training data on each. For the first two experiments, which we deemed “Sequential Real” and “Sequential synthetic,” the real and synthetic morphologies were trained and tested separately. These experiments aimed to learn which models performed better with few amounts of data. Alternatively, in a third experiment, all the 202 synthetic LAA were employed as the training baseline. On top of this baseline, real geometries were sequentially added while testing on the remaining real cases. The objective of this experiment, deemed as “Sequential real+synthetic,” focused on the number of real cases required to build a model just trained on synthetic data, being able to properly generalize to patient-specific LAA morphologies. In all the aforementioned experiments, 10% of all the training data was employed as validation and used to select the best performing model. In addition, due to the stochastic nature of the training process in neural networks, the presented results have been averaged across several runs.

Lastly, the best-performing model from the previous experiments underwent further testing on dataset 2. While the complete patient-specific LA morphology was included during simulation, solely the LAA anatomy was fed to the neural network during the prediction of the ECAP maps. A single 10-fold cross-validation experiment was completed in this dataset along with the binary classification. The 90th percentile equalled 16 in this case.




3. RESULTS

The ECAP distributions resulting from both simulations were distinct due to the different geometry and boundary conditions. The ECAP maps from the LA synthetic dataset had a mean value of μ = 2.14 ± 1.41, whereas dataset 2 exhibited a far more lopsided distribution, with a mean value of μ = 34.82 ± 251.68 but a median equal to 0.492.

Each simulation in the synthetic LA dataset lasted around 3–4 h, whereas it took at least 24 h to complete every single dataset 2 simulation, some requiring up to 48 h. Conversely, the PCA model was the fastest training DL network by a long margin, only requiring an average of 2 min to train. The training runs of the remaining two networks (i.e., UV mapping—U-net and Geometric DL) by contrast, lasted around 15–20 min. Once the models were trained, the prediction of ECAP maps pertaining to new unseen cases was instantaneous. On the other hand, the graph-based network was the lightest, with a total of 1.686.097 trainable parameters, in comparison to the 7.846.178 weights in the PCA model, and 9.304.833 for the U-Net.

The accuracy results for the cross-validation experiments are provided in Table 1, both in terms of the mean absolute error (MAE) of the ECAP and the true positive error (TPR), that is, the percentage of areas above the 90th percentile that have been predicted as such by the network. The geometric DL network outperformed the remaining approaches in all cross-validation experiments for both metrics. Nonetheless, there is a noticeable disparity between the MAE and classification results, given that even though the cross-validation on real data has provided accuracy on par to the other two scenarios in terms of MAE, it has a significantly lower TPR among all models.


Table 1. Prediction accuracy results in terms of mean absolute error (MAE) and true positive rate (TPR) for the cross-validation experiments.

[image: Table 1]

Additionally, a small batch of seven testing geometries from one random fold of the “Cross” cross-validation experiment is shown in Figure 5. Cases in rows 1–4 of the figure were derived from the SSM model while the remaining three represent real patient cases. The results from the remaining test samples in the fold are provided as Supplementary Material. In order to visually compare with the rest of the approaches, the results derived from the flattening models were interpolated back to the original mesh. Furthermore, the mean absolute error is provided for each prediction instance.


[image: Figure 5]
FIGURE 5. From left to right: ground-truth endothelial cell activation potential (ECAP) from fluid simulations; principal component analysis model (PCA-FCN) prediction; Cartesian grid and Bull's eye plot prediction; geometric deep learning prediction (Geometric). The mean absolute error (MAE) is also provided alongside. Higher ECAP values (in red) are linked to a higher risk of thrombus formation.


In Figure 6, the results from the sequential experiments are provided. Once again the graph-based model outscored its counterparts by some margin. Conversely, the PCA model struggled whenever few data was available as the maximum number of PCs had to be lowered in folds with <32 training instances. Interestingly, the bull's eye representation also had an edge over the rectangular Cartesian grid in the majority of tasks. Furthermore, the addition of synthetic cases in the training dataset for experiment “Sequential Real + Synthetic,” did not improve upon the results of models solely trained on real data for the “Sequential Real” experiment.


[image: Figure 6]
FIGURE 6. All results are shown on terms of the mean absolute error (MAE). (A) Results from the “Sequential Synthetic” experiment in which only the synthetic data was employed for training. (B) Results from the “Sequential Real” experiment which only trained and tested on the real cases. (C) Results from the “Sequential Real + Synthetic” test, in which all the synthetic geometries were employed as the training baseline and subsequently, batches of real data were sequentially added on top.


Lastly, some exemplary results from the Geometric PointNet on the more complex dataset 2 are showcased in Figure 7. The remaining test subjects are provided as Supplementary Material. The cross-validation resulted in a MAE = 1, 506±0, 543, while a TPR of 70% was achieved on the binary classification task.


[image: Figure 7]
FIGURE 7. Predicted endothelial cell activation potential (ECAP) maps in a batch of left atrial appendages (LAA) from dataset 2 (i.e., patient-specific LA) alongside the ground-truth (GT) from fluid simulations. Higher ECAP values (in red) are linked to a higher risk of thrombus formation.




4. DISCUSSION

The primary goal of this work was to accurately estimate the ECAP, an in-silico thrombosis risk index, with a set of distinct deep learning approaches, thus, being able to instantaneously predict the risk indices when presented with new morphologies, without the need of running time-intensive and computationally demanding simulations. It is evident from Figures 5, 7 that the developed framework, especially the one based on geometric DL, successfully mimicked the behavior of two distinct sets of CFD simulations with different boundary conditions, managing to capture the global ECAP distributions solely on the basis of LAA morphology. Moreover, the geometric DL model seamlessly extends to realistic data without the need for template registration or 2D mapping. More importantly, the training and prediction of the in-silico index were completed orders of magnitude faster than conventional solvers of fluid simulations (i.e., tens of minutes vs. several hours). Furthermore, once trained inference can be completed instantaneously.

In this regard, a proper understanding of the data to be learned by the network was imperative in simplifying the space of results and achieving good accuracy. In our case, proper scaling of the data turned out to be crucial in improving the results. For instance, the input tensor to the U-Net model, containing the spatial coordinates of the vertices was standardized. Similarly, power transforming of the curvature data in the graph neural network also offered superior performance. The clearest example, however, involved the ECAP maps obtained from dataset 2 (e.g., with patient-specific LA data) which had a very marked positive skew compared to dataset 1 (e.g., with synthetic LA), rendering the model completely unable to learn. This issue was easily resolved by log transforming the ECAP maps for training, resulting in an almost symmetrical data distribution which could then be reconstructed back to visualize the results. The resulting distribution densities are provided as Supplementary Material.

By far, the most laborious and time-consuming aspect of the study consisted in setting up and running the 370 CFD simulations. Several of the steps typically involved in a geometry-specific fluid modeling pipeline (i.e., medical image segmentation, mesh building, the definition of boundary conditions, simulation execution), often necessitate manual intervention (e.g., mesh corrections). This lack of automatization represents a major bottleneck when simulating large datasets, hence most fluid dynamics studies end up including <10 cases when focused on complex morphologies such as the LA and LAA. By automating several of the aforementioned procedures we managed to streamline most of the simulation workflow, thus enabling the formation of a dataset large enough to train neural networks.


4.1. Dataset 1—Synthetic LA Dataset

Careful inspection of the results presented in Table 1 indicates that the geometric DL model outperformed all its counterparts in the three designated tasks. A look at Figure 5 further supports this hypothesis, as the geometric DL network obtains a better accuracy than the rest of the models in 5 out of 7 of the shown cases. Interestingly, despite having a more rudimentary DL architecture, the PCA model was the best non-geometric DL approach, even when trained on the real cases alone. An strong performance of the PCA network on the synthetic dataset was to be expected since the geometries were sampled from a statistical shape model based on the same methodology. Regardless, the PCA model is second only to the geometric DL network on the “Cross real” experiment in terms of TPR and is very close to the Bull's eye regarding MAE, highlighting the strength of PCA as a shape analysis tool. As for the flattening approaches, the results obtained were ambiguous: while both the Cartesian and Bull's eye model perform similarly in terms of MAE in the experiments including synthetic data (“Sequential Synthetic” and “Sequential Real + Synthetic”), the circumferential approach generalized far more effectively to the real dataset. In fact, the Cartesian grid method was the only model to worsen its accuracy in the realistic LAAs. A possible explanation may be related to the cut-off introduced in the Cartesian grid representation when performing the flattening, which results in the loss of the original mesh topology. This gives rise to a discontinuity when performing the convolution over the flattened mesh, which produces a very prominent cut (see white arrows in Figure 5). As real geometries are far more heterogeneous, the position of the reference 0–360° line marked by the circumflex artery localization might fluctuate more often, which we hypothesize leads to inconsistent learning of the morphological features for the Cartesian method.

On the other hand, the disparity observed between the MAE and the TPR in the real and synthetic cases seems to stem from a distinct distribution of the data. In this respect, the ECAP in the real LAA dataset has a lower μ = 1.664 and a 90th percentile equal to 3.313, whereas the synthetic cases have a μ = 2.266 and a 90th percentile of 4.343. With fewer training data encompassing vertices with ECAP values above the 90th percentile threshold, the model is more prone to fail when confronted with higher ECAP values, leading to far worse TPR (see Table 1). Concerning the gap in the distribution of ECAP values between real and synthetic cases, we observed a prevalence of “Cauliflower” like appendages in the synthetic geometries. These morphologies are characterized by having several lobes, such as cases [2,3,4] in Figure 5. As observed in these three anatomies, the ECAP in these lobes tends to be quite high, probably due to increased blood stasis, which might explain the disparity in the values of ECAP between the two populations. In turn, this is the reason that seems to jeopardize the potential accuracy improvement from including synthetic data.

Moving on to the sequential experiments, all models keep improving as more training data is added, which suggests that further increasing the size of the simulation datasets could be highly beneficial for the overall accuracy. Similarly to the previous experiments, the geometric DL model continues to exhibit superior performance over all the other approaches. This time, it is the PCA-FCN network that struggles the most, as appreciated in the “Sequential Real” and “Sequential Synthetic” experiments, shown in Figure 6, since the amount of initial training data in both of these experiments is well below the 32 principal components that yielded the best results with the PCA model. In fact, the PCA approach was not able to obtain good predictions until the training dataset amounted to about 40 geometries. More interestingly, even though the baseline training dataset already comprised 202 synthetic geometries in the “Sequential Real + Synthetic” experiment, the PCA model did not perform well (i.e., MAE >>1) until a minimum number of real geometries were provided. Finally, the “Sequential Real + Synthetic” experiment suggests that the inclusion of the synthetic data was not of particular help in improving the accuracy of patient-specific LAA. One would expect that, as the amount of real training data increases, the accuracy achieved would eventually exceed that of the model solely trained in the 54 real cases or alternatively, that a similar level of accuracy would be obtained but utilizing a smaller number of real geometries. Neither of these two scenarios held true for any of the models, as accuracy actually worsened overall. Only the geometric DL model managed to achieve accuracy on par with that obtained in the “Sequential Real” experiment, so it appears to have learned more relevant and universal morphological features.

All things considered, the graph-based neural network was superior not only in terms of performance but also regarding the ease of deployment, while the PCA-FCN and flattening models each had their strengths and weaknesses. First, the PCA-FCN model showcased good robustness with regards to real data and it was the faster training model by far. Nonetheless, the need for registration was a major handicap during mesh processing, given that mesh connectivity had to be preserved, which greatly restricted employing tools such as remeshing, vital to avoid mesh quality problems. Not to mention the employed registration itself, which entailed a degree of deformation in the mesh being registered. In regards to flattening, although altogether bypasses the need for registration and template selection, it only succeeded in overcoming the above approach in cases where a very small amount of data was available for training. Besides, UV mapping can not be easily extended to other topologies should we consider including the full LA geometry. All that being said, flattening representations are still very useful for visualization and comparison of large LAA populations. Concerning the geometric DL model, it delivered the best results while working directly over the native form of the data, and using almost an order of magnitude fewer weights than its counterparts. In addition, as no correspondences were required the initial pre-processing was minimal, thus facilitating the editing of the meshes and avoid mesh quality issues. For all these reasons, the graph-based model was chosen for further testing on the second dataset.



4.2. Dataset 2—Complete LA Dataset

As aforementioned, an inspection of Figure 7 shows that the distribution of ECAP maps in dataset 2 differs from the synthetic LA dataset (dataset 1). The more complex boundary conditions used in dataset 2 have strengthened the washout in the proximal portion of the LAA. Only in those recesses and cavities in which the inflow fails to reach, the ECAP is higher than in the first dataset. On the other hand, the incorporation of the entire LA geometry during simulation signifies that the ECAP no longer solely depends on the variation of LAA morphology; other anatomical features such as the orientation of the pulmonary veins (García-Isla et al., 2018) will play a role in shaping the variability of the risk index. Despite the added complexity of the second dataset the geometric DL network effectively learned the abstract set of anatomical features related to blood stagnation. Unfortunately, owing to the “black box” nature of neural networks, it is difficult to pinpoint what the model is learning, whether it is a combination of the distance to the ostium along with local curvature on a given bulge or some other arrangement of features that might be challenging for humans to grasp. Although the MAE results effectively tripled in this second dataset relative to dataset 1, it was to be expected given the skewed nature of the data and the extremely high values at given spots.



4.3. Limitations and Future Work

Despite the promising results, the presented study has several limitations that must be addressed before it can be of any use in a clinical setting.

First, the choice of the ECAP as a thrombosis risk index may be a subject of contention, since its validity has yet to be proven on the LAA. At first, the ECAP was chosen as it provides a dimensionless scalar field that captures some of the most relevant hemodynamic characteristics related to the formation of thrombi in the LAA, which in turn, allows simplifying the required DL model architecture. Moreover, even though the ECAP index was originally developed in carotid and abdominal aorta fluid models (Di Achille et al., 2014), it has already seen some use in clinical studies exploring device-related thrombus formation in LAA occlusion surgeries (Aguado et al., 2019; Mill et al., 2020). In any case, the underlying mechanisms of thrombus formation in the aforementioned situations always involve some degree of blood stagnation or re-circulation at low velocities that the ECAP should be able to grasp to some extent. Furthermore, there is mounting evidence challenging the utility of standard clinical scores such as the CHAD2DS2-VASc, which has been long held as the main guide for anticoagulation therapy in AF patients, highlighting the need for more advanced risk indexes accounting for AF-specific factors such as hemodynamic alterations (Siddiqi et al., 2021). In this regard, the geometric DL model could seamlessly extend to 3D data allowing to predict more recently adopted indexes of blood stagnation such as the residence time, which offers an approximate measure of blood stagnation time scale, based on LA flow velocity vector fields (García-Villalba et al., 2021).

On the other hand, the hemodynamic variability arising from the heterogeneous anatomy of the LA was completely neglected when training the network for the sake of simplicity. Nonetheless, since the geometric DL framework does not involve any kind of mesh correspondence it should be fairly trivial to include the complete LA anatomy. Moreover, the network should be capable of learning the ECAP fluctuations caused by factors such as the interaction between the orientation of the pulmonary veins. Yet, an increase in the size of the input graph could render the current local convolution scheme insufficient. In this sense, the network could greatly benefit from widespread approaches in computer vision such as strided convolutions or pooling, aimed at extracting multi-scale features. Nonetheless, although we tested several of the available approaches to construct an encoder-decoder-like architecture such as in Hanocka et al. (2019) and Zhou et al. (2020), for the time being, we have not been able to successfully integrate any of them in the graph-based model. Future work should also be focused on the interpretability of the models, as learning the features that the network is focusing on is a crucial step before being able to deploy the model in a clinical environment.

At the moment, the model is completely agnostic to flow dynamics and distinct boundary conditions that play a key role in the process of thrombogenesis. To address this challenge, we intend on capitalizing on the rapid advances in the field of physics-informed neural networks, with examples such as the study by Pfaff et al. (2021). This may enable the full exploitation by artificial neural networks of the rich Spatio-temporal data available within CFD data, which may pave the way toward the real-time prediction of the full velocity vector field in the LA without the need for hour-long fluid dynamics simulations.

The ground truth from fluid simulations could also be substituted by 4D flow magnetic resonance imaging (MRI), which enables a full non-invasive mapping of the intravascular 3D velocity field over time. Nevertheless, for the time being, most of currently available 4D flow MRI acquisitions employ velocity encodings (Venc) better suited to higher velocity vessels and continue to suffer from poor signal-to-noise ratio and spatiotemporal resolution (Jiang et al., 2015). As a result, reliable imaging of the LAA flow field is extremely challenging, especially in the proximity of the vessel wall, making it nearly impossible to obtain accurate values of derived hemodynamic indices such as the wall shear stress or the ECAP (Petersson et al., 2012). In this regard, attempts have already been made to tackle said limitations such as the development of Dual-Venc acquisition sequences (Callahan et al., 2019) or leveraging CFD simulations to obtain 4D flow super-resolution (Ferdian et al., 2020).

Lastly, to get the full picture of the risk of thrombus formation the inclusion of factors such as endothelial damage/dysfunction could be of particular interest. Scar segmentation in AF patients can be performed automatically by employing neural networks over MRI acquisitions (Li et al., 2020; Yang et al., 2020), allowing detection of left atrium wall fibrosis which is independently associated with LAA thrombogenesis (Guo et al., 2012).




5. CONCLUSION

In the present study, we have successfully leveraged a set of deep learning frameworks to instantaneously predict the ECAP mapping in the LAA solely from its anatomical mesh, effectively skipping the need to run CFD simulations at inference time. All models were effective in a simplified LA model, the graph-based geometrical DL network repeatedly outscoring its competitors. Moreover, this same model exhibited good predictive capability even in more advanced simulations with improved boundary conditions and including the entire LA anatomy. These results could lay the foundation for real-time monitoring of LAA thrombosis risk in the future and open exciting avenues for future preoperative applications and interfaces in which a clinical user could interactively change settings of a left atrial appendage occluder device and instantaneously assess the associated risk of device-related thrombus generation.
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Background: Focal ventricular tachycardia (VT) is a life-threating arrhythmia, responsible for high morbidity rates and sudden cardiac death (SCD). Radiofrequency ablation is the only curative therapy against incessant VT; however, its success is dependent on accurate localization of its source, which is highly invasive and time-consuming.

Objective: The goal of our study is, as a proof of concept, to demonstrate the possibility of utilizing electrogram (EGM) recordings from cardiac implantable electronic devices (CIEDs). To achieve this, we utilize fast and accurate whole torso electrophysiological (EP) simulations in conjunction with convolutional neural networks (CNNs) to automate the localization of focal VTs using simulated EGMs.

Materials and Methods: A highly detailed 3D torso model was used to simulate ∼4000 focal VTs, evenly distributed across the left ventricle (LV), utilizing a rapid reaction-eikonal environment. Solutions were subsequently combined with lead field computations on the torso to derive accurate electrocardiograms (ECGs) and EGM traces, which were used as inputs to CNNs to localize focal sources. We compared the localization performance of a previously developed CNN architecture (Cartesian probability-based) with our novel CNN algorithm utilizing universal ventricular coordinates (UVCs).

Results: Implanted device EGMs successfully localized VT sources with localization error (8.74 mm) comparable to ECG-based localization (6.69 mm). Our novel UVC CNN architecture outperformed the existing Cartesian probability-based algorithm (errors = 4.06 mm and 8.07 mm for ECGs and EGMs, respectively). Overall, localization was relatively insensitive to noise and changes in body compositions; however, displacements in ECG electrodes and CIED leads caused performance to decrease (errors 16–25 mm).

Conclusion: EGM recordings from implanted devices may be used to successfully, and robustly, localize focal VT sources, and aid ablation planning.

Keywords: ventricular tachycardia, implanted devices, electrograms, automated localization, torso modeling, deep learning


INTRODUCTION

Ventricular tachycardia (VT) is a serious cardiac arrhythmia that represents an important source of morbidity and, upon degeneration into more lethal arrhythmias such as ventricular fibrillation (VF) (Srinivasan and Schilling, 2018), sudden cardiac death (SCD) (Harris and Lysitsas, 2016; Ritchie and Roser, 2018). Hence, the prevention of VT, and its degeneration into VF, is of primary clinical importance to improve morbidity and reduce mortality.

In structurally healthy hearts, VT occurs primarily as a consequence of abnormal ectopic firing in the ventricles, overtaking sino-atrial activation and leading to premature ventricular contractions (PVCs). An effective treatment against ectopic VT is radiofrequency catheter ablation, which aims to target the tachycardia by first locating, and then electrically isolating the region causing the episode. However, procedure success is heavily dependent on an accurate localization of the VT source. Often, recordings of the focal VT, in the form of an electrocardiogram (ECG) or implanted device electrograms (EGM), exist prior to an ablation procedure, which inherently contain important information related to the focal origin of the VT source. Integration of computational studies and deep learning approaches provides an exciting opportunity to utilize the information contained within these recordings to potentially facilitate automated VT localization into clinical practice.

In recent decades, computational studies (Trayanova, 2011; Clayton and Bishop, 2014; Henriquez, 2014; Niederer et al., 2019; Yu et al., 2019) have enhanced greatly our knowledge of VT mechanisms and have strengthened diagnostic, therapeutic, and prognostic VT clinical strategies (Rantner et al., 2013; Trayanova et al., 2017; Mendonca Costa et al., 2019; Niederer et al., 2019), helping in the growth of personalized modeling (Prassl et al., 2009; Relan et al., 2011; Medtronic, 2016; Cedilnik et al., 2018; Le Bras, 2018; Potse, 2018). One limitation of the majority of these studies is the dependence on monodomain formulations to represent electric sources in the form of transmembrane voltages. These models are time-consuming, and thus to achieve clinical translation, fast reaction-eikonal (RE) simulations (Neic et al., 2017; Cedilnik et al., 2019) have been the preferred choice. More recently, realistic simulations of full extracellular potentials at specific locations (e.g., ECG electrodes) have been obtained from the combination of lead field (LF) methods (Potse, 2018) with fast RE models (Gillette et al., 2021), achieving accuracy comparable to pseudodomain or bidomain formulations, but within a fraction of the computational time.

Using computational simulations of electrophysiological (EP) behavior has also been exploited to provide training datasets for machine and deep learning algorithms (Yang et al., 2018; Shade et al., 2020); however, these studies did not utilize rapid RE models (Yang et al., 2018; Shade et al., 2020), or LF methods (Shade et al., 2020). Yang et al. (2018) were among the first to utilize convolutional neural networks (CNNs) to localize focal VT sources from simulated ECGs. The novelty of the study was in the integration of computational simulated data with CNN architectures; previous studies had in fact attempted to localize focal VTs from either simulated ECGs—utilizing myocardial activation imaging techniques—with no use of artificial intelligence (van Dam et al., 2009)—or clinical ECGs utilizing machine learning algorithms (Zhou et al., 2019).

One important limitation of Yang et al. (2018) was the restriction of the method to the use of ECGs. Although ECGs are widely used as a routine modality for VT management, they are not always available for VT patients, particularly focal VT patients in which the clinical VT is not inducible. Utilizing cardiac implantable electronic device (CIED) EGMs, which the majority of pre-ablation patients have in situ (Pekka Raatikainen et al., 2014; Winterfield et al., 2018), and which continuously record and store any abnormal arrhythmic activity, could bring great improvements to the automated localization of focal VT. Recent clinical studies have demonstrated that stored EGM recordings of re-entrant VT episodes from implanted devices can be successfully used to guide the construction of pace-maps during an ablation procedure, with similar accuracy to the use of ECGs, but with the advantage of ensuring that the clinical VT is targeted (Yoshida et al., 2010; Yokokawa et al., 2019). In our own recent work, we demonstrated how such EGM recordings might be utilized to perform patient-specific in silico pace-mapping (Monaci et al., 2020), improving pre-procedural ablation planning for complex scar-related VTs. However, literature lacks further investigation on the power of EGM recordings for the localization of focal VTs, for which computational models can address and answer a variety of different questions, and their use in AI-based algorithms.

In this study, we demonstrate the utility of leveraging the information contained within simulated implanted device EGM recordings for the automated localization of focal VTs in the LV. This could benefit clinical procedures by providing pre-procedural ablation information of the VT episodes without the necessity of acquiring ECG recordings of the focal VT, which represents the long-term aim of our study. Although the majority of idiopathic VTs originate in the right ventricular outflow track (RVOT) (Srivathsan et al., 2005), focal VTs can also originate from a variety of different locations in the LV (Ito et al., 2003; Srivathsan et al., 2005; Yamada et al., 2008), and automating their localization could be beneficial to clinical procedures. To achieve our goal, we extend the previous work of Yang et al. (2018) and utilize fast computational simulations (RE combined with LF) on a realistic image-based torso model to generate ECG and EGM traces, which serve as inputs to a CNN architecture. We show the possibility of obtaining comparable localization in Cartesian coordinates between ECG-based and EGM-based trained CNNs. Moreover, we show improvement in the overall localization by introducing a novel CNN algorithm, utilizing a local ventricular-specific coordinate system (Bayer et al., 2018).



MATERIALS AND METHODS

The workflow of this study is summarized in Figure 1. Briefly, this involved using a previously generated 3D torso model (Monaci et al., 2020) (step 1) to rapidly simulate focal pacing across the LV within a RE environment (step 2). These simulated paced beats were combined with LF matrices computed on the standard 12-lead ECG electrodes and manufacturer-guided CIED right (RV) and left (LV) ventricular leads (step 3) to reproduce accurate 12-lead ECG and EGM recordings of the paced beats (step 4). The data were then processed and used as input to an adapted version of a previously developed CNN architecture by Yang et al. (2018) (step 5) and also to a novel network, consisting of a two-output regression and a classification CNN (step 6), and utilizing UVCs, to localize the paced beats (step 7).


[image: image]

FIGURE 1. Study workflow. The 3D torso model, generated (step 1) from a CT TAVI planning scan, was utilized to pace the LV from different locations, within a fast RE environment (step 2). These solutions were combined with LF matrices computed (step 3) on the 12-lead ECG electrodes and manufacture-guided CIED leads to generate accurate ECG and EGM traces (step 4), which were then used as inputs to two CNN architectures, one Cartesian probability-based (step 5), and one novel UVC-based (step 6). Localization of the paced beats across the LV was then computed (step 7) and compared to the actual locations of the simulated beats.



Model Preparation

As in Monaci et al. (2020), a 3D torso model was generated from a computed tomography (CT) trans-catheter aortic valve implantation (TAVI) panning scan. The torso model included all major organs, with conductivities reported in Table 1, and a detailed four-chamber heart, extracted from a separate cardiac CT scan. The patient did not present any visible structural heart disease and consented to the use of their data in ethically approved research: UK Research Ethics Committee reference number 19/HRA/0502 and 15/LO/1803. To decrease computational time without a loss of physiological electric signals, the average ventricular edge length of the biventricular mesh was kept at 738 μm. Realistic fiber orientation was incorporated into the ventricular myocardium using a well-established rule-based approach (Bayer et al., 2012).


TABLE 1. Organ conductivities of our torso model.

[image: Table 1]
The LV was geometrically divided into 17 segments, according to the American Heart Association (AHA) guidelines (Selvadurai et al., 2018), as shown in Figures 2A–F. In addition, each of the segments was subsequently divided into four, for a total of 68 (Figures 2G,H). These models were used as guidance for the collection of pacing locations, for the generation of training and testing labels for the existing CNNs, and the visualization of the localized VT sources.
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FIGURE 2. Patient-specific LV segment models. Generic AHA 17-segment model is shown in (F). The equivalent patient-specific model of the LV mesh is shown in (A) with basal, mid, and apical segments illustrated in (B–E), respectively. An example of the novel 68-segment model is shown in (H) highlighting the equal division in four parts of each of the 17 segments. (G) shows an example of how segment 1 in our mesh was divided into four equal segments.


To replicate focal ectopic VTs across the LV segments, ∼3767 randomly chosen paced beats—single stimuli, with a basic cycle length (BCL) of 400 ms—were simulated using a computationally efficient RE formulation (Neic et al., 2017) within the Cardiac Arrhythmia Research Package (CARP) (Vigmond et al., 2003), utilizing the 10 Tusscher ventricular cell model (ten Tusscher et al., 2004). Intra- and extracellular tissue conductivities were tuned to achieve physiological QRSs (Costa et al., 2013), comparable to equivalent pseudo bidomain simulations on a higher-resolution mesh (Monaci et al., 2020). Intra- and extracellular conductivities were 0.1845S/m and 0.6628S/m along the fiber direction, respectively, and 0.0493S/m and 0.1769S/m transverse to it. The corresponding RE conduction velocities (CVs) were 0.5455m/s and 0.1802m/s, along and transverse the fiber direction, respectively.

To allow the computation of extracellular potential signals from specific locations within the torso (Figure 3), the simulated cardiac potentials of each paced beat were combined with the LF Method (Potse, 2018). Specifically, LF matrices were calculated within CARP (Vigmond et al., 2003) on the standard ECG lead locations and on the RV and LV lead sensing parts of a standard Boston Scientific implanted device (Antoniadis et al., 2017). This virtual device had a non-septal RV lead, with a superior vena cava (SVC) coil in the right atrium (RA), and a straight LV lead through the coronary sinus, with four sensing LV tips distanced equally at 7.5mm. Configurations of both 12-lead ECG and CIED are shown in Figures 4A–D. All sensing electrodes, including the can of the implanted device (CAN), were approximated to single points, to increase the speed of LF computations and subsequent simulations. The computation of these matrices was only performed once for each torso configuration and took ∼8 min (128 cores). Their combination with the RE solutions produced high-fidelity 12-lead ECGs and EGM traces (Figures 4E,F) in ∼20 s (256 cores) for each paced location. Eight EGM vectors were chosen as the main EGM signals (Monaci et al., 2020), and included far-field CAN-SVC, CAN-RV, and SVC-RV, and near-field RV tip-RV ring and each LV tip-RV tip. However, importantly, additional vector combinations (four for ECGs and eight for EGMs) were added to the standard signals to facilitate integration into the CNN algorithms (see section “CNNs Training and Testing”).
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FIGURE 3. Example of our simulation pipeline. RE single point excitations were simulated in ∼3767 different locations across the LV [an example of the activation time map generated for a single such paced beat is shown here in (A)]. These solutions were combined with the LF matrices computed on the standard nine ECG leads (V1–V6, RA, LA, and LL), and nine EGM sensing points (LVtip1–4, RVtip, RVring, RVcoil, SVC, and CAN = LA), here shown in (B) for LF on V1. The final signals at each lead, shown in (C), were then combined to obtain vector combinations shown in Figures 4E,F.
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FIGURE 4. Torso setup. ECG and CIED configurations are shown in (A–D). Example of 16 combinations of pacing signals used for training and testing are illustrated in (E) for ECGs and (F) for EGMs.


Finally, a standardized universal ventricular coordinate (UVC) system was computed on the biventricular mesh (Bayer et al., 2018) to facilitate the development of a novel CNN specific to the ventricles, which should be advantageous as it identifies and constrains the localization of the paced beats inherently within the myocardium. As shown in Figure 5, UVCs describe the biventricular mesh using three parameters: z—normalized distance between apex (0) and base (1) along the long axis, ρ —normalized distance between endocardial (0) and epicardial (1) surfaces along the short axis, and φ —rotational distance from LV septum.
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FIGURE 5. Patient-specific bull’s-eye diagram. 3D patient-specific 17-segment model in (A,B) can be related to the 2D representation in (C) by considering UVC coordinates φ and z. Specifically, z (the distance from apex to base) can be linked to the radius of the 2D diagram, as shown, separately for each apical (Za), mid (Zm), and basal (Zb) part of the model. φ is linked to the segments along the spherical axis. The final patient-specific 2D 17-segment model can be seen in (D), where the various segments (1–17) are illustrated from blue-to-red color range [mapped from panel B].




CNN Architectures

In this study, we developed two separate 2D CNN architectures, which used the same ECG and EGM traces as inputs to identify the location of a simulated paced beat (representing an ectopic VT). The first architecture, based on Yang et al. (2018), locates the origin of the paced beat in Cartesian coordinates, after converting the outputs of the CNNs. The second utilizes a regression and a classification CNN to locate the VT in UVC space, naturally constraining the final localization of the focal VT source to the myocardium.

The existing Cartesian probability-based architecture was reproduced from Yang et al. (2018) and is composed of two classification CNNs named Segment and EpiEndo CNNs. Segment CNN classified in which LV segment the pacing beat originated, whereas EpiEndo CNN determined whether the pacing was endocardial or epicardial (binary decision). In our study, we developed two separate Segment CNNs: one classified between 17 LV segments (CNN with 17 output neurons) and the other between 68 LV segments (68 output neurons). Briefly, the structure of both Segment and EpiEndo CNNs consisted of two hidden layers alternating with two pooling layers and terminating with a fully connected (FC) layer. The output of both Segment and EpiEndo CNNs was a probability distribution (likelihood of each output neuron being the correct class). These distributions were obtained utilizing a softmax function on the output of the final FC layer. As performed in Yang et al. (2018), the probability distributions ([image: image] and [image: image] for Segment and EpiEndo, respectively) of each output segment (largest probability) and its adjacent segments were then combined with the centers of gravity CoG(x, y, z)ij of the corresponding endocardial and epicardial surfaces, as shown in Equation 1, to localize a paced beat in Cartesian coordinates.

[image: image]

The distance of the localized sources to the ground truths (simulated sources) was expressed in terms of localization errors (computed as Euclidean distance in millimeters).

Our novel UVC-based algorithm is composed of one regression CNN, outputting z and ρ, and one 68-feature classification CNN, predicting the rotational coordinate φ. The structure of both CNNs was similar to the Cartesian probability-based network (hidden layer–hidden layer–pooling layer–FC layer), as shown in Figure 6. Because of the cyclic nature of φ, a three-output regression would have not returned satisfying and accurate results; hence, we used φ to divide the LV into 68 “wedges” (φ was grouped into intervals of 0.09 radians with each class assigned a label from 1 to 68, spanning φ = −π to φ=π). Using a higher number of LV “wedges” would have not returned desirable accuracies; thus, we decided to use a number of features (68) that had worked for Segment CNN and that was still suitable for achieving precise localization along φ. For the final localization of the paced beats, the outputs of the 68-feature classification (“wedges” with the highest probabilities) were converted back to φ, and combined with z and ρ regression predictions.


[image: image]

FIGURE 6. UVC-based convolutional neural networks (CNNs). Structure of 68-feature classification (top) and 2-output regression (bottom).


Both Cartesian probability-based and UVC-based algorithms were implemented in Python using Scikit-learn (Pedregosa et al., 2011) and TensorFlow (Abadi et al., 2015).



CNN Localization Performance

Localization performance of the Cartesian probability-based algorithm was expressed in terms of localization error in millimeters, as described above. The same metric was used for our novel UVC-based architecture; however, the predicted values were first transformed from UVC space to Cartesian space [by locating the closest node in the mesh, with appropriate scaling of UVC coordinates (Bayer et al., 2018)] and then the distance with the ground truths (simulated pace beats) was evaluated (Euclidian distance, in millimeters).

For the Segment CNN of the Cartesian probability-based architecture, testing performance was evaluated in terms of accuracy, to allow comparison with results from Yang et al. (2018). Accuracy is defined as the percentage of paced beats correctly classified within each segment.



CNNs Training and Testing

Training and testing inputs of both Cartesian probability-based and UVC-based CNNs were ECG and EGM traces computed from 3767 pacing excitations across the LV. To facilitate the execution of the 2D CNNs, the ECG and EGM signals had to be placed in square matrices; hence, we added four additional leads to the standard 12-lead ECGs [LL-RA-LA, LA-RA-LL, RA-LA-LL, and (RA+LA+LL)/2], as performed in Yang et al. (2018), and eight more EGM vectors to the standard eight EGMs (CAN-each LV tip and SVC-each LV tip), to achieve a total of 16 combinations of ECG and EGM vectors. QRSs were then extracted and sampled in time (16 time points), and stacked in 16 × 16 matrices, as shown in Figures 4E,F. A total of 2767 sets of these ECG and EGM matrices were used for training and were uniformly distributed across the myocardium (∼36% intramural/mid-wall, ∼32% epicardial, and ∼32% endocardial), with the exception of EpiEndo training data, which were epicardial and endocardial only (Yang et al., 2018). White Gaussian noise with a signal-to-noise ratio (SNR) of 25 dB was then added 10 consecutive times to all 16 ECG and EGM leads of the training set to augment the data by 10-fold (∼27,670) and increase robustness of the CNN training. A 10-fold cross-validation was performed in the existing Cartesian probability-based CNNs as part of the training (Yang et al., 2018), with a 90% (training)–10% (validation/testing) split. On the other hand, the cross-validation was used for hyper-parameter tuning in the UVC-based networks. After training, the localization performance of both Cartesian probability-based and UVC-based networks was tested by feeding the retained 1000 sets of ECG and EGM QRSs, with a SNR of 25 dB. Parameters of both Segment and EpiEndo CNNs were taken from Yang et al. (2018); batch size was set to 23, number of epochs was set to 10, learning rate was set to 0.001, and cross-entropy was used as loss function. A ReLU function was used as the activation function for feed-forward propagation, and a gradient-descent-projection method was used as the back propagation algorithm. In our UVC-based networks, we used similar parameters, except for the regression where we set the batch size to 23 and the number of epochs to 15, and we used mean absolute error as loss function.



Investigation of Model Uncertainties

Localization performance of both Cartesian probability-based and UVC-based CNN architectures, trained on the data described above, was also investigated by introducing different noise levels to the retained 1000 sets (SNR = 5, 10, 15, 20, and 30 dB). Moreover, we investigated the localization performance of both architectures as body compositions of the torso model were also varied, shown in Table 2, as well as different ECG electrode configurations (Figure 7) and different CIED configurations (Figure 8). For all these variations, LF matrices were recomputed (according to the new organ conductivities or electrodes positions) and combined with the retained 1000 intramural excitations to obtain new ECG and EGM matrices. These traces were then used to test both previously trained CNN architectures. Some of the major organ conductivities were varied according to physiological variations (Trakic et al., 2010; Sovilj et al., 2014); however, we chose to pair specific changes (for instance, liver and lungs, fat/muscle, named “bath” and liver, and different blood pools, etc.) to challenge CNN localization performance. ECG electrodes were displaced by 5 cm in all major orthogonal directions, and across all leads. Specifically, we shifted all ECGs leads upward (Figure 7A) and downward (Figure 7B)—RA and LA were always shifted downward, and LL upward—toward the left (Figure 7C) and the right (Figure 7D). Moreover, in one configuration (Figure 7E), the distance between ECG leads was increased by ∼10 cm. Finally, we simulated variations in electrode location and diameter of the virtual implanted device, as reported in Antoniadis et al. (2017) for different cardiac-resynchronization therapy (CRT-D) devices available in the market. Specifically, we changed the spacing between the sensing electrodes of the straight LV lead, to account for shorter or longer inter-electrode distance; in addition, we increased the diameter of RV and LV tips to ∼2 mm. In the latter scenario, instead of considering the EGM signals from single point electrodes, we averaged the signals obtained from a cloud of points within a 2-mm radius, to simulate more realistic conditions, and investigate whether our single point approximation of the CIED leads could affect the final localization. Finally, we considered the case of a septal RV coil configuration, which has been tested in CRT-D (Leclercq et al., 2016) and cardioverter defibrillators (ICD) (Winter et al., 1998).


TABLE 2. Variations in body compositions.
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FIGURE 7. Variations in ECG electrode placements. ECG leads were displaced by ∼5 cm upward (A), downward (B), toward the left (C), toward the right (D), and by ∼10 cm (mixed displacements toward the right and left) (E).
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FIGURE 8. Variations in CIED configurations. Different CIED LV configurations according to different manufacturers (Boston Scientific, Livanova, Biotronik, and Medtronic) are shown on the top panels. The standard configuration of RV and LV leads is illustrated on the bottom left, and the septal RV coil configuration is shown on the bottom right. The main difference between the various configurations is the inter-electrode distance (reported above the manufacturers’ names).





RESULTS


Utility of EGMs in Existing Segment/EpiEndo-Based CNNs

We successfully reproduced the existing classification CNNs, namely, Segment and EpiEndo, introduced by Yang et al. (2018), to be trained and tested not only on ECG traces, but also on 16 different combinations of EGM vectors from a standard CIED with RV and LV leads. Testing performance of Segment CNN was similar for both ECG-based and EGM-based testing. As shown in Figure 9A, 86.76% accuracy was achieved for ECG-based testing and 79.70% was achieved for EGM-based testing (SNR = 25 dB).


[image: image]

FIGURE 9. Cartesian probability-based CNN performance. Testing performance of 17-feature Segment CNN is here reported in terms of accuracy (%) (A), and precision (B) for each of the 17 segments of the LV mesh. ECG-based and EGM-based testing performances are reported in blue and red, respectively.


The precision of Segment CNN in each segment, which defined how correct the CNN is at classifying one segment, is shown in Figure 9B. Here, we see that ECGs and EGMs have a similar influence on the network in almost every segment, with only few exceptions. The three highest precisions are in segments 1, 10, and 14 for ECG-based testing, and 1, 10, and 16 for EGM-based testing. The three lowest are in 2, 3, and 15 for ECGs, and 2, 7, and 9 for EGMs.



Utility of EGMs in Cartesian Probability-Based Localization

Localization in Cartesian space of each paced beat, from either ECG or EGM signals, was possible by combining probability distributions of Segment and EpiEndo CNNs (as shown in Equation 1). The localization performance, defined as the Euclidean distance in millimeters between an estimated source and the real location of the simulated paced beat, for the testing dataset of 1000 cases, is reported in Figure 10 for ECG-based and EGM-based testing. ECG-based localization and EGM-based localization produced a mean localization error of 11.76 ± 5.32 mm and 13.25 ± 6.79 mm, respectively.
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FIGURE 10. Localization performance of Cartesian probability-based algorithm. Localization errors in millimeters are reported for ECG-based (blue) and EGM-based (red) testing. A comparison in localization performance between different Segment CNNs can also be seen; the 17-feature Segment CNN is on the left (A) and the 68-feature Segment CNN is on the right (B).


Application of the 68-feature Segment CNN, based on the 68-segment LV AHA model shown in Figure 2G, was able to reduce localization errors of both ECGs and EGMs to 6.69 ± 3.19 mm and 8.74 ± 6.41 mm, respectively, as shown in Figure 10.



UVC-Based Localization

Further improvements in localization performance were made by developing two CNNs, which returned the position of a paced beat in a reference frame specific to the ventricles (UVCs). This UVC-based localization outperformed the Cartesian probability-based localization, as shown in Figure 11A, reducing localization errors to 4.06 ± 2.47 mm and 8.07 ± 8.26 mm for ECG and EGM-based testing, respectively.
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FIGURE 11. Localization comparison between UVC-based and Cartesian probability-based algorithms. Mean localization errors (A) are reported in millimeters with corresponding standard deviations for ECG-based (blue) and EGM-based (red) testing. An example of how ventricular tachycardia (VT) focal origins compare to UVC-based localized sources is shown in (B); diamonds represent the ground truths, whereas the circles are the CNN outputs. The gray color bar represents the distance from endocardial (black) to epicardial (white) surfaces of each source, whereas the blue-to-red color bar represents 1–17 patient-specific AHA segments.


UVC-based localized sources are visualized in 2D in a patient-specific bull’s-eye diagram, shown in Figure 11B for 30 beats, as previously illustrated in Figure 5. Here, a paced beat can be visualized using its UVC coordinates and can be compared to the ground truth, revealing a close match between all pairs. The radius of the diagram describes the distance of a paced beat to the LV apex (center of the diagram), relatable to UVC z, and its circumferential direction (φ) facilitates the positioning of the beat within a specific segment. The intramural location (ρ) of the beat (how far from the endocardium and/or epicardium) is color coded.



Sensitivity to Noise

Overall, localization was only slightly affected by noise, as seen in Figure 12A (ECG-based localization) and Figure 12B (EGM-based localization). As SNR decreased (increased noise), localization errors increased only slightly, with one exception (SNR = 5 dB), where the performance of both UVC-based and Cartesian probability-based localization was reduced. However, all localization errors were < 12.5 mm for ECG-based localization. Moreover, noise seemed to affect EGM-based localization more than ECG-based localization.
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FIGURE 12. Localization comparison between UVC-based (light gray) and Cartesian probability-based (dark gray) networks. Localization performance for ECG-based and EGM-based testing are here reported during sensitivity analysis for different noise levels—(A,B), respectively—and for different lead configurations—(C,D), respectively. For all panels, mean errors with corresponding standard deviations are reported for UVC-based (light gray) and Cartesian probability-based (dark gray) localization. Displacements of ECG leads, shown in Figure 7, results in localization errors in (C); on the other hand, different CIED configurations, shown in Figure 8, return errors in (D). Little difference in localization is present between the two networks with similar mean localization errors.




Sensitivity to Electrode Locations

Displacements of ECG leads and different CIED configurations did affect the localization performance of UVC-based and Cartesian probability-based algorithms (errors > ∼15 mm) for ECG- and EGM-based testing, as shown in Figures 12C,D, respectively. ECG-based localization was more affected by displacements away from the heart (20 mm)—right and downward shifts. Errors in EGM-based localization were higher (20 mm) when considering longer inter-electrode distance (20 mm) and increased lead surface diameter (2 mm). For UVC-based localization, a septal RV coil configuration caused errors to increase > 20 mm as well.



Sensitivity to Tissue Conductivities in Torso Model

A comparison between ECG-based and EGM-based localization for different body compositions is shown in Figure 13A (for UVC-based localization) and Figure 13B (for Cartesian probability-based localization). ECG-based localization was only affected by a high increase of fat in the torso bath (scenarios 3 and 5) and when the whole torso was simplified to bath and lungs (scenario 7). In those three scenarios, mean localization errors increased to 17.75 ± 9.88 mm, 20.72 ± 10.99 mm, and 14.08 ± 7.38 mm for UVC-based testing, respectively, and to 13.01 ± 8.89 mm, 15.07 ± 11.20 mm, and 13.88 ± 8.40 mm for 68-segment Cartesian probability-based testing. Other variations of tissue conductivity did not affect the performance of either algorithm (localization errors < ∼8 mm).
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FIGURE 13. Localization sensitivity to tissue conductivities. Mean localization errors are here reported for UVC-based (A) and Cartesian probability-based (B) localization as different organ conductivities were changed in the torso model—see Table 2. Small differences are seen between ECG-based (red) and EGM-based (blue) localization errors.


Finally, EGM-based testing was less affected by changes in body compositions during Cartesian probability-based localization. Similar to above for ECG-based localization, simplification of the torso to bath and lungs (scenario 7) caused the highest mean error (14.83 ± 11.24 mm), but in all other scenarios, localization ranged between 9.04 and 10.66 mm. On the other hand, UVC-based EGM localization had a similar trend to ECG-based localizations, with errors > 15 mm for scenarios 3, 5, and 7.




DISCUSSION

In this study, we successfully utilized simulated implanted device EGMs to localize virtual focal VT sources using CNNs, achieving accuracies that could be useful in clinical settings. A previous algorithm (Yang et al., 2018) utilized 12-lead ECGs for a similar purpose; here, we managed to replicate the structure of the CNN architecture for EGM traces and improve the overall localization by introducing a higher number of segments in the AHA LV model. Moreover, we also improved the overall localization precision by introducing a novel architecture composed of regression and classification algorithms, which was able to identify the source in a framework specific to the ventricles, easily interpretable by clinicians. Finally, we investigated the robustness of both CNN algorithms to the introduction of uncertainties, such as different noise levels in the data, and possible inter-patient variabilities (different body compositions, ECG lead positions, and CIED configurations).


Successful Application of EGMs in Existing Cartesian Probability-Based Algorithm

Simulated focal VT sources were successfully identified from 16 combinations of implanted device EGM vectors. In the previous study, Yang et al. (2018) achieved localization precision in the range of 10–11 mm when utilizing a combination of 16 ECG vectors; here, we reduced localization errors to 6.69 mm and 8.74 mm for ECG and EGM traces, respectively, by incrementing the number of segments in the LV to 68. In clinical practice, the average diameters of catheter tips are between 4 mm and 8 mm (Ilg et al., 2010), limiting the average lesion size to a minimum of ∼8.5 mm (Wittkampf et al., 1989). Hence, we achieved localization precisions in a range suitable for improving ablation planning. Especially in patients with a non-stable condition, pre-planning of these procedures could be expedited and aided if the acquisition of ECG data during VT would not be required, which can be achieved by utilizing information stored in implanted devices. Our algorithm thus proposes a first level of investigation that could direct clinicians to the region of interest with high precision. Moreover, we achieved ECG-based and EGM-based testing accuracies in ranges comparable to Yang et al. (2018) (77%). Similar patterns to the previous study were seen when investigating how noise affects the localization; only a loss in accuracy and localization precision is seen with SNR = 5 dB. Interestingly, noise seems to have a greater impact on EGM-based localization than on ECGs. This could be explained by the fact that implanted device sensing vectors are closer to one another and to the cardiac electrical activity, amplifying variations caused by noise, thus affecting EGM-based localization to a greater degree.



Novel UVC-Based Algorithm Improves Localization

Our novel UVC-based algorithm improves localization to 4.06 mm and 8.07 mm for ECGs and EGMs, respectively, outperforming the existing study. Whereas the Cartesian probability-based algorithm relies on combining probabilities of two networks with the geometrical centers of gravity of each LV segment to locate a VT origin, our architecture predicts the actual location of the source in terms of its (normalized) distance from the apex, the LV septum and, most importantly, the endocardium. Furthermore, it intrinsically bounds the localization to the myocardium. Knowing the exact intramural (mid-wall) location, a VT source could help in the choice of power, tip diameter, and lesion size to apply, as well as access direction (epicardial or endocardial), in pre-procedural planning. Finally, our novel localization facilitates the visualization of focal estimates, by plotting a patient-specific bull’s-eye diagram, where the radius represents the distance from the apex and the circumferential direction relates to septal, anterior, inferior, and lateral LV segments.



Automated Localization Is Only Affected by Extreme Changes in ECG Lead Positions and Implanted Device Lead Configurations

Focal VT localization is only marginally affected by differences in body compositions. However, to increase the accuracy of the results, a torso model constructed for algorithm training should at least include all major thoracic and abdominal organs with realistic conductivity values; our findings suggest that representing bath and lungs (as used in Yang et al) only produce signals that differ substantially from more complete torso models, importantly affecting localization accuracy. Moreover, EGM-based algorithms seem to be more robust to tissue variations, possibly due to the closer positioning of the device leads to the electrical cardiac source, with extracellular potentials being less affected by the surrounding tissue/organ conductivities. Displacements in ECG leads and differences in common CIED configurations do seem to have an impact on the final localization; this suggests the necessity of integrating a higher variability in the training data, or extrapolating ECG or CIED patient-specific information from imaging data to strengthen future automated algorithms and allow clinical validation and translation.



Limitations

A notable limitation of this study is the absence of clinical validation. However, our main goal was to strengthen the automated localization of focal VTs and investigate the properties of our 3D pipeline that need improvement for future clinical studies. For future validation of our in silico EGM model and corresponding CNN localization, we will need to generate patient-specific 3D models that have been registered and tuned to the clinical framework used during EP mapping and ablation, collect simulated data on such models for CNN training, and test the latter on clinical EGM recordings of the focal VT(s), and/or paced beats, that have been collected from CIEDs directly or from the latter recording during the mapping. When attempting clinical translation in the future, we will also investigate other aspects of our work regarding patient-specific EP properties that were not taken into consideration in this study. Our model required certain simplifications, such as rule-based fibers and lack of Purkinje activation, which we believe would not make an impact in the final performance of our algorithms when dealing with focal beats, but that could be useful to take into account for more complex patient-specific approaches. Although our cardiac model was static, we do not believe that the absence of electro-mechanical feedback significantly influenced the final ECG or EGM signals, when considering only QRSs (ventricular activation); many studies have validated static simulated EGM signals against clinical data (Cardone-Noott et al., 2016; Cedilnik et al., 2018; Gillette et al., 2021), showing that it is not necessary to couple mechanical simulations with EP for these types of problems. Moreover, we only considered single beats originating in the LV. In future studies, it will be worth including focal VTs in the RV, which is a common region of VT especially around the outflow track (RVOT). This could be easily achieved by using the UVC system, which covers the RV, to generate labels and prepare simulations, facilitating both modeling and localization pipelines. Although we believe that simulating multiple paced beats would not have an impact in the final CNN performance and localization, it will be necessary to achieve more realistic scenarios, as it can influence the waveforms of ECG and EGM traces. Furthermore, extending the automated localization of VT to more complex episodes (for instance, in presence of micro re-entries and/or infarction) represents an interest of ours that will be addressed in future studies. The investigation on how different signal uncertainties influence the performance of our CNNs could also be extended to include more complex and realistic ways of adding noise to customize computational models to patient-specific settings (Barone et al., 2020; Marcotte et al., 2021). Another aspect of this study that could be refined is the overall structure of our novel UVC-based architecture; both regression and classification networks were implemented following the structure proposed by Yang et al. (2018), although some parameters were optimized to fit the new tasks. In future studies, deeper networks could be developed, and different input data shapes could be investigated (e.g., 2D vs. 1D). Moreover, to tackle the problem of computational efficiency and decrease even further our simulation time when dealing with more complex arrhythmias, we may investigate the possibility of GPU-based models, which have recently opened new perspectives in terms of real-time, physiologically detailed simulations (Vasconcellos et al., 2020).




CONCLUSION

By integrating fast EP simulations with deep-learning algorithms, we have demonstrated the utility of our in silico pipeline for the simulations of EGMs stored in implanted devices, which, in addition to 12-lead ECGs, can accurately localize focal VTs. Our novel in silico automated algorithm, which utilizes a coordinate frame specific to the ventricles, increased localization precision above previous segment-classification approaches, facilitating clinical interpretation. Moreover, we showed the necessity of including more variability in the training data regarding lead positions, and the stability, on the other hand, of the localization to changes in body compositions.
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In patients with atrial fibrillation, intracardiac electrogram signal amplitude is known to decrease with increased structural tissue remodeling, referred to as fibrosis. In addition to the isolation of the pulmonary veins, fibrotic sites are considered a suitable target for catheter ablation. However, it remains an open challenge to find fibrotic areas and to differentiate their density and transmurality. This study aims to identify the volume fraction and transmurality of fibrosis in the atrial substrate. Simulated cardiac electrograms, combined with a generalized model of clinical noise, reproduce clinically measured signals. Our hybrid dataset approach combines in silico and clinical electrograms to train a decision tree classifier to characterize the fibrotic atrial substrate. This approach captures different in vivo dynamics of the electrical propagation reflected on healthy electrogram morphology and synergistically combines it with synthetic fibrotic electrograms from in silico experiments. The machine learning algorithm was tested on five patients and compared against clinical voltage maps as a proof of concept, distinguishing non-fibrotic from fibrotic tissue and characterizing the patient's fibrotic tissue in terms of density and transmurality. The proposed approach can be used to overcome a single voltage cut-off value to identify fibrotic tissue and guide ablation targeting fibrotic areas.

Keywords: atrial fibrillation, fibrosis, machine learning, bidomain, transmurality, density, cardiac modeling


1. INTRODUCTION

Atrial fibrillation (AF) is the most common cardiac arrhythmia and is characterized by an irregular heart rhythm, which is upheld by structurally altered fibrotic tissue (Platonov, 2017). Fibrosis modifies the cardiac substrate and creates a heterogeneous medium for electric propagation. Specifically, the deposition of excessive collagen fibers in the extracellular matrix affects intercellular connections, increases conduction anisotropy, and leads to slowed conduction. As such, fibrosis facilitates functional and structural conduction block, promotes reentry, and provides anchors for reentrant activity. In this way, fibrotic remodeling of the cardiac substrate favors initiation and maintenance of cardiac arrhythmia (Hinderer and Schenke-layland, 2019).

Catheter ablation is a first line therapy for patients with persistent AF (Hindricks et al., 2020). Substrate ablation strategies guided by a voltage map derived from the amplitude of intracardiac electrograms define areas based on a cut-off value (frequently <0.5 mV during sinus rhythm) as pathological tissue and target them for ablation (Malcolme-Lawes et al., 2013; Kawaji et al., 2019; Nairn et al., 2020). Several clinical studies have shown a correlation of fibrosis identified through late gadolinium enhancement magnetic resonance imaging (LGE-MRI) with reduced local signal amplitude (“voltage”) in atrial electrograms (Jadidi et al., 2013; Caixal et al., 2020). Using low voltage areas as targets for ablation has not yet shown an optimal and consistent reduction in the rate of recurrent atrial fibrillation (Verma et al., 2015; Jadidi et al., 2016; Schade et al., 2020). In addition, the interpretation of the electrograms measured at the endocardial surface of the tissue is still poorly understood, and there is no consensus about the voltage cut-off value to define arrhythmogenic substrate (Tzeis et al., 2019; Nairn et al., 2020).

In recent years, computational modeling has provided detailed insight into the mechanistic role of fibrotic tissue characteristics in the initiation and maintenance of arrhythmias (McDowell et al., 2013; Roney et al., 2016; Gokhale et al., 2017). In silico experiments showed that the morphology of the electrograms is related to tissue heterogeneities (Keller et al., 2014; Gokhale et al., 2017) and help to improve ablation strategies for treating AF (Lin et al., 2016; Jadidi et al., 2020). Controlled simulation environments provide the ideal setup to analyze how the fibrosis characteristics volume fraction and transmurality affect intracardiac signals and can be leveraged to pinpoint arrhythmogenic tissue.

With the increasing amount of data available, the use of machine learning for the interpretation of cardiac signals is steadily increasing. Machine learning has been extensively used in electrocardiogram analysis due to its potential to analyze big datasets and uncover mechanistic information about cardiac electrical function (Cabrera-Lozoya et al., 2017; Hannun et al., 2019; Lown et al., 2020; Luongo et al., 2020). While several studies aimed at quantifying AF mechanisms and automatically localize reentrant drivers using in silico or clinical electrograms (Schilling et al., 2015; McGillivray et al., 2018; Lozoya et al., 2019), less attention has been paid to the information that intracardiac electrograms can provide about the cardiac substrate based on the signal morphology due to the effect of fibrosis. Campos et al. (2013) classified different types of fibrosis based on electrogram features using in silico experiments. However, quantification of fibrotic volume fraction and transmurality in the atrial substrate has not been reported yet to the best of our knowledge. Additionally, data-driven approaches can help to overcome the use of a single voltage cut-off value to characterize the cardiac substrate and distinguish between non-fibrotic and fibrotic tissue based on a more comprehensive, holistic set of criteria.

We aim to quantify the volume fraction and transmurality of fibrosis present in the cardiac tissue by machine learning on features extracted from intracardiac electrograms. In the current state, clinical electrograms do not provide information to directly characterize the fibrotic substrate. Therefore, we created highly-detailed multi-scale biophysical simulations that capture the electrogram signature of fibrotic tissue. Additionally, clinical electrograms from high voltage areas and low complexity captured the variability of healthy tissue. Combined with the simulated electrograms, they formed the basis of a hybrid dataset to train a machine learning algorithm based on features extracted from intracardiac signals to characterize the atrial substrate.



2. MATERIALS AND METHODS

We created unstructured meshes to represent a patch of cardiac tissue surrounded by a bath (blood). On top of the tissue, we placed realistic models of two commercially available intracardiac mapping catheters, as depicted in Figure 1. Fibrosis was modeled with different densities and transmurality within a circular area in the center of the patch.


[image: Figure 1]
FIGURE 1. (A) Dimensions of the in silico setup. Tissue dimensions, catheter position, and fibrotic dimensions are shown in the left panel. In the top right corner, bath dimensions are depicted. A cross-section cut showing the interstitial model is depicted in the lower right corner. (B) Isometric view of the two setups used for the in silico experiments. The left panel shows the setup using the HD Grid catheter (St. Jude Medical, EnSite HD Grid catheter, St. Paul, MN) and the fibrotic tissue. The right panel shows the setup using the Lasso catheter (Biosense Webster, Diamond Bar, CA, USA) on top of the tissue. Reused from Sánchez et al. (2021).



2.1. Tissue Setup

Tissue patch dimensions were 30 × 30 × 2 mm with an average element length of 200 μm, as shown in Figure 1A. To address the variability that ionic models could introduce in the calculation of electrograms, we used two different ionic models to simulate the electrophysiology of the human atrial tissue to generate the hybrid dataset. Human atrial cellular electrophysiology was characterized by the mathematical models proposed by Courtemanche et al. (1998) and Koivumaki et al. (2009). To reproduce the electrical remodeling in cells due to persistent atrial fibrillation, the Courtemanche et al. (1998) model was modified as suggested (Loewe et al., 2014), whereas the Koivumaki et al. (2009) model was modified according to Skibsbye et al. (2016). Cardiac bidomain conductivity ratio between the intracellular and the extracellular medium was adjusted in a tissue strand in two scenarios to achieve plane wave conduction velocities of 30 and 40 cm/s (McDowell et al., 2013). To consider different directions of electrical propagation, the tissue was stimulated from three sides: left border, bottom border, and top right corner.



2.2. Fibrosis Modeling

Several studies have shown the importance of the texture of the fibrotic tissue for excitation propagation in the cardiac substrate (Jakes et al., 2019; Dokuchaev et al., 2020; Nezlobinsky et al., 2020). Our proposed model aims at reproducing the deposited collagen fibers observed in tissue samples with interstitial fibrosis (Hansen et al., 2017). Fibrotic infiltrations were grown from the endocardial side to the epicardium with three different degrees of transmurality: 0.5, 1, and 2 mm (i.e., fully transmural). Fibers of collagen were placed following uniform distributions by labeling mesh elements as collagen. Collagen was modeled as low conductive extracellular medium with a conductivity of 1 × 10−6 S/m (Lima et al., 2006; Keller et al., 2014) and an average length of 600 ± 200 μm (Jacquemet and Henriquez, 2009; Eduardo et al., 2016). Conductivity of myocytes within the circular fibrotic region was reduced by 53% in the longitudinal direction and increased 2.5-fold in the transverse direction to simulate the effect of gap junction reduction observed during persistent AF (McDowell et al., 2013). Ten different random realizations were considered per density and transmurality.



2.3. Electrogram Signals

To represent the effect of the catheter geometry on the electrogram, we incorporated two realistic geometries of commercially available catheters as depicted in Figure 1B. The left panel in Figure 1B shows the geometry of an HD Grid catheter (St. Jude Medical, EnSite HD Grid catheter, St. Paul, MN), and the right panel shows the geometry of a Lasso catheter (Biosense Webster, Diamond Bar, CA, USA) with an interelectrode distance of 2 mm between electrodes of one pair and 6 mm between pairs. Electrodes were modeled as a highly conductive material (1 × 1012 S/m) while insulator materials were modeled as low conductance (1 × 10−6 S/m).

Unipolar electrograms, sampled at 2 kHz, were extracted from the bidomain simulations for every electrode of the catheter. Additionally, a generalized model of noise extracted from clinical signals from the four patients in the training set was created using an autoregressive approach and added to the simulated unipolar signals as depicted in Figure 2. First, ventricular far-fields were blanked from the unipolar clinical signals as well as atrial activity, thus keeping only the noise segments. The noise model was created from thirteen extracted noise segments from unipolar clinical signals. Each segment was fitted using an autoregressive model:

[image: image]

where Xt is the time series and [image: image] is white noise. The model order p was determined based on the Bayesian information criterion. The smallest Akaike information criterion value determined the global order, and the model coefficients ϕi were averaged to obtain a global model representing the clinical noise of intracardiac signals. The generalized model was added to the simulated unipolar signals as depicted in Figure 2.


[image: Figure 2]
FIGURE 2. Workflow to generate the noise model and the addition to the simulated signals. In the top left corner, the different segments of the activity from a clinical unipolar electrogram are depicted. Autoregression was applied to the noise segments. The noise model was used to estimate the simulated unipolar electrogram with noise. Afterward, the unipolar electrograms (red and blue trace) were filtered, and the bipolar electrogram was calculated by subtracting the unipolar electrograms. Reused from Sánchez et al. (2021).


After adding noise, both unipolar and bipolar signals were filtered using a Butterworth second order band-pass filter implemented in Matlab. Unipolar synthetic signals were filtered using a band-pass between 0.05 and 900 Hz. Afterward, bipolar electrograms were calculated by subtracting the signals from the corresponding pairs of electrodes and filtered by a clinically used band-pass filter between 30 and 300 Hz (Deno et al., 2017; Unger et al., 2019).



2.4. Numerical Simulations

Biophysical simulations were run with openCARP (Vigmond et al., 2003; Sánchez et al., 2020) using a full bidomain model described in Equations (1) to (6), which provides the most physiologically-realistic representation of cardiac bioelectric activity. The bidomain model accounts for bath-loading effects by representing a surrounding extracellular bath and the physical properties of the electrode as an equipotential material.
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ϕ represents the electrical potential, the indices i and e refer to the intracellular and extracellular spaces, respectively. σ is the conductivity tensor, β is the surface to volume ratio of the myocytes, and Iion the total transmembrane ionic current density from the cellular model. The latter is dependent on Vm and a vector ν of further state variables. Itrans, a transmembrane current density stimulus, and Ie, s, an extracellular current density, describe external stimuli. If a bath surrounds a tissue, the bath is treated as an extension of the extracellular space.

Adding (2) and (3) and incorporating it into (5) yields:
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The in silico model was verified and validated by applying the criteria suggested in the ASME VV-40-2018 standard of the American Standard Association of Mechanical Engineers (ASME V&V 40, 2018). The risk-informed matrix assesses the model influence in characterizing the atrial substrate using intracardiac signals. The software solution was verified as described by Niederer et al. (2011). The simulated signals were compared with clinical signals. Additionally, we considered uncertainty by simulating different propagation scenarios, including realistic geometries of two commercially available catheters, and implementing 10 different realizations per fibrosis density and transmurality for random, uniformly distributed collagen. Single cells were stimulated at a basic cycle length of 600 ms for 100 cycles. The state of the cell model at the last time step was used as the initial state for the cells in tissue level simulations. Tissue simulations were stimulated with five pulses at a basic cycle length of 600 ms. Electrograms were evaluated for the last cycle. We performed a total of 1,444 full-bidomain simulations to build the dataset of synthetic signals with a length of 2.5 s. The meshes used in this study had an average of 2 million elements and 345,000 points. The total number of electrograms included in the hybrid dataset was 2,338, of which 1,198 were clinical signals and 1,140 were simulated signals.



2.5. Classification Algorithm

We implemented decision tree classifiers trained to predict binary or multiclass responses for tissue characteristics in three settings: (i) fibrotic vs. non-fibrotic tissue, (ii) several degrees of fibrosis density (10, 20, 40, and 60%), and (iii) subendocardial, partially transmural, and fully transmural fibrosis.

As input features for the decision tree, we complemented the peak-to-peak amplitude of the electrogram signal by a set of complexity measures derived from the electrograms as a signature of the fibrotic substrate and its microstructure (Figure 1A). Complexity features were extracted from the activity segments detected in the intracardiac signal to train the classifier. For each signal, segments of atrial activity were calculated by tracking closed loops in Hilbert space. The distribution of the radius of every single loop was calculated and the mean value plus one standard deviation was chosen to distinguish between cardiac activity and noise (Figure 3). The peak-to-peak amplitude was calculated for each active segment. Signal complexity was quantified for each segment of atrial activity using different entropy measures: sample entropy (Richman and Moorman, 2000), Shannon entropy (Shannon, 1948), spectral entropy (Vanluchene et al., 2004), and Kolmogorov complexity (Kolmogorov, 1968). Additionally, the fractal dimension coefficient was calculated for the whole 2.5 s signal segment (Muller et al., 1992).


[image: Figure 3]
FIGURE 3. Electrogram activity detection in the Hilbert space. (A) Electrogram signal (C) in the Hilbert Space with centroid (orange trace), green arrow depicts the distance measured from the centroid to the signal. (B) Frequency distribution of centroid to signal distance, red line represents mean value plus one standard deviation. (C) Bipolar electrogram (blue trace) and activity segments (orange trace).


The hybrid dataset was created by combining simulated electrograms and clinical electrograms and used to train the classifier. Specifically, the class of non-fibrotic synthetic signals was extended by clinical signals annotated as high voltage (peak-to-peak amplitude >0.5 mV) by a medical expert extracted from four patients. Moreover, the other five patients were used to test the classifier as a proof of concept. In silico, non-fibrotic tissue was simulated using two different conduction velocities (30 and 40 cm/s) to capture the effect of conduction velocity variability on peak-to-peak amplitude and active segment duration. We split the dataset into training, validation, and test sets as a 70/15/15% random split. All classes were guaranteed to be in all subsets. The validation set was used by the greedy technique to optimally tune the classifier. Furthermore, validation set accuracy was used to check that the algorithm is not overfitting when comparing against the test set accuracy. One hundred different realizations were run using hold-out cross-validation to obtain the mean accuracy of each one of the three decision tree classifiers.

The feature set considered for each classifier was selected using a greedy forward selection method (Edmonds, 1971). This iterative method starts with an empty feature set and adds the feature, which leads to the highest accuracy increase of the classifier in each iteration. The algorithm stops when performance based on the validation set cannot be further improved. Candidate features with a correlation coefficient >0.6 with any of the features already included in the set were removed. The correlation threshold was chosen as a compromise between avoiding redundant information and covering all physiologically relevant phenomena. The performance of the classification algorithm was evaluated using confusion matrices and accuracy. The classifiers were implemented in Matlab (The Mathworks, Natick, MA, USA).



2.6. Statistical Analysis

Data are expressed as mean ± standard error. Differences between group means were examined using two-tailed, paired Student's t-test and were considered significant when p < 0.05. The Sørensen-Dice index was used to measure the similarity between clinical low/high voltage map and the non-fibrotic vs. fibrotic map.



2.7. Clinical Data

This study includes nine patients recruited at Städtisches Klinikum Karlsruhe with the diagnosis of persistent AF. Patients were split into two groups; four patients were used to extract the clinical noise from the unipolar signals and train the machine learning algorithm. The other five patients were used as a proof of concept to test our approach to characterize the atrial tissue from clinical electrograms. Electroanatomical maps were acquired during sinus rhythm using the CARTO3 mapping system (Biosense Webster, Diamond Bar, CA, USA) with the Lasso catheter (Biosense Webster). The study was approved by the Institutional Review Board of Freiburg University in accordance with the Helsinki declaration. All patients gave written informed consent.




3. RESULTS


3.1. Electrogram Features

Following the ASME V&V 40 standard (ASME V&V 40, 2018), we created highly-detailed in silico experiments to study the impact of structural remodeling due to AF on electrogram morphology. Bidomain simulations combined with a generalized intracardiac clinical noise model faithfully reproduced clinical recordings, which, combined with in vivo electrograms, were used to create the hybrid dataset.

Modeling interstitial fibrotic texture allowed to study electrogram characteristics resulting from fibrotic tissue alterations. Fibrosis texture had a considerable impact on the electrical propagation in the tissue and on electrogram morphology (Figures 4E,F). Duration of atrial activity, which corresponds to the total activation time of the tissue underneath the electrode, calculated in Hilbert space, was increased (23.72 ± 0.05 ms) for low fibrosis density (10 and 20%) with respect to the activity duration of electrograms from non-fibrotic tissue (17.5 ± 0.04 ms). For mid-density fibrosis (40%), duration was further increased (43.80 ± 0.01 ms) and high-density fibrosis (60%) had the longest activity duration (55.31 ± 0.02 ms). Low-density fibrosis (10 and 20%) had less impact on the signal amplitude (1.08 ± 0.01 mV) compared to mid-density fibrosis (40%) which decreased the amplitude (0.83 ± 0.01 mV). High-density fibrosis (60%) had a small amplitude (0.59 ± 0.004 mV; Figure 4E). Figure 4F shows the effect of fibrosis transmurality for high density of fibrosis (60%). Subendocardial and partially transmural fibrosis (0.5 and 1 mm, respectively) had a small effect on the electrogram morphology while total transmurality (2 mm) decreased signal amplitude and prolonged its duration. The model of interstitial fibrosis yielded reduced conduction velocity reflected by an increased duration of active segments depending on the density and transmurality of fibrosis.


[image: Figure 4]
FIGURE 4. Importance of using a realistic electrode geometry and adding noise for simulated intracardiac signals. (A) Bipolar electrogram signal recorded with a cubic electrode (blue trace) and the corresponding filtered signal (red trace). (B) Signal recorded with a cylindrical electrode (blue trace) and the resulting signal after filtering (red trace). (C) Simulated signals recorded with a cylindrical electrode with and without noise and the resulting signals after filtering. (D) Comparison of a simulated signal with a clinical signal. (E) Electrograms recorded on the surface of the fibrotic tissue with different densities. (F) Effect of fibrosis growth from the endocardial surface to the epicardium (0.5, 1, 2 mm) on the electrogram (60% fibrosis density). Reused from Sánchez et al. (2021).


In total, seven features to measure complexity and morphological characteristics of the signals were calculated from the bipolar electrograms (Figure 5). Features were extracted from the simulated signals with and without noise. Sample entropy and spectral entropy were robust to the addition of noise. Sample entropy value, for electrograms of non-fibrotic tissue, did not significantly change (0.18 ± 0.01 vs. 0.21 ± 0.01, p > 0.05). Kolmogorov complexity was less affected by noise than Shannon entropy. Shannon entropy and fractal dimensions did not perform well after the addition of noise. Shannon entropy was 0.57 ± 0.01 without noise and 3.33 ± 0.01 after adding noise to the signal (p < 0.05). The same behavior was observed for the fractal dimensions where the value changed from 1.15 ± 0.01 without noise to 10.2 ± 0.05 with noise (p > 0.05). Additionally, the duration and amplitude of the signal were considerably altered by noise.


[image: Figure 5]
FIGURE 5. Feature distribution for all in vivo and in silico electrograms (including noise). Single feature distribution can be observed in the diagonal and the combination of two features is reflected in the scatter plots. (A) Features split by different densities of fibrosis. (B) Features split by different degrees of transmurality. Duration, duration of the active segment (ms); SmpEn, sample entropy; ShEn, shannon entropy; SpEn, spectral entropy; p2p, peak-to-peak amplitude (mV); Kolmogorov, Kolmogorov complexity; Fractal, fractal dimension. Reused from Sánchez et al. (2021).


Our in silico electrograms were validated against clinical electrograms recorded from areas of the atria with peak-to-peak amplitudes higher than 0.5 mV. Cross-correlation was used to align the clinical signals and simulated electrograms in time for maximal similarity. Simulated bipolar signals for non-fibrotic tissue had a mean correlation of 91.13 ± 0.05% with the clinical signals. Clinical high voltage (peak-to-peak >0.5 mV) and simulated control electrograms (no fibrosis) had a mean peak-to-peak voltage of 1.67 ± 0.05 and 2.25 ± 0.01 mV, respectively. Clinical and simulated control electrograms had a mean duration of 18.30 ± 0.56 and 17.5 ± 0.04 ms, respectively. Using realistic geometries to represent the electrodes changes the simulated electrogram morphology. Figure 4A shows a simulated bipolar electrogram simulated with cubic electrodes where the impact of filtering on the positive slope becomes visible. Figure 4B shows a simulation with a cylindrical electrode geometry mimicking the commercial catheters used in this study. The resulting electrogram is not symmetric and filtering has no marked effect on the positive slope, which is steeper than in the electrogram simulated with the cubic electrodes. Adding noise to the simulated signals decreases their amplitude and fractionates the morphology (Figure 4C). Simulated bipolar electrograms without noise have a higher amplitude of R and S peaks, which decrease with the addition of noise. Figure 4D compares a simulated signal with a clinical signal. Simulated electrogram negative and positive slopes are close to the values of the clinical signal, 0.1 and 0.25 mV/ms, respectively.



3.2. Classification of Tissue Characteristics

Extracted features from the bipolar electrograms are depicted in Figure 5. The main diagonal shows the distribution of the calculated features for the different groups of signals (different fibrotic densities in Figure 5A, different degrees of fibrosis transmurality in Figure 5B). Peak-to-peak amplitude is not a good feature to determine the degree of fibrosis due to the wide range of amplitudes that overlap for fibrotic vs. non-fibrotic cases. While sample entropy can distinguish between fibrotic and non-fibrotic tissue, the distribution of the values overlaps for different densities. The distinction between different fibrosis transmuralities is not possible by using only one feature since the value for all features overlap for all density or transmurality values (Figure 5B, main diagonal). Scatter plots in Figure 5 show how a combination of two features might help to characterize the fibrotic substrate. For fibrosis density, scatter plots show how combining complexity measures and commonly used features like peak-to-peak amplitude or duration of the active segment can help to differentiate non-fibrotic from fibrotic tissue.

A decision tree classification algorithm was trained to separate different fibrosis densities and degrees of transmurality. The combination of signal complexity features was determined by a greedy forward algorithm. The dataset was randomly divided into 70% train, 15% test, and 15% validation. The mean accuracy of the three classifiers was calculated by doing 100 different realizations. Figure 6A shows the confusion matrix of the classifier for distinguishing between non-fibrotic and fibrotic tissue. The mean accuracy for this classifier is 97.95 ± 0.03% with 98.81 ± 0.01% sensitivity and 97.16 ± 0.01% specificity. The classifier slightly overestimated the fibrotic areas. Figure 6B shows the classifier performance to identify fibrosis density (non-fibrotic, 10, 20, 40, and 60%) with a mean accuracy of 97.01 ± 0.02% and 96.33 ± 0.03% and 99.05 ± 0.01%, for sensitivity and mean specificity, respectively. The most relevant features for classification of fibrosis density, determined by the greedy forward algorithm, were sample entropy and spectral entropy (Figure 5).


[image: Figure 6]
FIGURE 6. (A) Confusion matrix of the decision tree classifier for identifying non-fibrotic vs. fibrotic substrate. (B) Confusion matrix showing the performance for identifying different fibrosis densities. (C) Confusion matrix showing the performance for identifying transmurality of fibrosis. (D) Effect of increasing the electrode surface to tissue surface distance on the accuracy of the classifiers to distinguish fibrotic tissue, density, and transmurality. Reused from Sánchez et al. (2021).


To identify transmurality of fibrosis in the tissue, the classifier yielded a mean accuracy of 94.62 ± 0.01, 92.99 ± 0.02% sensitivity, and 97.86 ± 0.01% specificity. For fibrosis transmurality, misclassification occurred for some cases. Nevertheless, it is able to distinguish all four classes (non-fibrotic, 0.5, 1, and 2 mm). The most relevant features for classification of transmurality were sample entropy and peak-to-peak amplitude.

Furthermore, we investigated the effect of increasing the distance between the catheter and atrial endocardial surface and the classifiers' accuracy. The classifier's accuracy dropped with increased distance, as shown in Figure 6. The accuracy of the classifier dropped to 0% for electrode-to-tissue distances bigger than 4.1 mm, to distinguish non-fibrotic from fibrotic tissue. For identifying different densities, the accuracy dropped to 59.17% at 1.1 mm distance to tissue. Additionally, transmural accuracy drops to 33.30% with a distance to tissue of 1.1 mm.

We applied the trained classifier to intracardiac signals measured in five patients of the test set of our cohort, which were not used to train the classifier, to create maps of atrial substrate characteristics. Figure 7 presents representative results for patient 1. The yellow dot (Figure 7A, posterior view) shows a signal annotated as high voltage and identified as non-fibrotic tissue by the classifier. Low voltage and high voltage areas determined by the clinical system using a cut-off value of 0.5 mV are shown in Figure 7A. The low voltage areas showed a mean dice similarity coefficient of 69.84 ± 0.03% with the predicted fibrotic areas for the five patients. Patients 1, 3, and 4 showed fibrotic areas mostly within the low voltage areas. Maps for the all the five patients are shown in Supplementary Figures 1–5. Figure 7B shows the classified fibrotic areas based on the signal features by the machine learning approach, where electrogram signals were fractionated and exhibited a longer activity duration independent from their peak-to-peak amplitude (Figure 7A, anterior view, green and white dot). Regions annotated as high voltage areas partly exhibited fractionated electrograms with a peak-to-peak voltage (1.4 mV) above the cut-off value of 0.5 mV (Figure 7A, posterior view, light blue dot) where these areas were classified as low density (20%) and partially transmural (1 mm) fibrosis. Fibrotic volume fraction was estimated using patient electrograms as input for the classifier (Figure 7C). In general for this patient cohort, high density was located at the core of fibrotic areas. Furthermore, Figure 7D shows the classification of different transmuralities. Fully transmural fibrosis was predominantly found in areas of high fibrotic density. Thus, not all high-density fibrotic areas are entirely transmural. In contrast to patient 3, patient 5 had a low similarity (58.76%) of low voltage and fibrotic areas due to a generally low peak-to-peak voltage in the electrograms (Supplementary Figure 5).
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FIGURE 7. Anterior and posterior view of patient maps for clinical low/high voltage (A) and classification results for non-fibrotic vs. fibrotic (B), fibrosis density (C), and fibrosis transmurality (D). The green dot represents a signal at the base of the pulmonary vein which was marked as high voltage and classified as subendocardial (0.5 mm) low density (10%) fibrotic tissue. The white dot refers to a signal recorded in the pulmonary vein classified as low voltage and high density (60%), transmural (2 mm) fibrotic tissue. The yellow dot represents a high voltage area identified as non-fibrotic and the light blue dot indicates a signal collected in the pulmonary vein annotated as high voltage and classified as low density (20%), partially transmural (1 mm) fibrotic tissue. Reused from Sánchez et al. (2021).





4. DISCUSSION

We investigated the effect of fibrosis on intracardiac electrogram signals using computational models and trained machine learning algorithms using a combined in vivo and in silico dataset to classify the tissue according to fibrosis density and transmurality. We found that (i) detailed bidomain models in combination with models of clinical noise can reproduce clinical electrograms with high fidelity; (ii) complexity measurements help characterize fibrotic tissue from electrograms. Sample entropy and spectral entropy were the most distinguishing features to characterize fibrosis density, while fibrosis transmurality was identified by sample entropy and peak-to-peak amplitude; (iii) machine learning classifiers can characterize and distinguish tissue properties and quantify the amount of fibrosis density and transmurality from intracardiac signals with high accuracy and overcome the use of a single voltage cut-off value to localize arrhythmogenic substrate.

Bidomain simulations can reproduce the biophysical phenomenon of cardiac depolarization and the effect of mapping catheters on the electrograms. Bishop et al. demonstrated that including an extracellular medium induces the bath-loading effect, which impacts conduction velocity and translates to changes of electrogram morphology (Bishop and Plank, 2011). Our results show the effect of cylindrical metal electrodes on simulated signals. The high electrode conductivity markedly influences the electrogram slope as it acts as a current sink for the tissue underneath. Additionally, by using realistic geometries of catheters, spatial resolution is taken into account by preserving a realistic spacing of catheter electrodes. Moreover, the impact of the directionality of the propagating wave on bipolar electrograms was taken into account by stimulation from three different sites as previously discussed by Hwang et al. (2019).

Several studies investigated the influence of noise on simulated electrograms (Sameni et al., 2007; Frisch et al., 2020). Our simulated signals were able to reproduce the recorded clinical signals more realistically compared to simulations that do not consider the effect of the catheter and clinical noise. Simulated signals, even with noise, had a higher (Figure 4C) amplitude than clinically measured signals in line with previous reports by Keller et al. (2014). These higher amplitudes are likely due to two factors: Firstly, the catheter was placed directly on the surface of the tissue with perfect contact. Secondly, intracellular conductivity, which is related to the tissue's conduction velocity, can considerably increase the amplitude of the simulated signal. For this reason, our study included two different conduction velocities in the range of previously reported values for patients with persistent AF (McDowell et al., 2013).

Complexity measurements obtained from simulated intracardiac signals help understand the electrophysiology and the fibrotic tissue structural characteristics. Other studies showed that Shannon entropy and fractal dimensions help to localize the core of rotational activity (Cirugeda-Roldán et al., 2015; Rottmann et al., 2015). Cirugeda-Roldán et al. (2015) showed that sample entropy is a robust feature to classify complex fractionated electrograms. Our findings show that sample entropy, as well as spectral entropy, are robust morphological features to characterize fibrotic substrate and are less influenced by noise compared to the other entropy measures calculated in this study.

Our results show how in silico experiments can be used to generate realistic data for measurements that are difficult to obtain in vivo. Computational cardiac modeling can considerably accelerate the process of designing and evaluating medical devices, including mapping systems and software to treat patients with cardiac arrhythmia. The American Society of Mechanical Engineers (ASME) Verification and Validation Subcommittee standard V&V40 (Verification and Validation in Computational Modeling of Medical Devices) outlines credibility requirements of a computational model based on risk. We started by defining two questions of interest (“Can synthetic data be used to train a classifier to locate fibrotic tissue and quantify its characteristics?” and “Can a hybrid dataset approach predict the electrical characteristics to support ablation therapy?”). These guiding questions helped define the required model level of detail for the in silico experiment. In the next step, we established the risk-informed credibility of using a full bidomain model to simulate electrograms and using them to generate a hybrid dataset that combines clinical and synthetic signals. Risk-informed assessment defined the level of uncertainty and the model's complexity based on the context of use (CoU) of the in silico experiments.

In this pilot study, the CoU of the model is to generate a hybrid dataset to train a classifier to locate and quantify fibrotic tissue in clinical data. Different fibrosis modeling strategies change the dynamics of the electrical propagation as described by Roney et al. (2018), which influences the electrogram morphology. Fibrosis modeling uncertainty was reduced by considering several realizations of random uniformly distributed collagen fibers with different volume fraction and transmurality. We overcome the limitation of catheter geometry and wavefront direction by including two models of commercially available catheters and pacing from three different locations (Hwang et al., 2019). Two different human atrial cardiomyocyte models were considered to minimize the uncertainty of the action potential morphology influence on the electrogram. Moreover, an autoregression model of clinically measured noise artifacts was created. The modeled clinical noise in combination with the simulated electrograms reduced the uncertainty of simulated with respect to measured electrograms. Considering all the above mentioned points, the risk-informed assessment of using in silico experiments to characterize the fibrotic substrate was defined as medium.

Driven by the risk-informed assessment, we established the credibility of our modeling methodology. Model credibility refers to the trust in the predictive capability of a model for a specific CoU. openCARP source code and calculations are verified as described by Niederer et al. (2011). The model was validated using the clinical electrograms for high voltage areas. In combination with the noise model, the bidomain model reproduced the clinical signals with a mean correlation of 91.13 ± 0.05%. The strong correlation between in silico electrograms and in vivo measurements increased the confidence in the model.

With the increasing number of data available, data-driven approaches can help to improve patient's diagnosis and therapies. Several studies used data-driven approaches with clinical data to characterize electrocardiogram signals measured on the body surface (Yaghouby et al., 2010; Rodrigues et al., 2017; Zhang et al., 2018; Petmezas et al., 2021). Sahli Costabal et al. (2018) used a hybrid dataset approach to interpret activation times during AF and Lozoya et al. (2019) showed how model-based feature augmentation can help to plan the targets for ablation therapy. We developed a detailed in silico setup as a perfectly controlled testing environment to understand intracardiac signals recorded with two different commercial catheters. Furthermore, we trained a decision tree classifier using clinical and simulated data to characterize signals based on complexity measurements. Decision trees offer a comprehensible structure to follow the decisions taken for the classification. All three classifiers had high accuracy, despite overlapping features for different degrees of transmurality (Figure 5B), the combined features used to train all decision tree classifiers distinguished non-fibrotic tissue, fibrosis volume fraction, and all three different transmuralities of fibrosis from electrogram signals. Our results suggest that combining clinical and simulated data helps to characterize electrical tissue properties more accurately than using synthetic data alone. In future work, the classifier could be extended to include more training signals recorded directly at the surface of the tissue and at certain distances above the tissue to increase the performance when there is non-contact of the catheter with the tissue surface.

Different ablation strategies target fibrotic areas by ablating or isolating them (Hinderer and Schenke-layland, 2019). Both techniques rely on a voltage cut-off value for the identification of possible fibrotic areas. While ablating fibrotic areas try to homogenize the fibrotic substrate, isolation encloses the fibrotic regions and connects them to the pulmonary vein isolation lines to prevent a potential proarrhythmic effect. This suggests that identifying fibrotic tissue through electroanatomic mapping is essential, and the choice of a single voltage cut-off value may not be sufficient to decrease the recurrence of arrhythmia (Jadidi et al., 2016). Gutbrod et al. (2015) showed the importance of fibrosis transmurality for electric propagation during AF. Using a hybrid dataset approach, our findings can help to standardize the identification of non-fibrotic vs. fibrotic areas and provide valuable information on the fibrotic tissue characteristics such as fibrosis density and transmurality. Several studies have shown that low-density fibrosis can modify the propagation and initiate or maintain arrhythmia (Kazbanov et al., 2016; Jadidi et al., 2020). High-density fibrotic areas are prone to be a point of anchor for rotational activity (Alonso and Bär, 2013; Krul et al., 2015; Deng et al., 2017; Roy et al., 2018) while low-density fibrosis micro-structure can alter the propagation pattern and maintain reentry (Balaban et al., 2018; Campos et al., 2019). The trained classifier was used on five patients from the test set of our patient cohort to distinguish and characterize fibrotic tissue. For clinical data, not all low voltage areas were marked as fibrosis when using a single cut-off value. Areas with low-density (10%) subendocardial fibrosis (0.5 mm) were annotated as high voltage areas when using a single peak-to-peak cut-off value of 0.5 mV. Therefore, the use of hybrid datasets and data-driven approaches could help to estimate the fibrotic tissue characteristics to support the planning of ablation therapy. The medium-range dice coefficient (0.7) indicates that low voltage areas are one of the main indicators for fibrotic tissue but synergistic combination of multiple features in e.g., a decision tree classifier, can give a more comprehensive view beyond purely voltage-based tissue characterization.

Our results show that current clinical standards for substrate mapping using bipolar voltage alone are not sufficient to characterize the atrial fibrillation substrate comprehensively. Machine learning algorithms trained using hybrid datasets and multi-features obtained from intracardiac signals may overcome these limitations providing fibrosis density and transmurality maps. This may lead to optimized therapeutic approaches.

Our modeling approach does not capture the influence of the atrial anatomy and the tissue thickness heterogeneity. Nevertheless, our hybrid dataset approach tries to minimize this effect by including clinical signals from different patient. Furthermore, increasing the catheter to tissue distance decreases the accuracy of the classifier. The effect of the distance can likely be minimized if the dataset is extended to also include signals that were acquired at a certain distance to the cardiac tissue. Additionally, we only consider a homogeneous distribution of fibers from the endocardium to the epicardium, which may not represent the heterogeneous tissue architecture observed in some regions of the atria. The fibrotic regions were homogeneous and all electrodes were located inside the fibrotic area. We did not consider the effect of electrodes located at the border, which could result in more complex bipolar signals. We did not include any effect of inflammation-induced paracrine remodeling or myofibroblast interaction (Sánchez et al., 2019a). While our approach shows promising results and highlights the essential features of intracardiac signals to characterize atrial substrate, validation through independent experimental and clinical data is desirable. Future studies could include LGE-MRI data to validate the proposed approach and explore the arrangement of the fibrotic tissue effect on the electrogram morphology (Sánchez et al., 2019b).

Our modeling approach successfully answered the question of interest: A classifier can be trained using clinical and simulated data to characterize the cardiac substrate to support ablation therapy by providing fibrosis density and transmurality maps. Moreover, the credibility assessment showed that detailed cardiac modeling could be a valuable framework. In the future, classifiers to predict cardiac tissue characteristics could be integrated into clinical electroanatomic mapping systems. Finally, our study emphasizes the potential of in silico experimentation and data-driven approaches for characterizing the patient's substrate and demonstrates the potential of software tools to support medical decisions during the procedure.
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Rationale: Patients with ischemic cardiomyopathy (ICMP) are at high risk for malignant arrhythmias, largely due to electrophysiological remodeling of the non-infarcted myocardium. The electrophysiological properties of the non-infarcted myocardium of patients with ICMP remain largely unknown.

Objectives: To assess the pro-arrhythmic behavior of non-infarcted myocardium in ICMP patients and couple computational simulations with machine learning to establish a methodology for the development of disease-specific action potential models based on clinically measured action potential duration restitution (APDR) data.

Methods and Results: We enrolled 22 patients undergoing left-sided ablation (10 ICMP) and compared APDRs between ICMP and structurally normal left ventricles (SNLVs). APDRs were clinically assessed with a decremental pacing protocol. Using genetic algorithms (GAs), we constructed populations of action potential models that incorporate the cohort-specific APDRs. The variability in the populations of ICMP and SNLV models was captured by clustering models based on their similarity using unsupervised machine learning. The pro-arrhythmic potential of ICMP and SNLV models was assessed in cell- and tissue-level simulations. Clinical measurements established that ICMP patients have a steeper APDR slope compared to SNLV (by 38%, p < 0.01). In cell-level simulations, APD alternans were induced in ICMP models at a longer cycle length compared to SNLV models (385–400 vs 355 ms). In tissue-level simulations, ICMP models were more susceptible for sustained functional re-entry compared to SNLV models.

Conclusion: Myocardial remodeling in ICMP patients is manifested as a steeper APDR compared to SNLV, which underlies the greater arrhythmogenic propensity in these patients, as demonstrated by cell- and tissue-level simulations using action potential models developed by GAs from clinical measurements. The methodology presented here captures the uncertainty inherent to GAs model development and provides a blueprint for use in future studies aimed at evaluating electrophysiological remodeling resulting from other cardiac diseases.

Keywords: ischemic cardiomyopathy, action potential duration restitution, genetic algorithms, unsupervised machine learning, patient-derived disease-specific action potential models


INTRODUCTION

Ischemic cardiomyopathy (ICMP) patients are at high risk for malignant arrhythmias (Moss et al., 1996; Moss et al., 2002; Bardy et al., 2005), largely due to tissue heterogeneity from infarct-related fibrosis (structural substrate) (Haqqani et al., 2009; Roes et al., 2009; Nakahara et al., 2010; Estner et al., 2011), and electrophysiologic (EP) remodeling of the myocardium (Pu and Boyden, 1997; Yue et al., 1998; Jiang et al., 2000; Huang et al., 2001; Camelliti et al., 2004; Dun et al., 2004; Isidoro Tavares et al., 2007; Liu et al., 2007). The role of the structural substrate of ICMP in arrhythmogenesis has been well characterized in clinical studies (Haqqani et al., 2009; Roes et al., 2009; Nakahara et al., 2010). However, the EP remodeling and its contribution to the dynamic EP behavior of the myocardium has not been established in ICMP patients yet.

The first goal of this study is to characterize the EP remodeling of the arrhythmogenic substrate in ICMP patients, and specifically changes in electrical restitution. Action potential duration restitution (APDR) is an important EP property that contributes to tissue-level EP dynamics, and is critical in arrhythmogenesis (Banville and Gray, 2002; Watanabe et al., 2002; Wu et al., 2002; Pak et al., 2004; Yuuki et al., 2004; Selvaraj et al., 2007; Benoist et al., 2012). The steepness and dispersion of APDR are mechanistically linked to development of malignant arrhythmias in pre-clinical studies (Banville and Gray, 2002; Watanabe et al., 2002; Wu et al., 2002; Yuuki et al., 2004; Benoist et al., 2012) and are associated with increased arrhythmic risk in limited clinical studies (Pak et al., 2004; Selvaraj et al., 2007). Steep APDR is associated with the development of APD alternans. APD alternans refer to alternating APD between two subsequent beats with one beat having a longer APD and the other having a shorter APD and are mechanistically linked to development of arrhythmias (Tse et al., 2016). The APDR of the surviving left ventricular (LV) myocardium of ICMP patients, and its contribution to the tissue-level EP dynamics is, however, yet to be described. Previous studies have evaluated APDR in patients with structural heart disease (SHD) (Koller et al., 2005; Selvaraj et al., 2007; Dorenkamp et al., 2013). However, these studies assessed APDR at the right ventricular (RV) apex, septum, or outflow track. APDR of the RV is significantly different from that of the LV (Srinivasan et al., 2016). Furthermore, although these studies included ICMP patients they report combined results for patients with any SHD. Knowledge of the APDR of the surviving LV myocardium in ICMP patients and its contribution to tissue-level EP dynamics is important for understanding the pro-arrhythmic substrate of ICMP patients.

The second goal of this study is to develop a methodology that allows for action potential model development from experimental APDR data, that can subsequently be used in Virtual Heart modeling, to improve clinical risk stratification and ablation planning. Virtual Heart modeling is a powerful platform for non-invasive ventricular tachycardia (VT) risk assessment (Arevalo et al., 2016; Deng et al., 2016), localization (Ashikaga et al., 2013), and ablation planning (Prakosa et al., 2018) in ICMP patients. Virtual Heart modeling uses 3D reconstructions of the heart derived from cross-sectional imaging to perform simulations and assess for the emergence of arrhythmias in silico. Incorporating the APDR of non-infarcted myocardium in Virtual Heart models of ICMP patients is of critical importance: First, current cardiac action potential models have been derived from pre-clinical data (Niederer et al., 2009), and do not capture the APDR of the non-infarcted myocardium of ICMP patients. Second, in sensitivity analysis, APD is important in determining the location of VT in ICMP patients (Deng et al., 2019), as well as the trajectory of re-entrant drivers in fibrillatory rhythms (Deng et al., 2017). Third, incorporating APDR in Virtual Heart models will: (1) provide mechanistic insight on how the remodeled myocardium contributes to the initiation and maintenance of VT, and development of ventricular fibrillation (VF); and (2) allow for development of new risk stratification and therapeutic strategies based on more accurate computer-based simulations.

Specifically, our aims are: (1) to clinically characterize the APDR of the surviving LV myocardium of ICMP patients and compare it to the APDR of structurally normal left ventricles (SNLV); (2) to develop the methodology to construct action potential models based on clinically obtained cohort-specific APDRs using a custom-developed genetic algorithm (GA); (3) to compare the emerging EP dynamic behaviors between ICMP and SNLV in cell- and tissue-level computer simulations using the GA-derived action potential models; and (4) to capture the uncertainty in the GA-derived action potential models and in the resulting cell-level and tissue-level EP behavior by combining computer simulations with unsupervised machine learning. The results of this study have important implications because they improve our understanding on the EP substrate of ICMP patients and provide a methodology for calibration of cardiac action potential models account for the uncertainty related to model development from clinical data. Such models can be used for the development of personalized risk-stratification and guidance of ablative strategies, contributing to the ongoing efforts towards precision medicine in cardiology.



MATERIALS AND METHODS


Overview of the Study Approach

To assess the activation-repolarization dynamics in ICMP compared to that of SNLV, we performed programmed electrical stimulation in patients undergoing left-sided catheter ablation procedures. We used the corresponding unipolar electrograms (UniEGMs) to obtain APDR curves with the help of a customized signal processing approach. We then utilized the clinically obtained APDRs to construct populations of action potential models of ICMP and SNLV patients, employing a custom-developed GA. We used unsupervised machine learning to capture the uncertainty in model development from clinical data. We then used the developed action potential models to characterize the dynamic pro-arrhythmic substrate of ICMP patients.



Patient Enrollment

We prospectively enrolled consecutive patients undergoing left-sided catheter ablation procedures at the Johns Hopkins Hospital. Criteria for inclusion were patients older than 18 years old undergoing any clinically indicated left-sided catheter ablation procedure that had either ICMP or SNLV. We required that all participants had echocardiographic assessment within 1 year of the procedure day. The presence of ICMP was ascertained by a positive history for coronary artery disease and decreased left ventricular systolic function on echocardiogram, with wall motion abnormalities consistent with the distribution of coronary artery disease. Exclusion criteria were: patients younger than 18 years old, pregnancy, presentation with electrical storm, presence of cardiomyopathy other than ischemic, need for inotropic support prior to the procedure, need for mechanical circulatory support before or during the procedure and patients with congenital heart diseases. All patients gave informed consent to participate in the study. Enrollment target was a total of 20 patients (10 ICMP and 10 SNLV patients).



Clinical Protocol for Assessment of Cardiac Activation-Repolarization Dynamics

We evaluated activation-repolarization dynamics in the non-infarcted myocardium of ICMP patients and the myocardium of patients with SNLV by pacing at a fixed cycle length at progressively decreasing cycle lengths, 20 min after completion of the clinical ablation procedure. Specifically, we placed either a multi-electrode mapping catheter (Pentaray 4-4-4; Biosense Webster or LiveWire; Abbott), or a standard 4-mm tip ablation catheter with 2 mm inter-electrode spacing (Thermocool; Biosense Webster, Inc.) in an area (remote from scar in ICMP patients) with a bipolar signal voltage amplitude >1.5 mV. For each patient only one of either an ablation or a multi-electrode catheter was used for data collection. A multi-electrode catheter was used if the operating electrophysiologist had deemed it necessary for clinical/procedural purposes. We then paced at a fixed cycle length the patient from a catheter placed in the RV apex for 20 beats at cycle lengths decrementing from 600 to 350 ms with a step of 50 ms. These pacing maneuvers were performed with intervals of 15 s to a few minutes, allowing for blood pressure recovery in case the blood pressure dropped with fast pacing. We recorded UniEGM from the mapping or ablation catheter during burst pacing (CardioLab Recording Systems; GE Healthcare). Signals were recorded from all electrodes at a fixed catheter location in the left ventricle and catheter stability during recordings was confirmed fluoroscopically. The sampling frequency of the recorded signal was 977 Hz. The recorded signal was filtered using a high-pass filter at 0.05 Hz, a low-pass filter at 150 Hz and a notch filter at 60 Hz (CardioLab Recording Systems; GE Healthcare).



Signal Processing to Obtain APDR Curves

To construct clinically obtained APDR curves, we approximated the action potential duration (APD) at each pacing cycle length and location using the activation-recovery interval (ARI) method on the recorded UniEGMs. We analyzed the electrograms from each recording site of the multi-electrode catheter separately. The ARIs at each cycle length was assessed using the Wyatt method (Millar et al., 1985; Haws and Lux, 1990; Yue et al., 2004; Coronel et al., 2006; Potse et al., 2009). ARI was defined as the interval between the steepest negative slope (min dV/dt) of the UniEGM ventricular activation component and the steepest positive slope (max dV/dt) of the UniEGM ventricular repolarization component. ARIs obtained from experimental and clinical measurements have been extensively validated as a surrogate measure of APD (Millar et al., 1985; Haws and Lux, 1990; Yue et al., 2004; Coronel et al., 2006; Potse et al., 2009).

To maximize accuracy and reproducibility of ARI measurement, we extracted ARI from the recorded UniEGMs using a custom-made, semi-automatic approach that combined: (a) signal post-processing to attenuate experimental noise and improve ARI detection accuracy (van Duijvenboden et al., 2015); and (b) a template-based method to enhance reproducibility in the presence of temporal lability of ARI intervals (Berger et al., 1997; Berger, 2003). The details and a schematic of this approach can be found in Supplementary Materials and Methods and Supplementary Figure 1.

To assess the APDR intercept and slope of the myocardium of patients with ICMP and SNLV, for each recording, we plotted the ARI of each beat against its preceding diastolic interval (DI), constructing a clinically obtained APDR curve. We excluded from analysis the first three beats and the last beat of each pacing burst, to remove UniEGM waveforms that were not at steady-state. A logarithmic curve was fitted to the measured ARI and its preceding DI. Since ARI approximates APD (Millar et al., 1985; Haws and Lux, 1990; Yue et al., 2004; Coronel et al., 2006; Potse et al., 2009), the intercept and slope of the fitted curve approximate the intercept and slope of the average APDR at the location of the recording. To control for heteroskedasticity that is inherent in these data, we fitted these curves using a bisquare robust regression approach (MATLAB, Natick, MA, United States). Only recordings that yielded a regression coefficient of determination R2 > 50% were used in analysis.



Statistical Analysis

Baseline characteristics are presented stratified by ICMP/SNLV status. Continuous variables are presented as median (inter-quartile range) and categorical variables as count (percentage). Comparisons between baseline characteristics in the ICMP and SNLV groups are performed using the Wilcoxon rank-sum test for continuous variables and the Pearson’s Chi-squared or Fisher’s exact test for categorical variables. ARI and DI for each pacing cycle length is reported as mean ± SEM. To compare APDR intercept and slope between ICMP and SNLV groups we used linear mixed-effects models. We used this approach to account for the fact that for each patient we had multiple measurements (multiple simultaneous recordings per patient). ICMP/SNLV status was introduced as a fixed effect in the model and patient number as a random effect. With this approach each electrode recording was nested within each patient and each patient was classified by the ICMP/SLNLV status. Robust variance-covariance matrix estimators were used. We performed sensitivity analysis by repeating the mixed model analysis after excluding patients with atrial fibrillation, patients taking any membrane active anti-arrhythmic medication (class I, class III, or ranolazine), the patient with the highest and lowest APDR slope, women (since we were unable to enroll women in the ICMP cohort), and restitution curves that had a regression coefficient of determination <60, 70, 80, and 90%. The effect of patient diagnosis [premature ventricular complex (PVC) vs VT] and catheter selection (Pentarray vs Livewire, vs ablation catheter) was examined, by introducing these as fixed effect co-variates in the mixed model analysis. All p-values are two-sided, and the statistical significance criterion was set at an alpha of 0.05. We performed all statistical analysis using Stata version 14.2 (StataCorp, College Station, TX, United States).



Development of Action Potential Models Incorporating Patient-Derived APDR Using GA

The APDRs obtained as described above are surrogates of cellular activation-repolarization dynamics. In order to develop ICMP and SNLV action potential models we used average APDR derived from the ICMP and SNLV cohorts. Next, we used these APDRs to construct populations of action potential models of ICMP and SNLV patients that capture APDR properties. Those action potential models were, in turn, used to characterize the contribution of APDR to the emerging tissue-level EP behavior and arrhythmogenesis in ICMP.

We used GA to construct the action potential models. GAs are biologically inspired metaheuristics that are appropriate for fitting action potential models to experimental measurements, since action potential models have parameter spaces that are highly nonlinear, frequently discontinuous, with multiple local minima. To proceed with action potential model development from the clinical data using GA, we needed a baseline action potential model with small number of variables and parameters that would allow for computationally tractable execution of the GA. For this, the endocardial formulation of the Bueno-Orovio-Fenton-Cherry (BOFC) action potential model was selected (Bueno-Orovio et al., 2008). The BOFC (also known as the “Minimal Ventricular Model”) is a phenomenological action potential model, that can accurately replicate the ventricular myocyte electrophysiologic behavior, while having a small number of variables and parameters (4 state variables and 28 parameters). Details regarding the numerical aspects of our GA algorithm can be found in Supplementary Materials and Methods.

We designed and optimized a GA that incorporates the clinically obtained APDR curves in the BOFC model using the local-iterative approach (Groenendaal et al., 2015; Krogh-Madsen et al., 2017). A complete discussion on the design, optimization, and implementation of the GA can be found in Supplementary Materials and Methods and Supplementary Figure 2A. Briefly, GAs iteratively assesses the “fitness” of a population of model parameters and uses the principles of natural selection to derive the optimal parameter set. Specifically, our GA generated a population of 1512 random parameter sets. These parameters were used in cell-level simulations, using a dynamic restitution protocol, to produce an APDR. The simulation-derived APDR was compared to the one obtained from the clinical measurements in SNLV or ICMP patients and the error between these two curves was expressed as mean absolute error. The GA sought a parameter set that minimizes this error.



Classification of the Populations of GA-Derived Models Using Machine Learning

Optimization problems of non-linear differential equations, such as the ones that describe cardiac action potential, do not have unique solutions, given a finite amount of data. Consequently, GAs yield a population of suitable derived models. These derived models may have different emergent behaviors when used in tissue-level simulations. Executing simulations with all derived models would capture the variability with respect to emergent behaviors but would be computationally not tractable. To circumvent this, we used an unsupervised machine learning approach to explore the entire population of derived models and group models based on the degree of dissimilarity with respect to their parameter values.

We explored the hierarchical organization and evaluated for the presence of clustering in the population of derived models yielded by our GA using agglomerative hierarchical clustering (AHC) (Zepeda-Mendoza and Resendis-Antonio, 2013), an unsupervised machine learning approach. AHC groups data over a variety of scales by creating a hierarchical cluster tree (dendrogram). We then cut the hierarchical tree such that the data are partitioned in the most dissimilar clusters. This resulted in the initial parameter space to be divided in the most-dissimilar parameter spaces. The centroid of each parameter space was used in cell-level and tissue-level simulations. To understand the uncertainty related to model development from clinical data, we performed cell-level and tissue-level simulations, using the best-fit models derived from the GA and the centroids of the parameter spaces derived from AHC.



Cell-Level Simulations to Evaluate the Dynamic Onset of APD Alternans

To characterize the pro-arrhythmic substrate of ICMP patients, we performed cell-level and tissue-level simulations using the best fit and each of the most dissimilar action potential models derived from our GA. In cell-level simulations a single cell was paced using a decremental dynamic restitution protocol to explore the onset of APD alternans. The cell was paced for 10 beats at cycle lengths starting at 620 ms and decrementing to 260 ms with a step of 5 ms. We used the last two beats of each 10-beat burst for APD assessment. We defined APD at the 10% of the peak action potential voltage (APD90). We constructed bifurcation plots of APD over cycle length and we marked the cycle length where APD alternans occurred. APD alternans were defined if the difference of the APD between two consecutive beat was greater or equal to 2 ms for two consecutive pacing cycle lengths. Earlier onset of APD alternans (i.e., with shorter cycle length) suggests a more proarrhythmic behavior.



Tissue-Level Simulations to Characterize the Emerging EP Dynamic Behaviors in ICMP

To characterize the contribution of ICMP APDR to the dynamic EP behaviors emerging at the tissue level, we performed tissue-level simulations using the best fit and each of the most dissimilar action potential models derived by our GA. These simulations were performed on a 2 cm × 2 cm × 0.25 mm isotropic cardiac tissue slab. The cells were pre-paced of the slab for 100 beats at a cycle length of 600 ms to achieve steady-state. First, we performed a restitution protocol on tissue-level simulations using the same settings with what we describe in cell-level simulations. The purpose of this was to compare the APDR of the GA-derived models in tissue-level simulations with that of the cell-level simulations. We then performed a S1S2 cross-field stimulation protocol to assess for inducibility of sustained functional re-entry. Specifically, we delivered S1 as a single stimulus at the lower edge of the slab (area of stimulation: 2 cm × 0.5 mm × 0.25 mm) and S2 in a rectangular area in the lower left corner of the slab (area of stimulation: 1 cm × 1 cm × 0.25 mm). We tested S1S2 coupling intervals starting from 500 ms and decreasing to 50 ms by a step of 5 ms. The model was defined as inducible for a given S1S2 coupling interval, if sustained functional re-entry was induced and persisted for >2 s in simulation. As we conduction velocity was not assessed in our cohort, we executed the above-described tissue-level simulations over a wide range of conductivity values (from 0.001 to 0.012 in steps of 0.0005 Siemens/m). This conductivity range corresponds to the clinically observed conduction velocity range of 17–74 cm/s. For each conductivity value, we defined the range of S1–S2 coupling intervals that the cross-field simulation resulted in sustained functional re-entry. A wider range of coupling intervals that result in sustained functional re-entry suggests a more proarrhythmic behavior.



RESULTS


Patient Characteristics

We enrolled 10 ICMP patients and 12 patients with SNLV in this study. Patient characteristics are summarized in Table 1. Mean age was 62–69 years old and males were over-represented in the ICMP cohort compared to the SNLV cohort (100 vs. 41%, respectively). Left ventricular ejection fraction was significantly lower (35 vs 60%, p < 0.001) and left ventricular end-diastolic diameter was significantly higher (5.6 vs 4.75 cm, p = 0.002) in ICMP patients compared to SNLV. All ICMP patients and 9/12 SNLV underwent ablation for VT or PVC. 3/12 patients with SNVL underwent AF ablation procedure. VT was the indication of the ablation procedure more frequently in ICMP patients compared to SNLV (80 vs 16.7%, p = 0.009). All ICMP patients and 50% with SNLV were on beta blockers. Four ICMP patients and one with SNLV were on amiodarone. A similar percentage of ICMP and SNLV patients had APDR data collected using a multi-electrode ablation catheter vs an ablation catheter (for multi-electrode catheter 60 vs 50%, p = 0.69, Supplementary Results).


TABLE 1. Baseline characteristics of patients with ICMP and SNLV.
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ICMP Patients Have a Steeper APDR Compared to Those With SNLV

A total of 231 APDR curves were used in this analysis (103 from ICMP). Mean ARI over mean DI in ICMP patients and SNVL is presented in Figure 1 and Table 2. When pacing at a cycle length of 600 ms, ARI was similar between SNLV and ICMP (269.1 ± 21.8 vs 266.8 ± 19.1 ms, respectively). The restitution curves separated when pacing at 500 ms with ARIs of 253.0 ± 15.6 and 243.8 ± 23.3 for SNLV and ICMP, respectively. The overall variability of ARI is significantly higher in ICMP patients compared to SNLV for the entire range of pacing cycle lengths (SD 19.1–40.4 vs 12.0–21.8 ms, Table 2).


[image: image]

FIGURE 1. (A) ARI over DI in patients with SNLV (blue) and ICMP (red). Points represent mean values and error bars represent 95% confidence intervals. ARI, activation recovery interval in ms; DI, diastolic interval in ms. (B) Box-plots demonstrating the distribution of clinically obtained APDR intercept (in ms) and slope (unitless) in patients with SNLV (blue) and ICMP (red). Box-plots summarize the intercept and slope of the clinically obtained APDR curve fitted at each UniEGM recording of each patient. p-values are derived from mixed model analysis as described in the main text. (C) Box-plots of the clinically obtained APDR slope in each individual SNLV and ICMP patient, demonstrating the within- and between-subject variability of clinically obtained APDR slope.



TABLE 2. Activation recovery interval and diastolic interval during different pacing cycle lengths in patients with ICMP and SNLV.

[image: Table 2]The APDR curve fitted to the clinical data was significantly steeper in ICMP patients compared to SNLV. In mixed model analysis, ICMP patients had a significantly higher APDR slope [steeper by 30.8 ± 10 (38%), p = 0.002] and a significantly lower intercept (by 182.3 ± 57.7 ms, p = 0.002). Variance decomposition analysis demonstrated that APDR slope of ICMP patients had higher within-subject and between-subject variance compared to SNLV (within-subject SD of 29.1 vs 6.4 and between-subject SD of 29.1 vs 13.9 for ICMP and SNLV, respectively). Sensitivity analysis revealed that ICMP patients have a significantly steeper APDR slope compared to those with SNLV even after exclusion of patients with AF, patients taking any membrane-active antiarrhythmic medication, patients with the highest and lowest APDR slope, and women (difference in slope of APDR – SNLV 17.9–37.7, Supplementary Table 1). APDR remained significantly steeper in ICMP patients compared to SNLV even after adjusting the mixed-model analysis for catheter type (APDR slope difference: 27.3 ± 11.1, p = 0.014), or VT/PVC status (APDR slope difference: 26.0 ± 11.1, p = 0.02). Patients that underwent VT ablation had on average similar APDR intercept and slope with patients that underwent PVC ablation.



ICMP Models Have Significantly Different Parameters Compared to SNLV Models

The GA converged at 174 generations during SNLV model derivation and at 227 generations during ICMP model derivation (Supplementary Figure 2B). The action potential waveforms of the derived models are shown in Figure 2. Action potential biomarkers of the SNLV and ICMP model are presented in Table 3. Parameters describing the depolarization phase of the action potential are similar between the SNLV and ICMP model. APD is shorter for the ICMP compared to the SNLV model. The ionic currents of the SNLV and ICMP models are shown in Figure 2. The amplitude and duration of the fast inward current was similar between SNLV and ICMP models. The amplitude of the slow inward and slow outward currents was decreased in ICMP compared to SNLV.
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FIGURE 2. (A) Action potential waveform of the SNLV and ICMP models. (B) Fast inward current waveform of the SNLV and ICMP models. (D) Slow inward current waveform of the SNLV and ICMP models. (E) Slow outward current waveform of the SNLV and ICMP models. Waveforms in (A,B,D,E) are derived from cell-level simulations during pacing at 500 ms. Bold blue and red lines represent the waveforms of the best fit models, while light blue and red lines represent the wavefronts using the centroids of the six highest clusters. Jitter has been applied to the waveforms using the centroids of the six highest clusters to facilitate visualization. (C) Fold-difference of the parameters of SNLV (blue) and ICMP (red) compared to the endocardial parameter set of the baseline BOFC model. The parameter τw1− of SNLV and ICMP models is 16.6- and 16.7-fold higher than the baseline BOFC model but the bar chart has been truncated at 8 for better visualization of the remaining parameters. (F) Fold-difference of the parameters of ICMP compared to SNLV models.



TABLE 3. Action potential biomarkers for the base BOFC and derived SNLV and ICMP models.

[image: Table 3]The parameters of the best fit model for SNLV and ICMP GA-derived models are presented in Supplementary Tables 2, 3, respectively. Overall, the parameters of GA-derived SNLV and ICMP were significantly different (up to 16.7-fold) compared to the baseline BOFC model. The parameters that deviated the most from the baseline BOFC model were τw1− (16.6 and 16.7 fold-change),τsi (3.2 and 6.1 fold-change), k_s (3.7 and 4.0 fold-change), and τs2 (3.8 and 2.7 fold-change for SNLV and ICMP, respectively, Figure 2C). τw1− controls the inactivation gate of the slow inwards depolarizing current,τsi, directly controls the slow inwards depolarizing current, k_s and τs2 control the activation gate of the slow inward depolarizing current. The parameters that deviated the least from the baseline BOFC model were τw2−, [image: image],kso, and us. Comparing the parameter sets of GA-derived SNLV and ICMP models, most parameters were significantly different, by 0.4 to 1.9-fold (Figure 2F). The parameters that had the highest fold-change were [image: image] (1.8-fold increase) and τsi (1.9-fold increase). These parameters control the inactivating gate of the slow inward current ([image: image]), and the slow inward current itself (τsi), respectively.



ICMP Models Result a More Pro-arrhythmic Behavior Compared to SNLV Models

In single cell simulations, GA-derived ICMP models developed APD alternans at a slower pacing cycle length compared to SNLV (390 vs 340 ms, Figure 3A). In both ICMP and SNLV models, APD alternans developed with a fork-type bifurcation and the amplitude of the alternans monotonically increased as the pacing cycle length decreased. Tissue-level simulations had similar APDR with cell-level simulations (Supplementary Figure 3).


[image: image]

FIGURE 3. (A) Cell-level simulations of the best-fit GA-derived SNLV (blue) and ICMP (red) model. The first row demonstrates the APDR. The pink line is the patient derived average APDR curve. These plots demonstrate good fit of the models to patient data. The second row demonstrates bifurcation plots for SNLV and ICMP models. The onset of APD alternans (development of bifurcation) is annotated. APD alternans occur at slower cycle lengths in the ICMP model compared to SNLV suggesting a more proarrhythmic behavior. (B) Tissue-level simulation using a conductivity of 0.009 S/m and S1S2 interval of 330 ms for the SNLV model and 295 ms for the ICMP model. Non-sustained functional re-entry was induced in the SNLV model while sustained functional re-entry was induced in the ICMP. Upper row: snapshot of the simulation, color represents transmembrane voltage in arbitrary units. Lower row: activation isochrone maps for simulations using SNLV and ICMP models; each isochrone represents 10 ms. (C) Range of functional re-entry inducibility of the SNLV (blue) and ICMP (red) best-fit models. X-axis represents different tissue conductivity values in Siemens/m and Y-axis represents S1S2 coupling intervals that resulted in sustained functional re-entry. The best-fit ICMP model has a wider range of S1–S2 intervals, for all conductivity values, that result in sustained functional re-entry suggesting a more proarrhythmic behavior.


