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Editorial on the Research Topic

Omics technologies in livestock improvement: From selection to

breeding decisions

Livestock rearing is the main component of global food production systems and

contributes to nearly half of global agricultural production. The emerging demand for

animal products is considered a food revolution in developing countries. Although

livestock farming is an essential component of the global economy but faces an

immense challenge to meet out the increased demand of the exploding human

population and other environmental factors. As a result, understanding animal health

and production is becoming mandatory. Advances in genetic and genomic technologies

have played a key role in improving animal welfare and productivity for decades. Genetic

development in livestock, both in terms of productivity and other functional trait

complexes associated with health and animal welfare, has been greatly aided by

genomic selection, which is regarded as a success story. Genomic breeding

programmes offer the potential to improve cattle productivity through the utilization

of molecular genetics, the detection of markers and chromosomal areas that contain

quantitative trait loci, and genome mapping technology. Present breeding strategies not

only account for phenotypic variance in traits but also other factors like epigenetics.

Epigenetic mechanisms (DNA methylation, RNA methylation, histone modifications,

chromatin remodelling, and non-coding RNA regulation) have been strongly found to

influence livestock traits like growth, development, and other phenotypic effects.

Technologies related to omics are developing more frequently in the area of animal

production. Other omics topics like phosphoproteomics, peptidomics, or lipidomics are

presently used in livestock production and disease management in addition to omics
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methodologies such as transcriptomics, genomics, proteomics,

and metabolomics. Animal breeding systems already in place

now have additional dimensions due to the introduction of

revolutionary ideas like animal cloning and genetic

engineering. It provides a faster way to increase the frequency

of desirable alleles in an animal population using genetically

modified animals than traditional breeding procedures. With this

background, the aim of the current research topic was to collect

research data on the role of omics technologies in livestock

improvement from selection to breeding decisions.

The special edition of Frontiers in Genetics i.e., “Omics

Technologies in Livestock Improvement: From Selection to

Breeding Decisions” published 26 original research articles,

2 review papers, and 01 methodology paper. All 29 articles

were focused mainly on understanding the complex interplay

of genes in mediating important traits, elucidating livestock

genome/transcriptome, and improving livestock yield,

nutrition values, and animal welfare.

Omics technologies are effective tools, especially when

used in conjunction with advanced molecular and breeding

methods. Genomic research in particular has the potential to

improve the precision and efficacy of traditional breeding

and advanced breeding approaches by enhancing

consistency and predictability. Indeed, the information

provided by genomics and other omics-technologies like

epigenomics and proteomics is crucial for understanding

genes and their function. Additionally, summarized the role

of omics technologies in improving livestock (Chakraborty

et al.).

Male infertility still poses a significant problem for

animals, despite significant increases in reproductive

efficiency brought about by artificial insemination

procedures. Recent research indicates that the spermatozoa

of fertile and infertile males have different populations of

RNA. Studies have also shown that spermatozoal RNA

(spRNA) is essential for spermatogenesis, fertilisation, and

the early stages of embryonic development. Updated various

spRNA species in livestock animals, including protein-coding

and non-coding RNAs and their possible impact on quality of

sperms, especially motility, freezability, and fertility (Sahoo

et al.). The regulatory structure of circRNA in testis

development and spermatogenesis in cattle bulls was

evaluated using RNA sequencing by Khan et al., in

immature and mature Wandong cattle bull testes. In calf

and bull testes, 579 of the 17,013 circRNAs were elevated

and 103 were downregulated. Bull spermatogenesis and the

genes ATM, GSK3B, CCNA1, KMT2C, NSD2, KMT2E, QKI,

SUCLG2, HOMER1, and SNAP91 were discovered to be

strongly correlated. Through genetic selection, this

information may aid in enhancing bulls’ reproductive

productivity (Khan et al.).

Deep RNA sequencing was utilised to discover probable

single nucleotide polymorphisms (SNP) in mammary

epithelial cells from two different cow breeds (Jersey and

Kashmiri) in order to study the alterations in coding

regions that affect milk output differences. Ahmad et al.,

work seeks to find high-impact SNPs in Jersey and

Kashmiri cows in order to uncover the main pathways

controlling milk production features in each breed using

RNA-Seq data (Ahmad et al.). There were discovered to be

684 (464 SNPs and 220 INDELs) and 607 (442 SNPs and

169 INDELs) high-impact variations unique to Kashmir and

Jersey cattle, respectively. The RNA sequencing-based SNP

research revealed a considerable difference between Kashmiri

and Jersey cattle in terms of milk production attributes. The

high-impact SNP variations in Kashmiri cattle contributed to

adaptive immunity and tolerance to infectious diseases of the

mammary gland. Contrarily, in Jersey cattle, enhanced

pathways were mostly implicated in production and

lactation maintenance. These findings offer information on

breed-specific genetic diversity that can be applied to the

genomic selection of animals. There are many studies like

RNA sequencing leads and high-throughput genomic DNA

data, which have identified the genes related to lipid storage in

broilers. Using RNA-Seq and microarray data techniques,

Farzad Ghafouri et al. identified and categorised candidate

genes and miRNAs involved in lipid metabolism. Based on the

amount of abdominal fat present, two broiler groups were

selected: high and low. In the analysis, 34 genes and

19 miRNAs were detected as common. A total of seven

genes were revealed as common, three being most

important viz., REBF1, SREBF2, SCD, and FASN. These

have a significant impact on fat metabolism, storage, and

signalling pathways of endocrine glands that are triggered

by PPAR, AMPK, and adipokines. This method improved our

comprehension of the biological mechanisms affecting

adipose tissues (Ghafouri et al.). In animal food industry,

the genetics and physiological mechanisms that govern

skeletal muscle mass production are of prime importance

to study. Satellite cells are crucial for skeletal muscle

growth and regeneration. scRNA-seq was used by Lyu et al.

to analyse the makeup of bovine satellite cells. According to

the findings, bovine satellite cells may be divided into

subpopulations with different transcriptional statuses, rates

of proliferation, and myogenic potential. The current study by

Lyu et al. also indicates the existence of FAP cells in bovine

skeletal muscle, which may help researchers devise new

methods for enhancing these features or find the DNA

sequences and variants linked to them in cattle (Lyu et al.).

Lameness in cattle is frequently brought on by two non-

infectious claw lesions: sole ulcers (SU) and white line disease

(WLD). Sensitivity to SU and WLD is influenced by both

hereditary and non-genetic variables, and protection can be

accomplished by genetic methods and herd management.

Genome-wide association studies (GWAS) were conducted

using generalised linear mixed model (GLMM) regression,
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random forest (RF) and a chunk-based association testing

(CBAT) technique to find susceptibility loci for WLD, SU,

SU and/or WLD, and any sort of non-infectious claw

damage. Potential genes for skeletal growth and

mineralization, keratin, adipose tissue, wound healing and

skin lesions were present in the linked areas on BTA8 and

BTA13. The abundance of correlations found in this study

conducted by Lai et al., as well as previous studies that showed

the intricacy of the genetic background underlying non-

infectious claw lesion vulnerability (Lai et al.). Lameness in

an animal incurs financial burden on the animal owner, making

it the third largest cause of culling an animal after mastitis and

infertility. This condition is caused by foot lesions which can be

either infectious or non-infectious in nature. Digital dermatitis

(DD), WLD and SU are the most frequent causes. A study was

performed by Lai et al. to find the loci influencing the

association between the genetic causes of lameness and other

prevalent health conditions. Estimates of the genetic

connection between DD and SU, WLD and SU were all

substantially different from zero (p < 0.05), whereas

estimates of the genetic association between mastitis and

DD, SU with metritis, and DD with milk fever were just

suggestive (p < 0.1). These estimations of the five genetic

correlations were all positive. Lai et al., observed that

selection against disorders of foot may also reduce

vulnerability to other health disorders because of the

significant genetic association estimations between foot

disorders and other illnesses (Lai et al.).

GWAS provide opportunities for comprehensive

improvement of buffalo by finding genetic variants connected

with lactation and reproductive features. The work conducted by

Vohra et al., intends to find novel SNPs linked with milk output,

lactation consistency, milk composition and fertility features at

the genomic level in Murrah buffalo using the genotype-by-

sequencing technique. To run GWAS on fat percentages and SNF

percentages independently, more than 38,000 SNPs were

employed. GWAS was also conducted on 305 days’ worth of

milk output to test lactation consistency. SNPs were found to be

substantially linked with the first principal component, which

explained the greatest fraction of variability in milk output.

Breeding effectiveness, post-partum breeding interval, and age

at sexual maturity were all taken into account as fertility features.

Additionally, certain putative genetic areas that may play a part

in controlling milk production and fertility in Murrah were

found (Vohra et al.). Singh et al., conducted a GWAS to find

substantially related SNPs between proteins in milk and minerals

in cattle. Identifying potential genes connected to milk minerals

and milk protein percentage in Vrindavani cattle was the goal of

their study. Protein percentage Ca, Cu, Zn, P and Fe were found

to have a strong association with BTA 7, 2, 3, 14, and 2,

respectively (Singh et al.). Further, consumers mostly judge

the quality of meat based on its colour. In order to aid in pig

breeding programs, Liu et al. conducted a study to identify the

genes associated with meat colour in Suhuai pigs. Additionally, it

calculates the genetic correlation and heredity of meat colour.

(Liu et al.). Using GWAS and FST testing on Suhuai pigs, six

potential genes (PIK3CG, HOMER1, VCAN, PIK3CA, FKBP1B,

and FABP3) and 39 possible SNPs associated to flesh colour were

found. These findings pave the way for genetic modification of

pig flesh colour since they have functional implications for

muscle growth, lipid binding and phosphatidylinositol

phosphorylation. For sheep breeding industry, ewe

productivity is considered the most important economic trait.

Genes influencing fertility and lamb growth following parturition

in Iranian Baluchi sheep were discovered using GWAS methods

and gene set enrichment analysis (GSEA). The notable SNPs

within or close to the genes RDX, ARHGAP20, FDX1, THBS1,

ZC3H12C, and EPG5 were linked to composite features at birth.

The identified pathways and genes have roles relevant to

pregnancy, such as autophagy in the placenta, calcium ion

transport, placental development and progesterone release and

maternal immunological response. Genes NR2C1, HSD17B4,

RSU1, VEZT, CUBN, PRLR, VIM. and FTH were discovered

to be associated with composite features at weaning. According

to Esmaeili-Fard et al., the findings imply that calcium ion

transport throughout pregnancy and milk feeding lambs

following parturition had the greatest influence on weight gain

in comparison to other maternal origin effects (Esmaeili-Fard

et al.). Liao et al. analysed the selectively bred group of meat

rabbits and used a non-linear mixed model to fit growth curves

and measure the effects of SNPs throughout the entire genome.

The genetic organization of growth parameters, which is useful

for applying genome selection, was also disclosed in this study,

which is the first report of GWAS based on single-step NMM for

longitudinal traits in rabbits. The logistic model, comprised of

87,704 SNPs in rabbits, was ideally selected and subjected to

GWAS using this approach. The two growth indices mature

weight (A) and maturity rate (K) were shown to be

simultaneously impacted by a total of 45 important SNPs

spread across 5 chromosomes. Seven positional genes were

proposed as potential candidates influencing meat rabbit

growth, including GBA3, KCNIP4, LDB2, PPARGC1A,

GNA13, SHISA3 and FGF10 (Liao et al.).

One of the most important economic traits in swine industry

which determines its profitability is the meat quality and genetics

has an important role in determining such traits. Ardestani et al.,

conducted a study to evaluate the accuracy of standard BLUP

prediction with several prominent genetic assessment techniques

such as GBLUP, ssGBLUP, and BayesC for back-fat thickness

(BFT), average daily gain (ADG) and loin muscle depth (LMD)

parameters in Canadian swine populations. Despite the absence

of any significant differences (p > 0.05) between the prediction

accuracies produced from these genomic approaches in each

scenario, ssGBLUP and BayesC techniques often demonstrated

the maximum predictive performance and unbiasedness,

respectively (Salek Ardestani et al.).
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The milk cattle breed known as Sahiwal is indigenous to the

Indian subcontinent. They are renowned for their high milk

production, exceptional ability to adjust to the hot, humid

conditions that prevails in their native territory, and resilience

to parasites, ticks, and tropical diseases. This study uses a

genotyping INDUS chip to investigate the signature of

selection in the genome of Sahiwal cattle. The potential signs

of selection in Sahiwal cattle were discovered in 14 important

regions of the genome. The most prominent locations were

mapped onto BTA 6, 20, and 23, and the p-values from

several univariate statistics were combined into a composite

signal using the DCMS methodology. The selection signatures,

which include important candidate genes linked to features

including coat colour, milk fat percentage, sperm membrane

integrity, and carcass qualities, are present in BTA 6. There are

genes related to bovine tuberculosis sensitivity and parasite

infestation tolerance located in a significant area on BTA

23 at the 17-Mb region. Illa et al., came to the conclusion that

the extremely relevant genetic areas contributed to Sahiwal

becoming one of the best milk cow breeds for the tropics (Illa

et al.).

Bioinformatic techniques were used to streamline and

accelerate the process into a single step in order to identify

the causative variants of full penetrance recessive genetic

diseases using only nine whole genome sequenced animals.

A novel mutation causing prenatal mortality in Irish moiled

calves was found utilising whole genome sequencing of only

three situations and six carriers. The variant call format (VCF)

data file of these 9 animals was examined using four different

techniques: autozygosity-by-difference (ABD), genotyping

criteria (GCR), variant prediction scoring, and enrolled

SNP information. Only one site (Chr4: g.77173487A>T
(ARS-UCD1.2 (GCF 002263795.1)) out of around ten

million variants in the VCF file was recognised by all these

techniques. The glucokinase gene contained a splice acceptor

variation at this location (GCK). This study by Pollott et al.,

showed that only a limited number of cases and controls are

needed, and that controls should exceed cases by a ratio of 2:

1 and should be less closely related to cases (Pollott et al.). The

Pashmina goat genome published in the current edition by

Bhat et al., may offers an opportunity to understand the

biology of development of this pricy and luxurious fiber

(Bhat et al.). This study is one of the first attempts at

providing Pashmina genomics and transcriptomic

information. Using the Illumina HiSeq 2500 sequencer, a

total of 294.8 GB (>100X coverage) of the whole-genome

sequence data was generated from a 26 months old male

Changthangi Pashmina goat. Moreover, the genomes of a

wild goat and a Pashmina goat were compared, and the

results showed a total of 2,823 high impact single

nucleotide variants as well as minor insertions and

deletions that may be related to the evolution of Pashmina

goats. The complex traits of the Pashmina goat, such as annual

fibre cycling, defence mechanisms against hypoxia, a method

of surviving in extremely cold temperatures, adjustment to a

meagre diet, and distinctions of Pashmina fibre from other

fibres to avoid marketing practises, can also be understood

with the aid of this study.

The majority of the effort in genomic selection has focused

on computational efficiency and prediction accuracy, but

computing restrictions are becoming an increasingly critical

factor that must be considered. A Bayes-based genomic

selection model named FMixFN was created in a study by

Xu et al. It combines consistent prediction ability and

computational effectiveness. The needs of large breeding

enterprises or combined breeding programs could be

satisfied by the reliable, big data-oriented genomic selection

approach known as FMixFN. The FMixFN technique is publicly

available at https://zenodo.org/record/5560913 (Xu et al.).

Vaughn et al., used a mixed linear model in fixed effects and

random effects to investigate the expression of Actinin-3

(ACTN3) gene, which encodes a muscle-specific structural

protein, in correlation to the feeding efficiency phenotype in

Bos taurus - Bos indicus crossbred steers (Vaughn et al.). It was

assumed that animals with a higher proportion of fast-twitch

muscle fibres are comparatively feed inefficient because the

ACTN3 is exclusive to fast-twitch muscle fibres and absent

from slow-twitch muscle fibres.

The ovulation rate, a critical reproductive characteristic for

goats, determines the top limit of the female’s litter size. The

rate of ovulation in the ovary is influenced by follicle growth

and development. To anticipate how lncRNAs and miRNAs

would interact, Tao et al., sequenced and analysed the mRNA

expression profiles of pre-ovulatory follicles from goats. Out of

the 895 lncRNAs that were found, 88 displayed a clear

difference in expression, suggesting important impacts on

the ovarian follicles in goats. LncRNA XR_311113.2 might

operate as a chi-miR-424-5p sponge. This research

demonstrates that LncRNAs may be a valuable new area of

investigation in the context of ovarian follicular development

(Tao et al.). Yak, a unique reservoir of genetic material that

primarily lives on the Qinghai-Tibet Plateau. A clear heterosis

in production performance may be shown in cattle-yak, the

hybrid offspring of yak (Bos grunniens) and cattle (Bos taurus).

Through RNA sequencing, 7,126 mRNAs, 791 lncRNAs, and

1,057 circRNAs that differ in expression between yaks and

Frontiers in Genetics frontiersin.org04

Ahmad et al. 10.3389/fgene.2022.1113417

10

https://www.frontiersin.org/articles/10.3389/fgene.2021.699422/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.699422/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.755693/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.695178/full
https://zenodo.org/record/5560913
https://www.frontiersin.org/articles/10.3389/fgene.2021.721600/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.796038/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.760416/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1113417


cattle-yaks in the longissimus dorsi muscle were discovered.

The ncRNAs were discovered to be associated with the

proliferation and differentiation of myoblast cells, skeletal

development, and signalling pathway of muscle growth using

bioinformatics techniques. Huang et al. claim that this study

can be utilised as a benchmark to establish the molecular

framework for understanding muscle growth (Huang et al.).

The blue egg is biologically interesting as well as economically

significant for consumers, egg sellers, and scientists. Studies

conducted in the past mostly focused on protein-coding genes

to understand the genetic pathways behind pigment deposition.

The underlying mechanism by which non-coding RNAs affect

the pigment deposition in various eggshell colours is still

unknown. Profiled the uterine gland transcriptome (lncRNA

and mRNA) of 15 Changshun blue eggshell layers using RNA

sequencing. 8 and 22 lncRNA-gene pairings were predicted by

combining analyses of lncRNA and mRNA profiles. According

to mRNA sequencing, the majority of pathways were mostly

focused on lipid-related metabolisms. The found lncRNAs

influence immunological and lipid-related metabolisms, as

well as pigment disposition, to exert similar effects on colour

creation (Chen et al.). The integrated co-expressed

transcriptomes, i.e., mRNA and miRNA, were investigated in

primary bovine myoblasts following Resveratrol treatment.

According to Hao et al., this study improved our knowledge

of the functions of RSV in inducing miRNA, the features of DE

miRNAs in the important co-expressed component that

regulate mRNAs, and it discovered new potential

transcription factors and miRNAs for traits associated with

meat quality (Hao et al.).

He et al., investigated the link between ACSF3 expression

and cellular synthesis of triglycerides (TG) by silencing and

over-expression of ACSF3. As a result of the discovery that

ACSF3 regulates cytoplasmic triacylglycerol and long-chain

PUFA levels, polymorphism may be used as a diagnostic

biomarker for forthcoming marker-assisted selection in the

production of elevated lipid accumulation traits in beef cattle

(He et al.). Heat stress in cattle exhibit a direct impact on rumen

health by affecting the processes of fermentation and

metabolism of rumen papillae proliferating the rumen

papillae. It may adversely affect the physical membrane of

the rumen epithelium to a significant degree by increasing

corneum loss. HS up-regulated biological processes such

sister chromatid segregation while down-regulating MAPK

and NF-kB cell signalling pathways, according to an

examination of the rumen papillae’s transcriptome profile.

These pathways were linked to DNA replication and repair,

amino acid metabolism, and other pathways that were

problematic. TLR4 or Tight junction protein signalling

expression did not change specifically in response to heat

stress, according to Guo et al., indicating that HS had a

limited detrimental impact on the ruminal epithelium’s

physical barrier but did not completely destroy it. The

development of mitigation techniques as well as the

productivity of lactation cows is both impacted by the

increase in amino acid metabolism in rumen papillae (Guo

et al.).

A basic description of the inheritance patterns of alternative

splicing in broiler and layer chickens is provided by Qi et al. to

best explain post-transcriptional regulation during hybridization.

The White Leghorn and Cornish Game chicken breeds, which

have markedly different body types and reproductive

characteristics, were crossed in an experiment, and the

muscle, brain, and liver tissues were then sequenced to

determine the inheritance patterns. High tissue and strain

specificity is suggested by alternative splicing profiles. The

majority of the alternative splicing genes had patterns that

were conserved across all three organs, according to a study

between parental strains and hybrid crossings. This study gives

an overview of the alternative splicing inheritance patterns in

these chicken breeds (Qi et al.). Khan et al. developed the first

comprehensive buffalo user-friendly web genomic resource

(BuffGR). It contained genetic research on five buffalo breeds

with major commercial importance: the Mediterranean,

Egyptian, Bangladeshi, Jaffrarabadi, and Murrah (Khan et al.).

The website’s database contains information on 4504691 SSR

markers across all breeds, 1458 distinct circRNAs,

37712 lncRNAs, and 938 miRNAs from the genomic

sequences of the Mediterranean breed of buffalo. This data

could be utilised to research the genetic diversity of many

buffalo breeds. It is also possible to research post-

transcriptional regulation and its function in several bovine

diseases. The BuffGR can be found at http://backlin.cabgrid.

res.in/buffgr/.

Precision when population size is small is a significant barrier

to their genomic selection; during the past several years, variable

selection approaches with diverse variance have been proposed to

increase breeding value accuracy. While these models might be

more accurate than conventional and genetic forecasts, they also

carry a correspondingly higher breeding value bias and

dispersion. Mancin et al., used a number of diverse techniques

in his study to increase the precision of genomic selection in a

small population. They were chosen using a variety of algorithms,

including XGBoost, penalised regression, and recursive feature

eliminations (Mancin et al.). Variable selection ssGBLUP,

especially XGBoost, has prediction accuracy that is higher

than other ssGBLUP methods without the exaggerated bias

and dispersion that come with weighted ssGBLUP. In this

study, machine learning algorithms are used, which may

provide a solution to the problem of genomic selection in

small populations, such as the local cow population. The

techniques described in his study may help preserve

indigenous cow breeds, study them, and boost their economic

competitiveness. For carcass evaluation in meat industry, rib eye

area is an important index used. Since this indicator is inherited

and possesses genetic diversity, it can be used to improve the
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genetic makeup of sheep. This study conducted KASPar

genotyping on five SNPs, demonstrating that the rib eye

region is highly linked with SNPs in LOC105611989, DPP6,

and COL12A1. These SNPs could be used as genetic markers for

rib eye area molecular breeding. The findings published by Zhao

et al., offer genetic factors evaluated on the rib eye region and

guidance for breeding Hu sheep based on carcass features (Zhao

et al.).
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Genome-Wide Association Studies
Reveal Susceptibility Loci for
Noninfectious Claw Lesions in
Holstein Dairy Cattle
Ellen Lai, Alexa L. Danner, Thomas R. Famula and Anita M. Oberbauer*

Animal Science Department, University of California, Davis, Davis, CA, United States

Sole ulcers (SUs) and white line disease (WLD) are two common noninfectious claw
lesions (NICL) that arise due to a compromised horn production and are frequent causes
of lameness in dairy cattle, imposing welfare and profitability concerns. Low to moderate
heritability estimates of SU and WLD susceptibility indicate that genetic selection could
reduce their prevalence. To identify the susceptibility loci for SU, WLD, SU and/or
WLD, and any type of noninfectious claw lesion, genome-wide association studies
(GWAS) were performed using generalized linear mixed model (GLMM) regression,
chunk-based association testing (CBAT), and a random forest (RF) approach. Cows
from five commercial dairies in California were classified as controls having no lameness
records and ≥6 years old (n = 102) or cases having SU (n = 152), WLD (n = 117), SU
and/or WLD (SU + WLD, n = 198), or any type of noninfectious claw lesion (n = 217).
The top single nucleotide polymorphisms (SNPs) were defined as those passing the
Bonferroni-corrected suggestive and significance thresholds in the GLMM analysis or
those that a validated RF model considered important. Effects of the top SNPs were
quantified using Bayesian estimation. Linkage disequilibrium (LD) blocks defined by
the top SNPs were explored for candidate genes and previously identified, functionally
relevant quantitative trait loci. The GLMM and CBAT approaches revealed the same
regions of association on BTA8 for SU and BTA13 common to WLD, SU + WLD,
and NICL. These SNPs had effects significantly different from zero, and the LD blocks
they defined explained a significant amount of phenotypic variance for each dataset
(6.1–8.1%, p < 0.05), indicating the small but notable contribution of these regions
to susceptibility. These regions contained candidate genes involved in wound healing,
skin lesions, bone growth and mineralization, adipose tissue, and keratinization. The LD
block defined by the most significant SNP on BTA8 for SU included a SNP previously
associated with SU. The RF models were overfitted, indicating that the SNP effects were
very small, thereby preventing meaningful interpretation of SNPs and any downstream
analyses. These findings suggested that variants associated with various physiological
systems may contribute to susceptibility for NICL, demonstrating the complexity of
genetic predisposition.

Keywords: sole ulcer, pododermatitis circumscripta, white line disease, lameness, genome-wide association
study, random forest, Bayesian regression, dairy cattle
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INTRODUCTION

Lameness, or abnormal gait and/or posture, is a pathognomonic
sign that the affected cow is in pain and frequently reflects claw
damage. Many claw conditions can cause lameness, including
injury, infectious claw lesions, and noninfectious claw lesions.
The two most common noninfectious claw lesions causing
lameness in dairy cattle are sole ulcers (SUs), also known as
pododermatitis circumscripta, and white line disease (WLD)
(Green et al., 2002; Shearer and van Amstel, 2017). These
lesions are not only a welfare issue but are also associated
with reduced milk production and decreased fertility (Green
et al., 2002, 2010; Hernandez et al., 2005; Charfeddine and
Pérez-Cabal, 2017). Consequently, SU and WLD represent a
considerable financial burden, with the average costs associated
with prevention, treatment, and losses from reduced productivity
ranging from $181 (Dolecheck et al., 2019) to $258 (Cha et al.,
2010) per case of SU and $155 for WLD (Dolecheck et al.,
2019) (adjusted to 2020 US dollars). Production losses from
extended calving interval, increased culling, and decreased milk
production increase greenhouse gas emissions by 33 (3.6%) and
39 (4.3%) kg CO2 equivalents per ton of fat- and protein-
corrected milk per case of SU and WLD, respectively (Mostert
et al., 2018). Reducing the prevalence of SU and WLD would
alleviate these welfare, economic, and environmental concerns
and thereby improve the sustainability of dairy production.

Both genetic and non-genetic factors contribute to
susceptibility to SU and WLD, and prevention can be achieved
through genetic means and herd management. Current
prevention methods focus on management control primarily
through regular claw trimming (Shearer and van Amstel, 2001)
and providing rubber flooring in stalls and alleys (Vanegas et al.,
2006; Fjeldaas et al., 2011; Eicher et al., 2013). Although dairies
have implemented these prevention methods, SU and WLD
remain prevalent worldwide, with estimates ranging from 4.1
to 27.8% for SU and from 2.0 to 11% for WLD in Holstein
cattle depending on parity and the housing style (Cramer et al.,
2008; Bicalho et al., 2009; van der Linde et al., 2010; Oberbauer
et al., 2013). Heritability estimates of susceptibility range from
0.01 to 0.3 for SU and from 0.017 to 0.26 for WLD (Van der
Waaij et al., 2005; van der Linde et al., 2010; Häggman and Juga,
2013; Oberbauer et al., 2013; van der Spek et al., 2013, 2015a;
Malchiodi et al., 2015a), implying that these non-genetic means
to reduce prevalence could be bolstered by genetic selection
against susceptibility to these claw lesions. Although many
genome-wide association studies (GWAS) have been performed
to identify the susceptibility loci, loci previously associated
with SU and WLD are discordant (Malchiodi et al., 2015b;
van der Spek et al., 2015b; Sánchez-Molano et al., 2019), and
susceptibility to these claw lesions is believed to be a complex
trait governed by loci of small effect (van der Spek et al., 2015b).
Some have postulated that selection against susceptibility to SU,

Abbreviations: BTA, Bos taurus autosome; CBAT, chunk-based association
testing; GLMM, generalized linear mixed model; GRM, genetic relatedness matrix;
GWAS, genome-wide association studies; LD, linkage disequilibrium; MAF, minor
allele frequency; NICL, noninfectious claw lesions; PVE, proportion of phenotypic
variance explained; RF, random forest; SUs, sole ulcers; WLD, white line disease.

WLD, and other noninfectious claw lesions could be achieved
through indirect selection on body conformation traits or feet
and leg traits (Van der Waaij et al., 2005; Häggman et al., 2013).
However, the genetic correlation between the conformation traits
and susceptibility to noninfectious claw lesions appears to be low
(Häggman and Juga, 2013; Malchiodi et al., 2015b; Ring et al.,
2018), further accentuating the need to identify loci associated
directly with susceptibility to noninfectious claw lesions. Thus,
the objective of this study was to identify the genomic regions
associated with susceptibility to SU, WLD, SU and/or WLD,
and noninfectious claw lesions using well-characterized herds
under similar management practices: we hypothesized that we
would identify small-effect loci associated with predisposition to
noninfectious claw lesions in addition to those already identified.

MATERIALS AND METHODS

All procedures were conducted in accordance with the ethical
standards set by the University of California, Davis, and
approved by the Institutional Animal Care and Use Committee
(protocol no. 22099).

Phenotypic Data
Dairies were selected to minimize environmental variations
by including dairies in Central and Northern California using
freestall housing, a flush system for waste removal, and diets
balanced to meet the nutrition requirements from the National
Research Council (National Research Council (NRC), 2001).
Case/control phenotypes were defined using hoof trimming
records. The hoof trimming records were generated by three
hoof trimmers: one serviced dairies A, B, and C; one serviced
dairy D; and the last trimmer serviced dairy E. Hoof trimmer
qualifications were described in a previous paper (Lai et al., 2020),
and the three trimmers employed common criteria in defining
the lesions. Hoof trimming regimens varied among dairies: cows
were trimmed at the beginning of and at mid-lactation, at dry off,
and when lame (dairy A); at dry off and when lame (dairies B
and C); only when lame (dairy D); and at mid-lactation, at dry
off, and when lame (dairy E). The following claw lesions were
documented in the hoof trimming records: SU, hemorrhage, sole
fracture, sole abscess, wall abscess, white line abscess (WLD), heel
abscess, laminitis, foot wart, and foot rot. Cows were phenotyped
as cases or controls based on whether they had or lacked records
of claw lesions, respectively. Four case/control datasets were
generated based on the type(s) of claw lesions the cases had.
For datasets 1 (SU) and 2 (WLD), cases were defined as cows
with at least one record of SU or WLD, respectively. For dataset
3 (SU + WLD), cases included cows with either one or both
of the claw lesions. Cases for dataset 4 (noninfectious claw
lesions, NICL) included cows with at least one of the following
noninfectious claw lesions: SU, hemorrhage, sole fracture, sole
abscess, wall abscess, WLD, heel abscess, and/or laminitis. Cows
with no claw lesions and that were at least 6.0 years old were
considered sound controls. The age restriction was imposed to
avoid misphenotyping younger cows that had insufficient time
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to develop claw lesions. The same sound controls were used to
compare against the cases in each of the four datasets.

Genotypes
Whole blood was collected from cows phenotyped as cases
and controls. DNA was extracted from whole blood samples
using the QIAGEN QIAamp DNA Blood Mini Kit (QIAGEN
Inc., Valencia, CA) and quantified using the NanoDrop (ND-
2000 v3.2.1) spectrophotometer (Thermo Scientific, Wilmington,
DE, United States). DNA samples were genotyped on the
BovineHD BeadChip [777K single nucleotide polymorphisms
(SNPs), Illumina Inc., San Diego, CA, United States] by GeneSeek
(Lincoln, NE, United States), and Illumina’s GenCall algorithm
was used to call genotypes. A portion of the controls used in
this study were the same controls used in our previous study
(Lai et al., 2020), for which raw and processed genotype data
are publicly available at the NCBI Gene Expression Omnibus
database (GEO series record GSE159157). Additional cows
genotyped in this study are available in the GEO database (GEO
series record GSE165945).

Genotypes were updated to the ARS-UCD1.2 assembly
positions (Rosen et al., 2020) and quality filtered using PLINK
1.9 (Chang et al., 2015; Purcell and Chang, 2015) to remove
from further analyses SNPs and cows with genotyping rates
<95%, SNPs with significant deviation from Hardy–Weinberg
equilibrium (p < 1E−6) to exclude systematic genotyping errors,
and SNPs with minor allele frequencies (MAFs) < 5% to
exclude rare variants. To visualize genetic similarity among the
remaining cows, multidimensional scaling (MDS) analysis was
performed, and the first two dimensions were plotted. Because
the downstream programs for GWAS analysis [the generalized
linear mixed model (GLMM) and random forest (RF)] required
genotypes at each SNP, missing genotypes remaining after quality
filtering were imputed using BEAGLE 5.1 (Browning et al., 2018)
using the default parameters and an effective population size
of 58 previously estimated for North American Holstein cattle
(Makanjuola et al., 2020).

Generalized Linear Mixed Model GWAS
Because disease phenotype was binary (cases and controls), the
model used for association testing needed to reflect this binary
outcome. Accordingly, logistic regression was used to model the
binary outcome for the power analysis and for association testing.
Power analysis was conducted using the genpwr R package
(Moore et al., 2019), assuming an additive genetic effect and
a sample size and case rate similar to the sample population
(sample size = 275, case rate = 0.6). Given these parameters,
the smallest effect SNP that the GWAS was expected to detect
would have an odds ratio of at least 1.7 and a MAF of at least
0.34. For association testing, a genetic relatedness matrix (GRM)
and farms were included as covariates in the model to account
for population stratification and relatedness as well as the effect
of farm, respectively. The probability of disease was defined as
pijk for the k-th cow on the i-th farm identified in the j-th
SNP genotype class and the logit of this probability, as θijk =

log
[
pijk/

(
1− pijk

)]
. The logit of the probability of disease was

modeled as a function of the recorded explanatory variables (e.g.,
farm and SNP genotype) along with a presumed quantitative
genetic contribution for each SNP:

θijk = µ+ Fi + Sj + ak

where µ is an unknown constant common to all cows, Fi
the contribution of i-th farm to the risk of disease, and Sj
is the contribution of the j-th SNP genotype to the risk of
disease. The additive genetic effect ak is assumed to be drawn
from the multivariate normal density N(0, Aσ2

a), with A as the
standardized GRM among the animals in the dataset calculated
in GEMMA (Zhou and Stephens, 2012) and σ2

a is the unknown
additive genetic variance of the disease risk. Model fitting and
association testing via the score test (i.e., the Legrange multiplier
test) were implemented with the generalized linear mixed model
association test (GMMAT) R package (Chen et al., 2016).

The effective number of independent markers (Me) was
calculated as the number of SNPs remaining after linkage
disequilibrium (LD) pruning using the Genetic Type I error
calculator and used as the denominator for Bonferroni correction
of the association p values (Li et al., 2012). Significant SNPs
were defined as those with p ≤ 0.05/Me and suggestive SNPs
were defined as those with p ≤ 1/Me (Lander and Kruglyak,
1995). Genomic inflation factors were calculated as the ratio of
the median of the observed and expected p values. Quantile–
quantile plots (qqplots) and Manhattan plots were plotted
using the R package qqman (R Development Core Team, 2010;
Turner, 2014).

Chunk-Based Association Testing
Chunk-based association testing (CBAT), also called set-based
association testing, was performed to decrease multiple testing
and, in turn, improve the power of detecting associated regions
in the small sample size. In contrast to gene-based association
testing, which jointly tests variants within genes for association
with the phenotype (e.g., Xia et al., 2017), CBAT analyzes
consecutive windows of variants (i.e., chunks) across each
chromosome without prior filtering. Accordingly, CBAT includes
variants in non-coding regions containing regulatory elements
that could contribute to phenotypic variation in complex traits
(Koufariotis et al., 2014, 2018). Quality-filtered SNPs were split
into 100-kb chunks overlapping by 50 kb. Each chunk was LD-
pruned to remove SNPs that were in strong LD (R2 > 0.98) and
then tested for association with the phenotype by determining
whether the phenotypic variance explained (PVE) by the chunk
was significantly greater than zero. Specifically, association
testing for each chunk was performed by calculating a GRM using
the SNPs in the chunk and regressing the phenotype on the GRM.
In addition to the chunk-based GRM, a thinned GRM (from
genome-wide SNPs) and farms were included as covariates in
the model to adjust for population stratification and differences
among farms. The thinned GRM was calculated using genome-
wide LD-pruned SNPs: SNPs within a window of 1 Mb and
a R2 > 0.5 were pruned out such that only SNPs in linkage
equilibrium were used in the GRM calculation. For each chunk
of SNPs, the following linear model was used to define the
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disease phenotype y for the k-th cow as a function of phenotypic
contribution from the j-th chunk that comprised m SNPs and the
i-th farm:

yijk = µ + Fi + Cj + ak + εijk

where µ, Fi, and ak are the same components outlined in the
previous equation contributing to phenotype (coded as 0 for

controls and 1 for cases), Cj =
m∑

l=1
Sl is the contribution of the

chunk to the phenotype in which Sl is the contribution of the l-th
SNP in the chunk, and εijk is the residual term. Estimates of PVE
for each chunk were transformed to the underlying liability scale
to adjust for ascertainment of cases using prevalence estimates
from the literature: 4.08% for SU, 7.89% for WLD, 0.10 for
SU + WLD, and 0.10 for NICL (DeFrain et al., 2013; Oberbauer
et al., 2013). Calculating the thinned GRM, estimating PVE by
each chunk, association testing with the likelihood ratio test, and
p value estimation via 10 permutations for each chunk (Listgarten
et al., 2013) were performed using the linkage disequilibrium-
adjusted kinships (LDAK) program (Speed et al., 2012). For
each dataset, the significance thresholds were adjusted using
Bonferroni correction: chunks with p≤ 0.05/(number of chunks)
were defined as significant and chunks with p ≤ 1/(number of
chunks) were defined as suggestive (Lander and Kruglyak, 1995).
Manhattan plots and qqplots were plotted using the R package
qqman (R Development Core Team, 2010; Turner, 2014).

Random Forest GWAS
A RF fits a model that includes all SNPs and does not require
an assumption about the mode of inheritance (e.g., additive,
dominant, and recessive), making RFs an appealing approach for
complex traits such as susceptibility to claw lesions, in which
the trait is highly polygenic and epistasis is present (Goldstein
et al., 2010). Furthermore, RFs are insensitive to uneven sampling
of cases and controls across different dairies, as RFs first build
decision trees, then quantify the importance values afterward
with data available in the trees.

Linkage disequilibrium pruning and RF analyses were
performed as previously detailed (Lai et al., 2020) for each
of the four datasets. Briefly, LD-pruned genotypes and farms
were used as predictors for the RF analyses performed using
the caret R package (Kuhn, 2008; R Development Core Team,
2010). For each dataset, the population was randomly divided
into a training (two-thirds of the cows) and a test (one-
third of the cows) population. Using the training population,
the number of predictors considered at each node of each
decision tree, mtry, was tuned using five values, 0.1p, 0.2p,
0.5p, 0.8p, and p, where p is the total number of predictors
(Goldstein et al., 2010; Brieuc et al., 2018). The mtry resulting
in the most accurate RF model was used for downstream
analyses. The most important predictor was assigned a value
of 100, and any other predictor’s importance values was scaled
accordingly (e.g., a predictor with an importance value of 50
is 50% as important as the most important predictor). Model
validation was performed by using the predictors and their
importance values to predict the case/control phenotype in
the test population. To determine which SNPs were important

and worthy of further investigation, a scree plot was plotted
and the second-order point of inflection was identified using
the inflection R package (Christopoulos, 2016, 2017) (i.e., the
“elbow method”). Predictors with importance values equal to or
greater than the second-order point of inflection were defined
as important SNPs and explored in downstream analyses if and
only if the RF model was significantly more accurate at predicting
phenotype in the test population than the non-information rate
(i.e., the frequency of the more common phenotype).

Defining Associated Regions
For each of the four datasets, the top SNPs were defined as
significant and suggestive SNPs from the GLMM regression
or important SNPs from a significantly predictive RF model.
Boundaries of the genomic regions of association were defined
using SNPs in LD with top SNPs. Similar to the methodology
of Richardson et al. (2016) and Twomey et al. (2019), the
positions of SNPs within 5 Mb and with R2

≥ 0.5 of
each top SNP were determined using non-pruned imputed
genotypes, and the furthest SNP upstream and downstream in
LD with the significant or suggestive SNP defined the LD block
boundaries. Overlapping LD blocks were combined. Using the
same procedure outlined for CBAT, the PVE by the LD blocks
defined from the GLMM and RF analyses was estimated and
compared against the PVE by chunks of SNPs of the same size
that overlapped by 50 kb from all chromosomes.

Bayesian Estimation of SNP Effects and
Assessing Model Fit
A Bayesian approach was used to test the association of the top
SNPs identified in the GLMM and the RF with the case/control
phenotype for the four datasets. Bayesian methodology was
selected because it allows multiple SNPs to be fitted jointly,
recognizes that some SNPs are correlated and most likely
have small effects on susceptibility (van der Spek et al.,
2015b), and can account for the uneven sampling of cases
and controls from dairies. Additionally, the effect size estimates
obtained from Bayesian estimation are directly interpretable,
and Bayesian model evaluation is extremely thorough. Because
highly correlated predictors complicate Bayesian regression, the
significant and suggestive SNPs detected in the GLMM GWASs
were LD-pruned (R2 > 0.9) using PLINK 1.9 (Chang et al., 2015;
Purcell and Chang, 2015) prior to estimating effects to keep the
most significant SNP in each LD block for inclusion into the
Bayesian model. Estimation of SNP effects was performed using
a Bayesian logistic regression model as described in Lai et al.
(2020). The important SNPs from the RF did not need to be LD-
pruned, as SNPs were LD-pruned prior to RF analyses. Briefly,
each set of top SNPs (i.e., LD-pruned suggestive/significant SNPs
from the GLMM analyses and important SNPs from RF analyses)
was used as predictors along with farm as a covariable in a
Bayesian logistic regression model, and the model was fitted
via sampling the posterior using the Hamiltonian Monte Carlo
algorithm in the R package rstanarm (Gelman et al., 2020;
Goodrich et al., 2020). The same population was used in the
GLMM and RF GWAS as for the SNP effect estimation, which
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could lead to the inclusion of false-positive associations in the
Bayesian model. Thus, to discern whether the included SNPs
were false positives, the fit of the Bayesian model using the
estimated parameters was evaluated using leave-one-out (LOO)
cross-validation and posterior predictive checking (PPC) using
the loo and bayesplot R packages (Vehtari et al., 2017, 2020; Gabry
et al., 2019). Bayesian estimation of the SNP effects generated a
distribution of where the true value of the SNP effect was, and
this range was quantified in the 95% uncertainty intervals (UI),
as opposed to a point estimate in frequentist methods. SNPs with
95% UIs that did not overlap zero were considered significantly
associated with susceptibility to the respective claw lesion(s).

Functional Annotation of Associated
Regions
Genes and previously defined quantitative trait loci (QTL) falling
within or overlapping with the associated LD blocks and chunks
were obtained using FAANGMine using the genomic regions
search function (Functional Annotation of Animal Genomes
(FAANG), 2019) and the CattleQTLdb (Hu et al., 2019). RefSeq
genes were extracted from the resulting gene list and used in the
pathway and gene ontology enrichment analysis in FAANGMine.
Genes were searched in the Mouse Genome Informatics batch
query database to find the associated mammalian phenotypes
(Smith and Eppig, 2009). Genes were also queried in the Cattle
Gene Atlas (Fang et al., 2020) to determine in which tissues
they were expressed.

RESULTS

Descriptive Data
The percentage and count of cows with records of each claw
lesion from each dairy are presented in Table 1. Of the cows that
had hoof trimming records from the five dairies, 5.6 and 12.0%
had records of SU and WLD, respectively, similar to previous
prevalence estimates (Cramer et al., 2008; Bicalho et al., 2009;
van der Linde et al., 2010; Oberbauer et al., 2013). For cows that
were genotyped, cases were sampled from all five dairies, whereas
controls were sampled from dairies A and D, which had cows
that met our strict soundness and age criteria for controls. The
dataset included 156 SU cases, 119 WLD cases, 203 SU + WLD
cases (72 cows had both SU and WLD), 222 NICL cases, and 104
sound controls, for a total of 287 cows (Table 2). The average age
of the controls sampled was 8.7 years old (SD = 1.4), and when
compared to the average age of onset of 4.2 (SD = 1.7) for SU and
4.5 (SD = 2.6) years for WLD, it indicated that our age cutoff of
6.0 years old was sufficient to avoid misphenotyping control cows.

After quality filtering, ∼556,000 SNPs for 152 SU cases, 117
WLD cases, 198 SU + WLD cases (71 cases had both SU and
WLD), 217 NICL cases, and 102 sound controls remained for
MDS, GLMM, Genetic Type I error calculation, CBAT, and RF
analyses. The MDS plot showed some population stratification,
with a prominent center cluster and two other sparse clusters,
although clustering was not by farm or case/control phenotype
(Supplementary Figure 1). Pairwise relationship coefficients
calculated for the GRM ranged from −0.094 to 0.50, with TA
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negative values indicating that the two cows were less related
to each other than other random pairs of individuals. The
distribution of the pairwise relationship coefficients did not differ
greatly between pairs of cows from the same farm and pairs
from different farms (Supplementary Figure 2). The Genetic
Type I error calculator determined that the effective number of
markers on autosomal chromosomes for Bonferroni correction
was ∼156,000 SNPs for the four datasets, yielding a significance
threshold of p = 3.2 × 10−7 [6.5 on −log10(p) scale] and a
suggestive threshold of p = 6.4 × 10−6 [5.2 on −log10(p) scale].
The total number of 100-kb chunks used in CBAT was ∼51,730
for the four datasets, yielding a significance threshold of p = 9.7
× 10−7 [6.0 on −log10(p) scale] and a suggestive threshold of p
= 1.9 × 10−5 [4.7 on −log10(p) scale]. Linkage disequilibrium
pruning at R2 > 0.90 left 215,343–218,185 SNPs for RF analysis,
depending on the dataset.

Generalized Linear Mixed Model GWAS
and CBAT
The GLMM analyses detected a region of association on BTA8 for
SU and BTA13 for WLD, SU + WLD, and NICL while sufficiently
accounting for population stratification and relatedness, as
indicated by the qqplots and the genomic inflation factors of
1.01, 1.02, 1.01, and 0.99 for SU, WLD, SU + WLD, and
NICL, respectively (Supplementary Figure 3). The CBAT using
100-kb overlapping chunks across the genome also properly
accounted for population stratification and relatedness (qqplots
in Supplementary Figure 5) and identified the same regions as
the single-marker GLMM GWAS for each of the four datasets,
providing further support for these regions (Supplementary
Table 1; Manhattan plots in Supplementary Figure 6). The
SU CBAT also identified two suggestive chunks on BTA17
(Supplementary Table 1 and Supplementary Figure 6A). For
the NICL CBAT, the reduction in the number of tests performed
allowed the chunk at BTA13:46,450,001–46,550,001 to reach
genome-wide significance (p = 6.9 × 10−7; Supplementary
Table 1 and Supplementary Figure 6D). This significant chunk
contained the most significant SNP from the single-marker
GLMM GWAS and three suggestive SNPs downstream.

The GLMM association testing for SU susceptibility identified
12 suggestive SNPs on BTA8 falling in or directly upstream of
the gene DCAF12 (also known as DDB1 and CUL4-associated

TABLE 2 | Distribution of cases for sole ulcers (SU), white line disease (WLD),
SU + WLD, noninfectious claw lesions (NICL), and sound controls after quality
filtering across the five dairies.

Farm Controls Cases

SU WLD SU + WLD NICL

A 81 44 48 75 87

B 0 8 13 17 23

C 0 4 7 9 10

D 21 71 33 72 72

E 0 25 16 25 25

Total 102 152 117 198 217

factor 12) (Tables 3, 4). The 12 suggestive SNPs collectively
defined a 3.2-Mb LD block at BTA8:74,345,807–77,546,693
(Table 3 and Figure 1A) encompassing or overlapping with
60 genes: 52 protein-coding genes, four long non-coding RNA
(lncRNA) genes, a transfer RNA (tRNA) gene, a microRNA
(miRNA) gene, a small nuclear RNA (snRNA) gene, and a
small nucleolar RNA (snoRNA) gene. Because the 12 suggestive
SNPs from the SU GLMM were in strong LD (R2 > 0.9),
the most significant SNP, BovineHD0800023021, was selected
to represent this LD block in the Bayesian logistic regression
model. The minor allele at BovineHD0800023021 (T) had an
effect that was significantly less than zero at 95% UI (Table 3
and Figure 2A), indicating that it was associated with reduced
susceptibility to SU. The LOO analysis yielded acceptable Pareto
k values (k < 0.5) for all cows, which indicated that the model
was able to predict the phenotype of each cow with similar
accuracy using the genotypes at BovineHD0800023021 from all
other cows. Goodness-of-fit assessment via PPC also showed
that the distribution of the phenotypes simulated using the
estimated SNP effect closely aligned with that of the observed
data (Supplementary Figure 7A), further validating the fit
of the model. In addition to identifying suggestive chunks
in the same regions on BTA8, CBAT for SU detected two
significant chunks on BTA17 (Supplementary Table 1 and
Supplementary Figure 6A) that both fell within TMEM12
(transmembrane protein 132B).

For WLD, the GLMM association testing found a
single suggestive intergenic SNP at BTA13:46,491,619
(BovineHD1300013725; Supplementary Figure 4A), which was
also the most significant SNP identified by the GLMM analyses
for SU + WLD and NICL (Table 3 and Supplementary Figure 4B
and Figure 1B). In addition to detecting BovineHD1300013725,
the GLMM analyses for the SU + WLD and NICL datasets
detected eight other suggestive SNPs in the same LD block as
BovineHD1300013725 (Table 3 and Supplementary Figure 4).
These nine suggestive SNPs detected in the SU + WLD GWAS
were slightly more significant in the NICL GWAS and defined a
2.4-Mb LD block at BTA13:45,283,136–47,676,681 containing 27
genes: 16 protein-coding genes, six lncRNA genes, two snRNA
genes, two snoRNA genes, and one miRNA gene. For all four
GLMM GWAS, the limited number of genes in the LD blocks
defined from suggestive SNPs precluded pathway and gene
ontology analyses.

Given that the GLMM GWAS for SU + WLD and NICL
identified nine suggestive SNPs in the same LD block (R2 >
0.5) on BTA13 (Figure 1B and Supplementary Figure 4) and
the top SNP is the same as that in the WLD GWAS, only the
NICL Bayesian SNP effect estimation results are presented. Eight
of these suggestive SNPs were in strong LD (R2 > 0.9), whereas
the remaining suggestive SNP (BTB-00525539) was in weaker LD
with the others (R2 = 0.7). Consequently, the most significant
SNP in the LD block of eight SNPs (BovineHD1300013725) and
BTB-00525539 were included in the Bayesian logistic regression
model. The minor allele at BovineHD1300013725 representing
the eight SNPs in strong LD had an effect that was significantly
greater than zero at 95% UI (Figure 2B), indicating that the
minor allele (C) was associated with increased susceptibility to
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TABLE 3 | SNPs that were suggestive in the generalized linear mixed model association analysis and the linkage disequilibrium (LD) blocks they defined for sole ulcers (SU), white line disease (WLD), sole ulcers and/or
white line disease (SU + WLD), and noninfectious claw lesions (NICL).

Dataset BTA SNP SNP position
(bp)

Minor/
major allele

Minor allele
count

Minor allele
frequency

Scorea

(variance)
p SNP significance in

Bayesian estimationb
LD block
start (bp)

LD block
end (bp)

LD block
length (kb)

Cases Controls Cases Controls

SU 8 BovineHD0800023014 75,489,164 T/C 75 94 0.247 0.461 −20 (18.1) 2.71E−06 – 74,345,807 77,546,693 3,200.9

8 BovineHD0800023015 75,490,011 T/G 75 94 0.247 0.461 −20 (18.1) 2.71E−06 – 74,345,807 77,546,693 3,200.9

8 ARS-BFGL-NGS-112795 75,490,692 A/G 75 94 0.247 0.461 −20 (18.1) 2.71E−06 – 74,345,807 77,546,693 3,200.9

8 BovineHD0800023016 75,491,531 C/T 75 94 0.247 0.461 −20 (18.1) 2.71E−06 – 74,345,807 77,546,693 3,200.9

8 BovineHD0800023017 75,492,307 G/A 75 94 0.247 0.461 −20 (18.1) 2.71E−06 – 74,345,807 77,546,693 3,200.9

8 BovineHD0800023018 75,493,464 T/C 75 94 0.247 0.461 −20 (18.1) 2.71E−06 – 74,345,807 77,546,693 3,200.9

8 BovineHD0800023019 75,494,163 C/T 75 94 0.247 0.461 −20 (18.1) 2.71E−06 – 74,345,807 77,546,693 3,200.9

8 BovineHD0800023021 75,496,244 T/C 77 97 0.253 0.476 −20.4
(18.8)

2.66E−06 * 74,345,807 77,546,693 3,200.9

8 BovineHD0800023022 75,496,918 A/G 75 94 0.247 0.461 −20 (18.1) 2.71E−−06 – 74,345,807 77,546,693 3,200.9

8 BovineHD0800023023 75,497,471 C/T 75 94 0.247 0.461 −20 (18.1) 2.71E−06 – 74,345,807 77,546,693 3,200.9

8 BovineHD0800023024 75,498,118 A/G 75 94 0.247 0.461 −20 (18.1) 2.71E−06 – 74,345,807 77,546,693 3,200.9

8 BovineHD0800023025 75,501,482 T/C 75 94 0.247 0.461 −20 (18.1) 2.71E−06 – 74,345,807 77,546,693 3,200.9

WLD 13 BovineHD1300013725 46,491,619 C/T 106 48 0.453 0.235 19.9 (19.4) 6.13E−06 * 46,307,416 47,584,595 1,277.2

SU + WLD 13 BovineHD1300013725 46,491,619 C/T 183 48 0.462 0.235 25 (25.5) 7.03E−07 * 45,283,136 47,676,681 2,393.5

13 BovineHD1300013733 46,526,509 C/T 188 52 0.475 0.255 24.8 (25.6) 9.86E−07 – 45,283,136 47,676,681 2,393.5

13 BovineHD1300013739 46,540,186 G/T 188 52 0.475 0.255 24.8 (25.6) 9.86E−07 – 45,283,136 47,676,681 2,393.5

13 BovineHD1300013740 46,541,925 C/T 188 52 0.475 0.255 24.8 (25.6) 9.86E−07 – 45,283,136 47,676,681 2,393.5

13 BovineHD1300013750 46,561,964 C/T 188 52 0.475 0.255 24.8 (25.6) 9.86E−07 – 45,283,136 47,676,681 2,393.5

13 BovineHD1300013759 46,582,769 G/A 188 52 0.475 0.255 24.8 (25.6) 9.86E−07 – 45,283,136 47,676,681 2,393.5

13 BovineHD1300013765 46,596,264 A/G 188 52 0.475 0.255 24.8 (25.6) 9.86E−07 – 45,283,136 47,676,681 2,393.5

13 BovineHD1300013774 46,637,235 A/G 188 52 0.475 0.255 24.8 (25.6) 9.86E−07 – 45,283,136 47,676,681 2,393.5

13 BTB-00525539 47,420,271 C/A 195 59 0.492 0.289 24.6 (27.8) 3.03E−06 ns 45,283,136 47,676,681 2,393.5

NICL 13 BovineHD1300013725 46,491,619 C/T 199 48 0.459 0.235 26.4 (27.2) 3.96E−07 * 45,283,136 47,676,681 2,393.5

13 BovineHD1300013733 46,526,509 C/T 204 52 0.470 0.255 26 (27.3) 6.68E−07 – 45,283,136 47,676,681 2,393.5

13 BovineHD1300013739 46,540,186 G/T 204 52 0.470 0.255 26 (27.3) 6.68E−07 – 45,283,136 47,676,681 2,393.5

(Continued)
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NICL (Table 3). In contrast, the effect of the minor allele at BTB-
00525539 was not significantly different from zero (Figure 2B).
Although the score variances of the suggestive SNPs were large
(Table 3), possibly due to the sample cohort, Bayesian estimation
was less affected than GLMM regression by these limitations and
indicated that the SNP effects were significant for SU and NICL
(Figure 2). For the LOO analysis of the model, the acceptable
Pareto k values (k < 0.5) from all cows demonstrated that the
model including BovineHD1300013725 and BTB-00525539 was
able to predict the NICL phenotype of each cow based on the
genotypes at these two SNPs from the other cows with similar
accuracy. The PPC-simulated data based on the estimated SNP
effects of these two SNPs were similar to the observed data,
indicating good model fit (Supplementary Figure 7B).

To draw attention to the impactful SNPs shown in Table 3 and
the LD blocks they defined in Table 4, the minor allele frequencies
at the most significant SNP for SU (BovineHD0800023021)
in cases and controls were 0.253 and 0.476, respectively. The
GLMM output score was negative and Bayesian estimation
indicated a significant negative effect on susceptibility; that
is, the minor allele was associated with reduced susceptibility.
In contrast, the MAF at the most significant SNP for NICL
(BovineHD1300013725) was higher in cases (0.459) than in
controls (0.235), indicating that the minor allele was associated
with higher susceptibility. Likewise, the GLMM score was
positive, and Bayesian estimation of the effect size resulted in a
significant positive effect. Similar minor allele frequencies, scores,
and significantly positive effect size estimates were observed at
BovineHD1300013725 for WLD and SU + WLD. As seen in
Table 4, the LD blocks defined by the suggestive SNPs had PVE
between 0.06 and 0.08, depending on the dataset (SU, WLD,
SU + WLD, or NICL), all of which were significantly greater
than zero (permuted p < 0.05). In contrast, the genome-wide
chunks with the same length as the LD blocks had an average PVE
∼0.008, with PVE increasingly slightly with increasing chunk
size, and average permuted p values∼0.5.

Random Forest GWAS
The RF models for all four datasets were not significantly more
accurate at predicting the phenotype in the test population
compared to the non-information rate (i.e., the frequency of the
more common phenotype), indicating that the RF models were
overfitted (Brieuc et al., 2018) such that the SNPs that passed
the significance threshold were likely random noise. Because
importance values are assigned and the importance threshold
defined after fitting the RF model, some SNPs will always pass
the importance threshold. Consequently, the value of these
important SNPs and the likelihood that the important SNPs
are truly trait linked must be gauged using model validation.
In this case, the models were invalidated because of their poor
phenotype prediction in the test population, indicating that
the SNPs classified to be important were unlikely associated
with the phenotype.

Additionally, the genomic regions identified by SNPs that
passed the importance threshold did not overlap across the
four datasets, despite their shared etiology, or with the genomic
regions on BTA8 and BTA13 detected in the GLMM association
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TABLE 4 | Proportion of phenotypic variance explained (PVE) by each linkage disequilibrium (LD) block defined from the generalized linear mixed model association
analysis compared to the mean PVE of all chunks of genomic regions with the same length for sole ulcers (SU), white line disease (WLD), sole ulcers and/or white line
disease (SU + WLD), and noninfectious claw lesions (NICL).

LD block Genome-wide mean of chunks with
same length as LD block

Dataset BTA Start (bp) End (bp) Length (kb) PVE (SD) PVE p PVE (SE) PVE p (SE)

SU 8 74,345,807 77,546,693 3,200.90 0.081 (0.054) 3.93E−04 0.00809 (0.0004) 0.478 (0.006)

WLD 13 46,307,416 47,584,595 1,277.20 0.061 (0.047) 2.93E−05 0.00794 (0.0002) 0.485 (0.004)

SU + WLD 13 45,283,136 47,676,681 2,393.50 0.071 (0.050) 1.05E−06 0.00873 (0.0004) 0.482 (0.006)

NICL 13 45,283,136 47,676,681 2,393.50 0.074 (0.051) 5.79E−09 0.00828 (0.0003) 0.484 (0.005)

FIGURE 1 | Manhattan plots from the generalized linear mixed model
regression association analyses for (A) sole ulcers and (B) noninfectious claw
lesion susceptibility. The blue line indicates the threshold of genome-wide
suggestive significance and the red line indicates the threshold of
genome-wide significance.

analyses. Model overfitting combined with the lack of common
genomic regions across the four datasets indicated that the
RFs were unable to overcome the complex genetic architecture
of noninfectious claw lesions and identify genomic regions of
biological importance. Thus, downstream analyses to estimate
SNP effects and conduct pathway and gene ontology analyses
were not pursued.

DISCUSSION

Using GLMM regression, CBAT, and a RF approach to compare
the SNP genotypes of sound controls and various types of
noninfectious claw lesion cases, we identified genomic regions
associated with susceptibility to these claw lesions. Given the
overlapping etiology of the noninfectious claw lesion in this
study, we expected that association testing would detect the
genomic regions shared across some or all four datasets.
Common genomic regions were identified from the GLMM and
CBAT approaches, but not for the RF approach. Although RFs
are a promising tool to identify loci associated with complex
traits, the RF models in this study were overfitted, precluding

FIGURE 2 | Bayesian uncertainty interval (UI) plots depicting the estimated
single nucleotide polymorphism (SNP) effects of the suggestive SNPs
detected in the generalized linear mixed model regression analysis for (A) sole
ulcers and (B) noninfectious claw lesion susceptibility. Dots indicate the
median of the SNP effect, thick black bars indicate the 50% UI, and thin lines
indicate the 95% UI of the effect size distribution. The letters following SNP
names indicate the minor allele for which the effect was calculated. Positive
values indicate that the minor allele of the SNP increases susceptibility, and
negative values indicate that the minor allele of the SNP decreases
susceptibility.

meaningful interpretation of the SNPs that passed the importance
threshold. For GLMM testing and CBAT, the associated region
detected on BTA8 for SU appeared to be specific for SU because
the analyses for the other claw lesions did not detect this region;
a SNP in this region (ARS-BFGL-NGS-108587) has previously
been associated with SU (van der Spek et al., 2015b). The SNP
detected on BTA13 for WLD increased in significance as cows
with SU and other noninfectious lesions were added to the
GLMM GWAS and CBAT analysis, implying that these lesions
shared a genetic component that was less prevalent in SU cases.
LD blocks defined by the top SNPs from the GLMM GWAS
with nonzero effects from Bayesian estimation were explored
further for candidate genes and previously defined QTL that were
also functionally relevant to NICL etiology. The identification
of promising candidate genes within the associated regions may
lend more confidence to those regions; however, genetic selection
does not require candidate gene identification and instead uses
markers that are associated with, but not necessarily causal for,
the trait. Thus, the candidate genes are presented below to
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postulate their contribution to etiology rather than to inform
genetic selection.

Sole ulcers and WLD are thought to result from increased
laxity of the suspensory system from collagen breakdown and a
thinner digital cushion, allowing the distal phalanx to rotate and
sink within the claw (Lischer et al., 2002; Bicalho et al., 2009;
Newsome et al., 2017a,b; Shearer and van Amstel, 2017; Stambuk
et al., 2019). As the distal phalanx crushes the underlying corium,
a hemorrhage develops at the pressure site and horn production
through keratinization in the corium is disrupted, leading to horn
thinning and, eventually, a hole in the horn through which the
corium protrudes and develops into a SU (Greenough, 2007;
Shearer et al., 2015). Similarly, WLD is thought to develop as
a result of improper weight bearing and/or flooring causing
defective horn production along the white line that is more prone
to debris and bacteria infiltration, and when the bacteria reach the
corium, an abscess forms (Shearer and van Amstel, 2017). It has
been theorized that subclinical laminitis weakens the suspensory
system and thereby predisposes the cow to SU and WLD
(Thoefner et al., 2004), although evidence supporting this theory
is limited (Danscher et al., 2010). New bone development on
the third phalanx (Rusterholz, 1920; Blowey et al., 2000; Lischer
et al., 2002) is associated with increasing age (Tsuka et al., 2012;
Newsome et al., 2016) and is thought to contribute to a higher
incidence of ulceration (Rusterholz, 1920; Tsuka et al., 2012).
Because foot and leg conformation influences weight distribution
within and between claws, the foot and leg conformation traits are
thought to be correlated with SU + WLD susceptibility, although
stronger evidence is needed to support the low to moderate
phenotypic (Capion et al., 2008; Pérez-Cabal and Charfeddine,
2016) and genetic (Chapinal et al., 2013) correlations that were
previously observed. Based on the etiology of noninfectious claw
lesions and the possible genetic correlation of the susceptibility
of these claw lesions with the conformation traits, genes and QTL
related to collagen, keratinization, bone growth, adipose, and foot
and leg conformation were considered functionally relevant.

For SU, the suggestive SNPs fell in or near DCAF12 (DDB1
and CUL4-associated factor 12), an evolutionarily conserved
apoptosis regulation gene involved in DNA repair and protein
degradation that is required for tissue homeostasis under
stress conditions, as demonstrated in Drosophila (Hwangbo
et al., 2016). The metabolic stress associated with NICL could
potentially disrupt the regulation of DCAF12 and contribute
to aberrant tissue homeostasis within the claw. Within the
LD block, APTX, AQP7, B4GALT1, ENHO, GALT, GULO, and
UBAP2 had functions involved in wound healing, skin lesions,
bone growth and mineralization, adipose tissue, and keratin
summarized in Table 5. Notably, the LD block included a
SNP that van der Spek et al. (2015b) had previously associated
with SU susceptibility, ARS-BFGL-NGS-108587, supporting this
SNP as a susceptibility locus for SU and the investigation into
the region. No other previously defined QTL, physiologically
relevant, or foot and leg conformation QTL were identified
in the LD block. The two suggestive chunks on BTA17 both
fell in TMEM132B (transmembrane protein 132B; Table 5),
which, in humans, encodes a member of the TMEM132
family of evolutionarily ancient cell adhesion molecules that

connect the extracellular medium with the intracellular skeleton
(Sanchez-Pulido and Ponting, 2018).

For NICL, all nine suggestive SNPs fell directly upstream or
within introns of DIP2C (disco-interacting protein 2 homolog
C), which is hypothesized to play a role in transcription and
methylation regulation. DIP2C has been shown to regulate
DNA methylation and the epithelial–mesenchymal transition
in human cell lines (Larsson et al., 2017), and mutations in
DIP2C have been associated with skeletal dysplasia affecting
bone and cartilage development in humans (Maddirevula et al.,
2018). The LD block contained three additional candidate genes
with functions related to adipose tissue, bone growth, and bone
mineralization (Table 5). The LD block on BTA13 did not overlap
with previously defined QTL that were apparently related to
NICL or foot and leg conformation traits. According to the
Cattle Gene Atlas (Fang et al., 2020), some candidate genes
were expressed ubiquitously (DCAF12, APTX, GALT, UBAP2,
DIP2C, PCNA, and WDR37), and others were expressed more
highly in specific tissues, such as adipose, cardiovascular, bone
marrow, central nervous system, mammary, liver, or immune
tissues (AQP7, B4GALT1, ENHO, GULO, and RASSF2; Table 5).

Prior GWAS studies of NICL, while having larger sample
sizes, were sampled from larger geographical regions and used
lower-density SNP panels. An acknowledged limitation of this
study is the small sample size. However, previous GWAS
with smaller sample sizes using the high-density SNP array
were able to detect associated loci in Holstein populations
for digital cushion thickness (n = 502) (Stambuk et al.,
2020) and left displaced abomasum (n = 406) (Lehner et al.,
2018), implying that locus detection is possible despite smaller
sample sizes. By maintaining stringent phenotyping for sound
controls, minimizing environmental and housing variability,
and increasing SNP density, we aimed to optimize the ability
to detect genomic variants at the expense of larger sample
sizes. Additionally, the CBAT approach reduced the number of
tests performed to increase power and found the same regions
of association, providing further support for these regions.
Because SU susceptibility is also affected by environmental
management, including housing and nutrition, we sought to
minimize environmental variability by sampling cows at dairies
with similar nutrition and flooring, as the diets fed at the five
dairies were similar and all dairies used a freestall flush barn
system and rubber flooring in alleys.

Whereas previous published studies of noninfectious claw
lesions have not used the high-density panel, our study with the
777K SNP panel allowed for higher resolution when defining
the LD blocks. Furthermore, RF analysis and Bayesian regression
methods were implemented to perform joint association testing
of multiple top SNPs while working around the uneven sampling
of controls. The two published GWAS for SU susceptibility found
associated SNPs on different chromosomes than those identified
in this study, specifically on BTA 8, 10, 11, 18, and 22 using a
linear animal model (van der Spek et al., 2015b) and on BTA12
and 25 using a linear mixed model (Sánchez-Molano et al., 2019).
Other GWAS for traits related to SU + WLD included digital
cushion thickness (Sánchez-Molano et al., 2019; Stambuk et al.,
2020), sole hemorrhage susceptibility (van der Spek et al., 2015b;
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TABLE 5 | Candidate genes in linkage disequilibrium blocks defined by suggestive SNPs from the generalized linear mixed model and chunk-based association testing for sole ulcers (SU), white line disease (WLD),
sole ulcers and/or white line disease (SU + WLD), and noninfectious claw lesions (NICL) and the tissues in which they were expressed.

Claw lesion Gene symbol Gene description Functional relevance RNA tissue specificity

SU DCAF12 DDB1 (damage-specific binding
protein) and CUL4 (cullin 4)-associated
factor 12

Regulates apoptosis required for tissue homeostasis under stress
conditions (Hwangbo et al., 2016)

Ubiquitous

APTX Aprataxin Decreased bone mineral content (MGI) Ubiquitous

Increased total body fat amount (MGI)

AQP7 Aquaporin 7 Abnormal white adipose tissue physiology (MGI) Adipose, cardiovascular, and bone marrow

Increased fat cell size (MGI)

B4GALT1 Beta-1,4-galactosyltransferase 1 Decreased subcutaneous adipose tissue amount (MGI) Mammary gland

Delayed wound healing (MGI)

Hyperkeratosis (MGI)

Skin lesions (MGI)

Thin skin (MGI)

ENHO Energy homeostasis associated Increased body fat mass (MGI) Central nervous system

Increased percent body fat/body weight (MGI)

GALT Galactose-1-phosphate
uridylyltransferase

Decreased subcutaneous adipose tissue amount (MGI) Ubiquitous

Delayed wound healing (MGI)

Hyperkeratosis (MGI)

Skin lesions (MGI)

Thin skin (MGI)

GULO Gulonolactone (L-)oxidase Abnormal bone mineralization (MGI) Liver

Abnormal long bone epiphyseal plate morphology (MGI)

Abnormal trabecular bone morphology (MGI)

Decreased bone mineral density (MGI)

Decreased compact bone thickness (MGI)

TMEM132B Transmembrane protein 132B Cell adhesion molecule that connects the extracellular medium with the
intracellular skeleton (Sanchez-Pulido and Ponting, 2018)

Central nervous system, testes

UBAP2 Ubiquitin-associated protein 2 Abnormal adipose tissue amount (MGI) Ubiquitous

WLD, SU + WLD, NICL DIP2C Disco-interacting protein 2 homolog C Regulates DNA methylation and the epithelial–mesenchymal transition
in human cell lines (Larsson et al., 2017)

Ubiquitous

Mutations associated with skeletal dysplasia (Maddirevula et al., 2018)

PCNA Proliferating cell nuclear antigen Abnormal adipose tissue development (MGI) Ubiquitous

Decreased percent body fat/body weight (MGI)

Decreased white fat cell number

(Continued)
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Sánchez-Molano et al., 2019), and laminitis susceptibility (Naderi
et al., 2018), although the SNPs detected in these studies were also
on different chromosomes from those from this study.

Because noninfectious claw lesions have a similar etiology, it
has been postulated that pleiotropy may exist across the different
noninfectious claw lesions and related traits. For instance,
estimates of the genetic correlation between SU and WLD are
significant, ranging from 0.41 to 0.60 depending on parity (van
der Linde et al., 2010). However, past GWAS have not found
associations on the same chromosomes among SU, WLD, digital
cushion thickness, sole hemorrhage, or laminitis (van der Spek
et al., 2015b; Naderi et al., 2018; Sánchez-Molano et al., 2019),
or if SNPs from the same chromosome were detected, they were
in different regions. Specifically, the only common chromosome
among these three GWAS was BTA11: van der Spek et al. (2015b)
found Hapmap38795-BTA-97039 for SU at BTA11:23302850,
and Naderi et al. (2018) found BTB-00466773 for laminitis at
BTA11:48309332 (the SNP positions were updated to the ARS-
UCD1.2 map). The QTL identified on BTA13 may thus represent
a portion of the common genetic contribution to the different
types of noninfectious claw lesions.

CONCLUSION

Using logistic mixed model single-marker regression and CBAT,
genomic regions associated with susceptibility were identified
on BTA8 for SU and BTA13 for WLD, SU + WLD, and
NICL. The associated regions on BTA8 and BTA13 contained
candidate genes related to wound healing, skin lesions, bone
growth and mineralization, adipose tissue, and keratin. The RF
approach was unable to overcome the complexity of these lesion
traits and reliably identify potential candidate QTL. Although
these findings must be validated in larger populations in other
geographical regions, the detection of a region associated with SU
susceptibility that included a previously reported locus suggested
that the study cohort was adequate to identify the regions of
susceptibility for NICL. Further exploration of these regions
through targeted sequencing or RNA-seq in claw tissues with
and without noninfectious claw lesions may uncover variants
in the genes or regulatory elements contributing to lameness.
The multiplicity of associations detected in this and other
studies demonstrated the complexity of the genetic architecture
underlying noninfectious claw lesion susceptibility.
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Improvement of prediction accuracy of estimated breeding values (EBVs) can lead
to increased profitability for swine breeding companies. This study was performed to
compare the accuracy of different popular genomic prediction methods and traditional
best linear unbiased prediction (BLUP) for future performance of back-fat thickness
(BFT), average daily gain (ADG), and loin muscle depth (LMD) in Canadian Duroc,
Landrace, and Yorkshire swine breeds. In this study, 17,019 pigs were genotyped using
Illumina 60K and Affymetrix 50K panels. After quality control and imputation steps,
a total of 41,304, 48,580, and 49,102 single-nucleotide polymorphisms remained for
Duroc (n = 6,649), Landrace (n = 5,362), and Yorkshire (n = 5,008) breeds, respectively.
The breeding values of animals in the validation groups (n = 392–774) were predicted
before performance test using BLUP, BayesC, BayesCπ, genomic BLUP (GBLUP),
and single-step GBLUP (ssGBLUP) methods. The prediction accuracies were obtained
using the correlation between the predicted breeding values and their deregressed
EBVs (dEBVs) after performance test. The genomic prediction methods showed higher
prediction accuracies than traditional BLUP for all scenarios. Although the accuracies of
genomic prediction methods were not significantly (P > 0.05) different, ssGBLUP was
the most accurate method for Duroc-ADG, Duroc-LMD, Landrace-BFT, Landrace-ADG,
and Yorkshire-BFT scenarios, and BayesCπ was the most accurate method for Duroc-
BFT, Landrace-LMD, and Yorkshire-ADG scenarios. Furthermore, BayesCπ method
was the least biased method for Duroc-LMD, Landrace-BFT, Landrace-ADG, Yorkshire-
BFT, and Yorkshire-ADG scenarios. Our findings can be beneficial for accelerating the
genetic progress of BFT, ADG, and LMD in Canadian swine populations by selecting
more accurate and unbiased genomic prediction methods.
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INTRODUCTION

In the pork industry, genetics has a pivotal role in improving
the economically important traits, such as meat quality,
growth, and reproductive performance (Badke et al., 2014).
The genetic improvement has been spectacularly successful
using traditional genetic improvement tools, such as best
linear unbiased prediction (BLUP) method (Henderson, 1975);
however, the genetic gain achieved is relatively slow for traits
that are expensive and difficult to measure such as those
measured postmortem (Dekkers et al., 2010; Wolc et al., 2011;
Miar et al., 2015). On the other hand, evaluation methods
based on genotypic information or genomic evaluation are
being used increasingly in modern pig breeding industry
(Badke et al., 2014) because of their accelerative role in
genetic improvement specifically through augmentation of
predictive ability.

In genomic evaluation, the effects of markers are estimated
based on genomic and phenotypic data in the reference group,
and then it is used to predict genomic breeding values (GEBVs)
in the validation group (Hayes and Goddard, 2001). The accuracy
of genomic prediction can be influenced by several factors
such as the reference population size (Samore and Fontanesi,
2016), genetic architecture of the trait, marker density, and
method assumptions used for prediction (Zhang et al., 2019).
Several former studies have compared different methods on
genomic prediction accuracy in livestock species such as cattle
(Luan et al., 2009; Guo et al., 2017; Mehrban et al., 2017;
Li et al., 2018; Mrode et al., 2018) and mink (Karimi et al.,
2019). However, there are still limited numbers of literature
in pig (Song et al., 2017; Jafarikia et al., 2018; Zhang et al.,
2018). Some popular genomic evaluation approaches such as
genomic BLUP (GBLUP) and Bayesian methods have been
widely used in the recent studies. For example, Zhang et al.
(2018) showed higher predictive ability of BayesB method over
GBLUP for average daily feed intake in a small population
(n = 1,363) of Duroc pigs. The single-step GBLUP (ssGBLUP)
method was considerably more accurate than GBLUP and
BayesR for growth traits in a larger population (n = 2,084) of
Yorkshire breed (Song et al., 2017). The differences between
these approaches are their assumptions, for example, about
the distribution of marker effects (Hayes and Goddard, 2001).
Therefore, determining the most accurate method for genomic
evaluation of different swine breeds is an important step of
selective breeding.

Several genomic prediction models of GBLUP (Badke et al.,
2014; Song et al., 2017, 2019b, 2020; Jafarikia et al., 2018; Zhang
et al., 2018), ssGBLUP (Song et al., 2017, 2019b; Thekkoot et al.,
2018; Hong et al., 2019; Lopez et al., 2019; Zhou et al., 2019;
Aliakbari et al., 2020), and BayesC (Esfandyari et al., 2016;
Song et al., 2020) have frequently been used for prediction
of various traits in the previous studies in swine. The main
assumption of GBLUP method is based on the infinitesimal
model (i.e., the genetic variation of the trait was explained
by a large number of loci) (Karaman et al., 2016, 2018)
that has been widely used in genomic evaluation, principally
due to its ease of implementation, in developed countries’

breeding programs, such as Holstein cattle breeding programs
in Canada1. Similar to GBLUP method, the infinitesimal model
is assumed in ssGBLUP method. The pivotal difference between
ssGBLUP and GBLUP methods is applying a blended genetic
relationship matrix (using genomic and pedigree relationship
matrices) in the ssGBLUP method (Legarra et al., 2009). This
method has been implemented in developing countries and
breeding companies with small number of genotyped animals
due to the improving role of blended relationship matrix in
increasing the accuracy of predicted GEBVs (Mrode et al.,
2018). This method can also allow detecting the conflicts of
pedigree and regulating the relationship between genotyped
and non-genotyped animals (Amaya Martínez et al., 2020).
Additionally, breeding values for non-genotyped animals can
be obtained simultaneously using ssGBLUP method, which is
not the case in GBLUP analysis (Tsuruta et al., 2013; Misztal
et al., 2014). The Bayesian genomic evaluation approaches (A,
B, C, etc.) are nonlinear methods and are mostly applied using
Markov chain Monte Carlo (MCMC) algorithm (Iheshiulor
et al., 2017). Despite the linear genomic evaluation methods
(e.g., ssGBLUP and GBLUP), some Bayesian methods (e.g.,
BayesCπ) assume that the genetic variation is explained by
a fewer number of loci. This characteristic can be helpful
to improve the evaluation accuracies for traits where their
genetic architecture violates the infinitesimal model assumption
(Hayes and Goddard, 2001; VanRaden et al., 2008). However,
GBLUP can be considerably faster than Bayesian approaches
in terms of computational speed (Song et al., 2019b). In
BayesC model (Kizilkaya et al., 2010), a common variance for
single-nucleotide polymorphisms (SNPs) with nonzero effects
is assumed instead of a locus-specific variance. Although
assuming that the probability of SNPs with nonzero effects
(π) is known, it might be problematic for some traits in
BayesC model. Habier et al. (2011) developed the BayesC
model through hypothesizing unknown π that can be estimated,
and therefore its prior distribution becomes uniform (0, 1)
(Habier et al., 2011).

The prediction ability of genomic evaluation methods,
which is considerably affected by their assumptions,
is an important factor for genetic improvement in
swine breeding companies. Therefore, the main goal
of our study was to compare the prediction accuracies
of traditional BLUP with different popular genomic
evaluation methods including GBLUP, ssGBLUP, BayesC,
and BayesCπ for average daily gain (ADG), back-fat thickness
(BFT), and loin muscle depth (LMD) traits in Canadian
swine populations.

MATERIALS AND METHODS

Ethics Statement
The hogs used in this study were cared for according to the
Canadian Council on Animal Care (Olfert et al., 1993) guidelines.

