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Editorial on the Research Topic

Functional Diversity of Aquatic Microorganisms and Their Roles in Water Quality

As an important component of aquatic environments, microorganisms are functionally diverse and
play a crucial role in water quality and human health. Through a wide spectrum of biogeochemical
processes, they can improve the sustainability and stability of aquatic ecosystems and positively
influence water quality (Zinger et al., 2012). For example, many aquatic microorganisms are capable
of removing chemical hazards such as heavy metals (Dixit et al., 2015) and petroleum (Zaki
et al., 2015), and of catalyzing wastewater treatment processes (Daims et al., 2006). Meanwhile,
contamination of agricultural, recreational, and drinking water by human pathogens is of public
health concern due to the potential for transmission to humans directly (e.g., through drinking,
dermal contact) and indirectly (e.g., through the use of contaminated water to irrigate crops)
(Egli et al., 2002). Thus, characterizing the functional diversity of aquatic microorganisms and
understanding their impact on water environments represent a key research need. However, despite
the importance, aquatic microorganisms in many regions in the world are understudied. As a
result, affordable, targeted tools for assessing andmanaging water quality are limited. This Research
Topic aimed to improve the understanding of the distribution, structure, and function of aquatic
microbial populations with a specific focus on potential approaches for improving the assessment
and management of water quality. We received contributions across a wide range of topics,
including microbial dynamics in wastewater and surface water, environmental factors driving the
distribution of foodborne pathogens in water, and novel approaches to water quality monitoring
and microbial risk assessment. Here, we briefly summarize these contributions by their relevance
to three water types—wastewater, agricultural water, and recreational water.

WASTEWATER

Wastewater treatment and wastewater reuse is essential to the global demand for water in the era
of climate change (Yadav et al., 2020). Microorganisms are responsible for biological wastewater
treatment processes such as removal of organic matter, toxic metals, odors, nutrients including
nitrogen and phosphorus (Wagner et al., 2002; Ferrera and Sanchez, 2016). Therefore, knowledge
on the structure and functions of microbial communities and populations in wastewater are
crucial for the development and optimization of wastewater treatment systems. Huang et al.
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investigated temporal and spatial changes in composition
and putative function of bacterial communities in wastewater
stabilization ponds (WSP), a commonly used system to
treat municipal wastewater in the Canadian Arctic. They
identified temperature as a major factor influencing the bacterial
community structure and potential removal of nutrients in the
WSPs. In a preliminary study, Cruz et al. examined differences in
the composition and richness of bacterial communities in treated
and untreated wastewater from different sources (e.g., hospitals,
fish farming sites, sewage effluents, and surface waters) in Sri
Lanka and Philippines.

AGRICULTURAL WATER

Given the central role of water in food production, ensuring and
monitoring agricultural water is essential to the maintenance of
a safe and secure food supply (Molden et al., 2010). However,
contamination of agricultural water by fecal contaminants and
human pathogens in agricultural water presents a key human
health risk (Rodrigues et al., 2019). To effectively manage health
risks associated with contamination of agricultural water, it
is important to understand factors that are associated with
fecal and pathogen contamination. Murphy et al. showed
that weather, especially temperature, was strongly associated
with Salmonella contamination of north and South Florida
agricultural water sources. Bihn et al. found that water specific
conductance, pH, and turbidity were slightly associated with fecal
indicator bacteria levels in NY and TN, USA and highlighted
the importance of using multiple data types (e.g., bacterial,
physicochemical) when assessing irrigation water quality. Belias
et al. developed machine learning models using water quality
parameters, surrounding land-use, weather conditions, and
sampling site characteristics as predictors to predict pathogen
presence in canals used to source water for produce production
in the Southwestern US agricultural water. Belias et al.
findings suggest that predictive models could supplement or
provide an alternative to current approaches for monitoring
agricultural water quality. Smith et al. detected stable spatial and
temporal changes in phytoplankton functional groups in two
agricultural irrigation ponds in Maryland and found that water
quality parameters were associated with certain phytoplankton
functional groups.

RECREATIONAL WATER

Exposure to contaminated recreational water represents another
pathway for human pathogen transmission (Fewtrell and Kay,

2015). While understanding these infectious agents of concern,
including fecal indicator bacteria in recreational water is of great
importance, additional information on factors associated with
pathogen contamination of recreational waterways and tools for
assessing contamination is needed. By analyzing water samples
collected along an urban-rural gradient, Weller et al. found
that temperature, nutrient, sediment levels, and land use are
key factors associated with the levels of fecal indicator bacteria
in Upstate New York streams used for both agricultural and
recreation. Fernández-Baca et al. developed a rapid, in-field
workflow for detecting fecal indicator bacteria in recreation
water that takes substantially less time compared to culture-based
assays. Tools like that developed by Fernández-Baca et al. can
facilitate risk management (e.g., opening and closing of beaches),
by providing decision-makers with key data faster. Brooks and
Rose compared models for evaluating the long-term persistence
of enteric markers in sewage spiked river water and found
that log-linear models overestimated the persistence of enteric
markers and suggested that best fit models with dynamic decay
rates in water quality models are more accurate in evaluating the
decay of enteric markers.

CONCLUDING REMARKS

Over the last several decades, efforts in understanding water
quality have moved beyond its physical and chemical attributes
to biological attributes (Fewtrell et al., 2001). The growing
interests in the role of microorganisms in water quality is
well reflected by the large number of contributions received
in this Research Topic. It is exciting to see active research
characterizing the composition, function, diversity of microbial
communities, populations, and pathogens in water across
different types including wastewater, agricultural water, and
recreational water, as well as developing useful tools for water
quality monitoring. This Research Topic has provided insights
and solutions for both favorable and unfavorable consequences of
water quality influenced by microorganisms. With the emerging
technologies (e.g., high-throughput sequencing) in profiling
microorganisms and broad application of deep learning in the
field of environmental microbiology, we are optimistic to a new
level of water management and public health improvement.
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Water quality models use log-linear decay to estimate the inactivation of fecal indicator

bacteria (FIB). The decay of molecular measurements of FIB does not follow a

log-linear pattern. This study examined the factors associated with the persistence of

Escherichia coli uidA, enterococci 23S rDNA, and Bacteroides thetataiotaomicron 1,6

alpha mannanase in microcosms containing 10% (vol/vol) sewage spiked river water

stored at 4◦C for up to 337 days. The study estimated the markers’ persistence with

log-linear models (LLMs) to the best-fit models, biphasic exponential decay (BI3) and

log-logistic (JM2) and compared the estimates from the models. Concentrations of B.

thetataiotaomicon decreased to levels below detection after 31 days in storage and

were not fit to models. BI3 and JM2 were fit to E. coli and enterococci, respectively.

LLMs had larger Bayesian information criterion values than best-fit models, indicating

poor fit. LLMs over-estimated the time required for 90% reduction of the indicators (T90)

and did not consider dynamic rates of decay. Time in storage and indicator species were

associated with the persistence of the markers (p < 0.001). Using the T90 values of the

best-fit models, enterococci was the most persistent indicator. Our data supports the

use of best fit models with dynamic decay rates in water quality models to evaluate the

decay of enteric markers.

Keywords: fecal pollution, persistence time,water quality, best fit analysis,Bacteroides as indicator of fecalmatter,

enterococci, Escherichia coli, molecular markers

INTRODUCTION

In the United States, environmental waters that are impaired or in danger of being impaired are
assigned remediation plans aimed at restoring designated uses (United States, 2016). Forecasting
the restoration of an impaired watershed is partially dependent on the development of water quality
models that estimate the concentrations of fecal indicator bacteria (FIB), while simultaneously
calculating the transport and fate (particularly the survival) in the aquatic ecosystem. Water
quality models have been slow to adapt data generated from molecular measurements of FIB
even as these measurements are finding use in rapid “swimmable” assessments. Compared to
concentrations of culturable enterococci, measurements of enterococci 23S rDNA (Entero1) had
a stronger correlation to gastrointestinal illness incidence of children visiting beaches near point
sources of treated sewage at Lake Michigan, Michigan and Indiana; and Lake Erie, Ohio (Wade
et al., 2008). Therefore, water qualitymodels that incorporatemolecularmeasurements of FIB could
provide better resolution of the risk of waterborne illness.
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Microbial source tracking (MST) with molecular methods can
identify and quantify pollution associated with specific hosts in
watersheds of impaired rivers (Ballesté et al., 2020; Brooks et al.,
2020). Identification of host-associated pollution is important
because different origins of pollution are suggested to pose
varying risks of adverse health effects (Soller et al., 2010).Multiple
studies have demonstrated that human-associated markers can
be detected in various types of environmental waters (Reischer
et al., 2007; Rusiñol et al., 2014; Ahmed et al., 2019). The
concentrations of themarkers can also be incorporated into water
quality models to improve forecasting of an impaired watershed
(Jeong et al., 2019). Such analysis could offer better assessment of
pollution associated with higher risk to public health.

Two commonly used water quality models, HSPF, and SWAT,
use log-linear models (LLMs) to calculate the survival of
culturable FIB in aquatic environments (Johnson et al., 1984;
Gassman et al., 2007). A meta-analysis determined that there are
three general patterns of survival curves of culturable E. coli in
water microcosms: biphasic log-linear, shouldering followed by
log-linear decay, and log-linear (Blaustein et al., 2013). These
studies suggest that persistence models could accommodate the
dynamic decay of enteric markers.

There are few studies that have evaluated the persistence of
FIB in water over longer timescales. A previous study determined
that the time needed for the 90% reduction (T90) of culturable E.
coli (EC) and enterococci (ENT) was > 60 days in microcosms
containing sediment covered with freshwater spiked with sewage
effluent and stored at 10◦C (Pote et al., 2009). Further research of
the long-term persistence of FIB would provide better forecasting
power for water quality models.

In order to increase the accuracy and precision of water
quality models, we describe the long term persistence (up to 337
days) of three enteric molecular markers, B. thetaiotaomicron
1,6 alpha-mannanase, enterococci 23S rDNA, and E. coli uidA,
stored in microcosms of 10% (vol/vol) sewage spiked river water
stored in the dark and at 4◦C. Enterococci 23S rRNA was chosen
because it is a standard method to evaluate fecal pollution in
recreational waters (USEPA, 2015). E. coli uidA was chosen
because the marker is species specific and the United States
Environmental Protection Agency established criteria regarding
the concentration of culturable E.coli in recreational waters
(USEPA, 2012). B. thetaiotaomicron 1,6 alpha-mannanase
was chosen to evaluate the persistence of human associated
pollution. The temperature was chosen because it represented
a conservative estimate of the persistence of enteric markers in
many temparate freshwater lakes. Microcosms were stored in
the dark during the duration of this study. Sunlight inactivation
was not evaluated in this study because previous studies have
demonstrated that freshwater microcosms containing either
human or cattle sewage demonstrated no significant difference
in the decay of molecular targets in the presence of sunlight
compared to microcosms stored in the dark (Dick et al., 2010;
Korajkic et al., 2019).

The specific objectives of this study were to:

1. Evaluate the mathematical relationships of experimental
data of Escherichia coli uidA, enterococci 23S rRNA, and

Bacteroides thetataiotaomicron alpha-mannanase measured
from microcosms of 10% sewage spiked river water stored for
up to 337 days at 4◦C using log-linear and best-fit methods.
Compare themathematical relationships of the best-fit models
to log-linear models. Compare the times required for 90% and
99% reductions of the initial concentrations of the markers
using best-fit models and a corresponding log-linear model.

2. Evaluate the associations of time in storage, and indicator
species to the observed persistence of the three markers.

METHODS

Microcosm Set-Up
Water from the Red Cedar River (6 L) was autoclaved for
1 h in multiple 2 L plastic containers. After cooling to room
temperature, the water was spiked with 10% (vol/vol) raw
sewage from the East LansingWastewater Treatment and equally
divided into 12 autoclaved 1 L Nalgene polypropylene bottles
(ThermoFisher Scientific,Waltham,MA). Neither the river water
nor the raw sewage were evaluated for the three genetic markers
prior to the set-up of themicrocosms. Eachmicrocosm contained
∼500mL of liquid and no sediment. All microcosms were stored
in the dark at 4◦C.

Sample Processing and DNA Extraction
On each of the following days after seeding the raw sewage
into the river water: 0, 31, 61, 93, 128, 155, 187, 219, 248,
279, 306, and 337, a microcosm was shaken 25 times (EPA-
DNA, USEPA, 2015) and triplicate aliquots of 100ml from
one microcosm were membrane filtered onto three separate
Nucleopore Track Etch polycarbonatemembrane filters (0.45µm
pore size, 47mm diameter, Whatman Inc., Piscataway, NJ). The
three filters per sampling day represented technical replicates.
DNA extraction from all samples was performed using USEPA
Method 1611.1 (EPA-DNA, USEPA, 2015). Specifically, three
filters were used to concentrate cells within each time point. At
each time point, a filtration negative of autoclaved phosphate
buffer saline accompanied the filtration of the samples. The
extraction method in USEPAMethod 1611.1 mechanically shears
the cells. The first step is 1min of bead beating of the filters at max
speed in 600 µL DNA extraction buffer with 0.3mm glass beads.
Two centrifugation steps were completed to separate glass beads
and other cell debris from the 350µL-supernatant containing the
DNA. The supernatants were diluted 1:5 in AE buffer and were
stored at−80◦C.

qPCR Quantification of Three Indicators of
Fecal Pollution
The primers, probes, amplified sequence length, and qPCR
protocols for Bacteroides thetataiotaomicron alpha mannanase
(BT-am), Escherichia coli uidA (EC-uidA), and Enterococcus
spp. 23S rDNA (ENT-23) are described in Table 1. The qPCR
reagents of the ENT-23, EC-uidA and BT-am were: 10 µl of
LightCycler 480 Probes 25 MasterMix (Roche, Indianapolis,
IN), 0.5µM of forward and reverse primers (0.3µM of BT-
am forward and reverse primer concentration), 0.2µM of the
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TABLE 1 | Details of the qPCR assays (primers, probes, amplified sequence length, and qPCR protocols) of the genetic markers, enterococci 23S rDNA (ENT-23),

Escherichia coli uidA (EC-uidA), and Bacteroides thetataiotaomicron alpha mannanase (BT-am).

Source species and gene (marker

name)

Primer and probe sequences (5′-3′) Sequence

length (bp)

qPCR protocol References

Bacteroides thetataiotaomicron alpha

mannanase (BT-am)

CATCGTTCGTCAGCAGTAACA

CCAAGAAAAAGGGACAGTGG

FAM-CAGCAGGT-NFQ
†

63 15min at 95◦C

45 cycles:

15 s at 94◦C

60 s at 60◦C

5 s for 72◦C

Yampara-Iquise et al.,

2008

Escherichia coli uidA (EC-uidA) CAATGGTGATGTCAGCGTT

ACACTCTGTCCGGCTTTTG

6FAM-TTGCAACTGGACAAGGCACCAGC-BBQ

163 10min at 95◦C

40 cycles:

6 s at 95◦C

8 s at 58◦C

8 s at 72◦C

Srinivasan et al., 2011

Enterococcus spp. 23S rDNA

(ENT-23)

AGAAATTCCAAACGAACTTG

CAGTGCTCTACCTCCATCATT

6FAM-GGTTCTCTCCGAAATAGCTTTAGGGCTA-

TAMRA

91 10min at 95◦C

40 cycles:

15 s at 95◦C

30 s at 60◦C

15 s at 72◦C

Frahm and Obst, 2003

†
Primer represents the Roche Universal Probe Libraries Primer 62.

probe (0.1µM BT-am probe), 2 mg/ml bovine serum album
(BSA), 1mM of MgCl2 (EC-uidA only), 5 µl of DNA sample,
and enough nuclease free water added to equal a 20 µl reaction
volume. The following components were analyzed in each
qPCR assay: three wells of a dilution step from the standard
curve such as the 106 or 107 copies/rxn for ENT, 105 or 107

copies/rxn for EC, and or 103 or 104 copies/rxn for BT, a well
containing nuclease free water, and duplicates of method blanks
for each storage timepoint (DNA extracts of sterile phosphate
buffer saline membrane filtered at each time point). Each DNA
extract from the experiment was run in duplicate to represent
analytical replicates. The analytical replicates were averaged to
represent each technical replicate. Information regarding the
performance of the standards curves, including the theoretical
limit of detection, limit of quantification, and efficiency of the
standard curve are included in Supplementary Table 1.

Quantification was established with a standard curve.
Overnight cultures of Enterococcus faecalis ATCC strain 19433
and E. coliATCC strain 15597 weremade, and genomic DNAwas
extracted usingQiampDNAMini Kit (Qiagen Inc, Valencia, CA).
The qPCR measurements were reported as cellular equivalents
(CE) of BT, ENT, or EC per 100 ml-water sample to compare
the data to survival curves of culturable FIB in previous studies.
All DNA extracts were diluted 1:5 before addition to the
qPCR reagents to decrease the chances of inhibition, which
also decreased the lowest detected concentration of BT, EC,
and ENT to 2.68 ∗ 102, 1.30 ∗ 105, and 1.38 ∗ 103 CE/100
ml-water sample, respectively. Genomic DNA was quantified
of B. thetataiotaomicron (ATCC, 29148) with NanoDrop 1000
(ThermoFisher Scientific, Waltam, MA) to obtain copy number
per rxn. Subsequently, 1:10 serial dilutions with dilution steps of
the genomic DNAof the three indicators weremade. The dilution
steps spanned from 100 to 107 copies/rxn. One standard curve
was used for both qPCR runs and contained triplicates of each
dilution step. For all standard curves, the R2 was > 0.96. qPCR
inhibition (defined as technical duplicates differing by > 3.32 Ct)
was not noted in the experiment.

Persistence Modeling and Statistical
Analysis
The statistical and modeling analyses considered all data points,
including technical replicates that measured ENT, EC, and BT
(statistical analysis only). The persistence of BT was not evaluated
using a best fitmodel, or log-linearmodel because there were only
three timepoints that were above the detection limit (Figure 1A).

In the EC dataset, non-detects were evaluated at the detection

limit in the persistence modeling and statistical analyses, as

previously advised (USEPA, 1991). Model selection and shape of
best-fit models of EC were affected by non-detect samples that

occurred at t = 219 and 248 days (Figure 1C).

The average CE concentrations of each indicator were

transformed to the relative persistence of the original
concentration, N/N0, where N was the average concentration of

the indicator from three technical replicates (CE/100 ml-sample)

after t days in storage, and N0 was the average concentration of

the indicator from three technical replicates at initial sampling (t

= 0). Amodel fitting tool in R (RDevelopment Core Team, 2013)

provided by Drs. Kyle Enger and Jade Mitchell used maximum
likelihood estimations to evaluate 17 linear and non-linear

models (qmra.canr.msu.edu) to the data. The best-fit model with

the lowest value of the Bayesian information criterion (BIC) was

chosen to represent the persistence of the indicators. If the BIC

value of biphasic log-linear model (BI3) was ≤ 2 units from the
smallest BIC value, then BI3 was chosen; as ≤ 2 units difference
are considered equivalent (Bolker, 2008). These two best-fit
models evaluated the indicators: biphasic log linear model, BI3
(Carret et al., 1991); and log-logistic model, JM2 (Juneja et al.,
2003). The model fitting tool also evaluated the persistence of
the indicators using the log-linear model, LLM (Chick, 1908).
Descriptions of the equations are in Table 2. The T90, and T99

values (the time required for 1 and 2 log reductions of the initial
concentrations of the indicators, respectively) were calculated
by substituting −1.0 (or −2.0 for T99) = Log10(N/N0), and
solving for t.
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FIGURE 1 | The relative persistence of (A) Bacteroides thetaotiaomicron, BT; (B) enterococci, ENT; and (C) Escherichia coli, EC measured from microcosms

containing sewage spike river water stored at 4◦C for up to 337 days. Filled in data points illustrate the data that were below the detection limit and represent the

indicator specific detection limit. Each data point represents the average relative persistence of three technical replicates. The error bars represent one standard error.

The lines represent the following models: log-linear (LLM), biphasic log-linear (BI3), or log-logistic models (JM2).
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TABLE 2 | Descriptions and properties of the log-linear model and best-fit

equations (biphasic log-linear, and log-logistic) that mathematically evaluated the

relationship of enterococci 23S rDNA, and Escherichia coli uidA from microcosms

containing sewage spike river water stored at 4◦C for up to 337 days.

Models Equation† References

Log-linear (LLM) Log10(N/N0) = Log10(e
−k1 t ) Chick, 1908

Biphasic log-linear

(BI3)

for 0 ≤t <x:

Log10(N/N0) = Log10(e
− k1 t )

for t ≥ x: Log10(N/N0) =

Log10(e
−k1 t+k2 * (t− x))

Carret et al.,

1991

Log-logistic model

(JM2)

Log10(N/N0) =

−Log10(1+ eK1+k2 ∗ ln(t))

Juneja et al.,

2003

†
Kn = decay constant; t = time in days; Log10 (N/N0) = relative persistence of the

indicators, where N is the indicator concentration after t days, and N0 is the initial

concentration normalized to cell equivalents (CE) per 100 ml-water sample.

Multiple linear regression analysis evaluated the associations
of the observed relative persistence of the indicators to time in
storage and indicator species. The analysis was performed with
SPSS 22.0 (SPSS, Inc., Chicago, IL) using the following equation:
Log10(N/N0) = bS × S + bI × I + bo, where N/N0 = relative
persistence as described previously; b0 = Log10(N/N0) intercept;
and b with a letter subscript represented the coefficients of the
following independent variables: S = time in storage (0 – 337
days) and I = indicator (BT, EC, and ENT).

RESULTS

Multiple Linear Regression Analysis
The regression equation for the dataset was:
Log10(N/N0) = 0.006 × S + 0.307 × I − 0.146, with
R2 = 0.549 (p < 0.001; n = 108). Time in storage and indicator
species (p < 0.001) were significantly associated with the relative
persistence of the three indicators. This indicates that the longer
the time in storage at 4◦C, the greater the decrease in the
concentration of the genetic marker compared to initial time.
The persistence of each marker was significantly different and
BT was the least persistent and ENT was the most persistent.

Description of the Observed Persistence of
the Three Molecular Markers
At initial sampling, the average concentrations of BT, EC, and
ENT (and standard error) were: 6.81 ∗ 104 (5.08 ∗ 10∧3), 3.18
∗ 108 (3.99 ∗ 10∧7), and 1.01 ∗ 107 CE (2.58 ∗ 10∧6) per 100
ml- water sample, respectively. The average concentrations of BT
and EC were below detection in 9 and 2 time-points, respectively,
for the complete data set. The most and least persistent markers
were EC and BT, respectively (Figures 1A–C). Concentrations of
BT were above detection at t = 0, 31, and 219 days (Figure 1A).
The average concentration of BT in one technical replicate at
t = 219 days was above the detection limit (Figure 1A). At t
= 337 days, the observed relative persistence of BT was below
detection representing ≤ -1.17 log decay. Overall, the observed
relative persistence of EC and ENT decreased over the duration
of the experiment by−1.84 log and−3.17 log, respectively, at t=

TABLE 3 | Descriptions of the equation parameters, BIC values, predicted T90,

and T99 values (days) calculated from the best-fit and log-linear models that

evaluated the persistence of the cell equivalents of E. coli (EC) and enterococci

(ENT) measured from microcosms containing sewage spiked river water stored at

4◦C for up to 337 days.

Indicator Model† BIC value Predicted

T90 (days)

Predicted

T99 (days)

Model

parameters

EC BI3 34.37 35.80 71.59 k1 = 0.06;

k2 = 0.06;

bpt x = 78.25

LLM 53.59 107.01 214.02 k1 = 0.02

ENT JM2 34.90 62.93 138.94 k1 = −10.34;

k2 = 3.03

LLM 43.80 92.10 184.19 k1 = 0.03

†
Themodels were: log-linear (LLM); biphasic log-linear (BI3); and log-logistic decay (JM2).

337 days (Figures 1B,C). The observed relative persistence of EC
fluctuated around−2 log during t = 61 – 337 days (Figure 1C).

Comparison of the Persistence of Three
Enteric Markers Predicted From the
Best-Fit and Log-Linear Models
Table 3 outlines the parameters of the selected best-fit models,
log-logistic (JM2), and biphasic log-linear (BI3), and LLM along
with their corresponding BIC values, and T90 and T99 values. JM2
and BI3 were selected for ENT and EC, respectively.

Non-detects were observed in the EC dataset and affected
the decay rates calculated from the best-fit models and LLMs
(Figure 1C). After 78.25 days in storage, LLM calculated a faster
rate of decay for EC than BI3 (Table 3). Also, LLM calculated
a faster decay rate for ENT after ∼250 days in storage than
JM2. For both datasets, LLMs had larger BIC values than the
corresponding best-fit models (Table 3).

The best-fit models demonstrated that the decay of ENT
and EC during the experiment’s duration was dynamic
(Figures 1B,C). During t = 0 – 78.25 days, BI3 calculated
a rapid decay of EC, afterwards during t = 78.25 – 337
days the decay waned (Figure 1C, Table 3). JM2 estimated
that the relative persistence of ENT experienced shouldering
followed by rapid decay, and slower decay toward the end
of the experiment (Figure 1B). The best fit models calculated
that the concentrations of EC and ENT at t = 337 days
relative to the initial concentrations were: −2.27 log and −3.12
logs, respectively, and were larger than the concentrations
derived from the corresponding LLMs (−3.15 log and −3.66
log, respectively).

Comparison of the Predicted T90 and T99
Values From the Best-Fit and Log-Linear
Models
The T90 and T99 values, time required to reduce the initial
concentrations of the indicators by 90%, and 99%, respectively,
were calculated from the best-fit models and LLMs of the
ENT and EC datasets (Table 3). The T90 and T99 values of
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ENT calculated from LLM (92.1 and 184.19 days, respectively)
were larger than the values from JM2 (62.93 and 138.94 days,
respectively). The LLM model of EC predicted that T90 and T99

= 107.01 and 214.02 days, respectively, and were larger than the
values predicted from BI3 (35.80, and 71.59 days, respectively).
Based on the T90 values calculated from the best-fit models, the
relative order of persistence of the indicators was EC < ENT,
while the order of persistence based on the T90 values from the
LLMs was ENT < EC.

DISCUSSION

This is one of the first studies to use experimental data to describe
the long-term persistence of naturally occurring Bacteroides
thetataiotaomicron alpha-mannanase, enterococci 23S rRNA, and
Escherichia coli uidA measured from microcosms containing
sewage spiked river water stored at 4◦C. Using linear regression
analysis, the time in storage and indicator species (p < 0.001)
were significantly related to the persistence of the markers. The
order of persistence of the markers was BT < EC < ENT. These
results indicate that the persistence of the indicators is specific
to the species in a long-term evaluation of persistence. In a 28-
day evaluation of persistence of fecal indicator markers in liquid
microcosms and storage on solid surface, time in storage was also
significantly associated to persistence of the molecular markers
of water stored at 4◦C while indicator species was not significant
(Brooks et al., 2015). The finding in this study and in Brooks et al.
(2015) indicate that indicator species significantly affect marker
persistence over longer time frames that may not be apparent in
shorter time frames such as up to 28 days.

We compared the mathematical relationships between the
concentrations of indicators and time in storage (up to 337
days) from log-linear decay models with a constant decay rate
to best fit models, biphasic log-linear decay model (BI3) and
log-logistic model (JM2). Overall, the best-fit models responded
well to changes in decay rates over the course of the experiment
including the modeling of effects such as shouldering and slower
decay as the experiment progressed (Figures 1B,C). Similarly,
a meta-analysis of the inactivation of culturable E. coli in
water determined that the most popular inactivation model was
biphasic log-linear decay, with an initial rapid decay followed by
slower decay (Blaustein et al., 2013). Another meta-analysis of
the inactivation of culturable E. coli in water observed that a large
portion of the dataset was better represented by “a piecewise log-
linear model” (Stocker et al., 2014). Likewise in ENT, inactivation
of culturable enterococci and ENT-23 in marine water during
winter for up to 8 days demonstrated an initial shouldering of the
concentrations of the indicator organisms and markers (Mattioli
et al., 2017).

There are a few explanations for the variation of the decay over
time. The presence of BT in one technical replicate at t= 219 days
could be due to a sub-population more resistant to degradation.
Another possible scenario is that cells may have attached to a
solid surface such as particulate matter in the water, which could
enhance persistence. Previously, a simulation of water columns
of brackish and freshwater estimated that the attachment of cells

of enterococci to a particle can increase its persistence in the
water column (Myers and Juhl, 2020). Additionally, the rapid
decay of ENT and EC at the beginning of the experiment may
be due to the presence of sub-populations with distinct decay
rates (Rogers et al., 2011). Specifically, the survival of cultivable
E. coli in microcosms of filtered estuarine water microcosms
was increased in cells from the B1 phylotype (Berthe et al.,
2013). DNA fingerprinting of cultivable enterococci isolated from
the Lake Superior watershed indicated that sub-populations of
Enterococcus sp. have differing decay rates and some populations
can grow in the watershed (Ran et al., 2013). The rapid decay
of the indicators could also be a result of ENT and EC exceeding
the carrying capacity of the microcosm, causing rapid decay
until the carrying capacity is achieved (Easton et al., 2005). This
theory may explain the > 1 log variation of the concentration of
EC during t= 61 – 306 days. The increase in the concentration of
EC during t = 248 – 337 days could indicate a subpopulation of
E. coli that are able to utilize resources to grow in the microcosm
to achieve a higher cell density. The above studies suggest that the
evaluation of the survival or persistence of FIB in environmental
waters may be better represented with water quality models that
have dynamic decay rates and scenarios for possible regrowth.

In our study, we compared the T90 and T99 values calculated
from the best-fit models and LLMs. Overall, the T90 and T99

values from LLMs were larger than from the corresponding best-
fit models, indicating that LLMs overestimated the persistence
of ENT and EC. This overestimation could delay progress
toward restoring impaired environmental waters. Additionally,
the T90 values calculated from LLMs and best-fit models
predicted different relative orders of persistence for the enteric
markers. A previous study used LLMs to estimate that genetic
markers from sewage sourced ENT and EC seeded into
marine and freshwater in-situ microcosms had T90 values
that ranged 51 – 335 days and 21 – 54 days, respectively
(Sagarduy et al., 2019). Similarly, in our study, LLMs calculated
a similar fining for EC (T90 = 107.01 days), and the
best-fit models for ENT and EC (T90 = 62.93 and 35.8
days, respectively) were within the T90 values of the above-
mentioned study.

Currently, LLMs are often used to estimate the persistence
and loads of fecal indicators in water quality models that
forecast restoration of impaired environmental waters.
Our findings indicate that subpopulations of ENT and EC
are persistent in microcosm at 4◦C for up to 337 days
(Figures 1B,C), which provide further evidence that FIB
can persist in water at temperatures ≤ 4◦C (Davenport
et al., 1976). The data from our study indicate that water
quality models should make provisions to estimate the role
of sub-populations of persistent FIB in maximum daily
load assessments and utilize best-fit models with variable
decay rates to better estimate the decay of enteric markers
in impaired environmental waters. Such information can
guide water quality models into a better understanding of
more realistic maximum loads of fecal indicators as well
as improve forecasting of the time required to remediate
impaired environmental waters. Such improvements in the
models can allow for the better protection of public health by
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increasing the accuracy of the estimation of pollution present in
impaired watersheds.
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Pathogen contamination of agricultural water has been identified as a probable cause

of recalls and outbreaks. However, variability in pathogen presence and concentration

complicates the reliable identification of agricultural water at elevated risk of pathogen

presence. In this study, we collected data on the presence of Salmonella and genetic

markers for enterohemorrhagic E. coli (EHEC; PCR-based detection of stx and eaeA)

in southwestern US canal water, which is used as agricultural water for produce. We

developed and assessed the accuracy of models to predict the likelihood of pathogen

contamination of southwestern US canal water. Based on 169 samples from 60 surface

water canals (each sampled 1–3 times), 36% (60/169) and 21% (36/169) of samples

were positive for Salmonella presence and EHEC markers, respectively. Water quality

parameters (e.g., generic E. coli level, turbidity), surrounding land-use (e.g., natural cover,

cropland cover), weather conditions (e.g., temperature), and sampling site characteristics

(e.g., canal type) data were collected as predictor variables. Separate conditional forest

models were trained for Salmonella isolation and EHEC marker detection, and cross-

validated to assess predictive performance. For Salmonella, turbidity, day of year, generic

E. coli level, and % natural cover in a 500–1,000 ft (∼150–300m) buffer around the

sampling site were the top 4 predictors identified by the conditional forest model. For

EHEC markers, generic E. coli level, day of year, % natural cover in a 250–500 ft (∼75–

150m) buffer, and % natural cover in a 500–1,000 ft (∼150–300m) buffer were the top 4

predictors. Predictive performance measures (e.g., area under the curve [AUC]) indicated

predictive modeling shows potential as an alternative method for assessing the likelihood

of pathogen presence in agricultural water. Secondary conditional forest models with

generic E. coli level excluded as a predictor showed <0.01 difference in AUC as

compared to the AUC values for the original models (i.e., with generic E. coli level included
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as a predictor) for both Salmonella (AUC = 0.84) and EHEC markers (AUC = 0.92).

Our data suggests models that do not require the inclusion of microbiological data (e.g.,

indicator organism) show promise for real-time prediction of pathogen contamination of

agricultural water (e.g., in surface water canals).

Keywords: Salmonella, E. coli, agricultural water, Arizona, produce safety, predictive modeling

INTRODUCTION

Salmonella spp. and pathogenic Escherichia coli (such as
enterohemorrhagic E. coli; EHEC) are common etiological
agents of foodborne outbreaks and recalls linked to produce
commodities. From 2004 to 2012, Salmonella has caused 71
and 40 outbreaks linked to produce in the United States (US)
and European Union (EU), respectively (Callejon et al., 2015).
During the same time frame, pathogenic E. coli have caused
46 and 7 outbreaks linked to produce in the US and EU,
respectively (Callejon et al., 2015). Both livestock and wildlife
have been identified as possible sources of Salmonella and
EHEC in preharvest produce environments (Delaquis et al., 2007;
Hanning et al., 2009), with fecal matter from livestock operations
being a known source of foodborne pathogens in surface water
(Lu et al., 2004; Delaquis et al., 2007; Hanning et al., 2009).
As such, application of surface waters to in-field produce has
been identified as a potential route for pathogen contamination
of produce (Mootian et al., 2009; Park et al., 2012; Castro-
Ibanez et al., 2015; Liu et al., 2018). In fact, several outbreaks
are thought to have been caused by application of contaminated
water to preharvest produce (U. S. Centers for Disease Control
Prevention, 2006, 2018a,b; Greene et al., 2008), including a 2018
E. coli O157:H7 outbreak linked to romaine lettuce grown in
Arizona, which caused 210 illnesses and 5 deaths (U. S. Centers
for Disease Control Prevention, 2018b).

While enteric pathogens, such as EHEC and Salmonella, are
known surface water contaminants, they are present sporadically
and at low levels, complicating detection and limiting the
value of testing surface water for pathogens (Jamieson et al.,
2004; Pachepsky et al., 2011). Instead, monitoring programs
often test for indicator organisms, which are used to assess
the hygienic quality of water and the likelihood of fecal
contamination; indicator organisms include enterococci, fecal
coliforms, and generic E. coli (Jamieson et al., 2004; Pachepsky
et al., 2011). E. coli is used as an indicator for monitoring fecal
contamination in agricultural water by industry agreements and
by government regulations (Tam and Petersen, 2014; U. S. Food
Drug Administration, 2015; California Leafy Greens Marketing
Agreement, 2020; Freshcare, 2020); see Table 1 for details.

There are however several drawbacks to using generic E. coli as
an indicator of fecal contamination for surface water (Pachepsky
et al., 2016;Wall et al., 2019).While some studies have established
associations between generic E. coli levels and pathogen presence
(Holvoet et al., 2014; Lopez-Galvez et al., 2014; Stea et al., 2015;
Bradshaw et al., 2016; Truchado et al., 2018; Weller et al., 2020b),
several studies have not shown similar associations (Haley et al.,
2009; Shelton et al., 2011; Benjamin et al., 2013; Falardeau et al.,

2017). E. coli has also been shown to survive for extended periods
of time in the preharvest environment (Lu et al., 2004; Franz et al.,
2014; Allende et al., 2018); therefore, a high level of generic E. coli
does not necessarily indicate recent fecal contamination. High
levels of indicator organisms also do not necessarily indicate the
presence of pathogens, and alternatively, the absence or low levels
of indicator organisms do not necessarily indicate the absence
of pathogens (Haley et al., 2009; Shelton et al., 2011; Benjamin
et al., 2013; Stea et al., 2015; Falardeau et al., 2017). Lastly,
generic E. coli testing takes ∼24 h to complete and generic E.
coli levels in surface waters can vary substantially over short time
periods (Lothrop et al., 2018; Weller et al., 2020b); therefore, it is
impossible to know the generic E. coli level in irrigation water at
the time of its application.

Two previous studies have proposed the use of machine
learning models for predicting pathogen presence in agricultural
water; Weller et al. (2020c) utilized machine learning models
to predict Salmonella presence and EHEC marker detection
in New York streams and Polat et al. (2020) utilized machine
learning models to predict Salmonella presence in Florida ponds.
While previous studies have explored the use of machine
learning models for predicting pathogen contamination in
specific produce growing areas, further model development is
essential to verify that machine learning represents a viable
approach in different locations and types of surface waters. We
thus collected data on surface water quality and used several
approaches, including machine learning, to model the presence
enteric pathogens in southwestern US canal water. Regression
was used as a preliminary assessment to determine which
variables were associated with pathogen presence. Conditional
forest models were used for prediction because they can utilize
large numbers of predictors and better able to handle complex
and messy data than regression models (Kuhn and Johnson,
2013). While modeling alone will not improve the safety of
produce, these models can indicate when corrective actions
(e.g., water treatments) should be applied to reduce the risk of
recalls and illnesses associated with produce (Savichtcheva et al.,
2007; Allende and Monaghan, 2015). The southwestern US was
selected for this study, because (i) it is a major produce growing
region, (ii) there has been a high-profile outbreak associated
with romaine lettuce contamination linked to irrigation water,
and (iii) there is limited information on microbial quality of
southwestern US canals (Lothrop et al., 2018; Weller et al.,
2020b). As such, the specific objectives of this study were to (i)
identify land use, water quality, weather, and other sampling site
specific variables associated with Salmonella presence and EHEC
marker detection (i.e., stx and eaeA detection) in southwestern
US canal water, (ii) determine the feasibility of predicting the
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TABLE 1 | Microbial quality requirements or regulations established in different countries or regions for agricultural water applied to pre-harvest produce.

Region Organization Requirement References

United Statesa US FDA 20 water samples over a 2–4-year period must be collected: (i)

geometric mean of <126 CFU generic E. coli/ 100ml and (ii) a

statistical threshold value (i.e., the 90th percentile) of <410 CFU

generic E. coli/ 100mL

21C.F.R. § 112.44,

2019

Europe European Union <100 CFU generic E. coli/100ml of waterc European Commission,

2017

British Columbia,

Canada

British Columbia

Ministry of Agriculture

<77 CFU generic E. coli/100ml of waterc Tam and Petersen,

2014

Australia Freshcare <100 CFU generic E. coli/ 100ml of waterc Freshcare, 2020

California and

Arizona (leafy

greens only)b

Leafy Greens Marketing

Agreement (LGMA)

Furrow irrigation or overhead irrigation applied >21 days prior to

harvest: 100ml of water should be collected at least monthly and the

rolling geometric mean of the generic E. coli levels in the 5 most recent

samples must be <126 CFU/100ml and no sample may have an E.

coli level >576 CFU/100ml.

Overhead irrigation applied <21 days prior to harvest: generic E. coli

should not be detected in the water.

California Leafy Greens

Marketing Agreement,

2020

aAs of January 2021, this policy is not being enforced and is currently under review (U. S. Food Drug Administration, 2015). This requirement is established under the Food Safety

Modernization Act (FSMA).
bThis is a voluntary agreement.
cNo sampling scheme for water collection is specified in this regulation.

likelihood of Salmonella presence and EHECmarker detection in
southwestern US canal water, and (iii) determine if only real-time
variables (i.e., no microbial testing) can be used to predict the
likelihood of Salmonella presence and EHEC marker detection.

MATERIALS AND METHODS

Experimental Design
A longitudinal study was conducted to assess agricultural water
quality in the southwestern US. Water was sampled from 60
canals that provide water for irrigation from January 30th to
November 19th, 2018; sampling was performed approx. twice
a week every 1–2 weeks except in July when no sampling was
performed (see Supplementary Figure 1 for the exact sampling
dates). Each canal was sampled 1–3 times for a total of 169
samplings; all samples from a given canal were collected at the
same site. Sampling sites were randomly selected from irrigation
districts where produce was grown and where permission was
given using ArcGIS. Ground truthing was then performed to
identify a location as close as possible to the randomly generated
GPS coordinates for each site. A site survey was conducted
to collect information on features present at a given site (see
Supplementary Table 1).

Sample Collection and Processing
At each sampling, two 10 L water samples (one per pathogen) and
1 L of water (for enumeration of E. coli and turbidity levels) were
collected. Dissolved oxygen, pH, conductivity, and temperature
of the canal water were measured using a Hach HQ40d meter
(Loveland, CO, United States). Water surface flow was measured
using the float method as described by Gore and Banning (2017).
After collection, all samples were put on ice until processing.
The 10 L samples were processed <18 h after collection and the

1 L sample for E. coli level and turbidity was processed <6 h
after collection.

Laboratory testing of all samples was performed as described
in Weller et al. (2020b). Briefly, generic E. coli enumeration was
performed on a 100ml aliquot of the 1 L sample using the Colilert
Quanti-Tray 2000 kit (IDEXX, Westbrook, ME, United States),
according to themanufacturer’s instructions.Water turbidity was
measured using the Hach 2100Q Portable Turbidimeter. The 10 L
water samples were processed using the modified Moore swab
(mMS) method (Sbodio et al., 2013). Each water sample was
gravity-filtered through a separate mMS, placed in a separate
Whirl-Pak bag (Nasco, Fort Atkinson, WI, United States), and
processed as described below for either Salmonella presence or
EHEC marker detection.

Salmonella Isolation
Briefly, 225ml of buffered peptone water with 20 mg/L
novobiocin (BPW+N) was added to the Whirl-Pak bag
with the mMS, followed by incubation at 35◦C for 24 h.
BPW+N inoculated with Salmonella Typhimurium (FSL F6-
0826; http://www.foodmicrobetracker.com) and uninoculated
BPW+N were included as positive and negative controls,
respectively. Following incubation, a 1ml aliquot of the
enrichment was transferred to a sterile tube and was shipped
overnight on ice to Cornell University for further processing.
Upon arrival, all enrichments were used within 2 h for a
Salmonella screen using the BAX real-time Salmonella assay
(Hygiena, Wilmington, DE, United States). BAX PCR-positive
samples were culture confirmed. 1 and 0.1ml of the BPW+N
enrichment were added to 9ml of tetrathionate broth (TT;
Oxoid) supplemented with 200µl of I2-KI and 100µl of Brilliant
Green and 9.9ml of Rappaport Vassiliadis broth (RV; Acros
Organic, Geel, Belgium), respectively. The TT and RV broth were
incubated in a shaking water bath at 42◦C for 24 h. Following
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FIGURE 1 | Variable importance values for the Salmonella conditional forest model with generic E. coli included as a predictor. Only the top 10 predictors are included

and are listed from most to least important.

incubation, 50 µl of each broth were streaked onto Salmonella
CHROMagar (DRG International, Springfield, NJ, United States)
and xylose lysine deoxycholate agar (XLD; Neogen, Lansing,
MI, United States) plates (i.e., 1 plate for TT on CHROMagar,
1 plate for TT on XLD, 1 plate for RV of CHROMagar, and
1 plate for RV on XLD). The CHROMagar and XLD plates
were then incubated at 37 and 35◦C, respectively, for 24 h. After
incubation, PCR of the invA gene was performed on presumptive
Salmonella colonies according to the protocol described by Kim
et al. (2007). If possible, 2 characteristic Salmonella colonies per
media type (mauve colonies on CHROMagar and black colonies
on XLD) were selected for PCR (4 colonies in total). If no
characteristic colonies were present, up to 12 non-characteristic
colonies were selected for PCR (blue colonies on CHROMagar
and red colonies on XLD). All isolates were stored as 15% glycerol
stocks at−80◦C.

EHEC Marker Detection
PCR-based detection of stx and eaeA from the mMS was
performed. 225ml of tryptic soy broth with 10 g/L casamino
acids and 8 mg/L of novobiocin (TSB+N) was added to the
Whirl-Pak bag with the mMS, followed by incubation at 41◦C
for 24 h. TSB+N inoculated with E. coli O157:H7 (FSL F6-0699;
http://www.foodmicrobetracker.com) and uninoculated TSB+N
were included as positive and negative controls, respectively.
Following incubation, a 1ml aliquot of the enrichment was
shipped overnight on ice to Cornell University for further
processing. All enrichments were used within 2 h of arrival to
perform a PCR screen using the BAX real-time Shiga-toxin
producing E. coli (STEC) assay (Hygiena) according to the
manufacturer’s instructions to determine if the eaeA and/or
stx1/2 genes were present in the sample. If both eaeA and stx1/2
were detected in a sample, the sample was classified as positive for

“EHEC markers.” However, such results could indicate either (i)
both genes were present in a single organism (indicating presence
of EHEC) or (ii) genes were present in separate organisms (e.g.,
eaeA indicates enteropathogenic E. coli presence, stx1/2 indicates
STEC presence).

Land Use Data Collection
Land use data around the sampling sites were extracted from
the 2016 National Land Cover Database (NLCD; https://www.
mrlc.gov/) and quantified using ESRI ArcGIS Pro 2.4.0. The
percentage of land under (i) developed open space, (ii) developed
(combines low-, medium-, and high-intensity developed cover),
(iii) barren, (iv) natural (combines forest and wetland), (v)
pasture/ hay, and (vi) crop cover at various intervals around
each sampling site were calculated (Yang et al., 2018). The
intervals considered were: <250 ft (< ∼75m), 250–500 ft (∼75–
150m), 500–1,000 ft (∼150–300m), 1,000–5,000 ft (∼300–
1,525m), and 500–10,000 ft (∼1,525–3,050m). These buffer
areas were selected, as they most closely represent the distances
included in the California and Arizona Leafy Green Marketing
Agreements Food Safety Practices (California Leafy Greens
Marketing Agreement, 2020) metrics; while it would have been
useful to characterize land use directly adjacent to the canals, an
accuratemap of the canal networks was not available for the study
area. The number of concentrated animal feeding operations (i.e.,
an animal feeding operation with >1,000 animal units confined
on a site for more than 45 days of the year; CAFOs) within 10,000
ft of each site was also calculated.

Weather Data Collection
Temperature, solar radiation, precipitation, wind speed, and
vapor pressure data were obtained from theUniversity of Arizona
(cals.arizona.edu/AZMET/). ESRI ArcGIS Pro 2.4.0 was used
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to identify the weather station closest to each of the sampling
sites. Weather data were cleaned in R version 4.0.0 (R Core
Team, 2021) and used to calculate weather at the time of sample
collection and for the (i) 0–12 h, (ii) 12–24 h, (iii) 1–2 days, and
(iv) 2–3 days prior to sample collection. Due to the small amount
of precipitation during the study, all precipitation variables were
converted to a binary factor to indicate if there was precipitation
(>0mm) or if there was no precipitation (=0 mm).

Regression Analysis
All data cleaning, visualization, and analyses were performed in
R (R Core Team, 2021). A description of all variables used in
analyses are provided in Supplementary Table 1. All analyses
were performed separately for Salmonella presence and EHEC
marker detection. Logistic regression was used as a preliminary
assessment to characterize associations between site specific (i.e.,
data on features present at each site, see Supplementary Table 1

for details), water quality, land-use, and weather variables and
Salmonella presence and EHEC marker detection. Conditional
forest analysis was used to determine if these variables could be
used to predict Salmonella presence or EHEC marker detection.

For logistic regression, normalization and scaling of all
numeric variables was performed using the “caret” package
(Kuhn, 2020). Univariable logistic regression was performed,
using the “lme4” package (Bates et al., 2015), to determine which
of the explanatory variables listed in Supplementary Table 1

were associated with Salmonella and EHECmarker presence. The
day of year (number of days since Jan 1st) and irrigation district
were included in each univariable model as random effects
to account for temporal and spatial autocorrelation. Following
univariable regression, continuous variables with P<0.1 were
included in a principal component analysis (PCA) for variable
reduction. PCA was performed using the prcomp function, such
that the number of components retained must explain ≥90%
of the variation in the data and each retained variable could
only have major loading on one principal component. PCA was
performed separately for Salmonella and EHECmarker presence.
One representative continuous variable from each principal
component, as well as all categorical variables significant at
P < 0.1 by univariable analysis (categorical variables cannot
be included in PCA) were included in the initial multivariable
logistic regression models (implanted using the “lme4” package;
Bates et al., 2015). Day of year and irrigation district were
included each multivariable model as random effects. Backwards
selection based on AIC (Akaike Information Criterion) was
performed; the final selected model was the simplest model with
an AIC value that was at least 2 less than the next simplest
model. Model fit was assessed using the protocol described
by Beauvais et al. (2018) to determine if model assumptions
were met. Variance inflation factors were also calculated to test
for multicollinearity.