In tissue level simulations, the ICMP model was inducible for sustained functional reentry over a wider range of S1S2 coupling intervals over the entire conductivity range, compared to the SNLV model (Figures 3B,C). An example of that is illustrated by Supplementary Videos 1 and 2. Using a conductivity of 0.009 S/m (corresponding to a conduction velocity of 62–64 cm/s) the ICMP model developed sustained functional re-entry at a S1S2 coupling interval of 295 ms (Supplementary Video 1). The single spiral wave that was induced in this case exhibited quasi-stability. For the same S1S2 coupling interval, the SNLV model was not inducible, and it developed non-sustained (<2 s) functional re-entry at an S1S2 of 330 ms (Supplementary Video 2).



The Population of GA-Derived Models Has Consistent Emergent Proarrhythmic Behavior Across Clusters

The population of SNLV and ICMP action potential models were successfully clustered using AHC. The cophenetic correlation coefficient was 0.97 and 0.98 for SNLV and ICMP, respectively, which suggests excellent hierarchical clustering. We present the clustering dendrograms of the SNLV and ICMP population of GA-derived models in Supplementary Figure 4. Based on this dendrogram analysis we partitioned the population of GA-derived model to the 2 and 4 most dissimilar clusters. Clustering of the GA-derived models was asymmetric, with the vast majority of models clustering in one large cluster (number of GA-derived models corresponding to the highest four branches of the dendrogram was 1506, 3, 2, and 1, for SNLV, and 1506, 4, 1, and 1 for ICMP). Considering the highly skewed distribution of individuals corresponding to the highest four branches of the dendrogram, we further performed sensitivity analysis by constraining the AHC analysis to GA-derived models with parameter values within the 99th and 95th percentile of the entire population of GA-derived models. This allowed us to control for the influence of extreme parameter values in AHC. In sensitivity analysis, when applying AHC to GA-derived models with parameter values within the 99th percentile of the GA-derived model population the number of models corresponding to the highest four branches was: 1283, 4, 2, and 2 (SNLV) and 1265, 5, 2, and 2. For parameter values within the 95th percentile this number was 1005, 78, 26, and 2 (SNLV), and 1120, 63, 49, and 3 (ICMP).

In cell-level simulations using the parameters at the centroid of the parameter space for the two and four clusters with the highest hierarchy (and most dissimilarity), the proarrhythmic behavior of the models was similar to that of cell- and tissue-level simulations using the best-fit derived model (described in the section above). Specifically, in cell-level simulations, the ICMP models developed APD alternans earlier (385–400 ms) compared to the SNLV models (355 ms, Figure 4).


[image: image]

FIGURE 4. Cell-level simulations in the 2 and 4 highest level clusters of (A) SNLV and (B) ICMP models. In the center of each sub-plot we show the four highest-level clusters of the dendrogram produced by AHC. The two highest-level clusters are noted as 2/1 and 2/2 and the four highest level clusters are noted as 4/1, 4/2, 4/3, and 4/4. Note that ICMP clusters 2/2 and 4/4 are identical since no bifurcation of the dendrogram occurs at this level. The bifurcation plots surrounding the dendrograms are labeled after the cluster that they have been created from (X-axis is pacing cycle length in ms and Y-axis is APD in ms). For all clusters, onset of alternans occurred at ICMP models at longer cycle length intervals compared to SNLV models (385–400 ms vs 355 ms).


In tissue-level simulations the ICMP models developed sustained functional re-entry over a wider range of S1S2 coupling intervals for all conductivity values, compared to SNLV (Figure 5). The results of cell-level and tissue-level simulations using the clusters derived from sensitivity analysis (parameters constrained to the 99th and 95th percentile of their distribution) were similar to those when examining the entire population of GA-derived models.
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FIGURE 5. Tissue-level simulations in the two and four highest-level clusters of (A) SNLV and (B) ICMP models. In the center of each sub-plot we show the four highest-level clusters of the dendrogram produced by AHC. The two highest-level clusters are noted as 2/1 and 2/2 and the four highest clusters are noted as 4/1, 4/2, 4/3, and 4/4. Note that for ICMP clusters 2/2 and 4/4 are identical since no bifurcation of the dendrogram occurs at this level. Each plot surrounding the dendrogram shows the S1–S2 coupling intervals that resulted in sustained functional re-entry for different conductivity values and is labeled after the cluster that it has been created from (X-axis represents different tissue conductivity values in mS/m and Y-axis represents S1–S2 coupling intervals that resulted in sustained functional re-entry). For all clusters, ICMP models developed sustained functional re-entry over a wider range of S1–S2 coupling intervals for the entire range of conductivity values, compared to SNLV.




DISCUSSION


Main Findings

The goal of this study was to characterize the electrical restitution properties of the non-infarcted myocardium in ICMP patients, establish a methodology that enables development of action potential models that incorporate cohort-specific APDR, and capture the uncertainty inherent to the process of model development from clinical data. Our main clinical finding is that APDR of the non-infarcted LV myocardium of ICMP patients is clinically and statistically significantly steeper compared to SNLV. This suggests that the non-infarcted myocardium of ICMP patients, despite having normal (>1.5 mV) bipolar voltage amplitude on EGMs, is remodeled and has different EP properties from SNLV. The increased within-subject variance of APDR slope in ICMP patients suggests heterogeneous substrate with respect to repolarization dynamics. Furthermore, the magnitude and statistical significance of the difference of APDR slope between ICMP and SNLV was robust in sensitivity analysis and independent of the PVC/VT status of the patients. This suggests that the underlying disease process and cardiac remodeling is what determines APDR, rather than the presenting arrhythmic phenotype.

Our main in silico finding is that GA-derived ICMP models exhibited a more pro-arrhythmic behavior in cell-level and tissue-level simulations compared to SNLV. This is the first study to show that EP measurements performed with equipment routinely available in the electrophysiology laboratory can be used to develop action potential models. The parameters of the GA-derived ICMP models were up to 1.9-fold different compared to SNLV. The steeper APDR slope present in ICMP has a critical effect in tissue-level emergent EP behavior, promoting the development of sustained functional re-entry. Although conduction velocity was not assessed in the patient cohort, we performed tissue-level analysis over a wide range of conductivity values making our results generalizable to different tissue conductivity states. These results highlight the importance of developing action potential models using clinically derived EP properties such as APDR, since generic action potential models do not capture clinically assessed EP properties of healthy or diseased myocardium.

A novel finding is that despite the variability present in the population of GA-derived models, GA-derived models can be clustered in a hierarchical cluster tree and the emergent pro-arrhythmic behavior of the highest-level (most dissimilar) clusters are similar in cell and tissue-level simulations. This suggests that: (a) there is significant redundancy built in the GA-derived models; and (b) our model development approach was reliable with small variability and uncertainty in the population of derived models. Despite variability in individual parameter values and the exact results produced by simulations using different GA-derived models, the emergent behaviors that are relevant in arrhythmogenesis were preserved.



Comparison With Results of Other Clinical Studies Assessing APDR

There are no prior studies comparing APDR of non-infarcted LV myocardium of ICMP patients to SNLV. Our results are consistent with what has been previously reported in studies assessing APDR of the RV myocardium in patients with SHD. Our ARI measurements in the LV of ICMP patients are similar to what has been previously reported using monophasic action potential (MAP) catheters in the RV of patients with SHD (274 ± 42 ms for 600 ms, 258 ± 35 ms for 500 ms, 237 ± 29 ms for 400 ms, and 219 ± 24 ms for 330 ms, n = 42) (Selvaraj et al., 2007; Dorenkamp et al., 2013). Koller et al. (2005) using MAP catheters, evaluated APDR in SHD patients (n = 24) and SNLV (n = 12). Similar to our results, there was no difference in baseline APD between SNLV and SHD patients, when pacing at 600 ms. The reported baseline APD was similar to ours (277 ± 5 ms for SHD and pacing cycle length of 600 ms). However, in our study the restitution curves of SNLV and ICMP separated at longer DIs compared to Koller et al. (2005). Our SNLV cohort had tighter confidence intervals for both DI and ARI. Furthermore, we demonstrated a robust and statistically significant difference in APDR slopes between patients with SNLV and ICMP, while the study of Koller et al. (2005) failed to show that. This may be due to: (a) our SNLV cohort was more homogeneous compared to that of Koller et al. (2005); (b) patients with non-ICMP may have different APDR properties compared to ICMP and Koller et al. (2005) analyzed both groups combined; and (c) RV septal APDR may be affected differently compared to LV myocardium in ICMP.



Mechanistic Insights of APDR Dynamics in ICMP

The steeper APDR observed in patients with ICMP can be attributed to changes in the autonomic nervous tone and/or electrophysiologic remodeling present in patients with ICMP. Although the scope and design of this study do not allow for conclusions regarding the cellular mechanisms underlying the steeper APDR curves observed in ICMP, our findings can be hypothesis generating. The steeper APDR described in patients with ICMP is consistent with findings in patients with heart failure (Koller et al., 2005; Selvaraj et al., 2007; Dorenkamp et al., 2013), rather than experimental models of acute ischemia (Dilly and Lab, 1988). Patients with heart failure have augmented sympathetic tone (Florea and Cohn, 2014). Activation of the sympathetic system resulted in increased steepness of the APDR slope in a human in vivo study using MAP recordings from the right ventricle and isoprenaline or adrenaline administration (n = 18) (Taggart et al., 2003). Although the electrophysiological remodeling in humans with heart failure (including ICMP) remains to be elucidated, limited data suggest: (a) decrease in delayed rectifying K+ currents (Beuckelmann et al., 1993); (b) activation of late Na+ currents (Horvath and Bers, 2014); and (c) increase in intracellular Ca++ and Ca++ transients in heart failure (Gorski et al., 2015). Experimental data from animal studies support that all these changes can result in steeper APDR: (a) inhibition of I Ks using chromanol 293B resulted in a steeper APDR curve in a swine myocardial tissue study (Jing et al., 2014); (b) selective inhibition of late sodium currents with GS967 resulted in flattening of the APDR in Langendorff-perfused rat hearts (Pezhouman et al., 2014); and (c) Suppression of Ca++ transients with thapsigargin and ryanodine resulted in flattening of the maximum APDR slope in patch-clamped rabbit ventricular myocytes (Goldhaber et al., 2005).



Comparison With Other Studies of Model Fitting to Clinically Assessed APDR

There are no other studies to date that have fitted action potential models (other than the Mitchel-Shaffer model) to APDR of ventricular myocardium of SNLV and ICMP patients. We will not discuss fitting of the Mitchel-Schaffer model (Relan et al., 2011), since in this model APDR slope can be directly calculated from model parameters (Mitchell and Schaeffer, 2003), thus its model fitting methods are not applicable to any other action potential model. GAs have been previously used to fit action potential models to experimental measurements (Syed et al., 2005; Bot et al., 2012; Kaur et al., 2014; Groenendaal et al., 2015; Cairns et al., 2017; Devenyi et al., 2017), but this is the first study to use GA on clinically obtained APDR. Lombardo et al. (2016) fitted the Fenton-Karma and Koivumäki atrial models to patient-specific APDR, action potential shape (obtained with MAP catheters), and conduction velocity restitution from patients with atrial fibrillation. They used simulated annealing for model derivation. They demonstrated that patient-specific models exhibit different dynamics compared to baseline models. In our model derivation algorithm, we did not incorporate a clinically derived action potential morphology or conduction velocity restitution because they cannot be reliably assessed with clinically available methods. We did not want to constrain our GA to measurements with high experimental uncertainty: (a) MAP catheters have not been validated to capture the waveform of the cellular action potential and in a prior study MAP-derived waveforms have different morphology compared to true trans-membrane potential waveforms (Kondo et al., 2004); (b) accurate estimation of conduction velocity requires construction of high-resolution isochrones and patient-specific geometries (Cantwell et al., 2015). Contrary to our study, Lombardo et al. (2016) did not have a control group to compare the emergent dynamics between healthy and diseased. Last, Lombardo et al. (2016) report the dynamics of the “best-fit” derived model, and they do not assess for the uncertainty in the population of derived models yielded by simulated annealing.



Significance for Virtual Heart Modeling

Our study helps overcome critical barriers to incorporating the EP remodeling of ICMP patients in cardiac action potential models. First, there is a paucity of studies assessing the APDR of the non-infarcted LV myocardium in ICMP patients. In this study we provide absolute values of APD and APDR slope of the non-infarcted myocardium of the LV of ICMP patients. We also demonstrate a wide within- and between-subject variance in APD/APDR values of the non-infarcted LV myocardium in ICMP patients. This variance reflects the heterogeneous substrate in ICMP patients and can be used in variability and uncertainty quantification studies of organ-scale simulations performed for VT localization and ablation planning in ICMP patients.

Second, there are no established methods for incorporating clinically assessed APDR in models of cardiac EP. Previous clinical studies have adapted the Mitchell-Schaffer model to reproduce clinically assessed APDR by either manually adjusting model parameters (Keldermann et al., 2008; Chen et al., 2016), or by using deterministic optimization methods (Relan et al., 2011). However, the Mitchell-Schaffer model is unique in having an algebraic expression of its APDR slope directly derived from the model parameters (Mitchell and Schaeffer, 2003) and thus these methods cannot be applied to any other action potential model. In this study, we provide a computational framework and pipeline that enables development of cardiac action potential models to clinically assessed APDR. We demonstrated that GA-derived models capture the disease-specific pro-arrhythmic phenotype. Whole heart simulations using GA-derived action potential models have the potential to be more accurate in predicting the risk and location of VTs, as well as to predict the transition of VT to VF, but this needs to be tested in future studies. Although our study focuses on ICMP and uses the BOFC as a baseline model, the pipeline that we developed can be used in any myocardial disease that affects ventricular APDR and any phenomenological or biophysically detailed cardiac action potential model.

Last, there is a significant uncertainty associated with the process of model development form experimental data. This stems from the facts that: (1) there is uncertainty with respect to variability in experimental measurements; and (2) optimization problems involving non-linear differential equations do not yield unique solutions. Stochastic optimization approaches have been used in pre-clinical studies to derive populations of models that reproduce experimental APDR (Groenendaal et al., 2015; Cairns et al., 2017; Devenyi et al., 2017). There is considerable variability in the model dynamics amongst different models yielded by this approach (Cairns et al., 2017), and there have been no studies examining for common emergent behaviors amongst these parameters. As described in the following section, with this study we couple machine learning with computer-based simulations to establish a pipeline of action potential model development that accounts for the uncertainty related to the process of model development from clinical data.



Significance for Clinical Risk Stratification Using Virtual Heart Modeling

There are no studies assessing whether the invasively acquired slope of the APDR is related to the risk for hard clinical outcomes such as the onset of ventricular arrhythmias and cardiac death. Previous studies assessing ECG-derived APDR surrogates report increased risk for ventricular arrhythmias or death in patients with ICMP (Nicolson et al., 2014) and non-ICMP (Nicolson et al., 2021) who have steep restitution slopes. However, the hazard ratios reported are 4–4.1 and the ROC 0.61, suggesting that restitution slope alone has at best, modest predictive value. In addition to APDR slope, APDR slope spatial dispersion is critical for arrhythmogenesis. Virtual Heart modeling that incorporates patient and site specific APDR has the potential to be a superior risk prediction tool to static biomarkers such as the APDR slope, and other well-established risk predictors of ventricular arrhythmias or death such as LV ejection fraction and myocardial fibrosis. In a previous study by our group, computer-based simulations in patients with ICMP significantly overperform well-established biomarkers such as left ventricular ejection fraction and myocardial fibrosis on MRI (Arevalo et al., 2016). This study indicates that Virtual Heart modeling that has as an input patient-specific distribution of fibrosis, yields a significantly higher predictive value compared to fibrosis itself. Virtual Heart modeling simulations that incorporate patient-specific distribution of APDR have the potential to yield a higher predictive value compared to APDR itself, but this needs to be examined in future studies.

In this study we developed action potential models using average, cohort-specific, clinically obtained APDR, but this pipeline could be used for development of action potential models to patient-specific APDR and even region-specific APDR (within the same patient), capturing the spatial dispersion of APDR. APDR heterogeneity is a critical substrate for arrhythmogenesis and degeneration of VT to VF (Banville and Gray, 2002; Keldermann et al., 2008) and it is not currently incorporated in virtual heart models. Currently, having patient-specific or region-specific APDR information is not clinically feasible without an invasive EP procedure. However, with advances in electrocardiographic imaging (Cluitmans et al., 2018), non-invasive imaging of repolarization may be feasible in the near future. Clinical assessment of APDR would then be possible to be performed non-invasively during non-invasive programmed electrical stimulation. The framework that we present here could be used to develop virtual heart models from non-invasively acquired APDR data. However, further optimization of the methodology that we present here would be needed for such a task, since it is computationally intense.



Significance of Establishing a Methodology That Captures the Uncertainty Inherent to Action Potential Model Development

Coupling machine learning with computer-based simulations is an emerging approach as it provides means to comprehensively analyze the wealth of high-dimensional, complex data produced by simulations (Cantwell et al., 2019). In this work we demonstrate a novel application of coupling machine learning with computer-based simulations. We show that machine learning can be used to effectively summarize and cluster the population of models derived from a stochastic optimization method. In our study, similar to other studies (Groenendaal et al., 2015; Cairns et al., 2017; Devenyi et al., 2017; Krogh-Madsen et al., 2017), there is considerable variability in the population of GA-derived models. Reporting the dynamics of the “best-fit” GA-derived model is not adequate since a unique “best-fit” model does not truly exist. AHC allows for a simple visualization of the distance and relationship between different parameter sets in the entire population of derived models, effectively organizing the space of derived models into distinct clusters. The GA-derived model clusters that are most dissimilar can be identified using dendrograms and the cophenetic distance metric. Simulations can be executed with the parameter space centroids of these clusters and the results of these simulations can be compared to assess for differences in model dynamics.

This is important because simulations using the parameter space centroids of clusters produce the average dynamics of the population of derived models rather than the dynamics of the non-unique “best-fit” model. If the emergent dynamics of interest are the same between the best-fit model and the most dissimilar clusters, this suggests a reliable model development with small variability and uncertainty in the population of derived models. Alternatively, if the emergent dynamics of interest are different between the best-fit derived models and/or different clusters, this suggests that either the model derivation method was inadequate or that there is more than one emergent dynamic behavior in the derived model population. If there are concerns of inadequate model development, then a more detailed sensitivity analysis and tuning of the model development algorithm is warranted. Otherwise, the presence of more than one emergent dynamic behaviors among different clusters demonstrates the variability and uncertainty present in the derived model population with respect to the emergent behaviors of interest. Should such derived models be used in Virtual Heart modeling studies for different hypothesis testing, then simulations should be executed using the centroids of clusters with different emergent behaviors. This will result in the uncertainty present in the population of derived models to be captured in the Virtual Heart modeling study.



Limitations

This study has several limitations. First, we developed action potential models using cell-level simulations, whereas the clinical measurements represent a tissue-level behavior. Development of action potential models using tissue-level simulations might yield different parameter results. However, considering the large population of individuals and generations that we used in the GA, model development using tissue-level simulations would be computationally not tractable. To address this limitation, we performed tissue-level simulations to assess the APDR of GA-derived models. Both for SNLV and ICMP models, APDR in tissue-level was similar to that of cell-level simulations. Second, we did not incorporate action potential morphology specific to SNLV and ICMP patients in the model development process. We rather used the same action potential morphology template, derived from the baseline BOFC model, to constrain the model development process (see Supplementary Materials and Methods). Incorporating different action potential morphologies may have resulted in different parameter estimates. Currently there are no clinically available methods to accurately assess the action potential morphology. Third, the differences in SNLV and ICMP model parameters do not necessarily correspond to in-vivo difference in cellular EP. Phenomena such as post-repolarization refractoriness cannot be explicitly captured. Development of action potential models that capture true cellular EP would require cellular EP measurements and maneuvers (Groenendaal et al., 2015; Devenyi et al., 2017) that were outside the scope of this study. Last, model development using the approach that we present here is computationally intense. This precluded us from developing multiple patient- and site-specific models that could then subsequently used in tissue level simulations that would incorporate heterogeneity. The focus of this study was to demonstrate feasibility and not to optimize performance. Fewer iterations from those that we performed in our GA may be adequate to obtain models that capture the pro-arrhythmic behavior of the substrate, but this needs to be tested in future studies.



CONCLUSION

This is the first study to characterize the electrical restitution properties of the non-infarcted LV myocardium of ICMP patients. We clinically characterized the pro-arrhythmic substrate of ICMP patients and demonstrated that it has a steeper APDR compared to SNLV, indicating the presence of EP remodeling in the non-infarcted LV myocardium. In silico, we demonstrated that ICMP APDR contributes to a more pro-arrhythmic tissue-level behavior. We coupled virtual heart modeling with machine learning to establish a robust and reproducible methodology to incorporate easily obtainable clinical EP measurements to cardiac action potential models and capture the uncertainty inherent to the model development process. We demonstrated that action potential models derived from ICMP patients capture the pro-arrhythmic potential of the underlying disease in simulations. Importantly, we showed that despite the variability in the derived action potential model population, even the most dissimilar clusters formed by this population exhibit the same emergent pro-arrhythmic behavior in cell- and tissue-level simulations. The methods that we present here can be used for model development in any disease state that affects ventricular repolarization and restitution, contributing to the emergent field of precision medicine. Virtual heart models incorporating disease-specific EP properties have the potential to result in improved risk stratification and therapeutic planning and this is the focus of our future research.
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Calibration of cardiac electrophysiology models is a fundamental aspect of model personalization for predicting the outcomes of cardiac therapies, simulation testing of device performance for a range of phenotypes, and for fundamental research into cardiac function. Restitution curves provide information on tissue function and can be measured using clinically feasible measurement protocols. We introduce novel “restitution curve emulators” as probabilistic models for performing model exploration, sensitivity analysis, and Bayesian calibration to noisy data. These emulators are built by decomposing restitution curves using principal component analysis and modeling the resulting coordinates with respect to model parameters using Gaussian processes. Restitution curve emulators can be used to study parameter identifiability via sensitivity analysis of restitution curve components and rapid inference of the posterior distribution of model parameters given noisy measurements. Posterior uncertainty about parameters is critical for making predictions from calibrated models, since many parameter settings can be consistent with measured data and yet produce very different model behaviors under conditions not effectively probed by the measurement protocols. Restitution curve emulators are therefore promising probabilistic tools for calibrating electrophysiology models.
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1. INTRODUCTION

Cardiac electrophysiology models reconstruct electrical activation of the heart at cell, tissue, and organ scale. Biophysically detailed cardiac cell models aim to represent how ion channels, pumps, and exchangers in the cell membrane co-operate to produce an action potential and calcium transient (Fink et al., 2011). While they can be a good mechanistic representation, these models have large numbers of parameters, which may not all be identifiable from data (Whittaker et al., 2020), and when combined with a tissue model there are complex relationships between model parameter sets and emergent properties such as restitution or spiral wave stability (Cherry and Evans, 2008). Alongside biophysically detailed models of cardiac cellular electrophysiology, phenomenological models have been developed that capture action potential shape and rate dependence without an explicit representation of ion channel behavior (Fenton and Karma, 1998; Mitchell and Schaeffer, 2003; Corrado and Niederer, 2016). These models have fewer parameters than more detailed models and can be solved relatively quickly, but the association between model parameters and emergent properties remains complex (Fenton et al., 2002).

Cardiac models have the potential to be used to guide interventions in the clinic (Niederer et al., 2019). Applications in the clinical setting will require models that are not only fast running, but can also be calibrated quickly from clinical measurements to create personalized models (Sermesant et al., 2012; Boyle et al., 2021). The phenomenological Mitchell-Schaeffer model (Mitchell and Schaeffer, 2003), with relatively few parameters, may be a good candidate in this regard (Relan et al., 2010, 2011; Corrado et al., 2017). Clinical data are typically noisy and sparse so recent developments have included a set of approaches that take into account uncertainties in the data to create probabilistic models (Konukoglu et al., 2011; Coveney et al., 2020; Dhamala et al., 2020), as well as new models designed with uncertainty in mind (Pathmanathan et al., 2019).

Parameter inference methods for cardiac cell models include gradient descent (Dokos and Lovell, 2004), genetic algorithms (Groenendaal et al., 2015; Krogh-Madsen et al., 2016; Cairns et al., 2017; Smirnov et al., 2020), particle swarm (Loewe et al., 2015), multivariate regression (Sarkar and Sobie, 2010), and Markov chain Monte Carlo (Johnstone et al., 2016). In “population of models” approaches, parameter sets that are consistent with data are retained from an initially larger design spanning the parameter space (Muszkiewicz et al., 2015). However, these methods do not obtain a posterior probability distribution for the model parameters, although there have been some efforts to overcome this limitation (Tixier et al., 2017; Lawson et al., 2018). Likewise, history matching approaches accounting for uncertainty still only find plausible parameterizations of cardiac models given data (Coveney and Clayton, 2018).

Inference of model parameters from clinical data is challenging because it is difficult to measure action potentials directly in the clinical setting, especially in atrial tissue. In the clinical setting, the rate dependence of local activation time (LAT) and effective refractory period (ERP) can be measured directly at different locations with pacing at different intervals. LAT can be used to infer conduction velocity (CV) restitution, and ERP restitution is related to action potential duration (APD) restitution. While calibration can aim to find a single “best fit” to the data (Corrado et al., 2017), in general there are many parameter configurations that are consistent with observed data. Two important questions therefore arise: are parameters identifiable from restitution curve data, and can a posterior distribution on model parameters can be obtained from this data?

Markov chain Monte Carlo (MCMC) can be used to obtain samples from the posterior distribution, but requires large numbers of simulated restitution curves to be obtained. APD, CV, and ERP restitution curves can be time consuming to compute because they require many solves of a tissue model at different diastolic intervals. Furthermore, these large numbers of simulations cannot be pre-calculated since they must be drawn with posterior probability determined by the data. Expensive simulations can be supplemented with fast-running emulators, sometimes called surrogate models, which can be used to map model inputs onto outputs. Gaussian process (GP) emulators, which provide a prediction and corresponding prediction uncertainty, can be effective emulators of complex computer models (Conti and O'Hagan, 2010). GP emulators have been used for sensitivity analysis (Chang et al., 2015; Coveney and Clayton, 2020) and history matching (Coveney and Clayton, 2018) of cardiac cell models, and for models of cardiac tissue (Dhamala et al., 2020; Lawson et al., 2020) and mechanics (Longobardi et al., 2020). Emulators are conditioned on pre-calculated simulator data, but since they can make predictions at new inputs they are ideal tools for MCMC.

In this paper we describe how to build Restitution Curve Emulators (RCEs) for APD, CV, and ERP restitution curves. We chose to base this study on the phenomenological modified Mitchell-Schaeffer (mMS) model (Corrado and Niederer, 2016), since this can be considered a minimal model for capturing the shape and restitution of the cardiac action potential. The emulation of restitution curves using Gaussian processes requires a dimensionality reduction stage using principal component analysis, allowing the curves to be modeled with a small number of independent Gaussian processes. Furthermore, we develop a novel likelihood function for ERP observations. RCEs can then be used with MCMC to obtain the posterior distribution of model parameters given noisy data. The structure of the paper is as follows. First we briefly describe the mMS cellular electrophysiology model, and how it was implemented in a tissue strip model to calculate restitution curves. Next we explain how these restitution curves were decomposed, and how emulators (RCEs) of these curves were constructed. We conduct sensitivity analysis using emulation, showing the effects of the parameters on the principal modes of variation of the curves. Finally we show how these emulators can be used to obtain the posterior distribution of model parameters given noisy measurements of CV, APD, and ERP restitutions.



2. METHODS

In sections 2.1, 2.2, and 2.3, we explain how restitution curves were simulated, how dimensionality reduction was performed, and how Restitution Curve Emulators were built. In section 2.4, we explain how RCEs can be used for Sensitivity Analysis (SA). In section 2.5, we show how RCEs can be used for probabilistic calibration using uncertain measurements of APD, CV, and ERP restitution curves.


2.1. Electrophysiology Model

The mMS cell model (Corrado and Niederer, 2016) was incorporated into a monodomain model of tissue electrophysiology with isotropic diffusion, expressed in the following equations:
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where the two states are Vm, a normalized membrane voltage varying between 0 and 1 (note Vm = Vm(z, t) where z indicates space), and h, a gating parameter that controls recovery of excitability. We fixed the excitation threshold Vgate to 0.1, leaving five remaining parameters: the tissue diffusion coefficient D, and time constants τin, τclose, τout, τopen, which correspond to the initiation, plateau, decay, and recovery phases of the cardiac action potential (Mitchell and Schaeffer, 2003). We reparameterized the model by substituting D and τclose with the transformed parameters CVmax and APDmax, based on asymptotic expressions of model behavior:
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This reparameterization means that propagating action potentials can be generated for values of transformed parameters within a 5d hypercube, whereas the region of the original parameter space from which propagating action potentials could be generated was relatively small and highly concave. We refer to the transformed parameters {CVmax, τin, τout, τopen, APDmax} as parameters from now on.

We used openCARP (Plank et al., 2021) to solve these equations and obtain CV, APD, and ERP restitution curves for different sets of transformed parameters in a thin strip of simulated tissue. These simulations used a 24 × 0.6 mm triangular finite element mesh, with triangle edges of 0.3 mm and no-flux boundary conditions, and were solved using a time step of 0.1 ms, with a factor 10 smaller time-step for the mMS model. Simulation geometries such as “cables” of 3D elements can be used to reduce simulation time. However, simulation behavior does depend on element type and space-time discretization, so ideally calibration of computational models should utilize restitution curves generated with a comparable simulation setup. Our choices here were motivated by settings that we typically utilize for atrial simulations with the mMS model.

Restitution curves for S1S2 pacing, representing the variation of either CV or APD with respect to S1S2 intervals for a given S1 interval, which we denote by CV(S2) and APD(S2), respectively (thus abbreviating “S1S2 interval” with S2), were obtained by pacing from one end of the tissue strip (along the shorter edge) using an S1S2 pacing protocol. Example restitution curves are shown in Figure 1 below. CV was determined in the central region of the strip from activation times obtained using a relative threshold of 0.7, and APD was determined as the duration between this latter threshold and a relative threshold of 0.1 (i.e., APD ≡ APD90, the time required for 90% repolarization). ERP was determined as the largest S1S2 interval for which the S2 stimulus did not result in propagation reaching the strip center. For a given set of parameters (homogeneous across the strip) and S1 interval, the strip model was run for integer values of S1S2 interval (in ms), chosen dynamically in order to bisect ERP to a 1 ms resolution. The strip was paced with eight S1 beats and the model state shortly after the final S1 beat was saved (we found no appreciable difference using 16 beats). The S1S2 interval was then varied using Algorithm 1 (reloading the saved model state) until ERP was determined. We set the initial bracketing values for ERP to be 100 and 2,000 ms, which helped ensure that data was collected in both the asymptotic limit of high S1S2 interval, while focusing most observations at S1S2 intervals nearer to ERP. We also consider ERP(S1) restitution curves in this paper, which are curves of ERP for different S1 interval.


[image: Figure 1]
FIGURE 1. S2 restitution curves for S1: 600 ms for CV(S2) and APD(S2), colored by ERP(S1: 600), and plotted only for S2 > ERP(S1: 600) for clarity.




2.2. Dimensionality Reduction

To build Restitution Curve Emulators requires that we obtain simulation results (outputs) for a space-filling design of parameters (inputs). We generated a Latin hypercube design of 500 “points” in parameter space, optimized with respect to a maximin criterion across 104 designs, in the ranges CVmax 0.1–1.5 m/s, τin 0.01–0.30 ms, τout 1–30 ms, τopen 65–215 ms, APDmax 120–270 ms, which were chosen so that the range of corresponding tissue behaviors include, and go sightly beyond, physiologically plausible values (this helps ensure that the output space of plausible values is well sampled). The simulation described above was run for each parameter vector for a specific S1 interval.


Algorithm 1. Strip simulation algorithm for S1S2 pacing. For a given S1 interval and set of model parameters, the simulation determines CV(S2) and APD(S2) restitution curves and ERP.

[image: Table 1]

The S2 restitution curves (outputs) obtained from the simulations are obtained for a subset of S1S2 intervals due to the bisection method. Furthermore, since measurements at S1S2 intervals below ERP cannot be made, the restitution curves would not all share the same set of S1S2 interval even if the algorithm was run for a predetermined set of S1S2 intervals. We can fit the restitution curve data to an analytic expression for restitution, which allows us to resample the restitution curves to a common S1S2 interval resolution. For the mMS model, we fitted the following expression to the data using non-linear fitting methods (scipy.optimize.curve_fit function in this case):

[image: image]

which fits the data with negligible residuals. The advantage of fitting an analytic expression to each curve is that curves can be extrapolated to obtain “virtual” values for S1S2 interval < ERP, required for PCA since all curves must have the same dimensionality. We refer to this region of restitution curves as “virtual” in analogy with a virtual image in optics, found by tracing real rays from a mirror backwards to a perceived origin behind the mirror from which light rays cannot actually emerge. We chose S1S2 intervals from 160 to 600 ms at 1 ms resolution (corresponding to the highest clinical pacing resolution). For convenience, the “fitting” and “prediction” stages of this resampling are split, such that the simulator fits and returns these coefficients, while prediction happens “outside” of the simulator. (This division is simply for convenience, since the simulator is then a black box that always returns the same number of outputs, rather than variable length arrays depending on the path taken by the bisection algorithm).

We emphasize here that the only purpose of Equation (5) is to calculate S2 restitution curves at a common resolution, after which it is never used again. We discuss why emulation of Diastolic Interval (DI) curves, (where DI = S2 − ERP such that the curves would have no virtual region) is not a good choice for calibration in Section 3.5. Equation (5) is a non-linear compression of the data into three dimensions, but we found that attempts to predict the coefficients a, b, c from the model parameters (followed by application of Equation 5) gave inferior results to the emulation method we present in this paper. Importantly, for any re-parameterization of Equation (5), the intrinsic non-linearity means that coefficient emulation with a Gaussian process emulator results in restitution curve emulators that are not Gaussian processes; this significantly complicates exploratory analysis, sensitivity analysis, and calibration, since posterior sampling would be required in all cases to make any predictions. Furthermore, characterizing these predictions would be more difficult, since the mean, median, and mode of these predictions would all be different, and the distribution spread would not be summarized by only the second-order moment, i.e., variance.

We discuss dimensionality reduction here in terms of S2 restitution curves (where for convenience of notation S2 ≡ S1S2 interval). The resulting set of resampled restitution curves can be thought of as a stack of 1D images (1 image per parameter choice) with 1ms wide pixels centered on S1S2 interval, where the pixel intensity represents either CV(S2) or APD(S2). This analogy makes it clear that although each curve has 440 dimensions, the intensity values in many neighboring pixels are highly correlated. Principal Component Analysis (PCA) can be used to find an ordered set of orthogonal directions/axes in this high dimensional space along which the variance between different images is largest. We perform PCA via Singular Value Decomposition (SVD) using sklearn.decomposition.PCA, first subtracting the mean and without scaling the data since the units are identical across dimensions (m/s for CV, ms for APD, ms for ERP) and amplitude of variation is intrinsically important. We obtain a set of right singular vectors (equivalent to eigenvectors) Φc(S2) for c = 1…C, where 1 ≤ C ≤ n for a dataset of size n (usually C≪n). Each restitution curve can be projected onto these axis to obtain the coordinate of that curve in this new space. Each curve can then be expressed with a linear combination of the eigenvectors Φc plus the mean Φ0:

[image: image]

where the sum is truncated to keep only the “principal components” accounting for the majority of the variation across the dataset (determined from the corresponding eigenvalues).

For ERP(S1) curves, obtained by running the simulator for a range of S1 intervals, we perform PCA on the data without any resampling in S1. It is interesting to consider that fitting a functional form to ERP(S1) data would allow extrapolation of ERP curves into a virtual region [e.g., if ERP(S1:375) = 360 then ERP(S1:350) is not defined, since the tissue cannot support this S1 pacing, but a virtual value could be defined from a functional fit to the valid ERP(S1) values]. This would allow for keeping additional simulation runs in the emulation dataset that would otherwise be discarded because the ERP(S1) vector would be undefined for some S1, preventing inclusion of those results in PCA for ERP(S1). We do not consider this matter further here, instead opting to discard certain simulation runs from our emulation dataset if some ERP(S1) could not be defined [this means that the ERP(S1) dataset will include only data, i.e., parameters and corresponding ERP(S1) values, for which ERP(S1) can be defined for all S1 values in our dataset].



2.3. Restitution Curve Emulators

To create surrogate models that predict the restitution curves F(S2) from the model parameters x, we model each coordinate in Equation (6) as fc ≡ fc(x) using a Gaussian process (Higdon et al., 2008; Wilkinson, 2010), with explicit basis functions modeling the GP mean (Conti and O'Hagan, 2010). We drop the index c to reduce clutter in the following equations, as the same type of model is built for all coordinates. For increased numerical stability and model regularization, we assume that the coordinates obtained from PCA are potentially noisy, therefore we denote these values (for a particular c) by y and the model for these coordinates by f. For n training data {xi, yi}, where i = 1…n, we then have:
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where the mean function depends on basis functions h(·) and basis coefficients β, and the kernel function k(·, ·, θ) depends on hyperparameters θ (we have factored out the amplitude σ2). Note that the covariance matrix of the training data y is then given by [image: image], such that the (unscaled) covariance matrix elements Aij depend on xi and xj.

We optimize the hyperparameters θ and ν (distinct from the model parameters x) by maximizing the (marginal) log likelihood [image: image]. Denoting n and q as the number of data points and basis functions, respectively, the basis coefficients and covariance amplitude are integrated out to give [image: image] and [image: image], respectively (Oakley, 1999; Rasmussen and Williams, 2006; Conti and O'Hagan, 2010), giving:
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We chose a linear basis for modeling the mean, and the squared exponential kernel (with automatic relevance determination) for the covariance function. Denoting the individual dimensions of x by k = 1…m, such that xik corresponds to the k'th dimension (e.g., k = 3 corresponds to τout) of the i'th row of the dataset, then:
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Defining A* as the covariance matrix between prediction and training data, A** as the covariance matrix between prediction data, and H* as the basis matrix for predictions, then the posterior mean [image: image] and posterior variance [image: image] for predictions is given by:
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Recalling Equation (6), and noting that applying a linear operation to a Gaussian process results in a Gaussian process, then the posterior distribution for the restitution curve is also a Gaussian process, which we will refer to as a Restitution Curve Emulator (RCE). Reintroducing the index c for different principal components and defining ΨC: = [Φ1(S2), …, ΦC(S2)], the RCE posterior distribution for prediction at x* for d × 1 vector S2 is given by:
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such that [image: image] is a d × 1 vector and [image: image] is a d × d matrix. Note that the correlation between [image: image] values with similar S2 results from the principal components (S2 does not index the random variables). RCEs are built for ERP(S1) restitution curves in exactly the same way as for APD(S2) and CV(S2) restitution curves. Prediction with RCEs is orders of magnitude faster than simulation, with ~104 predictions taking only a few seconds on a laptop (i5 gen 6 processor, 8 Gb RAM).



2.4. Sensitivity Analysis

Since RCEs allow probabilistic prediction of restitution curves from model parameters, they can be used to study how changes in parameters cause changes in restitution curves. RCEs are therefore ideal for exploratory model analysis. An additional advantage of the RCE approach is that global sensitivity analysis (SA), requiring a large number of model evaluations, can be performed across the entire parameter space. Such analysis can be performed for restitution curve values at particular S1S2 interval, e.g., APD(S2:300), but here we apply SA to the individual RCE components. The advantage to this analysis is that it is global in two different senses: (i) the SA is across the entire parameter space, rather than at a single point as for local methods; (ii) the results can be parsimoniously interpreted in terms of the effects of parameters on the entire restitution curve.

We use SALib (Herman and Usher, 2017) to calculate various sensitivity indices via (Saltelli's extensions to) Sobol sequences (Sobol, 2001; Saltelli, 2002; Saltelli et al., 2010), which require only model inputs (parameters) and outputs (in this case, posterior means of each RCE component). Borrowing slightly from the terminology described by SALib Toolkit, we calculate three indices: (S1) first-order sensitivity indices, which measure the contribution to the output variance from variation of a single parameter alone; (S2) second-order sensitivity indices, which measure the contribution to the output variance caused by the interaction of two parameters; (ST) total-effect indices, which measure the total contribution to the output variance caused by a parameter (first-order effects and all higher-order interactions). Sensitivity indices can be calculated by applying SA to posterior samples from the full joint posterior between all parameter values required for the Saltelli/Sobol sequence, such that the posterior variance of the emulators is accounted for and SA confidence intervals can be obtained, but we do not do that here.



2.5. Calibration

Given noisy observations Y from either a CV(S2) or APD(S2) restitution curve, observed for S1S2 intervals S2Y, we will assume a normal error model with homoscedastic variance [image: image] linking the RCE to the observations. Although APD(S2) measurements are difficult to make, we include them here as part of our study of parameter identifiability, in order to understand whether calibration of some parameters requires APD(S2) measurements. Since measurements from S2 restitution curves involve S1 pacing across many beats in between each premature S2 beat, it is likely that errors are in fact independent, and for the purposes of investigating fundamental parameter recoverability/identifiability, a normal error model is probably a good default choice. The likelihood p(Y|x, σY) is then given by:

[image: image]

Measurements of ERP using an S1S2 protocol are, in fact, only observations of the S1S2 interval in which ERP lies. Representing the lower endpoint of this interval by Y and the interval width by ΔS2, the likelihood for a given parameter x would be [image: image], which would need to be evaluated by quadrature (this likelihood would also pose difficult problems for MCMC, although this is somewhat mitigated since [image: image] is a distribution with infinite support). Rather than model Y = ERP − ϵ using ϵ ~ uniform(0, ΔS2), we instead model Y = ERP − δ where δ and ϵ have approximately the same distribution. We chose the following mixture of Gaussians:
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where mi = (i − 1/2)ΔS2 and we choose s = ΔS2/N. This approximates uniform(0, ΔS2) but has infinite support. We can then write δ as
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where [image: image], I is the indicator function, and K is a random variable where P(K = i) = 1/N for i = 1…N. If the RCE prediction for ERP given x is [image: image] then we can write
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from which we can identify that the likelihood is

[image: image]

Note that Y + mi are the centers of N regular intervals spanning the ERP bracket. This likelihood has two main advantages for our calibration using RCEs: (1) it is analytical and requires no quadrature to be performed, as would be the case for a truncated uniform error model for ERP; (2) the distribution is continuous and has infinite support (but can be sharpened by simply adding more terms to the sum). We choose N = 10, which results in approximately 82% of the probability density for δ falling within the edges of the truncated uniform distribution (20 terms gives ≈ 90%, and 50 terms gives ≈ 96%), which we find works well for calibration. What is most important is that between the brackets the likelihood is virtually flat, which is what we require for ERP measured with an S1S2 protocol. Note that the log-likelihood, almost always utilized for optimization (and used here), should be calculated using the readily available logsumexp function, to prevent numerical underflow.

The total loglikelihood, accounting for measurements from different restitution curves, can be calculated by simply adding the different corresponding loglikelihoods together. Using Y and σY to represent all measurements, then the posterior distribution is given (up to a constant) by:
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We chose the prior p(x) to be truncated uniform across the same range of parameters specified in section 2.2. It is then possible to find the maximum a posteriori (MAP) estimate for x and σY, and also to perform Markov Chain Monte Carlo (MCMC) to obtain samples from the posterior distribution. These estimates take into account uncertainty about the observations as well as uncertainty in RCE predictions.

We use noisy measurements generated from the mMS model to demonstrate probabilistic calibration with RCEs, which also allows us to study parameter identifiability. We use CV(S2) and APD(S2) for S1: 600 ms, and ERP(S1) for S1: 400, 500, 600 ms. Since it should always be possible to collect observations for the S1 beat prior to the S2 beat, we include an observation at S2 = S1 for every S2 observation. This helps the method to learn the noise and therefore to focus on the more important question of the shape of the S2 restitution curve rather than its asymptotic limit (which can be measured much more efficiently with an S1 protocol). For simplicity of presentation and also to focus on parameter recoverability, we first obtain the MAP estimate of the parameters and the noise amplitude σY, and for MCMC we fix the noise amplitude to its MAP value (for calibration to real data, σY should be included in MCMC in order to obtain its posterior distribution, but for studying identifiability it may be useful to fix it as done here). We perform MCMC using the Python package EMCEE (Foreman-Mackey et al., 2013), for 2,000 samples using 32 chains initialized with the MAP estimate (plus a small amount of jitter), from which we discard the first 1,000 samples as burn-in and use a thinning factor of 5.




3. RESULTS

We ran the simulator from S1 350 to 700 ms at 25 ms intervals using a maximin-optimized Latin hypercube design of 500 parameters in the ranges specified in section 2.2. We discarded 166 runs where ERP(S1) was not defined for all S1, which restricted the dataset to contain ERP < 350 ms, leaving 334 simulation runs with the highest remaining ERP being 337 ms. Note that RCEs can be used to create a more careful design of parameters that produce outputs only within a desired range, but initially this is not possible since the map between the simulator inputs and outputs is not known. We restrict our analysis of S2 restitution curves to S1: 600 ms throughout, with other S1 intervals utilized for ERP(S1) only. In plots below, we denote τout as “Tout” etc, to assist readability.


3.1. Restitution Curve Emulators for CV(S2) and APD(S2)

The CV(S2) and APD(S2) restitution curves resampled to 1ms resolution are shown in Figure 1, colored by ERP(S1: 600) and plotted only for S1S2 intervals > ERP (the region in which observations can be collected) to aid visualization. The data means and the principal components are shown in Figure 2. We established that three principal components were sufficient to explain over 99% the variance in the dataset (of the variance retained for three components, it was divided as follows: [image: image]: 78.637, 20.460, 0.897%, for [image: image]: 68.690, 29.131, 2.148%), so we retain only three components for the RCEs. Note that there is no particular reason why a linear basis should require the same number of components as coefficients in the original non-linear mapping Equation (5), and we found that emulation of a fourth component was possible (i.e., not all higher components are just “noise”). In both cases, the first principal component, representing the direction in which the curves vary the most, represents mainly the height of the curves in the limit of long S1S2 interval, i.e., the asymptotic region. However, for CV(S2) this component is much flatter with respect to S2 than for APD(S2). For the second component the opposite is the case, showing much less variation across S2 for APD(S2) compared to CV(S2). The third components represents more subtle curvature of the “knee” of the curve, when the restitution curves begins to fall away rapidly, and is very similar for both CV(S2) and APD(S2), most notably showing the peak in approximately the same S2 location.


[image: Figure 2]
FIGURE 2. PCA components and means for CV(S2) curves and APD(S2) curves for S1: 600 ms.


We fit an RCE for both CV(S2) and APD(S2) for S1: 600 ms. For validation, we used 5-fold cross validation and calculated the average R2 score over the folds for each S1S2 interval. The RCE validation results are shown in Figure 3, showing that the performance is extremely good, especially for long S1S2 intervals. The dependence of performance based on S1S2 interval is likely to be linked to resampling the curves into virtual regions where S2 ≤ ERP, where it is not unreasonable to suppose that the resampling itself may contain errors since resampling here is only extrapolation. RCEs do not actually need to make predictions in these regions because no measurements can be obtained here anyway. Also, RCEs predict a distribution rather than a single number. Our training dataset of 334 simulation runs was relatively small: for comparison, 35 = 243 points would be required to place a data point at the corners, face centers, and body centers of a five-dimensional hypercube. In general, having validated RCEs for a particular model and range of parameters, we would consider then collecting a larger training dataset (with a more carefully chosen parameter range) for building more accurate RCEs, which would both improve accuracy and reduce posterior variance of the RCE predictions. However, we do not do this here as the validation scores are already extremely good.


[image: Figure 3]
FIGURE 3. R2 scores for S2 restitution curves from 5-fold cross-validation. Performance decreases with S2, although these validation scores include RCE prediction at S2 ≤ ERP(S1) corresponding to virtual regions of the curves where no measurements can be made.


The sensitivity analyses for total-effect indices and first-order effects are shown in Figure 4, and second-order interaction effects are shown in Figure 5. In Figure 4, the total-effects are shown faded, with more opaque regions representing the first-order effects. The faded region therefore shows all higher-order effects of the parameters on the principal components. It is notable that higher-order effects are less present in the primary principal components, particularly for [image: image] meaning that the asymptotic region of the restitution curve is almost entirely determined by CVmax as would be expected. [image: image] is determined most strongly by first-order effects of τout and APDmax, which can be seen to effect recovery in Equation (2) approximately for phases 2 and 3 of the action potential.


[image: Figure 4]
FIGURE 4. Sensitivity indices of the coordinates fc of the principal components Φc for the model parameters for S1: 600 ms. The total-effect indices are plotted semi-transparently, with the first-order indices (which contribute to the total-effect indices) overlaid with opaque shading.



[image: Figure 5]
FIGURE 5. Second-order interaction effects for S1: 600 ms, with text labels applied in cells where the effects are at least 0.01 (i.e., account for at least 1% of the overall variance).


Of particular note is that [image: image] is strongly effected by the same parameters that mainly determine [image: image], which makes sense since [image: image] mainly codes for differences between the highest and lowest values in the restitution curves, and CV takes its lowest observable values when pacing rate is close to APD. The effects of CVmax on [image: image] are also extremely important. We had initially supposed that these effects may be artifacts, but further analysis (with a longer simulation strip, more S1 beats, and so on) revealed that this was not the case. In fact, inspection of Equation (1) reveals that such a causal effects ought to be expected: the diffusion term in Equation (1) not only depends explicitly on D (where [image: image]), but the magnitude of the diffusion term [image: image] precisely depends on spatial differences which are determined by the electrical wave-front propagation velocity. This is a good example of sensitivity analysis providing insight into the model, and shows why APD restitution curves for calibration should be calculated in a tissue model rather than only from a cellular model (and since this is significantly more time consuming, is a strong motivating factor for using RCEs).

Parameter τopen only shows first-order effects above 10% for the third principal component of both CV(S2) and APD(S2), for which it has the largest total effect of all parameters. The variance contributed by this third component to both curves is relatively small, and given that the magnitude of higher-order effects for τopen is comparable to its first-order effects, it may be difficult to precisely calibrate τopen using noisy measurements. Parameter τin shows a modest effect on [image: image], likely due to the contribution to action potential duration resulting from differences in upstroke, perhaps through the same effects of electrical propagation on tissue repolarization discussed above.

Since PCA gives a linear basis, we tested using least squares to fit the basis to noisy data. This gives a Maximum Likelihood estimate under the assumption of normally distributed noise, also giving a variance measure on the fit coordinates. We had hoped that this information, considered alongside the sensitivity indices, would allow us to judge whether certain parameters were recoverable for a particular restitution curve. Unfortunately this method was not robust, often resulting in completely nonphysical restitution curves (that minimized the least squares problem, but which have zero probability i.e., cannot be produced from the simulator), and does not help to calibrate the model parameters.



3.2. Restitution Curve Emulators for ERP(S1)

RCEs were built for ERP(S1) for S1: 350–700 ms with 25 ms intervals (we did not resample these curves), using the first two principal components (the variance captured by these two components was divided 99.432 and 0.549%). The smallest R2 score was above 0.999, with little variation across S1 interval. These components are shown in Figure 6 along with the sensitivity indices [the higher-order effects are very small, so we don't show the interaction effects for ERP(S1)]. The first component almost entirely determines the height of the curve, with the lack of curvature demonstrating that the height can change very much independently of the difference between values at lowest and higher S1 interval (in other words the gradient). The second component codes mainly for the gradient of the curve (changing the difference between the lowest and highest values).


[image: Figure 6]
FIGURE 6. ERP(S1) restitution curves, showing (top) principal components and mean, and (bottom) first-order and total-effect sensitivity indices for the coordinates of the principal components.


Interestingly, τopen has the largest first-order effect and total-effect on [image: image], though the first-order effects are similar to APDmax and only twice the τout first-order effects. Nonetheless, it is interesting to ask whether ERP(S1) observations could be used to calibrate τopen, given that it may be difficult to calibrate from noisy S2 restitution curve measurements. Figure 7 shows how RCEs can be used for exploratory model analysis, in this case visualizing the effects of particular parameters in different regions of the parameter space: we set CVmax and τin to the centers of their ranges, and each subplot corresponds to a different τout and APDmax combination, while τopen is varied across its entire range within each subplot. These results clearly demonstrate the effects of τopen on the ERP(S1) curves (in line with the sensitivity analysis), but show that it would be difficult to calibrate τopen without a small resolution for the S1S2 protocol (even if the other four parameters were already known, which of course they would not be). In fact, there are regions on the ERP(S1) curve (where the curve appears to twist) where τopen does not effect the value of the curve at all (and the S1 location of this point changes with respect to other parameters).


[image: Figure 7]
FIGURE 7. RCE predictions to explore the effects of τopen on ERP(S1) across the parameter space.




3.3. Probabilistic Calibration

To demonstrate calibration using RCEs, we rebuilt the RCEs for S1: 600 ms on 95% of the dataset, retaining 5% to use as a ground truth. From these ground truth restitution curves, we picked one for which the parameters were not too close to the edges of the parameter range so as to falsely imply a more precise calibration than is generally possible, but our results below are representative for the mMS model. We show calibration for several different combinations of measurements, explained below. A noisy dataset was generated from the ground truth restitution curves using an S1S2 interval resolution of 10 ms (this also determines the ERP resolution, as explained in section 2.5) from 170 to 360 ms for measurements [with CV and APD measurements for S2 below ERP(600) discarded], adding normally distributed noise with standard deviation 0.05m/s for CV and 5ms for APD. We would argue that these measurements are probably overly precise, but we chose these values to emphasize the difficulties of precise calibration even with high signal-to-noise ratio. We use ERP(S1) measurements for S1: 600, 500, 400 ms (in section 3.4, we address whether S2 restitution curves for multiple S1 are useful).

Figure 8 shows MAP estimates of the restitution curves fitted to noisy CV(S2) and ERP(S1) data (left) and noisy APD(S2) and ERP(S1) data (right). The true restitution curves (from which the noisy observations were generated) are shown as black lines, with the cross-markers showing the noisy measurements. The ERP(S1:600) bracket (showing the S1S2 interval in which ERP is determined to lie) is plotted as a shaded interval in the S2 restitution plots, while for the ERP(S1) restitution plots thick vertical bars extend between the observed ERP brackets [the two ERP plots show the same ground truth and observed S2 intervals, but with different MAP fits CV (left) and APD (right)]. The posterior distribution of the RCE predictions with the MAP parameter estimates are shown as the 95% shaded confidence intervals, with the posterior mean falling exactly between these intervals but omitted for clarity. The orange dashed lines shows the confidence intervals including the estimated noise i.e., [image: image]). It is clear that the MAP estimate has identified plausible restitution curves given the noisy data.


[image: Figure 8]
FIGURE 8. The RCE prediction from maximum a posteriori (MAP) parameter estimates given noisy measurements for (left) CV(S2) and ERP(S1), (right) APD(S2) and ERP(S1), shown as light shaded regions representing RCE 95% confidence intervals. The orange dashed curves show these intervals including the observation error, also learned from MAP fitting. The noisy S2 restitution data are shown as crosses, while the red shaded bars represent observed intervals containing ERP: (top): bars horizontally span ERP(S1:600) interval; (bottom) bars vertically span ERP(S1) interval for several S1. The solid black lines in all plots represent the corresponding ground truth curves.


The MAP estimates, while representing the best fits to the data, should be interpreted cautiously, as they tell us nothing about the posterior distribution for the parameters. Another random draw of noisy measurements from the same ground truth would likely result in completely different MAP estimates for the parameters. For the MCMC results for the posterior distribution below, we fix the noise σY to the values obtained from the MAP estimate, in order to restrict plots and uncertainty to the model parameters (due to the S2 = S1 data, the noise was estimated extremely well, but posterior uncertainty about the noise level is generally of interest). We used MCMC to obtain samples from the posterior distribution of the parameters, as described in section 2.5, for the same data as in Figure 8. Figure 9 shows the RCE posterior means for 100 random samples from the posterior distribution obtained with MCMC. In these plots, the 95% confidence intervals have been plotted semi-transparently to assist with visualization of density. For the S2 restitution curves the density decreases away from the data, whereas for ERP(S1) restitution the density is much more uniform due to the approximately uniform error model [but will not be uniform since multiple data have been used, as opposed to data only for ERP(S1) for a single S1].


[image: Figure 9]
FIGURE 9. RCE predictions, shown as lightly shaded regions representing 95% confidence intervals, for 100 parameter samples from the posterior distribution given the same measurements shown in Figure 8 [black crosses are noisy S2 restitution data, red bars are observed ERP intervals, (left) MCMC with CV(S2) and ERP(S1) data, (right) MCMC with APD(S2) and ERP(S1) data].


Figures 10, 11 show the posterior distribution in parameter space for the data corresponding to Figure 9 (for all posterior samples after burn-in and thinning). The subplot axes span the parameter ranges given in section 2.2. Since we are presenting results for a particular ground truth curve, and the particular results will vary for every random draw of the measurement errors, we will focus on reporting the aspects of the results that are representative of the mMS model generally. However, in the Discussion we accept the difficulty of making generalizations about parameter identifiability from restitution curves. For Figure 10 [CV(S2) and ERP(S1) measurements], we see that the posterior uncertainty about all parameters except CVmax and τopen is quite large (by which we mean that the marginal widths of the distribution are comparable to the parameter ranges). Generally for CV(S2) and ERP(S1) measurements, both τin and τopen are quite imprecisely calibrated, but in this particular case τopen has been calibrated fairly precisely, simply because the particular errors present in the measurements allowed for this and because the signal-to-noise ratio in this case is high because the overall value of the CV(S2) is reasonably high, allowing [image: image] to be learned. It can be seen for the (τout, APDmax) panels that these parameters appear to be constrained to a slice through parameter space, and the broad marginal histograms reflect this. This latter result could probably have been inferred from the sensitivity analysis, since these parameters both strongly influence [image: image] and ERP(S1).


[image: Figure 10]
FIGURE 10. The posterior parameter distribution for fits to CV(S2) and ERP(S1) measurements. The intersection of vertical and horizontal lines mark the true parameter value. The lower diagonal shows the density via hexbin plots, while the upper diagonal shows the log likelihood values for each sample plotted in order of increasing likelihood. The diagonals show the marginal histograms of each parameter.



[image: Figure 11]
FIGURE 11. The posterior parameter distribution for fits to APD(S2) and ERP(S1) measurements. The intersection of vertical and horizontal lines mark the true parameter value. The lower diagonal shows the density via hexbin plots, while the upper diagonal shows the log-likelihood values for each sample plotted in order of increasing likelihood. The diagonals show the marginal histograms of each parameter.


For Figure 11 [APD(S2) and ERP(S1) measurements], the posterior distribution is quite different to that obtained with CV(S2) and ERP(S1), although there are similarities. CVmax is poorly calibrated, which is not surprising in the absence of CV(S2) data. The posterior distribution is again spread as a strip through (τout, APDmax), indicating the difficulty of distinguishing between different contributions to APD even when the APD(S2) measurements are available. However, the peak of the posterior distribution matches the ground truth better for these parameters, which we generally find to be the case for APD(S2) and ERP(S1) measurements. Despite the ERP(S1) observations being identical to those for the CV(S2) and ERP(S1) calibration, τopen is imprecisely calibrated here, which suggests that the precision shown in Figure 11 was the result of good estimation of [image: image] rather than ERP(S1) measurements. Note that the first-order sensitivity to τopen is almost twice as large for [image: image] than for [image: image], so we should expect better calibration of τopen to CV(S2) generally. However, the signal-to-noise ratio matters a great deal, since the third principal components are relatively subtle effects.

Figure 12 shows plots of RCE predictions for the posterior distribution obtained from MCMC using CV(S2), APD(S2), and ERP(S1) measurements simultaneously. The distribution of curves in these plots appears narrower but visually similar to Figure 9. However, Figure 13 shows that the posterior distribution of parameters is far better constrained compared to either Figure 10 or Figure 11. The peak of the distributions captures the ground truth parameter extremely well. While one reason for contraction of the posterior distribution is simply the increased amount of data, the effects are mainly down to how the data provide partially orthogonal information about the parameters. It should still be noted that these results depend highly on the particular draw of errors, and how ERP(S1) “lines up” with the intervals for S1S2 protocol resolution. Generally, we find that τopen is the most imprecisely calibrated parameter, followed by τin. Note that the shape of the posterior distribution across (τout, APDmax) is still strip shaped.


[image: Figure 12]
FIGURE 12. RCE predictions, shown as lightly shaded regions representing 95% confidence intervals, for 100 parameter samples from the posterior distribution given the same measurements shown in Figure 8 (black crosses are noisy S2 restitution data, red bars are observed ERP intervals). MCMC utilized CV(S2), APD(S2), and ERP(S1) data simultaneously, unlike in Figures 8, 9.



[image: Figure 13]
FIGURE 13. The posterior parameter distribution for calibration to CV(S2), APD(S2), and ERP(S1) measurements simultaneously. The intersection of vertical and horizontal lines mark the true parameter value. The lower diagonal shows the density via hexbin plots, while the upper diagonal shows the log likelihood values for each sample plotted in order of increasing likelihood. The diagonals show the marginal histograms of each parameter.




3.4. Restitution Surfaces

S2 restitution curves can be obtained for a range of S1 values, and the resulting data arranged into a 2D space of S1 and S2 to give restitution surfaces. Each S1S2 combination corresponds to a dimension in the output space, and PCA can be performed on these 2D images. The resulting principal components can be visualized by plotting the elements of the principal components against their corresponding S1 and S1S2 interval. Figure 14 shows the mean and first three principal components of the CV(S1,S2) and APD(S1,S2) restitution surfaces, plotted as contours in order to help with visualization (the colorbars are not shown as they are not required for our discussion). RCEs could be built with these principal components (such emulators might be called Restitution Surface Emulators) such that the surfaces could be predicted from the parameters.


[image: Figure 14]
FIGURE 14. Principal components and means of CV(S1,S2) and APD(S1,S2) restitution surfaces, displayed as contour plots where dark/light colors represent low/high values, respectively. These surfaces are 2D analogues to the curves in Figure 2.


Figure 14 shows that the principal components vary relatively little with S1 interval, since the contour lines are nearly parallel to the S1 axis. This means that the restitution surfaces are highly correlated with S1 interval. For the third component around S1S2 intervals of 275 ms, the peak in the restitution curve seen in the S2 restitution curve is now a ridge in the restitution surface, decreasing in height with decreasing S1 interval. These images show that collecting restitution curves for e.g., CV(S1: 400 ms) will be very similar to CV(S1: 600 ms, S2: 400 ms) etc., such that S1 pacing could be used to collect similar data more efficiently with S1 pacing rather than an S1S2 protocol, for values of S1 interval for which steady pacing is possible. However, learning the principal modes of variation of the surfaces (as with the curves) requires measurements at S1S2 interval far below values of S1 interval that can be used for steady pacing in the clinical setting, so it is not clear that such measurements would be useful. Furthermore, restitution curves for higher S1 interval have a larger variation in values over S2 (even only considering values for S2 < 350ms, as can be seen in the third component in particular), making calibration with noisy data more robust for higher S1 as the signal-to-noise ratio will be higher (equivalently, differentiation between different curves is easier). Upper values of S1 interval are limited by the heart's own natural pacemaker behavior, so S1: 600 ms is probably a conservative choice for clinical pacing. In summary, it is probably not worth collecting restitution data for a variety of S1 values, except when it is obtained for free due to pacing at different S1 intervals to obtain ERP(S1).



3.5. Diastolic Interval Restitution Curves

We also investigated RCEs of Diastolic Interval (DI) restitution curves, where DI = S2 − ERP, such that all curves begin at DI = 0, which seem advantageous since the resampling would not produce any “virtual” regions (as for S2 restitutions for S1S2 interval < ERP). The worst effect that these virtual regions can have for S2 restitution is that PCA will account for variation between curves that considers these “virtual” regions, so the dimensionality reduction for DI curves may be slightly more optimal than for S2 curves (although there may be errors in DI curves caused by a finite ERP resolution). Alternative restitution curve fits that are asymptotic for S2 < ERP (such as a sigmoid curve, which fits the restitution curves from many electrophysiology models) might reduce these effects from the virtual region. However, it is trivial to simply increase the number of principal components in RCEs if required. S2 restitution curves can be calibrated to data with and without ERP measurements, but this is not the case for DI restitution curves, since the assignment of DI to the measured data requires predicting ERP. This makes calibration highly dependent on ERP prediction, but in a purely artificial way caused by the way the problem is posed. Furthermore, given that RCEs predict a distribution, the likelihood calculations would involve a convolution, or “blurring,” of predictions across DI, since the DI “label” of the data would have a distribution. Since these difficulties are completely avoided by simply using S2 restitution curves, we do not currently see any benefit to emulating DI restitution curves.




4. DISCUSSION

In the present study, we have demonstrated a way to emulate restitution curves by using Gaussian processes to predict the principal component coordinates of restitution curves from model parameters. These Restitution Curve Emulators (RCEs) make it possible to rapidly and accurately predict CV, APD, and ERP restitution curves from model parameters, allowing for sensitivity analysis, model exploration, and Bayesian calibration to noisy data. We also developed an analytical likelihood function for ERP observations, which is especially useful for calibration with RCEs. The main benefits of RCEs are prediction speed and quantification of prediction uncertainty, but an additional advantage is their parsimonious structure: sensitivity analysis can be performed for the separate principal components, and the problem of recoverability can be interpreted as the problem of learning features of restitution curves that are sensitive to changes in parameters.

It is difficult to guess what combination of measurements will be required to identify model parameters. Larger first-order sensitivity indices for more primary features suggest higher identifiability, and if several parameters have similar effects on a feature then it will be difficult to distinguish them from data about that feature alone. However, it is difficult to make general statements about identifiability/recoverability of parameters given a pacing protocol: it may turn out that parameters are recoverable in some parts of parameter space but not others, or that calibration is extremely sensitive to measurement errors, or that pacing resolution does not allow to resolve different restitution curves effectively. It is even quite difficult to generalize about how the credible intervals in the posterior distribution depend on the noise levels/pacing resolution in the data, although RCEs could be used to empirically determine this relation via brute force sampling throughout the parameter space. RCEs could find application in the design of clinical data collection protocols intended for the calibration of personalized models.

The identifiability of model parameters, as well as the practical consideration of whether parameters can be recovered from sparse and noisy clinical data, remain challenging issues (Whittaker et al., 2020) even with the mMS model, which can be considered a minimal model. It remains to be seen if more detailed models that have been designed to minimize the number of free parameters can overcome these obstacles (Pathmanathan et al., 2019). Model discrepancy can be an issue with calibrating models, often manifesting as an inability to simultaneously reproduce two behaviors (Coveney and Clayton, 2018; Lawson et al., 2018). In our framework, the error variance can include variance from noise as well as discrepancy variance (Vernon et al., 2010), but more complex modeling of discrepancy would also be possible (Brynjarsdóttir and O'Hagan, 2014), such as modeling systematic offset using a bias term in the likelihood.

Extending our approach to biophysically detailed cell models is a logical next step, which could be used either to examine the properties of these models in detail, and to examine parameter recoverability for simulated clinical measurements. Since our approach involves emulating the principal components of restitution curves, we expect that it can be extended to more detailed models without incurring computational costs apart from those involved in computing the initial set of restitution curves. Another option is the use of more complex stimulation protocols (Groenendaal et al., 2015; Beattie et al., 2018), which can work well for the experimental setting but could be difficult to deploy clinically.

Posterior uncertainty in calibration for model personalization should not be overlooked, as it is important that uncertainty is propagated forward to predictions when personalized models are used for diagnosis or decision support in the clinical setting. Calibration methods that obtain parameterizations consistent with observations but without obtaining the posterior distribution, and especially methods that provide only a single fit to the data, are not well-suited to this task. The methods presented in this paper were motivated by the need to perform probabilistic calibration with clinical data such as restitution curves. We suggest that the English idiom “How long is a piece of string?”, used to reply to questions that require an answer to be calculated on a case-by-case basis, be used as a rule-of-thumb when considering questions about the identifiability of electrophysiology model parameters from restitution curve measurements. We believe the answer requires calculating the posterior distribution of the model parameters given the data, and that RCEs are an extremely effective tool with which to do this.
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In the original article, there was an omission. Equations for the posterior distribution of Restitution Curve Emulators for prediction at multiple S2 values were not provided, but these equations are required in Equation (21). Equations (18)–(20) should have been generalized from scalar S2 to vector S2.

A correction has been made to the last paragraph of Section 2. Methods, Sub-section 2.3 Restitution Curve Emulators:

Recalling Equation (6), and noting that applying a linear operation to a Gaussian process results in a Gaussian process, then the posterior distribution for the restitution curve is also a Gaussian process, which we will refer to as a Restitution Curve Emulator (RCE). Reintroducing the index c for different principal components and defining ΨC: = [Φ1(S2), …, ΦC(S2)], the RCE posterior distribution for prediction at x* for d × 1 vector S2 is given by:

[image: image]
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such that [image: image] is a d × 1 vector and [image: image] is a d × d matrix. Note that the correlation between [image: image] values with similar S2 results from the principal components (S2 does not index the random variables). RCEs are built for ERP(S1) restitution curves in exactly the same way as for APD(S2) and CV(S2) restitution curves. Prediction with RCEs is orders of magnitude faster than simulation, with ~104 predictions taking only a few seconds on a laptop (i5 gen 6 processor, 8 Gb RAM).

In the original article, there was an omission. Equation (21) was missing an identity matrix factor.

A correction has been made to Section 2. Methods, Subsection 2.5 Calibration, Equation 21:

[image: image]


FIGURE CORRECTION

In the original article, there was a mistake in Figures 8–13 as published. The computer code for the likelihood function for CV(S2) and APD(S2), used for our MCMC simulations, only accounted for the diagonal of the posterior variance matrix [image: image]. The corrected Figures 8–13 shown here.


[image: Figure 8]
FIGURE 8. The RCE prediction from maximum a posteriori (MAP) parameter estimates given noisy measurements for (left) CV(S2) and ERP(S1), (right) APD(S2) and ERP(S1), shown as light shaded regions representing RCE 95% confidence intervals. The orange dashed curves show these intervals including the observation error, also learned from MAP fitting. The noisy S2 restitution data are shown as crosses, while the red shaded bars represent observed intervals containing ERP: (top): bars horizontally span ERP(S1:600) interval; (bottom) bars vertically span ERP(S1) interval for several S1. The solid black lines in all plots represent the corresponding ground truth curves.



[image: Figure 9]
FIGURE 9. RCE predictions, shown as lightly shaded regions representing 95% confidence intervals, for 100 parameter samples from the posterior distribution given the same measurements shown in Figure 8 [black crosses are noisy S2 restitution data, red bars are observed ERP intervals, (left) MCMC with CV(S2) and ERP(S1) data, (right) MCMC with APD(S2) and ERP(S1) data].



[image: Figure 10]
FIGURE 10. The posterior parameter distribution for fits to CV(S2) and ERP(S1) measurements. The intersection of vertical and horizontal lines mark the true parameter value. The lower diagonal shows the density via hexbin plots, while the upper diagonal shows the log likelihood values for each sample plotted in order of increasing likelihood. The diagonals show the marginal histograms of each parameter.



[image: Figure 11]
FIGURE 11. The posterior parameter distribution for fits to APD(S2) and ERP(S1) measurements. The intersection of vertical and horizontal lines mark the true parameter value. The lower diagonal shows the density via hexbin plots, while the upper diagonal shows the log-likelihood values for each sample plotted in order of increasing likelihood. The diagonals show the marginal histograms of each parameter.



[image: Figure 12]
FIGURE 12. RCE predictions, shown as lightly shaded regions representing 95% confidence intervals, for 100 parameter samples from the posterior distribution given the same measurements shown in Figure 8 (black crosses are noisy S2 restitution data, red bars are observed ERP intervals). MCMC utilized CV(S2), APD(S2), and ERP(S1) data simultaneously, unlike in Figures 8, 9.



[image: Figure 13]
FIGURE 13. The posterior parameter distribution for calibration to CV(S2), APD(S2), and ERP(S1) measurements simultaneously. The intersection of vertical and horizontal lines mark the true parameter value. The lower diagonal shows the density via hexbin plots, while the upper diagonal shows the log likelihood values for each sample plotted in order of increasing likelihood. The diagonals show the marginal histograms of each parameter.


The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.
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Segmentation of cardiac fibrosis and scars is essential for clinical diagnosis and can provide invaluable guidance for the treatment of cardiac diseases. Late Gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) has been successful in guiding the clinical diagnosis and treatment reliably. For LGE CMR, many methods have demonstrated success in accurately segmenting scarring regions. Co-registration with other non-contrast-agent (non-CA) modalities [e.g., balanced steady-state free precession (bSSFP) cine magnetic resonance imaging (MRI)] can further enhance the efficacy of automated segmentation of cardiac anatomies. Many conventional methods have been proposed to provide automated or semi-automated segmentation of scars. With the development of deep learning in recent years, we can also see more advanced methods that are more efficient in providing more accurate segmentations. This paper conducts a state-of-the-art review of conventional and current state-of-the-art approaches utilizing different modalities for accurate cardiac fibrosis and scar segmentation.
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1. INTRODUCTION

Necrosis regions found in the heart (including left atrium (LA) pre-ablation fibrosis, LA post-ablation scar and left ventricle (LV) infarction), depending on the location and size, can have various implications on the cardiac conditions of the patients. For example, ventricular scars can be signs of earlier episodes of myocardial infarction (MI) (Choi et al., 2001; Krittayaphong et al., 2008; Wu et al., 2008; Larose et al., 2010). Locating and quantifying the fibrosis and scars have also been demonstrated as a valuable tool for the treatment stratification of patients with atrial fibrillation (AF) (Allessie, 2002; Boldt, 2004) or ventricular tachycardia (Ukwatta et al., 2015) and provide guidance information for the surgical or ablation based procedures (Vergara and Marrouche, 2011). Imaging of post-ablation scars may also give valuable information on treatment outcomes (Peters et al., 2007; Badger et al., 2010).

Cardiovascular magnetic resonance (CMR) has been one of the modern imaging techniques, which is widely used for qualitative and quantitative evaluation of cardiac conditions and to support diagnosis, monitoring disease progression and treatment planning (Kim et al., 2009). In particular, Late Gadolinium enhancement (LGE) CMR has been an emerging technique for locating and quantifying regions of fibrosis and scars across the LA and the LV (Peters et al., 2007; McGann et al., 2008; Oakes et al., 2009; Akkaya et al., 2013; Bisbal et al., 2014). LGE CMR has also been shown to improve ablation strategy planning, treatment stratification and prognosis by pre-ablation fibrosis quantification via clinical validations (Akoum et al., 2011). It also enabled computationally guided and personalized targeted ablation in treating AF in clinical practices (Boyle et al., 2019).

Many algorithms have been developed for the segmentation of cardiac scarring regions, and a few challenges have benchmarked some of the high-performing methodologies (Table 1). Among these, 2-SD (standard deviation) has been advocated by the official guidelines (Kramer et al., 2013), while the full width at half maximum (FWHM) technique has been advocated as the most reproducible method to segment ventricular scars (Flett et al., 2011) (see Section 3.2 for descriptions of 2-SD and FWHM methods). As these algorithms are usually based on successful segmentation of the corresponding anatomical regions beforehand as an accurate initialization, there has also been rising attention to the automated segmentation of LA and LV anatomy from the LGE CMR images (Table 1).


TABLE 1. List of challenges in segmentation of LV and LA anatomy and scar in LGE CMR.
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With the development of artificial intelligence techniques, we can observe a rising number of various deep learning models using convolutional neural networks [e.g., fully connected neural network (FCNN) (Szegedy et al., 2016) and U-Net (Ronneberger et al., 2015)], which have demonstrated encouraging results in segmentations of cardiac substructures in recent years (Chen C. et al., 2020). It has also been found that deep learning can be directly applied to scar segmentation as a fully automated end-to-end solution for the input LGE CMR images. With co-registration of different modalities together and deep learning based transfer learning, the combination of LGE CMR with other CMR imaging modalities [e.g., balanced steady-state free precession (bSSFP)] may further improve the efficacy and efficiency of the segmentation results.

The use of Gadolinium-based contrast agent (GBCA) has led to concerns over the patient’s safety, particularly for the patient with renal impairments (Ledneva et al., 2009). With deep learning based methods, cardiac scarring regions can now be localized and quantified in non-Gadolinium enhanced CMR images without GBCA injections (Zhang et al., 2019).

As all pre-2016 and pre-2013 cardiac scarring segmentation have been carefully benchmarked and summarized by Karim et al. (2013, 2016), this paper instead focuses on the survey of all post-2016 methodologies in fibrosis and scars delineation and segmentation of the LA and LV anatomy from LGE CMR images. This study also discusses the potential use of the modalities other than LGE CMR in locating and quantifying the scars.


1.1 Search Criteria

To identify related contributions, search engines like Scopus and Google Scholar were queried for papers on or after 01 Jan 2016 containing (“atrial” OR “ventricular”) and (“cardiac”) and (“segmentation”) with or without (“scar”) in their titles or abstracts. Papers that do not primarily focus on the segmentation of cardiac scar or scar-related cardiac anatomy were excluded. Each paper was reviewed and agreed upon by at least two of us (Y.W., Z.T., B.L.) before inclusion. We found 4,384 papers from the search engines and shortlisted 110 of them following the criterion above (Figure 1). After full-text screening for their relevances to the topic, we eventually included 47 of them into this study. The last update to the included papers was on 13 May 2021.
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FIGURE 1. Flowchart to demonstrate the search criterion.





2. IMAGING MODALITIES


2.1 LGE CMR

Fibrosis found in LA are signs of atrial structural remodeling and can be considered as a major risk factor in the progression of the atrial fibrillation (AF) (Allessie, 2002; Boldt, 2004), where the identification of scarring and fibrosis regions in LA has been crucial for diagnosis, prognosis and treatment planning. Native pre-ablation fibrosis can be a sign of AF recurrence (Oakes et al., 2009), and post-ablation detection of ablation induced scars can facilitate the identification of post-ablation ablation line gaps, which is the main reason of ablation failures (Peters et al., 2007; Badger et al., 2010). In contrast to the traditional method of the electro-anatomical mapping (EAM) system, which is an invasive technique in localization of the atrial scar and the fibrosis with suboptimal accuracy (Zhong et al., 2007; Schmidt et al., 2009), LGE CMR enables the atrial scarring and fibrosis regions to be localized and quantified non-invasively without ionizing radiation. LGE CMR employs the slow washout kinetics of Gadolinium in these regions to highlight these scarring and fibrosis regions (Peters et al., 2007; McGann et al., 2008; Oakes et al., 2009; Akkaya et al., 2013; Bisbal et al., 2014).

In addition to the atrium, LGE CMR has also been considered as a gold-standard modality for the assessment and quantification of the scarring regions in the left ventricle (Simonetti et al., 2001; Wu et al., 2001; Wagner et al., 2003a; Hendel et al., 2006), where fibrotic and scarring regions found can be considered as a sign of earlier or current episodes of the MI (Choi et al., 2001; Krittayaphong et al., 2008; Wu et al., 2008; Larose et al., 2010). In addition to MI, with growing prognostic evidence, LGE has been successful in the identification of scarring regions in cardiomyopathy, inflammatory and infiltrative conditions (Wagner et al., 2003b; Maceira et al., 2005; Smedema et al., 2005; Flett et al., 2009).

However, the LGE CMR modality often suffers from poor image qualities, which may be due to residual respiratory motions, variabilities in the heart rate and gadolinium wash-out during the currently long acquisition time (Yang et al., 2017). Particularly, the spatial resolution of the left atrium in the LGE CMR image is limited (To et al., 2011), considering the thin transmural thickness of the atrial wall [mean = 2.2–2.5 mm (Saìnchez-Quintana et al., 2005)] (Figure 2). The variable anatomical morphological shapes of the LA and pulmonary veins (PV) also impose an additional challenge to the LGE CMR segmentations. To improve the visualization of these scar regions, we can see a successful attempt by maximum intensity projection (MIP) to enhance intensities on post-ablation LA LGE CMR (Knowles et al., 2010). Moreover, some irrelevant cardiac substructures may be highlighted in LGE CMR images as well, in addition to the scarring and fibrosis regions. These may be due to, for example, the navigator beam artifact, which is often seen near the right PV, Gadolinium uptake by the aortic wall and valves, and confounded enhancement in the spine, esophagus, etc. (Karim et al., 2013; Yang et al., 2017). As a result, these can lead to a poor result in the delineation of LA and LV scar or fibrosis regions and even a significant amount of false positives in segmentations of these structures and regions.


[image: image]

FIGURE 2. Examples of LGE CMR images acquired at (A) LA and (B) LV, with the fibrosis/infarction regions highlighted in green. By comparing (A2) and (B2), we can see the fibrosis region in LA is rather more discrete and thinner compared to LV infarction, making LA fibrosis regions more difficult to be accurately fully localized and quantified. Image source: (A) was extracted from pre-ablation CMR images in ISBI 2013 cDERMIS dataset (http://www.cardiacatlas.org/challenges/left-atrium-fibrosis-and-scar-segmentation-challenge/). (B) was extracted from MICCAI 2012 Ventricular Infarct Segmentation challenge dataset (http://www.cardiacatlas.org/challenges/ventricular-infarct -segmentation/).


In addition, although LGE CMR has been successful in being the gold standard reference technique for AF and MI, including LGE in MRI significantly extends the scanning time. There have been also increasingly growing concerns regarding the safety of the Gadolinium based contrast agent used, particularly for the patient with renal impairments (Ledneva et al., 2009).



2.2 LGE CMR With Other Modalities

In addition to LGE MRI, which could highlight the scarring regions, segmentation of the anatomy and scarring regions can also utilize other modalities (Figure 3) to further improve the accuracy if applied with LGR CMR by co-registering different modalities together (Zhuang, 2019).
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FIGURE 3. Example images using different CMR sequences acquired by (A) LGE CMR (B) T2 CMR (C) bSSFP CMR. As denoted by the green arrows, we can see (A) LGE CMR accentuates the scar tissue by high intensities on the images; (B) T2 CMR accentuates myocardial oedema by high intensities on the image; and (C) bSSFP CMR shows the distinct endo- and epi-cardial boundary of the myocardium clearly on the image. Image source: (A–C) extracted from the MS-CMR open challenge dataset (MS-CMR Challenge, 2019).


There have been challenges benchmarking a range of algorithms for the cross-modality fusion based segmentation of anatomy, scar and oedema.


(1)MS-CMR challenge (MS-CMR Challenge, 2019; Pop et al., 2020) presented a range of algorithms taking multiple modalities in to further improve the segmentation accuracy of LV myocardium, LV blood cavity and RV.

(2)MyoPS challenge (MyoPS Challenge, 2020; Zhuang and Li, 2020) presented algorithms to delineate LV myocardium with scarring and oedema.



Other modalities and sequences can include:


(1)Magnetic resonance angiography (MRA) sequence – to image LA and PV with high contrasts, which has been demonstrated by Tao et al. (2016) to improve the error distance in segmenting LA anatomy to within 1.5 mm. However, MRA is usually ungated and usually acquired in an inspiratory breath-hold, making anatomy delineated from MRA significantly distorted from LGE CMR.

(2)Balanced steady-state free precession (bSSFP) – provides a clear boundary between the myocardium and blood cavity under movements, which is usually respiratory and cardiac gated. It can offer cine CMR with a uniform texture.

(3)T2 – high intensities in T2 presents myocardial oedema with high specificity and sensitivity (Gannon et al., 2019), T2 could be helpful in segmenting myocardial oedema and scar simultaneously if incorporated with LGE-CMR and bSSFP (Zhu et al., 2017). Identification of oedema on CMR can help clinicians to differentiate between acute and remote myocardial infarction (Friedrich, 2017). The presence of oedema in patients without extensive irreversible injury (e.g., scar) can serve as a marker for clinicians to predict the recovery of LV systolic functions (Vermes et al., 2014).






3. CONVENTIONAL METHODS

Conventionally, a two-stage approach is adopted in the identification and evaluation of fibrotic and scarring tissue – (1) segmentation of the relevant anatomical structure (LA and PV in the case of LA fibrosis/scar segmentation and LV in the case of LV infarction segmentation) and (2) then segmentation of the fibrotic and scarring regions. This two-stage approach is particularly beneficial for LA and PV, as LA and PV are highly morphological variables and relatively small in size. We shall then elaborate on the recent developments of methodologies for each of them.


3.1 Segmentation of Anatomical Structures

The delineation of anatomical structures, e.g., LA and LV wall, from others can be difficult in LGE CMR images. In LGE scarring tissues are significantly enhanced while the signals from the healthy tissues are attenuated (Keegan et al., 2015), making the segmentation of LA, PV and LV anatomical structures very challenging.


3.1.1 Why Is Accurate Segmentation of Anatomical Structure Necessary Before Scar Segmentation?

Accurate segmentation of the anatomy (LA or LV wall) is essential as it gives an accurate initialization for the scar segmentation. Therefore, traditionally, the segmentation of these structures were all done manually.

We could see in the cDEMRIS challenge in ISBI 2012 (Karim et al., 2013) algorithms with manually initialized LA segmentation showed significantly better performance than Others. It demonstrated the need for an accurate anatomy segmentation ahead of the scar segmentation along with Rajchl et al. (2015). Moccia et al. (2018) also demonstrated that manual and accurate segmentation of the LV wall could improve the deep learning based segmentation of the LV infarction.



3.1.2 Conventional Methods in Segmenting Anatomical Structures

In the early 21st century, radiologists looked between LGE CMR and cine CMR back and forth to delineate the myocardium region. To mimic that, we can see methods in the first decade and early second decade of this century utilizing both LGE and cine modalities by, for example, non-rigid registration to achieve high accuracy in segmentation of myocardium over LGE CMR (Dikici et al., 2004; Ciofolo et al., 2008; Wei et al., 2011, 2013). However, by doing so, the result may suffer from registration misalignment between LGE and cine modalities and the model may be computationally demanding. As such, from 2014 we can see methods that are less computationally demanding and using LGE modality only (Albà et al., 2014; Kurzendorfer et al., 2017a,b,c).

Conventional methods in medical image segmentation usually have limited efficacy. Representative methods are summarized in Table 2, which mainly include the following methodologies.


(1)Random forest (Kurzendorfer et al., 2017b).

(2)Image registration (Kurzendorfer et al., 2017c).

(3)Markov random field (MRF) model (Albà et al., 2014).

(4)Atlas-based modeling with active contour model (Kurzendorfer et al., 2017a).

(5)Principal component analysis (PCA) technique (Kurzendorfer et al., 2017c).




TABLE 2. Summary of representative conventional methodologies for segmentation of the myocardium on LGE-MRI.
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For LA, in particular, the methods involving pre-defined shape priors (Zhu et al., 2013; Veni et al., 2017) often suffer from relatively poor error distance, which is more than 1–2 mm required (Xiong et al., 2021) under the clinical setting considering the thin LA wall (Zhao et al., 2017). However, one of them reported a relatively high Dice score (79%) (Zhu et al., 2013).




3.2 Segmentation of Scarring Regions

Upon successful segmentation of the anatomy, the scarring regions can be identified by a range of approaches. These approaches can be mainly divided into the following categories: threshold based methods, classification methods, or the combination of both.


3.2.1 Fixed Threshold Based Methods (n-SD and FWHM)

Traditionally, the scarring regions can be detected as they are accentuated in LGE CMR. Among a range of conventional techniques, 2-SD has been advocated by official guidelines (Kramer et al., 2013), while the full width at half maximum (FWHM) technique has been advocated as the most reproducible method to segment ventricular scars (Flett et al., 2011).

2-SD and FWHM are both fixed threshold methods in segmenting the scarring region, where pixels with intensities above a fixed threshold would be labeled as the scar. 2-SD or even n-SD methods define such threshold as the sum of the mean and two or n standard deviations of signal intensities in a remote reference region, whereas FWHM defines such threshold as the half of the maximum signal intensity within the scar.

Karim et al. (2016) evaluated 2, 3, 4, 5, 6 -SD and FWHM methods on a public human LV infarct dataset and showed that FWHM superseded all n-SD methods tested by its Dice Scores and that the Dice Scores went slightly higher with the threshold rising from 2 to 6 -SD. However, it is not the case when Karim et al. (2013) evaluated 2, 3, 4 -SD and FWHM on a public human LA fibrosis/scar dataset. For pre-ablation LA fibrosis, FWHM performed much worse than all n-SD methods tested. For post-ablation LA scar, FWHM gave similar Dice Scores as 2-SD’s with 3, 4, 6 -SD methods’ Dice Scores much lower than these two.

However, these fixed-threshold techniques, including n-SD and FWHM, are unlikely to handle variations well (Oakes et al., 2009). The variations can come from two sources – scar itself and external circumstances. Scars are highly variable in their morphology and their brightness distribution on LGE CMR. Varied external factors including resolution, contrast, signal-to-noise ratio (SNR), inversion time and surface coil intensity variation can also adversely impact the accuracy of the segmentation. This is particularly the case for pulmonary veins, which are highly morphological variables.



3.2.2 Conventional Adaptive Methods

An LV scar segmentation challenge (Karim et al., 2016) organized in MICCAI 2012 and LA scar segmentation (Karim et al., 2013) challenge organized in ISBI 2013 carefully benchmarked and summarized the majority of the pre-2013 conventional methods. In the LV segmentation challenge in 2012, it showed all of the algorithms benchmarked did not exhibit superiority against FWHM, although they did perform better than n-SD methods.


3.2.2.1 Adaptive thresholding based methods

Conventional threshold based approaches are summarized in Table 3A, which mainly include the following methodologies.


(1)Otsu thresholding (Otsu, 1979; Tao et al., 2010).

(2)Histogram analysis (Karim et al., 2013).

(3)Hysteresis thresholding (Karim et al., 2013).

(4)Constrained watershed segmentation (Hennemuth et al., 2008).




TABLE 3. Summary of representative conventional methodologies for segmentation of cardiac scar and fibrosis regions on LGE-MRI.
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3.2.2.2 Classification based methods

In addition, conventional classification approaches are summarized in Table 3B, which mainly include the following methodologies.


(1)K-means clustering (Karim et al., 2013).

(2)Graph cuts (Karim et al., 2013, 2014).

(3)Active contour with EM-fitting (Karim et al., 2013).

(4)Simple linear iterative clustering (SLIC) and support vector machine (Yang et al., 2018b).

(5)Random forest classification (Kurzendorfer et al., 2018).








4. DEEP LEARNING BASED METHODS

Deep learning based methods are constructed from deep artificial neural networks. In this section, we will briefly introduce the common types of artificial neural networks (ANNs) and then focus on their variants targeting cardiac anatomy and scar segmentations. The authors would also like to recommend interested readers to refer to Goodfellow et al. (2016) for more detailed explanations and mathematical illustrations of these networks and Chen C. et al. (2020) for more thorough demonstrations of these networks in general cardiac imaging analysis.


4.1 Neural Networks of Deep Learning in Image Analysis

Convoluted neural networks (CNNs), particularly fully convoluted neural networks (FCNNs), have demonstrated success in delineating anatomical structures in medical images (Shelhamer et al., 2017), especially in cardiac MR (Chen C. et al., 2020). Successful examples include ResNet (Szegedy et al., 2016), U-Net (Ronneberger et al., 2015), and etc. U-Net (Ronneberger et al., 2015), in particular, has been known for its ability to gather latent information in medical image analysis and thus to gain better performance in segmentation, which has become the most popular CNN backbone architecture, especially after demonstrating success in the ISBI cell tracking challenge in 2015.

The recurrent neural network (RNN) is another type of ANNs. The RNN is rather more useful in processing sequential data, as it could ‘memorize’ past data and utilize its ‘memory’ to assist with its current prediction. Widely used structures of RNNs include long-short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) and gated recurrent unit (GRU) (Cho et al., 2014).

Autoencoders (AEs) are also a type of ANNs, which are able to learn latent features of imaging data. Unlike CNNs and RNNs, AEs learn these features without supervision. With latent features gathered by AEs, it could be used to guide the segmentation of medical images (Oktay et al., 2016; Yue et al., 2019).

Generative Adversarial Networks (GANs) was initially proposed for image synthesis (Goodfellow et al., 2014). With its two-player model structure (a generator network to give a synthesized image and a discriminator network to try to differentiate that synthesized image from a true image), the model can enhance the resolution of the synthesized image by adversarial training. The GAN could also be used for segmentation, where its discriminator network would rather attempt to see if the output label is in an anatomically plausible shape (Luc et al., 2016).



4.2 Segmentation of Anatomical Structures


4.2.1 Why Use Deep Learning in the Anatomical Structure Segmentation?

There are a few challenges recently organized to benchmark the new methodologies proposed for the cardiac anatomy segmentation – 2018 LA Segmentation Challenge in MICCAI 2018 (LASC’18) (Xiong et al., 2021) for LA, MS-CMR (MS-CMR Challenge, 2019; Pop et al., 2020) in MICCAI 2019, and MyoPS 2020 (MyoPS Challenge, 2020; Zhuang and Li, 2020) in MICCAI 2020 for LV. With the recent development in deep learning, we can observe a range of methodologies developed for LA and LV segmentation in LGE CMR (Jamart et al., 2020).

In particular, in LASC’18, all deep learning methods had their mean surface distance in LA wall segmentation below 1.7 mm, with the minimum mean value of 0.748 mm. This demonstrated the efficacy of the deep learning based methods by the surface distance, which is required to be less than 1–2 mm under the clinical setting (Xiong et al., 2021).



4.2.2 Deep Learning Methodologies in the Anatomical Structure Segmentation

Successful networks demonstrating success in delineating anatomical structures include VGG-net (Simonyan and Zisserman, 2014), U-Net (Zabihollahy et al., 2019b), and V-Net (Milletari et al., 2016). To further exploit the information on the z-axis, LSTM and its variants (Yang et al., 2018a; Zhang et al., 2020) and dilated residual learning blocks (Yang et al., 2018a) can be introduced to the widely used U-Net.

On top of the U-Net, Xiong et al. (2019) proposed a dual path U-Net variant, which is demonstrated to have the best Dice Score (0.942) followed by VGGNet (0.864) in their benchmarking of a range of popular CNNs including the original U-Net and one non-deep-learning based method (Zhu et al., 2013) in LA segmentation. Multi-view learning, incorporating axial, sagittal and coronal views together, gave superior performance compared to models based on one view only (Xiao et al., 2020).

On the contrary, further research showed that structural variations in U-Net are unlikely to cause a significant improvement of its performance in LA segmentation from LGE CMR (Wang et al., 2019), and that deep supervision and attention blocks are unlikely to further improve LA segmentation performance either (Borra et al., 2020b).

In addition to these supervised learning based methods, Chen J. et al. (2019) proposed a feature-matching based semi-supervised learning technique to further improve the segmentation efficacy.

All the methods discussed above are summarized in Table 4.


TABLE 4. Summary of representative deep learning based methodologies for segmentation of the myocardium on LGE-MRI.
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4.3 Segmentation of Scarring Regions

We can observe a range of deep learning based methods in segmenting scars (Table 5).


TABLE 5. Summary of representative deep learning based methodologies for segmentation of cardiac scar and fibrosis regions on LGE-MRI.
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4.3.1 LA Scar Segmentation Models

For LA (Table 5A), Yang et al. (2017) proposed a deep learning based method using Stacked Sparse Auto-Encoders to delineate the LA fibrosis region, which is based on accurate anatomical structure delineation. Li et al. (2020) proposed a graph-cuts framework based on multi-scale CNN to further incorporate local and global texture information of the images.



4.3.2 LV Scar Segmentation Models

For LV (Table 5B), E-Net (Moccia et al., 2018) and FCNN (Moccia et al., 2019) were demonstrated for its high accuracy if with manually segmented LV walls. Then, multi-view U-Net has also been developed in segmenting the scar in a cascaded way (Zabihollahy et al., 2020).




4.4 End-to-End Automated Fibrosis and Scar Segmentation


4.4.1 Development of End-To-End Scar Segmentation Models Instead of Staged Segmentation Networks

With more recent developments of deep learning, the models can extract further latent information from the LGE CMR images and segment the scar directly from LGE CMR images without acquiring accurate segmentation of the relevant cardiac anatomical structures (e.g., LA wall) in advance while maintaining the accuracy. There has also been a range of methods (Table 6) that can complete the segmentation of both the anatomy of cardiac chambers and the scar simultaneously (referred to as “two tasks” below). This is particularly the case for LV, where there is much less variability in its anatomical shape.


TABLE 6. Summary of representative end-to-end deep learning based methodologies for segmentation of cardiac scar and fibrosis regions on LGE-MRI.
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4.4.2 LA End-To-End Scar Segmentation Models

For LA (Table 6A), due to the thin LA wall, it is particularly difficult to achieve an end-to-end segmentation of scar directly from LGE CMR. A multi-view two task (MVTT) deep learning based method with dilated attention network was proposed to complete the two tasks simultaneously (Chen et al., 2018; Yang et al., 2020). This study also benchmarked a range of popular deep learning networks such as U-Net and V-Net on each of the two tasks. It compared the performance of its network with conventional methods such as 2-SD and k-means to demonstrate the superiority of its network in completing both of the two tasks accurately on both pre-ablation and post-ablation datasets (Yang et al., 2020). This study also suggested that 2-SD, k-means and fuzzy c-means methods clearly over-estimated the enhanced LA scar region (Yang et al., 2020).

Later, with a joint GAN discriminator, Chen et al. were able to further improve the segmentation accuracy by dealing with the significantly unbalanced two LA targets (LA wall and scar) (Chen et al., 2021; Table 7). In their method, cascaded learning, a widely applied technique in learning labels with unbalanced classes in natural image segmentation (Dai et al., 2016; Murthy et al., 2016; Li et al., 2017; Lin et al., 2017; Ouyang et al., 2017; Cai and Vasconcelos, 2018; Chen K. et al., 2019), demonstrated superiority in learning.


TABLE 7. Result of a private benchmarking (Chen et al., 2021) of different algorithms on the LASC’18 dataset, reported in their mean ± SD.
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4.4.3 LV End-To-End Scar Segmentation Models

As LV has less variant morphology and greater size, there have been more successful methods demonstrating their efficacies andefficiencies in LV scar segmentation (Table 6B). E-Net (Moccia et al., 2018) and FCNN (Moccia et al., 2019) were the first few networks that demonstrated the ability to segment scar directly from LGE CMR. Although with relatively low Dice scores, they demonstrated that with an accurately segmented myocardium label it could perform better.

Recently, many deep learning methods have been proposed and demonstrated significantly higher efficacy compared to traditional threshold based methods. Zabihollahy et al. developed a CNN based network to classify each pixel by considering small volume patches around that pixel to greatly improve the mean segmentation accuracy in terms of its mean Dice score to 93.63, compared to the mean Dice scores of K-nearest neighbor (KNN) (77.85), FWHM (61.77), and 2SD (48.33) in their private benchmarking (Zabihollahy et al., 2019a).

In addition, Fahmy et al. (2020) proved that a 3D CNN deep learning based approach could be applied for LV scar segmentation for patients with hypertrophic cardiomyopathy (HCM) via a multicenter multivendor study.

Inspired by the two-stage approach, a multi-view cascaded U-Net driving for even higher efficacy in segmentation was developed to cascade the two tasks sequentially while considering sagittal, axial and coronal views (Moccia et al., 2019).




4.5 Segment LGE CMR Jointly With Other Modalities

As explained in Section 3.1.2, traditionally, clinicians check both bSSFP cine and LGE MRI modalities to ensure accurate segmentation of the myocardium and then the scar. Therefore, many methods suggested the use of both bSSFP cine and LGE modalities in delineating anatomical structures and scar to mimic that. For LA, it is also known that MRA gives a clear boundary in PV to help with LA wall segmentation. We can see many methods taking MRA as an extra modality into their models to enhance their segmentation accuracy. However, many studies chose bSSFP over MRA, as bSSFP can be acquired in the same phase as LGE CMR by cardiac gating. Although MRA provides better resolution, MRA is not cardiac gated and can be difficult and error-prone in co-registration with LGE CMR, causing misalignments in registered images. Additionally, as explained in Section 2.2, integration with other modality (e.g., T2) may enable more findings from the CMR (e.g., oedema) in addition to scars.

There are few challenges benchmarking a range of algorithms for the cross-modality fusion based segmentation of anatomy, scar and oedema. MS-CMR challenge (MS-CMR Challenge, 2019; Pop et al., 2020) presented a range of algorithms taking multiple modalities in to further improve the segmentation accuracy of LV myocardium, LV blood cavity and RV. MyoPS challenge (MyoPS Challenge, 2020; Zhuang and Li, 2020) presented algorithms to delineate LV myocardium with scarring and oedema.

Common methods to segment anatomy and scar from multiple modalities include:


(1)Cross-modality style and feature propagation (typically from bSSFP to LGE-MRI) [e.g., multi-atlas label fusion (MAS) (Zhu et al., 2017)].

(2)Combination of multiple paired sequences and modalities for segmentation by either cross-modality image style transfer [e.g., Cycle-GAN (Zhu et al., 2017) and UNIT style transfer (Huang et al., 2018; Chen J. et al., 2020)] or multi-input models [e.g., Multi-variable mixture model (MvMM) (Zhuang, 2019)].

(3)A two-stage approach to firstly co-registering anatomical segmentation from one modality to another (typically from bSSFP segmentation to LGE-MRI) and then segment scars based on the co-registered anatomy segmentation (Leong et al., 2019).



However, respiratory and/or cardiac motion complications between acquisitions of different modalities can still cause errors in registration and possible misalignments.




5. SCAR SEGMENTATION WITH NON-CONTRAST-AGENT (NON-CA) ENHANCED IMAGING MODALITY ONLY

Although LGE CMR has been very successful in being the gold standard reference technique for AF and MI, including LGE in an MRI scanning significantly extends the scanning Time. Moreover, there have been increasingly growing concerns regarding the safety of the Gadolinium based contrast agent used, particularly for the patient with renal impairments (Ledneva et al., 2009). There has been a rising attention in exploring methods to segment scars without injecting contrast agents to the patients on non-CA modalities. Non-CA modality based cardiac scar segmentation methods have been widely demonstrated for LV scar delineations but has not been realized for LA scar delineations.

Dastidar et al. (2019) and Liu et al. (2018) demonstrated the potential of pre-contrast scar segmentation by comparing the inter-modality manual observations of myocardial infarction regions on LGE CMR and native-T1 mapping without the Gadolinium contrast agents.


5.1 Relaxation Time Based Scar Segmentation in T2

T1 and T2 (Messroghli et al., 2017) are modalities that are not enhanced by any contrast materials, where relaxation times in MI is longer compared to the healthy myocardium and could be referenced for MI region segmentation reproducibly (Abdel-Aty et al., 2004; Kali et al., 2014; Smulders et al., 2015). However, the relaxation time is field strength specific (Raman et al., 2013; Haaf et al., 2017) and requires the acquisition of images for additional breath holds, which significantly extends the CMR acquisition time.



5.2 MRI Feature Tracking

Magnetic resonance imaging feature tracking is also an approach to differentiate MI induced cardiac wall abnormalities from normal myocardium, which can be acquired as part of a standard CMR scanning examination (Muser et al., 2017; Ogawa et al., 2017). However, this technique can only detect and locate the position of MI without quantifying it.



5.3 Scar Segmentation in CINE MRI

To further improve scar segmentation on non-contrast enhanced CMR, trained by co-registered LGE and cine MRI modalities, SVM based texture analysis in pre-contrast cine MRI only can discriminate between nonviable, viable and remote segments (Larroza et al., 2018). Non-contrasted enhanced CMR scar segmentation has also been demonstrated via neighborhood approximation forests (Bleton et al., 2016), Simple Linear Iterative Clustering (SLIC) (Achanta et al., 2012) based supervoxels (Popescu et al., 2017).


5.3.1 Deep Learning Based Scar Segmentation in CINE MRI

With the development of deep learning, a method based on a combination of Long short-term memory (LSTM), recurrent neural network (RNN) and fully convoluted neural network (FCNN) (Xu et al., 2017) and a GAN based method (Xu et al., 2018) have been demonstrated accuracy in detecting, locating and quantifying LV scarring regions from non-contrast enhanced CMR images. Zhang et al. proposed a deep learning based framework to greatly improve the efficacy of the segmentation of LV scar on cine MRI (with its stages consisting of (1) ROI localization, (2) RNN based motion pattern extraction, and (3) pixel classification by FCNN) and assess their network extensively under a clinical setting (Zhang et al., 2019). Xu et al. (2020) on top of the deep learning based workflow, proposed a progressive sequential causal generative adversarial network (GAN) to simultaneously synthesize LGE-equivalent images and multi-class tissue segmentation (including LV blood cavity, LV myocardium and scar region) from cine CMR images. A detailed summary and results of a private benchmarking of all these algorithms can be found in Table 8.


TABLE 8. Summary of representative machine learning/deep learning based scar segmentation in cine MRI for segmentation of cardiac scar regions on cine bSSFP MRI.

[image: Table 8]




6. EVALUATION METRICS

A range of evaluation metrics can be employed for assessing the results of the segmentation of the anatomy. These include Dice score, sensitivity, specificity, Hausdorff distance (HD) and surface-to-surface distance (STSD).


(1) Dice Score

The Dice Score coefficient, DICE, is one of the most widely used evaluation metrics in segmentation accuracy evaluations. It is particularly sensitive to the difference between the ground truth label and the result label.

Given a 3D prediction label tensor, A, and 3D ground truth label tensor, B, the Dice score can be defined as:

[image: image]



(2) Sensitivity

Sensitivity score, also known as True Positive Rate, can be adapted to reflect the success of the algorithm for segmenting the foreground (cardiac anatomy) as:

[image: image]

where TP stands for true positive and FN stands for false negative.



(3) Specificity

Sensitivity score, also known as True Negative Rate, reflects the success of the algorithm for segmenting the background as:

[image: image]

where TN stands for true negative and FP stands for false positive.



(4) Hausdorff Distance

Hausdorff distance, HD, is an important parameter in evaluating the geometrical characteristics which measures the maximum local distance between the surfaces of the predicted LA volume label tensor, A, and the ground truth label tensor, B, given by:

[image: image]

where a and b are all pixels locations within A and B.

In practice, the HD is not generally recommended to use it directly since it has a great sensitivity to outliers, and as noises and outliers are quite common in medical image segmentation (Gerig et al., 2001; Zhang and Lu, 2004). However, Huttenlocher et al. (1993) proposed a way to handle outliers by defining the HD as the qth quantile of distance instead of the maximum to exclude the outliers.



(5) Surface-to-Surface Distance

Surface-to-surface distance, STSD, measures the average distance error between the surfaces of the predicted LA volume and the ground truth.

[image: image]

where nA and nB are the numbers of pixels in A and B, respectively. Variables p and p′ describe all point between A and B.

The maximum error distance acceptable in the LA wall segmentation should be 1–2 mm under the clinical setting considering the thin LA wall (Xiong et al., 2021).



(6) Error of the Anterior-Posterior Diameter of the Anatomical Structure

The anterior-posterior diameters of LA and LV are widely used as an essential clinical measure in clinical diagnosis and treatments.

The diameters can be estimated by finding the maximum Euclidean distance along the anterior-posterior axis of each CMR scan (Xiong et al., 2021).



(7) Error of Volume of the Anatomical Structure

The anatomical volumes of LA and LV are widely used as an essential clinical measure in clinical diagnosis and treatments.

The volume of the structure can be found as the sum of positively labeled voxels. Given the volume of the predicted anatomical structure, VA, and the volume of the ground truth, VA, the total volume error can be defined as:

[image: image]



(8) Scar Volume Percentage

In addition to the ones mentioned above, scar segmentation also employs a scar volume based metric in assessing the segmentation result, which is much more widely used as the quantification of scar is important for clinical use. They calculate the volumetric percentages of the scarring regions and compare them across the predicted and the ground truth labels.

The scar percentage is defined as the percentage of the volume of the scarring region, Vscar, relative to the volume of the relevant anatomical wall, Vwall (e.g., LA wall) (Tao et al., 2010).

[image: image]




7. DISCUSSION


7.1 Dataset Acquisition


7.1.1 Inter-Observer Variability in the Manual Annotation of Ground Truth Labels

For validation and benchmarking of different methods and training of deep learning based methods, accurate, consistent and reproducible acquisition of ground truth labels is essential.

Validation by employing labels from a single clinician may not be ideal as these labels may exhibit bias and intra-observer variances when the same clinician is asked to repeat their labeling. Thus, it is recommended that we take observations from multiple clinicians and fuse them together.

However, we can see significant inter-observer variances, particularly for LA anatomical segmentation in LGE-MRI where the boundaries of the LA walls are very blurred. Kurzendorfer et al. (2017c) attempted to compensate for inter-observer variances by additional smoothing but ended up with slight improvement in Dice Scores (+0.04).

It is recommended that the data source reports the inter- and intra- observer variances by employing evaluation metrics such as the Dice Score coefficient. The currently widely used method of label fusing is obtaining a 70% consensus label among multiple annotations, which can be low in their consistency levels. The level of each observer’s expertise (novice, medical student, trainee, junior clinician or senior clinician) must also be clearly noted, particularly when multiple observers are involved. It may be also recommended that the observers should all be experienced senior clinicians to maintain the high accuracy and low variance in the manual annotation.



7.1.2 Dataset Sources

Many methods use single-vendor single-center datasets to validate their methods, which may not demonstrate the ability to generalize the accurate segmentation methodology to centers with CMR machines of different settings and compositions.

There have been some trials assessing the performance of models based on multi-vendor and multi-center data (Engblom et al., 2016; Fahmy et al., 2020). However, evaluation based on multi-vendor and multi-center data with a more significant patient population should be introduced for a more comprehensive unbiased validation, comparison of performances of different methods and assessment for their scalability.



7.1.3 Quantitative Result Reporting

We would like to alert readers that nearly all studies summarized in this study used their own distinct private datasets when reporting results. Biased conclusion may be derived when directly comparing these quantitative metrics across studies. The authors would like to ask all readers to refer to the experimental settings in acquisitions of the datasets stated in their original articles when comparing quantitative results across different studies, instead of only looking at these numbers stated. We would also look forward to a public benchmarking of all these methods as a fairer review of their performances.

Also, the authors would like to ask readers to be cautious when directly comparing Dice Scores reported for the segmentation of the LV infarction than the LA necrosis’. As the LA is much smaller than the LV, an equivalent volume of discrepancy may trigger a more significant reduction in the LA necrosis’ Dice Score ratios than the LV infarction’s. Additionally, the LA necrosis tends to be more challenging to be accurately segmented than the LV infarction explained above.

In addition, the image quality, contrast, class imbalance and other factors of the image data can directly impact the result generated from it and thus the accuracy reported. In particular, the authors would advocate future literature to report (1) scar to blood pool contrast ratios (SC-BP) (Karim et al., 2014) to show the scar contrast, (2) signal-to-noise ratio (SNR) to show the noise variation along with evaluation metrics in results, so the readers can have a better understanding of the experimental settings before interpreting all the metrics reported quantitatively. These two additional metrics are essential, particularly when it comes to LA scar segmentation, where the scar segmentation is more difficult and where higher SC-BP can give higher Dice Scores in the results generated (Karim et al., 2014).




7.2 Conventional Methods


7.2.1 Advantages – Computational Load and Explainability

Obviously, as conventional methods are less demanding on the composition of the computing device, they can be deployed for wider clinical uses more easily. This is an advantage when it comes to the scalability and generalizability of the product, where a standard computer is enough for its deployment.

Conventional methods are also more explainable than deep learning. The explainability also guarantees easier acceptance from the clinicians, as the product may appear more trustworthy and more reliable.



7.2.2 How Reliable Are the Conventional Methods?


7.2.2.1 Fixed threshold conventional methods

Fixed threshold methods may not fit some LGE CMR images, as they are unlikely to handle variations well (Oakes et al., 2009).

Scars are highly variable in their morphology and their brightness distribution on LGE CMR. Some severe LV cardiac scar may appear bright in its surroundings and very dark in its center, as the center of the scar is so severely infarcted that very little GBCA carrying perfusion arrives there. N-SD and FWHM, which require the pixel intensity to be more than a certain threshold for that pixel to be recognized as a scar, may not label these dark centers as the scar. Additionally, due to the partial volume effect, fibrotic regions containing both intermingling bundles of fibrotic and viable myocytes will be darker than the complete necrosis region. The low intensity exhibited from such fibrotic regions may be below the fixed threshold set and make these fibrotic regions be falsely recognized as healthy myocardium.

Varied external factors including resolution, contrast, signal-to-noise ratio (SNR), inversion time and surface coil intensity variation can also adversely affect the accuracy of the scar segmentation. LGE CMR modality often suffers from poor image quality, which may be due to residual respiratory motion, variability in the heart rate and gadolinium wash-out during the currently long acquisition time (Yang et al., 2017). Considering the thin transmural thickness of the atrial wall [mean = 2.2–2.5 mm (Saìnchez-Quintana et al., 2005)] (Figure 2), the spatial resolution of LGE CMR images is relatively limited, particularly for the left atrium (To et al., 2011). The variable anatomical morphological shapes of pulmonary veins (PV) also impose an additional challenge to the LGE CMR segmentations. In addition, some uninterested cardiac substructures may be highlighted in LGE CMR images as well in addition to the scarring and fibrosis regions. These may be due to the navigator beam artifact (which is often seen near the right PV), Gadolinium uptake by the aortic wall and valves and confounded enhancement in the spine, esophagus, etc. (Karim et al., 2013; Yang et al., 2017).



7.2.2.2 Conventional adaptive methods

Although adaptive conventional methods may mitigate adverse impacts from variable scar shapes and varied external factors, adaptive conventional methods can also be affected by sizes, variances and artifacts in testing image data as they utilize prior information learned. Kurzendorfer et al. (2017c) showed that a particular scar distribution over the myocardium could adversely affect their methods in segmenting endocardial contours. Such vulnerability may be more problematic when it comes to LA anatomical structures, as PV is a very morphological variable and LA walls are much smaller and thinner.





7.3 Deep Learning Based Methods


7.3.1 How We Could Make the Deep Learning Perform Even Better?

For detailed designs of the deep learning networks, LASC’18 benchmarked (Xiong et al., 2021) a range of U-Net variants in LA wall segmentation from LGE CMR. This challenge, along with other literature for cardiac scar segmentation, demonstrated the following.

(1) Image Sources


(a)Higher image qualities (as in signal-to-noise ratio) would result in a higher Dice Score, although not statistically significantly linearly related.

(b)In addition, models with contrast normalization as a pre-processing technique performed significantly better than the ones without using normalization.



(2) Model Backbone


(a)CNN based methods delivered better results compared to the atlas based methods.

(b)U-Net based methods outperformed other networks using VGGNet, ResNet, etc.

(c)There was no statistical difference between the segmentation performances of the models based on 2D CNNs and models based on 3D CNNs. However, further research showed that 3D CNNs greatly outperformed 2D CNNs with the same model architecture in terms of the Dice Scores of their segmentation results (Borra et al., 2020a).



(3) Segment on ROI or the Whole Image?


(a)Centring LA on ROI as an input to the second sequential model would make the model perform significantly better compared to the model with non-centered ROIs.

(b)Class imbalance induced by significantly big or small ROI size could lead to an adverse effect on the segmentation results in terms of Dice scores.

(c)Double sequential CNNs (Li et al., 2019; Xia et al., 2019; Yang et al., 2019; Xiong et al., 2021) (one detecting the region of interest first and then the second model performing regional segmentation within the region of interests (ROI) detected) achieved much better results compared to the methods with only one single CNN.

(d)Double sequential 3D CNN outperformed single 2D CNN and single 3D CNN models regarding its Dice scores, surface distance, LA diameter error and LA volume error.



(4) Model Architecture


(a)Models with residual connections performed significantly better compared to the ones without residual connections.

(b)The use of dropout blocks did not perform significantly better than the one without using dropout.

(c)Rectified Linear Unit (ReLU) trained models did not perform significantly better than the Parametric Rectified Linear Unit (PReLU) trained models.



(5) Loss Functions


(a)Dice loss trained models performed significantly better than the cross-entropy trained models.





7.3.2 Problems With Deep Learning in Segmentation


7.3.2.1 Computational load

Although we are able to observe much better results generated from deep learning based methods, we can also observe a rise in computational demand from deep learning networks. For deep learning based methods, high-end computer graphics processing units (GPUs) become a necessity when deploying these models, whereas standard computers with CPUs only are sufficient for most of the conventional methods to run. Under a clinical setting, hiring a GPU is not always possible, as it is not part of a standard clinical computing workstation. The requirement of a high-end computer with GPU in deploying a deep learning based method may significantly limit the ability of these methods to scale.

However, if a standard computer was only used to infer a deep learning model, its runtime may be a bit long but still falls within the maximum time limit that clinicians can accept (usually a few minutes per slice for models that are not extra complex). Therefore, we can see these models can be deployed and scaled only if they are sophisticatedly trained, as training on the clinician’s side, where unlikely they have a GPU, is not usually possible. As the inference time may vary significantly across different models over CPUs and depend on their architectures and complexities, reporting of inference time per slice on a standard computer without a GPU should also be mandatory in addition to the inference time over a GPU.



7.3.2.2 Scarcity of annotated data

Training datasets with abundant paired labels are essential to the success of deep learning model training. However, there has been a scarcity of labels due to the tedious process of manually annotating the ground truths in medical imaging. In order to mitigate such scarcity in ground truth labels, several methods can be adopted, including the following.


(1)Data augmentation,

(2)Transfer learning with fine-tuning (Bai et al., 2018; Chen S. et al., 2019; Khened et al., 2019),

(3)Weak and semi-supervised learning (Bai et al., 2017, 2018; Can et al., 2018; Chartsias et al., 2018, 2019; Kervadec et al., 2019),

(4)Self-supervised learning (Bai et al., 2019) and,

(5)Unsupervised learning (Joyce et al., 2018).



In addition, to mitigate the challenging training process brought by the great data size required to train a scalable network, active learning (Mahapatra et al., 2018) has been introduced to reduce manual annotation workloads as well as the computational loads.



7.3.2.3 Explainability in deep learning

Although there has been a wide range of evidence demonstrating the efficacy of deep learning in medical image analysis, the deep learning networks behave more like a ‘black box,’ where its interpretability is poor. It has been shown that these deep learning networks can be attacked by adversarial noises or even just rotation in medical images (Finlayson et al., 2019), questioning the reliability and scalability of these deep learning models in assisting diagnosis. For alerting users of these possible failures, segmentation quality scores (Robinson et al., 2019) and confidence maps [e.g., uncertainty maps (Sander et al., 2019) and attention maps (Heo et al., 2018)] should be provided to highlight uncertainties in the model prediction.