1https://interbull.org
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Animals, Genotyping, Quality Control,
and Imputation
In this study, we used genotypic and phenotypic data of BFT,
ADG, and LMD in three swine breeds of Duroc, Landrace, and
Yorkshire. The BFT and LMD were measured by ultrasonic
machine (B mode), and ADG was calculated using Eq. 1:

ADG =
Final weight − birth weight

Days
(1)

.
These phenotypes were collected from 2010 to 2019 and

adjusted to the weight of 120 kg (Table 1). The average
numbers of phenotyped boars and gilts per litter for Duroc,
Landrace, and Yorkshire breeds are reported in Supplementary
Table 1. In this study, phenotypic and genotypic information
was collected from distributed swine breeding companies across
Canada, which participated in the Canadian Swine Improvement
Program coordinated by the Canadian Centre for Swine
Improvement2.

Animals in the reference (n = 4,615–5,875) and validation
(the performance tested animals after January 2019, n = 392–
774) groups were genotyped with Illumina 60K (Illumina
Inc., San Diego, CA, United States) or Affymetrix 50K
(Affymetrix, Santa Clara, CA, United States) panels (Table 1).
Quality control was performed by removing SNPs with minor
allele frequency <0.05, call rate <0.9, and Hardy–Weinberg
P < 0.0001. After quality control steps, the remaining SNPs
(52,025 for all breeds) were used for imputation of the
missing genotypes with FImpute 2.2 software (Sargolzaei
et al., 2014). After the imputation step, 1,341 SNPs on sex
chromosomes were discarded.

Statistical and Genetic Analyses
Traditional Estimated Breeding Value
Model 1 was used for estimation of breeding values of each animal
using the AIREMLF90 1.61 software (Misztal et al., 2002):

Model 1. yc = 1µ+ Xb+ Za+Wu+ e,

where y is the vector of phenotypic data, µ is the overall mean,
X is the incidence matrix relating fixed effects of herd–year–
season–sex to phenotypes, b is the vector of fixed effects, Z is the
incidence matrix relating phenotypes to additive genetic effects,
a is the vector of additive genetic effects, W is the incidence
matrix relating phenotypes to random common litter effects,
u is the vector of random common litter effects, and e is the
vector of random residual effects. It was assumed that a ∼
N(0,Aσ2

a), u ∼ N(0, Iσ2
u), and e ∼ N(0, Iσ2

e ), where A is the
pedigree-based relationship matrix, σ2

a is the variance of additive
genetic effects, σ2

u is the variance of common litter effects, I
is the identity matrix, and σ2

e is the residual variance. The
estimated variance components (before and after performance
tests) using AIREMLF90 implemented in BLUP model (Model 1)
are reported in Supplementary Table 2. The estimated breeding

2https://www.ccsi.ca/

values (EBVs) of parents were used to calculate parent average
EBV (PA) for each animal using the following equation:

PA =
EBV (sire) + EBV(dam)

2
. (2)

GBLUP
After calculating the deregressed EBVs (dEBVs) as
pseudophenotypes according to the approach proposed by
Garrick et al. (2009), the GBLUP method was performed
using Model 2 implemented in SNP1101 software 1.0
(Sargolzaei, 2014).

Model 2. yc = 1µ+ Zg + e

In Model 2, yC is the vector of dEBVs (reference population) as
pseudophenotypes, µ is the overall mean effect, Z is the incidence
matrix relating phenotypes (dEBVs) to GEBVs, g is the vector
of GEBVs, and e is the vector of random residual effects. It was
assumed that g ∼ N(0,Gσ2

g) and e ∼ N(0,Wσ2
e ), where G is the

genomic relationship matrix, σ2
g is the genomic variance, W is

a diagonal matrix of residual weights, and σ2
e is the residual

variance. The residual weights (wi =
1−r2

i
r2

i
) were calculated based

on the reliability of dEBVs (r2
i ) as described by Garrick et al.

(2009).
The genomic relationship matrix was constructed as

VanRaden (2008) described:

G =
ZZ
′

2
∑i

j=1 pj(1− pj)
, (3)

where Z is the allele frequency adjusted genotype matrix with 0–
2pj(for AA genotype), 1–2pj (for AB genotype), and 2–2pj (for BB
genotype) elements, and dimension of the number of individuals
by the number of markers. pj is the minor allele frequency for
j-th marker.

The estimated variance components obtained from the
“aireml” procedure (in SNP1101 software) implemented in
GBLUP model (Model 2) are reported in Supplementary Table 2.
The genomic relationship matrix visualization was performed
using a custom-made script in python.

Single-Step GBLUP
The ssGBLUP analysis (Legarra et al., 2009; Christensen and
Lund, 2010) was performed using AIREMLF90 1.61 software
(Misztal et al., 2014). Model 3 was used for single-step genomic
evaluation of each animal:

Model 3. y = 1µ+ Xb+ Zg +Wu+ e

where y, µ, X, b, W, u, and e were explained in Model 1,
Z is the incidence matrix relating phenotypes to GEBVs, and
g is the vector of GEBVs. It was assumed that the variance of
genomic effects (σ2

g ), variance of common litter effects (σ2
u), and

residual variance (σ2
e ) are governed by the normal distribution

(g ∼ N(0,Hσ2
g), u ∼ N(0, Iσ2

u), and e ∼ N(0, Iσ2
e ), respectively).

In ssGBLUP model, the H matrix was used, which was a
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TABLE 1 | Number of animals with phenotypes and genotypes in reference and validation groups for back-fat thickness at 120 kg (BFT), average daily gain from birth to
120 kg (ADG), and loin muscle depth at 120 kg (LMD) in three breeds of Duroc, Landrace, and Yorkshire (validation groups were phenotyped after January 2019).

Trait Breed No. of phenotypes No. of genotypes

Reference Validation

Boar Gilt/sow Total Boar Gilt/sow Total Boar Gilt/sow Total

BFT (mm) Duroc 24,461 25,588 50,049 3,690 2,184 5,874 504 270 774

Landrace 32,304 50,259 82,563 2,519 2,371 4,890 467 4 471

Yorkshire 33,421 60,916 94,337 2,160 2,455 4,615 386 7 393

ADG (g/day) Duroc 24,470 25,590 50,060 3,691 2,184 5,875 504 270 774

Landrace 32,311 50,288 82,599 2,519 2,372 4,891 467 4 471

Yorkshire 33,428 60,947 94,375 2,161 2,455 4,616 385 7 392

LMD (mm) Duroc 24,461 25,588 50,049 3,690 2,184 5,874 504 270 774

Landrace 32,304 50,259 82,563 2,519 2,371 4,890 467 4 471

Yorkshire 33,421 60,916 94,337 2,160 2,455 4,615 386 7 393

combination of relationship matrices based on marker genotypes
(G) and pedigree information (A). In the inverse of H matrix,
A22 is the pedigree-based relationship matrix for genotyped
animals, and τ and ω are the scaling factors, which both were set
equal to one as the default option in AIREMLF90 1.61 software
(Misztal et al., 2014). The blending factors of G (α) and A
(β) matrices in the inverse of H matrix were set equal to 0.95
and 0.05, respectively, which were defined as H−1

= A−1
+[

0 0
0 τ(αG+ βA22)

−1
− ωA−1

22

]
to avoid singularity problems

and improve predictions (VanRaden, 2008; Lourenco et al.,
2014). The estimated variance components from AIREMLF90
implemented in ssGBLUP model (Model 3) are reported in
Supplementary Table 2.

Bayesian Approaches
In BayesC framework, the genomic evaluation was performed by
implementing Model 4 and MCMC process in GS3 2.0 software
(Legarra et al., 2011a) with the following criteria: NITER (number
of iterations) = 100,000, BURNIN (beginning of the MCMC
run) = 20,000, and THIN (thin interval) = 100. The applied
prior of variance components were similar to the estimated
variance components in BLUP model before performance test
(Supplementary Table 2).

Model 4.yC = 1µ

n∑
i=1

Ziαiδi + e

In Model 4, yC is the vector of pseudophenotypes as defined in
Model 2, µ is the overall mean, n is the number of SNPs, Zi is the
vector of genotype covariates, αi is the allele substitution effect for
SNPi, δi is an indicator for whether the SNPi has effect (1) or not
(0), and e is the vector of random residual effects. The residuals
were weighed based on the reliabilities of dEBVs as defined by
Legarra et al. in GS3 software (Legarra et al., 2011a). For BayesCπ,
the π prior as the probability level of an SNP having no effect was
set equal to 0.99.

Validation and Model Comparison
The accuracies of genomic predictions and PAs were calculated
as the correlation between breeding values (GEBVs or PAs) of
the validation group and their dEBVs after performance test. The
standard errors of prediction accuracies were calculated using
Eq. 4:

Standard error =
1−accuracy2

√
number of individuals− 1

(4)

The regression coefficients of dEBVs (after performance test in
January 2019) on predicted breeding values (before performance
test in January 2019) were calculated to evaluate the bias of
predictions (Figure 1). The regression coefficients and their
standard errors were calculated using “lm” and “summary”
functions in R 4.0.2 software (R Core Team, 2013).

The accuracy improvements were calculated using Eq. 5:

Improvement of accuracy

=

(
accuracy of GEBV− accuracy of PA

accuracy of PA

)
× 100. (5)

Two criteria of accuracy and regression coefficient of dEBV
on GEBV were used to compare the predictive ability of
different genomic prediction methods. Additionally, a fixed
model equation (Model 5) was employed to detect the significant
differences of the prediction accuracies obtained from different
methods.

Model 5.yij = µ+Mi + Bj + eij,

where y is the accuracy of prediction for the trait, µ is the
overall mean, M is the fixed effect of prediction method i, B is
the fixed effect of breed j, and e is the random residual effect
for i-th method and j-th breed. The computational times of
different scenarios with the same number of threads (n = 80)
and memories (202 GB) were calculated using the default
option of Slurm 20.02.3 software3 in Compute Canada server

3https://slurm.schedmd.com
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FIGURE 1 | The summary of breeding value prediction workflow using the best linear unbiased prediction (BLUP), genomic BLUP (GBLUP), single-step genomic
BLUP (ssGBLUP), BayesC, and BayesCπ methods in this study.

(Niagara cluster4). In this study, the computing time included
the construction of genomic relationship matrix and its inverse,
variance components estimation, and solving models.

RESULTS AND DISCUSSION

Descriptive Statistics
The standard deviation, minimum and maximum values, and
the coefficient of variation for each trait and breed are given in
Table 2. The minimum (n = 50,060) and maximum (n = 94,375)
numbers of phenotyped animals were observed for Duroc-ADG
and Yorkshrie-ADG scenarios. The Landrace-BFT (14.27 mm),
Duroc-ADG (736.72 g/day), and Duroc-LMD (72.61 mm) had
the highest averages. The coefficients of variation ranged from
18.78 (Duroc) to 23.07 (Landrace), from 8.34 (Landrace) to 8.65
(Yorkshire), and from 8.25 (Duroc) to 8.83 (Yorkshire) for BFT,
ADG, and LMD, respectively.

Validation of Genomic Evaluations
After quality control, removing SNPs on sex chromosomes, and
imputation, the total numbers of 41,304, 48,580, and 49,102
SNPs remained for genomic evaluation of Duroc, Landrace, and
Yorkshire breeds, respectively. Finding an accurate and unbiased
genomic prediction method can be a lucrative strategy for genetic
improvement of key traits in livestock species (Mrode et al.,
2018). The predictive ability of genomic methods depends on
various factors such as method hypothesis (Momen et al., 2018).
However, limited numbers of literature are available in swine

4https://docs.scinet.utoronto.ca

(Esfandyari et al., 2016; Song et al., 2017, 2019a; Zhang et al.,
2018). Several genomic evaluation studies in livestock species
such as cattle (Cardoso et al., 2014; Neves et al., 2014; Brown
et al., 2016; Júnior et al., 2016; Silva et al., 2016; Costa et al.,
2019) investigated and compared different genomic prediction
methods; for example, Silva et al. (2016) showed the superior
prediction accuracy of ssGBLUP over BayesCπ and GBLUP
methods for residual feed intake (RFI) and feed conversion
ratio (FCR) in Nelore cattle. Therefore, comparing different
genomic prediction methods is important to detect more accurate
methods for genomic evaluation of key traits in the swine
breeding industry.

The average computational times for GBLUP, ssGBLUP,
BayesC, and BayesCπ were 00:00:33, 00:18:47, 15:16:37, and
15:40:02 h, respectively. The computational times of GBLUP,
ssGBLUP, BayesC, and BayesCπ ranged from 00:00:27 h
(Yorkshire-BFT and Landrace-BFT) to 00:00:43 h (Duroc-
LMD), 00:09:54 h (Duroc-LMD) to 00:31:43 h (Landrace-
BFT), 14:21:19 h (Yorkshire-ADG) to 16:21:31 h (Duroc-ADG),
and 14:16:28 h (Yorkshire-BFT) to 16:22:40 h (Duroc-LMD),
respectively (Supplementary Table 3). The correlation between
dEBVs (after performance test) and predicted GEBVs (before
performance test) was considered as the accuracy of genomic
prediction (Table 3). Moreover, the correlation between PAs
(before performance test) and dEBVs (after performance test)
was calculated as the accuracy of PAs (Table 3).

The accuracies ranged from 13.9% (Duroc-PA) to 52.7%
(Landrace-ssGBLUP) for BFT, from 5.7% (Duroc-PA) to
34.5% (Landrace-ssGBLUP) for ADG, and from 3.7% (Duroc-
PA) to 25.1% (Landrace-BayesCπ) for LMD. The accuracy
improvements over PA ranged from 35.6% (Yorkshire-BayesC)
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TABLE 2 | Descriptive statistics of back-fat thickness at 120 kg (BFT), average daily gain from birth to 120 kg (ADG), and loin muscle depth at 120 kg (LMD) for
Yorkshire, Landrace, and Duroc breeds.

Breed Trait n Mean SD Min Max CV (%)

BFT (mm) Duroc 50,049 12.5 2.55 4.9 32.8 18.78

Landrace 82,563 14.27 3.29 5.1 39.4 23.07

Yorkshire 94,337 14.26 3.04 5.8 39.2 21.30

ADG (g/day) Duroc 50,060 736.72 62.56 354.4 1,072.1 8.49

Landrace 82,599 711.74 59.34 396 1,077.5 8.34

Yorkshire 94,375 706.97 61.16 353.9 1,061.6 8.65

LMD (mm) Duroc 50,049 72.61 5.99 41.3 101.1 8.25

Landrace 82,563 68.39 5.95 38.7 96.4 8.71

Yorkshire 94,337 69.51 6.14 39.6 103.7 8.83

n, number of animals per trait; SD, standard deviation; Min, minimum value; Max, maximum value; CV, coefficient of variation.

to 204.6% (Duroc-BayesCπ) for BFT, from 62.1% (Landrace-
BayesC) to 314.3% (Duroc-ssGBLUP) for ADG, and from 6.4%
(Landrace-BayesC) to 284.5% (Yorkshire-GBLUP) for LMD
(Table 3). The prediction accuracies of genomic methods were
not significantly (P > 0.05) different from each other based on
Tukey test implemented in Model 5 (Supplementary Table 4).
However, the prediction accuracies obtained from PA were
significantly (P < 0.05) lower than those obtained from genomic
methods except for BayesC in LMD trait (Supplementary
Table 4). Moreover, the prediction accuracies obtained from
genomic methods were significantly (P < 0.05) different among
breeds except for Yorkshire-Duroc (for BFT) and Yorkshire-
Landrace (for ADG and LMD).

Back-Fat Thickness
The results demonstrated that ssGBLUP was the most accurate
method for genomic evaluation of BFT in Landrace (52.7%)
and Yorkshire (44.7%) breeds (Figure 2). The ssGBLUP method
had the same prediction accuracy (44.1%) for BFT in Chinese
Yorkshire population as our prediction (Zhou et al., 2019).
However, the accuracy of ssGBLUP method for Yorkshire-BFT
scenario was considerably higher than Thekkoot et al.’s (2018)
result (30%), which might be due to their smaller number
of genotyped animals in the reference group (n = 2,489).
Higher prediction accuracies obtained from ssGBLUP for BFT
in Yorkshire and Landrace breeds compared to Duroc breed
might be due to the similarity of these breeds as maternal
lines as well as using the larger population size (pedigree and
phenotype data) of Yorkshire-BFT (n = 94,337) and Landrace-
BFT (n = 82,563) in comparison with Duroc-BFT (n = 50,049).
For BFT, the prediction accuracy superiority of ssGBLUP method
over the other genomic prediction methods such as GBLUP
was confirmed by previous studies in American Yorkshire breed
(Song et al., 2017, 2019a). The regression coefficients of dEBVs
on predicted GEBVs were estimated and applied as indices of
prediction bias of the genomic evaluation methods (Table 4).

The regression coefficients higher and lower than 1 indicate
overestimation and underestimation, respectively. The ssGBLUP
method showed higher prediction accuracies in Landrace-BFT
and Yorkshire-BFT scenarios, but BayesCπ was the least biased
method in these scenarios (1.06 for Landrace-BFT and 1.12 for

Yorkshire-BFT). In Duroc-BFT scenario, BayesCπ (42.4%) and
GBLUP (1.11) were the most accurate and least biased methods,
respectively. The higher prediction accuracy of BayesCπ for
Duroc-BFT scenario might be due to a low number of major-
effect SNPs underlying genetic variation of BFT in Duroc breed
(Zhang et al., 2020). However, Tukey test showed that the
genomic prediction accuracies for BFT were not significantly
(P > 0.05) different across breeds. In a previous genomic
prediction study on a small population size of Canadian Duroc
breed (n = 1,363), Zhang et al. (2018) showed the superiority
of BayesRC approach for BFT. The BayesRC is a new method
based on BayesR that combines prior biological datasets through
explaining variant classes presumably to be enriched for causal
polymorphisms (MacLeod et al., 2016). Compared to our results,
they (Zhang et al., 2018) showed higher prediction accuracy (62
vs. 42.4%) for Duroc-BFT using whole-genome sequence data
that might be due to using sequence data and a different method
in their prediction.

Average Daily Gain
Our results indicated that ssGBLUP was the most accurate
method (34.5%) for prediction of ADG in Landrace breed
(Figure 3); however, BayesCπ was the least biased (1) method
for ADG genomic evaluation (Table 4). Our prediction accuracy
of ssGBLUP for Landrace-ADG (34.5%) was slightly higher than
the results of Hong et al. (2019) (31–33%), who used different
blending strategies of pedigree and genomic relationship matrices
in ssGBLUP method. For Yorkshire-ADG, they obtained 21–
22% accuracy of prediction using ssGBLUP method (Hong et al.,
2019). In this study, BayesCπ was the most accurate (29.5%),
and least biased (1.06) method for Yorkshire-ADG scenario.
The prediction accuracy obtained from ssGBLUP method in
Duroc-ADG scenario (23.7%) was similar to the study by Jiao
et al. (2014) (24.10%) and slightly lower than that by Zhang
et al. (2018) (25%). Jiao et al. (2014) used the Bayes A model
in a small population size (n = 1,022) of Duroc breed in
the reference group. The implementation of genomic multitrait
models using ADG, FCR, and RFI traits might be beneficial for
improvement of prediction accuracy for ADG in Duroc breed
through implementing information from genetically correlated
traits (Guo et al., 2014). Additionally, the prediction accuracy is
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TABLE 3 | The prediction accuracies (%), their standard errors and their improvement (%) over parent average EBV (PA) for back-fat thickness (BFT), average daily gain
(ADG), and loin muscle depth (LMD) traits in Duroc, Landrace, and Yorkshire breeds.

Trait Breed PA GBLUP ssGBLUP BayesC BayesCπ

Accuracy Accuracy Improvement Accuracy Improvement Accuracy Improvement Accuracy Improvement

BFT Duroc 13.9(3.5) 39.1(3.1) 181.4 39.2(3) 182.1 35.0(3.2) 151.4 42.4(3) 204.6

Landrace 28.5(4.2) 49.2(3.5) 72.4(3.5) 52.7(3.3) 84.6 52.6(3.3) 84.4 50.8(3.4) 78.1

Yorkshire 30.4(4.6) 42.4(4.1) 39.8(4.1) 44.7(4) 47.3 41.1(4.2) 35.6 41.2(4.2) 35.6

ADG Duroc 5.7(3.6) 20.9(3.4) 266.4 23.7(3.4) 314.3 21.5(3.4) 276.7 19.3(3.5) 238

Landrace 16.4(4.5) 33.0(4.1) 100.8 34.5(4.1) 110.0 26.6(4.3) 62.1 32.8(4.1) 99.7

Yorkshire 12.0(5) 28.8(4.6) 140.7 26.2(4.6) 119.5 27.5(4.7) 129.8 29.5(4.6) 147

LMD Duroc 3.7(3.6) 12.0(3.6) 225.6 12.6(3.5) 240.8 11.2(3.6) 202.6 10.3(3.6) 178.4

Landrace 17.2(4.5) 22.5(4.4) 31.2 22.8(4.4) 33.1 18.3(4.5) 6.4 25.1(4.3) 46.2

Yorkshire 5.6(5) 21.6(4.8) 284.5 21.3(4.8) 277.9 17.7(4.9) 213.6 20.7(4.8) 267.4

GBLUP, genomic BLUP; ssGBLUP, single-step genomic BLUP.

FIGURE 2 | (A) The accuracies with their standard errors and (B) accuracy improvements obtained from genomic BLUP (GBLUP), single-step genomic BLUP
(ssGBLUP), BayesC, BayesCπ, and parent average EBV (PA) methods for back-fat thickness.
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TABLE 4 | Regression coefficient and their standard errors of deregressed EBV (dEBV) on predicted breeding values obtained from genomic BLUP (GBLUP), single-step
genomic BLUP (ssGBLUP), BayesC, BayesCπ, and parent average EBV (PA) for back-fat thickness (BFT), average daily gain (ADG), and loin muscle depth (LMD) in
Duroc, Landrace, and Yorkshire breeds.

Trait Breed PA GBLUP ssGBLUP BayesC BayesCπ

BFT Duroc 0.90 (0.23) 1.11 (0.09) 1.60 (0.13) 0.58 (0.05) 1.12 (0.08)

Landrace 0.76 (0.11) 1.15 (0.09) 1.14 (0.08) 0.62 (0.04) 1.05 (0.08)

Yorkshire 1.16 (0.18) 1.22 (0.13) 1.31 (0.13) 0.55 (0.06) 1.11 (0.12)

ADG Duroc 0.98 (0.62) 1.15 (0.19) 2.36 (0.34) 1.23 (0.20) 1.27 (0.23)

Landrace 1.00 (0.28) 1.17 (0.15) 1.27 (0.16) 0.37 (0.06) 1.0 (0.13)

Yorkshire 0.85 (0.36) 1.30 (0.22) 1.23 (0.23) 0.46 (0.80) 1.05 (0.17)

LMD Duroc 0.58 (0.56) 1.21 (0.36) 1.48 (0.42) 0.40 (0.12) 0.83 (0.20)

Landrace 0.75 (0.20) 1.01 (0.20) 0.90 (0.17) 0.32 (0.08) 0.90 (0.16)

Yorkshire 0.34 (0.31) 1.15 (0.26) 0.97 (0.22) 0.27 (0.07) 0.82 (0.19)

FIGURE 3 | (A) The accuracies with their standard errors and (B) the accuracy improvements obtained from genomic BLUP (GBLUP), single-step genomic BLUP
(ssGBLUP), BayesC, BayesCπ, and parent average EBV (PA) methods for average daily gain.

considerably related to the genomic heritability, which is affected
by the number of markers (Goddard, 2009). By comparing the
genomic prediction abilities using different SNP densities (whole-
genome sequence, 650K and 80K SNP panels) and prediction

methods, Zhang et al. (2018) revealed that the density of SNPs
could affect the prediction accuracy in a small population size
of Canadian Duroc breed (n = 1,363) (Zhang et al., 2018).
Although, except for BayesRC (25%) method, the GBLUP
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(12%), and BayesB (12%) methods showed lower prediction
accuracies using the whole-genome sequence data in the study
by Zhang et al. (2018) compared to our result (23.7%) for
Duroc-ADG-ssGBLUP, these results can confirm the importance
of population size, method assumptions, and SNP densities in
genomic prediction analysis.

Loin Muscle Depth
The highest accuracies for LMD in Duroc, Landrace, and
Yorkshire breeds were derived from ssGBLUP (12.6%), BayesCπ

(25.1%), and GBLUP (21.6%) methods, respectively (Figure 4).
However, the regression coefficients followed a different trend
for LMD scenarios. For LMD scenarios, the least biased
methods were BayesCπ in Duroc (0.83), GBLUP in Landrace
1.01, and ssGBLUP (0.97) in Yorkshire breed. In this study,
the highest genomic prediction accuracies for Yorkshire-LMD
(21.6%) and Landrace-LMD (25.1%) scenarios were lower
than the results by Jafarikia et al. (2018) for Yorkshire

(38%) and Landrace (38%) that might be due to their larger
reference group size of Canadian Yorkshire (n = 8,756) and
Landrace (n = 6,754) pigs (Jafarikia et al., 2018), although,
our genomic prediction accuracy (25.1%) for Landrace-LMD
using the BayesCπ method was higher than the result of
another study on Landrace (17.9–18.8%) pigs using different
genomic relationship matrices (Sevillano et al., 2017). In
Duroc-LMD scenario (GBLUP = 12%, ssGBLUP = 12.6%,
BayesC = 11.2, and BayesCπ = 10.3%), the genomic prediction
accuracies were lower than Landrace-LMD (GBLUP = 22.5%,
ssGBLUP = 22.8%, BayesC = 18.3%, and BayesCπ = 25.1%)
and Yorkshire-LMD (GBLUP = 21.6%, ssGBLUP = 21.3%,
BayesC = 17.7%, and BayesCπ = 20.7%) that were similar
to most of the scenarios for ADG and BFT traits. A small
portion of these lower accuracies in Duroc scenarios might be
due to slightly lower genomic relationships between validation
and reference groups in Duroc (Supplementary Figure 1)
compared to Landrace (Supplementary Figure 2) and Yorkshire

FIGURE 4 | (A) The accuracies with their standard errors and (B) the accuracy improvements obtained from genomic BLUP (GBLUP), single-step genomic BLUP
(ssGBLUP), BayesC, BayesCπ, and parent average EBV (PA) methods for loin muscle depth.
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(Supplementary Figure 3). Our results also showed the same
patterns for genomic relationships among animals within the
validation sets. However, the patterns were reverse in the
pedigree-based relationships. The negative effects of weak
genomic relationships between validation and reference groups
on predictive ability were reported previously (Hayes et al., 2009a;
Song et al., 2017).

The prediction accuracy is also affected by response variables
through correlating predicted breeding values and response
variables (adjusted phenotype, EBV, or dEBV) after performance
test. The reliability of dEBV as a response variable is highly
dependent on the population size of phenotyped animals
(Mrode et al., 2018). In Duroc, the main reason for these
low accuracies can be referred to the low reliabilities of
dEBVs in the validation group derived from the smaller
population size of phenotyped Duroc (50,049–50,060) compared
to Yorkshire (94,337–94,375) and Landrace (82,563–82,599)
(Table 1), whereas the reference population size of Duroc (5,874–
5,875) was higher than Yorkshire (4,615–4,616) and Landrace
(4,890–4,891). Additionally, the size of validation group in Duroc
(774) was higher than Yorkshire (471) and Landrace (392–393),
which could be an important factor in calculating the genomic
prediction accuracy. The validation group size and selection of
response variable are important factors on prediction accuracy,
which have not been highlighted in the previous genomic
prediction studies in pig (Badke et al., 2014; Song et al., 2017,
2019a; Thekkoot et al., 2018; Zhang et al., 2018; Lopez et al., 2019;
Aliakbari et al., 2020).

It is evident that ssGBLUP was the most accurate method
in five scenarios of Duroc-ADG, Duroc-LMD, Landrace-BFT,
Landrace-ADG, and Yorkshire-BFT, and BayesCπ was the most
accurate method in three scenarios of Duroc-BFT, Landrace-
LMD, and Yorkshire-ADG. However, it should be noted that the
accuracies obtained from different genomic prediction methods
were not significantly (P > 0.05) different in all scenarios.
High prediction accuracies obtained from ssGBLUP method in
aforementioned scenarios might be due to the blended pedigree
and genotypic data used for prediction of GEBVs (Silva et al.,
2016; Mrode et al., 2018). The assumption of ssGBLUP method is
based on the infinitesimal model of polygenic control of the trait
(Karaman et al., 2016, 2018). Although we obtained the higher
prediction accuracies for ssGBLUP compared to other methods
in five scenarios, our regression coefficients showed considerably
underestimated GEBVs for Duroc-BFT (1.60), Duroc-ADG
(2.36), and Duroc-LMD (1.48) using ssGBLUP in comparison
with the other methods. A reason for these underestimated
values in Duroc-ssGBLUP scenarios might be due to the used
scaling factors (τ = 1 and ω = 1) to combine G−1 and A−1

22
matrices. Alvarenga et al. (2020) indicated that optimization of
scaling factors might be helpful for obtaining more unbiased
values using ssGBLUP method (Alvarenga et al., 2020). Another
possible reason for these underestimated values in Duroc-
ssGBLUP scenarios can be due to the preferential treatment
to select elite pigs for genotyping in breeding companies. The
effect of preferential treatment on level bias was highlighted
by former studies in dairy cattle breeding industry (Wiggans
et al., 2011; Nordbø et al., 2019). However, it may need more

investigation for future studies on swine. In contrast to the
GBLUP prediction methods, some genomic prediction methods
based on Bayesian approaches such as BayesCπ assume that the
genetic variation of a trait is explained by a small number of SNPs
(Habier et al., 2007; Hayes et al., 2009b; de los Campos et al.,
2013). Therefore, the superiority of BayesCπ in some scenarios
might be due to the effective role of SNPs with major effects
for Duroc-BFT, Yorkshire-ADG, and Landrace-LMD. Moreover,
BayesCπ was the least biased method for five scenarios including
Duroc-LMD, Landrace-BFT, Landrace-ADG, Yorkshire-BFT,
and Yorkshire-ADG. Based on the superiority of BayesCπ in
predictive ability for three scenarios and unbiasedness for five
scenarios, it could be concluded that BayesCπ could provide a
more dynamic and realistic assumption (Legarra et al., 2011b)
for genetic architecture of aforementioned traits, although its
long computational time might be a nonpersuasive factor for
implementation to the pig industry.

CONCLUSION

The accuracies of traditional BLUP, GBLUP, BayesC, ssGBLUP,
and BayesCπ methods in a moderate genotyped size of
Canadian swine populations were evaluated to compare their
predictive abilities. In most scenarios, ssGBLUP and BayesCπ

methods demonstrated the highest prediction accuracies and
unbiasedness, respectively, although there were no significant
differences (P > 0.05) among prediction accuracies obtained
from these genomic methods in each scenario. These results can
be beneficial for implementing the suggested genomic prediction
methods for improvement of BFT, LMD, and ADG in swine
breeding companies.
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Supplementary Figure 1 | Heatmap plot of (A) scaled genomic and (B) pedigree
relationship matrices for Duroc group. The means of genomic relationships among
reference-validation and validation-validation groups were −0.0047
(range = −0.3065 to 0.6399) and 0.0348 (range = −0.2140 to 0.8164),
respectively. The means of pedigree relationships among reference-validation and
validation-validation groups were 0.3934 (range = 0.0877 to 0.9339) and 0.4676
(range = 0.4229 to 0.9219), respectively.

Supplementary Figure 2 | Heatmap plot of (A) scaled genomic and (B) pedigree
relationship matrices for Landrace group. The means of genomic relationships

among reference-validation and validation-validation groups were −0.0037
(range = −0.2064 to 0.6296) and 0.0364 (range = −0.1740 to 0.6711),
respectively. The means of pedigree relationships among reference-validation and
validation-validation groups were 0.3026 (range = 0.0738 to 0.8396) and 0.3298
(range = 0.1944 to 0.8369), respectively.

Supplementary Figure 3 | Heatmap plot of (A) scaled genomic and (B) pedigree
relationship matrices for Yorkshire group. The means of genomic relationships
among reference-validation and validation-validation groups were −0.0041
(range = −0.2601 to 0.6921) and 0.0468 (range = −0.1707 to 0.7612),
respectively. The means of pedigree relationships among reference-validation and
validation-validation groups were 0.2100 (range = 0.0353 to 0.7457) and 0.2553
(range = 0.1160 to 0.7445), respectively.

Supplementary Table 1 | The average number of phenotyped boars and gilts per
litter for Duroc, Landrace, and Yorkshire groups.

Supplementary Table 2 | Estimated variance components (standard errors) to
use in best linear unbiased prediction (BLUP), single-step genomic BLUP
(ssGBLUP), and genomic BLUP (GBLUP).

Supplementary Table 3 | Computational time (h) of genomic BLUP (GBLUP),
single-step genomic BLUP (ssGBLUP), BayesC, and BayesCπ methods for
back-fat thickness (BFT), average daily gain (ADG), and loin muscle depth (LMD)
for Duroc, Landrace, and Yorkshire breeds.

Supplementary Table 4 | The results of Tukey tests using Model 5
(yij = µ+Mi + Bj + eij ). y is the accuracy of prediction for the trait, µ is the overall
mean, M is the fixed effect of genomic evaluation method, B is the fixed effect of
breed, and e is the random residual effect.
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and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran, 4 Department of Production Animal
Health, University of Calgary, Calgary, AB, Canada, 5 One Health at UCalgary, University of Calgary, Calgary, AB, Canada

Fatty acid metabolism in poultry has a major impact on production and disease
resistance traits. According to the high rate of interactions between lipid metabolism
and its regulating properties, a holistic approach is necessary. To study omics
multilayers of adipose tissue and identification of genes and miRNAs involved in
fat metabolism, storage and endocrine signaling pathways in two groups of broiler
chickens with high and low abdominal fat, as well as high-throughput techniques,
were used. The gene–miRNA interacting bipartite and metabolic-signaling networks
were reconstructed using their interactions. In the analysis of microarray and RNA-Seq
data, 1,835 genes were detected by comparing the identified genes with significant
expression differences (p.adjust < 0.01, fold change ≥ 2 and ≤ −2). Then, by
comparing between different data sets, 34 genes and 19 miRNAs were detected as
common and main nodes. A literature mining approach was used, and seven genes
were identified and added to the common gene set. Module finding revealed three
important and functional modules, which were involved in the peroxisome proliferator-
activated receptor (PPAR) signaling pathway, biosynthesis of unsaturated fatty acids,
Alzheimer’s disease metabolic pathway, adipocytokine, insulin, PI3K–Akt, mTOR, and
AMPK signaling pathway. This approach revealed a new insight to better understand
the biological processes associated with adipose tissue.

Keywords: lipid metabolism, transcriptome, systems biology, interactive bipartite network, omics multilayer

INTRODUCTION

Total carcass fat of broilers varies depending on sex, poultry age, nutrition, and genetic factors
(about 12%) (Sakomura et al., 2005). The predominant fats stored in a broiler carcass include two
kinds of subcutaneous fat and ventricular fat (approximately 18 to 22% of carcass fat) stored in
the ventricular area (Crespo and Esteve- Garcia, 2001). For humans, as the foremost consumer
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of poultry meat, over-fat storage in skeletal muscle is associated
with metabolic diseases such as type 2 diabetes and cardiovascular
disease and subsequently will lead to the risk of a heart attack.
Fat production in poultry is a high-inheritance polygenic trait
regulated by various behavioral, environmental, and hormonal
factors (Le Mignon et al., 2009).

Many studies have identified genes related to storage lipids in
broilers (Lagarrigue et al., 2006; Pinto et al., 2010; Nones et al.,
2012). On the other hand, the integration of high-throughput
genomic DNA and RNA sequencing leads to the identification
of genomic regions that control traits at the whole genome
scale (Cesar et al., 2018). Some studies of two poultry groups,
obese [high fat (HF)] and lean [low fat (LF)], indicated genes
associated with lipogenic pathways (Ji et al., 2012, 2014). By
comparing expressed genes, numerous identified genes were
related to endocrine, hemostatic, lipolytic, and lipid transduction
(Resnyk et al., 2013).

In addition to identifying genes and pathways associated
with lipid metabolism, a holistic approach for gene expression
should be examined. MicroRNAs are regulatory molecules with
a length of 19–25 nucleotides (Bartel, 2004). Mature microRNAs
lead to decomposition or inhibit translation by complete or
partial coupling to target mRNAs (usually paired with the 3′UTR
region) (Iorio et al., 2011). We have witnessed the emergence of
various areas in biology. One of these areas is the application
of bioinformatics and systems biology and integrated multi-
omics data. In major systems biology, researchers have attempted
to identify the cellular system, formulate cell behaviors, and
then design a cell model by combining genomic, transcriptomic,
proteomic, and metabolomic layers (Cole et al., 2013). In this
regard, interactive bi-partite networks of gene–miRNA are used
in several studies to discover functional modules (Huang et al.,
2006; Bahrami et al., 2017a,b).

However, identification of upstream and downstream genes,
reconstruction of networks, bipartite interaction network of
gene–miRNA, and metabolic-signaling networks involved in
metabolism and adipose storage (particularly abdominal fat using
high-throughput data in broilers) have not been reported. Fat
storage in broilers is considered to be an important economic
trait concerning high growth rate. Based on previous studies of
fat metabolism in the body and signaling pathways related to fat
storage and transmission in laboratory species, it was assumed
that the two broiler groups of high-abdominal fat and low-
abdominal fat have gene expression differences in metabolism
and fat storage.

Accordingly, this study aims to use an integration of RNA-Seq
and microarray data approach to identify and classify candidate
genes and miRNAs involved in lipolysis and lipogenesis. In
addition to the comprehensive survey of lipid metabolism, this
study will focus on (1) reconstruction of the interactive bi-partite
network of gene–miRNA (bi-partite networks are a particular
class of complex networks, whose nodes are divided into two
sets of genes and miRNA), (2) identification of functionally
relevant modules (each of a set of genes or independent genes
that can be used to construct a more complex structure), and
(3) reconstruction of the metabolic-signaling network associated
with the process of metabolism and fat storage in broilers.

MATERIALS AND METHODS

Figure 1 and Supplementary Table 1 show the simple overall
workflow for analyzing and finding functionally relevant modules
with HF and LF storage in the broilers.

Poultry’s Tissue Preparation
The 18 chickens used in this study were divergently selected
based on the amount of carcass fat percentage at 42 days of
age (slaughtering time). Chickens were bred and raised at the
animal farm of Tehran University, Iran. Nine chickens were in
the HF group (>27% fat storage) and nine chickens in the LF
group (<10% fat storage). Each group was divided into three
subgroups with three chickens in each group. To eliminate other
environmental effects and sampling error, abdominal adipose
tissue samples of three chickens in each subgroup were pooled.
Therefore, we had three samples for HF and three samples for
LF chickens, separately. In this regard, both groups were placed
together and raised in floor pens (4.4 m × 3.9 m). Abdominal
adipose tissue samples were immediately pooled (before RNA
extraction), snap-frozen in liquid nitrogen, and stored at −80◦
C until further processing for RNA analysis.

RNA Extraction
Abdominal fat aliquots from six chickens (three HF and three LF
per age at 42 weeks) were homogenized, and total cellular RNA
was extracted using guanidine thiocyanate and CsCl gradient
purification, followed by DNase I treatment. The quality of RNA
was determined with an RNA 6000 Nano Assay kit and the
Model 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA,
United States). All samples used for RNA analyses had an RNA
integrity number (RIN) greater than 9.0.

MiRNA-Seq Library Preparation and
Sequencing
About 1 µg of total RNA from each sample was used to construct
a small RNA library using the TruSeq Small RNA Sample
Preparation kit (Illumina, San Diego, CA, United States). The
kit was used according to the manufacturer’s instructions, which
included ligating adapters to 3′ and 5′ end of the RNA molecules,
reversely transcribing and amplifying libraries, purifying cDNA,
and checking and normalizing libraries. All libraries were
sequenced at Génome Québec (Montréal, Canada) using the
HiSeq 2000 system (Illumina, San Diego, CA, United States) to
generate 50-bp single reads.

Data Mining
In the biological system and the reconstruction of biological
networks, namely, gene regulation, interactions, protein–protein
interaction (PPI), and metabolic networks, the first step is to
collect and evaluate the available data. In this regard, data
from this study were obtained by investigating and reviewing
related articles and collecting microarray and RNA-Seq data from
different databases, by searching the Gene Expression Omnibus
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FIGURE 1 | Schematic for analysis view of the workflow to reconstruct the metabolic pathways of abdominal fat storage in poultry. The main gene list was prepared
from three RNA-Seq and microarray data sets. The Gene–Gene Interaction Network (GGI), Gene Regulatory Network (GRN), and interactive bi-partite network of
gene–miRNA network were reconstructed using Cytoscape. Functional modules were detected using related plugin in Cytoscape and the metabolic-signaling
network using CellDesigner.

(GEO) database1 and ArrayExpress2 for abdominal fat in various
species, particularly for Gallus gallus domesticus. The accession
numbers for the RNA-Seq and microarray data sets are presented
in Table 1.

1www.ncbi.nlm.nih.gov/geo
2www.Ebi.ac.Uk/arrayexpress

Analysis of Microarray Data
Microarray data were pre-processed in software R, using package
Lumi (Du et al., 2008) and Affy (Gautier et al., 2004). The
processed data were then evaluated using packages Limma
(Ritchie et al., 2015), GEOquary (Davis and Meltzer, 2007),
and Biobase (Huber et al., 2015) (versions and parameters were
used for analysis of microarray and RNA-Seq presented in
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TABLE 1 | GEO accession numbers for RNA-Seq and microarray data sets.

No. No. sample(s) GSE Platforms Data type Contributor(s)

1 16 GSE49121 GPL16133 (Illumina
HiSeq 2000)

RNA-Seq Resnyk et al., 2017

2 24 GSE42980 GPL16133 (Illumina
HiSeq 2000)

RNA-Seq Resnyk et al., 2015

3 24 GSE37585 GPL1731 (DEL-MAR
14K Integrated

Systems)

Microarray Resnyk et al., 2013

4 24 GSE8812 GPL1731 (DEL-MAR
14K Integrated

Systems)

Microarray Resnyk et al., 2015

5 24 GSE45825 GPL1731 (DEL-MAR
14K Integrated

Systems)

Microarray Resnyk et al., 2017

6 8 GSE10052 GPL1731 (DEL-MAR
14K Integrated

Systems)

Microarray Byerly et al., 2010

7 28 GSE3867 GPL3265 (Chicken
cDNA DDMET 1700

array version 1.0)

Microarray Bourneuf et al., 2006

GEO, gene expression omnibus.

Supplementary Table 1). Among the number of identified genes,
the genes that were common in terms of five accession numbers
(related to microarray data sets) were identified; and the gene list
was considered as gene set 1 (Supplementary Table 2).

RNA-Seq Data and Statistical Analyses
Various programs were used to analyze the RNA-Seq data related
to the accession numbers. First, FastQC quality control software
(Andrews, 2010) was used to control the quality of existing
data. Sequences were trimmed for quality using Trimmomatic
software (Bolger et al., 2014). Boxplot graphing of pre- and
post-trimming reads confirmed the absence of outlier samples
based on read count. After trimming, reads were mapped to
the chicken genome assembly GRCg6a3 using Tophat (version
1.3.3) (Kim et al., 2013), followed by assembly and quantitation
using CuffDiff software (v2.2.1.6) (Trapnell et al., 2010). The
fragments per kilobase of exon per million fragments mapped
(FPKM) threshold for detection of a gene was set at FPKM > 0.5.
The resulting gtf files differential expression was assessed using
Cuffdiff. The two-sided p-value was corrected using the false
discovery rate (FDR), which accounts for multiple testing
procedures. Genes with an FDR-adjusted p-value (p ≤ 0.05) and
fold change ≥ 2 or ≤ −2 were considered to be differentially
expressed (DE) transcripts. The genes that were common in
terms of accession numbers (related to RNA-Seq data sets) were
identified and considered as gene set 2 (Supplementary Table 3).

Functional Gene Set Annotation and
Enrichment
Gene ontology (GO) analysis, canonical pathway, and
network identification were performed using Database for
Annotation, Visualization and Integrated Discovery (DAVID)4,

3http://ftp.ensembl.org/pub/release-102/fasta/gallus_gallus/dna/
4https://david.ncifcrf.gov/

Bioinformatics Resources 6.8 with (Huang et al., 2009) the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database,
g: profiler5 (Raudvere et al., 2019), GeneCards6, and PANTHER
(Protein ANalysis THrough Evolutionary Relationships)
(Mi et al., 2012).

Main Gene List
Genes with significant differences related to microarray and
RNA-Seq data were examined and listed as gene set 1 and 2,
respectively. Finally, genes that were common in these two gene
sets were chosen as the main gene list.

Identification of miRNAs and Target
Genes
Accession number GSE122224, which is related to miRNA in
chicken and associated with lipid metabolism, was analyzed.
The potentially targeted genes were predicted using miRWalk
3.0 (Sticht et al., 2018). The platform integrates information
from different miRNA-target databases, including validated
information and prediction data sets: MiRWalk (Dweep
et al., 2014), miRDB7, miRMap (Vejnar and Zdobnov, 2012),
miRNAMap (Hsu et al., 2008), miRanda8, miRBridge (Tsang
et al., 2010), PICTAR29, Targetscan (Grimson et al., 2007),
PITA10, and RNA22 (Loher and Rigoutsos, 2012). The target
genes that were predicted by at least five mentioned tools
were chosen and submitted to DAVID, KEGG (the potential
KEGG), Reactome pathways, and PANTHER databases for the
enrichment target genes of each miRNA.

5https://biit.cs.ut.ee/gprofiler/gost
6https://www.genecards.org/
7http://mirdb.org/
8https://mirnablog.com/microrna-target-prediction-tools/
9https://pictar.mdc-berlin.de/
10https://tools4mirs.org/software/target_prediction/pita/
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Reconstruction of Omics Multilayered
Networks
The miRNA–gene network was reconstructed based on
the candidate genes, and the molecular interactions were
documented in related papers and online interaction databases.
PPI data were abstracted from the Biomolecular Interaction
Network Database (BIND11), Database of Interacting Proteins
(DIP12), Biological General Repository for Interaction Datasets
(BioGRID13), and Protein–Protein Interactions Database
(MIPS14). In addition, pathway data were obtained from searches
in pathway databases, such as STRING15 (Szklarczyk et al., 2018)
and GeneMania databases16 (Warde-Farley et al., 2010). Each
gene and miRNA was entered into the database, and resulting
interactions were imported to the networks using Cytoscape
3.7.2 (National Institute of General Medical Sciences, Bethesda
Softworks, Rockville, MD, United States) (Shannon et al., 2003).
Genes and miRNAs in generated networks are represented as
nodes, and the interactions between these nodes as edges. The
metabolic-signaling pathways involved in the lipid metabolism
and storage were reconstructed by different databases and Cell
Designer version 4.4.2 (Funahashi et al., 2008).

Modules and Hub Node Detection
For finding sub-graphs and hub nodes (nodes with a high
connectedness coefficient), MCODE, one of the Cytoscape
plugins, was used. MCODE finds clusters (highly interconnected
regions) in a network. Clusters mean different things in different
types of networks. For instance, clusters in a PPI network are
often protein complexes and parts of pathways, while clusters
in a protein similarity network represent protein families (Bader
and Hogue, 2003). MCODE effectively finds densely connected
regions of a molecular interaction network, many of which
correspond to known molecular complexes, based solely on
connectivity data. Given that this approach to analyzing protein
interaction networks performs well using minimal qualitative
information implies that large amounts of available knowledge
are buried in large protein interaction networks. More accurate
data mining algorithms and systems models could be constructed
to understand and predict interactions, complexes, and pathways
by taking into account more existing biological knowledge.
Structured molecular interaction data resources such as BIND
will be vital in creating these resources (Bader et al., 2003).

RESULTS

Differentially expressed genes were defined as those having a
significant adjusted p-value (<0.01), fold change (≥2, ≤−2), and
FDR (≤0.05). Statistical analysis of the time-course microarray
studies provided 1,451 significant genes from five data sets: the

11http://binddb.org
12https://www.uniprot.org/database/DB-0016
13https://thebiogrid.org/
14http://mips.helmholtz-muenchen.de/proj/ppi/
15https://string-db.org/
16https://genemania.org/

first data set (GSE37585: 612 DE genes), the second data set
(GSE8812: 107 DE genes), the third data set (GSE45825: 582 DE
genes), the fourth data set (GSE10052: 104 DE genes), and the
fifth data set (GSE3867: 46 DE genes). In the data analysis of
RNA-Seq, 1,867 genes were identified; and then 314 and 70 genes
were detected after considering the threshold (p.adjust < 0.01
and fold change > 2) of expression change in accession numbers
GSE49121 and GSE42980, respectively.

Identification of miRNAs
Overall, 34 miRNAs were identified in data analysis of
microRNAs differential expression, of which 19 upregulated
miRNA and 15 downregulated genes were detected by
considering the threshold (LogFC < −2, LogFC > 2, and
p.adjust < 0.01) for DE in the deposited accession number
(GSE122224) (Table 2).

Identification of Common Genes
Available in Gene Sets 1 and 2
Thirty-four genes were common in two gene sets 1 and 2
relating to microarray and RNA-Seq data sets, respectively. In
this regard, 16 and 18 genes were associated with lipogenesis
and lipolysis processes, respectively (Table 2).THBS1 and INSIG2
genes in the gene set were associated with the lipogenesis process;
and COLEC12, HMGCR, APP, and IRS1 genes were associated
with the lipolysis process, which was closely suppressed by
miRNAs (Table 2).

Main Gene List
Literature related to lipid metabolism was also reviewed to
increase study accuracy and seven genes. If the genes did not exist
in the list of evaluated data sets, they were selected and added to
the gene list. The selected seven genes included BACE1, BACE2,
PSEN1, PSEN2, PERP, SIK1, and LOC421682 genes. The list of
genes in Table 2 (41 genes) was named as the main gene list or
reference genes (Supplementary Table 4).

Gene–Gene Interaction Network, Gene
Ontology Terms, and Pathways
Figure 2 shows the network of the reconstruction of gene–gene
interactions (gene–gene interaction (epistasis) is the effect of one
gene on a disease or traits modified by another gene or several
other genes), GO (describes our knowledge of the biological
domain with respect to three aspects: Molecular Function,
Cellular Component, and Biological Process), terms, and
pathways. In this network, APP, SREBF1, HMGCR, FADS2, SCD,
ACAT1, FASN, HADHB, and EHHADH genes had the highest
interaction (connectedness) with other genes in the network.

Reconstruction of the Interactive
Gene–miRNA Bipartite Network
The network contains 49 nodes (including 32 genes and 17
miRNAs) and 95 edges. The reconstructed network with.cys
format was stored for further analyses (Figure 3).
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TABLE 2 | Genes and miRNAs, annotation, and genes involved in lipogenesis and lipolysis.

Lipogenesis Lipolysis

Gene Gene expression MiRNA expression Gene Gene expression MiRNA expression

Downregulation Upregulation Downregulation Upregulation Downregulation Upregulation Downregulation Upregulation

THBS1 * − gga-miR-6554-5p
gga-miR-6667-5p
gga-miR-6562-3p

COLEC12 * − gga-miR-6554-5p
gga-miR-6554-3p
gga-miR-6667-5p
gga-miR-3532-5p

gga-miR-466

ANXA7 * − gga-miR-466 RGS19 * − −

TMEM258 * − − HTR7L * − −

DHCR7 * − − G6PC * − −

FADS2 * − − HMGCR * gga-miR-1710 −

FASN * − − ACAT1 * − −

INSIG2 * gga-miR-7444-5p − ADH1C * − −

LCAT * − − APP * − gga-miR-6554-5p

MVD * − − EHHADH * − −

SCD * − − GAMT * − −

SREBF1 * − − HADHB * − −

APOA1 * − − HSD17B4 * − −

BCO2 * − − HSD17B6 * − −

CYP27A1 * − − IRS1 * − gga-miR-6554-5p
gga-miR-6562-3p

gga-miR-466

CYP2E1 * − − PHYH * − −

SLC2A2 * − − SOD3 * − −

TP53 * − −

UCP3 * − −

Upregulated and downregulated abdominal fat in genetically fat compared with lean chickens.
*Gene or miRNA was up-/downregulated in the biological processes.
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FIGURE 2 | The gene, gene ontology and pathway, and related interaction network involved in the abdominal fat storage of the poultry.

Important and Functional Network
Modules or Sub-Networks
According to interactive gene–miRNA bipartite network and
sub-networks or module finding analysis, three modules were
identified. These modules contained 31 genes and seven miRNA
as presented in Table 3. The table also presents important
signaling pathways and cellular processes (metabolic pathways)
(Figure 2). Module 1 contains 22 nodes (20 genes and two
miRNAs) and 47 edges (Figure 4). Module 2 contains 10 nodes
(five genes and five miRNAs) and 16 edges (Figure 5); and
Module 3 includes six nodes (six genes) and six edges (Figure 6).

Reconstruction of the
Metabolic-Signaling Network
Based on pathway analysis, the crucial pathways were identified
and reconstructed. For this purpose, the gene lists were first
input into DAVID and STRING to identify biological processes,
the involvement of cellular components, molecular functions,
and KEGG pathways that were significantly different between

two lines (to identify metabolic pathways and signaling).
Different genes express identified Pathways such as Notch
signaling pathways relating to Alzheimer’s disease, peroxisome
proliferator-activated receptor (PPAR), adipocytokine, insulin,
PI3K–Akt, mTOR, and AMPK signaling pathways. Finally,
resources were reviewed for each of the identified paths, using
different databases and Cell Designer software version 4.4.2; the
reconstruction is illustrated in Figure 7.

DISCUSSION

The prioritization of abdominal fat tissue in broiler chickens
to identify genes involved in metabolism and fat storage is
due to the fact that it can be as a proxy model in other
species and individuals of a species due to its specific metabolic
characteristics (Resnyk et al., 2015). The present study integrated
different data sets in distinguished conditions to identify the
most important genes involved in lipid metabolism. As a result,
we detected a total of 34 common genes that played roles in
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FIGURE 3 | Interactive bipartite network (gene–miRNA) affecting the abdominal fat storage and metabolism in the poultry. In this network, the quadrilateral points
represent genes, and the octagonal points represent miRNAs. About miRNAs and target genes, the edges indicate the suppressing role of miRNAs. The edges also
represent the gene–gene interactions. The green quadrilateral nodes represent the hub genes. Purple quadrilateral nodes are the genes with the highest suppression
by miRNAs.

TABLE 3 | Main, modules, genes, miRNAs, signaling pathway, and phenotypic explanations in the integrated gene–miRNA bipartite network involved in fat metabolism
and deposition.

Genes miRNAs

Module Downregulated Upregulated Downregulated Upregulated Signaling pathway Explanation

Main COLEC12, ANXA7,
SOD3, SIK1, UCP3,

ADH1C, SLC2A2, IRS1,
BACE2, PERP,

LOC421682, PHYH,
CYP27A1, HADHB,

THBS1, APOA1, BACE1,
ACAT1, HSD17B4,

EHHADH, APP, PSEN2,
PSEN1

LCAT, INSIG2, FADS2,
SCD, DHCR7, FASN,

SREBF1, MVD, HMGCR

gga-miR-454-3p,
gga-miR-7460-5p,
gga-miR-133a-5p,

gga-miR-1710,
gga-miR-1589,
gga-miR-22-5p,

gga-miR-7444-3p,
gga-miR-1657,

gga-miR-7444-5p

gga-miR-6562-3p,
gga-miR-3532-5p,
gga-miR-6667-5p,
gga-miR-6554-3p,
gga-miR-6562-5p,
gga-miR-3532-3p,
gga-miR-6554-5p,

gga-miR-466

PPAR/AMPK Fatty acid metabolism
Fatty acid degradation

Terpenoid backbone biosynthesis
Biosynthesis of unsaturated fatty

acids
Metabolic pathways
Alzheimer disease

1 UCP3, SLC2A2, APOA1,
IRS1, SOD3, ADH1C,
HADHB, EHHADH,

CYP27A1, HSD17B4,
ACAT1

SREBF1, INSIG2,
HMGCR, LCAT, FADS2,

FASN, SCD, MVD,
DHCR7

gga-miR-1710 gga-miR-6554-5p PPAR/AMPK Fatty acid metabolism
Fatty acid degradation

Terpenoid backbone biosynthesis
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FIGURE 4 | Module 1: 20 genes and two miRNAs in the interactive bipartite network of gene–miRNA. In this network, the quadrilateral points represent the genes,
and the octagonal points represent miRNAs. In this interactive bipartite network, the gene–miRNAs of quadrilateral nodes represent genes and octagonal nodes
represent miRNAs. For miRNAs and target genes, the edges indicate the suppressing roles of miRNAs. The edges of genes also indicate the gene–gene
interactions. The green quadrilateral nodes represent the hub genes. Purple quadrilateral nodes have the highest rates of suppression by miRNAs.

the main process of synthesis route control, metabolism and fat
storage, and signaling pathways of endocrine glands activated by
adipokines, AMPK, and PPAR.

The lower expression of a large number of genes associated
with the lipolysis indicated a reduction in decomposition of
fats and then an increase in the anabolism and fat storage
in broiler chickens, especially in abdominal fat tissue. On the
contrary, the higher expression of a large number of genes in the
gene set associated with the lipogenesis confirms the increase in
metabolism and abdominal fat storage.

In most similar studies published on different species, it has
been concluded that multi-omics data sets or omics multilayered
networks provide a valuable resource for comparative analyses
with other experimental data sets. Also, applications for data
integration and analysis can be demonstrated and provide novel
functional insights (Yao et al., 2015; Suravajhala et al., 2016; Hasin
et al., 2017; Arora et al., 2018; Backman et al., 2019; Dao et al.,
2019; Corral-Jara et al., 2020; Lee et al., 2020). In one study, an
attempt has been made to investigate the effects of a transgenic
supplement in mice using a molecular systems biology approach
and a combination of statistical tools using high-throughput
techniques. They concluded that the integration of omics data
provides better molecular insight into the relationships between
biological variables. Thus, such approaches can be effective in
detecting mechanical, molecular, and biochemical interactions
(Zhang et al., 2019).

Chickens with greater abdominal fat had hyperplasia and
hypertrophy of fat cells at younger ages compared with chickens
with lower abdominal fat. SREBF1, SREBF2, SCD, and FASN

were among the most important genes that play major roles
in fat storage and metabolism (Resnyk et al., 2013). THBS1,
ANXA7, APOA1, BCO2, CYP27A1, CYP2E1, and SLC2A2
genes were downregulated, whereas TMEM258, DHCR7, FADS2,
FASN, INSIG2, LCAT, MVD, SCD, and SREBF1 genes were
upregulated in the lipogenesis process. Additionally, COLEC12,
RGS19, ACAT1, ADH1C, APP, EHHADH, GAMT, HADHB,
HSD17B4, HSD17B6, IRS1, PHYH, SOD3, TP53, and UCP3 were
downregulated, whereas HTR7L, G6PC, and HMGCR genes were
upregulated in the lipolysis process. Briefly, hub genes in this
study were APP, SREBF1, HMGCR, FADS2, SCD, ACAT1, FASN,
HADHB, and EHHADH (Figure 2).

The APP gene was downregulated in the lipolysis process
because the APP gene is a cell surface receptor and an
extra-membrane precursor protein that is decomposed
by enzymes to form a number of peptides. Some of these
peptides are secreted and can be bound to an acetyl transferase
complex, APBB1/TIP60, to strengthen the transcription
activities, while other proteins create amyloid plaques in
brains of patients with Alzheimer’s disease (Almkvist et al.,
2019). It enhances the transcription through binding to
APBB1/KAT5 and inhibits Notch signals through interaction
with Numb.

Sterol regulatory element-binding transcription factor 1
(SREBF1) gene was upregulated in the lipogenesis process
because the SREBF1 is a protein-encoding gene. Fatty liver
disease is a SREBF1 gene-related disease; and the mTOR signaling
pathway is a pathway associated with SREBF1. Annotation of
this gene includes the DNA and chromatin binding transcription
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FIGURE 5 | Module 2: five genes and five miRNAs in the interactive bipartite network of gene–miRNA. In this network, the quadrilateral points represent genes; and
the octagonal points represent miRNAs. In this interactive bipartite network of gene–miRNA, quadrilateral nodes represent genes; and octagonal nodes represent the
miRNAs. For miRNAs and target genes, the edges indicate the suppressing roles of miRNAs. The edges of genes also indicate the gene–gene interactions. The
green quadrilateral nodes represent the genes with the highest gene–gene interactions with other genes in the network (or hub genes). Purple quadrilateral nodes
indicate the genes with the highest suppression by miRNAs.

FIGURE 6 | Module 3: six genes in interactive bipartite network of gene–miRNA. In this network, the quadrilateral nodes represent genes; and edges indicate the
gene–gene interaction effects. Green quadrilateral nodes represent the hub genes in the network. Blue nodes represent other genes in the network.
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FIGURE 7 | Schematic of the regenerated metabolic-signaling network associated with fat metabolism and storage using CellDesigner.

factor activity, and it regulates the rate of transcription of the
LDL receptor gene, fatty acid, and the cholesterol synthesis
pathway to a lesser extent (Stachowiak et al., 2013).

HMGCR or 3-hydroxy-3-methylglutaryl coenzyme A reductase
was downregulated in the lipolysis process because the HMGCR
gene is a protein-encoding gene; the Terpenoid backbone
biosynthesis pathway is a pathway associated with this gene
(Wang et al., 2018).

Fatty acid desaturase 2 gene was upregulated in the lipogenesis
process because the FADS2 gene is a protein-encoding gene with
pathways such as fatty acid beta-oxidation (peroxisome) and
alpha-linolenic acid metabolism. This gene is a part of the lipid
metabolic pathway that catalyzes the biosynthesis of unsaturated
fatty acids from unsaturated fatty acids of linoleic acid (18:2n-6)
and linolenic acid (18:3n-3) (Chen et al., 2019).

The Stearoyl-coenzyme a desaturase (SCD) gene was
upregulated in the lipogenesis process, as this gene encodes
the enzyme that is involved in the biosynthesis of fatty acids,
so that it is first responsible for the synthesis of oleic acid. The
produced protein belongs to the desaturase fatty acid family
(Calvo et al., 2019).

Acetyl-Coenzyme A acetyltransferase 1 (ACAT1) was
downregulated in the lipolysis process. This gene is a protein-
encoding gene that is involved in metabolic pathways of ketone
body metabolism and the Terpenoid backbone biosynthesis.
The gene plays a key role in the ketone body metabolism
(Chanyshev et al., 2018).

The FASN (Fatty acid synthase) gene was upregulated in the
lipogenesis process because this gene is a protein-encoding gene
with pathways such as the metabolism of water-soluble vitamins
and cofactors, as well as the enzymatic complex pathway of
AMPK. Therefore, upregulation of this gene is necessary for lipid
biosynthesis (Raza et al., 2018).

The Hydroxyacyl-CoA Dehydrogenase Trifunctional
Multienzyme Complex Subunit Beta gene was downregulated in
the lipolysis process. The HADHB gene is a protein-encoding
gene with pathways such as beta-oxidation of mitochondrial

fatty acids and biosynthesis of glycerophospholipids
(Diebold et al., 2019).

Enoyl-CoA Hydratase And 3-Hydroxyacyl CoA Dehydrogenase
genes were downregulated in the lipolysis process. The EHHADH
gene is a protein-encoding gene with pathways such as PPAR
alpha pathway and propanoate metabolism. The gene annotation
includes the binding of signaling receptors and oxidoreductase
activity (Assmann et al., 2016). Given the ontology expression
and functions of important and main genes in the network
of genes interactions, it can be stated that these genes are the
main genes in the metabolism and fat storage as well as the
signaling pathways of endocrine glands, especially AMPK and
PPAR signaling pathways.

In Figure 3, green quadrilateral nodes represent the genes
with the highest interaction in the network and are the main
candidates in lipid metabolism and storage. These nodes play
roles in the list of desired genes (reference), metabolic, and
signaling pathways. The genes with the highest repression levels
include THBS1, SIK1, COLEC12, and BACE1, respectively.

A combined biological system approach is used to detect
metabolic and signaling pathways associated with the interactive
bipartite network of gene–miRNA in the process of fat storage
and metabolism of broiler chicken. Fat stored in the skeletal
muscles plays a role in important metabolic processes such as
immune function, food consumption, hormone sensitivity, and
relevant signaling pathways (Jung and Choi, 2014).

In module 1, gga-miR-1710 suppressed the HMGCR gene and
gga-miR-1710 was downregulated. Its target gene represents the
increased expression in higher abdominal fat tissue compared
with lower abdominal fat tissue. The gene is classified into
a set of genes associated with the lipolysis process. Reducing
the expression of gga-miR-1710 and increased gene expression
of HMGCR leads to the lipolysis process, thereby reducing
abdominal fat. HMG-CoA reductase protein-encoding gene is the
cholesterol synthesis-limiting enzyme that regulates the product
of catalyzed reactions by reductase through a negative feedback
mechanism caused by sterols and non-sterol metabolites derived
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from mevalonate. The enzyme in mammalian cells is usually
suppressed by cholesterol derived from the construction and
destruction of low-density lipoprotein (LDL) through the LDL
receptor (Wang et al., 2018).

The SCD gene indicates a higher expression in larger
abdominal fat tissue compared with the lower abdominal fat
tissue. The SCD gene is put into the set of genes associated
with the lipogenesis process. Therefore, increasing the SCD gene
expression raises the amount of fat storage in the body, especially
in abdominal part. SCD gene (Stearoyl-coenzyme A desaturase)
is a protein-encoding gene with pathways including adipogenesis
and angiopoietin, such as the protein 8 regulatory pathway. It also
plays an important role in lipid biosynthesis and regulating the
expression of genes in the mitochondrial fatty acid oxidation and
lipogenesis cycle (Aali et al., 2016).

gga-miR-6554-5p suppresses the IRS1 gene. This miRNA has
higher expression; and its target gene shows a lower expression in
greater abdominal fat tissue compared with the lower abdominal
fat tissue. IRS1 gene is among the set of genes associated
with the lipolysis process. Therefore, increasing expression of
gga-miR-6554-5p miRNA decreases the IRS1 gene expression,
thereby reducing the amount of fat catabolism and increasing
the abdominal fat storage and anabolism. IRS1 gene encodes a
protein that is phosphorylated by insulin receptor tyrosine kinase.
Mutations in the gene are associated with type 2 diabetes and
insulin resistance (Song et al., 2019).

The SREBF1 gene shows the higher expression in greater
abdominal fat tissue compared with lower abdominal fat tissue.
The gene is among the set of genes associated with the lipogenesis
process. The higher SREBF1 gene expression increases the
abdominal fat storage and anabolism. SREBF1 genes encode the
Helix-Loop-Helix-Leucine Zipper (bHLH-Zip) that binds the
sterol-1 regulator. It is also found in the promoter for low-
density lipoprotein receptor gene and other genes in the sterol
biosynthesis (Stachowiak et al., 2013).

In this module, the HMGCR gene is suppressed by miRNAs.
The gene is associated with the lipolysis process. Therefore, its
suppression can prevent the fat tissue catabolism and lead to
the higher fat storage and anabolism in abdominal fat tissue of
broiler chickens. In this module, there are six genes, namely,
HMGCR, SREBF1, SCD, FASN, HADHB, and ACAT1 with certain
color (green), and have the highest interaction with other genes
involved in the module. The enzyme that is encoded by the
FASN gene is a multi-functional protein. Its main function is the
canalization of the synthesis of Palmitate from Acetyl-CoA and
Malonyl-CoA in the presence of NADPH to long-chain saturated
fatty acids. The ACAT1 gene encodes a topical mitochondrial
enzyme that catalyzes the reversible form of Acetoacetyl CoA
from two acetyl CoA molecules. Further, the HADHB gene
is responsible for encoding the beta subunit of mitochondrial
function protein and catalyzes the final three stages of the
mitochondrial beta-oxidation process of long-chain fatty acids
(Diebold et al., 2019).

The gene set of this module, as presented in Table 3, encodes
signaling pathways AMPK and PPAR as well as metabolic
pathways of fatty acid synthase, unsaturated fatty acid synthase,
and cholesterol metabolism pathways. Therefore, it can be

concluded that the module and genes involved in the process can
be functional modules associated with abdominal fat metabolism
and storage in broiler chickens.

The receptor increases the insulin-mediated glucose uptake
and improves the blood lipid profile by regulating lipid
metabolism, glucose, and free fatty acid oxidation. Target genes
of PPARs are related to several proteins that are necessary for
absorption, intercellular transfer, and beta-oxidation of fatty
acids. They include fatty acid transport proteins, the Fatty
Acid Translocase enzyme, and the synthase enzyme involved
in the production of acetyl CoA (for long-chain fatty acids)
and Carnitine palmitoyltransferase I (Brown and Plutzky, 2007).
PPARs play roles in the regulation of the gene transcription
process (P2) of fat cells, so that the lean and fat-free meat can
be produced by manipulation of the differentiation of fat tissue
cells and their fat content through these receptors.

The cellular response to insulin includes the regulation
of blood sugar levels by increasing the glucose uptake in
muscles and fat tissues in a way that energy is reserved in
fat tissue, liver, and muscle increase by stimulating lipogenesis,
glycogen synthesis, and protein synthesis. Insulin signaling
pathways decrease glucose production by the liver and the total
inhibition of energy stored through lipolysis, glycogenolysis,
and breakdown of proteins. This pathway also acts as a
growth factor and stimulates cell growth, differentiation, and
survival (Boucher et al., 2014). The insulin signaling pathway
is an important biochemical pathway that regulates some basic
biological functions such as glucose and lipid metabolism,
synthesis of proteins, cell proliferation and differentiation, and
apoptosis (Di Camillo et al., 2016).

The signaling pathway of phosphatidylinositol (PI3K)/protein
kinase B (Act) is involved in the regulation of many physiological
cell processes by activating effective cross-downstream molecules
that play important roles in the cellular cycle, growth, and
proliferation (Shi et al., 2019).

The Mammalian Target of Rapamycin (mTOR) signaling
pathway has both internal and external signals and acts as a
main regulator of cellular metabolism, growth, proliferation, and
survival. Exploration carried out over the past decade indicates
that the mTOR signaling pathway is activated in various cellular
processes such as tumor formation and angiogenesis, insulin
resistance, lipid metabolism, and lymphocyte T activation and is
regulated in human diseases such as cancer and type 2 diabetes
(Laplante and Sabatini, 2009).

In module 2, APP gene plays the main role. The gene is
suppressed by gga-miR-6554-5p. gga-miR-6554-5p represents the
upregulation; and its target gene represents the downregulation
in greater abdominal fat tissue compared with the lower
abdominal fat tissue. The APP gene is a set of genes associated
with the lipolysis process. Therefore, its repression by miRNAs
in humans is necessary. In poultry, its lower expression is
equivalent to a decrease in abdominal fat; and a decrease in
body fat is equivalent to an increase in proliferation performance
and other functional traits. Increased body weight or obesity
caused by increased body fat storage is characterized by excessive
accumulation of fat in the body and increased levels of adipokines
and inflammatory cytokines. This indicates an increased risk of
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Alzheimer’s disease, type 2 diabetes, and cardiovascular diseases.
It has been recently found that the gene expression level of APP
increases as brain tissue fat and fat storage tissues increase in the
body (Puig et al., 2017).

gga-miR-6554-5p and gga-miR-466 miRNAs suppress BACE1
gene. These two miRNAs represent the upregulation, and their
target genes indicate the downregulation in greater abdominal
fat tissue compared with lower abdominal fat tissue. BACE1 gene
encodes an enzyme that cuts the amyloid precursor protein (APP)
and produces amyloid beta peptides that cause amyloid plaque
in the brains of patients with Alzheimer’s disease (Faghihi et al.,
2008; Ghafouri et al., 2018).

gga-miR-6562-5p and gga-miR-3532-5p suppress the
PSEN1 gene. These two miRNAs indicate the upregulation;
and their target gene indicates the downregulation in
the greater abdominal fat tissue compared with the lower
abdominal fat tissue. PSEN1 encodes a protein that is called
Presenilin 1. Presenilins are APP regulators according to their
effects on gamma secretase as APP-decomposing enzymes
(Ramakrishnan et al., 2017).

PSEN2 gene, which has about 67% of similarity to PSEN1
gene, was identified after PSEN1 gene. PSEN2 gene indicated
a lower expression in greater abdominal fat tissue compared
with the lower abdominal fat tissue. PSEN2 gene is a protein-
encoding gene with associated diseases such as Alzheimer’s
disease and heart muscle diseases. It encodes the intermediate
signaling Presenilin and Wnt/Hedgehog/Notch pathways
(Muchnik et al., 2015).

gga-miR-3532-3p suppresses BACE2 gene. The miRNAs
indicate the upregulation; and their target gene, BACE2, indicates
the low expression in greater abdominal fat tissue compared
with lower abdominal fat tissue. BACE2 gene encodes a full
membrane glycoprotein that is known as an aspartic protease
(Yu and Jia, 2009).

In module 3, the MVD gene indicated a higher expression
in the greater abdominal fat tissue compared with the lower
abdominal fat tissue. The MVD gene is a set of genes associated
with the lipogenesis process. This gene encodes a mevalonate
diphosphate decarboxylase (MVD) enzyme. Its related pathways
include the protein metabolism and synthesis of available
substrates in the biosynthesis of N-glycans. The DHCR7 gene
is another important gene of this module, indicating the higher
expression in the greater abdominal fat tissue compared with
the lower abdominal fat tissue. DHCR7 or 7-dehydrocholesterol
reductase is a protein-encoding gene that plays a role in
eliminating an enzyme that creates a double bond of C (7–
8) in loop B of sterol and catalyzes the conversion of 7-
dehydrocholesterol to cholesterol. Cholesterol I biosynthesis and
vitamin D metabolism are its associated pathways. The TM7SF2
gene is an important paralog of this gene [see text footnote 6; 64].

Another important gene in this module, ACAT1 gene,
indicates low expression in greater abdominal fat tissue compared
with the lower abdominal fat tissue. This gene catalyzes
Acetoacetyl CoA using two acetyl coenzyme A molecules
(Chanyshev et al., 2018).

Given the roles of the three main genes involved in the
structure of this module as well as using the online database, this

module encodes metabolic pathways of cholesterol metabolism
and the metabolism of fatty acids.

In the Notch signaling pathway, the Notch receptor is
phosphorylated and activates the NICD gene in collaboration
with the PSEN1 gene as a γ-secretase complex. Inside the cell
nucleus, this gene encodes the sequence of the FABP7 gene
and triggers the construction of FABP7 mRNA by cooperation
with RBPJ/CBF1 complex. FABP gene is activated by two
phosphorylated receptors, called FATP and FATCDB6, in the
cell membrane. Thereafter, three signaling complexes, PPARα–
RXR, PPARβ–RXR, and PPARγ–RXR, are activated. These
signaling pathways encode genes related to the fat storage
and metabolism in the cell nucleus. These complexes in the
nucleus are related to lipid transport, lipogenesis, cholesterol
metabolism, and fatty acid oxidation, leading to the process
of lipid metabolism by transcription and translation of the
genes. In the signaling path of PPAR, PPARγ/RXR complex is
associated with the insulin-related signaling pathway through
the phosphorylated mTORC1 gene in the mTOR pathway. The
phosphorylation of this gene results in activation of PPARγ/RXR
complex. The AMPK signaling pathway is also associated
with the mTORC1 gene and has an inhibitory effect, in a
way that the AMPK pathway prevents the phosphorylation
of the mTORC1 gene, so that PPARγ/RXR complex is not
activated; and the lipid metabolism process (e.g., lipogenesis,
cholesterol, and oxidation metabolisms) is not performed.
Two signaling pathways, PPAR (the main pathway of lipid
metabolism) and AMPK (the main pathway of cellular energy
exchanges), are important in this metabolic-signaling network.
These two signaling pathways control each other by the
mTORC1 gene in the mTOR signaling path, so that increasing
or decreasing the intracellular energy levels of the AMPK
signaling pathway with an inhibitory or activating effect on the
mTORC1 gene can cause anabolism or catabolism of lipids in
cells (Figure 7).

According to the ontology and functions of genes, which
encode two signaling pathways, AMPK and PPAR, these two
pathways are the main pathways of cellular energy exchange and
lipid metabolism, respectively.

Peroxisome proliferator-activated receptors are transcription
factors belonging to the nuclear receptor superfamily, and they
are activated by long-chain unsaturated fatty acids with several
double bonds, eicosanoids, and lipid-lowering agents such as
fibrates. Among the unsaturated fatty acids with double bonds,
eicosapentaenoic acid (EPA) and docosahexaenoic acid have been
widely studied because of their ability to activate PPARs. The
expression profile of PPARα in different organs of poultry is
largely similar to that of mammals, in such a way that it expresses
similar functions of PPARα in poultry and mammals. PPARs
are nuclear hormone receptors that are activated by fatty acids
and their derivatives. Each of them is encoded in a separate
gene and bind fatty acids and eicosanoids. Ligand property
of PPAR–RXR heterodimers for fatty acids causes the binding
of these heterodimers to “Specific Receptor Elements” in the
promoter region of several genes and changes the transcription
of downstream genes involved in immune processes, lipid
metabolism, and cholesterol metabolism (Zoete et al., 2007).
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AMP-activated protein kinase (AMPK) is a serine/threonine
kinase that has a high protective system. The AMPK system
acts as a cellular energy sensor. When AMPK is activated, it
simultaneously inhibits the energy consumption in biosynthetic
pathways, such as protein, fatty acids, and glycogen synthesis, and
activates the catabolic pathways (breakdown) of ATP production,
including fatty acid oxidation and glycolysis (Miyamoto et al.,
2012). The reduced regulation of liver AMPK activity plays a
pathophysiological role in lipid metabolic disorders. However,
the signaling pathway of AMPK for regulation of cellular energy
balance is essential for the lipid metabolism, so that the pathway
activates the catabolism of fat in the shortage of energy in the
cell to provide the necessary rate of ATP. Therefore, the AMPK
is a main regulator of cell metabolism and metabolism organ in
eukaryotes, and it is activated by lowering the intra-cellular ATP
level. AMPK plays an important role in the growth regulation and
re-planning of cell metabolism (Mihaylova and Shaw, 2011).

CONCLUSION

The combination of omics data for obtaining and identifying
genes with differences in gene expression led to the successful
identification of 41 genes in the main process of metabolism
(anabolism and catabolism), fat storage, signaling pathways of
endocrine glands, and the cell membrane in abdominal fat
tissue for two groups of broiler chickens with higher and
lower abdominal fat storage. The same identified genes were
involved in the signaling pathways of endocrine glands; AMPK
and PPAR are associated with lipid metabolism and energy
catabolism and could be considered as the genes that were similar
in different species. The present study identified important
common genes relating to lipid metabolism and metabolic and
signaling pathways, and detected mechanisms associated with
lipid transfer by different cell membranes and tissues by an
explanation of relevant genes. Furthermore, the gene–gene and
gene–miRNA interactions were also examined by investigating
the biological system and reconstruction of various regulatory
and interactive networks that can affect the regulation of fat
metabolism and storage in poultry. They also facilitate better
understanding biology of metabolism and fat storage and the
discovery of potential molecular markers in poultry industry
programs to increase animal protein production efficiency and
reduce abdominal fat storage.
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Background: In the evolutionary time scale, selection shapes the genetic variation
and alters the architecture of genome in the organisms. Selection leaves detectable
signatures at the genomic coordinates that provide clues about the protein-coding
regions. Sahiwal is a valuable indicine cattle adapted to tropical environments with
desirable milk attributes. Insights into the genomic regions under putative selection may
reveal the molecular mechanisms affecting the quantitative and other important traits.
To understand this, the present investigation was undertaken to explore signatures
of selection in the genome of Sahiwal cattle using a medium-density genotyping
INDUS chip.

Result: De-correlated composite of multiple selection signals (DCMS), which combines
five different univariate statistics, was computed in the dataset to detect the signatures
of selection in the Sahiwal genome. Gene annotations, Quantitative Trait Loci (QTL)
enrichment, and functional analyses were carried out for the identification of significant
genomic regions. A total of 117 genes were identified, which affect a number of
important economic traits. The QTL enrichment analysis highlighted 14 significant
[False Discovery Rate (FDR)-corrected p-value ≤ 0.05] regions on chromosomes BTA
1, 3, 6, 11, 20, and 21. The top three enriched QTLs were found on BTA 6, 20,
and 23, which are associated with exterior, health, milk production, and reproduction
traits. The present study on selection signatures revealed some key genes related
with coat color (PDGFRA, KIT, and KDR), facial pigmentation (LEF ), milk fat percent
(MAP3K1, HADH, CYP2U1, and SGMS2), sperm membrane integrity (OSTC), lactation
persistency (MRPS30, NNT, CCL28, HMGCS1, NIM1K, ZNF131, and CCDC152),
milk yield (GHR and ZNF469), reproduction (NKX2-1 and DENND1A), and bovine
tuberculosis susceptibility (RNF144B and PAPSS1). Further analysis of candidate gene
prioritization identified four hub genes, viz., KIT, KDR, MAP3K1, and LEF, which play a
role in coat color, facial pigmentation, and milk fat percentage in cattle. Gene enrichment
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analysis revealed significant Gene ontology (GO) terms related to breed-specific coat
color and milk fat percent.