Conditional Forest Analysis
Conditional forest analysis was used to determine if sampling
site, water quality, land-use, and weather variables could be used
to predict Salmonella presence and EHEC marker detection,
as it can handle missing data, skewed data, and is robust to

small sample sizes. Imputation could not be performed because
>10% of observations were missing for some variables, and so
imputation could introduce bias into the results. No additional
machine learning algorithms were tested, as a comprehensive
comparison of 23 learners for predicting enteric pathogen
presence in New York streams found that conditional forest
models performed well for the type of data used in the study
presented here (Weller et al., 2020c). The “mlr” (Bischl et al.,
2016) and “party” (Hothorn et al., 2006; Strobl et al., 2007,
2008) packages were used for model training and testing.
Oversampling was performed to account for imbalanced training
data. Repeated (5 iterations) 5-fold cross-validation was used to
tune hyperparameters (i.e., mtry, minbucket, and mincriterion)
to maximize AUC (area under the curve) and minimize
overfitting. For each forest, 20,001 trees were fit. Following
hyperparameter tuning, models were trained, and model testing
was performed. While a separate testing data set would have
been preferable to better evaluate the predictive performance of
these models, one was not available. Instead, cross-validation was
performed as part of model training to estimate performance
measures. Variable importance scores were calculated (Strobl
et al., 2007, 2008) and partial dependence plots were fit for the 4
top-ranked variables for each pathogen. While using conditional
importance scores would have been preferable to account for
correlation between variables, it could not be calculated due
to missing data (>10% of observations were missing for some
variables); as a result, the variable importance scores reported
here may be biased by this correlation. Even with this limitation,
we determined conditional forest was a good option in this case
due to its ability to handle a large number of predictors and small
sample sizes.

We also evaluated if the inclusion of generic E. coli levels as
an input variable would substantially improve the performance
of the conditional forest models. To do so, separate conditional
forest models were re-run (one per pathogen) as described above
but excluding generic E. coli level as a predictor. Performance
measures were used to compare the models that included and
excluded E. coli levels.

All models presented here, were developed as a proof of
concept. As such, these models should not be used to guide
on-farm decision making, and instead should be used as a
starting point for the development of field-ready models (i.e.,
that can be used by stakeholders to predict pathogen presence
in agricultural water) as part of future studies (e.g., using larger
datasets, validated using an independent test dataset).

RESULTS

General Water Quality
In total, 169 samples were collected between January 30th and
November 19th, 2018 from 60 canals; each canal is referred to as
a “site.” The sites were within an ∼28,000 km2 area representing
9 irrigation districts. On average, the majority of land in the
10,000 ft surrounding the sites was classified as cropland or
natural cover (Supplementary Table 3). The mean generic E. coli
level in the water samples was 1.4 log10 MPN/100ml (standard
deviation = 0.7 log10 MPN/100ml) and the mean turbidity in
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the water samples was 32.7 NTU (standard deviation = 92.7
NTU); similar statistics for other variables can be found in
Supplementary Tables 2–4.

Pathogen Testing Results
The overall prevalence of Salmonella was 36% (60/169). Of the
60 sites, 20 were Salmonella negative on all samplings, however,
2 of those sites were only sampled once. Conversely, 9 sites were
positive on all samplings; (1, 5, and 3 of these sites were sampled
1, 2, and 3 times, respectively). The overall prevalence of EHEC
markers (i.e., both stx1/2 and eaeA) in the water samples was
21% (36/169). Thirty-three sites were negative for EHECmarkers
on all samplings, however, 3 of those sites were only sampled
once. Conversely, 2 sites were positive on all samplings for EHEC
markers (both sites were sampled 3 times).

Regression and Conditional Random
Modeling of Salmonella Contamination
Multivariable regression was used to determine which variables
were associated with Salmonella presence. The percent of
developed open space (e.g., large-lot single family homes, golf
courses, parks) in the 1,000–5,000 ft buffer area and precipitation
1–2 days before sample collection were the only variables retained
in the final model. The percent of developed open space in the
1,000–5,000 ft buffer area was negatively associated with the log-
odds of a sample being Salmonella-positive (P = 0.036, Table 2).
Rain 1–2 days before sample collection was positively associated
with the log-odds of a Salmonella positive sample (P = 0.015,
Table 2). Results of univariable regression and PCA are detailed
in Supplementary Table 5.

In addition to multivariable regression, we performed
conditional forest analysis to predict Salmonella presence. The
10 top-ranked predictors included (i) three predictors related
to natural cover, (ii) three weather-related predictors, (iii) two
water quality related predictors, (iv) one temporal predictor, and
(v) one sampling site predictor (Figure 1). Only “precipitation
1–2 days before sampling,” was also retained in the final
multivariable regression model and included in the 10 top-
ranked predictors by the forest (Figure 1). While not retained
in the multivariable regression analysis, several of the 10 top-
ranked predictors in the conditional forest were significant
according to univariable regression (Supplementary Table 5).
Given that conditional forest is better able to handle complex
(e.g., interactions between features) and messy (e.g., missing
data) data than regression, these differences are not unexpected
(see Weller et al. 2020c for more information). Partial
dependence plots were fit to visualize the relationship between
the 4 top-ranked predictors in the conditional forest model
(Figure 2), which were, in order, turbidity, day of year, generic
E. coli level, and percent natural cover in the 500–1,000 ft
buffer area.

The AUC (area under the curve) and kappa score for
the Salmonella conditional forest model were 0.84 and 0.51,
respectively (Table 3). When the probability threshold was set to
0.5 (i.e., to label a sample as positive, the predicted probability of
that sample being positive for Salmonellamust be 0.5 or greater),
the sensitivity, specificity, positive likelihood ratio, and negative
likelihood ratio were 0.69, 0.82, 3.83, and 0.38, respectively.

The sensitivity of 0.69 indicates there is a 0.31 false negative
rate, or 31% of the time the model will predict a sample as
being negative for Salmonella when it is truly positive. Since the
model predicts the probability of Salmonella being present in
a sample (i.e., a continuous outcome), a probability threshold
is needed to dichotomize the predicted pathogen status as
positive or negative (Table 2). If a binary outcome (as opposed
to the continuous outcome generated by the forest algorithm)
is needed when applying a predictive model, sensitivity and
specificity can be adjusted by changing the threshold value
(Table 4). For instance, if the threshold value was set at 0.4,
the sensitivity, specificity, positive likelihood ratio, and negative
likelihood ratio would be 0.78, 0.71, 2.70, and 0.31, respectively
(Table 4).

Regression and Conditional Random
Modeling of EHEC Marker Presence
Generic E. coli level, precipitation 12–24 h before sample
collection, if there was a point of discharge (i.e., there was ground
water well discharge into the canal) visible from the site, and if
there was a road crossing visible from the site were retained in
the final EHEC regression model (Table 2). Generic E. coli level
(P< 0.001) and precipitation 12–24 h before sample collection (P
= 0.007) were positively associated with the log-odds of EHEC
marker detection (P < 0.001). A point of discharge and a road
crossing visible from the site were negatively associated with the
log-odds of EHEC marker detection.

A conditional forest model was also fit to predict EHEC
marker detection. The top 10 ranked predictors included
(i) six land cover predictors (five related to natural cover),
(ii) one weather predictor, (iii) two water quality predictors,
and (iv) one temporal predictor (Figure 3). While generic E.
coli level and precipitation 12–24 h before sample collection
were included in the 10 top-ranked predictors in the forest
model, the presence of a point of discharge and road crossing
adjacent to the sampling sites were not among the 10 top-
ranked predictors in the forest (Figure 3). For the EHEC
forest, partial dependence plots were fit for the 4 predictors,
which were (i) generic E. coli level, (ii) day of year, (iii)
percent of natural cover in the 250–500 ft buffer area, and
(iv) percent of natural cover in the 500–1,000 ft buffer area
(Figure 4).

The AUC and kappa score for the EHEC forest were 0.92
and 0.66, respectively (Table 3). The sensitivity, specificity,
positive likelihood ratio, and negative likelihood ratio were
0.78, 0.88, 6.27, and 0.25, respectively for the EHEC marker
model at a threshold value of 0.5 (Table 4). As with the
Salmonella forest, changing the threshold value could improve
performance measures that rely on dichotomizing the predicted
probability of EHEC marker detection (e.g., sensitivity;
Table 4).

Performance of Models That Do Not
Include Generic E. coli Levels as a
Predictor
To determine if including generic E. coli levels in the conditional
forest models substantially improved predictive performance,
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TABLE 2 | Results of mixed effects regression modelsa that characterize the relationship between pathogen detection (Salmonella presence and EHEC marker detection)

and environmental variables (e.g., land use, weather, sampling site characteristics, and water quality factors).

Outcome Variableb Log odds 95% CIc

Salmonella presence Intercept −0.9 (−3.2, 0.8)

% Developed (open) Cover, 1,000–5,000 ft Buffer −0.5 (−1.0, −0.1)

Precipitation, 1–2 days (Yes)d 3.5 (1.0, 7.0)

EHEC marker Intercept 0.3 (−2.3, 1.1)

E. coli level (log10 MPN/ 100ml) 1.7 (1.0, 2.6)

Point of Discharge Present (Yes)e −1.8 (−4.0, −0.1)

Road Crossing Present (Yes)f −1.8 (−3.5, −0.3)

Precipitation, 12–24 h (Yes)d 3.7 (1.2, 6.7)

aThe day of year and irrigation district were included in the models as random effects.
bFor the Salmonella presence model, the residual variance and standard deviation for the day of year are 0.7302 and 0.8545, respectively, and the residual variance and standard

deviation for the irrigation district are 2.9023 and 1.7036, respectively. For the EHEC maker model, the residual variance and standard deviation for the day of year are 0.8895 and

0.9431, respectively, and the residual variance and standard deviation for the irrigation district are 0.1269 and 0.3562, respectively.
c95% CI, 95% confidence interval.
d Indicates if there was precipitation in the time frame specified before sample collection. Baseline is no precipitation.
e Indicates if a point of discharge (i.e., ground water well discharge into the canals) is present adjacent to the sampling site. Baseline is no point of discharge.
f Indicates if a road crossing is present adjacent to the sampling site. Baseline is no road crossing.

FIGURE 2 | Partial dependence plots for the 4 top-ranked predictors according to variable importance in the Salmonella conditional forest model with generic E. coli

included as a predictor; The plots indicate how the predicted probability of a water sample being positive for Salmonella presence changes as the x-axis variable

(predictor) changes. The tick marks along the x-axis indicate values of the predictor variable in samples used to fit the conditional forest model.

we re-ran the forest models without generic E. coli level
as a predictor (see Supplementary Figures 2–5 for variable
importance and partial dependence plots). There were no
substantial differences in performance between the models with
and without generic E. coli included as a predictor (Table 3).
For instance, the AUC values were 0.84 and 0.83 for the
Salmonella forests that included and excluded generic E. coli
levels, respectively. Similarly, the AUC values were 0.92 and 0.91
for the EHEC forests that included and excluded generic E. coli
levels, respectively.

DISCUSSION

The current study assessed Salmonella presence and EHEC

marker detection in southwestern US canals used for agricultural

water. Regression was used to identify associations between

environmental conditions and Salmonella presence and EHEC
marker detection. The data were also utilized to determine if

forest-based models were a feasible approach for predicting
Salmonella presence and EHEC marker detection in canals.
While these models were developed as a proof of concept,
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TABLE 3 | Performance measures for the conditional random forest models displaying the relationship of the pathogen detection outcomes (Salmonella presence and

EHEC marker detection) with the land use, weather, sampling site characteristics, and water quality predictors with generic E. coli level included and excluded as a

predictor.

Outcome E. colia AUCb Kappac Sensitivityd Specificityd LR+
d,e LR-d,f DORg (95% CIh)

Salmonella Yes 0.84 0.51 0.69 0.82 3.83 0.38 10.06 (7.38, 13.70)

No 0.83 0.49 0.69 0.80 3.44 0.39 8.82 (6.52, 11.94)

EHEC marker Yes 0.92 0.66 0.78 0.88 6.27 0.25 25.19 (18.27, 34.72)

No 0.91 0.63 0.78 0.85 5.25 0.26 20.54 (15.07, 27.98)

a Indicates if E. coli level (log10MPN/100ml water) was included (Yes) or not (No) as a variable in the forest.
bAUC, area under the receiver operating characteristic curve.
cKappa score (a measure of agreement between the observed outcome and the predicted outcome; a value of 1 is indicative of perfect agreement and a value of 0 is indicative of an

agreement no greater than that of chance).
dMeasure is biased by the decision threshold used.
eLR+, positive likelihood ratio (the likelihood of a predicted pathogen presence when a pathogen is present compared to the likelihood of a predicted pathogen presence when a

pathogen is absent).
fLR–, negative likelihood ratio (the likelihood of a predicted pathogen absence when a pathogen is present compared to the likelihood of a predicted pathogen absence when a pathogen

is absent).
gDOR, diagnostic odds ratio (the ratio of the odds of a predicted pathogen presence if the pathogen is present to the odds of a predicted pathogen presence if the pathogen is absent).
h95% CI, 95% confidence interval.

TABLE 4 | Differences in performance measures for the conditional forest models displaying the relationship of the pathogen detection outcomes (Salmonella presence

and EHEC marker detection) with the land use, weather, sampling site characteristics, and water quality predictors with generic E. coli level included and excluded as a

predictora.

Outcome E. colib Threshold Sensitivity Specificity LR+
c LR–d

Salmonella presence Yes 0.5 0.69 0.82 3.83 0.38

0.4 0.78 0.71 2.70 0.31

0.3 0.86 0.58 2.07 0.23

No 0.5 0.69 0.80 3.44 0.39

0.4 0.78 0.72 2.82 0.30

0.3 0.87 0.61 2.23 0.21

stx/ eaeA co-detection Yes 0.5 0.78 0.88 6.27 0.25

0.4 0.83 0.82 4.72 0.20

0.3 0.93 0.73 3.40 0.10

No 0.5 0.78 0.85 5.25 0.26

0.4 0.88 0.75 3.50 0.16

0.3 0.95 0.65 2.67 0.08

aThreshold value indicates the predicted probability a sample must be greater than to be labeled as a positive sample.
b Indicates if E. coli level (log10MPN/100ml water) was included (Yes) or excluded (No) in the model as a possible predictor.
cLR+, positive likelihood ratio (the likelihood of a predicted pathogen presence when a pathogen is present compared to the likelihood of a predicted pathogen presence when a

pathogen is absent).
dLR–, negative likelihood ratio (the likelihood of a predicted pathogen absence when a pathogen is present compared to the likelihood of a predicted pathogen absence when a pathogen

is absent).

they provide a conceptual framework on which future work
(development of models that can be integrated into on-farm
decision-making) can build. Our results can also be used to
identify factors important for predicting pathogen presence in
southwestern US canal water to guide future data collection to be
used to provide maximum value for the refinement of predictive
models that can be deployed for industry use.

Salmonella and EHEC Marker Prevalence
Salmonella has been isolated from flowing surface water sources
in both this and previous studies (Duffy et al., 2005; Haley et al.,
2009;Wilkes et al., 2009, 2011; Benjamin et al., 2013; Strawn et al.,
2013a,b; Cooley et al., 2014; Stea et al., 2015; Bradshaw et al.,

2016; Falardeau et al., 2017; Tian et al., 2017; Partyka et al., 2018;
Truchado et al., 2018; Weller et al., 2020a,b). While Salmonella
prevalence varied widely between these studies, the Salmonella
prevalence reported here (36%) falls within the range reported
by these previous studies, which was between 3% (6/223) (British
Columbia, Canada; Falardeau et al., 2017) and 76% (80/105)
(Georgia, USA; Bradshaw et al., 2016).

While several studies have attempted to assess the prevalence
of EHEC or different EHEC subgroups (e.g., E. coli O157)
in surface water, the specific methodologies used can have
a considerable impact on prevalence estimates. Some studies
reported the percent of culture-confirmed EHEC or STEC
positive samples (Wilkes et al., 2009, 2011; Benjamin et al.,
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FIGURE 3 | Variable importance values for the EHEC marker conditional forest model with generic E. coli included as a predictor. Only the top 10 predictors are

included and are listed from most to least important.

FIGURE 4 | Partial dependence plots for the 4 top-ranked predictors according to variable importance in the EHEC marker conditional forest model with generic

E. coli included as a predictor; the plots indicate how the predicted probability of a water sample being positive for EHEC marker detection changes as the x-axis

variable (predictor) changes. The tick marks along the x-axis indicate values of the predictor variable in samples used to fit the conditional forest model.

2013; Strawn et al., 2013a; Cooley et al., 2014; Tanaro et al.,
2014; Nadya et al., 2016; Falardeau et al., 2017; Tian et al.,
2017; Partyka et al., 2018; Truchado et al., 2018; Haymaker
et al., 2019), others solely relied on PCR screens for either O157
markers (Stea et al., 2015) or EHEC markers (Shelton et al.,
2011; Bradshaw et al., 2016; Weller et al., 2020a,b), such as the
study reported here. Regardless, most of these previous studies

that assessed EHEC in running surface waters have reported
lower prevalence than found here (21%). For example, the EHEC
prevalence ranged from <1% (5/818) (Ontario, Canada; Wilkes
et al., 2009) to 19% (63/330) (British Columbia, Canada; Nadya
et al., 2016); both studies utilized culture confirmed EHEC
results. While the higher EHEC prevalence in the current study
could be due to a truly higher prevalence, the use of a PCR
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screen for stx and eaeA in a single sample without culture
confirmation may overestimate the prevalence of EHEC, as this
method may (i) detect stx and eaeA in different organisms
and (ii) may detect genetic material from dead organisms. The
lower prevalence of EHEC in previous studies that used culture
confirmation is also likely explained by the lack of reliable EHEC
culture-conformation methods which can underestimate its true
prevalence (Muniesa et al., 2006; Bettelheim, 2007; Baker et al.,
2019).

The Complexity of Relationships Observed
Was Dependent on the Analytical Approach
Two modeling approaches were utilized, including (i)
multivariable regression to identify associations between
environmental variables and Salmonella presence and EHEC
marker detection, and (ii) conditional forest to develop models
to predict Salmonella presence and EHEC marker detection.
For both Salmonella presence and EHEC marker detection,
there were several differences in the variables retained in the
regression models and the variables ranked as important by the
forests, even though there are some overlaps between important
variables between the modeling strategies. This highlights
the fact that different modeling strategies are able to detect
different relationships in the data (Kuhn and Johnson, 2013). For
instance, regression relies on the assumption that there is a linear
relationship between independent variables and the log-odds of
the dependent variable being detected, and therefore, non-linear
relationships cannot be detected. In addition, logistic regression
cannot handle a large number of independent variables
simultaneously (requiring variable selection before model
development), missing data, or correlated variables, and can only
account for a limited number of interactions. In comparison,
conditional forest utilizes tree-based modeling which does
not require the same linear assumption to be met, implicitly
accounts for hierarchical relationships and interactions in the
data, and can handle missing data, large numbers of independent
variables, and correlation. For example, some variables were
important by univariable regression but could not be included
in final multivariable regression models because they loaded
on more than 1 principal component (e.g., percent of natural
cover around the sampling site for the Salmonella model). PCA
is one strategy used for variable selection in regression analysis,
as regression analysis is unable to handle overly complex models
(see Kuhn and Johnson, 2013 for additional variable reduction
strategies). On the other hand, variable selection is incorporated
into the conditional forest algorithm and as such is better able
to capture the complex relationships inherent to environmental
data (Weller et al., 2020b). However, regression-based analysis
does have its advantages, especially for hypothesis testing of
the relationships between specific, independent variables and
the outcome. Regression models are more interpretable than
forests, making it easier to understand the relationships in a
regression as opposed to forest models (Kuhn and Johnson,
2013).

Only precipitation 1–2 days before sampling was included
among the 10 top-ranked predictors in the Salmonella forest

and retained in the final regression model. Several other studies
also found an increased likelihood of Salmonella detection
following rain events (Haley et al., 2009; Wilkes et al., 2009;
Liang et al., 2013; Stea et al., 2015; Weller et al., 2020a). For
instance, in a survey of surface water in Georgia, USA, Haley
et al. (2009) found significant (P < 0.005) positive correlations
between Salmonella levels, and rainfall 1 and 2 days before
sample collection. This relationship may be driven by increases
in run-off during rain events, which can transfer Salmonella
from terrestrial sources to waterways. Unlike rain, developed
open space was included in the final Salmonella regression model
but was not highly ranked in the Salmonella forest. According
to the regression model, as the percent of developed open
space increased, the log-odds of detecting Salmonella decreased.
Developed open space may act as a proxy for built-landscape
features that prevent run-off and microbial contaminants from
entering canals, such as vegetative buffers (e.g., in parks) or
improved drainage systems. Consistent with these findings, a
survey of Central California waterways found a significantly
lower prevalence (P < 0.05) of Salmonella in human-impact
areas (47%) compared to animal-impacted areas (74%) (Tian
et al., 2017). However, several studies have found a positive
association between Salmonella presence and variables linked to
human presence human presence (Johnson et al., 2003; Weller
et al., 2020a). Johnson et al. (2003) speculated this inconsistency
between studies could be due to the quality of wastewater removal
infrastructure in the sampling area.

For the EHEC models, generic E. coli levels and precipitation
before sampling were included in both the regression and forest
models. The relationship between precipitation and an increased
log-odds of EHEC detection was likely also driven by an increase
in run-off during rain events, similar to the relationship between
Salmonella and precipitation discussed above. The relationship
between EHEC detection and precipitation is also consistent with
past studies (Stea et al., 2015; Nadya et al., 2016). Conversely,
there is considerable variability between previous studies in the
existence, direction, and strength of the relationship between
EHEC detection and generic E. coli levels. For example, some
studies, like the study presented here, found evidence of a
relationship (Holvoet et al., 2014; Stea et al., 2015; Bradshaw et al.,
2016; Falardeau et al., 2017; Truchado et al., 2018; Weller et al.,
2020b), while others did not (Shelton et al., 2011; Benjamin et al.,
2013; Falardeau et al., 2017; Partyka et al., 2018; Weller et al.,
2020a).

While there were overall differences in the variables identified
as being associated with Salmonella presence or EHEC marker
detection by regression analysis and those identified as a
top ranked predictor by conditional forest analysis, both
modeling strategies used together can provide a more complete
understanding of the processes that drive pathogen presence.
For instance, the variables associated with pathogen presence via
regression provide easy to interpret information on associations
between a subset of factors and likelihood of pathogen
contamination. On the other hand, the top ranked variables in
the Salmonella presence or EHEC marker detection conditional
forests may provide insight into what variables are important
for inclusion in models that predict pathogen presence in
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agricultural water. This can be used to determine what additional
information should be collected to improve the performance of
these predictive models so they can be implemented by industry.
However, the complex interactions between variables included in
the conditional forest models can make it difficult to assess how
a change in one variable alone (e.g., occurrence of rainfall) will
impact the outcome (i.e., pathogen presence).

Machine-Learning-Based Models Have
Potential for Prediction of Pathogen
Contamination Likelihood, Including Real
Time Prediction That Does Not Require
Microbiological Data
Generic E. coli is traditionally used as a fecal indicator in
agricultural water to indicate potentially unhygienic conditions.
However, the high cost, slow turnaround time, uneven
distribution of generic E. coli in surface waters, and inconsistent
relationships between pathogen presence and generic E. coli
level limit its value and feasibility of routine use (Pachepsky
et al., 2016; Wall et al., 2019). Our data here provide further
support that conditional forest models are able to predict the
presence of Salmonella and EHEC markers, as supported by
AUC values of 0.84 for the Salmonella model and 0.92 for
the EHEC marker model (AUC values of 0.8–0.9 are generally
indicative of excellent predictive performance;Mandrekar, 2010).
Previous studies by Polat et al. (2020) and Weller et al.
(2020c) also previously reported that machine learning models
show potential as a strategy for identifying contaminated
agricultural water in Florida ponds and New York streams,
respectively. However, these AUC values from the current
study were calculated using cross-validation, as opposed to
an independent test dataset, and may be overfit. Regardless,
overfitting concerns are mitigated by the fact that the models
developed here were developed as a proof of concept and
conceptual framework, and not intended for actual use on-
farms. If predictive models are going to be developed as
an alternative or supplement to indicator-based monitoring,
sufficient data is needed, ideally spanning several years and
regions, to allow for separate, independent training and test data.
Furthermore, additional information is needed to determine if
predictive models should be developed for individual waterways,
specific regions, or if a standard model can be used across
multiple regions.

Importantly, the removal of generic E. coli level as a
predictor in the Salmonella presence and EHEC marker
detection conditional forests did not substantially decrease
predictive performance of either model. This provides
evidence that it is possible to eliminate the use of generic
E. coli water testing (or other microbial water testing
strategies) and replace it with real-time predictive models
with limited impact on the accuracy of identifying when
water may be contaminated with pathogens and thus at an
increased potential risk. These real-time models would be
advantageous, as produce growers could estimate the likelihood
of pathogen presence in their water sources at the time of
water application.

Presenting Predictive Modeling Outcomes
as Continuous Risk Measures and
Dichotomized Outcomes Have Distinct
Advantages
The output of the conditional forest models is the predicted
probability that a sample will be positive for Salmonella presence
or EHEC marker detection. One method for using this predicted
probability for making decisions on how to utilize the water
would be to dichotomize the outcome (i.e., pathogen is present
or absent) based on if the predicted probability is greater
than or less than some set threshold value. If this strategy
is used, specificity, sensitivity, positive likelihood ratio, and
negative likelihood ratio can be calculated. While the specificity
is adequate for our Salmonella model, the sensitivity is low
(0.69). This is particularly concerning as this means the model
often calls Salmonella-positive samples as negative, and thus
may lead to instances where corrective actions (e.g., water
treatment) were not performed when they should have been.
However, by lowering the threshold value, the sensitivity of
the model can be increased, minimizing this risk. A similar
phenomenon was observed for the EHEC forest. If predictive
models are to be used by produce growers to guide on-farm
decision making (e.g., if corrective actions are needed before
using water to irrigate crops), optimization of this threshold value
is needed. A future quantitative microbial risk assessment would
be helpful to identify the risk of illness associated with different
threshold values (Uyttendaele et al., 2015; Rock et al., 2019). This
information could then be used to optimize what threshold value
should be used to balance the predicted number of illnesses vs.
the costs associated with different corrective actions (e.g., water
treatment). While dichotomizing the outcome of the model, as
described above, creates an easier to interpretmodel, it does cause
a loss of information. As an alternative, the predicted probability
of a sample being positive could instead be directly used for
decision making; however, this would also require quantitative
risk assessment to determine how predicted probabilities should
be used.

Natural Cover and the Day of Year Are
Important for Prediction of Salmonella

Presence and EHEC Marker Detection
As previously discussed, there were some differences in variables
associated with pathogen presence by multivariable regression
and the top ranked variables for predicting pathogen presence
by conditional forest. However, a specific discussion of the top
ranked variables is important for informing what information
should be collected for future refinement of models used to
predict pathogen presence in agricultural water. Natural cover
variables and the day of year were included in the ten top-
ranked predictors in the Salmonella and EHEC forests. For
both Salmonella and EHEC, there was a positive monotonic
relationship between the percent of natural cover around the
sampling site and pathogen presence. Since natural cover may
function as habitat for wildlife, this may indicate wildlife is
acting as a pathogen source in southwestern US canals; this is
supported by the limited number of past studies that examined
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the prevalence of enteric pathogens in southwestern wildlife (e.g.,
Jay et al., 2007; Jay-Russell et al., 2014). For example, an Arizona
study found 32% (N= 103 total samples) of coyote fecal samples
were positive for Salmonella, while none were STEC-positive and
4.9% were enteropathogenic E. coli-positive (Jay-Russell et al.,
2014). On the other hand, in a study investigating E. coliO157:H7
in feral swine in the central California coast, 14.9% (13/87) of
samples were positive for E. coli O157:H7 (Jay et al., 2007).
Since, in the current study, the relationship between natural
cover and Salmonella presence and EHEC marker detection is
weak, additional research is needed to fully characterize the role
wildlife plays as a source of enteric pathogen contamination for
southwestern canals. Given the need for additional research, and
the important ecosystem services provided by natural cover (e.g.,
water filtration) and wildlife (e.g., pest control, pollination), the
authors want to emphasize we are not advocating the removal
of natural cover or wildlife from growing areas (Aarons and
Gourley, 2012; Allende et al., 2018; Navarro-Gonzalez et al.,
2020).

Temporal trends in Salmonella presence and EHEC marker
detection were accounted for by including the day of year each
sample was collected on as a predictor in the forests. The day
of year was used instead of season, as seasons are arbitrary
periods of time; the end of a season is more similar to the
beginning of the subsequent season than the beginning of the
season itself. As such, using the day of year as a continuous
variable reduces bias in the final model by not forcing the data
into arbitrary categories. For both models, the probability of
a sample being pathogen-positive remained low until approx.
September, after which the probability of a positive increased.
This likely indicates some event occurs during early fall that
leads to an increased likelihood of pathogen contamination of
southwestern US canals. For instance, it is possible the canals are
cleaned at this time of year, which causes the sediments at the
bottom to re-distribute and re-contaminate the water. However,
the current study only spanned 1 year so additional research
is needed to determine if this relationship holds across time.
Despite this limitation, our finding of intra-annual trends in
microbial water quality is consistent with past studies that looked
at Salmonella (Wilkes et al., 2009; Liang et al., 2013; Cooley
et al., 2014; Stea et al., 2015; Tian et al., 2017; Weller et al.,
2020b) and EHEC (Shelton et al., 2011; Stea et al., 2015; Nadya
et al., 2016; Tian et al., 2017). For instance, Cooley et al. (2014)
found a higher Salmonella prevalence in the spring and summer
compared to the fall and winter in Central California surface
water samples. Furthermore, consistent with our current study,
Stea et al. (2015) found a higher prevalence of STEC in the later
summer and fall compared to all other seasons in Nova Scotia,
Canada. Overall, the data collected to date appear to indicate
that enteric pathogen contamination of surface water often shows
some type of seasonality, although the specific trends appear to
differ across locations and studies.

LIMITATIONS

While a large area (∼28,000 km2) of the produce growing
region in the southwestern US is represented here, stratification

for certain land-use or sample site factors was not performed
during sample site selection. As such, this could have biased
the results (i.e., some potentially important factors could have
been missed due to underrepresentation of certain variables).
Additionally, since this is a proof of concept, only a small
number of samples were collected (N = 169) and each site
was only visited few times (1–3 times), which could result in
combinations of factors associated with an altered likelihood of
pathogen presence being missed (e.g., if the greatest likelihood
of Salmonella contamination is after a rain event next to a
dairy farm but no samples were collected after a rainfall from a
site next to a dairy farm, this signal would have been missed).
Therefore, further studies, with larger sampling efforts and
spanning multiple years and geographical locations or growing
regions, are needed to yield models appropriate for industry use
and to answer key questions such as if a single model can be
used from water source to water source, if a single model can
be used from climate to climate (or region to region), and if a
single model can be used over several years. In addition, there
are other factors that may be important for pathogen presence in
canals such as difference in elevation between surrounding land
and the canal, livestock density surrounding the canals (instead
of just CAFO presence), land use along canal flow paths, and
relative humidity; future model building efforts should consider
collecting these data to include in their models. Furthermore,
there were several factors with missing data (e.g., flow rate could
not be measured at all sites due to safety concerns). This could
lead to information bias (i.e., bias caused by a lack of correct or
complete information) in logistic regression, but we expect this
to be non-differential (i.e., the bias direction is independent of
the model outcome), indicating it should not have impacted the
results of the study.

CONCLUSIONS

Machine learning-based predictive models, such as conditional
forest models show promise for predicting Salmonella presence
and EHEC marker detection in southwestern US canals
used as sources for agricultural water. The use of machine
learning models, in addition to regression analysis, provides
a more complete assessment of the relationships between
spatial and temporal factors and foodborne pathogen presence
in agricultural water due to the complexity in the system.
Furthermore, the use of predictive modeling, and real-time
predictive models (using no microbiological data), may provide
an alternative or supplement to traditional generic E. coli testing
for fine-tuning when and where food safety hazards may be
present in agricultural water and corrective action is needed.
The forests developed in the current study specifically indicate
that use around the sampling site and day of the year are
important predictors for both Salmonella presence and EHEC
marker detection in southwestern US canal water. Despite the
promising results in this and previous studies, these studies were
proof of concept. Therefore, before predictive models can be
deployed on farms and integrated into on-farm risk management
plans additional research is needed to determine if models can
predict pathogen presence accurately for regions, water types
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(e.g., canal, stream, pond), and years, other than the region(s),
water type(s), and year(s) where the training data were collected.
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Wastewater stabilization ponds (WSPs) are commonly used to treat municipal

wastewater in the Canadian Arctic. Bacterial community structure and functionality

remainmostly uncharacterized for arcticWSPs, yet are presumed important for treatment

outcomes during the 3-month summer treatment season with open water in the WSPs.

The objective of this study was to investigate treatment performance and related temporal

and spatial changes in the structure and putative function of bacterial communities

during treatment of municipal wastewater in the WSPs of Pond Inlet and Clyde River,

Nunavut over two consecutive summer treatment seasons. Influent raw wastewater

contained a high organic load and large bacterial communities (∼9 log 16S rRNA

copies/mL) belonging mainly to Proteobacteria. Although designed to be facultative

ponds, both WSPs remained anaerobic with neutral pH values (7.5–7.8) throughout

the summer treatment season. Water quality data showed that nutrients [measured as

carbonaceous biological oxygen demand (CBOD5)], total suspended solids, and total

ammonia nitrogen were progressively reduced during treatment in the ponds as the

summer progressed. The pond bacterial population size and species richness depended

on the pond temperature (2–18◦C), with 8.5 log 16S rRNA copies/mL and the largest

alpha diversities (Shannon-Wiener index of 4-4.5) observed mid-season (late July). While

the phylogenetic beta diversity in rawwastewater from the two locations remained similar,

pond bacterial communities underwent significant (p < 0.05) changes to dominance of

Comamonadaceae, Geobacteracea, and Porphyromonadaceae. Multivariate distance

based redundancy analysis and predicted gene functionalities in the microbiota agreed

with water quality results that microbial removal of nutrients (e.g., CBOD5) peaked

in the middle of the summer coinciding with the treatment period with the highest

pond temperatures. Information from this study will be useful for further development

of models to predict biological treatment outcomes, which could be used to size and

assess the feasibility of WSPs in extreme climates. Higher pond temperatures resulted in
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optimal biological processes and nutrient removal in the middle of the summer. While

it is challenging to control environmental factors in a passive wastewater treatment

system there are some design considerations that could be used to optimize temperature

regimes, such as the depth of the pond.

Keywords: pond temperature, bacterial diversity, nutrient removal, cold climate, sewage microbiology, treatment

season, remote communities

INTRODUCTION

Wastewater stabilization ponds (WSPs) are commonly used to
treat municipal wastewater in remote arctic communities in
Canada. The WSPs consist of either naturally occurring lakes
with uncontrolled release or engineered structures with a lining
and berm for controlled release of the water. Engineered WSPs
have typically been designed to be facultative (i.e., aerobic) and
to hold the annual volume of wastewater generated within the
community (Ragush et al., 2015).

These WSPs are passive (i.e., non-mechanical) treatment
systems that depend on physical settling and biological processes
and are strongly affected by the climatic conditions including
ambient temperature (Heinke et al., 1991). Operations of arctic
WSPs are unique in that the content will remain frozen for
9 months of the year limiting the treatment season to the
three summer months with open water and temperatures that
support biological activity (Balch et al., 2018). Also, due to the
low water consumption per capita (∼100 L/person × day) in
arctic regions such as Nunavut compared to Southern Canada
(average of 274 L/ person × day), the deposited sewage tends
to be more concentrated (Daley et al., 2014; Ragush et al.,
2015). This can lead to high organic loading rates (OLRs) and
anaerobic conditions in the facultative ponds which may affect
the microbiological processes negatively (Ragush et al., 2017).
Past studies have shown that primary treatment can be attained in
arcticWSPs with removal of around 25–40% of nutrients, oxygen
demandingmaterial, suspended solids, and 99% of fecal indicator
Escherichia coli (Marais, 1974; Heinke et al., 1991), even in WSPs
with high OLRs and anaerobic conditions (Ragush et al., 2015;
Huang et al., 2018).

It is well-known that microbial communities play an
important role in biological wastewater treatment (Wagner et al.,
2002). Insights in the dynamics of the wastewater microbiome
during treatment can therefore be useful in determining which
organisms are present and how they relate to the treatment of the
wastewater for the benefit of future process optimization.

Studies of full scale mechanical wastewater treatment facilities
show that low temperature generally reduces the bacterial
diversity and slows down the growth and metabolic activity of
functional bacteria to the extent where the treatment is affected.
Rodriguez-Caballero et al. (2012) observed that low wastewater
temperatures during the winter (10–15◦C) caused difficulties in
maintaining the required rates of nitrogen removal in biological
wastewater treatment plants (WWTPs) operated in Northern
Sweden. Another cold-climate study (Ju et al., 2014) found
that the relative abundances of functional groups in activated
sludge communities were shaped by seasonal temperature

changes, i.e., when the temperature dropped during winter
season, the abundances of nitrite-oxidizing bacteria (NOB) and
hydrolysers decreased, leading to the incomplete nitrification
and hydrolysis of organic material. The relative temperature-
driven reduction in microbial diversity was also observed in a
Finnish study conducted in the seven Northern communities,
where wastewater was treated in bioreactors operated at low
temperatures of 3–7◦C resulting in good nutrient removal but
variable performance for nitrogen removal (Gonzalez-Martinez
et al., 2018).

In terms of microbial communities related to treatment in
arctic WSPs, Gromala et al. (2021) recently examined water
samples from WSPs located in Baker Lake (Qamani’tuaq),
Cambridge Bay (Iqaluktuuttiaq), and Kugluktuk (Qurluktuk), all
located in Western Nunavut, and reported temporal and spatial
differences in the abundance of major bacterial phyla that were
relatable to specific WSPs and the time after the Spring thaw.
However, studies of the structure and function of microbial
communities in relation to the treatment performance of arctic
WSP systems throughout the summer treatment season have to
the best of our knowledge not been performed.

The objective of this study was to investigate the temporal and
spatial changes in the structure and putative function of bacterial
communities and their link to treatment performance during
treatment of municipal wastewater in arctic WSP systems located
in the communities of Pond Inlet (Mittimatalik) and Clyde River
(Kangiqtugaapik) in Nunavut, Canada. This study was conducted
over two summer treatment seasons (June to early-September)
and involved monitoring microbial populations in influent raw
wastewater and the progressively treated water in the WSPs as
well as selected environmental and water quality parameters.
Information about the microbiology of these systems can help in
understanding passive, biological wastewater treatment systems
operated in cold climates.

MATERIALS AND METHODS

Study Sites
From June, 2013 to September, 2014, six and five sampling trips
were made to Pond Inlet and Clyde River, Nunavut, Canada.
Both communities are located on Qikitaaluk/Baffin Island. The
area’s polar climate is characterized by long cold winters (∼9
months from mid-September to May) and short cool summers
(June to mid-September).

Domestic wastewater is collected daily or several times a week
from holding tanks located inside buildings (homes, library,
schools, health clinic, municipal offices, etc.) and trucked to
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the WSPs for treatment. Wastewater is loaded into the WSPs
throughout the year, however, treatment mainly occurs after the
Spring thaw and during summer months, where the content of
the WSPs is liquid. None of the communities have any industries
or agricultural activities that would contribute to the wastewater.

Pond Inlet (72◦ 41′ 57′′ N, 77◦ 57′ 33′′ W) has a population of
1612 (Statistics Canada, 2012). The average daily temperature is
−34◦C in February (coldest month) and 6◦C in July (warmest
month, Environment Canada, 2014a). The community’s WSP
system consists of one engineered pond with a surface area of
∼40,000 m2 and an average depth of∼1.9m during the summer.
The treated wastewater (effluent) is discharged once annually in
September by pumping the water over the berm after which it
goes through a 500m channel and into the ocean (Eclipse Sound).
The annual estimated wastewater generation for the community
is 8.0× 107 L (140 L/person× day).

Clyde River (70◦ 28′ 26′′ N, 68◦ 35′ 10′′ W) has a population
of 1004 (Statistics Canada, 2012). The community experiences
average daily temperatures of −30◦C in February (coldest
month) and 5◦C in July (warmest month, Environment Canada,
2014b). The WSP system in Clyde River consists of a small
primary pond (6,000 m2) and a larger secondary pond (15,000
m2). The estimated annual wastewater volume is 3.1 × 107 L
(88 L/person × day). This two-cell WSP system is designed to
be operated in a staged manner, where the raw wastewater is
deposited in the primary pond. The pre-processed wastewater
would then be transferred into the secondary pond for further
treatment before the annual decant in September, where the
water is pumped into a wetland area that leads into the
ocean (Patricia Bay). In September 2013, operations deviated as
untreated wastewater was deposited in both ponds.

Sampling Strategy
On each visit, grab samples of wastewater were obtained from the
wastewater trucks (i.e., raw wastewater, n≥ 3), and from different
locations (n = 2–5) and at varying depths (0.1, 1.1, and 1.9m) in
the ponds to examine spatial variability. Effluent samples were
also obtained during the decant (n = 3) in Pond Inlet or from
the secondary pond (n = 3) in Clyde River just prior to the
annual decant.

Samples from the Pond Inlet WSP were obtained in
the beginning (late June/early July, just after the Spring
thaw,), middle (late July/early August), and end (early/middle
September, time of the annual decant which is just before to
the freeze-up) of the summer treatment season in 2013 and
2014. Sludge samples (one composite sample per visit) were also
obtained from the Pond Inlet WSP in 2014.

Samples from Clyde River were collected three times in 2013,
while sampling in 2014 took place at the beginning and end of the
summer just prior to the decant event.

Wastewater samples were collected in 1-L or 500-mL sterile
containers (Nalgene, Fisher Scientific, Nepean, ON, Canada)
from an inflatable boat or from the shore of the pond using a
subsurface pole sampler and then stored in a cooler (4◦C).Within
24 h of the sampling event, samples were flown to the Northern
Water Quality Laboratory (NWQL) at the Nunavut Research
Institute in Iqaluit, NU, for further processing.

Continuous Monitoring of WSPs and Water

Quality Measurements
Deployment of multi-parameter sondes (YSI Inc., Yellow Spring,
OH) allowed for in-situ hourly measurements of wastewater
temperature, pH, and dissolved oxygen (DO). Sondes were
installed in the WSPs (0.1m below the surface) during the first
sampling trip and retrieved at the end of each treatment season.

Grab samples were analyzed for the content of carbonaceous
biological oxygen demand (CBOD5), total ammonia (TA), total
phosphorus (TP), total nitrogen (TN), and total suspended
solids (TSS) using standard methods. Briefly, CBOD5 was
analyzed in duplicate following the APHA standard method
5210 B (American Public Health Association, 1999). Dissolved
oxygen was measured using a probe (Orion 83005MD, Fisher
Scientific, Ottawa, ON, Canada) and an Orion StarTM series
meters (Fisher Scientific). The APHA standard methods 2540
D (American Public Health Association, 1999) with Whatman
TM934-AH 47mm glass fiber filters (Fisher Scientific) were used
for measurements of TSS. Measurements of total ammonia (TA)
was done using a Thermo Scientific OrionTMHigh-Performance
Ammonia Electrode with the addition of Ionic Strength Adjuster
(Fisher Scientific). The ascorbic acid method via Hach R© TNTTM

or TNT plusTM test kits was used to test TP. TN was analyzed
using Hach R© TN Test ‘N TubesTM (0.5 to 25.0 mg/L N),
according to the manufacturer’s procedure.

DNA Extraction
Genomic DNA was extracted from samples immediately upon
arrival to the NWQL. DNA was extracted from three biological
replicates (separate samples) per sampling site whenever
available, with two technical replicates per sample. Ten mL of
each sample was centrifuged at 3,200 × g for 10min (min)
to obtain a pellet, which was subjected to genomic DNA
extraction using the MO BIO PowerSoil DNA isolation kit
(MO BIO Laboratories, Carlsbad, CA, USA) according to the
manufacturer’s instructions. Within 24–48 h, all DNA samples
were transported to the laboratory at Dalhousie University
in Halifax, NS in a cooler (4◦C) and stored at −20◦C until
further analysis.

Size of Bacterial Communities (16S rRNA

Copy Numbers)
Bacterial 16S rRNA gene copy numbers were quantified
in a quantitative PCR (qPCR) assay with the BACT 2
primer set (1369F: 5’-CGGTGAATACGTTCYCGG-3’; 1492R:
5’-GGWTACCTTGTTACGACTT-3’) (Suzuki et al., 2000). The
qPCR amplification was performed on a Bio-Rad CFX96
TouchTM Real-Time PCR detection system (Bio-Rad, Hercules,
CA, USA). Each reaction consisted of: 20-µL total reaction
volumes consisting of 4.0 µL of template DNA, 4.4 µL of sterile
and nuclease-free water, 0.8 µL of each primer (10µM), and 10
µL of 2× Power SYBR Green PCR master mix (ThermoFisher
Scientific). The thermocycler program consisted of 10min of
initial denaturation at 95◦C, followed by 40 cycles of 15 s
denaturation at 94◦C, 30 s annealing at 55◦C, and 30 s extension
at 72◦C. Melt curve analysis (30 s at 55◦C and then increasing by
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0.5◦C each cycle until reaching 95◦C) showed that the melting
temperature of the amplicon was 84.5± 0.5◦C.

A standard curve was constructed using 10-fold dilutions
of a plasmid DNA extracted from an Escherichia coli DH5α
culture containing a positive control plasmid (pCR2.1, TOPO
TA PCR 2.1 with an insertion of the 16S rRNA fragment,
gift from Dr. C. Yost, University of Regina, Canada), with
triplicate measurements of diluted standards. Assay efficiency
was calculated to be 102%. The coefficient of determination
values (R2) of the standard curve was 0.999, the limits of
detection (LOD) and quantification (LOQ) were 68.6 and 686
copies/reaction, respectively. Absence of PCR inhibitors was
confirmed by comparison of the threshold cycle (Ct) values for
10-fold diluted DNA extracts.

Illumina MiSeq Paired-End Sequencing and

Bioinformatics Analysis
The V6-V8 regions of the bacterial 16S rRNA gene amplicon
library preparation and Illumina MiSeq Paired-End (PE)
sequencing were performed following the established
protocol (Comeau et al., 2017) at the Dalhousie University
Integrated Microbiome Resource (IMR; http://cgeb-imr.ca).
The demultiplexed PE reads were obtained in the fastq format
from IMR and subjected to the bioinformatics analysis workflow
briefly described in the following section.

The raw PE sequencing reads were preprocessed by stitching
PE reads and removing low quality reads in PEAR (Zhang
et al., 2014), and removing chimeras in VSEARCH (version
1.11.1, 28) in the Microbiome Helper pipeline at IMR (Comeau
et al., 2017). As a result, an average of 73.1% of the reads
(range 49.6–94.6% for individual samples) was generated as
final high-quality sequences. The final high-quality sequences
were then clustered into Operational Taxonomic Units (OTUs)
at an identity level of ≥97% using the de novo UPARSE-
OTU algorithm in the USEARCH pipeline (Edgar, 2013).
OTUs from UPARSE were deposited in the Microbiome Helper
pipeline to filter out spurious OTUs (Comeau et al., 2017),
resulting in a total of 2,093 OTUs (from 139 samples).
Subsequent analyses were carried out using the Quantitative
Insights Into Microbial Ecology (QIIME) pipeline version 1.9.1
(Caporaso et al., 2010a), unless otherwise noted. The taxonomic
assignment was performed in the Ribosome Database Project
(RDP) classifier version 2.2 (Wang et al., 2007) based on the
Greengenes database (version 13_8) at the cut-off value of 60%
(Claesson et al., 2009). The rarefied OTU table was generated
by subsampling a minimal number of reads (10,539 sequences
per sample), resulting in a total of 1,924 OTUs. The sequence
alignment was built using the Python Nearest Alignment Space
Termination (PyNAST) tool (Caporaso et al., 2010b). This
alignment was used to build a phylogenetic tree in FastTree
(version 2.1.10, http://www.microbesonline.org/fasttree/) which
infers approximately-maximum-likelihood phylogenetic trees
(Price et al., 2010). The rarefied OTU table and the phylogenetic
tree were used in the downstream analysis, which included
determining the core bacterial community that requires the
core OTUs to be present in 100% of the samples (Huse

et al., 2012), alpha-diversity measures (number of the observed
OTUs, Chao1, the Shannon-Wiener (SWI) and the Simpson
evenness indexes), and phylogenetic beta-diversity measures,
respectively. The phylogenetic beta-diversity was calculated using
both the weighted and unweighted UniFrac metrics (Lozupone
and Knight, 2005). Principal Coordinate Analysis (PCoA) and
an Unweighted Pair Group Method with Arithmetic Mean
(UPGMA) tree were used to visualize the diversity trends based
on the weighted UniFrac beta-diversity distance matrix. The
trends revealed by the unweighted UniFrac analyses resembled
the weighted UniFrac results and are therefore not presented.
GenGIS (Parks et al., 2013) was applied to visualize information
about bacterial communities representing different locations,
times and years in a sampling map.