7.4 Non-CA Modality Segmentation: Bye-Bye to Gadolinium?

Although many methods can accurately segment scars on non-CA cine MRI, the impact from different numbers of cardiac phases on cine MRI has not been assessed.

In addition, the binary class of either normal or scar may be too simplistic. Quantification of the so-called “gray-zone,” which has been proposed for the clinical implication of ventricular arrhythmia (Jablonowski et al., 2017), immediately surrounding the ventricular scar may be useful clinically.

Also, gadolinium based contrast agent is not only applied for scar imaging but also for assessing myocardial perfusion, which is usually assessed together in LGE CMR, for which additional classification and differentiation of ischemic and remote regions of myocardium would be useful (Leiner, 2019). To achieve that, Liu et al. (2016) demonstrated non-Gadolinium contrast adenosine stress and rest T1 Mapping for identification and classification of normal, infarcted, ischemic and remote regions in LV myocardium.

We are glad to see a range of algorithms demonstrated for LV scar segmentation in non-contrast enhanced CMR. However, this has not been realized for CMR images of LA, which is more difficult as the LA scarring regions in CMR suffers from greater variances in morphology and relatively lower resolution of CMR. Moreover, LA scars can appear in discrete regions (Figure 2), which imposes further challenges to the LA scar segmentation from non-CA modalities.




CONCLUSION

This study summarizes the recent developments in cardiac scar segmentation, covering a wide range of conventional and deep learning techniques. In particular, we presented and discussed the usefulness of non-LGE modalities in cardiac anatomy and scar segmentation. We then further discussed the recent progress in segmenting the cardiac scarring region from non-contrast-enhanced images. We hope this review can provide a comprehensive understanding of the segmentation methodologies for cardiac scar and fibrosis and increase the awareness of common challenges in these fields that can call for future research and contributions.



AUTHOR CONTRIBUTIONS

YW and GY contributed to study design and writing – original draft preparation. ZT, BL, YW, and GY contributed to data collection. YW, ZT, BL, and GY contributed to data visualization. YW, ZT, BL, DF, and GY contributed to writing – review and editing. DF and GY contributed to supervision and funding acquisition. All authors have read and agreed to the published version of the manuscript.



FUNDING

This work was supported in part by the British Heart Foundation (Project Number: TG/18/5/34111, PG/16/78/32402), Heart Research UK (RG2584), the Hangzhou Economic and Technological Development Area Strategical Grant (Imperial Institute of Advanced Technology), the European Research Council Innovative Medicines Initiative on Development of Therapeutics and Diagnostics Combatting Coronavirus Infections Award “DRAGON: rapiD and secuRe AI imaging based diaGnosis, stratification, fOllow-up, and preparedness for coronavirus paNdemics” (H2020-JTI-IMI2 101005122), the AI for Health Imaging Award “CHAIMELEON: Accelerating the Lab to Market Transition of AI Tools for Cancer Management” (H2020-SC1-FA-DTS-2019-1 952172), and the UK Research and Innovation (MR/V023799/1).



REFERENCES

Abdel-Aty, H., Zagrosek, A., Schulz-Menger, J., Taylor, A. J., Messroghli, D., Kumar, A., et al. (2004). Delayed enhancement and T2-weighted cardiovascular magnetic resonance imaging differentiate acute from chronic myocardial infarction. Circulation 109, 2411–2416. doi: 10.1161/01.CIR.0000127428.10985.C6

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and Süsstrunk, S. (2012). SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Patt. Anal. Mach. Intell. 34, 2274–2282. doi: 10.1109/TPAMI.2012.120

Akkaya, M., Higuchi, K., Koopmann, M., Burgon, N., Erdogan, E., Damal, K., et al. (2013). Relationship between left atrial tissue structural remodelling detected using late gadolinium enhancement MRI and left ventricular hypertrophy in patients with atrial fibrillation. Europace 15, 1725–1732. doi: 10.1093/europace/eut147

Akoum, N., Daccarett, M., Mcgann, C., Segerson, N., Vergara, G., Kuppahally, S., et al. (2011). Atrial fibrosis helps select the appropriate patient and strategy in catheter ablation of atrial fibrillation: a DE-MRI guided approach. J. Cardiovasc. Electrophysiol. 22, 16–22. doi: 10.1111/j.1540-8167.2010.01876.x

Albà, X., Figueras i Ventura, R. M., Lekadir, K., Tobon-Gomez, C., Hoogendoorn, C., and Frangi, A. F. (2014). Automatic cardiac LV segmentation in MRI using modified graph cuts with smoothness and interslice constraints. Magn. Reson. Med. 72, 1775–1784. doi: 10.1002/mrm.25079

Allessie, M. (2002). Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc. Res. 54, 230–246. doi: 10.1016/S0008-6363(02)00258-4

Badger, T. J., Daccarett, M., Akoum, N. W., Adjei-Poku, Y. A., Burgon, N. S., Haslam, T. S., et al. (2010). Evaluation of left atrial lesions after initial and repeat atrial fibrillation ablation. Circ. Arrhythmia Electrophysiol. 3, 249–259. doi: 10.1161/CIRCEP.109.868356

Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495. doi: 10.1109/TPAMI.2016.2644615

Bai, W., Chen, C., Tarroni, G., Duan, J., Guitton, F., Petersen, S. E., et al. (2019). “Self-supervised learning for cardiac MR image segmentation by anatomical position prediction,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2019: 22nd International Conference, Proceedings, Part II. Lecture Notes in Computer Science, eds D. Shen, T. Liu, T. M. Peters, L. H. Staib, C. Essert, S. Zhou, et al. (Berlin: Springer), 541–549. doi: 10.1007/978-3-030-32245-8_60

Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., et al. (2017). “Semi-supervised learning for network-based cardiac MR image segmentation,” in Medical Image Computing and Computer Assisted Intervention - MICCAI 2017 - 20th International Conference, Proceedings, eds P. Jannin, S. Duchesne, M. Descoteaux, A. Franz, D. L. Collins, and L. Maier-Hein (Berlin: Springer), 253–260. doi: 10.1007/978-3-319-66185-8_29

Bai, W., Sinclair, M., Tarroni, G., Oktay, O., Rajchl, M., Vaillant, G., et al. (2018). Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J. Cardiovasc. Magn. Reson. 20:65. doi: 10.1186/s12968-018-0471-x

Bisbal, F., Guiu, E., Cabanas-Grandío, P., Berruezo, A., Prat-Gonzalez, S., Vidal, B., et al. (2014). CMR-guided approach to localize and ablate gaps in repeat AF ablation procedure. JACC Cardiovasc. Imaging 7, 653–663. doi: 10.1016/j.jcmg.2014.01.014

Bleton, H., Margeta, J., Lombaert, H., Delingette, H., and Ayache, N. (2016). “Myocardial infarct localization using neighbourhood approximation forests,” in Proceedings of the 6th International Workshop on Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges, Vol. 9534, eds O. Camara, T. Mansi, M. Pop, K. Rhode, M. Sermesant, and A. Young (Cham: Springer), 108–116. doi: 10.1007/978-3-319-28712-6_12

Boldt, A. (2004). Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease. Heart 90, 400–405. doi: 10.1136/hrt.2003.015347

Borra, D., Andalò, A., Paci, M., Fabbri, C., and Corsi, C. (2020a). A fully automated left atrium segmentation approach from late gadolinium enhanced magnetic resonance imaging based on a convolutional neural network. Quant. Imaging Med. Surg. 10, 1894–1907. doi: 10.21037/qims-20-168

Borra, D., Portas, D., Andalò, A., Fabbri, C., and Corsi, C. (2020b). “Performance comparison of deep learning approaches for left atrium segmentation from LGE-MRI Data,” in Proceedings of the 2020 Computing in Cardiology, Rimini. doi: 10.22489/CinC.2020.306

Boyle, P. M., Zghaib, T., Zahid, S., Ali, R. L., Deng, D., Franceschi, W. H., et al. (2019). Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nat. Biomed. Eng. 3, 870–879. doi: 10.1038/s41551-019-0437-9

Cai, Z., and Vasconcelos, N. (2018). “Cascade R-CNN: delving into high quality object detection,” in Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, 6154–6162. doi: 10.1109/CVPR.2018.00644

Can, Y. B., Chaitanya, K., Mustafa, B., Koch, L. M., Konukoglu, E., and Baumgartner, C. F. (2018). “Learning to segment medical images with scribble-supervision alone,” in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. DLMIA 2018, ML-CDS 2018. Lecture Notes in Computer Science, Vol. 11045, eds D. Stoyanov et al. (Cham: Springer), 236–244. doi: 10.1007/978-3-030-00889-5_27

Canny, J. (1986). A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698. doi: 10.1109/TPAMI.1986.4767851

Chartsias, A., Joyce, T., Papanastasiou, G., Semple, S., Williams, M., Newby, D., et al. (2018). “Factorised spatial representation learning: application in semi-supervised myocardial segmentation,” in Medical Image Computing and Computer Assisted Intervention, eds A. L. Martel, P. Abolmaesumi, D. Stoyanov, D. Mateus, M. A. Zuluaga and S. K. Zhou (Cham: Springer), 490–498. doi: 10.1007/978-3-030-00934-2_55

Chartsias, A., Joyce, T., Papanastasiou, G., Semple, S., Williams, M., Newby, D. E., et al. (2019). Disentangled representation learning in cardiac image analysis. Med. Image Anal. 58:101535. doi: 10.1016/j.media.2019.101535

Chen, C., Qin, C., Qiu, H., Tarroni, G., Duan, J., Bai, W., et al. (2020). Deep learning for cardiac image segmentation: a review. Front. Cardiovasc. Med 7:25. doi: 10.3389/fcvm.2020.00025

Chen, J., Li, H., Zhang, J., and Menze, B. (2020). “Adversarial convolutional networks with weak domain-transfer for multi-sequence cardiac MR images segmentation,” in Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges: 10th International Workshop, STACOM 2019, eds M. Pop, M. Sermesant, O. Camara, X. Zhuang, S. Li, A. Young, et al. (Cham: Springer), 317–325. doi: 10.1007/978-3-030-39074-7_34

Chen, J., Yang, G., Gao, Z., Ni, H., Angelini, E., Mohiaddin, R., et al. (2018). “Multiview two-task recursive attention model for left atrium and atrial scars segmentation,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. MICCAI 2018. Lecture Notes in Computer Science, Vol. 11071, eds A. Frangi, J. Schnabel, C. Davatzikos, C. Alberola-López, and G. Fichtinger (Cham: Springer), 455–463. doi: 10.1007/978-3-030-00934-2_51

Chen, J., Yang, G., Khan, H., Zhang, H., Zhang, Y., Zhao, S., et al. (2021). JAS-GAN generative adversarial network based joint atrium and scar segmentation on unbalanced atrial targets. IEEE J. Biomed. Heal. Informatics. doi: 10.1109/JBHI.2021.3077469 (accessed July 11, 2021)

Chen, J., Zhang, H., Zhang, Y., Zhao, S., Mohiaddin, R., Wong, T., et al. (2019). “Discriminative consistent domain generation for semi-supervised learning,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 Lecture Notes in Computer Science, eds D. Shen, T. Liu, T. M. Peters, L. H. Staib, C. Essert, S. Zhou, et al. (Cham: Springer), 595–604. doi: 10.1007/978-3-030-32245-8_66

Chen, K., Ouyang, W., Loy, C. C., Lin, D., Pang, J., Wang, J., et al. (2019). “Hybrid task cascade for instance segmentation,” in Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, 4969–4978. doi: 10.1109/CVPR.2019.00511

Chen, S., Ma, K., and Zheng, Y. (2019). Med3D: transfer learning for 3D medical image analysis. arXiv [Preprint]. Available online at: http://arxiv.org/abs/1904.00625 (accessed May 13, 2021).

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., et al. (2014). “Learning phrase representations using RNN encoder–decoder for statistical machine translation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), (Stroudsburg, PA: Association for Computational Linguistics), 1724–1734. doi: 10.3115/v1/D14-1179

Choi, K. M., Kim, R. J., Gubernikoff, G., Vargas, J. D., Parker, M., and Judd, R. M. (2001). Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function. Circulation 104, 1101–1107. doi: 10.1161/hc3501.096798

Ciofolo, C., Fradkin, M., Mory, B., Hautvast, G., and Breeuwer, M. (2008). “Automatic myocardium segmentation in late-enhancement MRI,” in Proceedings of the 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Piscataway, NJ, 225–228. doi: 10.1109/ISBI.2008.4540973

Dai, J., He, K., and Sun, J. (2016). “Instance-aware semantic segmentation via multi-task network cascades,” in Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 3150–3158. doi: 10.1109/CVPR.2016.343

Dastidar, A. G., Harries, I., Pontecorboli, G., Bruno, V. D., De Garate, E., Moret, C., et al. (2019). Native T1 mapping to detect extent of acute and chronic myocardial infarction: comparison with late gadolinium enhancement technique. Int. J. Cardiovasc. Imaging 35, 517–527. doi: 10.1007/s10554-018-1467-1

Dikici, E., O’Donnell, T., Setser, R., and White, R. D. (2004). “Quantification of delayed enhancement MR images,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004. MICCAI 2004. Lecture Notes in Computer Science, Vol. 3216, eds C. Barillot, D. R. Haynor, and P. Hellier (Berlin: Springer), 250–257. doi: 10.1007/978-3-540-30135-6_31

Engblom, H., Tufvesson, J., Jablonowski, R., Carlsson, M., Aletras, A. H., Hoffmann, P., et al. (2016). A new automatic algorithm for quantification of myocardial infarction imaged by late gadolinium enhancement cardiovascular magnetic resonance: experimental validation and comparison to expert delineations in multi-center, multi-vendor patient data. J. Cardiovasc. Magn. Reson. 18:27. doi: 10.1186/s12968-016-0242-5

Fahmy, A. S., Neisius, U., Chan, R. H., Rowin, E. J., Manning, W. J., Maron, M. S., et al. (2020). Three-dimensional Deep Convolutional neural networks for automated myocardial scar quantification in hypertrophic cardiomyopathy: a multicenter multivendor study. Radiology 294, 52–60. doi: 10.1148/radiol.2019190737

Finlayson, S. G., Bowers, J. D., Ito, J., Zittrain, J. L., Beam, A. L., and Kohane, I. S. (2019). Adversarial attacks on medical machine learning. Science 363, 1287–1289. doi: 10.1126/science.aaw4399

Flett, A. S., Hasleton, J., Cook, C., Hausenloy, D., Quarta, G., Ariti, C., et al. (2011). Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. JACC Cardiovasc. Imaging 4, 150–156. doi: 10.1016/j.jcmg.2010.11.015

Flett, A. S., Westwood, M. A., Davies, L. C., Mathur, A., and Moon, J. C. (2009). The prognostic implications of cardiovascular magnetic resonance. Circ. Cardiovasc. Imaging 2, 243–250. doi: 10.1161/CIRCIMAGING.108.840975

Friedrich, M. G. (2017). Why edema is a matter of the heart. Circ. Cardiovasc. Imaging 10:e006062. doi: 10.1161/CIRCIMAGING.117.006062

Gannon, M. P., Schaub, E., Grines, C. L., and Saba, S. G. (2019). State of the art: evaluation and prognostication of myocarditis using cardiac MRI. J. Magn. Reson. Imaging 49, e122–e131. doi: 10.1002/jmri.26611

Gerig, G., Jomier, M., and Chakos, M. (2001). “Valmet: a new validation tool for assessing and improving 3D object segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2001. MICCAI 2001. Lecture Notes in Computer Science, Vol. 2208, eds W. J. Niessen and M. A. Viergever (Berlin: Springer), 516–523. doi: 10.1007/3-540-45468-3_62

Girshick, R. (2015). “Fast R-CNN,” in Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 1440–1448. doi: 10.1109/ICCV.2015.169

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al. (2014). Generative adversarial nets. Adv. Neural Inform. Process. Syst. 11, 2672–2680. doi: 10.3156/jsoft.29.5_177_2

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. Cambridge, MA: MIT Press.

Haaf, P., Garg, P., Messroghli, D. R., Broadbent, D. A., Greenwood, J. P., and Plein, S. (2017). Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: a comprehensive review. J. Cardiovasc. Magn. Reson. 18:89. doi: 10.1186/s12968-016-0308-4

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image recognition,” in Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 770–778. doi: 10.1109/CVPR.2016.90

Hendel, R. C., Patel, M. R., Kramer, C. M., Poon, M., Hendel, R. C., Carr, J. C., et al. (2006). ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American college of cardiology foundation quality strategic directions committee appropriateness criteria working group, American college of radiology, society of cardiovascular computed tomography, society for cardiovascular magnetic resonance, American society of nuclear cardiology, north American society for cardiac imaging, society for cardiovascular angiography and interventions, and society of interventional radiology. J. Am. Coll. Cardiol. 48, 1475–1497. doi: 10.1016/j.jacc.2006.07.003

Hennemuth, A., Seeger, A., Friman, O., Miller, S., Klumpp, B., Oeltze, S., et al. (2008). A comprehensive approach to the analysis of contrast enhanced cardiac MR images. IEEE Trans. Med. Imaging 27, 1592–1610. doi: 10.1109/TMI.2008.2006512

Heo, J., Lee, H. B., Kim, S., Lee, J., Kim, K. J., Yang, E., et al. (2018). “Uncertainty-aware attention for reliable interpretation and prediction,” in Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal.

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Huang, X., Liu, M.-Y., Belongie, S., and Kautz, J. (2018). “Multimodal unsupervised image-to-image translation,” in ECCV 2018. LNCS, Vol. vol. 11207, eds V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss (Cham: Springer), 179–196. doi: 10.1007/978-3-030-01219-9_11

Huttenlocher, D. P., Klanderman, G. A., and Rucklidge, W. J. (1993). Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15, 850–863. doi: 10.1109/34.232073

Jablonowski, R., Chaudhry, U., van der Pals, J., Engblom, H., Arheden, H., Heiberg, E., et al. (2017). Cardiovascular magnetic resonance to predict appropriate implantable cardioverter defibrillator therapy in ischemic and nonischemic cardiomyopathy patients using late gadolinium enhancement border zone. Circ. Cardiovasc. Imaging 10:e006105. doi: 10.1161/CIRCIMAGING.116.006105

Jamart, K., Xiong, Z., Maso Talou, G. D., Stiles, M. K., and Zhao, J. (2020). Mini review: deep learning for atrial segmentation from late gadolinium-enhanced MRIs. Front. Cardiovasc. Med. 7:86. doi: 10.3389/fcvm.2020.00086

Joyce, T., Chartsias, A., and Tsaftaris, S. A. (2018). “Deep multi-class segmentation without ground-truth labels,” in Proceedings of the 9th International Conference on Medical Imaging With Deep Learning, Amsterdam.

Kali, A., Cokic, I., Tang, R. L. Q., Yang, H.-J., Sharif, B., Marbán, E., et al. (2014). Determination of location, size, and transmurality of chronic myocardial infarction without exogenous contrast media by using cardiac magnetic resonance imaging at 3 T. Circ. Cardiovasc. Imaging 7, 471–481. doi: 10.1161/CIRCIMAGING.113.001541

Karim, R., Arujuna, A., Housden, R. J., Gill, J., Cliffe, H., Matharu, K., et al. (2014). A method to standardize quantification of left atrial scar from delayed-enhancement MR images. IEEE J. Transl. Eng. Heal. Med. 2, 1–15. doi: 10.1109/JTEHM.2014.2312191

Karim, R., Bhagirath, P., Claus, P., James Housden, R., Chen, Z., Karimaghaloo, Z., et al. (2016). Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late Gadolinium enhancement MR images. Med. Image Anal. 30, 95–107. doi: 10.1016/j.media.2016.01.004

Karim, R., Housden, R. J., Balasubramaniam, M., Chen, Z., Perry, D., Uddin, A., et al. (2013). Evaluation of current algorithms for segmentation of scar tissue from late Gadolinium enhancement cardiovascular magnetic resonance of the left atrium: an open-access grand challenge. J. Cardiovasc. Magn. Reson. 15:105. doi: 10.1186/1532-429X-15-105

Keegan, J., Gatehouse, P. D., Haldar, S., Wage, R., Babu-Narayan, S. V., and Firmin, D. N. (2015). Dynamic inversion time for improved 3D late gadolinium enhancement imaging in patients with atrial fibrillation. Magn. Reson. Med. 73, 646–654. doi: 10.1002/mrm.25190

Kervadec, H., Dolz, J., Tang, M., Granger, E., Boykov, Y., and Ben Ayed, I. (2019). Constrained-CNN losses for weakly supervised segmentation. Med. Image Anal. 54, 88–99. doi: 10.1016/j.media.2019.02.009

Khened, M., Kollerathu, V. A., and Krishnamurthi, G. (2019). Fully convolutional multi-scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers. Med. Image Anal. 51, 21–45. doi: 10.1016/j.media.2018.10.004

Kim, H. W., Farzaneh-Far, A., and Kim, R. J. (2009). Cardiovascular magnetic resonance in patients with myocardial infarction. J. Am. Coll. Cardiol. 55, 1–16. doi: 10.1016/j.jacc.2009.06.059

Knowles, B. R., Caulfield, D., Cooklin, M., Rinaldi, C. A., Gill, J., Bostock, J., et al. (2010). 3-D visualization of acute rf ablation lesions using MRI for the simultaneous determination of the patterns of necrosis and edema. IEEE Trans. Biomed. Eng. 57, 1467–1475. doi: 10.1109/TBME.2009.2038791

Kramer, C. M., Barkhausen, J., Flamm, S. D., Kim, R. J., and Nagel, E. (2013). Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J. Cardiovasc. Magn. Reson. 15:91. doi: 10.1186/1532-429X-15-91

Krittayaphong, R., Laksanabunsong, P., Maneesai, A., Saiviroonporn, P., Udompunturak, S., and Chaithiraphan, V. (2008). Comparison of cardiovascular magnetic resonance of late gadolinium enhancement and diastolic wall thickness to predict recovery of left ventricular function after coronary artery bypass surgery. J. Cardiovasc. Magn. Reson. 10:41. doi: 10.1186/1532-429X-10-41

Kurzendorfer, T., Breininger, K., Steidl, S., Brost, A., Forman, C., and Maier, A. (2018). “Myocardial scar segmentation in LGE-MRI using fractal analysis and random forest classification,” in Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, 3168–3173. doi: 10.1109/ICPR.2018.8545636

Kurzendorfer, T., Brost, A., Forman, C., and Maier, A. (2017a). “Automated left ventricle segmentation in 2-D LGE-MRI,” in Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, 831–834. doi: 10.1109/ISBI.2017.7950646

Kurzendorfer, T., Forman, C., Brost, A., and Maier, A. (2017b). “Random forest based left ventricle segmentation in LGE-MRI,” in Functional Imaging and Modelling of the Heart. FIMH 2017. Lecture Notes in Computer Science, Vol. 10263, eds M. Pop and G. Wright (Cham: Springer), doi: 10.1007/978-3-319-59448-4_15

Kurzendorfer, T., Forman, C., Schmidt, M., Tillmanns, C., Maier, A., and Brost, A. (2017c). Fully automatic segmentation of left ventricular anatomy in 3-D LGE-MRI. Comput. Med. Imaging Graph. 59, 13–27. doi: 10.1016/j.compmedimag.2017.05.001

Larose, E., Rodés-Cabau, J., Pibarot, P., Rinfret, S., Proulx, G., Nguyen, C. M., et al. (2010). Predicting late myocardial recovery and outcomes in the early hours of ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 55, 2459–2469. doi: 10.1016/j.jacc.2010.02.033

Larroza, A., López-Lereu, M. P., Monmeneu, J. V., Gavara, J., Chorro, F. J., Bodí, V., et al. (2018). Texture analysis of cardiac cine magnetic resonance imaging to detect nonviable segments in patients with chronic myocardial infarction. Med. Phys. 45, 1471–1480. doi: 10.1002/mp.12783

Ledneva, E., Karie, S., Launay-Vacher, V., Janus, N., and Deray, G. (2009). Renal safety of gadolinium-based contrast media in patients with chronic renal insufficiency. Radiology 250, 618–628. doi: 10.1148/radiol.2503080253

Leiner, T. (2019). Deep learning for detection of myocardial scar tissue: Goodbye to gadolinium? Radiology 291, 618–619. doi: 10.1148/radiol.2019190783

Leong, C. O., Lim, E., Tan, L. K., Abdul Aziz, Y. F., Sridhar, G. S., Socrates, D., et al. (2019). Segmentation of left ventricle in late gadolinium enhanced MRI through 2D-4D registration for infarct localization in 3D patient-specific left ventricular model. Magn. Reson. Med. 81, 1385–1398. doi: 10.1002/mrm.27486

Li, C., Tong, Q., Liao, X., Si, W., Sun, Y., Wang, Q., et al. (eds) (2019). Attention Based Hierarchical Aggregation Network for 3D Left Atrial Segmentation, Vol. 11395, eds M. Pop et al. (Cham: Springer), 255–264. doi: 10.1007/978-3-030-12029-0_28

Li, L., Wu, F., Yang, G., Xu, L., Wong, T., Mohiaddin, R., et al. (2020). Atrial scar quantification via multi-scale CNN in the graph-cuts framework. Med. Image Anal. 60, 101595. doi: 10.1016/j.media.2019.101595

Li, X., Liu, Z., Luo, P., Loy, C. C., and Tang, X. (2017). “Not All pixels are equal: difficulty-aware semantic segmentation via deep layer cascade,” in Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 6459–6468. doi: 10.1109/CVPR.2017.684

Lin, D., Chen, G., Cohen-Or, D., Heng, P.-A., and Huang, H. (2017). “Cascaded feature network for semantic segmentation of RGB-D images,” in Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, 1320–1328. doi: 10.1109/ICCV.2017.147

Liu, A., Wijesurendra, R. S., Francis, J. M., Robson, M. D., Neubauer, S., Piechnik, S. K., et al. (2016). Adenosine stress and rest T1 mapping can differentiate between ischemic, infarcted, remote, and normal myocardium without the need for gadolinium contrast agents. JACC Cardiovasc. Imaging 9, 27–36. doi: 10.1016/j.jcmg.2015.08.018

Liu, X., Hou, J., Yang, Z., Xia, C., Xie, L., Ye, P., et al. (2018). Native T 1 mapping for characterization of acute and chronic myocardial infarction in swine: comparison with contrast-enhanced MRI. J. Magn. Reson. Imaging 47, 1406–1414. doi: 10.1002/jmri.25871

Long, J., Shelhamer, E., and Darrell, T. (2015). “Fully convolutional networks for semantic segmentation,” in Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 3431–3440. doi: 10.1109/CVPR.2015.7298965

Lorensen, W. E., and Cline, H. E. (1987). “Marching cubes: a high resolution 3D surface construction algorithm,” in Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH ’87, (New York, NY: ACM Press), 163–169. doi: 10.1145/37401.37422

Luc, P., Couprie, C., Chintala, S., and Verbeek, J. (2016). “Semantic segmentation using adversarial networks,” in Proceedings of the NIPS Workshop on Adversarial Training, Barcelona.

Maceira, A. M., Joshi, J., Prasad, S. K., Moon, J. C., Perugini, E., Harding, I., et al. (2005). Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 111, 186–193. doi: 10.1161/01.CIR.0000152819.97857.9D

Mahapatra, D., Bozorgtabar, B., Thiran, J.-P., and Reyes, M. (2018). “Efficient active learning for image classification and segmentation using a sample selection and conditional generative adversarial network,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. MICCAI 2018. Lecture Notes in Computer Science, Vol. 11071, eds A. Frangi, J. Schnabel, C. Davatzikos, C. Alberola-López, and G. Fichtinger (Cham: Springer), 580–588. doi: 10.1007/978-3-030-00934-2_65

McGann, C. J., Kholmovski, E. G., Oakes, R. S., Blauer, J. J. E., Daccarett, M., Segerson, N., et al. (2008). New magnetic resonance imaging-based method for defining the extent of left atrial wall injury after the ablation of atrial fibrillation. J. Am. Coll. Cardiol. 52, 1263–1271. doi: 10.1016/j.jacc.2008.05.062

Men, K., Dai, J., and Li, Y. (2017). Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks. Med. Phys. 44, 6377–6389. doi: 10.1002/mp.12602

Messroghli, D. R., Moon, J. C., Ferreira, V. M., Grosse-Wortmann, L., He, T., Kellman, P., et al. (2017). Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2∗ and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imagi. J. Cardiovasc. Magn. Reson. 19:75. doi: 10.1186/s12968-017-0389-8

Milletari, F., Navab, N., and Ahmadi, S.-A. (2016). “V-net: fully convolutional neural networks for volumetric medical image segmentation,” in Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, 565–571. doi: 10.1109/3DV.2016.79

Moccia, S., Banali, R., Martini, C., Muscogiuri, G., Pontone, G., Pepi, M., et al. (2018). “Automated scar segmentation from cardiac magnetic resonance-late gadolinium enhancement images using a deep-learning approach,” in Proceedings of the 2018 Computing in Cardiology Conference (CinC), Maastricht. doi: 10.22489/CinC.2018.278

Moccia, S., Banali, R., Martini, C., Muscogiuri, G., Pontone, G., Pepi, M., et al. (2019). Development and testing of a deep learning-based strategy for scar segmentation on CMR-LGE images. Magn. Reson. Mater. Phys, Biol. Med. 32, 187–195. doi: 10.1007/s10334-018-0718-4

MS-CMR Challenge (2019). MICCAI2019. Available online at: www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mscmrseg/ (accessed May 13, 2021)

Murthy, V. N., Singh, V., Chen, T., Manmatha, R., and Comaniciu, D. (2016). “Deep decision network for multi-class image classification,” in Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2240–2248. doi: 10.1109/CVPR.2016.246

Muser, D., Tioni, C., Shah, R., Selvanayagam, J. B., and Nucifora, G. (2017). Prevalence, correlates, and prognostic relevance of myocardial mechanical dispersion as assessed by feature-tracking cardiac magnetic resonance after a first ST-segment elevation myocardial infarction. Am. J. Cardiol. 120, 527–533. doi: 10.1016/j.amjcard.2017.05.019

MyoPS Challenge (2020). MICCAI 2020. Available online at: https://zmiclab.github.io/projects/myops20/index.html (accessed May 13, 2021)

Noh, H., Hong, S., and Han, B. (2015). “Learning deconvolution network for semantic segmentation,” in Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 1520–1528. doi: 10.1109/ICCV.2015.178

Oakes, R. S., Badger, T. J., Kholmovski, E. G., Akoum, N., Burgon, N. S., Fish, E. N., et al. (2009). Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation 119, 1758–1767. doi: 10.1161/CIRCULATIONAHA.108.811877

Ogawa, R., Kido, T., Nakamura, M., Kido, T., Kurata, A., Miyagawa, M., et al. (2017). Diagnostic capability of feature-tracking cardiovascular magnetic resonance to detect infarcted segments: a comparison with tagged magnetic resonance and wall thickening analysis. Clin. Radiol. 72, 828–834. doi: 10.1016/j.crad.2017.05.010

Oktay, O., Bai, W., Lee, M., Guerrero, R., Kamnitsas, K., Caballero, J., et al. (2016). “Multi-input cardiac image super-resolution using convolutional neural networks,” in Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. MICCAI 2016. Lecture Notes in Computer Science, Vol. 9902, eds S. Ourselin, L. Joskowicz, M. Sabuncu, G. Unal, and W. Wells (Cham: Springer), 246–254. doi: 10.1007/978-3-319-46726-9_29

Otsu, N. (1979). A threshold selection method from gray-level histograms. Automatica 11, 23–27.

Ouyang, W., Wang, K., Zhu, X., and Wang, X. (2017). “Chained cascade network for object detection,” in Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, 1956–1964. doi: 10.1109/ICCV.2017.214

Peters, D. C., Wylie, J. V., Hauser, T. H., Kissinger, K. V., Botnar, R. M., Essebag, V., et al. (2007). Detection of pulmonary vein and left atrial scar after catheter ablation with three-dimensional navigator-gated delayed enhancement MR imaging: initial experience 1. Radiology 243, 690–695. doi: 10.1148/radiol.2433060417

Pop, M., Sermesant, M., Camara, O., Zhuang, X., Li, S., Young, A., et al. (eds) (2020). “Statistical atlases and computational models of the heart,” in Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges, (Cham: Springer). doi: 10.1007/978-3-030-39074-7

Popescu, I. A., Irving, B., Borlotti, A., Dall’Armellina, E., and Grau, V. (2017). “Myocardial scar quantification using SLIC Supervoxels - parcellation based on tissue characteristic strains,” in Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2016. Lecture Notes in Computer Science, Vol. 10124, eds T. Mansi, K. McLeod, M. Pop, K. Rhode, M. Sermesant, and A. Young (Cham: Springer), 182–190. doi: 10.1007/978-3-319-52718-5_20

Rajchl, M., Stirrat, J., Goubran, M., Yu, J., Scholl, D., Peters, T. M., et al. (2015). Comparison of semi-automated scar quantification techniques using high-resolution, 3-dimensional late-gadolinium-enhancement magnetic resonance imaging. Int. J. Cardiovasc. Imaging 31, 349–357. doi: 10.1007/s10554-014-0553-2

Raman, F. S., Kawel-Boehm, N., Gai, N., Freed, M., Han, J., Liu, C.-Y., et al. (2013). Modified look-locker inversion recovery T1 mapping indices: assessment of accuracy and reproducibility between magnetic resonance scanners. J. Cardiovasc. Magn. Reson. 15:64. doi: 10.1186/1532-429X-15-64

Robinson, R., Valindria, V. V., Bai, W., Oktay, O., Kainz, B., Suzuki, H., et al. (2019). Automated quality control in image segmentation: application to the UK Biobank cardiovascular magnetic resonance imaging study. J. Cardiovasc. Magn. Reson. 21:18. doi: 10.1186/s12968-019-0523-x

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-Net: convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, Vol. 9351, eds N. Navab, J. Hornegger, W. Wells and A. Frangi (Cham: Springer), 234–241. doi: 10.1007/978-3-319-24574-4_28

Roth, H. R., Lu, L., Farag, A., Shin, H.-C., Liu, J., Turkbey, E. B., et al. (2015). “DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, Vol. 9349, eds N. Navab, J. Hornegger, W. Wells, and A. Frangi (Cham: Springer), 556–564. doi: 10.1007/978-3-319-24553-9_68

Saìnchez-Quintana, D., Cabrera, J. A., Climent, V., Farreì, J., de Mendonc̨a, M. C., and Ho, S. Y. (2005). Anatomic relations between the esophagus and left atrium and relevance for ablation of atrial fibrillation. Circulation 112, 1400–1405. doi: 10.1161/CIRCULATIONAHA.105.551291

Sander, J., de Vos, B. D., Wolterink, J. M., and Išgum, I. (2019). “Towards increased trustworthiness of deep learning segmentation methods on cardiac MRI,” in Medical Imaging 2019: Image Processing, eds E. D. Angelini and B. A. Landman ((Bellingham, WA: SPIE), 44. doi: 10.1117/12.2511699

Schmidt, E. J., Mallozzi, R. P., Thiagalingam, A., Holmvang, G., D’Avila, A., Guhde, R., et al. (2009). Electroanatomic mapping and radiofrequency ablation of porcine left atria and atrioventricular nodes using magnetic resonance catheter tracking. Circ. Arrhythmia Electrophysiol. 2, 695–704. doi: 10.1161/CIRCEP.109.882472

Shelhamer, E., Long, J., and Darrell, T. (2017). Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 640–651. doi: 10.1109/TPAMI.2016.2572683

Simonetti, O. P., Kim, R. J., Fieno, D. S., Hillenbrand, H. B., Wu, E., Bundy, J. M., et al. (2001). An improved MR imaging technique for the visualization of myocardial infarction. Radiology 218, 215–223. doi: 10.1148/radiology.218.1.r01ja50215

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv [Preprint]. Available online at: https://arxiv.org/abs/1409.1556 (accessed May 13, 2021)

Smedema, J.-P., Snoep, G., van Kroonenburgh, M. P. G., van Geuns, R.-J., Dassen, W. R. M., Gorgels, A. P. M., et al. (2005). Evaluation of the Accuracy of Gadolinium-Enhanced Cardiovascular Magnetic Resonance in the Diagnosis of Cardiac Sarcoidosis. J. Am. Coll. Cardiol. 45, 1683–1690. doi: 10.1016/j.jacc.2005.01.047

Smulders, M. W., Bekkers, S. C. A. M., Kim, H. W., Van Assche, L. M. R., Parker, M. A., and Kim, R. J. (2015). Performance of CMR methods for differentiating acute from chronic MI. JACC Cardiovasc. Imaging 8, 669–679. doi: 10.1016/j.jcmg.2014.12.030

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. (2016). Inception-v4, inception-ResNet and the impact of residual connections on learning. arXiv [Preprint]. Available online at: https://arxiv.org/abs/1602.07261 (accessed May 13, 2021)

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015). “Going deeper with convolutions,” in Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 1–9. doi: 10.1109/CVPR.2015.7298594

Tao, Q., Ipek, E. G., Shahzad, R., Berendsen, F. F., Nazarian, S., and van der Geest, R. J. (2016). Fully automatic segmentation of left atrium and pulmonary veins in late gadolinium-enhanced MRI: towards objective atrial scar assessment. J. Magn. Reson. Imaging 44, 346–354. doi: 10.1002/jmri.25148

Tao, Q., Milles, J., Zeppenfeld, K., Lamb, H. J., Bax, J. J., Reiber, J. H. C., et al. (2010). Automated segmentation of myocardial scar in late enhancement MRI using combined intensity and spatial information. Magn. Reson. Med. 64, 586–594. doi: 10.1002/mrm.22422

To, A. C. Y., Flamm, S. D., Marwick, T. H., and Klein, A. L. (2011). Clinical utility of multimodality LA imaging. JACC Cardiovasc. Imaging 4, 788–798. doi: 10.1016/j.jcmg.2011.02.018

Ukwatta, E., Arevalo, H., Rajchl, M., White, J., Pashakhanloo, F., Prakosa, A., et al. (2015). Image-based reconstruction of three-dimensional myocardial infarct geometry for patient-specific modeling of cardiac electrophysiology. Med. Phys. 42, 4579–4590. doi: 10.1118/1.4926428

Veni, G., Elhabian, S. Y., and Whitaker, R. T. (2017). ShapeCut: bayesian surface estimation using shape-driven graph. Med. Image Anal. 40, 11–29. doi: 10.1016/j.media.2017.04.005

Vergara, G. R., and Marrouche, N. F. (2011). Tailored management of atrial fibrillation using a LGE-MRI based model: from the clinic to the electrophysiology laboratory. J. Cardiovasc. Electrophysiol. 22, 481–487. doi: 10.1111/j.1540-8167.2010.01941.x

Vermes, E., Childs, H., Faris, P., and Friedrich, M. G. (2014). Predictive value of CMR criteria for LV functional improvement in patients with acute myocarditis. Eur. Hear. J. Cardiovasc. Imaging 15, 1140–1144. doi: 10.1093/ehjci/jeu099

Wagner, A., Mahrholdt, H., Holly, T. A., Elliott, M. D., Regenfus, M., Parker, M., et al. (2003a). Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361, 374–379. doi: 10.1016/S0140-6736(03)12389-6

Wagner, A., Schulz-Menger, J., Dietz, R., and Friedrich, M. G. (2003b). Long-term follow-up of patients with acute myocarditis by magnetic resonance imaging. MAGMA Magn. Reson. Mater. Phys. Biol. Med. 16, 17–20. doi: 10.1007/s10334-003-0007-7

Wang, C., Ukwatta, E., Rajchl, M., and Chan, A. (2019). “An ensemble of U-Net architecture variants for left atrial segmentation,” in Proceedings of the SPIE 10950, Medical Imaging 2019: Computer-Aided Diagnosis, San Diego, CA, 21. doi: 10.1117/12.2512905

Wei, D., Sun, Y., Chai, P., Low, A., and Ong, S. H. (2011). “Myocardial segmentation of late gadolinium enhanced MR images by propagation of contours from cine MR images,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2011. MICCAI 2011. Lecture Notes in Computer Science, Vol. 6893, eds G. Fichtinger, A. Martel, and T. Peters (Berlin: Springer), 428–435. doi: 10.1007/978-3-642-23626-6_53

Wei, D., Sun, Y., Ong, S.-H., Chai, P., Teo, L. L., and Low, A. F. (2013). Three-dimensional segmentation of the left ventricle in late gadolinium enhanced MR images of chronic infarction combining long- and short-axis information. Med. Image Anal. 17, 685–697. doi: 10.1016/j.media.2013.03.001

Wu, E., Judd, R. M., Vargas, J. D., Klocke, F. J., Bonow, R. O., and Kim, R. J. (2001). Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet 357, 21–28. doi: 10.1016/S0140-6736(00)03567-4

Wu, E., Ortiz, J. T., Tejedor, P., Lee, D. C., Bucciarelli-Ducci, C., Kansal, P., et al. (2008). Infarct size by contrast enhanced cardiac magnetic resonance is a stronger predictor of outcomes than left ventricular ejection fraction or end-systolic volume index: prospective cohort study. Heart 94, 730–736. doi: 10.1136/hrt.2007.122622

Xia, Q., Yao, Y., Hu, Z., and Hao, A. (2019). “Automatic 3D atrial segmentation from GE-MRIs using volumetric fully convolutional networks,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), eds M. Pop, M. Sermesant, J. Zhao, S. Li, K. McLeod, and A. Young (Cham: Springer), 211–220. doi: 10.1007/978-3-030-12029-0_23

Xiao, J., Si, D., Wu, Y., Li, M., Yin, J., and Ding, H. (2020). “Multi-view learning for 3D LGE-MRI left atrial cavity segmentation,” in Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition, (New York, NY: ACM), 84–87. doi: 10.1145/3430199.3430203

Xiong, Z., Fedorov, V. V., Fu, X., Cheng, E., Macleod, R., and Zhao, J. (2019). Fully automatic left atrium segmentation from late gadolinium enhanced magnetic resonance imaging using a dual fully convolutional neural network. IEEE Trans. Med. Imaging 38, 515–524. doi: 10.1109/TMI.2018.2866845

Xiong, Z., Xia, Q., Hu, Z., Huang, N., Bian, C., Zheng, Y., et al. (2021). A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging. Med. Image Anal. 67, 101832. doi: 10.1016/j.media.2020.101832

Xu, C., Xu, L., Brahm, G., Zhang, H., and Li, S. (2018). “MuTGAN: simultaneous segmentation and quantification of myocardial infarction without contrast agents via joint adversarial learning,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. MICCAI 2018. Lecture Notes in Computer Science, Vol. 11071, eds A. Frangi, J. Schnabel, C. Davatzikos, C. Alberola-López, and G. Fichtinger (Cham: Springer), 525–534. doi: 10.1007/978-3-030-00934-2_59

Xu, C., Xu, L., Gao, Z., Zhao, S. S., Zhang, H., Zhang, Y., et al. (2017). “Direct detection of pixel-level myocardial infarction areas via a deep-learning algorithm,” in Medical Image Computing and Computer Assisted Intervention - MICCAI 2017. MICCAI 2017. Lecture Notes in Computer Science, Vol. 10435, eds M. Descoteaux, L. Maier-Hein, A. Franz, P. Jannin, D. Collins, and S. Duchesne (Cham: Springer), 240–249. doi: 10.1007/978-3-319-66179-7_28

Xu, C., Xu, L., Ohorodnyk, P., Roth, M., Chen, B., and Li, S. (2020). Contrast agent-free synthesis and segmentation of ischemic heart disease images using progressive sequential causal GANs. Med. Image Anal. 62:101668. doi: 10.1016/j.media.2020.101668

Yang, G., Chen, J., Gao, Z., Li, S., Ni, H., Angelini, E., et al. (2020). Simultaneous left atrium anatomy and scar segmentations via deep learning in multiview information with attention. Futur. Gener. Comput. Syst. 107, 215–228. doi: 10.1016/j.future.2020.02.005

Yang, G., Chen, J., Gao, Z., Zhang, H., Ni, H., Angelini, E., et al. (2018a). “Multiview sequential learning and dilated residual learning for a fully automatic delineation of the left atrium and pulmonary veins from late gadolinium-enhanced cardiac MRI Images,” in Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, 1123–1127. doi: 10.1109/EMBC.2018.8512550

Yang, G., Zhuang, X., Khan, H., Haldar, S., Nyktari, E., Li, L., et al. (2018b). Fully automatic segmentation and objective assessment of atrial scars for long-standing persistent atrial fibrillation patients using late gadolinium-enhanced MRI. Med. Phys. 45, 1562–1576. doi: 10.1002/mp.12832

Yang, G., Zhuang, X., Khan, H., Haldar, S., Nyktari, E., Ye, X., et al. (2017). “Segmenting atrial fibrosis from late gadolinium-enhanced cardiac MRI by deep-learned features with stacked sparse auto-encoders,” in MIUA2017 Communications in Computer and Information Science, eds M. Valdés Hernández and V. González-Castro (Cham: Springer), 195–206. doi: 10.1007/978-3-319-60964-5_17

Yang, X., Wang, N., Wang, Y., Wang, X., Nezafat, R., Ni, D., et al. (2019). “Combating uncertainty with novel losses for automatic left atrium segmentation,” in Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. STACOM 2018. Lecture Notes in Computer Science, Vol. 11395, eds M. Pop et al. (Cham: Springer), 246–254. doi: 10.1007/978-3-030-12029-0_27

Yue, Q., Luo, X., Ye, Q., Xu, L., and Zhuang, X. (2019). “Cardiac segmentation from LGE MRI using deep neural network incorporating shape and spatial priors,” in MICCAI 2019, Part II. LNCS, Vol. 11765, eds D. Shen et al. (Cham: Springer), 559–567. doi: 10.1007/978-3-030-32245-8_62

Zabihollahy, F., Rajchl, M., White, J. A., and Ukwatta, E. (2020). Fully automated segmentation of left ventricular scar from 3D late gadolinium enhancement magnetic resonance imaging using a cascaded multi-planar U-Net (CMPU-Net). Med. Phys. 47, 1645–1655. doi: 10.1002/mp.14022

Zabihollahy, F., White, J. A., and Ukwatta, E. (2019a). Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images. Med. Phys. 46, 1740–1751. doi: 10.1002/mp.13436

Zabihollahy, F., White, J. A., and Ukwatta, E. (2019). “Fully automated segmentation of left ventricular myocardium from 3D late gadolinium enhancement magnetic resonance images using a U-net convolutional neural network-based model,” in Proceedings of the SPIE 10950, Medical Imaging 2019: Computer-Aided Diagnosis, 109503C (13 March 2019), San Diego, CA. doi: 10.1117/12.2512146

Zhang, D., and Lu, G. (2004). Review of shape representation and description techniques. Pattern Recognit. 37, 1–19. doi: 10.1016/j.patcog.2003.07.008

Zhang, N., Yang, G., Gao, Z., Xu, C., Zhang, Y., Shi, R., et al. (2019). Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac Cine MRI. Radiology 291, 606–617. doi: 10.1148/radiol.2019182304

Zhang, Z., Wang, K., Li, Q., Liu, Y., Yuan, Y., Li, Y., et al. (2020). “Automatic segmentation of the left atrium from LGE-MRI based on U-net and bidirectional convolutional LSTM,” in Proceedings of the 2020 Computing in Cardiology, Rimini, 1–4. doi: 10.22489/CinC.2020.288

Zhao, J., Hansen, B. J., Wang, Y., Csepe, T. A., Sul, L. V., Tang, A., et al. (2017). Three-dimensional integrated functional, structural, and computational mapping to define the structural “fingerprints” of heart-specific atrial fibrillation drivers in human heart ex vivo. J. Am. Heart Assoc. 6:e005922. doi: 10.1161/JAHA.117.005922

Zhong, H., Lacomis, J. M., and Schwartzman, D. (2007). On the accuracy of CartoMerge for guiding posterior left atrial ablation in man. Hear. Rhythm 4, 595–602. doi: 10.1016/j.hrthm.2007.01.033

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017). “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV0), Venice, 2242–2251. doi: 10.1109/ICCV.2017.244

Zhu, L., Gao, Y., Yezzi, A., and Tannenbaum, A. (2013). Automatic segmentation of the left atrium from MR images via variational region growing with a moments-based shape prior. IEEE Trans. Image Process. 22, 5111–5122. doi: 10.1109/TIP.2013.2282049

Zhuang, X. (2019). Multivariate mixture model for myocardial segmentation combining multi-source images. IEEE Trans. Pattern Anal. Mach. Intell. 41, 2933–2946. doi: 10.1109/TPAMI.2018.2869576

Zhuang, X., and Li, L. (eds) (2020). Myocardial Pathology Segmentation Combining Multi-Sequence Cardiac Magnetic Resonance Images. Cham: Springer. doi: 10.1007/978-3-030-65651-5


Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Wu, Tang, Li, Firmin and Yang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.











	
	ORIGINAL RESEARCH
published: 04 August 2021
doi: 10.3389/fphys.2021.708944






[image: image2]

Neural Network Differential Equations For Ion Channel Modelling

Chon Lok Lei1,2,3* and Gary R. Mirams4


1Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China

2Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau, China

3School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham, Ningbo, China

4Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom

Edited by:
Linwei Wang, Rochester Institute of Technology, United States

Reviewed by:
Maria S. Guillem, Universitat Politècnica de València, Spain
 Jun Ma, Lanzhou University of Technology, China
 Maxime Sermesant, Institut National de Recherche en Informatique et en Automatique (INRIA), France

*Correspondence: Chon Lok Lei, chonloklei@um.edu.mo

Specialty section: This article was submitted to Computational Physiology and Medicine, a section of the journal Frontiers in Physiology

Received: 12 May 2021
 Accepted: 05 July 2021
 Published: 04 August 2021

Citation: Lei CL and Mirams GR (2021) Neural Network Differential Equations For Ion Channel Modelling. Front. Physiol. 12:708944. doi: 10.3389/fphys.2021.708944



Mathematical models of cardiac ion channels have been widely used to study and predict the behaviour of ion currents. Typically models are built using biophysically-based mechanistic principles such as Hodgkin-Huxley or Markov state transitions. These models provide an abstract description of the underlying conformational changes of the ion channels. However, due to the abstracted conformation states and assumptions for the rates of transition between them, there are differences between the models and reality—termed model discrepancy or misspecification. In this paper, we demonstrate the feasibility of using a mechanistically-inspired neural network differential equation model, a hybrid non-parametric model, to model ion channel kinetics. We apply it to the hERG potassium ion channel as an example, with the aim of providing an alternative modelling approach that could alleviate certain limitations of the traditional approach. We compare and discuss multiple ways of using a neural network to approximate extra hidden states or alternative transition rates. In particular we assess their ability to learn the missing dynamics, and ask whether we can use these models to handle model discrepancy. Finally, we discuss the practicality and limitations of using neural networks and their potential applications.

Keywords: neural networks, differential equations, electrophysiology, ion channels, mathematical modelling, model discrepancy, human Ether-à-go-go-Related Gene, neural ODEs


1. INTRODUCTION

Electrophysiology modelling has provided insights insights into physiological mechanisms, from the ion channel to whole organ scales. Mathematical models of many ion channels, pumps, and exchangers form models describing the cellular action potential, based on the pioneering work of Hodgkin and Huxley (1952). These models of ion channels are typically a collection of mathematical functions governed by systems of ordinary differential equations (ODEs), using the Hodgkin-Huxley formulation or the Markov model structure (Rudy and Silva, 2006; Whittaker et al., 2020), and form the foundation of many cellular action potential, including neurons (Hodgkin and Huxley, 1952; Traub et al., 1994; Kole et al., 2008; Hay et al., 2011), cardiomyocytes (Noble, 1962; ten Tusscher et al., 2004; Grandi et al., 2011; O'Hara et al., 2011), pancreatic islet cells (Chay and Keizer, 1983; Sherman et al., 1988; Fridlyand et al., 2003; Cha et al., 2011), etc.

Both formulations of ion channel models provide an abstract description for the underlying conformational changes of the ion channels. The Hodgkin-Huxley formulation models the channels as independently-acting channel “gates” which can be open and closed. For example, a commonly used model for potassium ion channels is a combination of an activation gate and an inactivation gate. As the names imply, each of the gates attempts to describe a different behaviour that gives rise to the characteristic dynamics of the currents.

Many ion channels involved in generating action potentials are voltage-gated. A Hodgkin-Huxley gate for voltage-gated ion channels is usually modelled as

[image: image]

where α and β are the transition rates between the open and closed states, and V is the membrane voltage. Then the open probability of the gate, x, can be expressed as
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where f(x, V) represents a function for the rate at which gating occurs. In the case of Equation (1), mass-action kinetics dictate that f(x, V) takes the form shown in Equation (3) in terms of α(V) and β(V) (as introduced by Hodgkin and Huxley, 1952). A canonical form for α(V) and β(V) is shown in Equations (4, 5), so that {Aα, Bα, Aβ, Bβ} are the four constants/parameters governing this gate. The voltage-dependence shown in Equations (4, 5) is not always used for all rates in Hodgkin-Huxley models [indeed in all three of the gates in their original model Hodgkin and Huxley (1952) used this form for only one of the two rates, fitting the other empirically] but it has some biophysical justification in terms of Eyring transition rate theory to support the exponential form of the dependence on voltage (Lei et al., 2019a). Indeed it is more common to see Equations (4, 5) used for Markov model state transition rates, but we and others have found it works very well for Hodgkin-Huxley models for a range of currents (Lei et al., 2019a; Houston et al., 2020). One could also construct a model with multiple closed states to describe different dynamics (see section 2.6, and Rudy and Silva, 2006 for a review).

Often we find we have a more predictive model for some of the processes than the others. For example, for the rapid delayed rectifier current (IKr) a simple Hodgkin-Huxley gate can describe the fast inactivation process better than the slower activation process (Beattie et al., 2018; Lei et al., 2019a,b). We might then wish to “correct” the model discrepancy of the slower activation process, but “trust” the mechanistic model for the faster inactivation process. We propose to use neural networks as a universal approximator to learn the dynamics of individual gating processes of ion channels. In such a case, we would then alter just part of the model (some of the equations).

Neural networks have a kind of universality which can be used to approximate any arbitrary (well-behaved) function (Cybenko, 1989; Leshno et al., 1993; Pinkus, 1999). One could attempt to learn the output (current) or the discrepancy of the output directly using such an approximator, similar to the modelling approach for the discrepancy term described in Kennedy and O'Hagan (2001). However, Lei et al. (2020c) investigated such an approach and discussed its limitations, and suggested the need for passing in the “history” of the simulation to the approximator to predict the next time points when modelling dynamical systems.

Recently, there has been a growing amount of research in data-driven approaches or equation-learning methods for (numerically) modelling dynamical systems. Some of which work by approximating derivatives of states from data and regressing on these variables (e.g., Wu and Xiu, 2019); whilst others combine machine learning methods, such as deep neural networks, with prior domain knowledge encoded in differential equations (Chen et al., 2018; Rackauckas et al., 2020). A similar approach has recently been applied to model a simple cardiac electrophysiology system for replacing numerical integration of partial differential equations (Ayed et al., 2019). Given the success of modelling the dynamics of ion channels using a relatively simple ODE system (for IKr, e.g., Beattie et al., 2018; Lei et al., 2019a,b), it would make sense to approximate or improve the right-hand side of the already “useful” ODE instead of trying to learn all the already well-captured biophysics from scratch. Such an approach is sometimes referred to as a neural ODE (Chen et al., 2018; Bonnaffé et al., 2021) or ODE-Net (Zhong et al., 2020). Note that we refer to “neural ODEs” as leveraging neural network terms within ODEs, which is different to some of the classification applications described in Chen et al. (2018) but similar to their ODE applications.

In this paper, we use the human Ether-à-go-go-Related Gene (hERG) potassium ion channel, which carries the cardiac current IKr (Sanguinetti et al., 1995), as a working example to demonstrate the feasibility and practicality of using neural ODEs to model ion channel kinetics. We provide an alternative modelling approach that could alleviate certain restrictions, such as the exponential form of the transition rates and the linear relationship of the states in Equation (3). We compare and discuss multiple ways of using a neural network to approximate the hidden states, the dynamics of hERG. Their ability to handle model discrepancy is assessed through synthetic data studies. We also apply variants of neural ODEs to real experimental data. Finally, we discuss the practicality of this approach and its potential applications.



2. MATERIALS AND METHODS

We first introduce a Hodgkin-Huxley ion channel model which we adopt as our case study for this article. We then present the neural network modifications to the mechanistic ODE models, and methods to train the neural network models. Finally we describe synthetic data studies that we performed, and an application to real experimental data.


2.1. A Hodgkin-Huxley Ion Channel Model

We used a simple Hodgkin and Huxley-style hERG model as the working model (as used in Beattie et al., 2018). In this model, the current is modelled with a standard Ohmic expression,

[image: image]

where g is the maximal conductance, a is a Hodgkin-Huxley-style activation gate, and r is an inactivation gate. Both of these gates have transition rates following the form shown in Equations (2–5). E is the reversal potential for this potassium ion current, also known as the Nernst potential, which is not inferred but is calculated directly using

[image: image]

where R is the ideal gas constant, T is the absolute temperature (T= 294.55 K for the data we use later), F is the Faraday constant, and z is the valency of the ions (equal to 1 for potassium ions). [image: image] and [image: image] denote the extracellular and intracellular concentrations of potassium ions, respectively, which are determined by the experimental solutions ([image: image]4 mM and [image: image] 110 mM in the data we use later). The two gates are (independently) modelled using Equation (3), giving a total of 8 parameters, each of which is to be determined from the experimental current recordings.

For hERG, the dynamics of inactivation (r gate kinetics) happen on a time scale much faster than the activation (a gate). A typical time scale of interest for action potential modelling is tens to hundreds of milliseconds. As a result, we observe more obvious errors in the dynamics of the a gate, provided the steady state of r is sufficiently accurate. In the rest of this paper, we assume the r gate equation and parameters after fitting to the data is accurate and we correct only the dynamics of the activation—the a gate—using the methods described in the next section.



2.2. Ion Channel Model With Neural Networks

To relax the assumption of the linearity of the gate variable relationship and the exponential rate constants we trialled modelling the entire gating dynamics using a neural network, replacing Equation (2) with:

[image: image]

where [image: image](V, x) denotes a neural network that takes the voltage V and the state x as inputs (see next section for more details). This is perhaps the most flexible way to describe a Hodgkin-Huxley gate, as we allow a neural network to fully approximate the right-hand side of a gate's ODE (which we will call “NN-full” or “NN-f ”).

Instead of replacing the whole right-hand side of the ODE with a neural network, we also trialled using a neural network to model the discrepancy (“NN-discrepancy” or “NN-d”) between the ordinary mechanistic model f and the data generating process (or the true system), replacing Equation (2) with:

[image: image]

In this case f(x, V) = α(1 − x) − βx as in Equation (3), but it could represent any other candidate model of the gate. The NN-d approach is similar to the “augment incomplete physical models for identifying and forecasting complex dynamics” framework proposed by Yin et al. (2020). In theory, given the flexibility of the neural network, as a universal approximator, Equation (9) should be able to provide a similar approximation as Equation (8).

The first approach is a purely data-driven neural ODE, where the entire dynamics are described by the neural network, making good use of their universal approximator property. The second approach utilises prior knowledge of the biophysics of the gating process, which perhaps gives us a good initial guess of the neural network should be around zero, treating the neural network as a model discrepancy term.



2.3. Neural Networks

We used a feedforward neural network, a multi-layer perceptron model (Goodfellow et al., 2016), to approximate the dynamics (hidden states) and/or to correct its discrepancy. A feedforward neural network defines a (nonlinear) map of an input vector to an output vector. Let [image: image] be an operator for a feedforward neural network with M hidden layers, such that it has p inputs and q outputs (ℝp → ℝq). Given the inputs [image: image], the weights Wm between the mth and the (m + 1)th layers, and the activation functions hm : ℝ → ℝ for each “neuron” or “node” in the mth layer, the feedforward neural network computes the outputs [image: image]. The mapping can be expressed as

[image: image]

where Θ is the parameters of the network weights, and ° denotes operator composition. The weight matrices include the network biases; the activation functions are applied in a component-wise manner.

For the models specified in section 2.2, the inputs x were the membrane voltage V and the ODE state x. The output y was the derivative of the state dx/dt for Equation (8) or the discrepancy in the derivative when using the mechanistic model f for Equation (9).

There are multiple ways of training such a neural network embedded within (part of) the right-hand side of the differential equation system. Su et al. (2021) suggested using pairs of consecutive time series data points as the training data for the neural networks; an alternative would be the adjoint method proposed by Chen et al. (2018), see section 4. The method proposed by Su et al. (2021) is equivalent to estimating the derivative of the data (without smoothing) using a first order forward finite difference scheme. Here we propose an alternative method that we term “state space estimation,” which can be used to train the neural network for learning the dynamics of the gating processes in a similar manner, as described in the next section.



2.4. State Space Estimation

In voltage-clamp experiments, we measure the current from the cell by holding the membrane voltage at various levels. The current model in Equation (6) can be generalised for any Hodgkin-Huxley current as

[image: image]

where k indexes the distinct gating variables xk, each of which is governed by its own ODE (Equation 2), and is raised to an integer power nk, and g, E are constants as discussed above. We assume that we are interested in estimating the state space of the gate xi, and that we can model the other gates x!i (where the subscript !i represents all k except i) and can observe only the current I directly. Here for the models of interest, the state space of the gate xi is its derivative dxi/dt as a function of xi and V (see later Figure 2 that shows an example of the state space in the synthetic data studies).

There are two ways of estimating the state space of the gate xi. First, we can directly estimate the state by rearranging Equation (11) in terms of modelled/known quantities

[image: image]

Then we can approximate the derivative of Equation (12) by fitting either a spline or some differentiable closed-form expression (such as sums of exponential functions for fixed voltage levels), which gives us an estimate of dxi/dt as a function of xi and V for V ≠ E and xk ≠ 0 for all k ≠ i. However, the denominator of Equation (12) can get arbitrarily close to zero, which can amplify noise in the current I, causing very different noise levels at different regions of the signal for fitting.

Alternatively, to derive the derivative of xi, we assume we have models which will provide the numerical derivatives for all x!i; usually we have the analytical form of the derivatives for all x!i. We would also need to estimate the derivative for I numerically, for example by fitting a spline to I (usually we do not have simple differentiable closed-form expression for I); we used a univariate smoothing cubic spline provided by Python SciPy (Virtanen et al., 2020), and we fitted a separate spline on each discontinuous step in V to capture discontinuities in I as a result of a sudden change in the driving term (V − E) in Equation (6). An example of the spline fitting results is shown for the synthetic data studies. By applying product rule to Equation (11) we notice that the current derivative approximated by a spline is also equal to

[image: image]

which can be rearranged to get an estimate for the derivative of the state of interest

[image: image]

With Equations (14) and (12), we again obtain dxi/dt as a function of xi and V for V ≠ E and xk ≠ 0 for all k ≠ i.

These results of state space estimation can then be used as the training data for the neural networks in section 2.2. This method can also be useful to check either Equation (3) is a good approximation to the gating dynamics (e.g., if dxi/dt is linear in xi) or Equations (8) or (9) is needed to approximate the surface dxi/dt.



2.5. Data Preparation and Network Training

The raw time series data were processed by using the state-space estimation, giving a set of tuples (a, V, da/dt). We normalised the data by a simple scaling normalisation by (1, 100, 1, 000) such that each variable in the tuples is [image: image](1), which is commonly advised to preprocess neural network training data (Bishop et al., 1995). The loss function is defined as the mean squared error,

[image: image]

for the NN-f model, where T is the number of data points; the loss function for the NN-d model is

[image: image]

where f is the candidate model for the activation a-gate specified by Equation (3). By minimising the loss function, we obtained a set of trained neural network parameters Θ*. For any given new initial conditions or voltage clamp, we can use the trained model to perform predictions. The equations were solved using the Runge-Kutta of order five of Dormand-Prince-Shampine (dopri5) via the open source package torchdiffeq by Chen et al. (2018), with tolerance settings for the solver set to atol = 10−6 and rtol = 10−8. All codes and data are freely available at: https://github.com/chonlei/neural-ode-ion-channels.

For all the neural network models, we used a fully connected network with five hidden layers, each of which has 200 nodes, and with the leaky-rectified linear unit (ReLU) as the activation function to account for the nonlinearity between the inputs and outputs. The nodes in the input layer consisted of the scaled state variable a (activation gate) and the scaled control variable V (membrane voltage), and the output layer is the scaled derivative of the state variable da/dt. Networks with different depth and width have been investigated; grid search across {1, 5, 10} layers and {10, 100, 200, 500} nodes were performed with the NN-f model for the real cell dataset and the results are shown in Supplementary Table 1. All neural network models were trained using Adam's algorithm (Kingma and Ba, 2017) via the open source PyTorch library (Paszke et al., 2019).



2.6. Synthetic Data Studies

We performed synthetic data studies to assess whether the neural network, in the forms of NN-f and NN-d, can approximate the missing dynamics of the activation in the Hodgkin-Huxley model in Equation (6). We used a different model, a “ground truth” model, to generate the synthetic data, such that this synthetic data study inherently had discrepancy between the candidate model and the data; as well as using the ground truth model to generate data (with model discrepancy), we tested the approach using the candidate model (with no model discrepancy) and showed that the neural ODE models were fully capable of capturing the kinetics of the candidate model (see later of this section). We used a three-state Markov model for the activation to be the ground truth model for generating the synthetic data. The simpler two-state model of the activation was the candidate model, which cannot fully capture the dynamics of certain parameterisation of the ground truth model. This sets the challenge to use the methods in section 2.2 to capture the missing dynamics. Figure 1 shows the model structures of the two models (Markov representations of these two models are shown in Supplementary Figure 1) and schematics for the NN-f and NN-d models. Note that we do not necessarily believe one model is better than the other, as we noticed neither the candidate model nor the “ground truth” model could capture the full dynamics of real experimental hERG data.


[image: Figure 1]
FIGURE 1. Models of hERG used in synthetic data studies. studies. From left to right shows the original Hodgkin-Huxley model (candidate model), the activation modelled using a neural network (NN-f), the activation with a neural network discrepancy term (NN-d), and the activation modelled with a three-state model (ground truth). All models have the same (independent) inactivation.


We generated the synthetic data by simulating the current I, with some fixed known parameter sets, voltage protocol V(t), initial conditions, and sampling time (time-step). We used the kinetic parameters identified from a previous study (Lei et al., 2019b) in the synthetic data studies, as given in Supplementary Table 2, whilst setting the maximum conductance g to 1 μS. For the voltage protocol, we used an activation steady state protocol (Pr3) and a deactivation protocol (Pr5) from Beattie et al. (2018) for training the activation process of the models—the same protocols will later be used for the real data in section 2.7. Figure 2 shows the state space of the activation a-gate model covered by the training protocols. These protocols were designed to explore the dynamics for the activation process in hERG, making them an appropriate choice for training hERG activation kinetics; they were also able to elicit currents that allow identifiability for the candidate hERG model parameters (see e.g., “Method 3” in Clerx et al., 2019a). For the initial conditions, since the cells in the experiments in Beattie et al. (2018) were held at -80 mV prior to running the voltage protocols, we use the steady state values of -80 mV as the initial conditions; we also used the same sampling time points as the data. After simulating the outputs using the ground truth model, we added independent and identically distributed Gaussian noise (with zero nA mean and 0.1nA standard deviation) to the outputs, to generate the synthetic dataset.


[image: Figure 2]
FIGURE 2. An example of the state space simulated in synthetic data studies. The state space of the candidate model (blue surface) is shown as blue surfaces. The simulated activation steady-state protocol (Pr3, orange lines) and the simulated deactivation time constant protocol (Pr5, purple lines) are shown for (A) the candidate model and (B) the ground truth model. Each dot at the two ends of the lines indicates a voltage step jump in the protocols.


We applied the state-space estimation methods to postprocess the noisy time series data for training the neural networks; Supplementary Figure 2 shows an example of the spline fitting results. Figure 2B shows the discrepancy in the state space between the candidate model and the ground truth model simulated with the training protocols that the neural network models will learn. The candidate model was fitted using a Python open source package PINTS (Clerx et al., 2019b), with the fitted parameters given in Supplementary Table 3. After training the models, we further assessed the model by predicting unseen protocols, including an inactivation time constant protocol (Pr4), the “sinusoidal” protocol (Pr7), and a collection of action potential wave forms (Pr6) that featured in Beattie et al. (2018). This check ensures the models learned the appropriate dynamics of the underlying system instead of simply overfitting (Whittaker et al., 2020).

To demonstrate the neural network models are fully capable of modelling the candidate model, we also repeated this synthetic data study with data generated from the candidate model (i.e., no discrepancy). The results are shown in Supplementary Figures 3, 4, showing both neural network models were able to fully capture the dynamics of the candidate model.



2.7. Application to Experimental Data

We applied the neural network differential equation models, NN-f and NN-d, to experimental data taken from Beattie et al. (2018, Cell #5). In brief, manual patch-clamp recordings were performed at room temperature (between 21 and 22°C) in Chinese hamster ovary (CHO) cells stably expressing hERG1a which encodes the α subunit of the channel carrying IKr. The experiments consisted of seven protocols, Pr1–Pr7 with the numbering matching the original publication; see Beattie et al. (2018) for details on postprocessing experimental data. Following Beattie et al. (2018), capacitance artifacts were removed from the experimental data by discarding the first 5 ms after each discontinuous voltage step.

Similar to the synthetic data studies, we applied the state-space estimation methods to postprocess the time series data measured with the activation steady state protocol (Pr3) and the deactivation protocol (Pr5) for training the neural network models. The trained models were then used to predict unseen protocols: the inactivation time constant protocol (Pr4), the sinusoidal protocol (Pr7), and a series of action potential wave forms (Pr6).




3. RESULTS


3.1. Neural Network ODEs Capture Missing Dynamics in Synthetic Data

In the synthetic data studies, we attempted to fit a standard Hodgkin-Huxley a-gate model (Equation 3, candidate model), the NN-f model (Equation 8), and the NN-d model (Equation 9) to the synthetic data, where the data were generated using a three-state activation model. The training results are shown in Figure 3, comparing the ability of the neural ODE models to learn the dynamic behaviour of the system under the training data sets: the activation steady-state protocol (Pr3) and the deactivation time constant protocol (Pr5). The candidate model (blue) was not able to fit to some of the “two time constant” dynamics at the end of the activation protocol (magnification shown in orange) and the beginning of the deactivation protocol (magnification shown in blue).


[image: Figure 3]
FIGURE 3. Training results for the synthetic data studies. The training data generated using the ground truth model (grey) are compared against the original candidate model (blue), the a-gate modelled using a neural network (NN-f, orange), and the a-gate with a neural network discrepancy term (NN-d, green). (A) Shows the activation steady-state protocol (Pr3) and (B) shows the deactivation time constant protocol (Pr5). The top panels show the voltage-clamp protocols, the middle panels show the currents, and the bottom panels show the magnification of part of the currents. All figures with a blue background are synthetic data examples.


The NN-f model (orange), where the entire a-gate was modelled with a neural network, was able to learn the dynamics of hERG activation. This model is purely data-driven, without any predefined mathematical equations, but is still able to capture the dynamics of the ground truth model, slightly better than the candidate model. The NN-d model (green), where a neural network was used to model the discrepancy between the candidate model and the data generating process (the ground truth model), performed similarly to the NN-d model. There is an inherent limitation to modelling the data-generating process dynamics as it requires (at least) two ODEs (hence three states) to fully describe the activation dynamics while we allow only one. However, the neural network models were able to approximate part of the dynamics via the nonlinear mapping between the state variable and its derivative; whereas the candidate model assumes a linear relationship between the state variable and its derivative.

The differences between the three models become even more obvious when it comes to predicting unseen voltage-clamp protocols. Figure 4A shows the first three steps of the inactivation protocol (Pr4) in Beattie et al. (2018). The inactivation r-gate is the same for all the models (including the ground truth model); the differences are due to the activation a-gates. The ground truth model is equivalent to a model with a second order ODE (Supplementary Material, section S1), see section 4 for more details, whose solution is a sum of two independent exponential functions at constant voltage. Due to the linear relationship between da/dt and a for the candidate a-gate model, by definition the solution a for this model can exhibit only a single exponential behaviour at a fixed voltage. Therefore, the candidate model (blue) is incapable of predicting the large “two-time-constant” deactivation current at the end of Pr4. Interestingly, the two neural network models, NN-f (orange) and NN-d (green), were able to predict those deactivation currents quite well, which is thought to be due to the nonlinear da/dt-a relationship learned by the networks.


[image: Figure 4]
FIGURE 4. Prediction results for the synthetic data studies. Comparison of the synthetic data generated using the ground truth model (grey) against the candidate a-gate model (blue), the a-gate modelled using a neural network (NN-f, orange), and the a-gate with a neural network discrepancy term (NN-d, green). (A) Shows a part of the inactivation protocol (Pr4), showing the first three steps of the protocol. (B) Shows the sinusoidal protocol. (C) Shows a protocol consists of a series of action potentials. All figures with a blue background are synthetic data examples.


For the sinusoidal protocol and the action potential protocol in Figures 4B,C, the two neural network models (orange and green) were able to predict slightly better than the candidate model (blue), which can be seen in the magnifications of the two protocol predictions. For example, a similar deactivation current was elicited at the end of the sinusoidal protocol (the third magnification in Figure 4B, blue); the candidate model gave a single-exponential behaviour whilst the two neural network models closely matched the grey synthetic data generated by the ground truth model. Moreover, there were parts of the sinusoidal protocol and the action potential protocols where the candidate model under-predicted the current, see for example the first magnification in Figure 4B (green) and the last magnification in Figure 4C (blue), whilst the predictions by neural network models were closer to the data. Table 1 shows the mean absolute error of the model simulations (compared against the synthetic data) for each of the protocols (including both the training and prediction results).


Table 1. Mean absolute error of the model simulations for the synthetic data study.

[image: Table 1]



3.2. Applications to CHO Cell Data With Neural Network ODEs

Next we applied the same approach we took in the synthetic data studies to the experimental data collected from a CHO cell overexpressing hERG1a (Beattie et al., 2018). The parameters for the candidate model were adapted from Clerx et al. (2019a, Method 3). The training results with the activation steady-state protocol (Pr3) and the deactivation time constant protocol (Pr5) are shown in Figure 5. The candidate model (blue) failed to capture the transients to the steady state, during the long varying holding steps in Pr3, as shown in the bottom left magnification (green). The two neural network models on the other hand were able to capture such transients to the steady state during the same protocol. A larger magnification to this part of the protocol is shown in Supplementary Figure 5.


[image: Figure 5]
FIGURE 5. Training results for the experimental data from Beattie et al. (2018). Comparison of the experimental data (grey) against the candidate a-gate model (blue), the a-gate modelled using a neural network (NN-f, orange), and the a-gate with a neural network discrepancy term (NN-d, green). (A) Shows the activation steady-state protocol (Pr3) and (B) shows the deactivation time constant protocol (Pr5). All figures with a green background are real data examples.


The three trained models were used to predict unseen voltage-clamp protocols measured in the same cell during the experiments. Figure 6 shows the prediction results for (Figure 6A) the first three steps of the inactivation protocol, (Figure 6B) the sinusoidal protocol, and (Figure 6C) the action potential wave form protocol. Similarly to the synthetic data studies, the two neural network models were able to better predict the first three steps of the inactivation protocol (Pr4), demonstrating a better description of the deactivation process, as shown in Figure 6A.


[image: Figure 6]
FIGURE 6. Prediction results for the experimental data from Beattie et al. (2018). Comparison of the experimental data (grey) against the candidate a-gate model (blue), the a-gate modelled using a neural network (NN-f, orange), and the a-gate with a neural network discrepancy term (NN-d, green). (A) Shows a part of the inactivation protocol (Pr4), showing the first three steps of the protocol. (B) Shows the sinusoidal protocol. (C) Shows a protocol consists of a series of action potentials. All figures with a green background are real data examples.


However, interestingly the two improved activation models with the neural networks did not show any obvious improvement for the sinusoidal protocol (Figure 6B) and the action potential wave form protocol (Figure 6C); all the three models performed similarly for predicting these two protocols. This could be the fact that the sinusoidal protocol explores the faster dynamics of the hERG current (Beattie et al., 2018), whilst the activation process is rather slow compared to this; similarly for the series of action potential wave forms, as demonstrated in the simulated “phase diagrams” by Clerx et al. (2019a). Therefore, the two neural network models did not show any obvious improvement for these two protocols. Table 2 shows the error of the model simulations for each of the training and prediction protocols.


Table 2. Mean absolute error of the model simulations for the CHO cell data.

[image: Table 2]




4. DISCUSSION

In this paper, we have demonstrated the use of neural networks to model ion channel kinetics. We have shown two approaches for doing this: the first one uses a neural network to fully model the right-hand side of the ODEs; the second one uses a neural network to model only the missing dynamics of the model—discrepancy between a model and the true system. Assessing the model discrepancy in ion channel kinetics is vital to constructing accurate action potential models (Mirams et al., 2016; Clayton et al., 2020; Pathmanathan et al., 2020), but most studies assume correct ion channel kinetics models when fitting maximum conductances of different current types in an action potential model (Kaur et al., 2014; Groenendaal et al., 2015; Johnstone et al., 2016; Lei et al., 2017; Pouranbarani et al., 2019). Previous studies attempted to use different machine learning techniques and statistical methods to model the differences between the mechanistic model and the data. For example, Lei et al. (2020c) used a Gaussian process and autoregressive-moving-average models, respectively, to account for the discrepancy term in ionic currents, the observables, i.e., the differences between the solutions of the ODE models and the data. Similarly Creswell et al. (2020) used a flexible noise model to describe the experimental noise, although the residual terms modelled by the flexible noise model were thought to be both correlated noise and model discrepancy. However, given the biophysical justification of the differential equations, we believe the discrepancy is rooted in the mathematical terms of the right-hand side of the ODEs, instead of the solutions of the ODEs. Therefore, we included the discrepancy term, the neural networks, into the ODEs—neural ODEs.

One of the features of neural networks is their flexibility, which is perhaps both an advantage and a limitation. This flexibility enables neural networks to approximate (almost) any function, making them a powerful universal approximator. However, experimental data are generally imperfect; there are experimental artefacts in the data, for example imperfect series resistance and membrane capacitance compensations, imperfect leak correction, etc., as discussed in Marty and Neher (1995), Sherman et al. (1999), Raba et al. (2013), Lei et al. (2020a,b), and Montnach et al. (2021). Unlike (smaller) biophysical models, with limited flexibility, neural networks might easily absorb such undesired, non-biophysical artefacts into the model, hence making non-physiologically-relevant predictions. It is worth noting that large biophysically-inspired models could also run into the same overfitting issue (Whittaker et al., 2020).

Clerx et al. (2019a) compared the performances of using conventional protocols (such as Pr3, Pr4, and Pr5) and using a condensed protocol (such as the sinusoidal protocol) when fitting an ion channel model. The authors concluded that it was advantageous to use the sinusoidal protocol when fitting the candidate Hodgkin-Huxley model of hERG used in this paper (Figure 1). The biggest differences between the neural network models and the candidate model are the predefined model structure and the number of degrees of freedom. Some of the condensed protocols, such as the sinusoidal protocol in Beattie et al. (2018) and the “staircase” protocol in Lei et al. (2019a,b), were designed to explore the dynamics of a given model rapidly. However, in this case, given the lack of model structure for the neural network models, these condensed protocol designs may not be the most appropriate choices. When training neural ODEs, it has been suggested to use large numbers of short time series data (Chen et al., 2018; Zhong et al., 2020; Su et al., 2021); however, it is often not practical to collect large numbers of short time series by restarting the voltage-clamp experiments, as it would require bringing the cell to steady state many times in order to obtain reliable initial conditions for solving the differential equations. The central idea of using multiple shorter time series data is to explore different regions of dynamics for the system to be modelled (Wu and Xiu, 2019; Su et al., 2021), which is the same as exploring the state space in our approach. We therefore decided to choose training protocols that cover the state space as much as possible; this also ensures the trained neural network models do not extrapolate—make predictions outside the training space (see later for a demonstration of such a pitfall). Supplementary Figure 6 shows the state space covered by the sinusoidal protocol, which is not as wide as those shown in Figure 2. When training neural ODE models it may therefore be more suitable to use protocols that cover the possible input space as widely as possible—here a combination of Pr3 and Pr5 for hERG activation appears to do this well.

In this paper, we have proposed a novel way of estimating the dynamics of the ion channel model, termed “state space estimation.” The underpinning of the proposed method is similar to some methods suggested in the literature for training neural ODEs. For example, Su et al. (2021) suggested using pairs of state variables at two adjacent time instants as the training data for the neural networks, where their neural network structure is a variant of residual networks. They were effectively approximating the derivatives using the first-order forward finite difference method with a fixed time step, although this would greatly amplify any noise present in the data (Chartrand, 2011). We have relaxed this limitation by allowing variable time steps and have estimated the derivatives using splines, one could also use different methods for estimating the derivatives under our framework (such as Chartrand, 2011; Van Breugel et al., 2020). Su et al. (2021) also assumed one could independently observe all the gating variables, which is not feasible in standard electrophysiology experiments that record only the total current.

Another approach for training neural ODEs is the adjoint method suggested by Chen et al. (2018), which back-propagates the derivatives of the neural network parameters from the solutions for constant memory cost. Such a method is an attractive alternative to our method, however when modelling typically long and dense time series data from voltage-clamp experiments, training neural networks using backpropagation through the ODE solutions is extremely slow. Our method provides a computational speed up at a low memory cost, which makes it even possible to train on CPUs.

Neural networks are excellent as a universal approximation mechanism, but they are not a reliable function extrapolation mechanism (Haley and Soloway, 1992; Chapter 6 of Livshin, 2019). That means these neural networks are excellent in predicting the approximated function values within the training space. However, they are not suitable for predicting the function values outside the training space. To demonstrate this issue, here we attempt to deliberately use a combination of the activation steady state protocol (Pr3) and the inactivation protocol (Pr4), which were not designed to thoroughly probe the activation of hERG, to train our NN-f model.

Figure 7 shows the training (Figures 7A,B) and prediction (Figure 7C) results, where the “badly trained” NN-f model failed to predict the parts of the deactivation protocol (Pr5) that are highlighted in red, whilst still performing very well with the training protocols. To illustrate the probable cause, Figure 8A shows a two-dimensional state space explored by the training protocols (see also Supplementary Figure 7). We see that there is a large “unexplored” region in the training protocols Pr3/4. This region is used for predictions of Pr5, and the worst predictions (indicated in red in Figures 7C, 8B) are those toward the centre of the “unexplored” region. This cautionary example suggests that Pr3/4 would be inappropriate training for a neural ODE and it is particularly important that we choose appropriate voltage-clamp protocols when training a neural ODE model. That is, we believe the training space should cover the full dynamics of interest within the state space, such that when we use the model to perform “predictions,” we are predicting a different state space trajectory within, or very close to, the trained state space. Note that Figure 7 also shows that a mechanistic model (candidate model, blue) fitted to Pr3 and Pr4 would give “reasonable” predictions for Pr5, although not as good as those in Figure 5 (see Clerx et al., 2019a). This performance is thought to be due to the mechanistic equations appropriately restricting model predictions—resulting in far more reliable and biophysically-based extrapolation.


[image: Figure 7]
FIGURE 7. An example of neural ODE performance using an inappropriate choice of training protocols. Comparison of the experimental data (grey) against the a-gate modelled using an “incorrectly” trained candidate model (blue) and neural network (NN-f, orange). The neural network was trained using (A) the activation steady state protocol (Pr3) and (B) the inactivation protocol (Pr4), where only parts of the protocols are shown for visualization purpose. (C) Shows the mechanistic candidate model makes reasonable predictions (blue) for this deactivation time constant protocol (Pr5) but the NN-f model failed to predict accurately, with four of the currents under higher test voltages (-70 to -40 mV) highlighted in red. All figures with red backgrounds are trained on Pr3/Pr4.



[image: Figure 8]
FIGURE 8. Two-dimensional state spaces illustrating the inappropriate training protocol for a neural ODE. The lines on these diagrams indicate states occupied at some point in time in simulations using the candidate model, with a dot for the state at the start and end of each voltage step. (A) Shows the state space spanned by the Pr3 and Pr4 training protocols (blue). The grey dashed line highlights a large region of very sparse training data. (B) The same state space with trajectories required by the prediction protocol, Pr5, highlighted (orange and red). The sections highlighted in red in Figure 7 with very bad predictions are also shown in red here. It is evident that the neural ODE makes “bad” predictions when extrapolating into the centre of the sparse region of training samples. All figures with red backgrounds are trained on Pr3/Pr4.


In this paper we have used voltage-gated ion channels as an example, one could also generalise the neural network model to include other external effects or control variables in a similar fashion as we demonstrated with the membrane voltage V in voltage-clamp experiments. We can write the neural network models in Equations (2) and (9) as
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and
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which explicitly includes an external control variable u. These external effects could be for example compound concentration, energy source (e.g., ATP concentration for pumps), luminance levels for light-gated ion channels, etc. However, the drawback of including more (input/control) variables to the model is that we have to train a model in higher dimensions (see discussion below).

The proposed ways of embedding a neural network into the ODEs, NN-f, and NN-d, are two of many possible ways of structuring the neural network models. For example Zhong et al. (2020) and Yazdani et al. (2020) suggested replacing only part of an ODE system with a neural network. For Hodgkin-Huxley or Markov models, a way of doing this would be to relax the rate assumptions. That is, instead of using an exponential form to model the transition rates α(V) and β(V), we could model them with a neural network such that Equation (3) becomes
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[image: image]α and [image: image]β are the outputs of a neural network [image: image] with an input V. This form indeed imposes good mechanistic structure, and is easier to interpret and train compared to the two proposed neural network models in this work; this particular form implicitly defines the bounds for the solution x to be [0, 1], making x can still be interpreted as the open probability. However, depending on the form of discrepancy, Equation (19) may not be flexible enough to model the missing dynamics. It implicitly assumes that the rate of the state dx/dt is linear in the state x, which is not suitable to correct the differences shown in Figure 3 (two time constants of deactivation) as our methods did.

In theory, we can even model the gating dynamics using higher order ODEs. For example, a second order ODE in general can be written as
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This type of second order ODE can be solved as a system of first order ODEs by considering it as
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which is a type of augmented neural differential equation (Norcliffe et al., 2020). Such a model is equivalent to a generalised three-state Markov model with one open state (Supplementary Material, section S1 shows how to rewrite a three-state model into a second order ODE, where its right-hand side is replaced by a neural network in a similar fashion to the NN-f model). In general, to model an nth order ODE, we could have a neural ODE of the form
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We therefore run back into a model selection challenge, which is one of the main challenges within conventional ion channel modelling—which model is the most suitable one to use—except we need to select the model in terms of the order of the neural ODEs and how to best include the neural network in the ODEs. Another challenge is that the higher the order, the higher the state space dimension (for an (n + 1)th order ODE, we have (n + 2)-dimensions: V, x, dx/dt, …, dnx/dtn) and the harder it is to train a neural network. With the concept of covering the state space for training the dynamics, we are faced with the curse of dimensionality as we go to higher orders, because it is practically impossible to collect training data that cover a large proportion of the hyper-volume within the state space in high dimensions. Also, neural ODE models of this form do not impose bounds to the solutions in general, and predictions for probabilities by these models could go outside [0, 1] during extrapolation.

On the note of model selection, Menon et al. (2009) attempted to theoretically optimise model structure in addition to the rate parameters through a genetic algorithm; Mangold et al. (2021) suggested a systematic way of proposing a set of Markov models by treating Markov structures as different graphs. Both approaches try to deal with a large scale of model selection; in particular Mangold et al. (2021) showed that there are more than 108 unique graphs (Markov model structures) even for only ten-state models. The number of possible unique graphs combinatorially explodes as the number of states increases, although a benefit of exploring different Markov structures is that the obtained best model has a potentially-explainable biophysical structure. On the other hand, for up to 10-state models, neural ODEs would, in theory, simplify the model selection problem from > 108 models to 10 models—by selecting the correct order of the ODE, although we anticipate a neural network model with nine hidden states would be extremely difficult to train accurately. This simplification is achieved by absorbing the selection of all the possible unique graphs for a given number of states (the order of the ODEs) into a single optimisation problem (i.e., training the neural network weights). Moreover, using neural networks to model the right-hand side of the ODE could allow some out-of-formalism behaviour (e.g., Lowen et al., 1999)—if the real channels are doing anything more exotic than the models assume. Although we see great potential in using neural ODE modelling approaches that we demonstrated in this paper for ion channel modelling, we believe this approach is still in its infancy; there are several limitations that we have to overcome before these neural ODE models can be used as confidently as the standard ion channel models.



5. CONCLUSION

In this paper, we have developed a method for training neural ODEs for ion channel models. We assessed the performance of neural ODEs with synthetic data studies and applied them to experimental data for hERG. We found that the neural ODEs were able to recover some of the missing dynamics in the synthetic data studies, whilst they were not particularly outperforming a standard Hodgkin and Huxley-style model used in the literature when applied to experimental data. Neural ODE modelling approach has great potential for handling model discrepancy or misspecification, although currently it still has strong limitations in terms of reliable extrapolation and training for higher order ODEs.
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Cardiomyocyte growth can occur in both physiological (exercised-induced) and pathological (e.g., volume overload and pressure overload) conditions leading to left ventricular (LV) hypertrophy. Studies using animal models and histology have demonstrated the growth and remodeling process at the organ level and tissue–cellular level, respectively. However, the driving factors of growth and the mechanistic link between organ, tissue, and cellular growth remains poorly understood. Computational models have the potential to bridge this gap by using constitutive models that describe the growth and remodeling process of the myocardium coupled with finite element (FE) analysis to model the biomechanics of the heart at the organ level. Using subject-specific imaging data of the LV geometry at two different time points, an FE model can be created with the inverse method to characterize the growth parameters of each subject. In this study, we developed a framework that takes in vivo cardiac magnetic resonance (CMR) imaging data of exercised porcine model and uses FE and Bayesian optimization to characterize myocardium growth in the transverse and longitudinal directions. The efficacy of this framework was demonstrated by successfully predicting growth parameters of 18 synthetic LV targeted masks which were generated from three LV porcine geometries. The framework was further used to characterize growth parameters in 4 swine subjects that had been exercised. The study suggested that exercise-induced growth in swine is prone to longitudinal cardiomyocyte growth (58.0 ± 19.6% after 6 weeks and 79.3 ± 15.6% after 12 weeks) compared to transverse growth (4.0 ± 8.0% after 6 weeks and 7.8 ± 9.4% after 12 weeks). This framework can be used to characterize myocardial growth in different phenotypes of LV hypertrophy and can be incorporated with other growth constitutive models to study different hypothetical growth mechanisms.

Keywords: myocardium growth, exercise, finite element, Bayesian optimization, cardiac MRI


INTRODUCTION

is known to lead to chronic physiological changes in the cardiovascular system such as an increase in contractility and a decrease in vascular resistance, heart rate, and blood pressure as a results of parasympathetic mediation (Fernandes et al., 2011). In addition, it induces morphological changes to the heart, which are typically referred to as cardiac growth or hypertrophy. Cardiac growth can be categorized into two types at the macroscopic level: eccentric growth – where the ventricular volume increases, and concentric growth – where the ventricular wall thickness increases. At the microscopic level, growth is the result of increasing size of the cardiomyocytes and, similarly to the macroscopic observations, in vitro studies have shown that cardiomyocytes have two growth phenotypes: longitudinal and transverse sarcomerogenesis (Yang et al., 2016). Moreover, it has been hypothesized that longitudinal and transverse growth at the microscopic level, result in eccentric and concentric growth at the macroscopic level (Göktepe et al., 2010). These distinctions in growth types are important since different types of exercise produce different types of macroscopic growth – anaerobic exercise is typically associated with concentric growth, while aerobic exercise leads to eccentric growth (Mihl et al., 2008; Fernandes et al., 2011) – and, more importantly, growth can also be triggered by pathologic causes such as pressure-overload, with similar hypertrophic phenotypes, but leading to heart failure instead of improved cardiac function. The root cause of the discrepancy between physiologic and pathologic growth remains unclear except for histology studies showing that the latter is also accompanied by microstructure remodeling (e.g., interstitial fibrosis, non-uniform cardiomyocyte alignment, and excessive collagen deposition) (Vega et al., 2017).

There is a long history of studying myocardial growth experimentally, both in vitro and in vivo (Aboelkassem et al., 2019; Niestrawska et al., 2020). In vitro studies apply static loads on isolated cardiomyocytes in the longitudinal (Mansour et al., 2004) or transverse direction (Yang et al., 2016) to mimic the conditions of volume overload or pressure overload, respectively. These studies showed sarcomerogenesis in series or in parallel corroborates the current understanding of longitudinal or transverse growth in response to these pathological loadings. In vivo studies on cardiac growth rely on small and large animal models of pathological growth resulting from volume overload or pressure overload (Aboelkassem et al., 2019). Volume overload models, associated with eccentric hypertrophy, have been generated by either cutting the chordae tendineae to induce mitral regurgitation (Sahli Costabal et al., 2019; Li et al., 2020) or by implanting a pacemaker to repeatedly introduce premature ventricular contraction (PVC) (Torrado et al., 2021). Pressure overload models, which are usually linked to concentric hypertrophy, have been created by aortic banding (Olver et al., 2019; Torres et al., 2020), diet modification (Holzem et al., 2015; Olver et al., 2019), or genetic modification (LeGrice et al., 2012; Wilson et al., 2017). On the other hand, exercised-induced hypertrophic models have also been created in both small and large animals by swim training, wheel running, or treadmill running (Wang et al., 2010). Most of these in vivo studies evaluate the effects of growth on the cardiac function (e.g., ejection fraction, cardiac output, hemodynamics) as well as morphological changes of the left ventricular (LV) (e.g., relative wall thickness). A few studies have used histology, acquired either ex vivo at the end of the study or through invasive biopsy, to quantify the level of cardiomyocyte growth (Olver et al., 2019; Sahli Costabal et al., 2019; Li et al., 2020) or the changes in collagen fiber orientation (Torres et al., 2020). Due to the limitations associated with ex vivo analysis and the added complexity and risks of in vivo biopsies, there is a profound paucity of data on the microstructural changes of the myocardium during LV growth and remodeling. Thus, the mechanistic link of growth between the organ level and tissue–cellular level remains poorly understood.

Computational models that try to develop quantitative links between growth observations at the organ level and tissue–cellular level are promising tools to give better insights into growth mechanisms (Niestrawska et al., 2020). Currently, there are two main types of growth constitutive models: kinematic growth and constrained mixture growth. Kinematic growth is a phenomenon-based model which has been used to create finite element (FE) models for both concentric (Göktepe et al., 2010; Rausch et al., 2011; Genet et al., 2016) and eccentric hypertrophy (Göktepe et al., 2010; Genet et al., 2016; Sahli Costabal et al., 2019). Both stress-driven and strain-driven growth laws have been tested in these studies. Constrained mixture growth is a microstructure-based model. It has been used mostly in the context of vascular growth which involves simpler geometry and isotropic properties due to the associated complexity of implementation and high computational cost (Niestrawska et al., 2020).

Although computational models provide a powerful platform to test different hypothetical growth mechanisms, large amounts of experimental data either at the tissue level (for kinematic growth) or at the cellular level (for constrained mixture growth) are required to facilitate the simulations and validate the models. To date, histology is the most commonly used approach that can provide details about the microstructural changes of the myocardium. However, histology is typically limited to in vitro or ex vivo studies. Moreover, it is typically evaluated in a small number of regions with a reduced field of view. Consequently, it requires researchers to identify which areas are to be sampled beforehand and, more crucially, it is challenging to repeat longitudinally on the same subject without invasive biopsy. On the other hand, non-invasive imaging techniques such as cardiac magnetic resonance (CMR) can provide information about the macrostructural and functional changes of the heart in multiple pathological and physiological states, including cardiac remodeling (Anand et al., 2002; Sipola et al., 2011; Alkema et al., 2016). Moreover, the non-invasive nature of CMR allows imaging of the same subject at multiple time points, hence, enabling longitudinal studies. The main limitation of CMR compared to histology is its relatively low resolution, on the order of mm, which impedes the direct observation of cellular shape changes in the heart.1 In order to perform in vivo assessments of the microstructural changes occurring during diseases or exercise, it is necessary to bridge the gap between the macrostructural changes observed with CMR and the underlying microstructural changes in the myocardium.

With CMR data, FE can be used as a forward model to build subject-specific growth simulations and predict the LV morphological changes for given growth parameters. Assuming the governing laws of growth are valid, it is possible to estimate a set of growth parameters that predict the LV geometry observed post-growth from CMR using iterative optimization approaches. Such a technique would provide a quantitative link between growth in myocardial microstructure and morphological changes in the LV geometry. However, subject-specific FE models are computationally expensive and consequently running a large number of iterations within an optimization algorithm becomes prohibitive. In this context, Bayesian optimization (BO) was developed as a gradient-free optimization technique designed to optimize cost functions that are expensive to evaluate. Hence, BO can be used to optimize over parameterized FE models of the heart without evaluating a grid search, which could take weeks or months to compute per subject.

The aim of this work is to propose an optimization framework to estimate the microstructural changes in the myocardial tissue by combining CMR imaging with FE-based computational models and BO. In short, our approach parameterizes the possible myocardial growth mechanisms (e.g., transverse or longitudinal growth) within an FE model and then estimates the growth parameters that best describe the heart geometry observed with CMR after growth. Since the heart is imaged in its entirety and non-invasively, it is also possible to assess whole-heart changes and perform longitudinal studies to assess progression within the same subject. In this study, we illustrated the accuracy of the FE + BO framework by testing it on multiple synthetic and animal growth models. In all cases, initial and final (post-growth) geometries were obtained and the FE + BO algorithm was used to predict which combination of transverse/longitudinal microstructural growth occurred in the myocardium.



MATERIALS AND METHODS

We developed an inverse-problem approach to non-invasively characterize cardiomyocyte growth from CMR and FE models, as described in Figure 1. Specifically, we acquired two CMR volumes of the LV at two time points – pre-growth (before starting exercise) and post-growth (after the exercise regime). Next, we built FE models of both LV geometries and applied hemodynamic loading and pericardial constraints to each. Finally, we applied cardiac growth to the pre-growth model and used it to estimate the microstructural cardiac growth parameters that best describes the macrostructural cardiac shape observed in the post-growth model. The overall method is composed of three main components, the myocyte growth model, the computational FE model and the estimation of the growth parameters performed with BO.
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FIGURE 1. Overview of the workflow used to characterize cardiomyocyte growth. The workflow contains three modules: (1) in vivo data collection, (2) building finite element model (FEM) of the pre-growth and post-growth LV geometries with idealized fiber orientation and boundary conditions (BCs) such as end-diastolic pressure and pericardium constraint, and (3) growth optimization.



Myocardium Growth Model

Since we used MRI data as the input information, kinematic growth was chosen instead of constrained mixture growth as the resolution of MRI is better suited for imaging at the macrostructural/tissue level. Kinematic growth theory introduces volumetric deformation to a continuum formulation with an approach similar to thermal-elastic coupling. In other words, the growth resulting from cardiomyocyte hypertrophy is modeled as volume increase in the myocardium. Under the kinematic growth framework, the total deformation gradient (F) can be multiplicatively decomposed into an elastic response (Fe) and a growth multiplier (Fg) as shown in Eq. 1. The former is used to determine the stress in the stress-strain constitutive model and the latter defines the growth magnitude in the three local orthogonal directions of the cardiac microstructure (fiber, sheetlet, and sheet-normal).
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As discussed earlier, cardiomyocyte has two main modes of growth, longitudinal and transverse growth, which correspond to series and parallel sarcomerogenesis, respectively. Therefore, we modeled the growth as transversely isotropic, where growth in the fiber direction is associated with longitudinal growth and growth in the sheetlet and sheet-normal directions are associated with transverse growth. The growth multiplier has the form:

[image: image]

where f, s, and n are unit vectors corresponding to the fiber, sheetlet, and sheet-normal directions that are orthogonal to each other. Similarly, αf and αn are the longitudinal and transverse growth coefficients.

For the elastic response of myocardium, the invariant-based hyperelastic model purposed by Holzapfel and Ogden (2009) was used. The strain energy density function of the model is shown in Eq. 3, where [image: image] are invariants of the right Cauchy green tensor ([image: image]) and a, b, af, bf, as, bs, afs, and bfs are material parameters (Holzapfel and Ogden, 2009). The “a” parameters have units of MPa and “b” parameters correspond to an exponential constant that is dimensionless. We adopted the material parameters characterized by Sack et al. (2018) from swine models, where a = 1.05 kPa, b = 7.542, af = 3.465 kPa, bf = 14.472, as = 0.481 kPa, bs = 12.548, afs = 0.283 kPa, and bfs = 3.088.
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In the FE models which will be described in the next section, all the elastic material properties are kept constant while growth parameters αf and αn are varied from model to model in the workflow. With the kinematic growth frame work (Eq. 1), Fe can be derived from F and Fg, in which the former is computed as the gradient of the continuous deformation map and the latter is explicitly defined as in Eq. 2. The second Piola–Kirchhoff stress can then be computed from Fe and strain energy density function (Eq. 3) as [image: image]. More details of the kinematic growth in the continuum mechanics framework are described in Genet et al. (2016).



Finite Element Model

Finite element models (FEM) apply constitutive models that describe the growth behavior at the tissue level into each element and enable the evaluation of deformation and morphology changes at the organ level. To start building a FEM of the LV, a 3D volumetric model of its geometry is required. In this study, the LV geometries at end-diastole were generated from in vivo CMR imaging using semi-automatic segmentation tool Segment (Medviso) (Heiberg et al., 2010). In order to avoid through-slice discontinuities, the epicardium and endocardium contours from each slice were further smoothed by fitting a smoothing B-spline to the mask control points along the slice direction (Prakosa et al., 2014). The contours were used to create the 3D shape of the LV in FE software Abaqus 2018 (Dassault Systèmes, Providence, RI, United States) (Dassault Systèmes, 2018). The LV was meshed with hexahedron elements (C3D8) with element edge length of approximately 1.5 mm (i.e., a 1.5 mm × 1.5 mm × 1.5 mm element), resulting in 4–5 layers of elements across the myocardial wall. An idealized fiber orientation was applied using the Laplace–Dirichlet Rule-Based (LDRB) algorithm (Bayer et al., 2012) with epicardial–endocardial helix angle of −60° to 60°. Standard Abaqus user subroutines VUHYPER and VUEXPAN (Dassault Systèmes, 2018) were used to implement the Holzapfel–Ogden hyperelastic model and transversely isotropic growth model in Abaqus. To create pericardial constraints at the epicardium, a 3D shell geometry was obtained from the epicardial surface to model the geometry of the pericardium explicitly. The pericardium was meshed with quadrilateral shell elements (S4) and modeled as a linear elastic material with a Young’s modulus of 10 MPa (Lin et al., 2013). A frictionless contact interaction was applied between the epicardium surface (Γepi) and the pericardium surface (Γepri) using the penalty contact algorithm (Dassault Systèmes, 2018). A penalty pressure, which is linearly dependent on the overclosure distance (h), was applied on the two surfaces (Eqs 4a–c). A Dirichlet BC was applied at the basal plane (Γbase) and the basal ring of the pericardium (∁base−ring) to prevent movement of body in the longitudinal direction (Eq. 4d). A preload step followed by a growth step was implemented into the model. Assuming that the segmented LV geometry is closed to the stress-free configuration, an end-diastolic pressure (ped) of 10 mmHg was applied on the endocardial surface to obtain the preloaded LV shape in the preload step. The LV pressure was kept constant in the growth step while kinematic growth in the transverse and longitudinal directions were implemented. All the BCs of the model are summarized in Eqs 4a–f.
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(where h is the overclosure distance between the two contacted surfaces)
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Due to non-linearities (large deformation, non-linear material model, and contact) in the model, the Abaqus/Explicit solver was used to conduct a quasi-static analysis (Dassault Systèmes, 2018). The Explicit Dynamic Analysis in Abaqus is designed to solve the dynamic equilibrium (Eq. 5). When the inertial force (M[image: image]) is small enough, the equation reduces to the static form of equilibrium and therefore leads to a quasi-static problem. The explicit solver uses the forward Euler method, in which the equations of motion are updated using previous information as shown in Eqs 6, 7. Preload and growth step time periods were set to 1 using a mass scaling technique and small stable time increments of 5 × 10–6 to ensure that the kinetic energy was negligible (<5%) compared to the total energy, as suggested in the Abaqus manual for quasi-static analysis (Dassault Systèmes, 2018). Hence, the “time” is an arbitrary value that indicates the loading magnitude but does not reflect the actual loading rate. For example, a growth simulation that linearly increases the transverse growth magnitude from 0 to α0 can provide intermediate outputs at time t ∈ [0, 1] as the solution of growth with transverse growth magnitude equals α0t. Figure 2 illustrates the macroscopic growth produced by three types of microscopic growth: transverse, longitudinal, and isotropic. Transverse growth increased the wall thickness of the LV, longitudinal growth dilated the LV chamber and isotropic growth resulted in both wall-thickening and LV chamber dilation. Both the transverse and longitudinal results agree with clinical observations and histological findings of eccentric and concentric hypertrophy (Gerdes, 2002).
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FIGURE 2. Different types of growth evolution predicted by the FE model, (A) transverse growth, (B) longitudinal growth, (C) isotropic growth. (D) Demonstration of transverse and longitudinal growth directions in a block of myocardium from endocardium to epicardium.
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(where M is the lumped element mass matrix, [image: image] is acceleration, P is the external force vector, and I is the internal force vector)
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(where u is displacement and [image: image] is velocity, the superscript (i) indicates the increment number and [image: image] and [image: image] refer to mid-increment values)



Growth Parameter Estimation With Bayesian Optimization

The cardiac growth parameters (αf,αn) were estimated by maximizing the similarity between the LV geometries obtained from the growth FE model and from the LV geometry imaged with the second scan. Specifically, we maximized the DICE score (Dice, 1945) between the masks of the FE and CMR geometries (MFE(αf,αn)andMCMR, respectively):

[image: image]

Unfortunately, the cost function in this maximization problem requires solving an FE growth model over the parameters (αf,αn) numerically. Hence, it is non-linear, does not have an analytical expression and each iteration is computationally expensive (around 2 h per iteration). These limitations impede using gradient-descent methods (Nocedal and Wright, 2000; Boyd and Vandenberghe, 2004) and is computationally infeasible for classical gradient-free methods (Nelder and Mead, 1965; Powell, 2009). Instead, we used BO, which is a gradient-free optimization method designed for problems whose cost function can only be evaluated at discrete points and which are expensive to compute (Jones et al., 1998; Osborne et al., 2009; Hutter et al., 2011). At each iteration, BO interpolates the cost function with a Gaussian process (Rasmussen and Williams, 2006) using the samples evaluated in previous iterations and then proposes a new point to evaluate within a bounded search space. The optimization is effectively performed in the process of proposing new points to evaluate. These are generated by maximizing an analytical acquisition function that balances the exploration of the search space against the exploitation of current local maxima to further improve the current best result. There have been multiple acquisition functions proposed in the literature, each providing different balances between exploration and exploitation (Kushner, 1964; Srinivas et al., 2010; Hoffman et al., 2011; Hernández-Lobato et al., 2015), and allowing for the introduction of non-linear constraints to the optimization (Hernández-Lobato et al., 2015; Ariafar et al., 2019). In this work, we used the Upper Confidence Bound (Srinivas et al., 2010), which maximizes the following trade-off between the mean μ(x) and variance σ(x) of the Gaussian Process, balanced by the scalar parameter β:
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As discussed, the cost function used in BO was the DICE score (DSC) between the masks of the predicted and imaged LV geometries. Evaluation of this cost function requires generating a 3D mask of the LV using the 3D coordinates of the nodes that constitute the FE mesh. In order to generate such mask, we determined which voxels in the 3D volume belong within the LV by interpolating a binary function in each voxel. Specifically, we used kernel density estimation with B-spline interpolation (kernel width of 4 voxels) and interpolated values of “1” at the position of the FE nodes. Finally, we implanted a threshold for the interpolated values at >0.25 and further filtered the resulting binary mask with a morphological closing filter with an element size of 6 voxels to avoid holes in the LV. To ensure that both the FE and CMR masks were aligned, we registered them with a rigid registration algorithm of their nodes in 3D (Myronenko and Song, 2009).



Experiments

We tested our method with a series of synthetic experiments and further illustrated its application in a real scenario with animal models of exercise-induced cardiac growth. All experiments were done under IACUC-approved protocols at the Massachusetts General Hospital. Four Yucatan swine (2 months old) underwent treadmill exercise training for 12 weeks and were imaged in vivo at weeks 0, 6, and 12 after onset of exercise (one swine could not finish exercise before the submission). Cardiac imaging was performed on a 3T clinical MRI system (MAGNETOM Prisma or a Connectome, Siemens Healthineers, Erlangen, Germany) set at max 80 mT/m gradient strength and a standard 32-channel anterior–posterior surface coil. The animals were anesthetized, placed on a ventilator, and then imaged with a retrospectively ECG gated CINE MRI flow compensated gradient echo sequence (repetition time = 5.8 ms, echo time = 3.2 ms, flip angle = 20°, 4 averages, 1.4 mm × 1.4 mm × 2.5 mm, 25 cardiac phases).

After imaging, the LV at end-diastole was segmented to generate an FE model as described in the previous section. The FE model and the LV masks at weeks 6 and 12 were then introduced into the optimization framework to estimate the transverse (αn) and longitudinal (αf) growth of the myocardium. The optimization was performed in python using the BO implementation in the BoTorch package (Balandat et al., 2020) with UCB as the acquisition function. The parameter β, which balances exploration and exploitation in UCB, was somewhat arbitrarily set to 10 since it provided balance between the mean and variance of the Gaussian Process estimate after initialization. The maximum growth was set to 1 (equivalent to doubling of size), resulting into a search space bounded between 0 and 1 for both growth parameters. The optimization was initialized with 3 samples of growth parameters set to [0, 1], [1, 0], and [1, 1] and BO was run for 10 iterations. Given the numerical nature of the quasi-static FE model, it provided intermediate outputs of growth that could be used as additional samples within the Gaussian Process fitting in BO. Consequently, each growth simulation provided five valid cost-function evaluations between zero-growth and the selected combination of transverse and longitudinal growth parameters, and these were introduced into each iteration of the BO algorithm to improve the estimate of the Gaussian Process.

In order to evaluate the results, synthetic growth was applied to three LV geometries from the previously described swine models. For each LV geometry, the ventricle was modified with six randomly prescribed transverse and longitudinal growth parameters. The growth parameters were set to be equal across geometries to reliably compare the results across subjects. Hence, the resulting synthetic dataset consisted of a total of 18 simulations (3 geometries × 6 growth realizations), each with known ground truth for their respective growth parameters. In order to avoid committing an inverse crime “noise” was added in the form of forward model differences between the generation of the synthetic data and the model used within the optimization. Specifically, the synthetic data were generated with increased spatial resolution in the FE meshes (element size reduced to 1 mm from 1.5 mm) and smaller increment step size in the quasi-static growth model (reduced from 5 × 10–6 to 1 × 10–6) in the Abaqus/Explicit solver.

We evaluated the parameter estimation error in the synthetic experiments with the normalized prediction error between the ground truth [image: image] and predicted [image: image] growth parameters:
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For all experiments, including the real-case examples, we report the final DICE score (DSC) between the predicted growth model and the true LV geometry, and illustrate the similarity between LV geometries with 3D plots, as well as contour plots of the LV masks in short and long axis views.



RESULTS

An overview of the outputs generated with the FE + BO framework is shown in Figure 3. The heatmap in Figure 3A shows the DICE score distribution across two axes of transverse and longitudinal growth parameters. Regions with high DICE score were indicative of good alignment between the predicted and true geometries and the parameters with the highest DICE score (typically >90%) were identified as the final prediction (indicated with a blue star). The LV geometries that correspond to several iterations in the BO optimization are shown in Figures 3B,C. The 3D views (B) provide clear morphology of the predicted and imaged LVs and the yellow intersection illustrates the volume overlap between them after registration. Similarly, the 2D contours (C), provide a more detailed comparison between target and prediction in two planes. Figure 3 illustrates three samples obtained along the optimization and sorted from low to high DICE scores.2 The first example (top row) with parameters αf = 0.1 and αn = 1 showed a thickened LV wall and an elongated chamber, compared to the target LV. The second example (middle row) presented lower transverse growth but higher longitudinal growth (αf = 0.4 and αn = 0.4). In this case, the geometry was more similar to the target one and was characterized by smaller wall thickness and smaller apex-to-base distance. Due to larger longitudinal growth, the chamber was more dilated in the radial direction, compared to the targeted LV. The best example (bottom row) was found for parameters αf = 0.17 and αn = 0.33. Both the 2D contours and the 3D plots show improved similarity with the target LV than that obtained with the previous examples, albeit the LV size was slightly under-predicted.
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FIGURE 3. An overview of the results. (A) Heatmap of DICE scores (DSC) for different sets of growth parameters. (B) 3D views comparing predicted and targeted geometries at three different scenarios indicated on the heatmap. (C) 2D contour comparison of predicted and targeted geometries from the long and short axis views. (1) to (3) indicate three different sets of growth parameters that were tested during the optimization process. From (1) to (3), the BO method increasingly finds solutions that improve the DICE score.


The DICE score heatmaps of the synthetic experiments are shown in Figure 4. These illustrate how the FE + BO framework was capable of estimating growth parameters in the synthetic models. In all cases, the DICE score heatmaps resulted in a single local maximum with a peak in the vicinity of the true parameters. Consequently, the estimated growth parameters were similar to those of the ground truths across different LV geometries and growth scenarios. Figures 5B,C shows a scatter plot with the estimated and true growth parameters. Both the estimated transverse and longitudinal growth resulted in good alignment with the ground truth (points are near the identity line), although these were, respectively, underestimated and overestimated (below and above the identity line). Quantitatively, the normalized error of the growth parameters, shown in Figure 5A, was 5.5 ± 5.8% and there was no significant difference in error across different LV geometries. The 2D contours of the predicted and true masks are shown in Figure 6. These resulted in good subjective alignment of the predicted LV geometry and that of the ground truth.
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FIGURE 4. DICE score heatmap results of the synthetic experiments. The top row shows the three LV geometries that were used in the synthetic experiments. The final prediction and ground truth are indicated in each heatmap as a blue star and red dot, respectively. For each LV geometry, two out of all six cases are shown. The middle row includes examples of growth that is largely dominated by longitudinal growth (αf = 0.9, αn = 0.3) and the bottom shows examples of growth that is largely dominated by transverse growth (αf = 0.1, αn = 0.3).
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FIGURE 5. Quantitative analysis of the results from 18 synthetic experiments. (A) Boxplot of normalized error across different subjects. (Boxplots show median, interquartile ranges, and whiskers show range. P-values were calculated using standard t-test). (B) Scatter plot of predicted longitudinal growth vs. ground truth longitudinal growth. (C) Scatter plot of predicted transverse growth vs. ground truth longitudinal growth. Dash lines in panels (B,C) indicate the identity line where predictions with zero error should locate on.
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FIGURE 6. Contour plots comparing the predicted and target LV geometry from the short axis and long axis views. The top row (A) includes the longitudinal growth examples (αf = 0.9, αn = 0.3) and the bottom row (B) includes the transverse growth examples (αf = 0.1, αn = 0.3).


An example of the true end-diastolic LV geometries segmented from MRI along different time points during the exercise training (weeks 0, 6, and 12) is shown in Figure 7. Figures 7A–C show examples of the epicardial and endocardial contours identified from short-axis CINE slices under different training time points. From Figures 7D,E, the long-axis view comparisons after rigid registration between the two geometries show LV chamber elongation and dilation is relatively minimum at week 6 but substantial at week 12. Similarly, the short-axis views (Figures 7F,G) show that wall thickening effect is more evident in week 12 than week 6. Quantitative evaluation of LV shape changes during exercise training are shown in Figure 8. The LV (n = 4) shows an increased end-diastolic (ED) volume (Figure 8A), and a significant increase in myocardial volume (Figure 8B) as the exercise program progresses. These results are consistent with eccentric hypertrophy.
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FIGURE 7. A comparison of the LV geometries before and after exercise-induced growth. (A–C) MRI short-axis views of the LVs at weeks 0, 6, and 12 during exercise training. (D,E) Long-axis views comparing weeks 0–6 and 12 LV geometries. (F,G) Short-axis views comparing weeks 0–12 LV geometries. Rigid registrations were performed between the two geometries in panels (D–G).
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FIGURE 8. Quantitative comparisons of LV end-diastolic volume (A) and myocardium volume (B) between weeks 0, 6, and 12 during exercise training. (Boxplots show median, interquartile ranges, and whiskers show range. P-values were calculated using standard t-test).


The results of growth characterization on these four exercised animals are shown in Figure 9. As reported in the synthetic experiments, all DICE score heatmaps resulted in a single local maximum within the search space. Since this data was obtained in vivo, there is no ground truth for the growth parameters. However, the estimated parameters consistently resulted in larger longitudinal growth than transverse growth. In fact, transverse growth values were almost negligible for most of the cases while a continuous increase in longitudinal growth was observed between weeks 6 and 12, except for Swine 1. On average, all animals (n = 4) that underwent exercise training resulted in growth parameters (αf = 0.580 ± 0.196 and αn = 0.040 ± 0.080) at week 6 and (αf = 0.793 ± 0.156 and αn = 0.078 ± 0.094) at week 12. The estimated growth parameters for each swine and session are reported in Table 1.
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FIGURE 9. DICE score heatmaps of growth parameter prediction for four exercised animals at two different time points (weeks 6 and 12).



TABLE 1. Predictions of growth parameters in four exercised animals at two time points (weeks 6 and 12).

[image: Table 1]
Both the 3D plots and 2D contours of the predicted and target LV geometries are compared in Figure 10 for all four animals at week 12. Both visualizations of the LV geometries show that the FE + BO framework was able to find growth parameters that resulted in similar predicted LV geometries to those observed in the in vivo data. The 2D long-axis views show that the method tends to underpredict chamber elongation, except for Swine 2. On the contrary, overprediction on wall thickening is shown in the short-axis views. From the 3D overlapping views, it is clear that rigid registration realigned the two geometries before calculating the DSC. ED volume and myocardial volume of the preloaded LVs and growth model predicted LVs at weeks 6 and 12 are shown in Figure 11. The optimized growth simulations predicted a continuous increase of myocardium volume at weeks 6 and 12 similar to experimental measurements in Figure 8B. However, the trend for ED volume elevation, which is shown in the experimental data, was not reproduced in the growth simulations. This indicates that the pericardium constraint may have been over-estimated in the FE model such that longitudinal growth did not provide a sufficient level of LV chamber dilation. Overall, the method shows that exercise growth is more prone to longitudinal growth than transverse growth.


[image: image]

FIGURE 10. Plots of 3D geometries and 2D LV contours to compare the predicted and targeted LV geometries of exercised animals at week 12.
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FIGURE 11. Quantitative comparison of end-diastolic volume (A) and myocardium volume (B) between the preloaded LVs at week 0 and the predicted growth LVs at weeks 6 and 12. (Boxplots show median, interquartile ranges, and whiskers show range. P-values were calculated using standard t-test).