Conclusion: The key candidate genes and putative genomic regions associated with
economic traits were identified in Sahiwal using single nucleotide polymorphism data
and the DCMS method. It revealed selection for milk production, coat color, and
adaptability to tropical climate. The knowledge about signatures of selection and
candidate genes affecting phenotypes have provided a background information that
can be further utilized to understand the underlying mechanism involved in these traits
in Sahiwal cattle.

Keywords: indigenous cattle, SNP genotyping, selection signatures, gene identification, DCMS, gene

INTRODUCTION

Sahiwal is a well-known breed belonging to the humped zebu
cattle group (Bos indicus), having its origin in the northwestern
region of the Indian subcontinent (Muhuyi et al., 1999). Apart
from their high milk-producing ability, these cattle breed also
possesses unique adaptability to hot and humid climate prevailing
in their native tract and their known resistance to tropical
disease, ticks, and parasites (Singh et al., 2005). The milk of
this cattle yields high fat (4.6–5.2%) and solid non-fat (SNF:
8.9–9.3%) (Joshi et al., 2001). Sahiwal cattle are utilized in
crossbreeding programs around the world because of their higher
milk production qualities and endurance to harsh environments
(Maule, 1990). Such crossbreeding work has affected the numbers
and distribution of indigenous purebred cattle to some extent
in recent years (DAHDF, 2018/2019). In view of this, the
Government of India established purebred cattle nucleus herds
under All India Coordinated Research Project (AICRP). The
major objectives of this AICRP are to conserve the valuable
Sahiwal germplasm and to continue the genetic improvement
program mostly for production traits.

It is now accepted broadly that the modern Zebu cattle
were domesticated in the Indus valley approximately 6,800 years
ago from Aurochs (Bos primigenius nomadicus) and was later
introduced to different parts of tropical regions (Ajmone-Marsan
et al., 2010). Domestication of livestock benefitted humankind
in terms of milk, meat, and draft power. Selective breeding
and genetic isolation help in formation of numerous cattle
breeds and facilitates in maintaining the diversity of genome
resources and retain the characteristics of adaptation to local
environments (Felius, 1995). Artificial selection increases the
beneficial alleles related to economic traits and aids in improving
the production parameters (Diamond, 2002; Flori et al., 2009).
The process of domestication and breed formation in mammals
levied a constant source of selection pressure on a divergent
variety of traits in all the domesticated species and left detectable
impressions at individual genomes. These genomic regions
provide straightforward clues about the functional variants
concerning the traits (Andersson and Georges, 2004; Oleksyk
et al., 2010). The advent of the cost-effective genotyping allowed
more individuals to be genotyped with dense single nucleotide
polymorphism (SNP) array and thereby facilitating the precise

identification of the genomic regions of livestock with better
resolution and accuracy (Jensen et al., 2016). These developments
also helped in the mapping of signatures under selection at the
genome level in Homo sapiens and other species of animals
(Mathieson et al., 2015; Moon et al., 2015). Selection signatures
are specific variations at the DNA level that arise due to changes
in the genomes of both selected and neutral loci of a species that
has undergone selection over the years (Kreitman, 2000). Several
statistical models were developed to determine the signatures
of selection in recent years. Variants under selection pressure
generate the typical genomic patterns such as (i) change in the
allele frequency spectrum (either low or high frequencies); (ii)
greater number of homozygous genotypes; (iii) long haplotypes
are most common; and/or (iv) intense differentiation of local
population. Several studies were conducted utilizing more than
one statistic, viz., Integrated Haplotype Score (iHS), Cross-
Population Extended Haplotype Homozygosity (XP-EHH), and
Fixation index (FST) to detect the signatures of selection that
exploit the advantage of complementarity of methods, intending
to improve the statistical power (Weir and Cockerham, 1984;
Voight et al., 2006). A new method was proposed in which
different p-values are combined to give a composite of signals
(CMS) for the first time (Grossman et al., 2010). Few studies
suggested the use of combining different selection signals such
as meta-SS and Composite Selection Signals (Utsunomiya et al.,
2013; Randhawa et al., 2016). However, many of these earlier
studies did not consider the covariance among the statistics,
and consequently, a new method of composite signals was
proposed where the outputs of different methods were combined
and accounted for the covariance between the statistics. It
differed from the other composite statistics by considering the
dependencies among the univariate statistics and was termed as
De-correlated composite of multiple selection signals (DCMS)
(Ma et al., 2015; Lotterhos et al., 2017). This statistic is found to
be more effective than earlier methods and helps in prioritizing
the candidate genes affecting major economic traits in various
species that are helpful to medicine, agriculture, and animal
breeding. It is preferred over the univariate statistics as the
latter retains high local resolution. Besides these beneficial
attributes, DCMS estimation is also possible with better accuracy
even with less demography information. Selection signature
analysis in Russian and Swedish local cattle using de-correlated
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DCMS revealed functional variants under selection related to
production, reproduction, and adaptation (Yurchenko et al.,
2018; Ghoreishifar et al., 2020).

Under the vast physio-geographical region of the Indian
subcontinent, Sahiwal is a valuable indicine cattle adapted to
tropical environments with desirable milk attributes, and it is
apparent that the genomic regions of Sahiwal cattle will be
under intense putative selection for centuries. Literature on
these aspects is still scanty so far. Therefore, to understand
the molecular mechanism affecting the quantitative and other
important traits in these cattle, the present investigation was
undertaken to explore signatures of selection in the genome
of Sahiwal cattle. Simultaneously, annotation of genes and
quantitative trait loci was also carried out for prioritizing the
candidate genes having major effects on various production and
adaptive traits including coat color in Sahiwal cattle using the
medium-density genotyping assay with INDUSCHIP2, curated
from Illumina BovineSNP50 Bead Chip and developed by the
National Dairy Development Board (NDDB) for genotyping
indicine cattle (NDDB, 2019).

MATERIALS AND METHODS

Animals and Genotyping
The study was conducted on 193 Sahiwal cattle belonging to
the germplasm unit of AICRP maintained at ICAR-National
Dairy Research Institute, Karnal, India. The entire population of
Sahiwal cattle was further categorized into two subpopulations,
viz., founder/unrelated animals (n = 41) and those farm-
born/related (n = 152). These farm-born animals were born in
the germplasm unit between 2003 and 2016. All the cattle were
genotyped with INDUSCHIP2 consisting of 53,648 SNPs. This
genotyping chipset is developed by the NDDB, India, which is
customized from commercially available Illumina Bovine SNP
chip (BovineSNP50K v3 Bead Chip) to genotype native cattle
breeds and their crosses for implementing the genomic selection
schemes in small and organized herds in India (NDDB, 2019).

The quality control (QC) of SNP data was implemented in
Plink v1.9 program (Purcell et al., 2007). SNPs with a genotype
call rate lower than 0.95 and a minor allele frequency less than
0.05 and those SNPs with Hardy–Weinberg equilibrium below
0.001 were removed. In addition, SNPs with duplicated position,
located on the sex chromosome and with an unidentified position
on UMD3.1 assembly, were excluded using the –exclude option.
Furthermore, the highly related individual information was
obtained from the –genome command in the form of PI-HAT
indices. Individual pairs with unusually high PI-HAT values were
discarded from the analysis to minimize the bias of sample size.
Quality control of genotypes was again performed for phasing of
haplotypes with the Shapeit program (Delaneau et al., 2012) to
get high-quality SNPs. In total, 37,594 SNPs were considered after
QC for final analysis.

Principal Component Analysis
Principal component analysis (PCA) was carried out in R
environment with the snprelate package (Zheng et al., 2012) to
explore the structure and clustering of the samples with the help

of plotting the genotypes of all the individuals, belonging to two
subpopulations of Sahiwal cattle.

De-Correlated Composite of Multiple
Selection Signals
As outlined by Yurchenko et al. (2018), the current study
used the DCMS method to combine all the five statistics,
viz., FST , Haplotype Homozygosity (H1), Modified Haplotype
Homozygosity (H12), Tajima’s D index, and Nucleotide diversity
(pi) (Nei and Li, 1979; Weir and Cockerham, 1984; Tajima, 1989;
Garud et al., 2015). The DCMS statistic is computed at any given
loci l as follows:

DCMSl =
n∑

t = 1

log
[

1−plt
plt

]
∑n

i = 1 |rit|

Here, plt refers to the p-value at the l position for each
statistic t. The denominator consists of a correlation component
(rit), which is the weighing factor at each locus. The weighing
factors were genome-wide correlations between all the univariate
statistic pairs (Ma et al., 2015); however, the statistic with greater
correlation adds less to the calculation. To obtain the DCMS,
all the statistics were converted into p-values using one-tailed
and two-tailed ranks, where these fractional ranks lie between
1/(n+ 1) and n/(n+ 1), respectively.

Fixation Index
Fixation index is known as a measure of population
differentiation, and it was calculated for each SNP.

For the purpose of estimation of FST in our study, we
have divided the entire Sahiwal population (n = 193) into two
subpopulations, viz., founder/unrelated animals (n = 41) and
farm-born/related animals (n = 152) based on the estimated
average amount of IBD values sharing across all loci, i.e., pairwise
relatedness. This is accomplished because FST is a parameter
that measures genetic structure in a subdivided population. As
per Wright (1951), FST is also the probability that alleles drawn
randomly from a subpopulation are “identical by decent” (IBD),
relative to an ancestral population.

The FST analysis was carried out between these two
subpopulations of Sahiwal cattle using the–fst and–within
functions of Plink1.9. Zero FST values were converted to zeros
and the FST values of each SNP were smoothed with the runmed
function in the R program.

After estimation of FST values, the other univariate statistics
such as haplotype homozygosity (H1), modified haplotype
homozygosity (H12), Tajima’s D index, and Nucleotide Diversity
(pi) were estimated. Subsequently, all the five statistics were
combined into one single framework of DCMS.

Haplotype Homozygosity Statistics (H1 and H12)
Phasing of each chromosome was carried out separately with
the SHAPEIT2 version program (Delaneau et al., 2012) with
default parameters like conditional states (–states 400) and the
effective population (–effective-size 108), which was calculated
using SNePV1.1 program with the default parameters (Barbato
et al., 2015). A bovine recombination map was used to rectify
the variation due to the recombination rate along the autosomal
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genome (Ma et al., 2015). An R script was used to convert
the phased haplotypes into the format as required by the
H12_H1H2.py program1. H1 and H12 statistics were obtained for
all the SNPs by using the parameters of window size of 14 SNPs
and step size of 1 (-window 14 -jump 1) (Garud et al., 2015).

Tajima’s D and Nucleotide Diversity (π)
The vcftools program was used to compute Tajima’s D and π (pi)
statistics (Danecek et al., 2011); both statistics were calculated
for each chromosome separately (Danecek et al., 2011). Tajima’s
D index was obtained with the parameter of non-overlapping
sliding windows of 300 MB (–Tajima D 300). The p-values
were assigned to each SNP within the bin. All the missing
values were changed to zero. The pi values for all SNPs were
computed with the function –site-pi function. The raw p-values
were smoothed with the runmed function implemented in the R
program with a window of 31 SNPs and constant end rule (k = 31;
endrule = “constant”) as described by Yurchenko et al. (2018).

DCMS Estimation
All five statistic parameters (H1, H12, Tajima’s D index, π,
and FST) for each SNP were combined to a new composite
signal as DCMS. Based on the functional ranks, the left-
tailed test was applied to Tajima’s D values and π, and the
right-tailed test was applied to H1 and H12 and FST statistic,
respectively, using stat_to_p-value function in the MINOTAUR
package in R environment (Verity et al., 2017). Later, the
covNAMcd function (alpha = 0.75, nsamp = 50,000) was
applied from the rrcovNA R package (Todorov et al., 2011)
and a correlation matrix of n × n order was calculated,
which will be input to DCMS function of MINOTAUR R
package (Verity et al., 2017) and the genome-wide DCMS values
were computed. These DCMS values were transformed to a
normal distribution with the robust linear model (rlm) using
the MASS R package (Venables and Ripley, 2002) as outlined
in Yurchenko et al. (2018). Then, DCMS statistics fitted to
normal distribution were transformed to p-values by the pnorm
function (lower.tail = FALSE, log.p = FALSE). Finally, thus
obtained p-values were converted into the respective q-values
after the Benjamini and Hochberg (1995) correction using the
q-value R function (Storey and Tibshirani, 2003). The false
discovery rate is calculated, which minimizes the error rate
from multiple tests.

Identification of Functional Genes and
QTL
The genomic regions were considered as significant if q-value
is lower than 0.05 for adjacent SNPs. The boundaries of the
genomic regions were determined from the SNP with a q
value greater than 0.1. The gene and QTL annotations were
performed using R package GALLO (Genomic Annotation
in Livestock for positional candidate Loci) (Fonseca et al.,
2020). The gene and QTL annotation files (.gtf and .gff
files) derived from the ARS-UCD1.2 assembly (Rosen et al.,
2018) and Animal QTL Database (Hu et al., 2013) were

1https://github.com/ngarud/SelectionHapStats

used for the gene and QTL identification, respectively.
The QTL enrichment analysis was also performed for all
the QTLs annotated by the chromosome-based method
using the same GALLO package. A bootstrap method was
implemented to correlate the observed and expected number
of QTLs per trait from the cattle QTL database with 1,000
iterations of random sampling. The calculated p-values in the
enrichment analysis were also adjusted using FDR (<5%) for
multiple testing.

Prioritization of Candidate Genes and
Gene Enrichment Analysis
The candidate gene prioritization analysis was implemented
in Topp Gene Suite (Chen et al., 2009), and the program
requires a training set and a test set of genes. The training set
of genes were obtained from GUILDify software by providing
the keywords “sperm plasma membrane integrity,” “milk yield,”
“milk fat percent,” “lactation persistency,” “facial pigmentation,”
“eye area pigmentation,” “body weight,” “maternal behavior,”
and “Bovine Tuberculosis Susceptibility.” The gene list obtained
from this analysis was used as an input in Topp Gene Suite
and the identified genes were considered as a test gene set.
The prioritization analysis is a multivariate method that utilizes
the functional information from the Gene Ontology terms,
human and mouse phenotypes, PubMed publications, and
diseases. The significant p-values were obtained by linking
all the p-values of a random sample of 5,000 genes. The
candidate genes were prioritized after adjustment of p-values with
FDR ≤ 5%. The prioritized genes were considered as an input
in NetworkAnalystv.3.0 (Zhou et al., 2019). A protein–protein
interaction network was also generated, which is based on the
string protein–protein interaction database with a confidence
score cutoff of 900. Networks with nodes and edges were
generated, and the networks with gene ontology terms such as
Molecular function, Biological process, and Cellular components
were also produced.

RESULTS

Quality Control and PCA
Quality control of genotypes for minor allele frequency, genotype
call rate, Hardy–Weinberg equilibrium, and duplicated genotype
parameters had excluded 12,842 SNPs and left the final dataset
with 37,594 genotypes. The effective population size was
calculated as 52 in Sahiwal population based on genotype data
using SNeP V1.1 software.

The PCA was performed in the final dataset and showed that
all the individuals in the dataset were homogeneous. Hence, the
selection signature analysis was carried out by considering all the
individuals as one group after exclusion of related individuals
from the analysis with the help of the –genome command in
Plink. This function had excluded 41 related individuals from the
original dataset, having pairwise PI_HAT values above 0.1. Final
analysis was performed on 152 individuals from the final dataset
with 37,594 SNPs.
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De-Correlated Composite of Multiple
Selection Signals
The DCMS values were calculated for all 37,594 SNPs; the
p-values were corrected (FDR < 0.05) and fitted to normal
distribution. The selection analysis revealed 14 significant
genomic regions with their average length observed as
652.06 ± 830.18 KB, ranging from 60.05 to 3,444.44 KB
length. The total size of the genomic region is 9.78 Mb,
with 117 total number of protein-coding regions found in
the study (Table 1). Our study identified the four most
significant genomic regions on BTA 6 (17567590:18290048,
q-value = 1.76E-08), BTA 20 (30375415:30375415, q-
value = 8.73E-07; 22144338:22425353, q-value = 2.68E-05),
and BTA 23 (39175206:39671814, q-value = 1.79E-08),
respectively (Table 1). The findings of gene annotation
(Table 2) revealed a wide range of genes related to different
types of traits, viz., growth (CPNE4 and RALGAPA1), survival
(MIER3), adaptation (GIPC2), heat tolerance (DNAJB4),
milk protein content (MRPL3, NUDT16, and NEK11), milk
yield (ADGRL4 and PTGFR), milk production (RPS6KA2,
ZNF469, and GHR), milk fat secretion (HADH, CYP2U1,
SGMS2, SLC25A21, and MAP3K1), carcass traits (COL25A1),
sperm membrane integrity (OSTC), resistance to bovine
tuberculosis and Johne’s disease (RNF144B and PAPSS1), coat
color (PDGFRA, KIT, and KDR), eye area pigmentation (LEF1),
reproduction (DENND1A and NKX2-1), lactation persistency
(MRPS30, NNT, CCL28, HMGCS1, NIM1K, ZNF131, and
CCDC152), body height (NHLRC1), and mineral concentration
(FAM8A1).

Putative Signatures of Selection on Other
Chromosomes
Heat tolerance
The indigenous cattle (B. indicus) are best known for their
heat tolerance among the tropically adapted species. The
putative signals in our study were also identified on BTA
1, 3, 9, and 18. Among these DNAJB4 is one of the
functional candidate genes related with heat tolerance located
on BTA 3, and this gene has a straightforward role in the
cellular response during heat shock. This gene is associated
with conserving the integrity of cytoskeleton, controls the
protein folding, and removes the altered or misfolded proteins
(Collier et al., 2008).

Coat color
Coat color in cattle is driven by complex molecular mechanisms
and rendered it as a breed-specific characteristic in nature. In
our study, we could identify three key genes PDGFRA, KIT,
and KDR (Platelet-derived growth factor receptor alpha, KIT
proto-oncogene, and Receptor tyrosine kinase insert domain
receptor) located at 17-Mb regions on BTA 6. These three
genes represent the cluster of tyrosine kinase receptor genes. In a
study on the coat color patterns in the Nellore–Angus crossbred
population, the red coat color is attributed to the three genes
located in the region and is mostly associated with the KIT gene
(Hulsman Hanna et al., 2014).

Milk and related traits
Sahiwal cattle along with other indigenous cattle are more
revered in India due to their better milk attributes in terms
of health perspective. Although studies on comparative milk
profiles of Sahiwal and Holstein Friesian cattle suggested
that milk composition of Sahiwal is slightly better than the
Holstein–Friesian cattle in terms of fatty acid compositions (high
unsaturated fatty acid 38.6%, low saturated fatty acid 61.4%,
higher percent of monounsaturated and polyunsaturated fatty
acids) (Sharma et al., 2018). The DCMS analyses in our study
identified three genes, viz., Mitochondrial ribosomal protein L3
(MRPL3), Nudixhydrolase (NUDT16), and NIMA related kinase
11 (NEK11) located on BTA 1 at 139 Mb position. Interestingly,
results of another study on weighted single-step genome-wide
association analyses in Holstein and Holstein × Jersey crossbred
dairy cattle coincided with this region (Raschia et al., 2020).
This study associated MRPL3, NUDT16, and NEK11 genes with
milk composition traits. ADGRL4 is an important functional
candidate gene identified on BTA 3 related to the milk yield.
Other studies on signatures of selection in the crossbred cattle
reported a region that coincided with our study and is associated
with milk production (Li et al., 2010; Singh et al., 2020). In
our study, additionally one more candidate gene located on
BTA 9 and related to milk production was observed (Mustafa
et al., 2018). Multi-trait meta-analysis in Nordic cattle detected
several loci with pleiotropic effects on milk production and
mastitis resistance (Cai et al., 2020). We identified another
candidate gene Zinc finger protein (ZNF469), associated with
milk production and mastitis resistance in cattle in the intergenic
region of BTA 18. MAP3K1 (mitogen activated protein kinase
kinase kinase1) is also known as MEKK1 with single intronic
indel codes Serine/Threonine kinase and was related to the
MAP3K signaling pathway. It was also involved in breast cancer
susceptibility in humans. Hence, it is assumed that this gene
might play a role in the function of bovine mammary gland
(Cuevas et al., 2006). Our analysis of selection signature could
find out a candidate gene MAP3K1 at 20 Mb on BTA 20,
which is significantly associated with milk production traits in
cattle. Two important candidate genes, Solute carrier family
25 member 1 (SLC25A1) and forkhead box A2 (FOXA2), are
involved in the milk fat synthesis. SLC25A1 is known to be
associated with the oleic and total monounsaturated fatty acid
synthesis, and this gene is actively involved in two KEGG
pathways such as metabolic and n-glycan biosynthesis pathways
(Ibeagha-Awemu et al., 2016). Likewise, FOXA1 plays a role
in the synthesis of cholesterol fat in the milk of cattle (Do
et al., 2017). Copine7 (CPNE7), SPG7 matrix AAA peptidase
subunit (SPG7), and FA complementation group A (FANCA)
are a group of genes identified on BTA 18 and are associated
with lipid metabolic, process cardiac system, and nervous
system development. This region has a major pleiotropic effect
in Chinese local cattle, which are diversified under adaptive
selection (Xu et al., 2019).

Reproduction
Two candidate genes identified in this study (DENND1A and
NKX2-1) were related to reproduction traits, while DENND1A
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TABLE 1 | Summary of the genomic regions determined by the de-correlated composite of multiple selection signals (DCMS) in Sahiwal cattle.

Breed N regions Average ± SD (KB) Min (KB) Max (MB) N SNP Total size (Mb) N genes

Sahiwal 14 652.06 ± 830.18 60.05 3.44 221 9.78 117

N Regions, number of segments identified using the DCMS method as significant genomic regions harboring signatures of selection; Min, minimum size of significant
genomic regions; Max, maximum size of significant genomic regions; N SNPs, number of SNPs identified within the regions detected as signatures of selection using the
DCMS method (q-value < 0.05); N genes, number of protein coding genes identified within the significant regions detected by the DCMS method.

TABLE 2 | Gene annotation for the significant genomic regions (autosomes) under putative selection identified by DCMS analyses in Sahiwal cattle.

Region (Mb) q-value Candidate gene Trait

1:139.09–139.23
1:139.49–139.81

0.0058 KCNH, CPNE4, MRPL3, NUDT16, NEK11, and RF00026 Growth
Milk protein content

3:65.95–66.60 0.018 ADGRL4, IFI44, IFI44L, RF00568, PTGFR,GIPC2,
RF00026, DNAJB4, FUBP1, and NEXN

Milk yield
Endothelial metabolism
Antiviral property
Heat stress response
Adaptation
Reproduction

6:17.56–18.29 1.76E-08 COL25A1, RF00156, ETNPPL, OST RPL34, LEF1, HADH,
CYP2U1, SGMS2, and PAPSS1

Carcass traits
Fatty acid, lipid metabolism
Milk fat secretion
Eye area pigmentation
Immune regulation
Mycobacterium resistance paratuberculosis

6:71.23–71.84 0.001 LNX1, CHIC2, GSX2, PDGFRA, KIT, and KDR
LNX1, CHIC2, GSX2, PDGFRA, KIT, and KDR

Meat quality (meat tenderness, protein ubiquitination)
Coat color

9:64.47–65.16 0.02 RF00099, RF000278, SYNCRIO, SNX14, and TBX18 Adaptation

9:10.21–10.22 0.01 RF00026, C9H6, PDE10A, TBXT, SFT2D1, MPC1,
RPS6KA2, RNASET2, and FGFR1OP

Milk production
Residual feed intake

11:94.29–94.36 0.03 OR5C1, OR1K1, PDCL, RC3H2, RF00579, ZBTB6,
ZBTB26, RABGAP1, GPR21, STRBP, RF00026, CRB2,
DENND1A, and RF00402

Reproduction

18:14.00–14.54 0.03 ZNF469, ZFPM1, ZC3H18, IL17C, CYBA, MVD, SNAI3,
RNF166, CTU2, PIEZO1, CDT1, APRT, CALNS,
TRAPPC2L, CBFA2T3, ACSF3, CDH15, SLC22A31,
ANKRD11, SPG7, RPL13, RF00324, CPNE7, DPEP1,
CHMP1A, CDK10, SPATA2L, VPS9D1, ZNF276, and
FANCA

Milk yield and Mastitis resistance
Reproduction
Heat tolerance and Immunity

20: 21.99–2205
20: 22.14–22.42

0.0004 2.68E-05 RF00406, GPBP1, MIER3, SETD9, RF00003, MAP3K1,
and RF00026

Milk protein and fat traits
Survival

20:30.37–31.55 8.73E-07 MRPS30, RF00026, NNT, PAIP1, C20H5, TMEM267,
CCL28, HMGCS1, NIM1K, ZNF131, RF00302, CCDC152,
and GHR

Lactation persistency, teat and udder structure,
Mammary function and mastitis
Milk production

21:46.46–49.91 0.04 INSM2, RALGAPA1, RF00026, BRMS1L, MBIP, NKX2-1,
NKX2-8, PAX9, SLC25A21, FOXA1, TTC6, SEC23A,
GEMIN2, TRAPPC6B, PNN, and FBXO33

Reproduction
Milk protein composition
Lethal embryonic phenotype

23:39.17–39.67 1.79E-08 RF00001, RF00012, RNF144B, DEK, KDM1B,
TPMT,NHLRC1, RF00026, KIF13A, NUP153, CAP2,
RBM24, and STMND1

Bovine tuberculosis susceptibility
Spermatogenesis
Growth
Body height
Inflammation and immunity
Stature

was found to be associated with a number of embryos produced
by the Holstein donor cows (Jaton et al., 2018). NKX2-1 gene
produces a transcription factor that controls the activity of
thyroid-specific genes and is involved in morphogenesis. In a
genome-wide association study, the NKX2-1 gene is found to
be associated with calving to first service and days open traits
in Canadian Dairy Holstein cattle (Nayeri et al., 2016). These

findings revealed the genetic control of the reproductive traits in
the studied Sahiwal population.

Growth, survival, and adaptation
Copine4 (CPNE4), GIPC PDZ domain containing family
member 2 (GIPC2), and Ral GTPase activating protein catalytic
subunit alpha 1 (RALGAPA1) are the top candidate genes located
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in the peak value of the regions on BTA 1, 3, and 21, respectively,
and are related to growth, survival, and adaptation, respectively.
CPNE4 is identified on BTA 1, and this region is associated
with body size, muscle, and bone development in cattle (de
Simoni Gouveia et al., 2014; Barbato et al., 2020). In a large
multibreed genome-wide association study on milk production in
dairy cattle, MIER3 gene was located close to the most significant
SNP related to survival (Raven et al., 2014). Interestingly, this
gene was also identified in our study. Sahiwal is a well-known
indicine breed adapted to tropical environment and involved in
the development of various synthetic breeds across the world
(Australian Milking Zebu, Jamaica Hope, etc.). These synthetic
cattle are also suitable for adaptation and resistance to tropical
diseases (Ilatsia et al., 2012; Rehman et al., 2014). Temperature–
humidity index (THI), a parameter combining temperature
and humidity, is generally used along with other physiological
variables, viz., respiration rate and rectal temperature, for
quantification of heat stress in ruminants, including cattle.

In a genome-wide association study, GIPC2 is located close to
the most significant SNP, which is found to be associated with the
adaptation in Columbian cattle (De León et al., 2019). In a similar
manner, this gene was identified in our study, signifying its role in
the adaptation of Sahiwal cattle for which they are better known.

QTL Identification and Enrichment
Analysis
The QTL identification revealed that significant genomic regions
consist 54.6% of milk-type QTLs in Sahiwal cattle and other
QTL types such as production, exterior, reproduction, health,
and meat and carcass, which were annotated and accounted
for 15.79, 14.25, 8.71, 3.1, and 3.55%, respectively (Figure 1).
These QTLs were mapped to BTA 1, 3, 6, 9, 11, 18, 20, 21,
and 23. The QTL enrichment analysis has shown 17 significant
(FDR-corrected p-value ≤ 0.05) QTLs on chromosomes BTA
1, 3, 6, 11, 20, 21, and 23, which are associated with exterior,
health, milk, production, and reproduction traits (Table 3). The
top most significant QTLs were mapped on BTA 6, 20, and
23, which are associated with milk fat percentage, eye area
pigmentation, lactation persistency, facial pigmentation, and
bovine tuberculosis susceptibility (Figure 2).

Gene Enrichment Analysis and
Prioritization of Candidate Genes
The network constructed from the Network Analyst software
consisted of 131 nodes and four candidate genes, KIT, KDR, LEF1
and MAP3K1, that are associated with skin pigmentation and
milk fat percent. The gene ontology terms enriched in the analysis
were GO: BP (124), GO: MF (46), and GO: CC (14), which are
associated with lipid synthesis and skin pigmentation.

DISCUSSION

The present study is the first comprehensive report on genomic
selection signatures wherein putative genomic intervals were
explored using the DCMS method and major candidate genes
for different traits of interest were identified in Sahiwal cattle.

Selection signatures in Sahiwal were identified by the DCMS
method, which combined the p-values from five different
statistics into a new statistic, in contrast to the studies that
considered the overlap in the genomic regions among the
different methods. One earlier study utilized two complementary
tests such as iHS and FST (Mustafa et al., 2018) to detect the
loci under selection in Sahiwal cattle. However, the compound
measure of DCMS gives precise and unbiased information about
the genomic regions under selection by integrating the univariate
statistic p-values (Grossman et al., 2010; Ma et al., 2015; Lotterhos
et al., 2017). This method is helpful in accurate prioritization
of candidate variants that will be useful to understand the
mechanism of selection signatures that determine phenotypes in
Sahiwal cattle. As a first step, we conducted IBD and PCA to
check the presence of genetic clusters in the Sahiwal cattle. Our
findings revealed that even if all the samples were homogeneous,
they belonged to two subpopulations within the herd. Hence, we
carried out the within group selection signature analysis.

Sahiwal cattle, which are distributed in the plains of Northern
region of India, were under intense artificial selection for many
generations. This breed is known for its potential for milk
production and survives better even in harsh tropical climate.
This breed could combat infectious diseases due to better
immunity levels (Ilatsia et al., 2012). However, the information
on the putative loci in the genome that controls these traits
is not deciphered so far, which hindered our understanding
regarding the mechanism of selection in these cattle. Genomic
scans of Sahiwal cattle using the DCMS method captured a
number of putative regions of selection associated with economic
traits like growth, facial pigmentation, eye area pigmentation,
milk production and composition, reproduction, body height,
adaptation and survival. Our results suggested that the genome of
Sahiwal cattle was under the pressure of recent ongoing selection.

Indian cattle breeds are categorically classified into three
major groups based on their utilities, such as milch, dual purpose,
and draught. Sahiwal is a well-known milch breed of India.
Sahiwal has a lean conformation with brown coat color and
better milk production attributes. In the present study, significant
genomic regions and genes related to major economic traits
under selection in Sahiwal were identified.

Herein, the four most significant genomic regions
were identified in Sahiwal cattle: one each on BTA 6
(17567590:18290048, q-value = 1.76E-08) and BTA 23
(39175206:39671814, q-value = 1.79E-08), while two were on BTA
20 (30375415:30375415, q-value = 8.73E-07; 22144338:22425353,
q-value = 2.68E-05). The most significant candidate genes
identified in our study in the region BTA 6 (17567590:18290048,
q-value = 1.76E-08) were collagen type XXV alpha 1 chain
(COL25A1), Ethanolamine-phosphate phospho-lyase (ETNPPL),
Oligo-saccharyltransferase complex non-catalytic subunit
(OSTC), Ribosomal protein L34 (RPL34), Lymphoid enhancer
binding factor 1 (LEF1), Hydroxy acyl-CoA dehydrogenase
(HADH), Cytochrome P450, family2, subfamily U, polypeptide
1 (CYP2U1), Sphingomyelin synthase2 (SGMS2), and
3’-phosphoadenosine 5’-phosphosulfate synthase 1 (PAPSS1).

COL25A1 gene is known as collagen gene located at 17
and 18 Mb regions. This gene is associated with carcass
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FIGURE 1 | (A) The Pie plot showing the proportion of six QTL classes annotated in the significant genomic regions in Sahiwal cattle. (B) The QTL enrichment
analysis determined the important traits enriched in the significant genomic regions. The number of observed QTLs for a class is based on the area of the circle. The
color gradient denotes the p-value scale.
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TABLE 3 | The enriched QTLs annotated in the putative genomic regions of the Sahiwal cattle.

Trait Chromosome QTLs (number) Annotated QTLs (number) p-value FDR-corrected p-value

Exterior 6 11 175 1.73E-13 1.76E-11

6 9 175 6.19E-10 3.15E-08

21 4 70 0.000873 0.016187

21 4 70 0.00141 0.023975

21 3 70 0.002188 0.034331

3 1 11 0.003696 0.044355

Health 23 5 11 3.88E-07 1.58E-05

Milk 20 188 467 7.06E-62 1.44E-59

11 3 8 8.21E-05 0.002095

20 54 467 0.000466 0.009506

1 2 14 0.002738 0.03989

Production 20 28 467 7.86E-11 5.35E-09

3 2 11 0.003558 0.044355

Reproduction 6 3 175 2.93E-06 9.97E-05

1 2 14 2.71E-05 0.000791

21 2 70 0.000372 0.008422

1 2 14 0.003119 0.042418

traits, and it is confirmed in a genome-wide study in Italian
cattle breeds (Piedmontese, Marchigiana, Italian Holstein, Italian
Brown, and Italian Pezzata Rossa breeds), as a similar peak is
observed in Piedmontese beef cattle of Italy (Mancini et al.,
2014). The OSTC gene is responsible for sperm membrane
integrity in Holstein–Friesian bulls (Kamiñski et al., 2016).
Cattle breeds were distinguished from each other due to specific
pigmentation markings.

The pigmentation particularly around the eyes in cattle is
termed as ambilateral circumocular pigmentation. This pattern
makes those animals less susceptible to squamous cell carcinoma
of the eye, and the LEF1 gene is known for this eye pigmentation
area in cattle (Pausch et al., 2012). HADH (Hydroxy acyl-CoA
dehydrogenase), CYP2U1 (cytochrome P450 family 2 subfamily
U member 1), and SGMS2 (sphingomyelin synthase 2) genes
are associated with fatty acid and lipid metabolism, and thus
help in fat globule secretion in milk (Li et al., 2010; Grilz-
seger et al., 2019). The PAPSS1 gene, which is associated with
resistance to Johne’s disease, is also located in this region
(Mallikarjunappa et al., 2018).

Our study could also locate another putative selection
signature in Sahiwal, located on BTA 23 (39175206: 39671814,
q-value = 1.79E-08) containing few important candidate genes
related to bovine tuberculosis susceptibility, spermatogenesis,
body height, and mineral content. The strongest candidates
included Ring finger protein 144B (RNF144B), Thiopurine
S-methyltransferase (TPMT), and NHL repeat containing E3
ubiquitin protein ligase 1 (NHLRC1). The role of RNF144B
toward bovine tuberculosis susceptibility was also reported
in Holstein–Friesian cattle (Raphaka et al., 2017). This gene
is associated with the expression of Nuclear-factor-kappa-B-
inhibitor alpha (NF-kB) in human macrophages and also controls
the function of various genes involved in a wide range of
cellular processes like inflammation and immunity. In addition,
it controls the apoptosis and cell proliferation. This protein

coding gene is also conserved in other species, especially in
humans (Zhou et al., 2016). It is important to note that
the gene TPMT located on BTA 23 at the 39-Mb region is
associated with porcine infections and affects the susceptibility
to parasitic burden in pigs (Gaur et al., 2014). The tropical
climate favors the prevalence of parasitic infections. These
gene polymorphisms could affect the growth and production
performance. Thus, this candidate gene could play a role
in cattle production systems. Other important genes located
on BTA 23 in Sahiwal cattle were NHL repeat containing
E3 ubiquitin protein ligase 1 (NHLRC1) and family with
sequence similarity 8 member A1 (FAM8A1). These functional
candidate genes identified in this location were known to be
associated with body conformation traits like body stature and
mineral content, especially magnesium (Tizioto et al., 2015;
Yan et al., 2020).

Another genomic region predicted to be under putative
selection was located on BTA 20 at the 30-Mb interval, and
a panel of candidate genes identified in this region were
Mitochondrial ribosomal protein S30 (MRPS30), C–C motif
chemokine ligand 28 (CCL28), 3-hydroxy-3-methylglutaryl-CoA
synthase 1 (HMGCS1), and Growth hormone receptor (GHR).
MRPS30 is also known as programmed cell death 9 (PDCD9)
with a role in breast cancer susceptibility (Fletcher et al.,
2011). This gene has a role in cell apoptosis and found to
be associated with lactation persistency in cattle (Appuhamy
et al., 2009), whereas the CCL28 gene is associated with the
health of mammary gland by homing and inundation of IgA
antibodies during the early lactation period (Hieshima et al.,
2003). The GHR gene affects the milk yield and the lactation
process by controlling the activity of growth hormone (Moisio
et al., 1998; Rahmatalla et al., 2011). Similarly, the HMGCS1 gene
is associated with lactation persistency in cattle as this gene affects
the synthesis of milk cholesterol and lipid (Rikitake et al., 2001;
Murray et al., 2003).
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FIGURE 2 | Results of Gene Network analysis for the selected prioritized candidate genes located in the significant genomic regions in Sahiwal cattle. (A) Biological
process, (B) molecular function, and (C) cellular component. The green circles represent prioritized genes, while the pink circles denote the related genes.

QTL Identification and Enrichment
The major fraction of QTL annotation in our study belonged to
“Milk” type, which accounts for 54.6% of the total QTLs. The
milk-type QTLs comprise milk protein percentage, milk yield,
milk glycosylated kappa-casein percentage, milk protein yield,
milk stearic acid content, milk protein content, milk margaric
acid content, milk arachidic acid content, milk caprylic acid
content, milk mid-infrared spectra, milk oleic acid content, milk
lactose yield, milk phosphorylated alpha-S2-casein percentage,
milk pentadecylic acid content, cheese protein recovery, milk
cis-9-Eicosenoic acid, milk trans-10-Octadecenoic acid, and 305-
days milk yield. The QTL enrichment analysis was performed
to obtain the unbiased information about the significant QTLs
present in the population rather than simply performing QTL
annotation. The top five significant QTLs enriched are located
on BTA 6, 20, and 23. The QTLs enriched include milk
fat percentage, eye area pigmentation, lactation persistency,
facial pigmentation, and bovine tuberculosis susceptibility. These

results are consistent with our gene annotation findings, where
the genes related to these characteristics were observed in the
significant genomic regions. Sahiwal cattle are managed under
selective breeding in the germplasm unit with an objective
to improve the milk production and composition traits. The
average milk yield in Sahiwal cattle is in the range of 1,500
and 3,000 kg. However, the production performance of a few
top yielders is up to 4000 kg in a single lactation under
organized herds. The milk fat in Sahiwal cattle ranges from
4.6 to 5.2% and SNF ranges from 8.9 to 9.3% (Joshi et al.,
2001). The present QTL enrichment analysis also revealed that
milk fat QTLs were annotated (1.44E-59) in the population.
Interestingly, the top significant QTL identified on BTA 20
in our study is related to the milk fat percentage. The
coat color and pigmentation patterns were breed specific
in B. indicus cattle. The coat color in Sahiwal is one of
the desirable characteristic features. Coat color might be
under selection by breeders for a longer period. The findings
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of QTL enrichment are in the same direction. According to the
literature, cattle breed with white color coat at the facial region
are more susceptible to the squamous cell carcinoma (Guilbert
and Wahid, 1948) compared to others, as they are more exposed
to UV radiation.

Bovine tuberculosis is an important zoonotic disease in
cattle, which causes huge economic losses globally. Srinivasan
et al. (2018) examined the incidence of bovine tuberculosis
in India through a meta-analysis study, which revealed that
approximately 20% of cattle population were affected by this
disease. Our study could find out major genes and QTLs
associated with bovine tuberculosis susceptibility in individuals.

Prioritized Functional Candidate Genes
The functional enrichment analysis of the top 20 prioritized genes
revealed significant gene ontology terms that include biological
processes, molecular function, and cellular component related
to coat color, eye area pigmentation, and fatty acid and lipid
metabolism. The KIT, KDR, LEF1, and MAP3K1 were the top
candidate genes prioritized, which are associated with coat color
and milk fat percent in Sahiwal cattle. The findings in our study
are helpful in comprehending the genetic control of a number
of traits in Sahiwal cattle. This information is also useful in
warranting the better genomic prediction for economic traits in
Sahiwal cattle. The findings of our study also pointed out that the
genes mapped onto BTA 6 and 20 had pleiotropic effects and had
significant associations with other relevant economic traits.

CONCLUSION

In summary, we have identified 14 significant genomic regions
that are representative of putative signatures of selection in
Sahiwal cattle. The methodology of DCMS was used in the
computation of p-values from different univariate statistics into a
composite signal, and the most significant regions were mapped
onto BTA 6, 20, and 23. Our results are consistent with the
domestication and selection history of these cattle. BTA 6 harbors
the selection signatures, consisting of key candidate genes that
are associated with coat color, milk fat percent, sperm membrane
integrity, and carcass traits. These findings corroborate with the
objectives of the genetic improvement program in the Sahiwal
herd, where the purebred Sahiwal cattle with higher breeding
values for milk composition and production traits are selected
to produce the next-generation offspring. Similarly, two putative
genomic regions at the intervals of 22 and 30 Mb on BTA 20
are found to contain genes associated with the variation in milk
fat, milk yield, and lactation persistency in these cattle. Another
important region on BTA 23 at the 17-Mb region harbors genes
related to susceptibility to bovine tuberculosis and tolerance to
parasitic infestations. The highly significant genomic regions

helped in shaping the demography and trait architecture in this
breed and established it as one of the most suitable milch cattle
breeds in the tropics. Prioritization analysis could identify key
candidate genes that control pigmentation and milk fat percent.
Our study reveals several loci that are associated with quantitative
traits, disease resistance, and adaptation to tropical climate in
the Sahiwal genome that might have been affected by years of
selection. The present investigation highlights the importance
of B. indicus cattle, which perform better in terms of both
production and adaptation to tropical climate due to their unique
genetic mechanism that is deciphered. The future looks more
promising since the implementation of this genomic information
in the ongoing breed improvement program might well enhance
the genetic progress in Sahiwal cattle.
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Pashmina goats produce the world’s finest and the most costly animal fiber (Pashmina)

with an average fineness of 11–13 microns and have more evolved mechanisms than

any known goat breed around the globe. Despite the repute of Pashmina goat for

producing the finest and most sought-after animal fiber, meager information is available

in the public domain about Pashmina genomics and transcriptomics. Here we present

a 2.94 GB genome sequence from a male Changthangi white Pashmina goat. We

generated 294.8 GB (>100X coverage) of the whole-genome sequence using the

Illumina HiSeq 2500 sequencer. All cleaned reads were mapped to the goat reference

genome (2,922,813,246 bp) which covers 97.84% of the genome. The Unaligned reads

were used for de novo assembly resulting in a total of 882 MB non-reference contigs.

De novo assembly analysis presented in this study provides important insight into the

adaptation of Pashmina goats to cold stress and helps enhance our understanding of

this complex phenomenon. A comparison of the Pashmina goat genome with a wild

goat genome revealed a total of 2,823 high impact single nucleotide variations and

small insertions and deletions, which may be associated with the evolution of Pashmina

goats. The Pashmina goat genome sequence provided in this study may improve our

understanding of complex traits found in Pashmina goats, such as annual fiber cycling,

defense mechanism against hypoxic, survival secret in extremely cold conditions, and

adaptation to a sparse diet. In addition, the genes identified from de novo assembly

could be utilized in differentiating Pashmina fiber from other fibers to avoid falsification at

marketing practices.

Keywords: Pashmina goat, whole genome sequence, goat SNP, Pashmina fiber, cold stress

BACKGROUND

The domestic goat (Capra hircus) is an Asian animal distributed across all ecologies ranging
from cold arid to hot humid. It serves as an important source of meat, milk, skin, fiber, and
manure. Goats exhibit several traits and diseases that are similar to those of humans, which is
the reason why goats are being extensively used as an animal model for biomedical research
(Fulton et al., 1994). Modern domestic goats have been domesticated from Capra aegagrus
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(Dong et al., 2015; Sheikh et al., 2016). Over centuries, different
goat breeds have been established through evolution and genetic
selection, exhibiting traits such as (1) coat color variations, (2)
adaptability to different climatic conditions, (3) change in size,
(4) development of fine fiber (Dong et al., 2015).

An important breed of extremely cold Temperate Himalayan
region of India is Changthangi Pashmina goat which produces
world’s most sought-after natural animal fiber, Pashmina (Bhat
B. et al., 2019). These goats are also referred as Pashmina
goats or Cashmere goats. Pashmina goats are double hair
coated with an outer coat of long coarse guard hair and an
inner coat of shorter fine Pashmina fiber. The guard hair
develops from primary hair follicles (PHFs) and Pashmina from
secondary hair follicles (SHF) (Ansari-Renani et al., 2011).
These goats survive in extreme climatic conditions [+35oC
(short summer) and −40oC (long winter)] at an altitude of
4,000–5,500 m above mean sea level (AMSL) under cold and
hypoxic conditions. To adapt to the harsh climatic conditions
like cold, hot, arid, dry, and poor grazing conditions, these
goats have acquired many special abilities and attributes. The
growth of a double hair coat in Pashmina goats may be one
of the mechanisms of protection from cold, and the result
of the response triggered by the thermoregulatory center of
the brain.

It is believed that the Pashmina goats were originated
in the Himalayan ranges and migrated to different regions
of central Asia ranging from China, Mongolia, Iran, Russia,
Afghanistan, and India (Ryder, 1966). China is the leading
Pashmina producers followed by Mongolia, Iran, New Zealand,
and Britain. Even though India—Kashmir contributes <1% of
the world’s Pashmina production, because of its fineness and
quality it holds a unique position in the world’s Pashmina trade
(Shakyawar et al., 2013). Globally Pashmina is sold under the
geographical indication (GI) tract of Cashmere, which belongs
to India—Kashmir. Changthangi Pashmina goats produce the
world’s finest and the most costly Pashmina fiber with an average
fineness of 11–13 microns (Bumla et al., 2012).

Pashmina fiber is the primary source of income for the
nomadic population of Ladakh (Sheikh et al., 2016). Apart
from the economic value of the Pashmina goat, this goat serves
as an important source of food (milk and meat), skin, and
manure in the region. This goat is a safe and secure form of
investment and stable means of income in the cold and arid
deserts of Ladakh. These animals often provide the only practical
means of utilizing vast areas of natural grasslands in the areas
where crop production is uneconomical. Adapted to the harsh
environmental conditions, the Changthangi goat is a unique
genetic resource of the country. However, due to lack of breeding
policy and population structure over a long period of time, it is
suspected that inbreeding in these indigenous breeds may pose
serious threat (Ganai et al., 2011).

In this study, we report the first Pashmina goat genome
sequence. We generated 294.8 GB (>100X coverage) raw reads
from a Changthangi Pashmina goat using Illumina HiSeq 2500
sequencer. We deciphered 2.94 GB of the Pashmina goat
genome, revealing 26,687 protein-coding genes, 842 miRNAs,
188 lncRNAs, and 1879 snRNAs. We compared the Pashmina

goat genome with the wild goat genome revealed important
genetic variants related to the evolution of Pashmina goats.

METHODS

Ethics Statement
This study was approved by the Institutional Animal Welfare
and Ethics Committee of the Sher-e-Kashmir University of
Agricultural Science and Technology of Kashmir (SKUAST-K).
All experiments andmethods were performed in accordance with
relevant guidelines and regulations. Experimental goats were
housed in SKUAST-Kashmir goat farm located in the northern
Himalayas (Satakna, Ladakh) at an altitude of 5,000 m AMSL.

Sampling, Genome Sequencing, and
Assembly
Genomic DNA was extracted from the blood of a 26 months old
male Changthangi Pashmina goat. A whole-genome sequencing
(WGS) library was prepared with the Illumina-compatible
NEXTflex Rapid DNA sequencing kit (BIOO Scientific, Austin,
Texas, U.S.A.) as per the manufacturer’s guidelines. Genomic
DNA was sheared using Covaris S2 sonicator (Covaris,
Woburn,Massachusetts, USA) to generate approximate fragment
size distribution from 200 to 400 bp. Here, the fragment
size distribution was checked on Agilent Bioanalyzer and
subsequently purified using Hiprep magnetic beads (Magbio).
Purified fragments were end-repaired, adenylated, and ligated
to Illumina multiplex barcode adaptors as per NEXTFlex Rapid
DNA sequencing kit protocol. Adapter-ligated DNA was purified
and size selected using Hiprep beads. Resultant fragments were
amplified for four cycles of PCR using Illumina-compatible
primers provided in the NEXTFlex Rapid DNA sequencing kit.
The final PCR product (i.e., sequencing library) was purified
with Hiprep beads, followed by a library-quality control check.
Illumina compatible sequencing library was initially quantified
by Qubit fluorometer (Thermo Fisher Scientific, MA, USA)
and its fragment size distribution was analyzed on Agilent
TapeStation. Sequencing and base calling were performed
according to the Illumina recommendations.

Using the Illumina HiSeq 2500 platform, a total of 294.8 GB
(150 bp reads) high-quality data (1̃00X coverage of the estimated
genome size) were generated. The raw reads were pre-processed
to remove the adapter sequences, low-quality reads, and low-
quality bases filtration toward 3′- end using cutadapt program
v3.1 (Martin, 2011). Filtered reads were mapped to C. hircus
reference genome assembly ARS1 downloaded from National
Center for Biotechnology Information (NCBI) using bowtie2
v2.4.2 (Langmead and Salzberg, 2012). The Unmapped paired-
end reads to reference were used for contig assembly using Abyss
de novo assembler v2.0 (Jackman et al., 2017). The complete
assembly was obtained by merging the reference-assisted and
de novo assembled consensus sequences. The completeness
and correctness of genome-assembly were evaluated with
the Benchmarking Universal Single-Copy Orthologs (BUSCO)
program v5. 1.2 (Simão et al., 2015).
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Genome Annotation
The repetitive elements were identified in the final assembled
draft genome using RepeatMasker v4.0.9 (Tarailo-Graovac and
Chen, 2009). The transfer RNAs (tRNAs) were predicted using
the tRNAScan-SE program v2 (Lowe and Chan, 2016), with
default parameters for eukaryotic genomes. Ribosomal RNAs
(rRNAs) were collected based on homology information from
Homo sapiens, Bos taurus, Bos mutus and Ovis aris rRNAs using
the BlastN program v2.11.0+ (Ye et al., 2006). Other non-coding
RNA were predicted from the assembled genome with Infernal
v1.1.2 (Nawrocki and Eddy, 2013) using the Rfam database v13
(Griffiths-Jones et al., 2003), with an E-value cutoff of 0.001. Only
non-truncated CM hits detected in the first pass of the pipeline
with an inclusion threshold of ≤ 0.001 and score ≥45 were
reported. Overlapping hits with lower score hits were filtered out.

Protein-coding gene identification was performed using
Augustus (Stanke and Waack, 2003) and Maker v2.31.10
(Cantarel et al., 2008) programs. A total of 26,687, protein-coding
genes were identified using a 2-pass schema. The first round
of gene prediction was carried out using AUGUSTUS with H.
sapiens, B. taurus, B. mutus, and O. aris as reference models for
the hard-masked assembled genome. The predicted gene model
from AUGUSTUS was taken as input along with transcripts
and the available gene model of C. hircus for the second round
of gene prediction in the MAKER tool. The MAKER tool
provides evidence-based gene modeling. After performing the
gene prediction through MAKER, we selected the following
filtering criteria for the selection of the final gene model.

• Predicted gene should have a start and stop codon.
• Length of the gene should be >300 bps.
• Gene does not contain more than 1% of N’s.

Predicted proteins were annotated using homology-based
prediction by searching against mammalian gene sequences
utilizing the BLAST program.

• At first the protein sequences were similarity searched against
the UniProt Bovidae (91,402) and Caprine family (91,402)
protein database using BLASTP program with an e-value of
0.00001 for gene ontology (GO) and annotation (Consortium,
2014; Shaik et al., 2019).

• The unmapped genes were homology searched against NCBI
C. hircus (GCF-001704415.1) proteins (42,687) using the
BLASTP program with an E-value cut-off of 0.00001.

• The unannotated sequences were further annotated against
NCBI non-redundant (NR) database and Pfam database
with default parameters. A total of 90% of predicted genes
were annotated.

The predicted proteins were uploaded to the KEGG (Kyoto
Encyclopedia of Genes and Genomes)—KAAS (KEGG
Automatic Annotation Server) (Moriya et al., 2007) server
for pathway identification using B. taurus, B. mutus, C. hircus,
Bos indicus and Ovis aries as reference organisms.

Variant Detection and Annotation
Variant identification was done using the Genome Analysis
Toolkit (GATK) v4.0.7.0 (McKenna et al., 2010) applied on

bowtie output. As recommended by the GATK practice,
Picard tools v2.25.1 (Pic, 2019) were used to add read group
information, mark duplicates, and index a sorted BAM file.
As per the GATK pipeline following steps were performed
for variant calling from genomic data; split and trim to
reassign mapping quality, local realignment, InDel realignment,
and BaseQualityScore recalibration. For variant discovery,
HaplotypeCaller and GenotypeGVCFs were used followed by
filtering variants. Identified variants were divided into different
functional classes based on their genomic distribution. C. hircus
gene annotation file was used to determine if a SNP is located
within mRNA start and end positions (genic), CDS, 5′UTR, or
3′UTR. The variants identified were filtered for the coverage of
more than 20 (more than 20 reads covering the position) and
quality of 30 (Phred scaled quality of more than 30) to include
high confidence variants. Variants were annotated using SnpEff
program v4.3T (Cingolani et al., 2012). To further evaluate the
biological significance of the genes with high impact variations,
the pathway analysis were performed using KEGG-KAAS server
(Moriya et al., 2007; Shaik et al., 2019).

RESULTS AND DISCUSSION

Genome Sequence and Annotation
We sequenced genome DNA from a 26-month-old male
Changthangi Pashmina goat. High-quality DNA extracted from
blood was used to construct paired-end sequencing libraries.
Using the Illumina HiSeq 2500 platform, a total of 294.8
GB raw data were generated. Out of the total cleaned reads
(965,981,627 reads), 80% reads were mapped to the reference
genome, covering 97.84% genome. To identify genes specific
to Pashmina goats, de novo assembly of the unaligned reads
were performed. The final genome assembly was obtained by
merging the reference-assisted and de novo assembled consensus
sequences. The final gap closer was executed using GapCloser
program (Simpson and Durbin, 2012) with PE-LI libraries
which generated a final draft genome of 2.94 GB with an N50
value of 102582650 (Supplementary Table 1). Calculation of
the completeness of genome assembly using BUSCO program
suggested 99.3% of the assembled genome was complete (85.6%
complete and single-copy, 13.7% complete and duplicated)
remaining 0.7% of genome were fragmented.

A total of 18,656 contigs (Supplementary Table 1) were
assembled from de novo assembly, which may be specific to the
Pashmina goat breed. To interpret the biological implication
of sequences extracted from de novo assembly, all sequences
were mapped to the KEGG database using KASS servers (using
cut-off FDR corrected q-value <0.01). KEGG pathways analysis
deduced that the sequences are predicted to be involved in
metabolism pathways like amino-acids (cysteine, methionine,
threonine, serine, and glycine), nucleotides metabolism, fatty
acid metabolism; and signaling pathways like Calcium signaling,
Notch signaling, cAMP signaling, Rap1, and PI3K-Akt signaling.
Amino-acids and energy play a vital role in continuous Pashmina
fiber growth and follicle initiation. Enrichment analysis suggests
the potential role of cAMP, PI3K-Akt, and calcium signaling
in regulating cold stress responses in Pashmina goats. Further
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TABLE 1 | Repeat element statistics from Pashmina goat genome assembly.

No. of elements Length occupied (bp) %age in genome

SINEs 2,045,717 296,111,061 10.07

MIRs 391,052 55,830,025 1.90

LINEs 1,316,415 746,218,268 25.37

LINE1 567,547 331,707,256 11.28

LINE2 246,431 61,914,088 2.10

L3/CR1 33,442 6,797,367 0.23

RTE 467,971 345,644,042 11.75

LTR elements 349,139 102,247,773 3.48

ERVL 72,022 28,212,673 0.96

ERVL-MaLRs 120,773 39,051,305 1.33

ERV_classI 39,090 13,144,887 0.45

ERV_classII 101,109 18,070,827 0.61

DNA elements: 278,549 55,919,821 1.90

hAT-Charlie 160,945 29,848,276 1.01

TcMar-Tigger 43,361 11,562,004 0.39

Unclassified 4,534 803,290 0.03

Small RNA 250,244 39,202,683 1.33

Satellites 137,840 149,989,331 5.10

Simple repeats 823,810 89,185,768 3.03

Low complexity: 105,341 8,887,201 0.30

Total repeats: 1,450,391,539 bp 49.30

transcriptomic or proteomic studies are required to identify
specific genes and pathways mediating cold stress response in
Pashmina goats.

A total of 1,450,391,539 bp (49.30% of the genome) of the
Pashmina goat genome contain repetitive elements (Table 1)
which is in accordance with the earlier studies of cattle (B.
taurus) genome ( 50%) (Sequencing et al., 2012). In our study,
we identified that long interspersed elements cover 25.37% of
the whole genome, which is equitable to that of cattle (23%),
human (21%), and horse (20%) (Sequencing et al., 2012). The
percentage of short interspersed elements is 10.07% which is
lower than that of humans (13%) and cattle’s (18%) and greater
than that of mice (8%) and horses (7%). 40.83% of the total
Pashmina goat genome contains different types of interspersed
repeats. Also, 8.44% of the total Pashmina genome contains small
RNAs, microsatellites, and simple repeats; which should be useful
in quantitative trait locus mapping or marker-assisted breeding
in modulating economically important traits in specialty animal
fiber like Pashmina.

A multi-way approach was carried out for protein-coding
gene prediction from the final assembled genome. We have used
AUGUSTUS and MAKER tools for gene prediction. The first
round of gene prediction was carried out using AUGUSTUS with
humans as a reference model for the hard-masked assembled
genome. The predicted gene model from AUGUSTUS was taken
as input along with transcripts and the available gene model
of C. hircus for the second round of gene prediction in the
MAKER tool. A total of 26,687 protein-coding genes were

TABLE 2 | Pathways affected by high impact SNPs and InDELs in Pashmina goat

genome.

Pathways Genes

Cytokine-cytokine receptor interaction BMP3, FAS, LEPR, CCR3,

IL3RA, TNFRSF11A,

IFNGR2, IL1A, CXCL17

ECM-receptor interaction COL6A5, TNN, ITGB5,

COL4A1

Notch signaling pathway PTCRA, DLL3

MAPK signaling pathway RASGRP2, CACNA1I, FAS,

MAPK11, IL1A, CACNA1S

AMPK signaling pathway ACACB, CPT1B, LEPR

Calcium signaling pathway CACNA1I, ATP2B3,

CACNA1S, MYLK

PPAR signaling pathway CPT1B, PLIN2

mTOR signaling pathway GRB10, ATP6V1G1,

WDR59

Neuroactive ligand-receptor interaction GRID1, CHRNB3, TAAR8,

LEPR, RLN3, C3

Circadian entrainment PER3, CACNA1I

TNF signaling pathway FAS, MAPK11

Neurotrophin signaling pathway IRAK2, MAPK11

Jak-STAT signaling pathway IL3RA, IFNGR2, LEPR

VEGF signaling pathway MAPK11

Wnt signaling pathway APC2, ROR2

identified by combining reference and de novo assembled genome
(Supplementary Table 2).

Variant Detection
GATK workflow identified 14,270,872 SNVs. The transitions
to transversions (Ts/Tv) ratio was 2.35 and homozygosity
(4,965,247) and heterozygosity (9,306,235) percentage were
34.79 and 65.21%, respectively, both in accordance with the
earlier studies of mammalian genome analysis. Of the SNPs,
35% are intronic, 63% intergenic, 0.6% were in 3′ and
5′ UTR regions. 206,385 SNVs were identified in coding
regions with 96,092 as synonymous and 50,355 as non-
synonymous variants. Distributions of SNVs and InDels in
different chromosomes of the Pashmina goat genome are
presented in Supplementary Figure 1. A total of 1,423 high-
impact SNVs (start lost-103, stop gained-790, and stop lost-
530) were also identified which may be associated with the
evolution of the Pashmina goat (Supplementary Table 3). We
identified 1,126,239 InDels, which consisted of 484,468 insertions
and 641,871 deletions. The length distribution of identified
InDels ranged from −28 to +28 bp and homozygosity (621,032)
and heterozygosity (505,207) percentages were 55 and 45%,
respectively. Of all InDels, 61.7 and 37% were in intergenic and
intronic regions, respectively. 0.01% InDels were divided between
UTR regions of genes. A total of 1,400 high-impact InDels were
identified which contained 1,176 frameshift, 20 and 5 stop lost,
and stop gained InDels, respectively (Supplementary Table 4).

Functional analysis suggest genes with high impact SNPs were
involved mainly in signaling pathway like Notch, MAPK, AMPK,
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Calcium, PPAR, mTOR, TNF, Neurotrophin, Jak-STAT, VEGF,
and Wnt (Table 2). These signaling pathways are involved in
diverse biological processes and their specific role in Pashmina
goats needs to be further elucidated.

Genome-Wide Identification of lncRNAs
Long non-coding RNAs (lncRNAs) are emerging as key
regulators for a myriad of biological processes. In the current
lncRNA databases, most of the identified lncRNAs are derived
from mice and humans (Volders et al., 2014). Several recent
studies on B. taurus (Huang et al., 2012), Gallus gallus
(Li et al., 2012), and Sus scrofa (Tang et al., 2017) have
increased the information pool of lncRNAs. However, meager
information is available on lncRNAs for Caprines species. To
our knowledge, this is the first study to report genome-wide
identification of lncRNAs from any goat species. In this study,
we systematically identified a comprehensive list of lncRNA
(Supplementary Table 5) identified from the Pashmina goat
genome and their role in regulating different biological processes.

Recent studies suggest the role of lncRNAs in modulating
immunity; in our study, we identified three major classes of
immune regulatory lncRNAs. (1) HOX antisense intergenic
RNA myeloid 1 (HOTAIRM1) is known to be associated with
granulocytes, and is a key regulator in myeloid transcriptional
regulation, by modulatingHOXA expression in cis-configuration
(Mumtaz et al., 2017). (2) HOX transcript antisense RNA
(HOTAIR) is an oncogenic long non-coding RNA overexpressed
in various carcinomas. It recruits various chromatin-modifying
enzymes and regulates gene silencing (Bhan and Mandal,
2015). (3) Nuclear Enriched Abundant Transcript 1 (NEAT1)
known to the innate immune response to viral infection
(Mumtaz et al., 2017).

LncRNA also plays a critical role in mediating gene expression
during different developmental and differentiation processes.
We identified six classes of lncRNA, which are known for
mediating developmental traits in different animal models. (1)
KCNQ1 overlapping transcript 1 (KCNQ1OT1) plays crucial
role in the transcriptional silencing of the KCNQ1 locus by
regulating histone methylation. KCNQ1OT1 gene inactivation
results multiple growth defects in mice (Fatica and Bozzoni,
2014). (2) HOXA transcript at the distal tip (HOTTIP)
knockdown of these genes results in retinal cell development
in mice and altered limb morphology in chickens (Fatica and
Bozzoni, 2014). (3) H19 has a role in cell proliferation; H19
limits body growth by regulating IGF2 expression. Mice with
the loss of H19 function show an overgrowth phenotype.
(4) Metastasis associated lung adenocarcinoma transcript 1
(MALAT1) is majorally involved in neural development, in
culturedmice hippocampal neuronsMALAT1 knockdown shows
decreased dendritic growth and decreased synaptic density. (5)
X-inactive specific transcript (XIST) acts as a regulator of X-
chromosome inactivating in mammals. XIST deletion in mice
causes a loss of X-chromosome inactivation and female-specific
lethality. (6) Myocardial infarction-associated transcript (MIAT)
is associated with retinal cell fate and myocardial infarction
in humans. Other identified ncRNAs (rRNA, snRNA, tRNA,

lncRNAs, and miRNAs) including FASTA sequences are listed in
Supplementary Table 5.

Genome-Wide Identification of miRNAs
MicroRNAs (miRNAs) are small (22 nt long), non-coding
regulatory RNAs, which can evoke post-translational repression
of mRNA levels of target genes. miRNAs are not only
involved in transcriptional/post-transcriptional regulation but
also regulate response to environmental stresses. In this study,
using high-throughput genome sequencing we identified a total
of 338 mature miRNAs in the Changthangi Pashmina goat
genome. The length of mature miRNAs varies from 17 to 25
nucleotides with an average of 21 nucleotides. The major class
of miRNAs 91% falls within the range of 20–23 nucleotides
(Supplementary Figure 2). The highest number of miRNAs are
observed in the mir-1255 family followed by mir-1302, mir-544,
mir-692, mir-154, mir-562, mir-663, mir-684, mir-650, and let-7.

The miR-1255 commonly express in exosome and regulates
TGF-β signaling pathway by interacting with SMAD4 gene (Xin
et al., 2020). MicroRNA-214, miR-31 and miR-218 controls skin
and hair follicle development by modulating Wnt signaling and
β-catenin signaling (Mardaryev et al., 2010; Ahmed et al., 2014;
Hu et al., 2020; Bhat et al., 2021). miR-128, miR-148, andmiR-301
regulate key genes involved in cholesterol-lipoprotein trafficking
(Wagschal et al., 2015). miR-187 family regulates key genes
(TGFB1, THBS1, ACVR18 and BMP88) in TGF-beta signaling
pathway (Miao et al., 2016; Bhat S. A. et al., 2019). Complete
annotation of miRNAs from Pashmina goat genome were listed
in Supplementary Table 5.

Cold Stress Response in Pashmina Goat: A
Possible Regime
Cold tolerance in Pashmina goats is an extremely complex
phenomenon that is influenced by a large number of
physiological, biochemical, and endocrine factors. However,
the molecular mechanisms underlying the adaptation to cold
stress remain largely unknown. The changes that produce a
cold-hardy phenotype under cold tolerance situation would
involve acclimation and acclimatization in response to low
temperatures, rapid cold-hardening, and cold-induced gene
expression (Hansen, 2004).

The primary response to cold stress in animals is suggested
to be a neuroendocrine response, which triggers the release
of catecholamine hormone, usually nor-epinephrine (NE).
The cold signal in the form of NE is perceived by beta-2
Adrenergic receptor, a GPCR (Bhat et al., 2017), predominantly
localized to the vascular system in comparison to β1 and β3.
This signal perception by β2AR is known to activate multiple
intracellular signal transduction pathways that influence
various molecular, biochemical, and physiological processes
(Figure 1). NE signaling through β2AR regulates blood
pressure, heart, and respiratory rate, and body temperature
(Chruscinski et al., 2001).

• The cold signal in the form of NE is perceived by β-adrenergic
receptors, such as ADRB1, ADRB2, and ADRB3.
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FIGURE 1 | Biological model with assigned role of various cold response genes.

• Activation of β2AR triggers several downstream signaling
cascades (DSC).

• The DSC lead to the down-regulation of HIF3A and also
activation of SP1 and HIF1A.

• The activation of SP1 leads to the over-expression of CIRP and
RBM3 genes with the help of CK2 and GSK3β (Aoki et al.,
2002; Yang et al., 2006; De Leeuw et al., 2007; Sumitomo et al.,
2012).

• CIRP and RBM3 proteins are predominantly localized in the
nucleus, but can migrate to cytoplasm upon stress condition,
and acts as an RNA chaperone regulating mRNA stability
through its binding signature site in the 3′-UTR of its
targets, which includes genes involved in DNA repair (ATR,
RPA2), cellular redox metabolism (thiroredoxin), adhesion
molecules (αE/β-catenin, C/E-cadherin), circadian mRNA
(clock), reproduction-related genes in testis and TERT,
response to hypoxia (HIF-1α), general translational machinery
(eIF3H, eEF1A1, eIF4E-Bp1, eIF5A, and eIF4G3), and cardiac
repolarization (α-subunits of Ito). In addition, CIRP can
also be secreted into extracellular space through lysosome
pathway upon stimulation by LPS or hypoxia/reoxygenation
(Xia et al., 2012).

Another class of protective agents, the heat shock proteins
(HSPs), also contribute significantly to the overwintering cold
tolerance (Rinehart et al., 2007). Stress factors, like cold, induces
over-expression of heat shock genes responsible for the synthesis
of molecular chaperones to refold the misfolded of cold-induced

proteins. Later mechanism is triggered by the stress-induced
synthesis of HSFs, which bind to heat shock elements (HSE)
consisting of the pentanucleotide motif 5′-nGAAn-3′ (Lis and
Wu, 1993; Tissieres and Georgopoulos, 1994; Voellmy, 1994).

HSFI and HSP70 interaction in cold-stress response

• HSF1 is activated by unfolded proteins resulted due to cold
shock, in its inactivated monomeric state HSF1 is bound to
HSP70 (Santoro, 2000).

• The cold induced unfolded proteins are bound by molecular
chaperones, such asHSP90, HSP70, andHDJ1 (Santoro, 2000).

• The released HSF1 is translocated to nucleus, where they
undergo trimerization and phosphorylated (Santoro, 2000).

• The phosphorylated trimeric HSF1 binds to HSE located
upstream of HSP genes, resulting in transcriptional activation
and synthesis of HSPs, such as HSP70, HSPA1A, and HSPA8
genes (Banerjee et al., 2014).

• The transcripts of HSPs are shuttled to the cytosol
for translation, the higher expression of HSP, in turn,
regulate folding and Activation of a specific class of
transcription factors called as heat shock factors (HSFs)
(Åkerfelt et al., 2010).

Further, in context to the status of the translation process
during cold stress condition, it is suggested that the cAMP/PKA
pathway is involved in the dysregulation of translation factors like
EIF6, TUFM, EIF1AD, EIF2B2, EIF2B3, RPL7, EEF2, EIF3H, and
GARS to modulate the cold stress-responsive protein synthesis.
Generally, cold shock results in protein degradation, but an
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adaptive response is generated to maintain integrity as well as
stability of proteins by selective expression of certain heat shock
proteins (e.g., DNAJA4, DNAJB12, DNAJC7, DNAJC11, HSPA8,
and HSP90B1).

Cold shock results in changes to the lipid bilayer and
composition of the membrane in mammalian cells. The fatty
acid and lipid metabolism especially beta-oxidation enzymes
(ACSL1, SLC27A1, ACADVL, HADHA) are increased to provide
fuel in the form acetyl CoA for energy generation as well as
thermogenesis. Furthermore, HIF1A induced glycolytic enzymes
like G6PD, PFKFB3 are up-regulated, resulting in an increase
in energy generation during the hypoxic condition. Thus,
glucose metabolism and lipid metabolism are regulated in such
a way to meet the requirement of energy while maintaining
the stability of the lipid membrane. Cold exposure leads to
increased production of reactive oxygen species (ROS) which
influence HIFs activity and involves in lipid peroxidation (Quirós
et al., 2016). Glutathione peroxidase (GPX), catalase (CAT),
and peroxiredoxin (PRDX) are activated to neutralize the
ROS effect.

Hence, the cross-talk among various signaling pathways
mainly hormonal signaling (NE signaling), cAMP/PKA
signaling, Src kinase–PI3K/Akt-dependent pathway, Ca2+
signaling, ERK1/2 signaling, p38 signaling, and ROS signaling
could be responsible for the generation of a stress tolerance
response in Pashmina goats by modulating the expression of
specific cold stress-responsive genes. Figure 1 illustrates the role
of various cold-responsive genes.

CONCLUSIONS

Here, we report the characterization of the high altitude
Pashmina goat genome for the first time. The present study on
the genome and annotationsmay provide Pashmina breeders and
other researchers with useful information regarding trait biology
and their subsequent improvement. In particular, we highlight
pathways that could be involved in cold-stress response and fiber
cycling in Pashmina goats. The annotation of coding and non-
coding genes provides, for the first time, an understanding of

the gene content in Pashmina goat, which is valuable for future
studies on genes, gene structure, and functional genomics.
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Ewe productivity is a composite and maternal trait that is considered the most important
economic trait in sheep meat production. The objective of this study was the application
of alternative genome-wide association study (GWAS) approaches followed by gene set
enrichment analysis (GSEA) on the ewes’ genome to identify genes affecting pregnancy
outcomes and lamb growth after parturition in Iranian Baluchi sheep. Three maternal
composite traits at birth and weaning were considered. The traits were progeny birth
weight, litter mean weight at birth, total litter weight at birth, progeny weaning weight,
litter mean weight at weaning, and total litter weight at weaning. GWASs were performed
on original phenotypes as well as on estimated breeding values. The significant SNPs
associated with composite traits at birth were located within or near genes RDX,
FDX1, ARHGAP20, ZC3H12C, THBS1, and EPG5. Identified genes and pathways
have functions related to pregnancy, such as autophagy in the placenta, progesterone
production by the placenta, placental formation, calcium ion transport, and maternal
immune response. For composite traits at weaning, genes (NR2C1, VEZT, HSD17B4,
RSU1, CUBN, VIM, PRLR, and FTH1) and pathways affecting feed intake and food
conservation, development of mammary glands cytoskeleton structure, and production
of milk components like fatty acids, proteins, and vitamin B-12, were identified. The
results show that calcium ion transport during pregnancy and feeding lambs by milk
after parturition can have the greatest impact on weight gain as compared to other
effects of maternal origin.

Keywords: maternal genes, maternal pathways, GWAS, gene-set analysis, ewe productivity

INTRODUCTION

In sheep breeding, ewe productivity is the most important trait affecting profitability, and genetic
progress in this complex trait can lead to more efficient lamb production (Hanford et al., 2003).
In some countries such as Iran, where meat is the main sheep product, the productivity of a
ewe flock usually has the greatest influence on profitability (Wang and Dickerson, 1991). An

Frontiers in Genetics | www.frontiersin.org 1 July 2021 | Volume 12 | Article 71061380

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.710613
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.710613
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.710613&domain=pdf&date_stamp=2021-07-28
https://www.frontiersin.org/articles/10.3389/fgene.2021.710613/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-710613 July 22, 2021 Time: 16:59 # 2

Esmaeili-Fard et al. Effect of Maternal Genes on Offspring Weight

increase in sheep meat production could be achieved by
increasing the number and weight of lambs weaned per ewe
within a specific year (Duguma et al., 2002). Ewe productivity is
normally defined as the total litter weight at weaning per ewe. It
is one of the most common composite traits affected by many
cooperative components linked to reproduction and growth,
including age at puberty, ovulation, pregnancy, parturition,
lactation, mothering ability, and lamb survival and growth
(Snowder and Fogarty, 2009).

Ewe productivity is often regarded as an overall measure
of lamb production capacity by ewes (Bromley et al., 2001).
Composite traits are a combination of growth and reproductive
traits. Therefore, genetic improvement of ewe productivity is
a key target in sheep breeding programs (Duguma et al.,
2002). Common composite reproductive traits in sheep are total
litter weight at birth and total litter weight at weaning. These
parameters can be used as good coordinates for the market,
where producers are paid per kilogram of sheep and not per head
(Abdoli et al., 2019). Although estimates of genetic parameters
have already been reported for composite traits of different
Iranian sheep breeds (Abbasi et al., 2012; Abdoli et al., 2019),
there are limited reports on the genes and pathways that affect
these traits. To our knowledge, there is only one published report
about genes and genomic regions associated with composite traits
in sheep (Abdoli et al., 2019).

Due to a strict threshold used in GWASs to find significant
SNPs, several poorly associated SNPs are always ignored. An
alternative strategy is to add gene set analysis as a complement
approach after GWAS (Dadousis et al., 2017). In this approach, a
set of genes with some common functional features (e.g., being a
member of a specific pathway) are identified by significant SNPs
of GWAS, although with a less stringent threshold. Then, these
genes are tested for over-representation in a specific pathway
(Wang et al., 2011). Relevant to this context, there has been
a growing interest in gene set enrichment analysis (GSEA) in
dairy cattle (Han and Peñagaricano, 2016; Dadousis et al., 2017;
Neupane et al., 2018).

The Baluchi sheep is the largest sheep breed in number in
Iran and is well-adapted to a wide range of arid subtropical
environments from the northeast to the southeast of the
country (Moradband et al., 2011). Due to very limited reports
on genes and pathways affecting composite traits in sheep,
the objective of this study was to use GWAS and GSEA to
unravel the genomic architecture underlying ewe productivity in
Iranian Baluchi sheep.

MATERIALS AND METHODS

Phenotypic and Genotypic Data
The data set consisted of 1,509 ewes with 3,916 and 3,635 records
of birth weight and weaning weight (sheep at 90 days of age),
respectively. Progeny birth weight (PBW), litter mean weight
at birth (LMWB), and total litter weight at birth (TLWB) were
used as maternal composite traits at birth. Also, progeny weaning
weight (PWW), litter mean weight at weaning (LMWW), and
total litter weight at weaning (TLWW) were considered maternal

composite traits at weaning. The PWW trait was adjusted for
birth weight according to the formula:

PWW = (unadjusted PWW− PBW/

lamb age (day) at weaning) ∗ 90,

and then used for TLWW and LMWW calculation. The LMWB
and LMWW are arithmetic mean values of TLWB and TLWW
traits. They were calculated for each lambing per ewe. Phenotypic
correlation between traits ranged from 0.005 to 0.16. Correlation
between the EBVs of traits ranged from 0.13 to 0.99. Correlation
table of traits provided in Supplementary Table 7. The pedigree
file included 4,727 animals with 178 sires, 1,509 dams, and
818 founders. Data were collected from 2004 to 2012 (9-year
span) at Abbas Abad Baluchi sheep breeding station, located
in Sarakhs city, Khorasan Razavi province, Iran. Descriptive
statistics of the studied traits are presented in Table 1. The average
litter size for all ewes and genotyped ewes were 1.45 and 1.56
lamb, respectively.

Genotype data of 54,241 SNP markers were provided for 91
Baluchi ewes by the animal genetics group of Sari Agriculture
Science and Natural Resource University (SANRU), Iran
(Gholizadeh et al., 2014). Details of the feeding and management
of Baluchi sheep were reported by Gholizadeh and Ghafouri-
Kesbi (2015). In sampling the animals for genotyping, two criteria
were considered: the selection of unrelated animals based on
pedigree information and sampling those that represented the
diversity of the breed. Missing markers were imputed using
Beagle 5.2 (Browning et al., 2018) on a per chromosome basis.
An effective population size equal to 134 was selected based
on Tahmoorespur and Sheikhloo (2011). Also, a window size
of 1 Mb with an overlap of 200 kb were set. The GenABEL
package (Aulchenko et al., 2007) was used for quality control
in R software (R Core Team, 2021). Genotyping call rate less
than 95% was applied to filter out individuals. Furthermore, SNPs
with unknown genomic location, those that were monomorphic
or had minor allele frequency less than 0.01, those with
genotype call rates less than 93%, and SNPs that departed
from the Hardy–Weinberg equilibrium (for a P-value cut-off of
1 × 10−6) removed from the dataset and 45,342 SNPs were kept
for the analysis.

TABLE 1 | Descriptive statistics of the studied traits for genotyped ewes.

Trait N Avg SD Min Max CV Total N

PBW 436 4.26 0.72 2.30 6.80 0.17 3,916

TLWB 317 5.90 1.77 2.80 13.00 0.30 3,063

LMWB 317 4.40 0.75 2.70 6.80 0.17 3,063

PWW 398 20.31 4.06 9.10 34.60 0.20 3,635

TLWW 294 27.52 8.25 9.90 57.80 0.30 2,869

LMWW 294 20.97 3.98 9.90 34.60 0.19 2,869

PBW, Progeny Birth Weight; TLWB, Total Litter Weight at Birth; LMWB, Litter Mean
Weight at Birth; PWW, Progeny Weaning Weight; TLWW, Total Litter Weight at
Weaning; LMWW, Litter Mean Weight at Weaning; N, Number of records; Avg,
Average; SD, Standard deviation; Min, Minimum value; Max, Maximum value;
CV, Coefficient of variation; Total N, Total number of observations used for EBVs
calculation.
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Genome-Wide Association Study
Here, we regressed progenies’ weights on mothers’ genotypes. As
ewes had several lambing records, we used a repeatability model
framework for the association analyses and could consider year
and ewes age effects. We also could incorporate multiple records
for each ewe in the analyses. Due to the small sample size, we
used two different GWAS approaches to understand whether they
confirm each other or not. In the first approach, phenotypes were
used as the response variable, and in the second approach, EBVs
were used as the response variable.

Genome-Wide Association Mapping
Using Phenotypes (pGWAS)
For the GWAS using phenotypes, the repeatability model was
extended as follows:

y = Xb + XSNPβSNP + Zu + Wpe + e

where y is a vector of observations (ewe’s progenies weight);
b is a vector of fixed effects, including the lamb’s sex, birth
type, birth year, and the dam’s age at lambing; u is the vector
of random direct additive genetic effects, pe is the vector of
permanent environmental effects, and e is the vector of random
residual effects. The lamb’s sex fixed effect was classified for all
possible combinations and all traits except the PBW and PWW.
The X, Z, and W are design matrices that relate individuals’
records to their fixed effects (b), additive genetic effects (u), and
permanent environmental effects (pe), respectively. XSNP is the
incidence matrix for the SNP markers and βSNP is the regression
coefficient. In this case, the random effects have multivariate
Gaussian (co)variance: u

pe
e

|σ2
u, σ2

pe, σ2
e

 ∼ N

0,

Gσ2
u 0 0

0 Inσ2
pe 0

0 0 INσ2
e




where G is the genomic relationship matrix, I is an identity
matrix, n is the number of genotyped individuals with
reproductive records (n = 91) and N is the total number
of observations for the genotyped individuals (N = 294–436,
depends on the trait). We can write the extended repeatability
model as follows:

y = Xb + XSNPβSNP + e

This model is the same as the model above if,

e ∼ N (0,V) whereV = ZGZ
′

σ2
u + WW

′

σ2
pe + INσ 2

e .