A distance-based redundancy analysis (dbRDA) was
performed on the weighted UniFrac beta-diversity matrix and
selected environmental variables for pond samples obtained
from each of the two communities over the course of the 2-year
study period. The models were assessed using the ANOVA
function (R Core Team, 2021) to determine the significance of
the environmental predictors (temperature, CBOD5, TSS, TP,
TN, and TA) on the beta-diversity among communities. The
dbRDA was run using the capscale function in the R package
vegan (Oksanen et al., 2020) and ordination plots were generated
using the ggord package (Beck, 2020).

Predictions of Functions in Bacterial

Communities
The Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt, version
1.1.0, Langille et al., 2013) in the Microbiome Helper pipeline
(http://github.com/mlangill/microbiome_helper/wiki/PICRUSt-
workflow) was used to predict gene contents based on 16S rRNA
gene surveys. The PICRUSt analysis works from the observation
that there is a good correlation between the phylogenetic
information inferred from 16S rRNAmarker gene sequences and
genomic content when related reference genomes are available.
Prior to the analysis, the accuracy of predictions is measured by
the Nearest Sequenced Taxon Index (NSTI), with lower values
indicating a closer relationship and availability of closely related
reference genomes (Langille et al., 2013). LowNSTI values of 0.07
± 0.01 and 0.08 ± 0.02 were calculated for wastewater samples
from Pond Inlet and Clyde River, respectively. For comparison,
it has been reported (Langille et al., 2013) that human-associated
samples had the lowest (best) NSTI values (0.03 ± 0.02), while
higher NSTI values (>0.14) were reported for other mammalian
gut and soil samples. Thus, arctic municipal wastewater samples
appeared to constitute a suitable data set to derive functional
predictions by using PICRUSt and the recommended workflow.

Statistical Analysis
Significant differences (p < 0.05) in the log 16S rRNA
copy numbers/mL and alpha diversity among sample groups
were tested using the non-parametric Kruskal-Wallis test
performed in Prism 7 (version 7.0b, Graph Pad Software,
Inc., La Jolla, CA, USA). In the study of phylogenetic beta-
diversity measures, the nonparametric statistical test through
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TABLE 1 | Water quality in the Pond Inlet and Clyde River wastewater treatment systems.

Community Year Water type Season Temperature (◦C) CBOD5 (mg/L) TSS (mg/L) TN (mg/L - N) TP (mg/L) TA (mg/L - N)

Pond Inlet 2013 Raw All 19.5 ± 1.6a 591.8 ± 205.3 412.4 ± 177.0 160.4 ± 24.1 62.5 ± 17.1 136.5 ± 11.2

WSP Beginning 1.1 ± 0.1 191.4 ± 38.6 46.3 ± 27.3 84.4 ± 5.3 27.3 ± 1.0 82.6 ± 31.5

WSP Middle 15.8 ± 0.0 177.3 ± 14.0 21.7 ± 2.7 96.6 ± 3.5 31.1 ± 0.6 101.1 ± 16.3

WSP End 0.3 ± 0.0 112.6 ± 9.4 55.6 ± 10.9 101.9 ± 9.0 35.0 ± 0.6 89.9 ± 1.9

Effluent End 1.5 ± 0.7 103.3 ± 14.1 64.5 ± 8.9 109.1 ± 9.9 35.1 ± 1.0 87.1 ± 4.6

WSP Beginning – WSP End Removal (%) 41.2 −20.1 −20.7 −28.2 −8.8

Raw to Effluent Removal (%) 82.5 84.4 32.0 43.8 36.2

2014 Raw All 20.5 ± 4.6 347.4 ± 129.8 201.7 ± 91.4 128.6 ± 18.6 43.5 ± 6.1 83.3 ± 33.0

WSP Beginning 8.7 ± 0.0 226.7 ± 27.6 42.1 ± 35.6 119.2 ± 11.2 35.3 ± 2.9 106.3 ± 5.9

WSP Middle 18.8 ± 0.0 124.3 ± 26.5 76.3 ± 17.5 102.8 ± 7.6 32.0 ± 0.6 128.6 ± 2.5

WSP End 6.0 ± 0.0 114.8 ± 16.9 36.3 ± 6.7 87.8 ± 9.0 35.3 ± 0.2 90.8 ± 5.9

Effluent End 2.9 ± 0.1 113.3 ± 3.2 19.8 ± 0.4 117.0 ± 8.8 33.8 ± 0.4 86.4 ± 8.0

WSP Beginning – WSP End Removal (%) 49.4 13.8 26.3 0.0 14.6

Raw to Effluent Removal (%) 67.4 90.2 9.0 22.3 −3.7

Clyde River 2013 Raw All 20.7 ± 2.6 389.6 ± 155.5 243.0 ± 119.4 129.6 ± 26.4 48.3 ± 8.3 113.0 ± 25.5

WSP1 Beginning 3.4 ± 0.0 280.8 ± 10.8 64.8 ± 8.7 102.4 ± 8.0 33.6 ± 0.6 89.3 ± 8.4

WSP1 Middle 11.5 ± 0.0 160.3 ± 31.6 51.0 ± 6.8 67.7 ± 0.8 23.4 ± 0.2 64.8 ± 2.8

WSP1 End 3.0 ± 0.0 183.8 ± 20.0 61.8 ± 3.5 95.0 ± 3.6 29.0 ± 0.0 108.8 ± 2.1

WSP2 Beginning 3.4 ± 0.0 105.0 ± 10.4 27.8 ± 2.9 76.1 ± 17.7 19.4 ± 0.2 51.3 ± 0.5

WSP2 Middle 11.5 ± 0.0 92.3 ± 16.5 27.8 ± 2.9 60.1 ± 5.3 18.4 ± 0.2 45.5 ± 3.1

WSP 2 End 3.0 ± 0.0 70.3 ± 25.7 37.8 ± 4.0 74.3 ± 1.7 19.6 ± 0.1 82.7 ± 2.4

WSP1 Beginning – WP2 End Removal (%) 75.0 41.7 27.4 41.7 7.4

Raw – WSP2 End Removal (%) 82.0 84.4 42.7 59.4 26.8

2014 Raw All 15.8 ± 1.8 277.7 ± 25.4 243.7 ± 107.4 90.0 ± 10.5 38.8 ± 5.8 104.9 ± 29.0

WSP1 Beginning 6.4 ± 0.0 315.0 ± 56.8 16.0 ± 4.1 100.0 ± 0.0 43.9 ± 0.0 137.5 ± 8.3

WSP1 End 4.3 ± 0.0 228.5 ± 87.9 41.8 ± 5.0 95.0 ± 5.4 26.7 ± 0.3 93.7 ± 6.1

WSP2 Beginning 6.4 ± 0.0 105.3 ± 3.8 15.8 ± 1.3 77.0 ± 2.0 21.9 ± 0.0 62.4 ± 1.2

WSP2 End 4.3 ± 0.0 69.0 ± 2.9 19.8 ± 5.7 68.1 ± 1.2 17.8 ± 0.1 68.9 ± 6.3

WSP1 Beginning – WP2 End Removal (%) 78.1 −23.8 31.9 59.5 49.7

Raw – WSP2 End Removal (%) 75.2 91.9 24.3 54.1 34.3

aAverage value ± standard deviation (n-1).

permutations analysis of similarities (ANOSIM) approach was
performed in the QIIME pipeline (Caporaso et al., 2010a)
to test whether there were statistically significant differences
among the trends that were observed in PCoA plots. In
the study of inferring functional content in the bacterial
communities, significant differences at a 5% level between two
groups were tested using Welch’s t-test with the Benjamini-
Hochberg false-discovery rate (FDR) correction, while significant
differences at a 5% level among three or more groups were
tested using the Kruskal-Wallis H-test with FDR correction.
These two tests were conducted in the statistical analysis of
taxonomic and functional profiles (STAMP) software version
2.1.3 (Parks et al., 2014).

RESULTS

WSP Environment and Removal of Bacteria

and Nutrients
Raw wastewater samples from both communities consistently
contained an average of 9.0 log 16S rRNA copies/mL, a level

which showed no change (p > 0.05) over the duration of the
study (data not shown). The water quality varied but tended be
contain higher levels of CBOD5 and other nutrients in Pond Inlet
compared to Clyde River (Table 1).

Surface pond temperatures in Pond Inlet gradually increased
from 2 to 8◦C to mid-season peak temperatures of 18◦C
followed by a decrease to below 5◦C in the month of September
(Figures 1A,B). The bacterial population size followed the
changes in pond temperatures with midseason peaks of 8–8.9
log 16S rRNA copies/mL followed by significant (p < 0.05)
decrease to 6.5–7 log 16S rRNA copies/mL at the end. The
population size in 2014 was significantly (p < 0.05) higher than
in 2013, which coincided with the higher pond temperatures
recorded in 2014. Results from the deployed DO and pH
sensors revealed negligible DO levels (<0.2 mg/L), except for
two one-week mid-season spikes to measurable levels (see
Supplementary Figure 1), and stable pH-values from 7.5 to 7.8
(Supplementary Figure 2). Absence of marked increases in pond
pH and DO indicated that algal blooms were absent in 2013
and 2014.
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FIGURE 1 | Pond Inlet (PI) and the Clyde River (CR) WSP system surface pond temperatures (•) and bacterial populations [log 16S rRNA copies/mL, � primary pond,

N secondary pond (only CR), mean ± standard deviation] during the 2013 (A,C) and 2014 (B,D) treatment seasons. Bacterial populations were determined at the

beginning, middle, and end of treatment seasons. Temperatures are represented by daily averages of hourly measurements (n = 24, mean ± standard deviation) from

the deployed sensors.

In Clyde River, the highest and lowest bacterial levels in
the primary pond (∼8.5 and ∼6.0 log 16S rRNA copies/mL,
respectively) also coincided with the highest (13.7◦C) and
lowest (3.7◦C) pond temperatures in 2013 (Figure 1C).
Normal operation of the Clyde River WSP systems in
2014 reduced populations in the secondary pond to 7.4 log
16S rRNA copies/mL at the end of the treatment season
(Figure 1D). However, in September 2013, the secondary
pond contained 8.3 log 16S rRNA copies/mL (Figure 1C),
which was likely caused by direct discharge of raw wastewater
into that pond. DO levels remained negligible (<0.2 mg/L)
throughout both treatment seasons, and pH ranged from
7.5 to 7.8, indicating absence of algal blooms in both years
(Supplementary Figures 1, 2).

Overall, arctic WSP treatment effected a >2 log reduction
in bacterial numbers leading to an effluent with a content of
6–7.0 log 16S rRNA copies/mL ready to be released into the
receiving environment (Figure 1). Water quality data showed
that treatment in the WSPs removed 67–83, 84–92, 9–43, 22–
59% and none to 36% of the CBOD5, TSS, TN, TP, and TA,
respectively, found in the raw wastewater (Table 1). The content
of CBOD5 in the ponds decreased over the summer treatment
season, with the lowest values 70–90 mg/L observed at the end of

the summer in the secondary pond in Clyde River as opposed to
103–115 mg/L in Pond Inlet.

Alpha Diversity in Bacterial Communities in

Arctic WSP Systems
The alpha diversity decreased during the treatment of the
wastewater as shown by the significant (p < 0.05) decreases in
the SWI from values of ∼5 for the raw wastewater to values
ranging between 2.5 and 4.5 in the ponds of both communities
(Figure 2). Comparison of pond samples across the treatment
seasons showed that the alpha diversity was lower at the start
and end of the treatment season (2.5–4) while SWI values
peaked at 4.3–4.5 during the warmer mid-season. The alpha
diversity tended to be lower in Clyde River samples, which
coincided with pond temperatures overall being colder in Clyde
River compared to Pond Inlet (Figure 1). Other alpha-diversity
indices (observed_OTUs and chao1) revealed the same trends
(Supplementary Tables 1, 2). However, the community evenness
(Simpson_e), ranged from 0.02 to 0.06 regardless of the sample
type or season or year (Supplementary Tables 1, 2).

The alpha diversity of bacterial community in Pond Inlet
sludge samples, which were only obtained in 2014, increased over
the treatment season, a change which occurred simultaneously
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FIGURE 2 | Alpha diversity (Shannon-Wiener Index) in raw and treated wastewater samples from Pond Inlet [PI, (A,B)] and Clyde River [CR, (C,D)] in 2013 and 2014.

Bars with different letters within the same community are significantly (p < 0.05) different from each other.

with growing bacterial populations with final levels of 9.9 log 16S
rRNA copies/mL (Supplementary Table 1).

Beta Diversity and Core Microbiome in

Raw Wastewater
The weighted and unweighted UniFrac measures showed that
the bacterial beta diversity was not significantly (p > 0.05)
different in raw wastewater samples obtained from the two
communities during the study period. The raw wastewater core
microbial community was comprised of 18 bacterial families
mainly belonging to the Proteobacteria phylum. Dominant
Proteobacteria families were Aeromonadaceae (25.2–41.8%),
followed by Rhodospirillaceae (8.5–20.9%), Comamonadaceae
(2.7–18.6%), Enterobacteriaceae (3.3–11.5%), Pseudomonadaceae
(5.4–10.5%), and Campylobacteraceae (1.1–6.2%) (Figure 3).
Within the Bacteroidetes phylum and Bacteroidia class, two
families were present; Bacteroidaceae with a prevalence of
4.2–12.3% and Porphyromonadaceae with abundances ranging
from 2.4 to 8.5%. The genus level composition of the core
microbiomes in the raw wastewater samples is shown in
Supplementary Figure 3.

Treatment and Changes in Phylogenetic

Beta Diversity in Arctic WSP Systems
Treatment in the WSP systems in Pond Inlet and Clyde
River significantly (p < 0.05) altered the phylogenetic beta
diversity of bacterial communities. For Pond Inlet, this
observation is exemplified by a comparison of raw, pond,
sludge and effluent samples from September 2014, which
showed different distributions of bacterial families along the
treatment process (Figure 4A). Here, theAeromonadaceae family
(40.0%) dominated in the raw wastewater samples but became a
minor group (1.8%) in the pond samples. Sludge samples were
dominated by the Pseudomonadaceae family (29.7%). Pond and
effluent samples resembled each other with the most abundant
group being Comamonadaceae (∼41%), Campylobacteraceae
(∼15%), and Geobacteraceae (∼13%). The above mentioned
families were represented at the genus level by Rhodoferax,
Arcobacter, and Geobacter in the pond and effluent samples
(Supplementary Figure 4). The resulting PCoA plot (Figure 4B)
from the weighted UniFrac analysis shows that 53.3% of
the variation in microbial beta diversity depended on the
sample type while another 24.0% of the variation was due
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FIGURE 3 | Composition of the core bacterial community (family level) in raw wastewater samples (n = 34 in total) from Pond Inlet (left) and Clyde River (right)

obtained in 2013–2014. The relative abundances of bacterial families (top eight of 18 families) are shown in the pie charts. Legends on top of the pie charts

(Beginning, Middle, and End) indicate the sampling time. Bacterial families and their associated phylum and class names are listed in brackets. Other: sum of bacterial

families with relative abundances below 10%.

to the difference between raw wastewater vs. samples from
the WSP. Results from Clyde River showed similar changes
in the composition of bacterial communities along the WSP
treatment train with Geobacteraceae, Campylobacteraceae, and
Comamonadaceaemaking up 50% of the bacterial community in
the secondary pond (Supplementary Figure 5).

Structure of Bacterial Communities in

Relation to Wastewater Treatment in the

WSPs
The time of sampling within the treatment season significantly
(p < 0.05) influenced the phylogenetic beta diversity of bacterial
communities in the arctic WSPs as did the sampling year. These
seasonal and annual differences in pond bacterial communities
are shown for Pond Inlet in Figure 5. Results from Clyde River
showed similar trends and the results from 2014 are presented in
Figure 6.

In Pond Inlet in 2013, early season samples were dominated
by Pseudomonadaceae (49.5%) and Campylobacteraceae
(13.6%) (Figure 5A). Communities then shifted to a mid-
season mix dominated by Comamonadaceae (36.8%) and
Campylobacteraceae (24.5%) and finally to an end-season
blend with Comamonadaceae (31.7%), Geobacteraceae (16.8%),
and Porphyromonadaceae (10%) dominating. For the annual

differences, themid-season dominating familyComamonadaceae
varied between 36.8 and 70.0% in 2013 and 2014, respectively.
When switching to the end-season, the relative abundance of
Comamonadaceae decreased to 31.7% in 2013 and 44.3% in 2014
(Figure 5A).

The dbRDA plot relating the measured environmental
and water quality factors to the weighted UniFrac beta
diversity among pond communities in Pond Inlet revealed
that temperature, CBOD5 and TA were significant factors
(p < 0.05) driving differences in the bacterial communities
(Figure 5B). The CBOD5 content and Pseudomonadaceae and
Campylobacteraceae correlated positively with the beginning
of the treatment season, while the negative correlation at the
middle and end of the treatment season showed the role of
the microbiota (i.e., Comamonadaceae) in removing CBOD5,
a development that correlated with the higher temperatures
in the middle of the season and its effect on the bacterial
communities. The decrease in TP correlated with increases in
Geobacteraceae, and members of the anaerobic Bacteroidales
(incl. Porphyromonadaceae) at the end of the treatment season.
The dbRDA plot also revealed differences between 2013 and 2014
microbial communities obtained in the middle and end of the
season supporting the marked effect of the ambient temperature
on the microbiota and wastewater treatment in the Pond Inlet
WSP system.
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FIGURE 4 | Composition and phylogenetic beta-diversity of bacterial communities along the Pond Inlet WSP treatment train in September 2014. (A) Relative

abundance of bacterial families (top 10 of 269 families) in wastewater samples collected along the treatment process. The legend shows the bacterial families with the

phylum and class names listed in brackets. Uncl: unclassified. Other: sum of bacterial families with relative abundances below 10%. (B) PCoA plot presented the

phylogenetic beta-diversity of bacterial communities measured by the weighted UniFrac metric.

For Clyde River, Pseudomonadaceae dominated in the
primary pond at the beginning of the 2014 season, while late
season primary pond samples contained a diverse community
includingCampylobacteraceae,Geobacteraceae,Rhodopirillaceae,
and Comamonadaceae (Figure 6A). A similar change from
a Pseudomonadaceae dominated (about 50%) community to
a highly diverse community at the end of the season was
seen in the secondary pond samples, where the proportion of

Porphyromonadaceae and Comamonadaceae increased together
with Geobacteraceae. These seasonal trends were reflected in
the phylogenic UPGMA tree with the first branch splitting
at the beginning/end of season followed by a second split
into the primary/secondary pond. The dbRDA plot relating
the measured environmental and water quality factors to
the beta diversity among pond communities in Clyde River
revealed that temperature, CBOD5, TA, TSS, TN, and TP were
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FIGURE 5 | Bacterial communities in the Pond Inlet WSP during the 2013 (right side) and 2014 (left side) treatment seasons. (A) The seven most abundant families

(relative abundances ≥ 10% among 269 bacterial families) are presented in the pie charts. The UPGMA tree shows the bacterial phylogenetic beta-diversity (weighted

UniFrac metric) in each sampling year. Legends beside the pie charts: B – Beginning, M – Middle, E – End of summer treatment season; t: top, m: middle, and b:

bottom sampling depths in the WSP, respectively. The legend (right) denotes the bacterial families with the phylum and class names in brackets. Uncl: unclassified.

Other: sum of bacterial families with relative abundances below 10%. (B) Distance-based RDA plot showing the relationship between temperature, water quality

measures and the seasonal and annual phylogenetic bacterial beta-diversity in pond samples. Significant factors (p < 0.01) were temperature, CBOD5 and TP.

significantly (p < 0.05) correlated to the observed differences
(Figure 6B).

The UPGMA tree for Pond Inlet revealed that bacterial

communities in the bottom layer differed significantly (p

< 0.05) from the top or middle layers during the 2014

treatment season, but not in 2013 (Figure 5A). Interestingly,

the different sampling depths in Clyde River two-cell WSP did

not affect (p > 0.05) microbial community diversity in 2014

(Figure 6A).

Functional Content Predictions for

Bacterial WSP Communities
The two most significant (p < 0.05) KEGG pathways, which
were predicted to be present in the bacterial communities in
WSP samples, are associated with carbohydrate and energy
metabolism. As shown in Figure 7A, the predicted proportion
of sequences associated with carbohydrate metabolism was
significantly higher (p < 0.05) during the middle of the season
compared to the beginning and end of the 2014 treatment season
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FIGURE 6 | Bacterial communities in Clyde River WSP system during the 2014 treatment season. (A) The UPGMA tree shows the phylogenetic beta-diversity of

bacterial communities measured by the weighted UniFrac metric. The 12 most abundant bacterial families (relative abundances ≥ 10%, total of 269 bacterial families)

are presented in the pie charts. Legends beside the pie charts: Primary – Primary pond, Secondary – Secondary pond; B – Beginning, E – End of summer treatment

season; t – top and b – bottom indicates the sampling sites in the WSP, respectively. The legend beside the map shows bacterial families: the phylum and class

names are listed in the bracket of each family name. Other: sum of bacterial families with relative abundances <10%. (B) Distance-based RDA plot showing the

relationship between temperature, water quality measures (TSS, TN, CBOD5, TA, TP, all significant, p < 0.05) and the seasonal phylogenetic bacterial beta-diversity in

the pond samples.

in Pond Inlet. The carbohydrate metabolism was predicted to be
significantly (p < 0.05) higher in the bacterial community of the
secondary pond in Clyde River compared to the primary pond
(Figure 7B). The energy metabolism in Pond Inlet and Clyde
River bacterial WSP communities followed the same trend (data
not shown). The predicted abundance of genes responsible for
the carbohydrate and energy metabolism in mid-season pond

samples were significantly (p < 0.05) higher in 2014 compared
to 2013 (data not shown).

In both Pond Inlet and Clyde River WSPs, PICRUSt
identified low proportions (0.002–0.006%) of 16S rRNA genes
associated with the three KEGG pathways that encode ammonia
monooxygenase, an enzyme which is involved in microbial
removal of ammonia. This agrees with the relative low abundance

Frontiers in Water | www.frontiersin.org 11 August 2021 | Volume 3 | Article 71085340

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Huang et al. Bacterial Communities in Arctic Sewage Treatment

FIGURE 7 | PICRUSt predicted abundance of genes belonging to

carbohydrate metabolism with significant differences (p < 0.05) based on the

mean proportions and identities of 16S rRNA genes in pond samples obtained

(A) from the beginning to the end of the 2014 treatment season in Pond Inlet,

and (B) from the primary and secondary pond in Clyde River at the end of the

2014 treatment season. Significant differences (p < 0.05) were detected by the

Kruskal-Wallis H-test with a multiple test correction Benjamini-Hochberg FDR

for the Pond Inlet analysis and the Welch’s t-test with a multiple test correction

Benjamini-Hochberg FDR for the Clyde River analysis. *: mean. +: Outliers.

(0.01%) of both the Nitrosomonadaceae and Crenotrichaceae
families, which are associated with the three pathways, in the
WSPs bacterial communities.

DISCUSSION

The treatment of the wastewater resulted in removal of 70–90%
of the content of TSS and CBOD5 and reduction of E. coli levels to
104−6 MPN/100mL (Huang et al., 2018) leading to treated water
qualities (effluent in Pond Inlet and water in the secondary pond

at the end of the season in Clyde River), which complied with the
criteria set by the licensing Nunavut Water Board of there being
<104-106 E. coli MPN/100mL, 180 mg/L TSS, and 120 mg/L
CBOD5 in water released into the recipient (Nunavut Water
Board, 2014). These criteria have been set in consideration of the
climate, nature of the treatment systems, receiving environment
and population density in Nunavut and are different from the
Canadian Wastewater Systems Effluent Regulations (WSERs),
which require maximum contents of 25 mg/L CBOD5, 25 mg/L
TSS, and 1.25mg/L un-ionized ammonia for wastewater effluents
in Southern Canada (Environment Canada, 2015). The observed
removal of nutrients is likely due to a combination of biological
processes, physical settling processes, dilution (due to snow and
rainfalls) and evaporation events following the disposal of the
wastewater into the WSPs (Heinke et al., 1991; Ragush et al.,
2015).

The bacterial communities loaded into the WSPs were
similar as the influent raw wastewater contained a core set
of bacteria in spite of coming from the two geographically
separated arctic communities. It may be that low per capita
consumption of drinking water and absence of industrial or
agricultural activities in both communities led to the presence
of this core bacterial community dominated by Proteobacteria
(Figure 3). Treatment subsequently led to significant changes to
the composition of bacterial communities and a 2-log reduction
in 16S rRNA gene copies/ml in the treated water at the end
of the treatment season. This reduction was similar to the
2-3 log removal of total coliform bacteria and Escherichia
coli previously reported for these WSPs (Huang et al., 2018).
This suggests a preferential reduction in enteric bacteria, i.e.,
a disinfection effect, which was supported by a shift from
dominance of fecally related Aeromonadaceae, Bacteroidaceae,
Campylobacteraceae, and Enterobacteriaceae in influent
wastewater toward Comamonadaceae, Porphyromonadaceae
(Paludibacter), and Geobacteraceae in the treated water (Figure 4
and Supplementary Figure 5). A similar reduction in the
content of enteric bacteria and shift in bacterial communities
was observed in a comparative study of the influent and effluent
of a German WWTP (Numberger et al., 2019). The disinfection
effect may be due to pond environmental factors (temperature,
DO, pH, etc.), microbial completion and/or antagonism and
solar irradiation although the underlying mechanisms remain
unknown (Ho and Goethals, 2020).

Monitoring of the WSP environment throughout the 2013
and 2014 summer treatment season showed that the intended
facultative ponds stayed anaerobic with very low levels of
oxygen, neutral pH-values and therefore no signs of algae
growth (Supplementary Figures 1, 2). This was different from
2011 where a reduced operational depth in the pond, yielding
a lower OLR (kg/m2/day), and an unusual warm summer led
to an algal bloom in the Pond Inlet WSP (Ragush et al., 2015).
The lack of algae in the WSPs could affect the wastewater
treatment as normal WSP treatment is based on growth of
algae to supply oxygen to the aerobic decomposing bacteria,
sequester phosphorous and disinfection due to the increased
alkalinity of the water during algal blooms (Amengual-Morro
et al., 2012; Ho and Goethals, 2020). The absence of algae growth
may be related to the high OLRs and low temperatures in the
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ponds as demonstrated in model experiments (Ragush et al.,
2017). Since the WSPs remained anaerobic and with neutral
pH throughout the treatment season, temperature became an
important driver of changes in the bacterial communities over
the treatment season. When the pond temperatures peaked mid-
season, the pond bacterial community became more abundant
and diverse. This coincided with improved removal of fecal
indicator and pathogenic bacteria as well as nutrients (Table 1;
Huang et al., 2018), suggesting that disinfection and nutrient
removal are correlated to bacterial richness and diversity in
WSPs. The correlation between temperature, nutrient removal
and bacterial richness and alpha-diversity was similarly observed
in seasonal studies of sewage batch reactors (Ebrahimi et al.,
2010) and WWTPs operated in colder climates (Rodriguez-
Caballero et al., 2012; Ju et al., 2014; Kang et al., 2018). The
multivariate dbRDA supported that largely anaerobic biological
treatment of the wastewater was closely related to bacterial
community shifts and temperature in the WSPs (Figures 5B,
6B). This potentially makes the treatment success unpredictable
due to annual differences in the ambient summer temperatures.
However, when comparing a cold (2013) vs. a warm (2014)
year, treatment outcomes in terms of effluent CBOD5, TSS, and
TA were still comparable (Table 1), indicating some robustness
of the biological processes as well as concurrent impact of the
physical processes.

Decomposing microorganisms with a wide range of
metabolisms are important for removal of CBOD5 and
other nutrients in WSP systems (Wagner et al., 2002; Ferrera and
Sánchez, 2016; Ho and Goethals, 2020). Bacterial community
changes along the treatment process (raw to pond, and
season) led to reductions in alpha diversity and increases in
Comamonadaceae, Geobacteraceae, and Porphyromonadaceae.
Similar impacts of the treatment process were observed in
the study of several full-scale municipal WWTPs (Hu et al.,
2012; Gao et al., 2016; Numberger et al., 2019; Xue et al.,
2019). The members of the bacterial communities were not
evenly composed in the arctic WSP systems as indicated by low
Simpson evenness measures (0.02–0.06) in all samples. However,
the unevenness of bacterial community composition in arctic
WSPs was not unexpected as Proteobacteria was by far the most
abundant bacterial phylum with a relative abundance of 70–90%
in all samples. The same dominance of Proteobacteria was also
reported by Gromala et al. (2021) for three arcticWSPs located in
Western Nunavut and in seven Finnish WWTPs operated above
the Arctic Circle (Gonzalez-Martinez et al., 2018). Members of
this bacterial phylum are known to be responsible for removal of
the organic waste in municipal wastewater (Wagner et al., 2002).
Comamonadaceae (member of the Burkholderiales order in
Betaproteobacteria) was the most dominant group in pond and
treated effluent samples from Pond Inlet and was in the dbRDA
related to removal of nutrients (CBOD5). This family of bacteria
has previously been reported to be involved in the biological
nutrient removal processes, especially carbon and nitrogen
containing compounds when the oxygen supply was limited
(Sato et al., 2016; Usharani, 2019) as was the case in the present
study. At the genus-level, Rhodoferax spp. (Comamonadaceae)
became the dominant group in the pond and effluent samples
(Supplementary Figure 4). This genus was recently reported

to be present in the WSP in Baker Lake (Gromala et al., 2021),
indicating its presence in the arctic sewage system, and is
known to decompose organic material (Zhang et al., 2012). The
Geobacter genus [Geobacteraceae, Deltaproteobacteria or the
proposed Desulfobacterota (Waite et al., 2020)], which started
as a minor group in the raw wastewater and rose in abundance
in the WSP samples, is associated with cold anaerobic soil and
aquatic environments and an ability to reduce iron and sulfate,
and can complete oxidize organic compounds (Lovley et al.,
1987), and was observed in the anaerobic tank of industrial
wastewater treatment systems operating at low temperatures
(8–16◦C) in China (Zhang et al., 2017). Porphyromonadaceae
and other members of the anaerobic Bacteroidetes are known
to degrade complex organic substances in WWTPs (Gao et al.,
2016; Zhang et al., 2017).

In 2014 samples from the Pond Inlet WSP, the bacterial
diversity depended on the sampling depth, which may be due
to the solids settling processes, temperature shifts between the
top and bottom layer of the pond, DO gradients, and other
unmonitored wastewater and operational factors. However, this
depth-related difference was not observed in samples from
2013 or from Clyde River, which may indicate variable mixing
of the wastewater in the ponds depending on the year and
WSP design. Sludge is known to accumulate in arctic WSPs
(Miyamoto and Heinke, 1979). An examination of the sludge
in Pond Inlet during the 2014 treatment season revealed
increases in sludge community size and diversity (Figure 4
and Supplementary Table 1), indicating the role of the sludge
community in treatment of the wastewater in arctic WSPs should
be the subject of further investigations.

The predicted functional gene content of wastewater bacterial
communities pointed to higher levels of carbohydrate and energy
metabolism in the middle of the treatment season in Pond Inlet
WSP, concurring with the CBOD5 removal observed between
the beginning and middle of the season in 2014 (Table 1).
In the two-cell WSP system in Clyde River, the predicted
higher carbohydrate and energy metabolism of the secondary
pond bacterial communities similarly coincided with the further
reduction of CBOD5 levels following initial treatment in the
primary pond (Table 1). Gromala et al. (2021) also reported
presence of KEGG pathways associated with carbohydrate and
energy metabolisms in the Western Nunavut WSPs. Taken
together, it seems likely that optimal CBOD5 removal can be
related to higher pond temperatures, larger bacterial populations,
greater bacterial diversity, and enhanced carbohydrate and
energy metabolic activity levels in mid-season WSPs.

The low proportion of genes associated with ammonium
oxidizing pathways matched the low relative abundance of
ammonia oxidizing bacteria in both WSPs. This finding was
supported by the water quality data (Table 1), which showed a
modest ammonia (TA) removal in both WSPs during the study
period. Interestingly, Gromala et al. (2021) reported absence
of ammonia oxidation pathways in WSPs in Baker Lake, and
Cambridge Bay, while the genes in the pathway were detected
in Kugluktuk. These findings overall suggest that the current
design of arctic WSPs does not promote growth of microbial
communities, which substantially contribute to the removal
of ammonia.
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CONCLUSIONS

The study explored the composition and putative function
of bacterial communities in arctic WSPs treating municipal
wastewater during two consecutive summer treatment seasons.
The WSPs received raw wastewater which had a high
nutrient content and similar bacterial communities despite the
geographical separation. Although designed to be facultative,
the ponds stayed anaerobic with neutral pH-values, and
temperature in the WSPs became a major determinant of the
size, composition and diversity of the bacterial communities. The
multivariate dbRDA showed correlations between temperature,
nutrient removal and increased levels of Comamonadaceae,
Geobacteraceae, and Porphyromonadaceae. The predicted gene
functions (KEGG pathway study) supported that increased
microbial removal of nutrients occurred mid-season and in the
secondary pond of the two-cell Clyde River WSP system.

While it is challenging to control environmental factors in
a passive wastewater treatment system there are some design
considerations that could be used to optimize temperature
regimes, such as the depth of the pond. Also, use of ponds in
sequence would improve treatment. Information from this study
would also be useful for further development of models that
predict biological treatment, which could be used to size and
assess the feasibility of WSPs in extreme climates.
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Public swimming beaches often rely on culture-based methods to determine if fecal

indicator bacteria (FIB) levels are greater than health risk-based beach action values

(BAV). The slow turnaround time of culture-based assays can prevent effective beach

closure and reopening decisions. Faster testing methods that can be completed on-site

are needed. Additionally, beach closures are currently based on high FIB levels, but

at-present there are no tools to examine the health risks to bathers from myriad

pathogens (e.g., bacteria, viruses, protozoa) that may be present in recreational waters.

Twelve New York State beaches (n = 9 freshwater and n = 3 marine) were monitored

over the course of summer 2018, and two of the freshwater beaches were monitored

in fall 2017 as part of a preliminary study. A rapid, in-field workflow for detecting

fecal enterococci in water samples was tested using four assays on two Biomeme

handheld devices. All Biomeme-based workflows involved in-field DNA extractions

and qPCR using portable devices. Beach water samples were also analyzed using

EPA-approved or EPA-based qPCR methods: two culture-based methods, Enterolert

(targeting enterococci at freshwater and marine beaches) and Colilert (targeting E. coli at

freshwater beaches); and one qPCR method based on EPA 1611.1. For low abundance

pathogen quantification, nanoscale-qPCR was conducted in 2018 using the Pathogen

Panel which targeted 12 viral, bacterial, and protozoal pathogens. In fall 2017, the qPCR-

based methods performed similarly to Enterolert (r2 from 0.537 to 0.687) and correctly

classified 62.5–75.0% of water samples for a BAV of 104 MPN per 100ml. In summer

2018, the correlation between Enterococcus levels based on Biomeme qPCR and

Enterolert varied substantially between the 12 beaches. Inclusion of diverse regions and

beach types may have confounded the Biomeme qPCR results. The EPA 1611.1-based

method showed a weak, significant correlation (r2 = 0.317, p= 0.00012) with Enterolert.

Nanoscale-qPCR showed low-levels of pathogens present at all beach sites; but only

three showed up with any substantial frequency, E. coli eae (25% of samples), norovirus

(31.4%), and Giardia lamblia (11.4%). Preliminary studies to establish beach-specific

correlation curves between rapid qPCR and Enterolert methods are needed before any

qPCR assay is used to inform beach decisions.

Keywords: water quality monitoring, fecal indicator bacteria (FIB), nanoscale qPCR, pathogen abundance,

enterococci, beach action value, qPCR (quantitative PCR), E. coli
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INTRODUCTION

In the United States, federal law requires recreational swimming
waters be monitored for the presence of fecal indicator bacteria
(FIB) to maintain public health and safety. The EPA recommends
using fecal enterococci and Escherichia coli for freshwater
testing, and enterococci for marine water testing (US EPA,
2013). While FIB themselves are not necessarily pathogenic,
elevated FIB levels may indicate fecal contamination, and thus
the presence of fecally-associated pathogens. Typically, fecally-
associated pathogens are present at much lower levels than FIB
making them more difficult to detect. Additionally, because
there are many species of pathogenic bacteria, viruses, and
protozoa, there is currently no single method to measure the
diverse microorganisms that can lead to illness. Thus, FIB are
used as proxies to estimate the risk of waterborne pathogens.
Recently, the use of FIBs to estimate public health risk has come
under scrutiny. A statistical analysis of 540 published studies of
indicator-pathogen correlations found that no single indicator,
including enterococci or E. coli, was strongly correlated with
pathogen presence (Wu et al., 2011). This suggests our current
methods for estimating water quality to reduce public health risks
may need to be re-evaluated.

Current water testing methods vary by location but are either
molecular or culture-based, with the latter being the conventional
method for quantifying FIBs. Examples of culture-basedmethods
include Colilert R©, Enterolert R©, and EPA methods such as US
EPA Method 1603 (for E. coli) and US EPA Method 1600 (for
enterococci). Although these methods are relatively inexpensive
and easy to perform, they all require samples to be transported
to a centralized lab for testing and necessitate an overnight
incubation step resulting in a significant turnaround time for
results. Specialized equipment for sealing and incubating test
kits as well as trained lab technicians and reliable electricity,
are all necessary for culture-based testing. Crucially, the long
incubation period and reliable electricity source required by
these methods limits their feasibility for routine, rapid, on-site
monitoring. Although research has been done to eliminate the
need for electricity by using homemade incubators, these systems
are not widely used (Bernardes et al., 2020). In recent years, new
culture-based methods have been developed including TECTA
(Bramburger et al., 2015) and Compartment Bag Tests (CBTs;
Brooks et al., 2017; Wang et al., 2017). However, these methods
require processing times ranging from 7 to 48 h to obtain results.

Molecular methods, such as quantitative polymerase chain

reaction (qPCR) are culture independent and can be used to

specifically test samples for the presence of genes of interest

(i.e., FIB indicator genes). qPCR-based methods can achieve

results in under 4 h after water samples arrive at a laboratory.
Although the EPA has approved two qPCR methods for
Enterococcus 23S rRNA genes, EPA 1611.1 and 1609 (US EPA,
2013, 2015), they have not yet promulgated the methods in
the Federal Register (https://www.federalregister.gov/agencies/
environmental-protection-agency). Thus, although some states
have started to implement these methods [e.g., Michigan
(Dorevitch et al., 2017; Byappanahalli et al., 2018)], states like
New York, do not recognize EPA 1611.1 and 1609 as suitable

Enterococcus water quality testing methods for determining
beach closures and openings. The EPA has not yet approved
any qPCR-based methods for E. coli monitoring, although there
are several published qPCR assays that are both sensitive and
specific to E. coli, including assays targeting the 23S rRNA, 16S
rRNA, uidA, and rodA genes (Huijsdens et al., 2002; Frahm
and Obst, 2003; Chern et al., 2011; Haugland et al., 2021).
Several other molecular methods have been developed for water
quality monitoring, such as isothermal amplification for on-site
water testing (Mauk et al., 2015), including for Enterococcus spp.
(Kolm et al., 2017); targeting cells with qPCR or a propidium
iodide treatment (Bae and Wuertz, 2012), digital PCR (Wang
et al., 2016), and high throughput sequencing (Schang et al.,
2016). Additionally, many different qPCR-basedmicrobial source
tracking (MST) tools have been used with varying success to test
for source-specific markers (Harwood et al., 2014). Among these,
nanoscale qPCR (ns-qPCR) using OpenArray R© technology was
recently used in a “Pathogen Panel” to test for Enterococcus spp.
and E. coli as well as waterborne pathogens and MST markers
in the Hudson River watershed (Brooks et al., 2020). Compared
to culture-based testing, current molecular methods to quantify
FIB are more sensitive and rapid, resulting in faster turnaround
times for water quality monitoring (Griffith and Weisberg, 2011;
Dorevitch et al., 2017). However, molecular methods generally
require specialized equipment, centralized laboratories, trained
technicians, and electricity. Additionally, these methods are
currently more expensive than standard culture-based methods
(Schang et al., 2016).

Water testing protocols (e.g., E. coli vs. enterococci
quantification) vary in New York State (NYS) by locality,
but across the state, if a beach exceeds the Beach Action Value
(BAV) for the concentration of FIB for that location, the beach
will issue an advisory and close immediately until the issue is
resolved—i.e., a new water sample is tested and confirmed to
contain FIB levels below the BAV (Water Quality Monitoring,
2004). Although time-consuming, culture-based methods are
the standard for quantifying FIBs at NYS beaches. qPCR-based
methods are comparatively more rapid and can be more sensitive
than culture-based methods; however, they can also be more
technically challenging and at-present, have not been approved
for statewide testing. Biomeme, a Philadelphia based company,
has developed a portable qPCR platform for rapid on-site testing
to address this issue. Both the original two3 (now discontinued)
and the newer model, Franklin (originally named the three9),
developed to replace the two3, are portable thermal cycling
devices created for quick, easy on-site FIB quantification via
qPCR. Biomeme has also designed extraction kits for field
processing samples that can be analyzed on their qPCR devices
allowing for test results to be known within a few hours.
However, similar to other qPCR-based methods, their protocol
has not yet been EPA-approved to replace culture-based methods
for water quality monitoring of recreational waters in NYS.

In this study, four different methods (Figure 1) including both
culture-based (i.e., Enterolert and Colilert) and qPCR-based (i.e.,
EPA 1611.1-based, three Biomeme methods, and ns-qPCR) were
used to test water samples from twelve different public swimming
areas across NYS (see Figure 2 for locations). Our objectives were
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FIGURE 1 | Schematic of the culture-based (Method A) and qPCR-based protocols (Methods B–D) show the workflow from raw beach water samples to comparable

results. Method A (Enterolert or Colilert) is the standard method used by NYS beaches. Method C includes four qPCR variants (C1, C2, C2-IPC, and C3). Details on

the qPCR assays and which methods were conducted in each year are described in Table 1.

to determine: (1) how well the different qPCR methods (i.e., EPA
1611.1-based and various Biomeme methods) correlated with
commonly used culture-based methods; (2) how well new qPCR
methods developed by Biomeme compare with a qPCR method
based on EPA 1611.1 (i.e., using EPA 1611.1 primers and probe);
(3) if the ns-qPCR based Pathogen Panel (targeting 12 viral,
bacterial, and protozoal pathogens) can be successfully deployed
as a water quality indicator across various site locations (four
geographic regions) and water types (fresh and marine water).

MATERIALS AND METHODS

Preliminary Study in Fall of 2017
In the fall of 2017, a preliminary study focused on testing water
samples from two creek swimming sites both located in the
Finger Lakes region (Buttermilk Falls State Park and Robert H.
Treman State Park) (see map, Figure 2). Water samples were
collected weekly beginning September 13 and ending October
10, 2017 and were analyzed using a qPCR method based on
EPA 1611.1 (hereafter referred to as EPA-based or EPA 1611.1-
based) and a culture-based (Enterolert) method, as well as
three Biomeme methods (Methods C1, C2, and C3) (Figure 1;
Table 1). In total 16 samples were taken in 2017 across the
two beaches.

Twelve Beach Study in Summer of 2018
In the summer of 2018, 10 additional NYS parks swimming areas
were added (Figure 2). For this second study, we collaborated
with the NYS Department of Parks, Recreation, and Historical
Preservation to coordinate collection of beach water samples

to be synoptic with their routine sampling for FIB monitoring.
Water samples were collected from swimming areas in the
12 NYS parks (Figure 2) including three Great Lakes beaches
(i.e., Woodlawn Beach State Park and Evangola State Park
on Lake Erie, and Fair Haven State Park on Lake Ontario);
four inland beaches in the Finger Lakes region (i.e., Treman
State Park, Buttermilk Falls State Park, Taughannock Falls State
Park, Fillmore Glen State Park); two inland beaches in the

Palisades (Lake Tiorati Beach and Lake Welch Beach); and

three marine beaches on Long Island (i.e., Heckscher State Park,
Jones Beach State Park, and Wildwood State Park). During the

2018 swimming season from June 11 to July 30, Buttermilk
and Treman state parks were sampled weekly between 8:00
and 9:00 a.m. At the remaining 10 sites, morning samples were
collected two to three times (Fair Haven was sampled only once
and intensive sampling sites were sampled three times, see below)
between 8:00 and 9:00 a.m.

A three-day intensive sampling campaign was done to gauge

FIB and pathogen fluctuations throughout the day at four beaches

across the state (Welch, Buttermilk, Heckscher and Woodlawn).
Intensive sampling campaigns involved three consecutive days of
sampling during which seven samples were collected. Sampling
started and ended with a sample taken at 8:00 a.m. on the 1st and
3rd day. On the second day, five samples were taken beginning
at 8:00 a.m. at 3 h intervals as follows: 8:00 a.m., 11:00 a.m., 2:00
p.m., 5:00 p.m., 8:00 p.m. In total, 61 samples were taken in 2018.

Samples collected in 2018 were analyzed using one culture-
based EPA method (Enterolert) and one qPCR EPA-based
method (EPA 1611.1-based assay), as well as one Biomeme
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FIGURE 2 | Sampling locations of swimming areas for New York State parks study.

method, Franklin-IPC, which included an internal positive
control and was not available in 2017 (Figure 1; Table 1).
The two3 device was discontinued and replaced by the
Franklin device, thus, the two3 was not used again in
2018. The BioPoo assay was available in 2018, however
we used the Franklin-IPC method as this method is more
comparable to the EPA-based qPCR method (as well as the
two3 methods). The Franklin-IPC (and both assays run on
the two3) use the same primers and probe as the EPA
1611.1 method to target the Enterococcus 23S rRNA gene
[see methods section EPA-based qPCR method (Method B)],
while the BioPoo assay targets the tuf gene [see methods
section Biomeme Franklin with BioPoo in 2017 (Method C3) for
more details].

Water Sampling and Environmental Data
Collection
In both years, for each sample, a closed, autoclaved 1 L
polypropylene or glass bottle was held 15 to 30 cm below the
water surface, opened, filled with water, and closed again below

the surface using gloved hands. Duplicate water samples were
taken for each timepoint. All samples were stored on ice during
transit to the laboratory where they were processed within 6 h
of collection. In 2018, at each location, water temperature and
turbidity (Hach 2100Q Portable Turbidimeter), were recorded.
Rainfall over the previous 24 and 96 h was also collected in 2018
from the nearest weather station (see Supplementary Data File 1

for the full dataset). For the nanoscale OpenArray qPCR used
in 2018, an additional 10 L sample was taken concurrently with
the 1 L sample at each location, as described above, using a
10 L carboy in place of the 1 L bottle. Each carboy was bleach-
sterilized overnight and rinsed 3 times with sterile water prior
to sampling.

Culture-Based Quantification (Method A)
Enterolert and Colilert Quanti-Tray/2000 (IDEXX Laboratories,
Westbrook, ME) were used to quantify culturable concentrations
of enterococci and E. coli, respectively. Both methods are EPA-
approved for freshwater beach monitoring. At all sites Enterolert
was used, as this method can be used for either beach type, while
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TABLE 1 | Overview of the qPCR methods used in this study.

qPCR

method

Assay

abbreviation

qPCR device Target gene for

Enterococcus

DNA

template

volume (µl)

Sample volume

(ml)

Internal

positive

control

Sample years

analyzed

B EPA

1611.1-based

BioRad

iCycler

23S rRNA gene

EPA 1611.1

primer/probes

5 100–1000 yes† 2017 + 2018

C1 two3-5ul Biomeme

two3

23S rRNA gene

EPA 1611.1

primer/probes

5 100–250 no 2017

C2 two3-15ul Biomeme

two3

23S rRNA gene

EPA 1611.1

primer/probes

15 100–250 no 2017

C2-IPC Franklin-IPC Biomeme

Franklin

23S rRNA gene

EPA 1611.1

primer/probes

18 100–1,000 yes 2018

C3 BioPoo Biomeme

Franklin

tuf gene

Biomeme primer/probe

20 100–1,000 yes 2017

D Pathogen

Panel

Thermo

OpenArray

23S rRNA gene

EPA 1611.1

primer/probes

6.25 10 yes Subset of 2018

†EPA 1611.1 prescribes the use of a sample process control, however in this study an internal amplification control (IAC) was used. EPA method 1611.1-based (Method B), Biomeme

method variants (Methods C1, C2, C2-IPC, C3), and OpenArray, nanoscale-qPCR (Method D).

Colilert was only used at a subset of sites. For marine beaches,
only Enterolert assays were used.

Enterolert and Colilert measurements were performed
according to the manufacturers’ instructions. Briefly, samples
were poured into trays using gloved hands, sealed using the
Quanti-Tray Sealer (IDEXX Laboratories, Westbrook, ME),
and placed in an incubator at 41◦C (±0.5◦C) for 24 h.
After incubation, the trays were read by illuminating the
wells with a 6-watt, 365 nm UV light and recording the
number of large and small wells that were positive for
blue fluorescence. The number of illuminated wells was
converted to MPN per 100ml using the IDEXX 51-Well
Quanti-Tray MPN Table (provided by the manufacturer).
The IDEXX-QC Enterococci Quality Controls “Enterococcus
faecalis” and “Streptococcus bovis” positive and negative controls
(IDEXX Laboratories, Westbrook, ME), respectively, were
run to ensure the specificity and accuracy of the testing
method. Controls were run concurrently with samples and
matched expected results. For all beaches, where possible,
we obtained official State Park results for culture-based
methods, both Enterolert and Colilert, that were performed
at certified labs and used to determine BAV exceedances (See
Supplementary Data File 1).