DISCUSSION

The results of synthetic experiments suggest that the proposed FE + BO framework is capable of estimating the growth parameters of the myocardium with inputs of pre- and post-growth LV geometries. The overall normalized error was 5.5 ± 5.8% and there were no significant differences across heart geometries. In the cases with lower level of growth, especially in the longitudinal direction, the predictions have higher errors. This indicates that the DSC score is more sensitive to transverse growth than longitudinal growth. All DICE scores at the optimal parameters were higher than 90%, presented a single global maxima and the optimized LV geometries were similar to their corresponding ground truths (Figure 6), providing confidence on the stability of the estimated parameters.

Moreover, the results from the animal model predicted significantly higher levels of longitudinal growth (58% for week 6 and 79.3% for week 12) than transverse growth (4% for week 6 and 7.8% for week 12). Longitudinally, all animals show an increase of growth level in the longitudinal direction from weeks 6 to 12, expect for Swine 1 in which the predicted level of longitudinal growth reduces from 86% at week 6 to 65% at week 12. Although minimal, the transverse growth level predicted in Swine 1 and 3 also increases over time during the exercise training process. Performing such longitudinal analysis without the FE + BO framework would only be possible with invasive and potentially hazardous biopsies of the heart. Overall, the growth characterization results suggest that exercise-induced myocardial growth is more prone to longitudinal growth. This is not only consistent with the qualitative LV imaging comparisons showing LV elongation and dilation (Figures 7, 8), but also agrees with the literature where running – categorized as aerobic exercise – has been reported to lead to eccentric hypertrophy with longitudinal growth at the cardiomyocyte level in different species (Mihl et al., 2008; Fernandes et al., 2011). However, the predicted level of growth in the longitudinal direction is much higher than reported cardiomyocyte dimensional increase (15–35%) from literature (Wang et al., 2010). This discrepancy is likely due to the over-simplified FE model with generalized material properties, fiber orientation and hemodynamic BCs such that it cannot simultaneously represent concentric and eccentric hypertrophy. In order to refine the subject-specific model, myocardium properties can be characterized using CINE data and dynamic LV models and more realistic fiber orientation can be assigned using cardiac structural information from diffusion tensor imaging data (Sack et al., 2016). While LV pressure is difficult to assess non-invasively, the preload step could be improved by using the early-diastolic filling geometry (Zhang et al., 2018) instead of the end-diastolic geometry as the reference configuration such that the preloaded LV configuration is more representative of the ED state. Despite its computational cost, an even more rigorous approach would be to use inverse methods to identify the stress-free LV configuration so that the subsequent preloaded LV geometry should be equivalent to the true ED geometry (Rausch et al., 2017; Wang et al., 2020). Moreover, the cardiac growth process in the swine models was monitored from 2 to 6 months old during which time the animals also grow in size. Thus, the results we are seeing may not only contain exercise-induced growth but also physical growth where the LV mass increases as the body weight increases. Further validation of our results with histology is warranted.

The current growth model was designed to characterize growth with two unique parameters for the entire geometry. However, spatially heterogeneous growth is prevalent in patients with hypertrophic cardiomyopathy (Maron et al., 2009). To address spatially dependent characterizations, the current model could be extended to include a parameterized spatial distribution of growth and optimize those parameters. Moreover, this framework can be further extended to more sophisticated growth laws (e.g., stretch-driven growth and strain-driven growth). An example of such a model is the work by Sahli Costabal et al. (2019), who introduced a probabilistic model to connect sub-cellular remodeling to strain-driven myocardium growth. Combination of this method with our current FE + BO framework and optimization of biologically significant parameters such as magnitude, rate, and biomechanical driving factors of growth could yield interesting mechanistic findings. To further improve the capability of our framework to investigate growth at the cellular level, a constrained mixture model can be incorporated. Despite its complexity and high computational cost, this model can provide a more powerful framework to reveal the mechanistic link between biomechanics at the organ level and biological factors at the tissue–cellular level (Niestrawska et al., 2020). Implementing these growth models into our framework would enable efficient in silico testing of different growth hypotheses with multi-scale models.

Furthermore, this framework is not limited to growth parameter characterization. Ideally, it can be used as a generic method to characterize material parameters as long as the undeformed and deformed geometries of the object are given in the application. Theoretically, it would be possible to run a grid search parametric study to determine the optimal parameters in these models. However, grid search quickly becomes computationally intractable in the context of FE models due to their expensive computationally costs (around 2 h with 10 CPUs for each evaluation). For example, for an accuracy of 90% in the growth model presented, it would be needed to compute a grid search with spacing of 0.05. This search would require computing 400 simulations, resulting in 800 h (33.3 days) of computation. Instead, the FE + BO approach resolved the maxima within 10 iterations, corresponding to about 20 h of computation. Similarly, classical optimization methods (e.g., Simplex, Monte-Carlo) would not be feasible due to the high computational costs of each FE model evaluation. These limitations are set to increase with more complex growth models (longer compute time) or increased dimension of the parameterization (exponentially larger search space). Moreover, the current FE + BO method could be further modified to improve its accuracy and speed-to-convergence. One immediate source of improvement is to modify the acquisition function to incorporate knowledge of the multiple samples generated during the quasi-static FE model evaluations. Currently, we incorporate these samples in the Gaussian process estimation, but the optimization of the acquisition function is done with off-the-shelf UCB, which assumes a single evaluation of the cost function will be provided. This modification would facilitate more efficient sampling of the search space in each BO iteration. Similarly, the selection of the trade-off β parameter in UCB should be done more systematically before the first iteration to balance the mean and variance of the Gaussian Process estimated during initialization.


Limitations

The experimental limitations arise from two aspects: (1) acquisition of the MRI data and (2) segmentation of the LV geometry. The MRI data was acquired with two different scanners with different resolutions (mostly 1.4 × 1.4 × 2.5 mm with two exceptions of 1.3 × 1.3 × 2.5 mm and 1.8 × 1.8 × 6 mm). Lower resolution could reduce the accuracy of segmented LV geometry. The data was acquired along the short axis of the LV, and the actual positions of where the first and last slices reach the base and apex of the LV affect the length of the reconstructed LV geometry. Slice thickness of 2.5 mm is large enough to compare the growth magnitude, especially in the longitudinal direction. Therefore, one or two long axis views of MRI should be acquired and used in future segmentations. A semi-automatic segmentation approach was used in this study and then manually corrected to identify the LV contours in Segment (Medviso) (Heiberg et al., 2010). Further, there are motion artifacts and distortion around the free wall due to field homogeneity caused by the liver. The automatic segmentation method underperforms in these regions and manual corrections are subjective. A more robust automatic segmentation method should be used with minimal manual correction in order to increase reproducibility and reduce human bias.

Another limitation of this framework is introduced by the selection of BCs and tissue properties in the FE model. Model mis-specification can lead to errors in the optimization and result in unrealistic growth parameters. Identifying which models and parameters are most important for an accurate growth selection will be essential in future work. During the development of this study, we found that pericardial constraints are critical for creating realistic concentric hypertrophy in the transverse growth model. In this context, constraints from the pericardium and surrounding tissue at the epicardium surface is even more difficult since there is no clear consensus in the literature about what model to use for dynamic heart modeling. Some studies propose explicitly creating surrounding structures (Fritz et al., 2014), while others propose using “spring-dashpot” surrogates (Pfaller et al., 2019) to apply the constraints in dynamic heart modeling. Both models demonstrated the importance of including pericardial constraints on dynamic heart modeling. However, these models might not be applicable in the context of cardiac growth modeling since the heart undergoes gradual deformation at a much longer time scale. Within these time periods, the pericardium and surrounding tissue are likely to undergo their own remodeling, hence changing the constraints to the LV growth. Applying a constant linear elastic material models on the pericardium is likely to over-constrain the epicardium resulting in severe wall-thickening and chamber volume reduction which is shown in Figure 11. For future work, it will be important to consider the remodeling of pericardium and surrounding tissue so that more realistic BCs can be applied to the FE model. In addition to the pericardial constraints, sensitivity studies on the LV pressure BC and the initial configuration should be conducted. In this study, the ED state was used for the initial configuration since it is the state that can be consistently identified with CINE MRI and is a geometry that is relatively unaffected by external forces compared to the end-systolic state. For future studies, the growth simulation could be initiated from alternative configurations in the diastolic part of the cardiac cycle (e.g., early-diastolic filling, or diastasis) with different diastolic pressure BCs to check whether the growth optimization results are sensitive to any of these variations.

A limitation of the synthetic experiments is the simplistic source of “noise” added to the generated data which could lead to an overestimation of the accuracy of the synthetic results. In future work more representative noise could include segmentation variability (Tate et al., 2020), and the post-growth geometry could be generated with a more biologically relevant growth model (e.g., stress/strain-driven growth or constrained mixture growth) to further evaluate the framework performance. However, with our current implementation, such growth models are computationally impractical for whole LV geometries. Further validation is warranted for the animal experiments by comparing histological imaging results to the growth parameters estimated by the model (Sahli Costabal et al., 2019).



CONCLUSION

In summary, this study introduces a Bayesian optimized framework that can be used to non-invasively characterize growth at the tissue level at multiple time points. The FE modeling in this framework enables discernment of mechanistic links between macrostructural imaging and microstructural changes at the tissue level. As such, we believe that the framework can be a powerful tool to reveal fundamental insights into myocardial growth and remodeling mechanisms. In the future, this framework could facilitate the longitudinal study of multiple physiological and pathological conditions and may have practical utility in assessing cardiac disease progression or response to therapy.
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FOOTNOTES

1 There exist MRI-based technologies, such as T1, T2, or diffusion CMR, which can provide microstructural information of the tissue, but not direct observations of the shape of the myocytes.

2 Note that, given the exploration–exploitation nature of BO, there is no guarantee that the scores obtained along consecutive iterations are monotonically increasing.
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Cardiac fibrosis and other scarring of the heart, arising from conditions ranging from myocardial infarction to ageing, promotes dangerous arrhythmias by blocking the healthy propagation of cardiac excitation. Owing to the complexity of the dynamics of electrical signalling in the heart, however, the connection between different arrangements of blockage and various arrhythmic consequences remains poorly understood. Where a mechanism defies traditional understanding, machine learning can be invaluable for enabling accurate prediction of quantities of interest (measures of arrhythmic risk) in terms of predictor variables (such as the arrangement or pattern of obstructive scarring). In this study, we simulate the propagation of the action potential (AP) in tissue affected by fibrotic changes and hence detect sites that initiate re-entrant activation patterns. By separately considering multiple different stimulus regimes, we directly observe and quantify the sensitivity of re-entry formation to activation sequence in the fibrotic region. Then, by extracting the fibrotic structures around locations that both do and do not initiate re-entries, we use neural networks to determine to what extent re-entry initiation is predictable, and over what spatial scale conduction heterogeneities appear to act to produce this effect. We find that structural information within about 0.5 mm of a given point is sufficient to predict structures that initiate re-entry with more than 90% accuracy.

Keywords: machine learning, neural networks, fibrosis, cardiac electrophysiology, arrhythmia, monodomain model, re-entry, unidirectional block


1. INTRODUCTION

According to the WHO, in 2016, 17.9 million people worldwide died of cardiovascular diseases (31% of all deaths). These diseases are the most common cause of death in the world. Although the function and dysfunction of the heart have been extensively studied, the sheer complexity of the spatiotemporal dynamics underlying its electrical signalling process leaves much still poorly understood. This is particularly true when complicating factors are present, such as cardiac fibrosis.

Cardiac fibrosis, the over-activity of fibroblasts in the heart, poses significant health risks (Hinderer and Schenke-Layland, 2019). Fibroblasts deposit extracellular matrix proteins that can separate myocytes, resulting in tortuous paths of activation that increase the risk of signalling malfunctions. This risk depends critically on the extent and arrangement of afflicted tissue, but this dependency is intricate and very difficult to quantify. Efforts have been made to classify different types of fibrotic patterning with the suggestion that might help stratify risk (de Jong et al., 2011) but with little attempt to explain why or how these different types of pattern present different levels of risk. A separate approach focuses on small-scale structures that produce key behaviours underlying re-entry and arrhythmia. The pro-arrhythmic mechanisms of fibrosis are well understood (Nguyen et al., 2014), but the precise patterns that do or do not trigger those mechanisms are not well understood. The computational simulation presents a powerful tool for investigating these structures mechanistically, and machine learning (ML) provides the opportunity to automate identification.

In this study, we consider the risk of re-entry posed by many different fundamental structures of fibrosis. The specific pattern of fibrosis plays two important roles in the promotion of re-entry or micro-re-entry: through re-entrant paths within the damaged region that are long enough to accommodate the wavelength of the propagating action potential (AP) and by the presence of structures that facilitate one-way block of AP propagation. We concentrate on the latter, that is, structures that selectively block conduction, for example, permitting conduction in one direction but not the other. This phenomenon of a unidirectional block is a critical precursor to re-entry (Quan and Rudy, 1990).

Computational studies have successfully reproduced re-entries from fibrosis for different types of diseases, such as atrial fibrillation (Alonso et al., 2016; Vigmond et al., 2016), myocardial infarction (Sachetto Oliveira et al., 2018a), and many other pathologies related, for instance, to hypoxia and fibrosis including hypertrophic cardiomyopathy, hypertensive heart disease, recurrent myocardial infarction, obstructive pulmonary disease, obstructive sleep apnoea, and cystic fibrosis (Sachetto Oliveira et al., 2018b). However, as we do not know which kind of patterns within the fibrotic substrate are pro-arrhythmic, these studies depend on the generation of hundreds of thousands of fibrosis patterns, followed by Monte Carlo simulations and statistical analysis. These studies have investigated, for example, the probability of re-entry as a function of the fraction of damaged tissue. Nevertheless, the kind of patterns that facilitate unidirectional blocks and how often these patterns are present in damaged tissues are important open questions.

Machine learning (ML), as with most fields, has begun to see a considerable application to cardiac electrophysiology. These include automated extraction of subtle information from the electrogram (Yang et al., 2018; Mincholé et al., 2019) and the identification of promising targets or success rates for ablation (Zahid et al., 2016; Muffoletto et al., 2019, 2021; Shade et al., 2020). In this study, we generate a large number of different realisations of fibrotic arrangement corresponding to significantly damaged tissue and then apply a single stimulus originating from many different points. This creates a rich dataset of structures that give rise to re-entry. We then isolate regions of selective block and train a classifier model that identifies with high accuracy whether a given pattern of fibrosis generates this pro-arrhythmic behaviour. Importantly, this successful classification is a first step to address fundamental questions relating anatomical heterogeneity to re-entry risk, and over what spatial scale these effects manifest.



2. MATERIALS AND METHODS


2.1. Simulation of Cardiac Activity

We simulate cardiac activity inside the regions afflicted with fibrosis, examining the patternings of obstacles to conduction that initiate re-entries sustained inside these fibrotic regions. These micro-re-entries cause fibrotic regions to act potentially as ectopic pacemakers that drive tachycardia or other arrhythmia (Hansen et al., 2015). As our focus is on the initiation and immediate sustainment of re-entry, we do not simulate how waves of activation produced by a fibrotic region interact with healthy surrounding tissue, nor do we consider scenarios such as fast pacing that indicate the existence of prior signalling dysfunction.

Cardiac electrophysiological dynamics were simulated using the monodomain formulation (Sundnes et al., 2006),

[image: image]

which treats cardiac cells as capacitive and hence describes the change in their membrane potential in terms of the current that flows diffusively to/from neighbouring cells through gap junctions and by ion transport through the ion channels of the cell membrane. We use a capacitance density of Cm= 1 μF m-2 and electrical conductivity D = 2.5 × 10−4 mS. Cell APs were simulated using the Bueno-Orovio–Cherry–Fenton (BOCF) model, a reduced model that nevertheless accurately captures the most important electrophysiological dynamics of ventricular myocytes (Bueno-Orovio et al., 2008). To represent the effects of significant tissue damage on APs Shaw and Rudy (1997); Sachetto Oliveira et al. (2018b), we modified model parameters to shorten AP duration (APD) to approximately 50 ms (see Figure 1A and Table 1). This results in a conduction velocity of 23 cm s-1, reflecting the decreased gap junction functionality in diseased tissue (Duffy, 2012; Nguyen et al., 2014).


[image: Figure 1]
FIGURE 1. Graphical demonstration of some of the methods used in this study. (A) The action potential (AP) of the Bueno-Orovio-Cherry-Fenton (BOCF) model modified to represent strongly fibrosis-afflicted tissue (parameters in Table 1), and the original BOCF model. Remodelled myocytes repolarise very rapidly with a triangular-shaped AP. (B) An example fibrotic structure, visualised to highlight the ‘diagonal' connectivity inherent to placing nodes on element vertices. (C) The stimulus locations (yellow) used across separate simulations to generate wavefronts travelling in different directions and hence bolster identification of structures that produce re-entry. (D) Re-entry vulnerability index (RVI) values observed for the structure pictured in (B), showing the identification (by significantly negative value) of locations that demonstrate selective conduction block.



Table 1. The parameters of the Bueno-Orovio-Cherry-Fenton (BOCF) model, modified to represent cardiac tissue with significant fibrosis.
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Simulations were carried out in two-dimensional, 2 × 2 cm slices of isotropically conductive cardiac tissue. We chose a larger amount of tissue than the minimum needed to support re-entry as reported for these types of conditions (0.7 × 0.7 cm; Sachetto Oliveira et al., 2018b), so as to increase the number of re-entries present in our generated data. The effect of fibrosis on conduction was represented by the presence of non-conducting obstacles (for example collagen), a common approach taken for both ventricular tissue (Ten Tusscher and Panfilov, 2007; McDowell et al., 2011) and atrial tissue (Cherry et al., 2007; McDowell et al., 2015), as well as highly-detailed microscopic models of cardiac tissue where cells are disconnected by barriers or dead cells (Jacquemet and Henriquez, 2009; Hubbard and Henriquez, 2014; Gouvêa de Barros et al., 2015). This approach is in contrast to approaches that represent fibrotic obstacles indirectly through modifications to conductivity in afflicted areas, often in response to imaging data informing fibroblast density (Zahid et al., 2016; Roy et al., 2020).

Obstacles were seeded randomly through the domain by randomly replacing each grid element with a non-conductive element with some fixed probability ρ, a typical approach used for modelling diffuse fibrosis (Kazbanov et al., 2016). We did not explicitly consider the other types of fibrotic microtexture (such as compact or patchy fibrosis de Jong et al., 2011). However, by choosing ρ~0.5 and simulating many different realisations, we have considered a very broad range of patterns on the fine-scale that we analyse in this study. It is worth noting that other types of fibrotic patterning could be directly incorporated into our machine learning workflow through recent techniques for computer generation of large numbers of realisations of different fibrotic patterns (Clayton, 2018; Jakes et al., 2019).

Equation (1) was discretised using a vertex-centred control volume finite element method that integrates bilinear interpolants over the square-shaped elements. This generates a non-diagonal mass matrix and significantly reduces discretisation error in this sharp-fronted wavefront setting (Pathmanathan et al., 2012). For a vertex-centred mesh where nodes are at element vertices, excitation can still propagate through the “crack” between diagonally opposed obstructions, owing to a node being there. As such, to make our visualisations of fibrotic structures more intuitive, we display fibrotic obstructions such that these diagonal connections are respected (Figure 1B). Timestepping used the second-order generalisation of the Rush–Larsen method put forward by Perego and Veneziani (2009), with Δt= 0.05 ms. Simulations continued until all cardiac activity died out, or t= 2 s was reached. These simulations were carried out on the Barbora supercomputer (Czech Republic).



2.2. Re-entries and Conduction Block

Our study concentrates solely on the effect of structure on the initiation of re-entrant patterns of activation. As such, each individual simulation used only one stimulus pulse so as to preclude other conflating factors such as repolarisation heterogeneity in scarred tissue (Gough et al., 1985). However, to maximise the opportunity to identify pro-arrhythmic structures, we increased robustness to specific propagation directions and patterns of activation by separately using 13 different stimulus sites for each fibrotic realisation (Figure 1C). To obtain sufficient data featuring re-entry, a sweep through values 0.4 ≤ ρ ≤ 0.6 was first used to determine those extents of fibrosis prone to re-entry. For each density value considered, 50 different realisations of fibrosis were created. Re-entry was detected by the activation of any boundary nodes more than one time (Figure 2), capturing ectopic waves that successfully escape the fibrotic region being simulated. A realisation of fibrotic structure that generated a re-entry for any of the possible stimulus sites was then labelled as a substrate for re-entry.


[image: Figure 2]
FIGURE 2. A re-entry formed in fibrotic tissue (red arrow indicates the direction of AP propagation), and its detection. An AP initialised on the left border propagates through the tissue, failing to conduct through the bottom passage. Then, when the excitation turns around (about 250 ms), it transmits through this bottom passage and successfully re-emerges into the remainder of tissue, forming a re-entry (about 375 ms). Only re-entries that might escape back into the tissue surrounding the afflicted region are counted, as detected by nodes sitting on the boundary of the domain being activated more than one time (marked with a red asterisk on the boundaries).


Following initial observations, our high-throughput simulation protocol concentrated on the range ρ ∈ [0.46, 0.50] as the values most prone to re-entry. For each ρ value in this range (in increments of 0.01), an additional 800 fibrotic patterns were created, and the same simulation protocol as above then applied to each. Table 2 summarises the size, and basic qualities, of the resulting data.


Table 2. Summary of the simulations performed, and the resulting data used for machine learning (ML) (using one structure size as an example).

[image: Table 2]

To detect specific micro-structures that promote re-entry, we used the re-entry vulnerability index (RVI) (Orini et al., 2017; Orini et al., 2019). This index calculates the difference in activation time for a node and the repolarisation time of its neighbours, and hence indicates potential for re-entry formation (Figure 1D). In particular negative values occur when a neighbouring node has already activated and repolarised when a node first activates, allowing the node to spread its activation back to that neighbour and potentially much more of the tissue. This scenario arises when conduction blocks despite the existence of waiting excitable tissue, for example, due to excessive electrotonic loss (Nguyen et al., 2014). An example of conduction dying out due to source-sink mismatch, only for wave propagation to succeed in travelling through the same structure from a different direction, is provided in Figure 3.


[image: Figure 3]
FIGURE 3. Snapshots of AP propagation demonstrating an event of the unidirectional block. Visualised is one section of the full fibrotic region, detected by our RVI-based approach. The brightness of colour indicates level of activation, and the red arrows indicate the overall direction of propagation. (A) The wave propagates from the bottom-right to the bottom-left corner of the section, attempting also to propagate through the central passage but failing due to an imbalance between excited and excitable tissue. (B) When the wavefront later propagates through the top portion of this structure, it is able to successfully propagate downwards through the central passage, re-entering into the tissue in the bottom portion.


Significantly negative RVI values further indicate a likelihood that surrounding tissue will also be ready to excite, increasing the risk that a re-entrant event develops into an ectopic wavefront significant enough to escape and hence trigger extrasystole. We, therefore, find all locations that exhibited RVI values below a threshold RVI ≤ −50. When multiple locations were detected together as a contiguous group, these were simplified to a single location. Around each detected site, the patterning of fibrosis (as an array of binary values) was extracted, and labelled as a “discriminative” structure, reflecting its inconsistent passing along the excitation dependent on wavefront direction or other conditions. To complete the dataset, this set of structures was complemented by a set of ‘indiscriminate' structures of the same size, selected by finding locations that satisfied two conditions. First, indiscriminate structures have to be activated (at least 40% of their constituent excitable tissue), so that their effects on wavefront propagation had been tested by the simulation they came from. Second, indiscriminate structures could not contain any locations identified by RVI values under the threshold as discriminative.



2.3. Pattern Classification

To explore how much information regarding re-entry risk is contained in the patterning of fibrosis, we considered the ability of neural networks (NN) to successfully classify different structures as discriminative about excitation transfer or not. The datasets were made balanced by detecting and adding indiscriminate structures until these were the same in number as the discriminative structures. As each structure is a binary mask, they can simply be converted to a vector of 0 and 1 values to serve as input to an NN. The NN then outputs a single value indicating a category to which structure belongs (discriminative or not).

A variety of NN architectures were considered, using densely interconnected layers and zero to four hidden layers. Layer size varied from 100 to 1,200 neurons. All NN training and evaluation used the Keras application programming interface (API) (Chollet, Francois et al., 2015), a popular Python library for machine learning. We used the Adam optimiser with a binary cross-entropy loss function to optimise the neural network. The rectified linear activation function (ReLU) activation function was used in the inner layers and a sigmoid activation function in the outer layer. To explore the spatial scale on which patterning acts to create selective block of conduction and hence re-entry, we also considered the ability to identify selectively blocking patterns when working with structures of various sizes. In particular we take the element identified via RVI as the centre of a square binary pattern, with side lengths varying from 5 elements (0.5 mm) to 23 elements (2.3 mm).




3. RESULTS


3.1. Preliminary Results

As briefly mentioned in Methods, re-entries were found to appear only within a rather selective range of ρ values (Figure 4), matching observations of previous studies considering micro re-entry in untextured fibrosis (Sachetto Oliveira et al., 2018a,b). This effect is caused by the requirement for both a sufficient amount of obstruction to create the structures that produce a source-sink mismatch, and a sufficiently conductive structure for any resulting re-entrant event to successfully reach the domain boundary and hence produce an ectopic beat. This balance is strongly related to the percolation threshold, and we note that the critical range of 0.45 ≤ ρ ≤ 0.52 for re-entry is here larger than in the previous studies, as vertex-centred meshes are naturally more conductive. Figure 4 also compares the chance of re-entry for any individual simulation (one stimulus site), with the chance per pattern realisation (for at least one re-entry across all stimulus sites). Even given that a structure can produce re-entries that escape the fibrotic region, only very few choices of stimulus location result in this behaviour, demonstrating a significant sensitivity to activation pattern.


[image: Figure 4]
FIGURE 4. Re-entry formation depends critically on the amount of fibrotic obstructions. Only a specific range of values of ρ, the probability that any individual mesh element is obstructed, permits re-entry formation. Shown are the probabilities that a given fibrotic realisation produced a re-entry for (A) at least one stimulus scenario and (B) for an individual stimulus scenario. A comparison of these two histograms highlights the importance of considering multiple stimulus locations when evaluating a structure for potential as an arrhythmic substrate.


Figure 5 compares the frequency with which selectively blocking micropatterns were identified across the large-scale fibrotic realisations (4 cm2) that did or did not result in re-entry. The cases exhibiting re-entry showed on average more than two times as many selectively blocking sites than those that did not. This confirms the intuition that the presence of microstructures that may initiate re-entry correlates significantly with the overall risk posed by a fibrotic region. However, even those realisations that did not produce re-entry under any stimulus scenario still produced many individual events of unidirectional or other selective block of conduction. This shows that the mutual spatial arrangement of these initiator patterns, and the larger-scale structure more generally, is also critical to the formation of re-entries that persist and escape into the surrounding tissue. Notably, there exists a positive feedback effect when it comes to simply counting detected discriminative microstructures, and as once a re-entry has successfully formed, there is an additional opportunity for repolarisation heterogeneity to produce further block events in vulnerable microstructures.


[image: Figure 5]
FIGURE 5. Boxplots showing the frequency of microstructures that selectively block condution (as detected by significant negative RVI) occurring in large-scale fibrotic realisations that did or did not exhibit re-entry. The higher the number of such discriminative structures found, the more likely a re-entrant AP will survive and then escape into the surrounding tissue.


Individual examples of micropatterns capable or incapable of initiating re-entry, as detected by our methods, are presented in Figure 6. As shown by the arrows indicating the direction of AP propagation (or block), the pro-arrhythmic patterns (left side) all result in unidirectional block. Examining the fine-scale structures that produce this effect reveals broad correspondence to the AP emerging from thin passages into larger regions of open tissue. This is the classical example of structural heterogeneity producing unidirectional block through source-sink mismatch (Ciaccio et al., 2018). However, the rich diversity of patterning in these structures and the presence of visually similar arrangements in the structures observed to permit normal conduction (right side of figure) highlight the difficulty of differentiating by eye alone patterns that may or may not initiate re-entry. This motivates the use of machine learning as a more accurate, and automated, means of carrying out this classification.


[image: Figure 6]
FIGURE 6. Examples of pro-arrhythmic (A–D) and non-arrhythmogenic (E–H) micropatterns (23 × 23 elements), and a close-up view of the structure at their centre. Green arrows indicate the directions of AP propagation, with red flat arrowheads indicating conduction block.




3.2. Classification of Micropatterns That Can Initiate Re-entry

The micropatterns that do or do not exhibit selective (unidirectional, or inconsistent) conduction block were learned by training a NN classifier, as described in Methods. Depending on the NN architecture and micropattern size, the overall accuracy of the classifier (as evaluated using unseen test data) ranged from approximately 75 to 91%. Specificity and sensitivity ranged from 74 to 91%, and the area under the receiver operating characteristic curve (ROC) curve ranged from 0.82 to 0.95. The dependence of performance on network architecture, for a fixed micropattern size, is summarised in Table 3, where it can be seen that maximal classification accuracy of 91% was obtained by using two hidden layers of 1,000 neurons each. This architecture strikes the balance between including enough neurons to capture the high complexity of the classification problem, and the risks of training difficulties or overfitting posed by a network with too many neurons. The classification problems using other micropattern sizes showed very similar relationships between accuracy and network architecture. In Table 4 is shown the confusion matrix of the NN for micropatterns of size 23 × 23, and 9 × 9. These results confirm that NN performance is balanced, that is, the NN can detect pro-arrhythmic as well as non pro-arrhythmic structures with the same accuracy.


Table 3. The resulting accuracy/area under the curve (AUC) of the neural network (NN) for the size of the micropattern 9.

[image: Table 3]


Table 4. (A) The confusion matrix of the NN for 23 × 23 micropatterns, with four hidden layers and 800 neurons in each layer.

[image: Table 4]

The classifier models with appropriate architectures obtain very good accuracy, considering they are attempting to identify a complex phenomenon such as unidirectional or otherwise selective block only from binary micropattern data. On one hand, we have considered many different patterns of activation (by using different choices of stimulus site) to generate these data, and so structures identified as pro-arrhythmic might still exist safely in a scar region if they never experienced waves travelling in the necessary direction to trigger the initial re-entry. On the other hand, structures identified as non-arrhythmogenic will have been subjected to multiple different AP propagation scenarios. This suggests that microstructures identified as indiscriminate could potentially be considered safe independent of the factor of wavefront direction.

Classifier accuracy also allows us to consider the information necessary in order to identify pro-arrhythmic micropatterns of obstruction. In this study, we have varied the size of these micropatterns, and thus can gain some understanding regarding the spatial scale on which the dynamics of unidirectional or selective block truly acts. On one hand, if the structures considered are too small to correctly identify the relevant source-sink interactions, accuracy will suffer due to this lack of requisite information. On the other hand, when redundant information is included by using a too large micropattern size, this only increases the dimensionality of the learning problem without supplying anything useful, and accuracy suffers due to the negatively shifted the balance between dimension and amount of training data.

Figure 7 shows how changes to micropattern size impact the accuracy of the resulting classifier models. Accuracy peaks for patterns of size 9 × 9, suggesting that the balance of source-sink mismatch for a wavefront is meaningfully controlled by the surrounding structure on a length scale of about 0.4–1 mm. The larger end of this range arises from the observation that with increased amounts of training data, higher-dimensional datasets may have exhibited even higher classification accuracy. Saliency maps, which show the respective levels of contribution of the individual elements of a structure towards the resulting classification output by a NN, also showed a tendency to concentrate importance on a small central subsection of the larger micropatterns (Figure 8). This provides further evidence towards the conclusion that selective and unidrectional block events are governed by structure over only a small length scale.


[image: Figure 7]
FIGURE 7. Graph of resulting accuracy dependence on micropattern size for two hidden layers and 1,000 neurons.



[image: Figure 8]
FIGURE 8. Example saliency maps for a selection of 21 × 21 (A–D) patterns classified by a neural network with zero hidden layers and 1,200 neurons in one layer and 9 × 9 patterns (E–H) with two hidden layers and 1,000 neurons in one layer. The lightness of grid sites indicates their level of contribution towards the decision of the classifier for the different micropatterns tested. In the case of the larger patterns (A–D), site importance is concentrated around the centre of the pattern, whereas smaller patterns more consistently use sites throughout the pattern to evaluate a structure for selective conduction block. This supports the conclusion that the vast majority of these proarrhythmic phenomena take place on smaller spatial scales.




3.3. Generalisation to New Data

In discussing classifier model accuracy, we have been referring to the performance of the model in classifying micropatterns not seen by it during the training process, but still sourcing from the same overall batch of simulations from which the training data were taken.

In this study, we test the classifier model in a more demanding fashion by evaluating its performance on a new batch of simulations designed to more directly examine events of the selective block. These simulations were carried out on smaller fibrotic domains (46 × 46 elements total), with single stimuli triggered separately on all four edges of the domain to increase the chance of observing unidirectional block where it might arise. The best-performing classifier model was then used to try to identify which microstructures in these new realisations of fibrosis would or would not show this type of block.

Figure 9 shows a range of example patterns, including those (both susceptible and not susceptible to unidirectional block) that the classifier model successfully identified, and some of the pro-arrhythmic structures that the model failed to detect. The same archetypal structure of channels connecting to open regions to produce unidirectional block is observed, although again identification by eye is significantly challenging. For example, structures exhibiting omnidirectional block (Figures 9D,E) do not seem to be immediately separable from those exhibiting unidirectional block (Figures 9A–C,G–I), but only the latter structures are able to initiate a re-entry. Our classifier model allows for the identification of this property beyond a simple human search for the obvious, qualitative patterns.


[image: Figure 9]
FIGURE 9. Conduction patterns in completely unseen structures from new simulations, and the corresponding predictions of the classifier model. Shown are examples of correctly identified pro-arrhythmic (A–C) and non-arrhythmogenic (D–F) micropatterns, and undetected pro-arrhythmic (G–I) micropatterns. All are of size 9 × 9 elements. Green arrows indicate the directions of AP propagation, with red flat arrowheads indicating conduction block. Notably, the classifier model can successfully identify structures that result in a complete block from all directions (D,E) but could not successfully identify all pro-arrhythmic structures, particularly those where block occurs near the micropattern boundary (H,I).


However, some patterns that show unidirectional block when simulated were not detected by the NN classifier, despite its high accuracy on the data originally used to test its performance. There could be several reasons for this. The unidirectional block events observed in false-negative cases often occur very close to the micropattern boundary (Figures 9H,I). In such cases, there is insufficient information about the structure around the wavefront at the critical location of the block, and so the classifier model struggles to predict it. Additionally, in these smaller-scale simulations, many more of the micropatterns evaluated for testing will fall closer to the domain boundaries, where the balance of source and sink can be affected by the initial stimulus and the inability of travelling wavefronts to form their full ‘tail' of activated cells that provide an additional electrotonic sources of depolarisation. This is likely due to the fact that the structure responsible for conduction block (unidirectional or otherwise) will not precisely coincide with the location where the wavefront dies out. We discuss this further in Conclusions.




4. CONCLUSIONS

We have used high-throughput simulation to approach an exhaustive exploration of the issue of re-entry initiation in fibrosis-afflicted tissue, a key precursor to arrhythmia (Hansen et al., 2015; Sachetto Oliveira et al., 2018a). It is known, at least for randomly placed obstructions as considered here, that the probability a site is obstructed is a critical determinant of re-entry formation (Vigmond et al., 2016; Sachetto Oliveira et al., 2018b). This finding was recapitulated in this study, for a different type of computational mesh and was extended by also exploring how different patterns of activation interact with these regions of afflicted tissue. In particular, we have demonstrated that for the most risk-associated extents of fibrosis (ρ~0.49), a majority of fibrotic realisations were in fact capable of initiating re-entry from a single stimulus but only for waves sourcing from a select few pattern-specific locations. This suggests that lower rates of initiation previously reported (Sachetto Oliveira et al., 2018b) are largely a function of only a single stimulus pattern being considered in that study. This additionally sheds light on one role of ectopic beats in arrhythmia initiation; if one of the stimulus scenarios is said to correspond to a healthy sinus rhythm activation pattern, then the other stimulus scenarios are related to events such as premature contractions and can often initiate re-entry even when the typical activation sequence does not.

Although we observed activation sequence to be similarly as important as structure in terms of producing re-entrant waves that escape the scar region, the fine-scale events of selective block required to initiate any re-entrant activity were not expected to be overly dependent on activation sequence. This intuition was seen to hold, with a NN classifier model trained only using binary arrays of fibrosis occupancy (no activation pattern information) obtaining very good accuracy (up to 91% for this very challenging learning problem). We also used classifier accuracy to suggest the important length scale for identifying the unidirectional block in these fibrotic micropatterns, observing 9 × 9 patterns to best balance information content and learning problem dimensionality for the NNs. This suggests the effective length scale for individual events of unidirectional (or other selective) conduction block to be ~ 0.5 mm or a little larger.

When the classifier was tested on completely new data (new simulations not used for training, validation, or testing), it remained able to detect the key structures involved in generating unidirectional block events. Impressively, completely-blocking structures (i.e., blocking from all directions) could be correctly classified. This more challenging test of the classifier model did expose some of the limitations of the approach used in this study, however. First, our RVI-based detection method picks out the locations where activation dies out, but this does not always perfectly correspond to the structure most responsible for the failure to propagate. For example, a wavefront emerging from a thin channel into a bay of excitable tissue may die out a little way into the bay, even though the structure surrounding where the channel ends is the most important. One potential direction forward is improving the block detection algorithm, so it better localises the structure responsible for the unidirectional block instead of wave die-out points. Another direction is to move away from detecting specific sites of unidirectional block altogether, and instead attempt to classify micropatterns using data generated by simulating AP propagation across the micro patterns themselves.

As the focus of this study was purely on how much fibrotic structure itself can inform the risk of re-entry, we have not considered the importance of specific electrophysiological conditions for the initiation and sustainment of re-entrant activation patterns. Some examination of the effects of parameter variability in this context has already been carried out (Lawson et al., 2020), but it is a limitation of this study that we have not explicitly considered how different electrophysiological conditions impact the importance of structure vs. activation sequence or the ability to predict structures that selectively block. We suspect that if the conductivity of unobstructed tissue was adjusted, or a different cell model (or parameter values for the BOCF model) was used, the general conclusions we have drawn here would remain valid, but of course classifier models would need to be retrained. Anisotropic conduction, in particular, might also have a pronounced effect on our observations here, especially considering that different ‘textures' of fibrosis meaningfully act to change the effective anisotropy of afflicted tissue (Nezlobinsky et al., 2020).

We have used a generously sized region of afflicted tissue for data generation in this study, larger than the minimal size required to support re-entry in similar simulations (Sachetto Oliveira et al., 2018b) and larger than micro-re-entrant paths observed in explanted hearts (Hansen et al., 2015). Domain size certainly effects the probability of observing a sustained re-entry, but the observation that the direction of the initial wavefront is critical for re-entry initiation should be robust to the domain size. We have demonstrated that the individual micro-structures that do or do not exhibit selective or unidirecitonal block act on a length scale of about ~0.5 mm, much smaller than the size of the full simulation domain. A bigger limitation of our choice of domain is its two-dimensional nature, a necessity for carrying out the number of simulations performed here. In three-dimensions, critical length scales and fibrotic extents of highest risk would be expected to change, owing to the differences in source/sink balance (Xie et al., 2010; Sachetto Oliveira et al., 2018b).

In summary, a new pipeline was implemented to generate two datasets for pro-arrhythmic and non-arrhythmic fibrotic patterns. The pipeline involves simulations of re-entries within fibrotic substrates augmented by stimulations coming from multiple sites and the automatic identification of unidirectional blocks via the RVI method. These datasets were used to train and test a neural network that was able to successfully classify (accuracy up to 91%) micropatterns by only taking as input their structures. Therefore, our results suggest that machine learning provides tools that can be further exploited to address fundamental questions such as the relationship between anatomical heterogeneity and re-entry risk, and over what spatial scale this heterogeneity should be considered.
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The electrical activity in the heart varies significantly between men and women and results in a sex-specific response to drugs. Recent evidence suggests that women are more than twice as likely as men to develop drug-induced arrhythmia with potentially fatal consequences. Yet, the sex-specific differences in drug-induced arrhythmogenesis remain poorly understood. Here we integrate multiscale modeling and machine learning to gain mechanistic insight into the sex-specific origin of drug-induced cardiac arrhythmia at differing drug concentrations. To quantify critical drug concentrations in male and female hearts, we identify the most important ion channels that trigger male and female arrhythmogenesis, and create and train a sex-specific multi-fidelity arrhythmogenic risk classifier. Our study reveals that sex differences in ion channel activity, tissue conductivity, and heart dimensions trigger longer QT-intervals in women than in men. We quantify the critical drug concentration for dofetilide, a high risk drug, to be seven times lower for women than for men. Our results emphasize the importance of including sex as an independent biological variable in risk assessment during drug development. Acknowledging and understanding sex differences in drug safety evaluation is critical when developing novel therapeutic treatments on a personalized basis. The general trends of this study have significant implications on the development of safe and efficacious new drugs and the prescription of existing drugs in combination with other drugs.
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1. INTRODUCTION

It is well-established that there are important discrepancies between male and female cardiac electrophysiology. Electrocardiogram differences between men and women include a faster resting heart rate in women, a longer corrected QT interval, and a lower QT dispersion (James et al., 2007; Yarnoz and Curtis, 2008). Despite an increasing recognition, essential knowledge gaps remain in the mechanistic understanding of these sex differences, warranting further investigation (Asatryan et al., 2021). Here, to focus, we demonstrate the effect that sex differences play for one particular example, drug-induced arrhythmogenicity.

Drugs often have undesired side effects. In the heart, they can induce global changes in the electrical activity of the tissue by interacting with specific ionic channels in cardiac cells. Doing so, some compounds can induce arrhythmia known to precipitate into ventricular fibrillation and sudden cardiac death. These arrhythmia are typically associated with drugs that prolong the repolarization stage of the cardiomyocyte action potential (Po et al., 1999). Consequently, before any drug can enter the market, its pro-arrhythmic risk needs to be assessed. Currently, the gold standard for cardiac safety assessment focuses on the experimental measurement of the pharmacological block of the rapid delayed potassium rectifier current in single cell experiments (Redfern et al., 2003) and electrocardiographic analyses looking for QT prolongation in animal models or humans (Gintant et al., 2016). These biomarkers show good sensitivity but low specificity, potentially preventing useful drugs to reach the market (Sager, 2008). Moreover, these risk assessment procedures are slow and expensive to conduct. A recent initiative of regulatory agencies, drug design companies, and cardiovascular researchers suggested to address these limitations by new mechanistic assays that predict the pro-arrhythmic risk of new drugs using computational modeling (Sager et al., 2014). In response to this initiative, a collection of novel mechanistic computational paradigms for drug-induced arrhythmogenesis prediction have been proposed ranging in complexity from ventricular myocyte models (Mirams et al., 2011; Passini et al., 2017) to transmural cable simulations (Moreno et al., 2013; Romero et al., 2018), and from planar and cubic tissue slabs (Kubo et al., 2017; Yang et al., 2020; Margara et al., 2021) to ultra-high resolution, multiscale heart models (Wilhelms et al., 2012; Okada et al., 2015; Sahli Costabal et al., 2018a; Hwang et al., 2019). Over the past few years, these physics-based modeling approaches have been increasingly combined with machine learning approaches to further improve mechanistic arrhythmogenic risk classification (Lancaster and Sobie, 2016; Polak et al., 2018; Sahli Costabal et al., 2019a,c).

Even though drug-induced arrhythmogenicity has been reported to occur twice as often in women than in men (Makkar, 1993; Coker, 2008), the role that sex differences play in arrhythmogenic risk classification remains largely understudied. Current computational mechanistic risk predictors use mathematical models of cardiac cells calibrated on in vitro studies, that often tend to be male-dominated (Ramirez et al., 2017). As such, sex bias can be expected to propagate through these models into the actual risk stratification. Consequently, there is a strong need to study the multiscale sex differences in cardiac electrophysiology and how these discrepancies translate into sex-specific arrhythmogenic risk stratification in more detail.

Figure 1 provides a schematic overview of our study. Here, we build independent male and female low-fidelity cell-scale and high-fidelity multiscale cardiac electrophysiology exposure-response simulators incorporating experimentally quantified sex differences at the subcellular, cellular, tissue and organ level. Using logistic regression, we studied the pro- and anti-arrhythmic effects that drug-induced ion channel blocking has on the male and female heart individually. Combining high-performance computing and multiscale modeling with machine learning techniques, including multi-fidelity Gaussian process classification and active learning, we developed two sex-specific drug-induced multi-fidelity arrhythmogenic risk classifiers. Finally, both classifiers were used to quantify the male and female arrhythmogenic susceptibility of a high, intermediate, and low risk drug.


[image: Figure 1]
FIGURE 1. Sex differences in drug-induced arrhythmogenesis: a combined multiscale modeling and machine learning approach. We develop individual male and female low-fidelity cell and high-fidelity multiscale exposure-response simulators. These simulators take into account differences in subcellular ion channel activity between men and women for the low-fidelity exposure-response proxy. The high-fidelity model also takes into account sex differences tissue-level conductivity and organ-scale geometry. We perform an arrhythmic sensitivity study of the male and female heart to drug-specific ion channel blocking and susbsequently combine low-fidelity cell-scale and high-fidelity multiscale modeling to delineate arrhythmogenic risk classification boundaries for men and women.




2. MATERIALS AND METHODS


2.1. Multiscale Modeling of Cardiac Electrophysiology

We model the electrophysiological behavior of cardiac tissue using the monodomain model (Clayton et al., 2011; Sahli Costabal et al., 2018a). This model's main variable is the transmembrane potential ϕ, the difference between the intra- and extra-cellular potentials. The transmembrane potential is governed by a reaction-diffusion equation (Krishnamoorthi et al., 2014),

[image: image]

Here, we introduce the source term fϕ which represents the ionic currents across the cell membrane and the conductivity tensor D that accounts for a fast signal propagation of D|| parallel to the cardiac muscle fiber direction f and a slow signal propagation D⊥ perpendicular to it (Clerc, 1976; Plank et al., 2008; Goktepe and Kuhl, 2009),

[image: image]

In general, the ionic currents fϕ are functions of the transmembrane potential ϕ and a set of state variables q(ϕ) (Wong et al., 2013; Lee et al., 2016), fϕ(ϕ, q(ϕ);t) where the state variables themselves are governed by ordinary differential equations, [image: image] The number of currents and state variables determines the complexity of the cell model and varies for different cell types. For human Purkinje fiber cells, we adopt the Stewart model (Stewart et al., 2009) which tracks 14 ionic currents using 20 state variables

[image: image]

To represent electrophyiological behavior of human ventricular cardiomyocytes, we adopt the O'Hara-Rudy model (O'Hara et al., 2011) with a minor modification (Priest et al., 2016) of the fast sodium current INa (ten Tusscher et al., 2004). Studies have shown that this INa substitution leads to a physiological conduction velocity restitution behavior, with a minor impact on the action potential behavior (Elshrif and Cherry, 2014). The resulting model tracks 15 ionic currents defined through a total of 39 state variables,

[image: image]

To incorporate drug effects into our multiscale models, we selectively block the relevant ionic currents in the Purkinje and cardiomyocyte cell models (Sahli Costabal et al., 2018b). These blocks are informed by experimental patch-clamp experiments that study the fractional blockage β of different ion channels at varying drug concentrations (McMillan et al., 2017). We implement these fractional blockings using fitted Hill-type equations of the form,

[image: image]

which are characterized by the exponent h and the concentration [image: image] required to achieve a 50% current block. To apply a specific drug, we select a desired concentration C, calculated the fractional blockage βion for each considered ion channel, and scale the corresponding ion current channels by the fractional blockage [1 − β],

[image: image]
 

2.2. Sex-Specific Cardiac Electrophysiology
 
2.2.1. Sex-Specific Subcellular Ion Channel Activity

We deduced sex-based differences in ventricular ion channel activity from the expression level of key cardiac ion channel subunit proteins, quantified using western blotting, and genes, assessed through polymerase chain reaction analysis, in endo- and epicardial ventricular tissue from non-diseased explanted male and female human hearts (Gaborit et al., 2010). More specifically, we use the protein expression of NaV1.5 to scale the late sodium current INaL ion channel activities, the mRNA expression of ATP2B4 (Ca2+ ATPase 4) to scale the sarcolemmal calcium pump current IpCa, the protein expression of hERG to scale the rapid delayed rectifier potassium current IKr, the protein expression of MinK to scale the slow delayed rectifier potassium current IKs, the mRNA expression of KCNJ4 (Kir2.3) to scale the inward rectifier potassium current IK1, the mRNA expression of SLC8A1 (NCX1) to scale the sodium calcium exchange currents INaCa,i and INaCa,ss, the mRNA expression of ATP1A1 and ATP1A3 (Na+/K+ ATPase α1 and α3) expression to scale the sodium potassium pump current INaK, and the mRNA expression of KCNA5 (KV1.5) expression to scale the background potassium current IKb. Moreover, we use the the mRNA expression of the RYR2 gene to scale the activity of the Ca2+ release channels, the mRNA expression of ATP2A2/SERCA2 (Ca2+ ATPase 2) to scale the activity of the Ca2+ uptake channels, and the mRNA expression of CALM3 expression to scale the Ca2+ buffering capacity through the calmodulin 3 concentration [CMDN]. Table A1 provides an in-depth overview of the sex-specific and transmurally varying mRNA/protein expression data. To deduce ion channel activities from the ion channel subunit expression, we followed transcriptional and functional scaling rules (O'Hara et al., 2011; Yang and Clancy, 2012).

The baseline endocardial O'Hara-Rudy model was developed, calibrated and thoroughly validated on experimental data collected from non-diseased ventricular tissue of 140 human donors, of which 78 were male. Therefore, we consider this baseline model to be a linear interpolated, 56% male and 44% female representation of the sex-specific representative endocardial cell models. By applying this linear interpolation rule to the aforementioned sex-specific mRNA and protein expression in the endocardial tissue, we computed the sex-specific ion channel activity ratio for the endocardial cardiomyocytes disclosed in Table 1. These ratios are relative scalings to the ion channel conductivities of the baseline endocardial model. Based on the transmural electrophysiological heterogeneity of the healthy human myocardial wall (Drouin et al., 1995; Glukhov et al., 2010; Okada et al., 2011), we parameterize three different transmural cell types: endocardial, midwall, and epicardial cells (O'Hara et al., 2011). To prescribe the epicardial ion channel activity, we use the reported relative epi/endo mRNA and protein expression data (Gaborit et al., 2010), following the expression/current activity correlations discussed before. To define the midwall ion channel activity, we implement relative mid/endo and epi/mid ratios (O'Hara et al., 2011). These ratios were deduced from reported epicardial vs. midwall protein expression data (Szabó et al., 2005) and midwall vs. endocardial mRNA expression data (Soltysinska et al., 2009). Finally, the midwall and epicardial activity of the transient outward potassium channel Ito was scaled based on functional patch-clamp data collected on myocytes isolated from the human non-failing left ventricle (Näbauer et al., 1996). The complete set of sex-specific and transmurally varying ion channel activity ratios relative to the baseline endocardial model can be found in Table 1. Given the current lack of an extensive experimental human dataset on genetic, transcription, or functional sex differences in ion channel activity for Purkinje fibers, we do not introduce any sex-specific ion channel scaling in the baseline Purkinje cell model by Stewart et al. (2009).


Table 1. Sex-specific subcellular ion channel activity.

[image: Table 1]

The baseline Purkinje and sex-specific endo-, mid- and epicardial temporal transmembrane potential evolutions is computed by solving Equations (3) and (4), and their intrinsic systems of ordinary differential equations governing channel-specific gating variables in Myokit (Clerx et al., 2016). To achieve a steady state, we prepace each cell type for 1,000 cycles at a frequency of 1 Hz and then simulate five additional beats. To study the cellular restitution behavior, we compare the action potential duration at 90% repolarization after steady state S1 pacing at cycle length 1,000 ms, followed by a single S2 extrasystolic stimulus delivered at various diastolic intervals ranging between 0 and 1,000 ms.



2.2.2. Sex-Specific Tissue Conductivity

We introduce tissue-level differences between both sexes by rescaling the average anisotropic conductivities parallel, D||, and perpendicular, D⊥, to the myofiber directions f. These scalings are informed by the sex-specific mRNA expression of connexin43, the primary ventricular gap-junction subunit (Dhillon et al., 2013). Assuming D|| = 0.090 mm2/ms and D⊥ = 0.012 mm2/ms (Niederer et al., 2011) represents the anisotropic conductivity in the average, 50% male / 50% female, human heart, the 50% higher connexin43 expression in male vs. female cardiomyocytes (Gaborit et al., 2010) leads to D|| = 0.108 mm2/ms and D⊥ = 0.014 mm2/ms, and D|| = 0.072 mm2/ms and D⊥ = 0.010 mm2/ms, for male and female myocardial tissue, respectively.



2.2.3. Sex-Specific Organ Geometry

To model the multiscale cardiac electrophysiological behavior across the male and female heart, respectively, we discretize the governing Equations (1)–(4) in space using finite elements (Goktepe and Kuhl, 2009) and in time using finite differences (Sahli Costabal et al., 2018a). Temporally, we utilize an explicit time integration scheme for both the reaction-diffusion equation (Equation 1) and the Purkinje and cardiomyocyte (Equations 3 and 4) ionic models, with a fixed time step size Δt= 0.005 ms. Spatially, we use a full three-dimensional representation of the human ventricles, created from magnetic resonance images of a healthy, 21-year old, 50th percentile U.S. male (Baillargeon et al., 2014; Zygote Media Group Inc., 2014; Peirlinck et al., 2021). We infer the female geometry as a 90% isometric scaling of the male geometry, following the reported average female to male adult left ventricular mass ratio of 72% (de Simone et al., 1995). Both geometries are subdivided using linear hexagonal finite elements with a constant edge length of 0.3 and 0.27 mm for the male and female model, respectively. This results in 6,878,459 regular linear hexagonal finite elements, with a total of 7,519,918 nodes. By solving a series of Laplace problems with different essential boundary conditions on this solid mesh (Perotti et al., 2015), we incorporate the transmural heterogeneity of the ventricular wall as showcased in Figure 2. This 20% endocardial, 30% midwall, 50% epicardial tissue arrangement ensures positive T-waves to simulate a healthy baseline electrocardiogram (Okada et al., 2011). In a similar fashion, we assign local myofiber orientations f to each and every element, accounting for the heart's intrinsic myofiber architecture (Lombaert et al., 2012; Peirlinck et al., 2018). We generate the Purkinje fiber network by growing a fractal tree on the endocardial surface of the heart (Sahli Costabal et al., 2015), and discretize it using 39,772 linear cable elements and 39,842 nodes. The terminals of this network are connected to the ventricular myocardium using 3545 resistor elements with a resistance of 1.78Ωm (Niederer et al., 2011). We excite the Purkinje network at the atrioventricular node every second, and study the excitation profile of the heart over a period of 5,000 ms. To solve the resulting system of equations, we use the finite element software package Abaqus (Dassault Systèmes Simulia Corp., 2020), typically taking 24 h using 240 CPUs (Towns et al., 2014). In this verified implementation (Niederer et al., 2011; Sahli Costabal et al., 2019c), we exploit the structural similarities between the continuum equations and a classical heat transfer problem with a non-linear heat source (Sahli Costabal et al., 2018a).


[image: Figure 2]
FIGURE 2. Sex-specific multiscale exposure-response simulators. Male and female human heart model created from high resolution magnetic resonance images of a healthy male adult and isogeometrically scaled according to the average adult male/female ventricular mass ratio. The ventricular walls are discretized with 6,878,459 regular linear hexagonal finite elements. The Purkinje fiber networks are discretized with 39,772 linear cable elements and are connected to the ventricles at their terminals through 3,545 resistor elements. Endocardial, midwall, and epicardial cells are marked in median, light and dark green and purple, respectively; Purkinje cells are shown in black. Long-axis transmural slices are shown in the anterior view representations. Short-axis transmural slices are shown in the enlarged posterior views.


Finally, we post-process the spatiotemporal excitation profiles to calculate pseudo-electrocardiograms ϕe(xe) at a virtual precordial electrode location xe two centimeters away from the left ventricular wall (Kotikanyadanam et al., 2010; Sahli Costabal et al., 2018b). In summary, at every point x of the heart, we project the gradient of the transmembrane potential ∇ϕ onto the direction vector ∇(1/||r||) with r = xe − x, and integrate this projection across the entire cardiac domain Ω: [image: image]. We manually labeled the electrophysiological behavior as non-arrhythmogenic or arrhythmogenic, based on the absence or presence of non-regular chaotic twisting QRS complexes during the last five simulated beats. These electrocardiographic hallmarks of arrhythmogenesis are caused by regional early afterdepolarizations overtaking the regular depolarization wave initiated by the Purkinje network.




2.3. Data-Driven Arrhythmogenic Risk Classification

Using the male and female multiscale cardiac electrophysiology models, we develop two sex-specific arrhythmogenic risk classifiers based on drug- and dose-specific ion channel blockage. Given the high computational cost of evaluating arrhythmogenesis for a single full organ-scale and drug-induced ion-channel blockage combination, we combine multiple machine learning techniques to create and train sex-specific arrhythmogenic drug risk classifiers. We first narrow the drug effect parameter space by studying the cellular drug sensitivity to various ion channel blockings. For this sensitivity analysis, we use multivariable logistic regression techniques, as they have been proven to be computationally more efficient than one-at-a-time parameter sensitivity analyses (Lee et al., 2013) and highly suitable for studying processes with binary outcomes (Morotti and Grandi, 2017). Next, we apply the developed sex-specific high-fidelity multiscale exposure-response simulators to quantify the risk of drug-induced arrhythmogenesis within the identified critical drug-induced ion channel blocking parameter space. To reduce the computational cost of exploring this parameter space, we develop and train multi-fidelity risk classifiers that have been shown to outperform single high-fidelity risk classifiers (Sahli Costabal et al., 2019b). More specifically, we combine low-fidelity mid-wall cardiomyocyte simulations and high-fidelity heart simulations to train a Gaussian process classifier that characterizes the probability of arrhythmogenicity based on the two most important ion channel blockage features for arrhythmogenesis. Using active learning, we maximize the information gained by each possible low-and high-fidelity sample we evaluate, keeping the computational costs of training our arrhythmogenic risk classifiers as low as possible.


2.3.1. Sensitivity to Drug-Induced Ion Channel Blockage

To explore the male and female arrhythmogenic sensitivity to drug-induced ion channel blocking in a computationally tractable way, we focus on seven specific ion channel currents IKr, INa, INaL, ICaL, IKs, Ito, and IK1 identified to be important in both depolarization and repolarization of the cardiac action potential (Crumb et al., 2016; Fermini et al., 2016). As it has been shown that early afterdepolarizations and repolarization abnormalities are a precursor of arrhythmia at the cellular level (Qu et al., 2013), we identify which channels have the most significant impact on de- and repolarization abnormality development (Sahli Costabal et al., 2020). We systematically create 10,000 cellular drug-blocking samples by performing Latin hypercube sampling on a seven-dimensional blockage parameter space [0.0, 0.95]7, resulting in a sample set [image: image]. For each sample, we pre-pace the male and female cell model for 1,000 cycles at a frequency of 1Hz, and subsequently simulate the corresponding ion channel blockage effect on the cardiomyocyte action potential. We do this for the male and female midwall cells, as previous work has shown that arrhythmogenic risk assessment is particularly sensitive to midwall cell distributions (Antzelevitch and Sicouri, 1994; Sahli Costabal et al., 2018b). For each sample, we define de- or repolarization abnormalities as the occurrence of a change in potential greater than 0.1 mV/ms, or the transmembrane potential not dropping below −40 mV, between the 50 and 1,000 ms time marks of each beat (Sahli Costabal et al., 2019c). Subsequently, we perform a male and female logistic regression trained on the blockage samples and the post-processed absence/presence of abnormalities. By extracting the marginal effects (Norton et al., 2019), we quantify the arrhythmogenic risk of each channel blockade and select the two most important opposing anti-arrhythmic and pro-arrhythmic ion channel blocking feature β− and β+ for arrhythmogenic risk classification.



2.3.2. Gaussian Process Risk Classification
 
Single-Fidelity Gaussian Process Classifier

We use physics-based electrophysiological modeling (section 2.1) to generate a dataset comprised of cell- or whole heart input/output pairs

[image: image]

Here, the inputs xi contain the two most important drug-induced ion channel blocking arrhythmogenicity features brought forward in section 2.3.1. We set the most anti-arrhythmic β− and pro-arrhythmic β+ ion channel blocking feature to vary between 0 and 95%. As such, [image: image] for N training samples. In this arrhythmogenic risk assessment, the outputs yi can only take on two binary values: zero and one, representing the absence or presence of de- and repolarization abnormalities for cell level simulations and arrhythmogenesis for whole heart simulations. As such, y ∈ {0, 1}N.

To set up the Gaussian process classifier, we put forward a latent function f(x) (Rasmussen, 2004) and standardize our dataset [image: image] so we can work with a zero-mean Gaussian process (GP) prior of the form

[image: image]

Here, k(·, ·;θ) is a covariance kernel function depending on a set of parameters θ, which we will determine using Bayesian inference, ex infra. By passing the Gaussian process output f through a logistic sigmoid warping function σ, we constrain the output to [0, 1]. These outputs entail meaningful class probabilities.

To set up our Bayesian inference framework, we define the conditional class probability as

[image: image]

and assume the class labels are independent according to a Bernoulli likelihood with probability σ(y) (Nickisch and Rasmussen, 2008). Following our prior work (Sahli Costabal et al., 2019b), we choose an automatic-relevance determination squared exponential kernel,

[image: image]

parameterized by θ: = {η, ℓ1, …, ℓM}. We set η ~ HalfNormal(σ = 5) and ℓm ~ Gamma(α = 2, β = 2) for m = 1, …, M length scales as weakly informative prior distributions. Lacking an analytic solution for the posterior distribution, we resort to approximate-inference techniques to calibrate this model on the available generated data. Here, we use the NO-U-Turn sampling algorithm (Hoffman and Gelman, 2014), which is a self-tuning Markov Chain variant of Hamiltonian Monte Carlo, as implemented in PyMC3 (Salvatier et al., 2016).

To utilize the Gaussian process classifier for arrhythmogenic risk stratification, we use the resulting posterior θ distribution to make class predictions y* at new locations x*. We first compute the predictive random variable f*(x*) using the covariance matrix K ∈ ℝN×N, which we obtain from evaluating the kernel function at the location of the input training data. Next, we sample f* from the estimated posterior distributions. Finally, we run these f* evaluations through the logistic sigmoid function σ to obtain a distribution of class probabilities y* (Sahli Costabal et al., 2019b).



Multi-Fidelity Gaussian Process Classifier

We employ physics-based electrophysiological modeling (section 2.1) to generate a dataset

[image: image]

comprised of NL low-fidelity midwall cell input/output pairs and NH high-fidelity whole heart input/output pairs. Both low- and high-fidelity input sets explore the two-dimensional [0.0, 0.95]2 ion channel blockage parameter space identified in section 2.3.1. Both low-and high-fidelity outputs comprise binary variables yLi, yHi = {0, 1}.

We model the cross-correlation structure between the low- and high-fidelity level using an autoregressive model for the latent function fH (Kennedy, 2000),

[image: image]

where ρ is a scalar parameter that needs to be inferred, capturing linear correlations between the high- and low-fidelity levels. The function δ aims to capture the bias in the predictions of the low-fidelity level. To complete the Gaussian model framework, we assume independent Gaussian priors for
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where k(·, ·;θH) and k(·, ·;θL) are automatic-relevance determination squared exponential kernels conform Equation (10), resulting in parameters θH: = (ηH, ℓH1, …, ℓHM), and θL: = (ηL, ℓL1, …, ℓLM). To infer these parameters and the aforementioned scalar factor ρ, we set ηH, ηL ~ HalfNormal (σ = 5), ℓHm, ℓLm ~ Gamma(α = 2, β = 2) with m = 1, …, M length scales and ρ ~ Normal(μ = 0, σ = 10) as weakly informative prior distributions. We perform Bayesian inference following the same approach as for the single-fidelity Gaussian process classifier before.




2.3.3. Active Learning

Given the high computational cost of our multiscale cardiac electrophysiology simulations, we apply an active learning strategy to maximally enhance the accuracy of our single- and multi-fidelity arrhythmogenic risk classifiers with a minimal amount of additional sample evaluations in the studied parameter space. More specifically, we exploit the posterior uncertainty estimates of our Bayesian models to select the next sampling point expected to increase the accuracy of our classifier the most. We pick the next sampling point based on the following minimization problem:
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where [image: image] and [image: image] are the Monte Carlo estimates of the mean and variance of f(x). Here, we apply Latin hypercube sampling to generate a set of 1,000 candidate locations Xcand to sample. Next, we compute the electrophysiological response and class label ynew for the selected sample xnew, and add this input/output pair to the dataset. We subsequently re-train the classifier for this new dataset and repeat this process until we reach a well-defined classification border or computational resources are depleted (Sahli Costabal et al., 2019b).



2.3.4. Multi-, Low-, and High-Fidelity Arrhythmogenic Risk Classification

We start by training a male and female single-fidelity classifier based on low-fidelity mid-wall cell simulations. We explore the input space with 25 Latin hypercube samples and evaluate whether or not the resulting ion channel blockings lead to de- or repolarization abnormalities as defined in section 2.2.1. We train a single-fidelity classifier based on this dataset [image: image] (Equation 7) and further explore and exploit the resulting low-fidelity arrhythmogenesis classification boundaries using 25 additional active learning samples.

Next, we combine the 50 low-fidelity input/output pairs with 10 Latin hypercube drug blocking sample evaluations of the full heart models as described in section 2.2.3. We use this combined low- and high-fidelity dataset [image: image] (Equation 11) to train a multi-fidelity arrhythmogenic risk classifier. Subsequently, we improve the accuracy of the classification boundary using 15 additional high-fidelity active learning sample evaluations.




2.4. Drug Risk Stratification

Using our multi-fidelity arrhythmogenicity classification boundary, we estimate the arrhythmogenic risk of three drugs, a high, intermediate and low risk drug (Li et al., 2018), by computing the critical drug concentration at which arrhythmia will start developing. We select three drugs for which the concentration-block response curve is well-described (McMillan et al., 2017) for the two cardiac currents that have the most significant impact on arrhythmogenic risk prediction (section 2.3.1). The critical drug concentration is found at the intersection of the multi-fidelity arrhythmogenesis classification boundary and the two-dimensional concentration-block trajectory described by Equation (5). If the drug's concentration-block trajectory does not cross the risk boundary, that drug can be considered safe for the studied sex.





3. RESULTS


3.1. Sex-Specific Cardiac Electrophysiology
 
3.1.1. Cell Level Differences

Figure 3 highlights the sex differences in electrophysiological behavior for endocardial, midwall and epicardial cells based on the experimentally quantified ion channel activity discussed in section 2.2.1. Here, the green and purple lines represent the male and female action potential evolutions, respectively. The black line in the endocardial cell subplot represents the action potential profile for the baseline O'Hara-Rudy model for the endocardial cell, which results from the underlying 56/44% interpolation of the male and female ion channel activities disclosed in Table 1. Relative to male cells, the female sex-specific baseline action potential durations are substantially larger for all transmural cell types. More specifically, the male and female endocardial action potential duration at 90% repolarization at 1 Hz pacing amounts to 233 and 314 ms, respectively. Similarly, it takes 309 and 379 ms for male and female midwall cells, and 221 and 296 ms for male and female epicardial cells to repolarize, respectively. The male and female endocardial action potential duration restitution amounted to 208 and 270 ms at a diastolic interval of 100 ms, to 217 and 284 ms at a diastolic interval of 200 ms, and 229 and 309 ms at a diastolic interval of 500 ms. Similarly, male and female action potential duration restitution for the midwall cell lines amounted to 262 and 348 ms, 275 and 358 ms, and 301 and 371 ms for diastolic intervals 100, 200, and 500 ms, respectively. For the epicardial cell lines, we computed male and female action potential duration restitutions of 204 and 272 ms, 215 and 280 ms, and 233 and 288 ms for diastolic intervals 100, 200, and 500 ms, respectively.


[image: Figure 3]
FIGURE 3. Sex differences in transmural ventricular cardiomyocyte behavior. Sex-specific differences in endocardial, midwall and epicardial ventricular action potentials based on the experimentally quantified differences in ion channel activity. The green and purple lines represent the male and female steady state action potentials (Top) and action potential duration restitution curves (Bottom) for each transmural cell line. For the endocardial cell, the baseline steady-state action potential evolution and restitution curve of the calibrated and validated O'Hara-Rudy model for the 56% male / 44% female mixed-population is shown in black.




3.1.2. Organ Level Differences

Figure 4 showcases the baseline spatiotemporal excitation profile for the male and female heart. The ten snapshots illustrate the combined effect that sex-differences in subcellular ion channel activity, tissue-level conductivity and organ-scale geometry have on the spatiotemporal transmembrane potential evolution, without the effect of any drugs. In both the male and female heart, the Purkinje network drives a sharp depolarization front propagating rapidly from apex to base and across the heart. At 100 ms, both the male and female ventricles are fully excited. In the male heart, the repolarization phase, during which the heart returns to its resting state, is finished between 300 and 400 ms. For the female heart, this repolarization takes longer, finishing between 400 and 500 ms. The exact duration between the beginning of the depolarization and the end of the repolarization is showcased in the electrocardiogram recordings computed for the male and female baseline heart model in Figure 5. The QRS complex lasts 73 and 69 ms for the male and female heart, respectively. This difference in QRS duration was mainly driven by the smaller female vs. male heart size and reduced conductivity. In parallel, the prolongation of the T wave with respect to the end of the QRS complex results mainly from the sex-specific differences in ion channel activity at the subcellular level. The multiscale combined effect of these sex differences amounts to QT intervals of 348 and 411 ms for the male and female baseline heart, respectively.
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FIGURE 4. Baseline spatiotemporal excitation profiles for the male and female heart. Evolution of the transmembrane potential for the male and female heart without drugs. Snapshots are taken from the last simulated beat. During depolarization, the Purkinje fibers drive the sharp depolarization front from apex to base. During repolarization, both ventricles gradually return to their resting state. The combined sex-differences in ion channel activity, tissue conductivity and organ-scale geometry lead to a slower depolarization in the female heart than the male heart.



[image: Figure 5]
FIGURE 5. Baseline electrocardiogram recordings for the male and female heart. Electrocardiogram recordings for the male and female heart models without drugs. Both male and female electocardiograms display regular periodic activation patterns, as shown in the upper right inlay plot. The repolarization delay between the male and female heart is shown in more detail in the main plot, focusing on the first 500 ms of the last simulated beat. The resulting male and female QT interval amounted to 348 and 411 ms, respectively, as shown in the lower right inlay plot.





3.2. Sex-Specific Drug-Response Characteristics

Figure 6 represents the male and female anti- or pro-arrhythmic sensitivity to drug-induced ion channel blocking. As can be seen in the upper two plots, the female midwall cells are more sensitive to drug-induced ion channel blocking than male midwall cells. For the same set of ion channel blocking samples [image: image], we recorded 760 and 4,450 abnormalities for the male and female midwall cell, respectively.
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FIGURE 6. Sex-specific sensitivity analysis drug-induced ion channel blocking on de- and repolarization abnormalities. (Upper) The effect of drug-induced ion channel blocking on the male (left) and female (right) midwall transmembrane potential evolution. The black lines represent the baseline male and female action potential, without any ion channel blocking. The green and purple lines represent the transmembrane potential evolution for 5,000 distinct IKr, INa, INaL, ICaL, IKs, Ito, and IK1 ion channel blocking combinations. (Lower) Normalized marginal effects of ion channel blocking on early afterdepolarizations development in male (left) and female (right) midwall cells. Negative normalized marginal effects highlight ion channel blocking leading to anti-arrhythmic effects, whilst positive marginal effects highlight the ion channels for which drug-induced blocking can have important pro-arrhythmic consequences.


The lower panel plots in Figure 6 depict the normalized marginal effects of drug-induced ion channel blocking on de- and repolarization abnormalities. For both male and female midwall cardiomyocytes, IKr blocking has a strong pro-arrhythmic effect, whilst ICaL blocking has the largest anti-arrhythmic strength. The male and female normalized marginal effect of L-type Ca2+ channel blocking amounted to −0.272 and −0.190, respectively. As such, we selected drug-induced blocking of the rapid delayed rectifier potassium current, βKr, and the L-type Ca2+ current channel, βCaL as the two main pro-arrhythmic and anti-arrhythmic input features β+ and β− for our male and female arrhythmogenic risk classifier.



3.3. Sex-Specific Risk Classifiers

In training our multi-fidelity arrhythmogenic risk classifiers, we first trained a single fidelity de- and repolarization classifier for the male and female midwall cell, respectively. Figures A1, A2 summarize the de- and repolarization abnormality classification boundary delineation in the studied {βCaL, βKr} parameter space. The upper panel plots showcase the initial exploration phase to train these Gaussian process classifiers. The lower panel plots depict the subsequent exploration and exploitation phase through active learning.

The subsequent training and development of the male multi-fidelity arrhythmogenic risk classifier is showcased in Figure 7. The upper panel plots showcase the evaluation of 10 high-fidelity evaluations of {βCaL, βKr} on male drug-induced arrhythmogenesis. Left, the virtual electrocardiograms showcase the effect that various drug-induced ion channel blocking combinations have on the male heart. Here, only one exploratory sample (βCaL = 6.7%, βKr = 92.6%) resulted in reentrant arrhythmia in the male heart. The other {βCaL, βKr} combinations affected the QT interval, but did not lead to arrhythmogenesis. In the upper middle plot, the NL = 50 low-fidelity evaluations are shown together with the first 10 exploratory high fidelity arrhythmogenicity classifications. On the upper right, the initial multi-fidelity Gaussian process risk classifier for male arrhythmogenesis is shown. Concomitantly, Figure A3 showcases a male single-fidelity risk classifier, only taking into account these high-fidelity arrhythmia development evaluations. Comparing the upper panel plots of Figure 7 with Figure A3, it can be seen that taking the low-fidelity classification data into account in training a Gaussian process classifier significantly aids the precision of the high-fidelity classifier with a limited amount of samples. This is the power of multi-fidelity Gaussian process classification. In the lower panel plots of Figure 7, we showcase the multiscale evaluation of 15 additional high-fidelity active learning samples. These samples allowed us to capture the bias in the low-fidelity predictions (see Equation 13) showcased in more detail in Figure A5 (left). The virtual electrocardiogram recordings of a subset of these active learning samples, four arrhythmic and four non-arrhythmic samples, are shown in the lower left and mid plots, respectively. Finally, the fully explored and exploited male multi-fidelity arrhythmogenic risk classifier is shown in the lower-right plot, with NL = 50 and NH = 25 low- and high-fidelity risk evaluations, respectively.
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FIGURE 7. Male multi-fidelity drug-induced arrhythmogenic risk classifier. (Upper) Initial exploration of the male drug-induced arrhythmogenic risk parameter space. The first 10 internal Latin hypercube samples of the [image: image] parameter space were evaluated for male drug-induced arrhythmogenicity, as showcased in the upper middle plot with “dot” markers. Here, the low-fidelity samples from training the low-fidelity male midwall Gaussian process classifier are shown with “x” markers. Virtual electrocardiograms of one arrhythmic and three normal {βKr, βCaL} samples are shown in the upper left column plots. The resulting drug-induced arrhythmogenicity probabilities for the male heart is shown in the upper right plot. (Lower) Active learning exploration and exploitation of the male drug-induced arrhythmogenic risk classification boundary. The multi-fidelity Gaussian process classifier was trained further using 15 additional active learning high-evaluations of {βKr, βCaL} effects. On the lower left, four additional arrhythmic sample evaluations are shown. The lower panel middle plot showcases four additional sample evaluations showcasing normal heartbeats. The final male multi-fidelity drug-induced arrhythmogenicity classification boundary is shown in the lower right plot.


Figure 8 showcases the training of the female multi-fidelity arrhythmogenic risk classifier. In evaluating 10 high-fidelity Latin hypercube samples, five ion channel blocking samples drove the female heart to arrhythmogenesis, as shown in the upper middle plot. The electrocardiograms of two arrhythmic and two non-arrhythmic samples are shown in the upper left plots. The upper right plot depicts the initial female multi-fidelity drug-induced arrhythmogenicity classifier, taking into account all low-fidelity abnormality classification samples and the first 10 exploratory high-fidelity drug-induced arrhythmogenesis evaluations. Again, comparing this multi-fidelity classifier to the single-fidelity multiscale classifier shown in Figure A4 showcases the power of multi-fidelity Gaussian process risk classification. Through active learning, the low- to multi-fidelity bias (Equation 13) is inferred from 15 additional high-fidelity arrhythmogenic risk evaluations and depicted in Figure A5. Compared to the male heart, our results showcase a larger low- to multi-fidelity bias for the female heart. The lower left and mid plots in Figure 8 delineate the virtual electrocardiograms of four arrhythmogenic and four non-arrhythmogenic high-fidelity active learning sample evaluations, respectively. The final female multi-fidelity drug-induced arrhythmogenic risk classifier is shown in the lower-right plot.
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FIGURE 8. Female multi-fidelity drug-induced arrhythmogenic risk classifier. (Upper) Initial exploration of the female drug-induced arrhythmogenic risk parameter space. The first 10 internal Latin hypercube samples of the [image: image] parameter space were evaluated for female drug-induced arrhythmogenesis, as showcased in the upper middle plot with “dot” markers. Here, the low-fidelity samples from training the low-fidelity female midwall Gaussian process classifier are shown with “x” markers. Virtual electrocardiograms of two arrhythmic and two non-arrhythmic {βKr, βCaL} samples are shown in the upper left column plots. The resulting drug-induced arrhythmogenicity probabilities for the female heart is shown in the upper right plot. (Lower) Active learning exploration and exploitation of the female drug-induced arrhythmogenic risk classification boundary. The multi-fidelity Gaussian process classifier was trained further using 15 additional active learning high-evaluations of {βKr, βCaL} effects. On the lower left, four additional arrhythmic sample evaluations are shown. The lower middle plot showcases four additional non-arrhythmic sample evaluations. The final female multi-fidelity drug-induced arrhythmogenic risk classification boundary is shown in the lower right plot.


Both male and female multi-fidelity drug-induced arrhythmogenicity classifiers highlight the pro-arrhythmic effect of IKr ion channel blocking and the anti-arrhythmic effect of ICaL ion channel blocking. For the male heart, we predict drug-induced arrhythmogenicity at 81.7% IKr blocking when there is no ICaL blocking. At 25.0, 50.0, and 75.0% ICaL blocking, the critical βKr is 83.8, 88.6, and 94.6%, respectively. For 100% ICaL blocking, no arrhythmia develops, regardless of the amount of IKr blocking. For the female heart, our risk classifier predicts drug-induced arrhythmogenesis at 43.7% blocking without any ICaL blocking. For 25.0, 50.0, 75.0, and 100% ICaL blocking, arrhythmia develops at 48.1, 52.2, 56.5, and 59.9% IKr blocking, respectively. Overall, the female heart can be expected to be significantly more prone to drug-induced arrhythmogenicity.



3.4. Sex-Specific Drug Risk Stratification

Figure 9 demonstrates how we use our male and female multifidelity arrhythmogenicity classification boundary to perform a sex-specific drug risk assessment. More specifically, we calculate the drug-induced arrhythmogenic risk for dofetilide, a high risk drug, chlorpromazine, an intermediate risk drug, and diltiazem, a low risk drug. For each of these drugs, the drug-specific color-coded block-concentration characteristics map onto a trajectory in the βCaL/βKr plane. The intersection of this trajectory with our trained classification boundary defines the critical drug concentration at which arrhythmia can be expected to develop. For dofetilide, the block-concentration curve crosses the male and female arrhythmogenicity classification boundary at 26.0x and 3.5x the drug's effective free therapeutic plasma concentration, respectively. For chlorpromazine, the block-concentration curve does not cross the male classification boundary, signifying this drug can be considered safe for men. For women, the chlorpromazine block-concentration and classification boundary intersect at a critical concentration of 80.1x. For diltiazem, the block-concentration trajectory does not cross the male, nor the female arrhythmogenicity classification boundary, showcasing this drug to be safe for both sexes.
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FIGURE 9. Sex-specific drug-induced arrhythmogenic risk assessment. Male (Upper) and female (Lower) drug-induced arrhythmogenic risk assessment for dofetilide, a high risk drug, chlorpromazine, an intermediate risk drug, and diltiazem, a low risk drug. The color-coded line represents drug-specific concentration-dependent ICaL/IKr ion channel blocking trajectory, normalized with respect to the drug's effective free therapeutic plasma concentration. The gray diamond shaped marker highlights the critical concentration, annotated in the plot's bottom corner, at which the drug's block-concentration trajectory crosses the mean multi-fidelity arrhythmogenicity classification boundary.





4. DISCUSSION


4.1. Our Motivation for Multiscale Modeling

Until recently, the gold standard to assess pharmacological pro-arrhythmic risk consisted of assessing the potential of a drug (1) to cause pharmacological block of the rapid-delayed rectifier potassium IKr current encoded by the human ether-à-gogo related gene and (2) to prolong the QT interval in electrocardiographic animal and human studies. Although these biomarkers show good sensitivity, they are costly and have poor specificity, potentially blocking safe new drugs from ever reaching the market (Sager, 2008). In response to this problem, the Comprehensive in vitro Proarrhythmia initiative was launched (Sager et al., 2014). This incentive aimed to develop novel drug-induced arrhythmia biomarkers through a combined in vitro and in silico approach. in vitro, insights into the effect of drugs on multiple ion channels in the cardiomyocyte were collected. In silico, these insights were used to develop a mechanistic understanding how these ion channel blockings affect cardiac electrophysiology and function. Over the past decade, our in silico mechanistic understanding of the effects of drugs on cardiac electrophysiology has taken big leaps forward. As such, drug cardiotoxicity has been extensively studied in ventricular myocyte models (Mirams et al., 2011; Passini et al., 2017), transmural cable simulations (Moreno et al., 2013; Romero et al., 2018), planar and cubic tissue slabs (Kubo et al., 2017; Yang et al., 2020; Margara et al., 2021), and even ultra-high resolution, multiscale heart models (Wilhelms et al., 2012; Okada et al., 2015; Sahli Costabal et al., 2018a; Hwang et al., 2019). Within this paradigm, multiple groups have used such models to develop arrhythmogenic risk classifiers. These in silico augmented biomarkers showcase improved sensitivity and specificity with respect to the gold standard human ether-à-gogo and QT prolongation guidelines (Passini et al., 2017; Li et al., 2019). Currently, these in silico arrhythmogenicity biomarkers focus mainly on lower-fidelity isolated cardiac cell models (Lancaster and Sobie, 2016; Britton et al., 2017; Fogli Iseppe et al., 2021) or simplified cable simulations (Polak et al., 2018; Romero et al., 2018; Yang et al., 2020). The underlying motivation for such an approach is the role of cellular early afterdepolarizations and repolarization failures in providing a trigger for the development of arrhythmia. Nevertheless, arrhythmogenicity is not completely governed by, nor exclusively limited to, depolarization or repolarization abnormalities (Pugsley et al., 2015). Overall, the spatial dispersion of repolarization within the ventricular myocardium has been identified as the principal arrhythmogenic substrate (Antzelevitch and Burashnikov, 2011). A recent computational multiscale cardiac electrophysiology study showcased that the electrotonic coupling effect in tissue is an essential factor to predict drug effects on the living organ (Kubo et al., 2017). More specifically, computational 2D tissue slab results revealed no tachyarrhythmia in the presence of early afterdepolarizations at the cellular level, and arrhythmogenic induction in between the endocardial and midwall tissue layers, rather than in the midwall tissue itself. As such, it can be appreciated that accurate mechanistic understanding of arrhythmogenesis requires a high-fidelity multiscale modeling approach coupling the effect of drugs to subcellular ion channel activity, to cell-to-cell coupling at the tissue scale, and the tissue's three-dimensional heterogeneous and anisotropic organization at the organ scale.



4.2. Our Motivation for Multi-Fidelity Gaussian Process Classification

The current lack of multiscale computional modeling in the development of novel in silico augmented arrhythmogenic risk classifiers can be associated to their computational cost. Whereas a single cell action potential takes seconds to compute on a single CPU, a coupled cell-tissue-organ scale exposure-response simulator can easily take multiple hours to compute on a high performance computing cluster (Towns et al., 2014; Sahli Costabal et al., 2018a). Upon developing a risk classifier that evaluates the arrhythmogenic susceptibility to a whole series of drugs at multiple drug concentrations, the computational burden of performing a multiscale evaluation for each case becomes too high. To overcome this limitation, our study took a different approach. Instead of evaluating the case-by-case drug- and concentration-specific response, we trained a risk classifier based on the most important drug-induced ion channel blockings. We used a combined multiscale modeling and machine learning approach, entailing logistic regression, single- and multi-fidelity Gaussian process classification, and active learning techniques. First, we quantified the principal role that drug-affected ion channel currents play in developing arrhythmia. Using these insights, we established a two-dimensional drug blocking parameter space in which we evaluated the arrhythmogenic susceptibility of various drug-induced ion channel blocking combinations. Next, we relied on Gaussian process classification to delineate the arrhythmogenicity border within the considered parameter space. Given the high computational cost of each multiscale evaluation, we set up a multi-fidelity framework. Here, we used cellular midwall cell evaluations as a low-fidelity proxy for arrhythmogenic risk classification. This low-fidelity classifier was subsequently used to inform the underlying shape of the multi-fidelity classifier. Doing so, we minimize the amount of high-fidelity evaluations within the studied parameter space, and still end up with a precise multiscale arrhythmogenic risk classification boundary. This multi-fidelity ion channel blocking classifier subsequently allows us to post-process the intrinsic arrhythmogenic risk for each possible drug and concentration at no additional computational cost, without losing accuracy of the underlying multiscale arrhythmic and non-arrhythmic classification. We took advantage of the probabilistic nature of our Gaussian process classifiers to implement an effective data acquisition via active learning strategies. These strategies sought a balance between parameter space exploration and classification boundary exploitation. Consequently, our methodology allowed us to maximized classifier accuracy under a constrained computational budget and provided a significant advantage over other classifiers including logistic regression and support vector machines.



4.3. Our Motivation for Studying Sex Differences

About a century ago, sex differences in cardiac electrophysiology were reported for the first time (Bazett, 1920). Throughout the past two decades, these insights have matured into the recognition that female sex is an essential risk factor for multiple adverse cardiac events (Yarnoz and Curtis, 2008). Especially for drug-induced arrhythmogenesis, women turn out to be impacted twice as much as men (Makkar, 1993; James et al., 2007; Coker, 2008). Nevertheless, the effect of sex differences on cardiac electrophysiology and drug-induced arrhythmogenicity remain largely underexplored. With current sex-agnostic population-based models (Muszkiewicz et al., 2016; Li et al., 2019) being calibrated on in-vitro studies, which tend to be male-dominated (Ramirez et al., 2017), sex bias is expected to propagate through these novel in silico augmented arrhythmogenic risk classifiers. This study sought to take female sex into account as an independent biological variable by developing two sex-specific in silico augmented multiscale arrhythmogenic risk classifiers. To accomplish this, we first extended the multiscale envelope of studying sex-differences in cardiac electrophysiology beyond the cell or tissue level (Yang et al., 2017; Fogli Iseppe et al., 2021) up to the organ scale. Next, we used the developed framework to delineate male vs. female arrhythmogenic sensitivity to drugs.



4.4. Male vs. Female Cardiac Electrophysiology Across the Scales

Our male and female cell models were based on a high-throughput quantitative assessment of genome-scale sex differences in male and female human endo- and epicardial tissue (Gaborit et al., 2010). The resulting female endo- and epicardial action potential duration is significantly longer than the male action potential durations. Both the male and female endo- and epicardial action potential durations in this study are smaller than those computed in other studies (Yang and Clancy, 2012). Whereas other studies considered the baseline O'Hara-Rudy model and ion channel conductances to form the male baseline cell model (Yang and Clancy, 2012), our approach acknowledged the originally reported data population (O'Hara et al., 2011) and regarded the baseline model as a mixed 56% male / 44% female generalized model. Despite these differing views, our computed action potential durations fall well within the reported ranges based on experimental variability (Gaborit et al., 2010; Yang and Clancy, 2012). Similarly, the range of our sex-specific endo- and epicardial action potential durations are in agreement with reported populations of ventricular cell models (Britton et al., 2017). Our midwall cell action potential durations also fall within the same reported population variability. Averaged over the three cell types, our simulated female cells take 30% longer to repolarize than their male counterparts, which is consistent with the reported 29% relative female-to-male action potential differences for human ventricular myocytes (Verkerk et al., 2005). Focusing on the restitution behavior, our reported male and female action potential durations at 90% repolarization in Figure 3 agree favorably with previously reported experimental data for human tissue (Morgan et al., 1992; Drouin et al., 1995; Li et al., 1998; ten Tusscher et al., 2004; O'Hara et al., 2011).

At the organ scale, the combined effect of sex-specific cell-scale ion channel activity, tissue-scale conductivity and organ-scale geometry results in a shorter QRS and longer QT interval for women. Both results are in agreement with clinical population studies. Female vs. male QRS shortening of 5 ms, vs. 4 ms here, and a QT prolongation of 20 ms, vs. 63 ms here, have been reported in the literature (Vicente et al., 2014). The mismatch between a recorded 29% AP prolongation and a clinical QT prolongation of ‘only’ 2-6% has been hypothesized to be related to the mismatch between single isolated cell behavior and three-dimensional electrophysiologically coupled heterogeneous tissue (Verkerk et al., 2005). Indeed, our multiscale models showcase that a 30% action potential prolongation between both sexes at the cell scale only resulted in a male QT interval which was 15% shorter than the female QT interval at the organ scale. Nevertheless, this sex difference in QT interval duration is still on the higher end. This discrepancy seems to be related to our male multiscale heart model. The computed male QT interval of 348 ms corresponds to the 5th percentile of the clinically reported ranges for men (Asatryan et al., 2021), whereas our computed female QT interval of 411 ms aligns perfectly with the clinically reported range of 386–445 ms (Vicente et al., 2014). As our multiscale models demonstrated the dominant role that changes in ion channel activity have on the timing of the T wave end, there is a strong need for an in-depth experimental study on the sex-specific differences in functional ion channel activity of non-diseased human ventricular myocytes. Unfortunately, we are not aware of such data being currently available. Similarly, studies have shown that the inclusion of interventricular and apicobasal ion channel gradients at the tissue scale can further impact ECG morphology (Okada et al., 2011). Emerging electrocardiographic imaging techniques show great potential to study sex differences in healthy tissue-scale conductivity in more detail but remain challenging (Cluitmans et al., 2018; Andrews et al., 2019).



4.5. A Novel Multiscale Sex-Specific Arrhythmogenic Risk Classification

Given the high amount of ionic currents constituting the electrophysiological behavior of human ventricular cardiomyocytes (Equation 4), studying the drug-induced risk to develop arrhythmia requires the exploration of a large parameter space constituting different amounts of drug-induced blocking of each and every possible ion channel. To keep the parameter space computationally tractable, we focused on the seven most important ion channels for arrhythmogenic risk stratification, and used logistic regression to quantify their relative importance. The normalized marginal effects of drug-induced ion channel blocking on arrhythmic sensitivity in Figure 6 identify βKr and βCaL as the key pro-arrhythmic and anti-arrhythmic ion channel blockings, respectively. This conclusion is consistent with previous sex-agnostic risk analyses (Crumb et al., 2016), and is thus found to hold true across men and women. Interestingly, our analysis highlights a relatively decreased protective role of L-type Ca2+ channel blocking in women. The higher amount of recorded de- and repolarization abnormalities confirmed the higher susceptibility of female cardiomyocytes to drug-induced arrhythmogenicity. These results agree well with experimental exploratory studies on cell-scale sex differences in drug-induced arrhythmogenicity (Liu et al., 1999; Verkerk et al., 2005). The male and female multi-fidelity arrhythmogenic risk classifiers in Figures 7, 8, respectively quantify this differing risk with increased fidelity, as shown in Figure A5. Overall, we found the female heart to demonstrate arrhythmogenicity at lower drug-induced IKr and ICaL ion channel blocking than the male heart. Interestingly, our previous work on sex-agnostic arrhythmia risk assessment in the heart showcased an arrhythmogenic risk classification boundary in between the male and female arrhythmia risk classification boundary developed in this study (Sahli Costabal et al., 2019c). As such, we conclude that a generalized sex-agnostic arrhythmia risk classification underestimates and overestimates the cardiac toxicity of drugs for women and men, respectively. This directly puts women at higher risk for drug-induced arrhythmogenicity events, explaining the higher incidence reported in women (Makkar, 1993; James et al., 2007; Coker, 2008).

In applying our novel sex-specific arrhythmogenic risk classifier to a high, intermediate and low risk drug, we quantify this increased risk for women in more detail. For dofetilide, a class III anti-arrhythmic agent, both the male and female arrhythmia risk classifier confirm the general notion that dofetilide can have dramatic consequences if not dosed correctly (Briceño and Supple, 2017). For men, our risk classifier predicts a spontaneous transition from a sharp but smoothly propagating excitation pattern into rapid, irregular, asynchronous activation patterns at a critical concentration of 26.0x. For women, the same risk is predicted at 3.5 times the drug's free therapeutic plasma concentration. These results agree well with clinical trials where female sex was associated with three-fold higher odds of dofetilide discontinuations or dose reductions relative to the male sex (Pokorney et al., 2018). Most dosage reductions led to half of the recommended dosage for women. Interestingly, women were highly underrepresented in original clinical trials assessing the safety of dofetilide, only accounting for 28 and 16% of the total amount of enrolled patients (Køber et al., 2000; Singh et al., 2000). For chlorpromazine, an antipsychotic drug, our female arrhythmogenic risk classifier estimated a risk for arrhythmogenesis at 80.1x concentration, whilst for men no arrhythmogenicity was predicted. As expected from such a high critical risk concentration, chlorpromazine-induced arrhythmogenicity can be expected to be uncommon. Indeed, a comprehensive literature search spanning four decades of clinical case report data identified only seven published cases of chlorpromazine-associated ventricular arrhythmia. All these cases involved women (Hoehns et al., 2001). Finally, for diltiazem, a calcium channel blocker used to manage blood pressure and chest pain, the drug's concentration-block trajectory does not cross our male nor female multi-fidelity arrhythmogenic risk classification boundary. Consequently, we predict no arrhythmogenesis for diltiazem and consider this drug to be safe, both for men and women. This risk assessment corresponds well with diltiazem's ‘low/no arrhythmia risk’ classification by a team of clinical cardiologists and electrophysiologists based on publicly available data and expert opinion (Colatsky et al., 2016). Additionally, the arrhythmogenic safety of diltiazem was also confirmed by recent sex-agnostic population-based arrhythmia risk classifiers from other research groups (Lancaster and Sobie, 2016; Li et al., 2019). Importantly, these sex-specific drug-induced arrhythmogenic risk assessments assume no other medications to be taken concomitantly with these drugs.

In this study, we first build a multiscale mechanistic understanding of arrhythmogenesis in the male and female heart, and subsequently use these computational insights to evaluate the sex-specific drug-induced arrhythmogenic risk. This approach is inherently different from a recent first approach toward sex-specific drug-induced arrhythmogenicity classification (Fogli Iseppe et al., 2021). In this study, the authors focus on the in silico computed effect of drugs on male and female human epicardial cardiomyocytes. Using statistical learning techniques, they identify the key synthetic action potential biomarkers contributing to the most accurate prediction of arrhythmogenicity outcomes for men and women specifically. This approach relied on a ground truth classification assumption that risky drugs are dangerous for men and women, and safe drugs are safe for both men and women. These classifications were deduced from reported adverse event analyses performed within the Adverse Drug Event Causality Analysis (Woosley et al., 2017). With female sex reported to be historically highly underrepresented in clinical studies (Vitale et al., 2017), such an assumption could potentially be problematic, especially for older drugs. Our study offers the benefit of using a full multiscale framework to inform arrhythmogenic risk from a mechanistic understanding. Apart from this differing approach to arrhythmogenic risk classifier development, our study also takes into account the effect of midwall cells in an individual's predisposition to arrhythmogenesis (Drouin et al., 1995; O'Hara et al., 2011) and did not assume the baseline O'Hara-Rudy model to represent a purely male endocardial cell model, as discussed in section 2.2.1. Consequently, these differing approaches render a one-on-one comparison between our studies difficult. Nonetheless, for chlorpromazine, the only drug that was studied in both studies, both our studies classify this drug safe for men and at medium risk for women. Based on our sex-specific arrhythmia risk classifiers in which the male arrhythmogenic {βCaL, βKr} risk zone ⊂ the female arrhythmogenic {βCaL, βKr} risk zone, our classifiers do not predict any drug to have a higher risk for women than for men. Interestingly though, the alternative approach identified specific drugs that are safer for women than for men (Fogli Iseppe et al., 2021). This disagreement might be associated with the current ambiguity on functional sex differences in Ca2+ handling (Parks and Howlett, 2013; Parks et al., 2014) which led the authors to disregard the genomic sex differences in sodium potassium INaK pump and Ca2+ uptake channel activities and relatively upscale the female sodium calcium exchange currents we deduced in Table 1. Currently, experimental data on Ca2+ in healthy human myocardium are lacking, and further investigation on these functional sex differences is warranted to improve our sex-specific arrhythmogenic risk classifiers in the future. Additionally, limiting our risk classifier to only take βCaL and βKr into account might not uncover this behavior. It can for example be seen from Figure 6 that βNaL has a stronger anti-arrhythmic effect for female midwall cardiomyocytes than it does for men, and thus including this feature as a third drug-induced ion channel blocking input feature to our arrhythmia risk classifier might lead to male and female three-dimensional arrhythmogenic risk zones that do not completely overlap. Apart from these discrepancies, the overall conclusion is the same: including sex as a new independent factor in preclinical cardiotoxicity risk assessment is crucial to avoid potentially life-threatening consequences for the female population (Chorin et al., 2017). Given the absence of reliable large-scale arrhythmogenic risk assessments for women specifically, and the male dominance in clinical studies, our study forms an important first step toward mechanistically uncovering the role that sex differences on the subcellular, cellular, tissue, and organ scale play in drug-induced arrhythmogenicity. An improved understanding of these sex-specific mechanisms will be crucial to provide new therapeutic approaches that do no longer put women at increased risk.



4.6. Limitations and Outlook

Although our proposed methodology holds great promise to rapidly assess the sex-specific risk of a new drug, without relying on clinically reported adverse event occurrence, it has a few limitations: first, our sex-specific multiscale exposure-response simulators are only as good as their input. In the long term, more sex-specific human cell and tissue experiments are needed to fine-tune the cell- and tissue-scale sex differences in ion channel activity and conductivity currently deduced from genomic data. Such experimental data would also be highly desirable to resolve the current debate on the existence or non-existence of sex differences in Ca2+ handling. The lacking human experimental data for more in-depth sex-specific validation of our multiscale simulation outcomes suggest important avenues for further studies. Novel developments of male and female hIPSC-derived cell lines might provide an interesting route to study this further (Huo et al., 2019). Second, our developed risk classifiers currently focused on the risk of drug-induced IKr and ICaL blocking. Even though we identified these ion channel blockings to be the most critical channels for drug-induced arrhythmogenesis for both the male and female heart, arrythmogenic risk stratification for drugs that mainly target other channels might require including additional ion channel blockings to our risk classifiers. As our results in Figure 6 showcase, extending both the male and female risk classifiers to take into account drug-induced IKs and INaL blocking would be the most logical next step. Third, given the role that the excitation rate has on the electrophysiological behavior of the human heart, we aim to extend our classifiers to take into account heart rate in our future work. Fourth, at this point, we did not take into account male and female population variability. As additional experimental data becomes available, more in-depth sex-specific population studies form an interesting next step. We have developed efficient frameworks to quantify and propagate such uncertainty through computational models in the past (Peirlinck et al., 2019; Sahli Costabal et al., 2019a), and look forward to apply these techniques to this problem. Prior to this, a critical and logical next step would be to validate our method using our own independent experiments with human adult cardiomyocytes, and ideally, healthy human volunteers. Ultimately, with a view toward precision cardiology, this sex-specific approach forms an important initial step toward identifying the optimal course of care for each individual patient based on personalized block-concentration characteristics and personalized cardiac heart models (Trayanova, 2018; Peirlinck et al., 2021; Rodero et al., 2021).




5. CONCLUSION

The objective of this study was to quantify sex differences in drug-induced arrhythmogenesis. Toward this goal, we created sex-specific male and female multiscale exposure-response simulators. These simulators differ in subcellular ion channel activity, tissue-level conductivity, and organ-scale geometry. Using logistic regression, we identified the rapid delayed rectifier potassium channel IKr and the L-type calcium channel ICaL as the most importance ion channels to modulate male and female arrhythmogenesis on the cellular level. Based on these findings, we created an exploratory ion channel block parameter space and combined low-fidelity cell-scale and high-fidelity multiscale modeling to delineate arrhythmogenic risk classification boundaries. Our study quantitatively confirms and delineates women's intrinsically higher risk for drug-induced arrhythmia both on the cell and organ scales. We applied our new sex-specific multi-fidelity pharmacological risk classifiers to assess critical drug concentrations for a high, an intermediate, and a low risk drug. For the high risk drug dofetilide, our predicted critical drug concentration for female hearts is seven times lower than for male hearts. This result explains, at least in part, why women are more likely than men to develop drug-induced arrhythmia. Acknowledging and understanding sex differences in drug safety evaluation is critical when developing new drugs and prescribing existing drugs in combination with other drugs.
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A. APPENDIX


A.1. Single-Fidelity Cell-Scale Risk Classifiers

Figures A1, A2 showcase the exploration and exploitation progress in training a single-fidelity Gaussian process classifier for drug-induced de- and repolarization abnormalities in male and female midwall cardiomyocytes respectively. In the upper middle plots, we summarize the binary risk classifications in 25 latin hypercube samples of the [image: image] using Myokit. We highlight two exploratory {βKr, βCaL} sample evaluations from each class in the upper left plot. Using this initial [image: image] classification dataset, we trained the initial risk classifier shown in the upper right plot. Subsequently, the risk classification boundary was further explored and exploited using active learning. By actively sampling new {βKr, βCaL} samples with high variance in the posterior Gaussian Process classification distribution close to the classification boundary, we cost-effectively enhance the accuracy of our classification boundary. We showcase four active learning samples for which we recorded de- or repolation abnormalities in the lower left plots, and four active learning samples for which no abnormalities were recorded in the lower middle plots. With a total of 25 additional active learning samples, we produced the cellular male and female single-fidelity risk classifier displayed in the lower right plots of Figures A1, A2 respectively. Comparing the initial and final risk classifier, we showcase the power of active learning to improve classification confidence.
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Figure A1. Male single-fidelity drug-induced risk classifier. (Upper) Initial exploration of the drug-induced de- and repolarization abnormality risk parameter space. The first 25 internal latin hypercube samples of the [image: image] parameter space were evaluated for male midwall cell abnormalities, as showcased in the upper middle plot. Transmembrane potential evolution profiles of two normal and two early depolarizing samples are shown on the upper left plot. Using this exploratory [image: image] dataset, an initial single-fidelity drug-induced risk classifier was trained for the male midwall cell, see upper right subplot. (Lower) Exploration and exploitation of the drug-induced risk classification boundary using active learning. The Gaussian process classifier was trained further using 25 additional active learning {βKr, βCaL} samples. On the lower left, four active learning sample evaluations resulting in abnormalities are shown. The lower middle plot showcases four active learning sample evaluations that showed normal action potentials. The final male cellular drug-induced risk classification boundary is shown in the lower right plot.
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Figure A2. Female single-fidelity drug-induced risk classifier. (Upper) Initial exploration of the drug-induced de- and repolarization abnormality risk parameter space. The first 25 internal latin hypercube samples of the [image: image] parameter space were evaluated for female midwall cell abnormalities, as showcased in the upper middle plot. Transmembrane potential evolution profiles of two normal and two early depolarizing samples are shown on the upper left plot. Using this exploratory [image: image] dataset, an initial single-fidelity drug-induced risk classifier was trained for the female midwall cell, see upper right subplot. (Lower) Exploration and exploitation of the drug-induced risk classification boundary using active learning. The Gaussian process classifier was trained further using 25 additional active learning {βKr, βCaL} samples. On the lower left, four active learning sample evaluations resulting in abnormalities are shown. The lower middle plot showcases four active learning sample evaluations that showed normal action potentials. The final female cellular drug-induced risk classification boundary is shown in the lower right plot.




A.2. Single-Fidelity Multiscale Arrhythmogenic Risk Classifiers

Figure A3 showcases the exploration of male drug-induced arrhythmogenic risk classification based on 10 high-fidelity evaluations of the [image: image] parameter space. By training a single-fidelity Gaussian process classifier with a dataset that comprised one arrhythmogenic and nine non-arrhythmic {βKr, βCaL} samples (see Figure A3 - left and mid), the resulting exploratory Gaussian process risk classifier (Figure A3 - right) predicts a low probability for drug-induced arrhythmogenesis. It can be expected that a significant amount of additional computationally expensive high-fidelity sample evaluations would be needed to accurately detect the yH = 1 region (Sahli Costabal et al., 2019b). If we compare this exploratory single-fidelity arrhythmogenic risk classifier to the exploratory multi-fidelity arrhythmia risk classifier shown in the upper panels of Figure 7, it can be seen that the multi-fidelity classifiers greatly benefits from the candidate boundary encoded in the low-fidelity data. As such, for the same amount of high-fidelity evaluations, the exploratory multi-fidelity arrhythmogenic risk classifier in Figure 7 showcases a significantly higher precision and accuracy than the exploratory single-fidelity arrhythmia risk classifier in Figure A3. This power of multi-fidelity risk classification, opposed to single-fidelity risk classification, can also be appreciated in Figure A4. Even though the initial exploratory dataset consisted of five arrhythmogenic and five non-arrhythmic samples (see Figure A4 - left and mid), the resulting single-fidelity risk classifier (Figure A4 - right) provides lower classification confidence than the exploratory multi-fidelity risk classifier in Figure 8 (top).
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Figure A3. Male single-fidelity multiscale arrhythmia risk classifier. Initial single high-fidelity exploration of the male drug-induced arrhythmogenic risk parameter space. The middle plot showcases 10 internal latin hypercube {βKr, βCaL} sample evaluations of arrhythmogenesis in the male heart. The virtual electrocardiograms for one arrhythmogenic and three non-arrhythmic sample evaluations are shown in the left plots. The resulting exploratory male single high-fidelity drug-induced arrhythmogenic risk classifier is shown in the right plot.



[image: Figure ]
Figure A4. Female single-fidelity multiscale arrhythmogenic risk classifier. Initial single high-fidelity exploration of the female drug-induced arhhythmogenic risk parameter space. The middle plot showcases 10 internal latin hypercube {βKr, βCaL} sample evaluations of arrhythmogenesis in the female heart. The virtual electrocardiograms for two arrhythmogenic and 2 non-arrhythmic sample evaluations are shown in the left plots. The resulting exploratory female single high-fidelity drug-induced arrhythmogenic risk classifier is shown in the right plot.




A.3. Low- Versus Multi-Fidelity Arrhythmogenicity Bias

Figure A5 highlights the recorded mismatch between the use of a low-fidelity midwall cell proxy for arrhythmogenic risk classification and a multi-fidelity risk classifier taking into account high-fidelity multiscale evaluations of the drug effect on the transmembrane potential evolution at the cell, tissue, and organ scale.
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Figure A5. Low- vs. multi-fidelity arrhythmogenicity mismatch. Mismatch between the low-fidelity midwall cell proxy and the full high-fidelity multiscale simulations for arrhythmogenic risk classification. For the male arrhythmogenic risk classification (Left), this mismatch is limited. For the female arrhythmogenicity classification (Right), the multi-fidelity classifier predicts arrhythmogenesis at larger {IKr, ICaL} channel blocking combinations than the low-fidelity risk classifier.


It can be seen that for the male arrhythmogenicity classifier, this mismatch is rather limited. However, for the female arrhythmogenic risk classification boundaries, the low-fidelity risk classification boundary predicts arrhythmogenesis at lower drug-induced {IKr, ICaL} blocking combinations. This mismatch showcases the importance of taking the effect of electrotonic coupling and repolarization dispersion across the three-dimensional heterogeneous tissue organization into account.


Table A1. Sex-based differences in ion channel subunit expression from non-diseased human ventricles.
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Atrial fibrillation (AF) is the most common cardiac arrhythmia and currently affects more than 650,000 people in the United Kingdom alone. Catheter ablation (CA) is the only AF treatment with a long-term curative effect as it involves destroying arrhythmogenic tissue in the atria. However, its success rate is suboptimal, approximately 50% after a 2-year follow-up, and this high AF recurrence rate warrants significant improvements. Image-guidance of CA procedures have shown clinical promise, enabling the identification of key patient anatomical and pathological (such as fibrosis) features of atrial tissue, which require ablation. However, the latter approach still suffers from a lack of functional information and the need to interpret structures in the images by a clinician. Deep learning plays an increasingly important role in biomedicine, facilitating efficient diagnosis and treatment of clinical problems. This study applies deep reinforcement learning in combination with patient imaging (to provide structural information of the atria) and image-based modelling (to provide functional information) to design patient-specific CA strategies to guide clinicians and improve treatment success rates. To achieve this, patient-specific 2D left atrial (LA) models were derived from late-gadolinium enhancement (LGE) MRI scans of AF patients and were used to simulate patient-specific AF scenarios. Then a reinforcement Q-learning algorithm was created, where an ablating agent moved around the 2D LA, applying CA lesions to terminate AF and learning through feedback imposed by a reward policy. The agent achieved 84% success rate in terminating AF during training and 72% success rate in testing. Finally, AF recurrence rate was measured by attempting to re-initiate AF in the 2D atrial models after CA with 11% recurrence showing a great improvement on the existing therapies. Thus, reinforcement Q-learning algorithms can predict successful CA strategies from patient MRI data and help to improve the patient-specific guidance of CA therapy.

Keywords: atrial fibrillation, catheter ablation, patient imaging, reinforcement learning, deep learning


INTRODUCTION

Atrial fibrillation (AF) is one of the most common cardiac arrhythmias, affecting about 1–1.5% of the general population with prevalence predicted to double by 2050 (Lip et al., 2007). Currently, the first-line treatment for AF is antiarrhythmic drug therapy, which can restore and maintain sinus rhythm (Zimetbaum, 2012). However, it has limited efficacy and can cause significant toxicity to organs outside the heart (Pollak, 1999). Catheter ablation (CA) is being increasingly used as a first-line treatment for AF with clinical trials demonstrating its superiority over antiarrhythmic drugs (Bunch and Michael, 2015). CA therapy is typically performed by the delivery of radiofrequency energy through a catheter which creates non-conductive lesions and thus, electrically isolates abnormal arrhythmogenic tissue from the rest of the heart.

AF is initiated by electrical triggers outside of the sinus node, typically near the pulmonary veins (PVs) – hence, pulmonary vein isolation (PVI) has become one of the cornerstones of CA (Bunch and Michael, 2015). However, a crucial issue concerning PVI and other ablation strategies is the high recurrence rate of AF post ablation (Jiang et al., 2014). This is often caused by PV reconnection post-ablation, which can occur in 94% of cases (Bunch and Michael, 2015). Moreover, multiple clinical trials have reported arrhythmia-free survival of only 50–75% at 1-year post ablation, with the highest recurrence rates associated with persistent AF cases (Kirchhof and Calkins, 2017) characterised by the presence of new AF triggers and drivers outside of the PVs. The latter have been strongly linked with atrial fibrosis (Nattel, 2016).

Fibrosis promotes AF via excessive collagen deposition in atrial tissue, which provides slow-conductive substrate for re-entrant drivers (rotors; Everett and Olgin, 2007; Boyle et al., 2019). Late gadolinium enhancement (LGE) MRI has proved to be an effective tool for non-invasive fibrosis quantification in AF patients, providing important information on spatial distributions of atrial fibrosis (Platonov, 2017). The availability of such data has also led to the development of patient-specific atrial models that link fibrosis distributions with the dynamics of rotors sustaining AF (McDowell et al., 2012; Boyle et al., 2019; Roy et al., 2020).

Recently, patient imaging data and image-based models are increasingly used in combination with novel artificial intelligence (AI) algorithms (Davenport and Kalakota, 2019), specifically to understand the mechanisms of AF and improve CA therapy (Lozoya et al., 2019; Feeny et al., 2020). Deep learning in particular is becoming widely used in applications such as image segmentation and patient classification (Yang et al., 2020). A promising, but less explored area of AI is Reinforcement Learning, where an algorithm learns based on a reward structure, similar to how a child learns by receiving rewards and penalties (Qiang and Zhongli, 2011).

Reinforcement Learning operates by allowing a free-moving agent to explore and interact with a given environment. The agent learns not from a predefined set of rules, but rather from the consequence of the actions it takes. This provides a perfect analogy with an ablation procedure, where a catheter moves in an environment of a patient atrial image (or an image-based model), and the reward comes in the form of a successful procedure, whereas failure to treat AF is a natural penalty; optimisation of the procedure comes from a large number of trials. Thus, the Q-learning process is similar to a cardiologist performing multiple image-guided ablation procedures on different patients and learning to apply the most suitable lesions in each case.

This study uses Reinforcement Q-learning algorithms to predict patient-specific CA strategies on a set of LGE-MRI based atrial models. These models include main structural features of the left atrium (LA), such as PVs, and employ advanced image-processing techniques to represent patient-specific fibrosis distributions and computational modelling to simulate AF scenarios.



MATERIALS AND METHODS


Image-Based 2D Atrial Models

LGE-MRI data was acquired from two different sources. First, 86 scans were obtained from the 2018 STACOM segmentation challenge (Xiong et al., 2021), with resolution of 0.625×0.625×0.625mm3, and corresponding segmentations of the LA, and the second dataset was acquired from St Thomas’ Hospital (Chubb et al., 2018) from 18 AF patients, comprising of an additional 36 LGE-MRI images with a resolution of 1.3×1.3×4.0mm3, reconstructed to 0.94×0.94×2.0mm3. The patient images were processed in CemrgApp (Razeghi et al., 2020) using the scar quantification pipeline to first produce patient-specific 3D LA geometries with raw LGE intensity distributions. Then, the image intensity ratio thresholding technique was applied to clearly differentiate between fibrotic regions and healthy tissue (Roy et al., 2018). The resulting 3D LA dataset was then fed into an existing algorithm which unwrapped to a standardised 2D LA disk (Williams et al., 2017). The workflow of the image-based 2D LA tissue model generation is shown in Figure 1.

[image: Figure 1]

FIGURE 1. Generating image-based 2D left atrial tissues. (A) LGE-MR image (greyscale) with segmented LA (red). (B) The 3D LA with LGE-MRI intensity distribution and the PVs and LA appendage (LAA) clipped. (C) The thresholded 3D LA with fibrosis in red and healthy tissue in blue. (D) The LA unwrapped onto a standardised 2D disk, with fixed four PVs and the LAA and fibrotic areas mapped. PVs and LAA are labelled in (B,D).


The final 2D LA models were used to simulate patient-specific AF scenarios, as described previously (Muffoletto et al., 2021). The monodomain equations were combined with the ionic Fenton-Karma equations (Roy et al., 2018) and solved on the 2D LA disks using the forward Euler method, using a temporal discretisation of 0.05ms and a spatial discretisation of 0.3mm. Zero-flux boundary conditions were implemented at the outer boundary of the disks and around the PVs. To model the slow-conducting properties of fibrosis, the monodomain diffusion coefficient was reduced from 0.05mm2/s in healthy tissue to 0.0075mm2/s in fibrotic patches.

Two AF scenarios were simulated for each LA model, each sustained by a rotor initiated in the tissue using a cross-field protocol, as shown in Figure 2. One rotor was initiated below the left superior PV (to initiate a rotor around the LSPV), while another was initiated between the inferior PVs (to initiate a free moving rotor). The distance between the two rotor initiation points was fixed at ~2.5cm. In the example shown in Figure 2, a plane wave is initiated at the top of the tissue and travels down two-thirds of the tissue, where the voltage on the left side of the tissue is then set to zero, initiating one rotor. The 2D LA models with simulated AF provided the environment for the Q-learning algorithm (see sections “Reinforcement Q-Learning Algorithm and Q-Learning Reward Structure” below). The same two AF scenarios (initial rotor locations) were used in both testing and training.

[image: Figure 2]

FIGURE 2. Rotor initialisation in a 2D LA tissue model. Voltage distributions in consecutive moments of time are shown in (A)–(D), with red corresponding to high voltage, blue to the resting potential, and black to the PVs and area of fibrosis; yellow arrows show the directions of wave propagation. Green crosses show the locations of rotor initiation in two AF scenarios: a rotor illustrated in this figure corresponds to the lower right location, as seen in (C).


Once training and testing were completed, the successfully ablated tissue models were tested for rotor recurrence by attempting to initiate rotors in four different locations spread through the 2D LA tissue (resulting in simulation Scenarios 1, 2, 3, and 4). This was done to see whether the ablation strategy that was successful in termination of rotors would also work in preventing the emergence of new rotors. Recurrence testing helps to evaluate the long-term success due to the issue with AF reoccurrence after current ablation strategies.



Reinforcement Q-Learning Algorithm

Q-Learning is initiated with a blank Q-table that assigns a value to each possible state to find the optimal policy for a given reward structure and therefore to maximise cumulative reward. The values in the table need to be enumerated by doing an extensive search over the action state space and recording, which combinations lead to positive or negative rewards. The best path to take in the Q-Learning process is mathematically described by Bellman’s Optimality equation (Moni, 2021):

[image: image]

Here, s is a particular state, a is the action, s′ is the state to which the agent moves to, γ is the discount factor, R(s,a) is the reward function, which takes a state s and action a and outputs a reward value, and V(s) is the value of a total reward for a particular state. This formula allows the agent to choose the path with the highest reward.

The 2D LA tissue model and simulated AF were used as an input for the Q-learning algorithm. Specifically, the agent’s environment is set to be the combination of the 2D diffusion matrix (the diffusion coefficients assigned per pixel of the 2D tissue), the simulated voltage at every point in the 2D tissue and, the values of activation variables at those same space–time points. These variables present different structural and functional properties of the same 2D LA tissue model that was used as the environment for the ablating agent. Figure 3 shows the most relevant part of the environment: 2D LA tissue structure with the voltage distribution in the form of a re-entrant wave, and the agent moving through this structure trying to terminate re-entry.

[image: Figure 3]

FIGURE 3. A schematic overview of how a deep Q-Learning network functions. Initially a state is observed, which is then passed through a CNN. The output of this network maps to the predicted Q values of all eight actions available. From here the action is chosen via a ɛ-greedy action selection policy. One notable addition to the implementation used in this paper is there are two copies of the network to ensure stability.