In this approach, the P-value for SNP effects that occur in the
original model can be calculated from the ratio of the βSNP to its
standard error (Wald test). An alternative approach is to use the
following score test statistics that can be more computationally
efficient, be asymptotically a normal standard, and one that
approximates the Wald test,

Z =
X
′

SNPV−1
◦ (y−Xβ̂)√

X′SNPV−1
◦ XSNP

but here V◦ is computed in the same way as V using a model
where the SNP effects (XSNPβSNP) have been excluded and where
β̂ is computed from the model y = Xb + XSNPβSNP + e,
assuming e ∼ N

(
0, V◦σ2

e
)
. The analyses were performed using

the R package RepeatABEL (Rönnegård et al., 2016).

Genome-Wide Association Mapping
Using Estimated Breeding Values
(eGWAS)
The small number of available genotypes in this study can
contribute to the low power of the association analysis, but
the use of EBVs can increase the power to some extent as we
have a better estimate of the actual genetic variance. EBVs can
largely compensate for the limited number of genotypes to get
reasonable estimates (Abdoli et al., 2018, 2019; Esmaeili-Fard
et al., 2021). In this approach, first, we ran a pedigree-BLUP
analysis using the classical repeatability animal model in the
BLUPF90 software (Masuda, 2019), and breeding values of all
animals (genotyped and not genotyped animals) were estimated
for all traits. The lamb’s sex, birth type, birth year, and dam’s age at
lambing were included in the model as fixed effects. Animal direct
additive genetic and ewe permanent environmental effects were
used as random effects. Variance components were estimated
using the Restricted Maximum Likelihood (REML) approach,
implemented in the AIREMLF90 software (Masuda, 2019).
Accuracy (r) of EBVs were estimated as Henderson (1975) and
Hayes et al. (2009):

ri =

√
1− SE2

i /σ
2
a

where SEi is the standard error of EBVi, derived from the
diagonal element of the inverted left-hand side in the mixed
model equations (Henderson, 1975) and σ2

a is the additive genetic
variance. Then we weight EBVs using the following formula:

W.EBV i =
1

1− r2
i
∗ EBV i

Finally, weighted EBVs of genotyped animals were used as
the response variable and SNP genotypes were fitted as the fixed
effects in a GLM model as follows,

W.EBVs = XSNPβSNP + e

where XSNP is the design matrix that relates weighted EBVs
to SNP genotypes and βSNP is the regression coefficient. The
GenABEL (Aulchenko et al., 2007) package in the R environment
was used for this analysis. Due to the use of the genomic and
pedigree-based relationship matrix in GWA analysis, p-values
were almost non-inflated (1.01 ≤ λ ≤ 1.07) for all traits,
however, partial inflation was corrected using the genomic
control (GC) method, and all p-values were presented without
any inflation (λ = 1). The CMplot1 R package was used for
drawing Manhattan plots.

We used the simpleM method (Gao et al., 2008) for multiple
testing corrections. This method works based on the effective

1https://github.com/YinLiLin/R-CMplot
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number of independent tests. The SimpleM, first, computes the
eigenvalues from the pair-wise SNP correlation matrix created
with composite LD from the SNP dataset and then infers
the effective number of independent tests (Meff_G) through
principal component analysis. Once Meff_G is estimated, a
standard Bonferroni correction is applied to control for the
multiple testing. The number of independent tests calculated in
our study was 8,164. Based on the average number of independent
tests and the P-value cutoff 0.05, we determined 6.12∗10−6 and
1.67∗10−4 as genome-wide and chromosome-wide (suggestive)
thresholds, respectively.

Gene Annotation
Some well-known databases including BioMart-Ensembl,2 UCSC
Genome Browser3, and National Center for Biotechnology
Information4 were used along with the Ovis aries reference
genome assembly (Oar_v3.1) to identify candidate genes
within a window of 300 kb up and downstream of the
significant SNP.

Gene-Set Enrichment Analysis
We performed gene-set enrichment analysis in three steps: (i)
the assignment of SNP to the known genes, (ii) the assignment
of genes to functional categories, (iii) the association analysis
between each functional category and the studied traits.

For each trait, an arbitrary threshold of P-value ≤ 0.05 was
applied to determine significant SNP (based on the results of the
pGWAS) for enrichment analysis. The Bioconductor R package
biomaRt (Durinck et al., 2005, 2009) and the Oar_v3.1 ovine
reference genome assembly were used for flagging genes by
significant SNP. The SNPs were assigned to genes if they were
within the genomic region or 15 kb upstream or downstream of
an annotated gene. Genes harboring at least one significant SNP
were considered as significantly associated genes.

The Gene Ontology (GO) database (Ashburner et al., 2000)
was used for defining the functional sets of genes. The
GO database classifies genes into three functional categories
(biological process, molecular function, and cellular component)
based on their common properties. Finally, the significant
association of a particular GO term with maternal composite
traits was calculated using Fisher’s exact test based on the
hypergeometric distribution. The P-value of the g significant
genes in the term was computed using the following formula,

P−value = 1−
g−1∑
i = 0

(
s
i

)(
m−s
k−i

)
(

M
k

)
where s is the total number of significant genes associated
with a given maternal composite trait at birth or weaning,
m is the total number of analyzed genes, and k is the total

2www.ensembl.org/biomart
3http://genome.ucsc.edu
4https://www.ncbi.nlm.nih.gov

number of genes in the term under consideration (Han and
Peñagaricano, 2016). The GO enrichment analysis was performed
using the R package goseq (Young et al., 2010). GO terms with
more than 5 and less than 500 genes were tested. Functional
categories with a nominal P-value less than or equal to 0.01
(p ≤ 0.01) were considered as significant categories. The ggplot2
(Wickham, 2016) R package was used to visualize the GO analysis
results as dot plots.

RESULTS

Estimates of Genetic Parameters
Estimates of variance components, heritability (h2), and
repeatability (R) for the traits are shown in Table 2. Heritability
estimates of the traits ranged from 0.08 in TLWW to 0.25 in
LMWB. These estimates were in the range reported by previous
authors (Rosati et al., 2002; Vatankhah et al., 2008; Mokhtari
et al., 2010; Rashidi et al., 2011; Mohammadi et al., 2013;
Yavarifard et al., 2015; Abdoli et al., 2019). Clearly, birth weight
traits show greater heritability values than weaning weight traits
and indicate that maternal genes have bigger effects on the fetus
than on the born lamb.

GWAS Analysis of the Composite Traits
at Birth
For maternal composite traits at birth, we searched for maternal
genes and pathways that influence the progeny’s birth weight
during pregnancy. The results of GWAS analysis are shown in
a Circular Manhattan plot in Figure 1. After FDR correction
using the simpleM method, one significant and eight suggestive
SNPs were identified for ewe’s reproductive traits at birth
(Table 3). These SNPs are located on chromosomes OAR6,
OAR7, OAR15, and OAR23.

Three SNPs including rs422482383, rs423274340, and
rs428350449 were identified on OAR15 (19.7–20.3 Mb) which
harbors four genes, RDX, FDX1, ZC3H12C, and ARHGAP20. The
SNPs rs422482383 and rs423274340 were significantly associated
with all three traits at birth in both GWAS approaches. The
rs422482383 is located within the intron 5 of the ARHGAP20
gene. Another identified SNP (rs427207318) on OAR15 had a
suggestive association with the LMWB trait but did not contain
any genes in the 300 kb flanking regions. In addition, we found
three marginally suggestive SNPs on OAR7 (rs408063438,
rs399067974, and rs400684038) at a distance of 30.2–35.1 Mb.
Our BLAST search identified 12 genes in this region, while the
SNP rs400684038 was located within the intron 8 of the TTBK2
gene. Moreover, two SNPs (rs430043751 and rs426428997) were
located on OAR23 and OAR6 as they had a suggestive association
with TLWB trait.

The SNP rs430043751 on OAR23 was identified in both
GWAS approaches and was related to nearly six genes in a 300
kb span, including EPG5, PSTPIP2, ATP5F1A, HAUS1, RNF165,
and LOXHD1. This SNP was very close to the threshold line for
PBW and LMWB traits in both GWAS approaches. The SNP
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TABLE 2 | Variance components and genetic parameter estimates for composite reproductive traits in Baluchi sheep.

Trait σ2
a σ2

pe σ2
e σ2

P h2 ± SE R ± SE EBVs range* Accuracies avg (sd)**

PBW 0.09 0.03 0.28 0.41 0.23 ± 0.04 0.31 ± 0.02 −0.52 ± 0.51 0.73 (0.06)

TLWB 0.14 0.04 0.43 0.61 0.22 ± 0.04 0.29 ± 0.02 −0.70 ± 0.73 0.73 (0.05)

LMWB 0.10 0.02 0.27 0.39 0.25 ± 0.04 0.30 ± 0.02 −0.56 ± 0.51 0.76 (0.05)

PWW 2.38 2.66 14.84 19.88 0.12 ± 0.04 0.25 ± 0.02 −1.73 ± 2.12 0.60 (0.06)

TLWW 1.76 1.86 19.60 23.23 0.08 ± 0.03 0.15 ± 0.02 −1.41 ± 1.65 0.50 (0.05)

LMWW 1.86 1.25 11.60 14.72 0.13 ± 0.04 0.21 ± 0.02 −2.01 ± 1.69 0.60 (0.06)

PBW, Progeny Birth Weight; TLWB, Total Litter Weight at Birth; LMWB, Litter Mean Weight at Birth; PWW, Progeny Weaning Weight; TLWW, Total Litter Weight at
Weaning; LMWW, Litter Mean Weight at Weaning; σ2

a , additive genetic variance; σ2
pe, permanent environmental variance; σ2

e , residual variance; σ2
p, phenotypic variance;

h2, heritability; R, repeatability; SE, standard error; *Estimated breeding values range in genotyped animals. **Average and standard deviation of accuracies for genotyped
animals.

FIGURE 1 | Circular Manhattan plot for associations of SNP with ewe composite traits at birth by two GWAS approaches. The 6 circles from outside to inside
represent Progeny Birth Weight (PBW): pGWAS and eGWAS; Total Litter Weight at Birth (TLWB): pGWAS and eGWAS; Litter Mean Weight at Birth (LMWB): pGWAS
and eGWAS. The outermost circle shows SNP density in the 1 Mb window for each chromosome. X-axis: SNP positions on chromosomes, Y-axis: –Log10 P-value.
The red and blue dashed lines indicate the thresholds for genome-wide (1.22*10−5) and chromosome-wide (P < 1.67*10−4) statistical significance, respectively. The
red and blue dots show associated and suggestive SNPs, respectively. pGWAS: GWAS using phenotypes as a response variable; eGWAS: GWAS using EBVs as a
response variable.
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TABLE 3 | Suggested and associated SNPs with ewe composite traits at birth in Baluchi sheep.

Chr SNP Position Genes in 300 kb
interval

Analysis method Adjusted
P-value

Trait(s) MAF

15 rs422482383 20,125,491
RDX, FDX1,
ARHGAP20

pGWAS
and eGWAS

2.06 × 10−5

3.34 × 10−6
PBW, TLWB
and LMWB

0.11

15 rs423274340 20,304,472 ARHGAP20
pGWAS

and eGWAS
6.43 × 10−5

8.20 × 10−6
PBW, TLWB
and LMWB

0.10

15 rs428350449 19,740,174 ZC3H12C, RDX, FDX1 eGWAS 6.34 × 10−5 PBW, TLWB
and LMWB

0.12

15 rs427207318 69,550,331 Without gene pGWAS 8.43 × 10−5 LMWB 0.08

7 rs408063438 30,207,038 Without gene pGWAS 9.37 × 10−5 PBW 0.01

7 rs399067974 32,062,261 ZCRB1, THBS1, FSIP1 pGWAS 9.37 × 10−5 PBW 0.01

7 rs400684038 35,113,511

ZNF106, SNAP23,
LRRC57, HAUS2,
STARD9, CDAN1,

TTBK2, UBR1,
TMEM62

pGWAS 9.37 × 10−5 PBW 0.01

23 rs430043751 46,167,308

EPG5, PSTPIP2,
ATP5F1A, HAUS1,
RNF165, LOXHD1

pGWAS
and eGWAS

2.52 × 10−5

5.21 × 10−5 TLWB 0.06

6 rs426428997 109,147,722 Without gene eGWAS 7.20 × 10−5 TLWB 0.05

Chr, Chromosome number; pGWAS, GWAS using phenotypes as response variable; eGWAS, GWAS using EBVs as response variable; PBW, Progeny Birth Weight;
TLWB, Total Litter Weight at Birth; LMWB, Litter Mean Weight at Birth; MAF, Minor allele frequency. P-values are presented only for the first trait in the Trait(s) column.
P-values are adjusted based on the Genomic Control value. Genes with boldface indicate that the significant SNP is located within the gene. SNPs with boldface are
significantly associated with the genes but otherwise remain as suggestive SNPs. The regression coefficient of each SNP is provided in Supplementary Table 14.

rs426428997 on the OAR6 did not contain any genes in the
searched region.

GWAS Analysis of the Composite Traits
at Weaning
For maternal composite traits at weaning, we looked for maternal
genes and pathways that influence the progeny’s weaning weight.
The circular Manhattan plot shows associations of SNP markers
with traits for both GWAS approaches (Figure 2). After FDR
correction (0.05) using the simpleM method, a total of 11 SNPs
were significantly and suggestively associated with the maternal
composite traits at weaning (Table 4). These SNPs were located
on OAR2, OAR3, OAR5, OAR7, OAR13, OAR16, and OAR25.
The results of the two GWAS approaches showed similar profiles
with one common significant SNPs on OAR3 (rs428404187).

The most significant SNP (rs428404187, p = 4.72 × 10−6)
was located on OAR3 (131.2 Mb) and was significant for the
three composite traits at weaning in the pGWAS approach.
Besides, this SNP had a suggestive association with LMWW in
the eGWAS approach and was found to be located within the
intron 1 of the VEZT gene. For PWW and TLWW traits, there
were no significant or suggestive SNPs using eGWAS. Another
common suggestive SNP, rs398620273, and was associated with
three composite traits at weaning. This SNP located within
the DTWD2 gene (intron 2) on OAR5. SNP rs412011189 on
OAR2 had a suggestive association with PWW and LMWW
and was close to the EIPR1 gene. In addition, we found five
suggestively associated SNPs with PWW, including, rs411656768
and rs403459195 on OAR2, rs430218107 and rs419540936 on
OAR7, and rs401393221 on OAR13. The SNPs on OAR7 harbor
24 genes in a 300 Kb span, seven of which were RNase genes.
SNP on OAR13 was located in the RSU1 gene (intron 2),
while the VIM gene is located downstream of this SNP at a

distance of 4.2 kb. Three suggestive SNPs were found to be
related to LMWW and were identified on OAR3 (rs404069303),
OAR16 (rs409558668), and OAR25 (rs405045517). The SNP on
OAR16 was near seven genes in a 300 kb span (PRLR, AGXT2,
DNAJC21, BRIX1, RAD1, TTC23L, and RAI14). This SNP was
located in the ovine gene TTC23L (intron 2). Additionally, the
Prolactin receptor (PRLR) gene was located close to this SNP.
Another suggestive SNP (rs405045517) was located on OAR25
and harbored three genes (CDK1, FTH1, and RHOBTB1) in the
searched region. This SNP was located within the RHOBTB1
gene (intron 4). Also, the FTH1 gene was found to be located
close to this SNP.

Gene-Set Enrichment Analysis
The results of GWAS were complemented with gene set
enrichment analysis using the GO database. In total, 23,462
of the 45,342 SNPs being tested in the GWAS, were located
within or 15 kb upstream or downstream of 15,815 annotated
genes in the Oar.v3.1 ovine genome assembly. On average,
1,310 out of the 15,815 genes (ranging from 1,291 for LMWW
to 1,351 for TLWW) contained at least one significant SNP
(P-value ≤ 0.05) and were defined as significantly associated
with maternal composite traits. GO terms with a nominal
P-value ≤ 0.01 were reported as significant terms. GWAS results
using direct phenotypes (pGWAS) were used for analysis and
each trait was analyzed separately.

Gene-Set Enrichment Analysis of the
Composite Traits at Birth
Figure 3 shows a set of GO terms that were significantly
(P ≤ 0.01) enriched with genes associated with maternal
composite traits at birth. Several GO terms related to the
neural system, showed an overrepresentation of significant
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FIGURE 2 | Circular Manhattan plot for associations of SNP with ewe composite traits at weaning by two GWAS approaches. The 4 circles, from outside to inside,
represent Progeny Weaning Weight (PWW): pGWAS and eGWAS; Total Litter Weight at Weaning (TLWW): pGWAS and eGWAS; Litter Mean Weight at Weaning
(LMWW): pGWAS and eGWAS. The outermost circle shows SNP density in a 1 Mb window for each chromosome. X-axis: SNP positions on chromosomes, Y-axis:
–Log10 P-value. The red and blue dashed lines indicate the thresholds for genome-wide (1.22*10−5) and chromosome-wide (P < 1.67*10−4) statistical significance,
respectively. The red and blue dots show associated and suggestive SNPs, respectively. pGWAS: GWAS using phenotypes as response variable; eGWAS: GWAS
using EBVs as a response variable.

genes, including postsynaptic density (GO:0014069), Schaffer
collateral-CA1 synapse (GO:0098685), glutamatergic synapse
(GO:0098978), synapse (GO:0045202), neuron projection
development (GO:0031175), neurogenesis (GO:0022008),
and many other terms that were not included in Figure 3
(see Supplementary Tables 1–3). The calcium ion transport
(GO:0000045) was associated with all composite traits at birth.
Furthermore, calcium channel inhibitor activity (GO:0019855)
showed an overrepresentation of significant genes associated
with TLWB. Many GO terms related to the immune system
also showed significant enrichment of genes associated with
composite traits at birth, including cellular response to chemokine
(GO:1990869), positive regulation of T-helper 1 type immune

response (GO:0002827), positive regulation of interleukin-12
production (GO:0032735), and positive regulation of T cell
activation (GO:0050870). Several significant GO terms were
related to the signaling process. In particular, SMAD protein
signal transduction (GO:0060395), negative regulation of Notch
signaling pathway (GO:0045746), and regulation of NIK/NF-
kappaB signaling (GO:1901222) showed an overrepresentation
of significant genes. In addition, we identified cell adhesion
(GO:0007155) and metallopeptidase activity (GO:0008237) GO
terms as significant processes that were associated with the
composite traits at birth. Several other GO terms were also
significant in terms of composite traits at birth. The full list is
provided in Supplementary Tables 1–3.
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TABLE 4 | Suggested and associated SNPs with ewe composite traits at weaning in Baluchi sheep.

Chr SNP Position Genes in 300 kb
interval

Analysis method Adjusted
P-value

Trait(s) MAF

3 rs428404187 131255497
NDUFA12, NR2C1,

FGD6, VEZT, MIR331,
METAP2

pGWAS
and eGWAS

4.72 × 10−6

8.60 × 10−5
PWW, TLWW,
and LMWW 0.03

5 rs398620273 32383306
HSD17B4, DMXL1,

DTWD2
pGWAS 2.72 × 10−5 PWW, TLWW,

and LMWW
0.28

2 rs412011189 1426911 EIPR1 pGWAS 3.39 × 10−5 PWW and
LMWW

0.2

2 rs411656768 81968762 NFIB pGWAS 4.74 × 10−5 PWW 0.11

7
rs430218107
rs419540936

23778602
23939664

EDDM3B, ANG1,
RNASE1, RNASE6,

RNASE4, ANG2,
UQCRFS1, RNASE12,
RNASE11, RNASE9,
RNASE10, PIP4P1,

APEX1, OSGEP,
KLHL33, TEP1,
PARP2, RPPH1,

SNORA79B,
CCNB1IP1, TTC5,
OR11H4, OR11H7,

OR11H6

pGWAS
pGWAS

7.42 × 10−5

9.79 × 10−5
PWW
PWW

0.42
0.29

2 rs403459195 77075145 RPLP0 pGWAS 7.88 × 10−5 PWW 0.26

13 rs401393221 30320719
PTER, C1ql3, RSU1,

CUBN, VIM
pGWAS 9.50 × 10−5 PWW 0.29

3 rs404069303 143726957 SNORA62 pGWAS 1.90 × 10−5 LMWW 0.04

16 rs409558668 39225407

PRLR, AGXT2,
DNAJC21, BRIX1,

RAD1, TTC23L, RAI14
pGWAS 7.95 × 10−5 LMWW 0.23

25 rs405045517 16553906
CDK1, FTH1,
RHOBTB1

pGWAS 9.89 × 10−5 LMWW 0.09

Chr, Chromosome number; pGWAS, GWAS using phenotype; eGWAS, GWAS using EBVs; PWW, Progeny Weaning Weight; TLWW, Total Litter Weight at Weaning;
LMWW, Litter Mean Weight at Weaning; MAF, Minor allele frequency. P-values are presented only for the first trait in the Trait(s) column. P-values are adjusted based on
the Genomic Control value. Genes with boldface indicate that significant SNPs are located within the gene. SNPs with boldface are significantly associated with genes
but otherwise are suggestive SNPs. The regression coefficient of each SNP is provided in Supplementary Table 15.

Gene-Set Enrichment Analysis of the
Composite Traits at Weaning
Figure 4 shows a set of GO terms that were significantly
(p ≤ 0.01) enriched by genes associated with weaning traits.
The Filopodium (GO:0030175) term was significantly associated
with the composite traits at weaning. Moreover, multiple
GO terms were linked to protein metabolism, including
protein catabolic process (GO:0030163), positive regulation of
intracellular protein transport (GO:0090316), protein processing
(GO:0016485), and protein localization to plasma membrane
(GO:0072659). Several GO terms related to GTPase activity
were recognized as significant. Among these, GTPase activator
activity (GO:0005096) showed an overrepresentation of
significant genes associated with all composite traits at weaning.
Many significant GO terms were related to ion transport and
homeostasis and channel activity, including cellular calcium ion
homeostasis (GO:0006874), ion channel activity (GO:0005216),
ion transmembrane transport (GO:0034220), and ion transport
(GO:0006811). On the other hand, many GO terms that were
related to the metabolism of lipids, cholesterol, and fatty acids
showed an overrepresentation of genes associated with the traits

at weaning, including phospholipid translocation (GO:0045332),
lipid phosphorylation (GO:0046834), cholesterol homeostasis
(GO:0042632), and fatty acid beta-oxidation (GO:0006635).
In addition, several terms were related to cell proliferation
(GO:0008283 and GO:0042127), gene expression (GO:0010628),
cell adhesion (GO:0098609), cell junction GO:0005911),
Protein kinase activity (GO:0016301), and phosphorylation
(GO:0016310). The full list of associated terms with weaning
weight traits is provided in Supplementary Tables 4–6.

DISCUSSION

GWAS and GSEA of Composite Traits at
Birth
Here, we performed a whole-genome scan on Iranian Baluchi
sheep for six maternal composite traits. We regressed lambs’
weights at birth and weaning on ewes’ genotype and tried to
identify gene variants (or regions) in the genome of ewes that
affect pregnancy outcome (birth weights) and weaning weights
of the lambs. To our knowledge, this is the second GWAS on
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FIGURE 3 | Most related Gene Ontology (GO) terms were significantly (p ≤ 0.01) enriched using genes associated with maternal composite traits at birth. PBW,
Progeny Birth Weight; TLWB, Total Litter Weight at Birth; LMWB, Litter Mean Weight at Birth. Gene Ratio: Number of the significant genes in the category/Number of
all genes in the category. Complete associated GO terms with these traits are provided in Supplementary Tables 1–3.

FIGURE 4 | Most related Gene Ontology (GO) terms were significantly enriched (p ≤ 0.01) using genes associated with ewe composite traits at weaning. PWW:
Progeny Weaning Weight; TLWW, Total Litter Weight at Weaning; LMWW, Litter Mean Weight. Gene Ratio: Number of the significant genes in the category/ Number
of all genes in the category. Complete associated GO terms with these traits are provided in Supplementary Tables 4–6.
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these traits in sheep. In the first study, Abdoli et al. (2019)
reported five genes neighboring the top SNP (on OAR2, OAR3,
OAR15, and OAR16), including TEX12, BCO2, WDR70, INHBE,
and INHBC as possible candidate genes affecting composite
traits of the Lori–Bakhtiari sheep. In this study, to attain more
consistent findings, two different GWAS approaches were used.
Both approaches identified similar regions that may explain
some part of the genetic variation in the studied traits. We
identified four genes on OAR15 (19.7–20.3 Mb), namely, RDX,
FDX1, ZC3H12C, and ARHGAP20 as maternal genes affecting
composite traits at birth. RDX (Radixin) is part of the ERM (EZR-
RDX-MSN) cytoskeleton linker protein family. The expression of
ERM proteins in the blastocyst and the uterus has been reported
and linked to implantation potential in mice (Matsumoto et al.,
2004). Ferredoxin (FDX1) is an electron transport intermediate
that is functional in mitochondrial cytochromes P450 and is
found mainly in steroidogenic tissues like testis, adrenal glands,
ovaries, and placenta (Sheftel et al., 2010). In this study, the
ARHGAP20 gene was identified as the candidate gene in both
GWAS approaches. High expression levels of the ARHGAP20
gene in the brain have been reported, indicating a role by this gene
in neurogenesis (Kalla et al., 2005). The Zc3h12c is an endogenous
inhibitor of TNFα-induced inflammatory signaling in the human
umbilical vein and endothelial cells. It seems that the Zc3h12c
gene plays a role in immune regulation in pregnancy (Liu et al.,
2013). Abdoli et al. (2019) identified an SNP on OAR15 located
on 22.02 Mb significantly associated with the TLWB trait, which
is close to the region identified in this study and reinforces this
possibility that this region on OAR15 is likely to affect fetal
development during pregnancy.

Our GWAS analysis identified a region on OAR7 at 30.2–35.1
Mb that contains three suggestively associated SNPs with PBW.
This region harbors 12 genes, such as THBS1 and TTBK2. It has
been reported that the expression of THBS1 by placental cells is
crucial for the formation of the placental structure (Ostankova
et al., 2011). One of these SNPs, rs400684038, is located within
the TTBK2 gene. The TTBK2 gene encodes a serine-threonine
kinase that phosphorylates tau and tubulin proteins and is a
critical regulator of processes that initiate the assembly of primary
cilia in the embryo (Goetz et al., 2012). Both GWAS approaches
identified the SNP rs430043751 on OAR23 associated with
TLWW. This SNP harbors six genes, including EPG5, PSTPIP2,
ATP5F1A, HAUS1, RNF165a, and LOXHD1. The EPG5 gene
encodes a protein with a crucial role in the autophagy pathway
which contributes to early differentiation in human embryonic
stem cells (Tra et al., 2011).

Our gene set analysis identified several significantly associated
GO terms with maternal composite traits at birth (Figure 3).
Interestingly, many GO terms were related to the neural
system and showed an overrepresentation of significant
genes. Numerous studies have reported that neural alterations
occur extensively in pregnant women’s brains (Cohen and
Mizrahi, 2015; Bridges, 2016). Notably, our identified gene,
ARHGAP20, has a role in neurogenesis. We identified two
pathways (GO:0000045 and GO:0019855) related to calcium ion
metabolism. A report suggests that placental calcium transfer
increases during pregnancy to match fetal needs and ensure

FIGURE 5 | Main functions of TGF-β family signaling in female reproduction
(Li, 2014). SMAD proteins transduce signals from TGF-β superfamily ligands.

appropriate fetal skeletal mineralization (Strid and Powell, 2000).
However, recent evidence has grown inconsistent about the
effects of maternal calcium on birth weight (Thompson et al.,
2019). In this regard, Imdad and Bhutta (2012) concluded that
calcium supplementation during pregnancy is associated with a
reduction in risk of gestational hypertensive disorders and pre-
term birth and an increase in birth weight. The positive regulation
of T-helper 1 type immune response term was significant for
all three composite traits at birth. During pregnancy, the fetal
expression of paternal major histocompatibility (MHC) antigens
renders it foreign, and thus, the maternal immune system must
tolerate the semi-allogeneic fetus to support the pregnancy,
without causing the mother to become susceptible to infection
(Munoz-Suano et al., 2011). A shift in the balance of THelper
(TH1)/TH2 cytokine production by maternal peripheral blood
leukocytes is regarded as a commonly important feature of
successful mammalian pregnancy (Wattegedera et al., 2008).
Recently, it has been reported that pregnancy can change the
production of Th1 and Th2 cytokines in the maternal thymus
in sheep (Zhang et al., 2019). GO terms related to the signaling
pathways also showed an overrepresentation of significant
genes. SMAD protein signal transduction (GO:0060395) was
one of these pathways. SMAD proteins transduce signals from
the TGF-β superfamily ligands and, as a result, regulate target
gene expression. TGF-β superfamily signaling is vital for female
reproduction (Figure 5).

It has been reported that SMAD proteins have roles in
maintaining the structural and functional integrity of the
oviduct and uterus. They are essential for the establishment
and maintenance of pregnancy (Rodriguez et al., 2016).
Another signaling pathway is Notch signaling which exerts
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effects throughout the pregnancy and plays an important
role in placental angiogenesis, normal placental function, and
trophoblast function (Zhao and Lin, 2012). The NIK/NF-
kappaB signaling (GO:1901222) works as a transcription factor
involved in inflammatory and immune responses (Baldwin,
1996). The effects of NF-κB and its signaling pathway on the
human myometrium during pregnancy and parturition are well-
reviewed (Cookson and Chapman, 2010).

GWAS and GSEA of Composite Traits at
Weaning
Genes, including NDUFA12, NR2C1, FGD6, VEZT, MIR331,
and METAP2 were identified on OAR3, specifically around
the SNP rs428404187. This SNP is significantly associated
with all composite traits at weaning and located within the
VEZT gene which has a major role in the cellular adhesion
process. The cell adhesion process has a widespread effect
on the development of mammary glands. It mainly occurs
in late pregnancy and partially in the onset of lactation
(Shamir and Ewald, 2015). Notably, we identified the cell-
cell adhesion (GO:0098609) pathway as a significant GO term
associated with the PWW trait in our gene set analysis. Another
gene in this region, NR2C1, is a nuclear steroid hormone
receptor. This gene acts as a transcription factor and plays
an important role in the differentiation of mammary glands
and its development in late pregnancy and during lactation
(To and Andrechek, 2018).

The SNP rs398620273 on OAR5 was suggestively associated
with all three composite traits at weaning. It is located within
the DTWD2 gene and is likely to be involved in RNA processing
(Burroughs and Aravind, 2014). The HSD17B4 is another gene
that was identified around this SNP and plays an important
role in feed intake and food conservation (Salleh et al., 2017).
In dairy cows, feed intake is a major factor that controls
milk production in high-yielding dairy cows in early lactation
(Johansen et al., 2018). We identified the RPLP0 gene on
OAR2. Dominant expressions of RPLP0 occur in mammary
vasculature tissues during lactation (Lee et al., 2010). The
SNORA62 gene was identified on OAR3 as a suggestive gene
affecting the LMWW trait. Recently, a GWAS of milk fatty
acid composition led to the identification of the SNORA62
gene as a candidate gene affecting fatty acid content in milk
(Palombo et al., 2018).

We identified 24 suggestive genes on OAR7 related to PWW
and seven of which belong to the pancreatic ribonuclease A
family (RNases). It seems that this region plays an important role
in RNA processing. The RNASE5 is known as a functional gene in
milk production, specifically in milk protein percentage (Raven
et al., 2013). We identified a suggestive SNP, rs401393221, within
the RSU1 gene on OAR13. Using meta-analysis and supervised
machine learning models on microarray data, the RSU1 gene
has been identified as DEG during the lactation process in both
approaches (Farhadian et al., 2018). It is worth noting that the
RSU1 gene is a member of the milk proteins KEGG pathway. In
addition, we identified CUBN and VIM genes around this SNP
on OAR13. Association between CUBN gene and variation in

vitamin B-12 content in bovine milk have been reported (Rutten
et al., 2013). VIM is a cytoskeletal type III intermediate and has a
critical role in the development of mammary glands (Peuhu et al.,
2017). A fourfold increase of VIM protein in lactating tissues
compared to resting tissues reported (Michalczyk et al., 2001).

The SNP rs409558668 was identified on OAR16 with a
suggestive association with the LMWW trait. This SNP is located
within the TTC23L gene and harbors the PRLR (Prolactin
receptor) gene. The TTC23L gene is highly expressed during
lactation (Paten, 2014) and is identified as a candidate gene that
can affect mastitis in Holstein cows (Tiezzi et al., 2015). The PRLR
gene is usually expressed in lactating mammary glands and it has
been shown that the polymorphism in exon 3 and 7 of the PRLR
gene is correlated with milk production in Holstein cows (Zhang
et al., 2008). Also, we identified the FTH1 gene on OAR16. The
FTH1 gene encodes the heavy subunit of ferritin. The presence of
ferritin in cow’s and buffalo’s milk has been reported (Farhadian
et al., 2018; Arora et al., 2019).

Through gene set analysis for composite traits at weaning,
several maternal functional categories were identified. Many GO
terms were discovered in association with protein metabolism,
protein transport, and fatty acid metabolism. Recently, in
a transcriptome analysis study on buffalo milk, the protein
metabolism (GO:0019538) pathway was identified as a significant
term (Arora et al., 2019). Considerable changes occur in the
amount of fatty acid synthesis during late pregnancy and
lactation. These changes have been reported in a variety
of species, like rats, rabbits, pigs, and cows (Larson and
Smith, 1974; Abdollahi-Arpanahi et al., 2019). There have
been significant observations regarding GO terms linked to
calcium and ions metabolism and transport. Many different
comparative transcriptome analyses have reported the role of
calcium metabolism-related pathways in the lactation process
(Arora et al., 2019; Bhat et al., 2019). In the current study,
Phosphorylation (GO:0016310) was identified as a significant
pathway associated with PWW and LMWW traits. On average,
caseins comprise 80% of proteins in cow and sheep milk,
so, phosphorylation by the Casein Kinase enzyme is a crucial
step for milk production in the lactating mammary gland
(Bionaz et al., 2012). Notably, the kinase activity (GO:0016301)
pathway is another significant term for LMWW that catalyzes
the transfer of a phosphate group to a substrate molecule.
The cell-cell adhesion pathway was significantly associated with
PWW. The effects of cell adhesion molecules on the lactogenesis
process have been reviewed thoroughly in the scientific literature
(Morrison and Cutler, 2010). The VEZT gene, one of our
identified genes in the GWA analysis, is a member of this
pathway. The GTPase activator activity GO term was identified
as a significant pathway related to all three composite traits
at weaning. GTPases are known to be involved in numerous
secretory processes and play an important role in the translation
and translocation of proteins, the secretion of milk fat globules,
and, probably, other milk components (Arora et al., 2019). Many
GO terms associated with cell proliferation and differentiation
were also detected as significant. Most mammary growth takes
place through pregnancy. Mammary gland cell proliferation and
differentiation have a great impact on milk yield and lactation
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persistency (Davis, 2017). Mammary epithelial cells (MECs) are
key cells that are present in lactating mammary glands and
are responsible for milk production. The number of MECs
in the mammary gland and their secretory activity are crucial
factors that regulate milk yield (Herve et al., 2016). Milk is
essential for lamb survival and growth in the first 3–4 weeks
of life and 70% of the difference in weight gain from 3 to 12
weeks is attributed to milk intake (Morgan et al., 2007). In
twin lambs, prenatal ewe traits (e.g., ewe weight at mating and
set stocking, as well as ewe body condition score at mating
and stocking) usually have minimal effects on milk yield and
lamb growth until the time of weaning, but milk yield and
composition have the greatest proportion of variation in lamb
weight gain (Danso et al., 2016) which is consistent with the
results of this study.

To date, this is the second GWAS report on composite
reproductive traits in sheep. At this point, these genes are merely
candidates. The identification of validated causal genetic variants
that underlie production traits is one of the main challenges
in current livestock genetic research. It is important to point
out that the limited number of animals and low to moderate
heritability of the traits, actually hinder the detection of strong
association signals. Composite traits are complex and try to
capture growth, yield, and several different aspects of fertility
into a combined selection of traits at the same time. As such,
the traits are necessarily polygenic by far in nature and it will
require thousands of genotypes to disentangle true signals from
background noise. In this study, a good amount of caution was
considered for performing analysis and reporting the results.
We used two GWAS approaches to confirm the results and
reported the p-values without any inflation to avoid false positives
as much as possible. Of course, we couldn’t apply a stringent
threshold for all reported SNPs and, hopefully, there are no false
positives in the results. However, the Baluchi sheep is a widely
used breed in east Iran, but it is not widely distributed in other
parts of the world. Finally, while this study does improve our
understanding of an interesting but less characterized breed, it
will still be useful to see if these results can be broadly applicable
to other breeds as well.

CONCLUSION

We used GWAS and GSEA together to find genes and pathways
affecting maternal composite traits at birth and weaning
in sheep. Several genes including RDX, FDX1, ARHGAP20,
ZC3H12C, THBS1, and EPG5 were associated with composite
traits at birth. These genes play roles in pregnancy, particularly
in autophagy, immune response, angiogenesis, and placental
formation. Gene set analysis identified calcium ion transport
as a significant GO term that affecting composite traits at
birth. In addition, we identified many genes (e.g., NR2C1,
VEZT, HSD17B4, RSU1, CUBN, VIM, PRLR, and FTH1) as
genes affecting composite traits at weaning. Our gene set
analysis on these traits identified several significantly related
GO terms, e.g., protein processing and transport, phospholipid
translocation, ion transport, and cell-cell adhesion. As expected,

most identified genes and GO terms have a role in milk
production or in mammary gland development, which means
that feeding lambs by milk can have the greatest impact
on weight gain as compared to other effects of maternal
origin. This suggests that farmers should select ewes with
higher milk yields to maximize lamb growth until weaning.
Moreover, the results provide a good insight into how maternal
genes and pathways influence progeny weight at birth and,
subsequently, at weaning.
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Deep RNA sequencing experiment was employed to detect putative single nucleotide
polymorphisms (SNP) in mammary epithelial cells between two diverse cattle breeds
(Jersey and Kashmiri) to understand the variations in the coding regions that reflect
differences in milk production traits. The low milk-producing Kashmiri cattle are being
replaced by crossbreeding practices with Jersey cattle with the aim of improving milk
production. However, crossbred animals are prone to infections and various other
diseases resulting in unsustainable milk production. In this study, we tend to identify
high-impact SNPs from Jersey and Kashmiri cows (utilizing RNA-Seq data) to delineate
key pathways mediating milk production traits in both breeds. A total of 607 (442
SNPs and 169 INDELs) and 684 (464 SNPs and 220 INDELs) high-impact variants
were found specific to Jersey and Kashmir cattle, respectively. Based on our results,
we conclude that in Jersey cattle, genes with high-impact SNPs were enriched in
nucleotide excision repair pathway, ABC transporter, and metabolic pathways like
glycerolipid metabolism, pyrimidine metabolism, and amino acid synthesis (glycine,
serine, and threonine). Whereas, in Kashmiri cattle, the most enriched pathways include
endocytosis pathway, innate immunity pathway, antigen processing pathway, insulin
resistance pathway, and signaling pathways like TGF beta and AMPK which could be a
possible defense mechanism against mammary gland infections. A varied set of SNPs
in both breeds, suggests a clear differentiation at the genomic level; further analysis of
high-impact SNPs are required to delineate their effect on these pathways.

Keywords: Jersey and Kashmiri cattle, SNP identification, mammary epithelial cells, RNA Seq data, milk
production
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INTRODUCTION

Cow milk is an essential natural product which provides a
medium for nutrients including growth and immune factors to
offspring and a valued raw material for human food (Séverin
and Wenshui, 2005; Reinhardt and Lippolis, 2006). It plays an
important role in supporting a healthy immune system and
provides protection against infections (Goldman, 2000; Séverin
and Wenshui, 2005). Milk is produced in the gland by mammary
epithelial cells (MEC), which are gradually exfoliated from the
epithelium during lactation (Boutinaud et al., 2015). Bovine
milk comprises a diverse population of somatic cells including
epithelial cells, macrophages, neutrophils, and lymphocytes. The
process of lactation in animals consists of several physiological
and metabolic changes (Arora et al., 2019). The length of lactation
and yield greatly varied among the breeds (Auldist et al., 2007;
Mech et al., 2008). Augmenting milk production in cattle is an
essential step toward improving the profitability of dairy farms,
and the success of dairy forms plays a crucial role in ensuring
economic sustainability.

Single nucleotide polymorphisms markers are being
rapidly used in selective breeding programmers for improving
phenotypic selections of the animals through genomic selection
(GS), gene-assisted selection (GAS), and marker-assisted
selection (MAS) methods (Georges et al., 1995; Dekkers, 2004;
Hayes and Goddard, 2010). It is remarkable that the discovery
of the SNP for economic traits has great potential in the genetic
improvement of cattle (Pareek et al., 2017). One of the great
interests is the ability to improve lactation performance in poor
performing breeds. To enhance the lactation performance of
dairy animals, the knowledge of gene expression along with SNP
profiling and biological pathways and mechanisms that promotes
the mammary gland development and lactation is important.

High-throughput RNA sequencing technologies have
provided unprecedented prospects in functional and comparative
genomic research, including gene expression, genome annotation
and pathway analysis, non-coding RNA discovery, and SNP
detection and profiling (Bentley, 2006; Morozova and Marra,
2008). It has been widely used to study SNP in cattle breeds like
Polish Holstein-Friesian (Pareek et al., 2016), Brangus, Brahman,
Nellore, Angus, and Holstein (Dias et al., 2017) and indigenous
cattle breeds like Simmental bull, Xuanhan bull, and Shuxuan
bull (Wang et al., 2018).

Kashmiri and Jersey cattle are two important milk animals
of the Indian northern state, Kashmir which contributes
significantly to the total milk production in the state. Kashmiri
indigenous cattle are small, hardy, and well adapted to the hilly
areas of this region and differ greatly from Jersey cattle in dairy
production traits. Whereas Jersey is a well-established exotic
dairy breed which has been utilized in crossbreeding programs to
enhance the milk production capability of Kashmiri cattle (Bhat
et al., 2019).

In the present study, we used the transcriptome data of Jersey
and Kashmiri cattle with the objective to identify the single
nucleotide polymorphism in coding regions that were associated
with milk production traits. Additionally, the study is aimed to
benefit the marker-assisted selection programs by cataloging the

differential SNP profile for the improvement of milk production
in Kashmiri indigenous cattle.

MATERIALS AND METHODS

Transcriptome data of the Jersey and Kashmiri cattle were
downloaded from NCBI SRA database with accession number
SRR6324372. The samples were obtained at three different
lactation stages from three Jersey and three Kashmiri cattle’s
breed in similar conditions at Sher-e-Kashmir University of
Agricultural Sciences and Technology dairy farm, Mountain
Livestock Research Institute (MLRI), Kashmir, India. The
sample collection from the healthy animals including sample
preparation and RNA sequencing were explained in the study
by Bhat et al. (2019). Read quality control was assessed using
FASTQC program v0.11.1 (Andrews, 2010). After preprocessing,
filtering of low-quality sequences and adaptor trimming were
performed using Cutadapt v3.40 (Martin, 2011), high-quality
sequencing reads that passed thresholds (PhredScore > 30)
were assembled for SNP discovery analysis. A collection of
over 40 million high-quality clean reads were obtained for
each sample. The cleaned reads were mapped to reference
genome assembly ARS-UCD1.2.99 using HISAT2 (Kim et al.,
2019). The data preprocessing steps recommended in the
GenomeAnalysisToolkit (GATK) best practices workflow was
performed before variant identification (Poplin et al., 2018).
PCR duplicates were marked with the MarkDuplicates from
Picard tools (Picard toolkit, 2019). We also performed local
realignment around InDels, checked intron-exon junctions, and
recalibrated the base quality scores with GATK. Two different
variant callers were used to perform SNP and INDELs discovery
across eight Jersey and nine Kashmiri transcriptome samples
separately: (i) GATK using the HaplotypeCaller tool in multi-
sample calling mode (modality “GATK”); (ii) mpileup from
SAMtools v1.4 (Li et al., 2009) in multisample calling mode
using default parameters. Final set for analysis contains SNPs and
InDelscommon in both datasets.

Bovine genetic variants from dbSNP 2.0 build 153 dated: Aug
8 2019 were incorporated in SNP calling to populate the RS_ID
column of the known SNPs. Filtering [base quality score (Q-
Score) > 30, mapping quality > 30, and minimum depth > 10]
of generated variants and annotation were performed using
VCFtools version 0.1.8 and SnpEff program v4.1. To further
evaluate the biological significance of the genes with high-
impact variations, the KEGG pathway enrichment analysis was
performed using nKOBAS server version 3 (Xie et al., 2011;
Kanehisa et al., 2021).

RESULTS

In our previous study after analyzing the inter- and intrastage
gene expression profiling between Jersey and Kashmiri cattle, we
observed a vast diversity in terms of gene expression while huge
similarity between the breeds was also witnessed. Differentially
expressed genes in both Kashmiri and Jersey were enriched
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for multicellular organismal process, receptor activity, catalytic
activity, signal transducer activity, macromolecular complex,
and developmental processes. Most of the identified pathways
responsible for milk production in Jersey include JAK-STAT,
p38 MAPK, and PI3 kinase whereas antioxidant genes like
RPLPO and RPS28 are highly expressed in Kashmiri cattle (Bhat
et al., 2019). The present study based on SNP profiling in
coding regions showed interbreed potential difference between
Jersey and Kashmiri cattle. The difference in SNPs can help to
understand its potential role in controlling the milk production
between the two breeds.

Quality Control, Mapping, and
Posttreatment
The trimming process removed 0.21% of reads and only 4.2%
of duplicated reads were rejected. At the mapping step, around
99.7% of the reads were mapped against the reference genome
(Bostaurus assembly ARS-UCD1.2.99) (Bhat et al., 2021). A total
of 657,299 and 650,556 SNPs and INDELs were identified from
Jersey and Kashmir cattle. Chromosomal distribution of SNPs
and INDELs were provided in Supplementary Table 1, and
variant types were provided in Supplementary Tables 2, 3.
Transitions to transversions ratio (Ts/Tv) in both breeds were
around 2.6, with 2,047,112 transitions and 761,864 transversions
in Jersey and 1,989,741 transitions and 740,123 transversions
in Kashmir cattle. A total of 34.37% missense, 0.296% non-
sense, and 65.334% silent mutation were identified in Kashmiri
cattle, and 37.701% missense, 0.409% non-sense, and 61.89%
silent mutations were identified in Jersey cattle. The common
SNPs were filtered out and further analyses were carried out
on high-impact SNPs and INDELs specific to Jersey (442 SNPs
and 169 INDELs) and Kashmiri (464 SNPs and 220 INDELs)
cattle. A total of 351 high-impact variations were identified as
frameshift, 400 stop-gained variations, 40 stop lost, 38 start lost,
and one SNP in the 5′-UTR region (Supplementary Tables 4, 5).
SNP distribution on different chromosomes in both Jersey and
Kashmiri cattle are shown in Figure 1.

Analysis of Genes With SNPs and INDELs
Functional annotation suggests the enrichment (p-value < 0.05)
of signaling pathways (like AMP activated protein kinase
(AMPK) and tumor growth factor (TGF) beta), insulin resistance,
and high antigen processing in Kashmiri cows. Jersey cattle
enrichment analysis shows genes with high-impact SNPs
were involved mainly in nucleic acid (specifically pyrimidine
metabolism) and nucleotide (specifically glycine, serine, and
threonine) metabolism pathways. Interestingly, the activity of
primary immunodeficiency pathway, nucleotide excision repair
pathway, glycerolipid metabolism, and phosphatidylinositol
signaling pathway were significantly enriched in Jersey cattle
(Table 1). Gene ontology (GO) analysis strongly suggests (FDR
corrected p-value < 0.05) genes with SNPs in Kashmiri cows
were mainly involved in the binding process (enzyme and
ribonucleotide binding) and antigen processing (Figure 2). In

Jersey cattle, mutated genes were involved mainly in ion binding
and ATPase activity (Figure 2).

DISCUSSION

Kashmiri cattle are poor performing and differ greatly from
Jersey in dairy production characteristics. A comprehensive
phenotypic analysis with respect to milk production traits was
carried out in our previous study (Bhat et al., 2019) which
showed higher milk yield and protein content for Jersey cattle
as compared with the Kashmiri indigenous cattle. The average
milk production of Jersey and Kashmiri cattle varies between
6 and 10 kg/day and 3 and 5 kg/day, respectively. The protein
content in Jersey cattle ranged from 2.91 to 3.36%, and the
corresponding values for Kashmiri cattle were 2.81–3.21%. The
Jersey is among the top milk producer cattle breeds and is
routinely used to upgrade the milk-producing capacity of the
Kashmiri cattle by crossbreeding practices. It becomes imperative
to understand the difference at multiple levels such as gene
expression and SNPs in the coding and regulatory region
of these breeds. For this purpose, we have analyzed RNA-
seq data and performed the comparative study between both
the breeds. A SNP detection analysis was performed using
sequencing reads from nine Jersey and eight Kashmiri cows
to determine putative polymorphisms in genes involved in the
milk production. A total 442 and 464 high-impact SNPs were
identified from Jersey and Kashmir cattle, respectively. Out of
all the highly confident SNPs identified, a significant portion of
them (34.37 and 37.701%) were missense mutations distributed
in 29 chromosomes. Furthermore, the functional analysis of the
genes showed that they were involved in several crucial biological
and physiological processes in lactation. We observed TGF-
beta, AMPK, and endocytosis show higher activity in Kashmiri
cattle compared with Jersey breed. It is reported that TGF-
β1 expression increases in MECs during of mammary gland
involution in mouse (Atwood et al., 1995), goat (Wareski et al.,
2001), sow (Motyl et al., 2001), and cow (Zarzyńska et al.,
2007). TGF-β1 plays a key role in the involution of the bovine
mammary gland by prompting apoptosis and autophagy in
bovine mammary luminal epithelial cells (Kolek et al., 2003;
Gajewska et al., 2005). Apoptosis is the foremost kind of cell
death responsible for the involution of the bovine mammary
gland, but type II programmed cell death (PCD II) is also
observed: autophagic cell death. The MEC apoptosis is a marked
indication of ending milking at the beginning of the dry period
(Zarzyńska and Motyl, 2008). We presume the shorter lactation
length in Kashmiri cattle could be one of the reasons for the
increased expression of apoptotic signaling pathway toward the
beginning of dry period. Moreover, it is known that some milk
trait genes (e.g., genes in apoptosis pathway) are not solely
expressed in MECs but also by other cell types like leukocytes
(Boutinaud et al., 2015).

The levels of TGF-β1 and TGF-β2 decrease with advancing
chronological age, and colostrum contains the highest levels
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FIGURE 1 | Chromosomal distribution of high impact SNPs and Indels in Jersey (A) and Kashmiri (B) cattle.

for both (Frost et al., 2014). The pronounced role of AMPK
is to regulate catabolic and anabolic processes. Negative energy
balance (NEB) is generally witnessed in milking cows particularly
during lactation. Increase in ADP or AMP is usually related with
a NEB. It has been found that during maximum lactation, the

energy intake in dairy cows is not able to fulfill the requirement
for milk production. The AMPK signaling has been found
greatly active throughout this period, which results in significant
reduction in the milk of cows (Eastham et al., 1988). AMPK
regulates lipid metabolism by altering the transcription of the
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lipogenic gene and the posttranslational modification of the
major enzymes involved in lipid synthesis. In addition, AMPK
activation was found to repress global protein synthesis via
inhibition of mTOR signals in bovine mammary epithelial cells

(Appuhamy et al., 2014). These changes along with the effect of
lower plane of nutrition during formative phase of the animals
and consequent poor body condition may contribute to the lower
concentrations of total milk proteins in Kashmiri cattle. This

TABLE 1 | Pathways affected by high-impact SNPs in Jersey (A) and Kashmiri (B) cattle.

A. Enriched pathways in Jersey cattle.

Pathway p-value Input
number

Input

Antifolate resistance 0.002919 5 ENSBTAG00000047764, ENSBTAG00000007599, ENSBTAG00000023309,
ENSBTAG00000045751, and ENSBTAG00000031500

Nucleotide excision repair 0.005815 5 ENSBTAG00000032527, ENSBTAG00000021773, ENSBTAG00000014595,
ENSBTAG00000007362, and ENSBTAG00000014727

ABC transporters 0.008163 5 ENSBTAG00000047764, ENSBTAG00000045751, ENSBTAG00000006921,
ENSBTAG00000023309, and ENSBTAG00000002747

Glycerolipid metabolism 0.013722 5 ENSBTAG00000021695, ENSBTAG00000012060, ENSBTAG00000045746,
ENSBTAG00000018201, and ENSBTAG00000011917

Glycine, serine, and threonine metabolism 0.022811 4 ENSBTAG00000021695, ENSBTAG00000031814, ENSBTAG00000031500, and
ENSBTAG00000004510

Phosphatidylinositol signaling system 0.026138 6 ENSBTAG00000002010, ENSBTAG00000002350, ENSBTAG00000003809,
ENSBTAG00000001030, ENSBTAG00000013116, and ENSBTAG00000020715

Pyrimidine metabolism 0.04586 4 ENSBTAG00000021830, ENSBTAG00000005152, ENSBTAG00000008428, and
ENSBTAG00000011527

Primary immunodeficiency 0.048001 3 ENSBTAG00000005280, ENSBTAG00000023144, and ENSBTAG00000006452

B. Enriched pathways in Kashmiri cattle.

Antigen processing and presentation 0.0447 9 ENSBTAG00000045795, ENSBTAG00000006270, ENSBTAG00000002069,
ENSBTAG00000038128, ENSBTAG00000019386, ENSBTAG00000012208,

ENSBTAG00000020116, ENSBTAG00000005182, and ENSBTAG00000019588

Innate immune system 0.002183 46 ENSBTAG00000047856, ENSBTAG00000033662, ENSBTAG00000015520,
ENSBTAG00000002902, ENSBTAG00000010639, ENSBTAG00000046188,
ENSBTAG00000020772, ENSBTAG00000021474, ENSBTAG00000038797,
ENSBTAG00000031641, ENSBTAG00000045861, ENSBTAG00000012467,
ENSBTAG00000005660, ENSBTAG00000003401, ENSBTAG00000003774,
ENSBTAG00000019020, ENSBTAG00000017866, ENSBTAG00000017401,
ENSBTAG00000018403, ENSBTAG00000016415, ENSBTAG00000015187,
ENSBTAG00000005574, ENSBTAG00000010951, ENSBTAG00000027684,
ENSBTAG00000002854, ENSBTAG00000023144, ENSBTAG00000049346,
ENSBTAG00000001014, ENSBTAG00000016021, ENSBTAG00000001609,
ENSBTAG00000020433, ENSBTAG00000012780, ENSBTAG00000018661,
ENSBTAG00000006270, ENSBTAG00000021144, ENSBTAG00000007964,
ENSBTAG00000002069, ENSBTAG00000019386, ENSBTAG00000012208,
ENSBTAG00000020116, ENSBTAG00000005182, ENSBTAG00000044040,

ENSBTAG00000053934, ENSBTAG00000047699, ENSBTAG00000019250, and
ENSBTAG00000003121

TGF beta signaling pathway 0.008891 12 ENSBTAG00000004154, ENSBTAG00000047856, ENSBTAG00000008300,
ENSBTAG00000018127, ENSBTAG00000020053, ENSBTAG00000015720,
ENSBTAG00000010662, ENSBTAG00000021145, ENSBTAG00000001609,

ENSBTAG00000019289, ENSBTAG00000010649, and ENSBTAG00000006919

Insulin resistance 0.011672 8 ENSBTAG00000009175, ENSBTAG00000016336, ENSBTAG00000017024,
ENSBTAG00000001400, ENSBTAG00000017866, ENSBTAG00000017639,

ENSBTAG00000039958, and ENSBTAG00000002917

Osteoclast differentiation 0.017121 8 ENSBTAG00000007213, ENSBTAG00000007531, ENSBTAG00000001400,
ENSBTAG00000019250, ENSBTAG00000021358, ENSBTAG00000003305,

ENSBTAG00000021842, and ENSBTAG00000001609

AMPK signaling pathway 0.018729 8 ENSBTAG00000002883, ENSBTAG00000009175, ENSBTAG00000000754,
ENSBTAG00000017024, ENSBTAG00000001400, ENSBTAG00000017866,

ENSBTAG00000039958, and ENSBTAG00000002917

Endocytosis 0.046451 11 ENSBTAG00000019386, ENSBTAG00000019072, ENSBTAG00000002069,
ENSBTAG00000007964, ENSBTAG00000005182, ENSBTAG00000020116,
ENSBTAG00000027684, ENSBTAG00000018959, ENSBTAG00000015720,

ENSBTAG00000007120, and ENSBTAG00000010543
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FIGURE 2 | GO enrichment analysis of genes with high impact variations in Jersey (A) and Kashmiri (B) cattles.

statement however, needs to be validated. Similar studies were
reported in lactating goats (Cai et al., 2020).

An endocytosis pathway was found to be enriched
in the milk of Kashmiri cattle. The mechanism for
internalization (endocytosis) and release (exocytosis) are
governed by the physiological phase of the mammary gland
(McShane and Zerial, 2008). Furthermore, Truchet and Ollivier-
Bousquet (2009) reported that the mammary epithelium
enrichment organizes the absorption of milk precursors and
transport of milk components to produce milk of reasonably
constant composition, provided the mammary gland is healthy.

Several important metabolic pathways that were found
to be enriched exclusively in Jersey cattle include glycolipid,
pyrimidine, and amino acid metabolism (specifically glycine,
serine, and threonine) and other important pathways like
phosphatidylinositol signaling, Antifolate resistance, ABC
transporters pathway, and nucleotide excision repair. Amino
acid (AA) metabolism plays a critical role in milk production
by regulating maternal endocrine status, blood flow through
the lactating mammary gland, and activation of mechanistic
(mammalian) target rapamycin (mTOR) signaling (Wu et al.,
2010). The higher activity of glycine, serine, and threonine
metabolism pathways in Jersey cattle may be particularly
important in lactation initiation and higher milk production (Li
and Jiang, 2019). TCA cycle and glycine, serine, and threonine
metabolism pathways are the most important and work together
in the mammary gland for lactation initiation (Sun et al., 2015,
2017). It is a known fact that AAs significantly contribute
to liver gluconeogenesis in early lactation. Glycine, serine,
and alanine, comprised more than 65% of the liver uptake of
glucogenic AA during the periparturient period (Larsen and
Kristensen, 2009, 2012). In Jersey cattle, the phosphatidylinositol
3-kinase (PI3K)/protein kinase B (Akt) signaling pathway

emerged as the most enriched pathway. PI3K-Akt pathway
mediates glucose absorption into cells and is important for
normal insulin-mediated glucose metabolism (Taniguchi et al.,
2006). Since Jersey cattle produce milk in higher quantities than
Kashmiri cattle, it requires a high-energy source. The enrichment
of glycerolipid metabolic pathway in Jersey via glycerolipid
pathway converts glycerol into glucose thus providing sufficient
energy for maintaining high milk production (Sun et al., 2017).

In Kashmiri cattle, we found variations in the major
histocompatibility complex (MHC) region. In cattle,
polymorphism in the MHC class II genes influences both
the magnitude and specificity of antigen-specific T cells to
various diseases like mastitis (Hameed et al., 2006). In our
previous study, we found that a wide range of proteins like
apelin, acid glycoprotein, CD14 antigens, and lactoferrin,
involved in immune response and host defense were highly
expressed in mammary gland of Kashmiri cattle (Bhat et al.,
2020). The role of the MHC in immune response makes a MHC
an attractive candidate gene to study associations with disease
resistance or susceptibility in cattle. High variability in many
MHC genes plays a role in the recognition of bacteria (Apanius
et al., 1997). Hedrick and Kim (1999) demonstrate the relation
between MHC variation and resistance to bacterial infections.
There are several well-documented cases in which specific MHC
haplotypes or genotypes provide resistance to bacteria (Hill et al.,
1991; Carrington et al., 1999).

We also found variations in genes regulating TGF-β (SMAD4,
BMP7) and mTOR signaling in Kashmiri cattle (Supplementary
Figures 1, 2) (Bhat et al., 2017). SMAD4 proteins serve as crucial
components of TGF-β signaling, which negatively regulates cell
growth and promotes apoptosis of epithelial cells. The rate of
decline in milk yield with stage of lactation is strongly influenced
by the rate of cell death by apoptosis in the lactating gland
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(Stefanon et al., 2002). Such changes depict the early backdrop
for dryness in Kashmiri cattle. SMAD4 has been found to play
important roles in various biological processes. In humans,
genetic variants in the SMAD4 have been found to play a
protective role in various types of cancers (Wu et al., 2010).
A high-impact stop-gained variation on SMAD4 (c.1165C)
and frameshift variation on BMP7 (c.693delC) could possibly
dysregulate TGF-β pathway in Kashmiri cattle. Further study is
required to study the effect of these variations on the TGF-β
signaling pathway.

It is widely accepted that mTOR is a key regulator of
milk protein synthesis, and most reports were concerned with
the role of AAs in the regulation of P-mTOR on Ser2448 in
milk protein synthesis (Appuhamy et al., 2012; Apelo et al.,
2014). mTORC1 signaling mediates the cell surface level of
Wnt receptor frizzled FZD and plays an essential role in
embryogenesis and homeostasis Chen et al. (2020). In cattle,
the milk protein synthesis was upregulated through activation
of the mTOR pathway (Gao et al., 2015). We found double
frameshift variations on FZD9 (c.484delG and c.1563delT) in
Kashmiri cattle and could be the probable reason for its low
milk production.

CONCLUSION

The SNP analysis based on RNA sequencing demonstrated a
clear distinction between Jersey and Kashmiri cattle in milk
production traits. In Kashmiri cattle, the high-impact SNP
variants were involved in adaptive immunity and resistance
against mammary gland infectious diseases. Whereas, in Jersey
cattle, enriched pathways were mainly involved in maintenance
of lactation and production. These findings provide insights in

genetic variation of the breeds that can be used for genomic
selection of the animals.
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Murrah breed of buffalo is an excellent dairy germplasm known for its superior milk
quality in terms of milk fat and solids-not-fat (SNF); however, it is often reported
that Indian buffaloes had lower lactation and fertility potential compared to the
non-native cattle of the country. Recent techniques, particularly the genome-wide
association studies (GWAS), to identify genomic variations associated with lactation
and fertility traits offer prospects for systematic improvement of buffalo. DNA samples
were sequenced using the double-digestion restriction-associated DNA (RAD) tag
genotyping-by-sequencing. The bioinformatics pipeline was standardized to call the
variants, and single-nucleotide polymorphisms (SNPs) qualifying the stringent quality
check measures were retained for GWAS. Over 38,000 SNPs were used to perform
GWAS on the first two principal components of test-day records of milk yields,
fat percentages, and SNF percentages, separately. GWAS was also performed on
305 days’ milk yield; lactation persistency was estimated through the rate of decline
after attaining the peak yield method, along with three other standard methods; and
breeding efficiency, post-partum breeding interval, and age at sexual maturity were
considered fertility traits. Significant association of SNPs was observed for the first
principal component, explaining the maximum proportion of variation in milk yield.
Furthermore, some potential genomic regions were identified to have a potential role
in regulating milk yield and fertility in Murrah. Identification of such genomic regions shall
help in carrying out an early selection of high-yielding persistent Murrah buffaloes and,
in the long run, would be helpful in shaping their future genetic improvement programs.

Keywords: Murrah, buffaloes, GWAS, lactation persistency, milk yield, fertility

INTRODUCTION

Buffalo (Bubalus bubalis) is an imperative livestock species and act as a key component for
improving agricultural economy and supplying milk, meat, and draft power. The buffalo population
across the world was recently estimated to be 194 million, 97% of which were present in Asia
(FAO, 2014). Buffalo is well known for its high milk quality, with higher fat (6.4–8.0% vs. 4.1–
5.0%) and protein (4.0–4.5% vs. 3.4–3.6%) contents than cow milk (Venturini et al., 2014; Khedkar
et al., 2016). The concentration of these milk constituents offers a higher economic return of the
buffalo milk and increases the demand of value-added products like mozzarella. Buffaloes are an
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integral and crucial genetic resource in Indian dairy industry,
contributing 49% to the total milk produced according to
the basic animal husbandry statistics, 20191. About 63% of
global buffalo milk production and 95% of Asian buffalo milk
production is contributed by Indian buffaloes (FAO, 2014).
Buffaloes are more adaptable to harsh environments and
often resist various bovine tropical diseases. However, the
poor reproductive efficiency of buffaloes limits its potential.
Buffaloes exhibit higher age at puberty and maturity, longer
postpartum breeding interval, and low conception rates
(Gordon, 1996; Warriach et al., 2015; Raina et al., 2016).
Buffaloes in the field condition also suffer from short
lactation of 252–270 days as compared to the standard
300 days (Ganguli, 1981; Griffiths, 2010). This underlines
the scope for improving the milk production and fertility
potential through implementation of systematic breeding
programs for buffaloes in the country. However, in India,
very few works have been done in order to identify the
infinitesimally large number of underlying loci regulating the
expression of complex traits such as milk production, lactation
persistency and fertility.

Genome wide association studies (GWAS) in buffaloes for
lactation traits have been mainly limited to the use of bovine
single-nucleotide polymorphism (SNP) chip (Wu et al., 2013;
Venturini et al., 2014) and Affymetrix’s buffalo 90K SNP chip
(de Camargo et al., 2015; Iamartino et al., 2017; Liu et al.,
2018). There have been very few GWAS conducted in India
covering all aspects of production and reproduction performance
due to constraints of cost incurred and organized large-scale
genotyping programs. High-density SNP panels are a prerequisite
for GWAS, which have led to developments of cost-effective and
efficient next-generation sequencing (NGS) technologies such as
reduced representation of genomic libraries (RRLs) (Van Tassell
et al., 2008). The flexibility, robustness, and low cost of double-
digestion restriction-associated DNA (RAD) tag genotyping-
by-sequencing (ddRAD-GBS) technique renders it suitable for
identification of SNPs in any species for GWAS (Davey et al.,
2011; Elshire et al., 2011).

Hence, the present study was conducted to identify novel
SNPs associated with milk production, composition, lactation
persistency, and fertility traits at the genomic level using the
genotype-by-sequencing technique in Murrah buffalo, India’s
major buffalo breed and milch animal of the nation.

MATERIALS AND METHODS

Sampling, Data Recording, and
Genotyping
A total of 672 test-day records on each trait, i.e., milk
yield (TDMY), fat percentage (TDFP), and solids-not-
fat (SNF) percentage (TDSNF) were collected from 96
female Murrah buffaloes reared at LRC, NDRI, Karnal,
India (29.68◦N and 76.99◦E). Records of 96 buffaloes on
305 days’ milk yield (305DMY), birth weight (bwt), age at

1https://dahd.nic.in/about-us/divisions/statistics

first calving (AFC), calving interval (CI), and age at sexual
maturity (ASM) in months were collected. Other traits
such as lactation persistency, postpartum breeding interval
in days (PPBI), and breeding efficiency (BE) were derived
from the primary phenotype records. Breeding efficiency
was calculated for female buffaloes as described by Tomar
(1965).

Lactation persistency was estimated by following four different
methods:

(I) Wood (1967) incomplete gamma function, where
individuals were classified as persistent and non-persistent
as described by Macciotta et al. (2005) considering a
positive rate of incline as a favorable condition and a
negative rate as an unfavorable condition for persistency

(II) Johansson and Hansson (1940) method
(III) Ludwick and Petersen (1943) method
(IV) Mahadevan (1951) method

DNA was isolated from 96 Murrah buffaloes selected
for the study following the standard phenol-chloroform
method (Sambrook and Russell, 2006). Samples were further
processed using the standard RAD protocol as described by
Peterson et al. (2012). DNA double digestion was carried
out with SphI and MluCI restriction enzymes. Adapters
(P1 and P2) were prepared as per standard Illumina read
multiplexing protocol using an inline barcode along with
Illumina index for library preparation. After adapter ligation
and size selection, samples were sequenced on a Illumina
Hi-Seq 2000 platform.

Variant Calling
The NGS pipeline was standardized after incorporating a
few modifications in the standard mpileup variant calling
pipeline (Li, 2011), to call variants present in the Murrah
population. The Mediterranean buffalo genome, having accession
ID GCF_003121395.1, was retrieved from the NCBI dataset and
used as a reference genome. Index and sequence dictionary files
were created using the Burrows–Wheeler algorithm (BWA) (Li
and Durbin, 2010) and PicardTools,2 respectively. The quality
of paired-end raw FASTQ files generated after sequencing was
checked using FastQC (Andrews, 2010), and each report was
combined through MultiQC (Ewels et al., 2016). Adapters
were marked and trimmed using bbmap (Brian, 2014).3 The
BWA-MEM algorithm was used to align the trimmed FASTQ
sequences with the reference genome. Aligned files were
coordinate-sorted, and duplicate reads were removed. Read
group identifiers were updated using PicardTools. The quality
of aligned BAM files was checked using qualimap (García-
Alcalde et al., 2012). Variants were called using bcftools-mpileup
(Li, 2011).

Quality Control of Variants
Only biallelic SNPs having more than 95% genotyping rate were
retained for further GWAS. SNPs with a MAF < 0.05 and

2https://github.com/broadinstitute/picard
3https://sourceforge.net/projects/bbmap/
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deviating from the Hardy–Weinberg equilibrium at p < 0.0001
were removed from the dataset. SNPs in LD with r2 > 0.8
were also removed. Only autosomal and X chromosome SNPs
were retained for the final analysis. All the quality control
operations and data preprocessing were performed using PLINK
v1.9 (Chang et al., 2015).

Statistical Model
GWAS for milk yield, fat percentage, and SNF percentage
were conducted on the principal components (PCs) instead
of direct traits. Principal component analysis (PCA) was
performed in the R programming environment (v4.0.3) on
the 672 test-day records of each trait separately. As the
first two PCs cumulatively account for most of the variation
in the dataset, they were selected to be GWAS traits. The
traits on which GWAS were performed were PCs (PC1 and
PC2) of TDMYs, TDFPs, TDSNFs, and 305DMY; lactation
persistency calculated by four different methods; age at sexual
maturity in months; postpartum breeding interval (in days);
and breeding efficiency. Genome-wide identity-by-state (IBS) for
all pairs of individuals was checked. Multidimensional scaling
(MDS) based on SNP information was done to check for
the presence of any population stratification (Supplementary
Figure 1) and was corrected by incorporating the first two
MDS components as covariates in the model for GWAS.
A genome-wide scan for significant SNPs considering only
additive effects was accomplished through a simple regression
model using PLINK v1.9 as described by Marees et al.
(2018), where residuals were assumed to be normally and
independently distributed. A linear regression model was
fitted for determining the association between SNPs and
continuous traits (Bush and Moore, 2012), while logistic
regression was fitted for the binary trait (lactation persistent/non-
persistent based on incomplete gamma function). The threshold
for genome-wide significance was determined by correcting
the p-values of the SNP association test with Benjamini–
Hochberg’s false discovery rate (FDR) at 5 and 10% levels
(Benjamini and Hochberg, 1995) using the “R” package
fuzzySim v3.0 (Barbosa, 2020). A genome-wide significant
threshold was set at FDR 5% and a suggestive threshold
at 10% by calculating a nominal p-value for the largest
index i for which P(i) ≤ (i/m) × q, where i = rank
of the SNPs, m = no. of individual tests performed, and
q = either 0.05 or 0.1 (Glickman et al., 2014). The results
were plotted as Manhattan plots and Q-Q plots using the
“qqman” package of R.

Linear regression model used for GWAS:

y = β0 + xβ1 + C1β2 + C2β3 + e

where y = trait, x = additive effect of SNPs, C1 = first component
of MDS, C2 = second component of MDS, β0 = intercept
term, β1 = regression coefficient representing the strength of
association between SNP x and trait y, β2 = regression coefficient
of C1, β3 = regression coefficient of C2, and e = residuals or noise
not explained by SNPs.

The model used for GWAS on 305DMY, however, included
four covariates consisting of the first component of MDS, birth
weight, age at first calving, and calving interval.

SNP Mapping and Pathway Enrichment
SNPs were identified as genic if present within the genes
or intergenic if present within a range of 20 kb from
the 5′ and 3′ ends of the gene (da Costa Barros et al.,
2018). ARS-UCD1.2/bosTau9 cow assembly was used as the
reference genome to identify regions around significant SNPs
in the UCSC genome browser (Zimin et al., 2009). Gene
ontology (GO) was carried out using gProfiler,4 and the GO
classifications significant over the Benjamini–Hochberg FDR
were selected for pathway enrichment through Cytoscape v3.8.2
(Shannon et al., 2003).

RESULTS

PCA on Test-Day Records
PCA on test-day records proved that the first two PCs
cumulatively explain 77.72, 40.77, and 48.06% of the total
variation in TDMYs, TDFPs, and TDSNFs, respectively. Eigen
values of PC1 for TDMYs, TDFPs, and TDSNFs were found
to be 4.45, 1.67, and 2.30, respectively, while for PC2 they
were 0.98, 1.20, and 1.05, respectively. New synthetic variable
PC1 and PC2 for the above three traits were constructed
for each buffalo utilizing original variables and variable
loadings of PCA.

Genotyping
An average of 1.3 million each of forward and reverse
reads were obtained per sample. The total number of
forward and reverse end reads was 252.56 million with
the average read length being 151 base pairs (bp). After
quality check of raw data, it was observed that the average
GC content was 50.54%. The rate of duplication was
quite high, i.e., 80.11%, which was later checked during
variant calling. The quality score (Q) throughout the dataset
varied from 35 to 40.

Variant Calling and Quality Control
Raw files that were quality checked in FastQC were
combined using MultiQC, and the report is provided as
Supplementary Document. After alignment, BAM files
were obtained, and quality was checked. Of the raw reads,
98.11% were mapped accurately to the Mediterranean
buffalo reference genome. After removing the duplicate
reads, the rate of duplication was reduced to 15.85%.
Average mapping quality after alignment was found to be
29.05. A single VCF file was obtained, with 3,854,990 SNPs,
out of which 3,792,469 SNPs which were strictly biallelic
were retained for further analysis. After applying quality
control constraints, 38,560 SNPs present on autosomes
and X-chromosomes were retained for further downstream

4https://biit.cs.ut.ee/gprofiler/gost
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TABLE 1 | Details of the top 10 SNPs identified through GWAS on various traits and genes identified through genome scan.

Trait Chr† no. Position (bp) p-value Within ±20 kb

PC1 of milk yield X 7,588,358∗ 1.91 × 10−07 GRIA3

9 62,699,319∗ 2.39 × 10−06 ZNF292

16 74,362,861∗ 3.56 × 10−06

1 182,059,836 1.05 × 10−05 Uncharacterized LOC112444602

6 35,648,660 1.31 × 10−05 TIGD2

9 48,559,942 1.38 × 10−05 GRIK2

1 97,587,987 2.68 × 10−05 LRRC34 LRRC34, ACTRT3

20 45,808,430 2.69 × 10−05

2 72,321,021 3.65 × 10−05

X 120,205,266 4.13 × 10−05

PC1 of fat percentage 6 34,234,112 1.96 × 10−05 CCSER1

20 54,742,629 3.10 × 10−05

17 15,895,247 5.70 × 10−05

4 1,579,792 9.68 × 10−05

16 66,495,537 0.0001022

14 27,391,536 0.0001391

10 45,942,651 0.0001592 DAPK2

16 46,080,207 0.0001604 CAMTA1

11 30,281,532 0.0001669

4 39,053,011 0.0001739

PC1 of SNF percentage 14 4,664,0635 6.39 × 10−06

9 104,155,086 6.57 × 10−06

10 4,420,352 1.03 × 10−05 TICAM2

11 88,922,443 1.34 × 10−05

12 90,113,650 1.64 × 10−05

3 146,125,164 1.69 × 10−05

8 99,790,321 2.11 × 10−05 TXN

14 38,810,289 2.32 × 10−05 HNF4G

14 54,721,238 2.68 × 10−05 SYBU

17 42,173,707 3.79 × 10−05 Uncharacterized LOC104974614

PC2 of milk yield 1 81,353,445 4.36 × 10−06

7 57,678,016 2.86 × 10−05 TCERG1

4 134,421,018 4.95 × 10−05

16 17,134,516 5.34 × 10−05

1 49,359,549 7.78 × 10−05

4 26,233,428 0.0001182

13 60,176,598 0.0001579 ANGPT4

18 63,008,459 0.0001706

2 85,823,516 0.0001802 ANKRD44, uncharacterized
LOC112442949

21 42,799,270 0.0002008 AKAP6

PC2 of fat percentage 3 81,728,404 9.30 × 10−05 ROR1

15 58,026,658 9.67 × 10−05 CCDC34

14 5,954,275 0.0001596

6 49,443,269 0.0004445

23 25,106,184 0.0004533 GSTA1, GSTA2

15 31,296,423 0.0004619 GRIK4

18 61,661,554 0.0004811 CACNG6

4 134,458,024 0.0004867

7 42,605,598 0.0005285 SH3BP5L, ZNF672

16 74,400,826 0.0005499

PC2 of SNF percentage 14 71,295,596 3.83 × 10−05 TRIQK

(Continued)
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TABLE 1 | (Continued)

Trait Chr† no. Position (bp) p-value Within ±20 kb

12 100,102,349 4.23 × 10−05

1 58,132,034 0.0002283 CFAP44

20 53,548,085 0.0003363 CDH18

4 15,355,186 0.0003396

6 27,219,584 0.0003841 Uncharacterized
LOC782977

22 19,933,711 0.000389

5 21,940,540 0.0003954

21 56,124,462 0.0004159

9 42,153,396 0.0004165 SEC63

305 days’ milk yield 10 5,804,150 2.93 × 10−05

2 85,890,123 3.90 × 10−05 ANKRD44

9 62,699,319 4.52 × 10−05 ZNF292

12 10,144,550 5.91 × 10−05

X 7,588,358 6.08 × 10−05 GRIA3

16 74,362,861 6.59 × 10−05

10 5,804,363 8.51 × 10−05

19 65,955,791 0.0001318

1 97,587,987 0.0001527 MYNN LRRC34, ACTRT3

9 48,559,942 0.000153 GRIK2

Persistency based on
Wood’s function as
described by Macciotta

14 2,765,427 0.000693 DENND3

9 72,904,775 0.000787

3 25,896,446 0.001048

10 98,483,390 0.001208

21 32,145,325 0.001243 PSTPIP1

5 118,217,420 0.001301

19 66,731,726 0.001385

6 111,661,570 0.001661

1 101,471,188 0.00172

5 36,948,158 0.001727 ADAMTS20

Persistency (Mahadevan,
1951)

12 61,269,055 0.0003472

18 46,542,221 0.0005129 PRODH2, NPHS1, RREL2, 42466

10 66,128,637 0.000711

5 126,657,828 0.0008095

14 46,873,549 0.0008564

22 33,269,149 0.001113 FAM19A1

12 72,874,869 0.001206

23 19,210,873 0.001381 CLIC5

12 32,859,855 0.001488 GPR12

13 60,835,727 0.00154 DEFB125

Persistency (Johansson
and Hansson, 1940)

14 45,071,226 1.69 × 10−05

21 37,776,399 2.76 × 10−05

9 62,472,303 3.36 × 10−05 CFAP206

18 46,100,792 0.0001026

18 46,100,619 0.0001026

18 17,868,492 0.0001162 C18H16orf78

2 20,133,507 0.0001273

3 55,760,382 0.0001561

4 49,950,395 0.0001709

(Continued)
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TABLE 1 | (Continued)

Trait Chr† no. Position (bp) p-value Within ±20 kb

15 11,079,156 0.000183

Persistency (Ludwick and
Petersen, 1943)

6 2,687,0445 6.07 × 10−05 STPG2

9 62,472,303 8.75 × 10−05 CFAP206

18 46,100,792 0.0001368

18 46,100,619 0.0001368

4 46,668,425 0.0001908 RINT1, EFCAB10

10 65,940,920 0.0002065

7 57,678,016 0.0002898 TCERG1

25 40,090,282 0.0003082

10 35,000,168 0.0003138

18 17,868,492 0.0003109 C18H16orf78

Breeding efficiency (Tomar,
1965)

10 1,310,267 1.70 × 10−05 APC, uncharacterized LOC112448352

11 83,985,064 6.50 × 10−05

12 54,602,811 0.0003442 NDFIP2

2 157,056,510 0.0003871

X 68,984,061 0.0004459

1 40,267,041 0.000448

7 117,169,472 0.0005262

20 5,188,573 0.0005834 Uncharacterized LOC107131404

1 182,894,045 0.0006526

14 70,378,719 0.0009191 PDP1

Age at sexual maturity (in
months)

2 19,116,988 2.31 × 10−05 PDE11A

7 77,438,396 5.80 × 10−05

18 19,894,177 0.0001711

3 9,170,745 0.0001738 SLAMF6

17 58,295,542 0.0001793 uncharacterized
LOC104974658

6 32,022,004 0.0001861 GRID2

1 2,246,590 0.0003256 uncharacterized LOC104970778

15 75,434,743 0.0003302

1 96,574,489 0.0003995 EIF5A2, RPL22L1

10 69,569,504 0.0004181

Postpartum breeding
interval (in days)

2 25,677,863 4.28 × 10−05 ERICH2

4 31,943,618 5.96 × 10−05 IGF2BP3 MALSU1

14 31,151,162 0.0001547 PPP1R42 TCF24

2 69,670,013 0.0002049 CCDC93

6 31,285,865 0.0002096 GRID2

11 39,293,274 0.0002278

7 84,151,709 0.0002888 EDIL3

7 84,151,714 0.0002947 EDIL3

13 11,218,416 0.0003107 LOC112449367

7 17,313,196 0.0003504 Uncharacterized
LOC101904981,
LOC112447353

†Chr = chromosome, ∗SNPs at the positions were significantly associated with the trait at the 5% level of significance using Benjamini–Hochberg’s FDR.

analysis with the final genotyping rate of 98.24%. All the SNPs
present on autosome no. 24 failed to pass quality control
constraints; hence, in the final analysis, the 24th autosome
has been removed.