Water Sample Filtration for qPCR-Based
Methods
Membrane Filtration to Concentrate Biomass for

qPCR Methods (Methods B and C)
Samples used for qPCR-based methods B and C (i.e., EPA 1611.1-
based and the Biomeme methods) were membrane filtered using
white polycarbonate filters (diameter, 47mm, pore size between

0.4 and 0.6µm) in accordance with EPAmethod 1611.1 (US EPA,
2015). Each sample was mixed by shaking for 30 s, and 100 to
1,000ml of sample (exact volumes recorded for each sample)
were vacuum filtered through the membrane filter. This was
followed by one rinse with distilled water. Filters with captured
biomass were stored in sterile, screw cap, 15ml polypropylene
tubes at −80◦C until DNA extraction. For 1 L samples, filter
clogging was an issue for two of the samples, in these cases
multiple membrane filters were used to process one sample and
all filters were combined into a single composite sample for
DNA extraction.

Ultrafiltration to Concentrate Low Abundance

Pathogens for Nanoscale qPCR (Method D)
For ns-qPCR quantification of low-abundance pathogens,
samples were processed using tangential flow ultrafiltration to
concentrate biomass from large 10 L water samples using a
hollow-fiber ultrafilter, Rexseed 25S (Asahi, USA), as described
previously (Rhodes et al., 2012; Brooks et al., 2020). Negative
controls for each sampling date were also processed and consisted
of 10 L of deionized water. All samples were concentrated to
approximately 250ml of retentate. Based on Polaczyk et al.
(2008), 0.001% (w/w) bovine serum albumin, 0.9M sodium
chloride, and 0.012% (w/w) polyethylene glycol were added to
the retentate followed by an overnight precipitation at 4◦C to
aid in virus precipitation. The samples were then centrifuged at
10,000 × g for 30min at 4◦C and the supernatant was decanted.
The pelleted biomass was resuspended in 5ml of sterile PBS,
distributed into microcentrifuge tubes in 1ml aliquots, then
stored at−80◦C until DNA extraction.
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DNA Extraction
EPA-Based qPCR Method (Method B)
For Method B, DNA extractions were performed according to
the EPA 1611.1 method with the modification that no sample
processing control was used. Filters were transferred to 2ml
screw cap centrifuge tubes prepacked with 0.3 g of 212 to 300µm
autoclaved, glass beads and AE buffer (10mM Tris-Cl 0.5mM
EDTA; pH 9.0) using sterile tweezers. The tubes were then bead
beaten at maximum speed for 60 s and centrifuged at 12,000
× g for 60 s. The supernatant was transferred to a clean 2ml
microcentrifuge tube and centrifuged a second time at 12,000
× g for 5min. The supernatant was then transferred to a new
2ml tube and was either immediately used for qPCR or frozen at
−80◦C until use.

Biomeme In-Field Extraction Kit (Method C)
For Method C, DNA extractions from filters were done
using the Biomeme Field Sample Prep Kit (M1) following
the manufacturer’s instructions (Biomeme, Philadelphia, PA).
Briefly, sterile tweezers were used to transfer the filters into
the kit extraction tubes prefilled with a lysis buffer. The tubes
were shaken vigorously to resuspend the filtrate. The subsequent
protein, salt, and drying wash followed by air drying and DNA
elution were carried out according to the Biomeme protocol
(Figure 3). The M1 kit was designed to be used in the field, and
in our study the kit was used in the field to immediately process
the majority of samples. Samples taken back to laboratory for
processing were those taken on the third day of an intensive
sampling campaign (4 samples total). All DNA extracts were
stored at−80◦C.

OpenArray Extractions (Method D)
DNeasy Powersoil DNA extraction kits (Qiagen, Valencia,
CA) were used to extract DNA from the 1ml aliquots
of the resuspended biomass pellets following manufacturer’s
instructions. Prior to DNA extraction, bacteriophage MS2
(ATCC 15597-B1), was added to the resuspended biomass pellets
and served as an extraction and amplification control (Dreier
et al., 2005; Brooks et al., 2020). The DNA extracts were stored
at−80◦C.

qPCR Assays
EPA 1611.1-Based Assay (Method B)
Enterococcus quantification targeting the large subunit ribosomal
ribonucleic acid gene (lsrRNA, 23S rRNA) was done using iTaq
Universal SYBR Green Supermix (BioRad, Hercules, CA) and the
primers/probe and thermal cycling protocol from the EPA 1611.1
method (US EPA, 2015). TaqMan qPCR assays were performed
in triplicate on a BioRad iCycler (BioRad, Hercules, CA). Total
reaction volumes of 25 µl were used with 5 µl of template
(standards, blanks, and/or samples), 10 µl iTaq Universal SYBR
Green Supermix (Bio-Rad Laboratories, Hercules, CA) and a
mixture of the Enterococcus-specific primers and probe. The
thermal protocol had an initial holding period of 2min at 50◦C
then a 10min period at 95◦C, followed by 40 cycles of denaturing
for 15 s at 95◦C and annealing/elongation for 60 s at 60◦C.

Standards for E. faecalis 23S rRNA were created using
gBlocks (Integrated DNA Technologies (IDT), Coralville, IA).
All standards were made in AE buffer using a dilution series
from 8.0 × 103 copies µl−1 down to 1 × 100 copy µl−1. For all
qPCR methods copies µl−1 were converted to copies per 100ml
of water sampled. To ensure specificity of amplification, a subset
of PCR products were run on a 1% agarose gel to confirm the
correct sized product (93 bp for Enterococcus).

To assess inhibition in samples an internal amplification
control (IAC) was used retroactively on 85% of the samples (all
samples that remained). The IAC was based on the US EPA 1696
method (US EPA, 2019) using the primers and probe from this
method as well as the same IAC sequence which was created
using gBlocks (IDT). Six no template controls (NTCs) were run
per plate and the average Cq of the NTCs (Cq = 27.52) plus
three times the standard deviation (Cq + 3 Standard deviations
= 28.23) was used as the Cq cutoff for inhibition. If the Cq of 2 of
the 3 triplicates run for each sample was below this cutoff Cq then
the sample was not considered to be inhibited. The IAC results
showed that no samples were inhibited when the same sample
dilutions were used as those in the original analysis.

Biomeme Workflows (Method C1, C2, C2-IPC, C3)
Four different methods were run on Biomeme devices (see
Table 1), which varied in the amount of template used (from
5 to 20 µl), the presence/absence of an internal positive
control (IPC), and the Biomeme device used (i.e., two3 or
Franklin/three9). The Biomeme two3 (now discontinued) had
two sampling channels of different excitation and emission
wavelengths (allowing duplex reactions) and could analyze three
samples at a time (Sepulveda et al., 2018). The replacement
for the two3, the Biomeme Franklin/three9 (hereafter referred
to as Franklin) can analyze up to nine samples at a time and
has three different fluorescence channels, allowing for triplex
reactions. Biomeme qPCRwas performed using the same thermal
profile across both devices with an initial denature step of
60 s at 95◦C followed by 45 cycles each with 1 s at 95◦C and
20 s at 60◦C. The total run time for one run was 45min.
Standards for all Biomeme workflows were dilutions of either
gBlocks (Integrated DNA Technologies (IDT), Coralville, IA)
(for Methods C1, C2 and C2-IPC) or genomic pure culture
DNA from Enterococcus faecilis (for Method C3). Standards
dilutions were created from 1 × 105 copies µl−1 to 1 × 101

copies µl−1.

Biomeme Two3 With 5 µl Sample Volume in 2017

(Method C1)
Biomeme’s LyoDNA Mix (Biomeme, Philadelphia, PA) was re-
suspended by adding a 12% aqueous glycerol solution as per
manufacturer’s instructions to obtain a 2X concentration master
mix. Each 25 µl qPCR reaction contained 12.5 µl of 2X LyoDNA
master mix, 5 µl of water, 1 µl of 10µM forward and reverse
primers, 0.5 µl of 10µM probe, and 5 µl of template DNA.
The primers and probes used and their concentrations (400 and
200 nM, respectively) in Method C1 were the same as those of
EPA 1611.1-based method (Method B).
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FIGURE 3 | Summary of Biomeme qPCR workflow. Water is membrane-filtered then (1) DNA is extracted using the field DNA sample prep kit; (2) Enterococcus qPCR

assays are set up in reagent strips; (3) qPCR assays are run on the smartphone-controlled handheld thermocycler; (4) data is retrieved for analyses via the cloud portal

or exported as raw data from the smartphone.

Biomeme Two3 With 15 µl Sample Volume in 2017

(Method C2)
Method C2 was designed to increase sensitivity of the original
Method C1 to low levels of enterococci. A 5X LyoDNA master
mix concentration was used in place of the 2X LyoDNA master
mix used in Method C1 which allowed for the addition of more
template DNA (15 µl instead of 5 µl). Each 20 µl reaction was
composed of 4µl of 5X LyoDNAmaster mix, 0.44µl of nuclease-
free water, 0.08 µl of 100µM forward and reverse primers, 0.4 µl
of 10µMprobe, and 15µl of template DNA. The greater template
volume was used to increase the concentration of initial copies
per reaction; all other assay concentrations (e.g., primers, probes,
etc.) in this method were the same as those used in Method C1.

Biomeme Franklin With IPC in 2018 (Method C2-IPC)
Method C2-IPC was similar to method C2 with two main
differences, first the Franklin device was used in place of the
discontinued two3 device and second the LyoDNA master mix
was replaced with the LyoDNA+IPC master mix prepackaged
in Go-Strips (Biomeme, Philadelphia, PA). Go-Strips include
proprietary lyophilized primers, probe, and DNA for an IPC
assay in addition to the lyophilized master mix. For this method,
2 µl of primer/probe mix for Enterococcus spp. (same as in
EPA 1611.1-based and C1 and C2 methods) and 18 µl of
sample were added to the IPC Go-Strips. The IPC was used
to assess inhibition and after initial testing indicated inhibition
across many samples (i.e., no IPC amplification), all samples
were run at 1:10 dilution. The delta Ct method was used to
calculate gene copy numbers, using the difference between IPC
and Enterococcus Cts to create a standard curve specific for the
C2-IPC method.

Biomeme Franklin With BioPoo in 2017 (Method C3)
Method C3, which was run on the Franklin device, uses
Biomeme’s BioPoo Go-Strips. These Go-Strips contain the
lyophilized, proprietary primers and probes for three targets: an
IPC, the translation elongation factor (tuf ) gene of Enterococcus,
and Human Fecal Marker 183 (HF183), a human-associated
Bacteroides spp. The Biomeme BioPoo assay tests for the tuf

gene rather than the 23S rRNA gene targeted by the EPA 1611.1
primers and probe. For this method, 20 µl of sample was loaded
into a well and used to resuspend the master mix. Sample
inhibition was assessed by examining IPC results, if the IPC did
not amplify, samples were run again at a 1:10 dilution.

Pathogen Panel ns-qPCR (Method D)
As described in Brooks et al. (2020) a “Pathogen Panel” was
designed for OpenArray plates (printed by Thermo-Fisher in
an 18 x 3 format to allow for 18 targets with three technical
replicates per sample), to determine the presence and abundance
of 12 waterborne pathogens (Campylobacter spp. unknown
target, Shigella spp./enteroinvasive E.coli ipaH, Salmonella
spp. unknown target; E. coli stx1; E. coli eae, eaeF2/R; E. coli
O157 rfbE; norovirus group II, QNIF2d/Cog2R; adenovirus
type 40/41, VTB1-HAdVF; enterovirus highly conserved 5′

untranslated region; hepatitis A highly conserved 5′non-
coding region, HAV240/HAV H68; rotavirus A NSP3; Giardia
lamblia 18S rRNA, Giardia80F/127R), two general FIB [E.
coli unknown gene and Enterococcus spp. 23S rRNA (EPA
Method 1611.1)], and three source-specific FIB (i.e., human,
Bacteroides spp. 16S rRNA, HumM2; cow, Bacteroides spp.
16S rRNA, CowM3; and poultry, Brevibacterium spp. LA35
16S rRNA) as well as an internal positive control (MS2)
(Brooks et al., 2020). Standards for the 17 targets in the
Pathogen Panel were either genomic DNA (Salmonella spp.
control strain from the Cornell Animal Health Diagnostic
Center; Campylobacter jejuni from ATCC, 33560D-5; Shigella
flexneri from ATCC, 29903D-5), plasmid DNA (E. coli 23S
rRNA (Thermo Fisher ABI part no. 4460366), Giardia
lamblia (Genscript, Piscataway, NJ), and norovirus (IDT,
Coralville, IA)], or synthetic gBlocks purchased from IDT.
The detailed ns-qPCR workflow is described in Goodman
et al. (2016). Samples with qPCR inhibition were diluted 1:10
for ns-qPCR.

Beach Action Value Classification
For all FIB qPCR-based methods, we developed correlation
curves between cellular equivalents (CE) per 100ml as

Frontiers in Water | www.frontiersin.org 7 October 2021 | Volume 3 | Article 71147752

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Fernández-Baca et al. Rapid qPCR-Based Water Quality Monitoring

FIGURE 4 | Comparison of qPCR methods to Enterolert. log10-log10 comparison of the Biomeme methods C1, C2, and C3 (two3-5 µl, two3-15 µl, and BioPoo,

respectively) and EPA-based method with the standard culture-based method (Enterolert) currently used by beaches for fall 2017 Buttermilk (circle) and Treman

(triangle) samples. The Biomeme method C1 and C2 and EPA-based methods quantify the 23S rRNA gene for Enterococcus, while the Biomeme method C3 (Franklin

BioPoo) quantifies the tuf gene. Vertical lines denote beach action values (BAVs) used by different localities, the dotted black line represents a BAV of 60 MPN per

100ml and the solid line represents a BAV of 104 MPN per 100ml.

determined by qPCR vs. most probable number (MPN)
of enterococci per 100ml as determined by the culture-
based method Enterolert. From these correlation curves we
determined the qPCR value corresponding to BAVs used
by different localities in NYS. The two BAVs used were 60
MPN per 100ml for freshwater and 104 MPN per 100ml for
marine beaches. Using these values, we calculated whether
any given sample was in exceedance of or below the BAV
(indicating an acceptable level of risk, “safe”) based on
their qPCR-determined enterococci gene concentrations.
For each sample, we then compared the qPCR-based
classification to the culture-based, Enterolert, classification
and categorized every qPCR measurement as either correctly
classified (correct above or below the BAV) or incorrectly

classified (false negative or false positive) using Enterolert as
the standard.

Statistical Analyses
All statistical analyses were conducted in R (version 3.6.1)
(R Core Team, 2013). Data normality was tested in linear
and log10-log10 space and all data showed normality in log10-
log10 space thus all plots and calculations are presented
using the transformed data. Linear regression analyses
were conducted using a significance cutoff of p = 0.05.
Correlations of environmental variables with qPCR- and
culture-based FIB concentrations as well as pathogen
concentrations were made with the cor() function in R
using the Pearson method with pairwise comparisons. Heat
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maps were created in R using the Euclidean distance for the
dissimilarity measure.

RESULTS

Preliminary Beach Study (Fall 2017)
In the preliminary fall 2017 study, two riverine state park
swimming areas were monitored (i.e., Buttermilk and Treman
State Parks) using four different qPCRmethods (i.e., EPA 1611.1-
based assay and three Biomeme workflows) for two months.
The EPA 1611.1-based assay and all three Biomeme methods
correlated positively with the culture-based Enterolert method
currently used by the two beaches (Figure 4). All qPCR-based
values are reported as gene copies per 100ml to allow for
easy comparisons across methods and years. The in-field and
lab benchtop qPCR devices performed relatively similarly with
stronger correlations between qPCR and culture-based results
for the two3-15 µl (r2 = 0.687, p = 0.00046) and Franklin
BioPoo (r2 = 0.645, p = 0.00292) method compared to the
EPA-based assay (r2 = 0.594, p = 0.00204), with the two3-5
µl method having the weakest correlation (r2 = 0.537, p =

0.0159). The slopes of the fit-lines also varied by qPCR method
with the Franklin BioPoo having a near 1-to-1 correlation with
Enterolert results (slope = 0.974, intercept = 0.657), while the
other methods had fit-lines with slopes <1 (two3-5 µl slope
= 0.591, intercept = 1.99; two3-15 µl slope = 0.657, intercept
= 2.44; EPA 1611.1-based method slope = 0.287, intercept =
3.07). No amplification of HF183 was found in any of the
fall 2017 samples with the BioPoo assay. Treman State Park
had lower FIB counts overall than Buttermilk State Park. All
Enterolert results for Treman were below the 60 MPN per 100ml
BAV, whereas Buttermilk results were all above this threshold
and most samples were above the 104 MPN per 100ml BAV
(Figure 4).

Percent correct classifications for each qPCR method were
calculated using culture-based Enterolert results as the standard
for “correct” quantification. For example, if the qPCR method
results agreed with the Enterolert results (e.g., both showed
FIB counts were above the BAVs and the beach should be
closed) then the qPCR method results was considered correctly
classified, if the two methods did not agree then the qPCR

method was deemed incorrectly classified, using the Enterolert
method result as the standard reference (Table 2). Different
localities use different BAVs, thus both were used for these
calculations (i.e., 60 MPN per 100ml and 104 MPN per
100ml). For the BAV of 60 MPN per 100ml, the two3-
5 µl and BioPoo methods performed the best (78.6% and
81.3% correct classifications, respectively), while the EPA 1611.1-
based assay and two3-5 µl performed similarly (68.8% correct
classifications for both). For the BAV of 104 MPN per 100ml,
correct classification was best for EPA 1611.1-based assay (75%)
while the two3-5 µl and BioPoo Biomeme methods performed
similarly (71.4 and 68.8%, respectively) and the two3-15 µl
performed worse (62.5%). False negatives were highest for the
BioPoo method (18.8% and 25% for BAVs of 60 and 104 MPN
per 100ml, respectively), indicating that this qPCR method
would underestimate FIBs more frequently than the other qPCR
methods. However, BioPoo’s false positive rate is the lowest
among the qPCR methods (0 to 6.3% for BAVs of 60 and 104
MPN per 100ml, respectively).

There was a strong correlation between the results of
the various Biomeme qPCR methods with the EPA 1611.1-
based method for fall 2017 samples (Figure 5). The correlation
was strongest between the EPA 1611.1-based method and the
Franklin BioPoo (r2 = 0.647, p = 0.00283) and two3-5 µl (r2

= 0.651, p = 0.0048) and was slightly lower for the two3-5 µl
(r2 = 0.404, p = 0.0196). The slopes of the fit-lines were all
>1 (two3-5 µl slope = 1.35, intercept = −1.24; two3-15 µl
slope= 1.97, intercept = −3.99; Franklin BioPoo slope = 2.49,
intercept=−6.47).

Twelve Beach Study (Summer 2018)
The summer 2018 study included more beaches that were
also more diverse (i.e., both freshwater and marine across
various regions) than the fall 2017 dataset. The Biomeme
qPCR results were variable for the Franklin-IPC method and
did not correlate (p < 0.05) with the culture-based Enterolert
results (Figure 6A). Similar to fall 2017 results, the EPA 1611.1-
based method significantly (p = 0.000126) positively correlated
with Enterolert results (slope = 0.577, intercept = 3.67,
r2 = 0.317), however the correlation was not as strong in 2018
as compared to 2017 (Figure 6A). The Franklin-IPC method did

TABLE 2 | Accuracy of qPCR methods for predicting beach action value (BAV) exceedances as compared to the culture-based Enterolert method in fall 2017 and

summer 2018 samples.

Year Method Prediction of Beach Action Value (BAV) exceedances

BAV = 60 MPN/100 ml BAV = 104 MPN/100 ml

% Correct

classification

% Incorrect

classification

% False

negative

% False

positive

% Correct

classification

% Incorrect

classification

% False

negative

% False

positive

2017 EPA 1611.1-based (B) 68.8 31.3 12.5 18.8 75.0 25.0 12.5 12.5

Two3 5µl (C1) 78.6 21.4 14.3 7.1 71.4 28.6 21.4 7.1

Two3 15µl (C2) 68.8 31.3 12.5 18.8 62.5 37.5 18.8 18.8

BioPoo (C3) 81.3 18.8 18.8 0.0 68.8 31.3 25.0 6.3

2018 EPA 1611.1 (B) 69.6 30.4 7.84 23.5 65.2 34.7 11.8 23.5

Franklin-IPC (C2-IPC) 35.6 64.4 24.1 37.0 35.6 64.4 24.1 37.0
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FIGURE 5 | Comparison of novel qPCR methods to the EPA 1611.1-based method for fall 2017 beach samples. log10-log10 plots of Biomeme method (C1, two3-5

µl; C2, two3-15 µl; and C3, BioPoo) results as compared to EPA-based method. The BioPoo assay quantifies the tuf gene while all other assays quantify the 23S

rRNA gene for Enterococcus.

not appear to correlate with EPA 1611.1-based method results
(Figure 6B). Interestingly, when only the Finger Lakes beaches
were examined, there was a weak, significant correlation between
the two qPCR methods (r2 = 0.237, p = 0.0105), however other
beach locations did not show any correlations between the two
qPCR methods (Supplementary Figure 1). Although there were
only three marine sites, all were below the BAV of 60 MPN
per 100ml whereas the freshwater beaches ranged from 0 MPN
per 100ml up to 2420 MPN per 100ml, the upper limit of the
Enterolert kit.

Examining the results by geographic region
(Supplementary Figures 2A,B) showed that the positive
correlation between the EPA 1611.1-based and Enterolert
methods was a result of the Finger Lakes’, Great Lakes’, and
Palisades’ beach results, whereas the Long Island beaches

were more variable. The Finger Lakes, Great Lakes, and
Palisades beaches are all freshwater beaches, thus we
grouped results by beach type (freshwater vs. marine)
(Supplementary Figures 2C,D). When considering only
freshwater beaches the correlation between the EPA 1611.1-
based assay and Enterolert was stronger (r2 = 0.408, p
< 0.0001, Supplementary Figure 2D) than when all sites
were grouped together. This grouping also highlighted the
lack of correlation between the EPA 1611.1-based assay
and Enterolert measurements for marine sites (r2 = 0.204,
p = 0.262). The beach type analysis did not change the
relationship between Franklin-IPC and Enterolert results which
showed no correlation for either freshwater (r2 = 0.000297,
p = 0.921) or marine beaches (r2 = 0.00114, p = 0.931)
(Supplementary Figures 2C,D, respectively).
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FIGURE 6 | Summer 2018 water sample results from 12 New York State beaches. (A) Comparison of qPCR methods EPA-based and Biomeme Franklin-IPC

(Methods B and C2-IPC) to Enterolert. Vertical lines denote beach action values (BAVs) used by different localities, the dotted black line represents a BAV of 60 MPN

per 100ml and the solid line represents a BAV of 104 MPN per 100ml. (B) Comparison of qPCR methods: Biomeme Franklin-IPC with EPA 1611.1.
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Percent correct classifications were again calculated for the
summer 2018 dataset (Table 2). The EPA 1611.1-based method
performed similarly over the two years with correct classifications
of the majority of samples (69.9%) and a relatively low false
negative rate (7.84%). In contrast, the Franklin-IPC method
correctly classified only 35.6% of samples and incorrectly
classified the rest, with 24.1% of those incorrect classifications
being false negatives. The EPA 1611.1-based method performed
slightly worse for the 104 MPN per 100ml BAV (65.2% correct
classifications) while the Franklin-IPC method performed the
same under both BAVs.

Correlations between environmental conditions (i.e.,
turbidity, water temperature, rainfall over previous 24 h
and rainfall over previous 4 d) and measured FIBs (e.g.,
culture-based and qPCR-based methods) were also examined
(Supplementary Figure 3). Enterolert and Colilert were
moderately positively correlated (r = 0.25) and both methods
were positively correlated with rainfall (r = 0.46 and 0.18
for previous 24 h rainfall, respectively). Water temperature
showed weak to moderate correlations with turbidity (r = 0.53),
Franklin-IPC (r = 0.36), and EPA 1611.1-based (r = 0.18)
results. Turbidity was moderately positively correlated with
Colilert (r = 0.43) and Enterolert (r = 0.36) measurements.

Comparison Across Years (Buttermilk and
Treman)
Two beaches, Buttermilk and Treman, were examined in
both fall 2017 and summer 2018 using the EPA 1611.1-based
and Enterolert methods. The summer 2018 EPA 1611.1-based
method showed a weaker positive correlation to Enterolert
results in 2018 (r2 = 0.208) as compared to 2017 (r2 = 0.59)
(Supplementary Figure 4). Unlike in fall 2017, there were several
Treman Enterolert samples in 2018 that were above both BAVs.
Treman samples in 2018 ranged from as low as 0 up to 2420
MPN per 100ml, the upper detection limit of the test (average
of 324 ± 712 MPN per 100ml), showing much more variability
than in 2017 where samples averaged 28.0 ± 18.0 MPN per
100ml. Buttermilk Enterolert samples likewise showed more
variability in 2018 compared to 2017 (average 369 ± 688 MPN
per 100ml and 210 ± 184 MPN per 100ml, for 2018 and 2017,
respectively). Some of this variability may be explained by having
more samples in 2018 (15 and 12 samples for Buttermilk and
Treman, respectively) than in 2017 (eight each for Buttermilk and
Treman). Additionally, the 2017 samples were taken in the fall
during which the beaches were always closed and there were no
rain events over the 4-week sampling period. In contrast, in 2018
samples included several rain events and the sampling period
spanned 2 months in the summer.

Intensive Beach Study (Summer 2018)
In 2018, four beaches were selected for “intensive” sampling,
meaning samples were taken at 8:00 a.m. for 3 consecutive
days, and on the second day samples were also taken at 3 h
intervals starting from the 8:00 a.m. sample until 8:00 p.m. (i.e.,
11:00 a.m., 2:00 p.m., 5:00 p.m., and 8:00 p.m.). All samples were
analyzed using three methods: Enterolert, EPA 1611.1-based,
Franklin-IPC. The results were mixed, gene copies per 100ml

determined by Franklin-IPC and EPA 1611.1-based methods
were similar at Woodlawn but were markedly different at other
sites including Buttermilk (Supplementary Figure 5). At each
of the four intensive sampling locations, there were rain events
during the sampling campaigns; however, they varied in intensity
and duration. At Heckscher and Buttermilk rain was light ≤
2.54mm over <4 h. Heckscher had rain before the third day’s
morning sample (6:00 to 9:00 a.m.) and Buttermilk during the
morning of the second day (9:00 to 12:00 p.m.). While Welch
had 12.7mm rain over 5 h (3:00 to 9:00 a.m.) and Woodlawn
had 8.89mm overnight for 12 h (10:00 to 10:00 a.m.). Heckscher
was the only marine site included in the intensive sampling
campaigns and showed no overlapping trends between the
qPCR methods or between the qPCR methods and culture-based
methods. Woodlawn was the only site that showed similar trends
over time between the methods and did appear to show a spike
in FIB concentrations across all three methods following the rain
event (Supplementary Figure 5).

Pathogen Panel Results (Summer 2018)
The Pathogen Panel results showed there were few pathogens
across morning samples from the New York State beaches
(Figure 7A). One Treman sample (6/25) and two Fillmore Glen
samples showed the highest pathogen counts for Enterococcus
spp. and the various E. coli strains, while the other beach
samples were relatively low for all pathogens (Figure 7A). Creek
samples had higher pathogen counts than other watershed types,
and with one exception (Taughannock 6/18) all samples with
Bacteroides HumM2 were found in creek samples (Figure 7A).
Grouping by geographic regions showed that the Finger Lakes
samples had higher pathogen counts overall than the Great
Lakes, Long Island, or Palisades regions, however the sampling
regime from the Finger Lakes included more rain events
(Figure 7B; Supplementary Table 1). Although there were only
three marine beach sites, they had much lower pathogen
counts overall, and more non-detects than the freshwater
sites (Supplementary Figure 6). Several pathogens were never
detected and thus were not included in the analysis, they were
adenovirus, Brevibacterium spp. LA35 (avian marker), hepA,
and Shigella spp. The internal spike-in positive control (MS2
virus) was detected in 20% of samples and 2 of 3 sterile water
processing blanks with Cts ranging from 20.75 to 23.43. The
majority of samples (80%) hadMS2 below detection, possibly due
to sample dilution.

Samples from the intensive sampling campaign for two
Buttermilk, Welch, Heckscher, and all Woodlawn intensive
samples were also examined using the Pathogen Panel
and only seven pathogens were found across the sites
(Supplementary Figure 7). All of the intensive sites captured
a rain event, but a spike in pathogen concentrations was only
seen at Woodlawn following an overnight rain. At Buttermilk,
pathogen levels stayed elevated during an ongoing light morning
rain event (Supplementary Figure 7). Pathogens were detected
at both Heckscher (enterovirus and Campylobacter spp.) and
Welch (Bacteroides HumM2) 2:00 p.m. samples but were not
detected in the 8:00 a.m. samples on the same day (Welch) or
the day after (Heckscher) with no rain event occurring during
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FIGURE 7 | Heat map of Pathogen Panel OpenArray-detected pathogens in the 2018 New York State beach morning samples for (A) individual samples by site and

date and (B) samples grouped by region. For each sample, the watershed type (i.e., Creek, Large Lake, Marine, or Small Watershed) and the Enterolert results are

shown. Samples were marked as “Safe” if Enterolert results were below a BAV of 60 MPN per 100ml; “Exceedance” if results exceeded this cutoff and the beach was

closed; or “Not Available” if Enterolert results were unavailable at this site.

this time period. Correlations between detected pathogens and
environmental conditions (i.e., turbidity, water temperature,
rainfall over previous 24 h and rainfall over previous 4 d)

were examined (Supplementary Figure 8). Strong positive
correlations were found between Bacteroides CowM3 and
Campylobacter spp. (r = 0.7) and Giardia lamblia (r = 0.73).
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Campylobacter spp. and Giardia lamblia (r = 0.75), and
HumM2 with E. coli stx1 and Enterococcus spp. (r = 0.59 and
0.57, respectively).

DISCUSSION

Preliminary Study Results (Fall 2017)
In 2017, all of the qPCR methods performed similarly when
compared to the culture-based Enterolert method. There were
significant correlations of the Enterolert results with the EPA
1611.1-based assay (p= 0.00204) and all three Biomememethods
(two3-5 µl, p = 0.0159; two3-15 µl, p = 0.00046; BioPoo, p
= 0.00292). The correlation was strongest for the two3-15 µl
(r2 = 0.687) and the BioPoo assay (r2 = 0.645), followed by
EPA 1611.1-based assay (r2 = 0.594) and the two3-5 µl (r2 =

0.537). Although the qPCR results correlated well overall with
the Enterolert data, they had variable performance for correctly
predicting BAV exceedances (ranging from 68.8 to 81.3% and
62.5 to 75.0% correct classifications for BAVs of 60 and 104
culturable FIB per 100ml, respectively). Occurrences of false
negatives were higher (12.5 to 18.8% and 12.5 to 25% for BAVs
of 60 and 104 MPN per 100ml, respectively) than false positives
(0 to 18.8% and 6.3 to 18.8% for BAVs of 60 and 104 MPN
per 100ml, respectively). Based on these results, adopting any
of the qPCR methods as the standard for beach monitoring
could increase the potential of swimmer pathogen exposure as
we saw in some cases, the qPCR methods would have resulted
in a beach opening while the culture-based method would have
led to a beach closure. Noble et al. (2010) also found qPCR-
based methods underestimated Enterococcus spp. and E. coli
concentrations in recreational waters, possibly due to inhibition
of the qPCR assays (Noble et al., 2010). On the other hand, qPCR
false positives indicate an overestimation of FIBs and studies
have likewise shown that qPCR-based methods can overestimate
FIB abundance (Lavender and Kinzelman, 2009; Raith et al.,
2014). The mixed incidence of both false negatives and false
positives in our dataset suggests that qPCR methods may require
individualized, assay-specific BAVs based on site-specific studies.
The EPA has suggested a qPCR BAV of 640 CCE per 100ml
for the EPA 1611.1 method, however the Biomeme methods
currently lack recommended BAVs (US EPA, 2015).

Neither the two3 methods nor the EPA 1611.1-based method
used in this study included a sample processing control, thus,
we were unable to assess DNA extraction efficiency in these
samples. The BioPoomethod did include an IPC which informed
our sample dilution to reduce or eliminate IPC inhibition and,
presumably, tuf assay inhibition. The BioPoo assay had the
highest correct BAV classification of all the methods (81.3 and
68.8% for BAVs of 60 and 104 MPN per 100ml, respectively).
Interestingly, the BioPoo method targets a different gene, i.e.,
the tuf gene, than the two3 and EPA 1611.1 primers and probe,
which target the 23S rRNA gene of Enterococcus. The BioPoo
assay showed the lowest intercept (0.657) when compared to
the Enterolert method out of all the qPCR methods (ranging
from 1.99 to 2.44 for the two3 methods and up to 3.07 for the
EPA-based method), suggesting the use of the tuf gene could
lower the background signal compared to the 23S rRNA gene.

Biomeme’s research team selected assays with the design objective
of reducing the range of the background signal and increasing
resolution of results. However, this specificity comes with a cost
with respect to sensitivity; the BioPoo assay was more likely than
the other qPCRmethods to give a false negative, underscoring the
importance of creating a different BAV for each qPCR chemistry.

All of the Biomeme methods correlated significantly (p
< 0.05 for all) with the EPA 1611.1-based method in 2017
(Figure 5). This relationship was partly driven by differences
in FIB concentrations between the two sites. While Treman
had relatively low culturable enterococci (average of 24.5 ±

19.4 MPN per 100ml) Buttermilk had much higher levels
(average of 184 ± 182 MPN per 100ml) which strengthened the
correlation between qPCR methods and between qPCR-based
methods and Enterolert. The differences observed at these two
sites is likely due to land use differences within their respectively
watersheds. Buttermilk’s watershed has more residential housing
and agricultural land compared to Treman’s watershed which
has more forest cover and is more rural. These differences in
land use result in less runoff originating from human-impacted
areas in Treman’s watershed compared to Buttermilk which
could ultimately be reflected in the lower FIB counts observed
in Treman’s water samples as compared to Buttermilk’s.

qPCR-Based FIB Monitoring
(Summer 2018)
In summer of 2018, we expanded the monitoring sites from two
local, freshwater beaches to 12 beaches across New York State,
including nine freshwater and three marine beaches, from four
geographic areas (i.e., Great Lakes, Finger Lakes, Palisades, and
Long Island), and four watershed types (creek, small watershed,
large lake, marine). The diversity of sampling sites likely led to
weakening of the correlation between the EPA 1611.1-based assay
and Enterolert results from 2017 (r2 = 0.59, Figure 4) to 2018
(r2 = 0.317, Figure 6A). When examining only the two sites
studied in both years the correlation was still weaker in 2018
compared to 2017 (r2 = 0.208, Supplementary Figure 4). This
variability in correlation may be due to seasonal differences. In
summer 2018 the water quality monitoring spanned 8 weeks,
during which beaches were in use and rainfall was recorded,
while in fall 2017 monitoring spanned 4 weeks, during which
the beaches were closed, and no rainfall was recorded. Haugland
et al. (2021) found good correlation between qPCR and culture-
basedmethods for quantification of E. coli among freshwater sites
in recreational water across Michigan. Because of this we chose
to group the 2018 data by beach type (freshwater vs. marine)
and found there was an improvement in the correlation between
the EPA 1611.1-based assay and Enterolert results for freshwater
beaches (r2 = 0.408, p < 0.0001, Supplementary Figure 2D). In
contrast, the marine beaches showed no significant correlation (p
= 0.262, Supplementary Figure 2D). Differences including tides,
salinity, and wrack could all impact the presence, concentration,
and quantification of FIBs at marine beaches (Sinton et al.,
2002; Boehm, 2007; Imamura et al., 2011; Byappanahalli et al.,
2012). These results highlight the importance of creating site-
specific correlations to account for the differing characteristics
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of freshwater and marine beaches, including salinity, which
are known to influence FIB quantification (Sinton et al., 2002;
Imamura et al., 2011; Byappanahalli et al., 2012).

Unlike in 2017, the Biomeme results of summer 2018
did not correlate with the culture-based (Figure 6A) or EPA-
based qPCR (Figure 6B) methods. Even when examining results
by beach location or beach type, there did not appear to
be a correlation between the Franklin-IPC and Enterolert
measurements (Supplementary Figures 2A,C). However, the
two qPCR methods (i.e., Franklin-IPC and EPA 1611.1-based
assay) showed a moderate, significant correlation when grouping
by beach location but only for the Finger Lakes region (r2 =

0.273, p= 0.0105, Supplementary Figure 1). In general, the EPA
1611.1-based method appears to be more robust across different
sites than the Franklin-IPC method, however, the Biomeme
methods that showed strong correlations in fall of 2017 (i.e., C1,
C2, and C3) were not tested in 2018. One of these methods, the
BioPoo assay, may hold promise for future testing as it performed
well in 2017, simultaneously targets HF183, and includes an
IPC to test for inhibition. In this study, an IAC was used in
the EPA 1611.1-based assay to assess inhibition in samples and
results from the IAC analysis showed no amplification inhibition.
However, an IAC cannot account for inefficiencies during DNA
extraction. The EPA 1611.1method prescribes the use of a sample
processing control to address this and, additionally, recommends
the use of a matrix spike to evaluate and correct for sample site
variations. However, in this study we were only able to include the
IAC analysis and not the prescribed sample processing control of
matrix spikes in our EPA-based qPCR method. Including these
additional analyses most likely would have resolved some of the
site variability observed. Indeed, including both matrix spikes
and sample processing controls may eliminate this issue, not only
in the EPA-based assay but also the Biomeme assays.

We examined the impact of rain events, turbidity, and water
temperature on the measured FIB concentrations and found
rainfall to correlate moderately positively with Enterolert (r
= 0.59 for previous 24 h rainfall); whereas only one of the
qPCR methods, the EPA 1611.1-based assay, correlated with
rainfall (r = 0.37 and −0.09 for EPA 1611.1-based and Franklin-
IPC methods, respectively). Lavender and Kinzelman (2009)
found that non-consensus between culture- and qPCR-based
methods was associated with rainfall among other environmental
conditions, thus it is possible that rainfall inhibited one or both
of our qPCR measurements.

Indeed, it is likely the Franklin-IPC measurements were
inhibited despite the use of sample dilution and IPC analysis.
Differential amplification responses to inhibitors commonly
found in environmental samples, including humic acids, have
previously been described (Huggett et al., 2008; Green and
Field, 2012). Green and Field (2012) found qPCR inhibition
sensitivity to be assay dependent when comparing HF183 and
E. coli amplification in the same sample and suggested it may
be due to differing assay sensitivities to humic acids. Cao et al.
(2012) suggested current internal control methods to assess
Enterococcus inhibition are ineffective and should not be relied
upon to determine enterococci inhibition. They recommended
using dilutions and robust qPCR chemistries (i.e., those designed

for environmental samples) to overcome sample inhibition,
instead of relying on internal control assessments. Huggett et al.
(2008) found inhibition variability between control and target
reactions in which the control showed no inhibition, yet the
target was inhibited. Thus, even though we were able to account
for IPC inhibition in the Franklin-IPC method it is possible the
Enterococcus assay itself was still inhibited, due to differences
in assay sensitivities (Huggett et al., 2008; Green and Field,
2012). Huggett et al. (2008) suggest that internal controls should
be assessed with their targets to ensure similar sensitivities to
inhibitors likely to be present in a given sample. Future testing
for the Franklin-IPC method should include some analysis of
target and control inhibition as well as analysis of the chemistry’s
robustness to different environmental samples.

Challenges for Implementation of
qPCR-Based FIB Monitoring
There are many challenges to the implementation of any new
technology and/or assay for water quality monitoring. In our
study we found some inconsistencies in the correlation between
qPCR-based and culture-based methods for FIB quantification
across a range of diverse sites. Kinzelman et al. (2011) found
there were varying degrees of correlation between the culture-
and qPCR-based methods for FIB quantification depending on
site (i.e., geographic location), water type (marine vs. fresh), as
well as qPCR inhibition, and differences in viable vs. non-viable
cells. Additionally, environmental conditions such as recent
rainfall and flow rate can impact the background DNA levels
(e.g., fragmented DNA or dead cells) and we found greater
discrepancies between culture and qPCR methods in 2018 as
compared to 2017, possibly due to the multiple rain events
recorded in 2018 (Lavender and Kinzelman, 2009). Sunlight is
also known to play a role in modulating E. coli and enterococci
concentrations, however photoinactivation of these organisms
is not well-understood under varying environmental conditions
and we did not measure irradiance in our study (Boehm et al.,
2009).

The correlation between culture-based and qPCR-based
methods was not expected to be 1-to-1 at any given site. qPCR-
based methods do not discriminate between live and dead cells
in a sample while culture-based methods exclusively quantify
viable/culturable cells. However, previous studies have shown
strong correlations between culture- and qPCR-based methods
(Schang et al., 2016; Haugland et al., 2021). Thus, even though
these methods may not necessarily result in the same absolute
values for FIB quantification, a strong correlation between the
two measurements suggest there is potential for qPCR methods
to be used in place of culture-based methods for beach closure
and reopening determinations.

Our study included many different sites with unique
characteristics, and we were not able to create a universal
correlation curve between any qPCR method and Enterolert
that would work for all sites. Thus, site-specific studies would
need to be completed before the implementation of any new
qPCR method. In fact, the EPA recommends that any qPCR
method, including EPA 1611.1, be evaluated on a site-specific

Frontiers in Water | www.frontiersin.org 15 October 2021 | Volume 3 | Article 71147760

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Fernández-Baca et al. Rapid qPCR-Based Water Quality Monitoring

basis, mainly to assess the extent and frequency of PCR inhibition
at the site (US EPA, 2012). As suggested by Ferretti et al. (2013)
sampling locations need to be analyzed to determine if inhibition
is an issue as well as to measure the variability of qPCR results
on a spatial and temporal basis. Future studies of qPCR-based
methods, including the rapid in-field Biomeme method, would
benefit from extensively studying a few sites rather than studying
a number of sites with diverse characteristics as well-including
both sample processing controls (to assess DNA extraction
variability) and matrix spikes (to assess site differences).
Interestingly, Lavender and Kinzelman (2009), successfully
applied site-specific corrections to increase correlations between
qPCR and culture-based methods. Applying these site-specific
correction factors to established correlation curves may be a
promising solution to this issue.

For future testing of the Biomeme system, more locations
across New York State, including marine beaches, would
need to be studied. Additionally, more frequent sampling at
each location, as well as method evaluation under different
environmental conditions (e.g., rain) would need to be
completed. This would allow for a better understanding of the
overall performance of the Biomeme system and its applicability
for NYS beach safety monitoring in the future. The creation of
site-specific correlation curves between qPCR and culture-based
FIB measurements would require the commitment and training
of staff at each beach site to conduct these studies. Although
time-consuming, implementation of qPCR methods necessitates
the creation of robust, site-specific correlation curves which,
once established, would result in the ability to rapidly test water
(under 4 h) using the Biomeme system allowing for more timely
closing and reopening of beaches. Of the Biomeme methods
tested, the BioPoo assay holds the most promise because of its
ability to be deployed on-site, the inclusion of an internal positive
control (for inhibition assessment), and quick turnaround time
for results. The results of this study suggest there is promise
for qPCR-based methods for FIB monitoring, including the
rapid, on-site methods tested herein. However, it is essential that
future testing of qPCR-based methods rigorously examine site
variations before they are employed. It cannot be overstated, that
a method which can successfully quantify FIB (from filtration
to DNA extraction and quantification) on-site would lead to
safer swimming conditions. The ability to test samples without
the delay caused by travel times to a lab as well as the ease-of-
use of a method such as Biomeme, make more frequent water
testing feasible and could eliminate the need for highly technical
personnel to conduct testing.

Pathogen Panel Results (Summer 2018)
The Pathogen Panel used in this study was previously tested on
water samples taken from the Hudson River watershed (Brooks
et al., 2020). Here we used the panel to analyze a subset of
samples from the 12 New York State beaches examined in
summer 2018. We aimed to test the robustness of the panel on
a wide range of sample locations which included a minimum
of one sample per location, different water types (i.e., marine
and freshwater), and rain events. Of the 12 viral, bacterial and
protozoal pathogensmonitored via the Pathogen Panel only three
showed up with any substantial frequency: E. coli eae (25% of

samples), norovirus (31.4%), and Giardia lamblia (11.4%), with
others (including Campylobacter spp., E. coli O157, E. coli stx1,
enterovirus, rotavirus, and Salmonella spp.) present in < 6% of
the 35 samples. Three pathogens were not detected in any sample:
Shigella spp., adenovirus, and hepatitis A.

Fillmore Glen had a surprisingly high Pathogen Panel gene
count for the FIB, Enterococcus spp., (average 7,733 ± 1,283 23S
rRNA genes per 100ml) given the low Enterolert FIB counts
(average of 9.25 ± 4.17 culturable enterococci per 100ml).
This suggests that there may be a significant source of FIB
upstream of the swimming area, but that most of the intact FIB
are not culturable. The human-specific FIB marker, HumM2,
was also detected in these samples as were pathogenic E. coli
(strains stx1 and eae). The Pathogen Panel cannot distinguish
between viable and dead or deactivated cells; thus, the high
signal could be due to an upstream wastewater treatment
facility that is inactivating, but not effectively removing the
pathogens. In addition to Fillmore Glen, HumM2 was found
at two other beaches, Buttermilk and Treman, on multiple
dates, as well as Taughannock and Welch on one date each
(HumM2 was found in 9 of the 35 samples). However, no
sample had HumM2 levels above the median concentrations
resulting in 30 GI illnesses per 1,000 swimmers (2,800 gene
copies per 100ml), suggesting any potential wastewater
contamination is minimal (Boehm et al., 2015). Interestingly,
we found weak to moderate positive correlations between the
culture-based measurements (Enterolert and Colilert) and
some pathogens, including Giardia lamblia and Salmonella spp.
(Supplementary Figure 8). However other pathogens and MST
markers, such as HumM2, showed no or negative correlations
with the culture-based methods. These results indicate that
the current water monitoring methods which measure
enterococci and E. coli may not be indicative of pathogen
presence (and human health risk) as previously suggested
by Wu et al. (2011).

At the intensive sampling sites there were changes in the
pathogen profile over time (Supplementary Figure 7). This is
consistent with previous studies showing concentrations of FIB
and pathogens can change within hours (Kim et al., 2009;
Converse et al., 2012a; Desai and Rifai, 2013; Dorevitch et al.,
2017). A study by Kim et al. (2009) found combined sewer
overflow systems showed different diurnal patterns for FIB
and pathogens (including noroviruses and enteroviruses), where
FIB typically peak in the morning and remain relatively stable
through the afternoon before decreasing overnight, whereas
pathogens showed more variability. Here, changes in pathogen
concentrations were observed over the course of a day at the
Woodlawn site. Most notably, concentrations changed between
the morning and afternoon samples, which also followed an
overnight rain event, potentially amplifying diurnal changes
in FIB and pathogen concentrations (Supplementary Figures 5,
7). There was a spike in Enterococcus spp., norovirus, and
enterovirus in the first sample following the rain event, whereas
later in the day E. coli eae and Campylobacter spp. were detected.
If the beach sites in this study are impacted by combined
sewer overflows, wastewater treatment plant outfalls, or onsite
wastewater treatment systems such as septic systems, diurnal FIB
and pathogen patterns could be expected.
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The poultry-associated MST marker (Brevibacterium spp.
LA35 16S rRNA) was never detected, consistent with a lack of
poultry farms around the study beaches. However, the lack of
detection of thisMSTmarker does not necessarily suggest poultry
are not contributing to water quality issues. As stated in Brooks
et al. (2020), the large amplicon size for the poultry associated
MST marker (571 bp) may have impacted the detection of
this marker. Previous studies have found that the presence of
waterfowl significantly negatively impacts water quality and is
associated with increased detection of E. coli, Enterococcus spp.,
and potential human pathogens (human-specific Bacteroides
HF183 and Campylobacter spp.) (Hansen et al., 2011; Converse
et al., 2012b); however due to the lack of poultry MST marker
detection in our study we were unable to find any similar
correlation at the NYS beaches. The cow MST marker was only
found at one beach on one date (Treman 6/25). This was a
date preemptively closed for heavy rain (>17mm) and showed
the presence of other pathogens including Giardia lamblia.
The infrequent detection of Bacteroides CowM3 suggests cow
feces did not have a major impact on beach water quality at
these parks.

The Pathogen Panel positive control, MS2 virus, was only
detected in 20% of water samples and was below detection in all
other samples. Because the qPCR cycle threshold values for the
MS2 virus were large, it is possible that even a small amount of
partial inhibition could result in a non-detect of the MS2 target.
Huggett et al. (2008) suggested that inhibition compatibility,
between controls and targets, is especially important for qPCR
array methods which use one control for myriad targets that
may have differential inhibitor responses. Although we were able
to detect pathogens at low levels in our samples even when
MS2 was not detected, there still appeared to be some partial
inhibition in samples which could lead to an underestimation
of actual target levels. Future ns-qPCR array-based methods
with multiple targets should consider the use of several positive
controls exhibiting inhibition responses similar to the different
target genes.