These variables were updated within an episode loop, which ran one different 2D LA tissue every episode, restarting the simulation with a new 2D tissue when a termination condition was reached. The LA tissues were shuffled during training and testing. Each batch consists of 64 randomly selected tissues. Within this episode loop, the initial state of the simulation was input into the environment and the agent was initiated and started to explore the 2D LA tissue and search for the best ablation technique. The agent moved with a 10-ms step, at each step ablating a small area of 9×9 pixels and then moving into a new position. The ablator in this simulation worked by setting the diffusion coefficient to 0 in the small ablated area. Similarly, an agent was trained using a 50-ms ablation interval to evaluate the effect of the speed of ablation.

At first, the agent moved randomly ablating at each step, receiving positive or negative rewards. With time, the agent learned to predict that the most beneficial moves maximise the cumulative reward, which due to the nature of the reward structure, was achieved when AF was terminated. At each time step, the current state – the agent’s position, the action it made, the corresponding reward acquired – as well as the new state after the move was completed and whether it was a terminal state, were stored. This process is schematically illustrated in Figure 3. The success rate was stored and compared to previous success rates every 50 episodes, and if the success rate was higher than any previous one, the algorithm saved the Q-values corresponding to this reward structure, which was later used in testing on an unseen set of 2D LA tissues.



Q-Learning Reward Structure

To learn how to predict the value of actions, the agent needs an assignment of numerical values to sets of states, which is called as the reward policy. This acts as a ground truth from the perspective of the agent and is therefore essential in this algorithm. The first reward to be implemented was a positive reward if the ablation strategy was successful. This was defined by rotor termination when the voltage at every point in the tissue was lower than a threshold of 0.2. This would mean that the episode was completed, and the agent had successfully terminated the rotor, rewarding the agent with +420 points, the highest reward possible.

On the other hand, there was also a negative reward, which was implemented every time the agent took a step. This was done to avoid too much scarring of the tissue, making the agent look for the fastest way of terminating AF; the episode was aborted if too much tissue was ablated. This was implemented by calculating the percentage of tissue being ablated and stopping the episode if it reached a rate of 40% ablation of healthy tissue, giving the agent −50 reward and terminating the episode. Moreover, the agent was given a negative reward each time, and it took a step to make it prioritise faster routes to a successful ablation, further avoiding destroying healthy tissue. The agent was also given a negative reward for stepping on the same tissue it had already ablated. The reward structure was further enhanced to prevent the agent from going in a straight line as that was the easiest way to stop a rotor by creating an obstacle between two boundaries of the 2D tissue. This was done by giving the agent an exponentially growing negative reward the more consecutive moves in the same direction it made.

Rotor tip locations were calculated at each ablation time step, and the agent was rewarded for moving closer to the rotor tip and was given a negative reward for moving away from it. Pre-determined successful lesions (such as PVI and fibrosis-based ablation) have been obtained for the 2D LA tissues (Muffoletto et al., 2021) and used to train the agent, giving it a reward of 15 for moving closer to these lesions and −15 for moving further away from them. All the rewards used to train the agent are summarised in Table 1.



TABLE 1. Summary of the reward structure, how many points the agent receives as a reward and whether it is a terminal state.
[image: Table1]



Deep Learning Networks

Two identical CNNs were created to ensure stable predictions for the Q-values of the available actions. These were both initialised with the same weights. This was done to have a time delayed version of the network for prediction, while the other network was trained. After five episodes the predicting network was updated to share the same parameters as the trained network. This was done with the purpose of increasing stability in the network and to create a classifier, which avoids overfitting. To select an action for the agent to take, the state consisting of 150×150 RGB image was observed. This state was recorded and passed through the CNN.

Both CNNs were built using the Keras Sequential package in Python, starting with a 150×150×3 input layer using separate RGB channels, the input being the 2D LA tissue with the initiated rotor wave. The input is connected to a 2D convolutional layer with 3×3 kernel size and a dimensionality of the output space equal to 256, which signifies the number of output filters in the convolution. A 2D maximum pooling layer (with the pooling layer size of 2×2) was then added in order to down sample the input and only take into account the maximum values. A dropout layer of 0.2 was then added to subsample the input and avoid overfitting.

All the layers mentioned above, starting from the 2D convolution layer, were then repeated and flattened and densed in order to obtain a 1D feature map from the 3D input. Finally, the output of this was put through another dense layer with the size of the action space and a linear activation function. A mean square error loss function and an ADAM optimiser were used.

ɛ-greedy action selection policy was used to choose an action. This action selection policy employs a global parameter ɛ, which defines the probability that the action with the highest predicted Q-value is chosen. In the case, it is not chosen, the selected action will be uniformly sampled from the other available actions. During training, ɛ is decayed, which serves the purpose of defining a balance between an exploration vs. exploitation regime. Once the action has been chosen, the agent alters the environment by ablating the underlying tissue. Subsequently, the next state is observed and the cycle repeats.

Based on the reward structure and the Q-values, the agent learns to better predict the value of actions, which allows it to move in the best possible direction, avoiding negative rewards. This could be compared to losing points in a game. This network is able to distinguish different features in the environment, for example, where the wave currently is and how it is moving, as well as the areas of fibrosis, making the agent’s movements more informed.




RESULTS


Q-Learning Algorithm Training

The agent was trained for 900 episodes, exploring the environment of 2D atrial tissues with AF and learning the ablation strategies that provided the highest reward. During training, the success rate was stored every 50 episodes for which the minimum, maximum, and final success rate per 50 episodes can be seen in Figure 4A. The agent rapidly improved in the first few episodes, then fluctuated and settled around episode 500 at approximately 78% success.

[image: Figure 4]

FIGURE 4. Performance characteristics of the ablating agent. (A) The minimum, maximum and final ablation success rate achieved during training for 10ms (blue) and 50ms (orange) ablation intervals. (B) Average number of ablated points (9×9 pixel lesions) in cases when AF was terminated successfully and the overall number of cases during training (blue) and testing (orange).


The success rate in this case signifies the percentage of successfully terminated rotors per 50 episodes. The highest success rate per 50 episodes the agent was able to achieve after training for 900 episodes was 84%. The model which achieved the highest success rate was then used for testing. Figure 5 shows the agent successfully being able to ablate the tissue using an equivalent of the rotor technique – trying to follow the tip of the rotor in order to terminate it during training. The ablator was rewarded for trying to minimise proximity to the rotor tip.

[image: Figure 5]

FIGURE 5. Training sequence at 10ms ablation interval with the ablator (green) successfully ablating the rotor by following its tip. Same colour code is used for the voltage maps as in Figure 2. Ablated tissue is shown by 9×9 pixel yellow rectangles.




Q-Learning Algorithm Testing

During testing, the process was similar to training, except the known ablation strategies and, the rotor tip positions were not included in the state passed to the agent, and the most successful network determined in training was used. In this case, for the 10-ms ablation interval, the model with 84% success was used. After testing the model on 100 unseen 2D tissues for 100 episodes, the testing success rate was at 72%. The slight decrease of success rate in testing was expected, since in training the ablating agent was rewarded for moving close to the successful ablation lesions known from earlier simulations – whereas during testing the agent had no information on the location of such lesions, and hence was operating in a more difficult environment. Note also that overfitting in this case is highly unlikely, given the huge number of possible AF scenarios (i.e., movements of one or more re-entrant waves over greatly variable trajectories in a large number of LA tissue models with different spatial characteristics). Figure 6 shows the agent successfully terminating the rotor during a test. During testing, all the ablation points for each 2D tissue model were saved to be used later in the respective AF recurrence check.

[image: Figure 6]

FIGURE 6. Testing sequence, where the ablator (green) uses the pre-existing model and Q-values from training to successfully terminate the rotor. Same colour code is used as in Figure 5. Voltage distributions in consecutive moments of time are shown in (I)–(VIII).


Figure 4B quantifies the tissue damage during ablation. As expected, the average number of ablated points in cases when AF was terminated successfully was lower than in the overall number of cases. The number of ablated points was about the same in training and testing.



Recurrence Testing

The ablation strategies developed by the Q-learning algorithm were also tested for success in preventing AF recurrence, specifically to check whether the existing ablation lesions would prevent the rotors from restarting. This was done by attempting to initiate four different rotors in 2D atrial tissue models after ablation (with the non-conductive CA lesions present) and to check whether the lesions saved in testing would stop the rotors, and thus prevent the recurrence. Note that this test did not involve any Q-learning process, but only LA model simulations.

In Figure 7, successful ablation lesions created by the agent during the testing can be seen preventing the newly initiated rotor from propagating (Scenario 1), meaning that this AF scenario was not sustained. To check this result was independent of the initial rotor location, another scenario for the rotor initiation was tested: again, the rotor also was not sustained (Scenario 2). Simulations were also repeated for two more rotor locations (Scenarios 3 and 4, not shown). In all four scenarios, the rotors failed to sustain AF in most 2D LA tissues. Specifically, the success rate of recurrence testing was 98% for a single scenario and 89% for all four scenarios. This means that rotors were terminated by ablation patterns determined by the Q-learning agent during testing in 89% of the cases.

[image: Figure 7]

FIGURE 7. Prevention of AF recurrence is shown using the successful ablation strategy identified by the agent during testing. This happens when rotor is re-initiated with both Scenario 1 (top row) and Scenario 2 (bottom row). Green crosses show the four locations of rotor initiation; the locations were chosen to produce most stable rotors pre-ablation. Voltage distributions in consecutive moments of time are shown in (I)–(IV).





DISCUSSION

This study shows that Reinforcement Q-Learning algorithms supported by CNNs can predict patient-specific ablation strategies that are effective in both terminating AF and preventing its recurrence in LGE-MRI-based 2D LA tissue models. This was achieved by simulating AF scenarios in 2D atrial models and using them as the environment for a Q-learning algorithm. The algorithm was further tested on an unseen set of 2D LA tissue models by using the most successful version of the Q-learning network, as well as by using ablation lesions produced during the testing to check for the likelihood of AF recurrence in these models. The ablation success rate was 84% in training and 72% in testing (at 10-ms ablation interval), showing that the agent explored the environment and learned to ablate successfully, and that Q-learning can be a viable method to improve CA strategies for patient-specific AF cases. Furthermore, the overall recurrence prevention success over 89% (i.e., 11% recurrence), surpassing that of existing CA methods, which resulted in about 55–80% recurrence rates (Dretzke et al., 2020).

When a longer 50-ms ablation interval is used, the ablation patterns were similar to those of the 10-ms ablation interval for the same tissues. As seen in Figure 8, the 50-ms interval ablation points can be found in the same positions for the 10-ms interval ablations but less tissue was ablated. The main difference between the two cases was the total ablation time, and since the 10-ms ablation interval ablates more frequently, it has additional ablation points added, before AF is terminated. This suggests that the Q-learning algorithm prioritised the atrial tissue structure (such as location of fibrosis) and function (location of the wave at the time of ablation) over the ablation interval. This implies that simulations do not necessarily have to be run for long periods of time in order to find the optimal patient-specific ablation pattern. In effect, shorter simulations could be run, and computational expense could be reduced.

[image: Figure 8]

FIGURE 8. The same patient-specific 2D LA tissue models ablation performed by the agent at (A) 10ms interval and (B) 50ms interval. The ablation patterns are similar but not identical.


Note also that the action space of the ablating agent in this study was discrete: the agent could only choose a set of discrete actions to perform. This may be more limited than using a continuous action space, in which the agent can perform a continuous set of actions – in our study, a continuous range of movements in the LA tissue. However, when comparing continuous vs. discrete deep reinforcement learning algorithms, it has been shown that with a limited number of trials the discretised approach outperforms the continuous one (Smart and Laelbling, 2000; Stopforth and Moodley, 2019). Moreover, the action space is discretised to enable the use of a deep Q-learning network, which requires a discrete action space as the size of the output layer of the network corresponds with the size of the action space.

One limitation of the approach used in the current study is that the Q-learning algorithm appeared to learn less from pre-determined successful ablation strategies (such as PVI), mostly preferring the “rotor” strategy aimed at ablating the tip of the rotor, similar to previous research (Muffoletto et al., 2021) during which a classifier was trained to find the best ablation strategy and found the “rotor” was the preferred strategy. Such information, however, will not be available for real patients. Given more time for training, the algorithm could further improve and learn more information from the tissues. However, this was hindered by significant computational expense, making it impractical to train on a large number of tissues if the ablation interval is long. Moreover, the reward structure could still be improved, as the ablator does not always take the shortest path, which can be seen in Figure 6, and often tries to ablate previously ablated tissue. Ideally the agent should move through the shortest path possible.

To improve this work in future, the computational load should be minimised, as currently the 10-ms ablation interval technique takes 30min to run per episode while a 50-ms ablation interval takes about 5h 30min per episode. Using a similar approach in a clinical setting will require the application of GPU to accelerate simulation time. Furthermore, a more clinically relevant approach will require patient-specific 3D atrial models instead of 2D models as input into the Q-learning algorithm to produce more accurate results.

Data augmentation techniques could also be applied to enhance the patient datasets. In the previous study (Muffoletto et al., 2021), 122 real patient-specific LA images have been used to create additional synthetic images by taking random weighted averages of all the real data set to introduce new fibrotic patterns, and also varying size of the PVs. In the current study, 50 such synthetic images were used for additional testing, with the success rate remaining at 72%.

Machine learning has been applied in this field before, thus Lozoya et al. (2019) have achieved 97.2% accuracy in finding ablation targets using biophysical cardiac electrophysiology models to augment ventricular image features. However, their feature augmentation algorithm used supervised learning, whereas Q-learning is neither supervised nor unsupervised. A study by Liu et al. (2020) used computed tomography images of the atria to train a CNN and create a prediction model of the non-PV triggers for AF, reaching an accuracy of 82%. However, instead of predicting ablation techniques, their method simply identified patients with a high risk of non-PV triggers.

Building upon the recent advancements in applications of deep learning in cardiac imaging and modelling, our study provides a unique approach to tackle the problem of AF ablation leading to recurrence. The developed approach could be translated to the clinic, with routine LGE MRI scans used to create patient-specific LA models and the trained Q-learning algorithm then applied to predict a suitable ablation strategy for the patient. The predicted pattern can then integrated into the ablation image-guidance system to provide additional information for cardiologists performing the ablation procedure. Thus, after further clinical validation, our proof-of-concept Q-learning technique can be applied both to improve understanding of patient-specific ablation therapy and to enhance current clinical treatment methods.
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One of the essential diagnostic tools of cardiac arrhythmia is activation mapping. Noninvasive current mapping procedures include electrocardiographic imaging. It allows reconstructing heart surface potentials from measured body surface potentials. Then, activation maps are generated using the heart surface potentials. Recently, a study suggests to deploy artificial neural networks to estimate activation maps directly from body surface potential measurements. Here we carry out a comparative study between the data-driven approach DirectMap and noninvasive classic technique based on reconstructed heart surface potentials using both Finite element method combined with L1-norm regularization (FEM-L1) and the spatial adaptation of Time-delay neural networks (SATDNN-AT). In this work, we assess the performance of the three approaches using a synthetic single paced-rhythm dataset generated on the atria surface. The results show that data-driven approach DirectMap quantitatively outperforms the two other methods. In fact, we observe an absolute activation time error and a correlation coefficient, respectively, equal to 7.20 ms, 93.2% using DirectMap, 14.60 ms, 76.2% using FEM-L1 and 13.58 ms, 79.6% using SATDNN-AT. In addition, results show that data-driven approaches (DirectMap and SATDNN-AT) are strongly robust against additive gaussian noise compared to FEM-L1.

Keywords: data-driven approaches, physics-based approaches, ECGI inverse problem, cardiac activation mapping, neural networks, deep learning


1. INTRODUCTION

Cardiac activation mapping is an important tool for guiding medical treatments (catheter ablation) of different cardiac pathologies such as atrial fibrillation and ventricular tachycardia. It consists of inserting a catheter into the cardiac chambers and recording the electrical activity of the tissue at a given location. This process is repeated at multiple sites in order to cover a specific area or sometimes the whole cardiac chamber. Then, activation times are derived from these measurements by determining the point of maximum negative slope (IDT: intrinsic deflection time) or the point of maximal signal amplitude (Zipes and Jalife, 2009). The chosen technique depends on the signal nature: unipolar or bipolar. Finally, these activation times are interpolated to create a complete activation map of the heart chamber that helps the doctors localizing the target sites for catheter ablation.

This procedure is known to have some drawbacks. First, it doesn't allow to have a complete map of the chamber activation due to a reasonable limited number of stimulations. This raises different issues such as using inappropriate interpolation approach which can lead to irrelevant activation map reconstructions or mismapping catheter positions during the clinical procedure. Then, the most notable drawback is being invasive.

To address this problem, noninvasive electrocardiographic mapping suggests a battery of approaches to noninvasively reconstruct activation maps from noninvasively recorded body surface potentials (BSPs) and a heart-torso geometry reconstruction based on CT-Scan images using computational methods.

For example, in Cedilnik and Sermesant (2019), authors suggest a model personalization based on eikonal equation to compute activation times. In Van Dam et al. (2009), authors suggest to estimate activation times directly from BSPs using the equivalent double layer source model. In Yang et al. (2018), authors propose a novel formulation of ECGI inverse problem in the frequency domain. In other studies (Zemzemi et al., 2013; Giffard-Roisin et al., 2017), the kernel ridge regression is used to solve the inverse problem and reconstruct activation patterns. Besides, Duchateau et al. have suggested in Duchateau et al. (2016) to improve ECGI mapping by estimating activation delays between neighbor locations and construct an activation map from local activations and delay estimations. From another perspective, researches represented in Liu et al. (2006), Han et al. (2008), and Zhou et al. (2016) different approaches to reconstruct activation patterns using cardiac electric source imaging by identifying current densities in the heart.

However, these approaches use generally inverse methods that are known to be ill-posed and require applying regularization techniques on the solution. This yields smoothed solutions which makes it difficult to detect activation times.

Recent studies conducted a comparison between invasive and noninvasive mapping (Sapp et al., 2012; Cluitmans et al., 2017; Budanova et al., 2019; Duchateau et al., 2019). In Duchateau et al. (2019), authors provide a comparison between invasive contact mapping and noninvasive electrocardiographic imaging (ECGI) activation mapping using 59 clinically acquired activation maps. It states that ECGI mapping should be improved since the agreement between ECGI and invasive mapping results is poor. In fact, it shows that mean activation time error is 20.4 ± 8.6 ms and the between-map correlation is 3 ± 43%.

In this context, few researches were made in order to reach a better accuracy in localizing target sites for guiding catheter ablation using fewer invasive measurements Kania et al. (2018), Arrieula et al. (2019). Recent studies for localizing ventricular activation origin and ventricular tachycardia from the 12-lead ECG using machine learning methods (Zhou et al., 2019; Missel et al., 2020) have shown good performances in the identification of the arrhytmia origin. Godoy et al. suggested in Godoy et al. (2018a,b) a machine learning pipeline to localize atrial ectopic foci using the body surface potential integral maps (BSPMs). Another study developed a machine learning model to identify the site of origin of outflow tract ventricular arrhythmias from simulated patient-specific electrical information (BSPMs, ECGs,…) Doste et al. (2019). In Lozoya et al. (2019), authors suggest an image-based machine learning approach to detect cardiac radio-frequency ablation targets. In the same context, researchers conducted studies to improve efficacy of targeted persistant AF ablation (Alhusseini et al., 2019; Boyle et al., 2019). Recently, few reviews report all these studies and many others related to the application of machine learning approaches to arrhythmias and electrophysiology (Cantwell et al., 2019; Feeny et al., 2020; Trayanova et al., 2021).

In pursuit of the same goal, a previous study (Karoui et al., 2019a) suggests for the first time using artificial neural networks to estimate activation times directly from BSPs. It provides a proof-of-concept by building a model called DirectMap and assessing its performance using in silico data. Another recent study introduced a physics-informed neural networks for cardiac activation mapping (Sahli Costabal et al., 2020). In continuity with our previous works, we conduct a comparative study to evaluate quantitatively the performance of the data-driven methods: DirectMap (Karoui et al., 2019a) and the Spatial Adaptation of Time-Delay Neural Network (SATDNN-AT) (Karoui et al., 2019b) compared to the classic inverse method: Finite Element Method combined with L1-norm regularization (FEM-L1) (Karoui et al., 2018). The choice of these two methods is based on their performance results reported in Karoui et al. (2018) and Karoui et al. (2019b). The study is conducted using atrial paced in-silico data.

This manuscript is organized as follows: in section 2.1, we introduce the 3 methods, the synthetic data we use and the evaluation metrics. In section 3, we detail the results. Then, we end with a discussion, an evaluation of limitations and perspectives of this work, and we conclude in section 4.



2. MATERIALS AND METHODS


2.1. Database

We build a synthetic paced-rhythm dataset of 101 simulations of BSPs and their correspondent activation time (AT) maps on the atrial outer surface. Each sample of BSPs and AT map corresponds to a single stimulation site randomly distributed on the atrial surface. We use the monodomain reaction-diffusion model to simulate the electrical wave propagation inside the heart. In order to simulate the BSPs, we first need to compute the extracellular potential in the heart (EGMs). Then, we use a Laplace's equation in the torso with a Dirichlet boundary condition on the heart-torso interface to compute the BSPs. For more details, see Zemzemi et al. (2013). Activation times are derived from the simulated EGMs by determining the IDT (Intrinsic Deflection Time) at each point of the atrial mesh. Let ui(t) be the unipolar signal at point Xi at time t, the IDT [image: image] is:

[image: image]

where T is the simulation duration. The finite element discretization of the realistic 3D atria-Torso geometry contains 264 nodes for the torso and 1994 nodes on the atrial surface. Each sample contains 400 time steps but the training is performed using only the first 200 time steps corresponding to the p-wave. The data used in the sections 3.1–3.3 are without additive noise.



2.2. Physics-Based Inverse Methods: FEM-L1

The study conducted in Karoui et al. (2018) evaluates the performance of fifteen algorithms combining different discretization and regularization techniques for reconstructing heart surface potentials (HSPs). According to this study, the finite element method combined with the L1-norm regularization (FEM-L1) of the current density over the heart surface provides the best results to solve the inverse problem of electrocardiography in terms of heart surface potential and pacing site localization. As it's mentioned in the state-of-the-art, the inverse problem is mathematically expressed as follows:

[image: image]

where A is the transfer matrix generated using the finite element method, b is the boundary condition vector and x is the unknown potential vector.

Due to its ill-posedness, the inverse problem has to be solved using regularization. In this case, it turns out to minimize the objective function using L1-Norm regularization given by:

[image: image]

where nH is the outward unit normal to the epicardium surface and λ is the regularization parameter.

Using the Finite Element Method, we can define the Dirichlet-To-Neumann operator D satisfying:

[image: image]

where D is an n-by-n matrix where n is the number of nodes in the heart surface.

Therefore, the objective function (3) can be expressed as follows:

[image: image]

Using an approximation of L1-Norm as an L2-norm, the linear problem to be solved is then simplified in a way that it can be seen as a first-order Tikhonov regularization.

In fact, following Karl (2005), we can smoothly approximate the L1-Norm of the derivative by:

[image: image]

where β is a small constant satisfying β > 0 and [image: image] the ith component of the vector Dx.

This approximation leads to a set of equations whose resolution as β → 0 gives an estimate of the solution of (5) by solving the following linear problem:

[image: image]

where Wβ(x) is a diagonal matrix called weight matrix, expressed by:

[image: image]

Then, thanks to the diagonality of Wβ(x), (7) can be written such that:

[image: image]

where [image: image].

Computationally, the equation (9) is non-linear since the weighting matrix Wβ(x) depends on the solution x. To overcome this constraint, we suggest to use the Finite Element zero-order Tikhonov solution x0. Thus, we solve the problem expressed by:

[image: image]



2.3. Data-Driven Inverse Methods

In this section, we suggest two approaches for cardiac activation mapping based on artificial neural networks.


2.3.1. Direct Cardiac Activation Mapping Using Electrocardiograms: DirectMap

We suggest here to reconstruct activation time maps directly from ECGs without using electrograms (EGMs). To do so, we build a classic architecture of a neural network constituted of fully-connected and non-linear activation layers (ReLU). The network architecture is represented in Figure 1A where N is the number of measurement points on the body surface, M is the number of nodes on the heart surface and T is the sequence length.


[image: Figure 1]
FIGURE 1. Architecture diagrams of (A) the direct activation mapping neural network (DirectMap) and (B) the spatial adaptation of the time-delay neural network (SATDNN-AT).


To compute the optimal weights, the model has to minimize the following objective function with respect to the network parameters:

[image: image]

where ATc is the estimated activation times vector and ATe is the target one. According to the neural network architecture, ATc is defined as follows:

[image: image]

Here, [image: image] are network layer weights and b1,2,3 are biases.

The method consists of using the ECGs of a heartbeat sequence as input to the artificial neural network in order to estimate the corresponding activation time map.

A study is conducted over the neural network layers size. The aim is to determine the optimal model architecture for a given dataset. In order to guarantee a predefined accuracy on activation times reconstruction with the lower possible dataset size, we conducted a grid search procedure, allowing to determine simultaneously the maximal sparsity in the training data set and the optimal architecture of the neural network. We defined a threshold equal to 15 ms in terms of absolute error to choose the model with the minimal dataset size achieving a performance under this threshold. Results are reported in section 3.1.



2.3.2. Cardiac Activation Mapping Using Reconstructed Electrograms by SATDNN-AT

The SATDNN-AT method was firstly introduced in Karoui et al. (2019b). It consists of reconstructing a heart surface potential at a time step t from body surface potential measurements at time step t and its previous values t − 1, t − 2, etc. The main idea is that the body surface potential at a time step t is highly dependent to its values at previous time steps t − 1, t − 2, etc. Thus, TDNN (Waibel et al., 1989) is a good candidate to get use of this dependence. In fact, each neuron in the TDNN uses the current and its d previous values of the BSP input to estimate the HSP target at the given time step t where d is the time-window size to fix.

Similarly to the temporal correlation, the heart surface potential in a given point P is strongly dependent on its recorded values at the adjacent points due to the propagation phenomenon. Hence, we use the spatial adjacency matrix as a representation of the relation between the target spatial location and its adjacent locations. According to Karoui et al. (2019b), this model called SATDNN-AT is made with two hidden layers. The first layer is identical to the TDNN where D(d) is the time delay window of size d as represented in Figure 1B. Then, we perform an element-wise multiplication of the first layer output by the first order adjacency matrix Adj(1). This allows, for each point, to only keep the weights corresponding to its adjacent points and reduces the others to zero.

In the interest of betterment, the model is here improved by building an autoencoder-like architecture represented in Figure 1B. It consists in building a bottleneck in the neural network that provides a compressed information representation which allows the model to ignore signal noise. The effect of this modification will be discussed in section 4.




2.4. Implementation

Data-driven models are implemented using Pytorch (Paszke et al., 2019). To train our models over labeled data, we use the mean squared error as an optimization criterion and the stochastic gradient descent as an optimization algorithm. K-fold cross validation (Refaeilzadeh et al., 2009) is used to evaluate the model performance on unseen data. It generally results on a less biased estimation of the target. The procedure consists on splitting the dataset on a training-validation dataset and a testing dataset. Then, K-fold cross validation is applied on the training-validation dataset. In fact, this latter is splitted into K groups. Each unique group is once kept as a validation dataset and all the remaining ones are used for training the model. In the end, the trained models are evaluated over the testing dataset. The training phase ends when the optimization criterion stops improving over the validation dataset. Hyper-parameters of the models are tuned empirically based on the performance of the models on the validation dataset. Learning rate and momentum are, respectively, 0.00001 and 0.8. The cross validation parameter K is equal to 4. Training and validation subsets are shuffled at each epoch of the training process. The time-window size d of SATDNN-AT is equal to 2.

Concerning the physics-based method, we developed the numerical tools into MUSIC software (Multi-modality Platform for Specific Imaging in Cardiology) (Cochet et al., 2014). More information about the MUSIC platform could be found in the following link: https://www.ihu-liryc.fr/en/music. MUSIC is intended for cardiac imaging processing, cardiac mapping analysis and electrocardiographic imaging inverse problem resolution.

For both potential based methods SATDNN-AT and FEM-L1, we post process the computed EGM signals using a Butterworth low-pass filter that eliminates the high frequency fluctuations.



2.5. Evaluation Criteria

To assess the precision of reconstructed activation maps, a point-based absolute activation time error (AATE) is computed as the absolute value of the difference between the exact and computed activation times at each point of the atrial mesh. Given [image: image] the exact activation time at point j of the simulation i, [image: image] can be expressed as follows:

[image: image]

where [image: image] is the computed activation time at point j of the simulation i. Then, an average over all the mesh is computed. Pearson correlation coefficients (CC) are also computed between each activation time map pair for every simulation. To assess pacing site localization, we use the geodesic distance between estimated and exact pacing sites. These latter correspond, respectively to the node that has the minimum of estimated and exact activation times.




3. RESULTS


3.1. Database Dependency Analysis

In this section, we present the results of the database dependency analysis performed on DirectMap. As it's mentioned in section 2.1, the database contains 101 simulations. To assess the database dependency, we suggest selecting subsets from the original dataset using the geodesic distance between stimulation sites as a selection criterion. In fact, we first compute the geodesic distances between all the stimulation sites corresponding to the 101 simulations. Then, we select the simulations whose distance between stimulation sites is above a fixed threshold. Using this approach, we succeed to select 9 subsets containing, respectively, 100, 85, 63, 50, 32, 25, 18, 16, 12, 10, and 8 simulations corresponding to a minimal distance between stimulation sites equal to 0.2, 1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2, 9.2, and 10.2 mm, respectively. The subsets have been constructed by computing the minimal ([image: image]) and maximal ([image: image]) inter pacing sites distances, discretizing the interval [image: image] by 1mm, finding the subsets corresponding to each discretization step and removing the subsets containing <8 cases. This approach characterizes the spatial sparsity of each training data with its inter pacing site distance.

Figure 2 shows the evolution of mean and standard deviation of absolute activation time error and correlation coefficient over the testing subset with respect to dataset size. Each row corresponds to the results obtained using, respectively (from top to bottom) 5, 10, 100, 1000, 2000, and 8000 neurons per hidden layer in the neural network.


[image: Figure 2]
FIGURE 2. (A) Activation time absolute errors and (B) correlation coefficients with respect to dataset size. Each subfigure corresponds to trained neural network with the mentioned number of neurons per layer (nbNeurons).


To select the most appropriate model, we refer to the study conducted by Duchateau et al. (2019), where mean absolute error between invasive and noninvasive estimated activation times is equal to 20.04 ms. Considering the fact that this study is performed using in-silico data, we use a threshold in terms of absolute error equal to 15 ms represented in the Figure 2 by the dashed line. Another important selection criterion is the standard deviation. In fact, a high standard deviation means that results fluctuate between the folds and thus the model is not stable and vice versa.

By taking into account all these criteria, we observe that the model using 1000 neurons per hidden layer is the most stable for all the dataset sizes. We observe also that absolute activation time errors and correlation coefficients improve by increasing the dataset size. The sub-figure corresponding to the model using 1000 neurons per hidden layer shows that starting from 32 simulations, the results are below the threshold in terms of absolute error and above 80% in terms of correlation coefficient.

Therefore, results of the next phase of the study correspond to the chosen model using 1000 neurons per hidden layer and trained using the subset that contains 32 simulations. This subset corresponds to the case where the inter-pacing site distance is at least equal to 4.2 mm.



3.2. Cardiac Activation Mapping Results

In this section, we detail the results of the 3 methods and compare their performances based on the point-wise absolute activation time error and correlation coefficient. To do so, we choose the best model, in the sense of validation, from the 4 built models using the k-fold cross validation approach for DirectMap and SATDNN-AT. Figure 3 shows the absolute activation time error and correlation coefficient for every simulation of the training, validation and testing datasets using the methods DirectMap, SATDNN-AT and FEM-L1. If we concentrate on the testing results, we observe that DirectMap performs better than FEM-L1 and SATDNN-AT in terms of absolute errors and correlation coefficients. In fact, the average and standard deviation of the absolute errors and correlation coefficients are, respectively, equal to 7.20±3.42 ms, 93.2±2% using DirectMap, 14.60 ± 1.36 ms, 76.2 ± 5% using FEM-L1 and 13.58 ± 3.42 ms, 79.6 ± 11% using SATDNN-AT. These results are reported in Tables 1, 2.


[image: Figure 3]
FIGURE 3. Comparison of the computed electrograms at different location of the atria: Exact solution (red line), solution using SATDNN-AT method (EGM_NN, blue line), SATDNN-AT with filter (EGM_NN_Filt, orange line) and FEM-L1 (EGM_FEM, green line). Points correspond to the estimated activation times. Each plot corresponds to a different node of the atria mesh.



Table 1. Means and standard deviations of absolute errors over training, validation, testing datasets and over all data (ms).

[image: Table 1]


Table 2. Means and standard deviations of correlation coefficients over training, validation, testing datasets and over all data (%).

[image: Table 2]

When looking into SATDNN-AT results, we observe little fluctuations in the reconstructed EGMs which, for instance, can mislead the computation activation time estimation due to the fact that the AT is computed using the IDT. In order to solve this issue, we post process the computed EGM signals using a Butterworth low-pass filter that eliminates the high frequency fluctuations. Figure 4 represents exact and reconstructed EGMs using SATDNN-AT and SATDNN-AT after filtering at some selected points on the atrial surface. We observe that filtering either narrows or keeps the gap between exact and estimated activation times in almost all the nodes. In average, Tables 1, 2 show that results using the filtering technique are better than without filtering. To make a fair comparison, the same low-pass filter used for post-processing SATDDN-AT electrograms is applied to EGMs reconstructed by FEM-L1.


[image: Figure 4]
FIGURE 4. Comparison of (A) absolute errors and (B) correlation coefficients between exact and computed activation times using FEM-L1, DirectMap, SATDNN-AT and SATDNN-AT with filter for the 32 simulations.




3.3. Pacing Site Localization Results

To assess the pacing site localization performance, we use the geodesic distance between exact and reconstructed pacing sites as an evaluation metric. According to the observed results, there is an exception where we reconstruct the pacing site differently. In the case where the minimum value of activation times is shared by multiple nodes, as shown in Figure 5, we choose to take the gravity center of the nodes having the minimal AT value as the reconstructed pacing site.


[image: Figure 5]
FIGURE 5. (A) Exact and reconstructed pacing sites using (B) FEM-L1, (C) SATDNN-AT with filter and (D) DirectMap for a test simulation. Numbers are geodesic distances between exact and estimated pacing sites.


In Figure 6, we show the simulations of the testing dataset with the reconstructed pacing sites and the geodesic errors. We observe that in average, geodesic distances using FEM-L1, SATDNN-AT and DirectMap are, respectively, 9.5 mm ± 8.1, 13.2 mm ± 5.7, and 7.6 mm ± 4.2. We conclude that DirectMap outperforms the two other methods in terms of pacing site localization.


[image: Figure 6]
FIGURE 6. (A) Exact and estimated pacing sites using (B) FEM-L1, (C) SATDNN-AT with filter and (D) DirectMap for 7 different test simulations. Numbers are geodesic distances between exact and estimated pacing sites.




3.4. Robustness Against Added Gaussian Noise to the Testing Data

To assess and compare the robustness of the three methods against additive Gaussian noise, we represent in this section their results in terms of absolute activation time errors and correlation coefficients after adding to ECGs different noise levels in the range between 5 and 50% of the maximum signal amplitude. These tests are performed only on the testing data. Tables 3, 4 show that DirectMap is insensitive to noise addition in terms of both absolute error and correlation coefficient. Besides, SATDNN-AT is more robust than FEM-L1 against additive noise.


Table 3. Means and standard deviations of absolute activation time errors of the testing dataset with respect to noise level (ms).

[image: Table 3]


Table 4. Means and standard deviations of correlation coefficients of the testing dataset with respect to noise level (%).

[image: Table 4]

Considering that the 3 methods behave the same way for all the simulations, Figure 7 represents results of a simulation of the testing dataset that confirms the previous deductions. In fact, we observe that FEM-L1 absolute error deteriorates from 15 to 32ms then from 32 to 43 ms for, respectively, 5 and 50% of noise level. The same applies to correlation coefficient that decreases from 79 to 38% then from 38 to 18% for, respectively, 5 and 50% of noise.


[image: Figure 7]
FIGURE 7. Evolution of (A) absolute errors and (B) correlation coefficients between exact and estimated activation times with respect to noise level using FEM-L1, DirectMap and SATDNN-AT.


Figure 8 shows exact and estimated electrograms by FEM-L1 and SATDNN-AT using different noise levels going from 5 to 50%. We observe that the reconstruction quality of the electrograms using FEM-L1 deteriorates proportionally to the added noise level. However, the reconstructed electrograms using SATDNN-AT are slightly affected by the added Gaussian noise, which explains the difference between SATDNN-AT and FEM-L1 results in terms of activation time estimation.


[image: Figure 8]
FIGURE 8. Exact and estimated electrograms using (A) FEM-L1 (EGM_FEM_Filt) and (B) SATDNN-AT (EGM_NN_Filt) with respect to the added noise level.




3.5. Robustness Against Added Gaussian Noise to the Training Data

In this section, we study DirectMap model performance when trained and tested using noisy data. To do so, we generate noisy ECGs by adding 25% of noise. Then, activation maps are contaminated by adding a uniformly distributed noise between −5 and 5 ms, −10 and 10 ms, −20 and 20 ms, −30 and 30 ms. Figure 9 presents the average performance of the trained models using the noisy data with respect to the intensity of the added noise. We observe that the model performance deteriorate when the noise intensity increases. The mean absolute activation time error increases from 8.8 to 19.02ms and the correlation coefficients decreases from 96 to 80% when using ±5 and ±30 ms of noise, respectively.


[image: Figure 9]
FIGURE 9. Inflated torso geometry generated by inflating the original geometry by a factor 1.2.




3.6. Robustness Against Geometric Uncertainties During the Testing Phase

To assess the robustness of the methods against geometric uncertainties, we modify the torso geometry by applying an inflation of a 1.2 factor as represented in the Figure 10. ECGs are simulated by solving the forward problem using the inflated geometry.


[image: Figure 10]
FIGURE 10. Bar graphs of the evolution of (A) absolute errors and (B) correlation coefficients with respect to noise added to activation maps. The results correspond to the testing phase.


First, the modified ECGs are used to test the initial model DirectMap. Mean absolute error and correlation coefficient are equal to 14.08 ± 2.38 ms and 94.2 ± 35%, respectively. Using FEM-L1, results are 25.9 ± 5.6 ms and 43.7 ± 20.1%. Finally, we observe an absolute activation time error and a correlation coefficient equal to 23.5 ± 6.2 ms and 57.8 ± 11.9% using SATDNN-AT. To plot a complete comparison between the methods, we compute the evaluation metrics for SATDNN-AT and FEM-L1 after filtering. Results are 24.3 ± 5.2 ms and 53.5 ± 22.1% using FEM-L1 with filter and 21.2±4.7ms and 66.8±7.8% using SATDNN-AT with filter.

Then, Table 5 reports the evolution of absolute errors and correlation coefficients with respect to noise added to activation maps using the inflated torso geometry during the testing phase. We observe a deterioration in terms of absolute errors and correlation coefficients. The absolute error increases when using a noise between −5 and 5 ms from 17.6ms to 19.9ms when we add a noise between −30 and 30 ms. The correlation coefficient decreases from 91.5 to 85.9%.


Table 5. Means and standard deviations of absolute errors and correlation coefficients of the inflated testing dataset with respect to noise added to activation maps.

[image: Table 5]




4. DISCUSSION AND CONCLUSION

This study addresses two different issues: First, it studies the DirectMap generalization performance with respect to dataset size and the neural network architecture. Then, it compares DirectMap with two methods of the state-of-the-art cardiac activation mapping. The results confirm that the larger the dataset, the greater the performance. According to Duchateau et al. (2019), mean activation time absolute error using non-invasive cardiac activation mapping methods assessed on clinical data is equal to 20.04 ms. So, by fixing a threshold equal to 15 ms we deduce that using 32 simulations as a training dataset provides a great generalization performance.

Based on these results, a comparison study is conducted between DirectMap, SATDNN-AT and FEM-L1. It shows that DirectMap outperforms the two other methods. In terms of cardiac activation mapping, DirectMap achieves an improvement of nearly 7 ms in absolute error and, respectively, 10%, 17% in terms of correlation coefficient compared to SATDNN-AT and FEM-L1. A robustness analysis against noise was also conducted. First, it shows that DirectMap is strongly robust against eventual additive gaussian noise present in ECGs compared to SATDNN-AT and FEM-L1. Results show also that SATDNN-AT is more robust than FEM-L1 whose performance massively deteriorates. This study shows that data-driven methods are more robust than physics-based methods. This is due to the use of auto-encoder architecture which is known for its great performance in denoising data. In fact, it allows the neural network to learn from a reduced representation of the input information by ignoring noise features. Second, DirectMap performance was assessed when trained and tested using noisy data. As expected, the study shows that the performance deteriorates proportionally to the added amount of noise but it is still under the fixed threshold even when the noise added to activation maps ranges between −20 and 20 ms. Geometric uncertainties were also considered by inflating the torso geometry by a 1.2 factor. Testing the different approaches with these data shows a decline in the evaluation metrics. Nevertheless, DirectMap still achieves the best performance compared to FEM-L1 and SATDNN-AT.

Although DirectMap has promising results compared to SATDNN-AT and FEM-L1, many limitations are still to be addressed in future works. First, we have to admit that the built model has a basic neural network architecture which can be improved to meet the complexity of the problem. We have to notice that the size of the database has been optimized on the basis of DirectMap performance results and used later to evaluate the performance of the two other methods. This doesn't affect the FEM-L1 results. However, this choice might not be optimal for SATDNN-AT. Then, as we mentioned in Karoui et al. (2019a), tests are performed using perfect data with the same heart-torso geometry which is not compatible with real cases. So, geometry standardization would be one step forward in data-driven cardiac activation mapping. We also have to notice that using intrinsic deflection time as the computation method of activation time from the inverse solution computed with SATDNN-AT and FEM-L1 may not be optimal to compare these two methods to DirectMap. Besides, we observe that low-pass filtering of the inverse solutions EGMs improved the reconstruction of the activation maps. Moreover, since cardiac activation mapping is a diagnostic tool of cardiac diseases, our model would be more credible if trained and tested using data illustrating some specific cardiac pathologies. Like all the methods used in ECGI mapping, in order to take into account real-life data acquisition inaccuracies, it's important to quantify the performance of the model with respect to uncertainties such as misplacement of electrodes, shift and/or rotation of the atrial geometry within the body volume, different forward and inverse calculations, different electrode setups and number of electrodes, for example using standard 12-lead ECG instead of BSPMs. Geneser et al. (2007), Fikal et al. (2019), Tate et al. (2021), and Multerer and Pezzuto (2021) Finally, our study is still a proof-of-concept until sufficient clinical data would be available to validate our results.

Even though our model achieves valuable results, it is still not applicable in clinical cases due to the high number of required stimulations. To address this issue, future works will focus on data augmentation techniques in order to enrich the dataset without performing many pacings. One of the options is to combine data-driven and physics-based methods as it's presented in a recent study conducted by Sahli Costabal et al. (2020). After proving the feasibility and applicability of DirectMap, this work attests that it outperforms at least two of state-of-the-art methods: SATDNN-AT and FEM-L1. In summary, this study is encouraging and suggests that DirectMap technique needs further investigation and may have potential to become a useful noninvasive cardiac activation mapping tool.
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The combination of machine learning methods together with computational modeling and simulation of the cardiovascular system brings the possibility of obtaining very valuable information about new therapies or clinical devices through in-silico experiments. However, the application of machine learning methods demands access to large cohorts of patients. As an alternative to medical data acquisition and processing, which often requires some degree of manual intervention, the generation of virtual cohorts made of synthetic patients can be automated. However, the generation of a synthetic sample can still be computationally demanding to guarantee that it is clinically meaningful and that it reflects enough inter-patient variability. This paper addresses the problem of generating virtual patient cohorts of thoracic aorta geometries that can be used for in-silico trials. In particular, we focus on the problem of generating a cohort of patients that meet a particular clinical criterion, regardless the access to a reference sample of that phenotype. We formalize the problem of clinically-driven sampling and assess several sampling strategies with two goals, sampling efficiency, i.e., that the generated individuals actually belong to the target population, and that the statistical properties of the cohort can be controlled. Our results show that generative adversarial networks can produce reliable, clinically-driven cohorts of thoracic aortas with good efficiency. Moreover, non-linear predictors can serve as an efficient alternative to the sometimes expensive evaluation of anatomical or functional parameters of the organ of interest.

Keywords: virtual cohort, thoracic-aorta, digital twin, synthetic population, clinically-driven sampling, support vector machine, generative adversarial network, in-silico trials


1. INTRODUCTION

In the last decades, the development of computational models able to account for personalized data has proven to be an essential tool in the path to precision cardiology (Lamata et al., 2014). When applied to large cohorts of patients, these models allow to perform in-silico clinical trials on the so-called digital twins (Lopez-Perez et al., 2019; Corral-Acero et al., 2020; Gillette et al., 2021; Peirlinck et al., 2021), which can focus on target sub-populations (Lange et al., 2016) for particular applications. One enabling pillar to in-silico analysis is the availiability of 3D image datasets, acquired via techniques such as Computerized Tomography or Magnetic Resonance Imaging scans. These techniques provide a spatial description from which the organs of interest are segmented and, typically, transformed into a mesh which can be used to provide patient-specific or population representative computer models (Lopez-Perez et al., 2015).

However, clinical adoption of digital twin technologies is limited to the scarce availability of clinical anatomical data with enough level of detail, specially in the case of rare conditions. The segmentation of clinical images is time-consuming and suffers from observer variability. Despite the promising results in the automation of the process via machine learning approaches (Bratt et al., 2019; Hepp et al., 2020; Gilbert et al., 2021), these models fail to generalize well if the object of interest is infrequent in the population. Thus, in clinical practice, image processing and segmentation remains mostly a semi-automatic task. Finally, common approaches used to build virtual populations are based on statistical shape modeling (Young and Frangi, 2009; Casciaro et al., 2014), or other descriptive statistics that rely on the geometrical variability of the samples, that is, are data-driven (Rodero et al., 2021). As opposed, clinically-driven approaches must produce virtual cohorts with a common underlying clinical characteristic or phenotype, and typically depend on the anatomical or functional properties of the organ of interest (Romero et al., 2009; Britton et al., 2013).

Some studies based on statistical shape modeling, i.e., data-driven approaches, have tried to find correlations with anatomical phenotype. In Cosentino et al. (2020), they aimed to explore the aortic morphology and the associations between shape and function, obtaining shape modes that were associated to specific morphological features of aneurysmal aortas. In Bruse et al. (2017), unsupervised hierarchical clustering was used to cluster anatomical shape data of patient populations to obtain clinically meaningful shape clusters of aortic arches. More recently, Thamsen et al. (2021) developed a clinically-oriented methodology for generating a large database of synthetic cases to train machine learning models, with characteristics similar to clinical cohorts of patients with coarctation of the aorta. In that case, in addition to the geometrical data, flow fields and simulation results were used to define the virtual cohorts, by filtering out the virtual population samples that did not meet some clinical restrictions. This is a common approach, since random generation of individuals does not guarantee that the resulting anatomic case will be physiologically plausible or will belong to the target population. Thus, the generated sample has to be filtered through different acceptance criteria, which can range from mere outlier rejection, based on a real observed cohort when available, to more sophisticated tests to restrict the sample to a particular phenotype (Niederer et al., 2020).

Nonetheless, the application of acceptance criteria implies that part of the effort done to generate and assess synthetic cases will be discarded. This waste of effort can be dramatic if the acceptance criteria are computationally demanding, e.g., if the decision depends on the result of a Computational Fluid Dynamics simulation (Thamsen et al., 2021), or if the target cohort is infrequent in the population.

The main goal of this paper is to assess different strategies to increase the efficiency of the generation of thoracic aorta cohorts, understanding the efficiency as the ratio of accepted cases with respect to the total number of cases generated and evaluated. We focus on clinically-driven criteria, and rely on machine learning techniques to accelerate the acceptance criteria evaluation when computationally demanding tasks are involved. The problem can then be recasted into one of classification, where we want to find the anatomies that meet a given criteria before evaluating it.

Considering the cases in which the evaluation of the acceptance criterion is expensive, e.g., when simulations are involved, we propose the substitution of this computation by machine learning surrogates. In particular, we build functions, based on Support Vector Machines (SVM), that predict the outcome of the biomarkers and of the acceptance criteria without having to compute them explicitly. This strategy can substantially accelerate the process in those cases in which the evaluation of the acceptance criterion is computationally demanding.



2. MATERIALS AND METHODS


2.1. Problem Statement

In order to properly define the problem we consider a starting cohort, C0, which is determined by a set of n-dimensional vectors, {ai}i = 1, …, K0, in some feature space. Each vector [image: image] represents the codification of the aorta anatomy of an individual. This cohort is a sample of an underlying population [image: image], which corresponds to the set of physiologically viable aortas of the phenotype of interest. The goal of the cohort synthesis problem is to generate a new cohort C1 = {aj}j = 1, …, K1, with K1≫K0, and with the property that [image: image]. In order to decide whether a particular aorta belongs to the population, we can use whatever prior information we have about it, which can range from the statistical plausibility of a particular vector, compared to the original cohort, to the evaluation of its anatomical or functional properties. We can express this by means of a acceptance function, [image: image], with [image: image]. Provided that we have some computable estimation of [image: image], and following the scheme depicted by Niederer et al. (2020), the procedure can be barely described as: draw vectors aj, and add them to C1 if [image: image], until |C1| = K1.

As one can expect, this problem has a small efficiency ratio using a simple draw-and-test strategy. As an example, let us consider the problem of generating a cohort of patients from one of the three disjoint phenotypes proposed by Schaefer et al. (2008). In that study, the authors classify the aortic root based on the relationship between the radius of the Sinuses of Valsalva, the sino-tubular junction and the mid-ascending aorta (Figure 1, left, shows the definition of the three phenotypes). Given an initial cohort C0 containing the three phenotypes in different proportions, the goal of the experiment is to generate a virtual cohort that only includes one of them. Figure 2 shows that, even though aortas of the three classes can be easily separated in the clinical biomarkers space (Figure 2, left), the distribution of a particular class in the feature space can be much harder to infer. If the target class has a low relative frequency (e.g., phenotype N has a frequency below 15%), then a simple draw-and-accept strategy will lead to a very low success ratio. Our study addresses this limitation by reviewing several sampling methods and assessing them in terms of efficiency. In addition, we propose the use of machine learning surrogates to reduce the number of acceptance function evaluations.


[image: Figure 1]
FIGURE 1. Geometric biomarkers and phenotypes used in the study. Left, graphical representation of some of the considered anatomical biomarkers superimposed on the anatomy of an aorta. Right, the three phenotypes defined by Schaefer et al. (2008), that are used in the clinically-driven cohort generation. The reader can refer to Table 1 for the detailed meaning of the acronyms.



[image: Figure 2]
FIGURE 2. A sample with the three aortic root phenotypes (labeled as N, A, and E) defined in Schaefer et al. (2008) represented in the biomarkers space (left) and in the feature space (right). Each point represents an aorta. In the biomarkers representation, the coordinates correspond to the three biomarkers involved in the phenotype definition, in millimeters (refer to Figure 1 and Table 1 for acronym meanings and phenotype definitions). In the feature space representation, the coordinates are the coefficients of the three deformation modes, c3, c6 and c9, that are most discriminant in this problem. Phenotype N is represented in red, phenotype A in green and phenotype E in blue. While in the biomarkers space the three phenotypes are clearly separable, the region occupied by a particular group in the feature space is much harder to identify and exploit for cohort synthesis.




2.2. Geometric Aorta Representation

For this study, we used a retrospective dataset of 26 thoracic aortas that corresponded to patients with ascending aorta aneurysm. The patients, with ages ranging from 78 to 89 years old, were diagnosed with aortic valve stenosis and were prescribed a valve implantation. Data had been previously segmented manually by expert radiologists from the Computerized Tomography scans in the mesosystole phase of the cardiac cycle prior to the intervention. The supra-aortic branches were removed in all the cases. The final input data used in this study was the set of 26 anonymized triangular surface meshes. This original dataset from which meshes were segmented met the requirements of the Declaration of Helsinki and was approved by the institutional ethics committee.

In our study, we represent the aorta geometry following the approach described by Romero et al. (2019), which is partly equivalent to the description proposed by Meister et al. (2020). The representation starts by approximating the centerline of the thoracic aorta as a cubic B-spline, α:[0, 1] → ℝ3. Then, for each point on the wall x, we compute the closest point on the centerline, α(s), and its polar coordinates, (θ, ρ), in a local reference frame, < t, v1, v2> centered in α(s), with t the unitary tangent to the curve. After building a set of points (s, θ, ρ), we compute a bivariate cubic polynomial that fits ρ as a function of (s, θ). Using this information, any point on the surface can be parameterized as

[image: image]

A high dimensional feature vector for the aorta anatomy is formed by the coefficients of the polynomials that approximate the centerline and the radius in Equation (1). Based on this representation, any anatomy in a cohort of aortas can be described using a mean aorta plus the sum of a reduced set of deformation modes, computed with a Principal Component Analysis (PCA). Each mode of deformation is a high dimensional feature vector that, when added to the mean aorta feature vector, leads to a variation of shape that is relevant in the observed cohort. The representation of a specific aorta in feature space consists of the set of coefficients corresponding to the modes of deformation [the reader can refer to the work by Varela et al. (2017) for further detail on the approach]. In our experiments, we will use low dimensional feature vectors obtained in this feature space generated by the PCA. The dimensionality will be chosen so that it is able to explain a substantial part of the observed shape variation and to account for the particular anatomical traits that are relevant in the experiments. In all the experiments, the feature space that will be used is the one identified from the cohort or real patients' anatomies. This approach is often referred to as Statistical Shape Modeling (Cootes et al., 1995), where the set of shapes that can be described by the feature space is limited to the deformation modes observed in the real cohort. Thus, there is no guarantee that there is a feature vector accurately representing a given anatomy, specially if its phenotype is very different to those observed.



2.3. Anatomical Biomarkers on the Aorta

In order to define different acceptance criteria and target phenotypes for which to generate synthetic cohorts, we are going to use a set of 11 anatomical biomarkers of the thoracic aorta, previously described in the literature (Schaefer et al., 2008; Craiem et al., 2012; Casciaro et al., 2014; Bruse et al., 2016; Liang et al., 2017; Sophocleous et al., 2018). Table 1 gives a description of the biomarkers used here, while Figure 1 shows some of them sketched over the anatomy of an aorta from the original cohort. For each feature vector, the set of 11 biomarkers are computed automatically after reconstructing its geometry. Those biomarkers that are defined as the radius of a cross-section are always computed as the semi-major axis of the best fitting ellipse.


Table 1. List of biomarkers used to describe the thoracic aorta geometry.

[image: Table 1]



2.4. Sampling Methodology

The feature space generated after the PCA (described in section 2.2) can also be exploited to draw new random individuals by means of Statistical Shape Modeling (Heimann and Meinzer, 2009). Given a feature vector a = (a1, …, an), each component ai is interpreted as the coefficient associated to the i-th deformation mode, and the corresponding anatomy can be reconstructed by adding all these deformation modes to the mean aorta shape. Thus, by means of the generation of random feature vectors, new anatomies can be synthesized (Liang et al., 2017; Rodero et al., 2021; Thamsen et al., 2021). We have grouped the sampling strategies in three main categories: non-parametric sampling, parametric sampling and Neural Network based generation.


2.4.1. Non-parametric Sampling

If we have a small sample, we can make use of a bootstrapping technique. Bootstrapping allows to generate a new sample of larger size, with similar statistical properties to the original reduced dataset (Efron, 1979; Efron and Tibshirani, 1993). Essentially, bootstrapping generates a new feature vector a = (a1, …, an) in which each component is chosen randomly from the observed values in the original, small sample. Starting from the reference cohort of size K0 = 26, formed by aortas of real patients, we project their geometric description onto the reduced dimension feature vector. Next, using the coordinates of the resulting K0 feature vectors we generate a larger size cohort using bootstrapping.



2.4.2. Parametric Sampling

An alternative to non-parametric sampling is to assume some hypothesis on the probability distribution of each coefficient, ai. Then, the hyper-parameter of the distributions can be inferred from the original sample. Synthetic samples can be directly drawn with pseudo-random number generator that mimics the inferred distribution. In this work we used multivariate Gaussian distribution, which is typically assumed when dealing with natural phenomena, and uniform distribution typically related to Monte Carlo experiments. Given the multidimensional dataset, [image: image], where [image: image], the Gaussian distribution, [image: image] is determined by the mean, μ and covariance matrix Σ, that can be estimated with the sample mean [image: image] and the sample covariance matrix [image: image]. The uniform distribution, [image: image] is determined by the lower and upper extrema of the intervals for each dimension 1 ≤ j ≤ n. Sample min, [image: image] and max,[image: image] are used as estimates.



2.4.3. Generative Adversarial Networks

Generative adversarial networks (GAN), proposed by Goodfellow et al. (2020), offer a sample generation strategy from the machine learning perspective. The model consists of a combination of two artificial neural networks, a Generator (G) and a Discriminator (D). The generator uses a density distribution to generate new data. Opposed to the generator, the discriminator acts as a classifier trying to detect whether the observed data are coming from G or come from the real dataset. This learning model is based on the zero-sum or minimax strategy for non-cooperative games. Within this learning strategy, D is trying to maximize its accuracy at classifying data between real and fake, while, G is trying to minimize D's accuracy, by fooling it. A GAN model converges when discriminator and generator reach a Nash equilibrium, or optimal point for the minimax problem. For the use of GAN to generate new samples we start with the reference cohort C0 for which we want to obtain a larger sample. During the training process, we will present to the GAN the observed feature vectors as real samples.




2.5. Cohort Generation Experiments

Each experiment will be aimed to evaluate the efficiency of the different sampling methodologies in a particular scenario. Each scenario is defined by a reference cohort C0 (with size K0) and an acceptance function [image: image] that takes the value 1 on a feature vector a if and only if a represents an aorta that meets the defined acceptance criterion. During the experiment, a sample C1 of size K1≫K0 aortas will be generated and evaluated using [image: image]. The outcome of the experiment for a given sampling strategy will be an efficiency ratio defined as

[image: image]

Based on this common scheme we define three main scenarios. Data-driven cohort generation, clinically-driven cohort generation and feature space acceptance criterion usage. Next, we describe these three problems, together with the different acceptance criteria that are used. Each experimental setup is repeated for all the sampling strategies discussed in section 2.4. The acceptance functions involve the set of biomarkers described in section 2.3. Thus, the evaluation of an acceptance function involves the reconstruction of the surface of the aorta, from the description defined in section 2.2, and the automatic computation of the biomarkers. Figure 3 shows an scheme of the workflow along with the complete set of experiments that are performed.


[image: Figure 3]
FIGURE 3. An scheme of the workflow followed in our experimental setup. On the left track, the data-driven cohort generation scenario is shown; the reference cohort C0, that is characterized using PCA to generate new samples CB, CG, CU, and CGAN, which are assessed with the acceptance functions [image: image]. The middle track, representing the clinically-driven experiments, starts splitting the samples of the boostrapping cohort, CB, generated on the previous scenario, onto the three target phenotypes, N, A and E and, then, new cohorts [image: image], [image: image], [image: image] and [image: image] are generated and, again, assessed by the corresponding acceptance functions [image: image]. Finally the rightmost blocks represents the development of Machine Learning surrogates to predict the acceptance functions. The synthetic cohort CB is used to train two SVM models, Pp and [image: image] (PD in the chart), that predict the outcome of [image: image] and the aorta phenotype, respectively. The models are evaluated with CU, that was not used during training. For any item of the picture, a purple frame means data-driven and an orange frame means clinically-driven. The reader can refer to the text for further detail.



Problem 1: Data-Driven Acceptance Criteria

Given a reference cohort C0, we consider data-driven cohort synthesis as the sampling of a larger cohort C1 with the only acceptance criteria of being compatible with C0. In this first set of experiments the acceptance function must be some measure of how likely is a particular observation a, provided that it belongs to the same population from which C0 was drawn. In our data-driven cohort generation experiments, the reference cohort is the sample formed by 26 aorta geometries acquired from real patients described in section 2.2. The generated cohort will have a size K1 = 3, 000.

The particular definition of [image: image] can depend on our goals when generating C1; e.g., if we want to simulate and assess the effect on a biomarker of a clinical intervention, we will favor a cohort that provides a good statistical description of the underlying population; on the contrary, if C1 is to be used as the training set for a nonlinear model, then we may require that the population is more evenly sampled to prevent unbalanced classes, regardless the actual frequency of each group in the population. For this reason we use three acceptance functions and present the results for discussion, indicating in which contexts they could be of interest. All three criteria are based on an acceptance interval for the values of the biomarkers, and differ in the way this interval is defined.

The first acceptance criterion is based on the mere range of the observed biomarkers in C0. In order to accept a feature vector a, the associated geometry must have all biomarkers within the observed ranges. We will refer to the acceptance function for this criterion as [image: image].

The second acceptance criterion takes into account the dispersion observed in the original cohort to perform a sort of outlier rejection. More precisely, we define intervals that accumulate the 95% of the probability of finding each biomarker. In absence of any other information about the actual distribution of the different biomarkers, we rely on Chebyshev's theorem. This theorem sets a bound for the probability accumulated in the tails of a distribution based on the mean μ, the variance σ and the mode M. Assuming unimodality, Chebyshev's theorem establishes that the interval defined by M±3B, where [image: image] contains at least 95% of the area under the probability function1. Refer to the work by Amidan et al. (2005) for further detail. The acceptance criterion is met by a vector if all the biomarkers fall into the corresponding interval, computed with the estimators on the sample C0. We will refer to the associated acceptance function as [image: image].

The third acceptance criterion assumes normality in the distribution of the biomarkers. Since we are dealing with a sample of a natural population it is reasonable to consider the possibility that at least some of the biomarkers follow a Gaussian distribution. Since the previous acceptance criterion is rather permissive, as it is completely agnostic of the probability density functions of the biomarkers, we consider pertinent adding a more restrictive acceptance interval. Thus, we add the criterion that all the biomarkers of a synthetic aorta must lie within two standard deviations from the mean, and denote the corresponding acceptance function [image: image].

Table 2 presents the values of the statistics for the different biomarkers proposed and the resulting intervals defined by the three acceptance criteria. These data correspond to the sample statistics of the observed cohort C0 formed by the 26 patient derived anatomies.


Table 2. Statistical description of each one of the biomarkers measured on the aorta.

[image: Table 2]

As we stated earlier, in some contexts it is important that the distribution of a biomarker in the virtual cohort is a good estimation of the original population distribution, e.g., when we want to draw conclusions about the probability of certain output variable that results from that biomarker. To provide some insight on this regard, we will perform an additional test on the generated cohorts. In order to detect if the distribution of the biomarkers differ from that in the original sample, we carry out a Mann-Whitney-Wilcoxson's hypothesis contrast test (MWW) on the observed distribution of each one of them. Note that this test will not be involved on the computation of the efficiency of the sampling methods, but will point toward their possible loss of statistical fidelity.



Problem 2: Clinically-Driven Acceptance Criteria

We refer to clinically-driven cohort generation as the process of generating a sample C1 with an acceptance criterion that is not based on a reference cohort C0, but on a clinical requirement. This does not mean the absence of C0, but only that the acceptance function will not depend on the statistical properties of C0. If a reference cohort is used, e.g., to estimate the parameters for parametric sampling, then it has to be taken into account that it can bias the generation process. We are interested in the case in which we do not have access to a representative sample of the target population. In this case, we can use a sample from a larger population that contains the subpopulation defined by the acceptance criterion.

In order to set several acceptance criteria for our experiments, we refer to the phenotype classification of the aortic root defined by Schaefer et al. (2008). In their work, they consider three disjoint classes according to the radius of the sinuses of Valsalva (SoV), of the sino-tubular junction (PA) and of a point in mid-ascending aorta (MA). The three phenotypes are defined as:

• Phenotype N : SoV > PA and SoV >= MA,

• Phenotype A : SoV > PA and SoV < MA,

• Phenotype E : SoV < = PA.

In our experiments we will use a different reference cohort for each phenotype. Since the observed sample of real aortas is too small to have a proper representation of the three phenotypes, we will rely on a bootstrapped sample of size K0 = 3, 000 obtained by resampling the clinical cohort. Let CB be this sample. Given a phenotype X∈{N, A, E}, we define its reference cohort as [image: image].

We will evaluate the efficiency of the sampling strategies studied by generating a new sample of size K1 = 1, 000 for each phenotype and augmentation method. Then, we analyze the results obtained from three different points of view, clinically-driven criteria, data-driven criteria, and the intersection of both. We do this for phenotype X∈{N, A, E} as follows; first, the phenotype acceptance criterion [image: image], that accepts an aorta if it belongs to phenotype X, will be checked; also, the three acceptance criteria defined for the data-driven cohort will be measured ([image: image], [image: image] and [image: image]); and, finally, simultaneously data-driven and clinically-driven criteria are evaluated, retaining aortas that meet both, [image: image], [image: image], and [image: image].



Problem 3: Feature Space Acceptance Criteria

If the acceptance ratio is low during the sampling process, generating large cohorts can involve a really high burden. In order to reduce the amount of unsuccessful evaluations of the acceptance criteria, our last proposal is to substitute the acceptance functions [image: image] by efficient surrogates that provide a prediction of the outcome of [image: image] without actually evaluating them.

In the context of our work, we will train two models to predict the outcome of some of the acceptance functions that have been defined: a function [image: image] that predicts if a feature vector a∈ℝn will be accepted by [image: image], and a function [image: image] that predicts the phenotype of the aorta associated to a feature vector a∈ℝn. [image: image] will be based on a Support Vector Machine (SVM), while Pp will be a Support Vector Classifier (SVC) that, internally, uses several one-vs.-one SVM classifiers to decide the class (Bishop, 2006). After the predictors have been trained, they can be used to evaluate very efficiently every feature vector that is drawn during the sampling process. Then, only those anatomies that have passed the first evaluation are then assessed by the real acceptance function. Note that, in the previous two experiments, the efficiency was measured in terms of the amount of feature vectors generated. Now, when the evaluation of [image: image] is substantially higher than the random generation of a vector, the efficiency can be defined as the ratio between the number of successful evaluations of [image: image] and the total number of evaluations of [image: image]. As a consequence, the efficiency of the overall process will be the sensitivity or recall of the SVM predictor.

To test this approach, the two predictors will be trained using cross validation over generated cohorts of aortas where no acceptance criterion has been applied. In addition, a completely new generated cohort will be used as a final test set. The rightmost part of Figure 3 shows the populations and schemes used to train and test the two different classifiers proposed in this section.





3. RESULTS

Figure 4 shows the variance associated to each mode of deformation, and the accumulated variation explained by considering the first n features of the PCA. The first 16 variation modes can explain 95% of the anatomical variability in the observed sample of 26 aortas. Moreover, a correlation analysis indicates that the R2 between the 16 first PCA modes and the 3 biomarkers of interest that define the clinical acceptance criteria PA, MA, and SoV, are 93.4, 97.4, and 96.9%, respectively, indicating that the 16 dimensional space is an adequate basis to tackle the problem.


[image: Figure 4]
FIGURE 4. Amount of shape variation explained by each of the components of the feature vector in the space defined by the PCA, in order of importance. Importance is computed by training a Random Forest model and computing the decrease of impurity of each subtree. The first n = 16 features are capable of explaining 95% of the shape variation.



3.1. Data-Driven Acceptance Criteria

After performing the PCA on the reference cohort C0, of size K0 = 26, we have generated a cohort C1 of K1 = 3, 000 synthetic shapes by sampling the space using several methods: bootstraping, uniform sampling, Gaussian sampling and a GAN. These cohorts are represented in Figure 3 as CB, CU, CG and CGAN, respectively. In the case of the GAN, it was trained increasing the epochs from 100 until it reached stability in the accuracy, which was met with a total of 2,000 epochs. The size of the batches used in each epoch was set to 5, that is approximately a fifth of the size of the cohort C0.

For all the aortas in the synthetic cohorts, the different biomarkers were computed. The resulting biomarker distributions are presented in Figure 5 by means of violin charts. Horizontal lines in the figure mark the bounds for the different acceptance criteria defined in section 2.5: [image: image], with dotted lines, [image: image], with dash-doted lines, and [image: image] with dashed lines. The figure shows that all sampling methods generate distributions of the biomarkers that surpass the range defined by [image: image], higher variability than that observed in the original cohort C0.


[image: Figure 5]
FIGURE 5. Violin plots for the distribution of biomarkers on the original samples, alongside with those generated using the proposed methods: Bootstrap (Bts), Gaussian (Gau), Uniform (Unf) and generative adversarial network (GAN). Horizontal lines mark the bounds for the different acceptance criteria defined in section 2.5: [image: image], with dotted lines, [image: image], with dash-doted lines, and [image: image] with dashed lines. The units of the vertical axis are in millimeters, except for biomarkers k, which is expressed in mm−1, and h/w and tor which are a dimensional.


One of the properties of the acceptance functions is that, in most cases, [image: image] tends to be the most restrictive one due to the limited variability observed for each biomarker in C0. Most likely, this is due to the small size of that sample that leaves the tails of the underlying distribution underrepresented. However, there are exceptions, such as in the distribution for SoV or h, where the upper bound is remarkably high compared to that of [image: image] and [image: image]. Among these two acceptance functions, the criterion based on [image: image] is more restrictive than that based on [image: image], which is an expected result based on their definition. Figure 6 shows the anatomy of four synthetic aortas that fall within the different acceptance intervals. From left to right, an aorta that meets [image: image], an aorta that meets [image: image] but not [image: image], an aorta that meets [image: image] but not [image: image] and an aorta that does not meet any of the criteria.


[image: Figure 6]
FIGURE 6. Examples of four synthetic aortas with decreasing feasibility of the biomarkers according to the acceptance functions. From left to right: the first one is accepted by all of the criteria; the second one is rejected by [image: image], but not by the other acceptance functions; the third one is only accepted by [image: image] and the last one is rejected by all the criteria.


Table 3 shows the efficiency of each method measured using the different acceptance criteria, as defined in section 2.5. The sampling strategies are arranged in rows, while each column correspond to an acceptance function. In addition, the last column shows the results of applying the MWW hypothesis contrast test to compare the distribution of each biomarker obtained in C1 to that observed in C0. Consistently with the ranges observed for [image: image], the acceptance ratio for this criterion is notably smaller than that for the other criteria.


Table 3. Results of the generation of synthetic aorta cohorts with different sampling methods.

[image: Table 3]

The results show substantial differences between the four sampling strategies, making them suitable for different scenarios. Both Gaussian and bootstrapping sampling show similar efficiency results and are the two that have no biomarker distributions rejected by the MWW test. These distributions would be the most adequate to retain the statistical information of C0. If we are interested on having a denser representation of any phenotype, despite its actual distribution in the true population, then uniform sampling provides longer tails for the different biomarker distributions. This is at the price of having a very low efficiency if the application of an acceptance function is compulsory; e.g., in the case of considering [image: image] more than half the feature vectors are disregarded. If we are considering a clinical scenario in which the biomarkers are the result of costly simulations (Rodero et al., 2021; Thamsen et al., 2021), this has to be taken into account. On the opposite side, the cohort generated by a GAN has the narrowest distributions for all the biomarkers among the three methods, since the generated anatomies are closer to the mean in the PCA space. This results in an efficiency increment on all the criteria, at the price of having much shorter tails and leaving some plausible regions under represented.



3.2. Clinically-Driven Acceptance Criteria

We start by building three reference samples, [image: image]. Our starting point is the bootstrapped synthetic cohort, CB, with size 3, 000, that was generated in the previous section. This sample has been divided in the three reference clinically-based cohorts: [image: image], of size K0 = 330 aortas (11% of CB), [image: image], of size K0 = 1, 605 aortas (53, 5%), and [image: image] with the remaining K0 = 1, 065 aortas (35.5%). For each phenotype, X, we take [image: image] and apply the four sampling methods described in section 2.5 to generate the corresponding synthetic cohort [image: image] of size K1 = 1, 000. Even though the definition of the different acceptance functions can be found in section 2.5, for the sake of clarity we present a summary of the meaning of the used criteria in Table 4. Furthermore, we have added subscript DD for data-driven criteria and subscript CD for clinically-driven criteria.


Table 4. List of the acceptance functions that are used in the experiments related to clinically-driven-cohort generation.

[image: Table 4]

Results are shown in Table 5. Each row corresponds to a sampling method and a phenotype, and shows the results for that particular synthetic cohort. In the case of the data-driven criteria, the efficiencies have a meaning similar to those in Table 3; it is the ratio of aortas that are plausible according to the observed sample of size K0 = 26. In the case of the clinically-driven criteria, results can be interpreted like a confusion matrix for each method. For instance, in Gaussian sampling and phenotype N, a value of 0.141 under [image: image] means that 141 of aortas in the synthetic cohort generated to be of class N, actually are of phenotype A. The efficiencies are the elements of the diagonal in each method's block. The last three columns in Table 5 show the result of requiring both a data-driven acceptance function with the acceptance criterion of the phenotype for the row.


Table 5. Efficiency values achieved by each method and for each biomarker.

[image: Table 5]

The results indicate that clinically-driven cohort synthesis is a much harder problem than data-driven synthesis, in terms of efficiency. The data-driven columns in the table indicate that, in general, the anatomies generated are within what is observed in CB, even for the uniform distribution. However, the columns for Clinically-driven efficiency point out that a phenotype that is easily identified in the biomarkers space can occupy a region in the feature space that is mangled with aortas of a different phenotype as it was anticipated in section 2.1 and Figure 2.

Again, the GAN is the sampling strategy that provides a higher efficiency. However, on the contrary to what happened in the data-driven generation, in this case this does not imply narrower biomarker distributions, at least in the three values that define the phenotypes, as it can be inferred from Figure 7. Indeed, this wider span of the distributions leads to lower acceptance ratios in the data-driven criteria.


[image: Figure 7]
FIGURE 7. Distributions of the three biomarkers that define the target phenotypes (SoV, PA, and MA) in the set of aortas that actually belong to each one of the three classes. All the values are in millimeters.


It also noteworthy that the results can be very dependent on the particular target phenotype in the generated cohort. In our experiments, phenotype N is, in general, easier to sample efficiently, while phenotype A yields the worst results in all sampling methods except in the Gaussian distribution. This indicates that sampling in the feature space can be very inefficient depending on the target cohort distribution.



3.3. Machine Learning Surrogates for Acceptance Criteria

We address now the problem of training predictors for different acceptance functions. The aim of this SVM classifier is to predict if a random sample can be considered as an aorta from the observed distribution of 3,000 bootstrapped aortas. Figure 3 shows the scheme of the training and validation process that is described next.

We start by building a predictor for one of the data-driven acceptance functions; a Support Vector Machine (SVM) model, [image: image] was trained, and acted as a predictor of [image: image] defined in section 2.5. A large training set of 15, 000 aortas was generated using a Gaussian sampling. The reason for using the Gaussian distribution in this case is that we want a reasonable amount of infeasible aortas in the training set and, according to the results of section 3.1, this is the method that samples best the tails of the biomarkers distributions. To label the elements of this set, the acceptance functions were applied to all of them. In this case, since the original sample of size 26 is small, the statistics used to evaluate [image: image] have been those obtained from the set CB of 3,000 bootstrapped aortas. In order to prevent overfitting, a 5 fold cross validation process has been used to train the model. The accuracy obtained in the cross validation process with this model was 0.9 with a radial basis function for the SVM kernel.

We can trust [image: image] to build our cohort very efficiently, but at the risk of including some aortas that would not pass the actual test. If we want to prevent this, we will need to evaluate [image: image] on the aortas accepted by [image: image]. If this is the case, the relevant indicator from the efficiency perspective is the sensitivity of [image: image] (ratio of correctly accepted aortas with respect to the total number of accepted aortas). An assessment of the sensitivity of the model was performed using the samples generated with the uniform distribution (size K0 = 3, 000), a dataset that is different to the one used in the training process. The resulting confusion matrix is presented in Figure 8 (left). It shows that the sensitivity is 0.884, meaning that only 11.6% of the aortas evaluated by [image: image] will be discarded after using [image: image]. Note that, even though the number of false negatives is not relevant from the efficiency point of view –rejected aortas will not lead to any evaluation of the acceptance function–, they lead to a bias in the resulting cohort; the aortas that result in false negatives will not be represented in any cohort that has been generated with a surrogate acceptance function. Thus, this possible bias has to be taken into account if the statistical properties of the resulting cohort is very relevant in our study. In our case, for [image: image], the aortas wrongly rejected represent about a 6% of the total sample of size 3,000 and nearly a 16% of the aortas that should be accepted.


[image: Figure 8]
FIGURE 8. Confusion Matrices obtained for the [image: image] and Pp models.


The second classifier, Pp, aims to learn a function able to classify, in the PCA feature space, the three phenotypes used in the clinically-driven cohort generation experiments. A SVC was trained using the set of 3,000 bootstrapped aortas, since this set represents properly the considered phenotype. The best accuracy for this model was 0.92, obtained during 5 fold cross validation using a linear kernel. Again, we tested the performance of Pp by applying the model to the sample of 3,000 aortas generated with a uniform distribution, which is different to the one used during the training process. Figure 8 (right) shows the confusion matrix obtained during this evaluation. We provide a graphical representation of the confusion matrix for Pp in Figure 9. The figure shows an example of an aorta for each one of the scenarios described by that confusion matrix. If our goal is to generate a cohort of only one class, either N, A or E, then the corresponding column of the matrix throws information about the resulting efficiency. For phenotype N, we can see that the efficiency (sensitivity) in the test sample is nearly 94% and that the prediction of type E presents an efficiency of 93%. On the lower side, phenotype A has a ratio of true positives of 89%, leading to the rejection of 11% of the generated geometries. Regarding false negatives, it is noteworthy that class N is the one that has higher ratio of improperly rejected aortas, with nearly a 13%.


[image: Figure 9]
FIGURE 9. Graphic representation of the confusion matrix of Pp. Examples of aortas of phenotype N, A and E row-wise, with the phenotype predicted column-wise arranged.


Training prediction models opens the possibility of assessing which features are the most relevant for the particular problem we are facing. In the case of the phenotype classifier, Pp, we have performed an analysis of the importance of each feature in the decision process. Feature importance has been provided by training a Random Forest model and computing the mean decrease in impurity within each subtree. Figure 10 (left) shows the importance obtained for each feature in the classification problem. As expected, the most important features are those related to the biomarkers involved in the classes definition. For example an inspection of the effect of feature nine on the anatomy shows that the associated deformation mode has a big impact on the Sinuses of Valsalva radius (SoV), which is related to the definition of all three phenotypes.


[image: Figure 10]
FIGURE 10. Left: Features importance. Right: Subpopulation classification accuracy as the number of features increases.


The training was performed not only for the complete feature vector of dimension 16, but also for the first n = 3, 4, …, 16 components, sorted by importance. Figure 10 (right) shows the evolution of accuracy –obtained during the cross validation process– of Pp as the number of features increases, using both the SVM (linear kernel) and the random forest model. Results indicate that, in order to properly separate the three classes, at least 14 features are needed.

In summary, the SVM models are very useful to obtain the decision boundaries of the populations under study, and the data augmentation techniques can take advantage of this ability. The straightforward application is the use of classification models as fast rejection sampling mechanisms in the PCA space, in order to improve the accuracy of the data augmentation technique used at lower cost than rejecting samples in the biomarkers space.




4. DISCUSSION

In this study we have shown that there is no universal data-driven cohort generation method, but that the right election highly depends on the purpose of the study. Next, we discuss how the different methods assessed in this paper can be useful according to the needs of the reader. A summary of our findings can also be found in Table 6.


Table 6. A summary of the conclusions that can be obtained from the results of the study presented in this paper.

[image: Table 6]

If the goal is to reproduce the existing sample, in what we call data-driven cohort generation then bootstrapping yields trustworthy results. Gaussian sampling achieves similar results. Nonetheless, for some particular biomarkers it leads to longer tails than bootstrapping, while for others to shorter ones. In conclusion, if the actual distribution of the biomarkers is unknown, this can not be assured. On the other hand, the uniform sampling can be well suited if the goal is to obtain the maximum variability, as in machine learning scenarios. The GAN sampling achieved the best acceptance efficiency in most of the criteria measured in this work. However, statistical conclusions should be drawn carefully since there is no guarantee of preserving the underlying probability distributions. On the contrary, bootstrapping and Gaussian have proven to be robust with more moderate values of efficiency. The use of non-linear methods to predict the anatomical or functional phenotype of interest from a compact PCA representation is the most efficient method to generate virtual cohorts, but at the cost of losing statistical characteristics that will be better preserved with bootstrapping.

Over the last years, virtual populations have been built for a variety of applications in the area of cardiac modeling. Britton et al. (2013) generate a population of 10,000 ionic cellular models by varying randomly a specific set of parameters, as in bootstrapping method, to study the variability in cardiac cellular electrophysiology. Haidar et al. (2013) apply Markov Chain Monte Carlo methodology to generate a cohort of Type 1 Diabetes subjects and test glucose controllers. In a similar approach to our work, Allen et al. (2016) present a strategy to efficiently sample and filter virtual populations of pharmacology models, taking empirical data to build data-driven acceptance criteria. Notwithstanding these works do not focus on the anatomy, they share with our research the essential methodology, especially in the last case.

Other authors do focus in shape generation, mainly with medical image as the source of information. a convolutional neural network segment the left ventricle and left atrium using only synthetic images. Rodero et al. (2021) link the main deformations of a cohort of 19 healthy hearts with the electrophysiological biomarkers acquired via simulation. Instead of randomly sampling, the authors perform a sensitivity analysis over a grid on the PCA space, formed by the 9 main modes of variability (covering 90% of variation). They validate the synthetic cohort comparing the obtained biomakers with distributions from literature. Related to thoracic aorta cohorts, in Liang et al. (2017) use 25 geometries of ascending aortic aneurysm to generate a synthetic cohort of 729 shapes in order to asses aneurysm rupture risk using an SVM. They use uniform sampling in the intervals [μ−2σ, μ+2σ] for the first three modes of variation of the PCA. In each one of these works, a particular sampling methodology is chosen, according to the goals of their research. In our paper, we do not focus on a particular clinical outcome but on the methodology itself, providing a systematic comparison of some of these methods.

A common question in any computational anatomy study is the ability of our parametric space to capture the desired real clinical variability. This is pretty difficult to ascertain, and a surrogate metric is the compactness of the PCA basis. In this respect, our study required 16 modes to capture 90% of the variance from a sample of diseased aortas presenting ascending aortic aneurysm. A healthy subset of aortas, by Casciaro, required only 6 modes to capture 84%, and another congenital set of aortas, required 19 modes to capture 90%. In Bruse et al. (2017), thoracic aorta geometry is encoded in a PCA space to solve a classification problem by means of hierarchical clustering. They retain the 19 modes of deformation covering 90% of the variance. Liang et al. (2017) cover 80% of variance with the first three modes of deformation. Our results thus fit within the range of variability seen in previous results.

Clinically-driven generation have proven to be much difficult to achieve. The efficiency of the generation of the synthetic cohort has considerable dependence on the acceptance criteria. Our results show this in the low efficiency achieved for aortas of type A, which contrasts with the high efficiency obtained with phenotype N. In the work by Thamsen et al. (2021), they achieved an efficiency below 0.27 using a Gaussian distribution. They generate a first synthetic cohort of more than 10,000 individuals and apply what they call a stepwise filtering to limit the cohort to aortas suffering from coarctation.

We have seen that classical statistical methods in many cases obtained considerably lower values of efficiency than the GAN, which outperformed the rest of the methods in both, variance and acceptance. This notable increase in the throughput of the GAN is likely to be related with the increase in the training set. In the data-driven scenario, the training set was formed by 26 samples, while in the clinically-driven, initial synthetic cohorts were much larger (between 330 and 1,000 cases). It is also worth to mention that Gaussian achieved results noticeably better than bootstrap and Uniform. This is partly explained by the fact that multivariate Gaussian distribution accounts for the co-variance of the cohort, what makes the drawn samples scatter around the mean and be mainly distributed in the main axes of variation. This is, in general, not true for uniform distribution. Otherwise, the bootstrapping method has a particular limitation in our case; each reference cohort [image: image], was extracted from an already synthetic cohort, CB also generated by bootstrapping from the cohort of real aortas, with size 26. This reduces the set of possible values from which to sample when drawing each coordinate of the feature vector. In any case, the efficiency of the sampling methods for the clinically-driven criteria suggested that there is an overlap in the PCA space between the phenotypes N and A, and phenotypes A and E.

The evaluation of the acceptance functions [image: image] can require a non-negligible amount of computation. Any vector a, has to be translated from the feature space to the biomarkers space to take the decision, being this computation of the biomarkers part of the evaluation of [image: image]. In the cases considered here, where only distances in the anatomy are involved, this process requires evaluations of the polynomials that describe the aorta wall. However, biomarkers derived from hemodynamics or from the cardiac function (Liang et al., 2017; Rodero et al., 2021; Thamsen et al., 2021), require the simulation of the process of interest to obtain the involved biomarkers. Even with low resolution models, this process can require a computation time in the range of minutes to hours on a modern workstation. Machine learning and deep neural networks are already being used to accelerate different processes related to simulation of hemodynamics in the aorta or perform diagnosis (Xiao et al., 2016; Liang et al., 2018, 2020; Feiger et al., 2020). We show that, in the generation of virtual patients cohorts, machine learning can replace the evaluation of acceptance functions with high accuracy. We choose to use SVM bacause they are known to be capable of avoid over-fitting in situations where reduced size dataset are available. This means that this strategy could be used without requiring thousands of samples as used in this work, what makes it feasible for simulation-based clinical criteria.

This last point, however, has to be taken into account when using machine learning surrogates to estimate the acceptance functions. In order to fit the model, a training set still needs to be built. While in models such as SVM the required dataset can be relatively small, for GAN and other network-based models are more sensitive to this limitation, as we have seen in the poor performance achieved by the GAN when trained with the original cohort of size 26. Thus, a first cohort generation task has to be completed using the original acceptance functions, no matter how expensive they are. This effort, however, can later pay off by including the training set in the final cohort.

Another limitation of our study is the size of the original sample, with a total of 26 aortas. This limitation, however, also underpins the fact that cohort generation can be addressed even without having large reference datasets. Indeed, the original sample only had 3 aortas of class N, and we conjecture that it is feasible to generate phenotypes that are absent from the reference cohort provided that the anatomy can be properly described by the resulting PCA representation.

Among the possible future extensions to our work we consider the addition of Markov Chain Monte Carlo methods to the set of sampling strategies. All the experiments have been performed using a reduces sample of aortas with the same pathology. The proposed methodology could be applied to a larger, perhaps more heterogeneous, reference dataset. This could be of special interest to better assess the performance of GAN in the data-driven experiments. Also, we would like to validate our hypothesis that it is possible to generate clinically-driven cohorts that are not present at all in the reference dataset.



5. CONCLUSIONS

The generation of synthetic cohorts of patients is a methodology of increasing utility in cardiovascular modeling. In this paper, we have addressed some of the problems faced by the generation of clinically meaningful virtual cohorts. Using the case of aorta cohort synthesis, we have performed a systematic evaluation of sampling methods that are commonly used in Statistical Shape Modeling. According to our experiments, the sampling strategy and the verification of the generated cases can have a great impact on the efficiency of the process and on the quality of the resulting cohort. We identify several scenarios and discuss the quality of the results of the assessed methodologies in each case. In addition, we propose the use of machine learning models to accelerate the cohort generation.

As simulation models in physiology increase their quality, and the application of machine learning models become ubiquitous, the use of virtual cohorts will become more frequent in therapy design, patient stratification or in-silico trials. The results of this paper can guide other authors in the process of reliably building synthetic populations.
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FOOTNOTES

1If unimodality cannot be assumed, then the same interval contains, at least, 91% of the probability density of the distribution.
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Parameterised patient-specific models of the heart enable quantitative analysis of cardiac function as well as estimation of regional stress and intrinsic tissue stiffness. However, the development of personalised models and subsequent simulations have often required lengthy manual setup, from image labelling through to generating the finite element model and assigning boundary conditions. Recently, rapid patient-specific finite element modelling has been made possible through the use of machine learning techniques. In this paper, utilising multiple neural networks for image labelling and detection of valve landmarks, together with streamlined data integration, a pipeline for generating patient-specific biventricular models is applied to clinically-acquired data from a diverse cohort of individuals, including hypertrophic and dilated cardiomyopathy patients and healthy volunteers. Valve motion from tracked landmarks as well as cavity volumes measured from labelled images are used to drive realistic motion and estimate passive tissue stiffness values. The neural networks are shown to accurately label cardiac regions and features for these diverse morphologies. Furthermore, differences in global intrinsic parameters, such as tissue anisotropy and normalised active tension, between groups illustrate respective underlying changes in tissue composition and/or structure as a result of pathology. This study shows the successful application of a generic pipeline for biventricular modelling, incorporating artificial intelligence solutions, within a diverse cohort.

Keywords: personalised modelling, biventricular mechanics, parameter identification, automatic segmentation, valve landmark identification


1. INTRODUCTION

Cardiovascular disease causes changes in cardiac anatomy, structure, and function—all resulting in changes to the active and passive biomechanics of the myocardium. However, it is difficult to assess intrinsic properties from imaging data alone. Patient-specific computational models can be used to simulate cardiac mechanics and measure quantities such as stress and strain and have the potential to augment current steps in therapy planning, allowing clinicians to test devices, such as left ventricular assist devices (Sack et al., 2018b), and therapies, such as septal myectomy (Huang et al., 2021). Personalised models can also be used to create “virtual cohorts,” running large-scale trials on large numbers of realistic heart models in concert with animal and human studies (Peirlinck et al., 2021).

Personalised models have been used to estimate both passive (e.g., Augenstein et al., 2006) and active (e.g., Marchesseau et al., 2013) parameters. Differences between global stiffness parameters have been identified between healthy and diseased cohorts through the use of patient-specific modelling (Hadjicharalambous et al., 2017; Wang et al., 2018). These passive parameters could be used as an additional diagnostic tool or to track disease progression. Additionally, estimation of heterogeneous stiffness parameters demonstrate the feasibility to identify local differences in tissue properties (Balaban et al., 2018), which can give an indication of regional changes. The optimisation of material parameters has been formulated as a nonlinear optimisation problem which aims to minimise an objective function based on the observation error, typically using displacement (Wang et al., 2018), strain (Augenstein et al., 2005; Wang et al., 2009), or geometric metrics (Nasopoulou et al., 2017). Filtering approaches, such as the use of Kalman filters, have also demonstrated robust and accurate estimation of passive parameters in the presence of noise (Xi et al., 2011). Regional contractility parameters estimated in personalised models have been shown to decrease in infarcted regions (Chabiniok et al., 2012). Although personalised modelling has been demonstrated to offer insights into intrinsic properties of the heart in health and disease, key challenges remain including automation of many cumbersome steps in model development as well as integration of key biomechanical information. For example, most studies have utilised manual segmentation for model development. Additionally, many studies developing personalised models have relied on data which is not typically acquired in a clinical scan (e.g., tagged MRI or intraventricular pressure measurements), thus limiting the size of their cohorts.

The process of generating patient-specific models was once a time-consuming task, requiring manual annotation and segmentation of images to construct an accurate geometric model (Heijman et al., 2008). The advent of and advances in machine learning have enabled automation of many of these tasks, with results ranging in accuracy and reliability (Henglin et al., 2017; Leiner et al., 2019). Deep learning is a subset of the machine learning field of techniques focusing on artificial neural networks which are constructed as deeply interconnected neural structures (Zhang et al., 2018). Neural networks have greater capacity to learn more complex problems than other machine learning methods with a greater ability to generalise to unseen data. These can be applied directly to the labelling of anatomical structures by assigning each pixel/voxel of an image a category probability which associates them with one or more structures. This allows the automation of cardiac segmentation such that an entire short-axis cine dataset can be labelled in seconds without manual initialisation or intervention, rather than hours (e.g., Bai et al., 2018; Chen et al., 2020). Cardiac segmentations can then be used to automatically calculate clinical metrics such as ejection fraction and long-axis strain (Ruijsink et al., 2019), and can be combined with other networks to perform disease classification (Martin-Isla et al., 2020) and feature detection (Bizopoulos and Koutsouris, 2018). In addition to expediting segmentation, trained neural networks can also lead to consistent and standardised results improving reliability and reproducibility. Neural network segmentations can then be used to automate the process of generating patient-specific geometric models.

In order to extend personalised modelling into the clinical domain, there is a need to develop a robust pipeline to not only generate models for diverse cardiac morphologies, but also to run biomechanical simulations using data acquired within a clinical scan. This study presents an AI-driven pipeline for the development of personalised biventricular mechanical models which were used to simulate passive and active mechanics. Novel boundary conditions, driven by neural network derived landmarks, were used to constrain valve motion and cavity volumes. The pipeline was tested in a diverse cohort which included healthy volunteers, patients with DCM and hypertrophic cardiomyopathy (HCM), using only a short-axis cine stack and three long-axis image planes, equivalent to images that would be collected in a standard clinical MR scan.



2. MATERIALS AND METHODS

For all cases in this study, a balanced steady-state free precession sequence was used to collect cine images at short-axis slice locations and three long-axis imaging planes including two (2CH), three (3CH), and four-chamber (4CH) views. Between 20 and 40 images were acquired per cardiac cycle depending on the individual's heart rate. All images were acquired on a Philips Achieva 1.5 T scanner at St. Thomas' Hospital in London. Written informed consent was obtained from all participants prior to scanning. The study protocols for the DCM patients and healthy volunteers (study number 12/LO/1456) and HCM patients (study number 15/NS/0030) were approved by the London Bridge National Research Ethics Service. This initial study includes a cohort of patients with HCM (n = 4), DCM (n = 4), and healthy volunteers (n = 4). Patients with HCM demonstrated heterogeneous patterns of wall thickening, in keeping with the underlying diagnosis. The entire processing pipeline for each case is shown in Figure 3. Each block within the figure will be discussed in greater detail in the following sections.


2.1. Neural Network Image Labelling

Cine images were passed to two neural networks. The first of which labelled the left ventricular (LV) blood pool, LV myocardium and right ventricular (RV) blood pool in all short and long-axis images, whereas the second returned labels of 10 valve landmarks identifying leaflet insertion points in all long-axis images.


2.1.1. Cine Image Labelling

Full-cycle three-label segmentation was accomplished using a UNet-derived (Ronneberger et al., 2015; Kerfoot et al., 2018, 2019) neural network. Left-ventricular blood pool, left-ventricular myocardium, and right-ventricular blood pool were identified by this network by analysing each two-dimensional slice from a full short-axis stack individually.

The network architecture is composed of a stack of blocks incorporating the encode and decode paths of the UNet structure (Figure 1). Data flows through the encode side on the left where it passes through a residual unit (He et al., 2016) of convolution/normalisation/activation layers. The output from this unit passes to the next layer in the stack, which is either a further layer of such encode/decode pathways or a final residual unit. The data from the encode path is concatenated with the output from the layer below before being passed through another residual unit in the decode side.


[image: Figure 1]
FIGURE 1. The segmentation network is implemented as a stack of blocks illustrated here. The encode and decode paths along with the skip connection are defined in the same block. The “Next Layer” is either another such block or the bottom encoding block comprised of convolution/normalisation/activation sequences. The overall structure of the network is shown on the right, with the dimensions of tensors passing between layers given relative to an input of shape (1, N, W).


The dataset used for training consisted of 9,095 segmented MR short-axis images (Kerfoot et al., 2019). These were derived from the ACDC challenge dataset (Bernard et al., 2018) of 100 cases and 175 UK Biobank healthy cases. Of the latter, an expert clinician at St. Thomas' Hospital in London segmented 100 healthy cases, 50 cardiomyopathy cases, and 25 randomly selected cases that exhibited sufficient image quality for use as input. Additionally, 215 cases were acquired on a 1.5 T Philips Ingenia scanner at St. Thomas' Hospital in London, and 116 cases from a Siemens Trio 3T scanner (Siemens Healthineers, Erlangen, Germany), and were also segmented by an expert clinician at St. Thomas' Hospital. These cases consisted of healthy volunteers, HCM patients, and patients with cardiac resynchronisation therapy (CRT).

The network was trained for 10,000 iterations. For each iteration, a mini-batch was created by selecting 250 randomly selected images from the dataset. A random selection of flip, transpose, 90° rotation, shift and non-rigid deformation operations were applied to the image and segmentation pairs. The loss function used was a simple Dice loss (Dice, 1945).



2.1.2. Valve Landmark Identification

Landmark coordinates in the three long-axis views were used to identify the locations of the leaflet insertions into the myocardium. Ten landmark locations in total were estimated: six mitral valve locations (two from each view), two aortic locations in the three-chamber view, and two tricuspid locations in the four-chamber view. These landmarks were estimated using a convolutional neural network implemented as a regression from two-dimensional images to a landmark coordinate array (Kerfoot et al., 2021). See Figure 3: Valve Landmark Identification. Briefly, the network was trained on 8,574 long-axis images collected from HCM (n = 3,069) and myocardial infarction (MI, n = 5,505) patients. Further details of the dataset used for training can be found in Kerfoot et al. (2021).

Figure 2C illustrates the general architecture of the network composed of a sequence of densely-connected blocks of convolutions. The output data from these blocks is then passed to a series of small neural networks trained to recognise the 10 different landmark coordinates. Having condensed the information from the input image to a deep representation, each sub-network learns to recognise which view is represented and determine a location from this representation. From each long-axis image, all ten landmarks are identified. However, the landmarks which do not occur in the input image are inferred to be in the top-left corner at coordinate [0,0].


[image: Figure 2]
FIGURE 2. The valve estimation network is composed primarily of a series of densely-connected convolutional layers. Each dense block is composed of three residual units containing 2D convolutions using progressively larger dilation rates. A final convolution reduces the spatial dimension of the volume by 2. The regression network is implemented as a sequence of densely-connected blocks followed by a series of small fully-connected networks relating the final output volume to each landmark coordinate. (A) Residual unit, (B) dilated dense block, (C) network definition.


Figures 2A,B illustrates the architecture of the densely-connected blocks (Huang et al., 2017). Within each block is a residual unit composed of two sets of convolution/normalisation/regularisation layers. The dilation value for the convolutions increments for each succeeding unit, which allows convolutions to recognise features of different scales in the input volume. The output from each unit is concatenated with outputs from previous units. This combined volume is used as the input to the next unit. All such outputs, plus the original input, are concatenated into the final output volume. A final convolution/normalisation/regularisation reduces the output volume in the spatial dimensions by a factor of two.

During training, data augmentation was applied to the images from the manually-annotated dataset. A randomised combination of flip, transpose, zoom, rotate, shift, and non-rigid deformation operations were applied to the image and ground-truth landmark pairs to be fed into the network during training. The images were further augmented with added noise, smooth image intensity variation and k-space dropout to simulate a poor-quality acquisition. The objective of these augmentations was to vary the data the network is trained with to reduce overfitting and improve its generalisation to unseen image types.



2.1.3. Label Quality Control

For the short and long-axis segmentations, labels were cleaned (a) by removing labelled regions with fewer than 50 pixels, disregarding improperly labelled “islands” far from the heart as well as (b) filling holes in the labelled regions. Since valve landmarks were identified for each 2D long-axis image independently (not incorporating temporal continuity), an additional step was implemented to automatically identify landmarks which were incorrectly labelled in order to omit these points. Then, a linear interpolation step was used to interpolate missing points before applying a low-pass filter to temporally smooth landmark displacements. Valve landmarks were used both as input to the model fitting step as well as boundary conditions to constrain valve annuli motion throughout simulations of the cardiac cycle.




2.2. Segmentations to Models

Short-axis alignment was performed using the IRTK toolbox (Schnabel et al., 2001) which applies a rigid transformation to individual short-axis planes in order to optimise the overlap between short-axis masks and a model template. Starting with the rigid registration tool's default initialisation, the short-axis images are rigidly moved in the in-plane dimension to account for misalignment during acquisition.

Subsequently, long-axis images were rigidly registered to the short-axis aligned images using the rigid registration algorithm in the IRTK package, also using the tool's default initialisation. Dice scores along the line of intersection between each short and long-axis mask were used to (a) automatically determine which short-axis slices would be used for the model fitting by omitting slices with a dice score <0.5 and (b) to assign weights to each contour point based on their overlap with other data. In this way, long-axis slices which were poorly registered to the short-axis data, even after running the registration step, did not skew or greatly impact the final fitted model.

A biventricular template was then fitted to the segmentations using the two-step iterative method developed in Mauger et al. (2018). In order to do this, contours were automatically generated from the short and long-axis labels (i.e., LV endocardium, RV septum, RV free wall, epicardium, RV insertion points, apex, etc.) in order to fit model surfaces to the contour points. Locations of the mitral, tricuspid, and aortic valve annuli were obtained from the annotated valve landmarks. Due to a lack of segmentation of the RV myocardium, RV epicardial contours were automatically generated by projecting the RV free wall contours in the normal direction at a distance of 3 mm. Briefly, a series of stiff linear least squares fits with a high D-affine regularisation weight was performed to provide an adequate first solution. For each iteration, the Jacobians on 4 × 4 × 4 Gaussian quadrature points were calculated. If all were positive, the model was updated, the regularisation weight was decreased and another iteration was performed. If not, the model was not updated and another optimisation step was performed using diffeomorphic constraints based on the magnitude of the displacement. Models were fit to segmentations at all frames of the cardiac cycle. Surface meshes were used to construct cavity volume curves throughout the cardiac cycle as well as quantify metrics such as wall thickness and ejection fraction.

From the fitted surface meshes, tetrahedral meshes were generated for the end-systolic time point using SimModeler (Simmetrix1). Mesh metrics, including number of nodes and element quality, can be found in Supplementary Table 1. Biventricular fibre fields were created using a rule-based method adapted from Doste et al. (2019) and Bayer et al. (2012). Fibre angles varied from −60 to 60° and −25 to 90° from the epicardium to endocardium in the LV and RV, respectively. Fibre angles at the valve annuli were determined based on high-resolution DTI measurements from ex-vivo porcine hearts. Specific angles at each boundary can be found in Supplementary Table 1. An example fibre field can be seen in Figure 3, Rule-based Fibres.


[image: Figure 3]
FIGURE 3. Short and long-axis cine MR images are simultaneously fed into two neural networks, one for labelling the LV blood pool (red), LV myocardium (green), and RV blood pool (blue) and the second labelling ten valve landmarks throughout the cardiac cycle. The segmentations are converted to labelled contours and a biventricular template surface mesh is fitted to the labelled contours. Volumes, derived from the network generated cavity labels, as well as valve annuli motion are used as boundary conditions in the biomechanical simulations. Passive parameters are optimised by minimising the difference between the model and imaged geometries at end-diastole.




2.3. Biventricular Modelling

The personalised mechanical models were solved using energy potential minimisation, following (Asner et al., 2017; Hadjicharalambous et al., 2017). In brief, the myocardium is defined by the reference domain [image: image] with initial coordinates X ∈ Ω0. The biventricular domain, Ω0, consists of boundaries on the endocardial sides of the LV and RV (denoted [image: image] and [image: image]), the wall marking the rings for the mitral ([image: image]), aortic ([image: image]), tricuspid ([image: image]), and pulmonary valves ([image: image]), as well as the epicardium ([image: image]). The orientation of local tissue microstructure across the myocardial wall is given by the fibre, sheet and sheet normal vector fields, (f0, s0, n0). Similarly, at each valve boundary, a circumferential vector field is defined (denoted [image: image] for [image: image], [image: image]) which describes the local orientation of connective tissue that comprises each valve orifice. Finally, to enable variations between the LV/septum and the RV, we define a labelling field, ϕ, where ϕ = 1 in the LV/LV septum and ϕ = 0 in the RV/RV septum.

For simulating myocardial function, imaging data is extracted to describe functional changes through time. The change in LV and RV luminal volumes is extracted from images and interpolated to provide [image: image] describing the mean volume trace as computed over a truncated region of each endocardial lumen, [image: image]. The truncation planes are similarly defined by normal vectors [image: image] across both LV and RV lumens. The pressure is given over the cardiac cycle by [image: image] and can be defined either via invasive measures, coupled via a full-circulation model (Arts et al., 2005), or estimated from noninvasive data (Asner et al., 2015). Finally, the motion of each valve plane is encapsulated by the estimated motion of the centre of mass, [image: image], interpolated over time for each valve, [image: image].

As the biventricular model deforms, the physical domain at time t, Ω(t), is described using coordinates of its current position x = X + u(t), where u denotes displacement. Typically the displacement is used to describe the deformation gradient tensor F = ∇0u + I, its determinant J = detF > 0, as well as the material stretch described by the right Cauchy-Green strain tensor C = FTF. The displacement of the heart is solved by considering either the quasi-static (Asner et al., 2017) or dynamic (Chabiniok et al., 2012; Sermesant et al., 2012) principle of virtual work, with the additional state variables of pressure (p), activation state in LV / RV (αlv, αrv), and the forces present at each valve plane ([image: image]). In this study, at each time point, t ∈ [0, T], we seek to find the state variables [image: image], [image: image], αlv(t), αrv(t) ∈ ℝ, and λmv(t), …λpv(t) ∈ ℝ3 satisfying the quasi-static virtual work equation,

[image: image]

The virtual work equation describes the internal myocardial stresses and balance of volumetric/pressure change ([image: image]), the stresses induced by the collagenous valve tissue ([image: image]), the internal pressure exerted by the blood ([image: image]), the constraint on chamber volumes ([image: image]), and the added forces required to ensure motion of the valve orifices ([image: image]). The specifics of these terms are detailed below.

The internal stresses ([image: image]) are given by the first Piola-Kirchhoff tensor, Pmyo, which is described by the hyperelastic-strain energy, Ψ, that can be broken into passive, volumetric, and active strain energy components,

[image: image]

where

[image: image]
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and f = Ff0 describes the deformed fibre direction. Here the passive component (Equation 3a) follows the reduced form of the Holzapfel-Ogden model (Holzapfel and Ogden, 2009; Hadjicharalambous et al., 2014a, 2017; Asner et al., 2015) adapted for appropriate use within a nearly-incompressible framework (Nolan et al., 2014) (though numerous alternative models exist, see Chabiniok et al., 2016). The parameters a0 and af linearly scale the stiffness of the ground substrate and fibre direction, respectively, and have units of stress whereas b0 and bf scale the exponential behaviour of the isotropic and fibre components and are unitless. [image: image] is the isochoric form of the first invariant of the right Cauchy-Green strain tensor (I1 = C : I) and If is the fibre pseudo-invariant If = C:(f0 ⊗ f0). To ensure unique parameters, the number of personalised parameters was reduced to two: a and af. The values of b0 and bf were each set to 5.0 to ensure physiological pressure-volume response (Hadjicharalambous et al., 2014a).

The resulting stress from volumetric effects (Equation 3b) results from the nearly-incompressible strain energy,

[image: image]

which also governs the relation between volume change and hydrostatic pressure (second part of the [image: image]). The parameter, K, denotes the bulk modulus of the tissue (in this study K = 1, 000 kPa).

The active stress, given in Equation (3c), defines the amount of contraction as well as the length dependent mechanisms (Kerckhoffs et al., 2003). Here, stresses were also applied both along fibres as well as across fibres based on known myofibre dispersion (Tangney et al., 2013; Krishnamurthy et al., 2016). Note that the active scalings, αlv, αrv, are dotted with the region identifier, ϕ, in order to selectively activate LV and RV chambers. While regional activation can be defined based on eikonal activation times (Tomlinson et al., 2002) or monodomain/bidomain simulations (Potse et al., 2006); here, the contraction of the chambers was approximated by uniform contraction parameters, αlv and αrv.

Additional stresses were added along the surface of each valve orifice ([image: image]), reflecting the fact that each valve annulus is comprised of thin cartilaginous tissue (Hamdan et al., 2012; Gunning and Murphy, 2014). This tissue, comprised of circumferential collagen fibres, is extremely flexible but exhibits strong resistance to annular dilation (e.g., stretch of the collagen fibres). This was incorporated into the model by adding stresses, [image: image], applied over each annular plane, [image: image], where

[image: image]

Here, [image: image] describes the deformed circumferential direction of collagen fibres in the kth−annulus and [image: image] is the pseudo-invariant along collagen fibres. As the stresses induced are exerted along an extremely thin area, and were principally oriented along fibres, the added stresses were incorporated over the annular surfaces. The parameter c1 accounts for the collagen stiffness scaled by the thickness while the parameter c2 allows for exponential growth in the fibre stresses. Here, a value of c1 = 0.1 kPa and c2 = 0.5 were selected for all valves based on achieving a consistent qualitative annular dilation as typically found in vivo and were unchanged across patients (assuming the collagenous structures around the valves was consistent).

Instead of using parameter estimation techniques (Chabiniok et al., 2012; Marchesseau et al., 2013; Asner et al., 2015) to determine the activation of the myocardium, the LV/RV activation was solved for as part of the forward model problem. In this context, the active parameters αlv, αrv act as Lagrange multipliers with the constraint held being that both chambers follow the volume trends observed in the data ([image: image]). Here, the first term provides the model predicted volumes which must be equal to the volumes prescribed by Vk(t) (where [image: image] and β(X) is a binary variable taking the value of 1 below and 0 above the truncation plane) (Asner et al., 2017). As the pressure at each time point is given ([image: image]), the active tension scalings are found which enable matching between the model/data. Note, for consistency and stability, the applied pressure Pk(t) must be greater or equal to the passive pressure at the specified volume Vk(t).

Valve plane motion was prescribed ([image: image]) using the valve landmark displacements, [image: image], extracted from the points predicted by the neural network (discussed in section 2.1). For each valve, the average position over the cardiac cycle was enforced using Lagrange multipliers, λk. The pulmonary annulus is not visible in any of the long-axis images acquired in this study. It can be viewed in a right ventricular outflow tract (RVOT) view, which is not always acquired in clinical scans. Therefore, in this study, an average displacement, computed from the displacements of the other three valves, was applied to the pulmonary valve. The [image: image] introduce the multipliers (that can be thought of as reference tractions) which constrain the motion of the centre of mass to move as observed in the data.

Since the unloaded state of myocardium is unknown, the end-systolic geometry was used as the reference geometry. Some studies have used inverse methods to estimate the reference geometry (Krishnamurthy et al., 2013; Wang Y. et al., 2020). These methods are dependent on the choice of material law, constitutive parameters and boundary conditions. An analysis illustrating the impact of these choices and ramifications of boundary conditions is presented in Hadjicharalambous et al. (2021).

Personalised models were solved in a finite element framework with displacements and pressure defined using linear ℙ1 elements, see Supplementary Material for further details. Endocardial and valve Lagrange multipliers were scalars. All problems were solved in [image: image]Heart, a multi-physics finite element solver (Lee et al., 2016).



2.4. Diastolic Inflation and Passive Parameter Estimation

Estimation of both a0 and af is not feasible using displacements alone when driving simulations with cavity volumes. However, due to the linear parameter dependence of a0 and af in the reduced Holzapfel-Ogden law, both passive parameters scale linearly with pressure. Therefore, each model was personalised by estimating, γ = a0/af, describing the anisotropy of the tissue from displacements and then using an end-diastolic pressure value to obtain a0 and af. To do this, simulations of diastolic inflation were first run starting from the end-systolic geometry, prescribing cavity volumes, and valve motion. This was done by solving Equation (1), assuming αlv, αrv were zero, and considering Plv, Prv as state variables (Asner et al., 2017). In this first phase, the LV/RV volumes were inflated to their end diastolic state, after which the volume was kept constant and values of γ were swept between 1.0 and 0.1. Practically, this was done by setting [image: image] and [image: image] to 1.0 kPa during inflation. Then, during the sweep, [image: image] was kept constant and asim was varied. Absolute values of a0 and af were then retrieved by scaling them by the ratio between an end-diastolic pressure value appropriate for each patient group ([image: image]) and the simulated end-diastolic pressure ([image: image]). The [image: image] for each individual case was then found by using the values of a0 since the stiffness scales with both EDP in the left and right ventricles.

[image: image]

For each value of γ, the objective function, [image: image] was calculated as the root mean square of the distance between contour points obtained from the neural network labels and the deformed model surface, Γlv (see Equation 6). The objective function utilised only contour points from the LV epicardium, LV endocardium and RV septal wall, omitting RV free wall points.

[image: image]

Since all data used were acquired from a standard clinical scan, no catheter pressure measurements were acquired. Filling pressures have previously been estimated from the E/A ratio measured from echocardiography (Nagueh et al., 1997) which requires blood flow measurements through the mitral valve. In the absence of echo and 4D flow MRI data, end-diastolic and end-systolic pressure values were found from literature in studies which obtained invasive catheter pressure measurements from within the LV in each patient group (see Table 1). Additionally, normal end-diastolic and end-systolic pressures were taken from Klingensmith et al. (2012). Taking the mean (weighted by sample size) of pressure values from literature, LV end-diastolic pressures ([image: image]) were assigned to be 8 mmHg (1.1 kPa), 20.2 mmHg (2.7 kPa), and 24.2 mmHg (3.2 kPa) for the healthy volunteers, DCM patients and HCM patients, respectively. Similarly, [image: image] values were set to 120.0 mmHg (16.0 kPa), 120.0 mmHg (16.0 kPa), and 183.1 mmHg (24.4 kPa) for each group, respectively. A representative pressure trace (Russell et al., 2012) was scaled to group pressure values at end-diastole and end-systole for both the LV and RV. Then, each segment of the pressure trace (i.e., ED to eIVC, eIVC to ES, ES to eIVR, eIVR to diastasis, and diastasis to ED) was temporally scaled for each individual based on valve opening and closing times in the cine images.


Table 1. Left ventricular pressure measurements from literature denoting mean pressure ± one standard deviation as well as sample sizes in each study.

[image: Table 1]




3. RESULTS


3.1. Neural Network Segmentation and Landmark Labelling

All short and long-axis images were manually segmented at the end-diastolic state in order to measure accuracy of the network. Boxplots in Figure 4 plot dice scores measuring similarity between manual and neural network segmentations for each label and group. Results show that the largest errors occur in the segmentation of the myocardium, with HCM cases having the lowest dice scores for this label.


[image: Figure 4]
FIGURE 4. Boxplots illustrate dice scores for each label: LV blood pool (LV), LV myocardium (Myo), and RV blood pool are shown for the healthy volunteers (V), DCM patients (D), and HCM patients (H). The centre line of each boxplot represents the median and the whiskers denote the 25th and 75th percentiles.


Errors (in mm) between predicted and manually annotated valve landmarks are shown in Figure 5 and were generally within 3 mm of the manually annotated position (~2 pixels). Six landmarks are labelled for the mitral valve (in the 2CH, 3CH, and 4CH images) whereas only two landmarks are labelled for the aortic and tricuspid valves each. Generally, landmarks were more accurately identified in the HCM group.


[image: Figure 5]
FIGURE 5. Boxplots of valve annotation errors for all 10 valve landmarks are shown for selected healthy volunteers (V), DCM patients (D), and HCM patients (H) in which valve landmarks were manually identified over the entire cardiac cycle. Each boxplot represents errors throughout the cardiac cycle. The centre line of each boxplot represents the median and the whiskers denote the 25th and 75th percentiles. The 10 valve landmarks correspond to those shown in Figure 3, Valve Landmark Identification.




3.2. Model Fitting and Geometric Measurements

The model fitting algorithm was able to accurately represent the various morphologies within the diverse cohort. Figure 6 illustrates models fit to a healthy volunteer, a DCM patient and an HCM patient with septal hypertrophy at the end-systolic time point. Clinical metrics, such as end-diastolic volumes, end-systolic volumes and wall thickness are reported for each case in Table 2. Compared to the healthy volunteers, the DCM cases have a higher mean LV end-diastolic (EDV) and end-systolic volume (ESV). Conversely, HCM patients have both reduced EDV and ESV in the left ventricle. Healthy volunteers and HCM patients demonstrate LV ejection fractions (EF) in a normal range (50% < EF < 70%) whereas DCM patients exhibit a depressed EF by definition. In all groups, RVEF values fell between (37.9% < EF < 55.9%) without discernible differences between group means. Wall thickness was greatest in the HCM cohort and showed minimal changes in the DCM group between ED and ES.


[image: Figure 6]
FIGURE 6. Three representative cases for the healthy volunteer, DCM and HCM groups are shown below with models fit to the neural network segmentations. Model surfaces at end-systole (purple) are overlayed on a single long-axis and short-axis image.



Table 2. Functional and geometric indices: end-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF), wall thickness (WT).

[image: Table 2]



3.3. Passive and Active Parameterisation

The fibre stiffness ratio, γ, was estimated for all cases using parameter sweeps and the optimal values are listed in Table 3, along with the end-diastolic pressure values used to scale a0 and af to meaningful stiffness estimates. Values of γ close to 1 indicate that the material is more isotropic whereas a value of 0.1 would indicate a highly anisotropic material. The value of γ also influences the final inflated geometry where larger values result in a more spherical shape. The mean value of γ for the volunteers is less than that for the DCM (p = 0.2) and HCM (p = 0.05) patient groups, indicating that healthy myocardium may be slightly more anisotropic in this small cohort. Additionally, larger γ values are in line with more spherical shapes observed in DCM hearts.


Table 3. Personalised passive and active parameters.

[image: Table 3]

Two active tension scaling parameters, for the LV and RV, were estimated throughout the cardiac cycle for each case. Normalised time-to-peak ([image: image] and [image: image]) as well as peak scaling parameters ([image: image] and [image: image]) are listed in Table 3. It should be noted that the traces of αlv and αrv are dependent on volume changes as well as pressures. Since higher ESP values were assigned in the HCM cases, it can be seen that the peak values of [image: image] and [image: image] are greater in this group. There were no significant differences between time to peak activation. Figure 7 shows mean active fibre stress over the cardiac cycle in the LV and RV as well as panels showing fibre stress patterns throughout the model for a single case (v1) at three time points during systole. The highest stresses are seen near the base of the left and right ventricles. Fibre stretch with respect to the end-diastolic state is plotted for a representative case illustrating model deformation and regional stretch patterns over the cardiac cycle (Figure 8). A bullseye plot of fibre stretch at end-systole illustrates that the largest values (<0.55) are seen in the LV free wall whereas fibre stretch is restricted in the basal septal region near the valves.


[image: Figure 7]
FIGURE 7. Mean active fibre stress over the cardiac cycle in both the LV and RV for a single case (v1) illustrating the active stress distribution over the entire heart at three points during active contraction: early systole (t = 50 ms), peak active contraction (t = 230 ms), and end-systole (t = 360 ms). The bullseye plot shows the regional distribution of mean active fibre stress over the 17 AHA regions at end-systole.



[image: Figure 8]
FIGURE 8. Mean fibre stretch over the cardiac cycle is shown for both the LV and RV for a single case (v1). Fibre stretch over the cardiac cycle is also plotted for nine time points with the reference state model (ES) shown as a wireframe mesh. The bullseye plot illustrates differences in regional stretch at the end-systolic state in the 17 AHA regions.