GWAS Results
GWAS were performed with 38,560 SNPs, and the
genome-wide significant threshold was set at the 5%
FDR level. GWAS were performed on the two foremost
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FIGURE 1 | Results of GWAS for PC1 of the test day’s milk yield. (A) Manhattan plot of genome-wide SNPs. The red line indicates the p-value threshold (expressed
as –log10P) corresponding to FDR-corrected p-values or q = 0.05, above which the SNPs are considered to be significantly associated with the trait, while the blue
line indicates the genome-wide suggestive threshold at q = 0.1. The SNPs identified on chromosome no. 24 were screened out from analysis because of stringent
quality control; hence, it is not represented in the Manhattan plot. (B) Q-Q plot of the p-values.

FIGURE 2 | Results of GWAS for PC2 of the test day’s milk yield. (A) Manhattan plot of genome-wide SNPs. The red line indicates the p-value threshold (expressed
as –log10P) corresponding to FDR-corrected p-values or q = 0.05, above which the SNPs are considered to be significantly associated with the trait, while the blue
line indicates genome-wide suggestive threshold at q = 0.1. The SNPs identified on chromosome no. 24 were screened out from analysis because of stringent
quality control; hence, it is not represented in the Manhattan plot. (B) Q-Q plot of the p-values.

variation explaining PCs (PC1 and PC2) of TDMY,
TDFP, and TDSNF.

GWAS on Lactation Traits
Three SNPs present on chromosomes X (7588358 bp), 9
(62699319 bp), and 16 (74362861 bp) were significantly
associated with PC1 of TDMYs with FDR-corrected p-values
of 0.007369, 0.04579, and 0.04579, respectively. No SNPs were
found to be significantly associated with PC2 TDMYs. GWAS on
PC1 and PC2 of TDFPs and TDSNFs also could not establish any
significant association between the traits and SNPs. However, the
top 10 SNPs having the lowest p-values in the test of association
with different lactation traits, along with their position and
genes within a ± 20-kb region, are listed in Table 1. The

Manhattan and Q-Q plots (panels A and B, respectively) for
association results of PC1–TDMYs, PC2–TDMYs, PC1–TDFPs,
PC2–TDFPs, PC1–TDSNFs, and PC2–TDSNFs are given in
Figures 1–6, respectively.

GWAS on 305DMY revealed that there was no significant
association between SNPs and the trait. It was observed that five
SNPs that appeared in the list with GWAS for PC1 and PC2 of
the test day’s milk yield were also in the top SNP list for 305DMY.
The Manhattan and Q-Q plots for association results of 305DMY
are given in Figures 7A,B, respectively.

GWAS on Lactation Persistency
GWAS on lactation persistency estimated by four different
methods revealed no significant association between SNPs and
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FIGURE 3 | Results of GWAS for PC1 of the test day’s fat percentage. (A) Manhattan plot of genome-wide SNPs. The red line indicates the p-value threshold
(expressed as –log10P) corresponding to FDR-corrected p-values or q = 0.05, above which the SNPs are considered to be significantly associated with the trait,
while the blue line indicates the genome-wide suggestive threshold at q = 0.1. The SNPs identified on chromosome no. 24 were screened out from analysis because
of stringent quality control; hence, it is not represented in the Manhattan plot. (B) Q-Q plot of the p-values.

FIGURE 4 | Results of GWAS for PC2 of the test day’s fat percentage. (A) Manhattan plot of genome-wide SNPs. The red line indicates the p-value threshold
(expressed as –log10P) corresponding to FDR-corrected p-values or q = 0.05, above which the SNPs are considered to be significantly associated with the trait,
while the blue line indicates the genome-wide suggestive threshold at q = 0.1. The SNPs identified on chromosome no. 24 were screened out from analysis because
of stringent quality control; hence, it is not represented in the Manhattan plot. (B) Q-Q plot of the p-values.

the trait generated. The top 10 SNPs having the lowest p-values
along with their genomic position and genes within a ± 20-kb
region are listed in Table 1 for all four methods. It was observed
that four SNPs were found in common between the top SNPs
listed for persistency estimated by methods II and III. Among
the four SNPs, one was on chromosome 9 at 62472303 bp, and
three were present on chromosome 18 at 46100792, 46100619,
and 17868492 bp. The Manhattan and Q-Q plots (panels A and
B, respectively) for association results of persistency estimated by
four different methods (I, II, III, and IV) are given in Figures 8–
11, respectively.

GWAS on Fertility Traits
Upon performing GWAS on age at sexual maturity,
postpartum breeding interval, and breeding efficiency,
no significant association of any SNPs were observed
for the traits; however, the top 10 SNPs with the
lowest p-values and genes within a ± 20-kb region
are listed in Table 1. The Manhattan and Q-Q plots
(panels A and B, respectively) of GWAS on age
at sexual maturity, postpartum breeding interval,
and breeding efficiency are given in Figures 12–
14, respectively.
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FIGURE 5 | Results of GWAS for PC1 of the test day’s SNF percentage. (A) Manhattan plot of genome-wide SNPs. The red line indicates the p-value threshold
(expressed as –log10P) corresponding to FDR-corrected p-values or q = 0.05, above which the SNPs are considered to be significantly associated with the trait,
while the blue line indicates the genome-wide suggestive threshold at q = 0.1. The SNPs identified on chromosome no. 24 were screened out from analysis because
of stringent quality control; hence, it is not represented in the Manhattan plot. (B) Q-Q plot of the p-values.

FIGURE 6 | Results of GWAS for PC2 of the test day’s SNF percentage. (A) Manhattan plot of genome-wide SNPs. The red line indicates the p-value threshold
(expressed as –log10P) corresponding to FDR-corrected p-values or q = 0.05, above which the SNPs are considered to be significantly associated with the trait,
while the blue line indicates the genome-wide suggestive threshold at q = 0.1. The SNPs identified on chromosome no. 24 were screened out from analysis because
of stringent quality control; hence, it is not represented in the Manhattan plot. (B) Q-Q plot of the p-values.

DISCUSSION

The test-day model (TDM) as repeated measurements of milk
yield traits is the method of choice for predicting 305 days’ milk
yield. TDMs account for environmental effects on each test day
and is useful to model individual lactation curves (Schaeffer et al.,
2000; Bignardi et al., 2012). PCA being a powerful multivariate
technique is often used to predict 305 days’ milk yield from
the inter-related variables such as test-day records (Taggar et al.,
2012). Wara et al. (2019) had performed GWAS on test day’s milk
yield in Vrindavani cattle; however, reports of GWAS on PCs of
test days are very few. In the present study, PCA was applied

on seven test-day records of first lactation in order to perform
GWAS on the PCs explaining maximum variation rather than
the test-day records themselves. The first two PCs cumulatively
explained 40–78% of total variation in test-day records of traits
included, indicating their potential to be used as GWAS traits
to identify novel SNPs for milk yield, fat percentages, and
SNF percentages.

It is important to understand the reasons for considering
96 samples taken in the study as optimum, as in the buffalo
farming scenario in Asia, particularly in India, the maximum
number of buffaloes maintained at any large organized herd
ranges from 250 to 500, with 100–200 breedable buffaloes having
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FIGURE 7 | Results of GWAS for 305 days’ milk yield. (A) Manhattan plot of genome-wide SNPs. The red line indicates the p-value threshold (expressed as –log10P)
corresponding to FDR-corrected p-values or q = 0.05, above which the SNPs are considered to be significantly associated with the trait, while the blue line indicates
the genome-wide suggestive threshold at q = 0.1. The SNPs identified on chromosome no. 24 were screened out from analysis because of stringent quality control;
hence, it is not represented in the Manhattan plot. (B) Q-Q plot of the p-values.

FIGURE 8 | Results of GWAS for lactation persistency based on Wood’s function as described by Macciotta et al. (2005). (A) Manhattan plot of genome-wide SNPs.
The red line indicates the p-value threshold (expressed as –log10P) corresponding to FDR-corrected p-values or q = 0.05, above which the SNPs are considered to
be significantly associated with the trait, while the blue line indicates the genome-wide suggestive threshold at q = 0.1. The SNPs identified on chromosome no. 24
were screened out from analysis because of stringent quality control; hence, it is not represented in the Manhattan plot. (B) Q-Q plot of the p-values.

complete phenotype information. The National Dairy Research
Institute has the second-largest herd in the Indian Council of
Agricultural Research (ICAR) with a well-managed herd of 250
breedable buffaloes. Furthermore, there is no buffalo sequencing
consortium/project in operation (India). In such a case, one
could afford this sample size to genotype with complete pedigree
and with sufficient genetic diversity. However, the sample size is
less for conducting GWAS and raises the question of whether
the results are reliable enough. It was observed that the results
obtained under the present study are encouraging and important,
as one of the genes identified in the present study, i.e., GRIA3, was
reported by Cole et al. (2011) in a sample of 1,654 US Holstein

cows. There are occasions where a similar sample size (96) has
been used to understand body morphology traits through GWAS
(Rahmatalla et al., 2018).

To identify novel SNPs associated with various economic
traits, sequencing through the ddRAD approach was performed.
Ruffalo et al. (2012) highlighted that a mapping quality of 15–40
is of the highest nature, and theoretical accuracy corresponds to
∼100%, while depending on the aligner, the actual accuracy of
mapping or base call may vary from 40 to 60%. Similar mapping
quality averaging 30 for all samples was obtained through BWA
aligner, which usually implies good overall base quality of reads
and few mismatches in the best possible alignment.
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FIGURE 9 | Results of GWAS for lactation persistency according to Johansson and Hansson. (A) Manhattan plot of genome-wide SNPs. The red line indicates the
p-value threshold (expressed as –log10P) corresponding to FDR-corrected p-values or q = 0.05, above which the SNPs are considered to be significantly associated
with the trait, while the blue line indicates genome-wide the suggestive threshold at q = 0.1. The SNPs identified on chromosome no. 24 were screened out from
analysis because of stringent quality control; hence, it is not represented in the Manhattan plot. (B) Q-Q plot of the p-values.

FIGURE 10 | Results of GWAS for lactation persistency according to Ludwick and Peterson. (A) Manhattan plot of genome-wide SNPs. The red line indicates the
p-value threshold (expressed as –log10P) corresponding to FDR-corrected p-values or q = 0.05, above which the SNPs are considered to be significantly associated
with the trait, while the blue line indicates the genome-wide suggestive threshold at q = 0.1. The SNPs identified on chromosome no. 24 were screened out from
analysis because of stringent quality control; hence, it is not represented in the Manhattan plot. (B) Q-Q plot of the p-values.

An earlier bovine SNP chip was used to study the traits
of buffalo. Using a bovine SNP chip (Illumina BovineSNP50
BeadChip) for a GWAS in buffalo population, Wu et al. (2013)
identified seven SNPs that were significantly associated with milk
yield. Later on, Affymetrix’s 90K SNP chip commercialization
led to several GWAS on milk production traits in buffalo.
de Camargo et al. (2015) in a GWAS on buffaloes reported
that LOC100847171, BCL6, RTP2, SST, PTGS2, LOC100295047,
and LOC101908004 are associated with milk production;
KCTD8, LOC782855, LOC101904777, ESRRG, TRNAY-AUA, and
GPATCH2 are associated with fat percentage; LOC101903483,
SART3, ISCU, CMKLR1, WSCD2, MFNG, CARD10, and USP18

are associated with protein percentage. Liu et al. (2018)
identified several candidate genes, namely, MFSD14A, SLC35A3,
PALMD, RGS22, and VPS13B, for milk production in the Italian
Mediterranean buffalo through GWAS. In another GWAS in
buffalo, Iamartino et al. (2017) reported that genes regulating the
D-glucose level in the blood affect milk production in buffalo.

In the present study, GWAS performed on the milk
yield PCs explaining maximum variation, which revealed
that three SNPs were significantly associated with PC1 of
TDMY at the 5% FDR level. However, six SNPs present
on chromosomes 1, 6, and 9 at 182,059,836, 35,648,660,
and 48,559,942 bp, respectively, were above the suggestive
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FIGURE 11 | Results of GWAS for lactation persistency according to Mahadevan. (A) Manhattan plot of genome-wide SNPs. The red line indicates the p-value
threshold (expressed as –log10P) corresponding to FDR-corrected p-values or q = 0.05, above which the SNPs are considered to be significantly associated with
the trait, while the blue line indicates the genome-wide suggestive threshold at q = 0.1. The SNPs identified on chromosome no. 24 were screened out from analysis
because of stringent quality control; hence, it is not represented in the Manhattan plot. (B) Q-Q plot of the p-values.

FIGURE 12 | Results of GWAS for age at sexual maturity. (A) Manhattan plot of genome-wide SNPs. The red line indicates the p-value threshold (expressed as
–log10P) corresponding to FDR-corrected p-values or q = 0.05, above which the SNPs are considered to be significantly associated with the trait, while the blue line
indicates the genome-wide suggestive threshold at q = 0.1. The SNPs identified on chromosome no. 24 were screened out from analysis because of stringent
quality control; hence, it is not represented in the Manhattan plot. (B) Q-Q plot of the p-values.

threshold of 10% FDR and are presented in Table 1 as
the top six SNPs associated with PC1 of TDMY. However,
for the rest of the traits studied, no SNPs were detected
to be significantly associated (or as rejections) at 5%
or even 10% FDR.

Upon scanning ± 20 kb around that SNP on the X
chromosome, the GRIA3 gene was found. Glutamate ionotropic
receptor AMPA type subunit 3 (GRIA3) is reported to be very
significantly associated with daughter pregnancy rate in US
Holstein cows (Cole et al., 2011). In a study, a positive selection
signal has been observed for the loci containing the CNIH3
gene. CNIH3 interacts with GRIA1, GRIA2, GRIA3, GRIA4, and

GRIK1 belonging to a class of α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) glutamate receptors, thus
regulating trafficking of AMPA receptors. AMPA receptors are
known to participate in luteinizing hormone (LH) secretion
(Utsunomiya et al., 2013). The nearest genes to the top 10 SNPs
from PC1 GWAS for milk yield were ZNF292, LOC112444602,
TIGD2, GRIK2, and LRRC34. Similarly, for PC2 of milk
yield, GWAS revealed that TCERG1, ANGPT4, ANKRD44,
LOC112442949, and AKAP6 were the nearest genes from the
top 10 SNPs. It could be observed that five SNPs present in the
list of top SNPs from GWAS results of PC1 and PC2 of the
test day’s milk yield were also present in the top 10 SNP list
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FIGURE 13 | Results of GWAS for postpartum breeding interval. (A) Manhattan plot of genome-wide SNPs. The red line indicates the p-value threshold (expressed
as –log10P) corresponding to FDR-corrected p-values or q = 0.05, above which the SNPs are considered to be significantly associated with the trait, while the blue
line indicates the genome-wide suggestive threshold at q = 0.1. The SNPs identified on chromosome no. 24 were screened out from analysis because of stringent
quality control; hence, it is not represented in the Manhattan plot. (B) Q-Q plot of the p-values.

FIGURE 14 | Results of GWAS for breeding efficiency. (A) Manhattan plot of genome-wide SNPs. The red line indicates the p-value threshold (expressed as –log10P)
corresponding to FDR-corrected p-values or q = 0.05, above which the SNPs are considered to be significantly associated with the trait, while the blue line indicates
the genome-wide suggestive threshold at q = 0.1. The SNPs identified on chromosome no. 24 were screened out from analysis because of stringent quality control;
hence, it is not represented in the Manhattan plot (B) Q-Q plot of the p-values.

for 305 days’ milk yield (Table 1), highlighting the efficacy of
PCA in predicting 305 days’ milk yield. Additionally, MYNN
and ACTRT3 were found nearest to the top SNPs of GWAS
for 305 days’ milk yield. Cai et al. (2020) have also reported
the ANKRD44 gene to be associated with milk yield in Nordic
Holstein cattle.

A genome-wide scan for novel genes for fat percentage
outlined CCSER1, DAPK2, CAMTA1, ROR1, CCDC34, GSTA1,
GSTA2, GRIK4, CACNG6, SH3BP5L, and ZNF672 as the nearest
genes to the top SNPs obtained from GWAS. Kolbehdari et al.
(2009) in a whole-genome study in Canadian Holstein cattle
mapped the gene DAPK2 to several milk production-related

QTLs. They also mapped DAPK2 to a milk fat percentage QTL
which concords with the findings of our study. Genes other than
DAPK2 were not reported earlier to be associated with milk fat
percentage in buffalo; however, CAMTA1 may possibly have a
role in fatty acid metabolism.

TICAM2, TXN, HNF4G, SYBU, LOC104974614, TRIQK,
CFAP44, CDH18, LOC782977, and SEC63 were found near the
top SNPs associated with PCs of TDSNF. We could not find
any previous reports stating the role of these genes in regulating
milk SNF percentage; however, a functional enrichment analysis
study by Zhou et al. (2019) revealed HNF4G and SYBU as
candidate genes that regulate milk fat synthesis, transport, and
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metabolism. All the genes involved with milk yield and its
composition identified through the study were enriched for
pathways in Cytoscape. A sub-network of the genes is depicted
in Supplementary Figure 2. It can be observed that most of the
genes identified belong to the glutamate receptor family, involved
in the regulation of the neuronal system.

In Canadian Holstein cattle, Do et al. (2017) reported
a significant genetic effect of MAN1C1, MAP3K5, HCN1,
TSPAN9, MRPS30, TEX14, and CCL28 genes on lactation
persistency. Deng et al. (2019) reported that the MAP3K5
gene regulates p38 MAPKs and Jun N-terminal kinases
(JNKs) pathways involved in mammary gland development.
In the present study, lactation persistency was calculated
using four different methods, and it was observed that
the top four SNPs identified by GWAS for persistency as
estimated by the Johansson and Hansson (1940) method
were in common with the GWAS results obtained for
persistency as per the Ludwick and Petersen (1943) method.
The genes present near the top SNPs were DENND3, PSTPIP1,
ADAMTS20, PRODH2, NPHS1, RREL2, FAM19A1, CLIC5,
GPR12, DEFB125, STPG2, CFAP206, RINT1, EFCAB10, TCERG1,
and C18H16orf78. Upon network enrichment, it was observed
that TCERG1, RINT1, CLIC5, and PSTPIP1 are co-expressed
with several other genes in the breast mammary tissue of
human, indicating their possible role in persistency of lactation
in dairy animals.

GWAS for fertility traits were performed on breeding
efficiency, age at sexual maturity, and postpartum breeding
interval. Genes present near the top SNPs of breeding efficiency
were APC, LOC112448352, NDFIP2, LOC107131404, and
PDP1. Mohamed et al. (2019) reported that APC gene in
the canonical WNT signaling pathway plays a critical role
in the regulation of ovarian development. Mis-regulation
of this key pathway in the adult ovary is associated with
subfertility in mice. The APC gene has also been mapped
to the QTL region for conception rate in Holstein cattle
(Kolbehdari et al., 2009). Genes identified near the top
SNPs for age at sexual maturity are PDE11A, SLAMF6,
LOC104974658, GRID2, LOC104970778, EIF5A2, and RPL22L1.
Coyral-Castel et al. (2018) mapped the SLAMF6 gene to the
QTL region affecting female fertility located on the bovine
chromosome three (QTL-F-Fert-BTA3). The GRID2 gene
is however reported to be associated with growth traits in
Simmental cattle and may have role in regulating age at
sexual maturity (Braz et al., 2020). Christensen et al. (2005)
have reported EIF5A2 as a candidate gene for infertility in
human. Genes identified for postpartum breeding interval
were ERICH2, MALSU1, IGF2BP3, TCF24, PPP1R42,
CCDC93, GRID2, EDIL3, LOC112449367, LOC101904981,
and LOC112447353. However, none of these genes was
identified to be involved significantly in any pathway
through the gProfiler.

Although we have already emphasized that this a preliminary
GWAS on buffaloes covering a large set of economic traits
(lactation, lactation persistency, and fertility), the results obtained
in the present study are bias free, as indicated by the FDR.
The findings of the present study in the Murrah population will

encourage researchers to come forward for GWAS in buffalo in a
holistic manner.

CONCLUSION

Optimum production and reproduction in buffaloes are long-
standing questions in the Indian subcontinent. We present the
analysis and identification of genomic regions that play role
in shaping the selection and breeding decisions of Murrah
buffalo for persistency of production and fertility. The dataset
information presented in the paper is also submitted so that it can
be used to compare and evaluate other breeds of buffalo based
on the genomic information generated. The putative identified
regions have a potential to improve the existing breeding
decisions in this important dairy germplasm.
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The blue egg is both of biological interest and economic importance for consumers, egg

retailers, and scientists. To date, the genetic mechanisms underlying pigment havemainly

focused on protein-coding genes. However, the underpinning mechanism of non-coding

RNAs on the pigment deposition among different eggshell colors remains unknown. In

this study, RNA sequencing was employed to profile the uterine gland transcriptome

(lncRNA and mRNA) of 15 Changshun blue eggshell layers, to better understand

the genetic mechanisms of deposition of blue eggshell color. Results showed that

differentially expressed mRNAs, GO terms, and KEGG pathways among pink-eggshell

and blue-eggshell chickens were mainly targeting immune- and transporter-related

terms with the SLC family, IgJ, CD family, and MTMR genes. Furthermore, the

progesterone-mediated oocyte maturation and cortisol synthesis and secretion pathway

with targeted gene PGR and Pbx1 were significantly enriched between blue- and

pink-eggshell chickens. Integrating analysis of lncRNA and mRNA profiles predicted

4 and 25 lncRNA–gene pairs by antisense and cis analysis. They were relative to

immune, nerve, and lipids and amino acid metabolisms, porphyrin, and chlorophyll

metabolism with targeted gene FECH and oxidative phosphorylation and cardiac muscle

contraction pathways with targeted gene COX6A1. Within blue-eggshell chickens, the

GO terms hindbrain tangential cell migration and phosphatidylinositol monophosphate

phosphatase activity with targeted gene Plxna2 and MTRM1 were identified. Integrating

analysis of lncRNA and mRNA profiles predicted 8 and 22 lncRNA–gene pairs. Most

pathways were mainly enriched on lipid-related metabolisms as found in mRNA

sequencing. The lncRNAs did exert similar functions in color formation by modulating

pigment disposition and immune- and lipid-related metabolisms. Our results provide a

catalog of chicken uterine lncRNAs and genes worthy of further studies to understand

their roles in the selection for blue eggshell color layers.

Keywords: color deposition, lncRNAs, mRNA, uterus, chicken
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INTRODUCTION

The blue egg is both of biological interest and economic
importance for consumers, egg retailers, and scientists. A
series of studies have been conducted on the nature of the
shell pigments, the biochemical and physiological processes in
various avian species involved in pigment formation, and its
deposition in and on the shell (1, 2). It has been long known
that the primary avian eggshell pigments are protoporphyrin
IX, biliverdin IX, and biliverdin IX zinc chelate in both
wild birds and poultry (3, 4). The pink, light red, and
brown eggshell colors are involved with the deposition of
protoporphyrin IX, while blue and green-blue eggshell colors
are associated with that of biliverdin IX and biliverdin IX
zinc chelate.

To date, previous studies on the genetic mechanisms
underlying pigment deposition have mainly focused on
protein-coding genes. The gene solute carrier organic anion
transporter family member 1B3 (SLCO1B3) is known to be
responsible for a causative mutation for the blue eggshell
phenotype and is specifically expressed in the uterus, not in
the other organs in chickens (5). However, the underpinning
mechanism of non-coding RNAs on the pigment deposition
remains unknown. A major reason is that the functional
annotation of long non-coding RNAs (lncRNAs) is largely
missing. LncRNAs comprise a heterogeneous subset of RNAs
that are longer than 200 nucleotides (nt) and transcribed
regions without protein-coding potential. Increased advances
have shown that many lncRNAs not only are transcriptional
“noise,” but also play an important role in numerous biological
processes including transcriptional regulation (6, 7), cell cycle
and apoptosis (8), and pluripotency and differentiation control
(9, 10). Thus, extensive research is required to fully define
and integrate lncRNAs into genome biology. Figuring out
the role of lncRNAs would better understand the underlying
genetic aspects of non-coding RNA on the deposition of
blue eggshells.

China has a wide variety of indigenous poultry, with
108 native chicken breeds. The intensive selection for layers
producing blue eggshells has been undergoing for a few decades
due to demands by consumers. Nevertheless, blue shell eggs
show dark blue, light blue, and median color brown-greenish
blue, of which brown-greenish shell eggs are especially not
found by consumers. Notably, Changshun blue-eggshell chicken
is one of the native breeds mainly producing blue eggshell,
but a few of them (unselected individuals) also produce brown
and pink color eggs. Thus, it is urgent to figure out the
underlying genetic mechanism from non-coding RNA and its
targeted genes in breeding selection for blue eggshell layers. In
the present study, a high-throughput RNA sequencing (RNA-
seq) was employed to profile the uterus transcriptome of
Changshun blue-eggshell chickens with different eggshell colors
(different proportions between protoporphyrin and biliverdin).
The aims were to discover and characterize lncRNAs in
chicken uterus tissue and identify key genes, lncRNAs, and
pathways that are associated with blue eggshell deposition
of chickens.

MATERIALS AND METHODS

Animals and Treatments
The study was approved by the Animal Care Committee of
Foshan University (Approval ID: FOSU#080). The experiment
was carried out at a breeding farm, Changshun blue eggshell layer,
Tiannong Corporation, Guizhou province. A total of 331 layers
in a house at 210 days old were observed for 30 days. During
these days, three hens stably producing dark blue (DB), four hens
producing light blue (LB), and dark brown and greenish (between
blue and pink, DP), respectively, were selected for this study (see
Figure 1). Besides, four hens producing pink (PK) shell eggs, as
a control group, were also involved in the study. Uterine glands
from each bird were collected and immediately stored in dry ice
and then at−80◦C until further processing.

RNA-seq
Fifteen cDNA libraries were constructed using total uterus RNA.
Total RNA was extracted using the RNeasy Mini-Extraction
kit according to the manufacturer’s instructions (Aidlab,
RN2802, China). The 2100 Bioanalyser (Agilent) was used to
determine the RNA quality and was further quantified using
the ND-2000 (NanoDrop Technologies). Only high-quality
RNA sample was used to construct a sequencing library. The
relative expression of color deposition-related genes including
solute carrier organic anion transporter family member 1C1
(SLCO1C1), solute carrier family 16 member 7 (SLC16A7), CD4,
and ST6 N-acetylgalactosaminide alpha-2,6-sialyltransferase 4
(ST6GALNAC4) was measured. Primer sequence 5.0 was used
to design the primer sequence and synthesized by Shanghai
Bioengineering limited company (Supplementary Table 1).
The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was
selected as a reference gene (11). The purity of RNA was the
ratio of OD 260/OD 280 (a measure of protein contamination)
in 2.0–2.2, of which 2.2 represented high-quality RNA. The
RNA integrity was analyzed by the method of agarose gel
electrophoresis, of which the quantity of 28S rRNA was twice
than that of 18S rRNA. Then, each qualified RNA sample
has reversed the transcript to cDNA using TRUEscript RT
MasterMIX in a 20-µl volume containing 1,000 ng RNA and
RNase free to 16 µl, 4 µl 5 × TRUE RT MasterMix under the
following conditions: 42◦C for 10min (Aidlab, PC5801, China)
for RT-qPCR analyses. RT-qPCR was conducted on qTOWER
2.2 touch (Analytik Jena, Germany) in a 20-µl volume containing
10 µl SYBR×Premix Ex Taq (Aidlab, PC3302, China), 0.5 µl of
each forward and reverse primer (10µM), 1 µl of cDNA, and
8 µl ddH2O under the following conditions: 95◦C for 15min;
95◦C for 10 s, annealing (see Table 1) for 20 s and 72◦C for 20 s
for 40 cycles. Each amplification was performed for three control
replicates and three case replicates. The amplification efficiencies
were close to 100%, using the 2−11Ct method for calculating the
relative gene expression levels of a sample.

The total RNA of uterine glands from each was further RNA-
seq for mRNA and lncRNA. Strand-specific RNA-seq libraries
were generated by TruSeq Stranded Total RNA with Ribo-
Zero Gold kit (Illumina, CA, USA) following the manufacturer’s
recommendations. Sequencing was performed on an Illumina
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FIGURE 1 | The description of four different eggshell colors of Changshun blue-eggshell chicken. DB, DP, LB, and PK mean chickens producing dark blue, dark

brown and greenish, light blue, and pink eggshell eggs, respectively.

Hiseq 2500 instrument using the TruSeq PE Cluster Kit v3-
cBot-HS (Illumina, CA, USA) to generate 150-bp paired-end
reads. Quality control and reads statistics were determined by
FastQC (0.11.2) (12). Reads containing adapter or poly-N and
low-quality reads were discarded, while the remaining clean reads
were aligned to the reference chicken genome (Galllus_gallus-
5.0) using Hisat (2.0.1) (13). Stringtie (1.2.4) was used to
assemble mapped transcripts individually (14), and reference
gene annotation was supplied to guide the assembly process.
Transcripts from all samples were then merged together with
Stringtie merge mode to build a consensus set of transcripts
across samples to identify lncRNAs and their nearest-neighbor
genes. To reduce the false-positive rates, assembled transcripts
were obtained as follows to receive candidate lncRNAs: (1)
transcripts with two and above two exons and longer than 200
bp; (2) the reads coverage of transcript more than three was
calculated using Stringtie (1.2.4); (3) protein coding potency of
transcripts were calculated by three software including coding–
non-coding-index (score < 0), coding potential calculator (15)
(score < 0), and SwissProt. Transcripts were filtered according
to the abovementioned requirements and were considered as
candidate lncRNAs and were then blasted to chicken lncRNAs
in the ALDB v1.0 database. Reference gene annotation was used

to search the nearest-neighboring genes of lncRNAs, and 100 kb
was set as the threshold. Differentially expressed lncRNAs were
calculated for further prediction, of which those located within
the 100-kb distance of the differentially expressed lncRNAs were
selected as potential target genes to reduce false positives. The
cis role of lncRNAs was on neighboring target genes (16, 17).
The quantification of lncRNAs and mRNAs in each sample
was calculated by Stringtie. Differentially expressed mRNAs
and lncRNAs of uterine glands among different eggshell color
chickens were analyzed using the ballgown (2.6.0) R package
(18). p-value < 0.05 and |fold-change| > 2 were considered
as significance threshold. Gene ontology (GO) enrichment and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
of differentially expressed mRNAs and lncRNAs were carried
out by Goatools (https://github.com/tanghaibao/Goatools) and
KOBAS (http://kobas.cbi.pku.edu.cn/home.do).

RESULTS

Overview of Sequencing and Identification
of lncRNA in Chicken Uterus
After quality control, more than 98.2% of the total clean reads
with high quality were mapped to Galgal 5.0, and 61,369
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TABLE 1 | Differently enriched KEGG pathways with targeted genes of comparisons between chickens with different eggshell colors.

Comparison Pathways p Targeted genes

DB vs. DP Transporters 0.008 SLC34A1, SLC13A3, SLC35F1, SLC22A6-A, SLC26A1

Exosome 0.011 SLC34A1, GSN, CUBN, DSP, HSPG2, FN1, FLNA

Cytoskeleton proteins 0.041 GSN, DSP, Tpm3, FLNA

Cortisol synthesis and secretion 0.028 Pbx1

Apoptosis 0.041 ITPR2, CASP6

Glycerophospholipid metabolism 0.045 Etnk1

Lipid metabolism 0.044 LPPR4

DB vs. LB Transporters <0.001 SLC13A3, SLC35F1, SLC25A47, SLC22A6-A, SLC26A1

Exosome 0.023 SLC34A1, CUBN, DSP, ANXA11, COL18A1

Cortisol synthesis and secretion 0.025 Pbx1

NOD-like receptor signaling pathway 0.028 ITPR2, TRAF5

Progesterone-mediated oocyte maturation 0.034 PGR, CPEB2

Glycerophospholipid metabolism 0.035 Etnk1

DP vs. LB Inositol phosphate metabolism 0.010 MTMR1, IPMK

Cysteine and methionine metabolism 0.022 SRM

Phosphatidylinositol signaling system 0.024 MTMR1, IPMK

Protein phosphatase and associated

proteins

0.031 MTMR1, IPMK, SSH2, SH3RF1

PK vs. DB Transporters <0.001 SLCO1C1, SLC16A7, SLC34A1, SLC13A3, SLC25A47, SLC22A4, SLC26A1, OCLN,

CNNM2, ABCA4

Progesterone-mediated oocyte maturation 0.002 PGR, BRAF, ANAPC1, CPEB2

Ascorbate and aldarate metabolism 0.012 Ugt1a9

Lysosome 0.034 Cd164

General function prediction only 0.039 ABHD2

Glycosyltransferases 0.041 STT3B, Ganlt16, Ugt1a9, ST8SIA5

Butanoate metabolism 0.048 .-

PK vs. DP Transcription factors 0.004 PGR, FOXP1, Nr6a1, IRF4, Rfx2, Pbx1

Transporters 0.006 SLCO1C1, SLC35F1, SLC4A4, SLC25A47, SLC35F5, SLC22A4

Hedgehog signaling pathway 0.007 GSK3B, PTCH1

Other glycan degradation 0.011 MANBA

Lysosome 0.016 MANBA

Nuclear receptors 0.019 PGR, Nr6a1

Cortisol synthesis and secretion 0.027 Pbx1

PK vs. LB Phosphatidylinositol signaling system 0.002 PI4KA

Inositol phosphate metabolism 0.005 PI4KA

Cortisol synthesis and secretion 0.026 Pbx1

Membrane trafficking 0.026 PI4KA

DNA replication proteins 0.039 FOXP1, Pbx1

DB, DP, LB, and PK mean chickens producing dark blue, dark brown and greenish, light blue, and pink eggshell eggs, respectively.

assembled transcripts were produced. Detailed information
on data quality and mapping statistics is presented in
Supplementary Table 2. As a result, 6,275 candidate lncRNAs
were captured, with 3,060 known by blasting against the known
chicken lncRNAs in ALDB database and 3,215 new lncRNAs.
Of the new lncRNAs, there were 1,904 intergenic lncRNAs,
399 bidirectional lncRNAs, 426 antisense lncRNAs, 186 sense
lncRNAs, and 300 others (Figure 2).

Genomic Feature of lncRNAs
The comparison of differently expressed lncRNAs is presented
in Supplementary Figure 1B. Between the DB and DP, there

were one upregulated and four downregulated genes in the DP
group compared to the DB group (p < 0.05). Between the DB
and LB, there were three upregulated and eight downregulated
genes in the LB group compared to the DB group (p <

0.05). Between the DP and LB, there were one upregulated
and four downregulated genes in the LB group compared
to the DP group (p < 0.05). We found that as compared
to pink-shell eggs, there were eight upregulated and two
downregulated genes in dark green-shell eggs, six upregulated
and one downregulated gene in green-blue-shell eggs, and five
upregulated and one downregulated gene in light green-shell
eggs (p < 0.05).
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FIGURE 2 | (A) represents lncRNAs including intergenic lncRNAs, bidirectional lncRNAs, antisense lncRNAs, sense lncRNAs, and other lncRNAs. (B) represents

differently expressed lncRNAs between comparisons. DB, DP, LB, and PK mean chickens producing dark blue, dark brown and greenish, light blue, and pink eggshell

eggs, respectively.

There are more known (16,910 on average) and novel
mRNAs (14,207 on average) than known (1,430 on
average) and novel lncRNAs (2,083 on average) in all
the four groups. The heatmaps displayed differentially
expressed lncRNAs (Supplementary Figure 1) and mRNAs
(Supplementary Figure 2).

Genomic Feature of mRNAs
In relation to the mRNA, 24,102 (79.67%) known transcripts
and 199,963 new transcripts were obtained. The differently
expressed genes between comparisons are shown in
Supplementary Figure 3. Furthermore, the relative foldchange
of those selected genes in qPCR was consistent with RNA-
seq results, suggesting that the transcript identification and
abundance estimation were highly reliable (Figure 3).

There were no significant GO terms between DB and DP.
Furthermore, a total of seven significant KEGG pathways
including cortisol synthesis and secretion, lipid metabolism,
and glycerophospholipid metabolism were obtained (p <

0.05, Table 1). SLC family genes were the main targeted
genes (p < 0.05, Table 1). Besides, gelsolin (GSN), cubilin
(CUBN), desmoplakin (DSP), heparan sulfate proteoglycan
2 (HSPG2), fibronectin 1 (FN1), filamin A (FLNA), pre-B-
cell leukemia transcription factor 1 (Pbx1), inositol 1,4,5-
trisphosphate receptor type 2 (ITPR2), caspase 6 (CASP6),
phospholipid phosphatase related 4 (PLPPR4), and ethanolamine
kinase 1 (Etnk1) were also differently enriched between groups, of
which the relative expression of GSN, CUBN, Pbx1, and PLPPR4
were upregulated, whereas DSP, HSPG2, FN1, FLNA, ITPR2,
CASP6, Etnk1, and SLC family genes were downregulated in the
former group as compared to the latter group (p < 0.01).

Between the comparison of DB vs. LB, the GO term
hindbrain tangential cell migration of biological process was
significantly enriched, with targeting on gene PLXNA2 (p <

0.05, Supplementary Table 3). Cortisol synthesis and secretion
and five other pathways were significantly enriched between
the two groups (p < 0.05, Table 1). CUBN, DSP, Annexin A11
(ANXA11), Collagen type XVIII alpha 1 chain (COL18A1), Pbx1,
ITPR2, TNF receptor associated factor (TRAF5), progesterone
receptor (PGR), cytoplasmic polyadenylation element binding
protein 2 (CPEB2), Etnk1, and SLC family genes were targeted
genes between the two groups, of which the relative expression of
SLC family genes, CUBN, COL18A1, Pbx1, ITPR2, TRAF5, PGR,
and CPEB2 was upregulated, while that of DSP, ANXA11, and
Etnk1 was downregulated in the DB group as compared to the
LB group (p < 0.05, Table 1).

The GO term of phosphatidylinositol monophosphate
phosphatase activity with targeted gene MTMR1 was
found to be enriched between DP and DL (p < 0.05,
Supplementary Table 3). Inositol phosphate metabolism,
cysteine and methionine metabolism, phosphatidylinositol
signaling system, and protein phosphatase and associated
proteins were identified to be enriched between the two groups
(p < 0.05, Table 1). Targeted genes myotubularin related
protein 1 (Mtmr1), inositol polyphosphate multikinase (IPMK),
spermidine synthase (SRM), slingshot protein phosphatase 2
(SSH2), and SH3 domain containing ring finger 1 (SH3RF1)
were identified, and the relative expression of all these genes was
upregulated in the DP group compared to the DL group (p <

0.05, Table 1).
There were no significant GO terms between the comparison

of PK vs. DB. However, seven pathways including transporters,
progesterone-mediated oocyte maturation, ascorbate and
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FIGURE 3 | Relative mRNA expression of related genes. DB, DP, LB, and PK mean chickens producing dark blue, dark brown and greenish, light blue, and pink

eggshell eggs, respectively.

aldarate metabolism, lysosome, glycosyltransferases, and
butanoate metabolism were found to be significantly enriched
(p < 0.05, Table 1). These pathways were related to targeted
genes including SLC family genes, occludin (Ocln), adaptor
related protein complex 1 gamma 1 subunit (AP1G1), ATP
binding cassette subfamily A member 4 (ABCA4), PGR, heat
shock protein 90 (Hsp90), UDP glycosyltransferase (UGT),
L-gulono-gamma-lactone oxidase (GULO), raf proto-oncogene,
serine/threonine kinase (RAF), legumain (LGMN), anaphase
promoting complex subunit 1 (ANAPC1), CPEB, CD164,
abhydrolase domain containing 2 (ABHD2), polypeptide
N-acetylgalactosaminyltransferase 16 (Galnt16), and ST8 alpha-
N-acetyl-neuraminide alpha-2,8-sialyltransferase 5 (ST8SIA5), of
which the relative expression of gene Ocln, PGR, CPEB, Hsp90,
UGT, GULO, Galnt16, and ST8SIA5 was upregulated, while
ABCA4, RAF, CD164, LGMN, CPEB, and SLC family genes were
downregulated in the former group as compared to the latter
group (p < 0.01).

There were eight GO terms and one GO term significantly
enriched for cellular components and molecular function
between PK and DP (p < 0.05, Supplementary Table 2). These
GO terms weremainly involved with immune activities including
targeted genes ENSGALT00000018840 and TCONS_00059917.
Furthermore, transcription factors, transporters, hedgehog
signaling pathway, lysosome, nuclear receptors, and cortisol
synthesis and secretion were identified to be enriched between
the two groups (p < 0.05, Table 1). Targeted genes, such as SLC
family genes, PGR, forkhead box P1 (FOXP1), nuclear receptor

subfamily 6 group A member 1 (Nr6a1), interferon regulatory
factor 4 (IFR4), Pbx1, glycogen synthase kinase 3 alpha (GSK3B),
patched 1 (PTCH1), and mannosidase beta (MANBA), were
located, of which the relative expression of Nr6a1, GSK3B, Pbx1,
and PTCH1was upregulated, while PGR, FOXP1, IFR4, MANBA,
and SLC family genes were downregulated in the former group
as compared to the latter group (p < 0.01).

Between the PK and LB groups, four and three GO terms
for molecular function and biological process (p < 0.05,
Supplementary Table 2) and pathways including themetabolism
of protein family and cortisol synthesis and secretion pathways
with genes phosphatidylinositol 4-kinase alpha (PI4KA), Pbx1,
and FOXP1 were significantly enriched (p < 0.05, Table 1),
of which the relative expression of Pbx1 was regulated, while
PI4KA and FOXP1 were downregulated in the former group as
compared to the latter group (p < 0.01).

Interaction Analyses of lncRNAs and
mRNA
The RNAplex was used to find the interaction between two
long-chain RNA, to predict the complementary binding between
antisense/cis lncRNA and mRNA. The program includes the
Vienna RNA package and calculates the minimum free energy
according to its thermodynamic structure to predict the best
base-pairing relationship.

For the comparison of DB vs. DP, there were 153 differentially
expressed lncRNAs. ECM–receptor interaction with candidate
gene CD4 binding to lncRNA TCONS_00009117 was identified
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TABLE 2 | Differently enriched KEGG pathways with targeted genes of lncRNA and mRNA of comparisons between chickens with different eggshell colors.

Comparison Pathway p lncRNA mRNA Symbol

DB vs. DP ECM–receptor interaction 0.040 TCONS_00009117 ENSGALT00000037104 CD4

DB vs. LB Cell adhesion molecules 0.042 TCONS_00009117 ENSGALT00000037104 CD4

RNA transport 0.049 TCONS_00067464 ENSGALT00000008544 -

DP vs. LB Focal adhesion 0.011 TCONS_00002665 ENSGALT00000082154 VWF

PK vs. DB Cytokine–cytokine receptor interaction 0.005 TCONS_00044519 ENSGALT00000000328 GH

Jak–STAT signaling pathway 0.031 TCONS_00044523 ENSGALT00000000328 GH

PK vs. DP Cytokine–cytokine receptor interaction 0.018 TCONS_00034554 ENSGALT00000070014 CX3CR1

SNARE interactions in vesicular transport 0.037 TCONS_00075755 ENSGALT00000082865 -

Neuroactive ligand–receptor interaction 0.038 TCONS_00044519 ENSGALT00000000328 GH

Tryptophan metabolism 0.046 TCONS_00047705 ENSGALT00000016138 HAAO

PK vs. LB ECM–receptor interaction 0.040 TCONS_00000515 ENSGALT00000012832 LAMB1

Spliceosome 0.050 ENSGALT00000029552 ENSGALT00000040616 ENSGALT00000040616

DB, DP, LB, and PK mean chickens producing dark blue, dark brown and greenish, light blue, and pink eggshell eggs, respectively.

to be significantly different between groups (p < 0.05,
Table 2). With respect to cis analysis, 70 targeted lncRNAs
were found to be involved in the adjacent protein coding of
mRNA. These related mRNAs were significantly enriched
on toll-like receptor signaling pathway, retinol metabolism,
phagosome, spliceosome, glycosphingolipid biosynthesis-
ganglio series, glycerolipid metabolism, glycerophospholipid
metabolism, and ECM–receptor interaction different pathways
(p < 0.05, Table 3). These pathways were mainly enriched
on genes toll-like receptor 2 family member A (TLR2A),
retinol saturas (RETSAT), Catenin beta like 1 (CTNNBL1),
ST6 N-acetylgalactosaminide alpha-2,6-sialyltransferase 4
(ST6GALNAC4), lysocardiolipin acyltransferase 1 (LCLAT1),
and diacylglycerol kinase zeta (DGKZ).

Between the comparison of DB vs. LB, 153 differentially
expressed lncRNAs were identified, of which 9 lncRNAs
were associated with the binding to sense chain of mRNA
by antisense analysis. Cell adhesion molecules with targeted
gene CD4 binding to lncRNA TCONS_00009117 and RNA
transport pathways were differently identified (p< 0.05,Table 2).
For cis analysis, 54 targeted lncRNAs were found to be
involved in the adjacent protein coding of mRNA. TGF-beta
signaling pathway, glycosphingolipid biosynthesis-ganglio series,
pyruvate metabolism, propanoate metabolism, biosynthesis
of secondary metabolites, selenocompound metabolism, and
metabolic pathways were identified to be different between
groups (p < 0.05, Table 3). These pathways were found to relate
with differentially expressed genes including Sp1 transcription
factor (Sp1), ST6GALNAC4, LCLAT1, and thioredoxin reductase
1 (TXNRD1).

Between the comparison of DP vs. LB, there were 224
differentially expressed lncRNAs, of which 18 lncRNAs were
associated with the binding to sense chain of mRNA by
antisense analysis. Focal adhesion pathway with a candidate
gene von Willebrand factor (VWF) binding to lncRNA
TCONS_00002665 was identified between groups (p < 0.05,
Table 2). For cis analysis, 115 targeted lncRNAs were found
to be involved in the adjacent protein coding of mRNA.

These related mRNAs were significantly enriched on 19,
41, and 223 GO terms for cellular components, molecular
function, and biological process including pigment metabolic
process, respectively (p < 0.05). Retinol metabolism, other
types of O-glycan biosynthesis, drug metabolism—other
enzymes, cell cycle, N-glycan biosynthesis, Wnt signaling
pathway, biosynthesis of secondary metabolites, p53 signaling
pathway, and neurotrophin signaling pathways were identified
(p < 0.05, Table 3). RETSAT, glucoside xylosyltransferase
1 (GXYLT1), hypoxanthine phosphoribosyltransferase
1 (HPRT1), MDM2 proto-oncogene (MDM2), tyrosine
3-monooxygenase/tryptophan 5-monooxygenase activation
protein epsilon (YWHAE), mannosidase, alpha, class 1C,
member 1 (MAN1C1), chitobiosyldiphosphodolichol beta-
mannosyltransferase (ALG1), APC, mannose phosphate
isomerase (MPI), and caspase 14, apoptosis-related cysteine
peptidase (CASP14) as candidate genes were identified to be
involved with these pathways.

Between the comparison of PK vs. DB, 275 differentially
expressed lncRNAs were identified. Furthermore, 23 targeted
lncRNAs of antisense with functional annotation information
were identified. Environmental information processing of
cytokine–cytokine receptor interaction and Jak–STAT signaling
pathways with candidate gene GH binding to TCONS_00044519
and TCONS_00044523 lncRNAs was identified (p < 0.05,
Table 2). For cis analysis, 99 targeted genes with functional
annotation information were obtained (p < 0.05). Besides,
proteasome, TGF-beta signaling, vitamin B6 metabolism,
selenocompound metabolism, retinol metabolism, sulfur
metabolism, glycosphingolipid biosynthesis-ganglio series,
spliceosome, and cell cycle pathways with candidate genes
including proteasome subunit beta 1/3 (PSMB1/3), Sp1,
3,-phosphoadenosine 5,-phosphosulfate synthase 1 (PAPSS1),
TXNRD1, RETSAT, RNA binding motif protein, X-linked
like 1 (RBMXL1), phosphatase, orphan 2 (PHOSPHO2), and
retinoblastoma 1 (RB1) were obtained (p < 0.05, Table 3).

Between the comparison of PK vs. DP, there were 368
differentially expressed lncRNAs, of which 34 targeted lncRNAs
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TABLE 3 | Differently enriched KEGG pathways with targeted genes of lncRNA of comparisons between chickens with different eggshell colors.

Comparison Pathway p Targeted genes lncRNA

DB vs. DP Toll-like receptor signaling pathway < 0.001 TLR2A TCONS_00055576

Retinol metabolism < 0.001 RETSAT ENSGALT00000081853

Phagosome < 0.001 TLR2A TCONS_00055576

Spliceosome < 0.001 CTNNBL1 TCONS_00038047

Glycosphingolipid biosynthesis-ganglio series 0.002 ST6GALNAC4 ENSGALT00000072290

Glycerophospholipid metabolism 0.045 LCLAT1, DGKZ ENSGALT00000048295

DB vs. LB TGF-beta signaling pathway < 0.001 Sp1 TCONS_00054721

Glycosphingolipid biosynthesis-ganglio series < 0.001 ST6GALNAC4 ENSGALT00000072290

Pyruvate metabolism 0.002 ENSGALT00000074835 ENSGALT00000051137

Propanoate metabolism 0.003 ENSGALT00000074835 ENSGALT00000051137

Biosynthesis of secondary metabolites 0.016 LCLAT1 TCONS_00050772

Selenocompound metabolism 0.034 TXNRD1 TCONS_00008143

Metabolic pathways 0.039 ST6GALNAC4, DPM2, LCLAT1 ENSGALT00000072290

DP vs. LB Retinol metabolism < 0.001 RETSAT ENSGALT00000081853

Other types of O-glycan biosynthesis 0.011 GXYLT1 ENSGALT00000069802

Drug metabolism-other enzymes 0.016 HPRT1, MDM2 TCONS_00058295

Cell cycle 0.029 YWHAE, MDM2 ENSGALT00000071577

N-Glycan biosynthesis 0.033 MAN1C1, ALG1 TCONS_00040933

Wnt signaling pathway 0.038 APC TCONS_00040933

Biosynthesis of secondary metabolites 0.045 HPRT1, MPI ENSGALT00000009843

p53 signaling pathway 0.046 MNM2, CASP14 ENSGALT00000071577

Neurotrophin signaling pathway 0.046 - ENSGALT00000077105

PK vs. DB Proteasome < 0.001 PSMB1/3 ENSGALT00000088176

TGF-beta signaling pathway < 0.001 Sp1 TCONS_00040436

Selenocompound metabolism < 0.001 PAPSS1, TXNRD1 TCONS_00056173

Retinol metabolism < 0.001 TXNRD1, RETSAT ENSGALT00000081853

Sulfur metabolism < 0.001 RETSAT, TXNRD1 TCONS_00056173

Glycosphingolipid biosynthesis-ganglio series 0.003 RETSAT ENSGALT00000072290

Spliceosome 0.024 RBMXL1 ENSGALT00000070508

Vitamin B6 metabolism 0.025 PHOSPHO2 ENSGALT00000085067

Cell cycle 0.025 RB1 ENSGALT00000051325

PK vs. DP beta-Alanine metabolism < 0.001 HIBCH TCONS_00071353

p53 signaling pathway < 0.001 SESN1, CASP14 ENSGALT00000078895

Propanoate metabolism < 0.001 HIBCH TCONS_00071353

RNA degradation 0.001 XRN1 ENSGALT00000084047

Porphyrin and chlorophyll metabolism 0.002 FECH ENSGALT00000087341

Valine, leucine and isoleucine degradation 0.002 HIBCH TCONS_00071353

Sulfur metabolism 0.003 PAPSS1 TCONS_00056173

PK vs. LB Retinol metabolism < 0.001 RETSAT ENSGALT00000081853

N-Glycan biosynthesis 0.003 MAN1C1, ALG1 TCONS_00040933

Cardiac muscle contraction 0.008 COX6A1 TCONS_00023198

Metabolic pathways 0.013 MAN1C1, ALG1 TCONS_00040933

Oxidative phosphorylation 0.014 COX6A1 TCONS_00023198

Protein processing in endoplasmic reticulum 0.032 MAN1C1, ALG1 TCONS_00040933

SNARE interactions in vesicular transport 0.048 VAMP3 TCONS_00039175

DB, DP, LB, and PK mean chickens producing dark blue, dark brown and greenish, light blue, and pink eggshell eggs, respectively.

associated with the binding to sense chain of mRNA by
antisense analysis. Cytokine–cytokine receptor interaction,
SNARE interactions in vesicular transport, neuroactive ligand–
receptor interaction, and tryptophan metabolism pathways with

candidate genes C-X3-C motif chemokine receptor 1(CX3CR1),
GH, and 3-hydroxyanthranilate 3,4-dioxygenase (HAAO) were
significantly identified (p < 0.05, Table 2). In relation to cis
analysis, 168 targeted lncRNAs were located, having potential
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roles involving the adjacent protein coding of mRNA. These
related mRNAs were significantly enriched on 44, 35, and
57 GO terms for cellular components, molecular function,
and biological process, respectively (p < 0.05). Beta-alanine
metabolism, p53 signaling pathway, propanoate metabolism,
RNAdegradation, porphyrin and chlorophyll metabolism, valine,
leucine, and isoleucine degradation, and sulfur metabolism
pathways with 3-hydroxyisobutyryl-CoA hydrolas (HIBCH),
sestrin 1 (SESN1), CASP14, 5,-3, exoribonuclease 1 (XRN1),
ferrochelatase (FECH), and PAPSS1 as candidate genes were
significantly identified between groups (p < 0.05, Table 3).

Between the comparison of PK vs. LB, 189 differentially
expressed lncRNAs were identified, of which 10 lncRNAs were
associated with the binding to sense chain of mRNA by
antisense analysis. These targeted mRNAs were enriched on
15, 3, and 48 GO for cellular components, molecular function,
and biological process, respectively (p < 0.05). ECM–receptor
interaction and spliceosome different pathways were located
(p < 0.05, Table 2). For cis analysis, 67 targeted lncRNAs
were found to be involved in the adjacent protein coding of
mRNA. These related mRNAs were significantly enriched on
44, 35, and 57 GO terms for cellular components, molecular
function, and biological process, respectively (p < 0.05). Retinol
metabolism, N-Glycan biosynthesis, cardiac muscle contraction,
oxidative phosphorylation, protein processing in endoplasmic
reticulum, fatty acid elongation, biosynthesis of unsaturated
fatty acids, and SNARE interactions in vesicular transport were
significantly identified between groups (p < 0.05, Table 3).
Besides, candidate genes RETSAT, mannosidase, alpha, class 1C,
member 1 (MAN1C1), ALG1, cytochrome c oxidase subunit 6A1
(COX6A1), and vesicle-associated membrane protein 3 (VAMP3)
were identified between groups.

DISCUSSION

Profiling of the mRNA Sequencing
With respect to the coding proteins, we found that different
GO terms between pink-eggshell and blue-eggshell chickens
were mainly targeting immune- and transporter-related terms
with SLC family, IgJ, CD family, topoisomerase (DNA) III beta
(Top3b), and MTMR genes. Our results again provide evidence
of the candidate gene SLCO1B3 for a causative mutation on
pigment deposition of the blue eggshell phenotype (5) and
also an immune relative implication. Within those blue-eggshell
chickens, the GO terms hindbrain tangential cell migration and
phosphatidylinositol monophosphate phosphatase activity with
targeted gene Plxna2 and Mtmr1 were specifically identified
in dark blue-eggshell chickens. Both the Plxna2 and Mtmr1
are known to refer to nerve systems (19) (Pasterkamp), which
indicates divergence of nerve function among different degrees
of blue-eggshell chickens.

In relation to the KEGG pathway, the lysosome pathway
targeted with immune-related genes CD164 and IRF4 was
significantly enriched in the DB as compared to the PK group.
Protoporphyrin IX, as a precursor of heme, is ubiquitously
present in all living cells in small amounts, which is involved

with inflammation (20). The zinc protoporphyrin disodium (Zn-
PP-2Na) is demonstrated to have anti-inflammatory properties
by inhibiting type II collagen-induced arthritis in mice (21). In
an overview of the differently enriched pathways, we found that
several pathways of the comparison of PK vs. DP coincided with
both the comparison of PK vs. DB and PK vs. LB. Besides, each
comparison has its pathways varied among other comparisons.
These indicate that different genetic mechanisms of chickens
with different eggshell colors and the median color between pink
and blue did, to some extent, overlap both the two biological
functions of pink- and dark blue-eggshell chickens. This finding
is also evidenced by the current results that showed that the
relative expression of the SLC family is higher in the DB and the
DP groups than in the PK group, and in the DB group than in
the DP and the LB groups. Notably, targeted SLC family-related
genes were not different between the comparison of chickens
producing light blue eggshell eggs and pink shell eggs, as well
as chickens with light blue shell and brown-blue shell eggs.
These imply that the mechanism of deposition of blue pigment
is different between the light and dark blue eggshell, of which the
deposition of dark and brown-greenish blue is involved with the
SLC family gene, but not the light blue pigment.

Clearly, the transporter pathway is mainly targeting SLC
family genes and is involved with chickens producing pink and
light/brown eggs. The progesterone-mediated oocyte maturation
pathway with targeted gene PGR was significantly enriched in
dark eggshell chickens as compared to light and pink-eggshell
chickens. This implies that the progesterone may be involved
with the pigment deposition when oviposition occurs. The cuticle
is related to the deposition of, or contains to some extent, the
pigment deposition of the brown eggshell pigment (22). Indeed,
the progesterone, as a factor controlling cuticle deposition, is also
related to pigment deposition (23). This leads to an explanation
that shell strength associated with cuticle deposition increased
as the darkness of the shell increased (24). Besides, the cortisol
synthesis and secretion pathway and the relative expression of
targeted gene Pbx1 upregulated with the darkness of the shell
decreased. It is generally known that the cuticle and pigment
deposition is affected by a mild environmental stressor that
further causes temporary inhibition of the reproductive axis
and an increase in circulating corticosteroids (25). A previous
study demonstrated that environmental contamination (one of
the environmental stressors) negatively correlated with the blue-
green chroma (26). These indicate that the increased stress may
be associated with the deceased coloration of eggshell, but more
work is needed to investigate what induces its release.

Profiling of the lncRNA Sequencing
LncRNAs in the chicken genome exhibit similar features to
those reported in other species, for instance, a significant
expression correlation with adjacent protein-coding genes and a
high level of tissue specificity. Enrichment analyses of lncRNA-
adjacent protein-coding genes also show that chicken lncRNAs
likely regulate transcription, cell proliferation, apoptosis, and
development (27). In this study, we consider that the potential
of lncRNAs would advance our understanding of the genetic
mechanisms underlying the trait of pigment deposition of layers.

Frontiers in Veterinary Science | www.frontiersin.org 9 October 2021 | Volume 8 | Article 736387128

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Chen et al. Interaction Analysis of mRNA and lncRNA

Our lncRNA results showed low expression, shorter transcript
length, and fewer exons among species as compared to mRNA,
which agree with the results of previous studies and indicate
that the lncRNAs identified here were reliable (28, 29). In an
overview, we found some enriched pathways such as cell cycle
related to lncRNAs.

Significantly different lncRNAs were associated with the
binding to sense chain of mRNA by antisense analysis, of which
those mRNAs were further used for GO term and KEGG analysis.
As compared to the profiling of mRNA sequencing, there are
relatively fewer GO terms and pathways relating to targeted
lncRNAs associating with mRNAs. It is likely that the significant
pathways between comparisons of PK and different blue shell
chickens were mainly on immune- and nerve-related pathways,
which is consistent with the above mRNA profiling. The pathway
cytokine–cytokine receptor interaction is known to have effects
on the activation of interleukin-3 (30), while the Jak–STAT
signaling pathway is involved with innate immune response in
invertebrates (31) and regulates the gene expression of IL-6 and
IL-10 (32). Besides, SNARE proteins are known to be linked to
exocytosis of insulin granules in β cells (33). The tryptophan
metabolism is associated with the body discoloration of crustacea
(34) and the regulation of pigment synthesis in Malassezia furfur
(35). Notably, the dysfunction of tryptophan metabolism is
relative to neurodegenerative diseases, such as tuberculosis (36)
and schizophrenia (37). This agrees with the role of the transcript
profiling of coding protein on nerve-related function between
chickens producing pink and blue shell eggs. These pathways
were targeted on GH, CX3CR1, HAAO, LAMB1, and ENS
GALT00000040616 binding to several lncRNAs including ENS
GALT00000000328, ENSGALT00000070014, ENSGALT00000
082865, ENSGALT00000016138, ENSGALT00000012832, and
ENSGALT00000040616 by antisense analysis, which indicates
that these lncRNAs may be involved with the base pairing, gene
silencing, and transcription and stability of those bindingmRNA.
Interestingly, except for some pathways relative to lipids and
amino acid metabolisms, porphyrin and chlorophyll metabolism
with targeted gene FECH and oxidative phosphorylation and
cardiacmuscle contraction pathways with targeted geneCOX6A1
were found between pink-eggshell and blue-eggshell chickens.
These pathways and genes are known to be linked to the color
pigments, which implies that lncRNAs also play an important
role in affecting adjacent protein coding of mRNAs.

LncRNAs including TCONS_00009117, TCONS_00067464,
and TCONS_00002665 were identified to be involved with
the eggshell color deposition. These genes and lncRNAs are
relative to ECM–receptor interaction, cell adhesion molecules,
RNA transport, and focal adhesion pathways. Among chickens
producing different blue color eggs, targeted genes CD4 and
VWF are located. The immune-related gene found between dark
blue-eggshell chickens and brown greenish eggshell chickens
are also supported by the cis analysis that shows that the
toll-like receptor signaling pathway with the TLR family gene
that serves as an immune-related indicator (38) was enriched
between the two groups. Among the comparisons of the three
blue shell chickens, most pathways were mainly enriched on
lipid-related metabolisms, such as retinol metabolism, pyruvate

metabolism, propanoate metabolism, O-glycan biosynthesis,
N-Glycan biosynthesis, glycerophospholipid metabolism, and
glycosphingolipid biosynthesis-ganglio series pathways. The
glycerophospholipid metabolism in both the protein-coding
and non-coding genes related to pathways was found between
chickens producing different degrees of blue eggshell color.
The glycerophospholipid metabolism has predictive value
on acute graft vs. host disease (1). The disturbance of
hippocampal glycerophospholipid metabolism may result in an
imbalance of hippocampal sphingolipid and glycerophospholipid
metabolism (39). These literatures somehow indicate that the
dark blue color may play a protective role in bacterial infection
to animals, but further investigation is needed to explain
the interaction between lipid-related metabolisms and blue
pigment deposition. The glycerophospholipid-related pathways
are also found in mRNA sequencing, suggesting that the
lncRNAs (ENSGALT00000072290) exerted similar functions
in color formation by modulating the adjacent proteins.
Accordingly, Plxna2, Mtmr1,Pbx1, PGR, FECH, COX6A1,
CD4, and VWF may be key candidate genes, and ENS
GALT00000000328, ENSGALT00000070014, ENSGALT00000
082865, ENSGALT00000016138, ENSGALT00000012832, ENS
GALT00000040616, TCONS_00009117, TCONS_00067464, and
TCONS_00002665 are key lncRNAs related to the blue
color deposition.

CONCLUSION

In conclusion, transcriptome sequencing was first used in this
study to generate the expression profile of lncRNAs and mRNAs
in the chicken uterus. Integrating analysis of lncRNA and mRNA
profiles of most pathways was mainly enriched on lipid-related
metabolisms as found in mRNA sequencing. The lncRNAs
exerted similar functions in color formation by modulating,
including pigment disposition and immune- and lipid-related
metabolisms. Our results provide a catalog of chicken uterine
lncRNAs and genes worthy of further studies to understand their
roles in selection for blue eggshell color layers.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories
and accession number(s) can be found at: NCBI
[accession: PRJNA746050].

ETHICS STATEMENT

The animal study was reviewed and approved by the Animal Care
Committee of Foshan University (Approval ID: FOSU#080).

AUTHOR CONTRIBUTIONS

HL obtained the funding and designed this project. SC, KC, FL,
JD, ZM, JX, GL, and HL performed the experiment. SC, KC, and
ZM analyzed and interpreted the data. SC, KC, and HL drafted

Frontiers in Veterinary Science | www.frontiersin.org 10 October 2021 | Volume 8 | Article 736387129

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Chen et al. Interaction Analysis of mRNA and lncRNA

and revised the manuscript. All authors came to an agreement
for publication.

FUNDING

This work was supported by the Guangdong Provincial Key
Laboratory of Animal Molecular Design and Precise Breeding
(2019B030301010), the Key Laboratory of Animal Molecular
Design and Precise Breeding of Guangdong Higher Education
Institutes (2019KSYS011), and the Germplasm Improvement
Talent Base in Guizhou Changshun Tiannong Green Shell Laying
Hen Industrial Co. Ltd. The funder was not involved in the study
design, collection, analysis, interpretation of data, the writing of
this article, or the decision to submit it for publication.

ACKNOWLEDGMENTS

We express our sincere gratitude to the staff of Guizhou
Nayong Yuanshengmuye Ltd., Bijie, 553300, Guizhou, China,
for the support during the study and for providing the
Weining chick. We sincerely appreciate Mr. Rong He and
all people in the Qianlong organic farm for their help to
the study.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fvets.
2021.736387/full#supplementary-material

REFERENCES

1. Liu Y, Huang A, Chen Q, Chen X, Fei Y, Zhao X, et al. A distinct
glycerophospholipid metabolism signature of acute graft versus
host disease with predictive value. JCI Insight. (2019) 4:e129494.
doi: 10.1172/jci.insight.129494

2. Lang MR, Wells JW. A review of eggshell pigmentation. Worlds Poult Sci J.

(1987) 43:238–46. doi: 10.1079/WPS19870016
3. Ito S. Celadon: an eggshell color mutation in Japanese quail. J Hered. (1993)

84:145–7. doi: 10.1093/oxfordjournals.jhered.a111301
4. Kennedy GY, Vevers HG. A survey of avian eggshell pigments.

Comp. Biochem. Physiol. B, Biochem. (1976) 55:117–23.
doi: 10.1016/0305-0491(76)90183-8

5. Wang Z, Qu L, Yao J, Yang X, Li G, Zhang Y, et al. An EAV-HP insertion in 5′

flanking region of SLCO1B3 causes blue eggshell in the chicken. PLoS Genet.
(2013) 9:e1003183. doi: 10.1371/journal.pgen.1003183

6. Mercer TR, Mattick JS. Structure and function of long noncoding
RNAs in epigenetic regulation. Nat Struct Mol Biol. (2013) 20:300–7.
doi: 10.1038/nsmb.2480

7. Li T, Wang S, Wu R, Zhou X, Zhu D, Yong Z. Identification of
long non-protein coding RNAs in chicken skeletal muscle using next
generation sequencing.Genomics. (2012) 99:292–8. doi: 10.1016/j.ygeno.2012.
02.003

8. Tripathi V, Shen Z, Chakraborty A, Giri S, Freier SM, Wu X, et al. Long
noncoding RNA MALAT1 controls cell cycle progression by regulating the
expression of oncogenic transcription factor B-MYB. PLoS Genet. (2013)
9:e1003368. doi: 10.1371/journal.pgen.1003368

9. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, et al.
lincRNAs act in the circuitry controlling pluripotency and differentiation.
Nature. (2011) 477:295–U60. doi: 10.1038/nature10398

10. Ng JH, Ng HH. LincRNAs join the pluripotency alliance. Nat Genet. (2010)
42:1035–36. doi: 10.1038/ng1210-1035

11. Borowska D, Rothwell L, Bailey RA, Watson K, Kaiser P. Identification
of stable reference genes for quantitative PCR in cells derived from
chicken lymphoid organs. Vet Immunol Immunopathol. (2016) 170:20–4.
doi: 10.1016/j.vetimm.2016.01.001

12. Edwards R. Quality control and preprocessing of metagenomic datasets.
Bioinformatics. (2011) 27:863–4. doi: 10.1093/bioinformatics/btr026

13. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner
with low memory requirements. Nat Methods. (2015) 12:357–60.
doi: 10.1038/nmeth.3317

14. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg
S. StringTie enables improved reconstruction of a transcriptome from
RNA-seq reads. Nat Biotechnol. (2015) 33:290–95. doi: 10.1038/nb
t.3122

15. Kong L, Yong Z, Ye ZQ, Liu XQ, Ge G. CPC: assess the protein-coding
potential of transcripts using sequence features and support vector machine.
Nucleic Acids Res. (2007) 35:W345–9. doi: 10.1093/nar/gkm391

16. UA Ø, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti, G. Long
noncoding RNAs with enhancer-like function in human cells. Cell. (2010)
143:46–58. doi: 10.1016/j.cell.2010.09.001

17. Harrow J, Denoeud F, Frankish A, Reymond A. GENCODE: producing
a reference annotation for ENCODE. Genome Biology. (2006) 7:1–9.
doi: 10.1186/gb-2006-7-s1-s4

18. Frazee AC, Pertea G, Jaffe AE, Langmead B, Salzberg SL, Leek, JT. Ballgown
bridges the gap between transcriptome assembly and expression analysis. Nat
Biotechnol. (2015) 33:243. doi: 10.1038/nbt.3172

19. Pasterkamp RJ, Verhaagen J. Emerging roles for semaphorins in
neural regeneration. Brain Res Brain Res Rev. (2001) 35:36–54.
doi: 10.1016/S0165-0173(00)00050-3

20. Metz R, Duhadaway JB, Rust S, Munn DH, Muller AJ. Zinc protoporphyrin
IX stimulates tumor immunity by disrupting the immunosuppressive
enzyme indoleamine 2,3-Dioxygenase. Mol Cancer Ther. (2010) 9:1864.
doi: 10.1158/1535-7163.MCT-10-0185

21. Nagai H, Kitagaki K, Kuwabara K, Koda A. Anti-inflammatory properties of
zinc protoporphyrin disodium (ZnPP2Na). Agents Actions. (1992) 37:273–83.
doi: 10.1007/BF02028120

22. Samiullah S, Roberts JR. The location of protoporphyrin in the eggshell of
brown-shelled eggs. Poult Sci. (2013) 92:2783–88. doi: 10.3382/ps.2013-03051

23. Wilson PW, Suther CS, Bain MM, Icken W, Jones A, Quinlan-Pluck F, et al.
Understanding avian egg cuticle formation in the oviduct: a study of its origin
and deposition. Biol Reprod. (2017) 97:39–49. doi: 10.1093/biolre/iox070

24. Li A, Zhang J, Zhou Z, Wang L, Liu Y, Liu Y. ALDB: A domestic-
animal long noncoding RNA Database. PLoS ONE. (2015) 10:e0124003.
doi: 10.1371/journal.pone.0124003

25. Dunn IC, Wilson PW, D’Eath RB, Boswell T. Hypothalamic agouti-related
peptide mRNA is elevated during natural and stress-induced anorexia. J
Neuroendocrinol. (2015) 27:681–95. doi: 10.1111/jne.12295

26. Hanley D, Doucet SM. Does environmental contamination influence egg
coloration? a long-term study in herring gulls. J Appl Ecol. (2012) 49:1055–63.
doi: 10.1111/j.1365-2664.2012.02184.x

27. Kim HJ, Chung JK, Hwang DW, Dong SL, Kim S. In vivo imaging of miR-221
biogenesis in papillary thyroid carcinoma. Mol Imaging Biol. (2009) 11:71–8.
doi: 10.1007/s11307-008-0188-6

28. He Y, Ding Y, Zhan F, Zhang H, Han B, Hu G, et al. The conservation and
signatures of lincRNAs in Marek’s disease of chicken. Sci Rep. (2015) 5:15184.
doi: 10.1038/srep15184

29. Derrien T, Johnson R, Bussotti G, Tanzer A, Guigó R. The GENCODE
v7 catalog of human long noncoding RNAs: analysis of their gene
structure, evolution, and expression. Genome Res. (2012) 22:1775–89.
doi: 10.1101/gr.132159.111

30. Dey R, Ji K, Liu Z, Chen L. A cytokine–cytokine interaction in the assembly of
higher-order structure and activation of the interleukine-3:receptor complex.
PLoS ONE. (2009) 4:e5188. doi: 10.1371/journal.pone.0005188

31. Chen C, Eldein S, Zhou X, Sun Y, Gao J, Sun Y, et al. Immune function
of a Rab-related protein by modulating the JAK-STAT signaling pathway in

Frontiers in Veterinary Science | www.frontiersin.org 11 October 2021 | Volume 8 | Article 736387130

https://www.frontiersin.org/articles/10.3389/fvets.2021.736387/full#supplementary-material
https://doi.org/10.1172/jci.insight.129494
https://doi.org/10.1079/WPS19870016
https://doi.org/10.1093/oxfordjournals.jhered.a111301
https://doi.org/10.1016/0305-0491(76)90183-8
https://doi.org/10.1371/journal.pgen.1003183
https://doi.org/10.1038/nsmb.2480
https://doi.org/10.1016/j.ygeno.2012.02.003
https://doi.org/10.1371/journal.pgen.1003368
https://doi.org/10.1038/nature10398
https://doi.org/10.1038/ng1210-1035
https://doi.org/10.1016/j.vetimm.2016.01.001
https://doi.org/10.1093/bioinformatics/btr026
https://doi.org/10.1038/nmeth.3317
https://doi.org/10.1038/nbt.3122
https://doi.org/10.1093/nar/gkm391
https://doi.org/10.1016/j.cell.2010.09.001
https://doi.org/10.1186/gb-2006-7-s1-s4
https://doi.org/10.1038/nbt.3172
https://doi.org/10.1016/S0165-0173(00)00050-3
https://doi.org/10.1158/1535-7163.MCT-10-0185
https://doi.org/10.1007/BF02028120
https://doi.org/10.3382/ps.2013-03051
https://doi.org/10.1093/biolre/iox070
https://doi.org/10.1371/journal.pone.0124003
https://doi.org/10.1111/jne.12295
https://doi.org/10.1111/j.1365-2664.2012.02184.x
https://doi.org/10.1007/s11307-008-0188-6
https://doi.org/10.1038/srep15184
https://doi.org/10.1101/gr.132159.111
https://doi.org/10.1371/journal.pone.0005188
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Chen et al. Interaction Analysis of mRNA and lncRNA

the silkworm, Bombyx mori. Arch Insect Biochem Physiol. (2018) 97:e21434.
doi: 10.1002/arch.21434

32. Murray PJ. The JAK-STAT signaling pathway: input and output integration. J
Immunol. (2007) 178:2623–29. doi: 10.4049/jimmunol.178.5.2623

33. Gerber SH, Südhof T. Molecular determinants of regulated
exocytosis. Diabetes. (2002) 51(Suppl.1):S3–11. doi: 10.2337/diabetes.51.
2007.S3

34. Negishi S, Hasegawa Y, Naito J, Nagamura Y, Ishiguro I. Involvement of
tryptophan metabolism in the body color of crustacea. Adv Exp Med Biol.

(1999) 467:649–52. doi: 10.1007/978-1-4615-4709-9_83
35. Barchmann T, Hort W, Kramer HJ, Mayser P. Glycine as a

regulator of tryptophan-dependent pigment synthesis in Malassezia

furfur. Mycoses. (2011) 54:17–22. doi: 10.1111/j.1439-0507.2009.0
1758.x

36. Nair S, Baron H. Tryptophan metabolism in tuberculosis. Am Rev Respir Dis.

(1973) 108:977–9.
37. Benassi CA, Benassi P, Allegri G, Ballarin P. Tryptophan

metabolism in schizophrenic patients. J Neurochem. (1961) 7:264–70.
doi: 10.1111/j.1471-4159.1961.tb13512.x

38. Snyder-Mackler N, Sanz J, Kohn JN, Brinkworth JF, Tung J. Social status alters
immune regulation and response to infection in macaques. Science. (2016)
291:1041–5. doi: 10.1126/science.aah3580

39. Zheng P, Wu J, Zhang H, Perry SW, Yin B, Tan X, et al. The gut microbiome
modulates gut-brain axis glycerophospholipid metabolism in a region-specific

manner in a nonhuman primate model of depression. Mol Psychiatry. (2020)
26:2380–92. doi: 10.1038/s41380-020-0744-2

Conflict of Interest: FL and JD are employed by Guizhou Changshun Tiannong
Green Shell Laying Hen Industrial Co. Ltd.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Chen, Chen, Xu, Li, Ding, Ma, Li and Li. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Veterinary Science | www.frontiersin.org 12 October 2021 | Volume 8 | Article 736387131

https://doi.org/10.1002/arch.21434
https://doi.org/10.4049/jimmunol.178.5.2623
https://doi.org/10.2337/diabetes.51.2007.S3
https://doi.org/10.1007/978-1-4615-4709-9_83
https://doi.org/10.1111/j.1439-0507.2009.01758.x
https://doi.org/10.1111/j.1471-4159.1961.tb13512.x
https://doi.org/10.1126/science.aah3580
https://doi.org/10.1038/s41380-020-0744-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Genome-Wide Association Studies for
Growth Curves in Meat Rabbits
Through the Single-Step Nonlinear
Mixed Model
Yonglan Liao1, Zhicheng Wang1, Leonardo S. Glória2, Kai Zhang3, Cuixia Zhang4, Rui Yang4,
Xinmao Luo1, Xianbo Jia1, Song-Jia Lai 1* and Shi-Yi Chen1*

1Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University,
Chengdu, China, 2Laboratory of Animal Science, State University of Northern of Rio de Janeiro, Campos dos Goytacazes, Brazil,
3Sichuan Academy of Grassland Sciences, Chengdu, China, 4Animal Breeding and Genetics Key Laboratory of Sichuan
Province, Sichuan Animal Science Academy, Chengdu, China

Growth is a complex trait with moderate to high heritability in livestock and must be
described by the longitudinal data measured over multiple time points. Therefore, the used
phenotype in genome-wide association studies (GWAS) of growth traits could be either the
measures at the preselected time point or the fitted parameters of whole growth trajectory.
A promising alternative approach was recently proposed that combined the fitting of
growth curves and estimation of single-nucleotide polymorphism (SNP) effects into single-
step nonlinear mixed model (NMM). In this study, we collected the body weights at 35, 42,
49, 56, 63, 70, and 84 days of age for 401 animals in a crossbred population of meat
rabbits and compared five fitting models of growth curves (Logistic, Gompertz, Brody, Von
Bertalanffy, and Richards). The logistic model was preferably selected and subjected to
GWAS using the approach of single-step NMM, which was based on 87,704 genome-
wide SNPs. A total of 45 significant SNPs distributed on five chromosomes were found to
simultaneously affect the two growth parameters of mature weight (A) andmaturity rate (K).
However, no SNP was found to be independently associated with either A or K. Seven
positional genes, including KCNIP4, GBA3, PPARGC1A, LDB2, SHISA3, GNA13, and
FGF10, were suggested to be candidates affecting growth performances in meat rabbits.
To the best of our knowledge, this is the first report of GWAS based on single-step NMM
for longitudinal traits in rabbits, which also revealed the genetic architecture of growth traits
that are helpful in implementing genome selection.

Keywords: GWAS, longitudinal data, genomic analysis, NMM, body weight

INTRODUCTION

The domestic rabbit (Oryctolagus cuniculus) is an important livestock species in China and has been
intensively raised for producing meat, wool, and fur. The most commonly raised type is meat rabbits
in China, and the rabbit meat production reached 849,150 tons in 2016, which almost accounted for
about 60% of global production (Li et al., 2018). However, progresses on genetic selection and
improvement in rabbits have obviously lagged behind in comparison with other livestock species;
therefore, the Chinese meat rabbit industry is still largely depending on these imported breeds, such
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as the Hyla, Hycole, and Hyplus rabbits from France (Qin, 2019).
One of the important reasons is the serious lack of relevant
studies conducted in rabbits, such as the genome-wide association
studies (GWAS) and genomic selection (GS) for the economically
important traits. Recently, some pioneer studies were published
about the GWAS (Sosa-Madrid et al., 2020; Yang et al., 2020;
Bovo et al., 2021) and GS (Chen et al., 2021; Helal et al., 2021;
Mancin et al., 2021) in rabbits.