In general, the Finger Lakes sites had the highest pathogen
detection of any of the regions, with Long Island having
the least (Figure 7B). This may be due in part to capturing
more rain events in the Finger Lakes region than any other
region (average rainfall of 8.7mm over 24 h period prior
to sampling and 51.6% of samples capturing a rain event,
Supplementary Table 1). There were fewer pathogens detected
at marine sites as compared to freshwater sites, and any pathogen
detected in marine samples was also detected in freshwater
samples (Supplementary Figure 6). Previous studies have found
differential decay of the HF183 marker between marine and
freshwater samples and although this marker was not included
in our Pathogen Panel it does suggest that pathogen marker
concentrations can vary substantially by beach type (Shanks et al.,
2006; Green et al., 2011). Nine of the 35 samples run on the
Pathogen Panel had no detection of any pathogens. This included
one Evangola State Park sample which had confirmed good water
quality, the MS2 control was positive for both sampling dates
while all other targets were negative for the first sample date and
had only E. coli present on the second date.

CONCLUSIONS

The qPCR method based on EPA 1611.1 in this study yielded E.
faecalis quantities that correlated positively with culture-based
values in both years, while Biomeme methods showed strong
correlations in 2017 and mixed results in 2018. The BioPoo
assay (Method C3) had the highest agreement with the Enterolert
method on exceedance of the 60 MPN per 100ml BAV (81.3%
agreement of the samples) but also had one of the higher
false negative rates (18.8%). The BioPoo assay had the lowest
background signal of the qPCRmethods tested, demonstrating its
potential for beach monitoring, but would require a site-specific
correlation curve to avoid the incidences of false negatives.

In 2018, the Biomeme Franklin-IPC results did not correlate
with Enterolert results, however they did moderately correlate
with the EPA-based qPCR results when considering only the
Finger Lakes region (r2 = 0.273, p = 0.0105), indicating site-
specific correlation curves are particularly important for this
assay. The EPA 1611.1-based assay results correlated weakly with
the Enterolert results, suggesting this method is more robust
to site differences (r2 = 0.317, p = 0.00012), however this
relationship may be improved by the use of a sample processing
control and a matrix spike analysis for each site. The Pathogen
Panel successfully detected low levels of MST and pathogen
markers across a broad range of sites in 2018. Results revealed
Finger Lakes creek beaches had greater pathogen detection than
other regions while marine beaches had the lowest pathogen
detection. A quarter of the samples showed no FIB or pathogens
detected with the Pathogen Panel; however, it is possible there
was inhibition in some samples.

Of the Biomeme methods tested, the BioPoo assay holds
promise for rapid on-site testing due to its ease-of use and
the ability to assess qPCR inhibition using the internal positive
control. Additionally, it can measure HF183 which could help
inform beach sites of potential human fecal contamination.
However, prior to implementation of any qPCR-based methods
for FIB monitoring it is critical to assess inhibition of qPCR
runs to avoid false negatives. Further testing to assess qPCR
inhibition of sample controls and sample targets is needed to
ensure similar inhibition responses in any qPCR assay for FIB
monitoring. Beach-specific correlations must also be established
between qPCR and culture-based assays. More testing is needed
to evaluate the robustness of the Biomeme workflow for rapid,
on-site monitoring of FIB.
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Phytoplankton functional groups and their influence on water quality have been studied

in various types of water bodies but have yet to be studied in agricultural irrigation

ponds. Freshwater sources (e.g., lakes, rivers, and reservoirs) have been previously

shown to exhibit high spatial and temporal variability in phytoplankton populations.

Improvements in the monitoring of phytoplankton populations may be achieved if

patterns of stable spatial variability can be found in the phytoplankton populations

through time. The objective of this work was to determine if temporally stable spatial

patterns in phytoplankton communities could be detected in agricultural irrigation ponds

using a functional group approach. The study was performed at two working agricultural

irrigation ponds located in Maryland, USA over two summer sampling campaigns in

2017 and 2018. Concentrations of four phytoplankton groups, along with sensor-based

and fluorometer based water quality parameters were measured. Temporal stability

was assessed using mean relative differences between measurements in each location

and averaged measurements across ponds on each sampling date. Temporally stable

spatial patterns of three phytoplankton functional groups were found for both ponds

over the two sampling seasons. Both ponds had locations where specific phytoplankton

functional group concentrations were consistently higher or lower than the pond’s

average concentration for each sampling date. Zones of consistently higher or lower than

average concentrations were associated with flow conditions, pond morphology, and

human activities. The existence of temporally stable patterns of phytoplankton functional

group concentrations can affect the outcome of a water quality assessment and should

be considered in water quality monitoring designs.

Keywords: agricultural irrigation pond, mean relative difference analysis, phytoplankton functional groups, spatial

patterns, water quality
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INTRODUCTION

Phytoplankton are commonly found members of microbial
populations within many diverse water bodies including
agricultural irrigation ponds. These primary producers are an
important component of the food web within aquatic ecosystems.
Previous research has shown that phytoplankton may be an
effective bio-indicator of water quality and also a reflection of
ecosystem health (Wang et al., 2015; Su et al., 2017; Adloff et al.,
2018).

Freshwater phytoplankton populations are typically divided
into functional groups based on morphology, physiology,
adaptations, and ecological attributes (Reynolds et al., 2002;
Varol, 2019; Jin et al., 2020). Three major phytoplankton
functional groups are diatoms (Bacillariophyta), green algae
(Chlorophyta), and cyanobacteria (Cyanophyta; also commonly
referred to as blue-green algae), each of which possess different
qualities thatmay influence and be indicative of water quality (Shi
et al., 2012, 2015; Xiao et al., 2013). The richness and uniformity
of the phytoplankton community may also indicate different
water properties and a range of water qualities from pristine to
degraded water quality conditions. Phytoplankton communities
have been utilized as an indication of the trophic state of a
water body (Hu et al., 2012; Ren et al., 2016; Rimet and Druart,
2018), to confirm eutrophication (Ren et al., 2016; Varol, 2019),
pollution and/or other anthropogenic effects (Shi et al., 2015;
Feki-Sahnoun et al., 2018). The use of phytoplankton functional
groups in more complex assessments, such as understanding
biogeochemical models (Shimoda and Arhonditsis, 2016) and in
the development of remote sensing technologies (Wolanin et al.,
2016; Vandermeulen et al., 2017; Xi et al., 2017) continues to be a
growing research area in large water bodies or on broad scales,
but less is known about the temporal stability of these groups
on smaller scale irrigation water systems (e.g., irrigation ponds,
retention ponds, and aquaculture ponds).

Agricultural irrigation water has been shown to play a
substantial role in the microbial contamination of fresh produce
and foodborne illness outbreaks (World Health Organization,
2008; Uyttendaele et al., 2015; Jongman and Korsten, 2018).
Certain groups of phytoplankton can form large proliferations or
“blooms” and release toxins into the environment (Wood, 2016;
Bouma-Gregson et al., 2017) which can be biotransported into
the food supply (Bittencourt-Oliveira et al., 2016; Buratti et al.,
2017). This presents both environmental and human health risks.
Monitoring of irrigation water quality is important to avoid the
transport of degraded and potentially contaminated waters to
nearby crops.

Research on phytoplankton communities has previously
been conducted across numerous water body types to
determine spatial and temporal population trends, assess
species composition, and community responses to changes in
water quality. Within the Chesapeake Bay watershed, long-
term phytoplankton data sets have been used to augment and
support water quality guidelines in lakes, rivers, and estuaries
(Marshall et al., 2006, 2009; Marshall, 2013, 2014; Hernandez
Cordero et al., 2020), but not specifically for agricultural
irrigation waters.

Although phytoplankton may be used as water quality bio-
indicators, attempts to integrate phytoplankton community
assessments to agricultural irrigation water quality seemingly
have been limited to laboratory studies (DeLorenzo et al., 2002).
The objective of this study was to determine if temporally stable
spatial patterns of phytoplankton functional groups exist within
temperate agricultural irrigation ponds and if these groups could
be correlated to easily measured water quality parameters which
could lead to potential improvements in on-farm water quality
monitoring and aid with the prediction and mitigation of food-
safety issues.

METHODS

Pond Monitoring
Sampling was conducted at two working farms for two
consecutive growing seasons (2017–2018). These ponds were
chosen because water was routinely drawn for irrigation of co-
located crop fields. Each pond was sampled six times during
the May through October growing season, with an exception
to Pond 2 in 2017 with only five sampling dates. For 2017
sampling occurred from May to August and for 2018 from June
to October. This resulted in a total of 276 and 242 phytoplankton
samples collected for Pond 1 and Pond 2, respectively. Both
ponds were located within a one hour drive from the USDA-ARS
laboratory, so samples were maintained at ambient temperature
and processed the same day as collection.

Site Descriptions
Pond 1 is a 1.01-acre man-made embankment pond located
in Germantown, MD, USA with an average depth of 2.7m
(Figure 1-P1). Vegetation surrounding Pond 1 embankments
consisted of deciduous trees and shrubs along the northern and
eastern banks with the remaining embankments having a grass
cover. The pond is surrounded by crop fields. When the water
level in this pond gets low, the farm operators will occasionally
pump water into Pond 1 from another pond which is stream-fed.
The inflow and outflows are both located near sampling location
15. The irrigation pump intake is located near location 12 and is
∼2-3 feet below the water’s surface. The photic zone in Pond 1,
as determined by Secchi depth, averages 0.8m. In 2017 and 2018,
the algicide copper sulfate was commonly used to treat the water
in Pond 1.

Pond 2 is located at the University of MarylandWye Research
Center in Wye Mills, MD, USA (Figure 1-P2). This pond is a
1.05-acre excavated pond with an average depth of 2.7m and
most of the bank areas are covered with grass and dense shrubs.
Large trees are also present along the perimeter but are ∼20m
from the water’s edge. This pond is surrounded by crop fields,
farm buildings, and one residential property. In March of each
year, the surrounding crop fields receive chemical fertilizers,
but no animal manures are applied. This pond is primarily fed
through rainfall which typically enters through an ephemeral
creek that leads into a culvert near location 12. This culvert tends
to have a substantial inflow only when precipitation has recently
occurred. On the south end of the pond, there is a water-level
dependent outflow drain near location 24. The irrigation pump
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FIGURE 1 | Sampling locations for both Pond 1 (P1) and Pond 2 (P2). Station location number is stated inside the circle. Yellow circles indicate interior water sampling

locations and orange circles indicate nearshore sampling locations. Blue arrows represent inflow points and outflows are represented by red arrows. Irrigation intake is

represented by a gray triangle.

intake is near location 27 and is ∼2-3 feet below the water’s
surface. The depth of the photic zone, determined by Secchi
depth, for Pond 2 averages 0.5 m.

Sample Collection, Handling, and Storage
Pond 1 had 23 sampling locations and Pond 2 had 22 sampling
locations (Figure 1). Surface water samples were taken at a depth
of 0–15 cm. Nearshore samples were taken with a 500mL hand
grab sampler at ∼1.5m from the shoreline. Interior samples
were taken from a boat with GPS tracking used to provide
consistency of sampling locations between different sampling
dates. Sampling locations remained the same for every sampling
date over both years. After collection, samples were immediately
placed into a cooler without ice to help maintain the original
ambient water temperature. Samples were then transported to the
lab for analysis.

In-Field Measurements
In-situwater quality measurements were taken concurrently with
sample collection using a YSI Exo-2 sonde (YSI Inc., Yellow

Springs, OH). The YSI sonde was used to measure temperature
(◦C), dissolved oxygen (DO mg L−1), pH, fluorescent dissolved
organic matter (fDOM, RFU), chlorophyll-a (CHL YSI, RFU),
phycocyanin (Phyco YSI, RFU), and turbidity (NTU). A Secchi
disk was used to measure water transparency, approximating the
photic zone depth (m). Precipitation data was obtained from
weather stations located within 3 km of each pond.

Laboratory Measurements
Water samples were measured for colored dissolved organic
matter (CDOM, µg L−1), in-vivo or whole-cell chlorophyll-
a (CHL RFU, RFU), and phycocyanin (Phyco LAB, µg L−1)
using an Aquafluor fluorometer (Turner Designs, San Jose,
CA). Samples were also processed and measured for extracted
chlorophyll (CHL EXT,µg L−1) following EPAmethod 445 (EPA,
1997) using anAquafluor fluorometer. For the extraction process,
∼100mL of pond water was vacuum filtered using 0.7µm
glass fiber filters (Whatman, Maidstone, United Kingdom) and
steeped in a 90% acetone and 10% deionized water solution
overnight at 4◦C before being analyzed with the fluorometer. A
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subsample of∼50mL was taken for phytoplankton identification
and enumeration. This subsample was preserved with Lugol’s
iodine solution at a 1% final concentration. Samples were stored
at 4◦C and in the dark to prevent phytoplankton cell degradation
until microscopic analysis could be completed.

Microscope Analysis
During examination and enumeration of the preserved
phytoplankton samples each phytoplankton was identified to
the lowest taxon possible using John et al. (2011) and Bellinger
and Sigee (2015). To assess the phytoplankton community at the
group level species data was recorded as cell abundance (cells
L−1) and then classified into one of four major phytoplankton
functional groups: diatoms, dinoflagellates, chlorophytes
(including motile and non-motile species), and cyanobacteria as
done for corresponding long-term, regional datasets (Lamlou,
1977; Marshall et al., 2006; Marshall, 2013, 2014). Because of the
infrequent occurrence of dinoflagellate species in both ponds
over the 2 years these data were not included in the final analysis
but are available in Supplementary Figure 1. The cell abundance
data for potentially toxic cyanobacteria species were compared
with cell abundances presented in national and regional action
guidelines (VDH, 2015; EPA, 2019).

All phytoplankton samples were examined using a Nikon
Ts2R inverted microscope (Nikon Instruments Inc., Melville,
NY) and a modified Utermöhl method as described in Marshall
and Alden (1990). A 2- or 3-mL Lugol’s iodine preserved sample
was pipetted into a chambered covered glass slide (Thermo
Scientific, Rochester, NY), and allowed to settle for 30min to
1 h. After settling, enumeration started in the upper left-hand
corner of the chambered slide. After the first frame was counted,
the next frame would be moved down and to the right to avoid
frame overlap and possible double counting of algal cells. This
movement of the field of view created a diagonal pattern across
the cover glass slide. The frames were counted in this pattern until
either a 200-cell minimum or 20 frames were examined.

Statistics and Graphics
To assess spatio-temporal stability of phytoplankton functional
groups, mean relative difference method (MRD) was applied.
The mean relative difference indicates how an individual location
compares to the pond average over multiple sampling dates and
reveals areas that are consistently higher or lower than the pond’s
average for a measured parameter. This method follows those
reported in other spatial pattern studies (Pachepsky et al., 2017;
Stocker et al., 2018). The relative difference RDij between the
observation of variable x at location i at time j (xij), and the spatial
average of x at the same time (<x>j), is defined as:

RDij =
xij − 〈x〉j

〈x〉j

The MRD for location i then becomes

MRDi =
1

Nt

j=Nt∑

j=1

RDij

Where Nt is the number of sampling days, and i = 1, 2, . . . , Ni,
where Ni is the total number of locations.

The coefficient of variation (CV) was computed for each
phytoplankton functional group for each date and pond. The
calculation for CV is defined as:

CV =
σij

µij

Where σij is the population standard deviation of phytoplankton
functional group i on sampling date j and µij is the population
mean of phytoplankton functional group i on sampling date j.

Mean relative differences and Spearman rank correlations
were computed in RStudio. Correlations were considered
moderate if r ≥ 0.400 (p-values, P1 = 0.059 P2 = 0.065) and
considered strong if r ≥ 0.600 (p-values, P1 < 0.001 P2 <

0.001). Sigmaplot v. 13 (SYSTAT, Chicago, IL, USA) and QGIS
(OSGeo, Switzerland) were used to create visual representations
of the data.

RESULTS

Data Summary
Weather Data
Daily ambient air temperature and precipitation data for both
ponds and years are displayed in Figure 2. In 2017, there was
an increase in the air temperatures at both ponds from May
to July. In 2018, the initial increase in temperature was less
pronounced than in 2017. Pond 1 experienced more rainfall in
2018 compared to 2017. Information on the number of days
following the last rainfall event from sampling dates and total
rainfall accumulations may be seen in Supplementary Table 1.
Over the two years, sampling at Pond 1 was performed six
times with a rainfall event occurring the day before sampling,
three times with a rainfall event occurring one to three days
before sampling, and three times when a rainfall event was four
or more days before sampling. At Pond 2, sampling was done
twice with a rainfall event occurring the day before sampling,
six times with a rainfall event occurring one to three days before
sampling, and three times with a rainfall event occurring four or
more days before sampling. Major precipitation events (>6 cm)
at Pond 1 occurred on Jul-28-17 and Jul-21-18 with daily rainfall
accumulations of 10.04 and 14.10 cm, respectively. Sampling near
both major precipitation dates was avoided, and sampling was
not conducted for three days following a major event. At Pond
2, major precipitation events occurred on Jul-28-17, Jul-29-17,
Aug-7-17, and Jul-21-18 with daily rainfall accumulations of
8.28, 8.40, 16.76, and 8.03 cm, respectively. Sampling was avoided
within three days of these rainfall events with the exception of the
Aug-7-17 event. Sampling occurred on Aug-8-17 which was one
day following a major rainfall event.

Water Quality Parameters
Time series data of water quality parameters measured for 2017
and 2018 are presented in Supplementary Tables 2, 3. Mean
values of all measurements related to phytoplankton pigments
(Phyco YSI, CHL YSI, EXT CHL, LAB CHL, and Phyco LAB)
were generally higher at Pond 2 than at Pond 1 for both 2017
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FIGURE 2 | Precipitation and ambient air temperature data for both ponds. Precipitation data is represented in bars and temperature data are shown with red lines.

and 2018. Specific conductance and pH measurements were
lower for both ponds in 2018 compared to 2017. The positive
relationship between higher pH and higher DO concentrations
was more pronounced for Pond 2, compared to Pond 1. Algicide
was applied to Pond 1 after the first sampling date on Jul-
1-18. Consequently, in Pond 1 all measurements related to
phytoplankton pigments (Phyco YSI, CHL YSI, CHL EXT, LAB
CHL, and Phyco LAB) displayed large decreases on sampling
date Jul-5-18. Phycocyanin measurements remained low for the
remainder of the sampling season (Phyco YSI, Phyco LAB),
while chlorophyll measurements recovered after two sampling
dates (CHL YSI, CHL EXT, LAB CHL). A decrease in Phyco
YSI, CHL YSI, and CHL EXT measurements was seen in
Pond 2 in 2017 following a 16.8 cm rainfall event. Phycocyanin
measurements (Phyco YSI and Phyco LAB) for both ponds

in 2018 indicated a cyanobacteria bloom was present during
the first sampling dates. Phyco LAB measurements on the
first sampling dates were 114 and 110 µg L−1 for Pond 1
and Pond 2, respectively. Furthermore, these blooms were also
visually identified by the appearance of green surface scums and
confirmed via microscopy analysis of phytoplankton samples.
Phycocyaninmeasurements remained approximately the same in
Pond 2 during the entire sampling season.

Phytoplankton Functional Groups
The time series data of log concentrations of green algae, diatoms,
and cyanobacteria for both ponds and years are presented in
the box plot graphs of Figure 3. Descriptive statistics for all
phytoplankton groups, both ponds, and both sampling years
are reported in Supplementary Table 4. Green algae displayed
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the lowest variability and cyanobacteria displayed the highest
variability among the phytoplankton functional groups for both
ponds. The coefficients of variation (CV) values are presented
in Supplementary Table 5. In 2017 the CVs for Pond 1 ranged
from 0.024 to 0.066 for green algae, 0.064 to 0.124 for diatoms,
and 0.074 to 0.214 for cyanobacteria. The CVs followed a similar
pattern in Pond 1 during 2018 with green algae CVs ranging from
0.023 to 0.051, diatoms from 0.044 to 0.132, and cyanobacteria
from 0.040 to 0.262. The green algae CVs were generally lower in
Pond 2 than the values for diatoms and cyanobacteria. The CVs
for diatoms and cyanobacteria did not follow the same pattern as
found for Pond 1, the overall ranges of the diatom CVs were less
than the cyanobacteria CVs for each respective sampling season.
Green algae and diatoms had a similar intra-seasonal (May–
August) trend during 2017 at both ponds wherein population
growth occurred from May to June followed by a period of
stabilization for the remainder of the sampling season. Diatoms
and green algae in Pond 1 exhibited similar trends in 2018 (June–
October) displaying a period of stabilization from June to July
followed by a drop in concentrations for the remainder of the
sampling season. Cyanobacteria trends were drastically different
from 2017 to 2018 for both ponds. A cyanobacteria bloom was
observed within both ponds during June 2018. During this study,
copper sulfate was applied to Pond 1 on Jul-1-18 and impacted
the total phytoplankton concentrations, particularly decreasing
the abundance of cyanobacteria species.

Temporally Stable Patterns of

Phytoplankton Functional Groups
Temporal stability was assessed by considering the standard
errors of the mean relative differences for each location. The
mean relative differences along with standard error bars are
displayed in Supplementary Figure 2. Small standard errors
indicate that a location has minimal phytoplankton variation
between each sampling date and large standard errors indicate
substantial phytoplankton variation between sampling dates.
Green algae, diatoms, and cyanobacteria displayed temporally
stable spatial patterns in both ponds and over the entire 2-year
study period.

Pond 1
The MRD values of the logarithms of green algae, diatoms,
and cyanobacteria concentrations computed over the 2-years of
observations at Pond 1 are shown in Supplementary Figure 1.
Visual representations of the locations with consistently higher
and consistently lower concentrations of each phytoplankton
functional groups are displayed in Figures 4–6. The same
patterns were observed for all three phytoplankton functional
groups in Pond 1. The MRDs of each group tended to be
lower for the interior sampling locations, and higher for the
nearshore sampling locations. For green algae (Figure 4-P1),
zones with consistently lower concentrations were all interior
locations, except for location 6 where the irrigation pump is
located. Zones of high concentrations of green algae were seen
at the southern shoreline of the pond (locations 1, 8, 10), as well
as locations 5 and 23. The southern shoreline of the pond is
very shallow and located adjacent and downhill from crop fields.

Location 5 is the site of an inflow pipe which pumps water from a
nearby stream-fed pond. Location 23 is a very shallow area with
aquatic vegetation and has an inflow from an ephemeral stream.
Locations of consistently higher and lower concentrations of
diatoms (Figure 5-P1) were very similar to those of green algae.
Low concentrations of diatoms were exclusively observed at
interior sampling locations. High concentrations of diatoms were
observed for locations 1, 5, 6, 23 (previously described), and
2. Locations with consistently higher and lower cyanobacteria
concentrations are displayed in Figure 6-P1. Low cyanobacteria
concentrations were found at all interior sampling locations
except for location 20. High cyanobacteria concentrations were
found at all nearshore sampling locations except for location 17.
Consistently high concentrations of cyanobacteria were also seen
close to the ephemeral stream inflow at locations 21 and 22; and
at location 1 near the crop fields.

Pond 2
The MRD values of the logarithms of green algae, diatoms,
and cyanobacteria concentrations computed over the 2-year
period for Pond 2 are shown in Supplementary Figure 1.
Visual representations of MRDs for green algae, diatoms, and
cyanobacteria are displayed in Figures 4–6. LowMRDs for green
algae (Figure 4-P2) were all nearshore sampling locations of the
pond, although there was a somewhat dispersed distribution
with similar values not observed within one specific area of
the pond. Locations with consistently higher concentrations of
green algae were mostly interior sampling locations except for
sampling location 21, which is a shallow location with aquatic
vegetation present. High concentrations of diatoms were found
at nearshore sampling locations and within a small zone on
the southeastern shoreline of the pond where there is a water
level dependent outflow drain (Figure 5-P2). Cyanobacteria
MRDs displayed a zonal pattern (Figure 6-P2) with higher
cyanobacteria concentrations located in the northern portion of
the pond apart from the observations at location 21 (as previously
described). Consistently low concentrations of cyanobacteria
formed a zone in the middle of the pond containing both interior
and nearshore sampling locations.

Water Quality Patterns
The mean relative difference values of measured water quality
parameters (Temp, DO, SPC, pH, NTU, Phyco YSI, CHL
YSI, fDOM, and CHL EXT) for both ponds are shown in
Supplementary Figures 3A–I. Within Pond 1, low MRDs were
observed for temperature, DO, and pH for nearshore locations.
For turbidity, Phyco YSI, CHL YSI, fDOM, and extracted
chlorophyll, highMRDs were associated with nearshore locations
and low MRDs were associated with interior locations within
Pond 1. Within Pond 2, similar trends were observed with high
MRD values for temperature, DO, and pH being observed at
interior locations and low MRD values found at the nearshore
locations. An inverse distribution was seen for turbidity, Phyco
YSI, CHL YSI, fDOM, and extracted chlorophyll within Pond
2. Low MRD values were typically observed for the interior
locations and high MRD values were observed for the nearshore
locations. Therefore, both ponds exhibited differences in the
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FIGURE 3 | Time series data of log concentrations of the major phytoplankton functional groups (green algae, diatoms, and cyanobacteria) for both years. The

mid-point line of the box plots represents the median for each date. Outliers (10 and 90th percentiles) are represented by black circles. The red dashed line represents

an algicide application that took place on Jul-1–18 at Pond 1.

water quality parameters between the interior and the nearshore
sampling locations.

Phytoplankton and Water Quality MRD

Correlations
The Spearman rank correlations between the mean relative
differences of the water quality parameters and the mean
relative differences of phytoplankton groups are displayed in
Table 1. Moderate correlations were defined as r ≥ 0.400
(p-values, P1 = 0.059 P2 = 0.065) and are highlighted in
yellow. Strong correlations were defined as r ≥ 0.600 (p-
values, P1 < 0.001 P2 < 0.001) and are highlighted in blue.
Moderate and strong correlations were observed within Pond
1 for the green algae MRDs and most of the water quality
MRDs (DO, SPC, pH, NTU, Phyco YSI, CHL YSI, and CHL

EXT). Lower correlations were observed for diatom MRDs and
cyanobacteria MRDs within Pond 1. There were no moderate
or strong correlations observed for diatom MRDs in Pond
1. The cyanobacteria MRDs were moderately correlated with
the MRDs of the SPC, pH, and NTU parameters. Pond 2
differed from Pond 1 regarding MRD correlations. Within Pond
2, green algae MRDs were characterized with fewer moderate
correlations than diatomMRDs and cyanobacteria MRDs. Green
algae MRDs within Pond 2 had a strong correlation with
the MRDs of extracted chlorophyll. Diatom MRDs correlated
strongly with most water quality MRDs (Temp, DO, SPC,
pH, and NTU) and moderately with CHL EXT. Cyanobacteria
MRDs correlated moderately with Phyco YSI and CHL YSI and
strongly with most water quality MRDs (Temp, SPC, pH, and
CHL EXT).
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FIGURE 4 | Mean relative differences (MRD) of green algae over the 2-year period for Pond 1 (P1) and Pond 2 (P2). Locations with MRD values below the 25th

percentile are displayed in blue, locations above the 75th percentile are displayed in red, and locations between the 25 and 75th percentile are displayed in yellow.

DISCUSSION

The abundance and species distribution of phytoplankton
taxa has been used as a bioindicator of water quality across
freshwater and marine systems for decades (Patrick, 1973;
Smith, 2003; Reynolds et al., 2012). Decadal phytoplankton
datasets have proven to be useful when examining the seasonal
periodicity and long-term trends in coastal water quality
(Marshall et al., 2009; Nishikawa et al., 2010; Hernandez
Cordero et al., 2020), however, similar longitudinal datasets
are lacking for agricultural irrigation waters despite the fact
it has been reported that land-use and nutrient loading can
impact phytoplankton biodiversity in agricultural waters (Zhang
et al., 2020). Smith et al. (2020) demonstrated that within
agricultural irrigation ponds there was a relationship between
easily measured environmental co-variates, such as CDOM
and NTU, and cyanobacteria (phycocyanin) concentrations.
However, the temporal and spatial stability of the cyanobacteria,
or other phytoplankton functional groups, in these ponds
was not examined. Here, an assessment of the phytoplankton
community present during the May to October growing
season, when agricultural irrigation water is used most

frequently and the risk due to cyanotoxins is greatest,
is presented.

The agricultural irrigation ponds examined in this study,
located on working farms inMaryland, did not exhibit drastically
different phytoplankton populations during the growing seasons
of 2017 and 2018. Diatom concentrations did not differ within
the two ponds and were comparable with concentrations found
in other temperate freshwater lakes and reservoirs (Rollwagen-
Bollens et al., 2013; Gorokhova and Zinchenko, 2019; Jia et al.,
2019) including lakes studied by Marshall (2013, 2014) in
Virginia, located south of this study area. Mean concentrations
of green algae were similar within the two ponds, but Pond
1 had a smaller overall range of concentrations than Pond
2. Concentrations of green algae were comparable to values
reported for other freshwater systems (Dembowska et al., 2018;
Gorokhova and Zinchenko, 2019; Khaliullina and Fazlieva,
2019). Pond 2 had slightly higher concentrations of green
algae and cyanobacteria. These higher values may potentially
be explained by the absence of an algicide application for
Pond 2. Concentrations of cyanobacteria within Pond 1 were
similar to those previously reported within temperate lakes
(Dembowska et al., 2018; Jia et al., 2019), including those studied

Frontiers in Water | www.frontiersin.org 8 November 2021 | Volume 3 | Article 72402572

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Smith et al. Temporal Stability of Phytoplankton Groups

FIGURE 5 | Mean relative differences (MRD) of diatoms over the 2-year period for Pond 1 (P1) and Pond 2 (P2). Locations with MRD values below the 25th percentile

are displayed in blue, locations above the 75th percentile are displayed in red, and locations between the 25 and 75th percentile are displayed in yellow.

locally by Marshall (2013, 2014). However, due to recurrent
cyanobacteria blooms composed mainly of Aphanizomenon spp.
and Microcystis wesenbergii, in Pond 2, cell concentrations were
comparable with concentrations reported within small temperate
lakes in which cyanobacteria blooms frequently occur (Lee et al.,
2015; Woodhouse et al., 2016), including other Maryland lakes
(Tango and Butler, 2008; J. Wolny, unpublished data), but were
greater than those recorded by Marshall (2013, 2014).

Both ponds displayed spatial and temporal variability
of major phytoplankton functional groups during the two
growing seasons. Spatio-temporal variations of phytoplankton
communities have been documented within freshwater lakes
(Wu et al., 2014; Naselli-Flores and Padisák, 2016; Xiao
et al., 2018), wetland ponds (Soininen et al., 2007), reservoirs
(Alexander and Imberger, 2009), rivers (Marshall et al., 2009),
and estuaries (Marshall et al., 2006). While the phytoplankton
community temporal trends noted in this study were similar
to those reported by Marshall (2013, 2014) for Virginia
lakes, comparisons between these earlier studies and spatial
variation are not possible due to the limited spatial variance in
the Virginia lakes dataset. The heterogeneity or homogeneity
of phytoplankton communities should not be an assumed

trait within a water body. As explained by Lewis (1978),
not all species or groups of phytoplankton continuously
exhibit heterogenous distributions, but rather homogenous and
heterogenous distributions may synchronously exist within a
water body. Additionally, exogenous forces, such as wind, water
flow, and lakemorphology, have all been documented to attribute
to the spatial variation of green algae, diatoms, and cyanobacteria
(Li et al., 2013).

Two forms of spatial trends were observed within the two
ponds during this study. The predominant spatio-temporal
trends that were present within both ponds appeared to be
a contrast between interior and nearshore sampling locations.
Within Pond 1, this trend was displayed for all groups.
Pond 1 had consistently higher concentrations of green algae,
cyanobacteria, and diatoms at nearshore sampling locations; and
consistently lower concentrations of green algae, cyanobacteria,
and diatoms at interior locations. This pattern of higher
concentrations at nearshore sampling locations vs. interior
sampling locations was reported for both ponds in a preceding
study using average quartile ranks of phycocyanin concentrations
(Smith et al., 2020). Higher concentrations of phytoplankton
being closer to the shoreline of shallow water bodies has been
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FIGURE 6 | Mean relative differences (MRD) of cyanobacteria over the 2-year period for Pond 1 (P1) and Pond 2 (P2). Locations with MRD values below the 25th

percentile are displayed in blue, locations above the 75th percentile are displayed in red and locations between the 25 and 75th percentile are displayed in yellow.

attributed to several different concepts. Bondarenko et al. (1996)
stated that spatial distribution of phytoplankton was related to
water depth, with shallow waters being richest in phytoplankton.
Both ponds in this study were only 2.7m deep, thus indicating
that even in shallow environments depth-dependent gradients
can be set up within the phytoplankton community. In other
studies, greater abundances of phytoplankton were found in
stands of Phragmites australis and other aquatic plants, due to
the creation of favorable water quality conditions, including
increased phosphorus concentrations (Celewicz-Goldyn and
Kuczynska-Kippen, 2008, 2017) and in zones with elevated
nutrient concentrations and water temperatures (Chen et al.,
2003). Aquatic vegetation was noted at both ponds and
future work will look to correlate the spatial patterns of
the phytoplankton community with the characteristics of the
resident aquatic vegetation.

Similarly, within Pond 2 consistently higher concentrations of
diatoms were found at nearshore locations. The opposite trend
was observed for green algae within Pond 2 wherein consistently
higher concentrations of green algae were observed for interior
sampling locations, and consistently lower concentrations of
green algae were observed for nearshore sampling. While this is a

difference from co-located Pond 1, this trend has been previously
documented by Celewicz-Goldyn and Kuczynska-Kippen (2008)
who indicated that the greatest abundance of small chlorophytes
was found in open waters where the potential threat of predation
from zooplankton was less.

The major spatio-temporal patterns observed for Pond 2 were
the formation of zones in which cyanobacteria were the dominant
taxa. Consistently higher concentrations of cyanobacteria were
found at the northern portion of the pond (sampling locations:
11, 13, 15, and 34) near a culvert, which following precipitation
events provides inflow of potentially nutrient-rich waters to
the pond. This high cyanobacteria biomass zone was also
established in the preceding study on quartile ranks of
phycocyanin concentrations (Smith et al., 2020). Other studies
have documented spatial trends of cyanobacteria among other
phytoplankton species due to either nutrient-rich runoff or river
inflow (Powell et al., 1975;Marshall et al., 2006;Woodhouse et al.,
2016). Other potential explanations for the formation of these
cyanobacteria-rich zones could be wind or wind-driven water
flow as noted by Cloern et al. (1992) and Fragoso et al. (2008)
or microhabitats set up through thermal stratification as noted
by Vasas et al. (2013).
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TABLE 1 | Spearman rank correlations between the mean relative differences of water quality parameters and MRD values of phytoplankton functional groups.

2017 + 2018 Pond 1 Pond 2

Green algae Diatoms Cyanobacteria Green algae Diatoms Cyanobacteria

Spearman rank correlations between water quality MRDs and phytoplankton MRDs

Temp 0.186 <0.001 0.163 <0.001 0.771 0.639

DO 0.498 0.134 0.161 0.024 0.616 0.317

SPC 0.906 0.142 0.703 0.221 0.713 0.842

pH 0.895 0.173 0.931 0.004 0.849 0.684

NTU 0.213 0.104 0.625 0.233 0.903 0.196

Phyco YSI 0.174 0.003 0.103 0.005 0.387 0.589

CHL YSI 0.220 0.001 0.231 0.007 0.297 0.467

fDOM 0.017 <0.001 0.029 0.125 0.043 0.390

CHL EXT 0.668 0.012 0.033 0.692 0.471 0.875

Moderate correlations were defined as R ≥ 0.400 and are highlighted in yellow (p-values, P1 = 0.059 P2 = 0.065). Strong correlations were defined as R ≥ 0.600 and are highlighted

in blue (p-values, P1 < 0.001 P2 < 0.001).

There was a zone of consistently low cyanobacteria
concentrations within Pond 2 that was located near the
middle of the pond (sampling locations: 17, 27, 32, 7, 19, 5).
The pump house and water intake pipe for the farm irrigation
system is in this area. The location of the irrigation intake pipe
has important implications for food safety. It has been well-
established that irrigation waters with toxigenic cyanobacteria
can contaminate crops (Miller and Russell, 2017), remain in soils
for extended periods of time (Machado et al., 2017), and may
even be taken up by the root system of the produce (Lee et al.,
2017). Thus, placing an irrigation intake system in a location
with consistently higher concentrations of cyanobacteria may
increase produce contamination risks. It appears that the pump
and intake infrastructure in Pond 2 is located in a low-risk zone,
as cell concentrations of potentially toxic cyanobacteria species
never exceeded EPA or regional guidelines (VDH, 2015; EPA,
2019). However, future research and monitoring efforts should
focus on determining the prevalence of cyanotoxins in these
irrigation waters.

Of note, a copper sulfate algicide was applied to Pond 1
midway through the study, on Jul-1-18, to mitigate a bloom
of Microcystis, a potentially toxigenic cyanobacteria species.
While the concentration of copper sulfate used is unknown,
all measured water quality parameters decreased significantly
following this application. These reductions were comparable
to values reported by Schrader et al. (2000) and Song et al.
(2011) within other inland waters that were assessed during and
after treatments with copper sulfate. Average concentrations of
DO, pH, CDOM, and fDOM returned to pre-application levels
about 1 month after application. For the algal pigments (CHL
RFU, CHL YSI, CHL EXT, and phycocyanin), all concentrations
decreased after the copper sulfate application and slowly
recovered to either pre-application levels or higher by the end of
August. The return of chlorophyll-a readings to previous values
was also reported by Dia (2016) and Effler et al. (1980) following
low-level algicide treatments (8–14 µg L−1) in freshwater lakes.
Elder and Horne (1978) reported the recovery of pre-treatment
algal populations in as little as five days after treatment and
attributed this recovery to copper sulfate possibly being beneficial

for biological activity if applied in very low concentrations (5–10
µg L−1). The effect of algicide on cyanobacteria concentrations
was more pronounced than the effect on green algae and
diatoms concentrations. Similar responses were reported by
Padovesi-Fonseca and Philomeno (2004) and XiaoLi et al. (2009)
wherein cyanobacteria concentrations, including Microcystis
aeruginosa, Cylindrospermopsis raciborskii, and Anabaena flos-
aquae, decreased and green algae and diatoms became the
dominant taxa after an algicide application, with the subsequent
population changes attributed to cyanobacteria species sensitivity
to copper. The rate of recovery of the phytoplankton community
to the application of copper sulfate, or other algicides, should be
monitored if the algicide application is meant to act as a safeguard
to crops from cyanotoxin exposure via irrigation waters. It should
be mentioned that the treatment of water bodies with algicides
can immediately release large quantities of cyanotoxins, if toxin-
producing algal species are highly concentrated (Zhou et al.,
2013; Greenfield et al., 2014). An assessment of phytoplankton
community composition should be performed prior to an
algicide application if the water is to be used for crop irrigation
or as drinking water for livestock to safeguard against the
introduction of concentrated biotoxins.

Although not similar, both ponds expressed moderate and
strong correlations between the spatial patterns of phytoplankton
functional groups and water quality parameters. Pond 1 had
strong water quality correlations with green algae, while Pond
2 had strong correlations with diatoms and cyanobacteria.
The correlations between water quality and phytoplankton
spatial trends provides helpful insights for irrigation pond
monitoring. The examination of phytoplankton community
structure using microscopy is an intensive analysis which
requires extensive laboratory infrastructure and highly trained
personnel (Lawton et al., 1999). However, if strong correlations
exist among water quality parameters and optical properties
associated with distinct phytoplankton functional groups, the
option of using less specialized monitoring methods, such as
in-situ sensors or drone-based imagery could be employed for
routine resource management. These technologies would be
efficient and cost-effective methods capable of being used by a
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broader group of personnel to safeguard against irrigating crops
with degraded water drawn from agricultural irrigation waters.
While identifying water quality covariates and the use of optical
techniques to assess the phytoplankton functional groups present
in water will not identify toxic vs. non-toxic phytoplankton
species it can provide the information necessary to make better
informed decisions about when and where to conduct toxin
risk assessments.

CONCLUSIONS

Using a mean relative difference analysis to assess spatio-
temporal stability, it was determined that phytoplankton
functional groups exhibited stable spatio-temporal trends in
the two agricultural irrigation ponds evaluated in this study.
Temporally stable spatial patterns of the three phytoplankton
functional groups studied here were found within both ponds
over the two sampling years. Both ponds had locations where
phytoplankton group concentrations were consistently higher
or lower than the pond’s average concentrations. Typically,
these patterns could be classified into two categories: nearshore
or interior sampling locations or zones. These distributions
indicate the importance of sampling locations for water quality
monitoring purposes. If sampling is performed in areas of
consistently higher or lower concentrations of phytoplankton,
that sample may not be an accurate representation of the
phytoplankton community within the entire waterbody. Because
of the correlation between water quality parameters and certain
phytoplankton functional groups it may be possible to employ
broad-based technologies to routinely monitor irrigation waters
for potentially harmful cyanobacteria instead of relying on
labor intensive microscopy methods. However, it is important
to note that there are other types of agricultural ponds, such
as aquaculture ponds and retention ponds. While this study
can provide a framework for assessing agricultural ponds no
extrapolation should be made to these other water sources from
the finding presented here.
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An Irrigation Water Quality Database was developed to help assess the microbiological

quality of irrigation water used in fruit and vegetable production in 15 counties in New

York (NY) State. Water samples from Tennessee (TN) were also included in the database.

Four water quality parameters, quantified generic Escherichia coli, specific conductance,

pH, and turbidity, were tested. Ground, reservoir, and running water were sampled over

2 years (2009 and 2010), covering three seasons each year (spring, summer, and fall).

TN data are for all three seasons in 2010 only. Overall in NY (254 total samples), ground

water had a geometric mean of 1 most probable number (MPN)/100ml, reservoir water

had a geometric mean of 8 MPN/100ml, and running water had a geometric mean of 52

MPN/100ml. Overall in TN (63 total samples), ground water had a geometric mean of 1

colony forming unit (CFU)/100ml, reservoir water had a geometric mean of 5 CFU/100ml,

and running water had a geometric mean of 38 CFU/100ml. These values are all below

the 126 MPN/100ml United States Environmental Protection Agency’s Ambient Water

Quality Standards (AWQS) standard for fresh water. The presence of E. coli had very weak

but sometimes statistically signficiant correlatation with water specific conductance, pH,

and turbidity, depending on the water source but the r-squared effect was not strong

enough to make the other measurements a substitute for testing specifically for E. coli

in water.

Keywords: irrigation water, E. coli, microbiological risks, fresh produce, pH, specific conductance, turbidity

INTRODUCTION

Fresh fruit and vegetable production is a multi-billion dollar industry in the United States (U.S.)
(Kaufman et al., 2000). These commodities are often irrigated with surface water throughout
the U.S. (Suslow et al., 2003; Pachepsky et al., 2011). Surface water is more likely to be exposed
to human and animal fecal contamination than ground water, and is expected to pose greater

79

https://www.frontiersin.org/journals/water
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://doi.org/10.3389/frwa.2021.741653
http://crossmark.crossref.org/dialog/?doi=10.3389/frwa.2021.741653&domain=pdf&date_stamp=2021-11-01
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles
https://creativecommons.org/licenses/by/4.0/
mailto:Eab38@cornell.edu
https://doi.org/10.3389/frwa.2021.741653
https://www.frontiersin.org/articles/10.3389/frwa.2021.741653/full


Bihn et al. Irrigation Water Quality Database

risk to human health than irrigation with water from deep
aquifers with properly constructed and protected wells (Brackett,
1999; Steele and Odumeru, 2004). Contamination of surface
water used for the production of fresh fruits and vegetables by
human foodborne pathogens such as Salmonella, Escherichia coli
O157:H7, Giardia, Listeria monocytogenes, and Cryptosporidium
has been documented (Steele and Odumeru, 2004; Chaidez et al.,
2005; Duffy et al., 2005; Izumi et al., 2008; Jones et al., 2014;
Weller et al., 2019).

Initially studies of irrigation waters were concerned primarily
with chemical rather than microbiological water-quality
parameters (Seiler and Skorupa, 2001). As a result, there was
a nationwide knowledge gap regarding sanitary quality of
irrigation waters but many studies in the last decade have
been focused on on-farm irrigation water quality (Strawn
et al., 2013; Jones et al., 2014; Draper et al., 2016; Weller et al.,
2019). Recreational water criteria set forth by United States
Environmental Protection Agency’s Ambient Water Quality
Standards (AWQS) (United States Environmental Protection
Agency, 2012) were developed for water used for recreation
that results in full body contact by people, and it accepts that
there is a baseline of individuals who are expected to contract
gastrointestinal illness regardless of recreational water quality.
The AWQS estimates that 36 illnesses per 1,000 swimmers will
result at fresh-water beaches, even when standards are met.
The illness rate expectations implicit in the AWQS may not
be directly transferrable to irrigation water, but in the absence
of water data related to fresh produce production, the AWQS
structure and values have been used as the basis for agricultural
water quality criteria. The Commodity Specific Food Safety
Guidelines for the Production and Harvest of Lettuce and Leafy
Greens (CSFSG) is one industry guideline that has modified
the recreational water standards for use in fresh produce
production. In addition to industry adoption of these standards,
the Food Safety Modernization Act (FSMA) Produce Safety Rule,
released on November 27, 2015, included AWQS-based water
quality criteria for water used during the production of fresh
produce when the water is intended to, or likely to, contact the
harvestable portion of the crop (United States Food and Drug
Administration, 2015).

The research outlined in this paper was conducted prior
to the release of the FSMA Produce Safety Rule and prior to
updated CSFSG water requirements (CSFSGPHLLG, 2020). This
research resulted in the development of an Irrigation Water
Quality Database to help growers better understand regional
water quality and provide an example of how water test results
could be collected to expand our understanding of water used
for fruit and vegetable production. Preliminary research data
gathered prior to the beginning of this project from surface water
sources used to overhead irrigate fresh produce crops indicated
that if growers were required to adopt the AWQS criteria, they
would either have to discontinue the use of some of their water
sources, or implement mitigation strategies, such as treatment, to
reduce the microbiological load because surface water quality can
vary over the season (Bihn et al., 2013). In fact, this concern has
already partly come to fruition with the Leafy Greens Marketing
Agreement April 2019 revisions to water quality metrics that

remain in place today (CSFSGPHLLG, 2020). The revisedmetrics
(for both California and Arizona) incorporate treatment as one
risk reduction strategy for member organizations when using
surface water or ground water that does not meet stringent water
quality metrics for overhead irrigation within 21 days of harvest.

This project aimed to provide an objective assessment of
the sanitary quality of surface water used for irrigation in New
York (NY) State with a comparison of water from Tennessee
at the time of the research through the collection of water
quality parameters including quantified generic E. coli, specific
conductance, pH, and turbidity. Investigating water quality over
two years, through three seasons each year, was expected to
provide useful insights into variation in water quality and identify
ways to improve sampling strategies to further our understanding
of surface water quality. Harvest seasons are known to impact
the presence and abundance of pathogens in irrigation water,
though these fluctuations are not always reflected in themicrobial
load on seasonal fresh produce (Selma et al., 2007). Since generic
E. coli is only an indicator of fecal contamination and not the
presence of pathogens, it would be valuable to know if growers
could use other water quality parameters to predict the presence
and abundance of generic E. coli besides testing specifically for
E. coli since this process is expensive and it is often difficult to find
laboratories in close proximity to farms. Overall, the database
could improve our understanding of current water quality by
identifying when fecal contamination is present, help growers
meet industry and regulatory expectations, and also provide
strategies for implementing an effective water-testing program.
In addition, this database was developed to facilitate participation
from others interested in providing water quality data so
that a nationwide representation could result. Many individual
growers and groups, including federal and state organizations,
are collecting water samples and generating results, sometimes
for the same water sources. Sharing data through a database, such
as the one developed in this project, could allow the data to be
used more effectively for water management decision making.

MATERIALS AND METHODS

Irrigation Water Database Development
The irrigation water quality database utilized the FileMaker
Pro 10 (Santa Clara, CA) data collection system. The database
was comprised of six independent, relational files hosted on a
FileMaker server. It was designed to facilitate data gathering from
multiple sources, such as independent laboratories or researchers
at other land-grant universities. Two of the files (data entry and
grower address) were designed to be web-accessible, allowing an
individual with proper permission to access the data entry file via
a web browser without the need to own the FileMaker software.
The remaining files had administrator privileges and were not
viewable to those entering data.

Each grower who participated in the program was assigned a
nine-digit, numeric grower code in an effort to ensure participant
confidentiality. The “Grower” file stored the grower’s contact
information, commodities grown, and water source(s). State and
county information for each grower was also recorded. This
information was used to generate a water sample collection form,
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which included the unique nine-digit grower ID that appeared on
each form.

The collection forms were given to those collecting water
samples and in turn were submitted to the laboratory for analysis.
The completed laboratory forms were then given to the data entry
operator for entry into the FileMaker database. Upon registering
with the program to enter data, individuals were provided with
a database tutorial to instruct them how to access the data entry
portal (Appendix A in Supplementary Material). They were then
provided with an individualized password and login to gain entry
to the database.

To enter data, the data entry operator was required to log into
the database and enter the grower ID that appeared on each form.
The operator entered all of the laboratory data from the water
collection form, and submitted it for each grower. Multiple forms
were required if an individual grower had more than one water
sample source or sampling location. Each sample was entered
separately. After all collection forms had been entered, the data
entry operator would log out of the system.