Both mean active fibre stress and mean fibre stretch in the LV are plotted for 16 AHA segments for all cases in Figure 9, illustrating group differences. Peak fibre stretch is smaller in DCM cases when compared to healthy volunteers in 12 out of 16 AHA regions (p < 0.05). Regional fibre stretch demonstrates that, in some DCM cases, some segments exhibit further stretching of fibres (values >1.0) in early phases of systolic contraction. Circumferential and longitudinal stretch, common clinical metrics, are also plotted for 16 AHA segments for all cases in Supplementary Figure 8. The mean for each segment and group are listed in Supplementary Table 4.


[image: Figure 9]
FIGURE 9. (A) Mean active fibre stress and (B) fibre stretch over the cardiac cycle in 16 AHA regions of the LV for healthy (black), DCM (blue), and HCM (red) groups.





4. DISCUSSION

The primary goal of this study was to implement a pipeline for running full-cycle simulations using personalised biventricular models generated entirely from neural-network labels. In this process, no manual segmentation was done for the cases presented, other than for analysis of the accuracy of each network. The time and computational resources used for the pipeline are given in Supplementary Table 5 and demonstrate a clear advantage over manual methods. Additionally, all data used in this study was obtained using sequences common to any standard clinical MR scan. Due to its ability to be applied to diverse datasets, this pipeline could be used to develop an in silico cohort based on true patient data. This virtual cohort would be invaluable for testing novel therapies and devices alongside human and animal studies. Additionally, personalised metrics obtained from the models (e.g., anisotropy, material stiffness) could be further used to either classify patients or mark disease progression. However, larger sample sizes are needed in order to better understand differences between patient classes. Additional data, where available, could be used to augment the robustness of the personalised models, such as the use of tagged MR data for passive parameterisation (Asner et al., 2015). The use of a biventricular template along with fitting weights assigned to contours based on data fidelity enabled the generation of high-quality meshes suitable for biomechanical simulations with minimal user intervention. Neural-network identified leaflet landmarks were used to prescribe average valve motion on each valve in the model, allowing for physiological basal motion of both ventricles.


4.1. Neural Networks

The neural network was able to accurately label the left and right ventricles from standard clinical images in a diverse cohort. The network captured the varied morphology of heart shapes in both DCM and HCM patients. Dice scores for labelling the LV blood pool were comparable to those from other segmentation networks (Wang et al., 2021) and the RV dice scores demonstrated greater accuracy than previous studies (Luo et al., 2016; Tran, 2016). However, the largest errors arose in labels of the myocardium. Although a comparison to inter-observer error was not done as part of this study, previous groups have compared annotations from multiple observers using the UK Biobank (Attar et al., 2019) as well as ACDC (Bernard et al., 2018) data sets. Similar to results shown in Figure 4, inter-observer errors for myocardium are greater than those for both the LV and RV blood pools in both data sets. Dice scores observed in this study are higher than the inter-observer dice scores reported for the LV and RV blood pools in Attar et al. (2019). One possible reason for the larger errors in the segmentation of the myocardium could be due to its annular shape which has a larger perimeter. Any equal overlap shifts would produce a greater error when compared to any shift in segmentation of the blood pools.

The second neural network labelled 10 different valve landmarks in each long-axis image to within 2–3 pixels of accuracy. These errors are similar to those encountered using common tracking algorithms and the method does not require manual initialisation (Kerfoot et al., 2021). Of the 10 valve landmarks, four demonstrated lower neural network predicted errors than interobserver errors (Kerfoot et al., 2021). The error can vary considerably throughout the cycle and between patients as each image is treated individually—i.e., no temporal consistency is taken into account in the neural network. There was no single patient that performed worse than others. Higher errors seen in the identification of landmark 8, on the septal side of the aortic valve can be attributed to image artefacts during systolic blood flow through the aortic outflow tract. Although improvements can be made in future work to increase the accuracy of both neural networks, the study focused on demonstrating their utility in driving model generation and biomechanical personalisation for a diverse set of patients.

In order to have a pipeline that is robust to the presence of noise and artefacts in the imaging data, the neural network training process introduces noise to the images in various ways (e.g., dropout in k-space) so that it learns to account for the noise it may encounter in the imaging data. Additionally, due to the use of a model template fit to all short- and long-axis contours simultaneously, the pipeline is robust to the presence of a single or even multiple poor-quality images within a dataset. This, however, can result in a smooth surface that does not conform to small features. To demonstrate the robustness of the neural network segmentation and resulting pipeline, selected poor-quality images are shown in Figure 10 which were part of the 12 datasets used in this study. The poor image quality resulted in deteriorated segmentations. However, the final fitted model, which also takes into account all short-axis information, produced an adequate estimate of the long-axis shape. The pipeline could be improved by further augmenting the neural network with images that mimic typical artefacts found in MR images.


[image: Figure 10]
FIGURE 10. Selected long-axis images which were part of the 12 cases (h1, h4, d2, d4) used in this study which demonstrate poor image quality due to imaging artefacts. In the first row, the LV blood pool and myocardial segmentations obtained using the neural network are overlain on top of each image to qualitatively show the impact of the image quality on the network segmentation. In the second row, the final fitted model surface is shown on top of the image.




4.2. Clinical Metrics

Beyond improving the generation of computational models, trained neural networks provide a mechanism for automatically characterising common clinical metrics. In the DCM group, the mean EDV and ESV were greater than those measured in the healthy volunteers. Similarly, the mean LVEF was less than that in both the healthy group, marking the deteriorated contractile and diastolic filling function typically clinically associated with DCM (Rihal et al., 1991). Conversely, the mean EDV and ESV values were slightly smaller in the HCM group when compared to the healthy volunteers. As commonly reported in HCM patients, the LVEF in this group was slightly elevated when compared to the healthy group (Haland et al., 2017). HCM patients exhibited greater wall thickness at both end-diastole and end-systole when compared to both the DCM patients and healthy volunteers. Typically, HCM is characterised by a wall thickness >12 mm during diastole. Although the wall thickness values shown in Table 2 report mean values <12 mm, isolated hypertrophic regions in each patient demonstrate areas of hypertrophy >12 mm. Regional plots of wall thickness averaged over each cohort are shown in Supplementary Figure 4 using the 17-segment AHA model. In each of these three groups, no significant differences were observed in the mean RVEF. However, the HCM patients demonstrated lower values of EDV and ESV in the RV than the other two groups. This pipeline has demonstrated the ability to rapidly generate common clinical metrics such as EF and wall thickness as well as cavity volumes over the entire cardiac cycle without the need for manual processing. Aside from using these values in clinical decision making, they can also be used as input into personalised biomechanical models.



4.3. Valve Motion

This study presents a novel means of constraining valve motion. Displacement was prescribed to valve centroids based on the motion of the identified landmarks from the neural network. In other cardiac modelling studies, basal motion is often constrained by restricting longitudinal motion (e.g., Sack et al., 2018b; Finsberg et al., 2019; Wang Z. J. et al., 2020) or applying an average motion measured from imaging data (e.g., Hadjicharalambous et al., 2017). In another study, basal motion was constrained by tethering the pulmonary outflow tract to a fixed point (Sack et al., 2018a). In truncated models, without the inclusion of anatomical landmarks, tagged magnetic resonance imaging (MRI) data is necessary to measure longitudinal motion, which may not be available in all clinical scans. The use of a biventricular model with all four valve annuli along with the neural network-defined leaflet insertion points allowed for the integration of longitudinal motion measured from imaging data into the computational model. Further, to impose a constraint similar to the stiff valve annulus, an additional stiffness term was used to restrict annular dilation.



4.4. Model Personalisation

Integration of imaging data with personalised biomechanical models enables estimation of intrinsic material stiffness parameters, providing important information about the mechanical state of the myocardium. In this study, we focused on determination of bulk and fibre material parameters, fit by adjusting their ratio, γ. The mean value of γ, which is independent of pressure, was smaller for the healthy volunteers than those estimated for the DCM and HCM patient groups. These weak differences may indicate that the myocardium in healthy individuals is more anisotropic than in pathological hearts. However, these differences were not statistically significant. A power analysis suggests that using eight samples would enable these differences to reach significance. In order to demonstrate statistically significant differences between αmax values in the LV for DCM and HCM groups, 11 samples would be needed. To distinguish differences between the time to peak contraction in diseased patients and healthy volunteers, 46 samples are needed. Therefore, future studies will aim to expand the sample size to demonstrate the pipeline's utility in providing metrics which distinguish between patient groups.

Simulation outcomes such as strain are relatively independent of the estimated value of γ since the simulations are driven by cavity volumes. However, stress would be more affected by a change in passive material properties. Fibrosis, common in both DCM and HCM patients (Aurigemma et al., 2006; Marian and Braunwald, 2017), results from the growth of collagen within cardiac tissue and may impact tissue anisotropy. The estimated value of γ is also strongly influenced by the angles defined in the rule-based fibre field (Asner et al., 2015; Hadjicharalambous et al., 2017; Campos et al., 2020). As rapid in vivo diffusion tensor MRI sequences improve (Stoeck et al., 2018), personalised fibre fields will augment the robustness of the presented pipeline. Methods of using low-resolution in vivo data along with statistical models of population fibre fields may provide a new means of personalisation without significantly adding to the clinical scan time (Stimm et al., 2021).

The objective function used for determining the optimal value of γ utilised LV contour points only. The RV deformation is impacted significantly by epicardial boundary conditions due to its thin wall. Various approaches have been used in previous studies to constrain epicardial dilation, such as a spring force acting in the normal direction (Levrero-Florencio et al., 2020; Strocchi et al., 2020) or parallel spring and dashpot forces (Pfaller et al., 2019). However, there remains a lack of clear consensus on the role of the pericardium in restricting myocardial motion and whether or not the inclusion of epicardial constraints improves model personalisation. Therefore, simulations in this study were run without the addition of boundary conditions on the epicardium. However, without these constraints, the right ventricular deformation did not sufficiently match the imaging data (Supplementary Figure 6). Objective function curves with and without the inclusion of RV free wall points are shown in Supplementary Figure 7. Including the RV in the objective function resulted in larger errors and, in some cases, resulted in curves with no unique minimum. The inclusion of the RV in the mechanics problem, however, plays a vital role in restricting motion of the septum (Hadjicharalambous et al., 2017). In future studies, RV epicardial boundary conditions should be tested which result in accurate RV deformation.

This method also presents an elegant solution for estimating dynamically varying active scaling parameters in both the LV and RV in the forward model problem. It avoids data assimilation methods which often require repeated simulations and thus, the presented method reduces computation time. In some diseased states, contractility can vary regionally over the whole heart, such as the case in patients with a myocardial infarction (Chabiniok et al., 2012). In this case, utilising additional constraints on regional displacements, the current method could be adapted to have a spatially varying activation parameter. The method could be also be augmented by adding a time-varying activation model, such as an Eikonal model (Keener, 1991), to specify the spatially varying sequence of activation.



4.5. Regional Stress and Strain

From full-cycle simulations, active fibre stress and fibre stretch were plotted over 16 AHA regions in Figure 9 illustrating regional differences. In some DCM cases, fibre stretch in some regions was greater than one in early systole, signifying dilation. This may be due to regional systolic dysfunction in these cases. In general, DCM cases showed smaller magnitudes of fibre stretch than healthy and HCM groups, in line with typical systolic dysfunction marked in DCM (Hayashida et al., 1990). Fibre stretch, as opposed to circumferential and longitudinal stretch, could provide more direct measurements of how muscle fibres change with disease. Circumferential stretch measured from the models, plotted in Supplementary Figure 8, were comparable to circumferential strain measured from ultrasound in healthy individuals (Hurlburt et al., 2007; Leitman et al., 2010; Duan et al., 2012). However, model-derived longitudinal stretch was underestimated compared with longitudinal strain from ultrasound. Longitudinal strain is largely dependent on the defined fibre orientation and the model used to describe active contraction. In future, patient-specific fibres as well as constitutive models should be adapted to achieve physiological longitudinal strains. Stress and strain from personalised simulations such as these can provide valuable insights into cardiac function on an individual basis.



4.6. Limitations

In previous cardiac modelling studies, inverse methods have been used to estimate the unloaded geometry of the heart (Krishnamurthy et al., 2013; Wang Y. et al., 2020) which are dependent on the choice of material law, stiffness parameters and boundary conditions. In other studies, various points in the cardiac cycle have been used as the reference geometry including end-systole (Wang et al., 2009), early-diastole (Xi et al., 2013), and diastasis (Wang et al., 2018). However, physiologically, the heart is never in an entirely unloaded state. In early diastole, residual active stress may be present and in all phases of diastolic filling, the cavity pressure is never zero. Although passive parameter estimates have been shown to be minimally affected by changing the reference state from end-systolic to early-diastolic geometries (Hadjicharalambous et al., 2014b), the impact of the choice of reference state is examined further in Hadjicharalambous et al. (2021) and should be assessed in biventricular patient-specific modelling.

The personalised parameters in this study, e.g., a0, af, αlv, and αrv, are all dependent on pressure estimates. If available, catheter measurements from within the LV cavity would enable accurate scaling of these parameters for each individual, and better certainty on model data. LV filling pressures can also be approximated with knowledge of the peak blood flow through the mitral valve as well as the mitral valve peak annular velocity (Nagueh et al., 1997). Given that the mitral valve annular velocity can be obtained in the current pipeline using the landmark predicted valve points, the additional acquisition of 4D flow MR imaging could provide measurements of peak blood flow, enabling appropriate personalisation of all parameters through non-invasive imaging. New methods, such as the use of microbubbles within the LV (Forsberg et al., 2005; Dave et al., 2012), may soon enable more accurate non-invasive cavity pressure measurements. Here, we demonstrate the feasibility of the personalised modelling method using standardised pressure data. If available, pressure data can easily be incorporated into the current pipeline.




5. CONCLUSIONS

This work presents a pipeline using neural networks for generating high quality biventricular models from standard MR cine data. A cohort of 12 individuals were used to demonstrate the pipeline in three different groups: healthy volunteers, DCM patients and HCM patients. Despite the varied morphology and motion of each case, the automated pipeline robustly allowed for determination of a unique passive material parameter describing the tissue anisotropy (γ) as well as two active scaling parameters controlling systolic contraction in the LV and RV (αlv and αrv). The entire pipeline was run using only images from a typical clinical scan, demonstrating its potential to be applied to a large cohort of retrospective data. The use of neural networks along with the model fitting step significantly sped up the process for creating high-quality finite element models. cardiac cycle. This study demonstrates a pipeline that is suitable to model cardiac mechanics and estimate personalised parameters in a diverse cohort of individuals including healthy volunteers, DCM and HCM patients with varying morphologies.
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The numerical simulation of multiple scenarios easily becomes computationally prohibitive for cardiac electrophysiology (EP) problems if relying on usual high-fidelity, full order models (FOMs). Likewise, the use of traditional reduced order models (ROMs) for parametrized PDEs to speed up the solution of the aforementioned problems can be problematic. This is primarily due to the strong variability characterizing the solution set and to the nonlinear nature of the input-output maps that we intend to reconstruct numerically. To enhance ROM efficiency, we proposed a new generation of non-intrusive, nonlinear ROMs, based on deep learning (DL) algorithms, such as convolutional, feedforward, and autoencoder neural networks. In the proposed DL-ROM, both the nonlinear solution manifold and the nonlinear reduced dynamics used to model the system evolution on that manifold can be learnt in a non-intrusive way thanks to DL algorithms trained on a set of FOM snapshots. DL-ROMs were shown to be able to accurately capture complex front propagation processes, both in physiological and pathological cardiac EP, very rapidly once neural networks were trained, however, at the expense of huge training costs. In this study, we show that performing a prior dimensionality reduction on FOM snapshots through randomized proper orthogonal decomposition (POD) enables to speed up training times and to decrease networks complexity. Accuracy and efficiency of this strategy, which we refer to as POD-DL-ROM, are assessed in the context of cardiac EP on an idealized left atrium (LA) geometry and considering snapshots arising from a NURBS (non-uniform rational B-splines)-based isogeometric analysis (IGA) discretization. Once the ROMs have been trained, POD-DL-ROMs can efficiently solve both physiological and pathological cardiac EP problems, for any new scenario, in real-time, even in extremely challenging contexts such as those featuring circuit re-entries, that are among the factors triggering cardiac arrhythmias.

Keywords: cardiac electrophysiology, reduced order modeling, deep learning, proper orthogonal decomposition, bidomain equations, left atrium, isogeometric analysis


1. INTRODUCTION

Computational cardiac electrophysiology (EP) is built upon mathematical and numerical models that aim at simulating both physiological and pathological heart rhythm, such as, e.g., ventricular tachycardia and atrial fibrillation (see, e.g., Vigmond et al., 2002, 2008; Niederer et al., 2009, 2011; Trayanova, 2011; Prakosa et al., 2018; Strocchi et al., 2020). Simulating the electrical behavior of the heart, from the cellular scale to the tissue level, requires the numerical approximation of coupled nonlinear dynamical systems, such as, e.g. the Bidomain equations (see, e.g., Colli Franzone et al., 2005, 2006), coupled with suitable ionic models, such as the FitzHugh-Nagumo (FitzHugh, 1961; Nagumo et al., 1962), the Aliev-Panfilov (Aliev and Panfilov, 1996; Nash and Panfilov, 2004), the Roger-McCulloch (Rogers and McCulloch, 1994), the ten Tusscher-Panfilov (ten Tusscher and Panfilov, 2006), or the Mitchell and Schaeffer models (Mitchell and Schaeffer, 2003). Multiple solutions of these systems, corresponding to different model inputs parameters and data, such as, e.g., electrical conductivities, ionic model parameters, and applied currents, need to be computed to evaluate outputs of clinical interest, such as activation maps (ACs) and action potential (AP) duration. All these instances can be cast either in multi-query or real-time contexts. In the former case, the input-output map is repetitively evaluated in order to perform multi-scenario analysis, to deal with uncertainties and with inter- and intra-subject variability and to consider specific pathological scenarios; in the latter, outputs of interest must be computed in a very limited amount of time, in view of a possible integration in the clinical setting. Performing the numerical approximation of cardiac EP problems in multi-query context or solving them in real-time is in general out of reach for high-fidelity techniques or full order models (FOMs), such as the finite element (FE) method (Quarteroni and Valli, 1994) or isogeometric analysis (IGA) (Cottrell et al., 2009). To enhance their computational efficiency, multi-query and real-time problems may benefit from suitable surrogate models that can be built according to different strategies (see, e.g., Niederer et al., 2020 for a recent review). In particular, reduced order modeling techniques, can potentially provide more accurate approximations than data fitting techniques such as, e.g., data-driven emulators built through polynomial chaos expansions or gaussian processes. Moreover, they yield more significant computational savings than low-fidelity models (such as, e.g., FOMs built on coarser meshes) by replacing the FOM by a reduced order model (ROM), featuring a much lower dimension, yet capable to express the physical features of the problem at hand.

Cardiac EP problems are extremely challenging for traditional ROMs. Indeed, the latters tend to be inaccurate and/or computationally inefficient. This is primarily due to the high variability characterizing the solution manifold (with respect to the problem parameters), as well as to the nonlinear nature of the input-output maps that are more frequently approximated. Indeed, cardiac EP models feature coherent structures that propagate over time. In particular, as soon as re-entries, the most recognized cellular mechanisms sustaining atrial tachycardia and atrial fibrillation (Nattel, 2002) are considered, and wavefronts show abnormal activation patterns. These systems can hardly be reduced to lower dimensional problems by traditional ROMs for parametrized problems such as, e.g., the reduced basis (RB) method (Quarteroni et al., 2016). The most advanced example of efficient and accurate ROM in cardiac EP can be found in Pagani et al. (2018), where a local POD-Galerkin ROM has been proposed to handle physiological cardiac EP described in terms of the simpler Monodomain equation. However, to the best of our knowledge, no attempt to construct a comprehensive and systematic ROM framework to efficiently deal with parameter-dependent Bidomain equations involving pathological scenarios, such as re-entries, has been made yet.

Recently, we have introduced a new class of non-intrusive—since just a collection of FOM snapshots is required—nonlinear ROM techniques based on deep learning (DL) algorithms, named DL-ROMs, for the construction of efficient ROMs for parameter-dependent PDEs; in particular, we have focused so far on the Monodomain equations for cardiac EP, both in physiological and pathological scenarios (Fresca et al., 2020), as well as on several other nonlinear time-dependent parametrized problems, see (Fresca et al., 2021). DL-ROMs proved to be computationally efficient during the testing stage, that is, for any new scenario unseen during the training stage, but they might imply overwhelming training costs (and times) when the FOM dimension becomes moderately large. POD-enhanced DL-ROMs, first introduced and analyzed in Fresca et al. (2020), also enable fast training stages, improving on the weakest aspect—however, taking advantage of the key properties—of DL-ROMs.

So far, limited attempts have been made to solve, by means of DL algorithms, problems featuring traveling waves or front propagation processes. For example, recurrent and convolutional deep neural networks have been employed to predict the propagation of surface waves in Fotiadis et al. (2020). Regarding the cardiac EP context, in Cantwell et al. (2019) machine learning (ML) techniques have been considered for time prediction or parameters estimation, and EP-nets have been proposed in Ayed et al. (2019) and Kashtanova et al. (2021) to replace numerical integration of PDEs. On the other hand, deep neural networks have been extensively exploited to address several issues in computational fluid dynamics (see, e.g., Kutz, 2017; Bhatnagar et al., 2019; Ströfer et al., 2019; Brunton et al., 2020; Thuerey et al., 2020; Eichinger et al., 2021; Fresca and Manzoni, 2021b).

In this study, we show that POD-DL-ROMs can handle parametrized problems in cardiac EP effectively and provide fast and accurate solutions to EP problems set on realistic geometries. In particular, the performance of POD-DL-ROMs is assessed on cardiac EP on a left atrium (LA) surface geometry, both in physiological and pathological scenarios. These problems are challenging for traditional ROMs, due to (i) the presence of steep wavefronts, (ii) the complex activation patterns associated with pathological scenarios, (iii) the high FOM dimension, and (iv) the geometrical complexity. POD-DL-ROMs yield accurate and extremely efficient numerical approximations, irrespectively of the concurrence of these challenging features. This is particularly useful in view of the evaluation of patient-specific features to enable the integration of computational methods in current clinical practice; indeed, outputs of clinical interest, such as ACs, APs, electrograms, and ablation targets, can be more efficiently evaluated by the POD-DL-ROMs than by a FOM, while maintaining a high level of accuracy. The numerical tests carried out in this study represent a proof-of-concept of the POD DL-ROM technique ability to investigate intra- and inter-subjects variability toward performing multi-scenario analyses in real-time and, ultimately, supporting decisions in clinical practice.

To build our ROMs, we rely on a FOM obtained by means of an IGA spatial discretization. This choice is motivated by the suitability of high order polynomials, with high order global continuity, to control and limit numerical dispersions and, thus, to accurately capture wavefronts (Dedè et al., 2015; Pegolotti et al., 2019) and the smoothness in the representation of the computational domain (Cottrell et al., 2009). These relevant features have been exploited to address cardiac EP problems in Patelli et al. (2017), Pegolotti et al. (2019), and Bucelli et al. (2021). It is also worthy to highlight that, so far, only few works provide a combination of IGA-based FOMs and reduced order modeling techniques. IGA POD-Galerkin ROMs have been first applied to potential flows (Manzoni et al., 2015) and shell structural problems (Rinaldi, 2015), then to linear parabolic PDEs (Zhu et al., 2017a) and time-dependent parameterized acoustic wave equations (Zhu et al., 2017b); see also (Salmoiraghi et al., 2016; Garotta et al., 2020).

The structure of this study is as follows. In section 2, we introduce the FOM used to approximate the problem at hand and the POD-DL-ROM technique. The numerical assessment of this latter is carried out in section 3 on three different test cases; a more in-depth discussion is reported in section 4.



2. MATERIALS AND METHODS

This section provides an overview of the mathematical and numerical models describing cardiac EP, including the reduced order modeling technique we employ to achieve computational efficiency in the solution of the Bidomain equations.


2.1. Mathematical Models for Cardiac Electrophysiology

The electrical activation of the heart, which drives its contraction, is the result of two processes (Klabunde, 2011; Colli Franzone et al., 2014): the generation of ionic currents through the cellular membrane producing a local AP, at the microscopic scale, and the propagation of the AP from cell to cell in the form of a transmembrane potential, at the macroscopic scale. The latter process can be described by means of PDEs, suitably coupled with systems of ODEs accounting for the former (Quarteroni et al., 2017, 2019). To model the propagation of the electrical signal in the heart, we may consider the so-called Bidomain equations (Geselowitz and Miller III, 1983; Colli Franzone et al., 2014) in a domain Ω ⊂ ℝd, with d = 2, 3, representing a portion of the myocardium, considered as a continuum composed of two interpenetrating domains, the intracellular and the extracellular spaces. Each point x ∈ Ω is associated with the intracellular potential ui, the extracellular potential ue, and the transmembrane potential u = ui−ue. Coupling the parabolic-elliptic formulation of the Bidomain model for the transmembrane potential u = u(x, t) and the extracellular potential ue = ue(x, t) with a phenomenological1 model for the ionic currents—involving a single gating variable w = w(x, t)—results in the following nonlinear time-dependent system:

[image: image]

Here, t and u denote a rescaled and dimensionless time and trasmembrane potential, depending on the ionic model considered2, n denotes the outward directed unit vector normal to the boundary ∂Ω of Ω, whereas [image: image] and [image: image] are the intracellular and the extracellular applied currents representing, e.g., the initial activation of the tissue. The parabolic nonlinear diffusion-reaction equation for u is two-way coupled with the ODE system; this latter must be solved, in principle, at any point x ∈ Ω. Indeed, both Iion and g depend on u and w, and the most common choices to efficiently reproduce the AP are, e.g., the FitzHugh-Nagumo (FitzHugh, 1961; Nagumo et al., 1962), the Aliev-Panfilov (Aliev and Panfilov, 1996; Nash and Panfilov, 2004), the Roger-McCulloch (Rogers and McCulloch, 1994), or the Mitchell-Schaeffer models (Mitchell and Schaeffer, 2003). The diffusivity tensors Di, De usually depend on the fibers-sheet structure of the tissue, affecting directional conduction velocities and direction. In particular, by assuming an axisymmetric distribution of the fibers, the intracellular and extracellular conductivity tensors take the form

[image: image]

where [image: image] and [image: image] are the electrical conductivities in the fibers and the transversal directions, for the intracellular and extracellular conductivity tensors. A simplified model is given by the Monodomain equation (Colli Franzone et al., 2014), written only in terms of the transmembrane potential u.

For most of the basic phenomenological ionic models, such as the FitzHugh-Nagumo, the Aliev-Panfilov (A-P) (Aliev and Panfilov, 1996) or the Roger-McCulloch (R-M) (Rogers and McCulloch, 1994) model, the ionic current takes the form of a cubic nonlinear function of u and a single (dimensionless) gating variable plays the role of a recovery function, allowing to model cell refractoriness. In this study, we focus on the simple phenomenological A-P and R-M ionic models in order to lessen the computational costs associated with the approximation of Equation (1) through a FOM. The A-P model consists in taking

[image: image]

where the parameters K, a, b, ε0, c1, c2 are related to the cell. Here, a represents an oscillation threshold, the weighting factor [image: image] was introduced in Aliev and Panfilov (1996) to tune the restitution curve to experimental observations by adjusting the parameters c1 and c2, whereas K and b are coefficients set according to Aliev and Panfilov (1996); see, e.g., (Clayton et al., 2011; Colli Franzone et al., 2014) for a detailed review. For the R-M ionic model, we rely on the following variant provided in Rogers and McCulloch (1994)

[image: image]

where G, η1, η2, η3 are positive coefficients, vth is a threshold potential, and vp is the peak potential.

The coupled system (Equation 1) depends on several parameters representing either functional or geometric data such as, e.g., material properties, initial and boundary conditions, or the shape of the domain. In the remaining part of the study, we denote by [image: image] a parameter vector listing all the nμ input parameters characterizing physical (and, possibly, geometrical) properties; [image: image] is a subset of [image: image], denoting the parameter space. Relevant physical situations are those in which input parameters affect the diffusivity matrix D (through the conduction velocities) and the applied current Iapp; for previous analyses focused instead on the gating variable dynamics (through g) and the ionic current Iion in the case of the Monodomain equation (see, e.g., Pagani et al., 2018).

Regarding the spatial discretization of the system (Equation 1), we consider NURBS-based IGA on surfaces (e.g., the LA), in the framework of Galerkin methods (Quarteroni, 2017). Here, the same NURBS basis functions are employed both to define the computational domain and to construct the finite-dimensional space in which the numerical solution of the PDE is sought (Cottrell et al., 2009). Globally high order continuous polynomials have proved to control and limit numerical dispersion (Dedè et al., 2015), which may lead to artificial fractionated potential fronts, when dealing with the sharp but smooth fronts arising in cardiac EP. To correctly describe cardiac EP, capturing propagating fronts and their velocity is essential. The use of NURBS basis functions with high polynomial degree (say, p) and global high order continuity (say, [image: image]) is beneficial, in terms of both accuracy and efficiency, to deal with Monodomain/Bidomain equations since they limit dispersion effects typical of traveling wave phenomena (Patelli et al., 2017; Pegolotti et al., 2019). Moreover, NURBS basis functions also allow a smooth representation of the computational domain starting from medical images, compared to methods exploiting polyhedral elements, as it usually happens when dealing with finite element approximations (Cottrell et al., 2009). In particular, we employ a two-dimensional NURBS surface of the LA built starting from B-spline basis functions of degree p = 2. For further details on the construction of the LA computational domain, we refer to Patelli et al. (2017). The smoothness of the computational domain, together with the regularity of NURBS basis functions, makes IGA well-suited for surface problems requiring high order polynomials.



2.2. Proper Orthogonal Decomposition-Enhanced Deep Learning-Based Reduced Order Models (POD-DL-ROMs)

From an algebraic standpoint, the spatial discretization of the system (Equation 1) through a NURBS-based IGA approximation yields the following nonlinear dynamical system for uh = uh(t, μ), ue,h = ue,h(t, μ) and wh = wh(t, μ), representing our FOM:

[image: image]

where uh, ue,h, and [image: image], being the dimension Nh related to the dimension of the NURBS space, and [image: image]. In the remaining part of this study, we consider as initial data u0(μ) = 0 and w0(μ) = 0. A detailed derivation of the FOM (Equation 5) is reported in the Supplementary Material.

Solving (Equation 5) is computationally demanding and far beyond the possibility to provide solutions or compute outputs of interest in real-time applications. Indeed, the propagation of the electrical signal is characterized by the fast dynamics of very steep fronts, thus requiring very fine space and time discretizations (Colli Franzone and Pavarino, 2004; Sundnes et al., 2006). This is even more true if such a coupled system must be solved for several parameters instances, that is, in a multi-query context, in order to investigate different scenarios or intra- and inter-subject variability. ROM techniques replace the FOM (Equation 5) by a model featuring a much lower complexity but still able to retain the physical features of the problem at hand. Traditional projection-based ROMs built, e.g., through the RB method (Quarteroni et al., 2016), yields inefficient ROMs when dealing with nonlinear time-dependent parametrized PDE-ODE system as the one arising from cardiac EP (Fresca et al., 2020). To overcome the limitation of traditional projection-based ROMs, we have recently proposed in Fresca et al. (2021) a strategy to construct, in a non-intrusive/data-driven way (indeed neither access or solution to the governing equations are required), DL-based ROMs (DL-ROMs) for nonlinear time-dependent parametrized problems, exploiting deep neural networks (Goodfellow et al., 2016) as a main building block, and a set of FOM snapshots. A first attempt to solve, by means of DL-ROMs, parametrized benchmark test cases in cardiac EP described by the Monodomain equations, has been carried out in Fresca et al. (2020). Although extremely efficient at testing (i.e., online) time, when evaluating the problem solution for any new testing-parameter instance, DL-ROMs require an expensive training (i.e., offline) stage, because of the extremely large number of network parameters to be estimated. POD-DL-ROMs provide a possible enhancement of DL-ROMs, which avoids expensive training stages, by (i) performing a prior dimensionality reduction through proper orthogonal decomposition (POD), and (ii) using a multi-fidelity pretraining stage, where different physical models can be efficiently combined, as recently shown in Fresca and Manzoni (2021a). In particular, through the use of randomized POD, the POD-DL-ROM training phase is extremely fast, especially if compared to the training stage of DL-ROMs. For example, in Fresca and Manzoni (2021a), where we consider the solution of the parametrized Monodomain equation in a square slab of cardiac tissue on a FOM dimension Nh = 4096, the use of the POD-enhanced DL-ROM reduces the GPU training time from 15 h to 24 min, while preserving extremely efficient testing times.

Tailored on the applications at hand, the goal of POD-DL-ROMs is to approximate the map (t, μ) ↦ uh(t, μ), where t ∈ (0, T) denotes time, [image: image] a vector of input parameters, and [image: image] the trasmembrane potential solution of Equation (5). This may be achieved without taking into account, and then expensively solving, the dynamics of the extracellular potential ue,h(t, μ) and the gating variable wh(t, μ) in the construction of the ROM. More precisely, we build a nonlinear ROM to approximate [image: image] by

[image: image]

where [image: image], ΨN:sn ↦ ΨN(sn), n ≪ N, is a nonlinear, differentiable function and [image: image] is the rPOD basis matrix of a N-dimensional subspace of [image: image]. In particular, the columns of V form an orthonormal basis of dimension N, computed by means of randomized SVD (rSVD) (Halko et al., 2011). In this way, the manifold [image: image] is approximated by the n-dimensional reduced nonlinear trial manifold

[image: image]

where [image: image]. The function [image: image] denotes the minimal coordinates of [image: image] on the nonlinear trial manifold [image: image]. Our goal is to set-up a ROM whose dimension n is as close as possible to the intrinsic dimension nμ + 1 (time plays the role of an additional coordinate) of the solution manifold [image: image], i.e. n ≥ nμ + 1, to correctly capture the degrees of freedom of the set [image: image] by containing its size (Lee and Carlberg, 2020). To model the relationship between each pair (t, μ) ↦ un(t, μ), and to describe the reduced dynamics on the reduced nonlinear trial manifold [image: image], we consider a nonlinear map under the form

[image: image]

where [image: image] is a differentiable, nonlinear function. As for DL-ROMs (see e.g., Fresca et al., 2021), both the reduced dynamics and the reduced nonlinear manifold where the ROM solution is sought (or trial manifold) must be learnt. In particular,

• reduced dynamics learning: We aim at learning the dynamics of the set [image: image] on the nonlinear trial manifold [image: image] in terms of minimal coordinates, by means of a deep feedforward neural network (DFNN). Indeed, we set the function Φn in Equation (8) equal to

[image: image]

where θDF denotes the vector of parameters of the DFNN, collecting all the corresponding weights and biases of each layer of the DFNN;

• nonlinear trial manifold learning: We employ the decoder function of a convolutional autoencoder (AE), that is, we define the function in Equation (6) as

[image: image]

where [image: image] depends on the vector θD of parameters of the convolutional/dense layers of the decoder.

By combining the two previous stages, the POD-DL-ROM approximation [image: image] finally takes the form

[image: image]

The encoder function of the convolutional AE can then be exploited to map the intrinsic coordinates [image: image] associated to (t, μ) onto a low-dimensional representation

[image: image]

where [image: image] denotes the encoder function, depending upon a vector θE of parameters. The architecture of the POD-DL-ROM neural network, employed at training time, is the one shown in Figure 1. At testing time we can discard the encoder function.


[image: Figure 1]
FIGURE 1. Starting from the FOM solution uh(t; μ), the intrinsic coordinates [image: image] are computed through rSVD; their approximation [image: image] is provided by the neural network as output, so that the reconstructed solution [image: image] is recovered through the rPOD basis matrix. In particular, the intrinsic coordinates [image: image] are provided as input to block (A), which returns as output [image: image]. The same parameter instance (t; μ) enters block (B), which provides as output un(t; μ), and the error between the low-dimensional vectors is accumulated. The minimal coordinates un(t; μ) are given as input to block (C), which returns the approximated intrinsic coordinates [image: image]. Then, the reconstruction error is computed.


Computing the POD-DL-ROM approximation (Equation 9) thus consists of solving the optimization problem

[image: image]

where the per-example loss function is given by

[image: image]

Ntrain and Ntest are the number of training- and testing-parameter instances, respectively, Nt is the number of time instances, Ns = NtrainNt, and ωh ∈ [0, 1]. The POD-DL-ROM approximation of the FOM solution [image: image] is then recovered by means of the rPOD basis matrix as.

[image: image]




3. RESULTS

In this section, we apply the POD-DL-ROM technique to relevant problems in cardiac EP, both in physiological and pathological scenarios, solved on a rectangular slab and a left atrium surface geometry. Dealing with realistic geometries, large-scale problems, i.e., high FOM dimensions Nh, and pathological scenarios, such as re-entries, show the feasibility of POD-DL-ROM to be integrated in to the clinical practice in order to compute outputs of interest, e.g., ACs, action potential durations, electrograms, and location of cores of rotors. To evaluate the performance of POD-DL-ROM, we rely on the loss function (Equation 11) and on:

• the error indicator ϵrel ∈ ℝ given by

[image: image]

• the relative error [image: image], for k = 1, …, Nt, defined as

[image: image]

While Equation (12) is a synthetic indicator, the quantity defined in Equation (13) is instead a spatially distributed function.

The configuration of the POD DL-ROM neural network, together with the values of the hyperparameters not reported in this study, used for our numerical tests is the same provided as in Fresca and Manzoni (2021a). The FOM simulations are carried out on a MacBook Pro Intel Core i7 6-core with 16 GB RAM CPU, while the POD-DL-ROM training and testing phases on a Tesla V100 32GB GPU.


3.1. Test 1: Slab and Left Atrium Surface Geometry by Varying Conductivities
 
3.1.1. Test 1.1: Slab Geometry

We consider the Bidomain Equation (1) coupled with the R-M ionic model (Equation 4) in a two-dimensional rectangular slab of cardiac tissue Ω = (0, 10)cm × (0, 2)cm. In order to characterize the bidomain nature of the tissue, we focus on the reconstruction of both the transmembrane and the extracellular potentials. To achieve this task, the intrinsic coordinates of the two field variables, i.e. vh(t) and ue,h(t), are stacked together, thus forming a tensor with d = 2 input channels, which represent the actual input (output) of the POD-DL-ROM neural network. The parameter (nμ = 1) consists of the electrical extracellular conductivity in the longitudinal direction to the fibers, i.e., the conductivity tensor De(x; μ) takes the form

[image: image]

where [image: image] and the parameter space is [image: image]. The remaining intracellular and extracellular conductivities are set equal to [image: image], [image: image], and [image: image], respectively. The parameters of the R-M ionic model are given by uth = 13 mV, vp = 100 mV, G = 1.5 ms−1, η1 = 4.4 ms−1, [image: image], and η3 = 1 (see, e.g., Gerardo-Giorda, 2007). We provide snapshots computed by means of P3/C2 NURBS basis functions, where Nh = 165 × 35 = 5705, with nel = 5120 mesh elements. Time integration is performed over the interval (0, T), with T = 150 ms and a time-step Δt = 0.05 ms, through a BDF of order 2. The intracellular applied current takes the form

[image: image]

where C = 100 mA, Ωapp = {x ∈ Ω:x ≤ 0.2}, ti = 0 ms, and tf = 1 ms.

For the training phase, we consider Nt = 1500 time instances in the interval (0, T) and Ntrain = 11 training-parameter instances uniformly distributed in the parameter space. For the testing phase, Ntest = 10 testing-parameter instances have been considered, each of them corresponding to the midpoint of two consecutive training-parameter instances. The maximum number of epochs is Nepochs = 20, 000, the batch size is Nb = 40, and regarding the early-stopping criterion, we stop the training if the loss function does not decrease along 1,000 epochs. In Figure 2, we report both the FOM and the POD-DL-ROM solution, the latter with n = 2 and N = 256, together with the resulting relative error, both for the transmembrane and the extracellular potentials, for the testing-parameter instance [image: image] at t = 150 ms.


[image: Figure 2]
FIGURE 2. Test 1.1: FOM solution (top) and POD-DL-ROM one (center), with n = 2 and N = 256, along with the relative error ϵk for uh (bottom-left) and ue,h (bottom-right), for the testing-parameter instance [image: image] at t = 150 ms.


The trend of the mean (with respect to the spatial coordinates) of the relative error ϵk over time, for the selected testing-parameter instance [image: image], is shown in Figure 3, for both the trasmembrane (left) and the extracellular (right) potentials. We highlight that the errors are, on average, always smaller than 0.15%. The distribution of the errors is almost uniform over time; indeed, due to the fact that the snapshots associated with different time instances are treated as independent by the POD-DL-ROM, errors do not accumulate over time. In this manner, neither instability issues nor specific error patterns are found. In particular, the error related to the extracellular potential is higher than the one associated with the transmembrane potential. As a matter of fact, the former can be more difficult to approximate than the latter, because of the different ranges the extracellular potential can vary in for different parameters and time instances—and on the other hand, the transmembrane potential always takes values in the [0, 100] mV range.


[image: Figure 3]
FIGURE 3. Test 1.1: Relative error ϵk, averaged with respect to the spatial coordinates, for the transmembrane (A) and the extracellular (B) potentials, for the testing-parameter instance [image: image], over time.


In Table 1, we report the GPU POD-DL-ROM total training and validation times, together with the testing time, and the DL-ROM total time; the time needed to assemble the snapshot matrix S is not included. Using a POD-DL-ROM, that is, employing a prior dimensionality reduction through rSVD, drastically accelerates the training stage. We point out that in this test case, in contrast with the following ones, we did not perform any sampling in time, considering all the time instances provided by the IGA solver.


Table 1. Test 1.1: POD-DL-ROM and DL-ROM computational times.

[image: Table 1]



3.1.2. Test 1.2: Left Atrium Surface Geometry

We now consider the solution of the Bidomain (Equation 1) coupled with the A-P ionic model (Equation 3) on an idealized LA surface geometry. We are interested in the reconstruction of both the transmembrane and the extracellular potentials as in the previous test. The direction of the cardiac fibers is determined by following the same strategy adopted in Rossi et al. (2014) and Patelli et al. (2017), where a vector field directed as the gradient of the solution of a Laplace problem defined on the atrial surface is assigned to the LA. The resulting distribution of fibers on the atrial surface is displayed in the Supplementary Material.

System Equation (1) has been first discretized in space by means of P2 NURBS basis functions, with a global C1 continuity, yielding a FOM dimension equal to Nh = 61, 732. Time integration over (0, T), with T = 200 ms, has been performed introducing a time-step Δt = 0.2 ms. Provided the position of the Bachmann bundle [image: image] cm, the intracellular applied stimulus is given by

[image: image]

with C = 1 mA, [image: image], ti = 0 ms and tf = 5 ms.

The parameter (nμ = 1) consists of the electrical intracellular conductivity in the longitudinal direction to the fibers, i.e., the conductivity tensor Di(x; μ) takes the form

[image: image]

where the parameter space is [image: image]. The remaining intracellular and extracellular conductivities are equal to [image: image], [image: image], and [image: image]. The parameters of the A-P ionic model (Equation 3) are given by K = 8, a = 0.1, ϵ0 = 0.01, b = 0.1, c2 = 0.3, and c1 = 0.05 (ten Tusscher, 2004).

For the training phase, we uniformly sample Nt = 500 time instances in the interval (0, T) and consider Ntrain = 11 training-parameter instances, uniformly distributed over [image: image]. For the testing phase, Ntest = 10 testing-parameter instances have been considered, each of them corresponding to the midpoint of two consecutive training-parameter instances. The maximum number of epochs is set to Nepochs = 20, 000, the batch size is Nb = 40, and regarding the early-stopping criterion, we stop the training if the loss function does not decrease along 1,000 epochs. In Figures 4, 5, we report the FOM transmembrane and extracellular potentials and their POD-DL-ROM approximation, obtained by selecting n = 2 and N = 256, for the testing-parameter instance [image: image] at t = 52.8 ms and t = 112 ms.


[image: Figure 4]
FIGURE 4. Test 1.2: FOM solution (left) and POD-DL-ROM one (right), with n = 2 and N = 256, for the testing-parameter instance [image: image] at t = 52.8 ms (A) and t = 112 ms (B).



[image: Figure 5]
FIGURE 5. Test 1.2: FOM solution (left) and POD-DL-ROM one (right), with n = 2 and N = 256, for the testing-parameter instance [image: image] at t = 52.8 ms (A) and t = 112 ms (B).


In Figure 6, we show the FOM and POD-DL-ROM APs and extracellular potentials evaluated at a point x*, with n = 2 and N = 256, for the testing-parameter instance μtest = 0.0295 Ω−1cm−1. Despite the POD-DL-ROM solution is affected by some tiny oscillations related to the truncated rPOD modes, it is able to capture the shape and the different phases of the electrical propagation over time.


[image: Figure 6]
FIGURE 6. Test 1.2: FOM and POD-DL-ROM, with n = 2 and N = 256, APs for the testing-parameter instance μtest = 0.0295 Ω−1cm−1.


In Table 2, we report the CPU computational time needed to solve the FOM by means of NURBS-based IGA and the GPU POD-DL-ROM total training and validation times, together with the testing time. Also in this case, the time needed to assemble the snapshot matrix S is not included. We notice that, using a POD-DL-ROM, we achieve the possibility to solve the problem in several different scenarios, during the testing stage, in real-time, since the final time T = 0.2 s coincides with the computational time entailed by the evaluation of the POD-DL-ROM.


Table 2. Test 1.2: FOM and POD-DL-ROM computational times.

[image: Table 2]




3.2. Test 2: Left Atrium Surface Geometry by Varying Stimulation Site

We still consider the LA surface geometry and the direction of cardiac fibers as in test 1.2 and deal with the Bidomain (Equation 1) coupled with the R-M model (Equation 4), thus selecting a different ionic model than the one of the previous example. The equations have been discretized in space by means of P2 NURBS basis functions, with a global C1 continuity, yielding a FOM dimension equal to Nh = 154, 036; time integration has been performed over the interval (0, T), with T = 200 ms and a time-step Δt = 0.1 ms. Here, we consider nμ = 3 parameters, consisting of the coordinates of the center of an intracellular applied current, and belonging to the subregion highlighted in Figure 7—and the portion of the domain affected by the corresponding stimulus is highlighted, too. The intracellular applied current is thus defined by setting C = 100 mA and

[image: image]

with [image: image], ti = 0 ms, and tf = 5 ms.


[image: Figure 7]
FIGURE 7. Test 2: Parameter space (dark magenta region) and portion of domain affected by the stimulus (light magenta region).


We set the rPOD dimension equal to N = 256 and the dimension n of the POD-DL-ROM approximation equal to n = nμ + 1 = 4. For the training phase, we uniformly sample Nt = 200 time instances in the interval (0, T) and consider Ntrain = 18 training-parameter instances randomly sampled from the parameter space. For the testing phase, Ntest = 14 randomly sampled testing-parameter instances have been considered. The maximum number of epochs is Nepochs = 40, 000, the batch size is Nb = 40, the starting learning rate is η = 2 · 10−4, and regarding the early-stopping criterion, we stop the training if the loss function does not decrease along 2,000 epochs.

We remark that the POD-DL-ROM approximation to the FOM solution is also efficient in computing several outputs of interest. We compare, for instance, the ACs obtained through the FOM and by POD-DL-ROM. Given the transmembrane potential u = u(x, t; μ), the (unipolar) AC at a point x ∈ Ω is evaluated as the minimum time which the AP peak reaches the point x at,

[image: image]

In Figure 8, we compare the FOM and the POD-DL-ROM outputs, together with the associated relative error ϵk, for the testing-parameter instances μtest = (1.7168, −0.353198, −1.70097) cm and μtest = (1.43862, −0.803806, −1.43678) cm. We highlight the strong variability of the solution over the parameter space, shown by the different shape of the contour lines in Figures 8A,B, and the ability of the POD-DL-ROM to capture it accurately.


[image: Figure 8]
FIGURE 8. Test 3: FOM (left) and POD-DL-ROM (center), with n = 4 and N = 256, ACs and relative error ϵk (right), for the testing-parameter instances μtest = (1.7168, −0.353198, −1.70097) cm (A) and μtest = (1.43862, −0.803806, −1.43678) cm (B).


Finally, in Table 3 we report the FOM CPU computational time and the POD-DL-ROM GPU training and testing times; the time needed to assemble the snapshot matrix S is not included. Solving the FOM, for a single testing-parameter instance, requires 10 h, with respect to the POD-DL-ROM total training and validation time, which is equal to 5 h. POD-DL-ROM also proves to be extremely efficient at testing time, since it provides, once again, accurate results in almost real-time.


Table 3. Test 2: FOM and POD-DL-ROM computational times.

[image: Table 3]



3.3. Test 3: Figure of Eight Re-entry on Left Atrium Surface Geometry

We finally investigate the generation of the figure of eight re-entries on the left atrium surface geometry as a consequence of a S1-S2 electrical stimulation protocol, to highlight the ability of the POD-DL-ROM the technique of solving cardiac EP problems in a more challenging pathological scenario as well. The set-up of the FOM is the one provided in the Supplementary Material, except for the final time equal to T = 500 ms. Here, we consider nμ = 3 parameters, consisting of the coordinates of the center of the S2 intracellular applied currents, which can vary in the three-dimensional region highlighted in Figure 10 (left). The choice of the parameter space is motivated by the fact that ectopic complexes usually arise in correspondence of pulmonary veins (PVs). We first apply a physiological stimulus (S1) in correspondence of the posterior septum and then a second stimulus (S2) acting on [image: image], which takes the form

[image: image]

with C = 100 mA, [image: image] ms, and [image: image] ms.

This test case represents a proof-of-concept of the strategy used in the clinical practice to identify possible re-entrant circuits, part of which may be latent, by conducting a virtual multi-site delivery of electrical stimuli from a number of possible atrial locations (Arevalo et al., 2016; Boyle et al., 2018; Prakosa et al., 2018).

As before, we set the rPOD dimension equal to N = 256, and the dimension n of the POD-DL-ROM approximation equal to n = nμ + 1 = 4. We consider Nt = 1, 000 time instances in the interval (300, 500) ms and randomly sample Ntrain = 15 training-parameter and Ntest = 5 testing-parameter instances from the parameter space. The maximum number of epochs is Nepochs = 30, 000, the batch size is Nb = 40, and regarding the early-stopping criterion, we stop the training if the loss function does not decrease along 2,000 epochs. Choosing the rPOD dimension equal to N = 256 yields, over the testing set, a projection error indicator [image: image] and the projection relative error [image: image] shown in the Supplementary Material. This value can be used as the lower bound of the reconstruction error indicator, being smaller than the previous values over the testing set.

In Figure 9A, we compare the FOM and POD-DL-ROM solutions, the latter with n = 4 and N = 256, together with ϵk, for the testing-parameter instance μtest = (0.2508, 0.7932, 1.66) cm at t = 316.4 ms. The error indicator [image: image] is equal to 7.06 ×10−2, meaning that the projection error provides an upper bound to the error [image: image] over the testing set. However, the POD-DL-ROM is able to completely capture the location and the shape of the re-entry, and the moving front; the error is indeed related to the reconstruction of the steep fronts. Obtained results are thus satisfying, keeping into account the extreme complexity of the problem at hand. Then, we investigate the impact of a higher value for the rPOD dimension, setting it equal to N = 1, 024. In this case, the projection error indicator [image: image] is equal to 2.84 ×10−2 and the error indicator (Equation 12) becomes [image: image]. In Figure 9B, we report the FOM solution and the POD-DL-ROM approximation, obtained with n = 4 and N = 1, 024, together with the relative error (Equation 13), for the testing-parameter instance μtest = (0.2508, 0.7932, 1.66) cm at t = 316.4 ms. By comparing Figures 9A,B, we can note how the use of a larger N leads to only slightly more accurate results.


[image: Figure 9]
FIGURE 9. Test 3: FOM (left) and POD-DL-ROM (center) solutions, the latter obtained with n = 4 and N = 256 (A), and n = 4 and N = 1, 024 (B), together with ϵk (right), for the testing-parameter instance μtest = (0.2508, 0.7932, 1.66) cm at t = 316.4 ms.


In Table 4, we report the FOM CPU computational time and the POD-DL-ROM GPU total, i.e., training and validation time, and testing times, and the total number of epochs ne, by varying N. As expected, both the training and the testing times are larger for N = 1, 024 than for N = 256, since the number of parameters of the neural network is higher in the former case. We highlight that, if we do not take into account the time needed to assemble the snapshot matrix, the time required to train the POD-DL-ROM over the parameter space, for N = 256, is smaller than performing a FOM simulation for a single parameter instance. We remark that we started from a learning rate equal to η = 2 · 10−4 for N = 256 and η = 10−4 for N = 1, 024, the latter resulting in a longer total training and validation time; indeed, in this case training stops because of the maximum number of epochs achieved, however, yielding a higher accuracy. At testing time, both the networks show to be extremely efficient.


Table 4. Test 3: FOM and POD-DL-ROM computational times.

[image: Table 4]

As done in Fresca et al. (2020), we increase the complexity of the problem by enlarging the dimension of the parameter space, thus considering both re-entry and non re-entry dynamics. We randomly sample Ntrain = 20+20 = 40 training-parameter and Ntest = 10+10 = 20 testing-parameter instances from the parameter space. We set the rPOD dimension equal to N = 1, 024. In this case, the projection error indicator value is [image: image], while the reconstruction error is [image: image]. We set the maximum number of epochs Nepochs to 30,000—by increasing this value it is possible to achieve a reconstruction error equal to the projection one. The parameter space is the one shown in Figure 10 (right).


[image: Figure 10]
FIGURE 10. Test 3: Possible sites of S2 stimulus applications in the case of re-entry dynamics (magenta region) (A) and including both re-entry and non-re-entry dynamics (magenta region) (B). The coordinates of the points belonging to the highlighted region are the input parameters.


In Figure 11, we report the FOM and POD-DL-ROM solutions, with n = 4 and N = 1, 024, along with ϵk, for the testing-parameter instances μtest = (0.3162, 0.8638, 0.6864) cm and μtest = (0.2508, 0.7932, 0.8895) cm at t = 300.8 ms. The POD-DL-ROM is then able to reproduce the main features of the dynamics of the solution, and the error is mainly associated with the truncated POD modes.


[image: Figure 11]
FIGURE 11. Test 3: FOM (left) and POD-DL-ROM (center) solutions, the latter obtained with n = 4 and N = 1, 024, together with ϵk (right), for the testing-parameter instances μtest = (0.3162, 0.8638, 0.6864) cm (A) and μtest = (0.2508, 0.7932, 0.8895) cm (B) at t = 300.8 ms.





4. DISCUSSION

The cardiac EP problems addressed in this paper fit into both (i) a multi-query context, since repetitive evaluations of the input-output map are required in order to perform multi-scenario analysis, in order to deal with inter- and intra-subject variability and to consider specific pathological scenarios, and a (ii) real-time context, due to the need, in a clinical setting, to compute outputs of interest in a very limited amount of time. Performing the numerical approximation of cardiac EP problems in these contexts, by means of traditional FOMs, such as the FE method or NURBS-based IGA, is prohibitive because of the huge computational costs associated to the solution of the equations. Indeed, small time-step sizes must be selected to ensure stability; small mesh sizes are required in order to capture the steep fronts and preserve accuracy.

We have taken advantage of a recently proposed technique (Fresca and Manzoni, 2021a) to build low-dimensional ROMs by exploiting DL algorithms. This strategy allows us to overcome typical computational bottlenecks shown by classical, linear projection-based ROM techniques (such as POD-Galerkin ROMs) when dealing with problems featuring coherent structures propagating over time. The DL-ROM technique allows to approximate the solution manifold of a given parametrized nonlinear, time-dependent PDE by means of a low-dimensional, nonlinear trial manifold, and the nonlinear dynamics of the generalized coordinates on such reduced manifold, as a function of the time coordinate and the parameters. Both the nonlinear trial manifold and the reduced dynamics are learnt in a non-intrusive way, thus avoiding to query the FOM high-dimensional arrays. The solution manifold is learnt by means of the decoder function of a convolutional AE neural network; the reduced dynamics is approximated through a DFNN and the encoder function of the convolutional AE. Through the use of the DL-ROM, it is possible to boost the solution of parametrized problems in cardiac EP remarkably, thus overcoming the main computational bottlenecks that affect POD-Galerkin ROMs in this context (Fresca et al., 2020). A key aspect in the setting of DL-ROMs concerns their computational efficiency during the offline (or training) stage, which is also related with the curse of dimensionality entailed by the (possibly, extremely large) dimension of the FOM. This gain, which makes the offline training stage dramatically faster, hinges upon (i) a preliminary dimensionality reduction in the FOM snapshots, by means of rPOD, and (ii) a suitable multi-fidelity pretraining stage, exploiting snapshots computed through different low-fidelity models to initialize the parameters of the neural networks in a sequential procedure.

So far, only few works have focused on the solution, by means of DL algorithms, of problems featuring traveling waves or front propagation processes in the cardiac EP context. For example, in Court and Kunisch (2021) the ionic model is designed to exploit an artificial neural network, in order to identify the nonlinearity in the Monodomain model from given data, yet without providing information about neither the spatial distribution of the electrical signal in the heart, nor the whole range of time and spatial scales of the transmembrane potential. The reconstruction of ACs by means of a physics-informed neural network (PINN) trained by minimizing the residual associated with the Eikonal equation is addressed by Sahli Costabal et al. (2020); several techniques based on ML algorithms are reviewed in Cantwell et al. (2019), for the sake of addressing either classification or estimation problems, such as, e.g., prediction making from the contact electrogram. Finally, neural networks are used for the numerical integration of the Monodomain equation coupled with the Mitchell-Schaeffer ionic model, assessing their performance on two-dimensional benchmarks, in Ayed et al. (2019) and Kashtanova et al. (2021).

In this study, we assessed the performance of the POD DL-ROM technique when applied to the solution of cardiac EP problems on a left atrium geometry, in both physiological and pathological scenarios, by showing its ability in providing an accurate and efficient ROM, which multi-query and real-time problems may rely on. Indeed, POD-DL-ROMs enable to explore the parameter space, thus accounting for different scenarios, and it not only provide real-time solutions to parametrized cardiac EP problems at the testing stage—being able to match the intrinsic dimension of the problems investigated—but can also be trained very efficiently. Moreover, we point out that it is also possible to include more complex ionic models in the FOM, for a more accurate description of the electrical activity of the heart at the microscopic level, without affecting the computational times of the POD-DL-ROM. Indeed, due to the non-intrusive nature of this technique, the dynamics of the gating variables is not taken explicitly into account by the networks in order to compute the electrical potential. In the same way, the choice of a particular model of fibers and the definition of the conductivity tensor (possibly accounting for the presence of ischemic, non-conductive regions as in Fresca et al., 2020; Kashtanova et al., 2021), are considered by the neural network only through the effects they produce on the FOM snapshots. The accuracy and the efficiency obtained by the POD-DL-ROM approximations make them amenable, in the clinical setting, to replace high-fidelity, FOM solvers, for the computation of quantities of interest, such as ACs and APs.

Finally, we highlight that a possible pitfall of the proposed methodology is represented by the amount/quality of training data: If too few (or low-quality) snapshots are considered, further operations like (i) increasing the number of parameters of the network, (ii) training the network for a larger number of epochs, or (iii) generating more data by means of data augmentation techniques can be required. A relevant issue is also related to the generalization properties of the network outside the parameter range and/or the time interval where snapshots are sampled. Ensuring good approximation properties when interested in long-time scenarios, even in presence of almost periodic regimes, without more specific network architectures, is an open issue our efforts are focusing on; however, this represents a general aspect shared by several ROM techniques.

To the best of our knowledge, this study represents the first attempt of reducing the computational complexity associated with the reconstruction of both the transmembrane and the extracellular potentials and re-entry problems, this virtually opening a new path toward the model personalization in real-time, even when dealing with extremely challenging, and computationally involved, settings. We remark that the performance of the POD-DL-ROM technique evaluated on new, unseen scenarios with respect to the ones used during the training phase of the network, thus virtually allowing to compute, during interventions, outputs related to subject-specific data such as, e.g., ACs o voltage maps, in real-time. The possibility to perform real-time numerical simulations, in cardiac EP, can be seen as the first step toward the translation of computational methods into the clinical practice enabling a cooperation for supporting decisions, quantifying risks related to cardiac pathologies, planning therapies, and interventions.
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FOOTNOTES

1We can distringuish among phenomenological, first generation, and second generation ionic models (Sundnes et al., 2006; Colli Franzone et al., 2014). Compared to phenomenological models, first, and second-generation models attempt to include also a description of the cell mechanisms, with the latter also including sub-cellular processes. In the following, we will focus only on phenomenological models.

2In the A-P ionic model, dimensional times and potentials are given by [image: image] and ũ = (100u − 80)[mV]. The transmembrane potential ranges from the resting state of −80 mV to the excited state of +20 mV.
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Type-B Aortic Dissection (TBAD) is one of the most serious cardiovascular events characterized by a growing yearly incidence, and the severity of disease prognosis. Currently, computed tomography angiography (CTA) has been widely adopted for the diagnosis and prognosis of TBAD. Accurate segmentation of true lumen (TL), false lumen (FL), and false lumen thrombus (FLT) in CTA are crucial for the precise quantification of anatomical features. However, existing works only focus on only TL and FL without considering FLT. In this paper, we propose ImageTBAD, the first 3D computed tomography angiography (CTA) image dataset of TBAD with annotation of TL, FL, and FLT. The proposed dataset contains 100 TBAD CTA images, which is of decent size compared with existing medical imaging datasets. As FLT can appear almost anywhere along the aorta with irregular shapes, segmentation of FLT presents a wide class of segmentation problems where targets exist in a variety of positions with irregular shapes. We further propose a baseline method for automatic segmentation of TBAD. Results show that the baseline method can achieve comparable results with existing works on aorta and TL segmentation. However, the segmentation accuracy of FLT is only 52%, which leaves large room for improvement and also shows the challenge of our dataset. To facilitate further research on this challenging problem, our dataset and codes are released to the public (Dataset, 2020).

Keywords: type-B aortic dissection, automatic segmentation, computed tomography, dataset, deep neural networks


1. INTRODUCTION

Type-B aortic dissection (TBAD) is the surging of blood through a tear in the aortic intima with separation of the intima and media, and creation of a false lumen (channel) as shown in Figure 1, which is one of the most serious cardiovascular events. TBAD affecting 3–4 per 100,000 people per year (Karthikesalingam et al., 2010). Approximately 20% of patients with TBAD die before admission (Karthikesalingam et al., 2010), without treatment, 1–3% patients die per hour during the first 24 h, 30% at the first week, 80% at 2 weeks, and 90% at the first year (Hagan et al., 2000). With the thoracic endovascular aortic repair (TEVAR) surgery and proper treatment patients are reportedly yielding an impressively low 30-day mortality rate of 10% or less (Hagan et al., 2000). Recently, TBAD has attracted a lot of attention due to its growing yearly incidence (Suzuki et al., 2003), and the severity of disease prognosis.


[image: Figure 1]
FIGURE 1. Visualization of TBAD in a 3D model including FLT (yellow), TL (red), and FL (blue), and the corresponding CTA image with axial, coronal, and sagittal views.


Computed Tomography Angiography (CTA) is routinely adopted for the diagnosis, surgical planning, and prognosis of TBAD. Particularly, quantification assessment of anatomical features in CTA plays a key role in surgical procedure and treatment planning for prognosis. And segmentation of true lumen (TL), false lumen (FL) , and false lumen thrombus (FLT) is a significant step of the quantification assessment. However, manual segmentation by slice is time-consuming and requires expertise, while current computer-aided approaches focus on the segmentation of the entire aorta, which is unable to segment TL, FL, or FLT, automatic segmentation of substructures of TBAD is urgently needed. And there are already some studies trying to solve this problem. Specifically, Melito et al. use the adaptive algorithm together and the meta-model technique of Polynomial-Chaos Kriging define the areas in the cross-section plane in which a point can be used to enrich the dissected segmentation for aorta dissection reconstruction. During establishing the mathematical and computational models of aorta dissection, the level of uncertainty is extremely high. They point out that “One of the leading causes of this uncertainty is the lack of useful datasets” (Melito and Ellermann, 2019). Gamechi et al. propose a fully automatic method combining multi-atlas registration, aorta centerline extraction, and an optimal surface segmentation approach to extract the aorta surface around the centerline. The fully automatic method they propose can assess diameters in the thoracic aorta reliably even in non-ECG-gated, non-contrast CT scans, which could be a promising tool to assess aorta dilatation in screening and in clinical practice. However, the method they propose still has no FLT detection ability mainly due to the lack of FLT enabled dataset (Gamechi et al., 2019). Particularly, there are already some works using neural networks to automatically segment TL, FL, and Aorta (Li et al., 2018; Cao et al., 2019). Li et al. report a fully automatic approach based on a 3-D multi-task deep convolutional neural network that segments the entire aorta and true-false lumen from CTA images in a unified framework. The approach they report achieves a mean dice similarity score(DSC) of 0.910, 0.849, and 0.821 for the entire aorta, true lumen, and false lumen, respectively. Cao et al. also use a convolutional neural network to solve the problems and achieves above 90% of the mean Dice coefficients of each lumen of TBAD when not considering FLT. They provide a promising approach for accurate and efficient segmentation of TBAD and make it possible for automated measurements of TBAD anatomical features. However, existing works nowadays only focus on one of or both TL and FL (Li et al., 2018; Cao et al., 2019; Gamechi et al., 2019; Melito and Ellermann, 2019), and FLT information is poorly explored, partially because of the lack of a dataset. There are some other works considering thrombus in other diseases such as an abdominal aortic aneurysm (Lisowska et al., 2017; Yong et al., 2017; López-Linares et al., 2018), however, TBAD research has not yet advanced to the quantitative measurement of FLT like abdominal aortic aneurysm.

In fact, quantification assessment of FLT is also critical for surgical planning and prognosis. First, the FLT description in clinical radiology reports plays a pivotal role in guiding the endovascular intervention surgery (Dohle et al., 2017). Second, FLT greatly affects patients' postoperative complications (Higashigaito et al., 2019) thus is also a significant independent predictor of post-discharge mortality in prognosis (Trimarchi et al., 2013; Higashigaito et al., 2019). Automatic, efficient, and accurate assessment of FLT is particularly useful for doctors to make a decision on TBAD.

In this paper, we propose ImageTBAD, the first 3D CTA image dataset of TBAD with annotation of TL, FL , and FLT. For simplification of discussion, FL is the part of traditional FL without FLT in our paper. The proposed dataset contains 100 TBAD CTA images, which is of decent size compared with existing medical imaging datasets. Compared with TL and FL, FLT can appear in almost anywhere along the aorta with irregular shapes, which introduces many challenges to accurate segmentation of it. FLT segmentation represents a wide class of segmentation problems where targets exist in a variety of positions with irregular shapes. We further proposed a baseline method based on 3D U-net (Çiçek et al., 2016) for automatic segmentation of TBAD. Results show that the baseline method can achieve comparable results with existing works on the aorta and TL segmentation. However, the segmentation accuracy of FLT is the only 52%, which leaves large room for improvement and also shows the challenge of our dataset. To facilitate further research on this challenging topic, our dataset and codes are released to the public (Dataset, 2020).



2. THE IMAGE-TBAD DATASET

The ImageTBAD dataset consists of a total of 100 3D CTA images gathered from Guangdong Provincial Peoples' Hospital from January 1, 2013, to April 23, 2015. Images are acquired from two kinds of scanners (Siemens SOMATOM Force, and Philips 256-slice Brilliance iCT system), the characteristics of the ImageTBAD dataset is detailed in Table 1. All the images are pre-operative TBAD CTA images whose top and bottom are around the neck and the brachiocephalic vessels, respectively, in the axial view. The segmentation labeling is performed by a team of two cardiovascular radiologists who have extensive experience with TBAD. The segmentation label of each image is fulfilled by one radiologist and checked by the other. The time to label each image is around 1–1.5 h. The segmentation includes three substructures: TL, FL, and FLT. There are 68 images containing FLT while 32 images are free of FLT.


Table 1. Characteristics of the ImageTBAD dataset.

[image: Table 1]

By analyzing all the labels, we find the segmentation of FLT is challenging due to the following two reasons. First, FLT can appear almost anywhere along the aorta, with irregular shapes, although most FLT appear at the top of the aorta. Figure 2 shows a variety of relative positions of FLT. Figures 2A–C show the most common locations of FLT, while Figure 2D is also common in clinic. Figures 2E–H show some typical cases where FLT is distributed along with the whole FL and discontinued in multiple locations. Most FLTs exist at the surface of the aorta, but there are also some located at the center of the aorta and between the FL and the TF. Within the eight cases in Figure 2, we can notice the largest variety of the shapes of FLT. Most FLTs are rather thin and long, while some others are a pile at the top of the aorta. In addition, some FLTs are small which is relatively difficult to segment as shown in Figure 2G. Second, the contrast between FLT and other tissues is rather low. As shown in Figure 3, the intensity of the FLT and the nearby tissues are almost the same which is not easy to be visually recognized. By zooming the area of the boundary in, we can notice some parts of the boundary as shown in Figures 3A,B, but some are still with high uncertainty as shown in Figure 3C. The low contrast would bring more challenges to FLT segmentation.


[image: Figure 2]
FIGURE 2. Examples of various relative position including (A) top, (B) middle, (C) top and middle, (D) bottom, (E–G) whole, and (H) multiple position in TBAD. The red, blue, and yellow parts correspond to TL, FL, and FLT, respectively. Best viewed in color.



[image: Figure 3]
FIGURE 3. Example of low contrast images in the ImageTBAD dataset in three views: (A) coronal view, (B) axial view, and (C) sagittal view. Red and yellow lines denote to the boundary of TL and FLT, respectively.




3. METHOD AND EXPERIMENT


3.1. The Baseline Method

By analyzing the dataset, we discover the following three phenomenons. First, the segmentation area is usually rather long in the axial view, which needs to be considered in the design of the input size. Second, the target segmentation is rather small compared with the size of the input, and processing the whole image is not efficient. Third, in most conditions, the combination of TL, FL, and FLT has a similar shape of the aorta. In fact, the part corresponding to FLT is a part of the aorta in normal anatomy. We can also obtain FLT by removing TL and FL from the combination of the three. This approach is expected to be more effective than direct segmentation of FLT because the complexity of shapes and positions of FLT can be avoided. For simplicity of discussion, the combination of the three parts is donated as the aorta.

Based on the above observations, we propose a baseline method which is a processing pipeline shown in Figure 4. The processing pipeline includes two steps: region of interest (RoI) extraction, and RoI segmentation.


[image: Figure 4]
FIGURE 4. Processing pipeline of the proposed baseline method. Best viewed in color.



3.1.1. RoI Extraction

The RoI extraction aims to obtain a precise bounding box of the target area, which is fulfilled with two croppings. The first cropping obtains a rough bounding box by segmenting the aorta on a resized input (original size to 64 × 64 × 64) using 3D U-net. Based on the rough bounding box, the rough RoI is cropped from the original input, and then resized to S × S × 2S. The cropping refinement is further proceeded on the rough RoI for aorta segmentation, and a relatively more precise bounding box of the RoI is obtained.



3.1.2. RoI Segmentation

The RoI segmentation performs segmentation tasks on the refined RoI. We discuss two approaches: Approach A, we combine the TL and FL segmentation, and the aorta segmentation; Approach B, we perform direct segmentation of the three. In Approach A, we suppose to easily get FLT once we obtain both TL and FL and aorta according to our discovery. Note that all the modules adopt the same 3D U-net structure as shown in Figure 4. Four resolution levels are adopted each of which contains two convolutional layers and one pooling/up-convolutional layer. The number of filters is N, 2N, 4N, and 8N for the four resolution levels, respectively. N and the input size vary for different modules as discussed above. Post-processing only including upsampling to the original size is performed.




3.2. Experiment
 
3.2.1. Experimental Setup

We implemented our baseline method using PyTorch based on Isensee et al. (2018). Both Dice loss and cross entropy loss were used, and the number of training epochs was 5 for all 3D U-nets. Data augmentation and normalization were also adopted with the same configuration as in Payer et al. (2017) for 3D U-net. For both networks and all the analyses, three-fold cross validation was performed (about 33 images for testing, and 67 images for training). We split the dataset so that the number of images containing FLT in each fold were the same. We implemented two configurations, with S = 64 and S = 96, respectively. Accordingly, N = 64 and the batch size was 4 when S = 64, and N = 32 and the batch size was 3 when S = 96. All the experiments ran on a Nvidia GTX 1080Ti GPU with 11 GB memory.

Dice score and Hausdorff distance were selected as the metrics for evaluation. For images without FLT, the Dice score is 1 if there is no FLT in the segmentation result, otherwise 0. As Approach B in RoI segmentation is similar to the methods that achieves the SOTA results in the TBAD (Li et al., 2018; Cao et al., 2019), we compared our method with theirs though their dataset and methods focused on the segmentation of FLT. Meanwhile, Hausdorff distance evaluated the shape similarity of propose method, which is formulated as follow,

[image: image]

where G and S represent ground truth and prediction segmentation, respectively.



3.2.2. Statistical Analysis

Differences between results are compared using the independent two-sample t-test. A p-value of < 0.05 in the independent two-sample t-test is considered as statistical significance.





4. RESULTS AND DISCUSSION


4.1. Overall Results

Tables 2, 3 demonstrate that the mean and standard deviation of Dice score and Hausdorff distance of baseline methods (Approach A and Approach B), and their t-test value and p-value for four substructures segmentation in TBAD, respectively. In terms of different substructures, both Approach A and Approach B achieves the highest scores on aorta with small Hausdorff distances. However, both two methods fail to segment the TL, FL, and FLT well, for the three are parts of the aorta without remarkable boundaries, thus relatively harder to segment them. The Dice score and Hausdorff distance of TL beats that of FL, which may be caused by the low contrast between FL and FLT. FLT obtains the lowest performance due to its great challenges discussed in section 2. As for the two methods, though Approach A with a multi-task segmentation module achieves a bit higher Dice score with a lower Hausdorff distance than Approach B using direct segmentation, it fail to achieve higher performance on the other two parts especially on FLT. Approach B obtains a large improvement over Approach A on FLT. This may due to the fact that direct segmentation has more constraint to more accurately define FLT than multi-task segmentation. On the other hand, we also notice some impacts from the input size. The Dice score of S = 96 is slightly higher than that of S = 64 due to the higher resolution of S = 96. However, the improvement is small, and there is no improvement for FLT, which indicates that higher resolution has very limited success on FLT segmentation. Particularly, for all the 32 images without FLT, the baseline method with both configurations correctly obtain the results with Dice score of 1, which indicates that the FLT segmentation accuracy for images with FLT are much lower (about 20%) than 52%.


Table 2. Mean and standard deviation of Dice score of baseline method, and t-test value between the Approach A and Approach B for four substructures segmentation in TBAD.

[image: Table 2]


Table 3. Mean and standard deviation of Hausdorff distance of baseline method, and t-test value between the Approach A and Approach B for four substructures segmentation in TBAD.

[image: Table 3]

Existing works most relevant to ours are the works proposed by a group from Tsinghua University (Li et al., 2018; Cao et al., 2019) though the dataset and labels are different. The method Li et al. (2018) achieves Dice scores of 0.92, 0.85, and 0.85 on aorta, TL, and FL, respectively on the same machine (11 GB GPU memory) as ours. The improved version (Cao et al., 2019) obtains Dice scores of 0.93, 0.93, and 0.91, on aorta, TL, and FL, respectively on a more powerful machine (32 GB GPU memory). Compared with Li et al. (2018), ours achieves almost the same performance on aorta and TL, but much lower on FL. While compared with Cao et al. (2019), ours obtains comparable performance only on aorta, but much lower on TL and FL.

The comparable results on aorta indicates that our baseline method is also a powerful one. The gaps in TL and FL may due to the difference on datasets, labels, and method details. Though with these difference, we can still notice that accurate segmentation of FLT is rather challenging. We hope our dataset and baseline method could help fill the gap and tackle this challenge.



4.2. Good Segmentation

Examples of good segmentation results are shown in Figure 5. Overall, the segmentation results have a good match with the ground truth. However, we can still notice that compared with TL and FL, FLT has more segmentation flaws, which corresponds well to the Dice scores in Table 2. There is a tiny FL island at the top of the aorta which should be FLT as shown in Figure 5A. Another three tiny FLT islands exist at the similar position which should be FL as shown in Figures 5F–H, respectively. The most serious flaw of FLT is the inaccurate segmentation of its boundaries. As shown in Figures 5B,E,F, there is noticeable error of the boundary segmentation. The situations in Figures 5G,H is much worse, and a large part of FLT is misclassified as FL. Most of the inaccurate boundary segmentation happens at the descending aorta. Its low performance is usually caused by the low contrast, which also degrades the segmentation performance of FL. TL usually has a much better performance as its contrast is much higher, and there are only some tiny flaws as shown in Figure 5C.


[image: Figure 5]
FIGURE 5. Examples of good segmentation results (A,B,E,F) with its corresponding ground truth (C,D,G,H). Best viewed in color.




4.3. Poor Segmentation

Examples of poor segmentation results are shown in Figure 6. Overall, there exists serious segmentation error especially for FLT. With the context of TL and FL, the shape of FLT in Figure 6A can be easily recognized by humans. However, only part of the shape is correctly segmented because of the low contrast as shown in the zoomed CTA image. A part of FLT is lost in Figures 6D,E which is due to the low contrast. The qualities get worse in both Figures 6B,C in which LFT are almost totally lost. The boundaries is difficult to visually tell in Figures 6B,C. There are also some inaccurate segmentation between TL and FL shown in Figures 6D,E. The incorrect connection exists between TL and FL in Figure 6D, and the low contrast in CTA images leads to the inaccurate segmentation between FL and TL as shown in Figure 6E.


[image: Figure 6]
FIGURE 6. Examples of poor segmentation results (A,B,C,D,E) with their corresponding ground truth, segmentation difference, original CTA image, zoomed, and labeled CTA images. The original pictures and zoomed area of each cases are accompanied. segment failed part showed the impact of the shape and margin of thrombus in segmentation process. Especially, case (D) is the same CT scan picture of Figure 3B with 180 degrees flips vertically. Best viewed in color and position.





5. CONCLUSION

In this paper we introduce the ImageTBAD dataset to the community, which is the first 3D computed tomography angiography (CTA) image dataset of TBAD with annotation of true lumen (TL), false lumen (FL), and false lumen thrombus (FLT). We further propose a baseline method based on 3D U-net for automatic segmentation of TBAD. Results show that the baseline method can achieve comparable results with existing works on aorta and TL segmentations. However, the segmentation accuracy of FLT is only 52%, which leaves large room for improvement and proves the challenge of our dataset. FLT segmentation represents a wide class of segmentation problems where targets exist in a variety of positions with irregular shapes. We hope that the open-sourced code of our baseline method and dataset can encourage the community to tackle this problem.



DATA AVAILABILITY STATEMENT

The raw data that supporting the findings of this study are available at https://github.com/XiaoweiXu/Dataset_Type-B-Aortic-Dissection, and from the corresponding author without any reservation, upon reasonable request.



ETHICS STATEMENT

This work was approved by the Research Ethics Committee of Guangdong General Hospital, Guangdong Academy of Medical Science under Protocol No. 20140316. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.



AUTHOR CONTRIBUTIONS

ZY, WX, HQ, and HY contributed to data collection. ZY, JZha, JZhu, YD, TW, and YS contributed to analysis and writing. MH, LQ, and XX contributed to project planning, development, discussion, and writing. All authors contributed to the article and approved the submitted version.



FUNDING

This work was supported by the National key Research and Development Program of China (No. 2018YFC1002600), the Science and Technology Planning Project of Guangdong Province, China (Nos. 2017B090904034, 2017B030314109, 2018B090944002, 2019B020230003), Guangdong Peak Project (No. DFJH201802), the National Natural Science Foundation of China (No. 62006050).



REFERENCES

 Cao, L., Shi, R., Ge, Y., Xing, L., Zuo, P., Jia, Y., et al. (2019). Fully automatic segmentation of type B aortic dissection from cta images enabled by deep learning. Eur. J. Radiol. 121:108713. doi: 10.1016/j.ejrad.2019.108713

 Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., and Ronneberger, O. (2016). “3D u-net: learning dense volumetric segmentation from sparse annotation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention (Athens: Springer), 424–432.


 Dataset (2020). Available online at: https://github.com/XiaoweiXu/Dataset_Type-B-Aortic-Dissection.


 Dohle, D., Jakob, H. G., Schucht, R., Jánosi, R. A., Schlosser, T. W., Gabry, M. E., et al. (2017). The impact of entries and exits on false lumen thrombosis and aortic remodelling. Eur. J. Cardio Thorac. Surg. 52, 508–515. doi: 10.1093/ejcts/ezx236

 Gamechi, Z. S., Bons, L. R., Giordano, M., Bos, D., Budde, R. P., Kofoed, K. F., et al. (2019). Automated 3D segmentation and diameter measurement of the thoracic aorta on non-contrast enhanced CT. Eur. Radiol. 29, 4613–4623. doi: 10.1007/s00330-018-5931-z

 Hagan, P. G., Nienaber, C. A., Isselbacher, E. M., Bruckman, D., Karavite, D., Russman, P. L., et al. (2000). The international registry of acute aortic dissection (IRAD): new insights into an old disease. JAMA 283, 897–903. doi: 10.1001/jama.283.7.897

 Higashigaito, K., Sailer, A. M., van Kuijk, S., Willemink, M. J., Hahn, L. D., Hastie, T., et al. (2019). Aortic growth and development of partial false lumen thrombosis are associated with late adverse events in type b aortic dissection. J. Thorac. Cardiovasc. Surg. 161, 1184—1190.e2. doi: 10.1016/j.jtcvs.2019.10.074

 Isensee, F., Petersen, J., Klein, A., Zimmerer, D., Jaeger, P. F., Kohl, S., et al. (2018). nnU-net: self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486.


 Karthikesalingam, A., Holt, P. J. E., Hinchliffe, R. J., Thompson, M. M., and Loftus, I. M. (2010). The diagnosis and management of aortic dissection. Vasc. Endovasc. Surg. 44, 165–169. doi: 10.1177/1538574410362118

 Li, J., Cao, L., Ge, Y., Cheng, W., Bowen, M., and Wei, G. (2018). Multi-task deep convolutional neural network for the segmentation of type b aortic dissection. arXiv preprint arXiv:1806.09860.

 Lisowska, A., Beveridge, E., Muir, K. W., and Poole, I. (2017). “Thrombus detection in CT brain scans using a convolutional neural network,” in Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies (Porto).


 López-Linares, K., Aranjuelo, N., Kabongo, L., MacLair, G., Lete, N., Ceresa, M., et al. (2018). Fully automatic detection and segmentation of abdominal aortic thrombus in post-operative cta images using deep convolutional neural networks. Med. Image Anal. 46, 202–214. doi: 10.1016/j.media.2018.03.010

 Melito, G. M., and Ellermann, K. (2019). “A reliability analysis with an active-learning metamodel for the reconstruction of a dissected aorta cross-section,” in Ninth International Conference on Sensitivity Analysis of Model Output (Barcelona).


 Payer, C., Štern, D., Bischof, H., and Urschler, M. (2017). “Multi-label whole heart segmentation using cnns and anatomical label configurations,” in International Workshop on Statistical Atlases and Computational Models of the Heart (Lima: Springer), 190–198.


 Suzuki, T., Mehta, R. H., Ince, H., Nagai, R., Sakomura, Y., Weber, F., et al. (2003). Clinical profiles and outcomes of acute type b aortic dissection in the current era: lessons from the international registry of aortic dissection (IRAD). Circulation 108(10 Suppl. 1), II312–II317. doi: 10.1161/01.cir.0000087386.07204.09

 Trimarchi, S., Tolenaar, J. L., Jonker, F. H. W., Murray, B., Tsai, T. T., Eagle, K. A., et al. (2013). Importance of false lumen thrombosis in type b aortic dissection prognosis. J. Thorac. Cardiovasc. Surg. 145(3 Suppl.), S208–S212. doi: 10.1016/j.jtcvs.2012.11.048

 Yong, Y. L., Tan, L. K., McLaughlin, R. A., Chee, K. H., and Liew, Y. M. (2017). Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography. J. Biomed. Opt. 22, 1–9. doi: 10.1117/1.JBO.22.12.126005

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Yao, Xie, Zhang, Dong, Qiu, Yuan, Jia, Wang, Shi, Zhuang, Que, Xu and Huang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.












	 
	ORIGINAL RESEARCH
published: 30 September 2021
doi: 10.3389/fphys.2021.738926





[image: image]
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Introduction: Computational models of the cardiovascular system are widely used to simulate cardiac (dys)function. Personalization of such models for patient-specific simulation of cardiac function remains challenging. Measurement uncertainty affects accuracy of parameter estimations. In this study, we present a methodology for patient-specific estimation and uncertainty quantification of parameters in the closed-loop CircAdapt model of the human heart and circulation using echocardiographic deformation imaging. Based on patient-specific estimated parameters we aim to reveal the mechanical substrate underlying deformation abnormalities in patients with arrhythmogenic cardiomyopathy (AC).

Methods: We used adaptive multiple importance sampling to estimate the posterior distribution of regional myocardial tissue properties. This methodology is implemented in the CircAdapt cardiovascular modeling platform and applied to estimate active and passive tissue properties underlying regional deformation patterns, left ventricular volumes, and right ventricular diameter. First, we tested the accuracy of this method and its inter- and intraobserver variability using nine datasets obtained in AC patients. Second, we tested the trueness of the estimation using nine in silico generated virtual patient datasets representative for various stages of AC. Finally, we applied this method to two longitudinal series of echocardiograms of two pathogenic mutation carriers without established myocardial disease at baseline.

Results: Tissue characteristics of virtual patients were accurately estimated with a highest density interval containing the true parameter value of 9% (95% CI [0–79]). Variances of estimated posterior distributions in patient data and virtual data were comparable, supporting the reliability of the patient estimations. Estimations were highly reproducible with an overlap in posterior distributions of 89.9% (95% CI [60.1–95.9]). Clinically measured deformation, ejection fraction, and end-diastolic volume were accurately simulated. In presence of worsening of deformation over time, estimated tissue properties also revealed functional deterioration.

Conclusion: This method facilitates patient-specific simulation-based estimation of regional ventricular tissue properties from non-invasive imaging data, taking into account both measurement and model uncertainties. Two proof-of-principle case studies suggested that this cardiac digital twin technology enables quantitative monitoring of AC disease progression in early stages of disease.

Keywords: arrhythmogenic right ventricular cardiomyopathy, speckle-tracking echocardiography, deformation imaging, cardiac computational model, adaptive multiple importance sampling


INTRODUCTION

Computational models of the cardiovascular system are widely used to simulate cardiac (dys)function and related clinical application of therapies for cardiac disease (Niederer et al., 2019). Various attempts to generate a digital twin of the human heart have been made (Corral-Acero et al., 2020). Previously, we proposed a framework to create a digital twin (van Osta et al., 2020) for quantification of the disease substrate underlying abnormal tissue deformation in patients with arrhythmogenic cardiomyopathy (AC) (van Osta et al., 2021).

Inheritable AC primarily affects the right ventricle (RV) and predisposes to ventricular arrhythmias and sudden cardiac death in young individuals (Thiene et al., 1988; Basso et al., 2009). Therefore, early disease detection is important. We previously determined an in silico disease substrate with decreased regional RV contractility and compliance, with the potential to predict disease progression on a patient-specific level (van Osta et al., 2021). This method was, however, not able to include uncertainty present in both measurement and model.

Uncertainty will inevitably play a role in comparing estimated properties and thus Bayesian inference methods should be used to estimate the posterior distribution of model parameters, rather than only providing point estimates. Cardiovascular computational models are in general complex, meaning that the posterior distribution cannot be calculated analytically. Various techniques have been proposed to solve this problem, in which Markov chain Monte Carlo (MCMC) methods are often used (Schiavazzi et al., 2017; Dhamala et al., 2018; Meiburg et al., 2021). Adaptive multiple importance sampling (AMIS) is an important alternative to MCMC since it enables estimation of the posterior distribution in a model with a relatively high number of input parameters (Cornuet et al., 2012; Bugallo et al., 2017).

In this study, we apply AMIS to quantify parameter uncertainties in digital twins based on echocardiographic deformation imaging. We validate the methodology based on both in silico generated virtual data and datasets obtained from patients with AC and mutation positive family-members at risk of developing the disease. Furthermore, we use longitudinal series of echocardiograms in two AC patients to validate clinical applicability of this methodology.



MATERIALS AND METHODS

This section and Figure 1 elucidate the methodology used to estimate parameters and related uncertainties using the CircAdapt model. First, we elaborate the mathematical basis and implementation of AMIS, which is generally applicable. Secondly, we describe the mathematical problem and introduce the included clinical measurements and the computational model used for the likelihood function. Finally, we explain the simulation protocol. More detailed information is shown in Supplementary Material, including pseudocodes of the algorithm. The source code as well as the virtual patient datasets are available.


[image: image]

FIGURE 1. Non-invasive measurements were used as input for a fully automatic automated uncertainty quantification algorithm. This algorithm produced a digital twin based on estimated parameters with accompanying uncertainty. This digital twin can be used to get more insight in the estimated tissue properties. RVfw, right ventricle free wall; LVfw, left ventricle free wall; IVS, inter ventricular septum; HR, heart rate; EDV, end-diastolic volume; EF, ejection fraction; RVD, right ventricular diameter.



Mathematical Basis of Adaptive Multiple Importance Sampling

We consider an nθ -dimensional vector as a set of parameters θ of a numerical model z = ℳ(θ). This model ℳ:ℛnθ→ℛnz maps the parameter vector to an n_z-dimensional vector of modeled data z. Measurement uncertainties are included in the likelihood function p(z|θ) representing the similarity between patient observation and model output. The posterior distribution p(θ|z) is the probability of having parameters θ given the observation z and is given by Bayes’ rule as

[image: image]

with p(θ) the prior knowledge of the parameters and p(z) the normalizing constant. No prior knowledge of the parameters p(θ) is known, so p(θ) was assumed to be uniform.

Importance sampling is an algorithm which estimates the posterior distribution p(θ|z) (Bugallo et al., 2017). The set of samples Θ = {θ∼q(θ)} drawn from the proposal distribution q(θ) form an empirical estimation of the posterior distribution p(θ|z) in which each sample is weighted with the sample weight w described by

[image: image]

The weights are normalized such that∑θ ∈ Θw(θ) = 1. Importance sampling is most effective when the proposal distribution q(θ) is close to the posterior distribution p(θ|z) such that variance in weight of the samples is small and the effective sample size is close to the actual sample size. Since no information was available on the posterior distribution, we used adaptive importance sampling in which the proposal distribution is iteratively updated to better describe the posterior distribution (Bugallo et al., 2017).

The computational cost of calculating the likelihood p(z|θ) in cardiovascular models is relatively high compared to the cost of calculating the probability density function of the proposal distribution q(θ), so the samples from all previous iterations were included in defining the proposal distribution q(θ) to optimally recycle past simulations following the AMIS (see Figure 2) (Cornuet et al., 2012).


[image: image]

FIGURE 2. Visualization of adaptive multiple importance sampling. In the first iteration, samples θ are drawn from a uniform distribution and stored in the sample set Θ. For each sample, the corresponding sample weight w is calculated. Then, based on all previous samples θ in the sample set Θ and corresponding sample weight w, the next proposal distribution is defined and new samples are added to the sample set Θ. This iterates niter times.


Each iteration in this algorithm consists of two stages. First, samples are drawn from the proposal distribution and weights of all samples are updated. Second, the proposal distribution is updated based on the new sample weights.


Draw Samples and Calculate Sample Weights

At the start of each iteration i, 100 samples are drawn from the current proposal distribution πi(θ). Samples are drawn without statistical dependencies between parameters, which may result in non-physiological combinations of parameters. For example, the model is not parameterized for a low contractile heart to be able to supply a high cardiac output (CO) and is therefore likely to become numerically instable. To circumvent this, only a small uniform distribution around the reference is used as initial proposal distribution q0(θ). AMIS will increase and decrease the search area of the proposal distribution and will move this to the area of interest in which physiological samples will be drawn close to the desired posterior distribution.

Each iteration, the weights are updated based on the proposal function and likelihood (Equation 2). The probability density function of all previous proposal distributions is given by the sum of all individual proposal distributions

[image: image]

with nsamples, i the number of samples in iteration i and [image: image] the total number of samples. Samples drawn from poorly performing proposal distributions are eliminated through the erosion of their low weights (Cornuet et al., 2012).

The likelihood function is defined based on the normalized dimensionless summed squared error X()2. This X(θ)2 is problem dependent and the X2 used in this study is described in section “Likelihood Function.” We assumed a non-informative uniform prior and neglected all interactions between individual errors. Furthermore, annealed adaptive importance sampling (Li and Lin, 2015) was used to prevent the algorithm from premature convergence (Černý, 1985; Neal, 2001), resulting in a likelihood

[image: image]

in which Ti = 1 in each iteration i and represents the annealing temperature. This method is included to control convergence rate, thereby improving global search capabilities and limiting premature convergence toward local minima. The initial temperature is set to Tmax = 10, and decreases each iteration i such that

[image: image]

with [image: image] the difference between the old and new X2 of the best sample.



Update Proposal Distribution

Each iteration, the proposal distribution is updated based on all drawn samples in the sample set Θ and its corresponding weight w. Details on the definition of the proposal distribution are shown in Supplementary Material 1.1. In the updated proposal distributions, samples were drawn along the principal component axes of the weighted sample set Θ.

This protocol ran for at least 500 iterations. Additional iterations were performed in the case that the effective sample size Neff > 10⋅nθ was not fulfilled. The Kish effective sample size was Neff used (Beskos et al., 2014), which is defined as

[image: image]



Problem Description


Clinical Data

Patient-specific simulations were based on echocardiographic data from AC mutation carriers in various disease stages. Besides clinically measured LV and RV regional deformation imaging data, the LV end-diastolic volume (EDV), LV ejection fraction (EF), and right ventricular basal diameter (RVD) were used as model input. We used echocardiographic data of nine pathogenic AC mutation carriers which were evaluated in the University Medical Center Utrecht, Netherlands. As previously described (van Osta et al., 2021), deformation analyses of these echocardiograms were performed twice by two observers to determine clinical inter- and intra-observer variability. Lastly, longitudinal datasets with >2 echocardiograms per patient at different time points were used to explore applicability of the model for follow-up of tissue properties over time. These longitudinal datasets were acquired from AC mutations carriers which were evaluated in the Oslo University Hospital, Norway.

All echocardiographic data were obtained on a Vivid 7, Vivid 9, or Vivid E95 ultrasound machine (GE Vingmed, Horten, Norway). The echocardiographic protocol was described previously (Kirkels et al., 2021). In this study, we focused on the right ventricular free wall (RVfw). This is typically the most affected area in AC mutation carriers (Marcus et al., 2010), which is expressed in typical deformation abnormalities (delayed onset of shortening, decreased peak systolic strain, post-systolic shortening, and increased RV mechanical dispersion) (Kirkels et al., 2021). Therefore, deformation patterns of three RVfw segments (apical, mid-ventricular, and basal) were used as input for our modeling framework (Figure 1) (van Osta et al., 2021). Additionally, LV free wall (LVfw) and interventricular septal (IVS) deformation patterns were included to ensure realistic mechanical boundary conditions for the RVfw in terms of ventricular interaction. These patterns were obtained by averaging the 12 LVfw and 6 IVS segmental deformation curves, respectively, using the standardized 18-segment model (Voigt et al., 2015).



Computational Model of Heart and Circulation

Clinical measures were simulated using the CircAdapt model. This model is a fast biomechanical lumped parameter model of the heart and circulation. Via the one fiber model (Arts et al., 2005), wall stress is related to cavity pressure. The TriSeg module allows inter-ventricular interaction over the IVS (Lumens et al., 2009). Phenomenological material laws prescribe the stress–strain relation in the spherical walls. The MultiPatch module allows for regional heterogeneity of tissue properties within a single wall (Walmsley et al., 2015) and is used to describe the heterogeneity in the RVfw. Three segments were created in the RVfw to model the mechanics in the three different RVfw segments (apical, mid-ventricular, and basal).

The parameter subset θ included for estimation was based on a previous sensitivity analysis (van Osta et al., 2021) and is shown in Table 1. Parameters included were regional parameters describing the constitutive behavior of active (SfAct) and passive stress (k1), activation delay (dT), reference wall area (AmRef), and global parameters relative systole duration (RSD), and CO. Heart rate (HR) in the model was set to match clinically measured HR to ensure equal cycle lengths in measured and modeled signals.


TABLE 1. parameters included in this study.

[image: Table 1]Strain was defined as the segmental displacement relative to its reference length at end diastole (see Supplementary Material 1.2). Additionally, EF, EDV, and RVD were included. Modeled EDV was defined as the maximum cavity volume of the LV cavity assuming perfect valve behavior. EF was defined as the ratio of stroke volume over maximum volume. RVD was defined as the maximum cavity diameter between the RVfw and IVS.



Likelihood Function

As shown in Equation 4, the likelihood function was based on the summed squared error X2. This error consists of the error in strain of the five segments and on the error in EF, EDV, and RVD. Because the measured diastolic strain is less reliable due to the drift affecting most of this phase, we only included strain during the systolic phase in this study. This systolic phase was defined from the onset of the QRS complex until 100 ms after peak strain of the segment with longest shortening phase.

To account for dependencies in strain, we included weighted dimensionless errors based on strain ([image: image], strain rate ([image: image], and inter-segmental strain differences ([image: image]). Errors in EF ([image: image]), EDV ([image: image]), and RVD ([image: image]) were assumed independent, resulting in the X2 to be the sum of all individual weighted dimensionless errors e2:
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Standard deviations used to normalize each individual term were manually estimated a priori to meet differences between the inter- and intraobserver datasets. Standard deviations used to normalize EF, EDV, and RVD were set a priori in consultation with clinical partners. A more detailed description of the likelihood function is included in Supplementary Material 1.2.



Right Ventricle Tissue Properties

To relate our simulations to clinical measures, four RV tissue properties were investigated, namely contractility, activation delay, compliance, and myocardial work. These measures are explained in more detail in Supplementary Material 1.5. In brief, segmental contractility was defined as the maximum rate of active stress rise, which can be seen as the equivalent of the maximum rate of ventricular systolic pressure rise (dP/dtmax) on a local tissue level. Segmental wall compliance was defined as the slope of the end-diastolic myofibre stress–strain relationship at time before first ventricular activation and can be interpreted as the regional equivalent of the slope of the global end-diastolic pressure–volume relation. Myocardial work density was defined as the area within the stress–strain loop and can be interpreted as the regional equivalent of global stroke work.



Simulation Protocol


Uncertainty Quantification of Real Patient Datasets

Nine clinical datasets in which the echocardiographic images were analyzed twice by two independent observers were included to test reproducibility, leading to 36 datasets. For each individual dataset, parameters were estimated three times resulting in 108 estimations in total. Since no ground truth exists for estimated model parameters, only the reproducibility of estimations was evaluated. Three kinds of reproducibility were investigated, namely computational reproducibility, reproducibility including interobserver variability, and reproducibility including intraobserver variability. First, computational reproducibility was defined as the reproducibility of the exact same clinical dataset and quantified by the mutual information (MI) between two model parameter estimations. The same protocol was repeated three times with a different random seed. To calculate the MI, two distributions were discretized into 100 bins. The MI was then defined as the overlap divided by the union of the distributions. Secondly, reproducibility including interobserver variability was tested on the nine patient datasets, whereby a second blinded observer performed deformation imaging analysis on the same echocardiographic loops as the first observer. It was defined as MI between two estimated model parameter distributions from two datasets observed by the two different observers. Finally, reproducibility including intraobserver variability was quantified similarly from two different datasets, whereby the observer performed the deformation analysis again after at least 2 weeks, blinded to previous results. The median MI with 95% confidence interval (CI) of all parameter estimations was reported. In case the estimations from different observations fully overlap, MI = 100%. In case of no overlap at all, MI = 0%.



Uncertainty Quantification of Virtual Patient Datasets

To test the trueness of the estimation, in silico generated virtual patients were generated. To ensure these virtual patients to be representable for real AC patients, nine virtual patients were created based on the nine real patient datasets. For each real patient, the simulation with maximum likelihood was selected. The output of this simulation was used as virtual patient dataset, which was used as input of the modeling framework.

Trueness of the virtual estimations was tested by comparing the estimated distribution with the known true parameter values. For each parameter, the highest density interval (HDI) for which the true value is in the interval was calculated. The HDI was defined as the area of the distribution for which the posterior holds p(θ|z) = p(θtrue|z). The distribution was approximated with a histogram with bin width defined by the Freedman–Diaconis rule (Freedman and Diaconis, 1981). The HDI for each parameter should be near 0% meaning the true value is near the maximum a posteriori.



Application in Longitudinal Datasets

Two subjects with a baseline and two follow-up echocardiograms were selected (Table 2). For all six datasets, clinical data was extracted and the datasets were estimated independently of each other, similarly as described above. The two longitudinal sets of estimated tissue properties were investigated. Due to the retrospective nature of this study, LV EDV was only available at baseline. We assumed that it did not change during follow-up.


TABLE 2. Patient characteristics of the two subjects at baseline and follow-up used in the likelihood function.

[image: Table 2]


Code Implementation

The CircAdapt model was written in C++. All other code was written in Python. Each individual dataset was solved sequentially and independently. The source code of the CircAdapt model has been made available before (van Osta et al., 2020). All other source code is publicly available on Zenodo1. Datasets were estimated in parallel with Python 3.9.4 on a AMD Ryzen Threadripper 3970X.



RESULTS


Uncertainty Quantification of Real Patient Datasets

Regional deformation characteristics were accurately simulated close to the measured deformation and with reasonable uncertainty {[image: image]. Figure 3 (left) shows a representative example. The modeled strain followed the pattern of clinically measured strain during systole and heterogeneity between the segments was well captured. A 1D representation of the convergence of the proposal distribution, corresponding to the estimated model parameters is shown in Figure 4. In the first 50 iterations, the proposal distribution decreased, increased, and moved to the area of interest. From the 50th iteration, most proposal distributions stabilized. This behavior was also observed in estimations in other datasets (see Supplementary Material 2.2).


[image: image]

FIGURE 3. Measured and estimated strain of real subject (left) and violin plots of estimated parameters (right). Deformation patterns and regional heterogeneity was well captured by the model. The best simulation in the sample set was in good agreement with to the patients dataset ([image: image].



[image: image]

FIGURE 4. Convergence of estimated model parameters. The distributions on the right show the final estimated posterior distribution.


The estimated posterior distributions of the model parameters (Figure 4) of most parameters were estimated with small variances, except for parameters SfAct and k1, because they were unidentifiable in some segments. The posterior correlation matrix (Figure 5, top) shows the correlation between estimated posterior distributions. Notable are the correlations between model parameters SfAct, k1, dT, and AmRef describing mechanics in the same wall segment. Additionally, there was a high correlation between different segments for the model parameters dT and AmRef. From the two global parameters, only RSD seemed to correlate with dT.


[image: image]

FIGURE 5. Posterior correlation matrix of the estimated model parameters (top) and the correlation between the posterior distribution of model parameters and derived tissue properties (bottom).


Figure 3 (right) shows the estimated regional RV model parameters and the RV tissue properties contractility, activation delay, compliance, and work density. The RV tissue properties were estimated with distributions with a smaller variance compared to the estimated model parameters. A decrease in basal contractility, compliance, and work density with respect to the apical and mid segment was found which is in line with the abnormal basal deformation pattern.

Figure 5 (bottom) shows the correlation between posterior model parameter distributions with the RV tissue properties contractility, compliance, and work density. Contractility was mostly correlated with SfAct, AmRef, and CO. In the RVapex and RVmid, contractility was not only dependent on the parameters prescribing its own segmental mechanics, but also on the parameters prescribing other segmental mechanics. Similar results were observed for compliance, which was correlated with SfAct, k1, and dT. Compliance showed no correlation with AmRef, RSD, and CO. Work density was mostly correlated with CO.

Estimated model parameters were highly reproducible. Computational reproducibility was found with an MI of 89.9% (95% CI [60.1–95.9]). The reproducibility error given inter- and intraobserver variability were estimated with an MI of 86.5% (95% CI [46.0–95.2]) and 85.9% (95% CI [43.7–95.3]), respectively. More details on reproducibility and inter- and intraobserver variability are shown in Supplementary Material 2.1.



Uncertainty Quantification of Virtual Patient Datasets

Nine virtual patients were created based on the nine real-patient estimations. As an example, Figure 6 shows the virtual patient based on the patient results described above. Regional deformation characteristics were simulated close to the virtual patients deformation characteristics ([image: image]. The true parameter values were well captured by the estimated distributions. The HDI of the true parameter values was 9% (95% CI [0–79]). Heterogeneity in model parameters was well preserved. The width of the distribution in virtual fits was similar to that in the original patient estimation.


[image: image]

FIGURE 6. Measured and estimated strain of virtual subject (left) and violin plots of estimated parameters (right). The estimated properties are close to the true properties of the virtual patient (black dot) and the heterogeneity is well captured. The best simulation in the sample set was closely related to the virtual patients dataset ([image: image].




Application: Longitudinal Datasets

Two subjects with a baseline and two follow-up echocardiograms were included in this study (Table 2). The first subject had a follow-up examination after 4.5 and 9.1 years and the second subject after 5.2 and 7.3 years. Results of these case studies are shown in Figures 7, 8.


[image: image]

FIGURE 7. Longitudinal estimations subject 1. Echocardiographic deformation imaging was performed at baseline, and after 4.5 and 9.1 years of follow-up. Computer simulations showed homogeneous RV contractility, activation delay, compliance, and work at baseline. At last follow-up, subject 1 developed an abnormal deformation pattern of the basal RV. Estimation of RV tissue properties from these deformation data showed an apex-to-base heterogeneity in activation delay, compliance, and work density.



[image: image]

FIGURE 8. Longitudinal estimations subject 2. Echocardiographic deformation imaging was performed at baseline, and after 5.2 and 7.3 years of follow-up. Subject 2 had normal RV deformation patterns at baseline and did not develop clear deformation abnormalities during follow-up. Contractility, compliance, and work density were estimated homogeneously at baseline.


Subject 1 developed an abnormal deformation pattern of the basal RV segment at last follow-up which was not seen at baseline. Computer simulations showed homogeneous RV contractility, activation delay, compliance, and work at baseline. In the last follow-up examination, an apex-to-base heterogeneity in compliance and work density was present.

Subject 2 showed normal RV deformation patterns at baseline and did not develop clear deformation abnormalities during follow-up. Contractility, activation delay, compliance, and work density were estimated homogeneously at baseline. In the final follow-up, a small apex-to-base heterogeneity in compliance was present.



DISCUSSION

In this work, we successfully applied AMIS to estimate posterior distributions of model parameters describing local passive and active tissue behavior based on echocardiographic deformation measurements. Estimated deformation closely resembled the clinically measured myocardial deformation with a realistic level of uncertainty originating from both the measurement and the model. Estimated RV tissue properties reflected progression of the disease substrate over time present in the clinical case studies.


Model-Based Inference

Personalization of cardiac computational models is becoming more popular and several approaches have been proposed. Schiavazzi et al. (2017) used MCMC to estimate model parameters in a simplified model of the single-ventricular heart in a close-looped circulation, based on clinically measured pressures and flows. Corrado et al. (2015) used a Reduced Order Unscented Kalman Filter to estimate model parameters to optimize body surface potential maps and myocardial displacement. Meiburg et al. (2021) used the Unscented Kalman Filter to predict post-intervention hemodynamics after trans-aortic valve implantation. Zenker (2010) used importance sampling to estimate model parameters in a cardiovascular model. Dhamala et al. (2020) used high-dimensional Bayesian optimization for parameter personalization of a cardiac electrophysiological model. Coveney and Clayton (2018) used history matching to calibrate the maximum conductance of ion channels and exchangers in two detailed models of the human atrial action potential against measurements of action potential biomarkers. Daly et al. (2017) used sequential Monte Carlo Approximate Bayesian Inference to quantify the uncertainty amplification resulting in a cellular action potential model. Camps et al. (2021) used the same technique to estimate key ventricular activation properties based on non-invasive electrocardiography and cardiac magnetic resonance imaging.

These studies used computational models with different levels of model complexity in both anatomical and physiological detail. Complex models allow personalization with a high number of details, however, they suffer from a high-dimensional unknown space increasing the difficulty of personalization due to unidentifiability of the model parameters. This problem can be solved by reducing the complexity of the optimization problem by assuming global model parameters (Davies et al., 2019) or regional model parameters (Dhamala et al., 2017). However, this does not reduce the computational cost and increases model discrepancy. It is suggested to use a surrogate model to approximate the exact posterior probability density function (Paun et al., 2019), but this creates a new source of uncertainty. Including model discrepancy in the estimation often fails due to the non-identifiability between model parameter estimations and model discrepancy (Lei et al., 2020). The pseudo-true parameter value found by ignoring model discrepancy can still be valuable for clinical interpretation.

Another approach is to reduce the complexity of the model. Various lumped parameter models of the heart and circulation have been used for fast personalization (Zenker, 2010; Schiavazzi et al., 2017; Meiburg et al., 2021). The cost of low complexity may lead to an increase in model discrepancy due to model assumptions and simplifications (Lei et al., 2020). It was, however, demonstrated before that the CircAdapt model is highly efficient in simulating regional mechanics and is able to simulate realistic hemodynamics (Arts et al., 2012; Walmsley et al., 2015). We previously showed that the CircAdapt model can simulate segmental mechanics with a similar spatial resolution as in clinical strain imaging measurements with low discrepancy (Walmsley et al., 2015; van Osta et al., 2021). Therefore, we assume the CircAdapt model is a suitable model for modeling regional strain in AC patients.

In this study, we chose importance sampling because it is highly effective for complex high-dimensional models (Bugallo et al., 2017). The computational cost of our model was approximately 1000 times higher compared to the calculation of the probability density of a sample drawn from the proposal distribution. Therefore, AMIS was the most suitable variant to optimally reuse all samples (Cornuet et al., 2012).

Efficiency of AMIS heavily depends on the definition of the proposal distribution (Bugallo et al., 2017). A wider proposal distribution ensures to visit the full input space of interest, but is accompanied by a risk of non-converging estimations due to the high number of samples with a low sample weight. On the other hand, a more narrowed search has the risk of finding a local minimum in which the wrong posterior is estimated, or the risk of collapsing when the weight of the found minimum drops to zero. As the number of samples goes to infinity, the sample weight will be equally distributed. However, for the limited number of samples drawn, an optimal balance should be found. We successfully implemented annealed adaptive importance sampling to prevent the model from premature convergence while still being able to narrow the proposal distribution in the later iterations. More research should go into defining the proposal distribution or the initial proposal distribution.

In this study, it took approximately 16 h per dataset to converge. This time includes generating the proposal distributions, generating samples, running simulations, obtaining the likelihood function, and calculating the sample weights. The total duration mainly depends on the duration of each individual simulation, since the number of iterations in the estimations was equal or close to 500. The duration of each simulation depended on HR, numerical stability, and number of beats needed to get a hemodynamically stable solution. Computational time can be reduced in future studies, since AMIS allows parallel calculation of simulations. This reduction in computational time will be essential for clinical application of our method on a larger scale.



Uncertainty Quantification in Arrhythmogenic Cardiomyopathy

Cardiovascular models are, in general, complex models with a multitude of parameters. To create digital twins with the CircAdapt model, we used a parameter subset that we determined in a previous study (van Osta et al., 2020). This subset includes model parameters related to regional RV contractile function, compliance, and activation delay. This is in line with functional and structural myocardial changes found in AC patients [e.g., fibro-fatty replacement of myocytes (Basso et al., 2009), altered calcium handling (van Opbergen et al., 2019), and fibrosis (Tandri et al., 2005)] and early generic simulation based hypotheses (Mast et al., 2016). These structural changes might cause abnormal electrical activation observed in patients with AC (Haqqani et al., 2012). The RV tissue properties are useful to quantify the substrate, however, the model cannot distinguish the cellular origin of the substrate.

The likelihood function was based on our prior knowledge of the pathology. It is not trivial how to include this information as the amount of uncertainty and its dependencies is not known but heavily affects the posterior distribution. In this study, we limited the objectives in the likelihood function to only that information in the longitudinal study that our model can simulate realistically. The main contributor is regional RV strain, as regional deformation abnormalities are found in early stages of the disease (Sarvari et al., 2011; Mast et al., 2016, 2019; Leren et al., 2017; Lie et al., 2018; Malik et al., 2020). LV strain, RVD, LV EF, and LV EDV are included in the likelihood to personalize geometric properties of the model. Because of the complex geometry of the thin-walled RV, our 2D imaging methods did not provide a comprehensive measure of RV size and wall thickness. In future studies, 3D imaging methods might provide a more comprehensive inclusion of geometric variability of the RV. The RVD was included to account for large geometrical differences between patients and geometrical changes over time. Wall volumes were not included in the parameter subset because they were unidentifiable given the available measurements.

Dependencies in strain were partially included by including strain rate and strain differences. Based on the used likelihood function, posterior distributions were estimated with a relatively wide variance (Figure 4), suggesting not all parameters are identifiable. The low reproducibility in some parameters (HDI 95% CI [0–79%]) is probably related to this unidentifiability. Heterogeneity in model parameters is, however, well preserved, suggesting that measurements that are sensitive to segment-averaged model parameters should also be included in the likelihood function. Further prospective studies could investigate the error propagation of dependent and independent uncertainties, whether all components of the likelihood are essential to include, and which other measurements should be included to increase the identifiability of the model parameters.

Derived tissue properties were estimated more precise and reproducible compared to model parameters, suggesting that different parameter combinations can result in the same hemodynamic state. Mechanics of the three RV segments were modeled with the same mathematical equations, however, they have different interactions with the surrounding walls as shown in Figure 5. Compliance in the basal segment was estimated more precise compared to the other segments (Figure 6). This results from the non-linear behavior of the model, as basal model parameters were differently estimated due to basal deformation abnormalities. Therefore, compliance in the basal segment was less correlated with the other segments.

In this study, we used a single definition for myocardial contractility and compliance related to other more global definitions. There is no consensus on a single indicator for contractility and compliance, and often multiple (non-invasive) measures are used to get an impression. For contractility, the maximum pressure–time derivative dP/dtmax is the most commonly used index of contractility in the field of drug safety assessment (Sarazan et al., 2011). Although this measure is preload and afterload dependent, the regional stress–time derivative as local equivalent gives insight in the regional differences in RV contractile function. Other global measures have been proposed to bypass preload and afterload dependencies, such as dP/dtmax at a specific pressure (Sarazan et al., 2011) or end-systolic pressure–volume relation (Suga and Sagawa, 1974). New techniques might be useful for future validation of RV tissue properties, such as shear wave imaging (Pernot et al., 2011) to quantify cardiac stiffness.

The gold-standard assessment of RV stiffness (inverse of compliance) is the end-diastolic pressure–volume relation (El Hajj et al., 2020). The local equivalent is the models material law describing the stress–sarcomere length relation. The actual amount of stress prescribed by this law depends on the sarcomere length during the cycle (Arts et al., 2005). Due to the complexity of the model, which includes mechanics based on sarcomere length, an accurate estimation of compliance is difficult. The compliance measure as used in this study only includes the compliance at the end diastolic sarcomere length and is therefore load-dependent. To obtain a load-independent measure, more information on the loading conditions should be included in the likelihood distribution.



Case Study and Future Research Directions

The two subjects included in the case study showed different behavior over time. The first subject developed an abnormal basal RV deformation pattern during follow-up which was reflected in changes in estimated local tissue properties. The second subject did not develop clear deformation abnormalities, but did develop slight abnormal heterogeneity in tissue properties. In both cases, only small changes in estimations were observed from baseline to follow-up. It has previously been shown that heterogeneity in deformation patterns has prognostic value for disease progression (Mast et al., 2019) and life-threatening arrhythmia (Sarvari et al., 2011). Although no further follow-up of these subjects was available, we can hypothesize our model might identify abnormal tissue substrates before this is clearly visible in deformation patterns. Further studies should investigate whether our approach is able to detect AC in an early stage and whether it has added prognostic value.

In this study, we estimated model parameters to predict tissue mechanics under mechanical loading similar to loading during measurement. To achieve this, we included CO in the parameter subset and EDV and EF in the likelihood function. The model could be used for predicting the behavior of the heart under different loading conditions. This could facilitate the study of loading effects of drug interventions in the digital twin. Besides, the effect of exercise, which is an important modulator of phenotypic expression of AC (Prior and La Gerche, 2020), could be studied in the digital twin. For the latter, a virtual cardiac exercise performance test as proposed by van Loon et al. (2020) could be used to give more insight in the severity of the substrate and possible triggers for disease progressions. To allow the CircAdapt model to extrapolate its state to other loading conditions such as exercise, more information should be included.



Limitations

Uncertainties are assumed statistically independent and additive, however, this is in fact more complicated. Measurements have multiple sources for uncertainty. We have only included inter- and intra-observer variability of the speckle tracking imaging in our study. Global longitudinal strain has proven to be reproducible, however, it has been shown that beat-to-beat variability affects segmental peak strain, end systolic strain and post-systolic strain (Mirea et al., 2018). More research should elucidate the origin of this uncertainty, its effect on normalized strain morphology as included in our study, and how to optimally include uncertainty in defining the likelihood function. This could also facilitate inclusion of realistic noise on virtual patient datasets, which was outside the scope of this study.

Arrhythmogenic cardiomyopathy is not only characterized by structural disease manifestation, but electrophysiologic substrates play an important role as well (Groeneweg et al., 2015). Currently, the CircAdapt model only contains the lumped effect of electrophysiology to describe the mechanical behavior. Future studies could extend the model with a more detailed electromechanical coupling, such as proposed by Lyon et al. (2020), to be able to describe the electrophysiologic substrate.



CONCLUSION

We presented a patient-specific modeling approach taking into account uncertainties. With this approach, we were able to reproduce regional ventricular deformation patterns and estimate the underlying tissue properties in AC mutation carriers with an acceptable level of uncertainty. Virtual estimations were precise and real-world estimations were highly reproducible. Two subjects in our case study revealed the evolution of early-stage AC disease over time using longitudinal follow-up datasets. Future studies should apply our method on a larger cohort and investigate the course of early stage RV disease development at individual as well as patient population levels.
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The onset and progression of pathological heart conditions, such as cardiomyopathy or heart failure, affect its mechanical behaviour due to the remodelling of the myocardial tissues to preserve its functional response. Identification of the constitutive properties of heart tissues could provide useful biomarkers to diagnose and assess the progression of disease. We have previously demonstrated the utility of efficient AI-surrogate models to simulate passive cardiac mechanics. Here, we propose the use of this surrogate model for the identification of myocardial mechanical properties and intra-ventricular pressure by solving an inverse problem with two novel AI-based approaches. Our analysis concluded that: (i) both approaches were robust toward Gaussian noise when the ventricle data for multiple loading conditions were combined; and (ii) estimates of one and two parameters could be obtained in less than 9 and 18 s, respectively. The proposed technique yields a viable option for the translation of cardiac mechanics simulations and biophysical parameter identification methods into the clinic to improve the diagnosis and treatment of heart pathologies. In addition, the proposed estimation techniques are general and can be straightforwardly translated to other applications involving different anatomical structures.