Growth is a complex and economically important trait with
moderate to high estimates of heritability in rabbits (Akanno and
Ibe, 2005; Dige et al., 2012; Soliman et al., 2014). In contrast to
traits that are collected at a single time point (such as litter size
and carcass performances), growth must be described by the
longitudinal data repeatedly measured over multiple time points.
Therefore, the relevant genetic studies on growth in livestock can
be implemented through different approaches. The first approach
is to select one or a few representative time points and subject
them to separate analysis; for instance, the GWAS of growth traits
were separately performed among multiple time points of age in
meat rabbits (Yang et al., 2020). The second approach is to fit
growth curves using nonlinear regression models and obtain the
growth curve parameters (such as mature weight and maturity
rate), and subsequently, these derived parameters are used as the
pseudo-phenotypes for association analysis. This is the classical
two-step method and has been commonly found in literature,
such as the studies in beef cattle (Crispim et al., 2015; Duan et al.,
2021). Furthermore, the two-stepmethod could be followed by an
additional step of multi-trait meta-analysis to indirectly combine
the multiple parameters together (Duan et al., 2021). Recently,
Silva et al. (2017) proposed an alternative modeling framework to
integrate the fitting of growth curves and estimation of single-
nucleotide polymorphism (SNP) effects simultaneously under
nonlinear mixed model (NMM), which was applied to pigs and
revealed to have the advantages of higher statistical power and
joint modeling of residual effects in comparison with the two-step
method. To our best knowledge, this single-step method has not
yet been applied to GWAS of growth curves in rabbits.

In this context, we collected the individual growth records
fromweaning at 35 days of age (DOA) to finishing at 84 DOA in a
commercial crossbred population of meat rabbits. Subsequently,
the fitting of growth curves and GWAS were simultaneously
analyzed using a single-step NMM to identify the prospective
candidate variants, genes, and biological processes associated
with growth trajectory. These results could be helpful in
understanding the biological mechanisms underlying growth
and implementing GS of growth traits in rabbits.

MATERIALS AND METHODS

Animals and Phenotypes
One commercial crossbred population of meat rabbits, by
crossing 22 Kangda5 rabbits (_) with 53 Californian rabbits
(\), was subjected to collection of phenotypic records, which
was described in our previous study (Yang et al., 2020). In brief,
individual body weight (BW) was initially measured for 461
rabbits at seven time points, including 35, 42, 49, 56, 63, 70,

and 84 DOA, respectively. At each time point, the phenotypic
records were set to missing values if they deviated by more than
three standard deviations (SD) from the population mean. As the
short time intervals were measured, the individual BW was
allowed to be slightly decreased (<5%) between two
consecutive time points; otherwise, the latter record was set to
missing value. The individuals that have more than two missing
values at the seven time points were also removed, after which 405
individuals remained. No pedigree information is available for
this population.

Genotypes and Quality Controls
For the initial SNP set that was generated from specific-locus
amplified fragment sequencing approach (Yang et al., 2020), we
reapplied more strict criterion of quality control (QC) using the
filtering expression of “QualByDepth (QD) < 2.0 || FisherStrand
(FS) > 60.0 || RMSMappingQuality (MQ) < 40.0” intrinsically
implemented in GATK software v4.2 (McKenna et al., 2010). A
total of 6,721,762 SNPs were obtained and subjected to
additional QC steps using PLINK software v1.9 (Chang et al.,
2015), which required the genotype missing rate lower than 0.1,
individual missing rate lower than 0.2, minor allele frequency
(MAF) higher than 0.05, and no extreme deviation from
Hardy–Weinberg equilibrium (i.e., only retained SNPs with
p > 1.0E−08). Furthermore, the missing genotypes were
imputed using Beagle software v5.1 with default parameters
(Browning et al., 2018). Using PLINK software v1.9 (Chang
et al., 2015), the tightly linked SNPs were further discarded if the
linkage disequilibrium (LD) values were higher than 0.9. Finally,
87,704 SNPs were used for GWAS among 401 individuals (215
males and 186 females), and these SNPs were distributed among
all 21 rabbit autosomes (OCU). To investigate population
structure, principal component analysis (PCA) was
performed based on the finally included genotypes using
PLINK software v1.9 (Chang et al., 2015).

Modeling of Growth Curves
Five nonlinear regression models were evaluated for fitting the
growth curves (Koya and Goshu, 2013), including the logistic of
wt � A[1 + b exp(−Kt)]−1, Gompertz of
wt � A exp[ − b exp(−Kt)], Brody of wt � A[1 − b exp(−Kt)],
Von Bertalanffy of wt � A[1 − b exp(−Kt)]3, and Richards of
wt � A[1 ± b exp(−Kt)]m. Among them, wt is the individual
BW at time t; and the parameter A, K, and b are the mature
weight, maturity rate, and time-scale parameter, respectively.
Furthermore, m is the shape parameter in Richards model.
The fitting of growth curves was performed using the nlme
package of R (Heisterkamp et al., 2017), and the model with
the best goodness of fit was selected according to the Akaike
information criterion (AIC) (Akaike, 1974) and Bayesian
information criterion (BIC) (Schwarz, 1978).

Genome-Wide Association Studies
The logistic was selected as best model (see Results section) and
therefore used for the GWAS of growth curves through single-
step NMM following Silva et al. (2017). This method fitted the
two biological meaningful parameters of growth curves (i.e., A
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and K) through the NMM. Therefore, the null model (M0)
without considering SNP effect was defined as follows:

wit � μA + Sex + PC + εAi

1 + μb exp[ − (μK + Sex + PC + εKi)t] + eit,

wherewit is the BW of the individual i at time t; μA, μK, and μb are
the general means for parameter A, K, and b, respectively; Sex
and PC are the fixed effects of sex and five principal components
(PC) of genotype matrix (PC1, PC2, PC3, PC4, and PC5),
respectively; εAi and εKi are the specific residuals for parameter
A andK of individual i; and eit is a general residual of individual i
at time t, assumed with eit ∼ N(0, σ2e ). The assumed (co)variance
structures of εAi and εKi were as follows:

[ εAi

εKi

] ∼ N(0,[ σ2A σA,K
σA,K σ2K

]),
where σ2A, σ

2
K, and σA,K are the specific residual variances and

covariance for parameter A and K.
According to Silva et al. (2017), the SNP effects could be

further integrated into the null model through three different
ways. First, the SNP effects are assumed to simultaneously affect
both A and K parameters, and this full model (M1) was given as
follows:

wit � μA + Sex + PC + SNP + εAi

1 + μb exp[ − (μK + Sex + PC + SNP + εKi)t] + eit,

where SNP is fixed effects. Alternatively, the SNP effects
independently affect either A (M2) or K (M3), and their
models were, respectively, given as follows:

wit � μA + Sex + PC + SNP + εAi

1 + μb exp[ − (μK + Sex + PC + εKi)t] + eit,

wit � μA + Sex + PC + εAi

1 + μb exp[ − (μK + Sex + PC + SNP + εKi)t] + eit.

The fitting of these four NMM was performed using the nlme
package of R (Heisterkamp et al., 2017). Based on the likelihood
ratio test (LRT), the statistical significance of SNP effects could be
deduced by comparing the specific alternative hypotheses (i.e., the
model of M1, M2, or M3) with the null hypothesis of M0,
respectively. The derived LRT statistics are assumed to follow
χ2 distribution with n degrees of freedom, where n is the
difference of the number of parameters between the two

models compared. To address the multiple comparison
problem, the false discovery rate (FDR) method was employed
for computing the adjusted p-values using the qvalue package of R
(Storey et al., 2004). As a result, SNP was statistically significant
with FDR <0.05.

Functional Analysis
In this study, the QTLs were empirically defined as
chromosomal regions of ±100 kb around the significant SNPs
(i.e., a total of 200-kb genomic region was selected). The
candidate genes within QTL, including protein encoding and
long non-coding RNAs (lncRNA), were retrieved using the
biomaRt R package (Smedley et al., 2015). The OryCun2.0
assembly was used as the reference genome (https://www.
ncbi.nlm.nih.gov/genome/?term�rabbit). For all the candidate
genes, the functional enrichments were conducted using the
DAVID tool (Huang et al., 2009), including the Gene Ontology
(GO) terms (The Gene Ontology Consortium, 2019) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
(Kanehisa et al., 2019). The default parameters and method
of multiple testing correction were used for computing p–values,
and the threshold of 0.05 was set.

RESULTS

Descriptive Statistics
For the 401 finally included individuals, the descriptive
statistics of BW at the seven time points are shown in
Table 1, and their normal distributions were visually
checked at every time points (Supplementary Figure S1).
The 87,704 SNPs were distributed among 21 autosomes with
the mean (±SD) of 24,099 ± 59,103 bp for their pairwise
physical distances and 0.256 ± 0.133 for MAF, respectively
(Supplementary Figure S2).

TABLE 1 | The descriptive statistics of body weight at the seven time points.

Days of age Number of records Body weight (g)

Min Max Mean SD

35 399 456 1,120 788.05 122.65
42 398 741 1,327 1,012.73 112.42
49 401 874 1,657 1,244.87 136.78
56 401 972 2,005 1,474.96 179.96
63 381 974 2,354 1,706.96 235.45
70 371 1,050 2,726 1,948.76 285.08
84 363 1,487 2,888 2,238.13 285.29

Note. SD, standard deviation.

FIGURE 1 | Fitting of growth curves using the four nonlinear regression
models.
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Fitted Growth Curves
The growth curves of all individuals were successfully fitted using
the four candidate models of logistic (AIC � 35,667.62 and BIC �
35,697.32), Gompertz (AIC � 35,699.36 and BIC � 35,729.06),
Brody (AIC � 35,830.33 and BIC � 35,860.03), and Von
Bertalanffy (AIC � 37,737.74 and BIC � 37,767.44), whereas
the model of Richards did not converge and was therefore
excluded for comparison (Figure 1; Supplementary Table S1).
Among the four NMM successfully fitted, the logistic model
showed the best goodness of fit with the lowest values of AIC and
BIC, and was selected for the following GWAS. The estimates of
parameter A and K of the logistic growth curves were 2,615.45
and 0.054, respectively. Furthermore, the growth curves of
females and males were separately fitted, which also supported
the logistic model having the best goodness of fit and similar
growth parameters (Supplementary Table S1). There were only
small differences for the A and K parameters estimated between
males and females.

Association Analyses
Based on the PCA results (Supplementary Figure S3), no obvious
population stratification was observed in this population studied.
The first five PCs explained about 58.9% of total variability, which
were included in the NMM as fixed effects with alleviated
convergence problems. A total of 45 significant SNPs were
revealed to simultaneously affect both parameter A and K,
which were distributed among five chromosomes, OCU2,
OCU4, OCU9, OCU11, and OCU19 (Figure 2; Table 2).
Among them, the highest numbers of significant SNPs were
observed on OCU2 (N � 41), and the three most significant
SNPs were located on OCU2 (p � 5.98E−08), OCU4 (p �
7.51E−08), and OCU2 (p � 2.22E−07), respectively. All the 45
significant SNPs were clustered into 24 QTLs, and three of their
QTLs (OCU2: 13.67–13.99 Mb, OCU2: 21.86–22.25 Mb, OCU2:
22.45–22.77Mb) were identified based on three or more SNPs
(Table 2). When considering the SNP effect separately for either
parameter A or K, no significant SNP was identified at the

FIGURE 2 |Manhattan plots of genome-wide association analysis (GWAS) for mature weight (A), maturity rate (K). (A) The Manhattan plot of both the parameter A
and K. (B) The Manhattan plot of the parameter A. (C) The Manhattan plot of the parameter K. The dashed line of red indicates a 5% FDR-corrected threshold and the
significant single-nucleotide polymorphisms (SNPs) are represented by triangles.
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predefined threshold (Figure 2). However, some suggestive
associations were also observed (with p lower or close to
1.0E−05), such as the SNPs on OCU2, OCU3, OCU11, and
OCU19 for parameter A, and OCU8 and OCU11 for parameter K.

Candidate Genes and Functional Analyses
Within the 24 candidate QTLs regarding the significant SNP
effects on both parameter A and K, a total of 19 protein-coding
and 12 lncRNA positional candidate genes were identified
(Table 2). Of these, four [LIM domain-binding 2 (LDB2),

potassium voltage-gated channel interacting protein 4
(KCNIP4), TAFA chemokine like family member 1 (TAFA1),
and G protein subunit alpha 13 (GNA13)] and one [ATPase
phospholipid transporting 8A1 (ATP8A1)] candidate genes were
found to have the significant SNPs located on intron and 3′-
untranslated region (3′-UTR), respectively. Furthermore, three
protein-coding genes located on OCU2 were supported by more
than one significant SNPs, including the peroxisome proliferator-
activated receptor gamma coactivator-1 alpha (PPARGC1A),
ATPase phospholipid transporting 8A1 (ATP8A1), and shisa

TABLE 2 | Significant SNPs, QTLs, and candidate genes simultaneously affect both parameter A and K of the logistic growth curve in rabbits.

Chromosomes SNP
position
(bp)

p Locations QTL region
(bp)

Candidate genes

OCU2 7,392,553 1.06E−05 Intron 7,292,553–7,492,553 LDB2
8,791,893 2.88E−05 Intergenic 8,691,893–8,891,893 ENSOCUG00000035404a

10,501,993 3.52E−06 Intergenic 10,401,993–10,691,957 None
10,591,957 2.98E−07 Intergenic
11,378,860 2.94E−05 Intron 11,278,860–11,478,860 PACRGL and KCNIP4
13,386,997 5.63E−06 Intergenic 13,286,997–13,486,997 GBA3
13,488,329 3.69E−06 Intergenic 13,388,329–13,588,329 ENSOCUG00000031640a

13,770,022 2.93E−05 Intergenic 13,670,022–13,985,731 ENSOCUG00000031081a and ENSOCUG00000034770a

13,775,984 9.13E−07 Intergenic
13,847,789 1.60E−06 Intergenic
13,885,731 2.86E−05 Intergenic
14,218,502 2.09E−05 Intergenic 14,118,502–14,318,502 None
14,381,825 1.39E−05 Intergenic 14,281,825–14,488,318 PPARGC1A
14,388,318 4.97E−06 Intergenic
15,540,704 8.39E−06 Intergenic 15,440,704–15,640,704 CCDC149, LGI2, ENSOCUG00000029972a, ENSOCUG00000037097a, and

ENSOCUG00000037279a

19,348,590 2.04E−05 Intergenic 19,248,590–19,448,590 None
19,519,932 3.07E−06 Intergenic 19,419,932–19,619,932 None
21,766,582 1.53E−05 Intergenic 21,666,582–21,866,582 None
21,961,157 2.03E−05 Intergenic 21,861,157–22,251,345 ENSOCUG00000039621a

21,961,341 2.61E−06 Intergenic
21,991,030 8.43E−06 Intergenic
22,076,402 7.17E−06 Intergenic
22,080,992 2.06E−05 Intergenic
22,082,402 6.76E−06 Intergenic
22,151,345 3.50E−06 Intergenic
22,287,659 1.54E−06 Intergenic 22,187,659–22,387,659 None
22,552,417 5.98E−08 Intergenic 22,452,417–22,774,072 ENSOCUG00000032798a

22,559,081 4.80E−07 Intergenic
22,559,709 2.22E−07 Intergenic
22,559,791 4.18E−06 Intergenic
22,585,579 2.37E−07 Intergenic
22,597,775 7.40E−07 Intergenic
22,628,803 6.92E−07 Intergenic
22,632,153 1.45E−06 Intergenic
22,674,072 4.67E−07 Intergenic
24,405,104 2.30E−05 Intergenic 24,305,104–24,505,104 None
31,443,212 1.89E−05 Intergenic 31,343,212–31,566,952 ATP8A1 and SHISA3
31,466,952 3.82E−07 3′-UTR
58,261,249 2.21E−05 Intergenic 58,161,249–58,361,249 None
65,306,234 1.18E−05 Intergenic 65,206,234–65,496,063 LOC100358067
65,396,063 1.74E−05 Intergenic

OCU4 19,121,968 7.51E−08 Intergenic 19,021,968–19,221,968 ENSOCUG00000038375a

OCU9 35,523,218 1.48E−06 Intron 35,423,218–35,623,218 TAFA1
OCU11 64,951,640 1.05E−05 Intergenic 64,851,640–65,051,640 ENSOCUG00000037935a, ENSOCUG00000029125,

ENSOCUG00000037904a, and FGF10
OCU19 52,159,278 1.15E−05 Intron 52,059,278–52,259,278 RGS9, ENSOCUG00000036189, GNA13, AMZ2, SLC16A6, and ARSG

alncRNA; 3′’-UTR, 3′-untranslated region; SNP, single-nucleotide polymorphism.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7509395

Liao et al. GWAS of Growth Curves in Rabbits

136

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


family member 3 (SHISA3) gene. Two lncRNA genes
(ENSOCUG00000039621 and ENSOCUG00000032798) had
seven and nine significant SNPs that were located on
intergenic regions, respectively. The detailed information of
these positional candidate genes is shown in Supplementary
Table S2.

For these positional candidate genes, 19 biological processes of
GO terms were significantly enriched (p < 0.05, Supplementary
Table S3). However, no significant KEGG pathway was found.
Four genes of GNA13, ATP8A1, LDB2, and fibroblast growth
factor 10 (FGF10) were observed in eight GO terms that were
mainly involved in the cell development, such as the biological
processes of “regulation of cell migration” and “regulation of cell
motility.” Furthermore, both LDB2 and FGF10 were enriched in
the five GO terms that have the functional implications into
growth, such as the biological processes of “somatic stem cell
population maintenance” and “maintenance of cell number.”

DISCUSSION

Growth traits have considerable economic implications in meat
rabbit industry. For Gabali rabbits in Egypt, the heritability
estimates were 0.19, 0.23, 0.16, and 0.14 for BW at 4, 8, 12,
and 16 weeks of age (Soliman et al., 2014), which suggested a
moderate heritability for these growth traits. The estimated
heritability of individual BW ranged from 0.11 at 9 weeks of
age to 0.43 at 6 weeks of age in New Zealand White and
Dutch breeds of rabbits (Akanno and Ibe, 2005). The
moderate to high heritability (from 0.266 to 0.540) was
similarly estimated using both Sire Model and Animal Model
in New Zealand White rabbits (Dige et al., 2012). Abou Khadiga
et al. (2008) conducted the genetic evaluation in crossbred
population of Spanish synthetic maternal line V and Egyptian
Baladi Black, and found that growth traits were significantly
affected by direct genetic effects. Furthermore, the genotype ×
environment interaction was also observed for affecting growth
performances in growing rabbits (Zeferino et al., 2011). Together,
these studies indicated that the improvement of growth traits by
genetic selection is much feasible in rabbits. However, the
relevant studies in rabbits, such as genomic evaluation and
GWAS, have largely lagged behind in comparison with other
livestock species (Jonas and Koning, 2015). Therefore, in this
study, we performed the association analyses for individual BW at
different growth time points using the genome-wide variants. As
a relatively limited number of rabbits were included in the present
study, however, the increased detection power of GWAS would
be expected using larger datasets in future studies.

Like milk production traits in dairy livestock, the individual
growth has been preferably described by longitudinal records
measured over multiple time points. In practices, the phenotypic
records at one or a few time points could be representatively selected
and analyzed. However, an alternative approach is to fit the whole
growth trajectory using nonlinear regressionmodels and then use the
derived model parameters for describing individual growth
performance. In an early study (Ptak et al., 1994), three nonlinear
models of Von Bertalanffy, Gompertz, and logistic were compared

for fitting the growth in purebred and crossbred rabbits, and found
that the Von Bertalanffy gave the best fit. The Gompertz growth
curves were fitted and used in analyzing the effect of selection for
growth rate on growth curves in rabbits (Blasco et al., 2003). Recently,
Ding et al. (2019) fitted the growth curves using the logistic,
Gompertz, and Von Bertalanffy models for crossbred population
of California rabbit × New Zealand white rabbit and suggested that
the most accurate model was logistic. In this study, the logistic was
chosen as the best model to describe the growth trajectory of our
crossbred population that was generated by crossing Kangda5 rabbits
with Californian rabbits, which was consistent with the results of
Ding et al. (2019). Therefore, the selection of the best model to fit the
growth curve in rabbits would be breed or population dependent,
which should be specifically compared in each study.

In livestock and poultry, mature weight and maturity rate are
the two important parameters for describing growth performance;
some individuals have higher maturity rate but smaller mature
weight, and vice versa. Therefore, to identify genes or causal
mutations independently affecting the mature weight and
maturity rate is essential for implementing precision
improvement of genetic selection. Using the estimated growth
parameters as pseudo-phenotypes in GWAS of growth traits in
Brahman cattle, a large number of significant SNPs were identified
to be associated with mature weight and maturity rate, respectively
(Crispim et al., 2015). A similar GWAS was recently reported for
growth traits of Chinese Simmental beef cattle, which also revealed
different SNPs for the two parameters (Duan et al., 2021). Silva
et al. (2017) proposed an alternative method to combine the fitting
of growth curves and estimation of SNP effects into one single-step
NMM, and to apply to growth traits in pigs with an improved
statistical power observed. In this study, we also employed the
single-step NMM approach for GWAS of growth traits in a
crossbred population of rabbits and found that all the
significant SNPs simultaneously affected the two parameters of
mature weight and maturity rate. The absence of SNPs
independently associated with either mature weight or maturity
rate would indicate the specific genetic architecture of growth
performance for this studied population. Also, the number of
significant SNPs identified in this study was also higher than
our former observation (Yang et al., 2020) that was alternatively
performed through the separate association analysis with BW at
different time points. However, no growth curve parameter was
estimated and used as pseudo-phenotype of association analysis by
Yang et al. (2020), which would disable the direct comparison.

Around the significant SNPs identified in this study, we found
some candidate genes that have the functional implications on
growth traits in literature. Among them, the KCNIP4, a member
of the family of voltage-gated potassium channel-interacting
proteins, was found to be located within the QTL between the
21 and 67 cM regions of chromosome 6 that was associated with
birth weight in Zandi sheep (Esmailizadeh, 2010; Mohammadi
et al., 2020). Pasandideh et al. (2018) also suggested that the
KCNIP4 gene was involved in the regulation of muscle growth
and fat deposition in sheep. In chicken, Jin et al. (2015) found that
KCNIP4 was located nearest to a significant SNP associated with
the BW of 10 and 14 weeks of age. A nearby gene of GBA3
(glucosylceramidase beta 3) is related to hydrolyze beta-galactose
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and beta-glucose (Dekker et al., 2011), and was further found to
be significantly associated with BW traits in sheep (Al-Mamun
et al., 2015). In this study, one significant SNP was detected in the
intron of LDB2, which is a transcriptional regulator (Johnsen
et al., 2009) and was found to affect the growth traits of BW and
average daily gain in chicken (Gu et al., 2011; Wang et al., 2019)
and of BW in Nanjiang Yellow sheep (Guo et al., 2018).

Another important candidate gene is PPARGC1A, which was
found in pigs to regulate the lipid deposition (Li et al., 2014b),
composition of muscle fiber (Lee et al., 2012), and abdominal fat
content (Stachowiak et al., 2007). Several SNPs have been
identified in PPARGC1A gene to be associated with adult BW
and average daily gain in Nanyang cattle (Li et al., 2014a), yearling
weight in Nelore cattle (Fonseca et al., 2015), and birth weight and
calf birth weight in Iranian Holstein cattle (Pasandideh, 2020).
Furthermore, Chen et al. (2020) found a 17-bp InDel mutation
within the 11th intron of PPARGC1A gene in sheep, which was
associated with the BW. Both GNA13 and SHISA3 could affect
individual growth as they are involved in the biological regulation
of osteoclastogenesis and bone development (Wu et al., 2017;
Murakami et al., 2019). Furthermore, we observed that the FGF10
gene located on OCU11 was significantly associated with both
mature weight and maturity rate. Previous studies revealed that
FGF10 could promote the proliferation and differentiation of
adipocyte through the Ras/MAKP pathway (Konishi et al., 2006),
and regulate adipogenesis in muscle tissue of goats (Xu et al.,
2018) and Tibetan chickens (Zhang et al., 2018). We did not find
the relevant publication in literature about functional
implications for the 12 candidate lncRNA genes found in
this study.

The post-GWAS functional studies are necessary for fine
mapping the causal genetic variants and dissecting the
underlying biological mechanism (Gallagher and Chen-Plotkin,
2018). Therefore, these candidate genes found in this study could
be preferably selected in future studies to investigate their
functional mechanisms affecting the individual growth in
rabbits. On the other hand, these significant SNPs and
genomic regions could be incorporated into the genomic
prediction models with an improved accuracy, by using the
weighted genomic best linear unbiased prediction (Zhang
et al., 2016) or Bayesian (van den Berg et al., 2020) approaches.

CONCLUSION

In the crossbred population of meat rabbits, we employed the
nonlinear mixed model to simultaneously fit growth curves and
estimate SNP effects at the genome-wide level. The significant

SNPs on five chromosomes (OCU2, OCU4, OCU9, OCU11, and
OCU19) were found to simultaneously affect the mature weight
and maturity rate, which further revealed some suggestive
candidate genes, including the KCNIP4, GBA3, PPARGC1A,
LDB2, SHISA3, GNA13, and FGF10. These obtained results are
useful to increase our knowledge about growth mechanisms in
rabbits, and could be used for improving the accuracy of genomic
selection in this population.
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Single-cell RNA Sequencing Reveals
Heterogeneity of Cultured Bovine
Satellite Cells
Pengcheng Lyu1, Yumin Qi2, Zhijian J. Tu2 and Honglin Jiang1*

1Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States, 2Department of Biochemistry, Virginia
Tech, Blacksburg, VA, United States

Skeletal muscle from meat-producing livestock such as cattle is a major source of food for
humans. To improve skeletal muscle growth efficiency or quality in cattle, it is necessary to
understand the genetic and physiological mechanisms that govern skeletal muscle
composition, development, and growth. Satellite cells are the myogenic progenitor cells in
postnatal skeletal muscle. In this study we analyzed the composition of bovine satellite cells
with single-cell RNA sequencing (scRNA-seq). We isolated satellite cells from a 2-week-old
male calf, cultured them in growth medium for a week, and performed scRNA-seq using the
10x Genomics platform. Deep sequencing of two scRNA-seq libraries constructed from
cultured bovine satellite cells yielded 860 million reads. Cell calling analyses revealed that
these reads were sequenced from 19,096 individual cells. Clustering analyses indicated that
these reads represented 15 cell clusters that differed in gene expression profile. Based on the
enriched expression of markers of satellite cells (PAX7 and PAX3), markers of myoblasts
(MYOD1, MYF5), and markers of differentiated myoblasts or myocytes (MYOG), three
clusters were determined to be satellite cells, two clusters myoblasts, and two clusters
myocytes. Gene ontology and trajectory inference analyses indicated that cells in these
myogenic clusters differed in proliferation rate and differentiation stage. Two of the remaining
clusters were enriched with PDGFRA, a marker of fibro-adipogenic (FAP) cells, the progenitor
cells for intramuscular fat, and are therefore considered to be FAP cells. Gene ontology
analyses indicated active lipogenesis in one of these twoclusters. The identity of the remaining
six clusters could not be defined. Overall, the results of this study support the hypothesis that
bovine satellite cells are composed of subpopulations that differ in transcriptional and
myogenic state. The results of this study also support the hypothesis that intramuscular
fat in cattle originates from fibro-adipogenic cells.

Keywords: FAP, fibro-adipogenic progenitors, ScRNA-seq, cattle, skeletal muscle, myoblast

INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) is a relatively new technology that analyzes transcriptomes in
individual cells by deep sequencing (Tang et al., 2009). scRNA-seq has proved to be a powerful method
for assessing the heterogeneity of a cell population and for identifying rare or previously uncharacterized
cell types in complex organs and tissues (Tang et al., 2009; Andrews and Hemberg, 2018).

Satellite cells are myogenic progenitor cells in skeletal muscle of postnatal animals (Mauro, 1961).
Satellite cells are characterized by the expression of the transcription factor paired box protein 7
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(PAX7) or PAX 3 (Maroto et al., 1997; Seale et al., 2000; Kuang
and Rudnicki, 2008). Satellite cells play an essential role in skeletal
muscle regeneration and growth (Dhawan and Rando, 2005).
Satellite cells are normally quiescent but are activated under
conditions such as muscle injury (Dhawan and Rando, 2005).
Once activated, satellite cells proliferate as myoblasts,
differentiate, and fuse with each other to generate muscle
fibers or with existing muscle fibers to increase muscle size.

In our research involving bovine satellite cells (Ge et al., 2013;
Leng et al., 2019; Leng and Jiang, 2019), we noticed that these cells
in culture did not all become myofibers upon induction of
myogenic differentiation. We hypothesized that bovine satellite
cells are composed of subpopulations that differ in myogenic
potential. The objective of this study was therefore to determine if
bovine satellite cells are heterogeneous in terms of myogenic
potential. We approached this objective by analyzing a
population of bovine satellite cells with scRNA-seq.

MATERIALS AND METHODS

Isolation and Culture of Bovine Satellite
Cells
Bovine satellite cells were isolated from the longissimus muscle of
a 2-week-old Holstein bull calf following euthanasia. Satellite cells
were isolated using a procedure involving pronase digestion and
differential centrifugation as described before (Hathaway et al.,
1991). Satellite cells were cultured in growth medium consisting
of Dulbecco’s modified eagle medium, 10% fetal bovine serum,
2 mM L-glutamine, and 1% antibiotics-antimycotics (Thermo
Fisher Scientific, Waltham, MA, United States) for a week to
remove dead cells and increase the number of viable cells prior to
scRNA-seq. The animal-related procedure was approved by the
Virginia Tech Institutional Animal Care and Use Committee.

scRNA-Seq Library Construction
Cells cultured above were detached from the culture plate with trypsin-
EDTA (0.25%) and washed with resuspension buffer (phosphate-
buffered saline, 0.04% bovine serum albumin). Cells were filtered
through a 40 µm strainer to remove cell clumps. Cell viability was
determined to be 90% by trypan blue staining and hemocytometer
counting. Two scRNA-seq libraries were constructed from satellite cells
to increase the number of cells sequenced. The scRNA-seq libraries
were constructed using the Chromium Single Cell 3ʹ Gel Bead-in-
Emulsion (GEM), Library & Gel Bead Kit v3 (10x Genomics,
Pleasanton, CA, United States). We adjusted cell concentration to
1,000 cells/μl with resuspension buffer, and loaded 12.8 µl of diluted cell
suspension with a master mix of reverse transcription (RT) reagent,
template switch oligo, and RT enzyme into a Chromium Chip B (10x
Genomics). Single-cell GEM generation, barcoding, and reverse
transcription were achieved by running the Chromium Chip B on
the ChromiumController (10xGenomics). Specifically, single cells, RT
reagents, gel beads containing barcoded oligonucleotides, and oil were
combined on amicrofluidic chip to form reaction nanovesicles.Within
each reaction nanovesicle, a single cell was lysed, the gel bead was
dissolved to free the identically barcoded RT oligonucleotides, and
polyadenylatedmRNAwas then reverse transcribed into cDNA. Thus,

all cDNAs from the same cell would have the same barcode, which
would allow the sequencing reads to be traced back to their single cells
of origin. cDNAwas amplified for 11 cycles. Based on an Agilent High
Sensitivity TapeStation analysis, both scRNA-seq libraries contained a
single peak ofDNAbetween 300 and 700 bp, with an average fragment
size of 440 bp.

scRNA-Seq Sequencing and Data Analysis
Each scRNA-seq library was pair-end sequenced in a single cell
flow lane on an Illumina HiSeq system at the Novogene-UC
Davis Sequencing Center (Novogene, Sacramento, CA,
United States). Sequencing reads were processed and analyzed
using the 10x Genomics Cell Ranger 3.0.2 software, which was
composed of different analysis pipelines (Zheng et al., 2017).
Specifically, sequencing reads were de-multiplexed using the
cellranger mkfastq pipeline and aligned to the bovine genome
and transcriptome (Bos_taurus.ARS-UCD1.2) at default
parameters using the cellranger count pipeline. Uniquely
mapped sequences from each library were used for unique
molecular identifiers (UMI) counting using the cellranger
count pipeline. The output files from the cellranger counting
of reads from two scRNA-seq libraries were combined using the
cellranger aggr pipeline.

Cells were initially clustered by expression similarity using the
graph-based clustering algorithm, which consisted of building a
sparse nearest-neighbor graph followed by Louvain Modularity
Optimization, an algorithm that sought to find highly-connected
modules in the graph (Blondel et al., 2008). Cells were further
clustered by an additional cluster-merging step, which included
hierarchical clustering on the cluster-medoids in principal
components analysis (PCA) space and merging pairs of sibling
clusters if there were no genes differentially expressed between them
(with B-H adjusted p-value below 0.05). The hierarchical clustering
and merging was repeated until there were no more cluster-pairs to
merge. Differential gene expression between cell clusters was
identified using the quick and simple method sSeq and edgeR
(Robinson and Smyth, 2007; Yu et al., 2013). All these analysis
pipelines and algorithms were part of the Cell Ranger software and
run using parameters recommended by 10X Genomics.

Cell clusters were annotated based on significantly enriched
expression (with B-H adjusted p-value below 0.05) of marker genes
of cell types. Cell clusters and gene expression data were visualized
in the Loupe Cell Browser (10x Genomics). Gene ontology analysis
was performed with the PANTHER classification system (Mi et al.,
2013). Gene ontology terms with corrected p-values less than 0.05
were considered significantly enriched.

Trajectory inference was performed using the Monocle
algorithm (version 2.20.0) (Trapnell et al., 2014; Qiu et al.,
2017). Briefly, the output files of the cellranger count pipeline
were read in to generate the count matrix using the Read10X
function of Seurat 4 (Hao et al., 2021). A Seurat object was then
built from the count matrix using the CreateSeuratObject
function of Seurat. The Seurat object was converted to a
CellDataSet modeled with the negative binomial distribution
using the newimport function of Monocle. Genes with mean
expression levels >0.1 were selected to define the state of cells.
Following a dimensionality reduction using the reduceDimension
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TABLE 1 | Summary of scRNA-seq sequencing, mapping, and analysis.

Item Library 1 Library 2 Aggregation

Number of reads 431,539,783 429,256,266 860,796,049
Valid barcodes 97.6% 97.4% 97.5%
Reads mapped uniquely to genome (bos_taurus.ars-ucd1.2) 85.5% 85.2% 85.4%
Reads mapped uniquely to transcriptome (bos_taurus.ars-ucd1.2) 50.8% 51.5% 51.1%
Fraction reads in cells 90.8% 89.1% 90.0%
Estimated number of cells 9,939 9,157 19,096
Mean reads per cell 43,418 46,877 43,528
Median genes per cell 3,559 3,764 3,609
Total genes detected 16,227 16,356 16,816

FIGURE 1 | (A) Clustering of cells by the t-distributed stochastic neighbor embedding (t-SNE) algorithm. The 19,096 cultured bovine satellite cells are divided into
15 clusters. Cells close to each other have more similar gene expression patterns than those distant from each other. Cell types are inferred from significantly enriched
expression of known cell markers. FAP, fibro-adipogenic progenitors. (B) Heatmap of transcriptome similarities between cell clusters. Rows represent cell clusters.
Columns represent genes. Shown on top are representative genes. Numbers and colors on the right represent log2 fold changes relative to the median gene
expression level across all clusters.
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function, cells were ordered along the trajectory using the
orderCells function of Monocle.

Scripts and codes used to run the Cell Ranger, Seurat, and
Monocle programs in this study were adopted from the manuals
and websites for these programs and are listed in the
Supplementary File S1.

RESULTS AND DISCUSSION

Cultured Bovine Satellite Cells Are
Heterogenous in Gene Expression
Sequencing of the two scRNA-seq libraries of bovine satellite cells
in culture generated approximately 430 million reads per library.
More than 85 and 50% of these reads were uniquely mapped to
the bovine genome and transcriptome (bos_taurus.ars-ucd1.2),
respectively (Table 1). Based on the Cell Ranger analyses, these
reads represented the transcriptomes in more than 9,000 cells for
each library (Table 1). The mean number of reads detected per
cell was more than 43,000 for both libraries, and the median
number of genes detected per cell was over 3,500 for both libraries
(Table 1). These numbers met or exceeded the minimum
requirements for a quality scRNA-seq analysis (Handley et al.,
2015; Haque et al., 2017; Ziegenhain et al., 2017). Because the two
scRNA-seq libraries were prepared from the same cells,
sequencing data from the two libraries were combined to
increase the total number of cells analyzed. Clustering the
transcriptomes of 19,096 cells combined from the two scRNA-
libraries revealed 15 cell clusters that differed in gene expression
pattern (Figure 1, Supplementary File S2). These 15 clusters
contained 300–2,500 cells, or 2–13% total cells analyzed, with
cluster 1 being the largest cluster and cluster 15 being the smallest
cluster (Table 2).

Cultured Bovine Satellite Cells Contain
Subpopulations That Differ in Myogenic
Stage and Proliferation Rate
Based on the expression levels of marker genes (MYOD1, MYF5,
and DES) of myoblasts (Pownall et al., 2002), clusters 1, 2, 3, and

12 were characterized as subsets of myoblasts, which are activated
and proliferating satellite cells (Figures 1A, 2A). Expression of
MYF5 mRNA in cluster 1, expression of MYOD1 mRNA in
cluster 2, and expression of both MYF5 and MYOD1 mRNAs in
cluster 3 were significantly enriched (Supplementary File S2,
Figure 2A). PAX7 and PAX3 are markers of satellite cells
(Maroto et al., 1997; Seale et al., 2000). Expression of PAX7
mRNA was significantly enriched in cluster 4, and PAX3 mRNA
expression was significantly enriched in clusters 5 and 8
(Supplementary File S2). Because they were enriched with
PAX7 or PAX3, clusters 4, 5, and 8 were determined to be
subsets of satellite cells (Figure 1A).

MYOG is a master transcriptional regulator of myoblast
differentiation (Pownall et al., 2002). MYOG mRNA
expression was significantly enriched in clusters 3 and 12
(Supplementary File S2, Figure 2A). Besides MYOG, many
muscle-specific genes such as MB, MYH3, MYL1, NEB, and
STAC3 and several myoblast differentiation and fusion
regulatory genes such as MEF2A, MEF2D and MYMK (Millay
et al., 2013; Estrella et al., 2015) were upregulated in clusters 3
and 12 (Supplementary File S2, Figure 2A). These two
clusters clearly contained differentiating or differentiated
myoblasts, i.e., myocytes. Between clusters 3 and 12, more
muscle-specific genes were upregulated in cluster 12 than in
cluster 3, and the same muscle-specific genes were expressed
at greater levels in cluster 12 than in cluster 3 (Supplementary
File S2, Figure 2A). These differences suggest that myoblasts in
cluster 12 were more terminally differentiated than those in
cluster 3.

Gene ontology analyses of genes upregulated in each cluster
indicated that cells in different clusters differed in function. For
example, gene ontology analyses of genes upregulated in
clusters 2 and 4 indicated that many of these genes were
involved in the biological processes, cellular components, and
molecular function related to DNA synthesis and cell cycle
(Supplementary File S3), suggesting that cells in these clusters
were undergoing active proliferation. Gene ontology analyses of
genes upregulated in clusters 3 and 12 indicated that many of
these genes were involved in the biological processes, cellular
components, and molecular function related to mature skeletal
muscle structure and contraction (Supplementary File S3),
suggesting that cells in these two clusters were differentiating
into functional muscle cells.

A trajectory inference analysis using the Monocle program
(Trapnell et al., 2014) revealed the potential lineage
relationships between the seven myogenic cell clusters,
i.e., clusters 1–5, 8, and 12 (Figure 2B). This analysis
suggested two trajectories along which the myogenic
progenitors PAX3+ satellite cells transitioned toward
myogenic differentiation. On one trajectory, PAX3+ satellite
cells in cluster 8 committed to MYF5+ myoblasts in cluster 1,
and these MYF5+ myoblasts then differentiated into MYOG+
myocytes in cluster 3, which then differentiated further into
MYOG+ myocytes in cluster 12 (Figure 2B). On the other
trajectory, PAX3+ satellite cells in cluster 8 first transitioned to a
population of satellite cells in cluster 5 that had a different gene
expression pattern from cells in cluster 8 but were still PAX3

TABLE 2 | Numbers and percentages of clustered cells.

Number of cells % Total cells

Cluster 1 2,493 13.1
Cluster 2 2,119 11.1
Cluster 3 2,034 10.7
Cluster 4 1,768 9.3
Cluster 5 1,641 8.6
Cluster 6 1,575 8.2
Cluster 7 1,298 6.8
Cluster 8 1,241 6.5
Cluster 9 1,080 5.7
Cluster 10 1,010 5.3
Cluster 11 845 4.4
Cluster 12 627 3.3
Cluster 13 602 3.2
Cluster 14 446 2.3
Cluster 15 317 1.7
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positive; PAX3+ satellite cells in cluster 5 then became PAX7+
satellite cells in cluster 4, which were subsequently activated to
become MYOD1+ myoblasts in cluster 2 (Figure 2B). Overall,

this trajectory analysis further supports the conclusion earlier
that cultured bovine satellite cells are composed of subsets of
myogenic cells that differ in transcriptional and myogenic state.

FIGURE 2 | (A) t-SNE maps showing the expression levels of selected markers in different clusters of bovine satellite cells. MYOD1, MYF5, and DES are markers of
myoblasts; MYOG,MYH3, andMYMK aremarkers of differentiatedmyoblasts or myocytes; PDGFRA, PPARG, and ZNF423 aremarkers of fibro-adipogenic progenitors
and preadipocytes. (B) Trajectory inference analysis of myogenic cell clusters. The trajectory analysis was performed using Monocle. Cells in different clusters are
represented by different colors. Cluster numbers and cell types correspond to those in Figure 1A. Arrows indicate the direction of trajectory. Black lines and
numbers represent trajectory branches and branching points, respectively.
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Cultured Bovine Satellite Cells Contain
Subpopulations That May Be Intramuscular
Preadipocytes
Platelet derived growth factor receptor alpha (PDGFRA) is
established as a marker of the progenitor cells for intramuscular
adipocytes, i.e., intramuscular fibro-adipogenic progenitor (FAP)
cells, in mice and humans (Uezumi et al., 2010; Uezumi et al., 2014;
Joe et al., 2010). The expression of PDGFRA mRNA was
significantly higher in clusters 7 and 9 than in other clusters
(Supplementary File S2 and Figure 2A). It is interesting to
note that cells in cluster 9 were also enriched with peroxisome
proliferator activated receptor gamma (PPARG) and zinc finger
protein 423 (ZNF423) mRNAs, two transcriptional regulators of
early adipogenesis (Tontonoz and Spiegelman, 2008; Gupta et al.,
2010; Lefterova et al., 2014). Gene ontology analyses of genes
upregulated in clusters 7 and 9 indicated active lipogenesis in
cluster 9 (Supplementary File S3). Cells in neither cluster 7 nor
cluster 9 expressed markers of mature adipocytes such as leptin
(LEP) and adiponectin (ADIPOQ) (Supplementary File S2).
These data together indicated that clusters 7 and 9 were FAPs,
or intramuscular preadipocytes, with cluster 9 appearing to be
more developed preadipocytes than cluster 7. Because cells in
clusters 7 and 9 were not enriched with MYOD1, MYF5, DES,
or MYOG, markers of myogenic cells, it remains to be determined
if these FAP cells were derived from satellite cells during culture or
accidently co-isolated with satellite cells from skeletal muscle.

Cultured Bovine Satellite Cells Contain
Subpopulations Whose Identities Remain to
Be Determined
Compared to other clusters (Supplementary File S2), clusters 6,
10, 11, 13, 14, and 15 did not express significantly higher levels of
markers of myogenic cells such as PAX3, PAX7, MYOD1, MYF5,
and MYOG (Pownall et al., 2002); thus, these clusters were not
myogenic cells. Skeletal muscle contains not only myogenic cells
but also nonmyogenic cells such as endothelial cells, pericytes,
smooth muscle cells, fibroblasts, and glial cells. However, none of
clusters 6, 10, 11, 13, 14, and 15 appeared to be these nonmyogenic
cells based on the expression levels of marker genes such as CDH5
and PECAM1 for endothelial cells (Elmentaite et al., 2021),
NOTCH3 and MCAM for pericytes (Elmentaite et al., 2021),
ACTA2 and MYH11 for smooth muscle cells (Kumar et al.,
2017), COL1A and S100A4 for fibroblasts (Kumar et al., 2017),
and FOXD3 and SOX10 for glial cells (Elmentaite et al., 2021) in
these clusters (Supplementary File S2). It is possible that clusters 6,
10, 11, 13, 14, and 15 represented novel cell types in bovine skeletal
muscle co-isolated with satellite cells or that they were inaccurately
clustered by the computational program used.

CONCLUSIONS

Results of this scRNA-seq study suggest that bovine satellite cells
are possibly composed of subpopulations that differ in
transcriptional status, proliferation rate, and myogenic
potential. This notion is consistent with the conclusion from
scRNA-seq studies of mouse satellite cells (Cho and Doles, 2017;
van den Brink et al., 2017). Results of this study also suggest the
presence of FAP cells in bovine skeletal muscle, although their
origin remains to be determined. Because skeletal muscle growth
and intramuscular fat are economically important traits in cattle,
further characterization of the different subpopulations of
satellite cells as well as FAPs in bovine skeletal muscle could
lead to the development of new strategies to improve these traits
or to identify DNA sequences and variants associated with these
traits in cattle.
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GLOSSARY

ACTA2 actin alpha 2, smooth muscle

ADIPOQ adiponectin

BP biological process

CC cellular component

CDH5 cadherin 5

COL1A collagen type I alpha 1 chain

DES desmin

FAPs fibro-adipogenic progenitors

FDR false discovery rate

FE fold enrichment

FOXD3 forkhead box D3

GEM gel bead-in-emulsion

GO gene ontology

LEP leptin

MB myoglobin

MCAM melanoma cell adhesion molecule

MEF myocyte enhancer factor

MF molecular function

MYF5 myogenic factor 5

MYH3 myosin heavy chain 3

MYH11 myosin heavy chain 11

MYL1 myosin light chain 1

MYMK myomaker or myoblast fusion factor

MYOD1 myogenic differentiation 1

MYOG myogenin

NEB nebulin

NOTCH3 notch receptor 3

PAX3 paired box 3

PAX7 paired box 7

PDGFRA platelet derived growth factor receptor alpha

PECAM1 platelet and endothelial cell adhesion molecule 1

PPARG peroxisome proliferator activated receptor gamma

S100A4 S100 calcium binding protein A4

scRNA-seq single-cell RNA sequencing

SOX10 SRY-box transcription factor 10

STAC3 SH3 and cysteine rich domain 3

UMI unique molecular identifier

ZNF423 zinc finger protein 423
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FMixFN: A Fast Big Data-Oriented
Genomic SelectionModel Based on an
Iterative Conditional Expectation
algorithm
Wenwu Xu, Xiaodong Liu, Mingfu Liao, Shijun Xiao, Min Zheng, Tianxiong Yao,
Zuoquan Chen, Lusheng Huang and Zhiyan Zhang*

State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China

Genomic selection is an approach to select elite breeding stock based on the use of dense
genetic markers and that has led to the development of various models to derive a
predictive equation. However, the current genomic selection software faces several issues
such as low prediction accuracy, low computational efficiency, or an inability to handle
large-scale sample data. We report the development of a genomic prediction model
named FMixFN with four zero-mean normal distributions as the prior distributions to
optimize the predictive ability and computing efficiency. The variance of the prior
distributions in our model is precisely determined based on an F2 population, and
genomic estimated breeding values (GEBV) can be obtained accurately and quickly in
combination with an iterative conditional expectation algorithm. We demonstrated that
FMixFN improves computational efficiency and predictive ability compared to other
methods, such as GBLUP, SSgblup, MIX, BayesR, BayesA, and BayesB. Most
importantly, FMixFN may handle large-scale sample data, and thus should be able to
meet the needs of large breeding companies or combined breeding schedules. Our study
developed a Bayes genomic selection model called FMixFN, which combines stable
predictive ability and high computational efficiency, and is a big data-oriented genomic
selection model that has potential in the future. The FMixFN method can be freely
accessed at https://zenodo.org/record/5560913 (DOI: 10.5281/zenodo.5560913).

Keywords: genomic selection, model, big data-oriented, GEBV, FMixFN

INTRODUCTION

Based on the use of genomic information and prediction of the genetic merit of animals, genomic
selection is changing breeding strategies and approaches in livestock (Goddard and Hayes, 2009).
Among many agricultural animals and plants, estimated breeding values (EBV) predicted from
genomic information are now widely used (Duchemin et al., 2012; Pollak et al., 2012; Preisinger,
2012; Ibáñez-Escriche et al., 2014; Samorè and Fontanesi, 2016; Mrode et al., 2018). Comparative
studies on both simulated and real data have shown that genomic EBV (GEBV) tends to have higher
accuracy than breeding values estimated using pedigree relationships. The accuracy of GEBV is
mainly impacted by the nature of the single nucleotide polymorphism (SNP) panel used, the size of
the training data, the population structure, the relationships between individuals in the training and
validation population, and the genetic architecture of the trait, in particular, the number of loci
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affecting the trait and the distribution of their effects (Daetwyler
et al., 2008; Goddard, 2009; Meuwissen, 2009). Usually, the most
accurate method to predict genetic value or phenotype based on
the SNP genotypes is to fit all SNPs simultaneously, treating the
SNP effects as they are drawn from a prior distribution that
matches as closely as possible the true distribution of SNP effects
(Goddard, 2009; Chatterjee et al., 2013). The assumption that, in
the SNP-best linear unbiased prediction (BLUP) or genomic
BLUP (GBLUP) model, each of the SNPs explains equal
variance, i.e., that the more complex traits are controlled by
very many quantitative trait loci (QTL), each with a tiny effect,
could be imprecise if a trait is affected by a small number of QTL,
each with a large effect (Meuwissen et al., 2001; VanRaden, 2008).
In other models, the distribution of SNP effects is allowed to
depart from a pseudo-infinitesimal distribution. BayesA extended
the SNP-BLUP model by estimating the variance of each marker
separately, and an inverse chi-square prior was used to estimate
these variances (Meuwissen et al., 2001). In BayesB, it was
assumed that most of the markers have a zero effect on the
targeted trait, and the prior distribution of the variances is a
mixture of a distribution with zero variance and an inverse chi-
squared distribution, with some SNPs having a zero effect, and
some SNPs having a large effect on the trait (Meuwissen et al.,
2001). The true distribution of the effect sizes is not known, but a
mixture of normal distributions can approximate a wide variety
of distributions by varying the mixing proportions (Mclachlan
Basford. et al., 1988; Silverman, 1996; Luan et al., 2009; Moser
et al., 2015; Goddard et al., 2016). Kemper et al. and Erbe et al.
presented and extended a model named “BayesR,” which used a
mixture of four normal distributions as prior, each with a zero
mean but with variances of 0, 0.0001 δ2g, 0.001 δ

2
g, and 0.01 δ2g for

genomic prediction (Erbe et al., 2012; Kemper et al., 2015). In the
applications of this model, it has been assumed that the mixing
proportions are drawn from a Dirichlet distribution with
parameters (1, 1, 1, 1). In a simulation study in which the
genetic model included a finite number of loci with
exponentially distributed effects, the Bayes-based model
provided more accurate prediction of genetic value than GBLUP.

Although Bayes-based models have the potential for the
development of more faithful genetic models and seem to be
the best choice for estimating GEBV, they require long computing
times since they use computer-intensive MCMC techniques
(Meuwissen et al., 2001; Xu, 2003; Verbyla et al., 2010; Habier
et al., 2011; Cheng et al., 2015). For practical applications and for
computer simulations of genomic selection breeding schemes,
which need many selection rounds and replications, it would be
useful to have a much faster algorithm for the calculation of
Bayes-based GEBV. Several non-MCMC algorithms have been
proposed to improve computational efficiency for linear models
with differential shrinkage of SNP effects or with variable
selection. Methods BL and BhGLM were developed by Xu
et al. and Yi et al., respectively, which used Expectation-
Maximization (EM) algorithms (Yi and Banerjee, 2009; Xu,
2010). VanRaden et al. (2009) presented two non-linear
predictions A and B that are analogous to the BayesA and
BayesB, respectively. Meuwissen et al. (2009) presented a fast
heuristic iterative conditional expectation (Zhao et al.) algorithm,

where the posterior expectation of SNP effects was calculated
analytically, assuming a fixed known double exponential (DE)
parameter and dispersion parameters. Dong et al. (2017)
formulated an algorithm based on the same model as the
ICE algorithm, which uses a product of univariate densities
instead of the multivariate normal density to estimate SNP
effects, but the a priori hypothesis on the size of the SNP effects
is based on the Pareto principle, which was proposed by the
economist Vilfredo Pareto at the beginning of the 20th
century. This principle states that approximately 20% of the
population possesses 80% of the wealth in a country. Similar
theories have been further applied in various fields, such as in
genomic prediction by Yu and Meuwissen (2011). In their
study, the a priori distribution of the genomic prediction
model was a mixture of two normal distributions, which
assumes that x% of the SNPs explain (100 − x)% of the
genetic variance, and the remaining (100 − x)% of SNPs
explain the remaining x% of genetic variance (Grosfeld-Nir
et al., 2007). Using this economic principle to assume the a
priori distribution of the marker effect is not very convincing,
leading to only a general predictive accuracy in Dong’s
research.

For genomic selection, most of the focus has been on
prediction accuracy and computational efficiency, but the
computing limits are an increasingly important aspect that
needs to be taken into account. The direct method of genomic
selection can provide GEBV in a short computing time when the
number of individuals in the population is small, but some studies
have shown that when the dimensions of the kinship matrix
exceed hundreds of thousands or even millions, the process to
inverse the matrix inverse becomes very difficult due to the
limitations in computer memory and computational time
(Misztal, 2016). According to the Council on Dairy Cattle
Breeding (https://queries.uscdcb.com/Genotype/cur_freq.html),
more than 5,000,000 Holstein cows have been genotyped as of
July 2021. With the accumulation of breeding data, there is an
urgent need for a genomic selection model that can handle large-
scale sample data.

In our study, we presented an ICE-based prediction model
with four zero-mean normal distributions as the prior
distribution and the variance of which have been obtained
accurately based on the 374 standardized phenotypes in an F2
population. This model with four normal distributions and
variances classified into four categories was referred to as
FMixFN, where MixFN refers to the prior distribution of
FMixFN was a mixture of four normal distributions, and the
first “F” refers to “Fast.” As a test, the predictive ability and
computation time obtained with GBLUP, SSgblup, Bayesian
mixture regression (MIX), BayesR, BayesA, BayesB, and
FMixFN were compared first based on six traits with different
heritabilities and different genetic architectures by using cross-
validation. Then FMixFN was evaluated by using data from
Duroc and Asian rice experiments, respectively (Zhao et al.,
2011; Ding et al., 2019). This study also evaluated the
efficiency of FMixFN and its ability to handle large-scale
sample data with 20 sets of sample data simulated by the
QMsim software.
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MATERIALS AND METHODS

All procedures including experimental animals established and tissue
collection were performed in accordance with the guidelines approved
by the Ministry of Agriculture of China. This study was approved by
the ethics committee of Jiangxi Agricultural University.

Data
An F2 design resource population was developed between 2000 and
2006 (Guo et al., 2009) as follows: two White Duroc sires and 17
Erhualian damsweremated to produce F1 animals, fromwhich 9 F1
boars and 59 F1 sows were intercrossed (avoiding full-sib mating) to
produce 967 F2 males and 945 F2 females (in total n � 1,912) in six
batches. All the F2 animals were kept under standard indoor
conditions at the experimental farm of Jiangxi Agricultural
University (China). Then the F2 piglets were weaned at 46 days,
and males were castrated at 90 days. At 240 ± 6 days of age, 1,030 F2
animals including 549 gilts and 481 barrows were slaughtered at
70–120 kg live weight.

Genomic DNA was isolated from ear tissue with a standard
phenol/chloroform extraction method. All DNA samples were
diluted to a final concentration of 50 ng/μl in 96-well plates. In
total, 933 F2 were genotyped with the Illumina PorcineSNP60
BeadChip on an iScan System (Illumina, United States) following
the manufacturer’s protocol (Ramos et al., 2009). Quality control
procedures were implemented by PLINK (version 1.07) (Chang et al.,
2015). Briefly, SNPs with unspecific positions on the genome build
10.2, a call rate lower than 90%, and a minor allele frequency (MAF)
lower than 1% were eliminated, and animals with a missing typing
rate higher than 10% were also removed. In total, 374 phenotypes
were measured on the individuals of the F2 population, including
carcass traits, reproductive traits, immune traits, meat traits, growth
traits, and epigenetic traits (see Additional file 1: Supplementary
Table S1). These 374 traits were then divided into three groups
according to their heritability, i.e., 68 traits with high heritability
(h2 > 0.4), 148 traits with amoderate heritability (0.2< h2 < 0.4), and
158 with low heritability (h2 < 0.2).

Estimation of Substitution Effects
We used the GEMMA software to calculate the substitution
effects of 14,320,159 SNPs on the 374 traits included in the
standard linear model (Zhou and Stephens, 2012). Sex was
included as a fixed effect, and heritability was estimated by
using the −lmm procedure implemented in GEMMA.
Population stratification was adjusted by including a genomic
relationship matrix. Briefly, the model was as follows:

y � Wa +Xβ + u + e ; u ∼ MVNn(0, σ2
uK), e ∼ MVNn(0, σ2

eIn)
where y is an n element vector of phenotypic values, all the traits
were normalized before calculation so that the substitution effects
were comparable among all the phenotypes,W is a design matrix of
covariates, a is a vector of fixed effects,X is a vector of genotypes at
each locus, β is the effect size of SNPs, and u is the vector of random
effects following amultivariate normal distributionMVNn(0, σ2uK),
e is the vector of errors following MVNn(0, σ2eIn), σ2u and σ2e are
polygenic variance and residual variance, respectively, which are

estimated based on the REML average information (AI) algorithm.
K is a known kinship matrix estimated from genome sequence
variants, and In being an n × n identity matrix.

Distribution of Additive Genetic Variance
Three genotypes “AA,” “Aa,” and “aa” were assumed each locus
and were represented by 0, 1, and 2, respectively, with p and q the
frequencies of alleles “A” and “a,” respectively. Assuming that the
effect value of this locus is estimated as β (with no dominance), the
additive genetic variance can be expressed as 2pqβ2 (Park et al.,
2011). In the group of traits with high heritability, all the loci for
each phenotype were put together and ranked by additive genetic
variance from large to small. And all the ordered loci were equally
divided into four groups. For each group, the proportion of the sum
of the additive genetic variances of all loci to the total additive
genetic variance (or variance-ratio thereafter) was calculated, equal
to a1, b1, c1, and d1, respectively (Subsequently called variance
ratio). Similarly, the same method was used for the groups of
traits with a moderate heritability and a low heritability, resulting
in a2, b2, c2, d2, and a3, b3, c3, d3, respectively. Therefore, the
four expected variances in each of the three groups can be
expressed as:

Group of traits with high heritability:

δ21 �
a1Vg

cM
; δ22 �

b1Vg

cM
; δ23 �

c1Vg

cM
; δ24 �

d1Vg

cM

Group of traits with a moderate heritability:

δ21 �
a2Vg

cM
; δ22 �

b2Vg

cM
; δ23 �

c2Vg

cM
; δ24 �

d2Vg

cM

Group of traits with a low heritability:

δ21 �
a3Vg

cM
; δ22 �

b3Vg

cM
; δ23 �

c3Vg

cM
; δ24 �

d3Vg

cM

Where Vg and M is the additive variance and the number of
markers, respectively. c is set to 0.25.

Analytical Derivation for FMixFN
The linear model for genomic prediction was as follows:

y � Xb + Bg + e

Where n individuals and m SNPs were assumed. Thus, y is a n × 1
vector of phenotypes recorded; b is the vector of fixed effects; g is a
m × 1 vector of additive SNP effects; e is a vector of residual errors; X
is the design matrix for fixed effects; and B is standardized design
matrix for additive SNP effects (coded as 0 for genotype “AA,” 1 for
“Aa” and 2 for “aa,” respectively).

In this study, the prior distribution with four zero-mean
normal distributions was written as a function of prior
distributions of SNP variance as determined above:

π(gj) � cϕ(gj|0, δ21) + cϕ(gj|0, δ22) + cϕ(gj|0, δ23)
+cϕ(gj|0, δ24); c � 0.25

(1)

π(gj) is the univariate normal distribution, the effects of SNPs are
obtained by using the Iterative Conditional Expectation algorithm
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(Meuwissen et al., 2009). In brief, assume that E(gj|y−j) is
estimated, the current effects of all the other SNPs are used to
calculate the y−j as follows:

y−j � y −Xb − ∑
k≠ j

Bkgk

where Bk is a vector from the kth column of B, the expectation of
SNP effect, E(gj|y−j), is then estimated by a Bayesian model in
the next round:

E(gj|y−j) � ∫ +∞

−∞
gjf(gj|y−j)dgj

� ∫
+∞
−∞ gjf(y−j

∣∣∣∣∣Bjgj, Iδ
2
e)π(gj)dgj

f(y−j)
� ∫

+∞
−∞ gjf(y−j

∣∣∣∣∣Bjgj, Iδ
2
e)π(gj)dgj

∫+∞−∞ f(y−j
∣∣∣∣∣Bjgj, Iδ

2
e)π(gj)dgj

(2)

f(y−j) is amarginal distribution function of y−j and can be calculated
using the law of total cumulance: ∫+∞−∞ f(y−j|Bjgj, Iδ

2
e)π(gj)dgj.

Calculating f(y−j|Bjgj, Iδ
2
e) is computationally demanding

because it is a multivariate normal density, which involves
calculating the determinant and the inverse of the variance-
covariance matrix for the data y−j. Therefore, we simplified the
derivation by using a univariate normal densities f(Y|gj, δ

2) to replace
f(y−j|Bjgj, Iδ

2
e), where Y � (B’

jBj)−1B’
jy−j and δ2 � (B’

jBj)−1δ2e ;
details of the derivation process are as follows:

f(y−j|Bjgj,Iδ
2
e)∝exp⎡⎢⎣− (y−j −Bjgj),(y−j −Bjgj)

2δ2e
⎤⎥⎦

� exp(− y,
−jy−j −2B,

jy−jgj +B,
jBjg

2
j

2δ2e
)

� exp⎡⎢⎢⎢⎢⎣− g2
j −2(B,

jBj)−1B,
jy−jgj +(B,

jBj)−1y,
jy−j

2(B,
jBj)−1δ2e

⎤⎥⎥⎥⎥⎦

� exp
⎧⎪⎨⎪⎩−
[gj−(B,

jBj)−1B,
jy−j]2−[(B,

jBj)−1B,
jy−j]2 +(B,

jBj)−1y,
jy−j

2(B,
jBj)−1δ2e

⎫⎪⎬⎪⎭

∝exp
⎧⎪⎨⎪⎩ −

[gj −(B,
jBj)−1B,

jy−j]2
2(B,

jBj)−1δ2e
⎫⎪⎬⎪⎭∝exp⎡⎢⎢⎢⎣− (gj −Y)2

2δ2
⎤⎥⎥⎥⎦∝f(Y∣∣∣∣∣gj,δ

2)

Therefore, the equation E(gj|y−j) can be written as:

E(gj|y−j) � ∫
+∞
−∞ gjf(Y∣∣∣∣∣gj, δ

2)π(gj)dgj

∫+∞−∞ f(Y∣∣∣∣∣gj, δ
2)π(gj)dgj

(3)

the numerator of Eq. 3 can be broken down into four terms
combined with Eq. 1 as follows:

c∫ +∞

−∞
gjf(Y|gj, δ

2)ϕ(gj|0, δ21)dgj

+c∫ +∞

−∞
gjf(Y|gj, δ

2)ϕ(gj|0, δ22)dgj

+c∫+∞

−∞
gjf(Y|gj, δ

2)ϕ(gj|0, δ23)dgj

+c∫+∞

−∞
gjf(Y|gj, δ

2)ϕ(gj|0, δ24)dgj (4)

The first term of Eq. 4 can be derived as follows:

c∫+∞

−∞
gjf(Y|gj,δ

2)ϕ(gj|0,δ21)dgj

� c∫+∞

−∞
gj

1
δ
���
2π

√ exp⎡⎢⎢⎢⎣− (Y−gj)2
2δ2

⎤⎥⎥⎥⎦ 1

δ1
���
2π

√ exp[− g2
j

2δ21
]dgj

� c���
2π

√ ∫+∞

−∞

gj

δδ1
���
2π

√ exp⎡⎢⎢⎢⎣− (Y−gj)2
2δ2

− g2
j

2δ21

⎤⎥⎥⎥⎦dgj

� c���
2π

√ ∫+∞

−∞

gj

δδ1
���
2π

√ exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−
(g2

j −
2Yδ21
δ2 +δ21

gj + Y2δ21
δ2 +δ21

)(δ2 + δ21)
2δ2δ21

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dgj

� c���
2π

√ ∫+∞

−∞

gj

δδ1
���
2π

√ exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−
(gj − Yδ21

δ2 +δ21
)

2

(δ2 + δ21)
2δ2δ21

− Y2

2(δ2 + δ21)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dgj

� c���
2π

√ exp[− Y2

2(δ2 +δ21)]
1������

δ2 +δ21
√ ∫+∞

−∞

gj

δδ1������
δ2 +δ21
√ ���

2π
√

exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−
(gj − Yδ21

δ2 +δ21
)

2

2⎛⎜⎜⎜⎝ δδ1������
δ2 +δ21
√ ⎞⎟⎟⎟⎠

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dgj

Here, the last term of this formula equals Yδ21
δ2+δ21 as it can be taken

as calculating the expected value of gj in the normal distribution
with mean Yδ21

δ2+δ21 , and variance δ2δ21
δ2+δ21. Therefore, the first term of

Eq. 4 can be written as follows:

c���
2π

√ exp[ − Y2

2(δ2 + δ21)]
1������

δ2 + δ21

√ Yδ21
δ2 + δ21

Here, the derivation process for the remaining terms of Eq. 4
was the same as for this term, and therefore, the final form of the
numerator of Eq. 3 is:

c���
2π

√ exp[ − Y2

2(δ2 + δ21)]
1������

δ2 + δ21

√ Yδ21
δ2 + δ21

+ c���
2π

√ exp[ − Y2

2(δ2 + δ22)]
1������

δ2 + δ22

√ Yδ22
δ2 + δ22

+ c���
2π

√ exp[ − Y2

2(δ2 + δ23)]
1������

δ2 + δ23

√ Yδ23
δ2 + δ23

+ c���
2π

√ exp[ − Y2

2(δ2 + δ24)]
1������

δ2 + δ24

√ Yδ24
δ2 + δ24

(5)

there is no gj in the integrand of the denominator in Eq. 3
compared to that of the numerator. Therefore, it should calculate
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the cumulative probability from −∞ to +∞, but not calculate the
expected value, and this value is 1. Thus, the denominator in Eq. 3
can be written as:

c���
2π

√ exp[ − Y2

2(δ2 + δ21)]
1������

δ2 + δ21

√

+ c���
2π

√ exp[ − Y2

2(δ2 + δ22)]
1������

δ2 + δ22

√

+ c���
2π

√ exp[ − Y2

2(δ2 + δ23)]
1������

δ2 + δ23

√

+ c���
2π

√ exp[ − Y2

2(δ2 + δ24)]
1������

δ2 + δ24

√ (6)

thus, the final form for Eq. 3 is derived:

E(gjy−j) �
Y2

δ2+δ21 + exp[ Y2

2(δ2+δ21 ) −
Y2

2(δ2+δ22 )]
����
δ2+δ21

√����
δ2+δ22

√ Yδ22
δ2+δ22 + exp[ Y2

(δ2+δ21) −
Y2

(δ2+δ23 )]
����
δ2+δ21

√
δ2+δ23

Yδ23
δ2+δ23 + exp[ Y2

2(δ2+δ21) −
Y2

2(δ2+δ24 )]
����
δ2+δ21

√
δ2+δ24

Yδ24
δ2+δ24

1 + exp[ Y2

2(δ2+δ21 ) −
Y2

2(δ2+δ22)]
����
δ2+δ21

√
δ2+δ22 + exp[ Y2

2(δ2+δ21 ) −
Y2

2(δ2+δ23)]
����
δ2+δ21

√
δ2+δ23 + exp[ Y2

2(δ2+δ21 ) −
Y2

2(δ2+δ24)]
����
δ2+δ21

√
δ2+δ24

Here, the fixed effects are estimated at each iteration by the
formula: b̂ � (X′X)−1X′(y − Bĝ). Convergence of solutions at
the t th iteration was judged based on the formula
(Gt−Gt−1)′(Gt−Gt−1)

(Gt)′Gt < 10−8, where G � (b̂’ĝ′)′. It ends at the
iteration when all the SNPs have been calculated once.

Analytical Models
In the following analysis, we used GBLUP (Meuwissen et al.,
2001; VanRaden, 2008), SSgblup (Legarra et al., 2009;
Christensen and Lund, 2010), FMixFN, MIX (Xavier et al.,
2019), BayesR (Kemper et al., 2015), BayesA, and BayesB with
respective model fittings to compare their performance, the
variance components were pre-estimated using the mixed
model. The details of these analyses were as follows:

GBLUP: GBLUP was used to estimate the effects of the
markers by BLUP, assuming that each marker explains an
equal proportion of the total genetic variance. The software
GEMMA was used to implement the GBLUP calculation
process (Zhou and Stephens, 2012).

SSgblup: Single-step genomic BLUP (SSgblup), which was
developed by Aguilar et al. (2010) and Christensen and Lund
(2010), opened the way to perform genomic prediction using
phenotype, pedigree, and genomic information simultaneously
on both genotyped and non-genotyped individuals via a
combined relationship matrix (H). Implementation of SSgblup
is completed by the R package “Hiblup” (https://hiblup.github.
io/).

MIX: the MIXTURE model assumed that the marker effects
came from a mixture of two distributions: one distribution with
large variance (accommodating large marker effects) and one
with small variance (accommodating small marker effects). The
distribution to which the marker belongs is sampled from the
Bernoulli distribution. The variances of the two distributions
underlying the mixture are estimated using a noninformative chi-
square distribution. Implementation of MIX is completed by the
R package “VIGoR” (https://cran.r-project.org/web/packages/
VIGoR/index.html).

BayesR: BayesR starts the hierarchical model and poses a
mixture of four zero-mean normal distributions as a
conditional prior for a specific SNP effect. We use BayesR
software to implement the calculation process (https://
cnsgenomics.com/software.html).

BayesA: BayesA assumes that the distribution of SNP effects
follows a Student’s t-distribution. Mathematically, it is assumed
that each SNP effect comes from a normal distribution but σ2 can
be varied among the SNPs because the t-distribution is not easy to
incorporate into a prediction of the marker. A scaled inverted chi
distribution, X2(], S) is usually used as prior for the variance
components.

BayesB: The prior distribution of BayesB is a mixture
distribution with some SNPs with zero effects and the rest
with a t-distribution, and the prior hypothesis of the SNP with
non-zero effect is the same as BayesA. The implementation of
BayesA and BayesB is completed by the R package “BGLR” (Perez
and de los Campos, 2014). All MCMC sampling was run for
50,000 cycles, and the first 20,000 cycles were discarded as burn-
in for BayesR, BayesA, and BayesB.

The Verification of Predictive Ability and
Computing Time
To test the performance of FMixFN in terms of predictive ability
and calculation time, we did the following. Firstly, the variance
ratio of the prior distribution of FMixFN was assumed to be
random, then two traits were selected to verify the unbiasedness,
and the compatibility of the variance ratio estimated in the F2
population. The specific assumptions of the variance ratio are
shown in Additional file 1: Supplementary Table S2, the first one
is to average all variances, i.e. to set the classification with the
largest variance ratio at 50%, and the second was to centralize all
variances, i.e., the classification with the largest variance ratio is
assumed to be 90%. Secondly, we compared the predictive ability
and calculation time of FMixFN and other mainstream genomic
selection methods and selected two phenotypes with different
genetic structures and different heritabilities from each group for
cross-validation, one trait is controlled by numerous polygenic
genes and the other one is controlled by several loci with large
variances. Supplementary Figure S1 (see Additional file 2:
Supplementary Figure S1) shows that traits 1, 3, and 5 were
controlled by SNPs with large variances, and traits 2, 4, and 6 were
controlled by many SNPs, each with a very small effect. After
quality control, the remaining number of individuals with the six
traits were 839, 832, 834, 840, 784, and 838, respectively, with
33,901, 33,893, 33,891, 33,891, and 33,894 SNPs, respectively, the
heritability of each trait was 0.600, 0.560, 0.380, 0.369, 0.145, and
0.107, respectively. Details on the number of individuals, number
of SNPs, and heritability estimates are shown in Additional file 1:
Supplementary Table S3. In addition, we also evaluated the
stability of FMixFN by using data from the duroc experiment and
Asian rice experiments, respectively, more specific information
from this population is also shown in Additional file 1:
Supplementary Table S3. Finally, to demonstrate that
FMixFN can perform genomic prediction analysis based on
large-scale sample data with no data overflow error, our study
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simulated 20 sets of sample data using QMsim software
(Sargolzaei and Schenkel, 2009), which contains 10,000,
20,000, . . .. . ., 190,000, and 200,000 individuals, respectively.
Each set of data was obtained through eight generations of
mating, combining genotype and phenotype data from
generations 3–8, and determining the number of individuals
per generation by parameter setting. Genomic information of
each individual was set with 10 chromosomes, each chromosome
is set 100 cM long and including 101 markers and 100 QTLs,
respectively, with a marker mutation rate of 2.5 and QTL
mutation rate of 3. Genomic prediction by a replicated
training-testing method was used to evaluate the predictive
results. Cross-validation of nine replicates was performed. All
individuals were randomly and evenly divided into nine groups.
In each replicate, one of the groups was selected as the testing data
set while the remaining eight groups were used as the training
data set, and the results of each cross-validation are shown in
Additional file 1: Supplementary Table S4. Predictive ability is
defined as the correlation between GEBV and the phenotypes
adjusted for the covariates (y −Xû) (Meuwissen et al., 2001).

RESULTS

The Expected Variance Ratio
In this study, all traits of the F2 population were divided into three
groups based on the heritability of the traits: high, moderate, and
low. For the group of traits with high heritability, the calculated a1,
b1, c1, and d1 were equal to 0.8752, 0.0958, 0.0256, and 0.0032,
respectively. For the group of traits with a moderate heritability, the
calculated a2, b2, c2, and d2 were equal to 0.8367, 0.1246, 0.0342,
and 0.0043, respectively. And for the group of traits with low
heritability, the calculated a3, b3, c3, and d3 were equal to
0.8225, 0.1413, 0.0324, and 0.0036, respectively. Those parameters
were composed in the procedure of FMixFN, as FMixFN starts
running, the program determines which group of variances is
calculated based on the heritability of the experimental trait.

Verification of Unbiasedness
In this study, we selected phenotype 3 and phenotype 4 to verify the
unbiasedness of the variance ratio of the prior distribution.When the
variance ratio was assumed to be 0.5, 0.25, 0.125, and 0.125, the
predictive ability of phenotype 3 and phenotype 4 are 0.4773 and
0.4911, respectively. When the variance ratio is assumed to be 0.9,
0.005, 0.045, 0.005, the predictive ability of each of these phenotypes
are 0.4789 and 0.4911, respectively. In contrast, the predictive ability
of these two phenotypes estimated by using the original parameters
is 0.4787 and 0.4913, respectively.

Predictive Ability and Computing Time
The predictive ability of each of the six F2 traits under the six
predictive methods is shown in Figure 1. For phenotypes 1, 3, and
5, the predictive ability with BayesR, BayesA, and BayesB was,
respectively, 0.0377, 0.0308, and 0.0374 higher than that of
FMixFN, and the predictive ability of FMixFN was slightly
better than of GBLUP by 0.0045, 0.0013, and 0.0103,
respectively. For those three phenotypes, there is almost no

difference between SSgblup and FMixFN in predictive ability,
and FMixFN performs better than SSgblup for phenotype5. For
phenotypes 2, 4, and 6, FMixFN performed best for phenotype 4,
with a predictive ability 0.0129 higher that of BayesR, BayesA, and
BayesB. For phenotype 2, the predictive ability of the five software
was similar and was highest with BayesA but only 0.0053 higher
than that of FMixFN. For phenotype 6, FMixFN ranked second in
the predictive ability, just 0.0027 lower than that of SSgblup. It
was worth mentioning that the predictive ability of FMixFN was
slightly better than that of other ICE-based Bayesian mixture
regression (MIX) by 0.0221, 0.0116, 0.0801, and 0.0263 for
phenotype 1, 4, 5, and 6, respectively. The specific information
of the predictive ability was also shown in Table 1. Table 2
reports the predictive ability performances of FMixFN and other
methods using the Duroc and rice datasets. In the Duroc
population, the prediction accuracies were 0.3655, 0.3300,
0.3998, 0.3476, and 0.3589 for FMixFN, GBLUP, BayesR,
BayesA, and BayesB, respectively. From the mean value, we
found that FMixFN performed slightly worse than BayesR, but
outperformed GBLUP, BayesA, and BayesB. In general, the
MCMC-based Bayes genome selection algorithm showed some
advantages in the traits controlled by several major QTLs, which
explained a large proportion of phenotypic variance in some
SNPs, while FMixFN performs better than GBLUP. FMixFN is
slightly better than some other mainstream methods when traits
follow a polygenic model. In this study, we measured the
calculation speed of five methods as the average time
necessary for the first cross-validation of the six traits. As
shown in Figure 2A, the average calculation time was 0.54,
0.37, 0.29, 30.2, 42, and 50.5 min for FMixFN, GBLUP, MIX,
BayesR, BayesA, and BayesB, respectively.

FMixFN When Dealing With Large-Scale
Sample Data
The computational time per iteration of FMixFN increases almost
linearly as the number of individuals increases in the reference
group, as shown in Figure 2B. Data reading time also increased
linearly as the amount of sample data increased. Through
simulation studies, we also found that FMixFN can calculate
GEBV for 200,000 large samples without data overflow. Data
overflow usually occurred in exponential functions, where data
overflows or underflows could occur when the exponential
part of the exponential function was very large or very small.

The exponential part of Eq. 5 and Eq. 6 was exp[ − Y2

2(δ2+δ2i )],
in which Y � (B,

jBj)−1B,
jy−j, Bj was the j column of the

accompanying matrix of SNPs. When Bj growth unlimited,

the limit of exp[ − Y2

2(δ2+δ2i )] is negative infinity, and data

underflows will occur. In this study, we found FMixFN could
calculate GEBV for 200,000 samples without data overflow. So
FMixFN has the potential for use on large-scale sample data.

In conclusion, when there are fewer individuals in the
reference group, the computational speeds for ICE-based
FMixFN are on the same order of magnitude with GBLUP,
and they were much faster than the MCMC-based Bayesian
methods. When the number of individuals in the reference
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dimension of the kinship matrix exceeds hundreds of thousands
or even millions, the process to inverse the matrix becomes very
difficult for the direct method of genomic selection. FMixFN has
excellent computational efficiency and can handle large-scale
sample data.

DISCUSSION

Our results show that the accuracy of genomic selection is
affected by many factors, among which the a priori hypothesis
on the size of the QTL effect values for traits is crucial. Usually,
the most accurate method to predict genetic values or phenotypes
based on SNP genotypes is to fit all SNPs simultaneously, treating
the SNP effects as they are drawn from a prior distribution that
matches the true distribution of SNP effects as closely as possible
(Goddard and Hayes, 2009; Chatterjee et al., 2013). To date, the
genetic architecture of many traits is still not entirely understood,
which means that the prior hypothesis about the QTL effect
distribution of all genomic selection models is empirical. In
general, mixed normal distributions are more accurate than a
single distribution, because the mixture of normal distributions
can approximate a wide variety of distributions. It is important to
note that this does not imply the SNP effects are drawn from a
mixture of normal distributions, but it merely means that such a
mixed distribution can approximate almost any distribution that
might describe the distribution of effect sizes. BayesR provides an
estimate of the number of causal variants that affect a trait and of
the distribution of their effects by approximating the distribution

of effect sizes with amixture of normal distributions. In our study,
the prior distribution of the SNP effect was similar to BayesR,
which came from a mixture of four normal distributions with a
ratio of 1: 1: 1: 1. The difference with BayesR is that we used an
Iterative Conditional Expectation (Zhao et al.) algorithm.

Narrow-sense heritability is defined as the proportion of additive
variance to phenotype variance (Wray and Visscher, 2008), which
means that a trait with a high heritability is more under the control of
genes and is less affected by the environment. Therefore, we divided all
374 traits into three groups according to their heritability, and the
variance of the mixed distribution is then calculated in each group.
The phenotypes included in our study cover almost all the traits
measured in pigs and thus are representative, resulting in a high
unbiasedness and compatibility variance. This study randomly
assumed two sets of variance ratios and used two representative
phenotypes to verify the predictive ability but the results showed that
the predictive ability obtained using the original variance may not be
optimal. The distribution of marker effects for various traits was
different, and no one genomic selection model or a priori hypothesis
was optimal for all traits. The variance parameters (variance ratios)
obtained in our study were expected to be unbiased as the F2 resource
population contained a relatively sufficient number of individuals.