When the database administrator logged into the water
collection file, all grower collection data was imported
automatically from the data entry file into the collection
file. Once the import process was complete, all records in the
data entry file were erased, thereby preventing the possibility of
further access to the entered data. Only those with access to the
water sample collection file could view the collected data. The
data imported into the collection file was “as entered” by the data
entry operator. If there was a mistake, the data entry operator
was required to contact the database administrator to correct
the data. If an administrator needed to correct entered data,
there was a standard protocol in place for making corrections
that included entering the user’s ID, date, and reason for the
correction. This information became part of the permanent
record so that any data modifications were tracked.

Water Collection
A standardized water sampling protocol was developed,
tested, and used as a training protocol (Appendix B in
Supplementary Material). Four Department of Agriculture and
Markets personnel and a summer intern were trained with
the standardized water sampling protocol to facilitate sample
collection across the state.

One liter of water was collected from each site into bottles that
were either cleaned or purchased, then decontaminated following
EPA protocol “B” (United States Environmental Protection
Agency, 1992). Water was collected either at the source near
the intake or for some limited samples, at the end of water
distribution system in the field. For samples collected at the
end of the distribution system, it was necessary to ensure the
irrigation pump was operating and that it had been running
long enough so that the sample was representative of the source.
When samples were collected at the source, it was not necessary
to ensure the water distribution system was operating. Collected
samples were placed in a cooler containing ice packs, and either
delivered directly or sent via overnight delivery for analysis at
either the New York State Food Laboratory (Albany, NY) or the
New York State Agricultural Experiment Station (Geneva, NY).

Overnight delivery caused sample analysis to fall outside an 8-
h analysis window, but according to Pope et al. (2003), samples
held at 10◦C and not frozen for up to 48 h generated comparable
results to samples processed within the recommended 8-h hold
time (American Public Health Association, 1998). TN samples
were delivered directly to Microbac Laboratories (Maryville, TN
or Nashville, TN) and all samples were analyzed for generic
E. coli, specific conductance, turbidity, and pH.

Sample Analysis
Samples were analyzed for quantified generic E. coli, specific
conductance, turbidity, and pH. Other data points related to
water collection included date of sample collection, type of water
source, name of water source (if a named body of water, such as a
stream or lake), and code number for the grower.

Generic E. coli Quantification
IDEXX Quanti-Tray 2000 cards (Westbrook, ME) and IDEXX
Quanti-Tray sealer (Westbrook, ME) were used according to the
manufacturer’s instructions for quantification of generic E. coli in
water samples. Yellow wells and wells fluorescing at 366 nm were
counted, and the numbers of positive wells for each test on each
sample were recorded. Final most probable number (MPN) per
100ml was determined by referring to the IDEXX Quanti-Tray
2000 MPN table with an upper limit of detection of 2,419 MPN
per 100ml (Kinzelman et al., 2005). Tennessee water samples
were analyzed using modified mTEC (EPA 1603) protocol for
quantification of generic E. coli resulting in colony-forming units
(CFU) per 100 ml.

Specific Conductance
Specific conductance measures water’s ability to conduct
electricity, normalized to a temperature of 25◦C. The parameter
was included in this project as an indicator of run-off events that
could impact water quality, as run-off events typically cause a
decrease in the specific conductance of a particular water source.
Specific conductance was measured with a conductivity meter
(Oakton Instruments, Vernon Hills, IL), used in accordance with
manufacturer’s instructions.

Turbidity
Turbidity was measured in Nephelometric Turbidity Units
(NTU) using a Hach 2100P Portable Turbidimeter (Loveland,
CO) according to manufacturer’s instructions.

pH
The pH of water samples was measured using a Beckman8720
pH meter (Brea, CA). All results were recorded on the sample
submission form.

Data Analysis
In NY, there were a total of 270 samples collected from 15
counties (Figure 1). These samples were taken from wells, rivers,
streams, canals, swamps, lakes, and ponds. To aid in analysis, this
larger data set was divided into three categories: ground water
representing wells; running water representing rivers, streams,
and canals; and reservoir water representing lakes, ponds, and
swamps. Wells were expected to represent ground water that is
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FIGURE 1 | Water samples were collected from 15 counties throughout New York State. Counties with participating farms are highlighted in gray and data generated

from the sampling were used to initially populate and test the Irrigation Water Quality Database.

protected from fecal contamination since they are not open to
the environment. Though not all wells may be properly capped
or protected, they were viewed as a distinct data set. A total of 254
samples were divided into running water (94 samples), reservoir
water (137 samples), and ground water (23 samples) groups. Of
the remaining samples, one sample was not properly analyzed
for generic E. coli due to an incubator malfunction, and 15 were
sampled directly from irrigation equipment and were removed
from the predominant data set.

The database contains NY data as well as data from TN (62
samples). Tennessee data were collected only in 2010, but utilized
similar collection parameters to those in NY and were included
for comparison in this paper. There were 65 samples collected
in TN and entered into the database, including 19 ground
water samples, 27 reservoir samples, 16 running water samples,
and three municipal samples. The municipal TN samples were
not included in the statistical analysis because there were no
comparable data in NY. Several samples from TN were taken

from irrigation equipment. In the NY data set these samples
were removed because in many cases there were samples taken
from the source water at the same time. Since there were fewer
TN samples, the samples taken from irrigation water equipment
were included in the analysis. Tennessee water samples were
analyzed for the same parameters as the NY samples but the
modified mTEC (EPA 1603) protocol was used for quantification
of generic E. coli resulting in CFU per 100ml. Our analysis is
supported in the literature by Cho et al. (2010), who reported
a positive correlation between CFU and MPN estimates. These
methods also both appear on the list of approved microbiological
methods for ambient water for measurement of E. coli (40 CFR
§136.6). Since these protocols are considered equivalent, NY and
TN results were compared on a one-to-one basis.

At the time of the study, reporting the geometric mean was
the method used by both the AWQS and the CSFSG, so it
is the standard used in this work (Dufour and Schaub, 2007;
CSFSGPHLLG, 2010). Medians and averages were also calculated
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(data not shown). Median calculations aligned very closely to the
geometric mean in most cases, while averages were usually much
higher since calculating the average does not manage extreme
data points in the data set as does the geometric mean calculation.
Analysis was performed by year or by season, to determine
if trends were present or to otherwise evaluate variability in
the data.

All data were log-transformed prior to statistical analysis as
is typically recommended for microbiological data that follow
a log-normal distribution (American Public Health Association,
1998). In order to allow log transformation, data with “less
than” values were assigned a value of half the detection limit.
Two data points with “greater than” values were set at the
detection limit (2420 MPN/100ml) with the expectation that
rare incidence would not skew statistical outcomes. One of these
samples was a pond in New York in 2010, the other was from a
drip irrigation line in New York. The central tendency for these
data was approximated using the geometric mean. Confidence
intervals were calculated using z-scores. Narrative descriptions
of differences between the means of data sets are based on
visual overlap of 95-percent confidence intervals. In addition,
a t-test was used to confirm significance of differences (p <

0.05; with settings two-tail and unequal variance). Ability of each
parameter to explain the patterns in generic E. coli concentration
was tested by simple linear regression. Correlation coefficients
were calculated using the linear regression function in Excel and
correlation significance was evaluated at the level p < 0.05.

RESULTS

Two hundred seventy surface water samples from NY State were
collected and analyzed for pH, specific conductance, turbidity,

and quantified generic E. coli. Overall for NY State, ground
water had a geometric mean of 1 MPN/100ml, reservoir water
had a geometric mean of 8 MPN/100ml, and running water
had a geometric mean of 52 MPN/100ml. Every ground water
sample was below the 126 MPN/100ml AWQS standard that
is also used by the CSFSG. Reservoir water met the 126
MPN/100ml standard 96% of the time, with only 3% of the
samples exceeding 235 MPN/100ml. The 235 MPN/100ml value
was the single sample upper limit standard for water intended for
foliar applications to the edible portion of the crop as set forth
in the CSFSG when this study was completed (CSFSGPHLLG,
2010). Similar to the single-sample value of 235 MPN/100ml,
other benchmarks that came into use after the timeframe of
sample collection and analysis also originate with the USEPA
Recreational Water Standards (United States Environmental
Protection Agency, 2012). Specifically, the FSMA Produce Safety
Rule, as published in 2015, used a statistical threshold value
(STV) of 410 CFUs (equivalent to MPN) in 100ml water and

the August 2020 update to the LGMA metric revision used

a single-sample maximum of 576 MPN/100ml (United States
Food and Drug Administration, 2015; CSFSGPHLLG, 2020).
Running water samples met the 126 MPN/100ml standard 74%
of time, with only 15% of the samples being higher than the

235 MPN/100ml standard. Though the rates of exceedance

compared to the 235 MPN/100ml standard (3% for reservoir
water and 15% for running water) might appear low, there
were samples that exceeded the limit, and therefore, would
require mitigation, including retesting or abandoning the water
source under contemporary rules during the sample collection
time period.

Further analysis of water quality data from NY by year
revealed consistent results from year to year and source to source

FIGURE 2 | Range of values, geometric mean and confidence interval around the mean for quantified generic E. coli (most probable number per 100ml) for each New

York State water source group in 2009 and 2010. Number of samples below detection limit: Running Water 2009 n = 0, 2010 n = 0; Reservoirs 2009 n = 13, 2010 n

= 15; Wells 2009 n = 11, 2010 n = 10.
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(Figure 2). Ground water had the lowest quantified generic
E. coli counts (with 21 of 23 samples below detection limit)
while running water had the highest counts. The geometric
mean values for reservoir water samples were almost an order
of magnitude lower than running water sources, even though
reservoir water sources are open to the environment like running
water sources. Unlike reservoir sources, running water sources
are subject to a multitude of variables due to the nature of
running water sources havingmiles of banks with potential access
by wildlife, septic systems, drainage tiles, run-off, and/or human
recreational activity.

Comparison by State and Season
Collaborators in TN began participating in the Irrigation Water
Database in 2010. Overall, TN ground water had a geometric
mean of 1 CFU/100ml, reservoir water had a geometric mean
of 5 CFU/100ml, and running water had a geometric mean
of 38 CFU/100ml. Each ground water sample was below
the 126 MPN/100ml standard. Reservoir water met the 126
MPN/100ml standard 93% of the time, with only 4% of the
samples exceeding the 235 MPN/100ml single upper limit
standard. These percentages were consistent with those seen in
NY water sources. Tennessee running water samples met the
126 MPN/100ml standard 75% of the time, with only 6% of the
samples being higher than the 235 MPN/100ml standard. The
percentage of samples achieving the 126 MPN/100ml standard is
comparable to NY, while the percentage of samples that exceed
the 235 MPN/100ml limit is approximately half of what was
observed in NY. Sample size differences may help to account
for this difference. Accurate estimation of exceedance rates was
more likely for the larger NY sample set, with 94 observations
(14 exceedances), compared with the smaller TN sample set, with

only 16 observations (1 exceedance). The exceedance rates may
also be affected by regional variation in water quality.

Analysis of TN running water data in the fall (22
September−20 December) indicated an excessively high
geometric mean of 255 CFU/100ml, but the geometric mean
was calculated with only three samples and therefore the 95%
confidence interval was broad (58–1,100 MPN/100ml; see
Figure 3). In general, a five-sample minimum is preferred
for calculating a more precise geometric mean. The three
samples were 860, 160, and 120 CFU/100ml, all taken from the
same water source, but at different, non-contiguous, locations
along the water source, on the same day. Interestingly, two
of the three samples did not exceed the 235 MPN/100ml
limit. Absent the highest value (860 MPN/100ml) results
from this data set likely would not have caused the grower
to take any action, yet the 860 CFU/100ml sample exceeds
even the most liberal EPA recreational water standards of 575
MPN/100ml for “Infrequently Used Full Body Contact” water,
and it also exceeds the upper limit in the CSFSG standards
(576 MPN/100ml) for water that does not contact the edible
parts of the plant such as water delivered through a drip system
(United States Environmental Protection Agency (USEPA),
1986; CSFSGPHLLG, 2010).

With a clear understanding of these issues, the three data
points from TN fall sampling of running water were included in
the comparison of seasons and states found in Figure 3. Unlike
NY, TN geometric mean concentrations of E. coli in running
water samples were not always higher than the TN reservoir
samples. In NY, E. coli geometric mean concentrations in both
running and reservoir water were highest in the summer (21
June−21 September); in TN, spring (20 March−20 June) showed
the highest counts in both reservoir and running water if the fall

FIGURE 3 | New York (NY) and Tennessee (TN) data were analyzed by season. Spring is represented by samples taken between 20 March and 20 June, summer is

represented by samples taken between 21 June and 21 September, and fall is represented by samples taken between 22 September and 20 December. No samples

were taken in winter (between 21 December and 19 March). NY samples from 2009 and 2010 were combined for this analysis. TN data are from 2010 only. The

shaded gray box depicts the general method detection limit of 1 MPN or CFU per 100ml.
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TABLE 1 | Correlations among E. coli presence and three other water quality

parameters, specific conductance, turbidity, and pH.

NY surface water

sources

E. coli/Specific

conductance

E. coli/Turbidity E. coli/pH

Reservoir 0.20* 0.05 −0.28*

Running 0.00 0.21* −0.05

Reservoir and running

combined

0.13* 0.05 −0.18*

*Statistically significant correlations.

data from TN running water was discounted due to the issues
discussed earlier in this section. To be confident in analysis of the
TN data, more samples are needed for better representation of
water quality by source type and season. The NY data showed
seasonal trends in both running and reservoir water with the
changes more pronounced in the running water from season
to season. While the database was in use, TN continued to
add data, as well as new collaborators in Texas and Maryland.
Additional participation in the database from more states would
have allowed additional data analysis and may have revealed
trends that are regionally and/or seasonally dependent.

Correlations
In an attempt to determine if there were other, less expensive
ways to monitor microbial water quality, correlations between
E. coli counts and the other parameters tested, including specific
conductance, turbidity, and pH (Table 1) were examined. These
correlations were determined only for surface water sources
sampled at the source water. There was a very weak statistically
signficant negative correlation observed between E. coli levels and
pH in all surface water samples over the 2 years (r = −0.18;
p = 0.01), and a very weak positive correlation between E. coli
and turbidity (r = 0.05; p = 0.55) and statistically significant
very weak positive correlation for specific conductance (r =

0.13; p = 0.05). When running water and reservoir water were
analyzed separately, some of the correlations were stronger. The
strongest correlations identified were between E. coli and specific
conductance (r = 0.20; p = 0.02) and E. coli and pH (r =

−0.28; p = 0.00) in reservoir water, and E. coli and turbidity
in running water (r = 0.21; p = 0.05). As noted above, several
of these correlations were statistically significant (p < 0.05) but
the r-squared values indicate a very low effect (Cohen, 1992).
Based on the analysis these correlations would not be dependable
indicators of the presence or quantity of E. coli.

DISCUSSION

Fresh produce growers who participated in this project benefited
by having baseline water sampling completed for their on-farm
water sources. They were supplied with a water testing protocol
and had direct access to extension personnel to discuss water
quality issues on their farms. Other NY farmers utilized trainings
to help them understand the value of water testing, how to
test their water sources, and how to locate laboratories that can
provide the required analyses.

Ponds are a very common source of surface water in NY,
and in this study the geometric mean of E. coli counts in
ponds was 6 MPN/100ml. In one particular case, a farm pond
had an unusually high E. coli water test (>2,420 MPN/100ml),
so contact was made with the grower to discuss what could
have been the cause. One of the farm owners participates in
the Community Collaboration Rain, Hail, and Snow Network
(CoCoRaHS), so they were able to share that the night before the
sample was taken, they had 0.2 inch of rain. A review of the data
showed all the indications of a rain event in that the turbidity
was higher and the pH and specific conductance were lower,
indicating dilution by rain. The other factor for this sample was
that it was taken directly from the irrigation equipment, which
in other instances in this study has also resulted in an unusually
high E. coli count. A follow-up sample had a much lower E. coli
count (3.1 MPN/100ml), and was not a concern to the grower.
This farm’s participation in CoCoRaHS gave them a monitoring
tool they did not know existed. In addition, being able to review
the turbidity, specific conductance, and pH data provided a level
of confidence in the determination that the water sample was
affected by the rain event. Understanding the impact rain has on
water quality attributes and the possible influence of irrigation
equipment on water tests is important for making management
decisions regarding water use. Rainfall data was not collected in
this study, but growers should be made aware of options like
CoCoRaHS to add to their arsenal of information that could help
make water use management decisions.

The purpose of sharing this example is to highlight the fact
that growers need to be aware of factors that can impact water
quality and be able to interpret water-testing data. This project
collected parameters outside the current recommendations for
generic E. coli testing, yet adding these parameters does not
significantly increase water testing cost and may provide growers
with additional information that can assist them in determining
the source and cause of contamination.

Impact of Sampling Location
For all water collections, sample location was noted. Most
samples were taken directly from the source water, but there
were several opportunities in the 2010 NY sampling season to
collect water samples directly from irrigation equipment. The
rationale behind sampling from irrigation equipment was to
collect water closest to the point of use, and to obtain data
that represent the microbiological quality of water that actually
contacted the plant. Our results indicate that this may not be
the best way to determine source water quality, but it is more
representative of the use of the water and may be relevant to
understanding overall risk to produce safety. During the 2010
season, nine pairs of samples were collected from irrigation
equipment (running or flushed prior to sampling) and the source
water that supplied the irrigation equipment. Two out of the nine
sample pairs demonstrated that the irrigation equipment sample
had higher E. coli counts than the source water sample. There
were no cases where the source water sample had higher E. coli
compared with the associated irrigation equipment sample.
Observed differences were beyond the 95% confidence limits
of the MPN test method (Table 2). For the other seven pairs,
the data pairs had overlapping 95% confidence limits in the
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TABLE 2 | Comparison of source water samples and irrigation line samples

analyzed for E. coli.

Sample locationa MPNb/100 ml 95% confidencec

lower limit

95% confidence

upper limit

Source water 13.5 7.80 21.8

Drip irrigation 25.6 17.2 35.7

Source water 111 81.0 149

Drip irrigation 90.9 66.6 122

Source water 1.00 0 3.70

Drip irrigation 6.30 2.50 12.7

Source water 727 476 1,050

Overhead irrigation 1,200 811 1,750

Source water 126 102 152

Drip irrigation 299 207 423

Source water 74.3 53.0 98.8

Drip irrigation 72.3 51.5 96.4

Source water <1 0 3.70

Drip irrigation >2,420 1,440 Infinite

Source water 42.6 28.7 60.7

Overhead irrigation 49.6 35.4 67.8

Source water 16.1 9.60 24.9

Overhead irrigation 16.0 9.50 25.1

aPaired samples were taken from both source water and irrigation lines from the same

water source.
bMPN, most probable number.
c95% confidence limits from manufacturer’s table of MPN results.

Bolded data pairs show different results.

IDEXX Quanti-Tray 2000 results tables (indicating no credible
difference in the results), though in three of those seven cases
the overlap was one-sided. Concentrations of E. coli can vary
significantly, making it difficult for growers to know the most
representative location from which to collect water samples to
determine water quality.

Although there were only two samples from irrigation
equipment that differed from their source water samples, the
observation highlights several things a grower may want to
consider. The first issue is that irrigation equipment could
incorporate risks into the production of fresh produce through
the addition of microbial contamination that is multiplied from,
or did not exist in, the source water. This could be from intrusion
of fecal contamination somewhere in the distribution system
or growth of E. coli and possibly pathogenic bacteria in the
distribution system from year to year. Two of the samples were
from farms using drip irrigation, and the increase in microbial
counts could have been related to soil conditions including the
use of amendments that increase E. coli counts since the drip
tape is in direct contact with the soil. The overall risk to the
food production system should be low because the water is
applied at or just below the soil line and primarily wets the soil,
not the edible portion of the plant. There are two exceptions
to this assessment, one is root crops that would be contacted
by drip irrigation and the other is a malfunction in the drip
irrigation system that results in overhead spray from an emitter.
One of the samples was collected from overhead irrigation
equipment and had high E. coli counts (1200 MPN/100ml)

when compared to the source water (727 MPN/100ml). The
grower identified that this water was used to irrigate leafy
greens. E. coli counts in both source water and irrigation
equipment significantly exceeded the single-sample limit of 235
MPN/100ml [United States Environmental Protection Agency
(USEPA), 1986; CSFSGPHLLG, 2010]. Since this water was
identified as being applied by overhead irrigation, it represented
the riskiest application method due to wetting of the edible
portion of the crop. It is not known whether the grower was
actually irrigating with this water, or how close to harvest it was
applied, but the data clearly represent concerns that the grower
should review. In assessing risks, growers using both systems
should review the siphon system that feeds the irrigation pipe to
be certain it is suspended in the water and not siphoning bottom
sediment, as this is known to increase microbial content (Badgley
et al., 2011).

A second important issue is that sampling from the irrigation
equipment may not accurately reflect the quality of the source
water, and as mentioned above, which should cause a grower
to review other aspects of production such as the integrity
of water delivery systems. This is important because financial
and time resources are limited and growers should be targeting
resources to mitigate risk. Modifying a siphon float, flushing,
and sanitizing the irrigation lines, or reviewing soil amendment
application timelines may be easier, less expensive, and reduce
risks more effectively compared to treating the entire water
source, but without testing both the source water and the
irrigation equipment, the grower would not know where the risk
was introduced. The data collected in this study did not support
determination of which process explains the observation, but it
highlights the value of sampling from each location on the same
day to see if there is a difference. Each possibility could lead
to different corrective actions to reduce risk but without data
indicating an issue, a grower may not know there is a problem.

The CSFSGPHLLG (2010) instructs farm operators to “sample
sources as close to the point-of-use as practical, as determined by
the sampler to ensure the integrity of the sample.” The U.S. Food
and Drug Administration (2015) instructs farm operators that
samples “must be representative of (the) use of the water.” Based
on the inconsistent data generated when sampling irrigation
equipment, it may be that the sampler could determine that in
order to ensure the integrity of the sample, it should be sampled
from source water, not the equipment. An alternative solution
would be to collect two samples, one from the source water
and one from the irrigation equipment, but even this has its
challenges. Although irrigation systems may feed off the same
main pump line, most systems branch and thus havemultiple end
points, so that type of testing strategy would increase the number
of samples and, subsequently, the cost substantially. If there was
concern regarding an overhead irrigation system, growers may
consider developing a sampling rotation to identify microbial
risks in irrigation lines. This would minimize the number of
samples but still enable the sampling of lines over time.

Recommendations for Growers
In drawing conclusions from this research, it is important to
consider whether our results impact current Good Agricultural
Practices recommendations. Based on weak correlational data,
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it is clear that the alternate measurements (pH, specific
conductance, and turbidity) do not consistently allow estimation
of the quality of a surface water source, based on E. coli as the
indicator organism, as well as testing the water source for E. coli.
Though there is much discussion about the value of generic
E. coli as an indicator organism, it is the best available at the
moment and there are laboratories that can complete the testing
for growers (Suslow, 2010).

One recommendation for testing surface waters, based on the
results of this research, would be to add additional parameters
beyond quantified generic E. coli that do not substantially
increase the cost of the test, but that provide the growers with
additional information that might allow them to interpret their
test results. In particular, specific conductance ($10) and turbidity
($8) would allow growers to understand if run-off is influencing
their test results. Although the value of pH for water quality
issues was not viewed as significant enough to recommend, some
growers who signed up to participate in this study did so in
order to determine the pH of their water sources because they
were interested in the information relative to how it impacts
their spray mixes. Since it is a relatively inexpensive test ($5)
that can provide useful information to growers, including it
in the recommended tests seems reasonable. Prices quoted for
tests were provided by Certified Environmental Services Inc.,
a commercial water-testing laboratory in Syracuse, NY and are
expected to be representative of prices at similar laboratories.

The amount and timing of testing is another area that
warrants discussion. The 1986 EPA Ambient Water Quality
Standard Criteria (EPAAWQSC) states that sampling frequency
and testing to determine the quality of the water should be “based
on a statistically sufficient number of samples (generally not <5
samples equally spaced over a 30-day period).” At the time when
this research was conducted, this was adapted for use in the
Commodity Specific Food Safety Guidelines for the Production
and Harvest of Lettuce and Leafy Greens (CSFSGPHLLG, 2010)
as part of the California Leafy Greens Marketing Agreement
(LGMA). As appeared in the LGMA decision tree for pre-
harvest water used for foliar applications that result in the edible
portion of the crop being contacted by water (i.e., overhead
irrigation, topical protective sprays, frost protection), it stated:
“Sampling Frequency: One sample per water source shall be
collected and tested prior to use if >60 days since last test of the
water source. Additional samples shall be collected at intervals
of no <18 h and at least monthly during use. Geometric means,
including rolling geometric means, shall be calculated using the
five most recent samples.” In August, 2020 these standard were
updated to require that no untreated surface water be applied
to leafy green crops within 21 days of harvest without additional
pathogen testing required on the harvested crop (CSFSGPHLLG,
2020). The FSMA Produce Safety Rule, as published in 2015,
states that “a minimum total of 20 samples of agricultural
water. . . over a minimum period of 2 years, but not >4 years”
is required for long-term water use decision making based on
an expected standard deviation of 0.4 among log-transformed
concentration data. Data collection and analysis in this project
was collected prior to the release of the FSMA Produce Safety
Rule so did not conform to these parameters. OnMarch 18, 2019,

FDA extended the compliance dates for meeting water quality
requirements outline in FSMA Produce Safety Rule Subpart E
“to address questions about the practical implementation of
compliance with certain provisions and to consider how we
might further reduce the regulatory burden or increase flexibility
while continuing to protect public health.” (United States Food
and Drug Administration, 2019). A release of an updated Subpart
E is anticipated in 2021.

The sampling strategy set forward by the LGMA at the time
this research was conducted was more reasonable for agriculture
than five samples spaced over 30 days as in the AWQS, but
the calculation of the rolling geometric mean of five samples
increases the testing requirements. Some growing seasons are
particularly short in NY, so in order to get five water samples over
the season, growers would need to sample at least once per week
and even at that frequency, they would not be able to calculate
their first geometric mean until the season was almost over. The
single sample standards are more relevant in short production
seasons, but because they are based on the recreational water
standards, they accept that some people will get ill. Of note, FDA
in the FSMA Produce Safety Rule declined to provide a single-
sample standard, opting instead for a STV that “is a measure of
variability of (the) water quality distribution, derived as a model-
based calculation approximating the 90th percentile using the
lognormal distribution.”

Understanding and accepting that there are risks associated
with using surface water sources during production is key to
assessing the safety of surface water sources. Using water quality
standards such as the EPA recreational water standards that
clearly accept some illness as an outcome may seem unwise but
requires additional consideration. Unlike full body contact water
that assumes individuals will be directly exposed to the water and
ingest some of it, surface water used for irrigation may never be
ingested by those who consume the fresh fruits and vegetables.
Irrigation water is often applied days before harvest so the water
is dried by the time the fresh produce is picked. Exposure to sun
and desiccation promote the reduction of microbial populations
that may be deposited by the irrigation water, so the risk is
likely less than in recreational waters because of the absence of
conditions under which bacterial pathogens could subsequently
reproduce on the produce (Steele and Odumeru, 2004).

Another consideration that supports the use of surface water
for fresh produce production is the world-wide shortage of clean
drinking water. If growers are driven to use water that has
no detectable fecal-indicator bacteria, they will either have to
treat the water or move to ground or municipal water. The use
of ground or municipal water in the U.S. may not seem like
such a dire option at the moment, but already in states like
Florida and California, municipalities have established reclaimed
water distribution systems to encourage people to not waste
drinking water on watering lawns, gardens, and crops. When
countries outside the U.S. are considered, the notion of using
a clean drinking water source to irrigate crops is unrealistic in
some cases. The World Health Organization sets the standard
for wastewater used to irrigate crops that will be eaten raw at
<1,000 fecal coliforms per 100ml water (Blumenthal et al., 2000).
Reclaimed water is usually treated, but because it likely originated
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from human sewage sources, can still contain human pathogens
(Sadovski et al., 1978; Bastos and Mara, 1995; Oron et al., 2010).
Treatment of reclaimed water may vary by municipality and
location, so the quality of reclaimed water may not be consistent
and could easily exceed microbial counts found in surface water
sources. Conserving drinking water sources and using surface
water sources responsibly is important to the management of
water as a natural resource and should be a consideration
for growers in assessing the risks of using surface water in
relationship to other management issues. It is also important to
investigate effective treatment options that do not have negative
plant and environmental consequences.

Key Extension Points
This project provided several insights into irrigation water
quality and on-farm management practices related to water
use. First, it was noted that on-farm water testing was not
standard practice on NY farms at the time of the study (2009–
2010) despite the existence of voluntary programs (e.g, GAPs,
LGMA) that recommend water testing. With increased pressure
from buyers and the 2015 publication of the FSMA Produce
Safety Rule, interest in water testing is increasing, but much
extension training needs to be done to adequately educate
farmers on best water testing practices and the implications of
those results. Training should include water sampling protocols,
how to monitor surface water sources through environmental
assessment and water testing, and finally how to interpret results.
Growers will need to implement water-testing practices for
surface water sources they are using, and conduct inspections that
should include assessing risks of their water use practices and
implementation of corrective actions that reduce any identified
risks when water analysis results exceed expectation or indicate
increased risks. Data from this project indicate that surface water
quality can vary dramatically over the growing season and there
are not always clear factors to indicate why these variations occur.
Although in this project we sampled on-farm water sources only
three times during each growing season, it may be more practical
to recommend that growers test their surface water sources prior
to the start of the season and at least once a month during use
or more often if there are concerns about the quality of the
water. Testing should be targeted at times just prior to use so
growers have an understanding of quality prior to application,
particularly if water is applied directly to the crop or close to
harvest. Reviewing water testing results on a per-farm basis and
incorporating other available information, such as rainfall data,
will allow growers to gain valuable information in assessing the
risks their surface water sources may represent.

To implement water-testing practices, growers will need
access to water testing laboratories that can provide testing of
surface water sources. Furthermore, not every commercial water-
testing laboratory may be prepared to handle surface water
samples and provide the testing services farmers may need and
request. Not all water-testing laboratories are prepared to present
water-testing results in a format that is valuable to growers.
The FSMA Produce Safety Rule includes the need to calculate
a STV to set an upper limit for variability of generic E. coli

concentrations. This uncommon calculation requirement creates
a barrier for on-farm water management decisions. First, most
growers do not know how to perform the calculation. Second, if
the calculation is done incorrectly, growers may use water that
has significant fecal contamination which could increase risk or
avoid using water that has low fecal contamination and risk crop
loss due to lack of irrigation. Either outcome has serious impacts
on crop health and safety. Several groups developed educational
materials including fact sheets and water calculators to assist
growers with doing these calculations and understanding these
requirements (Bihn et al., 2017; Harris and Rock, 2017; Rock and
Harris, 2017; Stoeckel et al., 2017).

Water samples also require analysis within a certain time
period. Some protocols require analysis within 8 h, while others
allow up to 30 h of hold time prior to analysis. This is
important, because some farms are not located near water testing
laboratories, so they would be forced to use overnight mail
delivery for sample submission and would not meet the 8-
h requirement. Unfortunately, some farms are in rural areas
that do not have access to overnight mail, so this creates
another barrier to establishing a water testing strategy. Research
has indicated there can be impacts as a result of both hold
times and laboratories conducting the analysis on water sample
results, including both increases and decreases in E. coli counts,
depending on these variables (Pope et al., 2003; Selvakumar
et al., 2004; United States Environmental Protection Agency,
2006; Harmel et al., 2016). Our analysis method and study
design were selected based on research as well as a process
that growers could actually implement in order to have samples
kept at or below 10◦C and not frozen and delivered to a
laboratory within 48-h (Pope et al., 2003). As water testing
becomes required for produce growers, it is important that
farmers be provided with a standard they can meet and
that resources, such as access to water testing laboratories,
are available.

Lastly, a very important outcome of this research was the
development of a database that could capture water testing results
and share them in a confidential way to the county level. It
is common in agricultural production areas the different farms
are using the same water sources, including streams, rivers, and
canals. Some government agencies, such as the United States
Geological Survey, and many university researchers are sampling
the same water sources that growers are using and generating
valuable data. As was seen with our database, others were
interested in using the database, but funding to maintain and
expand it was not available. Regardless of regulatory or audit
requirements, it would be great to collect water testing data
so that it is available for those that could use it to make
better informed food safety management decisions. In many
instances, the expense of taking the sample, transporting it to
the laboratory, and doing the analysis is already done. The last
step of cataloging and sharing the data is missing. The database
developed for this project demonstrated that data can be collected
in a secure and private way so that water testing information
could be shared and benefit the agricultural community as
a whole.
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In this study, the composition and richness of bacterial communities in treated and

untreated wastewater from hospitals, commercial, and non-commercial fish farming

sites, sewage effluents, and surface waters, which included seawater and fresh

water in Sri Lanka and the Philippines, were investigated through 16S rRNA gene

amplicon sequence analysis. Firmicutes were found predominantly in Sri Lankan hospital

wastewaters, while Cyanobacteria and Acidobacteria were typically detected in fish

culture sites and the waste canal in Sri Lanka, respectively. The Shannon–Weaver index

(SW) and number of Operational Taxonomic Units (OTUs) were higher in the Philippines

than in Sri Lanka. The bacterial richness in the university non-commercial fish pond

and sewage effluent displayed greater than that in hospital wastewaters. In addition,

the bacterial richness was higher in the untreated wastewater compared to that in the

treated wastewater in hospitals. These results indicate the differences among water types

in terms of bacterial community, especially influenced by their source.

Keywords: bacterial community, hospital wastewater, fish culture sites, surface water, 16S rRNA (16S rDNA)

INTRODUCTION

Water is one of the most important and essential resources for living organisms in the world.
However, uncontaminated water is a basic necessity for humans. Contamination of water resources
due to anthropogenic activities is common throughout the world (Khatri and Tyagi, 2015),
particularly by chemicals and microorganisms. Integrating knowledge from multiple fields such
as hydrology, microbiology, and ecology would increase the understanding of pollution levels
and potential causes of pollution (Pandey et al., 2014). Surface, groundwater, and chlorinated
urban water in some cities are contaminated with bacteria levels regarded as unsafe as per the
standards for potable water (Onyango et al., 2018). There is a growing need to develop a strategy
for recognizing potential emerging waterborne pathogens. An understanding of disinfectant action
and microbial resistance to treatment processes is required to better identify those pathogens likely
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to be of greatest concern (Ashbolt, 2015). Likewise, it is important
to have a more relevant and faster indicator for microbial
contamination detection in water (Jung et al., 2014).

In a typical tropical country like Sri Lanka, bacterial
diseases are frequently linked to the consumption of drinking
water contaminated with Shigella spp., Salmonella spp., and
Campylobacter spp. A recent study revealed that water in one
of the major river basins in Sri Lanka (Kelani river basin) is not
suitable for direct consumption as drinking water without proper
treatment (Mahagamage et al., 2016). The Kelani river water in
Sri Lanka is not only contaminated with Escherichia coli but
also other species that are resistant to more than one antibiotic.
Antibiotic resistance is probably due to the significant seasonal
variations and environmental changes (Kumar et al., 2020).
The majority (90%) of public water sources (well-water) in the
Northern Province of Sri Lanka are microbiologically unsuitable
for consumption due to microbial contamination (Arulnesan
et al., 2015). The coastal areas of the Ampara district of the
eastern area of the country face a lot of challenges induced by
water-borne diseases due to pathogenic contamination (Ameer,
2017). Recently, Guruge et al. (2021) reported a wide range
of antimicrobials with high concentrations of clarithromycin,
sulfamethoxazole, and sulfapyridine in the hospital wastewaters
in Sri Lanka. Approximately 61% of the examined E. coli isolates
in those samples were categorized asmultidrug-resistant bacteria.

Practices of open defecation, unhygienic practices, livestock
feces, and latrine sources have a significant correlation to
contaminated water sources (Gwimbi et al., 2019). Pathogens
that are present in the aquatic environment may cause
various diseases to people by ingestion of contaminated
drinking water. The concentration of selected antimicrobials,
the occurrence of resistant E. coli, and resistance genes in
hospital wastewater and adjacent surface water were previously
reported (Guruge et al., 2021). However, details regarding the
bacterial community in such wastewaters in Sri Lanka are
not well-documented. Therefore, the main objective of this
study was to obtain preliminary information on the microbial
community structure in wastewaters, urban waterways, lakes,
and aquaculture facilities in Sri Lanka. Several wastewaters and
freshwater samples previously studied for antimicrobials were
included in the present study. For comparison, few samples
from similar environmental settings from the Philippines were
also investigated.

MATERIALS AND METHODS

Water Samples
Several types of water samples were obtained from Sri Lanka such
as untreated and treated wastewaters from three hospitals, five
commercial ornamental fish culture sites, one non-commercial
university fishpond, one lake, and an urban waste canal receiving
treated effluents from the above hospitals. The samples from
the Philippines were included with three sewage effluents and
seawater from a bay that receives those effluents. Grab water
samples were collected in clean 500-ml polypropylene bottles
between 2018 and 2019 (Guruge et al., 2021). Details about
the sampling are described in Table 1. Unfiltered samples were

maintained in a freezer (−18
◦
C) before the DNA extraction. A

total of 17 samples were analyzed.

Amplicon Gene Analysis
A 0.25-ml aliquot was taken from each sample to extract the
DNA by the extraction buffermethod (Kageyama et al., 2003) and
purified using the Promega PCR purification Kit (Promega Co.,
USA). The DNA concentration was verified by nanodrop, where
theminimumof 5 ng/µl of DNA concentrationwas established to
proceed with the amplicon PCR. The 16S rRNA gene sequences
were analyzed by amplicon PCR using a primer pair V3/V4
(Klindworth et al., 2013). The forward primer sequence was V3
(5′-CCTACGGGNGGCWGCAG-3′) and the reverse was V4 (5′-
GACTACHVGGGTATCTAATCC-3′) with the overhang adapter
added (Fluidigm Co., USA) followed by library construction with
Fluidigm barcodes. Then, the library was sequenced at Genome
Quebec, Co., Canada using Illumina MiSeq 250 bp, and the
data on amplicon sequencing analysis were performed using
the Qiime2-2019.10 pipeline (https://qiime2.org/) (Bolyen et al.,
2018). This was used to assess the relative abundance of bacterial
phyla, richness, and principal coordinate analysis (PCoA) of
water samples. For the metataxonomic classification, bacterial
DNA was assessed using the classifier gg-13-8-99-515-806-nb-
classifier.qza from the Green genes database, whose assignment
was carried out by the Basic Local Alignment Search Tool
(BLAST). All the metagenome sequences were registered in the
DNA Data Bank of Japan (DDBJ) (http://www.ddbj.nig.ac.jp),
accession number DRA012530.

Statistical Analysis
One-way ANOSIM (analysis of similarities based on number
of OTUs) was performed based on non-parametrical tests, to
evaluate the effects of treatments and location on bacterial
community structure in the PCoA. The correlation between
the concentration of antimicrobials and the prevalence of
the bacterial community was determined by Pearson analysis.
The antimicrobial concentrations in the samples from Sri
Lanka (SL-1 to SL-8) were retrieved from our previous
study (Guruge et al., 2021).

RESULTS AND DISCUSSION

Bacterial Community Analysis
The total number of sequences obtained from all water samples
was 2,391,573 with 3,466 features and 780,768 of total frequency,
and the overall quality trim length was standardized at 230 bp,
using the training process of SKLEARN based on k-mers, value
7, as it is the default balanced QIIME 2 parameter. The results
among the bacterial community indicated on a scale from highest
to lowest that Proteobacteria and Actinobacteria were the most
common phyla among the samples based on relative abundance
(RA). Lower RA of Proteobacteria was found in the Sri Lanka
lake, whereas Actinobacteria was detected in a wide range of
sources. Actinobacteria showed the lowest RA in samples from
the three Sri Lanka hospitals and in the Philippine waste effluents.
Furthermore, Firmicutes were found mostly in the Sri Lanka
hospital sample while Cyanobacteria and Acidobacteria were
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TABLE 1 | Details of samples.

Country Sample no Type of water Sampling period

Philippine PH 1 Sewage effluent 2019 January

PH 2 Sewage effluent 2019 January

PH 3 Bay (sea water) 2019 January

Sri Lanka SL 1 Urban waste canal 2018 September

SL 2 Urban lake 2018 September

SL 3 Hospital wastewater (before treatment) 2018 September

SL 4 Hospital wastewater (after treatment) 2018 September

SL 5 Hospital wastewater (before treatment) 2018 September

SL 6 Hospital wastewater (after treatment) 2018 September

SL 7 Hospital wastewater (before treatment) 2018 September

SL 8 Hospital wastewater (after treatment) 2018 September

SL 9 Commercial ornamental fish culture facility 2019 March

SL 10 Commercial ornamental fish culture facility 2019 March

SL 11 Commercial ornamental fish culture facility 2019 March

SL 12 Commercial ornamental fish culture facility 2019 March

SL 13 Commercial ornamental fish culture facility 2019 March

SL 14 Non-commercial university fish culture facility 2019 March

typically present in the Sri Lanka fish farming sites and waste
canals, respectively. Chloroflexi was found in almost all sources
except for the hospitals. Planctomycetes were strongly detected in
the Sri Lanka lake sample as well (Figure 1).

Proteobacteria, Actinobacteria, and Acidobacteria are
ubiquitous in several environments, such as soils, food, and
animal feces; thus, it is expected to occur in wastewaters, too.
The lakes, fish culture ponds, and hospitals in Sri Lanka have
low Proteobacteria, and this may be due to the low biochemical
oxygen demand (BOD) of these environments. In addition,
the high abundance of Cyanobacteria in the Sri Lanka fish
culture pond could indicate the strong photosynthetic activity
in these waters, which could later lead to a healthy and thriving
fish community. Each environment could be characterized by
a “fingerprint”; i.e., specific bacteria phyla is unique to that
particular location. For example, Verrucomicrobia was unique
to hospital waste effluents in Sri Lanka and the Philippines,
while Gemmatimonadetes was unique to the waste canal and
university fish pond samples in Sri Lanka. The abundance of
the Methylotenera genus in wastewater is usually associated with
the presence of methanol and nitrate from industrial sources
(Kalyuhznaya et al., 2009).

Nitrospirae and Chloroflexi are the main bacteria indicators
for nitrite oxidation and denitrification (Qin et al., 2018). The
increase in salt concentration of water bodies may lead to
lower bacterial richness because of the selection pressure of this
element. A similar effect may be attributed to heavy metals such
as mercury, arsenic, and cadmium in soil and marine sediments
(Li et al., 2017; Ou et al., 2018). The differences in RA could
be clearly noted on Alphaproteobacteria and Betaproteobacteria
phyla. These phyla could accumulate polyhydroxyalkanoate, in
wastewater, which could have a strong effect on niche speciation
(Oshiki et al., 2013). This chemical has been detected in other
environments as well such as compost, river biofilm, and

freshwater; thus, similar effect patterns could be extended to
other environments, including those in the current research.
Hospital wastewater could have distinguished bacterial species
more as compared to domestic ones (Ahn and Choi, 2016), with
particular regard to Bacterioidetes and Proteobacteria.

Usually, the source of wastewater determines the bacterial
community, and the presence of antibiotics can have a strong
influence in this regard (Guruge et al., 2021). In the case of
hospital samples from Sri Lanka, the orders Bifidobacteriales and
Coriobacteriales had a positive correlation with chloramphenicol.
Additionally, Lactobacillales, Clortridiales, and Victivalles had
correlations with the fluoroquinolone antibiotics such as
norfloxacin, levofloxacin, and ciprofloxacin (Table 2). This could
suggest the strong effect of these bacterial groups on water
chemical composition. The bacterial community could be
distinct in the influent and effluent of wastewater treatment
systems. Some harmful ones may be reduced during treatment,
but treatment might still release other highly resistant pathogenic
bacteria into the environment (Numberger et al., 2019).
Moreover, other species such as Cyanobacteria are controlled by
pH and nitrate (Wei et al., 2014) whileMicrocystis is controlled by
temperature (Ji et al., 2018). Therefore, monitoring the nutrient
input ccould provide a way to control the bacterial community in
lakes (Zhang et al., 2019). Such factors could explain the highest
abundance of Cyanobacteria in lakes, fish cultures, and bays as
compared to hospital wastes.

Previous studies have shown the influence of environmental
parameters such as pH, temperature, salinity, and nutrient
status on the microbial community in these waters (Swan
et al., 2010; Ganzert et al., 2014). The bacterial community
could be responsive to environmental changes in Lake Chaohu,
China, especially with regard to the differences between water
and sediments (Zhang et al., 2019). Microorganisms have
potential roles in nutrient biodynamics, pollutant degradation,

Frontiers in Water | www.frontiersin.org 3 December 2021 | Volume 3 | Article 73012493

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


C
ru
z
e
t
a
l.

M
ic
ro
b
ia
lC

o
m
m
u
n
ity

S
u
rfa

c
e
a
n
d
W
a
ste

w
a
te
r

TABLE 2 | Correlations between relative abundance of bacteria (Order level) and concentrations (ng/L) of antimicrobialsa in SL1–SL 8 samples.
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Sulfapyridine (SPR)a n.s. n.s. n.s. n.s. 0.824* 0.963** 0.868** n.s. n.s. 0.886** n.s.

Sulfamethazine (SMT) n.s. n.s. n.s. 0.826* n.s. n.s. n.s. n.s. n.s. 0.583 n.s.

Sulfamethoxazole (SMXZ) n.s. n.s. n.s. 0.863** n.s. 0.824* n.s. n.s. n.s. 0.979** n.s.

Trimethoprim (TRI) n.s. n.s. n.s. n.s. n.s. 0.893** 0.776* n.s. n.s. 0.908** n.s.

Clarithromycin (CLA) n.s. n.s. n.s. n.s. 0.888** 0.777* 0.748* n.s. n.s. n.s. n.s.

Roxithromycin (ROX) n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.909** n.s. n.s. 0.899**

Chloramphenicol (CHLP) 0.978** 0.914** −0.201 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Norfloxacin (NORF) n.s. n.s. n.s. n.s. 0.762* 0.966** 0.870** n.s. n.s. 0.931** n.s.

Levofloxacin (LEV) n.s. n.s. n.s. n.s. 0.828* 0.979** 0.911** n.s. n.s. 0.885** n.s.

Ciprofloxacin (CIP) n.s. n.s. n.s. n.s. 0.859** 0.966** 0.888** n.s. n.s. 0.849** n.s.

Triclocarban (TCC) n.s. n.s. −0.792* n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Triclosan (TCS) n.s. 0.720* −0.728* n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Ethyl paraben (EtP) n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.857**

Butyl paraben (BuP) n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.738*

N,N-diethyl-3-toluamide (DEET) n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0.784* n.s. n.s.

Total antimicrobial concentration n.s. n.s. n.s. n.s. n.s. n.s. 0.808* n.s. n.s. 0.846** n.s.

*Correlation is significant at the 0.05 level (2-tailed).

**Correlation is significant at the 0.01 level (2-tailed).

n.s., Non-significant.
aAntimicrobial data were retrieved from Guruge et al. (2021).
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FIGURE 1 | Distribution (relative abundance) of bacterial phylum in water samples. FCP, Commercial Fish Culture Pond; HAT, Hospital Wastewater (After Treatment);

HBT, Hospital Wastewater (Before Treatment). The information of sample type is available in Table 1.

and transformation in organic matter; hence, they can be used
as indicators of watershed quality in the ecosystems (Wei et al.,
2008; Chen et al., 2018).

Richness Estimation
The diversity estimation was according to the Shannon–Weaver
index (SW), which compared two countries and types of water.
The SW was greater in the Philippines than in Sri Lanka
(Figure 2), whereas such values were found higher in the
University fish pond and Waste Effluents and lower at Hospital
1 After treatment and Fish culture 1. In general, the SW
of water from the hospital is greater than from fish farming
sites; additionally, within the hospital samples, those before
treatment have greater SW. However, some variations between
these two treatments were apparent. The order of SW from
highest to lowest follows the sequence: University fishpond >

Waste effluents > H3AT > H3BT > Waste canal > Lake >

H2BT > FC4 > FC1 > H2BT > Bay > H1BT > FC5 > FC2
> FC3 = H1AT (AT—After Treatment; BT—Before Treatment;
FC—Fish Culture) (Figure 2). A similar pattern for the number
of Operational Taxonomic Units (OTUs), standardized at 6,000
sequences, was found with a greater number in the Philippines
than in Sri Lanka (Figure 2). In addition, the comparison
between the types of water indicated the highest number of OTUs
in fish ponds and waste effluents and lowest in H1AT and FC2.
The number of OTUs followed this sequence: University fish
pond > Waste effluents > H3BT > Waste canal > H3AT > Lake

> Bay > FC1 = FC3 > H2BT > FC5 > FC4 > H2AT > H1BT
> H1AT = FC2 (Figure 2). The PCoA graph clearly indicated a
significant separation between Philippine and Sri Lanka samples.
The fish culture samples could also be distinguished from the
three samples from hospitals (Figure 3). Such differences were
confirmed by the ANOSIM data.

The richness data indicated some low variation among
environments (hospital, fish culture). The higher diversity in
fish farming sites as compared to hospital wastewater could be
explained in terms of the contribution of the fish community
in maintaining the local microflora, although the biochemical
oxygen demand might be higher in these areas. Fish culture
demands a significant oxygen requirement, but they could
improve the bacterial diversity in these environments.