Keywords: optimisation, cardiac mechanics, surrogate model, MLP, parameter estimation


1. INTRODUCTION

Cardiovascular disease is the largest cause of death worldwide. Effective diagnosis and treatment are hampered by a lack of knowledge of the pathophysiological mechanisms underlying the development of the disease. Biomechanical factors, such as stiffness and stress, are known to have important influences on heart function, but are difficult to quantify. Patient-specific computer models of heart biomechanics allow intrinsic constitutive muscle properties, including stiffness, contraction, relaxation, stress and work, to be assessed using medical data from cardiac catheterisation and imaging (Wang et al., 2018). Such cardiac tissue indices provide a new dimension of diagnosis that can help to elucidate the mechanisms of heart disease, thus enabling more specific targeting of treatment and ultimately better outcomes for patients.

Simulating biomechanics via computational models of the heart is challenging due to the stress-strain non-linearities intrinsic of cardiac tissue undergoing large deformation. The finite element method (FEM) is the most commonly used approach to solve the finite elasticity governing equations to enable accurate predictions of these large deformations (Nash and Hunter, 2000). This requires specifying constitutive relations to describe the stress-strain behaviour of the myocardium. Calibration of patient-specific parameters of these constitutive relations typically involves minimising an objective function that quantifies kinematic discrepancies between the FE model's predictions and measurements from medical images. These kinematic measurements typically involve quantifying shape change or the displacement of the myocardium over the cardiac cycle. For example, segmentations of the endocardial and epicardial contours of the heart from Cine MRI (Chen et al., 2020) have been used as shape-based kinematic measurements for FE model calibration (Wang et al., 2018). Kinematic measurements that involve quantify the displacement of the heart wall have also been used for FE model calibration (Hadjicharalambous et al., 2017; Zhang et al., 2021). These approaches track the displacements of the tissue using techniques such as optical flow (Queiros et al., 2017) or cardiac magnetic resonance tagging (Aletras et al., 1999; Zhong et al., 2010; Ibrahim, 2011; Shi et al., 2012; Amzulescu et al., 2019).

A number of non-linear optimisation methods have been used to calibrate constitutive parameters of cardiac mechanics models. This includes the application of gradient-based methods (Gao et al., 2015; Wang et al., 2018) and gradient-free methods (Rumindo et al., 2020; Zhang et al., 2021). Each of these methods requires multiple evaluations of the objective function for each update of the parameters, and each evaluation involves a costly FE simulation of the mechanics model. The evaluation of the gradient is often obtained from finite difference approximations, which can involve a significant computational cost when increasing number of parameters need to be identified. Calibration procedures using gradient-based or gradient free methods are therefore computationally expensive, often taking many hours or days to complete [e.g., (Gao et al., 2015) reported calibration times of 63 h, and (Zhang et al., 2021) reported calibration times of 15 h]. This presents a significant barrier to clinical translation of cardiac mechanics models.

Surrogate models have been developed to improve simulation efficiency, replacing computationally expensive FE simulations with inexpensive surrogate simulations (Dabiri et al., 2019; Maso Talou et al., 2020; Cai et al., 2021). These surrogate models have also been used to accelerate calibration procedures (Di Achille et al., 2018; Davies et al., 2019; Noe et al., 2019; Longobardi et al., 2020; Cai et al., 2021). For example, Cai et al. (2021) presented an approach that used surrogate models with a trust-region-reflective gradient-based optimiser for estimating personalised constitutive parameter of the left ventricle. While these advancements are promising, existing calibration approaches do not exploit the full potential of neural networks-based surrogate models, which can directly provide the analytic gradients of objective functions of interest during the calibration procedure via automatic differentiation (Raissi et al., 2019). By using these analytic gradients, we only need to evaluate the model once for each iteration of gradient-based optimisation procedures. This can lead to an efficient personalisation of these cardiac models, and enable their future application to real-time continuous monitoring of cardiac function.

In this work, we propose a novel approach that uses AI-surrogate model and automatic differentiation to efficiently identify constitutive parameters or loading conditions of a biomechanical model given kinematic measurements from medical images. This builds upon our recent work in developing deep learning approaches that substantially reduce the computational cost of simulating cardiac biomechanics, by training an AI-surrogate model that accurately reproduces mechanics predictions with a fraction of the computational cost of numerical methods that solve the governing partial differential equations (Maso Talou et al., 2020). We demonstrate this approach for estimating passive stiffness or pressure of the left ventricle (LV). This approach involves performing an optimisation of the AI-surrogate inputs to best match its kinematic response against a set of given observations from medical images. We present two different strategies: (i) a full-field tracking approach, which requires the displacement field between two medical images; and (ii) a contour matching approach, which requires only the geometry of the ventricular surfaces in between two medical images. The latter approach relaxes the requirement for determining the displacement field of the tissue, and only requires contours describing the surface of the ventricle from medical images to determine the best matching kinematic response of the AI-surrogate.

The manuscript is structured as follows. In section 2, we introduce the FE mechanical model for the left ventricle of the heart, and its AI-surrogate. Then, we present the proposed parameter identification strategies followed by the setup of the optimisation scheme. In section 3, we study the performance of both strategies for the identification of constitutive parameters and haemodynamic loading conditions. Finally, we discuss the contributions and limitations of this work in section 4 and outline our final remarks in section 5.



2. METHODS


2.1. Mechanical Model

Kinematics of the LV are simulated using a patient-specific FE model (Wang et al., 2018). This involves solving the finite elasticity equilibrium equations during the diastolic phase of the cardiac cycle under an endocardial pressure boundary condition to simulate passive filling. Patient-specific geometrical models of the LV are constructed at the diastasis frame of the cardiac cycle for a range of individuals, which are assumed to be in a load-free configuration. Cubic Lagrange basis functions are used for constructing the FE mesh of the geometry. A typical mammalian description of the myocyte orientation through the LV wall (Nielsen et al., 1991) is incorporated into the geometry through a material fibre field. The LV myocardium is modelled as an ideally-incompressible transversely isotropic material by means of a Fung-type exponential constitutive model (Guccione et al., 1991) with the following strain energy density function

[image: image]

where the c1 parameter scales the overall stiffness of the myocardium, and c2, c3, and c4 control the material non-linearity and anisotropy in the fibre (f), cross-fibre (c), and radial (r) directions, respectively. Incompressibility of the myocardium was enforced through a mixed formulation that uses linear Lagrange basis functions for describing the hydrostatic pressure (Nash and Hunter, 2000). Homogeneous Dirichlet boundary conditions were applied on nodes of the FE mesh at the epicardial perimeter of the basal surface of the model. All FE simulations were performed using the OpenCMISS-Iron open-source computational modelling software package (Bradley et al., 2011).



2.2. Surrogate Network Model

From the FE mechanical model defined in section 2.1, we derive a surrogate model as described in Maso Talou et al. (2020). The AI-surrogate model predicts the displacement of a material point x = (xd, yd, zd) for a given intra-ventricular pressure p, domain description g = (g1, g2) (PCA weights as explained in Maso Talou et al., 2020) and the constitutive parameters (c1, c2). Particularly, we fixed parameters c3 = 3.67 and c4 = 25.77 as their identifiability from macro-scale observations is low.

To train the AI-surrogate, we minimised the squared displacement error with the FE predictions given by training the following loss function

[image: image]

where [image: image] and [image: image] define sets of points (training batches) on the basal/endocardial boundary (where Dirichlet or Neumann boundary conditions were applied) and inside the domain, respectively, ui and [image: image] are the displacements predicted with the neural network and the FE model, respectively, α = 4.5 is the penalty factor to impose the boundary conditions, and [image: image] is a given training batch. For further details about the training of the AI-surrogate, refer to (Maso Talou et al., 2020).



2.3. Parameter Identification Strategies

In this work, we propose two strategies to identify inputs of the surrogate model from a given set of observations of ventricular kinematics from medical images. As presented in our previous work (Maso Talou et al., 2020), we can encode boundary conditions, applied tractions, domain geometry and constitutive parameters as inputs of these networks, thus the proposed techniques can be used to characterise any of these inputs.

The estimation of parameters is studied using two approaches, which differ based on the image data available to quantify the kinematics of the heart. One approach considers a displacement field description of the cardiac wall throughout the cardiac cycle, which can be derived from medical images using motion tracking methods (Wang and Amini, 2011; Shi et al., 2012), or post-processing functions for MR sequences that provide effective tracking of material points (e.g., CMR tagging). For the second approach, the input data describe the kinematics of the cardiac wall surfaces during the heart cycle. For each approach, two different time-points, corresponding to the initial and final positions of the cardiac walls, were combined with the measured intra-ventricular pressures that obtained from cardiac catheterisation for the analyses. Quantification of the cardiac wall surfaces can be obtained through segmentation of clinical images, such as 3D echocardiography or cardiovascular magnetic resonance imaging (CMR) (Chen et al., 2020).


2.3.1. Full-Field Tracking Approach

The full-field tracking approach involves finding the parameters Θ (inputs of the surrogate model) that minimise the error between the surrogate model's predictions of tissue motion and displacement data derived from medical images, i.e.,

[image: image]

where [image: image] is the displacement field predicted by the surrogate model for parameters [image: image], and [image: image] is the displacement field from medical images.



2.3.2. Contour Matching Approach

Let us define a contour st at the time-point t composed of P points as [image: image]. The endocardial and epicardial contours are extracted from medical images at the reference (diastasis) and pressure loaded (end-diastolic) time-points. We denote these contours as sendo and sepi for endocardial and epicardial contours, respectively, and in the following we use subscripts i or f to indicate the absence or presence, respectively, of pressure load.

The contour matching approach involves finding the parameters Θ (inputs of the surrogate model) that minimise the error between the initial contours ([image: image]) displaced by surrogate model predictions, and the end-diastolic contours identified from the medical images, namely

[image: image]

where the surface-field addition yields a predicted surface [image: image] with u|x being the displacement of the cardiac wall at the spatial position x, and

[image: image]

where ∥·∥ is the Euclidean norm and |s| is the cardinality of s.




2.4. Optimisation Scheme

A surrogate model of the ventricle is obtained as described in Maso Talou et al. (2020) by minimising a displacement error metric (see Equation 2) between the model predictions and a finite element model. During the training of the AI-surrogate, both the training and testing errors decreased monotonically across epochs, reaching a plateau at 4.43 × 10−4 mm2 and 1.30 × 10−3 mm2, respectively. The resulting surrogate model presents an absolute displacement error of 0.0499 ± 0.0374 mm in ranges of intraventricular pressure (p ∈ [0.15, 1.5] kPa) and myocardial elasticity (c1 ∈ [2, 5] kPa and c2 ∈ [4, 40]) within the physiological ranges.

As the parameters to be estimated are inputs of surrogate model's network, we freeze the weights of the network layers and optimise the inputs by solving Equations (3) or (4). By using Tensorflow v2.1, we implemented the network and the objective function in a Tensorflow graph. Via this execution graph and automatic differentiation, we obtain the analytic derivatives of Equations (3) or (4) with respect to the parameters to be estimated. Finally, we employ the derivatives in an ADAM method with exponential decay of the learning rate given by

[image: image]

where τi is the learning at the ith epoch, and τ0 is the initial learning rate. We empirically choose τ0 = 1 for both full-field tracking and contour matching approaches. By using learning decay, the optimisation proceeds more rapidly in the neighbourhood of the target value, and the overshooting oscillations are damped, as the learning rate diminishes, leading to convergence. The optimisation process stops when estimates of all of the parameters show a relative change lower than 10−5 in the last epoch, i.e.,

[image: image]

where Θi is the estimate of the parameters at the ith epoch, Θref is a vector with reference values for each parameter, and vector division is the element-wise division of the vector components.




3. RESULTS

In this section, we analyse the ability of both formulations (see Equations 3 and 4) to identify myocardial constitutive parameters, and the intra-ventricular pressure. In our assessment, we disregard the representation error of the domain associated with the PCA and learning space presented in Maso Talou et al. (2020), as it can be reduced by including additional PCA modes as inputs of our surrogate model. Without loss of generality, we fixed the geometry to g = 0 (i.e., mean ventricular shape across our population, see Figure 1). The analyses reported here will be analogous for different geometrical variations of the left ventricle as well as for different Dirichlet boundary conditions. All observations [image: image], [image: image] and [image: image] in this work have been generated using the same FE model (see section 2.1) to train the surrogate model, thus there is no model error in this study.


[image: Figure 1]
FIGURE 1. (left) AI-surrogate depicting its inputs and outputs (Maso Talou et al., 2020); (right) Example of the geometry of the ventricle at diastasis for g = 0.


Additionally, we studied the effect of tracking and segmentation errors (observation errors) on the estimates of interest. The observation error is modelled as

[image: image]

where r is a randomly oriented vector with components [image: image] and [image: image] is the magnitude of uϵ. Note that the magnitude of our error is normally distributed with zero-mean, and we choose σ = 1 mm to represent errors of similar magnitude to the image resolution of MRI images for myocardial structures. This error is added to [image: image], [image: image], and [image: image] for the cases with noise.

Regarding spatial discretisation of the observations (i.e., the number of samples for [image: image], [image: image], and [image: image]), we sampled 1, 109 points across the cardiac wall and 7, 579 points over each of the ventricular surfaces to describe [image: image] and [image: image], respectively. In turn, for the spatial discretisation of the AI-surrogate inputs, we sampled 1, 109 points across the cardiac wall for the full-field tracking approach and 1, 072 points to describe each of the surfaces [image: image]. By oversampling [image: image] with respect to [image: image], we can compute the distance between these surfaces by substituting [image: image] into Equation (5). This approximation yields a reasonable trade-off between computation time and discretisation error (note that the discretisation error decreases as |s1| increases).


3.1. Identification of Constitutive Parameters

We first studied the precision of simultaneously estimating the constitutive parameters c1 and c2 for a known intra-ventricular pressure p. The estimates were generated for both approaches under three experimental scenarios: (i) a two time-point experiment without observation error, i.e., only two images are available during the cardiac cycle; (ii) a two time-point experiment with observation error; and (iii) a multiple time-point (N = 10) experiment with observation error. The first two experiments illustrate the degradation of c1 and c2 estimates for both approaches as measurements become less reliable due to observation errors. This indicates the robustness of the approaches with respect to observation error. A comparison of the last two experiments shows the benefits of including additional observations (time-points), which diminish the impact of the stochastic component of the observation error.


3.1.1. Experiment 1

Both approaches showed a similar accuracy in the absence of observation errors. Since variations in the predicted displacements are more sensitive with respect to c1 than c2, we observed better estimates of c1 (see Figure 3). The distribution of the error in the parametric space (c1, c2) does not show an association between the displacement magnitudes and the estimation error (compare Figures 2, 3).


[image: Figure 2]
FIGURE 2. Mean displacement of the ventricular wall (denoted [image: image]) for different combinations of the constitutive parameters c1 and c2, and an intra-ventricular pressure load of p = 0.9 kPa. For details of mean displacements for other loads, refer to the Supplementary Material.



[image: Figure 3]
FIGURE 3. Relative error of the two-parameter estimation. Estimates of the constitutive parameters c1 (left) and c2 (right) are presented using the full-field tracking and contour matching approaches with a load of p = 0.9 kPa in the absence of noise in the observations. For details of estimations for other loads, refer to the Supplementary Material.




3.1.2. Experiment 2

To analyse the effect of observation errors, we repeated the previous study 10 times while adding different independent instances of uϵ (see Equation 8) to the observations [image: image], [image: image] and [image: image]. To quantify the effect of the noise on the estimates across these different samples, we computed the mean and standard deviation of the relative error when estimating the parameters c1 and c2 (see Figure 4).


[image: Figure 4]
FIGURE 4. Mean and standard deviation of the relative error for the two-parameter estimation of c1 (left) and c2 (right) constitutive parameters using the full-field tracking and contour matching approaches with a load of p = 0.9 kPa and the presence of Gaussian noise (σ = 1mm ≈ 2 pixels) in the observations. For details of estimations for other loads, refer to the Supplementary Material.


The contour matching approach provided more accurate estimates than the full-field tracking approach in the presence of observation errors (see Figure 4). This is shown by the lower overall error of the contour matching approach, which is insensitive to displacements within the muscular heart wall, and within the surfaces of the ventricles. As only a small tangential component of displacement is expected in the endocardial and epicardial surfaces from the loading process in our FE model, the insensitivity toward such component is beneficial for the estimation process. Note that this may not be true in practical scenarios, where the quantification of such components is yet to be thoroughly explored.

The full-field tracking approach showed larger estimation errors for c1 in stiffer materials. In such cases, the displacement-to-uϵ ratio (analogous to the signal-to-noise ratio in signal processing) was smaller, hindering the estimation due to the increasing effects of noise in the observations. c2 presented lower identifiability due to the plateau in the objective function, [image: image], associated with the observation error (see Equation 3 and Figure 9). The sensitivity of c2 with respect to the displacements was higher than that of c1 due to the form of the constitutive equation (Equation 1). The identifiability of c2 is susceptible to surrogate approximation errors, i.e., discrepancies between the AI-surrogate and the FE model. An example of this, is the increase in error of c2 as shown in Figure 4. The AI-surrogate underestimates ∂u/∂c2 in its predictions contributing to the plateau in [image: image] described previously. Note that, as the pressure is increased the AI-surrogate error has a diminishing effect on the predicted displacement (see Supplementary Figures 7, 8).



3.1.3. Experiment 3

We analysed the effect of adding multiple time-points for the estimation of the constitutive parameters when observation errors were present. We assumed that the observation errors, uϵ, for all time-points, were independent and identically distributed (uncorrelated).

We observed that both approaches showed an improvement in reducing the mean relative error in the estimation of c1 and c2 (see Figure 5), closer to values from error-free estimates reported in Figure 3. As the observation error is normal, zero-mean and independent between the time-points, both formulations efficiently cope with the uncertainty, because the Euclidean norm involved in both formulations (Equations 3 and 5) optimises toward the mean of the error distribution.


[image: Figure 5]
FIGURE 5. Mean and standard deviation of the relative error for the two-parameter estimation of c1 (left) and c2 (right) constitutive parameters using full-field tracking and contour matching approaches, a pressure trace with 10 time-points, and independent Gaussian noise (σ = 1mm ≈ 2 pixels) in the observations.


The contour matching approach is slightly more accurate, mainly in the estimation of c2 (maximum error of 3%, in comparison to the full-field tracking approach, with a maximum error of 5 ± 4 %).




3.2. Identification of Intra-Ventricular Pressure

The previous section studied the accuracy of estimating the constitutive parameters, c1 and c2, given a known intra-ventricular pressure, p. In this section, we analogously analyse the accuracy in the estimation of p, assuming that the constitutive parameters are known. Two experiments were conducted: (i) a two time-point experiment without observation error where only two images are available; and (ii) a two time-point experiment with observation error. Analogous to the previous section, we studied the degradation in the ability to recover the intra-ventricular pressure for both approaches as the observations become less reliable.


3.2.1. Experiment 1

Both approaches estimated intra-ventricular pressure p with a similar accuracy (relative error ≤ 1%, see Figure 6). The results did not present evidence of a correlation between the magnitude of the displacements and the error in the estimation of p.


[image: Figure 6]
FIGURE 6. Relative error in estimating intra-ventricular pressure p using full-field tracking and contour matching approaches with a load of p = 0.9 kPa in the absence of noise in the observations. For details of the estimation of other loads, refer to the Supplementary Material.




3.2.2. Experiment 2

Introducing observation errors slightly reduced the accuracy of the full-field tracking approach (see Figure 7), especially for stiffer materials. The interpretation of these results is analogous to the analysis presented for the estimation of c1 in Experiment 2 of section 3.1. As reported in the previous section, with increasing material stiffness, the displacements of the ventricle for the same intra-ventricular pressure are smaller and the same intensity of noise will have more detrimental effects on the estimation process (due to less displacement-to-uϵ ratio in the observations).


[image: Figure 7]
FIGURE 7. Mean and standard deviation of the relative errors for recovering ground truth intra-ventricular pressure using the full-field tracking and contour matching approaches and an intra-ventricular pressure of p = 0.9 kPa with Gaussian noise (σ = 1 mm ≈ 2 pixels) in the observations. Refer to the Supplementary Material for details of the relative errors for other intra-ventricular pressures.





3.3. Convexity of the Objective Function

Both approaches are based on measuring the displacement error by means of the Euclidean distance between the ground truth and the AI-surrogate prediction. As the mechanical model monotonically increases the ventricular displacements with the increase of p and the decrease of c1 and c2, the minimisation problem defined in Equations (3) or (4) with respect to p, c1 or c2 is convex if the AI-surrogate sufficiently approximates the FE model response.

The AI-surrogate used in this manuscript, satisfies such a condition (see Figures 8, 9). We can observe convexity in the loss function with respect to p and the constitutive parameters c1 and c2. Because we use a stochastic gradient descent optimiser, the identifiability of the parameters is related to the rate of change of the loss function with respect to the parameter of interest. We observed a decrease in [image: image] and [image: image] for stiffer materials. Nonetheless, both approaches presented good accuracy in recovering physiologically realistic ranges of parameters (2.0 kPa ≤ c1 ≤ 5.0 kPa and 4.0 ≤ c2 ≤ 40.0, even in the presence of noise (see Figures 8, 9). The identifiability of p does not exhibit degradation in the physiological range, even in the presence of noise (see Figure 8).


[image: Figure 8]
FIGURE 8. Loss function for the full-field tracking and contour matching approaches with respect to p in the presence (right) and absence (left) of noise in the observations. The surface plot in the p-[image: image] plane and the opaque manifold represent the loss function value [image: image] when [image: image] is the ground truth (optimal) value. Level curves in [image: image]-[image: image] and [image: image]-p planes correspond to parallel cuts of the opaque manifold for fixed values of p and [image: image], respectively (blue to red shades indicate values of p and [image: image] that correspond to the ticks on their respective axes). Note that for a given [image: image], [image: image] is convex with the minimum [image: image] resulting in precise and well-behaved formulations for gradient-based optimisers.



[image: Figure 9]
FIGURE 9. Loss function for the full-field tracking and contour matching approaches with respect to c1 and c2 in the presence (right) and absence (left) of noise in the observations. The first and second rows present the loss function values when c1 = 3.5 kPa, c2 = 22.0 and c1 = 2.5 kPa, c2 = 10.0 are the ground truth parameters, respectively. Surface plots in c1-c2 plane and the opaque manifolds represent the loss function value [image: image]. Level curves in [image: image]-c1 and [image: image]-c2 planes correspond to parallel cuts of the opaque manifold for fixed values of c2 and c1, respectively (blue to red shades indicate values of c1 and c2 that correspond to the ticks on their respective axes). Note that the objective functions are more sensitive to perturbations of c1 and c2 for softer materials (as highlighted by the blue level curves, which represent lower values of c1 and c2).




3.4. Computational Cost

We quantify the performance of the formulations by measuring the wall-clock time taken to estimate four different set of parameters: (i) intra-ventricular pressure; (ii) constitutive parameter c1; (iii) constitutive parameter c2; and (iv) constitutive parameters c1 and c2. For each test, we executed the estimation 50 times with different observation errors (using the same noise distribution presented in section 3). During these tests, the observation [image: image] corresponded to a ground truth FE model prediction obtained using p = 0.9 kPa, c1 = 3.5 kPa and c2 = 22.0. We then estimated the mean and standard deviation of the wall-clock times over the 50 executions (see Table 1). The networks and optimisation schemes were implemented in TensorFlow 2.1 with GPU-support, using an NVIDIA Quadro P6000 and CUDA v11.0 for their executions.


Table 1. Wall-clock times for parameter estimation using the proposed strategies.

[image: Table 1]

Both approaches were able to estimate the different set of parameters in less than 18 s. In particular, the full-field tracking approach executed 6.2, 7.3, 6.4, and 3.6 times faster for experiments (i)-(iv), respectively, than the contour matching counterpart. The slower response of the contour matching is due to the oversampling of the ventricular surface [image: image] that is necessary for obtaining a good approximation of Equation (5). Such oversampling increases the number of points in s2 requiring more model evaluations and thus computational expense.

In terms of computational complexity, the full-field tracking approach has a cost of [image: image] where [image: image] is the number of points across the ventricular wall, and the contour matching approach has a cost of [image: image] where |si| is the number of points at the ventricular surfaces si. This analysis shows a higher computational complexity for the contour matching approach, which detrimentally impacts the scaling of the approach with respect to the discretisation of the ventricle. Specifically, the computational cost grows linearly and quadratically for the full-field tracking and contour matching approaches, respectively.

Another contribution to the lower performance of the contour matching approach is given by the number of network evaluations. The total number of evaluations of [image: image] scales linearly with respect to the discretisation of the ventricle for both formulations. However, contour matching requires almost twice the number of evaluations when compared to the full-field tracking approach (1109 evaluations for each contour, vs. 1072 evaluations for tracking). Thus, less refined representations of the ventricular surfaces may help reduce the computational expense if needed for clinical translation.

It is worth noting that we optimised Equations (3) and (4) using the ADAM algorithm, because of its direct support toward neural network optimisation. It is possible that the use of efficient optimisers for convex problems, such as L-BFGS (Liu and Nocedal, 1989) or even Newton's method, may further enhance convergence and reduce the computational effort in the proposed formulations.




4. DISCUSSION

The two techniques proposed for parameter estimation feature appealing properties such as low computational cost, simple implementation, and no need for analytical derivatives of the objective function. To achieve this, we used automatic differentiation, already implemented in neural networks frameworks (such as Tensorflow and PyTorch), for solving Equations (3) and (4). This allow us to use exact gradient information from complex AI-surrogate models without any additional effort. Thus, we were able to assess the sensitivity of the objective function residuals with respect to its inputs, allowing for an efficient convex optimisation of the inputs. Additionally, the same neural network frameworks are endowed with GPU-efficient implementations, accelerating the evaluation of models by orders of magnitude with respect to a cost equivalent CPU infrastructure.

Regarding the estimation of the intra-ventricular pressure and constitutive parameters of the left ventricle, we conclude that both of the proposed approaches can provide accurate predictions of parameters, even in the presence of measurement noise. The noise was modelled as a normal zero-mean distribution with a standard deviation of two pixels. This noise represented reconstruction errors of the ventricle wall displacement (full-field tracking approach), or the ventricular surface geometry (contour matching approach). Note that in our analysis, the errors present no biases. If a bias were present (e.g., consistent segmentation errors due to mis-identification of the structures, or assimilating experimental data with a model with a significant modelling error), this may lead to larger estimation errors than those reported here.

Both approaches demonstrated good identification properties for the physiological range considered in our experiments. Particularly, we focused on the analysis of relatively stiffer materials (c1 > 2.0 kPa) and lower intraventricular pressures (p = 0.9 kPa) because it present a more challenging scenario to assess the parameter estimation task. As displacements are smaller for lower pressures and stiffer materials, the noise and the displacement field are within the same displacement magnitudes, and a lower performance for the estimation is expected. However, the results only showed this degradation under those conditions for the full-field tracking approach, increasing its error estimate from 0.6 to 1.8% in c1, from 1.9 to 4.6% in c2 and from 0.3 to 2.7% in p (see Figures 5, 7). The contour matching approach only presented a slight degradation in parameter estimates of c2 when c1 reached the upper bound of its physiological range. Note that, after estimating the constitutive parameters, the displacement errors between the AI-surrogate predictions and the target observations were visually negligible when the corresponding ventricle contours were overlaid. The case with the largest disagreement across all simulations reported here is shown in Figure 4 for the full-field approach with target parameters c1 = 3.5 kPa and c2 = 10.0 (the specific sample estimated c1 = 3.76 kPa and c2 = 7.05). In this case, the displacements of the AI-surrogate had an error of 0.06 ± 0.02 mm with respect to the FE ground truth. In particular, when not using information from multiple frames, the full-field tracking approach failed to precisely identify c2 with errors reaching 16 ± 9.6%. Nonetheless, in practical applications, clinical MR datasets often contain enough temporal resolution to perform a multi-frame kinematic assessment.

For normal human physiological cases (diastasis pressures of approximately 1.2 kPa), both methods present a slight improvement in performance due to the larger displacements in the observations (see Supplementary Figures 3, 7, 11, 15). As the observed displacements increase, the approximation error of the AI-surrogate to the FE model has a smaller contribution, leading to more accurate estimates. Specifically, we can observe this for the estimates of stiffer materials, where the larger displacements improved the parameter identification in comparison with the 0.9 kPa pressure case.

Regarding clinical translation, this approach offers rapid and efficient estimation of the mechanical properties using commodity computational resources, e.g., a standard computer with state-of-the-art GPU. The generated training datasets used in section 3 assume realistic data constraints (i.e., observation errors and resolution) expected in medical data. In this study, we assumed segmentation errors of two pixels, and a temporal resolution of 10 frames during diastole (see section 3), which are both attainable using a 3T clinical MRI scanner. FE models (which are used to train our AI-surrogate) have demonstrated clinical utility (Wang et al., 2018; Hasaballa et al., 2021), evidencing the suitability of this approach for mechanical characterisation of the heart. Nonetheless, robust uncertainty quantification analysis should be performed to analyse all sources of error in the specific clinical environment. For the assessment of mechanical properties of the ventricular wall, it is important to quantify the uncertainty in the pressure measurements, segmentation error, and geometric representation error. The characterisation of such uncertainties is out of the scope of the present work.

In terms of the number of parameters to be estimated, our study demonstrated reasonable efficiency for the simultaneous estimation of two parameters. Compared to the single parameter problem, the computational time for the two parameter problem was more than two-fold, but still presenting time ranges compatible with clinical practice. This is due to the coupled effect of the parameters in the model response which is a problem shared by all parameter estimation techniques. The extension of our technique for the simultaneous identification of additional parameters is possible, as long as the objective function remains strictly convex with respect to the parameters of interest.

While the estimation approaches considered in this work involved solving convex optimisation problems, the use of AI-surrogates can offer advantages for non-convex problems. In such cases, non-convex optimisation solvers, such as genetic algorithms, may benefit from the use of AI-surrogates due to the computationally inexpensive model evaluations. This feature enables a more efficient exploration of the parameter space with reduced computational intensity.

Finally, both of the proposed estimation techniques are general, and can be translated straightforwardly to other applications (e.g., to estimate constitutive properties of other tissues, such as the breast, lung or liver) as long as an AI-surrogate can be generated from the appropriate models. The full-field tracking approach is limited to applications where material point tracking measurements are available (e.g., using CMR tissue tagging, or image registration techniques). On the other hand, the contour matching approach can be applied to any applications where the surfaces of the tissues or organs of interest can be quantified experimentally.



5. CONCLUSIONS

This study proposed two approaches for parameter estimation using AI-surrogates, depending on whether (i) tracking kinematic measurements, or (ii) only surface measurements are available. We focused our application on the estimation of left ventricular constitutive properties and its intra-ventricular pressure during the passive filling phase of the cardiac cycle.

We conclude that: (i) both approaches are robust with respect to Gaussian noise when the measurement data for multiple loading conditions were combined; and (ii) estimates of one or two constitutive parameters could be obtained in less than 9 or 18 s, respectively. We found that the contour matching approach was more robust toward Gaussian noise, recovering the ground truth parameters with high accuracy even when only one loaded configuration was available. Conversely, the full-field tracking approach was more efficient than its counterpart by a factor of ≈4, while providing the possibility of further improving scalability as medical imaging resolution improves.
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Electroanatomic mapping is the gold standard for the assessment of ventricular tachycardia. Acquiring high resolution electroanatomic maps is technically challenging and may require interpolation methods to obtain dense measurements. These methods, however, cannot recover activation times in the entire biventricular domain. This work investigates the use of graph convolutional neural networks to estimate biventricular activation times from sparse measurements. Our method is trained on more than 15,000 synthetic examples of realistic ventricular depolarization patterns generated by a computational electrophysiology model. Using geometries sampled from a statistical shape model of biventricular anatomy, diverse wave dynamics are induced by randomly sampling scar and border zone distributions, locations of initial activation, and tissue conduction velocities. Once trained, the method accurately reconstructs biventricular activation times in left-out synthetic simulations with a mean absolute error of 3.9 ms ± 4.2 ms at a sampling density of one measurement sample per cm2. The total activation time is matched with a mean error of 1.4 ms ± 1.4 ms. A significant decrease in errors is observed in all heart zones with an increased number of samples. Without re-training, the network is further evaluated on two datasets: (1) an in-house dataset comprising four ischemic porcine hearts with dense endocardial activation maps; (2) the CRT-EPIGGY19 challenge data comprising endo- and epicardial measurements of 5 infarcted and 6 non-infarcted swines. In both setups the neural network recovers biventricular activation times with a mean absolute error of less than 10 ms even when providing only a subset of endocardial measurements as input. Furthermore, we present a simple approach to suggest new measurement locations in real-time based on the estimated uncertainty of the graph network predictions. The model-guided selection of measurement locations allows to reduce by 40% the number of measurements required in a random sampling strategy, while achieving the same prediction error. In all the tested scenarios, the proposed approach estimates biventricular activation times with comparable or better performance than a personalized computational model and significant runtime advantages.

Keywords: deep learning, graph convolutional networks, cardiac computational modeling, electroanatomic mapping, sparse measurements


1. INTRODUCTION

Ventricular tachycardia (VT) is a serious cardiac condition that may lead to hemodynamic collapse and sudden cardiac death (John et al., 2012). It is commonly observed in patients after myocardial infarction, which exhibit heterogeneous scar distributions. In particular, channels of surviving slow-conductive tissue, so-called “border zone” (BZ), promote electrical wave re-entry (Al-Khatib et al., 2018).

Catheter-based radiofrequency ablation is an established treatment for VT, which aims at eliminating re-entrant circuits responsible for sustaining VTs. This procedure is, however, only successful in about 50% of infarct-related VT cases (John et al., 2012). The efficacy of this procedure is directly linked to the precise delineation of the arrhythmogenic substrate and the identification of re-entry origin (John et al., 2012; Al-Khatib et al., 2018).

Imaging modalities such as late gadolinium enhanced magnetic resonance imaging (LGE-MRI) or computed tomography can provide information about the extent of the arrhythmogenic substrate. However, assessing the electrophysiological behavior and origin of wave re-entry may not be possible solely from images due to the inability to relate image intensity to precise voltage and activation time distributions. Electroanatomical mapping (EAM) is therefore conventionally used to inspect the arrhythmogenic substrate and to identify the origin of wave re-entry (John et al., 2012). Despite being the gold standard, it poses practical challenges (Josephson and Anter, 2015). For instance, persistent episodes of scar-related VT could lead to hemodynamic collapse, which prohibits the acquisition of high-resolution maps that are necessary to determine the origin of wave re-entry and abnormal wave fronts related to scar and slow-conductive channels (John et al., 2012; Al-Khatib et al., 2018). In addition, EAM yields measurements on the tissue surface only, thus preventing the determination of electrical activity within the myocardium (Ashikaga et al., 2007).

Methods to obtain high-resolution maps from sparse measurements commonly rely on interpolation with linear or radial basis functions. The accuracy and quality of the interpolation method is hereby dependent on the given EAM, as has been investigated by Sanromán-Junquera et al. for approaches like thin plate splines and support vector machines (Sanromán-Junquera et al., 2015). Since these methods neglect the underlying surface geometry and uncertainties in electrode recordings, Coveney et al. proposed a probabilistic interpolation of atrial EAMs based on Gaussian Markov random fields (Coveney et al., 2020). Aiming at incorporating physical priors into the interpolation method, Costabal et al. investigated the use of physics-informed neural networks, which significantly outperformed linear and Gaussian process interpolation (Sahli Costabal et al., 2020). This work was further extended to account for the tissue anisotropy and to obtain information of prevalent fiber directions (Grandits et al., 2021).

While these methods may provide accurate high-resolution maps from sparse measurements, their accuracy on capturing intramural activation times, specifically for slow conductive border zone, has not been investigated. Hence, they focus mainly on atrial EAM reconstruction since the measurements provide only surface information and modeling the atrium as a triangular mesh is a viable modeling option due to the low thickness to diameter ratio (Sahli Costabal et al., 2020).

To obtain coarse estimates of intramural abnormalities in VT cases, a recent study suggests simultaneous mapping of both endocardium and epicardium (Tung et al., 2020), which comes at the price of longer and riskier mapping procedures. An alternative solution may be realized by computational models of cardiac electrophysiology. By combining imaging information and (non-)invasive measurements, such mathematical models of the electrical wave propagation already proved to be promising approaches to reduce uncertainties in tissue conductivity estimates from EAMs (Wallman et al., 2014), to study VT mechanisms (Martinez-Navarro et al., 2019), and to predict VT ablation outcome (Cedilnik et al., 2018; Prakosa et al., 2018; Corral-Acero et al., 2020). Critical for accurate predictions is the selection of modeling assumptions such as the choice of the cell model or the fiber model. In addition, the model requires a robust and accurate personalization scheme to estimate local tissue properties from measurements. For instance, Pheiffer et al. proposed a personalization scheme of local tissue conductivities from a left-ventricular endocardial EAM using backpropagation of errors along the wave propagation paths and gradient descent to tune the tissue properties (Pheiffer et al., 2017). Even though standard personalization methods are able to match the measured data, their accuracy is dependent on a careful selection of the modeling parameters and the boundary conditions, e.g., the choice of electrical propagation origin.

This work investigates a deep learning based reconstruction of left endocardial activation maps from a set of sparse measurements as well as the extrapolation of approximate activation times in the biventricular myocardium. To this end, we propose the use of a graph convolutional neural network on a tetrahedral discretization of cardiac anatomy derived from MR images. Graph convolutional layers leverage feature information of vertices within local neighborhoods defined on a graph. By stacking these convolutional layers, the network is able to propagate information over a large receptive field. Since no ground truth information of intramural activation times is available, a computational model of cardiac electrophysiology with varying physical parameters and boundary conditions is used to provide synthetic ground truth information.

This research directly builds on our previous work (Meister et al., 2021) with the following new contributions:

• To train the neural network, the previous work uses a synthetic dataset with simplified and homogeneously distributed scar and border zone. In particular, per simulation one of the 17 left ventricular AHA regions is set to be either non-conductive or weakly conductive, which limits the generalization to the complex distributions observed in vivo. In this work, more complex scar and border zone geometries as well as variations in the initial activation locations are used to better reflect the real world. Increasing the local variations within the ground truth activation maps helps guide the network to make localized predictions, thus improving the quality of reconstructed activation times in the pre-clinical datasets.

• Evaluation of the proposed method's ability to reconstruct high-resolution endocardial activation maps from sparse measurements on four porcine cases with high-resolution electroanatomical maps.

• Evaluation of the proposed method's ability to reconstruct epicardial activation times on the CRT-EPIGGY19 challenge data comprising 11 porcine cases (6 non-infarcted, 5 infarcted) with both endocardial and epicardial measurements.

• Evaluation of the proposed method's ability to support the mapping procedure by suggesting new sampling locations.

The manuscript is structured as follows: Section 2 introduces the details of our proposed pipeline, as well as the Eikonal model of cardiac electrophysiology which was used to generate the training and testing data. Since the computational model further acts as a baseline method when personalized to the sparse data, a personalization strategy is introduced in the same section. In section 3, results on both synthetic and real-world datasets are presented. The accuracy under various subsampling ratios is quantified and compared against the personalized computational model. Section 4 discusses the results and section 5 concludes the manuscript.



2. MATERIALS AND METHODS


2.1. Graph Convolutional Estimation of Biventricular Local Activation Times
 
2.1.1. Overview of Graph Convolutional Processing Pipeline

To estimate the biventricular local activation times, this work proposes a deep learning based pipeline (see Figure 1), which uses as input MR images, a routinely acquired 12-lead electrocardiogram (ECG), and a sparse measurement cloud of left endocardial activation times. First, the biventricular cardiac anatomy is segmented from the MR images. In this work, we use a manual approach to capture the specific features of the swine cardiac anatomies used for validation. Furthermore, scar and border zone are manually annotated from the same images. In a second step, a tetrahedral anatomical model is constructed by adding a rule-based fiber model and by tagging different tissue classes (Mansi et al., 2019). In addition, a set of four standard initial activation points is added: basal and apical on the left and right septal wall, respectively (see Figure 1).


[image: Figure 1]
FIGURE 1. Illustration of the proposed deep learning based pipeline to estimate biventricular local activation times. In a first step the cardiac anatomy including scar (red area) and border zone distribution (blue area) is segmented from MR images and discretized by a tetrahedral mesh. The sparse measurement cloud of endocardial activation times (colored spheres) is manually registered and mapped to the mesh. A graph convolutional neural network is using the mesh and vertex-wise features to estimate the local activation times in the entire biventricular domain.


Next, the sparse measurement point cloud is manually registered by an electrophysiologist since the recorded catheter locations and the anatomical model do not share a common coordinate system. Voltage measurements are used to guide the alignment process, because low voltage areas correlate with scar masks derived from MR images (Nakahara et al., 2011). Outliers in the activation time measurements are removed using a threshold of 1.5 standard deviations away from the mean of local activation times. Geometric and electrophysiological features are extracted from the cardiac geometry and the ECG traces (see section 2.1.3), respectively. A graph convolutional neural network trained on synthetic data is processing the input features to estimate the local activation times in the biventricular domain (see section 2.1.4).



2.1.2. Definition of Graph Convolution

Graph convolutional neural networks are chosen in this work since they are able to learn from graph structured data, i.e., the tetrahedral computational domain. Their usage naturally adapts to the problem of learning the electrophysiology since the wave propagation is heavily influenced by the structure of the cardiac conduction system. In this work, the biventricular heart geometry is represented by a mesh with linear tetrahedral elements (Kayvanpour et al., 2015). More generically, the mesh is expressed as an undirected graph [image: image]. The graph is composed of a set of N vertices [image: image], vertex-wise D-dimensional feature vectors summarized in a feature matrix X ∈ RN×D, and a set of edges [image: image] corresponding to the edges of the tetrahedral mesh. In this work, only undirected edges are considered. We define a vertex vi's neighborhood [image: image] as all 1-hop connected vertices.

The proposed network uses the so-called GraphSAGE layers, a generalized formulation of message passing graph convolutions (Hamilton et al., 2017). Each layer l acts on the local neighborhoods of all vertices independently, while sharing learnable feature transformations between them. Given the representation [image: image] of a vertex vi at layer l, with [image: image] being the initial vertex feature, GraphSAGE first computes a neighborhood aggregate.

[image: image]

with “aggr” denoting any permutation-invariant aggregation function such as mean, max, and sum. In this work mean aggregation is used. Each vertex representation is then updated according to

[image: image]

where σ is a non-linear activation function, W a learnable weight matrix, which is shared across all vertices, and || denotes the concatenation of vi's features [image: image] and the neighborhood aggregate [image: image].



2.1.3. Feature Description

The feature matrix X comprises per vertex a total of 24 geometric and electrophysiological features (see Table 1). A primary geometric feature is a descriptor of the vertex position within the mesh. If 3D cartesian coordinates are used, the training dataset will require significant augmentation to cover the space of all possible affine transformations and make the network generalize to arbitrarily oriented hearts. Therefore, the vertex position is described in a local coordinate system that is consistent between different heart geometries, i.e., a cylindrical coordinate system defined with respect to the left ventricular axis (see Figure 2A). In addition to angle, radius, and height features, [0, 1]-normalized fields describing the relative position between apex and base, left and right ventricle, and endocardium and epicardium are added (see Figure 2B). Furthermore, three categorical features are added, which prescribe a value of 1 to vertices belonging to a specific tissue class and 0 otherwise. Two categorical features capture vertices belonging to the left or right endocardium, respectively (see Figure 2C). The third feature takes the value 1 if the vertex is part of healthy tissue and 0 if it is part of border zone. Vertices belonging to scar tissue are removed as we consider them as not depolarizing.


Table 1. An overview of all 24 geometric and electrophysiological features.

[image: Table 1]


[image: Figure 2]
FIGURE 2. Illustration of the incorporated vertex-wise features: (A) Positional encoding of vertex positions in a cylindrical coordinate system. (B) Additional relative positional encodings. (C) Categorical features denoting vertices belonging to the left or right endocardium (pink, orange), scar (red), or border zone (blue). (D) The projected electroanatomical measurements. (E) Fourteen features extracted from the 12-lead ECG traces.


The main electrophysiological features are the sparse endocardial measurements. A default value of –1 is prescribed for all vertices that do not have any measurements available (see Figure 2D). Additionally, features are extracted from the 12-lead ECG traces. These features are stored per vertex since the network is making individual predictions for all vertices, while sharing the network parameters for all predictions. This work uses the QRS duration, the electrical axis, and 12 features describing the positiveness of the QRS complex amplitude per ECG lead in percent (see Figure 2E). All features except the endocardial measurements are normalized to the [0, 1]-interval using the bounds of the training data. To consistently normalize the ground truth and endocardial measurements, we normalize the sparse measurements using the training data bounds of the target activation times. At test time, the training bounds are used to normalize the input features.



2.1.4. Graph Convolutional Network Architecture

The proposed neural network builds upon a well-established architecture for deep learning based point cloud processing, called PointNet (Qi et al., 2017). The neural network is processing all points of the input mesh independently while sharing the learnable parameters. The PointNet architecture comprises a local feature extractor, a global feature extractor, and a point-wise prediction network. The structural transformer layers in the local feature extractor are replaced by a series of GraphSAGE layers (see section 2.1.2) to allow the exchange of information over neighborhoods of increasing size via message passing. Each vertex of the mesh may require information from different receptive fields, e.g., a vertex on the endocardium may have a measurement point in the direct neighborhood while a vertex on the epicardium requires information from multiple hops away. To enable the network to learn from different receptive fields, the output of each layer of the local feature extractor as well as all input features are concatenated per vertex to form a large local feature matrix. Each row equals the local feature vector of a specific vertex in the mesh. A series of fully connected layers with leaky rectified linear activation function and global max pooling is applied to extract a global feature vector per mesh. The global features are appended to the local feature matrix and further processed by fully connected layers to estimate the local activation time for each vertex. An illustration of our adapted architecture can be seen in Figure 3.


[image: Figure 3]
FIGURE 3. Illustration of the proposed graph convolutional network architecture. Input is a tetrahedral mesh representing the biventricular anatomy. Per vertex, 24 geometric and electrophysiological features are extracted. First, a series of 20 GraphSAGE convolutional layers with 32 units and leaky rectified linear activation are applied to extract local features over an increasing receptive field. The output of each layer as well the input features are concatenated. The concatenated feature vector is further processed by a global feature extractor, which applies three fully connected layers of increasing size and a final global max pooling. The pooled feature vector is appended to the concatenated feature vector. Local activation times in the entire biventricular geometry are estimated by processing the combined feature vectors with three non-linear fully connected layers and a final linear transformation.




2.1.5. Implementation

The proposed architecture is implemented using PyTorch (version 1.8) and PyTorch Geometric (version 1.6.3) (Fey and Lenssen, 2019; Paszke et al., 2019). The number of layers as well as their sizes are chosen empirically using a small subset of training examples and using the PointNet architecture details as guidance (Qi et al., 2017). For the local feature extractor we choose 20 GraphSAGE layers, each with 32 units and leaky rectified linear activation. No improvement in performance has been observed when using more than 20 graph convolutional layers. For the global feature extractor we select three fully connected layers with 256, 512, and 1,024 units and leaky rectified linear activation. The final prediction network comprises three fully connected layers (512, 256, and 128 units, respectively) with leaky rectified linear activation and a final fully connected layer with one linear unit. The network is trained in a multi-gpu setup comprising 8 NVIDIA Tesla V100 graphics cards for 2,000 epochs. The Adam optimizer (Kingma and Ba, 2014) with default parameters and an initial learning rate of 5 × 10−4 is chosen to optimize the network parameters. To stabilize the training, the learning rate is reduced by 20% every 25 epochs. For the loss function we choose

[image: image]

where LLAT is the weighted mean squared error loss

[image: image]

with N denoting the number of vertices with ground truth local activation time yi, and ŷi the predicted activation time. αi is a weighting factor, which we set to two for vertices belonging to the left endocardium to put more emphasis on making accurate predictions in this region. A weighting of αi=1 is used for all other vertices. To guide the network to match the total activation time (TAT), we apply an additional regularization LTAT defined by

[image: image]

with [image: image] the set of ground truth activation times and [image: image] the set of predicted activation times. Since the network parameters are shared between the predictions for all vertices, one cannot guarantee that the trained graph convolutional network is able to match the local activation times in the vertices with measurements. To emphasize a correct fit in the measurements, a rescaling is applied to the trained network as a postprocessing step. We aim to match the range of activation time measurements on the left endocardium. Given the set of measurements [image: image] and the predictions [image: image] in these vertices we scale the prediction according to,

[image: image]
 


2.2. Personalized Graph-Based Computational Model of Cardiac Electrophysiology

Since ground truth intramural activation times are commonly not available from in-vivo interventions, this work relies on a synthetic dataset generated by a fast graph-based electrophysiological model (Pheiffer et al., 2017). The physiological priors of the cardiac anatomy are expected to be known. For instance, an anatomical model with a rule-based fiber model and a pre-defined set of initial activation locations is assumed to be available (see section 2.1.1 for comparison). The local activation time yi for every vertex vi of the tetrahedral mesh representing the cardiac anatomy is estimated by computing the shortest path to a set of activation points via the Dijkstra algorithm. To incorporate tissue anisotropy, generalized edge weights considering the fiber direction are computed. For an edge between vertices vi and vj, the generalized edge weight wij is calculated as

[image: image]

with the edge conduction velocity cij in mm/s that is computed by a linear interpolation of the conduction velocities at vertex vi and vj. The effective edge length lij is computed as

[image: image]

where [image: image] is the edge vector between the two vertices. The anisotropy tensor D is computed from the fiber direction [image: image] along the edge and anisotropy ratio r according to

[image: image]

where I is the identity matrix. In this work, an anisotropy ratio r of 0.3 is used and fibers are modeled by a rule-based fiber model (Kayvanpour et al., 2015; Mansi et al., 2019).

For a specific path connecting an initial activation point vinit to a vertex vi with measurements, the activation time at vi can be expressed by

[image: image]

where tinit denotes the time when the depolarization starts at vinit and the set {w1,…,K} represents the generalized edge weights along this path. In a second step, intracellular transmembrane potentials are approximated using a rule-based approach (Zettinig et al., 2014). For a given time t, the intracellular potential ϕi of a vertex vi is computed from its local activation time ŷi according to
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Following the description in Zettinig et al. (2014) and Mansi et al. (2019), vertex-wise extracellular transmembrane potentials are computed, which are then mapped to a triangulation of the torso with ECG electrode positions annotated (see Figure 4 for reference). From the mapped body surface potentials a 12-lead ECG is calculated.


[image: Figure 4]
FIGURE 4. Visualization of the swine torso template with ECG lead placement (green markers), which were used for the computation of synthetic ECGs.



2.2.1. Model Personalization Description

The electrophysiological model is also used as a baseline in this study. To this end, we require a personalization scheme that finds the best set of edge weights that explains the data, i.e., the sparse electroanatomical map as well as the routinely acquired 12-lead ECG. This work leverages the approach proposed by Pheiffer et al. (2017). The first step comprises a global optimization of homogeneous tissue conduction velocities. The cardiac anatomy is hereby divided into five tissue classes: the myocardium, the left endocardial Purkinje system, the right endocardial Purkinje system, border zone, and scar. The left and right endocardial Purkinje system comprises all vertices within a 3 mm thick layer below the respective surface. Vertices representing scar and border zone are annotated from the MR image segmentations. All other vertices are considered to belong to the myocardium. Scar is chosen to be non-conductive (0 mm/s). A conduction velocity for each of the other four tissue classes is optimized to match the ECG traces, specifically the QRS duration and electrical axis, by using the BOBYQA algorithm (Powell, 2009). To reduce the number of parameters to be estimated, we constrain the border zone conductivity to be 50% of the myocardial conductivity.

A second step refines the edge weights to match the sparse measurements (Pheiffer et al., 2017). The objective function in this case is the mean squared error loss over the M vertices with measurements
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where yi denotes the activation time measurement for vertex vi. Similarly, ŷi corresponds to the simulated activation time at vertex vi. The estimated activation time for any vertex in the tetrahedral mesh is dependent on the edge weights along the shortest path to the associated activation point and the initial activation time (see Equation 10). This setting is similar to neural networks where the output is dependent on the parameters of the hidden layers and the input to it. Backpropagation and gradient descent is therefore used to fine-tune the edge weights of paths connecting the vertices with measurements with their shortest-path-connected activation points.

The gradient descent update rule of an edge weight writes
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where t denotes the current iteration number, γ the step size, and g the gradient. We seek gradients [image: image] that minimize Equation 12. The backpropagation algorithm yields gradients along the entire path by recursively applying the chain rule from the end to the start of the path. This can be formulated as
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The gradient at the path end can be derived from the Equation (12) by
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and the gradient of the activation time with respect to any edge weight from Equation (10) by
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Since there is an optimization path associated with each measurement point, an edge might be traversed several times. We accumulate gradients before updating the weights with Equation (13).





3. RESULTS


3.1. Data Generation

The first cohort comprises 15 swine datasets. Each dataset consists of MR images, 12-lead ECG traces (CardioLab, GE Healthcare) and a left endocardial contact map (Ensite Velocity System, St. Jude Medical). The EAM was recorded with a standard irrigated radiofrequency ablation catheter (FlexAbility, Abbott) and captured the intrinsic cardiac activation after left bundle branch block (LBBB) induction. Due to the limited amount of data and the absence of ground truth information of intramural local activation times, the computational model from section 2.2 was incorporated to build a synthetic training set.

First, 11 of the 15 swine datasets with the fewest EAM measurements were selected. Segmentations of the cardiac biventricular anatomy were extracted from the MR images. These segmentations were then used to construct a statistical shape model. To this end, the triangular segmentations were rigidly aligned using point correspondences. The principal component analysis was applied to extract a mean model and the modes of variation. In total, 200 geometries were sampled from the statistical shape model using only the five most informative eigenvectors explaining more than 80% of the variance. Twenty models were discarded due to implausible geometries. The “Computational Geometric Algorithms Library” (CGAL) was used to create tetrahedral meshes with a mean edge length of approximately 2.5 mm (The CGAL Project, 2021). To simulate synthetic ECGs, a generic swine torso with standard ECG placement (see Figure 4 for reference) was first manually aligned to match the MR images in one case and then automatically registered to the other anatomical models using rigid registration.

For each of the 180 synthetic geometries, a total of 100 simulations were computed by varying the initial activation, the tissue conduction velocities, and the scar and border zone distribution. The first 50 simulations per geometry were computed using a set of four activation points located on the septum: left and right, basal and apical (see Figure 1 for reference). The other 50 simulations were generated using three randomly placed activation points on the left ventricular endocardium. To model the arrhythmogenic substrate, we randomly select for each simulation the number of scars (up to three). A random point on the left ventricle is then iteratively selected. Per point we randomly select two distance thresholds. The first threshold, ranging between 5 and 12.5 mm, will be used to denote all vertices within the given radius to be scar. The second threshold, a 3–10 mm margin around the scar, will define the border zone. To model more complex scar distributions with channels between them, the second or third scar will be placed within a 25 mm margin around the current scar distribution. Furthermore, vertices that were already assigned to border zone or scar will not be overwritten.

The conduction velocities were varied under the assumption of homogeneous conduction within five tissue classes. Scar was modeled with 0 mm/s. The general myocardium was modeled with a conduction velocity of cMyo ∈ [250 mm/s, 750 mm/s]. The conduction velocity in the border zone was randomly varied to be cBZ ∈ [100 mm/s, cMyo]. Furthermore, the left and right Purkinje systems (cLV & cRV), each modeled by a 3 mm thick endocardial layer, have had conduction velocities that varied between 1,000 and 2,500 mm/s.

From the 18,000 simulations, we discarded all simulations with a simulated QRS duration greater than 200 ms, amounting to approximately 10% of all simulations, to stay within physiologically plausible ranges. The remaining simulations were randomly split by geometry into a training set (90%), a validation set (5%), and a test set (5%). In addition, the training dataset was augmented in each epoch by randomly subsampling the left endocardial ground truth using a random subsampling ratio between 10 and 100%.



3.2. Reconstruction of Biventricular Activation Times

After fitting the network to the training set, we first evaluated whether our proposed method can reconstruct the local biventricular activation times under unseen conditions. To this end, the network was applied to the 5% left out simulations from the synthetic database, which comprises 9 unseen geometries yielding a total of 870 unseen depolarization patterns. In particular, we subsampled the endocardial ground truth at various ratios (1, 2, 5, 10, 15, 20, and 25%) and had the network reconstruct the local activation times in the entire biventricular domain. We chose the mean absolute error (L1-error) to quantify the difference in local activation times for different tissue classes: the biventricular heart, the left endocardium, the left epicardium, and the border zone. In addition, we quantified the total activation time error, approximated by the range of the predicted or ground truth activation times.

The results as seen in Table 2 suggest that the network is able to leverage the endocardial information since the errors are decreasing for all tissue types when increasing the number of provided samples. Furthermore, the network is able to accurately reconstruct endocardial activation maps. Even in a setting of only 0.4 samples per cm2 (equal to a subsampling ratio of 2% and less than observed during training) the network reconstructs the complete endocardial ground truth with a mean absolute error of less than 5 ms. The mean absolute error rapidly drops to approximately 1 ms when increasing the number of samples beyond 2.1 samples/cm2. Similarly, we observe that the network is able to match the QRS duration effectively. Moreover, a significant decrease of the mean absolute errors for the border zone tissue is observed with an increased number of provided endocardial samples. This suggests that the network is able to infer to some extent the conductive property of the slow-conductive tissue, which may help in reducing ambiguities in the depolarization pattern.


Table 2. Mean absolute errors (± the standard deviation) in ms between the prediction and the synthetic ground truth activation time for different tissue types as well as the total activation time (TAT) at different subsampling ratios.
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3.3. Reconstruction of High-Resolution Endocardial Maps From Sparse Measurements

In a second experiment the same network trained on the synthetic dataset is applied to the four swine datasets that were not used to construct the statistical shape model. For each of the four cases, scar and border zone were segmented from the MR images. The associated high-resolution electroanatomical map was manually registered by an electrophysiologist since the recorded catheter positions and the anatomical model do not share a common coordinate system. The resulting measurements were then mapped to all vertices on the endocardial surface of the tetrahedral meshes using nearest neighbor projection. The projected measurements were then randomly subsampled with the following ratios: 0.2, 0.4, 1.0, 2.1, 3.3, 4.3, 5.5, and 6.5 samples/cm2. The same samples were provided as input to three different methods for reconstructing the full endocardial measurement map: the graph convolutional neural network, the computational model, and a naive nearest neighbor projection. In the latter case, the raw EAM was first filtered to contain only the data points that would be projected to the subsampled points. Then, the reduced point cloud was again mapped to all vertices of the endocardial surface. The three methods were compared in terms of their mean absolute errors to reconstruct the ground truth high-resolution activation map.

As can be seen in Figure 5, both the graph convolutional network and the personalized computational model are producing significantly lower mean absolute errors for very low sampling ratios (<2.1 samples/cm2) compared to the projection method. All three methods improve substantially with increased sampling ratios. For larger sampling ratios it is expected that the projection method is outperforming the other two methods since the nearest neighbor projection may assign the same raw measurement point to multiple vertices on the endocardial surface, thus increasing the chances that a majority of the raw measurement points are used. When qualitatively comparing the results (see Figure 6), it can be observed that the computational model is producing a smooth activation map adherent to the modeling priors and moderately affected by the sampling points. The nearest neighbor projection is producing very patchy patterns at low sampling ratios and quickly recovers the ground truth with increased number of samples. In contrast, our proposed method is delivering a good compromise between fine-grained details and coarse-grained interpolation. It is worth noting that when providing very few endocardial samples (0.2 samples/cm2) the network is predicting activation times similar to the computational modeling result, suggesting that the proposed method was able to learn a set of modeling priors from the synthetic training set. However, the method is not forced to adhere to the modeling priors of the computational model, thus it is able to deviate from the position of earliest activation. For instance, in Figure 6 one can see that the earliest activation when providing 0.2 samples/cm2 is located more anterior compared to the personalized computational model. An additional early activation zone can be recovered in the mid of the anterior wall when providing more samples.
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FIGURE 5. Mean absolute error for different subsampling ratios on our in-house cohort comprising four swine datasets with high-resolution endocardial EAMs. Comparison of the graph convolutional network (GCN), the personalized computational model (DEP), and a naive nearest neighbor projection (NN). The red bar denotes the mean, the black bar denotes the 15–95 percentiles.



[image: Figure 6]
FIGURE 6. Illustration of the prediction results for the graph convolutional neural network (GCN), the personalized computational model (DEP), and the nearest neighbor projection method (NN) for different sampling ratios. Provided samples are highlighted by pink spheres.


In addition to the comparison to the measured data, synthetic 12-lead ECGs were computed from the graph convolutional network predictions by calculating intra- and extracellular potentials as described in section 2.2. The resulting traces were compared against the ground truth ECGs. Overall, the signal positivity was matched in the majority of the limb leads. We did, however, observe inconsistencies when comparing relative amplitudes (see Figure 7 for an example). The highest discrepancies were always found in the precordial leads. In particular, inconsistent R/S ratios were observed.


[image: Figure 7]
FIGURE 7. Visual comparison of the ground truth 12-lead ECG (black) taken from one case of the in-house dataset and the synthetic ECG (blue) simulated from the graph convolutional neural network prediction given the full electroanatomical map. Please note that lead I is missing because of a hardware failure.




3.4. Reconstruction of Epicardial Activation Times From Endocardial Measurements

To evaluate the network performance for predictions of activation times beyond the left endocardium, we applied the network without retraining to the CRT-EPIGGY19 challenge data (Camara, 2019). The dataset comprised eleven swine datasets (four training cases and seven testing cases), for which both endocardial and epicardial electroanatomical mapping has been performed with intrinsic activation after LBBB induction as well as after cardiac resynchronization therapy (CRT). Furthermore, information of the scar extent based on the 17 segment LV model as well as its transmurality was provided. Additional details of the data have been described in Soto Iglesias et al. (2017). For this experiment, we used the endocardial map with intrinsic activation at different subsampling rates. We considered the full endocardial activation map and the epicardial one as the ground truth. To be consistent with the mesh resolution of the training geometries, all tetrahedral meshes provided by the challenge organizers were resampled for an average edge length of 2.5 mm using the CGAL library (The CGAL Project, 2021). Since no ECG traces were provided as part of the challenge, we generated synthetic ECG traces using the following approach. First, the previously used porcine torso (see Figure 4) was rigidly aligned to the tetrahedral meshes by establishing point correspondences. Next, intra- and extracellular potentials were computed from the ground truth activation times as described in section 2.2. This corresponds to the estimated electrical activity during the QRS interval. Synthetic 12-lead ECG traces were then computed from the potentials using the boundary element method as described in Zettinig et al. (2014).

We compare the network to the electrophysiological model personalized to the same subsampled data as done in the previous section, ranging from 1 to 100% of the endocardial samples (equal to 0.2–21.8 samples/cm2). As illustrated in Figure 8A, both the neural network and the personalized computational model are able to reconstruct the entire endocardial map reliably. The neural network is improving more with increased number of endocardial samples and is able to achieve lower errors at sampling ratios of 16.3 samples/cm2 and more. When evaluating the performance on the left epicardium (see Figure 8B), both methods produced significantly larger errors with the neural network outperforming the computational model. We observed no significant improvement with increased number of endocardial samples. To measure the overall fit of the prediction to the ground truth measurements (endocardial and epicardial), we follow the approach by Cedilnik and Sermesant (2019) and compute the average over case-wise root median squared errors (RMSE) on the training and test set, respectively. Errors between 5.6 and 7.8 ms were measured for the network for different sampling ratios, with 6.6–9.3 ms for the personalized computational model (see Table 3). Cedilnik et al. reported on the training set a mean RMSE between 9 and 17 ms depending on the personalization scheme of an Eikonal model to both endocardial and epicardial measurements (Cedilnik and Sermesant, 2019). Furthermore, when comparing qualitatively the epicardial ground truth to the solutions provided by the two methods (see Figure 9), the two methods provided very similar wave propagations. They were, however, only coarsely approximating the measured data.


[image: Figure 8]
FIGURE 8. Mean absolute error distributions (mean: red; 15–95 percentile: black) on the left ventricular endocardium (A) and the epicardium (B) of the graph convolutional predictions on cohort #2 comprising eleven swine datasets with high-resolution endocardial EAMs.



Table 3. Comparison of the proposed neural network (GCN) and personalized computational model (DEP) on the training and the test cases of the CRT-EPIGGY19 challenge.
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FIGURE 9. Illustration of the prediction results for the pig “Neus” from the CRT-EPIGGY19 challenge when providing 100% of the endocardial measurements to the graph convolutional neural network (GCN) and the personalized computational model (DEP). The neural network is able to retain the information on the endocardium and provide a coarse approximation of the left epicardial activation time. The computational model fails to accurately match the endocardial information and over-estimates the late activation on the left epicardium.




3.5. Ablation Study on ECG Features

The preceding experiments leverage ECG information in addition to the measured activation times to estimate biventricular activation maps. In particular, 14 surrogate metrics derived from 12-lead ECG traces (see Table 1) are used as input features to the graph convolutional neural network. This work relies on surrogate metrics since ECG traces may not be present as a digital recording, which would allow automatic feature extraction. Furthermore, ECG traces often exhibit high frequency noise, which could pollute ECG-based features provided as input to the network. The metrics proposed in this work are expected to be less affected by this kind of noise. Nonetheless, it is important that the model learns the relative importance of all provided input features, not relying solely on ECG information. To study the impact of the ECG features on the prediction accuracy, we performed an ablation study. To this end, we trained four additional graph convolutional networks on the same data split as described in section 3.1 and without changes to the hyperparameters (see section 2.1.5). While all networks used the same endocardial measurements and geometry features as input, the ECG information was provided in four different ways: no ECG information, QRS duration only, QRS duration with electrical axis, and QRS duration with vertical positivities.

All networks were evaluated on the in-house dataset as described in section 3.3 and compared against the graph network using the original input features. The largest errors were observed when no ECG information was provided, suggesting that ECG information contributes significantly to the reconstruction of the activation map (see Figure 10). The results further show that the QRS duration is the most important ECG feature since its addition leads to comparable performance to the original model. Further addition of electrical axis or vertical positivity leads to improvement in the prediction accuracy only in some of the experiments. This seems to suggest that those features have the potential to contribute to more accurate estimation of the activation times, but their correlation to the ground truth is comparatively less strong than that of other features.
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FIGURE 10. Illustration of the results of the ablation study applied to the in-house dataset. Mean absolute endocardial reconstruction errors are compared for different graph convolutional networks trained on subsets of all features (ALL): no ECG features (NoECG), only QRS duration (QRS), QRS duration with vertical positivities (QRS + Vert), and QRS duration with electrical axis (QRS + EA). The results suggest that ECG information, particularly the QRS duration, is necessary for the accurate estimation of activation maps. The small differences between the networks with ECG features suggest that the networks do not rely solely on ECG features to estimate the endocardial activation maps.




3.6. Active Suggestion of New Sampling Locations

The previous experiment demonstrates that ECG information is important for the estimation of activation times. Compared to the steep error reduction with an increase in provided measurements, the small differences between the networks with different ECG features confirm that the method prioritizes information from the measurements. We hypothesize that targeted selection of the measurement locations could boost the performance compared to randomized sampling. To this end, we run an experiment in which new sampling locations are suggested based on the intrinsic uncertainty, measured by the disagreement between the predictions of an ensemble of neural networks, as successfully demonstrated by Sahli Costabal et al. (2020). While Costabal et al. trained multiple networks with different initial conditions and had to repeatedly fine-tune the models with each new sample collection, this work relies on an ensemble of pre-trained networks comprising the four graph convolutional networks from the previous section. Since these models are able to incorporate the given measurements without a re-training step, new samples can be suggested in real-time.

To sequentially propose new sampling locations, the following approach was performed. Starting off with a set of randomly sampled positions, the feature matrices for each network were assembled. Next, each network estimated local activation times. The mean activation map of the four networks as well as vertex-wise standard deviations were computed. Since the standard deviation represents the disagreement between the predictions, the proposal of a new sampling location was chosen to be the vertex location with highest standard deviation. A constraint was added such that each vertex can only be selected once.

To demonstrate that such relatively simple uncertainty estimation is of value, the following scenario was considered. First, the endocardia of the test datasets from the second experiment (see section 3.3) were split into septal regions and free wall regions by applying a vertex-wise threshold of ±90 degree to the angular feature of the local coordinate system. Next, 10% of the free wall vertices were randomly chosen as an initial mapping. The active sampling strategy was then applied only to the septal region. This setup was chosen to study whether new sampling locations will correlate with the presence of scar and border zone, which is located on the septum in all cases of the in-house dataset. For each new sample, the mean activation map was computed from the model ensemble, and the mean absolute error with respect to the ground truth was evaluated. For comparison, a random sampling strategy was applied to three alternative approaches: the graph convolutional network with all features, the personalized computational model, and the nearest neighbor projection.

The results as presented in Table 4 show that the active sampling strategy is producing the lowest error for all subsampling ratios. In particular for very low sampling densities, high differences between the active ensemble and the personalized model as well as the nearest neighbor projection were found. For instance, at 1% the GCN with active sampling agreed with the ground truth with a mean absolute error of 8.5 ms ± 7.9 ms. The personalized computational model and the nearest neighbor projection recovered the ground truth with 9.5 ± 8.9 ms and 14.9 ± 11.4 ms, respectively. Using the random sampling strategy, all methods achieved the lowest errors at a sampling density of 10%. In contrast, the ensemble-based active sampling strategy can achieve the same error with significantly less measurements. For the GCN a reduction by 40% of septal samples was observed, while the reduction for the nearest neighbor method measured 20%. At 10% of septal samples, the estimated activation maps of the active sampling strategy shows a qualitatively better agreement with the ground truth compared to the random sampling result (see Figure 11). For instance, the mid-septal location of earliest activation area found in the ground truth is fully recovered by the active sampling, while the random sampling leads to multiple areas of earliest activation. Moreover, deceleration zones within fast conductive early activated areas, potentially associated with presence of border zone, are fully recovered with the proposed sampling strategy. A visual comparison of the sampling locations and of the segmented border zone indeed shows higher sampling densities in this area. The results are therefore particularly encouraging since the proposed sampling strategy samples in areas that are known for their uncertain tissue characteristics.


Table 4. Mean absolute errors (± the standard deviation) in ms between predicted and ground truth activation times at different subsampling ratios of the septal ground truth.
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FIGURE 11. Illustration of the prediction results for the graph convolutional neural network using the proposed active sampling strategy and the random sampling strategy after selecting 10% of septal vertices. Provided samples are highlighted by black dots. The segmented border zone mask is overlayed in pink and located antero-septal in this swine model of myocardial infarction. Compared to the random sampling strategy, the active sampling approach better captures important details of the ground truth, such as the location of earliest activation and deceleration zones associated with the slow conductive border zone.





4. DISCUSSION

This study investigates the data-driven interpolation and extrapolation of sparsely measured left endocardial activation times. A system, capable of estimating the electrical activity from sparse measurements, ECG information, and imaging data, could impact computational cardiology in numerous ways. For instance, the procedural time of the mapping procedure could be significantly reduced since less samples would need to be acquired. Other applications include the suggestion of valuable sampling locations. Paving the way toward this goal, this work relies on a graph convolutional neural network that enables learning to encode topological structure and local features as well as the propagation of information on graph-structured data. Its usage naturally adapts to cardiac electrophysiology, where the electrical wave propagation is directly linked to the structure of the cardiac conduction system, for which graph-based representations are suitable. A synthetic dataset to train the network has been generated by a computational model to overcome the absence of ground truth activation times in the entire biventricular geometry. A statistical shape model as well as randomized scar and border zone distributions, varying conduction velocities, and different initial activation locations have been used to induce variability in the simulations.

Without re-training, the proposed approach was evaluated on unseen synthetic simulations and two real world datasets. In all setups, the graph convolutional neural network was able to accurately reconstruct the endocardial activation maps even when sparse data points were provided. Moreover, decreasing errors were observed with an increase in the number of provided measurement samples, suggesting that the network can incorporate the measured information. Compared to the qualitative results from our previous work (Meister et al., 2021), we observed significantly better agreement with the ground truth activation maps, which we attributed to a better training dataset. In particular, the interpolation of the data appeared to be physically plausible, while the previous work incorporated the measured data as local discontinuities in the predicted activation map. The resulting activation maps were patchy and high accuracy was only achieved in vertices with provided measurements.

Since measuring intramural activation times is commonly infeasible in patients, the method was evaluated only on the left out synthetic data. Here, a good agreement between the ground truth and the prediction was observed. The errors decreased the more endocardial samples were provided to the network. Since the border zone conduction velocity was independently varied and was always connected to the endocardial surface in this cohort, the result suggests that the network was able to account for the presence of intramural border zone based on the provided measured activation times. For the epicardial activation times, the method was evaluated on the CRT-EPIGGY19 challenge. While observed errors were in general significantly higher compared to the other benchmarks, macroscopic features of the epicardial activation map could be reproduced by the network. For instance, the area of latest activation in both measured and estimated activation map was basal with a small shift toward the anterior side (see Figure 9 for comparison). It is important to notice that the measurement of epicardial activation times could be affected by significant sources of noise such as far field effects, motion, and thin epicardial layers of fat, or due to errors in the alignment (van Huls van Taxis et al., 2013; Josephson and Anter, 2015). This could explain at least in part the higher estimation errors on the epicardium. Similar differences were observed by the challenge participants Cedilnik et al., who personalized an Eikonal model to both endocardial and epicardial measurements (Cedilnik and Sermesant, 2019). The authors reported a mean RMSE between 9 and 17 ms depending on the used personalization strategy. In comparison, our graph network achieved a mean RMSE between 5.6 and 7.8 ms depending on the subsampling ratio. The results suggest that the proposed method provides more accurate results compared to Cedilnik et al. even at low subsampling ratios. This holds true despite one intrinsic limitation of our approach, since our model assumed that early activation starts either septal or in the left ventricular endocardium. The challenge data had cases with early activation in the right ventricle. For those cases, the RMSE reported above will be inflated by higher errors in the estimation of the activation times in the right ventricle. We hypothesize that training the network on additional synthetic examples with early right ventricular activation would further improve the results.

We further performed an ablation study to investigate the impact of the ECG features on the prediction accuracy. The results highlight that the inclusion of ECG information, particularly the QRS duration, is important to reconstruct the activation times. Additional features, such as the electrical axis and vertical positivities, only improved the results in some experiments. We hypothesize that these features have the potential to improve predictive accuracy, but the trained model did not rely on them as much as on the other input features. This could be due to the fact that the relationship between these specific metrics (electrical axis and vertical positivity) and the pattern of activation times are intrinsically complex, with potentially different activation maps being associated to ECG signals with analogous surrogate metrics. Usage of more complex features derived from the ECG signals could help the model discriminate better their predictive role. In our animal datasets we observed that the ECG signals were affected by noise in some of the leads, which could make the extraction of the ECG features more challenging. Even though the surrogate metrics are by design less impacted by noise in the measurements, the networks were trained on simulated and thus noise-free data. Investigating data augmentation strategies that add realistic noise to the training data is an interesting area of future research, which may improve the generalization between synthetic and measured data.

In addition, the method was compared against two other methods. When comparing the graph network against a nearest neighbor projection on the task of reconstructing high resolution endocardial activation maps, the data-driven approach outperformed the projection method for low sampling densities. The projection method generated coarse and patchy activation maps, which suggests this method to be sensitive to measurement noise. In contrast, the graph network produced a smooth and physically plausible interpolation of the provided measurements. The qualitative results are comparable to those obtained by the computational model of cardiac electrophysiology, which was personalized to the same provided measurements and which was used as the other comparator. The computational model was, however, not able to capture the intricate details of the high-resolution activation maps due to the strong regularizing effect of the modeling priors. When comparing both methods on the challenge data, the network produced similar or better results than the computational model when attempting to reconstruct the complete endocardial activation map from a sparsefied version. When targeting the estimation of left epicardial activation maps from the endocardial measurements, the network significantly outperformed the computational model. Visually, both methods provided similar epicardial wave front estimations on the challenge data, but the network proved better at capturing the total activation time (see Figure 9).

At last, the feasibility of supporting the mapping procedure by actively suggesting new sampling locations was investigated. Using an ensemble of graph neural networks, the disagreement between predictions was used to determine locations of high uncertainty, which were then used as new sampling locations. The in-silico study on the in-house dataset suggests that this rather simple approach was able to suggest meaningful new sampling locations that lead to lower errors compared to random sampling of the same number of points. To match the same accuracy as when providing 10% randomly selected septal measurements as input to the graph network, a reduction of up to 40% sampling points was achieved with the active sampling strategy, which could result in a significant reduction of the mapping procedure duration. Compared to a similar synthetic experiment, which used physics-informed neural networks and relied on fine-tuning of a network ensemble for each new sample (Sahli Costabal et al., 2020), our method showed a significant runtime advantage since it was able to directly integrate newly measured data points. Up to 2 samples per second could be processed with this approach. In contrast, Costabal et al. reported that fine-tuning alone took approximately 1 min per sample (Sahli Costabal et al., 2020). Furthermore, not only the endocardial activation times were estimated, but local activation times in the entire biventricular domain. Additional speed gains are expected with further algorithmic and architectural optimizations.

While the present study demonstrated a new way for joint interpolation and extrapolation of measured activation times, the proposed method presents several limitations. First, a noticeable difference between the observed errors on the synthetic and measured data was found. The higher errors may be explained by the high amplitude noise in the measured data, which is particularly present in the in-house dataset (see Figure 6 for an example). Since the noise manifests as seemingly unphysical local discontinuities, the proposed approach could be regarded as a physics-inspired denoising procedure. This however would have to be demonstrated by comparing the model results against a larger set of measured maps with varying signal-to-noise ratio. Furthermore, we hypothesize that the proposed method is highly dependent on the underlying computational model used to generate the training dataset. This is supported by the qualitatively similar activation maps that were produced by the graph network and the computational model, particularly for very low sampling densities. The training data used in this work comprised simulations with limited variability in modeling assumptions. For instance, the use of 180 geometries sampled from a statistical shape model computed from only 11 swine datasets could be too limiting to cover the wide range of anatomical variability. In the experiments conducted in this study we did not observe a significant variation of the error metrics across different anatomical models in the testing set. Nonetheless, the relatively small sample size in our experiments does not allow to generalize this finding and a richer statistical shape model could make the trained network more robust to geometry variations. Furthermore, scar and border zone were modeled by a relatively simple heuristic that results in primarily transmural distributions. This modeling assumption is particularly suitable for severely scarred cases, such as the swine hearts considered in this work. Applying our approach to more general cases, such as intricate intramural channels within core scar, may require further enrichment of the training dataset.

The graph representations adopted in this work were based on tetrahedral approximations of the biventricular heart geometry, with a relatively coarse mesh resolution (2.5mm). This implies that the spatial distribution of activation times in the tissue (both in the training and in the testing sets) is approximated and does not include fine spatial details at lower scales. This could potentially affect the capability of the model to accurately represent transmural gradients in activation times. This, however, is expected to be acceptable in the modeling of swine hearts, in which transmural gradients of activation time are relatively small due to the transmural Purkinje tree (Garcia-Bustos et al., 2017). Considering graphs with relatively large edge length has the advantage that the graph convolutional network architecture can be more compact, requiring less convolutional layers to represent the same receptive field. The increased number of convolutional layers required by graphs with shorter edge lengths was reported to potentially degenerate the network performance due to over-squashing and over-smoothing (Alon and Yahav, 2020). Making graph convolutional neural network invariant to the underlying mesh resolution is still an understudied problem and an interesting direction for future research.

Our model was based on the assumption that the heart tissue can be represented as the union of five regions, each characterized by homogeneous and constant conduction velocity. In particular, the transmural Purkinje network found in swines was simply approximated by a 3 mm layer for the left and right endocardium, respectively. In addition, we also assumed that sites of initiation of the ventricular depolarization are known and the same for all hearts. The results under these modeling assumptions showed good agreement between estimated and ground truth activation maps. It is, however, possible that less restrictive or more complex modeling assumptions would increase the fidelity of the underlying electrophysiology model. Similarly, this work employed an Eikonal solver of cardiac electrophysiology. While the solver proved suitable to represent non-arrhythmic cardiac activation, it may fail to capture wave re-entrants. Further, our graph convolutional approach appeared to be influenced by the fidelity of the underlying training data, which is limited by the previously mentioned modeling assumptions. An interesting future research direction hence comprises the application of more complex cardiac electrophysiology solvers together with higher fidelity modeling assumptions for the training data generation, which may in turn improve the accuracy of the network estimations even in non-sinus rhythm.

The proposed method further integrated information from 14 ECG features comprising the QRS duration, electrical axis, and the relative amplitude of each lead. The results of our ablation study suggest that the ECG features, particularly the QRS duration, are important to estimate activation maps. It is possible that such surrogate metrics hide details of the ECG signals that could improve the predictive performance. Also in this case, access to large quantities of preferably noise-free datasets with digitalized ECG recordings is required to investigate the role of full trace information. Similarly, it would be necessary to acquire precise information about the lead placement and the exact heart-torso orientation to investigate the observed discrepancies between the ground truth and synthetically generated ECG traces as seen in Figure 7.

Another interesting direction to potentially further improve the proposed method is the investigation of more elaborate network architectures. For instance, alternative graph convolutional filter were explored in the literature, which have the advantage of learning more expressive feature representations and may allow the incorporation of edge information (Wu et al., 2020). In the context of the proposed method, they could be easily integrated as a replacement for the SAGE layers of the local feature extractor and may help improve the agreement between model predictions and ground truth activation time, particularly in graph nodes in which the measurement is provided as input feature.

In addition, we strongly believe that acquiring large amounts of high quality datasets will be critical to further improve the proposed approach. It would help clarifying what is the role of each source of noise or uncertainty, both from the data and the modeling assumptions. For instance, we hypothesize that more elaborate scar and border zone models, potentially built from a large set of image data, as well as inhomogeneous tissue conduction velocities could lead to higher fidelity in the training dataset. To this end, measurements with high signal to noise ratio would help elucidate which modeling assumptions are of particular relevance. Furthermore, we hypothesize that such information could strengthen the physics-inspired denoising capabilities of the proposed method.

The same improvements of the modeling assumptions and ECG features as described above may also increase the performance of the personalized computational model. While the computational model was able to estimate the main mode of electrical wave propagation, it did exhibit a stronger regularizing effect compared to the other two methods. Possible areas of improvement may comprise the personalization of initiation sites and constraining the fine-tuning process with ECG information. Alternatively, personalization strategies that include full ECG traces instead of surrogate metrics, such as presented in Gillette et al. (2021) and Pezzuto et al. (2020), could be employed. Another interesting area of future research may include the incorporation of uncertainties related to the ECG generation such as the uncertainty in lead placement.



5. CONCLUSION

This work proposes a deep learning based approach to estimate biventricular local activation times given a spatial discretization of cardiac anatomy, i.e., a tetrahedral mesh, a routinely acquired 12-lead ECG, and sparse endocardial activation time measurements. In particular, the use of graph convolutional layers is explored, which allows the propagation of information through the mesh structure. In total, 24 geometric and electrophysiological features are used for the prediction task. Due to data scarcity and no ground truth information for the intramural activation times, a synthetic training dataset is generated using a fast graph-based computational model of cardiac electrophysiology with depolarization variations induced by randomized conductivities, randomized scar and border zone distributions, variable initial activations and variable geometries from a statistical shape model. The proposed method has been validated using 870 left out simulations and two clinical cohorts with a total of 15 swine datasets. Good agreement between the endocardial ground truth activation times and the predictions have been observed in all setups. Compared to a personalized computational model the proposed approach is producing similar or better results, while not requiring a time-consuming iterative personalization process. Further research is required to assess and improve the moderate agreement between epicardial prediction and the ground truth of the clinical cohort.
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Probabilistic estimation of cardiac electrophysiological model parameters serves an important step toward model personalization and uncertain quantification. The expensive computation associated with these model simulations, however, makes direct Markov Chain Monte Carlo (MCMC) sampling of the posterior probability density function (pdf) of model parameters computationally intensive. Approximated posterior pdfs resulting from replacing the simulation model with a computationally efficient surrogate, on the other hand, have seen limited accuracy. In this study, we present a Bayesian active learning method to directly approximate the posterior pdf function of cardiac model parameters, in which we intelligently select training points to query the simulation model in order to learn the posterior pdf using a small number of samples. We integrate a generative model into Bayesian active learning to allow approximating posterior pdf of high-dimensional model parameters at the resolution of the cardiac mesh. We further introduce new acquisition functions to focus the selection of training points on better approximating the shape rather than the modes of the posterior pdf of interest. We evaluated the presented method in estimating tissue excitability in a 3D cardiac electrophysiological model in a range of synthetic and real-data experiments. We demonstrated its improved accuracy in approximating the posterior pdf compared to Bayesian active learning using regular acquisition functions, and substantially reduced computational cost in comparison to existing standard or accelerated MCMC sampling.

Keywords: probabilistic parameter estimation, high-dimensional Bayesian optimization, Gaussian process, variational autoencoder, cardiac electrophysiological model


1. INTRODUCTION

With advanced technologies in medical imaging and image analysis, computational models can now closely replicate the physiology of a human heart (Taylor and Figueroa, 2009; Morris et al., 2016). As these models are virtual in nature, they have the potential to enable prediction, diagnosis, and treatment planning of certain conditions of a patient heart with little to no harm to the patient (Sermesant et al., 2012; Arevalo et al., 2016; Zahid et al., 2016; Prakosa et al., 2018; Cronin et al., 2019). However, while the geometry of a specific patient heart can be depicted with increasing accuracy, patient-specific physiology remains a challenge. A main difficulty arises from the need to customize patient-specific material properties (Taylor and Figueroa, 2009; Neal and Kerckhoffs, 2010), which are typically spatially varying throughout the 3D organ and may change over time for the same individual. At the same time, they often cannot be directly measured in high resolution, but have to be estimated from relatively limited measurements. This results in a challenging inverse problem for estimating high-dimensional (HD) unknown parameters of a complex, nonlinear, and computationally expensive forward model that relates the unknown parameters to measurements.

There are two general approaches to this inverse problem: deterministic optimization and probabilistic inference. In deterministic optimization, we seek a single optimal value of the unknown model parameter that will minimize the mismatch between the model output and the measurement data (Sermesant et al., 2012; Wong et al., 2012, 2015; Yang and Veneziani, 2015; Balaban et al., 2018; Mineroff et al., 2019; Barone et al., 2020a,b). These estimates, however, do not take into account the uncertainty in the measurement data, nor can they offer insights into the presence of non-unique solutions that can match the same data. These can be overcome by probabilistic inference of the posterior pdf of the model parameters given available measurements.

Existing approaches to the probabilistic estimation of model parameters are generally based on Markov Chain Monte Carlo (MCMC) sampling. The computation expense of the forward simulations of these models, however, makes MCMC infeasible due to the reliance on a large number of sampling, each requiring a simulation run. Approaches to accelerating such sampling can be loosely divided into two categories. On one hand, a variety of hybrid sampling methods have been developed, which accelerates random sampling using information about the target pdf such as its gradient (Roberts et al., 1996; Neal, 2010) and Hessian matrix (Martin et al., 2012). These information, however, are often difficult to extract from the posterior pdf involving a complex simulation model. On the other hand, it is possible to construct a computationally efficient approximation, i.e., surrogate model, of the expensive simulation process, such that the related pdfs become substantially faster to sample. These surrogate models may be physics-based reduced-order modeling Lassila et al. (2013), or data-driven approximations such as Gaussian process (GP) (Kennedy and O'Hagan, 2000; Rasmussen, 2003) and polynomial chaos (Spanos and Ghanem, 1989; Xiu and Karniadakis, 2003; Marzouk and Najm, 2009). Directly sampling the surrogate-based posterior pdf, however, may lead to limited accuracy due to the difficulty to build a globally accurate approximation of a complex nonlinear simulation model. In our previous work, we attempted to mitigate this issue by using this surrogate-based pdf to accelerate, rather than replacing, the sampling of the actual pdf (Dhamala et al., 2018a). Specifically, this was achieved by a two-stage MCMC strategy where the surrogate-based pdf works as a proposal distribution to increase the acceptance rate of sampling (Dhamala et al., 2018a). While this ensures the accuracy of posterior sampling, the reduction in the computation becomes limited due to the fundamental reliance on sampling the original pdf involving expensive simulation processes.

In this study, we develop a Bayesian active learning approach to provide an accurate surrogate model of the posterior pdf of simulation model parameters such that there is no need of further MCMC sampling of the original computational-intensive pdf. This is achieved with two key innovations. First, unlike most existing approaches that rely on learning a surrogate of the simulation model over the prior distribution of the parameter space (Dhamala et al., 2018a), we propose to directly learn a surrogate of the posterior pdf. We formulate this posterior pdf estimation as an active learning problem where we intelligently select a minimal number of training points focused on the posterior support of the parameter space. Second, we present new acquisition functions during the active learning to utilize the shape of the posterior pdf to improve the selection of training points. To enable this active posterior estimation over a high-dimensional parameter space, we further combine it with our previously developed approach that uses generative modeling of the high-dimensional parameter space (Dhamala et al., 2018b) to embed active learning of a high-dimensional posterior pdf into a low-dimensional (LD) space.

While our method is generally applicable to posterior estimation of HD parameters in complex models, in this study it was applied to estimate tissue excitability as parameters of the cardiac electrophysiological model. Experiments were performed on three different groups of data: simulation data with a synthetic setting of abnormal tissues, simulation data generated from a high-fidelity biophysics model blinded to the model used in the posterior estimation, and real data obtained from patients with infarcts derived from in vivo voltage mapping data. In the synthetic group, we compared the results with direct MCMC sampling of the original posterior pdf, two-stage MCMC method (Dhamala et al., 2017a), and direct MCMC sampling of the surrogate pdf learned using regular Bayesian active learning. The results showed that the presented method was able to use 0.6% computation of the direct or two-stage MCMC methods to deliver an accurate estimation of the posterior pdf, with significantly improved accuracy compared to using regular Bayesian active learning. In the other two sets of experiments, we evaluated and interpreted the mean, mode, and uncertainty of the estimated tissue excitability using in vivo magnetic resonance (MR) scar imaging or voltage mapping data.

The key contributions of this study can be summarized as:

1. We present a Bayesian active learning approach for fast approximation of the posterior pdf of the parameters of expensive simulation models, with acquisition functions designed to improve the accuracy of the approximation in order to remove the need of subsequent MCMC of the original computationally expensive pdf.

2. We leverage our previously developed approach (Dhamala et al., 2018b) to embed the active learning over HD space into a LD manifold, enabling active posterior inference over HD model parameters representing spatially varying tissue excitability.

3. We thoroughly evaluated the performance of the presented method in comparison with existing works in probabilistic parameter estimation in cardiac electrophysiological models, both in synthetic data involving MCMC sampling as reference data, and in real data involving MRI scar imaging and in vivo voltage mapping as reference data.

The rest of the study is organized as follows. In section 2, we review related works in detail and in section 3, we present background of this study. In section 4, we present our methodological developments. We present experiments and results for both synthetic and real data from the cardiac electrophysiology system in section 5. Finally, we give some concluding remarks with limitations and future scope.



2. LITERATURE REVIEW


2.1. Probabilistic Parameter Estimation in Complex Models

For complex models where the posterior pdf of model parameters is analytically intractable, the area of estimating parameters largely depends on MCMC sampling. Metropolis-Hastings (MH) sampling, Gibbs sampling, and many more classical MCMC methods are developed in Metropolis and Ulam (1949), Hastings (1970), Geman and Geman (1984), Gelfand and Smith (1990), and Gelfand et al. (1992) and applied in different areas to estimate parameter uncertainty (Andrieu et al., 2003). The reason for the extensive use of MCMC is that it can deal with HD parameters, non-linear relation between parameters and observations, and noisy data. However, these properties also make it very slow as, by design, the sampling takes a large number of simulations to converge. With rapid developments of parallel computing, parallel MCMC to accelerate the computation is proposed in Brockwell (2006) and Byrd (2010); Wang (2014) but these can improve neither the convergence rate nor reduce the number of simulations needed. In exploring uncertainty on HD parameters, reversible jump MCMC is used in Brooks (1998). Combination of differential evolutions to have subspace exploration is used in Laloy and Vrugt (2012), while non-differential sparse priors are developed in Cai et al. (2018). Gradient and Hessian information of the pdfs are used to accelerate sampling even with poor initial models in Zhao and Sen (2019), although these information are nontrivial to extract when the pdf contains complex simulation models.

Alternatively, surrogate models have been widely employed to generate a computational-efficient approximation of the posterior pdf that can be faster to sample. Polynomial chaos (Spanos and Ghanem, 1989; Xiu and Karniadakis, 2003; Knio and Le Maitre, 2006) and GP (Kennedy and O'Hagan, 2000; Rasmussen, 2003) are pioneers in surrogate modeling. In Adams et al. (2008), Konukoglu et al. (2011), and Gramacy and Lee (2008); Schiavazzi et al. (2016), to build posterior pdf, GP surrogate is built of the pdf at first, and then, MCMC sampling is performed from that to avoid expensive simulations. It is, however, difficult to obtain an approximation of a complex simulation model over the prior parameter space. As a result, when direct sampling of the surrogate pdf is substantially more efficient than sampling the original pdf, the accuracy is often largely compromised (Dhamala et al., 2018a). Recently, hybrid approaches are emerging that use the surrogate pdf to accelerate rather than replace sampling. In Dhamala et al. (2018a), a two-stage model is introduced where a GP surrogate of exact posterior pdf is built in the first stage and is used to improve the acceptance rate of candidate samples in MCMC sampling in the second stage. In Dunbar et al. (2020), a three-stage model is presented for uncertain quantification of a complex climate model parameters where model calibration using Kalman inversion is performed in the first stage, building GP surrogate to emulate parameter-to-data map is performed in the second stage, and MCMC sampling of the posterior pdf of the climate model parameters is performed in the final stage. While these hybrid approaches improve the accuracy of sampling, the reliance on sampling the original pdf limits the extent to which the computation can be reduced.



2.2. Parameter Estimation Using Active Learning

Popular active learning algorithms such as efficient global optimization (Jones et al., 1998), famously known as Bayesian optimization, have been merged with surrogate modeling to estimate complex model parameters. In Bayesian optimization, a GP surrogate is built to approximate the objective function of the optimization, using a small number of sampling to query the expensive objective function where the samples are selected based on an acquisition function. In many areas such as nuclear physics (Ekström et al.,2019), material science (Ueno et al., 2016), and many more (Khosravi et al., 2019; Vargas-Hernández et al., 2019; Duris et al., 2020), Bayesian optimization is applied to estimate complex model parameters. However, all these techniques are focused on deterministic optimization to find a single optimal parameter value that best fits the simulation output to measurement data without considering the associated uncertainty.



2.3. Parameter Estimation in Personalized Models

In the specific area of estimating parameters of patient-specific models, existing studies can be classified into deterministic or probabilistic approaches. There are many optimization methods developed in the past few decades. Derivative free methods, such as the Subplex method (Wong et al., 2015), Bound Optimization BY Quadratic Approximation (BOBYQA) (Wong et al., 2012), New Unconstrained Optimization Algorithm (NEWUOA) (Sermesant et al., 2012), and hybrid particle swarm method (Mineroff et al., 2019), have been used in estimating cardiac model parameters. Derivative-based variational data assimilation approaches have also been applied to estimate cardiac conductivities in ventricular tissue (Yang and Veneziani, 2015; Barone et al., 2020b) and heterogeneous elastic material properties in personalized cardiac mechanic model (Balaban et al., 2018). Due to the computational expense associated with the model simulation during optimization, model reduction techniques such as Proper Generalized Decomposition (PGD) have been used to accelerate the estimation of cardiac conductivities in personalized cardiac electrical dynamics (Barone et al., 2020a). These methods overall are focused on finding a single value of cardiac model parameters that best fit the available data, lacking any uncertainty measure associated with the parameters.

On the other hand, limited progress has been made in the probabilistic estimation of personalized model parameters where the uncertainty measure can be derived from their posterior pdf. To reduce the extensive computation associated with standard MCMC sampling, various approaches of reduced modeling have been used to reduce the cost of forward simulation and thereby accelerate the inverse estimation (Lassila et al., 2013). Recent research reports building surrogate models using methods like kriging (Schiavazzi et al., 2016) and polynomial chaos (Konukoglu et al., 2011) to estimate cardiac model parameters. In Paun et al. (2019), GP emulation is used to speed up the MCMC process in the area of cardiovascular fluid dynamics. Probabilistic surrogate modeling through GP using Bayesian history matching is applied in Longobardi et al. (2020) for inference of cardiac contraction mechanics. In Neumann et al. (2014), polynomial chaos method is used to build the surrogate model for fast sampling to estimate parameters of an electromechanical model of the heart. However, with the limited accuracy in the approximated posterior pdf, directly sampling the surrogate results in improved efficacy but reduced accuracy. In Dhamala et al. (2018a), GP surrogate model of the posterior pdf of cardiac model parameters is built to accelerate MCMC sampling of the original posterior pdf. While this strategy avoids the loss of accuracy from sampling the surrogate pdf, it achieves a limited gain of efficiency due to the reliance on MCMC sampling of the original pdf.



2.4. Estimating High-Dimensional Parameters

High dimensionality is a bottleneck in estimating parameters, especially in cardiac physiology. Researchers mostly try to explain useful functions through dimension reduction in the original HD parameters. For example, in Malatos et al. (2016), it is shown that a lower-dimensional model can be useful in explaining blood flow. In Caruel et al. (2014), to explain cardiac function, LD muscle samples or myocytes as model parameters are estimated from HD ones. Estimating local myocardial infarct uncertainties through reducing the dimension of deformation patterns is introduced in Duchateau et al. (2016). In Giffard-Roisin et al. (2018), offline learning from electrocardiographic imaging (ECGI) is achieved through dimension reduction in the myocardial shape. As most of the parameters stay on manifold rather than Euclidean space, in Nakarmi et al. (2017), a kernel-based framework using LD manifold models to reconstruct cardiac dynamic MR images is proposed. In Lê et al. (2016), to reduce dimension, homogeneous tissue excitability (in the form of a model parameter) is represented by a single global model parameter. In Wong et al. (2015), and the cardiac mesh is pre-divided into 3–26 segments, each represented by a uniform parameter value. As the number of segments increases, the estimation becomes more challenging and increasingly reliant on initialization. Alternatively, a multi-scale hierarchy of the cardiac mesh is defined for a coarse-to-fine optimization, which allowed spatially adaptive resolution that was higher in certain regions than the other (Chinchapatnam et al., 2008; Dhamala et al., 2016). However, the representation ability of the final partition is limited by the inflexibility of the multi-scale hierarchy: Homogeneous regions distributed across different scales can-not be grouped into the same partition, while the resolution of heterogeneous regions can be limited by the level of scale the optimization can reach (Dhamala et al., 2017a). In addition, because these methods involve a cascade of optimization along the hierarchy of the cardiac mesh, they are computationally expensive.

In our recent work, we present an approach that replaces the explicit anatomy-based reduction in the parameter space with an implicit LD (LD) manifold that represents the generative code for HD spatially varying tissue excitability (Dhamala et al., 2018b). This is achieved by embedding within the optimization a generative model, in the form of a variational autoencoder (VAE) trained from a large set of spatially varying tissue excitability. In our previous work, we demonstrated the efficacy of this approach for deterministic optimization of spatially varying tissue excitability in cardiac electrophysiological models (Dhamala et al., 2018b). In this study, we leverage this strategy to enable probabilistic estimation of HD model parameters.




3. BACKGROUND


3.1. Bi-Ventricular Electrophysiology Model

There are many computational models with varying levels of biophysical details (Aliev and Panfilov, 1996; Mitchell and Schaeffer, 2003; Clayton et al., 2011). Among these, phenomenological models like the Aliev Panfilov (AP) model (Aliev and Panfilov, 1996) is capable of reproducing the key macroscopic process of cardiac excitation with a small number of model parameters. To test the feasibility of the presented method, we utilize the two-variable AP model given below:

[image: image]

Here, u ∈ [0, 1] is the transmembrane potential and v is the recovery current. The parameter ε = e0+(μ1v)/(u+μ2) controls the coupling between u and v, and c controls the re-polarization. D is diffusion tensor, which controls the spatial propagation of u. θ is tissue excitability parameter that controls the temporal dynamics of u and v. Based on previous sensitivity analysis (Dhamala et al., 2017a), in this study, we focus on estimating parameter θ of the AP model (Equation 1), while fixing the values for the rest of the model parameters based on the literature (Aliev and Panfilov, 1996): c = 8, e0 = 0.002, μ1 = 0.2, and μ2 = 0.3. We solve the AP model (Equation 1) on the discrete 3D myocardium using the meshfree method described in Wang et al. (2009). Then, we obtain a 3D electrophysiological model of the heart that describes the spatio-temporal propagation of 3D transmembrane potential u(t, θ). Note that, compared to existing works where the model parameter to be estimated is often assumed to be global or LD based on a pre-defined anatomical division of the heart, we consider the estimation of a HD parameter θ at the resolution of the cardiac mesh.

In this study, we demonstrate the presented framework using body surface electrocardiogram (ECG) that are generated by spatio-temporal cardiac action potential following the quasi-static approximation of the electromagnetic theory (Plonsey, 2001). In Wang et al. (2009), this relationship is modeled by solving a Poisson's equation within the heart and Laplace's equation external to the heart on a discrete mesh of the heart and the torso, which gives a linear model:
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where Yb(t) represents ECG data, u(t, θ) represents transmembrane potential, Hb is the transfer matrix unique to patient-specific heart and torso geometry, and θ is the vector of tissue excitability to be estimated.




4. METHODOLOGY

The electrophysiological system as defined in section 3 defines a stochastic relationship between measurement data Y and model parameter θ as:
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where M is a composite of the whole-heart electrophysiological model and measurement model reviewed in section 3. ε is the noise term that accounts for measurement errors and modeling errors other than that arising from the value of the parameter θ. Assuming uncorrelated Gaussian noise [image: image], the likelihood can be written as:

[image: image]

The unnormalized posterior density of the model parameter θ has the following form, using Bayes rule:

[image: image]

where π(θ) provides us prior knowledge about the parameters. In this study, a uniform distribution bounded within [0, 0.5] is used where the bound is informed by the physiological values of parameter θ. In this general setup, our goal is to estimate the pdf function in Equation (5), which has an expensive likelihood function and a HD parameter θ. Naive MCMC sampling of Equation (5) would render intensive, if not infeasible, computation. Here, we cast the problem of estimating the function of π(θ|Y) into a Bayesian active learning problem: We aim to learn a GP approximation of the function π(θ|Y) from training samples of [image: image]; because the evaluation of π(θ(i)|Y) involves expensive computation, i.e., an expensive labeling process, we intelligently select a small number of training points θ(i) on which to query the label of π(θ(i)|Y). To achieve this, we bring two innovations to existing Bayesian active learning methods. First, leveraging our previous work (Dhamala et al., 2017a), we integrate generative modeling of HD θ into Bayesian active learning to embed the process of active search of training samples into a LD manifold. Second, we introduce new acquisition functions for selecting training points θ(i), such that it focus on the shape of the posterior pdf of interest.


4.1. Enabling High-Dimensional Bayesian Active Learning via Generative Modeling

To obtain a generative model of θ = g(z), we use VAE that consists of two modules: a probabilistic deep encoder network with network parameters α that approximates the intractable true posterior density p(z|θ) as qα(z|θ) and a probabilistic deep decoder network with network parameters β that reconstructs θ given z with the likelihood pβ(θ|z). Given a training data set [image: image] that consists of N different spatial distributions of the tissue excitability θ, VAE training involves optimizing the variational lower bound on the marginal likelihood of each training data θ(i) with respect to network parameters α and β:

[image: image]

We assume the prior [image: image] to be a standard Gaussian density. The optimization of Equation (6) with respect to α and β is achieved with stochastic gradient descent with re-parameterization trick (Kingma and Welling, 2013). After the VAE is trained, the decoder as a generative model can be incorporated into Equation (5) to obtain:
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where θ is now approximated by the expectation of the generative model pβ(θ|z), and the prior of z is assumed to be Gaussian: [image: image]. In another word, the use of pβ(θ|z) allows us to now perform Bayesian active learning over the LD latent space z.



4.2. Bayesian Active Learning With Posterior-Focused Acquisition Functions

We aim to learn a GP approximation of the log posterior because, compared to the posterior pdf in Equation (7), and it has longer scales and lower dynamic range. In other words, we build a GP to approximate:
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Bayesian active learning with GP consists of an iterative process. In each iteration, we 1) first select new training samples via the optimization of an acquisition function and 2) then obtain the posterior distribution of the GP from the prior distribution using newly obtained training samples. For the prior of the GP at the first iteration, we adopt the commonly used zero-mean function due to lack of prior knowledge and the anisotropic “Matérn 5/2" covariance function (Rasmussen, 2003):
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where [image: image], Λ is a diagonal matrix in which each diagonal element represents the inverse of the squared characteristics length scale along each dimensions of z, and α2 is the function amplitude.


4.2.1. Acquisition Function Design

A crucial part of Bayesian active learning is to guide the algorithm about where to sample next, achieved by designing an acquisition function that balances between exploiting what is already learned about the target function of interest and exploring the unknown region of the input space. Existing GP-based Bayesian active learning is typically used for finding the optimum of a target function, using the mean and variance function of the GP approximations of the target function to exploit high-mean regions while exploring high-variance regions. In learning to approximate the posterior pdf function as defined in Equation (7), our goal differs from standard approaches in two ways. First, while we choose to build the GP approximation of the log posterior, we are interested in the accuracy of the posterior pdf function itself as our target function. Second, we are interested in the shape of the posterior pdf, rather than any single optimum value. These motivate the design of new acquisition functions as follows.

First, based on Equations (7) and (8), our posterior pdf of interest is an exponential factor away from the function being approximated by the GP. Since GP(z) at every z follows a Gaussian distribution, exp(GP(z)) follows log-normal distribution at every z. In other words, the function of exp(GP(z)) follows a log-normal process. To focus on the accuracy of approximating the posterior pdf function, rather than using the mean and variance of the GP to guide acquisition as in regular Bayesian active learning, we will use the mean and variance of the log-normal process exp(GP(z)) to guide acquisition.

Second, to focus more on learning the shape rather than optimum (i.e., mode) of the posterior pdf, we emphasize more on reducing the uncertainty of the learned exp(GP(z)) (i.e., exploration) than exploiting around its mode. Two natural candidates for measuring the uncertainty in the approximated exp(GP(z)) include the following: 1) variance of exp(GP(z)), and 2) entropy of exp(GP(z)) at any given z:
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At the i-th iteration of active learning, we select a single point of z(i) that maximizes (Equations 10 or 11) to update the GP.



4.2.2. Updating GP With New Training Samples

Once a new sample point z(i) is selected, the value of the log posterior in Equation (8) is evaluated at z(i) as [image: image], which includes the execution of the trained VAE decoder, the bi-ventricular electrophysiological model, and the measurement model as described in section 3. The new input-output pair is used to update the posterior belief of the GP. Following (Williams and Rasmussen, 2006), the predictive mean and variance of the updated GP can be evaluated at any z:

[image: image]

where k is the kernel function. We update the kernel hyperparameters, including the length-scale and noise variance mentioned in Equation (9), every time we add a new training point by maximizing the log of the marginal likelihood.

Overall, the active learning process involves two steps: 1) adding new training points by maximizing the acquisition function, and 2) updating the GP posterior mean and variance function. This iterative process continues until the Kullback–Leibler (KL) divergence between the most updated predictive mean pdf function and the average of the last five predictive mean pdf functions of exp(GP(z)) does not exceed a predefined threshold. The length-scale and noise variance of kernel function are optimized every time by maximizing log of the marginal likelihood.





5. EXPERIMENTS AND RESULTS


5.1. Generative Modeling of Spatially-Varying Tissue Excitability

Tissue excitability of whole heart from real data is not readily available. Cardiac images such as contrast-enhanced MRI may provide a surrogate for delineating different levels of myocardial injury, yet they are expensive to obtain at a large quantity. In this study, we utilized synthetic data sets [image: image] to train the VAE. Specifically, we generated a large data set of heterogeneous myocardial injury by random region growing. Starting with one injured node, one out of the five nearest neighbors of the present set of injured nodes was randomly added as an injured node. This was repeated until an injury of desired size was attained. We considered binary tissue types in the training data, in which the value of tissue excitability θ was set to be 0.5 or 0.15 for injured or healthy nodes, respectively, along with a random noise drawn from a uniform distribution [0, 0.001].

The VAE architecture used in the following experiments is shown in Figure 1. Each of the encoder and decoder network consisted of three fully connected layers with softplus activation, two layers of 512 hidden units, and a pair of two-dimensional units for the mean and log-variance of the latent code z. We trained the VAE with the Adam optimizer with an initial learning rate of 0.001 (Kingma and Welling, 2013).


[image: Figure 1]
FIGURE 1. Workflow of the presented method. (A) A generative model of HD spatially varying tissue excitability of the 3D heart is trained offline. (B) The resulting generative model is embedded into Bayesian active learning to approximate the posterior pdf of model parameters using a small number of intelligently selected training points guided by the acquisition function.


Figures 2A,B shows the scattered plots of the two-dimensional latent codes z encoded by the VAE on the training data, color-coded by the size and location of the abnormal tissue. It appears that the latent code accounted for the size of the abnormal tissue along the radial direction (A), while clustering by the location of the abnormal tissue as well (B). This shows the ability of the generative model in capturing meaningful semantic information in the HD data in an unsupervised manner.


[image: Figure 2]
FIGURE 2. Distribution of LD latent codes of the training data, color coded by (A) size of the abnormal tissue (the colors represent the percentage size of abnormal tissue). (B) Location of the abnormal tissue (the colors represent the 17 American Heart Association (AHA) segments of left ventricle).




5.2. Synthetic Data Experiments

Synthetic experiments were carried out on three CT derived human heart-torso models. For ground truth of the tissue excitability, we divided the left ventricle (LV) into 17 segments based on the standard recommended by the American Heart Association (AHA). The region of abnormal tissue was then set as various combinations of these 17 LV segments. The value of θ in the abnormal region was set to 0.40, 0.45, or 0.50 to have different severity levels, and its value in the healthy region was set to 0.15. A random noise drawn from a uniform distribution [0, 0.001] was added. Note that the tissue excitability in this test set is different from those in the training set, as described in section 5.1, in two aspects: 1) parameter values within the abnormal region and 2) shape and size of the abnormal region.

For each tissue excitability to be tested, body-surface measurements were simulated using the models described in section 3. A 20dB noise was then added to the measurement data for posterior estimation of parameter θ. To test the ability of the trained VAE model to be applied to hearts different from that used in training, for experiments on heart ♯1 and ♯2, the VAE was trained on heart ♯3; for experiments on heart ♯3, the VAE was trained on heart ♯1. The convergence criteria for each estimation followed that as defined in section 4.2.2.


5.2.1. Accuracy and Efficiency in Estimating Posterior pdf Function

We first evaluated the accuracy and efficiency of the presented method against 1) directly sampling GP approximation of the posterior pdf based on regular Bayesian active learning and 2) surrogate-accelerated two-stage MCMC sampling as presented in our previous work (Dhamala et al., 2017b), all against the baseline of directly sampling the exact posterior pdf using the standard MCMC. We considered 15 synthetic cases in total. All MCMC sampling were run on two parallel MCMC chains of length 10,000 with a common Gaussian proposal distribution with two different initial points. The variance of the Gaussian proposal distribution was tuned by rapidly sampling the GP surrogate pdf until obtaining an acceptance rate of 0.22, which is documented to enable good mixing and faster convergence in higher dimensional problems (Gilks et al., 1995; Andrieu et al., 2003). After discarding 20% initial burn-in samples and selecting alternate samples to avoid auto-correlation in each chain, the samples from two chains were combined. The convergence of all the MCMC chains was tested using trace plots, Geweke statistics, and Gelman-Rubin statistics (Gilks et al., 1995; Andrieu et al., 2003).

The accuracy of estimated pdf in z space was evaluated through comparing the mean, mode, and standard deviation from the kernel density estimation of samples selected from our method and with other existing methods. Let sM be the estimated mean, mode, or standard deviation of the posterior pdf of z using direct MCMC sampling and so be the corresponding statistics estimated from the three methods presented in Table 1. We used the mean and standard deviation of |sM−so| calculated from 15 synthetic cases to evaluate the accuracy of all the comparison methods in estimating the mean, mode, and standard deviation of the posterior pdf in comparison to the direct MCMC sampling. The last column of Table 1 also shows the KL divergence between the estimated pdf from different methods with that from exact MCMC, obtained by sampling as described in Hershey and Olsen (2007). As shown, the accuracy of the estimated posterior pdf was significantly higher than that obtained by regular Bayesian active learning (paired t-test on estimated parameters from 15 cases, p <0.001). While its accuracy was still lower than the surrogate-accelerated two-stage MCMC, it used only 0.6% computation (in terms of the number of model simulations needed) of the two-stage MCMC method. As detailed in Figure 3B, while the two-stage MCMC achieved ~40% reduction in the number of model simulations needed compared to the direct sampling of the exact posterior pdf, the presented method reached a ~99.65% reduction in computation. Figure 3A gives examples of the posterior pdfs estimated from different methods in comparison to that obtained from direct sampling.


Table 1. Absolute errors in the estimated mean, mode, and standard deviation of the estimated posterior pdf and its KL divergence against directly sampling the exact posterior pdf: the presented method vs. sampling the surrogate from regular Bayesian active learning (regular BAL) vs. two-stage MCMC.

[image: Table 1]


[image: Figure 3]
FIGURE 3. (A) Comparison of estimated posterior pdf from different methods. (B) Comparison of computation cost from different methods.


As shown, the presented method (green curve) closely reproduced the true posterior pdf (red curve) obtained from direct MCMC, while the function learned by the standard Bayesian active learning (black curve) fell short in as closely reproducing the posterior pdf.



5.2.2. Accuracy and Uncertainty in the Estimated Tissue Excitability

From the estimated posterior pdf of π(z|Y) over the latent LD manifold, we obtained the posterior pdf of π(θ|Y) over the spatial space of the heart. We estimated the mean, mode, and standard deviation in HD space through inserting MCMC samples of z taken from posterior π(z|Y) to the expectation network of the trained VAE decoder.

For accuracy of the estimated tissue excitability, we considered the mean and mode from the estimated posterior pdf of π(θ|Y) and evaluated against the ground truth tissue excitability using three metrics: dice coefficient (DC), root mean square error (RMSE), and correlation coefficient (CC). As shown in Figure 4, for DC, the mean and mode from the presented method were more accurate than those obtained by regular Bayesian active learning (paired t-test, p < 0.001 for mean and p < 0.05 for mode) but less accurate than those obtained from the two-stage MCMC (paired t-test, p < 0.10 for mean and p < 0.001 for mode). For RMSE, similarly, mean and mode both were more accurate from regular active learning method (paired t-test, p < 0.005 for mean and p < 0.05 for mode). In comparison with the two-stage MCMC, there was no difference for mean and mode with the presented method (paired t-test, insignificant at 20% level of significance). For CC, our presented method showed similar accuracy with the two-stage MCMC and regular active learning method for mean estimation. But for CC from mode estimation, our method showed higher accuracy than the regular method (paired t-test, p < 0.01) but less accuracy than the two-stage MCMC (paired t-test, p < 0.05).


[image: Figure 4]
FIGURE 4. Comparison of (A) DC, (B) RMSE, and (C) CC between estimated mean (blue) or mode (red) tissue excitability in comparison to the ground truth.


Figure 5A provides a visual example of the estimated spatially varying tissue property on the heart, corresponding to the LD posterior pdf shown in the left column of Figure 3A. First, as shown in Figure 5B, the estimated mean provided by the presented method corrected a false positive in the solution from regular Bayesian active learning (row one). The high uncertainty in this region from the regular Bayesian active learning was also corrected by the presented method (row three). Second, as noted in the left column of Figure 3A, the underlying LD posterior pdf is uni-modal, where both the presented method and two-stage MCMC correctly recovered the mode in comparison to regular Bayesian active learning. Similarly, the resulting mode in the HD space of the tissue property was correctly located in position in the presented method whereas the mode of regular Bayesian active learning shifted in accordance with low dimensional shift. This shows a correct one-to-one mapping of LD to HD generative process. Finally, as noted earlier, while the two-stage MCMC, in general, delivered higher accuracy, this performance gain was achieved with over 167-fold increase in computation.


[image: Figure 5]
FIGURE 5. (A) The ground truth of tissue excitability. (B) Mean, mode, and standard deviation of tissue excitability estimated from presented method.




5.2.3. Exploration vs. Exploitation Using Log-Normal Process Based Acquisition Functions

To understand the advantage of the presented log-normal process-based acquisition functions, we examined where the active selection of training samples took place in the presented method vs. regular Bayesian active learning. Figure 6 left and middle shows the acquisition of training samples using the variance and entropy of the log-normal process, using, respectively, 100 and 108 sampling points to meet the convergence criteria. The contour plot inside these figures showed the shape of the true bivariate posterior pdf. In comparison, Figure 6 right panel shows training samples selected based on the GP using upper confidence bound (UCB). To converge, it took 129 acquisition steps, which were higher than those used in the presented method. Comparing left and middle panel, it showed that the regular acquisition, while exploited the mode of the posterior mode, explored without focusing on the posterior support. In comparison, the presented acquisition functions effectively both exploited and explored within the posterior support.


[image: Figure 6]
FIGURE 6. Illustrations of training points (blue dots) selected using variance based on the log-normal process (left), entropy based on the log-normal process (middle), and upper confidence bound (UCB) based on the Gaussian process (right).





5.3. Experiments on Post-infarction Hearts With Blinded Simulation Data
 
5.3.1. Experimental Data and Data Processing

In this section, we increased the difficulty of active posterior estimation by: 1) considering hearts with realistic tissue excitability extracted from contrast-enhanced MRI (CE-MRI) and 2) simulation data of 3D cardiac electrical activity generated by a high-fidelity biophysics model blinded to the AP model used in the active posterior estimation. In comparison to synthetic data considered in section 5.2, these image-derived tissue excitability had the following characteristics that increased its heterogeneity: the presence of 1) both dense infarct core and gray zone, 2) a single or multiple infarcts with complex spatial distribution and irregular boundaries, and 3) both transmural and non-transmural infarcts.

We considered six post-infarction human hearts. The patient-specific ventricular models along with the detailed 3D infarct architectures were delineated from MRI images as detailed in Arevalo et al. (2016). The training of VAE was performed on one of the hearts described in section 5.1, using synthetically generated tissue excitability values as described in that section.