The results showed that the predictive ability of BayesR,
BayesA, and BayesB was similar in phenotype1, 3, and 5, and
was higher than that of the three other methods, which means the
MCMC based Bayes genomic selectionmodel has an advantage in
predicting genomic breeding values when the trait is affected by
large-effect QTL. This result confirms those reported by Chen
et al. (2014). For the three phenotypes, GBLUP resulted in the

FIGURE 1 | Comparison of predictive ability of BayesA, BayesB, BayesR, FMixFN, GBLUP, MIX, and SSgblup in all six traits. The predictive ability performance of
each method was measured by the correlation method, which is the average Pearson correlation between predicted values and phenotypic values.
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least prediction results because its prior assumption did not
match reality as it assumed that traits are controlled by many
SNPs, each with a small effect. FMixFN performed slightly better
than GBLUP for these three traits, but worse than the Bayes-
based methods. Although the prior distribution of FMixFN was a
mixture of normal distributions, the posterior variances of SNP
effects were not updated, which is a potential drawback for these
ICE-based methods. The predictive ability obtained with SSgblup
was similar to that with FMixFN because of the addition of
pedigree information. However, all the methods yielded almost

the same result for phenotypes 2, 4, and 6, a reasonable
explanation may be that when the traits are controlled by
many polymorphisms of very small effect, the prior hypothesis
of the Bayes-based method is closed to that of GBLUP.

In addition to resulting in stable predictive ability, two other
advantages of FMixFN are computational efficiency and its ability
to deal with large-scaled sample data. The level of the
computational efficiency of the direct method of genomic
selection was the same as that of FMixFN when the number
of individuals in the reference population was small, but if this
number increases, the direct method will not be efficient because
the process to invert the matrix will become very difficult due to
the limitations in computer memory and computational time.
Our study demonstrates the stability of FMixFN and its potential
for use on large-scale sample data.

CONCLUSION

We have developed a Bayes-based genomic selection model called
FMixFN, which combines stable predictive ability and
computational efficiency. Besides, when the number of
individuals in the reference population is large, FMixFN is one

TABLE 1 | Prediction performance in all six traits under the seven predictive methods.

Traits/COR Methods

GBLUP SSgblup FMixFN MIX BayesR BayesA BayesB

phe1 0.661 0.6658 0.6655 0.6434 0.7032 0.6962 0.6977
phe2 0.5637 0.5635 0.5591 0.5602 0.556 0.5564 0.561
phe3 0.4774 0.4803 0.4787 0.4833 0.5051 0.5096 0.509
phe4 0.4814 0.4861 0.4915 0.4799 0.4867 0.4786 0.48
phe5 0.2214 0.2232 0.2317 0.1516 0.2691 0.2485 0.2549
phe6 0.1524 0.1564 0.1537 0.1274 0.1512 0.1529 0.1541
Mean 0.4262 0.4292 0.4300 0.4076 0.4452 0.4403 0.4427

COR: The Pearson correlation coefficient between predicted values and phenotypic value.

TABLE 2 | Comparison of predictive ability performances of six methods by using
Duroc dataset and rice dataset.

Traits/COR Methods

GBLUP FMixFN MIX BayesR BayesA BayesB

Duroc 0.33 0.3655 0.3579 0.3998 0.3476 0.3589
FT 0.4347 0.4506 0.4381 0.4415 0.4295 0.4342
CH 0.6000 0.5696 0.5786 0.5830 0.5809 0.5737
Mean 0.4549 0.4619 0.4582 0.4747 0.4526 0.4556

COR: The Pearson correlation coefficient between predicted values and
phenotypic value.

FIGURE 2 | (A). Comparison of computing performances (in min) of FMixFN, GBLUP, MIX, BayesR, BayesA, and BayesB at first cross-validation of the six traits.
Computing performance tests were performed in a Red Hat Enterprise Linux server with 2.80 GHz Intel(R) Xeon(R) 20CPUs E5-2680 v4, and 66 GB memory. (B). The
computational time (in s) for per iteration of FMixFN according to the number of individuals increasing in the reference group. Computing performance tests were
performed on a Red Hat Enterprise Linux server with 2.10 GHz Intel(R) Xeon(R) 64 CPUs Gold 6130, and 131 GB memory.
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of the best choices for genomic selection. FMixFN is a stable, big
data-oriented genomic selection model, which could meet the needs
of large breeding companies or combined breeding schedules.
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Circular RNA Expression and
Regulation Profiling in Testicular
Tissues of Immature and Mature
Wandong Cattle (Bos taurus)
Ibrar Muhammad Khan1†, Hongyu Liu1*†, Jingyi Zhuang1, Nazir Muhammad Khan2,
Dandan Zhang1, Jingmeng Chen1, Tengteng Xu1, Lourdes Felicidad Córdova Avalos1,
Xinqi Zhou1 and Yunhai Zhang1*

1Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal
Science and Technology, Anhui Agricultural University, Hefei, China, 2Department of Zoology, University of Science and
Technology, Bannu, Pakistan

Wandong cattle are an autochthonous Chinese breed used extensively for beef
production. The breed tolerates extreme weather conditions and raw feed and is
resistant to tick-borne diseases. However, the genetic basis of testis development and
sperm production as well as breeding management is not well established in local cattle.
Therefore, improving the reproductive efficiency of bulls via genetic selection is crucial as a
single bull can breed thousands of cows through artificial insemination (AI). Testis
development and spermatogenesis are regulated by hundreds of genes and
transcriptomes. However, circular RNAs (circRNAs) are the key players in many
biological developmental processes that have not been methodically described and
compared between immature and mature stages in Bovine testes. In this study, we
performed total RNA-seq and comprehensively analyzed the circRNA expression profiling
of the testis samples of six bulls at 3 years and 3months of developmental age. In total,
17,013 circRNAs were identified, of which 681 circRNAs (p-adjust < 0.05) were
differentially expressed (DE). Among these DE circRNAs, 579 were upregulated and
103 were downregulated in calf and bull testes. The Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that
the identified target genes were classified into three broad functional categories, including
biological process, cellular component, and molecular function, and were enriched in the
lysine degradation, cell cycle, and cell adhesion molecule pathways. The binding
interactions between DE circRNAs and microRNAs (miRNAs) were subsequently
constructed using bioinformatics approaches. The source genes ATM, CCNA1,
GSK3B, KMT2C, KMT2E, NSD2, SUCLG2, QKI, HOMER1, and SNAP91 were found
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to be actively associated with bull sexual maturity and spermatogenesis. In addition, a real-
time quantitative polymerase chain reaction (RT-qPCR) analysis showed a strong
correlation with the sequencing data. Moreover, the developed model of Bovine testes
in the current study provides a suitable framework for understanding the mechanism of
circRNAs in the development of testes and spermatogenesis.

Keywords: wandong cattle, testicular growth, spermatogenesis, circRNAs, total RNA sequencing

INTRODUCTION

The localWandong cattle are viewed as one of the primary breeds
in Anhui, China, and moreover, they are considered as one of the
most economically important breeds in the beef industry.
However, their development and utilization are still in the
initial stages (Zhou et al., 2001). The reproductive efficiency of
breeding bulls is an important consideration in livestock
production systems, and the genetic mainstream is obtained
through the selective application of germ cells from the
desirable sire (Waqas et al., 2019). Hence, molecular strategies
are required to improve the reproduction traits and to explore the
genetic potential for economically important traits in local cattle
breeds.

Mammalian spermatogenesis can be divided into three
distinct stages: i) self-renewal and mitosis in spermatogonia to
form spermatocytes, ii) meiosis in spermatocytes to generate
elongated haploid spermatids, and iii) postmeiotic
modifications in haploid spermatids to form spermatozoa
(Hecht, 1998; Griswold, 2016; Ibtisham et al., 2017). The
crucial stages of spermatogenesis are regulated at the
transcriptional, post-transcriptional, and epigenetic levels by a
well-coordinated genomics network (Eddy and O’Brien, 1997; Yu
et al., 2003). Male gonads consist of complicated transcriptomic
elements, with more than 15,000 differentially expressed genes
(DEGs) involved in spermatogonial maturation (Ramsköld et al.,
2009; Soumillon et al., 2013). Recent studies have demonstrated
that noncoding RNAs (nc-RNAs) play an important role at the
post-transcriptional level during spermatogenesis (Mukherjee
et al., 2014; Robles et al., 2017; Gao et al., 2019).

Circular RNAs (circRNAs) are nc-RNAs with a circular closed
loop and play a vital regulatory role in many biological processes.
The circRNAs are resistant to RNase degradation because of the
lack of 5′- and 3′-ends (Sanger et al., 1976; Lasda and Parker,
2014). In the modern era of bioinformatics and sequencing
technology, a significantly high number of circRNAs have
been revealed in the mouse brain and testis. It has been
shown that the testis consists of the second highest number of
tissue-specific circRNA-level genes (You et al., 2015). A total of
15,996 circRNAs have been identified in humans, of which 10,792
(67%) have been observed in the testis (Guo et al., 2014; Dong
et al., 2016). Remarkably, a primary report has shown that
1,017 circRNA-linked genes are mostly related to
spermatogenesis, sperm motility, and fertilization (Dong et al.,
2016). However, little is known about the global profile and
characteristics of circRNAs in mammalian testis development
and spermatogenesis.

In the present study, we provided a comprehensive catalog of
circRNAs in the testes of bulls at two different developmental
stages and detailed new insights into the functional activities of
circRNAs in testicular development and spermatogenesis. The
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomics (KEGG) analyses were performed to ascertain the
molecular mechanisms of reproduction that were modulated
during growth and development in bulls.

MATERIALS AND METHODS

Animals and Sample Collection
Three physically healthy individuals (n � 3) of two different age
groups, andrologically mature bulls (3 ± 0.014 years) and
immature calves (3 ± 0.24 months), were selected for the
current study (Tomlinson et al., 2017). The native cattle are
also known as Wandong in the Anhui province of China. All
testicular samples were obtained immediately after the
slaughtering process under the veterinary surgical protocol in
Fengyang County, Anhui. All pairs of testes were processed by
incising the scrotum medially and uncovering the right and left
testicles within the tunica vaginalis (Lunstra and Echternkamp,
1982). After removing the fascia tissues, tunica vaginalis, and
tunica albuginea from the testis, three slices of testicular samples
were cross-cut from the middle aspect of the testis through fine-
scale dissection. One cross-cut section was stored in 4%
formaldehyde solution for histological assessment, and the
others were immediately immersed in liquid nitrogen and
stored until total RNA extraction (Wu et al., 2020).

Histological Assessment
Testicular tissue samples that had been preserved in 4%
formaldehyde (Wuhan Servicebio Technology Co., Ltd.) for
72 h were used for histological sections (Fischer et al., 2008).
The tissues were sectioned into 6-μm-thick sections and stained
withMasson’s trichrome stain. The histomorphology of testicular
tissues was assessed using different magnification powers.

RNA Isolation, Quantification, and
Qualification
The testicular samples were sent to a commercial sequencing
facility (Beijing Novogene Corporation, China) for Seq-analysis.
Total RNA was isolated from the testis samples using the Trizol
reagent (Takara, Beijing, China) under sterile conditions and
treated with the DNase I enzyme to remove endogenous DNA
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contamination according to the manufacturer’s protocol. RNA
quality and contamination were assessed by 1% agarose gel
electrophoresis. The purity was checked using a
NanoPhotometer® spectrophotometer (IMPLEN, CA,
United States). The total RNA concentration was assessed
using a Qubit® RNA Assay Kit in a Qubit® 2.0 fluorometer
(Life Technologies, CA, United States). RNA integrity was
measured using an RNA Nano 6000 Assay Kit of the
Bioanalyzer 2100 system (Agilent Technologies, CA,
United States).

cDNA Library Construction for circRNA
Sequencing Analysis
A total of 3 μg of RNA from each testis sample was used to
construct the cDNA libraries using the NEB-Next® Ultra-TM
RNA Library Prep Kit for Illumina® (NEB, United States).
Novogene constructed a chain-specific library by removing
ribosomal RNA (Parkhomchuk et al., 2009). First, the
ribosomal RNA was removed from the total RNA, and then,
the RNA was divided into many short slices of 250–300 bp. The
first cDNA strand manufactured from the fragmented RNA was
used as the template strand, and random oligonucleotides were
used as primers. Subsequently, the RNA strand was degraded
with RNase H, and then, the second cDNA strand was
manufactured along with dNTPs (dATP, dGTP, dUTP, and
dCTP) using the DNA polymerase I system. After purification,
the double-stranded cDNA was fixed, followed by the addition of
a poly A-tail and sequencing adaptors. A cDNA of approximately
200 bp was separated using the AMPure XP beads. Finally, the
USER enzyme was used to degrade the second (uracil-containing)
strand of the cDNA, and PCR amplification was performed to
obtain the library.

Alignment of RNA-Sequencing Reads and
circRNA Identification
To ensure the quality and reliability of the data analysis, it is
necessary to filter the original raw data. The low-quality reads
(exceeding 50% low-quality bases, e.g., where Q-phred score ≤
20), reads exceeding 10% possessing (N) nucleotides (where N,

the proportion of reads that cannot be determined, is greater than
0.002), and reads with seq-adaptors were removed to obtain the
clean reads, which were aligned to the ribosomal RNA database
using the Bowtie2 tool (Langmead and Salzberg, 2012). The
ribosomal RNA-free reads of each calf and bull sample were
charted to the reference genome (Bos taurus-UMD 3.1.1) by
TopHat2 (v. 2.0.3.12) as described previously (Kim et al., 2013).
The charted reads of each sample were assembled using String-
Tie v1.3.1 (Pertea et al., 2016). Subsequently, 20-mer sequences
were removed from both ends of the unmapped reads and aligned
according to the reference genomes to identify the exclusive
anchor positions within the splicing position. The anchor
reads were aligned in the reverse head-to-tail direction that
exhibited back splicing (Hansen et al., 2013) and led to key
identification of circRNAs (Figure 1). The identified circRNAs
were blast for the specific functions against circBase, a database
for circRNAs (http://www.circbase.org/) (Glažar et al., 2014), and
assigned to different features, such as genomic classification,
length distribution, and chromosomal distribution. The
circRNAs that did not find their annotations were
considered novel.

Putative Identification and Coding Potential
of circRNAs
Putative circRNAs were identified by filtration of anonymous
transcripts. To reduce the rates of false positives, the assembled
transcripts were filtrated to gain putative circRNAs by the
following steps: i) the transcripts having more than one exon
were selected, ii) transcripts having more than 200 bp in length
and free from exon region overlapping were desired, and iii)
transcripts with high expression levels where the FPKM value was
more than 2 log2 (fold change) were selected. All known
transcripts of the database were analyzed using the
Cuffcompare software. The coding potential of circRNAs was
determined using the software programs Coding–Non-Coding
Index (CNCI) (Sun et al., 2013), Pfam-scan (Bateman et al., 2004;
Finn et al., 2014), and coding potential calculator (CPC) (Kong
et al., 2007). All transcripts identified with coding potential were
refined, and those without coding potential were recognized as
putative circRNAs.

FIGURE 1 | Scheme showing the difference between linear and back-splicing and also illustrating the RNA reads’ accommodation to each other that makes the
stable circular RNAs.
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Expression Pattern of Differentially
Expressed circRNAs and miRNA
Endogenous Sponge
The circRNA gene expression level was assessed using the
fragments per kilobase of transcript sequence per million base
pairs sequenced (FPKM) value. The significance of DE circRNAs
at the gene or transcript level was analyzed, and functional genes
relevant to the developmental groups were identified. Cuffdiff
(v2.1.1) software was used to project the TPM levels of circRNAs
(Trapnell et al., 2010). An edgeR kit (http://www.rproject.org/)
was used to classify differentially expressed circRNAs through
samples. CircRNAs with a fold change greater than or equal to 2
and a p-value < 0.05 in comparison between the samples are
differentially expressed. We identified the endogenous sponge
interaction between the differentially expressed circRNA and
miRNA by means of three software programs: miRanda (v. 3.
3a), MIREAP, and TargetScan (v. 7.0).

Bioinformatics Analysis of GO and KEGG
The GO term analysis and classification provides significant
source genes that are involved in different biological functions,
and DE circRNA genes were employed by the GO-seq R package
(Young et al., 2010). All source genes in the pathways and the
background genes were charted to the GO terms in the database
(http://www.geneontology.org/). The GO terms with the
corrected p-value (p < 0.05) were recognized as relatively
enriched by DE genes according to the definition of the
hyper-geometric test. The significance analysis of the term
enrichment was corrected by FDR, and the corrected p-value
(Q-value) was obtained (Ashburner et al., 2000). The KEGG
pathway-based study further elaborated the explanation of source
genes and their biological functions (http://www.genome.jp).
KOBAS software was used to test the enriched DE source
genes in the KEGG pathways, as suggested by (Mao et al.,
2005). The enrichment analysis significantly identified the
signaling and metabolic pathways, to which circRNA source
genes and total background genes were charted.

Validation of the circRNAs Gene via
RT-qPCR
Whole RNA was extracted from immature and mature groups
using the Trizol reagent (Life Technologies, 182805,
United States), and its concentration was measured using a
Nanodrop spectrophotometer. The good-quality RNAs were
then converted into cDNAs using a QuantiTect Reverse
Transcription Kit (Qiagen, 205311, Germany) in accordance
with the manufacturer’s protocol. The software programs
Primer 3 web version 4.0.0 and basic local alignment search
tool (BLAST; https://blast.ncbi.nlm.nih) were used to design
gene-specific primers. The obtained PCR products were
detected by 3% agarose gel and Sanger sequencing (Sangon
Biotech, Shanghai, China). The divergent primers were used in
this study and are presented in Supplementary File 1. The
expression of circRNAs was detected by using a StepOnePlus
Real-Time PCR System (Applied Biosystems, United States)

using the FastStart SYBR Green Master Mix (Roche,
Germany). Each PCR comprised 7.5 μl 2× SYBR Green PCR
Master Mix, 1.5 μl cDNA, 0.5 μl each of reverse and forward
primers, 4.7 μl nuclease-free water, and 10.3 μl ROX dye. The
following q-PCR thermal cycles were carried out: i)
predenaturation at 95°C for 10 min, ii) followed by 45
denaturation amplification cycles at 95°C for 15 s, iii)
annealing at 60°C for 10 s, and iv) an extension cycle at 72°C
for 20 s. The quantification cycle (Cq) of each target gene was
normalized to that of the reference GAPDH gene. The q-PCR
experiment was performed in triplicate to minimize the risk of
error in the experiments. The Cq values were obtained and
transferred to a Microsoft Excel sheet for further relative
quantification analysis using the 2−ΔΔCt method (Sherman
and Lempicki, 2009).

Statistical Analysis
Data on circRNA transcripts of interest from immature and
mature testicular tissues were analyzed using the student t-test
(SPSS 17.0) and presented as mean ± SEM. Before conducting the
t-test, the data distribution and variances between the two groups
were evaluated and found to be normal and homogeneous,
respectively. Mean values were believed to be significantly
different with *p < 0.05 and **p < 0.01.

RESULTS

Histomorphology of Testes
A histological study of bull (B. taurus) testes showed a
noteworthy difference between immature and mature stages.
Under 100X microscopic examination, the diameter of
seminiferous tubules was much smaller in immature than in
mature testes. At the same time, similar conditions were observed
in the interstitial connective tissue of immature andmature testes,
as highlighted in Figures 2A,B. Under 400X microscopic
examination, we obtained further details and observed more
developmental stages of biological spermatozoa in mature than
in immature testes. Sertoli cells were significantly increased in
number and were found very near the basement membrane of
seminiferous tubules in mature testes, as shown in Figures 2E,F.

Transcriptome Sequencing of circRNAs in
Immature and Mature Bull Testes
A total of six experimental animals, three immature (3 ±
0.014 months) and three mature (3 ± 0.24 years), were selected
from a local cattle station, and their testis samples were collected.
To investigate the circRNA profiles of the immature and mature
testis tissues, we prepared the RNA-seq libraries of all tissue
samples. The raw reads of sequencing data were acquired using an
Illumina HiSeq 4000 platform (Illumina, Inc, San Diego, CA,
United States). Raw reads were filtered and classified into
different segments, including clean reads (70,333,218, 98.95%),
N-containing reads (38,769, 0.05%), low-quality reads (126,760,
0.18%), and adopter-related reads (584,096, 0.82%) (Figure 3).
The raw reads for each sample ranged between 118,785,372 and
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142,165,686, while the clean reads per sample ranged between
116,004,150 and 140,666,436. Thus, the raw and clean reads
together yielded 90 GB of data, and the GC content ranged
from 47.09 to 53.57% (Supplementary File 2). All Q20 values
of the subjected reads in the six samples exceeded 97%, as shown
in Supplementary File 3. More than 95.5% of the clean reads
were coordinated to B. taurus UMD3.1.

Correlation and Differential Analysis
Between the Testis Samples
The testis samples were collected from three calves (Calf1, Calf2,
and Calf3) and three bulls (Bull1, Bull2, and Bull3). The Pearson’s
correlation heatmap was constructed according to the expression
profiles for samples’ quality control. All samples in the calf and
bull groups showed the linear correlation (Figure 4A). The
differences of transcripts of two groups demonstrated in the
sample are shown in the PCA 3D map (Figure 4B). We also
discovered that bull and calf groups have noticeable differences,
whereas the testis samples of calves and bulls clustered separately
and showed the difference.

Identification and Characterization of
circRNAs
A total of 17,013 putative circRNAs were recognized with at
least one read spanning and head-to-tail splicing in immature
and mature testes. Based on their genomic location and
features, circRNAs were divided into three subclasses,
denoted as circ-exon (79.0%), circ-intergenic (14.0%), and
circ-intron (7.0%) (Figure 5A). The total length plot
quantile of circRNAs (approximately 75%) was not more
than 1,000 nt, and the average length was 400 nt, as shown
in Figure 5B. According to their host gene site, all the
circRNAs were widely distributed on all sets of
chromosomes, while none of the circRNA was mapped to
the mitochondrial genome. The total available set of
chromosomes generated 100 circRNAs in both
developmental stages of the Bovine testis (Figure 5C). The
coding potential of circRNAs was analyzed using the software
programs CPC2, CNCI, and PFAM, and 6,011 coding
circRNAs were identified in all samples (Figure 5D).
Detailed information on the top 40 up- and downcoding
circRNAs is listed in Table 1.

FIGURE 2 | Histomorphological analysis of bull testicular tissues at ages of 3 months and 3 years was performed under a microscope at ×100, × 200, and × 400
magnifications. The segments (A,C,E) represent the morphology of 3-month-old testes, whereas (B,D,F) represents the morphology of 3-year-old bulls. The red arrows
indicate different cell types. 1: spermatogonia, 2: Leydig cells, 3: Sertoli cells, 4: spermatocytes, 5: round spermatids, 6: elongated spermatids, and 7: sperms.
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Differentially Expressed Gene and circRNAs
in Testicular Tissues
After the quantification process, the expression pattern of
circRNAs was identified using Cuffdiff and Ballgown tools. A
total of 681 DE circRNAs at the gene level were detected in
immature and mature stages. The expression levels of circRNAs
in the testis samples were calculated, taking into account the
parameter of significance, whereas the log2 fold change was
considered higher than or equal to 2 and p-adjusted < 0.05.
According to the significance criteria, we detected 578
upregulated and 102 downregulated circRNAs between bull
and calf testis samples. These up and down highlights of DE
genes are displayed in volcanic plots (Figures 6A,B), and the list
of total and DE circRNAs is shown in Supplementary Files 4–6.
We also analyzed the DE circRNA by the hierarchical clustering
method, which is another way to display DE genes and to cluster
all the genes with similar expression patterns that may have
common functions in metabolic and signaling pathways. The
gene clusters on the left side were formed because of similar

expression patterns (fold change >2, p < 0.05); the columns
presented calves and bulls, and the expression from blue to
red was gradually upregulated (Figure 6C).

GO and Enriched KEGG Pathways Analysis
CircRNAs are closed-loop structures that are most commonly
generated by back-splicing events between the exons of coding
genes. In a limited way, circRNAs regulate the host gene and
thus perform the desired function at the genetic level. Hence,
the analysis of GO terms and circRNA source gene functions
might provide new insights. Many GO classification terms were
significantly enriched in the source genes of circRNAs. A list of
26,815 source genes significantly associated with DE circRNAs
was submitted to the database for functional annotation and
GO classification analysis, resulting in the identification of 50
significant GO terms, as shown in Figure 7. The functional
annotation study revealed that several source genes actively
participate in spermatogenesis, sperm morphology,

FIGURE 3 | Pie charts show the raw reads of sequencing data from immature and mature bull testis samples that were subjected to RNA sequencing analysis.
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developmental stages, and reproduction. The functional
classification of source genes showed that their products
were assigned to the three GO categories of biological
processes, cellular components, and molecular functions
(Supplementary File 7). To further understand the role of
circRNA host genes in the developmental stages of the Bovine, a
pathway analysis was applied using the KEGG pathway
database and a total of 147 signaling pathways linked to
circRNA gene products were identified (Supplementary File
8). The top 20 statistically enriched pathways (p < 0.05) were
subjected to further analysis and were found to be significantly
associated with signaling pathways such as lysine degradation,
cell cycle, propanoate metabolism, adherens junction, and cell
adhesion molecules (Figure 8). The host genes such as KMT2E,
EHMT1, and NSD2 were mediated by the lysine degradation
signaling pathways but actively participated in the reproductive
traits of the Bovine. Similarly, ATM, GSK3B, and CCNA1 are
host genes of the cell cycle signaling pathway and influence the
biological descriptions relevant to spermatogenesis and testis
development. The most significantly enriched pathways and
DEGs are listed in Table 2.

Prediction of Deferentially Expressed
circRNA and miRNA Endogenous Sponges
Some studies in recent years have suggested that miRNAs play a
role in all aspects of spermatogenesis and testis formation; thus,
miRNAs could be used as biomarkers for reproductive traits
(Yadav and Kotaja, 2014). Reports also suggested that circRNAs
act as miRNA sponges and play an important role in regulating
gene expression in posttranscriptional processes (Kulcheski et al.,
2016). We analyzed further to determine whether circRNAs

found in immature and mature testes act as endogenous
miRNA sponges. We noticed that a total of 4,300 circRNAs
have potential binding miRNA sites, but other circRNAs were
predicted to have no possible binding targets for miRNAs. Each
circRNAmay attach to one or more targetedmiRNAs. As a result,
the percentage of circRNAs consisting of different numbers of
miRNA targets was further tested. The majority of circRNAs have
at least two miRNA-binding sites; here, the proportion of
circRNAs containing 6–10 miRNA targets is the largest, as
illustrated in Figure 9A. The binding interactions between
selected DE circRNAs in testicular tissues and their predicted
miRNA targets are shown in Figure 9B. Recent studies have
proposed that circRNAs act as miRNA sponges and play a critical
role in regulating gene expression in pathways through complex
(circRNAs–miRNAs genes) chains (Hansen et al., 2013;
Memczak et al., 2013). Approximately 758 miRNAs have been
predicted, and many of them, such as bta-miR-204, bta-miR-532,
and bta-miR-34 groups, have been correlated with
spermatogenesis (Zhang et al., 2015).

Validation of DE circRNA-Seq Results by
RT-qPCR
To justify the sequencing analysis of DE circRNAs through RT-
qPCR, we selected the truly significant and exonic DE circRNAs
for validation. We randomly selected nine circRNAs of different
nucleotide richness values and lengths, and divergent primers
were prepared to verify the expression levels of circRNAs in the
testis. Ten host genes were proposed for circRNA detection, of
which seven, including ATM serine/threonine kinase (ATM),
cyclin A1 (CCNA1), glycogen synthase kinase 3 beta (GSK3B),
lysine methyltransferase 2C (KMT2C), lysine methyltransferase 2E

FIGURE4 | Pearson correlation and principle component analysis were constructed between groups and samples. (A)Correlation among the sequencing samples
of calf and bull testes. (B) PCA 3D plot among the sequencing samples.
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(KMT2E), nuclear receptor binding SET domain protein 2 (NSD2),
and succinate-CoA ligase GDP-forming subunit beta (SUCLG2),
were upregulated. The remaining three genes, including QKI, KH
domain-containing RNA binding (QKI), homer scaffold protein 1
(HOMER1), and synaptosome-associated protein 91 (SNAP91),
were downregulated. The RT-qPCR analysis validated the
expression of all nine circRNAs, which were found to regulate
the functions of the aforementioned genes, as shown in Figures

10A,B. The gel electrophoresis findings showed that the PCR
products of circRNA were single bands, which designated the
presence of specific circRNAs, Figure 10C. Additionally, the
back-splice junction of circRNAs was highlighted by further
Sanger sequencing of the PCR products, Figure 10D. These
genes work in specific reproductive-related pathways, such as
lysine degradation, cell adhesion molecules (CAMs), focal
adhesion, cell cycles, and adherens junctions, thus supporting

FIGURE 5 |General features of circRNAs in immature andmature bull testes. (A) Distribution of circRNAs in the genomic region and high magnitude identified from
exon, intergenic, and intron parts of the genome. (B) Length distribution of circRNAs, while colors represent the different lengths of circRNAs in calf and bull testis
samples. (C) Distribution of testis circRNAs on the cattle chromosomal sets. (D) Venn diagram shows the coding potential results of circRNAs and intersection of coding
tools such as coding–non-coding index (CNCI), PFAM, and coding potential calculator (CPC2).

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 6855418

Khan et al. Transcriptomic Architecture of the Bovine Testes

166

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


reproductive functions in animals. Therefore, the obtained results
confirmed the accuracy of the ribo-depleted RNA-seq results.

DISCUSSION

Mammalian testicular growth and spermatogenesis are complex
biological transformation processes that are regulated by a strong
combination of coding and noncoding genes and transcriptomes
(Card et al., 2013; Djureinovic et al., 2014). Testicular growth
includes the growth of testicular tissues during the embryonic
and postnatal phases (Svingen and Koopman, 2013). The bull
testes first gradually expand until approximately 25 weeks of

growth and then rapidly expand until adolescence at 37–50 weeks
of age (Rawlings et al., 2008). To analyze the molecular biology of
testis development and reproductive transformation in Bovine
species, we selected n � 3 animals of two different age groups: 3-
month-old (immature) calves and 3-year-old (adult) bulls of a local
Wandong cattle breed. Gao et al. (2018) tested the similar
experimental design in the Qinchuan cattle testis and selected
n � 1 animals of two different age groups: neonatal (1 week) and
mature bulls (4 years).

Previously, nc-RNAs were regarded as useless stocks or junk
RNAs. However, various types of ncRNAs, such as miRNAs,
PIWI-interacting RNAs (pi-RNAs), long noncoding RNAs (lnc-
RNAs), and circRNAs (Lee et al., 1993; Girard et al., 2006;

TABLE 1 | Top 40 regulated coding circular RNAs in immature and mature testicular tissues of Wandong cattle.

Novel circRNA Id Chromosome Total cds
length

Classification Source gene Fold change Padj value

Top 20 novel upregulated coding circRNAs

novel_circ_0024958 Chr 4 608 Exonic KMT2E 3.2126 0.008797
novel_circ_0001818 Chr 11 325 Exonic EHMTI 7.1764 0.014192
novel_circ_0027596 Chr 6 308 Exonic NSD2 7.4895 0.009261
novel_circ_0006800 Chr 15 596 Exonic ATM 2.0689 0.028979
novel_circ_0005451 Chr 13 402 Exonic RBLI 3.0064 0.014784
novel_circ_0012012935 Chr 1 397 Exonic GSK3B 3.206 0.026266
novel_circ_0029602 Chr 7 477 Exonic CDC25C 4.0429 0.001681
novel_circ_0026085 Chr 5 506 Exonic SMCIB 4.375 0.013226
novel_circ_0024710 Chr 4 402 Exonic DBF4 3.816 9.32E-07
novel_circ_0003626 Chr 12 451 Exonic CCNAI 8.2913 0.001968
novel_circ_0031633 Chr 9 436 Exonic AFDN 2.4391 0.04536
novel_circ_0004558 Chr 13 630 Exonic PARD3 2.8041 0.007949
novel_circ_0006892 Chr 15 594 Exonic CADMI 7.4286 0.009651
novel_circ_0017085 Chr 24 546 Exonic LAMA3 7.0164 0.07625
novel_circ_0009598 Chr 17 359 Exonic PXN 7.1673 0.014472
novel_circ_0015698 Chr 22 431 Exonic SUCLG2 4.4091 0.024862
novel_circ_0018225 Chr 25 270 Exonic ABAT 6.456 0.038294
novel_circ_0029184 Chr 7 307 Exonic TJP3 6.9245 0.020237
novel_circ_0031633 Chr 9 436 Exonic AFDN 2.4391 0.04536
novel_circ_0024833 Chr 4 592 Exonic HGF 7.3916 0.010582

Top 20 novel downregulated coding circRNAs

novel_circ_0025557 Chr 4 655 Exonic AASS −4.2615 0.04536
novel_circ_0023110 Chr 3 272 Exonic VAV3 −7.4813 0.010743
novel_circ_0024329 Chr 5 455 Exonic KMT2C −3.0993 0.031917
novel_circ_0033406 Chr X 399 Exonic TMLHE −3.0993 0.016812
novel_circ_0012012847 Chr 1 906 Exonic NECTINN3 −2.9046 0.016725
novel_circ_0012012395 Chr 1 561 Exonic NCAM2 −4.3218 0.009566
novel_circ_0023110 Chr 3 272 Exonic VAV3 −7.4813 0.010743
novel_circ_0000398 Chr 10 607 Exonic NEOI −3.4837 0.031452
novel_circ_0007021 Chr 15 298 Exonic RRAS2 −2.5529 0.001203
novel_circ_0031262 Chr 8 618 Exonic GKAPI −9.4111 0.000179
novel_circ_0022366 Chr 2 305 Exonic UNC80 −5.385 0.004455
novel_circ_0032345 Chr 9 368 Exonic ZNF292 −2.1687 0.00742
novel_circ_0024463 Chr 4 546 Exonic DYNCIII −4.7909 0.007542
novel_circ_001012674 Chr 1 319 Exonic ST3GAL6 −3.4838 0.007765
novel_circ_0012012395 Chr 1 561 Exonic NCAM2 −4.3218 0.009566
novel_circ_0028513 Chr 6 164 Exonic EPHA5 −7.5188 0.00975
novel_circ_0031677 Chr 9 696 Exonic RIMSI −3.1598 0.010582
novel_circ_0020402 Chr 29 187 Exonic MYRF −7.506 0.010879
novel_circ_0014496 Chr 21 264 Exonic SH3GL3 −3.4807 0.002134
novel_circ_0026164 Chr 5 468 Exonic TMTC2 −3.8141 0.012555
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Memczak et al., 2013; Ulitsky and Bartel, 2013), have been
identified and reported to play important roles in cellular and
tissue development. In recent years, research has focused on the
functional features of nc-RNAs, and much work has been
reported specifically in animal reproduction (Svingen and
Koopman, 2013). In addition, lnc-RNAs play a regulatory role
in the testis and are expressed more strongly in mammalian testes
than in other organs (Soumillon et al., 2013). While circRNAs are
essential members of the nc-RNA family, they are also known to
be involved in animal reproduction and disease control (Wang
et al., 2016). Limited studies have characterized circRNAs in
reproductive organs, such as placentae, embryos, and testes, and
in cell types including oocytes, granulosa cells, immature sperm
cells, seminal plasma cells, and mature sperm cells (Dong et al.,
2016; Quan and Li, 2018; Chioccarelli et al., 2019). circRNAs

were identified between the good and poor sperm
subpopulations in terms of kinetic parameters and
morphological characteristics. These comparative data
highlighted 148 DE circRNAs between the two semen
quality classes (Dong et al., 2016). Previous studies have
reported that circRNAs are the primary regulators of
multiple biological processes, but they have not been
methodically explored in the Bovine testis during
reproductive development. In this study, we identified and
marked circRNAs in Bovine testes and discovered possible
genes that determine the development of testes.

A total of 17,013 and 681 coding circRNAs were identified in
the Bovine testes at two different immature and mature stages.
You et al. (2015) reported that the second highest number of
circRNAs was found in the testes compared to other body organs.

FIGURE 6 | Expression patterns of circular RNAs (circRNAs) and protein-coding genes. (A) Volcanic plots represent log10 (p-value) vs log2 fold difference in
circRNAs in the fragments per kilobase of transcript per million mapped reads (FPKM) values between immature and mature testes. (B) Total abundance of circRNAs
and differentially expressed (DE) highlights between calf vs bull. (C)Heatmap of DE circRNAs among calves and bulls. Red indicates upregulated coding genes, and blue
indicates downregulated gene products.
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The magnitude of circRNAs in testicular samples was
significantly greater than that of circRNAs found in other
organs, for example, chicken theca cells contained 14,502
circRNAs (Shen et al., 2020), pig pituitaries had 5,148
circRNAs (Ulitsky and Bartel, 2013; Chen et al., 2020), and
buffalo fat adipose tissues had 5,141 circRNAs (Huang et al.,
2019). We identified 681 coding circRNAs, of which 579
circRNAs were upregulated and 103 were downregulated in

immature and mature bull testes. The study composed of
Qinchuan cattle identified a total of 21,753 candidate
circRNAs, where 2023 circRNAs were downregulated and
2,225 circRNAs were upregulated (Gao et al., 2018). A total of
2,326 differentially expressed circRNAs (DECs) were found in
testicular development, of which 1,003 circRNAs were
upregulated in adult boar testes and 1,323 circRNAs were
downregulated; an analysis of transcriptomic changes in boar

FIGURE 7 | GO enrichment analysis of differentially expressed (DE) circular RNA (circRNA) genes between immature and mature testicles was performed. The DE
circRNA genes are divided into the following three functional categories: biological processes (BP), cellular components (CC), and molecular functions (MF), while the left
and right y-axes show the percentage and numbers of circRNAs host genes, respectively.

FIGURE 8 | KEGG enrichment pathway analysis was performed. (A) Top 20 enriched pathways of differentially expressed (DE) circRNA host genes in immature
and mature stages of testicular growth. The color dots represent different signaling pathways that are regulated by the circRNA host genes. The size and different colors
of dots show the numbers of genes and significance levels in enriched pathways. (B) Top 10 most relevant reproduction pathways representing the total background
genes and significant source genes of circRNAs.
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testicular tissues revealed an agreement with our results (Zhang
et al., 2021). A study of transcriptomic changes in cattle-yak testes
showed a tendency toward upregulation rather than downregulation
and identified 679 upregulated and 2,281 downregulated genes (Cai
et al., 2017). An RNA-seq analysis showed that a total of 10 ,095

genes were substantially differentially expressed in porcine testes, of
which 5,199 were upregulated and 4,896 were downregulated in
immature and mature porcine testes (Song et al., 2015).
Approximately 242 genes were associated with porcine
spermatogenesis. The key reason for testis transcriptome profiling

TABLE 2 | Most enriched biological pathway terms and regulated DE genes in immature and mature testes.

Pathway terms Rich factor q-value Gene number Gene name

Lysine degradation 0.111111111 0.006486719 6 AASS,KMT2C,KMT2E,EHMT1,TMLHE, NSD2
Cell cycle 0.062992126 0.007955094 8 ATM,RBL1,GSK3B,CDC25C, SMC1B, DBF4,CCNA1
Propanoate metabolism 0.08 0.753456013 2 SUCLG2,ABAT
Adherens junction 0.044117647 0.753456013 3 NECTIN3,AFDN,PARD3
Prion diseases 0.060606061 0.753456013 2 NCAM2,C5
Tight junction 0.03030303 0.753456013 4 TJP3,RRAS2,AFDN,PARD3
Alanine, aspartate, and glutamate metabolism 0.057142857 0.753456013 2 GLS,ABAT
Focal adhesion 0.024271845 0.753456013 5 VAV3,LAMA3 LAMA3, GSK3B, PXN
Vasopressin-regulated water reabsorption 0.044444444 0.753456013 2 AQP4,DYNC1I1
Cell adhesion molecules (CAMs) 0.025974026 0.753456013 4 NECTIN3,NCAM2,NEO1,CADM1
Basal transcription factors 0.042553191 0.753456013 2 GTF2A1,TAF2
Hedgehog signaling pathway 0.039215686 0.753456013 2 GSK3B,CSNK1G3
T-cell receptor signaling pathway 0.027777778 0.753456013 3 GSK3B, DLG1, VAV3
Oocyte meiosis 0.026548673 0.753456013 3 SMC1B, CDC25C, FBX O 43
Purine metabolism 0.022727273 0.753456013 4 PDE10A, FHIT, PRIM2,AK8
Glutamatergic synapse 0.026086957 0.753456013 3 GLS, HOMER1, DLGAP1
Viral carcinogenesis 0.020325203 0.753456013 5 DLG1, CCNA1, GTF2A1, PXN, RBL1
MicroRNAs in cancer 0.020242915 0.753456013 5 ZFPM2, ATM, GLS, CDC25C, EZH2
Leukocyte transendothelial migration 0.025210084 0.753456013 3 VAV3, AFDN, PXN

FIGURE 9 | Differentially expressed (DE) circRNA and miRNA networks in the bull testis were identified. (A) During binding interaction, different numbers of miRNA
targets were processed by circRNAs. (B) DE circRNAs and the predicted targeted miRNAs network were identified for calf and bull testes. Green nodes represent the
targeted miRNAs, and yellow nodes show circRNAs.
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is to discover the transcriptional factors that play crucial roles in
testis development and spermatogenesis and thus clarify the genetic
structure of the testis.

We performed GO annotation and KEGG pathway enrichment
analysis to better describe the circRNAs involved in the biological
processes of testis development and spermatogenesis. These
processes may indicate the roles of circRNAs in the testis or
reflect the cellular differences between immature and mature
bull testes. In GO annotation, 60 host genes were assigned to
spermatogenesis processes, 12 genes to testis development, and 23
host genes were found solely relevant to reproduction phenomena,
such as behavior and primary sexual characteristics. Gao et al.
(2018) executed the GO annotation, and 44 host genes were
assigned to reproduction and the reproductive process, and 25
host genes were associated with spermatogenesis, including
PIWIL1 and the spermatogenesis-associated protein 6
(SPATA6). We found different candidate genes by analyzing
these GO terms, and some of these genes, such as ATM serine/

threonine kinase (ATM), glycogen synthase kinase 3 beta (GSK3B),
and cyclin A1 (CCNA1), were found to be significantly enriched in
the cell cycle pathway and associated with spermatozoa
differentiation. The ATM protein is associated with low-fertile
buffalo bull spermatozoa (M. K et al., 2019); in mouse
spermatocytes, the meiotic recombination is initiated by SPO11-
induced double-strand breaks (DSBs), and ATM controls this
process (Huang et al., 2019; Paiano et al., 2020). GSK3B showed
significant expression changes across these pubertal stages in the
hypothalamus of piglets and is also involved in crucial biological
processes that regulate economically relevant traits associated with
beef cattle fertility (Fonseca et al., 2018). The GO and KEGG
pathway enrichment analyses showed that the DE circRNA genes
were associated with pathways, such as the cell cycle, lysine
degradation, and tight junction, whereas the top 20 most
significant enriched pathways were evaluated in this study. A
total of 47 significant signaling pathways in the Qinchuan cattle
testis were found, and key host genes including PIWIL1, DPY19L2,

FIGURE 10 | Confirmation of the differentially expressed (DE) circRNAs was done by RT-qPCR at two different developmental stages of the Bovine testis. The
figures (A,B) show the expression patterns of ten DE circRNAs and their host genes (ATM, CCNA1, GSK3B, KMT2C, KMT2E, NSD2, SUCLG2, QKI, HOMER1, and
SNAP91) in the immature andmature groups. The data were measured by the 2−ΔΔCtmethod, and GAPDHwas used as a housekeeping gene. The data are presented
as the mean ± SEM, *p < 0.05, **p < 0.01. (C) PCR products of circRNA were confirmed via gel electrophoresis, where M represents marker I. (D) Back-splice
junction of circRNA was confirmed by the Sanger sequencing analysis.
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SLC26A8, IFT81, SMC1B, IQCG, TTLL5, and ACVR2A belong to
the tight junction, the adherens junction, the TGFβ signaling
pathway, progesterone-mediated oocyte maturation, and oocyte
meiosis (Gao et al., 2018).

The probable reasons of variation between the findings of the
present study and the results of Gao et al. regarding candidate
genes and signaling pathways are due to the breed variations. In
the current study, we collected samples from Wandong, while
Gao et al. used Qinchuan breed testicular tissues for RNA-seq
analysis. A study found that many candidate genes were
differentially expressed (DE) and also differential alternative
spliced in three different cattle breeds, including the Holstein,
Jersey, and Cholistani. It suggests that breed-specific gene expression
occurs at the transcriptional level and posttranscriptional
modifications such as splicing, 5’ capping, and poly A-tail
addition. The differentially expressed genes are enriched in KEGG
pathways including translation, electron transport, and immune
responses (Huang et al., 2012). In the Bovine breeds, in Merino
vs Poll Dorset, SLC35A5 and ITM2C were identified as key DEGs;
both have been reported for their association with conception and
embryonic development (Hodge et al., 2021). We found different
candidate genes and signaling pathways from the findings of Gao
et al. due to variation in age, where they analyzed the testicular tissue
in days 7 and in 4 years of age. However, we analyzed the same tissue
in the age of 3months and 3 years. As gene expression is greatly
influenced by age, especially genes related to developmental phases, a
comparative study was conducted on candidate genes having
functional roles in regulation of muscle development at various
growth stages in goat. In this study, i) 2 vs 9months groups were
compared and intramuscular fat-linked genes, e.g., MYH13, IFIT1,
METTL21C, SERPINE1, EGR1, and ESRRG, were found; ii) 2 vs
24months groups were matched and significant DEGs RPS25,
MYH13, COMP, LOC102186300, and NR4A2 were found; and iii)
9 vs 24months goat muscles were transcriptionally matched and
PARM1, LOC102177715, MRF1-like, ARID5B, and PFKFB3 were
found (Lin et al., 2017). Therefore, the candidate genes and signaling
pathways are different in these two different studies of similar nature.

In mammalian testes, the cell cycle, lysine degradation, and
tight junction and adherens junction pathways and host genes
function together to control testis growth, spermatogenesis, and
primary sexual activity (Young et al., 2015). The gene expression
profiling of testes showed that some lysin degradation pathway
genes, including lysine methyltransferase 2E (KMT2E) and
nuclear receptor-binding SET domain protein 2 (NSD2), are
active during spermatogenesis. Zhang et al. (2015) reported
that the KMT2E gene plays key roles in various biological
processes, including cell cycle progression, adult
hematopoiesis, and spermatogenesis. A vital question raised in
developmental biology is that how pluripotent stem cells can give
rise to the cells derived from the three germ layers. The NSD2
gene has a dual role in pluripotency exit and germ layer
specification of embryonic stem cells (Tian et al., 2019).

Exonic circRNAs have been shown to act preferentially in
post-transcriptional regulation in mice and humans (Bose and
Ain, 2018). Similarly, we found that the majority of DE
circRNAs identified in this study have putative target
miRNA-binding sites, suggesting that most circRNAs are

likely to function as miRNA sponges. circRNA–miRNA
network analysis further revealed that circRNAs can
interact with miRNAs in multiple directions at different
rates in the testes, which is consistent with observations in
previous studies (Liang et al., 2017). Therefore, when
translated, some circRNAs can inhibit or relieve miRNA
repression. In this transcriptomic network, we selected 11
DE circRNAs that were significantly matched with 160
miRNAs, wherein the bta-miR-34, bta-miR-532, and bta-
miR-204 families were involved in cattle spermatogenesis
(Tscherner et al., 2014; Zhang et al., 2015). The related
circRNAs may function as miRNA sponges to control the
growth of testes and spermatogenesis. The circRNAs act as
miRNA sponges, and research on Qinchuan cattle showed that
758 miRNAs matched with significantly differentially
expressed circRNAs which play an important role in
regulating gene expression in bull testes (Gao et al., 2018).
The RT-qPCR validation results indicated that the dynamic
expression of the circRNA had a strong interaction with the
RNA-seq data. Previous studies have shown that circRNAs
exhibit significant developmental stage-precision activity in
human testes, suggesting their potential contribution to
spermatogenesis (Dong et al., 2016). In rodents, circRNA
patterns have been analyzed in three distinct stages, mitotic,
meiotic, and postmeiotic germ cells (Lin et al., 2016), and
correlated with testis development (Zhou et al., 2018).

CONCLUSION

In conclusion, our study presented an extensive analysis of
circRNA expression profiles in immature and mature
Wandong cattle bull testes. The landscapes of circRNA
expression in testes were detected and used for interpreting
their regulatory structure in testis development and
spermatogenesis in cattle bulls. To date, there is a lack of the
genetical data to establish baseline factors related to reproductive
performance of local cattle bulls in China. Nevertheless, the
insights from this study could lead to a breakthrough in the
reproductive efficiency of local cattle resources.
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Transcriptome-Wide Analyses Identify
Dominant as the Predominantly
Non-Conservative Alternative Splicing
Inheritance Patterns in F1 Chickens
Xin Qi, Hongchang Gu* and Lujiang Qu*

Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science
and Technology, China Agricultural University, Beijing, China

Transcriptome analysis has been used to investigate many economically traits in chickens;
however, alternative splicing still lacks a systematic method of study that is able to promote
proteome diversity, and fine-tune expression dynamics. Hybridization has been widely
utilized in chicken breeding due to the resulting heterosis, but the dynamic changes in
alternative splicing during this process are significant yet unclear. In this study, we
performed a reciprocal crossing experiment involving the White Leghorn and Cornish
Game chicken breeds which exhibit major differences in body size and reproductive traits,
and conducted RNA sequencing of the brain, muscle, and liver tissues to identify the
inheritance patterns. A total of 40 515 and 42 612 events were respectively detected in the
brain and muscle tissues, with 39 843 observed in the liver; 2807, 4242, and 4538 events
significantly different between two breeds were identified in the brain, muscle, and liver
tissues, respectively. The hierarchical cluster of tissues from different tissues from all
crosses, based on the alternative splicing profiles, suggests high tissue and strain
specificity. Furthermore, a comparison between parental strains and hybrid crosses
indicated that over one third of alternative splicing genes showed conserved patterns
in all three tissues, while the second prevalent pattern was non-additive, which included
both dominant and transgressive patterns; this meant that the dominant pattern plays a
more important role than suppression. Our study provides an overview of the inheritance
patterns of alternative splicing in layer and broiler chickens, to better understand post-
transcriptional regulation during hybridization.

Keywords: chicken, hybridization, RNA-seq, dominant, alternative splicing, inheritance pattern

INTRODUCTION

Splicing of pre-mRNA is a crucial post-transcriptional process that increases proteome diversity in
eukaryotes. Alternative splicing (AS) generates multiple isoforms from a single gene using different
combinations of exons. AS is a widespread and complex component of gene regulation in humans
and domestic animals, and increasing evidence suggests that aberrant AS functionality can be the
cause or consequence of many diseases, and may also associating with economically important traits
in domestic animals (Pan et al., 2008; Merkin et al., 2012; Gao et al., 2018; Dlamini et al., 2021).
Therefore, splice-altering therapies using animal models have been extensively studied for many
diseases such as neurodegeneration and muscular dystrophies, and AS events have also emerged as
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new biomarkers in some circumstances (Montes et al., 2019;
Zhao, 2019). Changes in AS are regulated by the interactions
between cis- and trans-acting elements, and studies in Camellia
and Drosophila suggest that parental genetic divergence may
affect the regulation patterns in hybrids due to these
interactions (Coolon et al., 2014; Zhang et al., 2019).
Therefore, it is important to study the AS regulatory
mechanisms in birds.

Based on different combinations of the constitutive and
alternative exons, AS is divided into seven types: exon
skipping (SE), intron retention (RI), alternative 5′ splice sites
(A5SS), alternative 3′ splice sites (A3SS), mutually exclusive
exons (MXE), alternative promoters (AFEs and ALEs), and
alternative polyadenylation (tandem 3′UTRs). SE is the most
prevalent AS event in approximately 40% of higher eukaryotes,
and commonly generates functional isoforms, while RI is the
dominant type in plants (Barbazuk et al., 2008; Weatheritt et al.,
2016; Cardoso et al., 2018; Chen S.-Y. et al., 2019). With the rapid
development of sequencing technology, a broad range of
bioinformatics approaches can identify and classify AS events
using isoform-based and count-based methods, of which several
tools perform robustly and exhibit excellent overall performance
(Mehmood et al., 2019). However, there is a lack of systematic
analysis of AS in chickens, and it is necessary to study the
components and divergence patterns of splicing events,
providing an alternate view of transcriptome plasticity.

Hybridization is ubiquitous in nature―involving more than
25 and 10% of plants and animals, respectively―and widely
utilized in breeding programs (Whitney et al., 2010). Some
hybrids show enhanced environmental adaption and growth
rate, whereas others are infertile or exhibit negative economic
traits (Abasht and Lamont, 2007; Chen, 2010; Chen et al., 2013;
Zhang et al., 2015; Clasen et al., 2017). Hybridizing two different
strains can remodel the parental gene patterns, with the genes in
hybrids diverging from the mid-parental value, leading to
“transcriptome shock” (Hegarty et al., 2006; Han et al., 2014;
Cui et al., 2015). These genes mainly contribute to some
transgressive phenotypes called over- and under-dominant
genetic patterns (Zhuang and Tripp, 2017). Additive and
dominant patterns also represent phenotypical variations,
while conserved patterns show parental similarity. To take
advantage of genome-wide methods for expression analysis,
the classic hypotheses of inheritance, dominance, over-
dominance, and epistasis should have more contributions at
the molecular level to explore the mechanism of heredity
(Shull, 1908; Bateson, 1910; Jones, 1917; Mcmanus et al.,
2010). However, the identified predominant genetic patterns
regulating phenotype divergence are not always consistent
among studies because of different genetic backgrounds,
species, and tissues employed in those studies. Studies on
Camellia and coffee have indicated that the non-additive
expression prevailed over other patterns (Marie-Christine
et al., 2015; Zhang et al., 2019). On the other hand, several
studies have suggested that additivity is the predominant genetic
pattern in maize, rice, and cotton (Swanson-Wagner et al., 2006;
Li et al., 2008; Rapp et al., 2009), while divergent outcomes
suggest that additive or high parent-dominance is the major

pattern in chickens (Mai et al., 2019; Zhuo et al., 2019). Most
previous studies have identified different inheritance patterns
based on gene expression, and there is rarely a transcriptomic
study that investigates AS event patterns, considering the
association between AS and gene regulation at the post-
transcriptional level.

In this study, Cornish Game (CG) and White Leghorn (WL),
representing broilers and layers, respectively, were used as the
parental strains to produce purebred and reciprocal crossed
progenies. Taking advantage of RNA-sequencing (RNA-seq),
tissue samples from the brain, liver, and breast muscle were
collected and sequenced. Splicing events from each sample were
identified, classified, and quantified, and events significantly
different between purebreds were detected for further study.
Finally, five main types of inheritance patterns―conserved,
additive, parental-enhancing/suppressing, dominant, and
transgressive―were categorized, and compared between
purebred strains and hybrid crosses. Changes in alternatively
spliced genes indicated that the diverse AS inheritance patterns
have different influences on heredity, and variation during
hybridization. AS is an effective and novel approach for
investigating genetic patterns, and understanding the
molecular mechanisms of heterosis.

MATERIALS AND METHODS

Sample Collection and RNA Sequencing
We used CG, a broiler breed with superior growth and muscle
development, and WL, a layer breed with high egg production,
acquired from the National Engineering Laboratory for Animal
Breeding of the China Agricultural University. The four breeding
patterns used in this study resulted in pure-bred progeny, CG,
andWL, representing the first generation (F1) with parents of the
same type, and reciprocal cross progeny WL _ × CG \ (LC), and
CG _ × WL \ (CL) representing F1 hybrids (Supplementary
Figure S1). Each group had six offspring (three female and three
male), except CL where only two females were obtained. We
collected the brain, breast muscle, and liver from 23 one-day-old
chicks, and extracted total RNA from the tissue samples using
Trizol reagent (Invitrogen, Carlsbad, CA, United States). The
DNA and RNA quality was assessed using a NanoDrop 2000
spectrophotometer (Thermo Fisher Scientific Inc., United States)
and agarose gel electrophoresis. After synthesizing cDNA, PCR
amplifications, and library construction, total RNA was
sequenced, using paired-end 100-bp reads with a 300-bp
insert, on an Illumina HiSeq 2500 platform (Illumina Inc., San
Diego, CA, United States) using standard Illumina RNA-seq
protocols.

RNA-Sequencing Data Alignment and
Alternative Splicing Analysis
The RNA-seq data were aligned to the chicken reference genome
(Gallus_gallus-6.0) using STAR v2.7.5 (Dobin et al., 2012).
Duplicate reads were removed to eliminate potential bias,
using SAMtools (Li, 2009; Dozmorov et al., 2015). Putative AS
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events were detected and annotated from aligned RNA-seq data
using rMATS v4.1.0 (Wang et al., 2017). Five major types of AS
events were identified: A3SS, A5SS, RI, MXE, and SE. To quantify
and compare event variation, the percent spliced-in (PSI) value of
each AS was calculated for each sample using reads on target and
junction counts, where PSI was equal to, the number of reads
specific to exon inclusion isoform divided by the sum of reads
specific to exon inclusion and exclusion isoforms. Moreover, a
hierarchical model for paired replicates and false discovery rate
(FDR) correction (FDR < 0.05) was used to determine the
statistical differences between the parental strains (Shen et al.,
2012). Only the events occurring on autosomes were considered
in this study because of incomplete dosage compensation in the
chicken sex chromosome. Additionally, if the sum of inclusion
and skipping read counts is less than 10 (average in replicate
samples), AS was considered low quality and then filtered. Liver
samples from the hybrid females were removed because the
detection process for putative AS events provided abnormal
results.

Classification of Alternative Splicing
Inheritance Patterns
To measure differences between parents and hybrids in order to
identify inheritance patterns of AS, samples were recombined as
male cross (MC: CG _, WL _, CL _), female cross (FC: CG \,
WL\, CL\), male reciprocal cross (MR: CG _, WL _, LC _), and
female reciprocal cross (FR: CG\, WL\, LC\). First, shared AS
was determined by merging expressed events in hybrids with
significantly different (FDR < 0.05) events in pure-bred, and
calculating the average PSI value for biological replicates. A 1.25-
fold threshold was set as the criterion for classification as
conserved or non-conserved splicing (Gu et al., 2020). Non-
conserved AS was classified into eight types: events for which
quantification in the hybrid was less than in CG and greater than
inWL (or vice versa) was defined as additive (2 types); splicing for
which quantification in the hybrid was remarkably higher or
lower than in one of the parents and similar to that in another was
categorized as dominant (4 types); and splicing for which
quantification in the hybrid was significantly greater or lesser
than in both parents was classified as transgressive inheritance
(two types). Non-conserved genes which were identified in the
same mode in more than two groups in a tissue, would be
considered as exhibiting that inheritance mode in the
corresponding tissue. All eight AS types are listed in
Supplementary Figure S1. Exploring the biological function of
these genes further, Gene Ontology (GO) classification and
enrichment analysis were performed using PANTHER v14
(Thomas et al., 2003), and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis was carried out using the
KOBAS v3.0 (Bu et al., 2021).

Statistical Test of Inheritance Patterns
R (v4.0.2) was used for most of the statistical analyses in this
study. Principal component analysis was performed using
Prcomp for statistically different AS between the parental
lines. Besides, the Venn diagram was visualized by the

“VennDiagram” package, and heat-map was prepared using
“pheatmap,” with hierarchical clustering among samples
performed by “hclust.” After classifying inheritance patterns,
the Kruskal–Wallis test was carried out to identify differences
among the three tissues, while the Mann–Whitney test was used
to compare divergence between CG/WL-like dominant, up/
down-regulation dominant, and over/under-dominant cases in
each tissue.

RESULTS

Alternative Splicing Divergence Between
Cornish Game and White Leghorn
We collected RNA-seq data from brain, liver, and breast muscle
tissues of two inbred chicken strains, CG, and WL, representing
parental lines, as well as their reciprocal crossed progenies. There
was 246.3 Gb of RNA-seq data and 3.6 million mapped reads for
each sample. After filtering low-quality reads using the NGS QC
Toolkit v2.3 (Patel et al., 2012) and mapping them onto the
reference genome, we obtained, on average, 22.8, 21.3, and 17.8
million mapped reads per individual for the brain, muscle, and
liver tissues, respectively. AS events were quantified as PSI and
classified into five types―A3SS, A5SS, MXE, RI, and SE―while
statistically significant differences between WL and CG were
identified.

The number of putative splicing events was 45668, 47983, and
46313 in the brain, muscle, and liver tissues, respectively, most of
which were expressed (86%), and related to more than 7000 genes
(Figure 1). SE formed a large proportion of splicing in the brain
andmuscle tissues (approximately 36%), A3SS was slightly higher
than SE in the liver tissue, and RI only accounted for 3% of the
tissues. 28, 38, and 44% of genes only underwent one splicing
(simple event), and over 56% of events among the tissues were
complex events (Figure 2A). Most of the events were primarily
distributed on chromosome-1 and numbered over 5200, while
those located on chromosome-30 were less than 50 in number. In
addition, over 6000 event locations were positioned on
chromosome-4 in the liver and over 2700 in chromosome-7 in
muscle tissues (Figure 2B). On the other hand, several genes
participated in more than two types of events; 100 genes covered
five types, with approximately 60% related to multiple types of
events, among the three tissues (Figure 3). To summarize,
locations of alternatively spliced events widely exist in tissues,
and have a complex correlation with genes.

From among 40000 expressed AS, we used a hierarchical
model to detect 2807, 4242, and 4538 (FDR < 0.05) events as
significantly different between the two strains, in the brain,
muscle, and liver tissues, respectively. These spliced events
related to 1823, 2020, and 1568 genes, approximately half of
which could be tissue-specific. In addition, the number of up-
regulated splicing events was 3.4–5.5% (1387, 2038, and 2188),
while down-regulated events accounted for 3.5–5.9% (1420, 2204,
and 2350), between layers and broilers. Based on PSI values of
divergence events in each sample, principal component analysis
was performed (Figure 4); the tissue was significantly influenced
by AS, and the strain probably played an important role in the
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FIGURE 1 | Overview of alternative splicing in Cornish and White Leghorn.

FIGURE 2 | Basic information of alternative splicing events in each tissue. (A) Complexity of AS events per gene. (B) The distribution of AS events in the chicken
genome. The distribution of 45668, 47983, and 46313 putative AS events identified from brain, muscle and liver on the chicken autosomes are shown. Most of the
events distributed primarily on chromosomes 1 and 2.
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liver and brain. The parent-of-origin effect might have influenced
muscle formation because hybrids were observed to be slightly
closer to the maternal group, while it showed insignificant
influence on sex determination of the offspring. Further,
hierarchical clustering using Spearman correlation―where the
samples were classified into three tissue-based clusters and
purebred were always categorized in the same group―showed
that tissue- and strain-based clustering tended to be stronger than
sex-based clustering (Figure 5).

Classification of Alternative Splicing
Inheritance Patterns
After filtering and removing sex chromosome splicing, AS
between parental strains was merged with expressed splicing

in hybrids; 754 splicing events in the liver were used for
further analysis as against 1030 and 1950 AS events in the
brain and muscle because only liver samples from male
hybrids were available. Based on the difference in expression
between parental and hybrid splicing, events were categorized
into nine types in all four groups (MC, MR, FC, and FR)
(Figure 6).

Based on statistical results (Table 1), we detected a significant
difference in the sum of conserved, additive, WL-like dominant,
and enhancing/suppressing dominant patterns among the three
tissues (Kruskal–Wallis test, p-value ≈ 0.02 < 0.05), whereas there
was no divergence in the number of CG-like dominant (p-value �
0.51) and transgressive patterns (p � 0.11). Conserved splicing
was predominant, with above 34% in all three tissue types, while
additive splicing accounted for a small proportion of non-

FIGURE 3 | Venn diagrams illustrating statistical results of different types AS in tissue and divergence AS among tissues.
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conserved patterns, with an average of 8.7, 9.3, and 8.0% in the
brain, muscle, and liver tissues, respectively. A greater proportion
of events between the hybrids and their parents exhibited a non-
additively expressed pattern, in which the sum of parental
dominance was approximately 30%, and transgressivity
accounted for approximately 22.7, 11.6, and 22.5% in the
brain, muscle, and liver tissues, respectively. Therefore, up-
regulated dominance was higher than down-regulated, in
muscle and brain tissues (Mann–Whitney test, p-value � 0.03
< 0.05). Interestingly, the relative proportion of CG-like
dominance was larger in brain tissues of the female groups
and liver tissues of the male groups, while WL-like dominance
was greater in the brain andmuscle tissues of the male groups. No
differences were detected between over-dominance and under-
dominance in each tissue type. To check whether our conclusion
was sensitive to specific statistical methods, we used Fisher’s exact
test to identify events with significant divergence between hybrids
and parents (Supplementary Table S1), with the resulting
p-values controlled for an FDR (FDR < 0.05). Overall, we

drew the same conclusion that most non-conserved events
were dominant, with transgressive modes during hybridization,
while a few events displayed additive patterns among the tissues.

Functional Analysis of Non-Conserved AS
Genes
We selected non-conserved genes that showed the same pattern
in a particular organ tissue in more than two groups, to ensure
accuracy prior to functional annotation. There were 148, 211, 203,
and 307 AS genes with additive, CG dominant, WL dominant,
and transgressive patterns, respectively, in the brain tissue, while
the corresponding numbers for the muscle tissue were 179, 254,
302, and 188, and those for the liver tissue were 25, 84, 46, and
125, respectively. GO functional enrichment analysis was used for
of four categories (FDR < 0.05) in the brain and muscle tissues,
while they were filtered for p < 0.001 for the liver tissue due to
fewer selected gene samples (Figure 7). The results showed that
expressed AS genes in the brain and muscle tissues are mostly

FIGURE 4 | Principal Component Analysis of alternative splicing. PCA analysis is performed using PSI value for significantly different (FDR < 0.05) AS events
between purebreds, which events located on the sex chromosomes has been excluded.
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FIGURE 5 |Correlations and hierarchical clustering of alternative splicing. (A) Spearman correlation based on alternative splicing (PSI) expressed in brain, liver, and
muscle. (B) Hierarchical cluster for AS events in each group.
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FIGURE 6 | Scatter-plot and pie representing different inheritance patterns. inheritance patterns identified from reciprocal crosses and parental lines brain, muscle,
and liver tissues were classified into nine clusters listed at the bottom of the images, respectively. Scatterplots represent relationships between F1 hybrids and their two
parents, and pie charts show the relative proportions of these patterns for each cluster using different colors.
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related to cellular components such as cytoplasm and
intracellular anatomical structure, which are mainly associated
with biological processes including cellular amino acid catabolic
process as well as small molecule metabolic and catabolic
processes in the liver. Specifically, AS genes of classified non-
conserved mode from the muscle tissue were involved in the
development of ribosomes, and muscle structure such as actin
filament, myofibril, contractile fiber, sarcomere, and sarcolemma.

KEGG pathway enrichment analysis was performed to identify
whether AS genes are involved in signal transduction pathways
and biochemical metabolic pathways. We focused on the 10 most
significant pathways in each tissue (Figure 8, Supplementary
Table S2). Six pathways which are involved in many important
biological processes such as metabolic pathways, energy
metabolism, genetic information processing in RNA
translation and transcription, cellular community, and cell
motility, overlap among tissues. In the brain, CG-like
dominant and under-dominant genes that contained an
average of 17.6 exons were involved in several pathways
related to energy metabolism and RNA translation, such as
mRNA surveillance, RNA transport, and ribosome and cellular
processes including regulation of the actin cytoskeleton and
adherens junction. Most of the CG-like dominant genes in the
muscle were enriched by ribosome, spliceosome, and oxidative
phosphorylation, while additive genes were associated with
carbohydrate metabolism including glycolysis and pyruvate
metabolism. In the liver, we found that metabolic pathways,
glycolipid metabolism pathways, and several amino acid
metabolism-related pathways that included tryptophan,
histidine, cysteine, and methionine were significantly enriched
in WL-like dominant and under-dominant genes.

DISCUSSION

A ubiquitous and complex component of gene regulation in
humans, animals, and plants is AS(Pan et al., 2008; Barbosa-
Morais et al., 2012; Marquez et al., 2012). Using comparative
transcriptome analysis, a previous study had found that 23% of
chicken genes undergo AS, compared to 68% in humans and 57%
in mice (Elsa and Shoba, 2009). Li et al. observed that AS genes

make up approximately 36.85% of a genome, and over 40% of
them are specifically expressed during muscle development (Li
et al., 2018). There is a growing recognition of the contributions
of AS to myogenesis, and the refinement of muscle function,
neuronal development, and the function of mature neurons
(Bland et al., 2010; Vuong et al., 2016; Nikonova et al., 2020).
On one hand, we detected over 45000 putative splicing events,
where 56% of genes undergo complex splicing; SE is the most
common event, while RI is the rarest, which is consistent with the
findings of Rogers et al. (Rogers et al., 2021). The proportion of
different splicing types is dynamic, depending on the location of
tissues, species, size, and development periods. The muscle and
brain showed a similar proportion of five types of events, whereas
the liver exhibited slightly different results Previous studies have
shown that A3SS is most common in Luning chickens and sheep,
and RI is the major event in muscle tissues of the Gushi chicken
(Zhang et al., 2013; Zhang et al., 2017; Li et al., 2018).
Additionally, RI is the most common type of event in bovine
embryos compared to calves and adults, with the frequency of all
splicing events sharply decreasing after birth (Sun et al., 2015).
Splicing events are unevenly distributed on chromosomes, with
the frequency of events consistent with chromosome length
(chromosomes-1 and chromosome-2 are the longest); a similar
result was reported in a sheep study (Zhang et al., 2013). For
example, in the breast muscle, more events are positioned on
chromosome-7, and MSTN and NEB are specific to muscle
development and growth (Donner et al., 2004; Chen P. R.
et al., 2019). Most analyses are centered on the effect of spatial
and temporal transcriptomes; measurement of tissue-specific
differences between two modern chicken lines by us indicated
that 7–11% of divergent genes (FDR < 0.05) undergo AS, with
more than half the gene detected in one tissue. Compared to the
muscle and liver, the brain tissue undergoes more complex
splicing, and exhibits fewer divergence events than other
tissues, suggesting that it is relatively conserved between
broilers and layers. AS was relatively conserved in the brain
tissue, with 7% fewer divergent events than in themuscle and liver
tissues, indicating high tissue and strain specificity. With over
95% of splicing events being tissue-specific in both proteomics
and RNA-seq analyses, the brain has strongly conserved splicing
signatures, while the nervous system has also been shown to

TABLE 1 | Summary statistics for splicing patterns in reciprocal crosses among tissues.

Tissue Group Conser vative Additivity CG-like
dominant

WL-like
dominant

Transgressivity

CG>WL CG<WL Up Down Up Down Over-dominant Under-dominant

brain FC 350 55 42 117 42 102 40 120 121
MC 371 45 42 104 36 91 65 118 119
FR 333 41 38 144 52 100 55 109 117
MR 371 54 43 104 35 87 65 111 121

muscle FC 808 94 84 145 121 182 117 119 128
MC 840 103 87 111 65 250 153 91 93
FR 769 100 68 186 222 127 86 126 130
MR 794 91 104 160 123 195 118 100 120

liver MC 261 29 37 86 41 46 39 78 99
MR 259 26 28 96 47 52 33 73 90
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record many conserved tissue-specific splicing events (Gu et al.,
2020; Rodriguez et al., 2020). Merkin et al. also indicated that
splicing in the brain is well conserved, through measured
transcriptome variations among multiple vertebrate species,

and a similar result was also obtained by gene expression
analysis (Merkin et al., 2012; Gu et al., 2020).

Approximately half of the splicing events that are significantly
different between CG andWL are classified into nine types due to
the divergence between hybrids and parents. Considering that the
time of divergence of the two breeds is relatively recent, more
than one-third of the events exhibited a conserved pattern in the
three tissue types, the other patterns being the additive, dominant,
and transgressive patterns. Especially in the muscle tissue, four
groups consistently indicate events that are conserved during
hybridization (41%); the muscle structure and basic
developmental mechanisms are highly conserved (Nikonova
et al., 2020). The greater prevalence of this category is also
observed in coffee and Drosophila hybrids (Marie-Christine
et al., 2015; Lopez-Maestre et al., 2017). We recognized that a
small proportion of events were additive, while the majority of
events were dominant and transgressive; similar categorization of
gene expression have been reported by other studies (Gu et al.,
2020). The predominance of non-additively expressed splicing in
hybrids also supports the idea that most hybridizations can cause
“transcriptome shock,” a widely studied phenomenon in hybrid
plants, and associated with the divergence between parental
species (Hegarty et al., 2006). In addition, the pattern of
enhancing dominance was more prevalent than suppressing
dominance in most groups, indicating that up-regulated
dominant events potentially play important roles in heterosis.
Previous studies on body weight in Drosophila and gene
expression modes in the liver of chickens have shown similar
results (Mai et al., 2019). However, due to different cluster
methods used, other studies have reported that additivity is
the main gene expression pattern in embryonic chickens (Wu
et al., 2016;Zhuo et al., 2019). They classified “expression
dominance” as being additive, where the genes in hybrids are
not significantly different from those of one of the parents and
from mid-parental values, and genes in this parent and mid-
parental values are significantly different from those of the other
parent (Rapp et al., 2009). This approach is more suitable for
polyploid-like cotton and cobitis (Rapp et al., 2009;Oldřich et al.,
2019). The method being unsuitable in our case, we used the
Fisher test compared with the threshold criteria (Supplementary
Table S1), in which more than 60% of events overlapped in each
pattern. Stringent criteria may lead to slightly different results,
although the two methods still draw the same conclusion.

Functional enrichment analyses in muscle tissue showed
pyruvate metabolism, an intersection of key pathways of
energy metabolism including LDHB, LDHA, PDHA2, and
ACSS2. LDHB controlled lactate metabolism, and the mRNA
and protein expression levels were significantly higher in wooden
breast chicken (Zhao et al., 2019). ACSS2 encodes a cytosolic
enzyme that catalyzes the activation of acetate for lipid synthesis
and energy generation. In addition, oxidative phosphorylation
forms adenosine triphosphate (ATP) as a result of the transfer of
electrons from NADH or FADH2 to O2 by a series of electron
carriers related to six genes namely ATP6V1A, UQCRQ,
NDUFA8, NDUFV3, NDUFB3, and UQCRC2. This pathway is
also correlated with body weight in Drosophila, and is associated
with heterosis in plants (Mcdaniel and Grimwood, 1971; Katara

FIGURE 7 | Gene Ontology (GO) analysis of un-conserved pattern AS
genes in three tissues. GO functional enrichment analysis is performed on
additive, dominant and transgressive AS genes in brain, liver, and muscle.
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et al., 2020). By detecting ATP content and ATPase activity in
reciprocal cross chickens, Mai et al. validated that oxidative
phosphorylation is the major genetic and molecular factor in
growth (Mai et al., 2021). The liver is the major site of amino acid
metabolism and fat deposition in the body, and 37 non-conserved
AS genes are significantly enriched in metabolic pathways, amino
acid metabolism, and glycerolipid metabolism.

The relative frequency of cis-regulatory elements, and trans-
acting BP divergence has great influence on the inheritance of
gene expression patterns in hybrids (Lemos et al., 2008). Allelic-
specific gene expression tests revealed that cis-regulatory
divergence is a predominant contributor in mouse and
Camellia, whereas trans-regulatory divergence is an important
driving force in Drosophila, and greater parental genetic
divergence decreases inheritance of patterns in coffee (Bell
et al., 2013; Gao et al., 2015; Marie-Christine et al., 2015;
Zhang et al., 2019). Compared with mouse and Drosophila
inbred lines, the divergence time between commercial chicken
strains is relatively short, resulting in a small number of single
nucleotide polymorphisms that could be studied. In addition,
short read-based data are limited to identifying allele-specific AS
events, while full-length transcript sequencing might improve the

accuracy and robustness of AS analysis. Studies have already explored
a bulk of new transcript isoforms in chicken (Thomas et al., 2014; Sun
et al., 2021); numerous studies have reported that coordinated action
between AS and nonsense-mediated RNA decay controls the ratio of
productive to unproductive mRNA isoforms (Garcia-Moreno and
Romao, 2020). With the development of sequencing and
bioinformatic analysis, further studies can explore evolution and
interaction with other post-transcriptional mechanisms of AS to
better understand the regulation of biological processes.

CONCLUSION

In this study, AS events were observed to be highly specific to
tissues and strains, and events in the brain were found to be
relatively well-conserved. Meanwhile, inheritance pattern
analysis of AS events showed that dominant pattern was
predominant excluding conserved pattern, and indicated that a
large proportion of inheritance patterns exhibited enhanced
parent-specific dominance related to heterosis in chickens.
These findings provide new insights into the genetic
mechanisms underlying hybridization.

FIGURE 8 | KEGG pathway enrichment analysis of AS genes in 10 most enriched pathways from each tissue.
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Pleiotropic Loci Associated With Foot
Disorders and Common Periparturient
Diseases in Holstein Cattle
Ellen Lai, Alexa L. Danner, Thomas R. Famula and Anita M. Oberbauer*

Animal Science Department, University of California, Davis, Davis, CA, United States

Lameness is an animal welfare issue that incurs substantial financial and environmental
costs. This condition is commonly caused by digital dermatitis (DD), sole ulcers (SU), and
white line disease (WLD). Susceptibility to these three foot disorders is due in part to
genetics, indicating that genomic selection against these foot lesions can be used to
reduce lameness prevalence. It is unclear whether selection against foot lesions will lead to
increased susceptibility to other common diseases such as mastitis and metritis. Thus, the
aim of this study was to determine the genetic correlation between causes of lameness and
other common health disorders to identify loci contributing to the correlation. Genetic
correlation estimates between SU and DD and between SU and WLD were significantly
different from zero (p < 0.05), whereas estimates between DD and mastitis, DD and milk
fever, and SU and metritis were suggestive (p < 0.1). All five of these genetic correlation
estimates were positive. Two-trait genome-wide association studies (GWAS) for each of
these five pairs of traits revealed common regions of association on BTA1 and BTA8 for
pairs that included DD or SU as one of the traits, respectively. Other regions of association
were unique to the pair of traits and not observed in GWAS for other pairs of traits. The
positive genetic correlation estimates between foot disorders and other health disorders
imply that selection against foot disorders may also decrease susceptibility to other health
disorders. Linkage disequilibrium blocks defined around significant and suggestive SNPs
from the two-trait GWAS included genes and QTL that were functionally relevant,
supporting that these regions included pleiotropic loci.

Keywords: pleiotropy, multivariate, genome-wide association study, dairy cattle, lameness, disease, genetic
correlation

INTRODUCTION

Abnormal gait or posture in a cow are considered indicators of lameness and signifies pain and
discomfort. Lameness is the second most prevalent disease after mastitis and the third most common
reason for culling after mastitis and infertility (USDA, 2018). Lameness is commonly caused by foot
lesions classified as infectious [e.g., digital dermatitis (DD), heel horn erosion, and foot rot] or
noninfectious lesions [e.g., sole hemorrhage, sole ulcer (SU), white line disease (WLD), and
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laminitis]. Lameness not only raises welfare concerns, but also has
economic and environmental consequences. Financial costs
associated with lameness include direct costs for treatment
and increased labor and indirect costs from reduced milk
production and fertility; together, these costs range from $64
per case of DD to $178 per case of SU (Cha et al., 2010; Dolecheck
and Bewley, 2018; Dolecheck et al., 2019). Reduced fertility,
premature culling, and reduced milk production associated
with lameness reduces the efficiency of resource use, as
resources used for the cow are invested over a less productive
and shorter lifetime, inflating the environmental costs per unit of
milk by 14 (1.5%) kg CO2 equivalents per ton of fat-and-protein-
corrected milk, on average (of DD, SU, and WLD combined)
(Mostert et al., 2018).

Prevention of lameness is achieved through routine claw
trimming, foot baths (for prevention of infectious lesions),
maintaining floor hygiene, and nutrition. Despite these
prevention efforts, lameness remains highly prevalent in the
United States, affecting 16.8% of cows and 3.2% of bred
heifers (USDA, 2018). These non-genetic methods of
prevention can be aided by genetic selection, as implied by the
low to moderate estimates of heritability for foot lesions, ranging
from 0.01 to 0.4 for DD, 0.01 to 0.3 for SU, and 0.017 to 0.26 for
WLD (Van der Waaij et al., 2005; Onyiro et al., 2008; van der
Linde et al., 2010; Häggman and Juga, 2013; Oberbauer et al.,
2013; van der Spek et al., 2013, 2015; Malchiodi et al., 2015;
Biemans et al., 2018). Genetic selection uses prior knowledge
about the contribution of certain genetic markers to traits of
interest and creating a selection index reflecting a weighted
average of multiple traits that is used to rank animals.
Selective breeding programs utilize both genetic correlation
among traits that are included in the selection index and
specific susceptibility loci associated with the traits.
Accordingly, selection against foot disorders would likely
account for correlated lesion traits because some foot disorders
are genetically correlated with each other, particularly within the
infectious (strongest between DD and heel erosion) and
noninfectious (strongest among sole hemorrhage, SU, and
WLD) groupings of lesions (Koenig et al., 2005; Van der
Waaij et al., 2005; van der Linde et al., 2010; Buch et al., 2011;
Gernand et al., 2012; Häggman and Juga, 2013; van der Spek et al.,
2013; Pérez-Cabal and Charfeddine, 2015; Malchiodi et al., 2017).