Normally, the industrial wastewater exhibits lower bacterial
richness than other sources, with particular concern toNitrospira
populations. This suggests the effect of these influents on
nitrification and denitrification (Yang et al., 2020).

Bacterial richness is considered a crucial factor to monitor
the quality of water since the diversity is thought to improve
the defense and recovery ability of the ecosystem against
disturbances (Zinger et al., 2012). Hospital wastewaters are full
of antibiotic-resistant bacteria as compared to others, suggesting
that the presence of pharmaceuticals could affect and determine
the bacterial community in these waters (Akiba et al., 2015;
Guruge et al., 2021). Wastewater can affect the sediment bacterial
community by the nutrient and organic loading they carry,
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FIGURE 2 | Bacterial richness (Shannon–Weaver index and Observed number of operational taxonomic units—OTUs) of water samples. FCP, Commercial Fish

Culture Pond; HAT, Hospital Wastewater (After Treatment); HBT, Hospital Wastewater (Before Treatment). The information of sample type is available in Table 1.

FIGURE 3 | Principal coordinate analysis (PCoA) of 16S rRNA genes in water samples according to the Bray–Curtis method. The information of sample type is

available in Table 1.

consequently altering the local habitat atmosphere (Saarenheimo
et al., 2017) by driving the increase in carbon availability (Garnier
et al., 1992). The characterization of the bacterial community in

water as a response to change the environment would provide
a valuable assessment of the aquatic microbial ecology and their
risks (Wang et al., 2016). The distribution and composition of the
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bacterial community in water were greatly affected by time and
space with special regard to seasonal effects (Zhang et al., 2019).
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The microbial quality of agricultural water is often assessed using fecal indicator

bacteria (FIB) and physicochemical parameters. The presence, direction, and strength

of associations between microbial and physicochemical parameters, and the presence

of human pathogens in surface water vary across space (e.g., region) and time.

This study was undertaken to understand these associations in two produce-growing

regions in Florida, USA, and to examine the pathogen ecology in waterways used for

produce production. The relationship between Salmonella presence, and microbial and

physicochemical water quality; as well as weather and land use factors were evaluated.

Water samples were collected from six sites in North Florida (N = 72 samples) and

eight sites in South Florida (N = 96 samples) over 12 sampling months. Land use

around each sampling site was characterized, and weather and water quality data were

collected at each sampling. Salmonella, generic Escherichia coli, total coliform, and

aerobic plate count bacteria populations were enumerated in each sample. Univariable

and multivariable regression models were then developed to characterize associations

between microbial water quality (i.e., E. coli levels and Salmonella presence), and water

quality, weather, and land use factors separately for North and South Florida. The E. coli

and total coliformsmean concentrations (log10 MPN/100mL) were 1.8± 0.6 and>3.0±

0.4 in North and 1.3± 0.6 and>3.3± 0.2 in South Florida waterways, respectively. While

Salmonella was detected in 23.6% (17/72) of North Florida and 28.1% (27/96) of South

Florida samples, the concentration ranged between <0.48 and 1.4 log10 MPN/100mL

in North Florida, and <0.48 and 3.0 log10 MPN/100mL in South Florida. Regression

analyses showed no evidence of a correlation between either log10 total coliforms or

E. coli levels, and if a sample was Salmonella-positive. The factors associated with
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Salmonella presence and log10 E. coli levels in North Florida differed from those in

South Florida; no factors retrained in multivariable regression models were the same

for the North and South Florida models. The differences in associations between regions

highlight the complexity of understanding pathogen ecology in freshwater environments

and suggest substantial differences between intra-state regions in risk factors for

Salmonella contamination of agricultural water.

Keywords: Salmonella, E. coli, surface water, fecal indicator bacteria, food safety, produce safety

INTRODUCTION

Agricultural water used in produce production environments
has been identified as a probable route of contamination in past
produce outbreaks (Greene et al., 2008; Klontz et al., 2010; Park
et al., 2012; Rodrigues et al., 2020). When agricultural water
comes into contact with the harvestable portion of a plant during
production (e.g., during foliar irrigation, frost protection) or
farm environment (e.g., through splash from contaminated soil
and feces) fresh produce can become contaminated by human
pathogens present in the water (Miles et al., 2009; Erickson
et al., 2010; Fatica and Schneider, 2011; Ijabadeniyi et al., 2011;
Atwill et al., 2015; Jeamsripong et al., 2019; Lee et al., 2019).
Understanding pathogen ecology in freshwater environments
used for produce production is critical for ensuring safety and
assessing the risk of potential contamination events.

The Produce Safety Rule (PSR), part of the 2011 Food

Safety Modernization Act (FSMA), defines requirements for

pre- and post-harvest agricultural water quality, including the

frequency of testing for Escherichia coli (as an indicator of
probable fecal contamination), and criteria for E. coli limits.

While under review at the time this manuscript was written
(US Food Drug Administration, 2015), the final PSR (i) required
that agricultural surface water used during produce production
establish a microbial water quality profile (MWQP) using 20
samples collected over 2–4 years on a rolling basis, and (ii)
that the geometric mean (GM) and statistical threshold value
(STV) of E. coli in this sample be ≤126 and ≤410 CFUs/100mL,
respectively. Water that exceeds these requirements is to be re-
tested, not used, or treated to reduce the potential contamination
risk of produce (US Food Drug Administration, 2015). While
the PSR relies on the use of E. coli, an indicator of potential
fecal contamination, there is conflicting data within the scientific
literature on the efficacy of E. coli as a fecal indicator (Ishii
and Sadowsky, 2008; Jang et al., 2017), and the association
between E. coli and the presence of food safety hazards in
agricultural waters (McEgan et al., 2013; Luo et al., 2015;
Topalcengiz et al., 2017; Truitt et al., 2018). Past studies
have shown that meeting the PSR standard may not be
indicative of the presence of food safety hazards at the time of
water use.

Physicochemical water quality (e.g., turbidity, pH), weather
(e.g., rainfall, relative humidity), and land-use factors (e.g.,
proximity to forest and wetland, elevation) are well-established
in the literature as being associated with microbial water

quality (Strawn et al., 2013b; Chapin et al., 2014; Weller et al.,
2015, 2020a,b; Liu et al., 2018; Truitt et al., 2018; Gu et al.,
2019). Multiple studies have discussed using physicochemical
water quality monitoring as alternatives or supplements to
E. coli monitoring; others have shown that models that use
these environmental factors as features can accurately predict
microbial water quality for agricultural waterways (Topalcengiz
et al., 2017; Weller et al., 2021). Prior research (McEgan et al.,
2013; Strawn et al., 2013a, 2014; Weller et al., 2015; Gu et al.,
2018; Truitt et al., 2018) has also shown that microbial water
quality is associated with spatial (e.g., within and between
waterways, regions) and temporal (e.g., over a day, year) factors.
For example, one study observed markedly different Salmonella
prevalence rates, 9.4 and 37.5% in agricultural water (250mL
sample), collected from New York and South Florida produce
farms, respectively (Strawn et al., 2014). Luo et al. (2015)
found that Salmonella concentrations (MPN/L) in Florida and
Georgia ponds were seasonally driven and were significantly
correlated with temperature and rainfall. The researchers in this
study also noted that generic E. coli levels were significantly
associated with the likelihood of Salmonella detection (Luo et al.,
2015). McEgan et al. (2013) found no consistent correlation
between Salmonella presence or E. coli levels, and multiple
environmental factors (e.g., water and air temperature, pH,
ORP, turbidity, conductivity) when samples from multiple sites
were aggregated into a single dataset for analysis. However,
when the correlation was assessed separately for each site,
McEgan et al. (2013) found evidence of weak correlations
between microbial water quality and environmental factors,
including log10 MPN Salmonella/100mL being correlated with
the air temperature at one and turbidity at two out of 18
sites. The relationship between microbial water quality and
environmental factors appears complex and varies by study
and over space (e.g., between waterway/site) and time (e.g.,
season). Additional studies on pathogen ecology in agricultural
waterways are important to better characterize this variability and
to understand conditions favorable to pathogen contamination
of surface water. This data is key for the development of risk
management strategies for agricultural water used in preharvest
applications. The objectives of this study were to characterize and
compare (1) the associations between microbial water quality,
including pathogen presence, and environmental factors (e.g.,
water quality, weather, land use) in North and South Florida
waterways; and (2) Salmonella diversity in North and South
Florida waterways.
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METHODS

Water Sampling
Surface water samples were collected from both North and
South Florida. The surface water in North Florida was collected
from rivers (n = 5) and a lake (n = 1). The surface water in
South Florida was collected from canals (n = 8). The North
Florida samples were collected from each site monthly over 12
consecutive months beginning in November 2011. The South
Florida samples were collected 12 times between May 2015
and November 2016. All samples were collected as previously
described by McEgan et al. (2013). Briefly, a sterile carboy
(Nalgene, Rochester, NY) was fitted with 4 kg lead weights,
attached to a rope, and lowered 20 cm below the water surface
at least 3m from the shore. Carboys were filled with at least 1 L of
water, transported to the lab at 4◦C, and processed within 24 h of
collection. Sampling always occurred before solar noon.

Physicochemical Water Quality, Weather,
and Adjacent Land Use Factors
At each sampling physicochemical water quality, including
turbidity, water temperature, pH, conductivity, colorimetric
reading, and oxidation-reduction potential (ORP), was assessed.
Each physicochemical parameter was measured in triplicate,
and the value averaged. Turbidity was measured using a
portable colorimeter (DR/850; Hach Company, Loveland, CO,
USA) according to the manufacturer’s instructions. Water and
air temperatures were measured with a portable temperature
probe (SH66A; Cooper Instrument Corporation, Middlefield,
CT, USA). The ORP and pH were measured with a portable
ORP/pH meter (pH 6 Acorn series: Oakton, Vernon Hills, IL,
USA). Conductivity was measured with a portable conductivity
tester (HI98304 DIST1 4 EC, HANNA Instruments,Woonsocket,
RI, USA).

The weather data, including air temperature, relative
humidity, and rainfall, were obtained for each sampling from
the Florida Automated Weather Network (https://fawn.ifas.
ufl.edu/) using the closest weather station to the sampling site.
To characterize the land use around each sampling site, land
cover data were downloaded from the National Land Cover
dataset (https://www.mrlc.gov/national-land-cover-database-
nlcd-2016). The proportion of land within 122,366 and 1,098m
of each site under pasture-hay, cropland, forest-wetland, and
developed (>20% impervious) cover was then calculated using
the code developed by D. Weller (https://github.com/wellerd2/
Calculating-land-use-land-cover-and-landscape-structure-
parameters) as previously described (Liao et al., 2021). Buffer
distances (122,366 and 1,098m) were selected based on the
recommendations from the Leafy Green Marketing Agreement
on how far pre-harvest agricultural water sources should be
from land uses that may contaminate the water with human
pathogens (Table 7 Crop Land andWater Sources Adjacent Land
Uses in California Leafy Greens Marketing Agreement, 2020).
For example, the recommended distance from a crop land to
a concentrated animal feeding operation (CAFO) with >1,000
animals is 1,200 feet (∼366m); this buffer (366m), and buffers
1/3 smaller (122m) and 1/3 larger (1,098m) were used here. The

elevation was obtained from the United States Geological Survey
(https://apps.nationalmap.gov/elevation/#/%23bottom) for each
water collection site.

Enumeration of Aerobic Plate Count, Total
Coliform, and E. coli Levels
The aerobic plate count (APC) (CFU/100mL), total coliform
(MPN/100mL), and E. coli (MPN/100mL) levels were
enumerated in each sample as previously described (McEgan
et al., 2013). Briefly, for APC, water samples were serially diluted
in 0.1% peptone water (Difco, Sparks, MD), and 100 µL aliquots
were spread plated in duplicate on a tryptic soy agar (TSA)
(Difco, Sparks, MD, USA). The TSA plates were incubated at
35 ± 2◦C for 24 h. Colonies were enumerated by hand and
CFU/100mL calculated. Colisure presence/absence snap packs
(IDEXX Laboratories, Inc., Westbrook, ME, USA) were used
to determine the coliform and E. coli most probable numbers
(MPN) in a five-by-three MPN configuration (10-, 1-, and
0.1mL dilutions). The tubes were incubated at 35± 2◦C for 24 h.
The yellow color indicated coliforms, and E. coli was identified
by observing fluorescence using a 6-watt fluorescent, 365 nm
long-wave UV lamp with bulb from IDEXX Laboratories, Inc.,
Westbrook, ME. The MPN/100mL was determined from the
table in Standard Methods for the Examination of Water and
Wastewater, 18th ed (American Public Health Association,
1992).

Salmonella Enumeration and
Characterization
Themethods for theMPN estimation of Salmonella in each water
sample were based on the US Food and Drug Administration
(FDA) Bacteriological Analytical Manual (BAM) (Andrews et al.,
2011). Briefly, a three-by-three MPN method using dilutions (i)
10mL of water sample in 10mL double-strength lactose broth,
(ii) 1mL of water sample in 9mL single-strength lactose broth,
and (iii) 0.1mL of water sample in 9mL single-strength lactose
broth were done. The MPN tubes were incubated at 35 ± 2◦C
for 24 h. Selective enrichment was performed by transferring
1.0- and 0.1mL aliquots of each tube to tetrathionate (TT)
broth (Difco) and Rappaport-Vassiliadis (RV) broth (Difco),
respectively. The TT and RV broths were incubated at 35 ± 2◦C
and 41 ± 2◦C for 24 and 48 h, respectively. A 10-µL aliquot
from each TT and RV broth were streaked onto xylose lysine
Tergitol 4 (XLT-4) (Difco) and CHROMagar Salmonella Plus
(DRG International, Inc., Springfield, NJ, USA), and incubated
at 35 ± 2◦C for 24 h. Presumptive Salmonella colonies were
streaked on lysine iron agar slants (LIA) (Difco) and triple sugar
iron agar slants (TSI) (Difco). The slants were incubated at 35 ±
2◦C for 24 h.

Further confirmation was performed using PCR for the invA
and oriC genes, as previously described (Malorny et al., 2003).
PCR confirmed Salmonella isolates were preserved at −80◦C
in 15% glycerol. One Salmonella isolate per sample enrichment
scheme (e.g., TT-XLT-4, RV-XLT-4) was sent to the National
Veterinary Services Laboratory (Ames, Iowa, US) for serotyping.
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Samples that were below the limit of detection (LOD) for
Salmonella (LOD; <0.48 log10 MPN/100mL) were considered
Salmonella-negative. Samples yielding an MPN value, above the
LOD (with an upper limit of detection of 3.3 log10 MPN/100mL),
were considered positive for Salmonella (volume of water tested
was 33.3 mL).

Statistical Analysis
All analyses were performed in R version 3.3.5 (R Foundation
for Statistical Computing, Vienna, Austria). Initial descriptive
analysis was performed, and summary statistics were calculated
separately for all continuous factors (e.g., microbial levels,
weather conditions) in North and South Florida. Using the vegan
package, Simpson’s Index of Diversity was calculated to quantify
and compare the Salmonella serotype diversity in the North
and South Florida water samples. Multiple samples had total
coliform levels above the upper LOD, and the upper LOD times
1.5 were used for the total coliform value for these samples in the
regression and tree analyses.

Bayesian mixed models were implemented to characterize
the differences in microbial concentration, and the presence-
absence of Salmonella between regions, seasons, and water types.
The outcomes considered are listed in Tables 1, 2. Due to the
number of samples below the detection limit for Salmonella
and above the limit for total coliforms, hurdle models were
implemented. Briefly, logistic regression was used to characterize
the associations if a sample was Salmonella positive or negative,
or if the total coliform levels were above or below the limit
of detection. Then for those samples where Salmonella or total
coliforms were enumerable, a separate log-linear model was
fit. For models where the outcome was binary, a Bernoulli
distribution with a logit link function was used. All models
included a random effect of site and fixed effect of the season
to account for pseudo-replication and temporal autocorrelation.
Separate models were fit for each outcome with either water type
(canal, lake, or river) or region (North or South Florida) as the
covariates. Separate models were also used to characterize the
relationship between Salmonella contamination and log10 E. coli
levels (both as a continuous concentration variable, and as two
binary variables indicating if E. coli levels in the sample were
above or below the geometric mean and STV cut-offs prescribed
in the PSR). Models were fit using the brms package for Bayesian
Regression Models using ’Stan’, uninformative priors, 3 chains,
and thinning set to 10 (Bürkner, 2017a,b). While the number of
iterations per chain was set to 5,000 (burn-in of 2,500) for most
models. The maximum a posteriori (MAP) and 95% credibility
interval (CI) for the effect estimates were calculated using the
bayestestR package (Makowski et al., 2019a,b). The method of
interpreting the MAP and 95% CI estimates is described in the
footnotes for Tables 1, 2 as the interpretation of the probability
of direction (PD), practical significance (PS), and regional of
practical equivalence (ROPE) indices, which were quantified and
used to determine if the (i) given factor had a substantial effect
on the outcome, and (ii) if a positive or negative effect exists
regardless of if that effect is negligible or non-negligible.

TABLE 1 | Results of the Bayesian mixed models used to characterize differences

in E. coli and total coliform levels between regions, water types; REF,

reference-level for categorical factors.

Outcome Covariate MAPa 95% CIb PDc PSd ROPEe

Log10 E. coli levels (MPN/100mL)

Region (Ref = South FL) 0.50 0.12, 0.90 0.99* 0.98* <0.01*

Season (Ref = Fall)

Spring −0.33 −0.54, −0.09 1.00* 0.98* <0.01*

Summer 0.04 −0.17, 0.30 0.71 0.39 0.56

Winter 0.13 −0.11, 0.34 0.80 0.52 0.46

Water type (Ref = Canal)

Lake 0.90 0.19, 1.70 0.99* 0.99* <0.01*

River 0.41 0.02, 0.80 0.98* 0.94* 0.04

E. coli levels below with PSR geometric mean threshold (<126 CFU/100mL)

Region (Ref = South FL) 5.43 1.19, 52.52 0.99* 0.98* <0.01*

Season (Ref = Fall)

Spring 0.44 0.10, 1.48 0.91 0.88* 0.05

Summer 1.33 0.32, 3.61 0.62 0.56 0.13

Winter 0.78 0.19, 2.61 0.60 0.55 0.12

Water type (Ref = Canal)

Lake 17.04 0.93, 1,665.34 0.97* 0.97* 0.01*

River 3.67 0.74, 47.93 0.97* 0.96* 0.01*

E. coli levels below with PSR STV threshold (<410 CFU/100mL)

Region (Ref = South FL) 4.22 0.56, 47.22 0.95* 0.95* 0.02*

Season (Ref = Fall)

Spring 1.03 0.12, 0.91 0.53 0.48 0.07

Summer 3.10 0.55, 26.92 0.90 0.88* 0.03*

Winter 0.96 0.08, 11.09 0.52 0.48 0.08

Water type (Ref = Canal)

Lake 15.52 1.89, 1,269.61 0.99* 0.99* <0.01*

River 1.59 0.24, 2.88 0.86 0.83* 0.05

Total coliform levels (above vs. below the upper LOD)f

Region (Ref = South FL) 0.22 0.01, 1.89 0.91 0.89* 0.03

Season (Ref = Fall)

Spring 0.51 0.17, 1.59 0.90 0.86* 0.07

Summer 2.27 0.60, 7.82 0.89 0.85* 0.07

Winter 0.28 0.09, 0.85 0.99* 0.99* <0.01*

Water type (Ref = Canal)

Lake 0.58 0.00, 72.42 0.60 0.58 0.04

River 0.17 0.01, 2.45 0.93 0.92* 0.03*

Log10 total coliform levels (MPN/100mL)f

Region (Ref = South FL) −0.41 −0.61, −0.13 1.00* 0.98* <0.01*

Season (Ref = Fall)

Spring −0.08 −0.35, 0.22 0.66 0.38 0.50

Summer 0.01 −0.32, 0.36 0.51 0.29 0.45

Winter 0.19 −0.06, 0.49 0.92 0.75* 0.24

(Continued)
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TABLE 1 | Continued

Outcome Covariate MAPa 95% CIb PDc PSd ROPEe

Water type (Ref = Canal)

Lake −0.51 −1.07, 0.03 0.97* 0.94* 0.04

River −0.38 −0.63, −0.09 1.00* 0.97* <0.01*

aMAP, Maximum a posteriori estimate, or the mode of the posterior distribution for the

effect estimate of the current parameter. It can be interpreted as the unit change in a

continuous outcome associated with a one-unit change in a continuous explanatory factor

or changing from the reference level to a non-reference level for a categorical explanatory

factor. For binary outcomes, the effect should be interpreted as an odds ratio (e.g., odds

of total coliform levels being above the upper limit of detection).
b95% Credibility Interval (CI), which indicates the central portion of the posterior

distribution of possible effect estimates and is interpreted as: “Given the observed data,

the effect estimate has a 95% probability of falling between x and y” (Makowski et al.,

2019b). As such, having a 95% CI that includes 0 (for continuous outcomes) or 1 (for

binary outcomes) is not necessarily indicative of the absence of an association; the 95%CI

should be used in conjunction with the probability of direction (PD), practical significance

(PS), and regional of practical equivalence (ROPE) to make that determination.
cProbability of direction, an index of if a positive or negative effect exists regardless of if

that effect is negligible or non-negligible. The PD correlates strongly with frequentist p-

values with PD values near 1.0 indicating greater certainty that the effect of the factor

is truly positive or negative (i.e., indicates confidence in the direction of the association

(Makowski et al., 2019a,b). Specifically, PD values of 0.95, 0.975, 0.995, and 0.9995

correspond to two-sided frequentist p-values of 0.10, 0.05, 0.01, and 0.001, respectively

(Makowski et al., 2019a,b). Values above 0.95 are marked with*.
dPS, practical significance, which indicates the probability that the parameter’s effect

is above a given threshold representing a negligible effect in the median’s direction;

this is a unidirectional equivalence test that indicates if the effect is both non-negligible

and in a given direction (Makowski et al., 2019a,b). Values should be larger than 0.5 to

indicate practical significance; a cut-off of 0.75 was used here to be conservative and is

marked with.
eROPE, regional of practical equivalence, which indicates if the parameter is outside of

a range of practically negligible effect (i.e., it indicates the magnitude of effect), and is

calculated by determining the percent overlap between the 95% credibility interval and the

range of practically no effect. The closer the ROPE percentage is to 0, the more confident

we can be that the given factor has a substantial effect on FIB levels or the probability of

FST detection. Specifically, we use the following cutoffs for ROPE interpretation: >99%

negligible effect, >97.5% probably negligible effect, between 2.5 and 97.5% uncertain

effect, <2.5% non-negligible effect, <1% significant effect (Makowski et al., 2019b).

Values <2.5% are marked with*.
fDue to the large number of samples with total coliforms levels above the limit of detection

(LOD), a hurdle model approach was used and the model. As such, logistic regression

was fit for if the coliform concentration was above or below (below = reference-level) the

upper LOD> Then for those samples below the upper LOD, a separate log10-linear model

was fit.

Separately from the Bayesian regression, conditional inference
trees were implemented using the partykit package and the
defaults recommended by the package authors. Trees were
used to determine if there were differences between regions in
environmental factors associated with log10 E. coli, total coliform,
Salmonella levels, and Salmonella presence-absence. For the
model where the outcome was log10 Salmonella levels, only
samples positive for Salmonella were used. For the total coliform

model, coliform values for samples where coliform levels were
above the upper LOD were set to 1.5∗LOD. Conditional trees

were used since they are robust to collinearity and correlation

between explanatory factors, can handle missing data, can
handle hierarchical relationships (and account for all possible
interactions), and can be easily interpreted (Weller et al.,
2020a,c). In interpreting the results, it is important to note
that region and water type are collinear, with all South Florida

TABLE 2 | Results of the Bayesian mixed models used to characterize differences

in Salmonella between regions and water types.

Outcome Covariate MAPa 95% CIb PDc PSd ROPEe

Salmonella presence-absencef

E. coli levels in relation to PSR standard

Geometric mean cut-off (Ref = Below) 0.99 0.40, 2.33 0.51 0.43 0.17

STV cut-off (Ref = Below) 2.54 0.66, 8.75 0.89 0.87* 0.06

Log10 E. coli (MPN/100mL) 1.12 0.65, 2.14 0.78 0.66 0.21

Region (Ref = South FL) 0.76 0.31, 1.67 0.71 0.64 0.17

Season (Ref = Fall)

Spring 1.90 0.20, 1.46 0.87 0.83* 0.09

Summer 5.69 0.61, 3.84 0.83 0.77* 0.11

Winter 1.70 0.20, 1.62 0.85 0.80* 0.10

Water type (Ref = Canal)

Lake 1.54 0.26, 6.08 0.63 0.58 0.11

River 0.70 0.30, 1.59 0.82 0.75* 0.14

Log10 Salmonella (MPN/100mL)f

E. coli levels in relation to PSR standard

Geometric mean cut-off (Ref = Below) −0.01−0.39, 0.40 0.52 0.33 0.41

STV cut-off (Ref = Below) 0.11 −0.35, 0.59 0.64 0.48 0.31

Log10 E. coli (MPN/100mL) 0.05 −0.17, 0.28 0.69 0.35 0.59

Region (Ref = South FL) −0.20−0.58, 0.14 0.86 0.73 0.23

Season (Ref = Fall)

Spring −0.04−0.43, 0.42 0.52 0.34 0.36

Summer 0.31 −0.07, 0.64 0.94 0.85* 0.13

Winter −0.07−0.52, 0.31 0.69 0.49 0.37

Water type (Ref = Canal)

Lake −0.06−0.74, 0.54 0.60 0.46 0.26

River −0.23−0.62, 0.24 0.88 0.75* 0.20

aMAP, Maximum a posteriori estimate, or the mode of the posterior distribution for the

effect estimate of the current parameter. It can be interpreted as the unit change in a

continuous outcome associated with a one-unit change in a continuous explanatory factor

or changing from the reference level to a non-reference level for a categorical explanatory

factor. For binary outcomes, the effect should be interpreted as an odds ratio (e.g., odds

of Salmonella being detected as opposed to not).
b95% CI, which indicates the central portion of the posterior distribution of possible effect

estimates and is interpreted as: “Given the observed data, the effect estimate has a 95%

probability of falling between x and y” (Makowski et al., 2019b). As such, having a 95%

CI that includes 0 (for continuous outcomes) or 1 (for binary outcomes) is not necessarily

indicative of the absence of an association; the 95% CI should be used in conjunction

with PD, PS, and ROPE to make that determination.
cProbability of direction, an index of if a positive or negative effect exists regardless of if

that effect is negligible or non-negligible. The PD correlates strongly with frequentist p-

values with PD values near 1.0 indicating greater certainty that the effect of the factor

is truly positive or negative (i.e., indicates confidence in the direction of the association

(Makowski et al., 2019a,b). Specifically, PD values of 0.95, 0.975, 0.995, and 0.9995

correspond to two-sided frequentist p-values of 0.10, 0.05, 0.01, and 0.001, respectively

(Makowski et al., 2019a,b). Values above 0.95 are marked with*.
dPS, practical significance, which indicates the probability that the parameter’s effect

is above a given threshold representing a negligible effect in the median’s direction;

this is a unidirectional equivalence test that indicates if the effect is both non-negligible

and in a given direction (Makowski et al., 2019a,b). Values should be larger than 0.5 to

indicate practical significance; a cut-off of 0.75 was used here to be conservative and is

marked with.
eROPE, regional of practical equivalence, which indicates if the parameter is outside of

a range of practically negligible effect (i.e., it indicates the magnitude of effect), and is

calculated by determining the percent overlap between the 95% credibility interval and the

range of practically no effect. The closer the ROPE percentage is to 0, the more confident

we can be that the given factor has a substantial effect on FIB levels or the probability of

FST detection. Specifically, we use the following cutoffs for ROPE interpretation: >99%

negligible effect, >97.5% probably negligible effect, between 2.5 and 97.5% uncertain

effect, <2.5% non-negligible effect, <1% significant effect (Makowski et al., 2019b).

Values <2.5% are marked with*.
fDue to the large number of Salmonella-negative samples a hurdle model approach was

used. As such, Salmonella presence-absence indicates a model where the outcome is

the likelihood of detecting (as opposed to not detecting, which is the reference-level)

Salmonella (i.e., MAP and 95% CI should be interpreted as odds ratios). The models

where the outcome was log10 Salmonella concentration, were built only using data from

Salmonella-positive samples.
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sites being canals, and North Florida sites being either lakes
or rivers.

RESULTS AND DISCUSSION

The goals of the study were to characterize and compare (1) the
associations betweenmicrobial water quality, including pathogen
presence, and environmental factors (e.g., water quality, weather,
land use) in North and South Florida waterways; and (2)
Salmonella diversity in North and South Florida waterways.
Samples were collected at six North Florida and eight South
Florida sites, each representing a separate waterway. All six sites
in North Florida were natural waterways (e.g., rivers, lakes)
while the eight South Florida sites were all canals. Each site was
visited 12 times during the study, yielding 168 water samples
(72 North and 96 South Florida samples). Physicochemical water
quality, weather, and land use data for each sample and site are
summarized in Supplementary Tables 1, 2.

Microbial Water Quality in Two Florida
Growing Regions
Of the 168 samples, total coliform levels in 112 (40 from North
and 72 from South) were above the upper limit of detection
(log10 > 3.3 MPN/100mL); no samples fell below the lower
limit of detection. For the 112 counts that fell above the limit
of detection, the value of 3.3 log10 MPN/100mL was used. The
mean and median log10 MPN/100mL of total coliforms was
>3.0 (Range = 1.7, >3.3) and >3.2 (IQR = >2.7, >3.3) in
North Florida, and >3.3 (Range = 2.4, >3.3) and >3.3 (IQR =

>3.3, >3.3) in South Florida (Table 3), respectively. Unlike total
coliforms, no sample had E. coli levels below the lower limit or
above the upper limit of detection. For North Florida samples
the mean was 1.8 log10 MPN/100mL (Range = 0.6, 3.2) and
the median was 1.7 log10 MPN/100mL (IQR = 1.4, 2.2), while

in South Florida samples the mean was 1.3 (Range = 0.0, 2.8)
and the median was 1.3 (IQR = 0.9, 1.6; Table 3). While only
9% of the samples collected in South Florida exceed the PSR GM
standard for E. coli (126 CFU/100mL), 32% of samples collected
in North Florida exceeded this cut-off. Similarly, 3% of South
Florida samples and 11% of North Florida samples had E. coli
levels that exceeded the PSR STV standard (410 MPN/100mL).
Multiple sources show that the difference between CFU andMPN
is not significant to change the interpretation of the findings
or conclusions (Cowburn et al., 1994; Hargett and Goyn, 2004;
Gronewold and Wolpert, 2008; Fricker et al., 2010).

Salmonella was detected in 26% (44/168) of water samples
(Table 4; 124 samples were below the limit of detection, <0.48

MPN/100mL). More Salmonella was detected in South Florida

(27/96; 28%), than in North Florida (17/72; 24%). For the 124

counts that fell below the limit of detection, the value of.48
log10 MPN/100mL was used. The mean and median log10
MPN/100mL of Salmonella was <0.5 (Range ≤ 0.5, 1.4) and
<0.5 (IQR ≤ 0.5, <0.5) in North Florida, and <0.6 (Range ≤

0.5, 3.0) and <0.5 (IQR ≤ 0.5, <0.5) in South Florida (Table 3).
Figure 1 describes the distribution of total coliforms, E. coli, and
Salmonella by region, season, and water type. The Salmonella
prevalence fell within the wide range reported by past Florida
studies (McEgan et al., 2013; Luo et al., 2015; Topalcengiz et al.,
2017). A Central Florida study reported a Salmonella prevalence
of 4.8% (26/540) in 250mL pond samples (Topalcengiz et al.,
2017), while an independent Central Florida study detected
Salmonella in all 202 10-L samples collected from multiple
surface water types (e.g., ponds, canals) (McEgan et al., 2013).
The Salmonella prevalence reported here is also within the range
reported by studies conducted in other states, including North
Carolina [e.g., 54.7% (47/86) of 25mL water samples; (Patchanee
et al., 2010)], and Georgia [e.g., 11.9% (34/285) of 222mL water
samples (Antaki et al., 2016); 79.2% (57/72) of 111mL water

TABLE 3 | Summary statistics for total coliforms, generic E. coli, anerobic plate count, and Salmonella for North and South Florida waterways.

Factor Number of observations Min. Max. Mean Median SDa Quartiles

1st 3rd

Total coliforms (log10 MPN/100mL)b 168 1.7 >3.3 >3.1 >3.2 0.3 >3.2 >3.3

North Florida 72 1.7 >3.3 >3.0 >3.2 0.4 >2.7 >3.3

South Florida 96 2.4 >3.3 >3.3 >3.3 0.2 >3.3 >3.3

Generic E. coli (log10 MPN/100mL) 168 0.0 3.4 1.5 1.5 0.7 1.0 1.9

North Florida 72 0.6 3.2 1.8 1.7 0.6 1.4 2.2

South Florida 96 0.0 2.8 1.3 1.3 0.6 0.9 1.6

Anerobic plate count (log10 CFU/100mL) 168 3.8 6.4 5.0 4.9 0.6 4.6 5.4

North Florida 72 3.8 6.4 5.0 4.9 0.7 4.5 5.7

South Florida 96 3.8 6.1 4.9 4.9 0.5 4.6 5.3

Salmonella (log10 MPN/100mL)c 168 <0.5 3.0 <0.6 <0.5 0.3 <0.5 <0.5

North Florida 72 <0.5 1.4 <0.5 <0.5 0.1 <0.5 <0.5

South Florida 96 <0.5 3.0 <0.6 <0.5 0.4 <0.5 <0.5

aSD, Standard deviation.
bUpper limit of detection of >3.3 log10 MPN/100mL. One hundred twelve counts were above the limit of detection and were given the value of 3.3 log10 MPN/100mL for calculations.
cLower limit of detection of <0.48 log10 MPN/100mL. One hundred twenty-four counts were below the limit of detection and were given the value of 0.48 log10 MPN/100mL

for calculations.
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samples (Haley et al., 2009)]. One reason likely responsible for the
wide range in Salmonella prevalence reported by previous studies
is the methodological differences between these studies. The
study that reported the highest Salmonella prevalence (McEgan
et al., 2013) collected 10 L samples, 5 to 40 times larger than
the samples collected in the other studies discussed here (Haley

TABLE 4 | Effect of factors season and month on the frequency of

Salmonella-positivea water samples in North and South Florida waterways.

Factor North florida waterway

Salmonella frequency

(percent)

South florida waterway

Salmonella frequency

(percent)

Total 23.6 (17/72) 28.1 (27/96)

Month

January 33.3 (2/6) 37.5 (3/8)

February 16.7 (1/6) 0.0 (0/8)

March 0.0 (0/6) 25.0 (2/8)

April 0.0 (0/6) 37.5 (3/8)

May 0.0 (0/6) 37.5 (3/8)

June 50.0 (3/6) 25.0 (2/8)

July 50.0 (3/6) 62.5 (5/8)

August 50.0 (3/6) 0.0 (0/8)

September 0.0 (0/6) 62.5 (5/8)

October 0.0 (0/6) 25.0 (2/8)

November 66.7 (4/6) 12.5 (1/8)

December 16.7 (1/6) 12.5 (1/8)

Season

Fall 22.2 (4/18) 33.3 (8/24)

Winter 22.2 (4/18) 16.7 (4/24)

Spring 0.0 (0/18) 33.3 (8/24)

Summer 50.0 (9/18) 29.2 (7/24)

aSalmonella positive is defined as a sample at or above the limit of detection where a

Salmonella negative is below the limit of detection.

et al., 2009; Patchanee et al., 2010; Antaki et al., 2016; Topalcengiz
et al., 2017), and were 30 times larger than the samples collected
in the present study. The likelihood of detecting Salmonella is
higher for larger volumes of water, as increasing the volume
tested decreases the lower limit of detection. Methodological
differences between studies confound the comparison of results
and reduce the ability to determine if the observed prevalence
is consistent within and between studies. Development of
standardized practices, including standard volumes for studies
focused on agricultural water used for produce production may
be appropriate. Alternatively, it may be possible to develop a
statistical model, that accounts for sample volume, to enable the
comparison of results between studies.

Microbial Water Quality Varied Between
Regions and Water Types
The total coliform and Salmonella levels reported are higher in
South Florida than North Florida; the opposite is reported for E.
coli (Figure 1). Total coliform and Salmonella levels reported are
highest in canals, with total coliform levels higher in rivers, than
lakes, and Salmonella levels were higher in lakes than rivers; for E.
coli levels appeared lowest in canals, followed by rivers and lakes
(Figure 1).

In the Bayesian mixed models, the log10 E. coli levels
(measured as both a continuous factor, and as a binary factor
representing if samples were above or below the PSR cut-offs
of 126 and 410 CFU/100mL) and log10 total coliform levels
(measured as both a continuous factor, and a binary factor
representing if samples were above or below the upper LOD)
differed substantially between North and South Florida, and
between water types (Table 1). The E. coli levels were ∼0.50
log10 MPN/100mL higher in North Florida than in South
Florida (MAP = 0.50; 95% CI = 0.12,0.90). The results of
the conditional inference trees were generally consistent with
the regression models. However, given collinearity between the
region and water type (i.e., that canals were only sampled in

FIGURE 1 | Distribution of log10 total coliform, E. coli, and Salmonella levels (MPN/100mL) in each regiona, seasonb, and water typec. aN = 72 and 96 samples for

North and South FL, respectively. bN = 42 samples for fall, spring, summer, and winter. cN = 96, 12, and 60 samples for canal, lake, and river, respectively.
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South Florida, and lakes and rivers in North Florida), it is difficult
to determine if differences are driven by water type or region.
To assist in overcoming this difficulty (i.e., collinearity), and
probe if differences are driven more by water type or region,
future studies should include a variety of water types within each
region. The different surface water sampling locations reflect the
different, and complex, watersheds in the state, resulting from
disjointed drainage systems and atypical elevation gradients. In
North Florida a karst topography results in numerous rivers,
streams, lakes, and springs; in South Florida, canal systems were
developed to divert the water that historically flowed as a sheet
of water to allow for agricultural production (Purdum et al.,
2002). The findings, in light of these geographical differences,
highlight the heterogeneity inherent to freshwater environments,
and the need for improved understanding of pathogen ecology
for specific, intrastate produce growing regions.

Collinearity between the region and water type is not
a factor for Salmonella result interpretation since neither
Salmonella levels nor the odds of Salmonella detection differed
substantially between regions. The Salmonella levels and the
odds of Salmonella detection did differ between water types
(e.g., canals, rivers, lakes) (Table 2). Specifically, the odds of
Salmonella detection (OR = 0.70; 95% CI = 0.30, 1.59),
and Salmonella levels (Effect Estimate = −0.23; 95% CI =

−0.62, 0.24) were lower for river samples, compared with
canal samples (Table 2) based on the practical significance
(PS) index being ≥0.75, indicating the observed effect is both
non-negligible and, in the direction indicated by maximum
a posteriori estimate (MAP) (Table 2). The Salmonella tree
(Figure 2) found evidence of a significant regional difference.
However, this difference was dependent on environmental
conditions (i.e., when temperatures were high, Salmonella
levels were higher, regardless of region, but at lower water
temperatures, Salmonella levels were higher in South Florida
than in North Florida). These findings indicate that microbial
water quality varied both between regions and between water
types. This finding was not surprising, as past studies that
compared microbial quality between growing regions have also
found evidence of regional differences (Strawn et al., 2013a,
2014; Chapin et al., 2014; Weller et al., 2020b). Weller et al.
(2020b) sampled Arizona canals and New York streams and
reported higher E. coli levels and a higher prevalence of Listeria
monocytogenes, pathogenic E. coli markers, and Salmonella in
New York streams. Additionally, Strawn et al. (2014) found a
higher prevalence of Salmonella positive overall environmental
samples and water samples in south Florida (35 and 38%,
respectively), compared with New York (5 and 9%, respectively).
The findings reported here, coupled with previous studies
(Strawn et al., 2013a, 2014; Chapin et al., 2014; Weller et al.,
2020b) highlight the differences in microbial water quality
between water sources and growing regions, and underscores
the challenges of developing a one-size-fits-all approach for
managing microbial hazards in agricultural water. The findings
reported here, identify the differences in microbial water quality,
and subsequent resulting challenges with recommendations for
managing microbial hazards, even within a single state. These
findings suggest that risk management approaches may need to

be tailored to specific water types within localized (e.g., intra-
state) regions.

Salmonella Serovars Were Diverse and
Differed Between Regions
Serotyping was performed on one representative Salmonella
isolate per isolation scheme (up to 4 isolates per sample)
and yielded 45 Salmonella isolates from the 44 positive
samples (Supplementary Table 3). One of the 44 positive
samples yielded two serovars: S. enterica subspecies enterica
Invernes and Muenchen (in North Florida waterways)
(Supplementary Table 3). The remaining 43 Salmonella-
positive samples represented one serovar including Anatum
(1), Florida (3), Hartford (1), Inverness (4), Muenchen (4),
Saintpaul (3) and IV 40:z4,z24 (2) in North Florida; and Agona
(1), Baildon (1), Braenderup (2), Enteritidis (2), Javiana (1),
Litchfield (1), Muenchen (1), Rough (1), Rubislaw (2), Tennessee
(4), Typhimurium (1), III 60:r:z (1), and IV 53:z4.z23 (9) in
South Florida waterways (Supplementary Table 3). Overall
serotype richness was higher in South Florida (13 serotypes)
than North Florida (7 serotypes), as was Simpson’s Index
of Diversity (0.67 in South Florida;0.58 in North Florida).
Salmonella serotype IV 53:z4.z23 was isolated most frequently
from water samples in South Florida waterways, consisting
of approximately 33% (9/27). While no one serotype was
predominant among the Salmonella isolates from North Florida
waterways, four serotypes (Florida, Inverness, Muenchen, and
Saintpaul) represented 78% (14/18). A previous study in central
Florida identified 33 Salmonella enterica serotypes from 165
surface water samples with the most frequent serotypes being
Muenchen, Rubislaw, Anatum, Gaminara, and IV_50:z4,z23:-
(McEgan et al., 2014). When Strawn et al. (2014) looked at the
Salmonella diversity between two growing regions (South Florida
and New York), it was identified that a high PFGE type diversity
(Simpson’s diversity index,0.90,0.02) was observed among
Salmonella isolates across both regions and only three Pulsed-
field gel electrophoresis (PFGE) types were shared between the
two regions. Similarly, prior research has shown that specific
Salmonella serovars may be associated with certain regions,
such as Salmonella Newport repeatedly being isolated from the
eastern shore of Virginia (Greene et al., 2008; Truitt et al., 2018)
while several Salmonella strains, all with the same PFGE type,
have been repeatedly isolated from the surface water in the same
region in California (Gorski et al., 2013). These previous findings
demonstrate that the diversity of Salmonella varies by space and
sub-regions. These findings indicate that not only did Salmonella
levels (under specific weather conditions) differ significantly
between Florida regions, but that the composition and diversity
of the Salmonella populations also differed substantially.

Weather Was an Important Driver Across
All Three Microbial Targets
Bayesian regression indicates that microbial targets considered
showed evidence of seasonal patterns (Figure 1, Tables 1, 2).
The E. coli levels were 0.33 (95% CI = −0.54, −0.09) log10
MPN/100mL lower in spring than in fall; the differences between
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summer and fall, and winter and fall were negligible and of
indeterminate direction based on PD and ROPE. Odds of total
coliform levels being above the upper LODwas higher in summer
(OR = 2.27; 95% CI = 0.60, 7.82), and lower in spring (OR =

0.51; 95% CI = 0.17, 1.59) and winter (OR = 0.28; 95% CI =
0.09, 0.85) based on the PS (probability of significance) index
being≥0.75, indicating the observed effect is both non-negligible
and in the direction indicated by MAP. Based on the PS from
the Bayesian regression, the likelihood of Salmonella detection
was higher in spring, summer, and winter compared with fall,
but that Salmonella levels (in Salmonella positive samples) were
only higher in summer compared with fall (Table 2). Overall, the
identification of seasonal patterns in water quality is consistent
with the literature (Carter et al., 1987; Haley et al., 2009; Gorski
et al., 2011; Cooley et al., 2014). For example, Haley et al. (2009)
found that Salmonella concentrations in Georgia surface waters
were significantly higher in the summer months compared with
other seasons (P < 0.05). While other Florida studies either did
not sample in Summer due to fewer crops or found no association
with summer, the results from this and previous studies suggest
an elevated risk during the summer months and therefore, future
work will need to test this hypothesis.

Conditional inference tree analysis indicates that water
temperature may drive seasonal trends in total coliform and
Salmonella concentrations, and Salmonella detection (Figures 2,
3). Across all three trees, warmer water temperatures were
associated with elevated levels or an increased likelihood of

detecting the target (Figures 2, 3). This is consistent with past
studies reporting seasonal trends in microbial water quality
and linked elevated temperatures with an increased likelihood
of detecting foodborne pathogens (Polo et al., 1999; Martinez-
Urtaza et al., 2004; Haley et al., 2009; Huang et al., 2014; Antaki
et al., 2016; Liu et al., 2018). Haley et al. (2009) and Antaki et al.
(2016) both note higher Salmonella concentrations when water
temperatures are warmer in Georgia, USA. Higher Salmonella
detection in water samples collected seasonally from 34 locations
along the Puzih River in Taiwan rates in the summer coincided
with higher air and water temperatures (Huang et al., 2014).
Since conditional trees can visualize hierarchical relationships,
it is of interest that in the present study, the primary split for
indicator organisms like total coliforms and generic E. coli were
based on region and water type (Figures 3, 4), while the primary
split for Salmonella was based on weather (Figure 2). Across
all three microbial targets, splits for land use are below those
for region and water type, which indicates that the land-use
relationships identified here were based on region and or water
type-specific (Figures 2–4). The tree analysis indicates that E. coli
levels were highest in North Florida (lakes and rivers), and lowest
in South Florida (canal) sites, with more than ∼3% of the land
(in a 366m buffer) under developed cover. Conversely, when
water temperatures were higher, Salmonella levels were higher
regardless of region, and only at lower water temperatures did
Salmonella levels begin to differ between regions (with levels in
samples from South Florida being higher, compared with levels

FIGURE 2 | Conditional inference tree showing hierarchical associations between environmental factors and log10 Salmonella levels (MPN/100mL) in samples that

were Salmonella positive. A separate tree was fit for if a sample was Salmonella positive or negative, the only split in this tree was based on if air temperature at time of

sample collection was ≤28.2◦C (expected Salmonella prevalence of ∼22%) and >28.2C (expected Salmonella prevalence ∼50%).
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FIGURE 3 | Conditional inference tree showing hierarchical associations between environmental factors and log10 total coliform levels (MPN/100mL); for samples

above the upper limit of detection (LOD) a value of 1.5*LOD was used.

FIGURE 4 | Conditional inference tree showing hierarchical associations between environmental factors and log10 E. coli levels (MPN/100mL); note since lakes and

rivers were samples in North Florida and canals in South Florida, region, and water type are interchangeable as the first split.

from North Florida; Figure 2). According to the tree analysis,
the likelihood of Salmonella detection was only dependent on
on-air temperature, with no differences between regions (air and
water temperature are correlated). The relationships identified

in the total coliform tree are more complex, with the highest
levels being observed in South Florida (canals) when samples
were collected with developed cover (in a 1,098m buffer) above
∼6% and the water temperature was above ∼27◦C; and in
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North Florida (river, lake) when samples were collected from
water temperature above ∼24◦C and forest-wetland cover (in
a 1,098m buffer) was above ∼63% (Figure 3). Overall, the fact
that the first split in the Salmonella tree was based on weather
indicates a stronger effect of weather than of region or water
type on microbial water quality. The opposite conclusion can
be made about land use in the present study, since (i) land
use variables were all lower in the trees and thus dependent on
specific weather and either region/water type conditions being
met. These findings suggest that, for Florida, weather conditions
may be useful for monitoring when food safety hazards are
more likely to be present in agricultural waterways. Additional
research is needed to confirm this finding as previous studies,
have found varying pathogen-temperature relationships, and that
those relationships are complex based on spatiotemporal factors
(e.g., year or site of sample collection) (McEgan et al., 2013;
Topalcengiz et al., 2017;Weller et al., 2020b).Weller et al. (2020b)
compared pathogen levels between Arizona and New York found
a positive relationship between temperature and likelihood of
detecting Salmonella in Arizona, but a complex, polynomial
relationship in New York.