Figure 7 summarizes the results of estimated tissue excitability on the six post-infarction hearts. Overall, estimated tissue property, especially the estimated mode, was close to the ground truth. One more source of increased difficulty in this set of experiments, in comparison to those in synthetic data, was the presence of non-transmural scar tissue that did not exist in the training data of the VAE. This difficultly in estimating has been previously reported in literature (Dhamala et al., 2017a). As shown in Figure 7 cases 1–3 and 5 (second and third rows), the estimated mean or mode either missed the region of non-transmural abnormal tissue property or incorrectly estimated it to be transmural (case 3-mode). The associated uncertainty was not captured in the estimated standard deviation (Figure 7 fourth row) either. Another source of difficulty is the presence of diffused heterogeneous abnormal tissue that was not considered in the VAE training data. For instance, in case 4 and case 6, there was a large patchy gray zone mixed within the dense scars. These regions were reflected in the region of estimated abnormal tissue excitability; however, the estimated parameter values were not able to distinguish between the gray zone and dense infarct. In addition to identifiability issues associated with the presented method and the available data, this performance may also arise from the fact that the AP model considered has limited ability in differentiating electrical behavior from gray zone and infarct core (Raḿırez et al., 2020).


[image: Figure 7]
FIGURE 7. Results of estimated tissue excitability from the presented method in 3D infarcts delineated from in vivo MRI images. Regions with low excitability (high θ values) correspond to infarct regions (0.5 = infarct core, 0.3–0.5 = gray zone). The red circles highlight non-transmural scars or gray zone.





5.4. Experiments on in vivo ECG and Voltage Mapping Data

Finally, we performed active posterior estimation for tissue excitability in real data experiments of three patients who went catheter ablation of ventricular tachycardia due to myocardial infarction (Sapp et al., 2012). The patient-specific geometrical models of the heart and torso were constructed from axial CT images detailed in Wang et al. (2016). In vivo measurements of 120-lead ECG were collected during pacing from known sites of each heart. The surrogate used for evaluating the estimated tissue excitability was in vivo bipolar voltage data collected by catheter mapping. As illustrated in Figure 8, based on the voltage data, the myocardium tissue can be divided into three groups: infarct core (red: bipolar voltage <0.5 mv), infarct border (green: bipolar voltage 0.5–1.5 mv), and healthy (blue: bipolar voltage > 1.5 mv). Among the three patients, we consider 120-lead ECG data collected from a total of six different pacing sites.


[image: Figure 8]
FIGURE 8. Results of estimated tissue excitability from the presented method in real clinical data. (A) Voltage data from catheter map. (B) Mean, mode, and standard deviation estimated from multiple observations from different pacing sites. (C) Mean, mode, and standard deviation estimated from a single observation from one pacing site.


1) Case 1: In this case, we were able to estimate the posterior pdf of tissue excitability by combining ECG data from two different pacing locations. As shown in Figure 8A (first row), this subject had a small infarct in the lateral-basal area of LV. The presented method was able to capture the location of this infarct core, although much more smoothed out in comparison to the voltage data as illustrated in Figure 8B, first row). The estimated pdf also exhibited uncertainty higher than the rest of the myocardium in this location. These results were obtained by 129 active acquisitions of simulations with the presented method.

Interestingly, when estimating the posterior pdf using only data from one pacing location, the mode of the estimated pdf was incorrectly shifted from the actual location of the infarct tissue—and the uncertainty at that location correspondingly became higher compared to that associated with estimation using multiple ECG data (Figure 8C, first row).

2) Case 2: In this case, we were able to estimate the posterior pdf of tissue excitability by combining ECG data from three different pacing locations. As illustrated in Figure 8A (second row), this subject had a highly heterogeneous infarct in the lateral region of the LV. The presented method, using 153 active acquisitions of simulations, was able to recover the correct location of the infarct, with an attempt to recover the heterogeneity in the tissue excitability (Figure 8B, second row). The mode solution was also shifted from the target region. The heterogeneity, however, was not captured in fine detail, likely due to the lack of such heterogeneous data in the VAE training. The associated uncertainty of the solution was accordingly high. When reducing the measurement data to only ECG data from one pacing site, the estimated solution is almost similar when we used three pacing sites.

3) Case 3: In this case, we only had access to one-paced ECG data for estimating the posterior pdf of tissue excitability. As illustrated in Figure 8A (third row), this case had a relatively dense scar in inferolateral LV with only one set of measurement data. The presented method was able to locate the infarct using 147 active acquisitions of simulations, with an uncertainty lower than that of the previous two cases (Figure 8C, third row).




6. LIMITATIONS AND FUTURE WORKS

In this study, we demonstrated the feasibility of Bayesian active learning for fast approximation of posterior pdf involving heavy simulations. Our key innovation was to modify the acquisition functions in regular Bayesian active learning, such as to focus more on approximating the shape of the posterior pdf of interest rather than finding the mode of the pdf when using regular acquisition functions. Following this idea, in this study, we demonstrated the feasibility of guiding acquisition with the variance or entropy of the log-normal process being learned. Future work will continue to explore this idea in other acquisition functions, with a goal to modulate the trade-off between exploitation and exploration over the space of z based on the prior knowledge of its distribution. One possible example is to consider the improvements in the KL divergence between the actual and approximated posterior pdf.

While the parameter θ was represented in Euclidean space in this study, organ tissue excitability is actually defined over a physical domain in the form of a 3D geometrical mesh. By representing this non-Euclidean data in a Euclidean space, we have ignored the 3D spatial structure of the physical mesh. A future step would be to construct the generative model in non-Euclidean space by considering the geometrical mesh as a graph (Dhamala et al., 2019). We fixed other parameters values in the electrophysiological model in Equation (1) to estimate θ, while a better strategy could be varying all the parameters through respective distributions (Niederer et al., 2020). As a feasibility study, we considered a scalar parameter per cardiac mesh node; this simplifies the problem, although the parameter space was still HD since the parameter values change across space. Future studies should consider diffusion tensor D, which requires considering fiber directions that are largely approximated and associated with errors. The lack of real data of organ tissue excitability is the main challenge for training the generative model. A natural next step is to investigate the possibility of using accessible tissue excitability data derived from in vivo and ex vivo optical mapping (Gizzi et al., 2013; Kappadan et al., 2020; Uzelac et al., 2021). In this study, the VAE was trained by synthetic data only, that is simplified in shape, transmurality, and heterogeneity. It thus may have a limited ability to generalize to realistic conditions where tissue abnormality is more complex in these aspects. An important direction of future work is to investigate means to improve the training data for the generative model.

While the VAE provides a probabilistic generative model pβ(θ|z), we only adopted the expectation network of this probabilistic model, E[pβ(θ|z)], as the generative model to achieve the HD-to-LD embedding of the optimization objective. An immediate next step is to investigate the incorporation of the uncertainty in the generative model into both the active learning of π(z|Y) and the estimated pdf π(θ|Y).

Finally, this study focuses on the specific component of tissue excitability estimation within the much bigger pipeline of personalized cardiac modeling. We thus focused on validating the estimated tissue excitability using synthetic and in vivo imaging and mapping data. A next step will be to evaluate the personalized model in predictive tasks, such as predicting the risk (Arevalo et al., 2016) or the optimal treatment target (Trayanova et al., 2018) for lethal ventricular arrhythmia, and investigate how the uncertainty propagates to simulation outputs and may impact clinical decisions.



7. CONCLUSIONS

In this study, we present a novel framework for fast approximation of the posterior pdf of HD simulation parameters through intelligently selecting training points. This is achieved by casting posterior inference into the setting of Bayesian active learning, integrated with 1) generative modeling to allow active search over HD parameter space and 2) novel acquisition functions to focus on the shape rather than modes of the posterior pdf. Future work will investigate the design of additional acquisition functions, the incorporation of the uncertainty in the generative model, and the extension of the presented methodology to probabilistic estimation in other complex simulation models.
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Background: Remodeling due to myocardial infarction (MI) significantly increases patient arrhythmic risk. Simulations using patient-specific models have shown promise in predicting personalized risk for arrhythmia. However, these are computationally- and time- intensive, hindering translation to clinical practice. Classical machine learning (ML) algorithms (such as K-nearest neighbors, Gaussian support vector machines, and decision trees) as well as neural network techniques, shown to increase prediction accuracy, can be used to predict occurrence of arrhythmia as predicted by simulations based solely on infarct and ventricular geometry. We present an initial combined image-based patient-specific in silico and machine learning methodology to assess risk for dangerous arrhythmia in post-infarct patients. Furthermore, we aim to demonstrate that simulation-supported data augmentation improves prediction models, combining patient data, computational simulation, and advanced statistical modeling, improving overall accuracy for arrhythmia risk assessment.

Methods: MRI-based computational models were constructed from 30 patients 5 days post-MI (the “baseline” population). In order to assess the utility biophysical model-supported data augmentation for improving arrhythmia prediction, we augmented the virtual baseline patient population. Each patient ventricular and ischemic geometry in the baseline population was used to create a subfamily of geometric models, resulting in an expanded set of patient models (the “augmented” population). Arrhythmia induction was attempted via programmed stimulation at 17 sites for each virtual patient corresponding to AHA LV segments and simulation outcome, “arrhythmia,” or “no-arrhythmia,” were used as ground truth for subsequent statistical prediction (machine learning, ML) models. For each patient geometric model, we measured and used choice data features: the myocardial volume and ischemic volume, as well as the segment-specific myocardial volume and ischemia percentage, as input to ML algorithms. For classical ML techniques (ML), we trained k-nearest neighbors, support vector machine, logistic regression, xgboost, and decision tree models to predict the simulation outcome from these geometric features alone. To explore neural network ML techniques, we trained both a three - and a four-hidden layer multilayer perceptron feed forward neural networks (NN), again predicting simulation outcomes from these geometric features alone. ML and NN models were trained on 70% of randomly selected segments and the remaining 30% was used for validation for both baseline and augmented populations.

Results: Stimulation in the baseline population (30 patient models) resulted in reentry in 21.8% of sites tested; in the augmented population (129 total patient models) reentry occurred in 13.0% of sites tested. ML and NN models ranged in mean accuracy from 0.83 to 0.86 for the baseline population, improving to 0.88 to 0.89 in all cases.

Conclusion: Machine learning techniques, combined with patient-specific, image-based computational simulations, can provide key clinical insights with high accuracy rapidly and efficiently. In the case of sparse or missing patient data, simulation-supported data augmentation can be employed to further improve predictive results for patient benefit. This work paves the way for using data-driven simulations for prediction of dangerous arrhythmia in MI patients.

Keywords: patient-specific modeling, computational cardiology, machine learning in cardiology, modeling and simulation, biophysical modeling, data augmentation, electrophysiological modeling


1. INTRODUCTION

Ventricular arrhythmia, resulting from abnormal impulse propagation in the heart, is a leading cause of death in the industrialized world (Zipes and Wellens, 1998). Ventricular tachycardia (VT), a life-threatening regular and repetitive fast heart rhythm, frequently occurs in the setting of myocardial infarction (MI), as does the even more dangerous and disorganized ventricular fibrillation (VF), occurring when blockage in the coronary arteries impedes perfusion to the heart muscle, causing both acute and chronic damage. Implantation of a cardioverter-defibrillator (ICD) is the most effective measure for preventing lethal arrhythmias post-MI; however, ICD therapy is costly and can be associated with procedural complications, infections, device malfunctions and diminished quality of life (Zipes et al., 2016). In addition to the risks associated with ICD implantation itself, current guidelines for which patients may benefit from this intervention critically need improvement. Currently clinical criteria for identifying ICD candidates for the primary prevention of sudden cardiac death (SCD) rely almost exclusively on a nonspecific reduction in global left ventricular function (ejection fraction <35%). Only 5% of patients who meet this criterion and thus undergo device implantation receive life-saving appropriate defibrillation shocks (Smer et al., 2017). Patient-specific models can be successfully employed to improve arrhythmia risk assessment for post-MI patients. Specifically, previous work in computational cardiology has helped both in outlining the role of MI mechanistically driving arrhythmia risk, and in assessing individualized patient risk for dangerous arrhythmia (Arevalo et al., 2013, 2016). Specifically, clinical magnetic resonance imaging (MRI) with late gadolinium enhancement (LGE) can be used to construct a 3D computer model of an individual patient's heart, incorporating the patient's ventricular geometry, structural remodeling, as well as electrical properties (subcellular to organ). This patient heart, used in a series of virtual electrophysiology lab induction protocols, can be used to assess individual risk for dangerous arrhythmia post-MI and links abnormal myocardial structure to arrhythmogenicity. The above approach, and analogous methodologies for other disease states, have been making inroads with great success so far, but simulations in computational cardiology are resource- and time-intensive. Despite notable successes, in many cases their costliness hinders their translation to clinical practice for improved patient risk assessment and treatment planning.

Artificial intelligence (AI, encompassing both traditional, feature-based machine learning, as well as “deep” neural networks), has emerged as remarkably successful in tackling a wide variety of challenges in healthcare over the last decade, including in cardiology (Topol, 2019; Lopez-Jimenez et al., 2020; Erickson, 2021). In contrast to biophysical models, which can offer detailed personalized insight as outlined above but can be cumbersome with respect to computational resources, once trained, AI models can be remarkably efficient and quick to run, as well as accurate. Thus, AI is attractive for clinical timescales wherein decisions need to be made quickly on readily available computer systems. AI algorithms can learn outcomes (e.g., classify disease or assess risk) as based on key patient biomarkers (i.e., hand-engineered features), in the case of traditional machine learning, or even in the case wherein distinguishing biomarkers are unknown (in the case of deep learning/neural networks, which often provide superior accuracy and recall).

Indeed, machine learning has been used extensively in cardiovascular medicine, not least in the automatic interpretation and classification of ECG signals (Kusunose et al., 2020; Chang et al., 2021; Hicks et al., 2021; Thambawita et al., 2021; Van De Leur et al., 2021; Zhou et al., 2021). Many studies have also successfully employed ML in arrhythmia risk stratification, including advanced ML-enabled image analysis (Feeny et al., 2020; Krittanawong et al., 2020; Trayanova, 2021). Recently, ML models have been combined with biophysical modeling to assess risk for dangerous arrhythmia as well as to uncover mechanisms of rhythm disturbances and to manage treatment for affected patients (Prakosa et al., 2013; Bernard et al., 2018; Lozoya et al., 2019; Shade et al., 2020; Banus et al., 2021; Monaci et al., 2021; Sermesant et al., 2021; Trayanova, 2021). Biophysical cardiac computational modeling and ML have also increasingly been combined to focus on drug-induced proarrhythmic risk assessment, as in e.g., Yang et al. (2020) and Sahli-Costabal et al. (2020). Thus, biophysically-detailed, patient-specific models, which may offer mechanistic insight, can be combined with AI models, which offer superior speed and accuracy for predictive tasks. However, AI models often require sufficient data for optimal performance. Usage of clinical data already implies particular challenges, including practicalities of access for engineering development and necessary requirements for data protection, e.g., anonymization. However, data from clinical studies, while sufficient for traditional statistical analysis, may also simply not represent the quantity of data necessary to achieve a superior result with some AI approaches, e.g., neural networks. Furthermore, data features which are hand-selected or engineered as based on traditional clinical biomarkers may not provide optimal predictive performance.

Generally, data augmentation is a technique used to create novel examples of data by slightly altering existing data and/or creating de novo synthetic data from existing data for training of machine learning models. This additional data acts as a regularizer, and helps to reduce overfitting when training models, particularly neural networks. Data augmentation has been used in diverse biomedical contexts to improve model performance, see e.g., ECG classification models including GAN-enabled augmentation of ECG datasets (Golany et al., 2020; Shaker et al., 2020; Thambawita et al., 2021). Biophysical simulation-based data creation (augmentation) goes a step further, to use detailed mechanistic models, often incorporating patient-specific aspects, to increase and enrich the amount of data available to train AI models. These broadly range from e.g., biophysics-based domain adaptation methods to improve AI-enabled image processing in the brain (Gholami et al., 2018) to studies applicable to arrhythmia assessment and treatment planning in patients (Lozoya et al., 2019; Shade et al., 2020).

Computational cardiac simulations can create expanded patient data — as based on first-principles biophysics — for a single patient, or a population of patients: i.e., voltage-mapping to assess inducibility of VT post-MI, when only image-based geometries (LGE-MRI) are available. The expanded, augmented population from biophysically-detailed computational cardiology simulations can then be used to train AI models for a downstream task (in this case, assessing patient risk for dangerous arrhythmia post-MI by a series of classification models).

In this study, we present an initial combined image-based patient-specific in silico and machine learning methodology to assess risk for dangerous arrhythmia in post-infarct patients. Furthermore, we aim to demonstrate that simulation-supported data augmentation improves prediction models, combining patient data, computational simulation, and advanced statistical modeling, improving overall accuracy for arrhythmia risk assessment. We present a semi-automated image-based patient-specific modeling and simulation pipeline and well as data-augmentation and machine learning techniques, and show that a combined approach can provide key clinical insights with high accuracy rapidly and efficiently. In the case of sparse or missing patient data, simulation-supported data augmentation can be employed to further improve predictive results for patient benefit. This work paves the way for using data-driven simulations for prediction of dangerous arrhythmia in MI patients.



2. METHODS AND MATERIALS


2.1. Image-Based Modeling Pipeline

Several prior studies have developed pipelines generating personalized heart models, (e.g., Vadakkumpadan et al., 2010); however, these processes have generally been time-consuming and manual. We developed and implemented a semi-automatic pipeline for generating patient-specific ventricular models (Figure 1). All steps are fully automated, with the exception of MRI segmentation, which required manual intervention. The entire pipeline is open-source and available to the public. This semi-automated pipeline involves segmentation from MRI medical images of the heart, finite element model generation, virtual myocardial fiber generation, and node reordering as preparation for continuum model electrophysiological simulations.


[image: Figure 1]
FIGURE 1. (A) Patient MRI and segmentation of endocardial, epicardial, and ischemic surfaces. (B) Rule-based fiber orientation. (C) The generated 30 baseline geometries with ventricles rendered semi-transparently.



2.1.1. Baseline Clinical Information for Initial Patient Groups

In collaboration with Rigshospitalet in Copenhagen, DK, we received access to MRI of 48 patients suffering from first-time MI (Jabbari et al., 2015; Ravn Jacobsen et al., 2020). After immediate primary percutaneous coronary intervention (PPCI), all patients underwent MRI scans 5 days post procedure. The data set available for this study was reduced to 30 patients after data assessment for quality and suitability for the image-based modeling pipeline described below.



2.1.2. MRI Segmentation

Segmentation was attained using Segment v2.1 R5752, a freely available software for medical image analysis (https://medviso.com/segment/). Described in Engblom et al. (2016) is the algorithm for infarct quantification from which we attained all ischemic measurements. A complete segmentation had all relevant slices for a given patient scan segmented into the endo- and epicardia for both the LV and RV, as well as potential ischemic tissue (Figure 1A). After segmentation of all slices, the extracted ventricular heart geometry for a given patient scan could be visualized as a 3D model as viewed in Figure 1C. All segmentation results were saved as binary MATLAB files (.mat extension).



2.1.3. Slice Alignment and Surface Generation

Surface generation of segmented regions for creation of finite element models relies upon inter-slice registration for correct alignment, to remove patient motion artifacts. Marciniak et al. have previously described these methods in detail (Marciniak, 2017; Marciniak et al., 2017). The post-adjusted data was then extracted and converted into four separate surfaces (LV and RV endocardia, LV and biventricular epicardia). Surfaces were created using the Visualization Toolkit (VTK) (Schroeder et al., 2006). Ischemic points were converted into a surface using VTK and Insight Segmentation and Registration Toolkit (ITK) (Yoo et al., 2002). Surfaces were visualized in Paraview (Ayachit, 2015). All surfaces were stored as .vtk files.



2.1.4. Finite Element Model Generation

The creation of 3D models based on generated surfaces was attained using gmsh (Geuzaine and Remacle, 2009). Mesh generation included three surfaces: the LV and RV endocardium and the biventricular epicardia as well as tetrahedral mesh of the ventricular myocardium and ischemic tissue. Following successful mesh generation, gmsh model output files were converted for use by the simulation software openCARP (Plank et al., 2021). The heterogeneous ischemic regions were incorporated into the ventricular mesh, first by generating volume and surface finite element meshes from the ischemic surface previously generated. Next, the ischemic volume was divided into numbered, layered regions representing a gradient of ischemic injury, with severity increasing toward the center of the damaged region. Regions were assigned based on distance from the outer surface of ischemic tissue using a scikit-learn Nearest Neighbors algorithm in Python (Pedregosa et al., 2011). For the baseline population, the number of regions for each model was between 10 and 27, depending on ischemia size. Finally, each point of ischemic volume and its corresponding region was mapped to the parent heart model. We additionally incorporated, tested, and implemented a node reordering optimization scheme for each resultant model to minimize eventual simulation times. Computation of rule-based myocardial fiber orientation was completed using the algorithm described in Bayer et al. (2012). Fibers are visualized in Figure 1B.



2.1.5. Automation

The majority of the described pipeline is automated, excepting manual MRI segmentation, which takes about 15 min when completed by trained personnel. Once complete, the segmented binary .mat file can be input directly into the pipeline, resulting in the output of a personalized finite element heart model, including injured tissue, ready for use in simulations and further analysis. The pipeline is available to the public via GitHub at https://github.com/vildenst/3D-heart-models; the repository includes detailed installation and running instructions and offers access to all necessary software.



2.1.6. Resultant Baseline Patient Models

Each of the 30 patient models in the baseline patient population is represented in Figure 1C; with healthy myocardium in red and the ischemic region in blue.



2.1.7. Creating an Augmented Population of Patient Hearts

The MRI-based modeling pipeline described in previous sections was used to create several additional patient-geometry-based models. Ischemic volume could be effectively decreased from the baseline model, which incorporated the image-based ischemic tissue divided into several layered regions. In each patient heart, ischemic sizes were reduced by 1, 2, 5 and 10 layered regions to create four novel patient hearts with smaller ischemic sizes. Ischemic volume was reduced by defining the outer layers as electrophysiologically normal tissue, while a gradient from normal to fully ischemic tissue was used for the remaining inner layers. This process resulted in 99 additional, novel ischemic ventricular geometries derived from the original 30 patient hearts (the baseline population), resulting in a total of 129 ventricular models (the augmented population).




2.2. Electrophysiological Simulations and Determination of Arrhythmic Vulnerability


2.2.1. Parameters Defining Conductivity and Electrophysiology

The ten Tusscher model represented healthy ventricular cell membrane electrophysiology (ten Tusscher and Panfilov, 2006), while damaged tissue in the ischemic region was modeled by alteration of ionic conductances as well reduced tissue conductivity in both the transverse and longitudinal directions as given below. Furthermore, we modeled ischemic regions as graded, with damage of increasing severity toward the center (Tomaselli and Zipes, 2004).

Presented in Supplementary Tables 1, 2 are the parameter values used for healthy tissue and ischemic regions, respectively (ten Tusscher and Panfilov, 2006; Kazbanov et al., 2014). All values are based on those used in a previous 3D model of human ventricular fibrillation (Kazbanov et al., 2014). Supplementary Table 1 gives parameter settings of the ten Tusscher model corresponding to a steep APD restitution slope of 1.8, increasing vulnerability to reentry. Supplementary Table 2 shows the example values for a five-layer ischemic region. The ischemic tissue was subdivided into 50% outer and 50% inner layer. This distribution was chosen as a large ischemic border zone has been shown to be pro-arrhythmogenic (Heidary et al., 2010). The innermost 50% of the ischemic tissue were modeled with 30% reduction in the INa and ICaL currents; while the outermost 50% were modeled with a 20% reduction in both currents compared to the healthy values. Extracellular potassium concentration was increased linearly from 7.5 to 10 mM from the outermost to the innermost ischemic regions. To further increase the arrhythmogenecity of the ischemic tissue, fATP was set to 0.0049 similar to what has been done previously (Ferrero et al., 2003). The resulting action potential traces are shown in Supplementary Figure 1.

Supplementary Table 3 references the tissue conductivities used for both healthy and ischemic tissue (Kléber et al., 1986; Poelzing et al., 2004; Akar et al., 2007; Hooks et al., 2007; Weiss et al., 2007; Clayton and Panfilov, 2008; Arevalo et al., 2016). Healthy conductivities have the same values as used previously (Arevalo et al., 2016) and ischemic conductivities have been reduced by 40% to model conduction slowing due to ischemia (Kléber et al., 1986; Akar et al., 2007; Jie and Trayanova, 2010).



2.2.2. Pacing Site Selection and Vulnerability Simulation Protocol

A simulated pacing protocol similar to standard clinical procedures triggering potential arrhythmic behavior was employed, as described previously (Cheng et al., 2013; Arevalo et al., 2016). Seventeen evenly distributed pacing sites in the LV, as based on the standard defined by the American Heart Association (AHA), were automatically selected as based on model orientation. As for other methods, this is available in the GitHub repository. Briefly, to each of these 17 LV pacing sites for each model, five pacing stimuli (S1) were delivered with a cycle length of 350 ms, followed by an S2 stimulus 200 ms following. If no arrhythmic behavior were detected, the S1-S2 period would be shortened by 10 ms intervals until there were reentrant circuits identified or until S2 failed to propagate. If the latter were the case, an S3 stimulus would be delivered 250 ms after the last successful S2, following the same procedure. Finally, an additional S4 stimulus would be delivered after 250 ms if no reentry were detected, following the same protocol as the S2 and S3 stimuli. Figure 2A illustrates the protocol described. Simulations were run for 2,000 ms following each delivered stimulus to detect potential arrhythmic activity, with outcomes defined as no reentry (NR), unsustained reentry (UR) or sustained reentry (R) (Figure 2B). The software used for simulations in this study is the open Cardiac Arrhythmia Research Package (openCARP) (Plank et al., 2021). All simulations were ran using 24 cores and 4G memory per CPU.


[image: Figure 2]
FIGURE 2. (A) Pacing induced arrhythmia protocol. The figure shows pacing sites on the myocardium (left), a schematic of corresponding AHA segments (top right) and pacing intervals (bottom right). Each stimulus had a duration of 10 ms, current amplitude of 100 uA/cm2 and electrode volume of 1 mm3. (B) Activation maps during a pacing train that resulted in induction of a sustained reentrant circuit. The stimulus was delivered near the ischemic border. Black region denote myocardium located deep within the ischemic tissue that did not excite due to the severity of the remodeling.





2.3. Arrhythmia Risk Classification Models

We assessed the ability of machine learning classification algorithms to correctly classify virtual patient arrhythmia risk (R and UR correspond to arrhythmia while NR corresponds to no arrhythmia) as based on simple virtual patient model-derived features. In each patient model (baseline plus augmented), global ischemia volume and global ventricular volume was measured, and for each of the 17 AHA LV segments the ischemic percentage and tissue volume was measured (4 features, Figures 3A,B).


[image: Figure 3]
FIGURE 3. (A) Left to right: 3D representation of an exemplar patient model of the same 17-segment mapping, a medial slice of the same patient heart model showing accompanying percentages of segment-specific ischemic burden. (B) Left to right: the same heart with semi-transparent LV, showing the global ischemic burden in the baseline model, and this global burden reduced to 10 and then 4% to create two additional patient models for the augmented population. Both segment-specific and global myocardial volume and ischemic burdens were used as features for machine learning models in this study.



2.3.1. Machine Learning Algorithms

We investigated the performance of seven machine learning classification algorithms (ML models): K-nearest neighbors (knn), Gaussian support vector machine (SVM), logistic regression, decision tree (tree), xgboost, and 3- and 4-hidden layer multilayer perceptrons (feed-forward neural networks, 3-hl NN and 4-hl NN, respectively).

For all ML models, a chosen data set was shuffled randomly and split into train and test sets. The train and test sets were further individually standardized prior to model training and post-run model performance evaluation via the test set: the population mean was first subtracted then divided by standard deviation. Each model was trained on 70% of randomly selected segments and the remaining 30% of data (test set) was used for validation. This procedure was repeated for 100 runs of each ML model on each data set (both baseline and baseline + augmented).



2.3.2. Model Implementation

k-nearest neighbors was implemented using sklearn's KNeighborsClassifier (k was set to 5). Support vector machine (SVM) was implemented using sklearn's SVC (C was set to 2). Logistic regression was implemented using sklearn's LogisticRegression. Tree was implemented using sklearn's DecisionTreeClassifier (max depth was set to 3). Xgboost was implemented using xgboost's XGBClassifier. 3-hl NN and 4-hl NN were implemented using Keras sequential (an API built on tensorflow). 3-hl NN used 32, 17 and 8 nodes, respectively, in each layer. Activation functions were the rectifier linear unit (ReLU) on hidden layers and the normalized exponential function (softmax) on output. Batch normalization was applied between each layer. The learning rate schedule was exponential decay with an initial learning rate of 0.01, with decay steps set to 100,000 and the decay rate to 0.9. We employed the gradient-based optimization methods RMSProp with zero momentum during training, as well as categorical crossentropy as the loss function. Twenty-five epochs, batch size = 20. 4-hl NN employed the same implementation as 3-hl NN, but with an additional layer of 8 nodes at its end.

Other than specified, default parameter values from sklearn, xgboost, and Keras sequential were used.



2.3.3. Model Performance Assessment

Accuracy, equal to the number of correct predictions divided by the number of all predictions for the test data, was computed for all ML models for both baseline and augmented data sets. Precision was also calculated at a threshold of 0.5 for all ML models for both baseline and augmented data sets, to determine the proportion of positive arrhythmia identifications that were actually correct, defined as [image: image]. Model sensitivity (also known as recall), defined as [image: image] was additionally calculated at a threshold of 0.5 for ML model results on both baseline and augmented patient population results, where TP is the number of true positives, FP the number of false positives, and FN the number of false negatives. Average precision, a weighted mean of model precision for multiple thresholds, was also calculated for all ML models for both baseline and augmented data sets.

Receiver operating characteristic (ROC) curves were calculated for all models for both baseline and augmented population results (Melo, 2013b). The Area Under the ROC curve (AUC) was also calculated for all ML model results (Melo, 2013a).

P-values were calculated using a t-test to test whether per-model prediction accuracy improved when including the augmented patient population's simulated arrhythmia outcomes, as well as an F-test to test whether the per-model variance was smaller when including augmented population results.





3. RESULTS


3.1. Arrhythmic Vulnerability in Baseline and Augmented Populations

In the baseline patient model population, 17 segments in 30 patients were evaluated for global arrhythmic vulnerability. Of these 510 segments, arrhythmia appeared in 111 segments during the protocol (no arrhythmia in 399; a ratio of 0.218). In the augmented patient model population, 17 segments in 129 total patient models were evaluated. Of these 2,193 segments, global arrhythmia appeared in 285 segments (no arrhythmia in 1,908; ratio 0.130) during our protocol. A summary of the results are given in Table 1.


Table 1. Summary of arrhythmia simulation results.

[image: Table 1]

The full set of results of the virtual vulnerability protocol for all patient models as specified in Materials and Methods can be found in Supplementary Table 4. Supplementary Table 5 summarizes the differences between the arrhythmic and non-arrhythmic groups. In general, hearts with larger global ischemic volumes were more inducible after the pacing protocol. Additonally, pacing from segments with larger percentage of ischemic tissue were also more likely to induce arrhythmia (Oliveira et al., 2018; Martinez-Navarro et al., 2019, 2021). This result suggests a mechanistic link between location of pacing site and arrhythmia inducibility in post-MI patients. These results are consistent with other studies that have shown that ectopic beats originating from the borders of ischemic tissue are more likely to result in wavebreak and reentry formation. Additionally, a positive correlation between ischemic volume and vulnerability to arrhythmia has been widely reported in the literature (Rubenstein et al., 2008; Klem et al., 2012).



3.2. Performance of Arrhythmic Risk Assessment Models

Segment-specific myocardial volume and segment-specific ischemic percentage as well as total myocardial volume and total estimated ischemic volume were calculated for each patient model in the baseline and augmented populations as detailed in Methods and Materials. Statistics on these features as well as associated arrhythmia outcomes can be found in Supplementary Table 5 (model input statistics).

Accuracy of all ML models trained and tested on data from both the baseline and augmented populations is shown in Table 2. For each of the seven ML models tested, mean predictive accuracy improved and accuracy standard deviation decreased when employing data from the augmented patient population. For all models trained and tested on data from the baseline patient population alone, SVM and logistic regression performed best in terms of mean accuracy (0.86; results among models ranged from 0.83 to 0.86). When using results from the augmented patient population, all ML models improved in accuracy (to 0.88 to 0.89; accuracy and variance of accuracy among all model trials between the baseline and augmented populations was statistically significant; p-values shown in Supplementary Table 8. Notably, 3- and 4-hl NN matched the performance of logistic regression, all performing best when considering the augmented population results.


Table 2. Results.

[image: Table 2]

Average precision (AP) of all ML models trained and tested on data from both the baseline and augmented populations is shown in Table 3. AP stayed the same, or modestly increased, for all ML models tested, with the exception of SVM, which decreased slightly. Sensitivity and precision of all ML models trained and tested on data from both the baseline and augmented populations at a threshold of 0.5 is additionally shown in Supplementary Tables 6, 7, respectively.


Table 3. Results.

[image: Table 3]

Figures 4, 5 present the ROC curves for the highest-performing models tested in both the baseline and augmented populations, knn, decision tree, and logistic regression are shown in Figure 4, while neural network ROC curves are presented in Figure 5. Supplementary Figure 2 shows results for SVM and xgboost. Corresponding AUC for all ML models trained and tested on data from both the baseline and augmented populations is shown in Table 4. While differences among models are relatively modest, logistic regression, 3-hl NN, and 4-hl NN performed similarly best in class, with confidence intervals as shown in Figures 4B, 5A,B.


[image: Figure 4]
FIGURE 4. Machine learning model performance: ROC curves with 95% confidence interval for (A) k-nearest neighbors, (B) decision tree, and (C) logistic regression, comparing models trained on augmented and baseline population. True positive rate = TP/(TP + FN), false positive rate = FP/(FP + TN).



[image: Figure 5]
FIGURE 5. Artificial neural network performance: ROC curves with 95% confidence interval for (A) 3 and (B) 4 hidden layer feedforward neural network, comparing models trained on augmented and baseline population. True positive rate = TP/(TP + FN), false positive rate = FP/(FP + TN).



Table 4. Results.
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4. DISCUSSION


4.1. Summary of Study and Findings

Here, we have presented a combined in silico and machine learning methodology to assess risk for dangerous arrhythmia in post-infarct patients. We have aimed to briefly demonstrate that simulation-supported data augmentation can improve prediction models and overall accuracy for arrhythmia risk assessment. Briefly, we used a semi-automated image-based patient-specific modeling and simulation pipeline to create both baseline and augmented patient populations, and assessed vulnerability to reentry in both populations via a virtual programmed stimulation protocol. We then calculated specific geometric features in all patient models, and trained seven machine learning algorithms (3 classification, 1 clustering, and 2 neural networks) to predict arrhythmia outcome directly from these geometric patient model features alone.

We found that this combined approach can provide insight with high accuracy, rapidly and efficiently, with accuracy ranging from 83 to 86% for all ML models for the baseline population. Furthermore, all ML models improved in accuracy to 88–89% (accuracy and accuracy variance was statistically significant; p-values shown in Supplementary Table 8) when using results from the augmented patient population, demonstrating that, particularly in the case of small cohorts and/or sparse patient data, simulation-supported data augmentation can be employed to further improve results of predictive machine learning models.



4.2. Comment on Model Explainability and Critical Features

Previous research has identified LGE volume (Klem et al., 2012) and LV mass (Haider et al., 1998) as predictors for sudden cardiac death. Because we implemented a decision tree as one of the ML models evaluated and this performed reasonably similar to other models, we were conveniently able to directly probe the decision-making in this algorithm to assess which feature(s) this model deemed as most-important for its decision making. Again, the hand-picked geometric features were: segment-specific myocardial volume and ischemic percentage, as well as total myocardial volume and total estimated ischemic volume, calculated for each patient model and segment in both the baseline and augmented populations. In both populations, the most important of the four input features tested was estimated total ischemic volume (Supplementary Figures 3, 4, respectively). However, in the augmented population, the other three features (total myocardial volume, segment-specific ischemic percentage, and segment-specific myocardial volume) were more important for decision making than in the baseline population. The decision trees for the baseline and augmented populations can be seen in Supplementary Figures 5, 6, respectively.



4.3. Biophysical Model-Based Data Creation and Augmentation: A Growing Body of Work

ML models have been utilized successfully and extensively in arrhythmia risk assessment (Feeny et al., 2020; Krittanawong et al., 2020) and in cardiovascular imaging, to diverse ends (Prakosa et al., 2013; Bernard et al., 2018; Sermesant et al., 2021). More recently, compound, explainable ML models have demonstrated improved risk prediction for ventricular arrhythmias as compared to traditional biomarkers (i.e., left ventricular ejection fraction, LVEF), as validated retrospectively in large clinical cohorts, (e.g., Ly et al., 2021). However, others in recent years have also pioneered the combination of biophysical modeling and ML approaches in arrhythmia risk assessment (Lamata, 2018). In cardiac electrophysiology and arrhythmias, applications include but are not limited to techniques for electrical mapping of the myocardium, research to uncover the basic mechanisms of arrhythmia, and arrhythmia treatment planning and management, as recently reviewed in Trayanova et al. (2021). A key utilization of biophysical model-enabled data creation in this space has been for feature augmentation to improve performance of learning schemes (Lozoya et al., 2019; Shade et al., 2020). Notably, Shade et al. (2020) used ML and personalized computational modeling in concert to accurately predict whether a patient was likely to experience AF recurrence following pulmonary vein isolation (PVI), using only pre-PVI LGE-MRI scans as input. This work shares some notable methodological similarities with the present study: only patient LGE-MRI were used as input for electrophysiological computational models, and the (baseline) patient cohort size was similar (32 vs. 0.30 in the present study). Also similarly, Shade et al. found reasonable predictive performance with traditional ML approaches and a simulation-augmented feature set. The divergence in the current study is that the input data was augmented via patient model population expansion, rather than introduction of additional features, e.g., from our electrophysiological simulations. Corrado et al. (2021) also recently demonstrated the use of a virtual patient cohort to assess risk for sustained atrial arrhythmia; an ML model (SVM) trained on local conduction velocity and action potential duration was able to accurately predict whether an arrhythmia would tether to that tissue region. In the present study, simulations also provided the ground-truth regarding patient vulnerability to arrhythmia, as required for this proof-of-concept in post-MI patients. In future work, we will indeed employ electrophysiological features from simulations themselves to assess how their incorporation improves and/or alters model performance.



4.4. Limitations and Future Work

Despite the successful proof-of-concept executed in this study, there are acknowledged limitations to this work. In order to expand the number of patient hearts in the augmented population, the ischemic tissue in each patient heart was reduced several times, as described in Methods and Materials. A naive approach was thus adopted as a first step and ischemic volume was not altered symmetrically, given practical limitations in terms of computational time and tractability for patient-specific biophysical simulations.

The patient population can be further augmented in several ways to explore the empirical role of class balance in classifier performance, as well as to create data of sufficient volume to explore the improved performance of vanilla NN and deep learning approaches e.g., convolutional neural networks. Approaches to be used for augmenting patient populations (the space of the patient-specific, image-derived geometries and concomitant features) include shape modeling approaches (Balaban et al., 2021) as well as generative adversarial networks (Gholami et al., 2018; Shaker et al., 2020). Next steps for this and related work research may include combining multi-organ systems for joint study (e.g., Banus et al., 2021), to both better constrain the parameter space of a personalized model and to subsequently capture plausible physiologically mechanisms.

Furthermore, we have employed LGE-MRI from patients 5 days post-MI and have considered the damaged tissue region as ischemic in the present study, rather than as an evolving necrotic/fibrotic scar region. It is known, however, that the initial region of ischemic injury evolves rapidly, spatially and functionally, and may change significantly by the time of imaging 5 days later (Anversa and Sonnenblick, 1990; Holmes et al., 1994; Ertl and Frantz, 2005; Geerse et al., 2009; Wan Ab Naim et al., 2020), introducing uncertainty into our assumptions regarding the modeling of damaged tissue.

Finally, to demonstrate potential clinical utility of the method, validation of trained ML models with e.g., paired clinical follow-up data for arrhythmia incidence for the non-augmented population would be critical. Simulation results as presented here and real clinical scenarios may be quite different; for instance, the overall clinical arrhythmia rate may differ between specific patient groups and from in silico incidence, and should be taken into consideration. Presently, while comparison between simulation results here and clinical data has not been possible due to lack of appropriate data, appropriate follow-up data and model validation is ultimately crucial for the method's translational utility.
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Computational models of atrial fibrillation have successfully been used to predict optimal ablation sites. A critical step to assess the effect of an ablation pattern is to pace the model from different, potentially random, locations to determine whether arrhythmias can be induced in the atria. In this work, we propose to use multi-fidelity Gaussian process classification on Riemannian manifolds to efficiently determine the regions in the atria where arrhythmias are inducible. We build a probabilistic classifier that operates directly on the atrial surface. We take advantage of lower resolution models to explore the atrial surface and combine seamlessly with high-resolution models to identify regions of inducibility. We test our methodology in 9 different cases, with different levels of fibrosis and ablation treatments, totalling 1,800 high resolution and 900 low resolution simulations of atrial fibrillation. When trained with 40 samples, our multi-fidelity classifier that combines low and high resolution models, shows a balanced accuracy that is, on average, 5.7% higher than a nearest neighbor classifier. We hope that this new technique will allow faster and more precise clinical applications of computational models for atrial fibrillation. All data and code accompanying this manuscript will be made publicly available at: https://github.com/fsahli/AtrialMFclass.
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1. INTRODUCTION

Atrial Fibrillation (AF) is the most common cardiac arrhythmia and a significant contributor to morbidity and mortality (Virani et al., 2021). AF is characterized by a chaotic electrical activity of the atria and perpetuated by multiple re-entrant wavelets propagating in the atrial tissue. It has been shown in several studies that in patients in the early stages of AF (paroxysmal AF), the chaotic activity is originated mainly from the pulmonary veins (PVs) (Haissaguerre et al., 1998; Chen et al., 1999). Thus, PV isolation (PVI) is the cornerstone of AF treatment at this point (Kawai et al., 2019). Here, ablation lines around the PVs are created to electrically isolate them. However, in patients with a persistent form of AF, PVI efficacy remains sub-optimal (Verma et al., 2015; Kawai et al., 2019). The detriment in the effect of this treatment in persistent AF patients is caused mainly by the shift of electrical abnormalities in the PVs to other locations and higher degrees of structural remodelling (Boyle et al., 2019; Kawai et al., 2019). Targeting arrhythmic substrates in persistent AF patients, in addition to PVI, could not demonstrate any benefit, as these treatment approaches do not incorporate strategies to find optimal ablation targets according to the AF mechanism (Verma et al., 2015). Furthermore, the high inter-individual variability in fibrosis distributions (McDowell et al., 2015; Boyle et al., 2019) and sources maintaining AF indicates an urgent need for patient-specific approaches.

Simulations, conducted in computational atrial models, have recently been used to develop mechanistic insights into the perpetuation and ablation of persistent AF patients with atrial fibrosis (McDowell et al., 2015; Boyle et al., 2019; Loewe et al., 2019; Roney et al., 2019). A common approach to investigate AF is to stimulate a high fidelity model from different pacing sites and observe whether this arrhythmia was induced or not (Boyle et al., 2019). With these simulations, it is possible to create an inducibility map that shows the regions of the atria where AF will manifest if stimulated (Potse et al., 2018). Moreover, this map can be reduced into one metric, the inducibility, which corresponds to the fraction of the tissue where AF can be induced. This quantity is useful to compare different ablation treatments, as the most efficient intervention will be the one that reaches the lowest inducibility with the lowest amount of ablation (Gharaviri et al., 2021a,b).

Inducibility maps are computationally expensive to compute with high fidelity models. The complete exploration of all the potential sites that could trigger an arrhythmia is currently unfeasible (Loewe et al., 2019). For this reason, a number of alternatives have been proposed. A viable option is to design a pacing protocol that maximizes the chance of inducing AF (Azzolin et al., 2021). Alternatively, the computational cost per simulation could be reduced by a faster implementation of the AF model, e.g., based on GPGPU (Kaboudian et al., 2019). Additionally, low fidelity models provide an approximation that could be based on simplified physics, e.g., eikonal models (Fu et al., 2013; Quaglino et al., 2018), reduced-order modeling (Fresca et al., 2020; Pagani and Manzoni, 2021) or simply on a coarser discretization (Quaglino et al., 2019; Dhamala et al., 2020).

Low fidelity models alone are faster, but potentially imprecise in reproducing the high fidelity inducibility map. However, a certain degree of statistical correlation between high- and low fidelity maps is to be expected. Multi-fidelity approaches can exploit this inter-model correlation to improve the accuracy of the estimators for a fixed total cost or, equivalently, to reduce the total cost of estimation for a targeted accuracy (Perdikaris et al., 2016; Quaglino et al., 2018, 2019; Sahli Costabal et al., 2019). This is achieved by offsetting most of the computational burden to the low fidelity model. Moreover, the overall computational cost could also be further reduced by carefully selecting the training points. To this end, Bayesian decision making strategies, commonly referred to as active learning (Cohn et al., 1996), can provide a principled way for judiciously selecting new observations towards improving classification accuracy. The process consists in adding points iteratively in the locations where the uncertainty is greater (Kapoor et al., 2007; Gramacy and Polson, 2017; Sahli Costabal et al., 2020; Zaman et al., 2021).

The problem of creating an inducibility map can be seen as a classification problem, from a machine learning perspective. The labels, in this case, are the occurrence or absence of AF when we pace the model from a specific site, which corresponds to the input. Although this may seem a trivial task, for which many tools are available, it is not straightforward when the classification domain is a Riemannian manifold, such as the atrial surface. In this case, points that may be close in the Euclidean space might be apart in the manifold due to its topology. There has been recent attention in the machine learning community on formulating effective Gaussian process (GP) models for supervised learning on Riemannian manifolds (Coveney et al., 2019; Borovitskiy et al., 2020). GPs tend to perform well when the amount of data available is limited, and, due to their Bayesian nature, they provide built-in uncertainty in the predictions. However, current approaches, also adopted in the cardiac modeling community, have focused on the regression case (Coveney et al., 2019; Coveney S. et al., 2020). Performing classification with Gaussian processes is a challenging task, as there is no closed expression of likelihood and requires different types of approximations to perform statistical inference (Rasmussen and Williams, 2006).

In this work, we develop GP classifiers that can operate on manifolds, such as the atrial surface (see Figure 1). We extend this tool to seamlessly combine different levels of data fidelity by creating a multi-fidelity GP classifier. In the specific context of AF, we aim to develop a method that allows us to comprehensively determine atrial regions, for a specific structural remodeling pattern, that, if stimulated could successfully initiate AF, creating an inducibility map in-silico. In particular, our low fidelity model is based on a coarser spatial discretization of the atrial geometry and on a larger time step in the solution of the electrophysiology equations. The inducibility map is reconstructed using a multi-fidelity GP classifier, resulting in a function on the atrial surface taking boolean values, depending on whether AF is or is not inducible when pacing from a given location. We will demonstrate that this approach is more efficient and accurate than other classifiers, and even single-fidelity methods, for cases with and without ablation treatments and for different fibrosis patterns.


[image: Figure 1]
FIGURE 1. Overview of the methodology. We predict the regions where AF can be induced using a multi-fidelity Gaussian process classifier. We use the Laplacian eigenfunctions of the atrial geometry to efficiently construct a Gaussian process covariance function that operates directly on the manifold surface. We pace different sites in computational models of AF with low and high resolution to create a dataset to train our classifier. In the end, we obtain an inducibility map that can be used to assess treatments.


The manuscript is organized as follows. In Section 2 we present the AF model and the classification method, obtained by extending the classic GP classification on manifolds. We also present the multi-fidelity approach, as well as the active learning scheme employed to sequentially acquire new information. Section 3 is devoted to the numerical experiments. Specifically, we propose a numerical assessment of the classifiers, including nine case studies involving the characterization of inducibility regions of atrial models. The discussion in Section 4 concludes the manuscript.



2. METHODS


2.1. Atrial Modeling

In this work, we use previously developed highly detailed human atrial model of atrial fibrillation (AF) (Potse et al., 2018; Gharaviri et al., 2020). We briefly summarize here the relevant aspects of the model. The anatomy, including heart and torso, is based on MRI data. Several key features (bundles, fibers) are based on histological studies and added manually. The atrial wall is 3-dimensional with variable thickness.

In the numerical experiments for this study, we consider different combinations of fibrosis patterns and ablation lines, for a total of 9 scenarios. Firstly, we consider three fibrosis patterns (Figure 2), one case with moderate fibrosis, corresponding to 50% of fibrotic tissue, and two cases with severe fibrosis, corresponding to 70% of fibrotic tissue. We consider endomysial fibrosis, which is modeled by formally imposing zero cross-fiber intracellular conductivity in fibrotic regions. Secondly, we implement two standard-of-care ablation strategies, pulmonary veins isolation (PVI) and PVI with roof lines (PVI+BOX), see Figure 2D. Ablation lines are non-conductive tissue.


[image: Figure 2]
FIGURE 2. AF models. Fibrosis distribution in 3 different scenarios: moderate fibrosis [(A), 50% fibrotic tissue], and severe fibrosis (70%) in two different patterns (B), (C). (D) shows PVI and BOX ablation lines.


The electrical activity is modeled with the monodomain system (Colli Franzone et al., 2014), which reads as follows

[image: image]

where Vm(x, t) is the transmembrane potential, w(x, t) is a vector of ion gating and concentration variables, Ω is a domain describing the active myocardium, Cm = 1 μF cm−2 is the membrane capacitance, χ = 800 cm−1 is the membrane surface-to-volume ratio, Istim is the current stimulus, Gm(x) is the monodomain conductivity tensor, and Iion and g describe the ionic model. In particular, we consider the Courtermanche-Ramirez-Nattel model (Courtemanche et al., 1998) adapted to an AF phenotype, with minor adaptations to guarantee numerical stability when evaluating the gating parameters for certain values of Vm (Potse, 2019). The initial condition (V0, w0) corresponds to the resting state.

The conductivity tensor Gm is defined as [image: image], where Gi and Ge are, respectively, the intra- and extra-cellular conductivity tensors, both assumed transversely isotropic with respect to the local fiber direction. The intracellular longitudinal and cross conductivity are, respectively, set 3 and 0.3 mS cm−1, while the extracellular conductivities are 3 and 1.2 mS cm−1, respectively. The resulting conduction velocity in the fiber direction is 55.6 cm s−1. In the Bachmann's bundle, faster conduction is obtained with a longitudinal intracellular conductivity of 9 mS cm−1. Finally, the region between the superior and inferior vena cava is assumed isotropic, with all conductivities set to 1.5 mS cm−1.

The numerical solution of Equation (1) is based on a second-order finite difference scheme for the spatial discretization, and a fully explicit first-order Euler scheme for time stepping (Potse et al., 2006). The Rush-Larsen scheme is adopted to update the gating variables. The computational domain is discretized using a uniform mesh with hexahedral elements of side h.

For the high fidelity simulations, we consider a fine mesh with h = 0.2 mm and a time step of Δt = 0.01 ms. For the low fidelity simulations, we double the discretization parameters, with h = 0.4 mm and Δt = 0.02 ms. The coarsening of the grid is performed by employing a majority rule to determine the tissue type and fiber orientation of the coarse hexahedral elements from the eight sub-elements of the fine mesh. Moreover, the coarse model assumes a reduced surface-to-volume ratio χ = 450 cm−1 to balance out the expected reduction in conduction velocity due to a coarser space discretization (Pezzuto et al., 2016).

All simulations are performed with the Propag-5 software (Potse et al., 2006; Krause et al., 2012) on the Swiss National Supercomputing Centre (CSCS). For one simulation with T = 4 s, the compute time of the high fidelity model is 1 h40 min with 8 nodes, whereas the compute time of the low fidelity model is 14 min with 4 nodes. This means that the low fidelity model is approximately 16 times faster than the high fidelity model.



2.2. Pacing Protocol for Atrial Fibrillation

The stimulation protocol, encoded in the function Istim(x, t), is defined by a point xstim ∈ Ω and a vector of distinct times [image: image] through the expression

[image: image]

where Br(xstim) = {x ∈ Ω:xstim ≤ x ≤ xstim + r} is a r-neighborhood (the ≤ is meant component-wise) of the stimulation site, and Δτ > 0 is the stimulus duration. In this study, the vector τstim is fixed as in Figure 3 (middle panel), which consists in a series of Nstim = 14 stimuli with decreasing temporal distance, whereas xstim varies for each simulation. Each stimulus lasts Δτ = 4 ms, and has a strength Imax = 800 μA cm−2 with a fixed radius r = 0.8 cm, which is enough to maximize the chance that the tissue correctly captures it (Potse et al., 2018). The induction of AF is not successful when (Vm, w) asymptotically approaches the resting state after the delivery of the last stimulus. Otherwise, if a self-sustained activity is still present at the end of the simulation, the induction of AF is successful. The idea is summarized in Figure 3. For sake of simplicity, in this work there is no distinction between a true AF episode and an atrial flutter, which could be understood as a periodic solution of the monodomain system.


[image: Figure 3]
FIGURE 3. Inducibility of AF in the computer model. Two simulations with different pacing sites (grey stars) and inducibility outputs. The middle plot illustrates the pacing protocol. Top: transmembrane potential resulting from a successful induction of AF and corresponding lead II ECG recording. The stimulation results in a self-sustained activity. Bottom: transmembrane potential resulting from an unsuccessful induction of AF and corresponding lead II ECG recording. The stimulation results in a vanishing wave.


The objective of this work is to learn the set [image: image], such that if [image: image] a sustained episode of AF is observed. In particular, we are interested in approximating the indicator function of [image: image], denoted by F:Ω → {0, 1} such that [image: image]. The overall inducibility, which reflects the fraction of the tissue where AF can be initiated, follows immediately from the definition of [image: image] as

[image: image]

Interestingly, the formula generalizes to the case of non-uniformly distributed ectopic foci. Let ρ(x) be the probability density function of the distribution of foci, then the inducibility can be obtained as

[image: image]

In this way, for instance, it is possible to account for a higher density of ectopic activity around the pulmonary veins and fibrotic regions. In this work, we will only consider a uniform distribution of foci, equivalent to select ρ(x) = |Ω|−1.



2.3. Classification With Gaussian Processes

Next, we present the proposed methodology for learning the inducibility function F from a limited set of simulations. We start by assuming that we have a data-set of N input/output pairs [image: image], where xi ∈ Ω and yi ∈ {0, 1}. Since the atrial wall is thin, we constrain the points to belong to a mid-wall smooth atrial surface [image: image]. We remark however that there is no loss of generality in the following presentation, as the methodology applies to the volumetric domain Ω in the same manner. Moreover, since yi takes only binary values, we also restrict the scope of this work to binary classification. We also note that it is straightforward to extend this framework to the multi-class classification setting.

The classical formulation of Gaussian process classification defines an inter mediate variable which is computed from a latent function f(x) (Rasmussen and Williams, 2006). Throughout this article, we will assume standardized data-sets and work with zero-mean Gaussian process priors of the form [image: image]. Here, k(·, ·; θ) is a covariance kernel function, which depends on a set of parameters θ. We adopt a fully Bayesian treatment and prescribe prior distributions over these parameters, which we will specify later (Neal, 1999). To obtain class probability predictions we pass the Gaussian process output f through a non-linear warping function σ:ℝ → [0, 1], such that the output is constrained to [0, 1], rendering meaningful class probabilities. We define the conditional class probability as π(x) = ℙ[y = 1|x] = σ(f(x)). A common choice for σ(f) is the logistic sigmoid function σ(f) = (1 + exp(−f))−1, which we will use throughout this work. We assume that the class labels are distributed according to a Bernoulli likelihood with probability σ(y) (Nickisch and Rasmussen, 2008).



2.4. Gaussian Process Priors on Manifolds

A crucial step in building a Gaussian process classifier is the choice of the kernel function. A popular choice is the Matérn kernel, which explicitly allows one to encode smoothness assumptions for the latent functions f(x) (Rasmussen and Williams, 2006). In a Euclidean space setting, the kernel function has the form (Rasmussen and Williams, 2006):

[image: image]

where Γ is the gamma function, and Kν is the modified Bessel function of the second kind. The parameter η controls the overall variance of the Gaussian process, the parameter ℓ controls the spatial correlation length-scale, and ν controls the regularity of the latent functions f(x) (Rasmussen and Williams, 2006). When ν → ∞, we recover the popular squared exponential kernel, also known as radial basis function, that yields a prior over smooth functions with infinitely many continuous derivatives.

The form presented in Equation (3) is not suitable to be used on manifolds, as the atrial surface. A naive approach is to replace the Euclidean distance between points with the geodesic distance on the manifold surface. Even though this approach may work for some cases, there is no guarantee that the resulting covariance matrix between input points will be positive semi-definite (Pezzuto et al., 2019; Borovitskiy et al., 2020), a key requirement for a kernel function. As a matter of fact, the choice of the kernel is problematic in this case. For instance, the Matérn family does not yield positive definite kernels even on the sphere, except for a few exceptional choices of the parameters (Gneiting, 2013). Here, we follow an alternative approach, implicitly based on the solution of the following stochastic partial differential equation (SPDE) (Whittle, 1963; Lindgren et al., 2011):

[image: image]

where −Δ is the Laplace-Beltrami operator on the d-dimensional manifold, and [image: image] is the spatial Gaussian white noise on Ω. When Ω = ℝd, the solution of the fractional SPDE is a Matérn random field with [image: image] (Lindgren et al., 2011). However, compared to Equation (3), the SPDE in Equation (4) trivially generalizes to manifolds with no loss of positive definiteness of the correlation kernel, thanks to the properties of the pseudo-differential operator (Borovitskiy et al., 2020). The correlation function can be explicitly written as follows. Let [image: image] be the eigenvalue/eigenfunction pairs of the Laplace-Beltrami operator with pure Neumann boundary conditions, that is

[image: image]

for all i ∈ ℕ. Then, we can represent Matérn-like kernels on manifolds as (Coveney et al., 2019; Borovitskiy et al., 2020).

[image: image]

where C is a normalizing constant. This eigen-decomposition also enables a direct solution of the SPDE, providing the following representation of the Gaussian process prior:

[image: image]

In practice, the eigen-decomposition is truncated to a number Neig of pairs.

In this work, we discretize the manifold [image: image] using a triangulated mesh and solve Equation (5) using finite element shape functions. As such, we can obtain the stiffness matrix A and mass matrix M:

[image: image]

where A represents the assembly of the local element matrices, and N are the finite element shape functions. Then, we solve the eigenvalue problem:

[image: image]

In practice, to compute the kernel in Equation (6) we use a portion of all the resulting eigenpairs, starting from the smallest eigenvalues. We also use the corresponding eigenvectors as the eigenfunctions with f(xi) = vi, where i is the node index at location xi. Given that the eigenvalue problem is solved only once as a pre-processing step, this methodology provides an efficient way to compute the kernel and the prior in a manifold.



2.5. Bayesian Inference

We finalize our Bayesian model description by prescribing the prior distributions for the kernel parameters. We assume the following distributions for the parameters θ = {η, ℓ},
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The posterior distribution over the model parameters θ = {η, ℓ} cannot be described analytically, and thus we must resort to approximate inference techniques to calibrate this Bayesian model on the available data. To this end, we use the NO-U-Turn sampler (NUTS) (Hoffman and Gelman, 2014), which is a type of Hamiltonian Monte Carlo algorithm, as implemented in NumPyro (Phan et al., 2019). We use one chain, and set the target accept probability to 0.9. The first 500 samples are used to adjust the step size of the sampler, and are later discarded. We use the subsequent 500 samples to statistically estimate the parameters θ.

Once we have completed the inference, we can make predictions y* at new locations x* in three steps. First, we compute the predictive posterior distribution of the latent function [image: image], which by construction follows a multi-variate normal distribution, with a mean μ and covariance Σ obtained by conditioning on the available training data (Rasmussen and Williams, 2006):
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where the covariance matrix K ∈ ℝN × N results from evaluating the kernel function k(·, ·; θ) at the locations of the input training data X and f = f(X), respectively. We then proceed by sampling μ, Σ using model parameters drawn from the estimated posterior distributions of θ and f. This will result in a number of random variables f* that are independent and normally distributed, which we can be used to compute statistical averages as

[image: image]

where Ns is the number of samples considered for θ and f. We finally pass [image: image] through the logistic sigmoid function σ to obtain a distribution of class probabilities y*.



2.6. Multi-Fidelity Classification With Gaussian Processes

In this work, we will assume that we have 2 information sources of different fidelity. We will call the high fidelity, computationally expensive, and hard to acquire information source with the subscript H and the inexpensive, faster to compute, low fidelity source with the subscript L. Now, our data set comes from these two sources [image: image]. We will postulate two latent functions fH and fL, respectively, that are related through an auto-regressive prior (Kennedy and O'Hagan, 2000).

[image: image]

Under this model structure, the high fidelity function is expressed as a combination of the low fidelity function scaled by ρ, corrected with another latent function δ(x) that explains the difference between the different levels of fidelity. Following (Kennedy and O'Hagan, 2000), we assume Gaussian process priors on these latent functions.
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[image: image]

The vectors θL and θH contain the kernel hyper-parameters of this multi-fidelity Gaussian processes model. The choice of the auto-regressive model leads to a joint prior distribution over the latent functions that can be expressed as (Kennedy and O'Hagan, 2000).
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with
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The global covariance matrix K of this multi-fidelity Gaussian process model has a block structure corresponding to the different levels of fidelity, where KHH and KLL model the spatial correlation of the data observed in each fidelity level, and KLH models the cross-correlation between the two levels of fidelity. We also have kernel parameters for the different levels of fidelity. We again use the Matérn as described in Section 2.4, which results in parameters θH = (ηH, ℓH), and θL = (ηL, ℓL). For these parameters and the scaling factor ρ, we consider the following prior distributions
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We can perform inference and prediction for this model in the same way as for the single fidelity classifier, as detailed in Section 2.5. In particular, we can use Equations (12) and (13) with the entire covariance matrix K to obtain the conditional mean and covariance of f*.



2.7. Active Learning

Here, we take advantage of the uncertainty predictions that are inherent to Gaussian processes and are absent in other types of classifiers, such as nearest neighbor. Specifically, at each active learning iteration, we train the classifier, and select the next point that should be included in our training data-set by solving the following optimization problem (Kapoor et al., 2007; Sahli Costabal et al., 2019):

[image: image]

where Xcand represents a set of candidate locations that can be acquired. In our case, we use all the nodes in the mesh as candidates, except the ones at the boundaries which have artificially high variance. This active learning criterion presents a good balance between exploitation (sampling near the classification decision boundary) and exploration (discovering new inducible regions). It can be seen as promoting the selection of points that tend to be located near the decision boundary (σ(μ = 0) = 0.5), or points in regions with high uncertainty (as reflected by the posterior variance Σ). We keep adding points via this sequential active learning procedure until we have reached the desired number of samples.




3. NUMERICAL EXPERIMENTS


3.1. Numerical Assessment

We first create a synthetic example to test the performance of the proposed classifier. We study the length scale of different random fields that could represent the potential inducibility maps that we want to approximate in this study. In particular, we use a mesh based on the anatomy of the mid-layer described in Section 2.1. Here, we represent the left and right atria with 3,298 nodes and 6,335 triangles. First, we normalize the geometry by the largest standard deviation of one of its coordinates. In this way, we can use the same prior distributions regardless the particular geometry. Then, we generate Gaussian random fields on the atrial manifold with zero mean and the Matérn covariance kernel, as detailed in Equation (6). We use 1,000 eigenpairs to construct a computable kernel function approximation with ν = 3/2 and η = 1. We consider different length scales to simulate inducibility regions and assess the performance of the classifier: ℓ = {0.2, 0.4, 0.6, 0.8, 1.0}. Finally, we pass the resulting random field through the sigmoid function σ to obtain values between zero and one, which we round to the nearest integer to create discrete labels.

Examples of the resulting random fields can be seen in Figure 4, left column. We compare three different classifiers. First, as a baseline benchmark, we create a nearest neighbor classifier. Here, the prediction of an unknown point is based on the label of the closest data point. Since we are working with a manifold, we use the geodesic distance to find the closest point, which we compute using the heat method (Crane et al., 2013). As a data-set, we use a fixed design spread through the manifold surface. To select the locations, we first randomly pick a node in the mesh, and then we add the node that is further away from the initial node using the geodesic distance. Then, we iterate, finding the point that is further away from all the nodes already included in the data-set, until we reached the desired data-set size. The second classifier that we consider is a Gaussian process classifier, as described in the previous sections, that is trained on the same fixed experimental design. The final classifier is also a Gaussian process classifier, which we train with the first 20 samples of the fixed experimental design, and then we apply the proposed active learning procedure. For all the Gaussian process classifiers in these experiments, we set the number of eigenfunctions used to Neig = 1,000.


[image: Figure 4]
FIGURE 4. Numerical assessment of the Gaussian process classifier. We create different random examples with different correlations lengths (first column) and train a nearest neighbor classifier (second column), a Gaussian process classifier trained with the same data-set as the nearest neighbor classifier (third column), and Gaussian process classifier that adaptively selects the training points through active learning (fourth column). The black bars represent the size of the length scale relative to the atrial geometry.


In these examples, we test the performance of the three different classifiers, using between 20 and 100 samples, and 10 different random fields for each of the 5 length scales selected. To take into account potential imbalances of classes in the examples generated, we use the balanced accuracy score. This metric is defined as the arithmetic mean of the sensitivity and specificity as

[image: image]

In contrast to conventional accuracy, this metric will reflect if a classifier is predominately predicting one class due to the higher proportion of samples present in the data-set.

The results of this assessment are summarized in Figures 4, 5. We first observe in Figure 4, left column, that the complexity of the classification regions increases as the correlation length scale is reduced. In the same figure, we show the different classifiers trained with 100 samples. It is visually possible to note that the accuracy of the classifiers degrades as the length scale of the ground-truth classification surface is decreased. For the length scale ℓ = 0.2, some regions are not captured by the classifiers. We also note that the Gaussian process classification boundaries tend to be smoother than the nearest neighbor classifier. These differences are quantified in Figure 5. We first compare the improvements in accuracy between the nearest neighbor classifier and the Gaussian process classifier with a fixed design in the top row. These two methods are trained with identical data, and we observe that for most cases and number of samples, the Gaussian process classifier is more accurate than the nearest neighbor classifier. The accuracy improvements at 100 samples range on average from 0.8% at ℓ = 0.2 to 2.4% at ℓ = 0.8. Then, we compare the nearest neighbor classifier with the Gaussian process classier trained with active learning. These two classifiers only share the first 20 points of data. Then the active learning classifier judiciously selects the remaining samples attempting to maximize accuracy. We observe that the accuracy improvements are more pronounced with the active learning for ℓ = 0.4 − 1.0. The average improvements at 100 samples range from 3.0% at ℓ = 0.4 to 6.2% at ℓ = 0.8. For ℓ = 0.2, we see an average decrease in accuracy of 1.0% at 100 samples. In the last row of Figure 5, we see the average accuracies for the three classifiers at 100 samples, reflecting the improvements in accuracy obtained by the Gaussian process classifiers already described. We see that all classifiers tend to decrease their accuracy as the length scale decreases, which coincides with the increased complexity of classification boundaries for lower length scales seen in Figure 4. This detriment in performance becomes more pronounced between ℓ = 0.4 and ℓ = 0.2. This change corresponds with the average geodesic distance between points in the fixed design data-set, which is equal to 0.39. This metric is shown as a dashed vertical line bottom row plot of Figure 5. Classification regions with a characteristic size smaller than this value could be ignored by the classifiers, which is what we observe in the top row of Figure 5. In these cases, the uncertainty estimates used for active learning might be inadequate, leading to a worse performance compared to the longer length scale cases. Overall, we see that Gaussian process classifiers and active learning provide advantages in accuracy when compared to the baseline nearest neighbor classifier.


[image: Figure 5]
FIGURE 5. Accuracy of the numerical assessment. We quantify the improvements in accuracy when using a Gaussian process classifier versus the nearest neighbor classifier (top row) and when using a Gaussian process classifier with active learning, versus the baseline nearest neighbor classifier (middle row) for different length scales. The gray lines show the balanced accuracy improvements of the 10 examples for each length scale and the black line shows the mean improvement. The bottom row shows how the average balanced accuracy changes with length scale when the classifiers are trained with 100 samples. The dashed vertical line represents the average geodesic distance between training points of the fixed design.




3.2. Characterization of Inducibility Regions

We examine the inducibility of the 9 models described in Section 2.1, specifically 3 different fibrotic patterns and 3 ablation strategies: no ablation, PVI, and PVI+BOX. For each model, we create a training set and test set, both containing 100 samples, using a fixed design, as described in Section 3.1 and shown in Figure 6. We run the model using each of these points as a pacing site and check whether AF was induced or not. For the training set, we also run the low fidelity model, obtaining 100 samples. In total we run 1800 high fidelity simulations and 900 low fidelity simulations. We test three different classifiers for both cases: a nearest neighbor classifier described in Section 3.1, a single-fidelity Gaussian process classifier described in Section 2.3, and a multi-fidelity Gaussian process classifier described in Section 2.6 with 100 low fidelity samples. We train the classifiers with different amounts of data from the training set, ranging from 20 to 100 points. For each level of data, we evaluate the performance of the classifier computing the balanced accuracy in the 100 samples of the test set.


[image: Figure 6]
FIGURE 6. Inducibility maps for the three cases. The performance of the classifiers is analyzed for three cases: a case with no ablation (A), a case with PVI ablation (B) and a case with PVI+BOX ablation (C). In each panel, the leftmost column shows the training set (top) and the single-fidelity Gaussian process classifier trained with 100 low fidelity samples (bottom). In the remainder panels, we show the nearest neighbor, single-fidelity Gaussian process classifier, and multi-fidelity Gaussian process classifier trained with 50 and 100 high fidelity samples. The ground truth points are also shown in these panels.


The results of this numerical experiment are summarized in Figures 6–8 and Table 1. First, we note that training and predicting with the Gaussian process classifiers only takes a negligible fraction of the cost of high fidelity model, less than 5 min on a laptop. In Figure 6, we show the resulting classifiers trained with the same 50 and 100 high fidelity samples and also the low fidelity classifier trained with 100 samples. We see that the multi-fidelity classifier at 50 and 100 samples shares some features with the low fidelity classifier that are not present in the other two classifiers. Nonetheless, the multi-fidelity classifier is learning from the high fidelity data, as its balanced accuracy increases as the number of samples increases, as seen in Figure 8. We observe that the differences in accuracy tend to collapse as more data is available, showing small differences when 100 samples are provided to the classifiers. The multi-fidelity classifier has the biggest advantage in the small data regime, when it is trained with between 20 and 70 high fidelity samples. Perhaps surprisingly, we see that the low fidelity classifier is always more accurate than the single-fidelity classifiers trained with 20 samples. The cost of training the low fidelity classifier is approximately equivalent to the cost of acquiring 6.25 high fidelity samples, which makes it a cost-effective alternative to estimate the inducibility with limited budget. Along the same line, we compare the accuracies of the different classifiers for the different cases when the training with the equivalent cost of 40 high fidelity simulations in Figure 7B. This is the number of simulations that has been used in clinical studies to optimize the ablation treatment (Boyle et al., 2019). We observe that by using the multi-fidelity classifier we gain, on average, 5.4% points of accuracy comparing to the single-fidelity classifier and 5.7% comparing to the nearest neighbor classifier. Only in one case there was a decrease in accuracy when using the multi-fidelity classifier, but of only 0.45% points of accuracy.


[image: Figure 7]
FIGURE 7. Performance of the classifiers. In (A), the agreement between the low fidelity and the high fidelity model is reported as a confusion matrix, as resulting from 1,800 simulations (900 per fidelity). Moreover, each point is colored according to the case of fibrosis. In (B), we compare the balanced accuracy for the nearest neighbor, single-fidelity, and multi-fidelity classifier, for all nine model scenarios and with a fixed budget of 40 high fidelity simulations.



[image: Figure 8]
FIGURE 8. Accuracies for 9 different cases. We show how the balanced accuracy evolves as more samples (from 20 to 100) are available for the multi-fidelity, single-fidelity, and nearest neighbor classifiers. The samples are represented as the cost of running a high fidelity model and the multi-fidelity curve is shifted to the right to account for the cost of 100 low fidelity simulations. The dashed horizontal line represents the accuracy of a Gaussian process classifier trained with 100 low fidelity simulations predicting the high fidelity test set.



Table 1. Inducibility results from the 1,800 high fidelity simulations and 900 low fidelity simulations.

[image: Table 1]

We analyze the agreement between the low and high fidelity models by looking at training sets for all cases in Figure 7A. Overall, we find the low and high fidelity agree in 81.7% of the simulation. However, we see that the low fidelity model is biased towards predicting no AF when the high fidelity model is predicting AF. This is confirmed in every case, as can be seen in Table 1, where low fidelity inducibility is always lower than the high fidelity inducibility. A possible explanation is that the low fidelity model, being based on a coarser discretization of the atrial model, has fewer fine-grained features (fibrosis, anatomy, wall thickness) that might favor AF. It is also worth noting that we adapted the conduction velocity in the low fidelity model by increasing it to the level of the high fidelity one, a change that is potentially antiarrhythmic but that increased the correlation between the models and hence the overall performance of the multi-fidelity classifier. We also found that in the case of 50% fibrosis, the low fidelity model tends to predict proportionally more occurrence of AF when the high fidelity model is not predicting AF.

Finally, we see in Table 1 that the ablation strategies applied are decreasing the inducibility in all cases, both for the train, test and low fidelity sets. We see that pulmonary vein isolation has more impact on the inducibility than the subsequent box ablation for all cases, both in the train and the test set.




4. DISCUSSION

In this study, we propose a novel methodology to estimate the AF inducibility regions of a computational model of the human atria. This is achieved by training a Gaussian process classifier that indicates whether a given point on the atria is associated with a sustained AF event, when incrementally pacing from its location. Our classifier is directly trained on the atrial surface, hence it embodies the geometrical and topological properties of the atria, which are known to be key determinants in AF. Gaussian process regression on Riemannian manifolds is not a novel concept, as well as its link to certain types of SPDEs (Lindgren et al., 2011). To the best of our knowledge, however, this is the first study proposing a multi-fidelity Gaussian process classifier on manifolds, which extends our previous work on Euclidean spaces (Sahli Costabal et al., 2019). The proposed method is non-intrusive, in the sense that the atrial model is a black-box, with comparable training cost to a nearest neighbor classifier. Moreover, when a low fidelity model is available—in our case, obtained by coarsening the computational mesh—, the accuracy of the classifier can be sensibly improved with a multi-fidelity approach. Finally, given its structure, the methodology can be easily extended to multi-class classifier, e.g., with the capability to distinguish AF episodes from atrial flutter.

From a methodological perspective, our results show that the accuracy of the classifier depends on the length scale of the inducibility region. Intuitively, the shorter the length scale is, the more training data is needed. When the length scale is much smaller than the size of the atria, it is more likely to observe an inducibility region composed of disconnected and relatively small components. Moreover, the boundary of the inducibility region becomes less smooth. Interestingly, the length scale has, however, a limited effect on the estimate of the overall inducibility. This is due to fact that the volume of the inducibility region is only marginally affected by the smoothness of its boundary and the presence of multiple disconnected regions. We attempt to estimate the length scale of the inducibility map by training a single-fidelity classifier with both the high fidelity test and train sets. The average length scale of the resulting classifier of the baseline AF model is ℓ= 0.28. This is smaller than the average distance between points in the training set, which corresponds to 0.39, and may explain the balanced accuracies that we obtained were only around 90%. We also observed in the numerical assessment that the efficiency of active learning deteriorates at smaller length scales, for ℓ between 0.2 to 0.4, and we decided not to use it for predicting inducibility maps in the experiments in Section 3.2, also to limit the computational cost.

From a computational viewpoint, the proposed multi-fidelity classifier reports the maximum improvements in accuracy in a typical data set of 40 pacing sites. In general, the multi-fidelity classifier was more accurate for a small number of samples (less than 50), while for a larger sample size the difference between single- and multi-fidelity classifiers is less pronounced. When comparing the model without ablation lines and with ablation, both high- and low fidelity models agree on the observed reduced inducibility due to ablation. In the case of ablation, therefore, it is convenient to adopt a multi-fidelity approach or even just the low fidelity classifier, to save computational time. In fact, the biggest advantage of the low fidelity classifier relies on its very limited computational cost, which is only a small fraction of the high fidelity counterpart. This highlights the importance of taking advantage of these inexpensive approximations of the high fidelity model whenever possible. We remark that our low fidelity model does not require a training phase itself, thus there is no additional offline cost.

Finally, from a modeling perspective, our results on the inducibility of AF are in agreement with those reported in the literature. Firstly, points in the proximity of fibrotic regions are more likely to induce AF (Kawai et al., 2019). Visually, there is a spatial correlation between the inducibility region (see Figure 6) and the fibrosis distribution (Figure 2). The local inducibility property may therefore reflect the local tissue properties (Boyle et al., 2021). Nonetheless, inducibility may also depend on other factors, such as an abrupt change in the fiber direction, heterogeneity in the ionic parameters, and the presence of anatomical defects or a scar. Hence, pacing sites leading to AF may not necessarily be correlated with the local tissue properties. Secondly, our results show that, with a fixed design, 40 pacing points are sufficient to achieve a good estimate of the inducibility (Boyle et al., 2021), while 20 are probably too few. The multi-fidelity classifier, however, can achieve high accuracy with only 20 samples. Thirdly, the ablation treatment reduced the overall inducibility, essentially because a large inducible region surrounding the pulmonary veins has been isolated from the rest of the tissue, impeding the emergence of AF. Due to the presence of severe fibrosis in the tissue, however, it is still possible to induce AF from several other portions of the atria, mostly unaffected by ablation. Finally, as described above, the inducibility region in both cases shows a small length scale, which can explain why pacing from different but sufficiently close points may lead to discordant results in AF inducibility. In other words, the uncertainty in the outcome is potentially large for some pacing sites.

Our work also presents some limitations. We limited our analysis to a single anatomy, but we tested different fibrosis patterns, in terms of distribution and severity, and two standard-of-care ablation strategies. Therefore, the framework can be applied with no changes to other anatomies and therapies, such as antiarrhythmic drug therapy (Sahli Costabal et al., 2018; Gharaviri et al., 2021a). It is worth to mention that for this study we ran 1 800 high fidelity simulations and 900 low fidelity ones, for a total cost of roughly 25 000 node-hours on the CSCS supercomputer. We also tested a single pacing protocol with a fixed design. The stimulation protocol is typically tailored to the ionic model and can be tested in a single-cell preparation, but sometimes this is not optimal, especially in the presence of heterogeneity and fibrosis. Optimized protocols (Azzolin et al., 2021) can be easily combined with our approach, since the algorithm does not depend on it. The duration of each simulation, 4 s, is sufficiently long to detect AF events, but it might preclude the discovery of self-terminating episodes of AF, or the translation of an AF event to atrial flutter. These cases are typically very limited in number. The presence of self-terminating AF also depends on the ionic model used, which may not be suitable for long simulations (more than 1 min). Finally, we observed that using active learning can be effective in judiciously selecting new observation sites, albeit with a deteriorating efficiency at smaller length scales. Nonetheless, this limitation motivates future work on exploring new kernel functions and active learning criteria that might be better suited for this task.

From a clinical perspective, there is an increasing application of patient-specific electrophysiology models. Thus, there is a compelling need for reducing the overall time needed to deliver the optimal virtual treatment within the constraints dictated by clinical practice (Azzolin et al., 2021; Boyle et al., 2021; Pagani and Manzoni, 2021). This study shows that the proposed Gaussian process classifier can, in fact, reduce the computational cost while maintaining a comparable or even better accuracy to a single-fidelity approach. Moreover, it does not require intrusive changes to existing implementations and it has a very limited computational overhead, rendering its translation to existing patient-specific solutions feasible and appealing.

Inducibility maps can also offer a novel, yet unexplored, view into AF, possibly unveiling regions susceptible to trigger AF. They could be used to design and test ablation scenarios, e.g., by isolating vulnerable regions. These maps could also be used to validate an AF model, by checking whether the patient-specific model and the real atria agree on the inducibility observed during a procedure.

In summary, our multi-fidelity classifier provides an efficient methodology to evaluate the effect of ablation therapy in patient-specific models of AF. We envision that this tool will accelerate the personalization of accurate treatments in the clinical setting.
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Method

Bootstrapping

Gaussian distribution
sampling

Uniform distribution
sampiing

Generative Adversarial

Networks

Machine Learning
surrogates

Remarks

Well suited when there is no prior knowledge over the variables
defining the cohort.

It preserves statistical properties of the original sample.

Results comparable to bootstrapping in both data-criven and
clinically-driven scenarios.

Itis the most consistent sampling method across the experiments.

Increases the variance of the synthetic sample more than any
other method. Oversamples the tails of the observed distribution
where less plausible individuals can be found, leading to low
efficiency for data-driven acceptance functions.

Achieves good results in the clinically driven scenario, with high
efficiency and variance.

Sensitive to training set size. Worse results than probability
distribution methods if the reference cohort is small. The sample
variance was substantially reduced in our data-driven experiments.
with 26 aortas.

Combined with a sampling method, they can be used to reduce
the number of evaluations of acceptance functions.

It still requires building a starting sample to be used as training set.

Sampling scenarios

Appropriate if the statistical properties of the resulting sample are
relevant, e.g., when the goal is to perform an in-silico trial.

Gaussian distribution sampling can provide denser sampling of the
tails than bootstrapping, specially if the reference cohort is small.
Anatomies far from the mean in feature space can stil be
underrepresented, leading to unbalanced training sets for Machine
Learning models.

Assuming nomality can bias the sample if the underlying
distribution is not Gaussian.

Not sitable for reproducing the original statistical properties
observed in the reference cohort, it can provide better balanced
training sets for Machine Learning modls.

The limitation of the sample size must be taken into account for the
sampling scenario.

Statistical properties of the original sample can be lost, specially
with small reference cohorts.

Statistical properties of the resulting cohort depend on the
sampling method. High rates of false negatives can bias the
sample by reducing its density in certain regions of the space of
aortas.

For each of the techniques evaluated, we present the main remarks and discuss possible strengths and limitations under different sampling scenarios.
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Data-driven Clinically-driven (Data n Clinically)-driven

Method  Phenot. Ay Ay Al 4, Al AE, ArnX Apnx Ainx
N 0978 0650 0954 0695 0301 0.004 0679 0.457 0662
Bootstrap A 0978 0675 0957 0231 0557 0212 0551 0.404 0529
E 0969 0720 0958 0.008 0253 0739 0724 0568 0720
N 0954 0753 0.960 0858 0141 0001 0820 0655 0.826
Gaussian A 0983 0735 0968 0052 0874 0074 0863 0654 0845
E 0975 0722 0.967 0003 0417 0880 0862 0646 0855
N 0999 0807 1.000 0.887 0113 0000 0886 0716 0887
Uniform A 0979 0534 0908 0.135 0616 0249 0.605 0346 0566
E 0954 0554 0957 0.009 0210 0781 0753 0.446 0755
N 0974 0.806 0979 0895 0.102 0,003 0874 0736 0878
GAN A 0963 0733 0958 0.089 0855 0.056 0846 0669 0833
E 0931 0573 0931 0,000 0.104 0896 0840 0521 0833

The efficiency of each row is the result of using the method of the first column in the cohort G, where X s the phenotype corresponding to the row, as specified in the Phenot. column.
Refer to the text for the details on the interpretation of the date. Row colors follow the seme convention used in previous figures for phenotypes: red for phenotype N, green for phenotype
A, and blue for phenotype E.
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AL
A

Acceptance function description

Accepts an aorta if all biomarkers are within the corresponding
observed range in Co

Accepts an aorta if all biomarkers are within the range & 2o for
that biomarker in Co

Accepts an aorta if all biomarkers are within the range M = 3o for
that biomarker in Co

With X € {N, A, E}, accepts an aortaif it belongs to phenotype X
With @ € {r, 1,M), and X € (N, A, E}, accepts an aorta f it is
accepted by both and Afy, and A%,

Subscript DD stands for data-driven and subscript CD satnds for clinically-diven. Refer
to section 2.5 for a detailed description.
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Method AT A AM MWW test

Bootstrapping 0599 0.786 0979 0/11 reject Ho
Gaussian 0625 0.739 0.966 0/11 reject Ho
Uniform 0.293 0.424 0.893 7/ 11 reject Hy.
GAN 0.808 0.950 0999 2/11 reject Ho

The last column shows the number of biomarker distributions significantly different to the original according to the MWW test (refer to the text for further detai). The columns labeled
A%, a € {r, 1, M)}, indicate the efficiency of the data augmentation methods when considering each acceptance function.





OPS/images/fphys-12-713118/fphys-12-713118-t002.jpg
Biomarker I3 M o B [min, max] (A") Mx3B (AM) 20 (AF)

PA 14.77 14.71 1.40 1.40 [12.38,17.50] [10.50,18.92] [11.97,17.57)
PD 1196 11.35 1.12 127 [10.24,14.32) [7.53,15.17) [9.73,14.20)
PT 1338 12.78 155 1.67 [10.19,17.32) [7.78,17.78) [10.28,16.49)
LPD 233.69 211.36 2525 3371 [175.4,274.16] [110.22,312.49) [183.19,284.20)
MA 17.28 15.19 1.79 275 [15.19,21.6) 6.95,23.44) [18.71,20.85)
Sov 15.30 15.49 212 213 [11.7821.0) 9.10,21.89) [11.06,19.54]
K 7.42 7.49 0.44 045 6.74,8.40) (6.15,8.84) 6:53,8.30]
h 92.12 82.80 15.21 17.85 [70.21,139.42) 29.26,136.33] 61.69,122.55]
w 7072 60.70 10.76 14.71 60.25,88.56] [16.56,104.83] [49.19,92.26]
hw 1.33 118 029 032 0.91,1.91) (022,2.15) 0.76,1.90]
tor 070 o1 002 002 066,0.73) 063,0.78) 065.0.74)

From left to right, the first four columns correspond to the mean, i, the mode M, the standard deviation, and the 95% Chebyshev’s theorem bound. The last three columns contain the
intervals considered in the different acceptance functions A", AM, and At (urther detail can be found in the text). Allunits are in millimeters, except for k, which is expressed in mm™",
and h/w and tor which are adimensional.
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Label

SoV
PA

Biomarker description

Radius of the aorta in the middle of the sinuses of Valsalva (mm)

Radius at a point in the ascending aorta, close to the sinotubular
junction (mm)

Radius at a point in mid ascending (mm)

Radius ata point in the top of the aortic arch (mm)

Radius ata point in the descending acrta, opposite to PA (mm)
Length of centeriine from valve to PD (mm)

Mean analytic curvature of the centeriine from PA to PD ()
Height from PT to the level of PA/PD (mm)

Width of the arch, measured as the distance from PA to PD (mm)
Height-to-width ratio

Tortuosity, defined as 1 — %
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Reference Method description Pros/Cons Private Benchmarking Dataset
Accuracy (%) (Xu et al.,
2020) (scar)
Xu et al., 2020 (1) priori coarse tissue mask generation Segment more than just LV 97.13 Private [SAX cine bSSFP
GAN, scar — LV blood pool, MRI, Xu et al. (2020),
(2) condition LGE-equivalent image myocardium and scar regions; n=280]
synthesis GAN, Further improve
(3) fine segmentation GAN temporal-spatial learning by a
two-stream structure that
includes a spatial perceptual
pathway, a temporal perceptual
pathway, and a multi-attention
weighing unit.
Zhang et al., 2019 (1) LV localization — ROI detection by Combine both LSTM-RNN 95.03
CNN based local motion analysis and
(2) Motion feature extraction dense motion flow estimation
(2.1) global motion feature — dense based global motion analysis
motion flow estimation
(2.2) local motion feature — LSTM-RNN
(3) infarction discrimination — FCNN
Xu et al., 2018 GAN Introduce adversarial learning 96.77
(A) Generator: and task relatedness to reduce
(A1) LV morphology and kinematic divergence
abnormalities — spatio-temporal feature
extraction network through 3D
successive convolution
(A2) complementarity between
segmentation and quantification - joint
feature learning network for multitask
learning;
(B) Discriminator:
(B1) intrinsic pattern between tasks —
uses task relatedness network for
adversarial learning
Xu et al., 2017 (1) Heart localization — FAST R-CNN Combine both ROI based local 94.93
(Girshick, 2015) motion analysis and deep
(2) Motion statistical feature — optical flow based global
LSTM-RNN motion analysis
() discriminative layer — FCNN
Popescu et al., 2017 Simple Linear lterative Clustering (SLIC) Only radial strain analyzed, 86.47
based supervoxels (Achanta et al., excluding longitudinal and
2012) circumferential strains;
K-means clustering used
requires an empirical definition
of the number of clusters
Bleton et al., 2016 Neighborhood approximation forests Consider myocardial thickness 84.39

and its temporal variations
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LA and PVs LA scar
Dice Scores ASD (mm) Dice Scores ASD (mm)
2D U-Net 0.898 + 0.034 3.38 + 4.53 0.526 +£0.118 1.83 + 0.891
3D U-Net 0.895 + 0.032 3.81 4+ 3.89 0.508 + 0.106 1.90 + 0.837
MVTT (Yang et al., 2020) 0.902 + 0.037 2.25+1.39 0.613 +£ 0.131 1.39 £1.03
JAS-GAN (Chen et al., 2021) 0.913 £ 0.027 224 +273 0.621 £ 0.110 1.24 £1.04

ASD, average surface distance.
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LA/LV  Reference Model backbone  Model description Pros/Cons Quantitative results Dataset
(scar/fibrosis)

(A) LA Yang et al., 2020* ResNet Multi-view based Spatial sequential Mean Dice = 0.8258 Private [LGE MR,
dilated attention and information processing; n =190 (97 pre- and
residual network with Attention network to 93 post-ablation)]
sequential learning via tackle class imbalance
convolutional LSTM

Chen et al., 2021 GAN Adaptive attention Inter-cascade adversarial Mean Dice = 0.946 Private [LGE MR,
cascade network for learning paradigm to n =192 (97 pre- and
simultaneous tackle class imbalance 95 post-ablation)]
estimation of and regularize the output
unbalanced targets +
joint discriminative
network for adversarial
regularization

B) LV Moccia et al., 2018 E-Net E-Net Relatively low accuracy; Dice = 0.55 Private (LV LGE MR,

Unable to tackle class n=30)
imbalance well
Moccia et al., 2019 FCNN FCNN Relatively low accuracy; Median Dice = 0.5400 Private (LV LGE MR,
Unable to tackle class n=30)
imbalance well

Zabihollahy et al., 2019a  CNN Volume patch based utilize small volume Mean Dice = 0.9363 Private (LV LGE MR,

3D CNN patches for accurate n=10)
local view inspection
Fahmy et al., 2020 U-Net U-Net based 3D CNN Sub-volume design Mean Dice = 0.54 Private (LV LGE MR,

utilizes small volume
patches for accurate
local view inspection

*As (Yang et al., 2020) and (Chen et al., 2018) reported very similar methodologies, we reported (Yang et al., 2020) only in this table.

multi-vendor n = 1073)





OPS/images/fphys-12-709230/fphys-12-709230-t005.jpg
LA/LV  Reference

Model backbone

Model description

Quantitative results
(scar/fibrosis)

Pros/Cons

Dataset

(A) LA Yang et al., 2017
Lietal., 2020
B)Lv Moccia et al., 2018

Moccia et al., 2019

Zabihollahy et al., 2020

Auto Encoder

CNN

E-Net

FCNN

U-Net

Stacked Sparse
Auto-Encoders

Graph-cuts framework
based on multi-scale
CNN

E-Net on manually
segmented
myocardium region only

FCNN on manually
segmented
myocardium region only

Cascaded multi-view
U-Net via majority vote
multi-view fusion

Significantly higher Mean Dice = 0.82
accuracy;

Misenhancement in

valves, etc. can cause

false positive;

Hyper-parameter

sensitive

Multi-scale consideration Mean Dice = 0.898
enables both local and
global feature extraction;
Surface projection
mitigate difficulty in
accurate LA wall
delineation;

Require collection of
b-SSFP

Significantly higher
accuracy;

Require manual
intervention in
myocardium
segmentation

Dice = 0.86

Significantly higher Median Dice = 0.7125
accuracy;

Require manual

intervention in

myocardium

segmentation

Consider sequential Median Dice = 0.8861
spatial information on all

three axes

Private [LA LGE MRI,
n =10 (pre-ablation),
10 (post-ablation)]

Private [LA + bSSFR,
LGE MRI, n =58
(post-ablation)]

Private (LV LGE MR,
n =30)

Private (LV LGE MR,
n =30)

Private (LV LGE MR,
n=34)
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Reference

Zabihollahy et al., 2019b

Zhang et al., 2020

Yang et al., 2018a

Xiong et al., 2019

Xiao et al., 2020

Chen J. et al., 2019

We included the benchmarking quantitative results from Xiong et al. (2019) for readers’ interests, as they covered nearly all popular deep learning models for general image processing.

Model backbone

U-Net

U-Net

U-Net

FCNN

FCNN

Double-sided FCNN

Method description

Standard U-Net

U-Net with bidirectional
convolutional LSTM
U-Net with multiview
sequential learning via
convolutional LSTM and
dilated residual learning
Dual-path FCNN
concerning both local and
global view

3D FCNN with 3D view
fusion

Semi-supervised learning —

discriminative feature
learning via double-sided
domain adaptation

Pros/cons

Fast processing; deep
latent network

Process spatial sequential
information

Process spatial sequential
information on all 3 spatial
axes

Mitigate class imbalance;
Less input image size -
save GPU memory

Process spatial information
on all 3 spatial axes
volumetrically;

Greater amount of GPU
memory occupied

Achieve a fusion of the
feature spaces of labeled
data and unlabeled data to
achieve semi-supervision

Quantitative result (myocardium)

Mean Dice = 0.8661

Mean Dice = 0.906

Mean Dice = 0.897

Dice = 0.942 Benchmarking (Dice)
U-Net
(Ronneberger et al.,

2015)

Dilated U-Net (Men
etal, 2017)

VGGNet (Men
etal, 2017)
Inception (Szegedy
etal., 2015)

ResNet (He et al.,
2016)

DCN-8 (Long et al.,
2015)

DeconvNet (Noh
et al., 2015)

SegNet
(Badrinarayanan
etal, 2017)

V-Net (Milletari
etal., 2016)

DeepOrgan (Roth
et al., 2015)

Zhu et al., 2013
Dice = 0.912

Mean Dice = 0.9078

0.642

0.687

0.684

0.792

0.804

0.558

0.500

0.656

0.696

0.632

0.821

Dataset

Private (LV LGE MRI, n = 24)

LASC’18 (Xiong et al., 2021)
(LA LGE MRI, n = 100)

Private (LA LGE MRI, n = 100)

Private [LA LGE MRI, n = 40
(pre-ablation), 70
(post-ablation)]

LASC’18 (Xiong et al., 2021)
(LA LGE MRI, n = 100)

Private (LA LGE MR,
two-center, n1 =175, n2 = 94)
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Type of method

Reference

Method Description

Pros

Cons

Quantitative result
(scar/fibrosis)

Dataset

(A) Thresholding

(B) Classification

Hennemuth et al., 2008

Tao et al., 2010

Cates et al. (2013) (part of
Karim et al., 2013)

Bai et al. (2013) (part of
Karim et al., 2013)

Perry et al. (2013) (part of

Karim et al., 2013)

Karim et al. (2013) (part of

Karim et al., 2013)

Gao et al. (2013) (part of

Karim et al., 2013)

Karim et al., 2014

Yang et al., 2018b

Kurzendorfer et al., 2018

Histogram analysis with
constrained watershed
segmentation

Otsu thresholding (Otsu, 1979)
Refine segmentation — (accept
false rejection) connectivity
filtering and (reject false
acceptance) region growing

Histogram analysis and simple
thresholding

Hysteresis thresholding (Canny,

1986)

K-means clustering

Markov random fields (MRF)
model with graph-cuts

Active contour with
expectation-maximization
(EM)-fitting

Graph cuts

Simple linear iterative
Clustering (SLIC) + support
vector machine

Fractal Analysis and Random
Forest Classification

Automatic threshold
determination;

No training (supervision)
needed;

Automatic threshold
determination;

No training (supervision)
needed;

No specific density model
assumed — no overfitting;
Region growing technique can
be useful for small Ml
Simple and accurate
processing

Coherent segmentation
(adjacent faint scar sections
can still be segmented)

Relatively higher performance in
pre-ablation fibrosis
segmentation result
benchmarking;

No training (supervision)
needed

Relatively higher performance in
pre-ablation fibrosis result
benchmarking;

Counteract region leaking
problem in region growing
techniques

Does not requires manual
outlining of base-line healthy
myocardium

Fully automatic scar
segmentation;

Able to complement minor
flaws in manual annotation

Utilize texture information in
addition to clustering

Based on fixed models —
mismatches occur for
some cases

Connectivity filtering and
region growing may not be
suitable for discrete LA
fibrosis regions

Time consuming (require
manual work);

Manual variance may be
significant for the thin LA
wall

Fixed parameterized model
relying on empirical data

Cluster number to be
determined beforehand;
Variance in LA scar
segmented

Require necessary
post-processing steps to
refine clustering

Fixed number of Gaussian
mixtures in model

Require additional modality
(bSSFP)

Require collection of
b-SSFP modality;
Supervised learning — need
paired manual labels for
training

Require accurate
segmentation of the
myocardium

*

Mean Dice = 0.83

Median Dice = 0.42
(pre-ablation); Median
Dice = 0.78 (post-ablation)

Median Dice = 0.37
(pre-ablation); Median
Dice = 0.76 (post-ablation)

Median Dice = 0.45
(pre-ablation); Median
Dice = 0.72 (post-ablation)

Median Dice = 0.30
(pre-ablation); Median
Dice = 0.78 (post-ablation)

Median Dice = 0.42

(pre-ablation); Median
Dice = 0.78 (post-ablation)

*

Mean Dice = 0.79

Mean Dice = 0.66

Private (LGE MRI, n = 21)

Private (LV LGE MR,
n=20)

ISBI cDERMIS 2013 (Karim
et al., 2013) [LA LGE MR,
n = 30 (pre-ablation), 30
(post-ablation)]

ISBI cDERMIS 2013 (Karim
et al., 2013) [LA LGE MR,
n = 30 (pre-ablation), 30
(post-ablation)]

ISBI cDERMIS 2013 (Karim
et al., 2013) [LA LGE MR,
n = 30 (pre-ablation), 30
(post-ablation)]

ISBI cDERMIS 2013 (Karim
et al., 2013) [LA LGE MR,
n = 30 (pre-ablation), 30
(post-ablation)]

ISBI cDERMIS 2013 (Karim
et al., 2013) [LA LGE MR,
n =15 (post-ablation)]
Private (LA LGE + bSSFP
MRI, n = 15)

Private [LA LGE + bSSFP
MRI, n = 11 (pre-ablation),
26 (post-ablation)]

Private (LV LGE MR
n =30)

“Overall quantitative metric for the whole result population was not found. Please refer to the original article for more information of the result.
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Kurzendorfer et al.,
2017¢

Kurzendorfer et al.,
2017a

Kurzendorfer et al.,
2017b

ASD: average surface distance.

LGE MRI

LGE MRI

LGE MRI

(1) LV localization — image
registration

(2) short axis estimation —
principal component analysis
(PCA)

(8) endocardial refinement — a
minimal cost path search (MCP)
in polar space using the edge
and scar information

(4) epicardial refinement - by
shape and inter-slice
smoothness constraints

(5) surface extraction — 3D
mesh generation by marching
cube algorithm (Lorensen and
Cline, 1987)

(1) LV detection - circular
Hough transforms

(2) LV blood pool detection —
morphological active contours
approach without edges
(MACWE)

(8) endocardial boundary
extraction —a minimal cost path
search (MCP) in polar space
using the edge and scar
information

(4) epicardial boundary
extraction — by edge
information while considering
endocardial contour extracted
(1) LV detection — circular
Hough transforms, Otsu
thresholding and circularity
measures

(2) ROI detection —
morphological active contours
approach without edges
(MACWE)

(8) endocardial boundary
extraction — random forest
classifier

(4) epicardial boundary
extraction — minimal cost path
search to the boundary cost
array in polar space

Fast speed and low
computational workload by
using simple texture features;
Consider image data along
the longitudinal axis in
addition to the short axis,
improving inter-slice
smoothness and avoid
inter-slice shift;

No need to register with other
modality (e.g., bSSFP cine
MRI)

Fast speed and low
computational workload by
using simple texture features;
No need to register with other
modeality (e.g., bSSFP cine
MRI)

Fast speed and low
computational workload by
using simple texture features;
No need to register with other
modality (e.g., bSSFP cine
MRI)

Poor performance in apex and
LV outflow tract, poor accuracy
in basal regions;

Since this method is texture
based, the distribution of scar
and the small size of the atrium
adversely affect its performance

Poor performance in apex and
LV outflow tract, poor accuracy
in basal regions;

Since this method is texture
based, distribution of scar
adversely affect its performance

Poor performance in apex and
LV outflow tract, resulting in
poor accuracy in basal regions
and poor ASD result

Mean Dice = 0.92;
ASD = 1.35 mm

Mean Dice = 0.85
(endocardial), 0.84 (epicardial);
ASD = 2.54 mm (endocardial),
3.32 mm (epicardial)

Mean Dice = 0.83
(endocardial), 0.83 (epicardial);
ASD = 3.55 mm (endocardial),
4.12 mm (epicardial)

Private (LV LGE MRI,
n =30)

Private (LV LGE MR,
n=26)

Private (LV LGE MR,
n=100)
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Reference

Dikici et al., 2004

Ciofolo et al., 2008

Wei et al., 2011

Wei et al., 2013

Alba et al., 2014

Modalities

LGE MR, cine MRI

LGE MR, cine MRI

LGE MRI, cine MRI

LGE MRI, cine MRI

LGE MRI

Methodology description

(1) Define LV border —
non-rigid registration of cine
and LGE MRI

(2) LV pixel classification —
SVM

2D segmentation with a
geometrical template (LGE
only) and 3D mesh
alignment (LGE + CINE)

(1) Affine transformation
estimation

(2) non-rigid registration of
LGE and cine MRI

(3) myocardial contour
generation by simplex
mesh geometry
Translational registration of
LGE and cine MRI data; 3D
non-rigid deformation of the
myocardial meshes by both
short axis (SAX) and
longitudinal axis (LAX) data
Slice-by-slice graph cuts
(GC) with interslice and
shape constraints

Pros

Automatic segmentation of
LGE-MRI with CINE-MRI
information

Overcome
non-homogeneous intensity
of the myocardium in LGE
infarcted regions

Utilize information better in
connecting cine and LGE MRI

Consistent and robust
segmentation;

Consider both SAX and LAX
data to reduce interslice
misalignment

Impose morphological
constraints that are common
across MRI sequences — no
need for subject-specific
tuning or for user initialization
and generalizable for other
sequences (CINE-MRI);
Achieve robustness to
variations in grey-level
appearance and to image
inhomogeneities — more
robust to the presence of
abnormalities;

Consider interslice
interactions;

No need to register with other

modality (e.g., bSSFP cine
MRI)

Cons

No longitudinal axis (LAX)
consideration, resulting in
inter-slice misalignment;

Need to register with other
modality (CINE MRI)

Meshes focus only on features
in the SAX slices, no inter-slice
consideration and thus
inter-slice misalignment;

Need to register with other
modality (CINE MRI)

No LAX consideration, resulting
in inter-slice misalignment;
Need to register with other
modality (CINE MRI)

Need to register with other
modality (CINE MRI)

Give poorer result when
generalized to CINE-MRI (due
to many artefacts in the dataset
tested)

Quantitative result
(myocardium)

Average contour pixel location
error = 1.54 pixel

ASD = 2.2 mm (endocardial),
2.0 mm (epicardial)

Mean Dice = 0.8249;
ASD = 0.97 pixel (endocardial),
0.93 pixel (epicardial)

Mean Dice = 0.9409;
ASD = 0.67 mm (endocardial),
0.69 mm (epicardial)

Mean Dice = 0.81;
ASD = 1.83 mm (endocardial),
2.38 mm (epicardial)

Dataset

Private (LV LGE + cine
MRI, n = 45)

Private (LV LGE + cine
MRI, n = 27)

Private (LV LGE + cine
MRI, n =10)

Private (LV LGE + cine
MRI, n = 21)

Private (LV LGE MR,
n=20)
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Year

2012

2013

2018

2019

2020

Challenge/Dataset

LV scar segmentation challenge
(Karim et al., 2016)

LA scar segmentation
challenge (Karim et al., 2013)
LA segmentation challenge
(Xiong et al., 2021)
Multi-sequence Cardiac MR
Segmentation Challenge
(MS-CMR) (MS-CMR
Challenge, 2019)

Myocardial pathology
segmentation combining
multi-sequence CMR (MyoPS)
(MyoPS Challenge, 2020)

Conference (MICCALI/IBSI etc.)

MICCAI

ISBI

MICCAI

MICCAI

MICCAI

Modality (data size n)

LGE MRI (30)

LGE MRI (30)

LGE MRI (150)

LGE MRI, T2 MRI, bSSFP
MRI (45, coregistered)

LGE MRI, T2 MRI, bSSFP
MRI (45, coregistered)

Target
LV scar
LA scar
LA cavity
LV blood pool, RV blood pool,

LV myocardium

LV blood pool, RV blood pool,
LV normal myocardium, LV
myocardial oedema, LV
myocardial scar

Pathology

Mi

AF

AF

Mi

Mi
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Training Prediction

Pr3 Pr5 Pra Sinusoidal APs
Original 0.144 0.166 0.388 0.695 0.463
NN-f 0.113 0.110 0.167 0.453 0.299
NN-d 0.146 0.128 0.165 0.507 0.294

Comparing the originl candidate model, the a-gate modelled using a neural network (NN-
1), and the a-gate with a neural network discrepancy term (NN-d) for training results: the
activation steady-state protocol (Pr3), and the deativation time constant protocol (Pr5);
and the prediction results: the inactivation protocol (Prd), the sinusoidal protocol, and the
action potential protocol (APs).
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Training Prediction

Pr3 Pr5 Pra Sinusoidal APs
Original 0.044 0.027 0.066 0.035 0.060
NN-f 0.025 0.026 0.044 0.052 0.107
NN-d 0.029 0.027 0.048 0.035 0.087

Comparing the originl candidate model, the a-gate modelled using a neural network (NN-
1), and the a-gate with a neural network discrepancy term (NN-d) for training results: the
activation steady-state protocol (Pr3), and the deativation time constant protocol (Pr5);
and the prediction results: the inactivation protocol (Prd), the sinusoidal protocol, and the
action potential protocol (APs).
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Model RMP (mV) Vmax(mV) Tmax(ms) dV/dt(V/s) APD30 APD50 APD90 Tri(90-30) Tri(30/90) Tri(90-50) Tri(50/90)

(ms) (ms) (ms) (ms) (ms)
Base —84.0 53.8 0.48 287.2 123.7 226.5 276.3 152.6 0.45 49.8 0.82
SNLV —84.0 55.5 0.48 290.7 98.2 210.5 256.8 158.6 0.38 46.3 0.82
ICMP —84.0 57.6 0.48 295.1 77.2 197.5 2425 165.3 0.32 45.0 0.81

Biomarkers were obtained by pacing the action potential models at 500 ms.

APD30, APD50, and APD9O, action potential duration at 30, 50, and 90% repolarization; dV/adt, upstroke velocity; RMR resting membrane potential;, Tmax, time to maximal
voltage upstroke; Tri(90-30), triangulation index defined as APD90-APDS0; Tri(30/90), triangulation index defined as APD30/APD90; Tri(90-50), triangulation index defined
as APD90-APDS50; Tri(50/90), triangulation index defined as APD50/APD90; Vmax, maximal voltage of action potential upstroke. Tri(30/90) and Tri(50/90) are unitless.





OPS/images/fphys-12-693015/crossmark.jpg
©

2

i

|





OPS/images/fphys-12-693015/fphys-12-693015-g001.gif
15-

vIs2) (ns)

H

APO(S2) {ms)
H

H

EEE
52 tms)





OPS/images/fphys-12-693015/fphys-12-693015-g002.gif
CV(S2) mean

B
52 (ms)

ET





OPS/images/fphys-12-693015/inline_11.gif





OPS/images/fphys-12-693015/fphys-12-693015-g014.gif





OPS/images/fphys-12-693015/fphys-12-693015-t001.jpg
Input: parameters, S1
Output: CV({S2}), APD({S2}), ERP
Initialize S2min: 100, S2max: 2000;
while $2max - S2min > 1 do
if first run then
| $2 « S2max;
else
| $2 < (S2min + S2max) / 2;
end
Simulation; save CV and APD for current $2;
if successful propagation then
| S2max <82
else
| S2min « 82
end
end
ERP = S2min;
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Ku = ki (X1, Xj:61)
Kup = p_ku (X1, X}:61) 19)
Kun = p* ki (Xp, X2 01) + knr(Xug, Xiy: 011) .
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SfAct kPa Active stress logit-uniform [0, 1000] 5 [LVfw, IVS, RVapex, RVmid, RVbase]
scaling factor
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exponent
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RSD o Global systolic log-uniform [0,00] I Global
duration scaling
Qo0 L/min Cardiac Output log-uniform [0,00] il Global
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Age (years)
Male (n, %)

EF (%)

LVEDD (cm)
VT (n, %)

AAD class IB
AAD class IC
AAD class Il
AAD class Il
AAD class IV
CCB-DHP
Ranolazine
ACEI

Digoxin
Spironolactone
Multi-electrode catheter

SNLV (N = 12)

62 (19)
5 (41)
60 (7.5)
4.75 (0.55)
2(16.7)
0
2 (16.7%)
6 (50%)
1(8.3%) 0
2 (16.7%)
2 (16.7%)
0
2 (16.7%)
0
0
6 (50%)

ICMP (N = 10)

69 (12)
10 (100)
35 (25)
5.6 (0.9)
8 (80)

1 (10%)
0
10 (100%)

p-value

0.098
0.005*
<0.001*
0.002*
0.009*
0.45
0.48
0.02*
0.14
0.48
0.48
0.19
0.008*
0.45
0.45
0.69

AAD, anti-arrhythmic drugs; ACEI, angiotensin converting enzyme inhibitors; CCB-
DHR calcium channel blockers dihydropyridine class; EF, gjection fraction; ICMR
ischemic cardiomyopathy; LVEDD, left ventricular end-diastolic diameter; SNLV,
structurally normal left ventricle; \/T, ventricular tachycardia as an indication for the

ablation procedure.

The row labeled “Multi-Electrode Catheter” summarizes the number (%) of patients
that had APDR data collected using a multi-electrode catheter (either Pentaray 4-
4-4; Biosense Webster or LiveWire; Abbott). Values in bold represent p-values less
than 0.05 which is the cut-off for statistical significance. *Denotes p-values less
than 0.05 which is the cut-off for statistical significance.
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Pacing cycle SNLV ICMP
length (ms)

DI (ms) ARI (ms) DI (ms) ARI (ms)
600 335.2+29.0 269.1+21.8 3343+21.1 266.8+19.1
550 287.9+ 181 2622+ 17.8 2935+21.9 256.2+22.6
500 2452 +16.9 2530+ 156 2553 +£22.7 243.8+23.3
450 206.7 £ 132 24324187 2156+255 23464252
400 166.6 £ 11.6 2334 +12.0 180.6+£30.7 218.8+31.1
350 1271 £18.2 22284181 1888+418 19064404

Results are mean + SD.
ARI, activation-recovery interval; DI, diastolic interval; ICMF, ischemic cardiomy-
opathy; SNLV, structurally normal left ventricle.
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Approach Estimated parameters
p(s) ci(s) cz2(s) 1,62 (s)

Full-field tracking 1.0£03 12+03 12+03 50+1.6
Contour matching 61£12 86+08 7.7£10 17.7£10

The convergence criterion introduced in Equation (7) was used for all cases. The
observation data corresponds to the FE model prediiction using parameters p = 0.9 kPa,
¢y =85kPaand cp = 22.0.
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Lungs

Bones

Skin

Fat/Muscle

Liver

Spleen

Kidneys

Aorta

Ventricular blood pools
Atrial blood pools and walls
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Tissue conductivities (S/m)
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See also Plancke et al. (2019).
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(1) Liver: 0.023 (S/m) and lungs: 0.039 (S/m)

(2) Bath: 0.45 (S/m) (pure muscle) and lungs: 0.039 (S/m)

(3) Bath: 0.05 (S/m) (pure fat) and lungs: 0.203

(4) Liver: 0.2 (S/m) and lungs: 0.039 (S/m)

(5) Bath: 0.05 (S/m) and lungs: 0.039 (S/m)

(6) Bath: 0.45 (S/m) and lungs: 0.203 (S/m)

(7) Bath (all organs except lungs): 0.24 (S/m) and lungs: 0.07 (S/m)
(8) Skin: 0.117 (S/m)

(9) Atria, ventricles, and aorta: 0.84 (S/m)

Combinations of different organ conductivities within physiological changes are
here reported, used in our CNNs sensitivity analysis.
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Left ventricle Right ventricle

Case EDV (mL) ESV (mL) EF (%) WTep (mm) WTgs (mm) EDV (mL) ESV (mL) EF (%)

Healthy volunteers

vi 1727 808 532 7.2 87 1042 642 384
2 169.9 79.4 533 63 83 114.4 489 573
3 170.1 767 549 7.2 88 1049 476 546
va 1237 486 60.7 64 79 81.1 420 482
Mean 159.1 714 555 68 8.4 101.1 507 496
Std 23.7 153 35 05 0.4 14.2 95 8.4
DCM patients

dt 124.4 787 408 7.4 89 579 36.4 374
a2 2318 1300 440 88 9.0 106.8 57.8 459
a3 1727 90.1 478 7.7 9.1 1265 58.4 538
a4 171.0 9.9 45 100 96 87.8 46.4 472
Mean 1750 98.4 435 84 9.1 947 498 460
std 440 236 32 12 03 292 105 69
HCM patients

hi 125.8 592 52.9 17 13.4 699 344 508
h2 1058 351 66.8 91 9.8 65.2 317 514
h3 1349 553 59.1 92 1.4 87.0 441 493
ha 137 410 639 95 1.6 9.4 448 545
Mean 1200 476 60.7 98 15 0.1 387 515

Std 129 15 6.1 12 15 15.4 6.7 22
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References Group Mean+Std  Sample
(mmHg) size ()
End-diastolic pressures
Opherk et al. (1983) Idiopathic DCM 186+ 11.4 12
Kass et al. (1999) DCM 248+78 18
Hayashida et al. (1990) DCM 14.0 £ 10.0 17
Nagueh et al. (2005) HCM 230+ 60 35
Nishimura et al. (1996a) HCM 250+90 54
End-systolic pressures
Romeo et al. (1989) Idiopathic DCM 120.0 + 20.0 69
Nishimura et al. (19962)  HCM 183.0 % 42.0 54
Nishimura et al. (1996b) ~ Obstructive HCM 196.0 £ 43.0 21
Nishimura et al. (1996b)  Non-obstructive HOM ~ 150.0 + 29.0 8
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(B) The confusion matrix of the NI for 9x9 micropatters, using three hidden layers and
1,000 neurons in each layer.
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200 0.778/0.855 0.844/0.91 0.864/0.925 0.865/0.925 0.866/0.925
Neurons in layer 400 0.81/0.884 0.893/0.937 0.886/0.938 0.895/0.941 0.882/0.933

600 0.833/0.898 0.899/0.943 0.901/0.945 0.901/0.946 0.9/0.946

800 0.848/0.907 0.894/0.938 0.9/0.945 0.904/0.947 0.894/0.938

1000 0.855/0.915 0.904/0.946 0.911/0.952 0.909/0.951 0.903/0.948

1200 0.856/0.915 0.908/0.947 0.91/0.95 0.905/0.946 0.897/0.947
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lon channel  Gene/protein Epi Endo Mid

male female male female interp male female
InaL Nay1.5 310.6 260.8 426.8 3738 4035
Ratio 0.77 0.85 1.08 0.93 1.08 0.93

Based on ANay1.5 expression (O'Hara et al., 2011).

loca Ca2* ATPase 4 377.0 682.1 4268 6852 5405
Ratio 070 126 0.79 1.27 1.97 317
Based on ACa?* ATPase 4 expression (Yang and Clancy, 2012).

e hERG 1795 144.2 164.8 1305 149.7
Ratio 120 096 1.10 087 088 0.70
Based on ARERG expression (O'Hara et al., 2011).

ks MinK 136 73 19 58 9.2
Ratio 116 093 1.10 088 1.10 088
Based on 1/3 A MinK expression (Yang and Clancy, 2012).

s Kir2.3 912 214 97 552 762
Ratio 1.07 076 1.07 091 1.39 1.18
Based on 1/3 A Kir2.3 expression (Yang and Clancy, 2012).

INacaisss NOX1 821.1 801.4 7545 739 7417
Ratio 1.10 1.07 1.01 0.99 141 1.38
Based on A NCX1 expression (O'Hara et al., 2011).

Inak Na*/K+ ATPase a1 207.7 5134 269 622.5 424.54
Nat/K+ ATPase a3 1481 917.8 1547.6 1014.2 1312.904
Ratio 0.92 0.87 1.00 1.00 0.70 0.70

Based on 1/3 ANa*/K* ATPase a1 and 2/3 ANa*/K* ATPase 3 expression (Yang and Clancy, 2012).

ko K15 127 65 195 105 15.54
Ratio 082 042 125 068 125 068
Based on AKy1.5 expression (O'Hara et al,, 2011).

CaP* release  RYR2 6213.7 4890.6 54639 55825 5516.084
Ratio 113 089 0.99 1.01 1.68 1.72
Based on ARYR2 expression (O'Hara et al., 2011).

Ca?* uptake  SERCA2 48505 6728.4 3410.4 3921.9 3636.46
Ratio 133 185 0.94 108 094 1.08
Based on ASERCA2 expression (Yang and Clancy, 2012).

[CMDN] CALM3 13269 19555 1206.9 16005 1380.084
Ratio 097 128 0.92 1.41 092 111
Based on 2/3 A CALMB expression (Yang and Clancy, 2012).

Overview of the sex differences in ion channel subunit expression for the channels used in our cell-scale and multi-scale computational models. The gene/protein data represents the
normalized relative expression (2-ACY) deduced from Gaborit et al. (2010). The endocarclial interp column represents the relative ion channel subunit expression for the hypothesized
56% male, 44% female model that the original endocardlial O'Hara Rudy cell model was based on. To compute the individual ion channel activity scalings, we followed scaling rules
established by O'Hara et al. (2011) and Yang and Clancy (2012), as reported below each set of scaling ratios.
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Sex-specific subcellular ion channel activity. Sex-specific and transmurally varying
subcellular ion channel activity scaling used in computational modes based on mRNA and
protein ion channel subunit expression and functional data (Nébauer et al., 1996; Szabé
et al,, 2005; Soltysinska et al., 2009; Gaborit et al., 2010; O'Hara et al,, 2011; Yang and

Clancy, 2012).
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