Salmonella Levels Were Not Associated
With E. coli Levels in the Present Study
The PSR proposed microbial standards for pre-harvest
agricultural water and are under review at the time of writing
this manuscript. Currently, the PSR standards require (i) that
agricultural surface water used during production establish
a microbial water quality profile (MWQP) using 20 samples
collected over 2 to 4 years on a rolling basis, and (ii) that
geometric mean (GM) and statistical threshold value (STV) of E.
coli in this sample be ≤126 and ≤410 CFUs/100mL, respectively
(US Food Drug Administration, 2015). An MWQP for each
site could not be created in the present study as we did not
collect 20 samples over 2–4 years, we were able to compare the
likelihood of Salmonella detection and Salmonella concentration
in Salmonella-positive samples to E. coli levels in the same
samples. E. coli levels in individual samples were more likely to
exceed both PSR mean (OR = 5.43; 95% CI = 1.19, 52.52) and
STV (OR= 4.22; 95% CI= 0.56, 47.22) cut-offs in North Florida
than South Florida (Table 1). Salmonella levels in Salmonella
positive samples were not associated with log10 E. coli levels (as
a continuous factor) or if the E. coli levels exceeded (or failed to
exceed) the PSR cut-offs (Table 1). Odds of Salmonella detection
was not associated with log10 E. coli levels or if the levels exceeded
the PSR mean cut-off; odds of Salmonella detection was 2.54
higher (95% CI = 0.66, 8.75) in samples that exceeded the PSR
STV cut-off than in samples that met the cut-off. The association
between E. coli levels and foodborne pathogen presence in
agricultural water is consistent with some studies reporting an
association and others failing to detect an association (Harwood
et al., 2005; McEgan et al., 2013; Pachepsky et al., 2016; Truitt
et al., 2018). McEgan et al. (2013) found that the presence and
strength of the E. coli and Salmonella relationship differed
between sites in the same region of Central Florida. E. coli
was an adequate predictor of the presence of Salmonella in

150mL samples in West Central Florida ponds; when E. coli
populations were higher, Salmonella presence was more likely,
but the relationship between populations differed between ponds
(Havelaar et al., 2017; Topalcengiz et al., 2017). The results
presented here support the conclusion from earlier studies that
E. coli levels are unreliable as an indicator for the presence and
concentration of microbial hazards in agricultural water. As E.
coli is an indicator of fecal contamination and not an index for
pathogen presence, this aligns with traditional convention.

CONCLUSION

The goals of the study were to characterize and compare (1)
the associations between microbial water quality, including
pathogen presence and environmental factors (e.g., water quality,
weather, land use) in North and South Florida waterways; and
(2) Salmonella diversity in North and South Florida waterways.
While drivers of microbial water quality can differ between
intrastate growing regions (e.g., North versus South Florida);
this conclusion must be interpreted cautiously as reported
differences may also be due to the fact that the predominant
water sources used in North (i.e., river, lake) and South (i.e.,
canals) Florida differ. Despite this limitation, this study highlights
the heterogeneity inherent to freshwater environments, and the
need for the improved understanding of pathogen ecology for
specific, intrastate produce growing regions. Future studies are
needed to untangle the relative contribution of the intrastate
growing region and water type to the type of differences reported
here. This understanding will help with the development of
evidence-based risk management strategies for producing safety
risks associated with pre-harvest surface water use. This study
also highlights the need for alternative approaches for assessing
the presence of potential food safety hazards in agricultural water.
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Fecal contamination of surface water has been associated with multiple enteric disease

outbreaks and food recalls. Thus, it is important to understand factors associated with

fecal contamination of agricultural water sources. Since fecal indicator bacteria (FIB)

were used to monitor surface water for potential fecal contamination, the purpose of

the present study was to characterize associations between environmental factors, and

(i) FIB (E. coli, Enterococcus, and coliform) levels, and (ii) host-specific fecal marker

detection. This study used data collected from 224 sites along 3 waterways, which

spanned an urban-rural gradient around Syracuse, New York. Between 2008 and

2017, 2,816 water samples were collected, and E. coli, Enterococcus, and/or coliform

concentrations were enumerated. Thirty-one samples were also tested for human and

ruminant microbial source-tracking markers. Water quality (e.g., turbidity, nitrate) and

weather data were also collected for each site. Univariable Bayesian regression was

used to characterize the relationship between each microbial target and land use, water

quality, and weather factor. For each model, probability of direction and region of practical

equivalence overlap (ROPE) were calculated to characterize the association’s direction

and strength, respectively. While levels of different FIB were not correlated with each

other, FIB levels were associated with environmental conditions. Specifically, FIB levels

were also positively associated with temperature, nutrient and sediment levels. Log10 E.

coli levels increased by 0.20 (CI = 0.11, 0.31) and log10 Enterococcus levels increased

by 0.68 (CI= 0.08, 1.24) for each log10 increase in salinity and nitrate, respectively. These

findings may indicate that similar processes drove microbial, sediment, and nutrient

contamination of the sampled watersheds. While fecal contamination was strongly

associated with land use, the direction of association varied between FIBs and the buffer

distance used to calculate land use metrics. E. coli levels and human marker detection

were positively associated with percent pasture cover within 122, 366, and 1,098m of the

sampling site, while Enterococcus and coliform levels were only associated with pasture
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cover within 1,098m (not 122 or 366m). Ruminant markers were positively associated

with pasture cover within 122m, but not 366 or 1,098m. These findings highlight the

importance of considering (i) adjacent land use (and associated non-point sources of

contamination) when developing strategies for managing fecal hazards associated in

agricultural and recreational water, and (ii) spatial scale (e.g., 122 vs. 1,098m) when

developing these strategies.

Keywords: fecal indicator bacteria, Escherichia coli, Enterococcus, fecal source tracking, Bayesian regression,

water quality

INTRODUCTION

Fecal contamination of surface water represents a public health
hazard, and threatens the economic and recreational value of
waterbodies (Rabinovici et al., 2004; Dwight et al., 2005; Given
et al., 2006; DeFlorio-Barker et al., 2017; U.S. Environmental
Protection Agency SIM., 2018; Calderón-Arrieta et al., 2019).
Indeed, fecal contamination of agricultural or recreational water
has been identified as the probable cause of multiple enteric
disease outbreaks (Ackers et al., 1998; Wachtel et al., 2002;
Johnson, 2006; Greene et al., 2008; Barton Behravesh et al., 2011;
Food Drug Administration, 2019, 2020). For example, a 2008
multistate Salmonella outbreak in the United States was traced
back to the use of contaminated water to irrigate hot peppers in
2008. While this outbreak caused 1,200 salmonellosis cases, it
also cost tomatoes growers $25 million in the US, as tomatoes
were originally misidentified as the food vehicle, before hot
peppers were eventually identified (Barton Behravesh et al., 2011;
Ribera et al., 2012). Similarly, researchers estimate that enteric
illness attributable to recreational water exposures costs $1,220
per 1,000 recreators, or ∼$2.2–$3.7 billion annually in the US
(DeFlorio-Barker et al., 2017; U.S. Environmental Protection
Agency SIM., 2018). Due to the substantial economic burden and
threats of disease associated with fecal contamination of surface
water sources, there is considerable interest in mitigating fecal
inflows into waterbodies. However, effective mitigation of fecal
inflows, requires identifying point and non-point sources of fecal
contamination and understanding spatiotemporal variation in
these inflows, and in surface water quality. Multiple studies
have been conducted to link impaired surface water quality, as
indicated by fecal indicator bacteria (FIB) levels, with specific
point and non-point sources, and to understand the processes
that drive contaminant movement from sources to surface water
bodies. For instance, a study that intensively surveyed water
quality within an Iowa watershed found that levels of E. coli, a
FIB, were positively associated with agricultural land use near
the sampling site (Pandey et al., 2012). Conversely, a study
that monitored FIB levels in Pennsylvania streams found that
FIB levels were positively and strongly associated with urban
proximal land use, but only weakly associated with agricultural
land use at the watershed scale (Duris et al., 2013). Multiple
studies have also shown that stream sediments can act as in-
channel stores for FIB, and that disturbance of these sediments
(e.g., during storm events) can re-introduce the bacteria into
the water column (Nagels et al., 2002; Muirhead et al., 2004).

However, resuspension may be affected by waterway-specific
characteristics, including flow rate and sediment size (Zhou et al.,
2017; Fluke et al., 2019). Similarly, potential point and non-point
sources of fecal contamination will vary between and within
waterways. As a result, it is difficult to adapt the findings of these
and other studies to develop effective, practicable strategies for
mitigating fecal contamination for individual waterways since
(i) potential sources can differ substantially between waterways,
or even between reaches in the same waterway, (ii) fecal
contamination is driven by complex processes that are affected
by the environmental heterogeneity inherent to freshwater
environments (Weller et al., 2020a). Many of the streams that
pass-through Syracuse, New York (NY) and flow into Onondaga
Lake illustrate the difficulties associated with identifying
strategies for optimally mitigating fecal contamination. Three
of these streams, Onondaga Creek, Ley Creek and Harbor
Brook (Figure 1), are listed as impaired by the NY State
Department of Environmental Conservation (https://www.dec.
ny.gov/chemical/31290.html) due to excess microbial, nutrient,
ammonia and/or turbidity levels, and have been the focused
of remediation efforts for more than 30 years (Ganley et al.,
1982). Onondaga Creek was identified in the mid-1990s as being
responsible for most of the fecal coliform loads and combined
sewer overflow (CSO) flows entering Onondaga Lake (Steven,
1996), and the dominant source for sediments entering the
lake (Prestigiacomo et al., 2007). Despite long-term monitoring
efforts and attempts at remediation in these waterways (e.g., by
reducing CSOs; Ganley et al., 1982; Effler et al., 2009; Walker
et al., 2013), impairment remains a problem, and as a result,
recreational uses, including swimming and fishing, are limited
or prohibited in these waterways. For example, monitoring
efforts between 2000 and 2007 showed that fecal coliform
concentrations in Onondaga Creek exceeded NY State water
quality standards on 16% (34/215) and 75% (162/215) of dry
weather days at a rural and urban sampling site, respectively
(https://static.ongov.net/WEP/AMP/DATA_DOWNLOAD_
AREA/NYSDEC%20Data%20Request/Microbial%20Trackdown
%20Study/MTS%20Reports/MTS%20Phase%203%20Final
%20Report/MTS%20Phase%203%20Final%20Report_4-11-
19.pdf). Such findings indicate that combined CSO discharge
is not solely responsible for bacteria release to Onondaga
Creek, or other Syracuse-area waterways. Data from other
monitoring efforts in the area supported this conclusion and
found that fluctuations in fecal coliform bacteria levels could
not be explained by precipitation-driven discharges alone, and
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FIGURE 1 | Location and watersheds for the three streams (Harbor Brook,

Ley Creek, and Onondaga Creek), and the tributaries of these streams, that

were sampled in the present study. Note: Cold Brook and City Line/Spring

Brook were treated as a single waterway.

that there appeared to be a strong spatial signal in the data
with bacterial concentrations being substantially higher within,
compared to outside, the Syracuse city limits (https://www.oei2.
org/microbial-trackdown-study/). Indeed, dry weather release
was identified as a significant factor, and it was hypothesized that
dry weather discharge was the product of an aging sewer system
due to broken pipes, poor cross linkages, or illicit connections.
Such a hypothesis is consistent with the literature (Ahmed
et al., 2005; Sowah et al., 2014, 2017; Weller et al., 2020b), as
multiple studies have linked septic system density, sewer system
age, and distance to discharge sites/septic systems with ground
and surface water impairment. Therefore, this study aimed to
(i) identify potential sources of fecal contamination in urban
and rural reaches of Onondaga Creek, Ley Creek, and Harbor
Brook (Syracuse, NY area waterways), and (ii) characterize
associations between microbial indicators of fecal contamination
and environmental factors (e.g., weather, nutrient levels), and
(iii) provide recommendations on how to prioritize mitigation
efforts to maximize restoration efforts.

MATERIALS AND METHODS

Study Design and Water Collection Sites
The data reported here were generated as part of a three-
phase collection. During the first phase of sampling (No of
Samples = 189; June 11 to October 8, 2014), sampling occurred
irrespective of ambient or antecedent weather conditions; phases
two and three were conducted to reflect dry weather (i.e.,

sampling was only conducted if <0.20 cm of rain fall during
the preceding 48 h). Three waterways were the main focus of
sampling (Figure 1): Ley Creek (No. of samples tested for ≥1
microbial targets (N)= 291; Number of sites where these samples
were collected (S) = 58], Onondaga Creek (N = 1,700; S = 109),
and Harbor Brook (N = 612; S = 38; Figure 2). Additionally, 1
tributary of Ley Creek [Sanders Creek (N = 1; S = 1)], and 4
tributaries of Onondaga Creek [Cold Brook (N = 34; S = 6),
Hopper Brook (N = 48; S = 8), Kimber Brook (N = 4; S = 1),
and West Branch (N = 126; S= 3); Figure 1] were sampled.

All sampled waterways follow a gradient from rural areas
dominated by agriculture and forested to outlets on Onondaga
Lake, which are located in the urban core of Syracuse, NY.
The watersheds for the three waterways are 35 km2 (Harbor
Brook), 76 km2 (Ley Creek), and 285 km2 (Onondaga Creek),
representing 5, 10, and 49% of the Onondaga Lake drainage
area, respectively (Figure 1). Sample site locations along each
waterway were selected to ensure accessibility for samplers, and
to ensure both rural and urban sites were represented. A subset
of samples (N = 31) were collected for microbial source-tracking
marker (MST) analysis between August 2015 and August 2017
fromCold Brook (N = 8), Harbor Brook (N = 10), Hopper Brook
(N = 10), and Onondaga Creek (N = 3). The sites used to collect
MST data were selected to reflect sites where (i) more than one
fecal source appeared to be present, including human and non-
human (e.g., agricultural inputs, wetlands or ponds with large
waterfowl populations), (ii) where past source-tracking efforts
have been unable to identify sources of fecal contamination, and
(iii) where fecal coliforms were consistently high during routine
monitoring efforts. Samples from these sites were only tested
for MST presence if fecal coliforms in a concomitantly collected
sample were ≥ 200 cfu/100 mL.

To characterize the impact of land use in the area immediately
around each sample collection site the proportion of land within
122, 366, and 1,098m of each site under pasture-hay, cropland,
forest-wetland, and developed (>20% impervious) cover was
determined [for an example of the code used see: https://
github.com/wellerd2/Calculating-land-use-land-cover-and-
landscape-structure-parameters] (Rehmann and Soupir, 2009).
Briefly, land use data was extracted from the National Land
Cover database (https://www.mrlc.gov/national-land-cover-
database-nlcd-2016) for the relevant year, and buffer distance.
Buffer distances were selected based on Leafy Green Marketing
Agreement (https://lgmatech.com/wp-content/uploads/2020/
08/CA-LGMA-Metrics-August-2020_Final_Clean_9-18-20.
pdf) recommended buffers from the location of any adjacent
land uses that are likely to present a food safety risk (Table
7 from Crop Land and Water Sources Adjacent Land Uses).
For example, the recommended distance from cropland to a
concentrated animal feeding operation (CAFO) with >1,000
head is ∼1,200 feet (366m). We selected this buffer, and buffers
1/3 smaller (122m) and larger (1,098m) to obtain land use
data. Additionally, to compare water quality between rural
vs. urban areas, sites were characterized as urban if they were
within the boundaries of the city of Syracuse (Figure 2). It is also
important to note that four of the five sites to the north of the
city limits, while in a predominantly developed landscape are in
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FIGURE 2 | (A) Developed (red), forest-wetland (green), pasture (yellow), crop (brown), and water (blue) cover in the study area; dots show sampling sites. In (B–D),

the size of the dots is proportional to E. coli, Enterococcus, and fecal coliform levels, respectively, in each sample. Since this was a longitudinal study, locations were

jittered to facilitate visualization of levels in samples collected at the same site but different times. The red lines show the Syracuse, NY city limits; sites inside these

limits were considered urban; all other sites were considered rural.

patches of non-developed land cover. However, recognizing that
dichotomizing into rural vs. urban oversimplifies that complex
landscape around Syracuse, separate analyses using the amount
of developed cover around the site were also implemented.

Sample Collection and Analysis
Each site was sampled up to twice a month between May and
November, with samples being collected annually from 2008 to
2017 (except 2010 or 2011). Sampling within each waterway
was performed in a downstream to upstream manner to avoid
sampling the same slug of water. All samples were collected
at the same time, varying volumes outlined were collected in
different bottles for the various assays including microbiological,
physiochemical, and nutrient/sediment analyses.

For microbiological analysis, direct grab samples were
collected from the centerline of the waterway by submerging
a sterilized 150-mL plastic bottle just below the water surface.
Approximately 125mL of each water sample was transferred
to a sterilized and pre-preserved (with sodium thiosulfate)
150-mL coliform bottle. Approximately 10mL of each water
sample was transferred to a 25-mL glass vial for chloride
analysis (see below). When samples were collected for MST
analysis, a separate 1-L grab sample was also obtained using
the direct grab method. Total coliform, fecal coliform, E. coli
and/or Enterococcus levels were enumerated using the 125-
mL sample <8 h after collection. FIB and total coliform levels
were enumerated by the Onondaga County Health Department
(a certified laboratory) using NY State Department of Health
standard methods (Supplementary Table 1). Separately, samples
collected for MST detection were processed <24 h after

collection by the Wadsworth Laboratory (NY State Department
of Health, Albany, NY; New York State Department of
Environmental Conservation, 2017). Briefly, after undergoing
anerobic enrichment to select for members of Bacteroidales
(Green et al., 2012, 2014, 2019), separate PCR-screens were
performed, for host-specific avian (Lu et al., 2008; Green et al.,
2012), canid (New York State Department of Environmental
Conservation, 2017), human (Bernhard and Field, 2000a; Shanks
et al., 2007, 2009; Green et al., 2014), and ruminant fecal markers
(Bernhard and Field, 2000b; Supplementary Table 1).

At each sampling event, data were also collected on
physicochemical water quality parameters and weather factors.
Data on water temperature, pH, dissolved oxygen, specific
conductance, and turbidity were collected in situ using a YSI
650 MDS handheld device (YSI Inc., Yellow Springs, OH,
USA) equipped with a 6600 or 6820-V2 multi-parameter
water quality probe. Chloride was measured in situ using
a HachTM pocket colorimeter. To enumerate nutrient and
sediment levels, a separate 7.6 L sample was collected from
the same location, and at the same time as the sample used
to enumerate FIB levels. The 7.6 L sample was divided into
separate 1 and 0.5 L aliquots for nutrient and sediments
analysis, respectively (Supplementary Table 1). It is important
to note that not all parameters were measured in all samples
(e.g., due to equipment malfunctions, availability of staff,
time conflicts, feasibility of obtaining samples; S2). Weather
data (air temperature, rainfall, relative humidity, and wind
speed) for each sampling event were obtained from the
Network for Environmental and Weather Applications
(NEWA). Data was obtained using the weather station

Frontiers in Water | www.frontiersin.org 4 February 2022 | Volume 3 | Article 741676115

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Weller et al. FIBs in Urban-Rural Gradients Streams

closest to each sampling site location (http://newa.cornell.
edu/).

Statistical Analysis
All analyses were performed using R version 3.6.2 (R Foundation
for Statistical Computing, Vienna, Austria). For all analyses, all
data were log10-transformed.While 2,816 samples were collected,
not all analytes were enumerated in all samples; as a result, 5-
point summaries and proportion of missingness were calculated
for each variable (Supplementary Tables 2, 5, 6).

Bayesian mixed models were developed to (i) characterize
spatial and temporal patterns in log10 FIB levels, and human and
ruminantMSTmarkers presence, and (ii) identify environmental
factors associated with log10 FIB levels or probability of MST
detection. Log-linear Bayesian mixed models were developed
when the outcome was log10 E. coli, Enterococcus, fecal coliform,
or total coliform levels, while Bayesian linear mixed models
were developed when the outcome was probability of human or
ruminant MST detection. To characterize spatial and temporal
patterns, models were developed with fixed effects of elevation,
latitude, longitude, rurality (i.e., if the sample was collected
inside or outside Syracuse, NY city-limits), and waterway, and
of year and month, respectively. For models with a spatial fixed
effect, month was included as a random effect, while waterway
was included as a random effect for models with temporal
fixed effects.

To identify relationships between fecal indicators and
environmental factors, Bayesian mixed models were developed
with random effects of month and waterway. These models
included a single fixed effect for land use (proportion of land
within 122, 366, or 1,098m of the sampling site under crop,
pasture-hay, forest-wetland or developed cover), weather (air
temperature at sampling and 0–3 d before sampling, rainfall
0–1, 1–2, and 2–3 d before sampling, and wind speed 0–1 d
before sampling), or water quality parameters (log10 chloride,
conductivity, total dissolved solids, nitrate, total organic carbon,
total phosphorous, salinity, total suspended solids, and turbidity
levels as well as pH). Since not all analytes were measured in
all samples, models were implemented only if there were at
least 20 pairwise observations for both the microbial target and
environmental factor of interest (Supplementary Tables 5, 6).
Due to the large number of samples tested for fecal coliforms (N
= 2,658) compared to the other FIBs, fecal coliformmodels could
be implemented for all covariates considered here. Conversely,
Enterococcus models could not be implemented with chloride,
total dissolved solids, total organic carbon, or total phosphorous
as the explanatory variables.

Models were fit using the brms package, uninformative priors,
3 chains, and thinning set to 10 (Bürkner, 2017, 2018). While
the number of iterations per chain was set to 5,000 (burn-in
of 2,500) for most models, there were convergence issues for
a subset of models (Bürkner, 2017, 2018). For those models
with convergence issues, the number of iterations per chain
and burn-in iterations were increased per the package author’s
recommendation (Bürkner, 2017, 2018). The median, mean,
maximum a posteriori (MAP), and 89% credibility interval
for the effect estimates were calculated using the bayestestR

package (Makowski et al., 2019a). Bayesian credibility intervals
are not interpreted in the same way as frequentist confidence
intervals. Instead the 89% credibility interval indicates the
highest probability portion of the posterior distribution of
possible effect estimates and should be interpreted as: “Given the
observed data, the effect estimate has a 89% probability of falling
between x and y” (Makowski et al., 2019a).

Unlike frequentist regression models, Bayesian models are
not based on assessing statistical significance; instead, Bayesian
models offer a probabilistic (more flexible) view of the parameters
and their corresponding uncertainty. As such, Bayesian analyses
are more robust to small sample size, do not rely on a
researcher-specified p-value threshold, and are less prone to
Type I errors compared to frequentist approaches. Therefore,
rather than concluding that an association is present when
the P-value is below a certain threshold, conclusions can be
drawn by determining if the parameter is outside of a range
of practically negligible effect. This measure, called the ROPE
percentage, indicates the magnitude of effect, and is calculated
by determining the percent overlap between the 89% credibility
interval and the range of practically no effect. Thus, the
closer the ROPE percentage is to 0, the more confident we
can be that the given factor has a substantial effect on FIB
levels or probability of MST detection. Specifically, we use the
following cutoffs for ROPE interpretation: >99% ∼ negligible
effect, >97.5% ∼ probably negligible effect, between 2.5 and
97.5% ∼ uncertain effect, <2.5% ∼ non-negligible effect, <1%
∼ significant effect (Makowski et al., 2019a). Associations in
Bayesian regression can also be assessed using the probability
of direction (PD), which is an index of if a positive or negative
effect exists regardless of if that effect is negligible or non-
negligible. The PD correlates strongly with frequentist P-values
with PD values near 1.0 indicating greater certainty that the
effect of the factor is truly positive or negative (i.e., indicates
confidence in the direction of the association (Makowski et al.,
2019a,b). Specifically, PD values of 0.95, 0.975, 0.995, and 0.9995
correspond to two-sided frequentist P-values of 0.10, 0.05, 0.01,
and 0.001, respectively (Makowski et al., 2019a,b). The ROPE and
PD measures are independent, and a factor can have a high PD,
but low ROPE value, indicating high certainty in the direction of
a negligible effect. The inverse would indicate that the parameter
has a non-negligible (or substantial) effect, but the direction of
that effect is unclear. Overall, PD and ROPE can be used in
conjunction to make a statement of the form, “the effect of the
given factor has a probability of PD of being negative/positive,
and can be considered as significant/nonsignificant (Makowski
et al., 2019a).” Measures of (PS) were also calculated, and
indicate the probability that the parameter’s effect is above a
given threshold, representing a negligible effect in the median’s
direction; this is a unidirectional equivalence test that indicates
if the effect is both non-negligible, and in a given direction
(Makowski et al., 2019a,b). Values should be larger than 0.5
to indicate practical significance; a cut-off of 0.75 was used
here to be conservative. Based on the recommended cut-offs
and interpretations for PD, PS, and ROPE, we determined
that with PS >0.50, PD >0.75, and ROPE <0.25 warranted
reporting here.

Frontiers in Water | www.frontiersin.org 5 February 2022 | Volume 3 | Article 741676116

http://newa.cornell.edu/
http://newa.cornell.edu/
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Weller et al. FIBs in Urban-Rural Gradients Streams

RESULTS AND DISCUSSION

For the 2,816 samples collected, microbial and
physicochemical water quality parameters were summarized
in Supplementary Table 2. In total, E. coli, Enterococcus, total
coliform, and fecal coliform levels were enumerated in 281,
288, 96, and 2,658 samples, respectively. The average log10
concentration (CFU/100-mL) of E. coli, Enterococcus, total
coliform, and fecal coliform levels were 2.2 [Standard Deviation
(SD) = 0.9; Range = −0.3, 4.2), 2.0 (SD = 0.9; Range = −0.3,
5.0), 3.0 (SD= 1.0; Range=−0.3, 4.2), and 2.5 (SD= 0.8; Range
= −0.4, 7.2), respectively (Supplementary Table 2). Similar
summaries of physicochemical water quality in the present study
can be found in Supplementary Table 2. For example, average
total suspended solids was 7.0 mg/L (SD = 110.5; Range = 1.0,
2,077.0; Supplementary Table 2).

Lack of Association Between MST Markers

and FIB May Indicate Multiple Sources of

Contamination
Fecal coliform levels were positively associated with Enterococcus
and total coliform levels (Table 1, Supplementary Table 3).
While E. coli levels were associated with levels of other
FIB, land use and spatial factors, such as rurality, that were
positively associated with fecal coliform and Enterococcus levels
tended to be negatively associated with E. coli levels, and
vice versa (Tables 1–3). Of the 31 samples tested for host-
specific microbial source tracking markers (MST), 22 (71%)
and 11 (35%) samples were positive for human and ruminant
markers. Detection of human markers were positively associated
with detection of ruminant markers (PD = 0.91; PS = 0.80);
however, the magnitude of this effect is uncertain (ROPE =

0.16; Supplementary Table 3). Additionally, neither marker was
associated with levels of any of the other microbial targets
considered here (PS <0.50, PD <0.95, and ROPE >0.025). This
may indicate that (i) human and ruminant fecal contamination
were coming from the same sources, (ii) that sources of FIB were
different from sources of human and ruminant contamination,
and/or (iii) that other host-specific sources of contamination
not tested here were driving fecal contamination in the present
study. For example, past studies have found that FIBs, such as
E. coli can naturalize and survive in non-host environments
(e.g., algal mats, water, soil; (Hendricks, 1967; Byappanahalli
et al., 2003; Ksoll et al., 2007; Nautiyal et al., 2010; Goto and
Yan, 2011; NandaKafle et al., 2018)). As a result, FIB levels
may not reflect recent fecal contamination events, resulting in a
lack of association between host-specific markers and FIB levels.
It is also interesting to note that the findings reported here
are inconsistent with a previous study conducted on Onondaga
Creek (NY, US), which found a significant positive association
between human marker detection and Enterococcus levels, and a
significant inverse association between detection of human and
ruminant markers (Green et al., 2019). This discrepancy may be
due to the fact that this former study collected samples from
Onondaga Creek in 2015, while the present study represents
a larger number of waterways and a longer sampling period

(2008–2017). Water quality is known to vary over space and
time, and to vary by the spatial scale of analysis (e.g., Goyal
et al., 1977; Pandey et al., 2012; Partyka et al., 2018a; Fluke
et al., 2019; Weller and Jordan, 2020; Weller et al., 2020b). It
may also indicate that processes driving fecal contamination
differ for each of the watersheds sampled here, complicating
detection of watershed-specific patterns of contamination (which
were the focus of the previous study on Onondaga Creek, NY,
US). However, since only three samples from Onondaga Creek
and 31 samples total were tested for MST markers, examining
watershed-specific patterns of association were outside the scope
of the study reported here, and should be investigated in future
studies on Onondaga Lake, and other watersheds.

Presence and Strength of Association

Between FIB Levels and Adjacent Land

Use Was Dependent on the Size of the

Buffer Used to Calculate Land Use

Parameters
The distribution of FIB was non-uniform with Enterococcus
and fecal coliform levels being higher and E. coli levels being
lower, on average, within the city of Syracuse, NY, compared
to outside it (i.e., urban vs. rural samples; Figure 1; Table 2);
neither the probability of detecting human or ruminant MST
markers were associated with rurality (Supplementary Table 3).
In fact, while E. coli levels were, on average, 0.35 log10
CFU/100-mL (89% Credibility Interval [CI] = −0.61, 0.00;
PF = 0.94; ROPE = 0.10) lower, and Enterococcus and fecal
coliform levels were, on average, 0.32 log CFU/100-mL (CI =
0.13, 0.52; PD = 0.99; ROPE < 0.01) and 0.51 log CFU/100-
mL (CI = 0.44, 0.59; PD = 1.00; ROPE < 0.01) higher
in samples collected from urban, compared to rural sites.
Since latitude increased and elevation decreased along the
rural-urban gradient, it is not surprising that fecal coliforms
and Enterococcus were positively associated with latitude and
negatively associated with elevation (Syracuse, NY is farther
north and at a lower elevation, than surrounding rural areas),
while the reverse patterns were observed for E. coli, and human
and ruminant MST markers (Table 2). Overall, these patterns
are also consistent with the land use associations observed here.
Specifically, the only association between land use and E. coli
levels was a positive association with pasture cover (Table 3),
which mirrors the positive association between probability of
detecting human and ruminant MST markers and pasture cover
(Supplementary Table 4). Conversely, Enterococcus and fecal
coliform levels were negatively associated with agricultural land
uses and forest-wetland cover, but positively associated with
developed cover (Table 3). Interestingly, while the presence
and magnitude of the association between E. coli levels and
pasture cover appeared robust to buffer size, the associations
between Enterococcus and fecal coliform levels and pasture
cover, and between ruminant detection and pasture cover
were only evident for 1,098 and 122m buffers, respectively
(Table 3, Supplementary Table 4). The relationship between
total coliform levels and cropland, human marker detection,
and cropland, and ruminant marker detection and developed
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TABLE 1 | Results of Bayesian mixed models where there was evidence of a positive or negative association [i.e., practical significance (PS) > 0.50, probability of

direction (PD) > 0.75, and overlap with region of practical equivalence (ROPE) < 0.25] between log10 FIB levels, and either temporal, water quality, or weather features.

Factor Effect estimate 89% Credibility interval PD PS ROPE

Lower Upper

E. coli

Average air temp. 0–3 d (◦C) 0.19 0.06 0.31 0.98 0.88 0.08

Conductivity (umHos/cm) 0.21 0.11 0.31 1.00 0.96 <0.01

Enterococcus (log10 CFU/100-mL) 0.39 0.15 0.64 1.00 0.98 <0.01

Fecal coliforms (log10 CFU/100-mL) 0.75 0.70 0.79 1.00 1.00 <0.01

Month (November = reference)a

April −0.03 −0.43 0.35 0.87 0.37 0.37

July 0.62 0.26 1.00 1.00 0.98 <0.01

August 0.25 −0.10 0.59 0.87 0.76 0.21

September 0.41 0.06 0.80 0.96 0.91 0.03

October −0.19 −0.57 0.18 0.78 0.63 0.27

Nitrate (mg/L) 0.16 0.06 0.26 0.99 0.85 0.11

Salinity (ppt) 0.20 0.11 0.31 1.00 0.95 <0.01

Total coliforms (log10 CFU/100–mL) 0.86 0.69 1.03 1.00 1.00 <0.01

Total rainfall 0–1 d (mm) 0.14 0.04 0.27 0.96 0.71 0.24

Turbidity (NTU) 0.26 0.19 0.33 1.00 1.00 <0.01

Enterococcus

Air temp. at sampling (◦C) 0.19 0.06 0.31 0.99 0.85 0.10

Average air temp. 0–3 d (◦C) −0.20 −0.46 0.10 0.88 0.74 0.24

Fecal coliforms (log10 CFU/100-mL) 0.75 0.69 0.81 1.00 1.00 <0.01

Month (November = reference) a

July 0.68 0.41 0.98 1.00 1.00 <0.01

August 0.46 0.19 0.74 1.00 0.98 <0.01

September 0.49 0.21 0.75 1.00 0.98 <0.01

October 0.85 0.40 1.22 1.00 1.00 <0.01

Nitrate (mg/L) 0.68 0.08 1.24 0.96 0.95 0.01

pH −0.30 −0.42 −0.16 1.00 0.99 <0.01

Total rainfall 2–3 d (mm) 0.23 0.09 0.37 1.00 0.92 0.02

Total suspended solids (mg/L) 1.03 −0.48 2.39 0.89 0.87 0.04

Turbidity (NTU) 0.20 0.08 0.33 0.99 0.89 0.05

Wind speed 0–1 d (average km/h) 0.30 0.18 0.41 1.00 1.00 <0.01

Year 0.22 0.16 0.28 1.00 1.00 <0.01

Fecal coliforms

Conductivity (umHos/cm) 0.18 0.15 0.21 1.00 1.00 <0.01

Month (November = reference)a

March −0.56 −1.10 −0.03 0.96 0.92 0.04

April −0.51 −0.74 −0.29 1.00 1.00 <0.01

May −0.58 −0.78 −0.37 1.00 1.00 <0.01

June −0.06 −0.23 0.09 0.72 0.33 0.67

July 0.08 −0.07 0.20 0.80 0.39 0.64

August 0.03 −0.11 0.15 0.61 0.18 0.83

September 0.02 −0.12 0.15 0.62 0.17 0.85

October −0.23 −0.37 −0.09 0.99 0.92 0.03

Nitrate (mg/L) 0.33 0.26 0.41 1.00 1.00 <0.01

Salinity (ppt) 0.23 0.20 0.27 1.00 1.00 <0.01

Total coliforms (log10 CFU/100–mL) 1.04 0.88 1.18 1.00 1.00 <0.01

Total dissolved solids (mg/L) 0.39 0.29 0.49 1.00 1.00 <0.01

Total organic carbon (mg/L) 1.07 0.71 1.48 1.00 1.00 <0.01

(Continued)
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TABLE 1 | Continued

Factor Effect estimate 89% Credibility interval PD PS ROPE

Lower Upper

Total phosphorous (mg/L) 0.48 0.42 0.54 1.00 1.00 <0.01

Total suspended solids (mg/L) 0.17 0.10 0.23 1.00 0.93 0.01

Turbidity (NTU) 0.25 0.22 0.29 1.00 1.00 <0.01

aNote for multi-level categorical variables, if any level met the PS, PD, and ROPE thresholds [i.e., PS > 0.50, PD > 0.75, and ROPE < 0.25], results for all levels of the variable are

reported. Variables not shown in the table, were not significant, and were not shown.

and forest-wetland cover also seemed dependent on buffer size.
Thus, while there were associations between specific land uses
and each fecal indicator, these associations appeared dependent
on the scale of analysis. This is not unexpected, as a previous
study that examined nutrient pollution in Maryland waterways
also found that spatial scale of analysis affected model results
(Weller and Jordan, 2020). Similarly, a study in Arkansas, US
that characterized associations between E. coli levels and riparian
land use found that the size and area of the riparian buffer
affected the change-point (i.e., the point within the land use
parameter that demarcates a significant change in E.coli levels;
(Scott et al., 2017)). Since the buffers used here were selected
to replicate the recommended distance between large livestock
operations (>1,000 head) and agricultural water sources in the
Leafy Green Marketing Agreement (i.e., 366m), this finding
has direct implications for produce safety, and highlights the
importance of considering spatial scale (e.g., using 122, 366, or
1,098m buffers), when developing strategies and/or guidance for
identifying potential fecal contamination risks.

Regardless of the scale for analysis, the study reported here
identified strong associations between adjacent land use and fecal
contamination, which is consistent with past studies conducted
in the Northeastern US, and other areas (Shiels and Guebert,
2010; Wilkes et al., 2011; Duris et al., 2013; Scott et al., 2017;
Wu, 2019; Weller et al., 2020b). For instance, we found that
E. coli levels increased by 0.30 (89% CI = 0.17, 0.39; PD
= 1.00; ROPE <0.01) log10 CFU/100-mL for each percent
increase in pasture cover within 1,098m of the sampling site
(Table 1); this positive linear association is consistent with the
findings of the aforementioned Arkansas (US) study (Scott
et al., 2017). Conversely, Enterococcus and fecal coliform levels
both decreased as pasture cover increased, but increased as
developed cover increased (Table 1). Given the pattern of land
use associations observed here, our findings suggest that the
sources of Enterococcus and fecal coliform contamination differ
from sources of E. coli or MST markers, with the former coming
from developed areas, and the latter from agricultural areas.
While we would expect human markers to be associated with
urban areas and developed land uses, the association between
human markers and agricultural land uses and rural areas may
indicate the presence of human fecal contamination sources in
rural hinterlands. For example, areas within Syracuse are on
municipal water and sewer, while the rural areas to the south
largely utilize septic; as such one source of fecal contamination
in rural areas may be failing septic. While such a hypothesis is

supported by past studies conducted in Queensland, Australia
(Ahmed et al., 2005), Georgia, US (Sowah et al., 2014, 2017),
Michigan, US (Verhougstraete et al., 2015), and New York, US
(Rao et al., 2015), data on the age, location, and density of rural
fecal contamination sources, such as septic systems, were not
available and this could not be investigated in the present study.
This highlights a specific research gap, the impact and source of
rural fecal contamination, that future studies in the Onondaga
Creek Watershed should address.

Despite differences in land use associations for the various
fecal indicators, levels of all indicators were higher in Onondaga
Creek, compared to the other waterways sampled (Table 2,
Supplementary Table 3). For instance, E. coli levels in Kimber
Brook were almost 2 log10 (89% CI = −3.29, −0.31; PD =

0.97; ROPE<0.01) lower, on average, than levels in Onondaga
Creek. These findings support previous studies’ conclusions
that Onondaga Creek was responsible for most of the bacterial
and sediment loads entering Onondaga Lake (Steven, 1996;
Prestigiacomo et al., 2007). Given the consistency across fecal
indicators, including the host-specific markers, this suggests
that, independent of land use near each sampling site, fecal
contamination patterns varied between the waterways sampled
here with Onondaga Creek being more impaired than the other
waterways. Thus, while this finding is not surprising, it is
important for guiding efforts to mitigate fecal contamination of
surface waters that flow into Onondaga Lake. Specifically, since
waterways sampled here drain into Onondaga Lake, this finding
suggests that mitigation efforts should target Onondaga Creek, as
opposed to Ley Creek, Harbor Brook, or Hopper Brook.

Nutrient and Sediment Pollution Were

Associated With FIB Contamination, Which

May Indicate Shared Contamination

Sources or Similar Processes for

Transporting Contaminants From Source

to Waterway
All FIB tested for in the present study were positively associated
with nutrient (e.g., nitrate, phosphorous), chemical (e.g., salinity,
conductivity), or sediment (e.g., turbidity, total suspended
solid) contamination. For example, the concentration of E. coli,
Enterococcus, and fecal coliforms increased by 0.16 (CI = 0.06,
0.26; PD = 0.99; ROPE = 0.11), 0.68 (CI = 0.08, 1.24; PD
= 0.96; ROPE = 0.01), and 0.33 (CI = 0.26, 0.41; PD =

1.00; ROPE < 0.01) log10 CFU/100-mLs, respectively, for each
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TABLE 2 | Results of Bayesian mixed models where there was evidence of a positive or negative association [i.e., practical significance (PS) > 0.50, probability of

direction (PD) > 0.75, and overlap with region of practical equivalence (ROPE) < 0.25] between log10 FIB levels, and spatial features.

Factor Effect estimate 89% Credibility interval PD PS ROPE

Lower Upper

E. coli

Latitude (◦) −0.22 −0.34 −0.11 1.00 0.93 <0.01

Urban site (Rural = Reference) −0.35 −0.61 0.00 0.94 0.85 0.10

Waterway (Onondaga Creek = reference)a

Cold Brook −1.03 −1.73 −0.28 0.99 0.98 <0.01

Harbor Brook −0.30 −0.64 0.05 0.91 0.83 0.13

Hopper Brook −0.44 −1.02 0.22 0.87 0.80 0.12

Kimber Brook −1.80 −3.29 −0.31 0.97 0.96 <0.01

West Branch −0.22 −0.57 0.15 0.83 0.70 0.24

Enterococcus

Elevation −0.35 −0.53 −0.15 1.00 0.98 <0.01

Latitude (◦) 0.16 0.06 0.26 0.99 0.81 0.15

Urban site (Rural = reference) 0.32 0.13 0.52 0.99 0.95 <0.01

Waterway (Onondaga Creek = reference)a

Harbor Brook −0.28 −0.50 −0.06 0.99 0.91 0.04

Ley Creek −0.35 −0.58 −0.07 0.99 0.93 0.03

West Branch −0.60 −1.05 −0.13 0.98 0.96 <0.01

Fecal coliforms

Elevation −0.20 −0.24 −0.17 1.00 1.00 <0.01

Latitude (◦) 0.14 0.11 0.17 1.00 0.98 <0.01

Urban site (Rural = Reference) 0.51 0.44 0.59 1.00 1.00 <0.01

Waterway (Onondaga Creek = reference)a

Cold Brook −0.11 −0.39 0.14 0.77 0.53 0.42

Harbor Brook −0.10 −0.18 −0.03 0.98 0.51 0.48

Hopper Brook 0.48 0.28 0.75 1.00 1.00 <0.01

Kimber Brook −0.49 −1.20 0.28 0.86 0.81 0.10

Ley Creek −0.23 −0.31 −0.10 1.00 0.98 <0.01

Sanders Creek −0.14 −1.67 1.37 0.56 0.51 0.10

West Branch −0.56 −0.70 −0.39 1.00 1.00 <0.01

aNote for multi–level categorical variables, if any level met the PS, PD, and ROPE thresholds [i.e., PS > 0.50, PD > 0.75, and ROPE < 0.25], results for all levels of the variable are

reported. Variables not shown in the table, were not significant, and were not shown.

log10 increase in nitrate levels (Table 1, Supplementary Table 3).
Similar patterns were observed for conductivity, salinity, total
organic carbon, total phosphorous, total dissolved solids, total
suspended solids, and turbidity (Table 1). In fact, Enterococcus
and fecal coliform levels increased by ∼1 log for each log10
increase in total suspended solid levels (89% CI = −0.48,
2.39; PD = 0.89; ROPE = 0.03) and for each log10 increase
in total organic carbon levels (89% CI = 0.71, 1.48; PD =

1.00; ROPE < 0.01), respectively (Table 1). The discovery of
positive associations between physicochemical and microbial
water quality parameters is consistent with the previous studies
(Soupir et al., 2010; Viau et al., 2011; Wilkes et al., 2011; Rao
et al., 2015; Verhougstraete et al., 2015). For example, a survey
of 64 Michigan, US rivers found that nutrient levels were able to
account for 48% of variance in E. coli levels (Verhougstraete et al.,
2015). Additionally, a study that identified factors associated
with detection of parasites of fecal origin in an Ontario, Canada

watershed, found that Giardia detection was associated with
both conductivity and total phosphorous levels (Wilkes et al.,
2011). Viau et al. surveyed the microbial and physicochemical
quality of Hawaiian streams, and found evidence of positive
associations between multiple microbial and physicochemical
parameters, including E. coli and total phosphorous levels, and
between enterococci levels and turbidity (Viau et al., 2011).
In fact, a positive association has been repeatedly identified
between microbial water quality and turbidity levels in studies
conducted in different water types (e.g., reservoirs, canals,
ponds), regions (e.g., the Northeastern and Southeastern US,
Ecuador), and where different study designs were used (e.g.,
microbial targets, sampling strategies; (Viau et al., 2011; Francy
et al., 2013; Rao et al., 2015; Topalcengiz et al., 2017; Partyka et al.,
2018b; Weller et al., 2020a)). Given the reproducibility of the
turbidity-microbial water quality relationship, multiple studies
have suggested using turbidity as a supplemental indicator for

Frontiers in Water | www.frontiersin.org 9 February 2022 | Volume 3 | Article 741676120

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Weller et al. FIBs in Urban-Rural Gradients Streams

TABLE 3 | Results of Bayesian mixed models where there was evidence of a positive or negative association [i.e., practical significance (PS) > 0.50, probability of

direction (PD) > 0.75, and overlap with region of practical equivalence (ROPE) < 0.25] between log10 FIB levels, and the percent of buffer around each sampling site

under crop, developed, forest–wetland or pasture cover.

Factor Buffer

distance (m)

Effect estimate 89% Credibility interval PD PS ROPE

Lower Upper

E. coli

Pasture (%)

122 0.25 0.17 0.34 1.00 1.00 <0.01

366 0.25 0.16 0.35 1.00 0.99 <0.01

1,098 0.30 0.17 0.39 1.00 1.00 <0.01

Enterococcus

Cropland (%)

122 −0.35 −0.64 −0.12 0.98 0.94 <0.01

366 −0.36 −0.55 −0.20 1.00 0.99 <0.01

1,098 −0.24 −0.36 −0.10 1.00 0.96 <0.01

Developed (%)

122 0.33 0.23 0.44 1.00 1.00 <0.01

366 0.32 0.23 0.42 1.00 1.00 <0.01

1,098 0.34 0.23 0.43 1.00 1.00 <0.01

Forest–Wetland (%)

122 −0.22 −0.33 −0.12 1.00 0.97 <0.01

366 −0.26 −0.34 −0.14 1.00 0.99 <0.01

1,098 −0.28 −0.38 −0.17 1.00 1.00 <0.01

Pasture (%)

1,098 −0.20 −0.29 −0.11 1.00 0.96 <0.01

Fecal coliforms

Developed (%)

122 0.23 0.19 0.27 1.00 1.00 <0.01

366 0.27 0.23 0.30 1.00 1.00 <0.01

1098 0.27 0.23 0.30 1.00 1.00 <0.01

Forest–Wetland (%)

122 −0.19 −0.22 −0.15 1.00 1.00 0.00

366 −0.28 −0.32 −0.25 1.00 1.00 <0.01

1,098 −0.27 −0.31 −0.24 1.00 1.00 <0.01

Pasture (%)

1,098 −0.15 −0.19 −0.11 1.00 0.97 <0.01

identifying when a waterway may be contaminated by FIB.
Overall, the positive association between microbial water quality
(e.g., FIB levels), and nutrient (e.g., nitrate) and sediment (e.g.,
turbidity) levels in this and other studies, may indicate that
similar processes are driving microbial, sediment and nutrient
contamination. Such a conclusion is supported by literature on
sources, fate, and transport of microbial, nutrient, and sediment
contaminants. For instance, it is well-established in the scientific
literature that rain events facilitate the release and transport
of microbes, nutrients, and sediment from sources to surface
waterways (Nagels et al., 2002; Muirhead et al., 2004; Zhou
et al., 2017; Fluke et al., 2019). Indeed, rainfall antecedent of
sampling events, and wind speed (a proxy for storm events)
were associated with elevated FIB levels in this and previous
studies (Francy et al., 2013). Additionally, the reported study
also highlights that even though sampling in phases two and

three of the present study only occurred during dry weather,
bacterial pollution was still persistent in sampled waterways.
Moreover, bacteria are often bound to particles, with one study
reporting that 49% of all Enterococci detected were attached to
soil or manure particles (Soupir et al., 2010), and streambed
sediments have been repeatedly identified as an in-channel store
for FIBs, whose resuspension can result in elevated FIB levels
in the water column (Goyal et al., 1977; Muirhead et al., 2004;
Rehmann and Soupir, 2009; Kim et al., 2010; Zhou et al., 2017).
Thus, differential persistence of FIBs in streambed sediments,
may account for the lack of correlation between FIB groups in
the present study. From an applied perspective, these findings
suggest that strategies to mitigate fecal contamination may
concurrently reduce nutrient and sediment contamination; this
is of specific interest for land managers in the Syracuse (NY, US)
area, given the aforementioned interest in improving the quality
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of water entering Onondaga Lake; as well as, in regions with
similarly impaired waterways.

CONCLUSION

This study aimed to (i) identify potential sources of fecal
contamination in urban and rural reaches of Onondaga Creek,
Ley Creek, and Harbor Brook (Syracuse, NY area waterways), (ii)
characterize associations between microbial indicators of fecal
contamination and environmental factors (e.g., weather, nutrient
levels), and (iii) provide recommendations on how to prioritize
mitigation efforts to maximize restoration efforts. Briefly, the
present study failed to find evidence of an association between
FIB levels and host-specific MST markers. Additionally, land
use and spatial factors, such as rurality, that were positively
associated with fecal coliform and Enterococcus levels tended
to be negatively associated with E. coli levels, and vice versa.
These two findings may suggest multiples sources of fecal
contamination in the sampled streams. Conversely, the study
reported here also found evidence of strong associations between
FIB levels, and nutrient and sediment levels in the sampled
waterways, which may indicate shared contamination sources
or similar processes for transporting contaminants from source
to waterway. Given the aforementioned interest in improving
the quality of water entering Onondaga Lake, this finding is of
particular interest from an applied perspective, as it suggests
efforts to reduce fecal contamination may reduce nutrient and
sediment contamination. Lastly, this study found that FIB levels
were not uniform over space, with levels being (i) higher
in Onondaga Creek, compared to all other waterways, and
(ii) strongly associated with adjacent land use. These findings
highlight the importance of considering adjacent land use and
stream-to-stream differences when developing strategies for
managing fecal hazards in agricultural and recreational water
when developing watershed management plans. Specifically,
our finding suggests that mitigation efforts should focus on
Onondaga Creek, as opposed to Ley Creek, Harbor Brook, or
Hopper Brook. By focusing on the most impaired waterway
entering Onondaga Lake, rather than all waterways, this type of
targeted strategy may provide a way to maximize funds and water
quality simultaneously.
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