Additionally, certain foot lesions are genetically correlated
with mastitis or indicator traits of mastitis. For example, the
genetic correlations between clinical mastitis and sole
hemorrhage or SU were estimated at 0.35 and 0.32,
respectively, in Swedish Red cows (Buch et al., 2011). For
Holstein cows, the genetic correlation between somatic cell
score and individual foot lesions or lameness in general
ranged from 0.15 to 0.24 (Koenig et al., 2005) and 0.23
(Gernand et al., 2012), respectively, although other studies
failed to identify significant genetic correlations between DD
or interdigital hyperplasia and clinical mastitis (Buch et al., 2011;
Gernand et al., 2013). Nevertheless, the genetic correlation among
foot disorders and between individual foot disorders and mastitis
traits implies that common loci may coordinately influence these
traits (Koenig et al., 2005; Buch et al., 2011). Such pleotropic loci

have not been identified as of yet. The values for genetic
correlation between foot and other health disorders that have
been reported were estimated using pedigree information. To our
knowledge, no DNA-based studies have been performed to
estimate the genetic correlation between foot disorders and
disease traits other than mastitis. Using genomic data from
individual cows to estimate relationships may be more
accurate than using pedigree data (Goddard, 2009; Hayes
et al., 2009) because using genomic data reduces the standard
error of the genetic correlation estimate (Visscher et al., 2014).
Therefore, the aim of this study was to identify loci associated
with susceptibility to multiple foot disorders and other common
diseases, which could be coordinately used to inform breeding
programs.

METHODS

All procedures were conducted in accordance with ethical
standards set by the University of California, Davis and
approved by the Institutional Animal Care and Use
Committee (protocol #22099).

Phenotypes
Five large commercial dairies (Dairies A–E, each with >1,000
cows) in Northern and Central California participated in this
study. Phenotypes were derived from hoof trimming and other
health records provided by the dairies beginning from the cows’
first lactation. Three hoof trimmers recorded the foot lesions used
for phenotyping foot lesions: one who serviced Dairies A, B, and
C; one who serviced Dairy D; and another who serviced Dairy E.
Hoof trimmer experience and hoof trimming regimens were
described previously (Lai et al., 2020, Lai et al., 2021). Foot
disorders recorded included DD, foot rot, sole hemorrhage,
SU, WLD, wall abscess, sole abscess, heel abscess, and
laminitis. Other health events were also recorded by dairy
personnel, which included diarrhea, displaced abomasum,
ketosis, mastitis, metritis, milk fever, pneumonia, and retained
placenta. For each foot or other health disorder, cases were
defined as cows with at least one record of the disorder and
controls were defined as cows that did not have records of the
given foot or health disorder. Consequently, for each trait,
controls included cows with disorders other than the disorder
the cases had.

Genotypes
Whole blood samples were obtained and the buffy coat was used
to extract genomic DNA using the QIAGEN QIAamp DNA
Blood Mini Kit (QIAGEN Inc., Valencia, CA). DNA samples
were quantified using the NanoDrop (ND-2000 v3.2.1)
spectrophotometer (Thermo Scientific, Wilmington, DE) and
sent to GeneSeek (Lincoln, NE) for SNP genotyping on the
high-density BovineHD BeadChip (777K SNPs, Illumina Inc.,
San Diego, CA). Genotype calls were made using Illumina’s
GenCall algorithm. SNP genotypes from a subset of the cows
used in this study were used in our past studies (Lai et al., 2020,
Lai et al., 2021) and are publicly available at the NCBI Gene
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Expression Omnibus database (GEO series record GSE159157
and GSE165945), along with the additional samples from this
study (GSE to be added when received from GEO). SNP
genotypes were updated to the ARS-UCD1.2 assembly
positions (Rosen et al., 2020) and quality-filtered in PLINK 1.9
(Purcell and Chang, 2015) by removing from further analyses
SNPs and cows with <95% genotyping rate, SNPs with significant
deviation from Hardy–Weinberg equilibrium (p < 1E-6) to
exclude systematic genotyping errors, and SNPs with minor
allele frequency <5% to exclude rare variants. Missing
genotypes for each cow were imputed using BEAGLE 5.1
(Browning et al., 2018) using the other cows in the sample
population as the reference population, an effective sample
size of 58 for the United States Holstein cattle population
(Makanjuola et al., 2020), and default parameters. Genetic
similarity among cows was visualized in a multidimensional
scaling (MDS) plot depicting the first two dimensions.

Estimation of Genetic Correlation
Genetic correlation was estimated between each foot lesion and
other health traits, including other foot lesions (e.g., genetic
correlation was estimated between SU and WLD, SU and DD,
SU and mastitis, and SU and metritis) using cows that had
phenotypes for both traits and at least 40 case cows for each
disease. PLINK 2.0 was used to filter cows by requiring phenotypes
for both traits (Chang et al., 2015; Purcell and Chang, 2021). GCTA
was used to calculate the genetic relatedness matrix (GRM), which
was used with farm as a fixed effect to estimate the additive genetic
variance and covariance between the two traits using two-trait
GREML (Yang et al., 2011; Lee et al., 2012). Specifically, the
phenotype for trait 1 of the kth cow from the ith farm at the
jth SNP was modeled as

y1ijk � μ1 + F1i + S1j + a1ik + ε1ijk

where μ1 was an unknown constant common to all cows for trait
1, F1i was contribution of ith farm to the risk of disease, S1j was
the contribution of the jth SNP genotype to risk of the disorder,
and a1ik were the additive genetic effects assumed to be drawn
from the multivariate normal density N (0,Aσ2a), where Awas the
GRM. ε1ijk was the residual term for trait 1. Similarly, the
phenotype for trait 2 of the kth cow from the ith farm at the
jth SNP was modeled using the same components for trait 2 as

y2ijk � μ2 + F2i + S2j + a2ik + ε2ijk

The covariance of additive genetic effects was computed as a
function of the numerator relationship matrix, and genetic
correlation was calculated as the covariance of additive genetic
effects divided by the product of the standard deviations of the
genetic effect of traits 1 and 2. All genetic correlation estimates
were transformed from the observed scale (0/1) to the underlying
liability scale to account for case ascertainment using the
prevalence of each disorder obtained from the literature
(Oberbauer et al., 2013; USDA, 2018). Genetic correlation
estimates were considered significantly different from zero if
the estimate had p < 0.05 from the likelihood ratio test, and
suggestive genetic correlation estimates were those with p < 0.1.

Two-Trait Genome-Wide Association Study
Pairs of traits that had significant or suggestive genetic correlation
estimates using the frequentist approach were evaluated further
in two-trait GWAS to identify regions potentially contributing to
both traits. Multi-trait association testing can improve the power
to detect associations while accounting for population
stratification (Banerjee et al., 2008; Korte et al., 2012; Zhou
and Stephens, 2012, Zhou and Stephens, 2014) because the
additional information from the covariance of traits is still
informative, even if only one of the traits is associated with
the genotype (Stephens, 2013). Two-trait genome-wide
association analysis was performed to test for association of
each SNP with at least one of the traits. A standardized GRM
was constructed and included in the linear mixed model to
account for relatedness and population stratification, and farm
was included as a fixed effect to adjust for differences among
farms. The linear mixed model association testing was conducted
using the multivariate association testing function in GEMMA
(Zhou and Stephens, 2012, Zhou and Stephens, 2014) using the
same models for estimating genetic correlation. Bonferroni
correction for multiple testing assumes that each test for SNP
association with phenotype(s) is independent. However, because
SNPs are not independent due to linkage disequilibrium (LD)
between SNPs, the Genetic Type I error calculator (GEC) was
used to calculate the effective number of markers after accounting
for linkage disequilibrium between SNPs for use as the
denominator in Bonferroni-corrected thresholds of significance
(Li et al., 2012). Genome-wide significant SNPs were thus defined
as those with likelihood ratio test (LRT) p < 0.05/Me and
suggestive SNPs, as those with LRT p < 1/Me (Lander and
Kruglyak, 1995). Manhattan and quantile–quantile plots were
generated using the qqman package in R (R Development Core
Team, 2010; Turner, 2014).

Because SNPs may not be causal for the traits but rather in LD
with causal variants due in part to the long range linkage
disequilibrium in cattle (Cai et al., 2019), SNPs were used to
define LD blocks that were then mined for overlap with genes and
previously defined QTL. SNPs in LD with significant and
suggestive SNPs were used to define the start and end of LD
blocks using a method similar to Richardson et al. (2016) and
Twomey et al. (2019). SNPs that were within 5 Mb (upstream or
downstream) and in LD (R2 > 0.5) with significant or suggestive
SNPs were considered belonging to the same LD block. LD blocks
were queried in the region search of FAANGMine (FAANG,
2019) to identify genes within or overlapping with the LD block.
LD blocks were also queried for overlap with previously defined
QTL and associations related to feet and legs conformation traits
and disease traits in the Cattle QTLdb (Hu et al., 2019) (version
46, accessed 4/30/2021).

RESULTS

Descriptive Data
Hoof trimming records were available for 21,044 cows across the
five dairies (distribution of records for each type of foot lesion is
described in detail by Lai et al. (2021), of which 417 cows were
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selected for SNP genotyping as controls or cases for a certain foot
lesion(s). Traits that were recorded at multiple dairies were used
for genetic correlation estimation and two-trait GWAS, and the
distribution of case/control phenotypes for each trait is listed in
Table 1. All five dairies recorded SU, WLD, and DD foot
disorders. All dairies except Dairy C also had health records
available for phenotyping other health traits. These four dairies
(Dairies A, B, D, and E) recorded mastitis, metritis, and
pneumonia. Dairies A, B, and E also recorded ketosis, retained
placenta, diarrhea, milk fever, and displaced abomasum. After
excluding traits that have ≤40 cases, genetic correlation was
estimated between each pair of foot disorders (SU, WLD, and
DD) as well as each foot disorder with another health disorder
(mastitis, metritis, retained placenta, milk fever, and pneumonia).

Quality filtering removed eight cows and 218,306 SNPs,
leaving 409 cows with 559,656 SNPs for analyses with case/
control phenotypes presented in Table 1. The MDS plot
indicated slight population stratification with a prominent
center cluster, though cows were not strongly stratified by
farm (Figure 1).

Genetic Correlation Estimates
Of the pairs of traits for which genetic correlation was estimated,
genetic correlation estimates between SU and WLD and between
SU and DD were significantly different from zero (p < 0.05), and
estimates between DD and mastitis, DD and milk fever, and SU
and metritis were suggestive (p < 0.1, Table 2). Consequently,
each pair of these traits was analyzed in two-trait GWAS.

Two-Trait Genome-Wide Association
Analysis
The effective number of markers after accounting for LD was
162,435 SNPs, corresponding to a suggestive threshold of 6.2 ×
10−6 [5.2 on the −log10(p) scale] for genome-wide suggestive
significance and 3.1 × 10−7 [6.5 on the −log10(p) scale] for
genome-wide significance. Manhattan plots from the two-trait
GWAS are shown in Figure 2. Genomic inflation factors ranged
from 1.02 to 1.06 and, combined with the qqplots
(Supplementary Figure S1), indicated that population
stratification had been sufficiently accounted for (Price et al.,
2010).

Significant and suggestive SNPs and the LD blocks they
defined are shown in Table 3. Supplemental materials report
the genes and QTL LD blocks (Supplementary Tables S1–S3).
The GWAS that included DD as one of the traits (DD and
mastitis, SU and DD, and DD and milk fever) identified
significant and suggestive SNPs belonging to the same LD
block at BTA1:125550933–125822143. For the DD and
mastitis and DD and milk fever GWAS, the peak on BTA1
reached or approached genome-wide significance despite the
genetic correlation estimate only reaching suggestive
significance (Table 1 and Supplementary Table S1). GWAS
that included SU as one of the traits (that is, between SU and
WLD, SU and DD, and SU and metritis) all identified suggestive
SNPs in an LD block at BTA8:42926603–44642925. Other SNP
associations were unique to the pair of traits for which the GWAS
was performed such that SNPs that were associated in a certain
GWAS for a pair of traits were not associated in other GWAS for
other pairs of traits. For instance, the LD block on BTA14
detected from the GWAS for SU and DD was only detected in
the SU and DD GWAS and not detected in any other of the
comparisons such as that for SU andWLD, DD and mastitis, DD
and milk fever, and SU and metritis. Although SU andWLDwere
strongly genetically correlated (0.92), the suggestive SNPs
identified in the two-trait GWAS had opposite effect signs
between the two traits: if the effect of the SNP was positive for
SU, it was negative for WLD and vice versa (Table 3 and
Supplementary Table S1). The LD blocks defined from all the
two-trait GWAS overlapped with 83 protein-coding genes, some
functionally relevant to the etiology of the disorders
(Supplementary Table S2).

DISCUSSION

We estimated the genetic correlation between common foot
disorders (DD, SU, and WLD) and other health traits

TABLE 1 | Count of genotyped cows after quality filtering, split by cases for each
foot disorder or other health condition and controls across the five dairies.

Farm Total

A B C D E

Datasets for foot disorders
Sole ulcer
Cases 44 8 4 71 25 152
Controls 138 70 26 23 0 257

White line disease
Cases 48 13 7 33 16 117
Controls 134 65 23 61 9 292

Digital dermatitis
Cases 19 22 30 30 5 106
Controls 163 56 0 64 20 303

Datasets for other disorders
Mastitis
Cases 89 66 NR 77 17 249
Controls 93 12 NR 17 8 130

Metritis
Cases 57 51 NR 8 15 131
Controls 125 27 NR 86 10 248

Ketosis
Cases 13 17 NR NR 0 30
Controls 169 61 NR NR 25 255

Retained placenta
Cases 16 35 NR NR 0 234
Controls 166 43 NR NR 25 51

Diarrhea
Cases 19 0 NR NR 1 20
Controls 163 78 NR NR 24 265

Milk fever
Cases 61 9 NR NR 0 70
Controls 121 69 NR NR 25 215

Displaced abomasum
Cases 1 17 NR NR 2 20
Controls 181 61 NR NR 23 265

Pneumonia
Cases 2 4 NR 22 13 41
Controls 180 74 NR 72 12 338

NR, No records available; cows were excluded from analyses.
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(mastitis, metritis, milk fever, retained placenta, and pneumonia).
For pairs of traits having significant or suggestive genetic
correlation, the loci that were contributing to the correlation
were examined using two-trait GWAS. To our knowledge, this is
the first study to estimate genetic correlation between foot
disorders and diseases other than mastitis from individual-
level genotype data rather than pedigree data and identify loci
potentially contributing to the correlation. Genetic correlation
estimates that were significant or suggestive included SU or DD as
one of the traits and estimates were positive, indicating a
favorable genetic correlation between pairs of disease traits
such that genetic selection against one disease will lead to
selection against the other disease. Significant and suggestive
SNPs were detected in the same regions on BTA1 and BTA8
for two-trait GWAS datasets that had DD and SU as one of the
traits, respectively, suggesting that DD and SU were driving the

association in these genomic regions. Other significant and
suggestive SNPs were specific to the dataset from which they
were detected and not detected in GWAS for other pairs of traits.

Compared to previous estimates of genetic correlation between
foot disorders and other health traits, estimates from this study were
higher and had larger standard errors. Previous estimates of genetic
correlation between foot disorders andmastitis or somatic cell count
were significantly different from zero (0.15–0.35) (Koenig et al.,
2005; Buch et al., 2011) or close to zero (Gernand et al., 2012),
whereas we estimated the genetic correlation between DD and
mastitis at 0.49 (SE � 0.36). The genetic correlation between SU
and WLD was 0.92 (SE � 0.46) and substantially higher than
previous estimates, which ranged from 0.41 to 0.60 (van der
Linde et al., 2010). The estimates of genetic correlation from this
study were higher likely because controls were shared between the
two traits and the proportion of cows withDD and/or SUwas higher
than for other disorders. Because case cows were sampled primarily
for DD and SU and other disorders were phenotyped after sampling
DD and SU cases, cases for other disorders frequently also had DD
and/or SU. This overrepresentation of cases with DD and/or SU in
addition to the disorder of interest likely inflated genetic correlation
estimates, which the correction for case ascertainment was unable to
overcome. The strong genetic correlation between SU and WLD in
this study implied that whichever other traits SU is correlated with,
WLD will also be correlated with and vice versa; however, SU was
correlated with metritis and DD whereas WLD was not correlated
with either disorder. This divergence would suggest that although SU
and WLD share a genetic component, differences exist in the
location or direction of the effect for susceptibility loci between

FIGURE 1 | Multidimensional scaling plot showing the first two dimensions for 409 cows from the five dairies used in the estimation of genetic correlation and
genome-wide association analyses.

TABLE 2 | Genetic correlation estimates (and standard error, SE) between sole
ulcer (SU), white line disease (WLD), digital dermatitis (DD), and other foot or
health traits that were significantly or suggestively different from zero.

Trait 1 Trait 2 Genetic correlation (SE) p Significance

SU DD 0.46 (0.25) 4.81E-02 a

SU WLD 0.92 (0.46) 2.54E-02 a

DD Mastitis 0.49 (0.36) 7.77E-02 b

DD Milk fever 0.49 (0.39) 9.46E-02 b

SU Metritis 0.7 (0.46) 5.22E-02 b

aSignificant.
bSuggestive significance.
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FIGURE 2 |Manhattan plot for two-trait genome-wide association analysis of (A) sole ulcer (SU) and digital dermatitis (DD), (B) SU andwhite line disease (WLD), (C)
DD and mastitis, (D) DD and milk fever, and (E) SU and metritis. The blue line indicates genome-wide suggestive significance, and the red line indicates genome-wide
significance.
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TABLE 3 | Linkage disequilibrium (LD) blocks and the most significant SNP within the LD block defined from the two-trait genome-wide association analyses of sole ulcer (SU), white line disease (WLD), and digital dermatitis
(DD) paired with each other and other health disorders.

Dataset
(trait
1 and
trait
2)

BTA LD block
start
(bp)

LD block
end (bp)

LD block
length
(kb)

Most
significant

SNP

SNP position
(bp)

Minor/
Major
allele

Effect
size

for trait
1

Effect
size

for trait
2

Variance matrix for beta effects p

Variance
of effect

size
for trait

1

Covariance
between
effect
sizes
of trait
1 and 2

Variance
of effect

size
for trait

2

SU and DD 1 125550933 125822143 271.21 BovineHD0100035768 125563251 A/G 1.85E-01 4.64E-03 1.09E-03 3.13E-05 1.46E-03 2.58E-07a

8 42926603 44642925 1716.322 BovineHD0800013406 44628587 T/C 2.05E-01 -8.65E-02 2.30E-03 6.91E-04 2.99E-03 3.06E-06b

14 81655298 81664096 8.798 BovineHD1400023802 81655298 G/T -3.00E-02 1.58E-01 1.05E-03 3.17E-04 1.21E-03 3.68E-06b

SU and WLD 8 42926603 44642925 1716.322 BovineHD0800013408 44632844 G/T 4.90E-02 1.91E-01 9.97E-04 -9.75E-06 1.14E-03 2.11E-07a

17 41328134 41328134 0 BovineHD1700011766 41328134 C/T -1.21E-01 1.32E-01 1.12E-03 8.92E-05 1.23E-03 7.07E-07b

27 37518206 38922466 1,404.26 BovineHD2700011209 38898651 T/C -1.21E-01 1.32E-01 1.12E-03 8.92E-05 1.23E-03 7.07E-07b

27 37518206 38922466 1,404.26 BovineHD2700011210 38901656 G/A -1.21E-01 1.32E-01 1.12E-03 8.92E-05 1.23E-03 7.07E-07b

DD and mastitis 1 125550933 125822143 271.21 BovineHD0100035835 125691064 A/G 1.02E-01 1.72E-01 1.06E-03 1.61E-04 9.47E-04 2.98E-08a

28 33357088 33385923 28.835 BovineHD2800009006 33385923 C/T 9.39E-02 1.62E-01 1.01E-03 1.59E-04 9.07E-04 1.20E-07a

DD and milk fever 1 125550933 125822143 271.21 BovineHD0100035785 125585828 C/T 8.88E-02 1.64E-01 1.01E-03 1.61E-04 9.08E-04 1.19E-07a

1 125550933 125822143 271.21 BovineHD0100035800 125624770 A/C 8.88E-02 1.64E-01 1.01E-03 1.61E-04 9.08E-04 1.19E-07a

18 24087895 24329676 241.781 BovineHD1800007458 24087895 C/T 6.46E-02 1.50E-01 9.06E-04 1.51E-04 8.12E-04 8.13E-07b

28 34935232 35093950 158.718 BTB-00987935 35093950 G/T 6.46E-02 1.50E-01 9.06E-04 1.51E-04 8.12E-04 8.13E-07b

28 35837718 36740498 902.78 BovineHD2800010153 36916301 C/T 6.52E-02 1.49E-01 8.93E-04 1.47E-04 8.00E-04 7.86E-07b

28 35837718 36740498 902.78 BovineHD2800010156 36926419 C/T 6.52E-02 1.49E-01 8.93E-04 1.47E-04 8.00E-04 7.86E-07b

28 38776483 42482917 3706.434 BovineHD2800011177 40061500 G/A 8.15E-02 1.45E-01 9.42E-04 1.53E-04 8.54E-04 1.40E-06b

SU and metritis 8 42926603 44642925 1716.322 BovineHD0800013412 44642925 A/C 6.16E-02 1.57E-01 9.06E-04 1.50E-04 8.03E-04 2.22E-07a

25 22127459 22966511 839.052 BovineHD2500006264 22127459 A/G 1.86E-01 -2.77E-02 1.52E-03 2.99E-04 1.49E-03 4.09E-06b

X 75319558 75610976 291.418 BovineHD3000022324 75393744 A/G 2.01E-01 -1.21E-02 1.49E-03 2.90E-04 1.46E-03 9.61E-07b

aGenome-wide significance.
bGenome-wide suggestive significance.
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SU and WLD, as indicated by the opposite signs of suggestive SNP
effects between the traits and the lack of association of WLD to
metritis or DD in the two-trait GWAS.

Compared to our previous one-trait GWAS for DD and SU (Lai
et al., 2020, 2021), the two-trait GWAS detected the same LD block
on BTA1 for DD and a different LD block on BTA8 for SU.
Specifically, the LD block at BTA1:125550933–125822143
common to all datasets that had DD as one of the traits (DD
and mastitis, SU and DD, and DD and milk fever) was the same LD
block detected in our previous single-trait DD GWAS (Lai et al.,
2020). The increase in significance of association also suggests that
this region may play a role in both infectious (mastitis) and
metabolic (SU and milk fever) disorders. Infectious and metabolic
disorders have been observed to coincide and happen most
frequently during the early lactation period (USDA, 2018),
potentially due to a common cause. Some have attributed the
cause of higher incidence of infectious and noninfectious foot
disorders during early lactation to the extreme negative energy
balance during this period (Collard et al., 2000; Gernand et al.,
2013). Accordingly, it is thought that cows that are better able to cope
with the energy requirements during this period are consequently
less susceptible to metabolic and infectious disorders, a hypothesis
supported by the association of a more robust adaptive immune
response with lower incidence of metabolic disease during the
periparturient period (Thompson-Crispi et al., 2012). Another
common LD block at BTA8:42926603–44642925 was detected
from the two-trait GWAS with SU as one of the traits (SU and
WLD, SU and DD, and SU and metritis). This LD block was 30Mb
upstream of the LD block on BTA8 observed in our previous one-
trait SUGWAS (Lai et al., 2021). Our previous GWASused the same
SU cases but only sound, older (>6.0 years old) cows as controls,
whereas the present GWAS included controls with foot disorders
other than the foot disorder the cases had. Consequently, the present
GWAS controlled for other foot disorders that the cases had such
that associated regions were more likely for SU specifically and not
for other foot disorders correlated with SU, whereas the single-trait
GWAS used the most phenotypically divergent cows as controls to
maximize the power to detect genetic differences.

In addition to detecting the same regions as the one-trait GWAS,
the two-trait GWAS detected other regions that were not detected in
the one-trait GWAS for DD, SU, and/orWLD. The DD andmastitis
GWAS detected a region on BTA28 that the DDGWAS did not find
(Lai et al., 2020). The SU andDD two-trait GWAS found a region on
BTA14 that was not identified in either the DD or SU one-trait
GWAS (Lai et al., 2020, Lai et al., 2021). The suggestive SNP on
BTA17 from the two-trait GWAS of SU and WLD was not in LD
with other SNPs and not detected in the one-trait GWAS for SU or
WLD (Lai et al., 2021). The two-trait GWAS for DD and milk fever
detected regions on BTA18 and 28 that were not detected in the one-
trait DD GWAS (Lai et al., 2020). Finally, the two-trait GWAS for
DD and milk fever detected regions on BTA18 and 28 that were not
detected in the one-trait DD GWAS (Lai et al., 2020). The genetic
correlation between the two traits may have provided additional
power to detect these associations that were underpowered in the
one-trait GWAS.

The LD blocks defined from each dataset overlapped with genes
and/or QTL that were functionally relevant to both traits. Genes

having functions that were considered relevant to the etiology of each
disorder were defined for each trait (Supplementary Table S4) and
included those with a role in immune function, hair follicle
morphology, hair density, skin integrity, fibroblast proliferation,
bone growth and mineralization, adipose and body fat, and
glucose metabolism. The LD block at BTA1:
125550933–125822143 from the GWAS that included DD as one
of the traits contained SLC9A9 (solute carrier family 9 member A9)
(Lai et al., 2020), which has been implicated in multiple sclerosis in
humans through its role in regulating T-cell activation and
differentiation to a induce a proinflammatory response (Esposito
et al., 2015). Notably, the DD and mastitis LD block at 1:
125839933–125852054 overlapped with a QTL associated with
length of productive life (Cole et al., 2011), corroborating the
shorter productive life associated with DD and mastitis
susceptibility (Shabalina et al., 2020). Previous estimates of
genetic correlation between foot lesion traits and productive life
were close to zero (Dhakal et al., 2015), suggesting that uncorrelated
traits may still share pleiotropic loci, as observed previously between
various production, fertility, and conformation traits (Xiang et al.,
2017). This LD block on BTA1 from the DD and mastitis GWAS
and the LD block on BTA27 from the SU and WLD GWAS both
overlapped with QTL for feet and legs conformation traits (Cole
et al., 2011), and could be a pleiotropic locus contributing to the
genetic correlation between feet and legs conformation and
susceptibility to foot lesions (Häggman and Juga, 2013; Malchiodi
et al., 2017; Ring et al., 2018), though this genetic correlation is too
low to justify indirect selection on lameness using feet and legs
conformation traits (Van Raden et al., 2021). The LD blocks from
the GWAS for SU and DD, SU and WLD, and SU and metritis
overlap with QTL for infectious disease traits (tuberculosis
susceptibility, clinical mastitis, and somatic cell score/count) and
blood cortisol, which may reflect the interplay of the stress from the
negative energy balance during the periparturient period possibly
potentiating metabolic and infectious foot disorders
(Supplementary Table S3). Cows with SU tend to exhibit
markers of chronic inflammation compared to cows without SU
(O’Driscoll et al., 2015), though it is unclear if SU causes
inflammation, vice versa, or both are the product of stress.

The main limitations of this study were the small sample size of
genotyped cows and the variation in the number of case cows across
the various disorders. At the expense of a larger sample size, we
minimized the environmental variation by constraining the sample
population to cows to a small geographical region under similar
management and nutrition practices and minimized the number of
hoof trimmers to reduce variation in phenotyping foot lesions.
Minimizing environmental and consistent phenotyping improves
the power to detect significant genetic correlation; however, the
resulting small sample size limited the accuracy of genetic correlation
estimates. For instance, one workaround for the inflation of genetic
correlation estimates due to shared controls is to randomly partition
the controls between the two traits before estimating genetic
correlation; however, the small sample size prevented using this
approach. The small sample size also limited the benefit of using
genomic data instead of pedigree data to estimate genetic correlation.
Although using genomic data to estimate relationships may be more
accurate than using pedigree data (Goddard, 2009;Hayes et al., 2009)
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due to reduced standard error of the genetic correlation estimate
(Visscher et al., 2014), the standard error of the genetic correlation
estimates in this study was large, reflecting the limited sample size.
The reduction in standard error from using genomic data would be
more appreciable in larger sample sizes. Ascertainment bias for cows
with DD and SU but not the other disorders likely led to an
overrepresentation of cows with DD and/or SU in the dataset,
resulting in inflated estimates between DD or SU and the other
disorders. Despite the inflated and large standard errors of the
genetic correlation estimates, some estimates were significantly or
suggestively different from zero and provided grounds for further
investigation of SNPs contributing to the correlation using the two-
trait GWAS. The sample size also provided sufficient power in the
two-trait GWAS to detect significant and suggestive SNPs that
defined LD blocks overlapping with functionally relevant genes
and QTL, similar to previous GWAS using similar small sample
sizes (∼400 cows) and high-density SNP genotypes (Buzanskas et al.,
2017; Lehner et al., 2018).

CONCLUSION

A genomic relatedness matrix calculated from SNP genotypes was
used to estimate genetic correlation between individual foot
disorders (DD, SU, and WLD) and other health disorders
(mastitis, metritis, milk fever, retained placenta, and pneumonia).
The positive estimates of genetic correlation between individual foot
disorders and other health disorders indicate that direct selection
against foot disorders will not increase the incidence of other health
disorders and may in fact reduce their prevalence. Genomic
assessment for pairs of traits that were genetically correlated
revealed multiple associated regions. Whereas some of these
chromosomal regions were shared across multiple pairs of traits
that included SUorDDas one of the traits, others were unique to the
pair of traits, indicating the complexity of genetic contributions
within and between traits. The LD blocks defined from associated
SNPs included protein-coding genes andQTL that were functionally
relevant to both traits, suggesting that selection for markers in these
LD blocks would affect susceptibility to both traits.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found at: https://www.ncbi.nlm.
nih.gov/geo/, GSE159157, GSE165945, and GSE186266.

ETHICS STATEMENT

The animal study was reviewed and approved by the Institutional
Animal Care and Use Committee. Written informed consent was
obtained from the owners for the participation of their animals in
this study.

AUTHOR CONTRIBUTIONS

AO, TF, AD, and EL conceptualized the research aims. With
supervision from AO and TF, AD and EL arranged blood sample
collection and processing, curated hoof trimming records,
developed the methodology, and performed the computational
analyses. TF was instrumental in developing code for the
computational analyses that EL adapted for the dataset. AO
provided the funding, lab space, and computing resources for
this research. AO, TF, EL, and AD prepared and edited the article.

FUNDING

This research was funded by a Western Sustainable Agriculture
Research and Education Graduate Student grant (project number
GW18-126); U.S. Department of Agriculture Cooperative State
Research, Education, and Extension Service Animal Health
Funding (project number 2250-AH); a Department of Animal
Science Kellogg Endowment; and Jastro Shields awards from the
College of Agricultural and Environmental Sciences at the
University of California, Davis.

ACKNOWLEDGMENTS

We thank the dairy producers, dairy personnel, and hoof
trimmers who participated in this study. We also gratefully
acknowledge the infrastructure support of the Department of
Animal Science, College of Agricultural and Environmental
Sciences, and the California Agricultural Experiment Station of
the University of California, Davis.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2021.742934/
full#supplementary-material

REFERENCES

Banerjee, S., Yandell, B. S., and Yi, N. (2008). Bayesian Quantitative Trait Loci
Mapping for Multiple Traits. Genetics 179, 2275–2289. doi:10.1534/
genetics.108.088427

Biemans, F., Bijma, P., Boots, N. M., and de Jong, M. C. M. (2018). Digital
Dermatitis in Dairy Cattle: The Contribution of Different Disease Classes to
Transmission. Epidemics 23, 76–84. doi:10.1016/j.epidem.2017.12.007

Browning, B. L., Zhou, Y., and Browning, S. R. (2018). A One-Penny Imputed
Genome from Next-Generation Reference Panels. Am. J. Hum. Genet. 103,
338–348. doi:10.1016/j.ajhg.2018.07.015

Buch, L. H., Sørensen, A. C., Lassen, J., Berg, P., Eriksson, J.-A., Jakobsen, J. H., et al.
(2011). Hygiene-related and Feed-Related Hoof Diseases Show Different
Patterns of Genetic Correlations to Clinical Mastitis and Female Fertility.
J. Dairy Sci. 94, 1540–1551. doi:10.3168/jds.2010-3137

Buzanskas, M. E., Grossi, D. d. A., Ventura, R. V., Schenkel, F. S., Chud, T. C. S.,
Stafuzza, N. B., et al. (2017). Candidate Genes for Male and Female

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7429349

Lai et al. Pleiotropic Loci for Foot Disorders

198

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/articles/10.3389/fgene.2021.742934/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.742934/full#supplementary-material
https://doi.org/10.1534/genetics.108.088427
https://doi.org/10.1534/genetics.108.088427
https://doi.org/10.1016/j.epidem.2017.12.007
https://doi.org/10.1016/j.ajhg.2018.07.015
https://doi.org/10.3168/jds.2010-3137
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Reproductive Traits in Canchim Beef Cattle. J. Anim. Sci Biotechnol 8, 1–10.
doi:10.1186/s40104-017-0199-8

Cai, Z., Guldbrandtsen, B., Lund, M. S., and Sahana, G. (2019). Dissecting Closely
Linked Association Signals in Combination with the Mammalian Phenotype
Database Can Identify Candidate Genes in Dairy Cattle. BMC Genet. 20, 15.
doi:10.1186/s12863-019-0717-0

Cha, E., Hertl, J. A., Bar, D., and Gröhn, Y. T. (2010). The Cost of Different Types of
Lameness in Dairy Cows Calculated by Dynamic Programming. Prev. Vet. Med.
97, 1–8. doi:10.1016/j.prevetmed.2010.07.011

Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., and Lee, J. J.
(2015). Second-generation PLINK: Rising to the challenge of Larger and Richer
Datasets. GigaSci 4, 7. doi:10.1186/s13742-015-0047-8

Cole, J. B., Wiggans, G. R., Ma, L., Sonstegard, T. S., Lawlor, T. J., Crooker, B. A.,
et al. (2011). Genome-wide Association Analysis of Thirty One Production,
Health, Reproduction and Body Conformation Traits in Contemporary U.S.
Holstein Cows. BMC Genomics 12, 408. doi:10.1186/1471-2164-12-408

Collard, B. L., Boettcher, P. J., Dekkers, J. C. M., Petitclerc, D., and Schaeffer, L. R.
(2000). Relationships between Energy Balance and Health Traits of Dairy Cattle
in Early Lactation. J. Dairy Sci. 83, 2683–2690. doi:10.3168/jds.S0022-0302(00)
75162-9

Dhakal, K., Tiezzi, F., Clay, J. S., and Maltecca, C. (2015). Short Communication:
Genomic Selection for Hoof Lesions in First-Parity US Holsteins. J. Dairy Sci.
98, 3502–3507. doi:10.3168/jds.2014-8830

Dolecheck, K. A., Overton, M. W., Mark, T. B., and Bewley, J. M. (2019). Use of a
Stochastic Simulation Model to Estimate the Cost Per Case of Digital
Dermatitis, Sole Ulcer, and white Line Disease by Parity Group and
Incidence Timing. J. Dairy Sci. 102, 715–730. doi:10.3168/jds.2018-14901

Dolecheck, K., and Bewley, J. (2018). Animal Board Invited Review: Dairy Cow
Lameness Expenditures, Losses and Total Cost. Animal 12, 1462–1474.
doi:10.1017/S1751731118000575

Esposito, F., Sorosina, M., Ottoboni, L., Lim, E. T., Replogle, J. M., Raj, T., et al.
(2015). A Pharmacogenetic Study implicatesSLC9a9in Multiple Sclerosis
Disease Activity. Ann. Neurol. 78, 115–127. doi:10.1002/ana.24429

FAANG (2019). “Functional Annotation of Animal Genomes (FAANG)
Consortium,” in FAANGMine. Available at: http://128.206.116.18:8080/
faangmine/begin.do (Accessed August 3, 2020).

Gernand, E., Döhne, D. A., and König, S. (2013). Genetic Background of Claw
Disorders in the Course of Lactation and Their Relationships with Type Traits.
J. Anim. Breed. Genet. 130, 435–444. doi:10.1111/jbg.12046

Gernand, E., Rehbein, P., von Borstel, U. U., and König, S. (2012). Incidences of
and Genetic Parameters for Mastitis, Claw Disorders, and Common Health
Traits Recorded in Dairy Cattle Contract Herds. J. Dairy Sci. 95, 2144–2156.
doi:10.3168/jds.2011-4812

Goddard, M. (2009). Genomic Selection: Prediction of Accuracy andMaximisation
of Long Term Response. Genetica 136, 245–257. doi:10.1007/s10709-008-
9308-0

Häggman, J., and Juga, J. (2013). Genetic Parameters for Hoof Disorders and Feet
and Leg Conformation Traits in Finnish Holstein Cows. J. Dairy Sci. 96,
3319–3325. doi:10.3168/jds.2012-6334

Hayes, B. J., Visscher, P. M., and Goddard, M. E. (2009). Increased Accuracy of
Artificial Selection by Using the Realized Relationship Matrix. Genet. Res. 91,
47–60. doi:10.1017/S0016672308009981

Hu, Z.-L., Park, C. A., and Reecy, J. M. (2019). Building a Livestock Genetic and
Genomic Information Knowledgebase through Integrative Developments of
Animal QTLdb and CorrDB. Nucleic Acids Res. 47, D701–D710. doi:10.1093/
nar/gky1084

Koenig, S., Sharifi, A. R., Wentrot, H., Landmann, D., Eise, M., and Simianer, H.
(2005). Genetic Parameters of Claw and Foot Disorders Estimated with Logistic
Models. J. Dairy Sci. 88, 3316–3325. doi:10.3168/jds.S0022-0302(05)73015-0

Korte, A., Vilhjálmsson, B. J., Segura, V., Platt, A., Long, Q., and Nordborg, M.
(2012). A Mixed-Model Approach for Genome-wide Association Studies of
Correlated Traits in Structured Populations. Nat. Genet. 44, 1066–1071.
doi:10.1038/ng.2376

Lai, E., Danner, A. L., Famula, T. R., and Oberbauer, A. M. (2020). Genome-Wide
Association Studies Reveal Susceptibility Loci for Digital Dermatitis in Holstein
Cattle. Animals 10, 2009. doi:10.3390/ani10112009

Lai, E., Danner, A. L., Famula, T. R., and Oberbauer, A. M. (2021). Genome-Wide
Association Studies Reveal Susceptibility Loci for Noninfectious Claw Lesions

in Holstein Dairy Cattle. Front. Genet. 12, 728. doi:10.3389/
FGENE.2021.657375

Lander, E., and Kruglyak, L. (1995). Genetic Dissection of Complex Traits:
Guidelines for Interpreting and Reporting Linkage Results. Nat. Genet. 11,
241–247. doi:10.1038/ng1195-241

Lee, S. H., Yang, J., Goddard, M. E., Visscher, P. M., and Wray, N. R. (2012).
Estimation of Pleiotropy between Complex Diseases Using Single-Nucleotide
Polymorphism-Derived Genomic Relationships and Restricted Maximum
Likelihood. Bioinformatics 28, 2540–2542. doi:10.1093/bioinformatics/bts474

Lehner, S., Zerbin, I., Doll, K., Rehage, J., and Distl, O. (2018). A Genome-wide
Association Study for Left-Sided Displacement of the Abomasum Using a
High-Density Single Nucleotide Polymorphism Array. J. Dairy Sci. 101,
1258–1266. doi:10.3168/jds.2017-13216

Li, M.-X., Yeung, J. M. Y., Cherny, S. S., and Sham, P. C. (2012). Evaluating the
Effective Numbers of Independent Tests and Significant P-Value Thresholds in
Commercial Genotyping Arrays and Public Imputation Reference Datasets.
Hum. Genet. 131, 747–756. doi:10.1007/s00439-011-1118-2

Makanjuola, B. O., Miglior, F., Abdalla, E. A., Maltecca, C., Schenkel, F. S., and
Baes, C. F. (2020). Effect of Genomic Selection on Rate of Inbreeding and
Coancestry and Effective Population Size of Holstein and Jersey Cattle
Populations. J. Dairy Sci. 103, 5183–5199. doi:10.3168/jds.2019-18013

Malchiodi, F., Koeck, A., Chapinal, N., Sargolzaei, M., Fleming, A., Kelton, D. F.,
et al. (2015). Genetic Analyses of Hoof Lesions in Canadian Holsteins Using an
Alternative Contemporary Group. Interbull Bull.

Malchiodi, F., Koeck, A., Mason, S., Christen, A. M., Kelton, D. F., Schenkel, F. S.,
et al. (2017). Genetic Parameters for Hoof Health Traits Estimated with Linear
and Threshold Models Using Alternative Cohorts. J. Dairy Sci. 100, 2828–2836.
doi:10.3168/jds.2016-11558

Mostert, P. F., van Middelaar, C. E., de Boer, I. J. M., and Bokkers, E. A. M. (2018).
The Impact of Foot Lesions in Dairy Cows on Greenhouse Gas Emissions of
Milk Production. Agric. Syst. 167, 206–212. doi:10.1016/j.agsy.2018.09.006

Oberbauer, A. M., Berry, S. L., Belanger, J. M., McGoldrick, R. M., Pinos-
Rodriquez, J. M., and Famula, T. R. (2013). Determining the Heritable
Component of Dairy Cattle Foot Lesions. J. Dairy Sci. 96, 605–613.
doi:10.3168/jds.2012-5485

O’Driscoll, K., McCabe, M., and Earley, B. (2015). Differences in Leukocyte Profile,
Gene Expression, and Metabolite Status of Dairy Cows with or without Sole
Ulcers. J. Dairy Sci. 98, 1685–1695. doi:10.3168/jds.2014-8199

Onyiro, O. M., Andrews, L. J., and Brotherstone, S. (2008). Genetic Parameters for
Digital Dermatitis and Correlations with Locomotion, Production, Fertility
Traits, and Longevity in Holstein-Friesian Dairy Cows. J. Dairy Sci. 91,
4037–4046. doi:10.3168/jds.2008-1190

Pérez-Cabal, M. A., and Charfeddine, N. (2015). Models for Genetic Evaluations of
Claw Health Traits in Spanish Dairy Cattle. J. Dairy Sci. 98, 8186–8194.
doi:10.3168/jds.2015-9562

Price, A. L., Zaitlen, N. A., Reich, D., and Patterson, N. (2010). New Approaches to
Population Stratification in Genome-wide Association Studies. Nat. Rev. Genet.
11, 459–463. doi:10.1038/nrg2813

Purcell, S., and Chang, C. (2021). PLINK 2.0. Available at: https://www.cog-
genomics.org/plink/2.0/ (Accessed April 20, 2021).

Purcell, S. M., and Chang, C. C. (2015). PLINK 1.9. Available at: https://www.cog-
genomics.org/plink2 (Accessed October 19, 2021).

R Development Core Team (2010). R: A Language and Environment for Statistical
Computing. Available at: https://www.r-project.org/ (Accessed April 14, 2021).

Richardson, I. W., Berry, D. P., Wiencko, H. L., Higgins, I. M., More, S. J.,
McClure, J., et al. (2016). A Genome-wide Association Study for Genetic
Susceptibility to Mycobacterium Bovis Infection in Dairy Cattle Identifies a
Susceptibility QTL on Chromosome 23. Genet. Sel. Evol. 48, 19.
doi:10.1186/s12711-016-0197-x

Ring, S. C., Twomey, A. J., Byrne, N., Kelleher, M. M., Pabiou, T., Doherty, M.
L., et al. (2018). Genetic Selection for Hoof Health Traits and Cow Mobility
Scores Can Accelerate the Rate of Genetic Gain in Producer-Scored
Lameness in Dairy Cows. J. Dairy Sci. 101, 10034–10047. doi:10.3168/
jds.2018-15009

Rosen, B. D., Bickhart, D. M., Schnabel, R. D., Koren, S., Elsik, C. G., Tseng, E.,
et al. (2020). De Novo assembly of the Cattle Reference Genome with
Single-Molecule Sequencing. Gigascience 9, 1–9. doi:10.1093/gigascience/
giaa021

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 74293410

Lai et al. Pleiotropic Loci for Foot Disorders

199

https://doi.org/10.1186/s40104-017-0199-8
https://doi.org/10.1186/s12863-019-0717-0
https://doi.org/10.1016/j.prevetmed.2010.07.011
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1186/1471-2164-12-408
https://doi.org/10.3168/jds.S0022-0302(00)75162-9
https://doi.org/10.3168/jds.S0022-0302(00)75162-9
https://doi.org/10.3168/jds.2014-8830
https://doi.org/10.3168/jds.2018-14901
https://doi.org/10.1017/S1751731118000575
https://doi.org/10.1002/ana.24429
http://128.206.116.18:8080/faangmine/begin.do
http://128.206.116.18:8080/faangmine/begin.do
https://doi.org/10.1111/jbg.12046
https://doi.org/10.3168/jds.2011-4812
https://doi.org/10.1007/s10709-008-9308-0
https://doi.org/10.1007/s10709-008-9308-0
https://doi.org/10.3168/jds.2012-6334
https://doi.org/10.1017/S0016672308009981
https://doi.org/10.1093/nar/gky1084
https://doi.org/10.1093/nar/gky1084
https://doi.org/10.3168/jds.S0022-0302(05)73015-0
https://doi.org/10.1038/ng.2376
https://doi.org/10.3390/ani10112009
https://doi.org/10.3389/FGENE.2021.657375
https://doi.org/10.3389/FGENE.2021.657375
https://doi.org/10.1038/ng1195-241
https://doi.org/10.1093/bioinformatics/bts474
https://doi.org/10.3168/jds.2017-13216
https://doi.org/10.1007/s00439-011-1118-2
https://doi.org/10.3168/jds.2019-18013
https://doi.org/10.3168/jds.2016-11558
https://doi.org/10.1016/j.agsy.2018.09.006
https://doi.org/10.3168/jds.2012-5485
https://doi.org/10.3168/jds.2014-8199
https://doi.org/10.3168/jds.2008-1190
https://doi.org/10.3168/jds.2015-9562
https://doi.org/10.1038/nrg2813
https://www.cog-genomics.org/plink/2.0/
https://www.cog-genomics.org/plink/2.0/
https://www.cog-genomics.org/plink2
https://www.cog-genomics.org/plink2
https://www.r-project.org/
https://doi.org/10.1186/s12711-016-0197-x
https://doi.org/10.3168/jds.2018-15009
https://doi.org/10.3168/jds.2018-15009
https://doi.org/10.1093/gigascience/giaa021
https://doi.org/10.1093/gigascience/giaa021
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Shabalina, T., Yin, T., and König, S. (2020). Influence of Common Health
Disorders on the Length of Productive Life and Stayability in German
Holstein Cows. J. Dairy Sci. 103, 583–596. doi:10.3168/jds.2019-16985

Stephens, M. (2013). A Unified Framework for Association Analysis with
Multiple Related Phenotypes. PLoS One 8, e65245. doi:10.1371/
journal.pone.0065245

Thompson-Crispi, K.A.,Hine, B., Quinton,M.,Miglior, F., andMallard, B. A. (2012). Short
Communication: Association of Disease Incidence and Adaptive Immune Response in
Holstein Dairy Cows. J. Dairy Sci. 95, 3888–3893. doi:10.3168/jds.2011-5201

Turner, S. D. (2014). Qqman: an R Package for Visualizing GWAS Results Using
Q-Q and manhattan Plots. bioRxiv, 5165. doi:10.1101/005165

Twomey, A. J., Berry, D. P., Evans, R. D., Doherty, M. L., Graham, D. A., and
Purfield, D. C. (2019). Genome-wide Association Study of Endo-Parasite
Phenotypes Using Imputed Whole-Genome Sequence Data in Dairy and
Beef Cattle. Genet. Sel. Evol. 51, 1–17. doi:10.1186/s12711-019-0457-7

USDA (2018). Dairy 2014, - Health and Management Practices on U.S. Dairy
Operations, 2014. Fort Collins, CO: USDA–APHIS–VS–CEAH–NAHMS.

van der Linde, C., de Jong, G., Koenen, E. P. C., and Eding, H. (2010). Claw Health
index for Dutch Dairy Cattle Based on Claw Trimming and Conformation
Data. J. Dairy Sci. 93, 4883–4891. doi:10.3168/jds.2010-3183

van der Spek, D., van Arendonk, J. A. M., and Bovenhuis, H. (2015). Genetic
Relationships between Claw Health Traits of Dairy Cows in Different Parities,
Lactation Stages, and Herds with Different Claw Disorder Frequencies. J. Dairy
Sci. 98, 6564–6571. doi:10.3168/jds.2015-9561

van der Spek, D., van Arendonk, J. A. M., Vallée, A. A. A., and Bovenhuis, H.
(2013). Genetic Parameters for Claw Disorders and the Effect of Preselecting
Cows for Trimming. J. Dairy Sci. 96, 6070–6078. doi:10.3168/jds.2013-6833

Van der Waaij, E. H., Holzhauer, M., Ellen, E., Kamphuis, C., and De Jong, G.
(2005). Genetic Parameters for Claw Disorders in Dutch Dairy Cattle and
Correlations with Conformation Traits. J. Dairy Sci. 88, 3672–3678.
doi:10.3168/jds.s0022-0302(05)73053-8

Van Raden, P. M., Cole, J. ., and Parker Gaddis, K. L. (2021). Net merit as aMeasure
of Lifetime Profit: 2021 Revision. Available at: https://www.ars.usda.gov/
ARSUserFiles/80420530/Publications/ARR/nmcalc-2021_ARR-NM8.pdf.

Visscher, P. M., Hemani, G., Vinkhuyzen, A. A. E., Chen, G.-B., Lee, S. H., Wray, N.
R., et al. (2014). Statistical Power to Detect Genetic (Co)Variance of Complex
Traits Using SNP Data in Unrelated Samples. Plos Genet. 10, e1004269.
doi:10.1371/journal.pgen.1004269

Xiang, R., MacLeod, I. M., Bolormaa, S., and Goddard, M. E. (2017). Genome-wide
Comparative Analyses of Correlated and Uncorrelated Phenotypes Identify
Major Pleiotropic Variants in Dairy Cattle. Sci. Rep. 7, 1–12. doi:10.1038/
s41598-017-09788-9

Yang, J., Lee, S. H., Goddard, M. E., and Visscher, P. M. (2011). GCTA: a Tool for
Genome-wide Complex Trait Analysis. Am. J. Hum. Genet. 88, 76–82.
doi:10.1016/j.ajhg.2010.11.011

Zhou, X., and Stephens, M. (2014). Efficient Multivariate Linear Mixed Model
Algorithms for Genome-wide Association Studies. Nat. Methods 11, 407–409.
doi:10.1038/nmeth.2848

Zhou, X., and Stephens, M. (2012). Genome-wide Efficient Mixed-Model Analysis
for Association Studies. Nat. Genet. 44, 821–824. doi:10.1038/ng.2310

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Lai, Danner, Famula and Oberbauer. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 74293411

Lai et al. Pleiotropic Loci for Foot Disorders

200

https://doi.org/10.3168/jds.2019-16985
https://doi.org/10.1371/journal.pone.0065245
https://doi.org/10.1371/journal.pone.0065245
https://doi.org/10.3168/jds.2011-5201
https://doi.org/10.1101/005165
https://doi.org/10.1186/s12711-019-0457-7
https://doi.org/10.3168/jds.2010-3183
https://doi.org/10.3168/jds.2015-9561
https://doi.org/10.3168/jds.2013-6833
https://doi.org/10.3168/jds.s0022-0302(05)73053-8
https://www.ars.usda.gov/ARSUserFiles/80420530/Publications/ARR/nmcalc-2021_ARR-NM8.pdf
https://www.ars.usda.gov/ARSUserFiles/80420530/Publications/ARR/nmcalc-2021_ARR-NM8.pdf
https://doi.org/10.1371/journal.pgen.1004269
https://doi.org/10.1038/s41598-017-09788-9
https://doi.org/10.1038/s41598-017-09788-9
https://doi.org/10.1016/j.ajhg.2010.11.011
https://doi.org/10.1038/nmeth.2848
https://doi.org/10.1038/ng.2310
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
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Livestock production contributes to a significant part of the economy in developing
countries. Although artificial insemination techniques brought substantial improvements
in reproductive efficiency, male infertility remains a leading challenge in livestock. Current
strategies for the diagnosis of male infertility largely depend on the evaluation of semen
parameters and fail to diagnose idiopathic infertility in most cases. Recent evidences show
that spermatozoa contains a suit of RNA population whose profile differs between fertile
and infertile males. Studies have also demonstrated the crucial roles of spermatozoal RNA
(spRNA) in spermatogenesis, fertilization, and early embryonic development. Thus, the
spRNA profile may serve as unique molecular signatures of fertile sperm and may play
pivotal roles in the diagnosis and treatment of male fertility. This manuscript provides an
update on various spRNA populations, including protein-coding and non-coding RNAs, in
livestock species and their potential role in semen quality, particularly sperm motility,
freezability, and fertility. The contribution of seminal plasma to the spRNA population is also
discussed. Furthermore, we discussed the significance of rare non-coding RNAs
(ncRNAs) such as long ncRNAs (lncRNAs) and circular RNAs (circRNAs) in
spermatogenic events.

Keywords: circRNA, lncRNA, ncRNA, piRNA, spermatozoa, spermatozoal RNA, spRNA, transcriptome

INTRODUCTION

Spermatogenic defects and sperm abnormalities are responsible for high incidence of male infertility
cases in both animals and human. The diagnosis and treatment of spermatogenic failure remain to be
a thrilling challenge to veterinarians and medical practitioners despite significant research progress
in the investigation and treatment of infertility. Male infertility in livestock is commonly evaluated
from semen quality assessment parameters such as sperm concentration, forward progressive
motility, morphological defects, acrosomal abnormalities, hypo-osmotic swelling test (HOST) for
membrane integrity, etc. Numerous functional assays have also been developed to evaluate the
competence of spermatozoa within the female genital tract and include assessment of in vitro
capacitation, acrosomal reaction and hypermotility, cervical mucus penetration test, zona-free
hamster egg penetration assay, and in vitro fertilization (IVF) (Saacke et al., 2000; Foxcroft
et al., 2008). Assessment of DNA fragmentation in the sperm nucleus has been a relatively
recent addition to the semen evaluation parameters in farm animals (Kumaresan et al., 2020).
However, these procedures fail to diagnose spermatogenic failure and, several cases remain
undiagnosed and declared as idiopathic. Heterogeneous sperm population within a single
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ejaculate, seasonal variation, influence of semen freezing
protocol, etc., further adds to the variability of results (Yang
et al., 2010; Varona et al., 2019). Thus, there is a need to develop
newer molecular and biochemical methods for rapid and reliable
diagnosis of spermatogenic failure and male infertility.

Spermatozoa contain a suite of RNA species, including both
coding RNAs and non-coding RNAs such as microRNAs
(miRNAs), intranuclearRNAs, small nucleolar RNAs
(snRNAs), etc. The concentration of spermatozoal RNA
(spRNA) may be as much as 0.015 pg per sperm (in humans),
which is conspicuously high considering the high nuclear:
cytoplasmic ratio and very low volume of cytoplasm in sperm
(Miller et al., 2005). Microarray analysis has revealed that more
than 3,500 unique mRNAs were present in ejaculated human
spermatozoa (Ostermeier et al., 2002). However, these spRNAs
have traditionally been considered a residual of the
spermatogenesis process due to transcriptionally dormant
nuclear genome (Hecht, 1998) and lack of 28S rRNA and 18S
rRNA in the cytoplasm of mammalian spermatozoa (Miller et al.,
1999). The lack of rRNAs eliminates the possibility of translation
within sperm and hence, de novo protein synthesis (Miller et al.,
1999).

More recent studies have shown that, during fertilization,
at least six sperm-specific, developmentally related mRNAs
are delivered to the zygote (Ostermeier et al., 2004). Studies
have further shown that protein-coding spRNAs undergo
spatio-temporally regulated degradation during early
embryonic development (Ziyyat, 2001; Hayashi, 2003;
Ostermeier et al., 2004). Thus, spRNAs may have specific
functions during early embryonic development, although
their exact role or mechanism of action remains elusive.
(Wykes et al., 1997) observed that spRNA were localized at
the periphery of the sperm nucleus and co-localized with
spermatozoal histone. Since imprinted genes such as IGF2 are
bound with histone protein in the sperm nucleus, it has been
suggested that spRNAs may have a role in meditating
imprinting mechanism or chromatin repackaging following
fertilization (Miller et al., 2005). Microarray profiling of
spRNAs in infertile men revealed a distinct RNA profile
that could be used as a molecular signature of infertile
man’s sperm (Ostermeier et al., 2002) (Wang et al., 2004).
Thus, knowing the identity, functions, and regulation of
spRNAs may have direct relevance to the diagnosis of male
infertility and developing RNA-based therapies or
contraceptives. The aberrance or absence of spRNA may be
a contributing factor for idiopathic infertility and may bear on
the poor performance of livestock. However, while many
studies have analyzed the spRNA population in human
spermatozoa, there are extremely limited results from
livestock species. This review article provides a detailed
review of known spRNA populations in various livestock
species, their possible role in male fertility and early
embryonic development, and their significance in the
diagnosis and/or treatment of idiopathic infertility. A brief
on RNA populations in seminal plasma is also discussed.
Owning to very limited data on spRNAs in livestock,
suitable relevance is also taken from humans.

Spermatogenesis and Spermatozoa
Spermatogenesis is a complex set of events initiated at the
germinal epithelium of seminiferous tubules. The
spermatogonial stem cells (SSCs), the stem cells at the
basement of germinal epithelium, are responsible for the
maintenance of spermatogenesis throughout the adulthood of
males. They possess the ability to self-renew themselves and
differentiate into haploid spermatozoa through the well-
orchestrated spermatogenesis process. Upon molecular cues to
differentiate, the SSCs initially divide mitotically to produce
spermatogonia and subsequently undergo a meiotic process to
produce spermatocytes, followed by the production of haploid
spermatids (Gomes et al., 2013). The spermatids undergo
sequential morphological changes by spermiogenesis to
develop into haploid spermatozoa. The spermatozoa in
seminiferous tubules are immature and undergo a maturation
process in the epididymis. The epididymal maturation of
spermatozoa is characterized by several physiological and
molecular changes in the plasma membrane (e.g., lipid
composition, surface proteins, etc.) and nucleus (e.g., DNA
condensation, protamine formation, chromatin rearrangement,
etc.) (Légaré et al., 2017), formation of acrosome and
development of flagella, etc. before spermiation (Griswold,
2016; Neto et al., 2016). Due to cytoplasmic expulsion, mature
spermatozoa are produced with very little-to-no cytoplasm.
During sperm maturation, sperm transition proteins (TNP1
and TNP2) replaces the majority of the histone proteins of the
spermatids, followed by the deposition of highly basic protamines
(PRM1 and PRM2) in elongated spermatids and spermatozoa
(Jambor et al., 2017). The complex chromatin packaging makes
the sperm epigenome highly stable and makes it transcriptionally
inactive (Lambard et al., 2004). However, transcriptional and
translational activities have been observed during the early stages
of spermiogenesis (Miller, 2007; Yang et al., 2010) until the
development of round spermatids. Translation of specific
mRNAs also continues for several days after discontinuing the
transcription process and completing spermiogenesis. The latter
is believed to occur from those spRNAs that are associated with
leftover histone protein in the nucleus and are potentiated for
transcription (Miller, 2007).

The spRNAs Population in Spermatozoa
In last 1 decade, a number of studies have prepared cDNA
libraries and performed high-thoroughput RNA sequencing
(RNA-seq) or microarray analysis of spermatozoal samples
from epididymis and ejaculates. The spermatozoal samples
have been compared between fertilie and infertile males for
spRNA profiling (Figure 1) and reported to have several
coding and non-coding mRNA transcripts (Li and Zhou,
2012). The concentration of spRNA varied from picograms to
femtograms per cell ranging from 100 fg in mice (Miller, 2014),
10–20 fg in humans (Zhang et al., 2017), two fg in bull (Sellem
et al., 2020), 5 fg in swine (Hamatani, 2012), to 2–20 fg in stallions
(Das et al., 2010). However, earlier reports on spRNAs have
suggested their inertness for transcriptional and translational
activities in spermatozoa (Zhang et al., 2017). The mature
spermatozoa contain insufficient 28S or 18S rRNAs to support
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translation (Miller et al., 1999). The absence of essential
components of translational machinery raised scepticism on de
novo translation or any possible alternative roles of spRNAs in
spermatozoa beyond the delivery of a paternal genome. Thus, the
presence of spRNA not only aroused controversies but is
intriguing to date from the discovery of sperm-borne RNAs in
zygotes (Krawetz et al., 2011). The presence of RNAs in the male
gamete is traditionally assumed to be either degraded leftover or
spermatogenic expulsion of the residual body (Zhang et al., 2017).
It was believed that de novo gene expression could not occur in
mature spermatozoa due to highly compacted DNA by protamine
that substitutes histone proteins during spermiogenesis (Balhorn,
2007). Conversely, spermatozoa rely upon pre-formed spRNAs
and proteins for chromatin re-compaction, completion of the
spermatogenesis process, and subsequent fertilization events
(Miller, 2014).

Although sperm RNA population consists of various classes of
coding RNAs, non-coding RNAs (miRNAs, piRNAs, siRNAs,
lncRNAs), mitochondrial RNAs, ribosomal RNAs (rRNAs), and
some intronic retained elements (Miller, 2007), the accuracy in
determining its quantity and functional significance has been
challenging (Dadoune, 2009). It was suggested that the variable
amount of RNA in spermatozoa in different species might be due
to differences in RNA isolation protocol or contamination of
somatic cells in the semen. Thus, an optimized protocol for sperm
purification and RNA extraction is required before any
conclusion being drawn on their relevancy to male fertility
(Gòdia et al., 2018). Nevertheless, evidence of both coding and
non-coding spRNAs were proclaimed in different livestock
species, including cattle, pigs, and stallion (Kempisty et al.,
2008). Notably, full-length mRNA transcripts have also been

reported (Sun et al., 2021) that had the potential to be translated
de novo under certain circumstances (Miller and Ostermeier,
2006).

The spRNA was also suggested to have the potential to
modulate phenotype through epigenetic alternations in gene
expression (Pantano et al., 2015) and imprinting of IGF2
expression (Boerke et al., 2007). It was shown that spRNAs
were located at the periphery of the nucleus at the boundary
of histone-bound and protamine-bound DNA in the sperm.
Thus, they may have an association with potentiated DNAs
for gene expression (Jodar et al., 2013). Further, the sperm
transcriptome profiling using Microarray (Das et al., 2013;
Zhang Y. et al., 2017), and RNA-seq (Gòdia et al., 2018) have
identified a suite of RNAs in spermatozoa (Sendler et al., 2013)
that included both coding and non-coding transcripts and were
associated with regulation of various biological functions such as
chromatin repackaging, genomic imprinting, early embryonic
development (Das et al., 2013), and post-fertilization events
(Prakash et al., 2021). The spRNA profile also differed
between low-motile and high-motile spermatozoa (Lambard
et al., 2004) and between fertile and infertile men (Wang
et al., 2004; Ostermeier et al., 2005). Yatsenko and co-workers
detected abnormal UBE2B (Yatsenko et al., 2013), ZPBP1
(Yatsenko et al., 2012) and KLHL10 (Yatsenko et al., 2006)
genes in spRNA and associated it with impaired fertility. Wu
et al. (Wu et al., 2012) reported that miR-19b andmiR-let7a could
serve as specific and sensitive biomarkers for spermatogenic
status in idiopathic infertile males with oligozoospermia and
non-obstructive azoospermia. Altered miRNAs expression has
also been found in the testis with non-obstructive azoospermia
(Lian et al., 2009). Thus, the expression level of spRNAs and

FIGURE 1 | A layout of whole transcriptome studies in four major livestock species.
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seminal RNAs may have potential use in studying the post-
spermatogenesis events and detecting defects in sperm
function (Prakash et al., 2021). A layout of whole
transcriptome studies in major livestock species is presented in
Figure 1.

Coding RNAs in Spermatozoa of Livestock
The spRNA population has been described in various farm
animals such as cattle, horses, and pigs (Card et al., 2013; Das
et al., 2013). The coding RNAs were limited mainly to mRNA
transcripts, whereas ncRNAs belonged to different types such
as miRNAs, lncRNA, rRNA, tRNA, tsRNA, circRNA, etc. The
presence of fragmented rRNAs (Cappallo-Obermann et al.,
2011), 5,000–6,000 mRNAs, and other classes of RNAs such
as tRNA, small RNA, and miRNA have also been described
(Parthipan et al., 2017). Among protein-coding RNAs,
Hydrolases, SP-40, Sulfated glycoprotein 2, Calmegin, Heat
shock proteins (HSPs) were highly abundant. At the same
time, non-coding RNA (ncRNA) mainly included miRNAs
and siRNAs whose targets were signaling pathways such as
the Wnt signaling pathway that is known to be regulators of
early embryonic development and differentiation (Peifer,
2000).

Coding spRNAs in Cattle
The whole transcriptome profiling of bulls’ spermatozoa
revealed a wide range of potential transcripts (Table 1) that
regulate DNA packaging, cytoskeletal organization, acrosomal
reactions (e.g., PLCB1, YWHAZ) (Selvaraju et al., 2017), oocyte
activation, embryogenesis, placental development (e.g., PAG5,
PAG7, and PAG10), embryonic morphogenesis, microtubule

function (e.g., KIF5C and KCNJ6), mitochondrial function (e.g.,
COX5A and COXI1), calcium signaling (e.g., PLCZ1 and
PLCB1), and centrosome organization (e.g., MAP7, MYH9,
PLK1S1, PRKCZ, and PTK2). Bovine cDNA microarray
analysis of spermatozoa from different segments of
epididymis further revealed segmental differences in the
transcriptome. Among the differentially expressed genes
(DEGs), the top 10 DEGs were related to reproductive
function (ADAM28, AKAP4, CTCFL, FAM161A, ODF1,
SMCP, SORD, SPATA3, SPATA18, and TCP11) and five
DEGs (DEAD, CYST11, DEFB119, DEFB124, and MX1) were
related to the immune response and cellular defense (Légaré
et al., 2017). Notably, most up-regulated transcripts of the caput
epididymis are known to regulate spermatogenesis and sperm
morphology and included AKAP4, ODF1 CTCFL, SMCP,
SPATA3, SPZ1, and SPATA18. These genes in spermatozoa
have been associated with sub-fertility of bulls with
incomplete spermiogenesis (Hermo et al., 2010). The sperm
transcripts related to spermmaturation were ADAM28, CRISP2,
CST11, LCN9S, and TCP11. On the other hand, dysregulated
immune defense-related genes were CATGL4 and GSTA2 in the
caput epididymis; GPX5, MX1, and DEFB124 in the corpus
epididymis and; DEFB7 and DEFB119 in the cauda epididymis
(Selvaraju et al., 2017).

Various intact rRNA (e.g., RPL23, RPL27A, and RPS18) and
degraded rRNAs (RPL6, RPL36AL, and RPL37) have also been
reported in bull spermatozoa (Montjean et al., 2012), which
might suggest their potential role in spermatogenesis. The
comparative RNA profiles of semen from high- and low-
fertility bulls using microarray revealed 415 DEGs (out of
24,000 analyzed genes) with a significant number of fertility-

TABLE 1 | Important protein coding transcripts reported in cattle spermatozoa by transcriptome analysis.

Species Study
type

Groups Transcripts (Gene symbol) Function References

Cattle RNA-Seq Whole
transcriptome

ZBTB20 Spermatogenesis Raval et al. (2019)

RNA-Seq Whole
transcriptome

YWHAZ Spermatogenesis and acrosomal reactions Selvaraju et al.
(2017)

KIF5C and
KCNJ6

Microtubule function

TNP1, RAD21, UBE2B and RAN Spermatid development
TEKT1 Acrosome and on flagella and could play a key role during

fertilization
CAPZA3 Spermatozoa capacitation and spermatozoa egg fusion
MAP7, PTK2, PLK1S1, MYH9 and
PRKCZ

Spermatogenesis and sperm function

PLCZ1 and PLCB1 Calcium signalling and the spermatozoon-induced activation of
an oocyte leading to its final maturation

ADAM1B, ADAM2 and ADAM32 Spermatozoal motility
ZP3 and FOXG1 Embryogenesis-associated transcript
PAG5, PAG7 and PAG10 Implantation and placentation

RNA-Seq High vs Low
fertile

PFN1 Oocyte maturation, fertilization, embryo development,
spermatogenesis

Prakash et al.
(2021)

PRKCA 1 Acrosome formation
ODF1, BCL2L11, PRM2, TNP2,
ODF2, SPEM1, and MEA1

Spermatogenesis

YBX1, UBE2B, BCL2L11, MYH10,
and RBBP6

In-vitro embryonic development
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associated markers (Feugang et al., 2010). The study showed
higher expression of membrane and extracellular matrix genes in
spermatozoa from high-fertility bulls, while transcripts of
transcriptional and translational factors were lower in the low-
fertility bulls. Increased expression of CSN2 and PRM1 in
spermatozoa of high-fertility bull and lower expression of
CD36 in low -fertility bull were suggested as possible fertility
markers (Feugang et al., 2010).

The role of coding spRNA transcripts was also indicated in
the motility of sperm flagellum (AKAP) and DNA packaging
(PRM2) (Singh et al., 2019). Differences in spRNA transcripts
among high- and low-fertility dairy bulls have been reported
with 805 unique transcripts in high-fertility and 2,944 unique
transcripts in the low-fertility bulls (Card et al., 2017).
Expression of cytochrome oxidase subunit (COX7C) was
negatively correlates with male fertility (Card et al., 2017).
In another study, a combination of five genes (AK1, ITGB5,
TIMP, SNRPN2, and PLCz1) accounted for 97.4% of the
variation of conception rate from frozen-thawed Holstein
bulls, which was indicative of the sire fertility index
(Kasimanickam et al., 2012). The upregulated sperm
transcripts (e.g., RPL3, PABPC1, TPT1, RPL14, RPS8, PFN1,
DDX39B, and CD74) in low-fertile crossbred bulls annotated
to biological functions like apoptosis, cellular differentiation,
apoptosis of germ cells, spermatogenesis, fertilization, and
early embryo development (Arcuri et al., 2004; Rawe et al.,
2006; Selvaraju et al., 2018) whereas downregulated sperm
transcripts (e.g., RUNDC3A, LYRM4, FAM71F1, ZFN706,
PICK1, LUZP1, ANKRD9, and EPOP) were found to be
modulating the cytoskeletal organization and acrosome
formation (Selvaraju et al., 2017). The TSSK6, C12H13orf46,
FABP3, and IQCF1 genes were the top spRNA transcripts that
were unique to high-fertility bull spermatozoa and were
associated with biological functions of protein
phosphorylation, sperm chromatin condensation during
spermiogenesis, sperm motility, acrosome reaction, and
gamete fusion during fertilization (Bissonnette et al., 2009;
Sosnik et al., 2009; Fang et al., 2015; Selvaraju et al., 2018). The
upregulated sperm transcripts that were unique to the low-
fertility bulls included ribosomal proteins and thymosin beta
10 (TMSB10), which are involved in sperm capacitation,
fertilization, and cellular remodeling during trophoblast
adhesion (Cammas et al., 2005; Selvaraju et al., 2017). These
studies suggest an association between coding spRNAs in bulls
sperm and their fertility.

Coding spRNAs in Pigs
The significance of spRNA functions has also been recognized in
pigs (Table 2). Using RNA-Seq, several genes linked to
spermatogenesis (e.g., FGF-14 and BAMBI), energy
metabolism (e.g., ND6 and ACADM), protein
phosphorylation (e.g., PTPRU and PTPN2), autophagy (e.g.,
RAB33B), inflammation, and apoptosis (e.g., EAF2, FOS,
ITGAL, NFATC3, and ZDHHC14) have been reported to be
significantly up-regulated in poor freezable ejaculates of boar
semen (Fraser and Adeoya-Osiguwa, 2001). Thus, the spRNA
population may serve as a molecular signature or marker of

sperm freezability. Comparison of spRNAs in fresh vs. frozen-
thawed boar sperm resulted differential expression of 567
protein coding mRNA and 135 non-coding miRNA (Card
et al., 2017; Dai et al., 2019). The KEGG pathway analysis of
DEGs revealed several signaling pathways governing the
spermatogenesis process, such as chemokines signaling, PI3K-
AKT, cGMP-PKG signaling, JAK-STAT signaling, calcium
signaling, TNF signaling, MAPK, calcium signaling, NF-kappa
B signaling, and AMPK signaling pathways. Similarly,
microarray analysis of spRNA population in differentially
fertile pigs revealed significant involvement of major signaling
pathways associated with JAK2 and STAT3 pathways, cytokine
receptor activity, activation of B-and T-lymphocytes (Yang et al.,
2009). High fertile groups were also marked with
downregulation of cell adhesion and proliferation genes (e.g.,
CDH10, CDSN, ITGB8, ANGPTL1, and CTNNA3) and
upregulation of genes associated with the cellular component
organization (e.g., KRI1 and ZNHIT6), endocytic receptor
activity (e.g., CXCL16), membrane channels (e.g., KCNA3,
KCNIP3, KCNH4, and KCTD9) and translation regulator
activity (e.g., CPEB3). Transcripts regulating sperm motility
during in vitro capacitation, such as CATSPERG (CatSper
channel auxiliary subunit gamma) was upregulated, and
CATSPERB (CatSper channel auxiliary subunit beta) was
down-regulated in high-fertility pigs. The DEGs annotating to
zinc finger nucleases (ZFNs) such as LOC100739821, ZNRF4,
PLAGL2, ZFN25, and ZDHHC7 were primarily upregulated in
high-fertility boars (Alvarez-Rodriguez et al., 2020). Some of the
ZFN transcripts (e.g., ZFN283, FEZF2, and GLI1) were
downregulated in high fertile groups and were involved with
sonic hedgehog signaling pathway (Kroft et al., 2001). Apart
from this, transcripts of NFYA, TCF21, MBTPS2, MTF2, IRF3,
and ISG20L2 were significantly overexpressed, and UBTFL1,
ADAM7, ADAM29, IL23R, IFN-DELTA-4, IFNK, and IFIT3
were under-expressed in high fertile boars (Turner et al.,
2006; Wei et al., 2011).

The spRNAs enriched in cell-cell adhesion, endometrial
epithelial cell receptivity, lipid and glucose metabolism,
inflammation, autophagy, matrix metalloproteases,
mitochondrial apoptosis, and immune-related signaling
pathways have also been reported (Alvarez-Rodriguez et al.,
2020). The EST library of ejaculated spermatozoa from
Landrace pig deciphered some of the putative homologs of
transcripts regulating embryogenesis (e.g., HSP70.2, SSFA2,
and SESN1). These transcripts were also marked as potential
regulators of spermiogenesis, oocyte fertilization, cellular
growth, and cleavage (Yang et al., 2009). Seasonal variation
in RNA-seq profiling of spRNAs was also reported in pigs
(Yang et al., 2010) and included transcripts having functional
similarity with those previously reported in cattle (Selvaraju
et al., 2017). The mRNA transcripts regulating
spermatogenesis (e.g., ODF2 and SPATA18), nuclear
genome structure (e.g., PRM1, OAZ3, HSPB9, and
NDUFS4), mitochondrial function (e.g., COX1ATP8), and
fertilization (e.g., HSPA1L and PRSS37) were observed to
be associated with compaction of sperm chromatin, energy
metabolism, oxidative stress, apoptosis, and early embryo
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development (Sendler et al., 2013; Sakurai et al., 2016;
Selvaraju et al., 2017). It was also suggested that the
TSARG1 transcript in spermatozoa might be involved in
inhibiting apoptosis (Yang et al., 2005). The study reported
that the expression level of TSARG1 and testis-specific kinase
1 (TESK1), which are members of the DnaJ-like protein family
and serine/threonine kinases, respectively, were significantly
higher in the sperm pools collected in winter than in summer.
The transcriptome analysis of pig testis and epididymis
revealed several transcripts associated with different
regions of the epididymis (Guyonnet et al., 2009). Several
lipocalins were observed in different epididymal segments
such as LCN6, LCN8, LCN9, LCN10, PTGDS, but their role is
not yet evident in response to epididymal functionalities.

Coding spRNAs in Stallion
In order to establish the significance of spRNAs as potential
biomarkers of stallion fertility, global transcriptome profiling of
semen has been explored (Das et al., 2013; Suliman et al.,
2018). The abundance of spermatozoal mRNAs (e.g., ADIPO,
AK1, CRISP2, DOPPEL, ITGB5, NGF, PEBP1, PLCZ1, and
TIMP2) were found to be positively correlated with fertility,
while mRNA transcripts of CCT8 and PRM2 were found to be
negatively correlated (Kasimanickam et al., 2012). The
stallion sperm transcripts were predicted to regulate critical
biological functions, viz., the integrity of plasma membrane,
RNA processing, transcription regulation, mitochondrial
ribosomal protein, ion binding, chemokine receptor DNA
packaging, protein folding, cytoskeleton, GTPase activator,
chromatin assembly complex, and protein transport (Suliman
et al., 2018). The cysteine-rich secretory protein (CRISP),
found in seminal plasma proteins, was involved in gamete
fusion (Töpfer-Petersen et al., 2005). Some ribosomal binding
proteins (e.g., GRTH, SAM68, MSY2, and DAZAP1) were also
observed that are known to promote the translation of

mRNAs in germ cells. The latter may thus, suggest the
importance of spRNAs in regulating protein translation
during spermatogenesis (Bettegowda and Wilkinson, 2010).
Comparative transcriptomics of stallion sperm identified 149
DE miRNAs between dense and less-dense spermatozoa (Ing
et al., 2020) wherein BC O 1, GLRA4, OTOL1, PRM1, SCP2D1,
and SPATA31D1 were highly expressed in dense spermatozoa
compared to those of less-dense spermatozoa. This study also
found that expression of PRM1 transcripts was significantly
higher in morphologically normal spermatozoa from sub-
fertile stallions and in spermatozoa with abnormal
morphology (Paradowska-Dogan et al., 2014). The
association of protamines expression levels in frozen-
thawed semen had implications in stallion fertilization
(Kadivar et al., 2020).

Non-Coding RNAs in Spermatozoa of
Livestock
Two groups of ncRNAs are the short and long ncRNAs (Watson
et al., 2019). Transcripts <200 nucleotides are the small ncRNA
(sncRNA) that include piwi-interacting RNA (piRNAs), small
interfering RNA (siRNAs), miRNA, rRNA, tRNA, snoRNAs, and
small nuclear RNA (snRNAs) (Grivna et al., 2006). Transcripts
>200 nucleotides are generally categorized as long ncRNA
(lncRNA) (Fort et al., 2021). Deep sequencing of cattle spRNA
revealed that sncRNA population comprises the most abundant
rRNA followed by piRNAs, miRNAs, and tRNA fragments
(tsRNA), contradictory to sperm-based data where tRNAs
represented most of the reads (Sellem et al., 2020). Microarray
analysis of spRNAs in humans revealed that spRNA contains an
array of ncRNAs that included miRNAs and siRNAs.
Interestingly, 68 of these siRNAs had protein targets which
were regulators of development and differentiation in C.
elegans (Martins and Krawetz, 2005). The function of these

TABLE 2 | Important protein coding transcripts reported in pig spermatozoa by transcriptome analysis.

Species Study
type

Groups Transcripts (Gene symbol) Function References

Pigs cDNA-
library

Ejaculated
spermatozoa

Hsp70.2, SSFA2, SESN1 Embryogenesis Yang et al. (2009)

RNA-Seq Capacitated
sperm

MAPK1, PGK1, PPM1B, and
PGAM1

Capacitation Li et al. (2018)

RNA-Seq Fresh vs frozen
semen

VEGFA Self-renewal and maintenance of male spermatogonial stem
cells, activate the AKT signalling, improve sperm motility

Dai et al. (2019)

DNMT3A, DNMT3B,
JHDM2A, KAT8, and PRM1

Epigenetic regulation

PLCZ1 and CRISP2 Calcium ion pump, sperm–egg interaction, regulation of sperm
intake, and fertilization process

MTHFR, PAX8, IGF2, LIT1,
and SNRPN

Epigenetic regulation

Microarray High fertile vs Low
fertile

AKAPs Capacitation, motility Alvarez-Rodriguez et al.
(2020)CATSPER Mammalian fertilization by Calcium signalling

Zinc finger proteins Transcriptional regulation, ubiquitin-mediated protein
degradation, signal transduction, actin targeting, DNA repair
and cell migration

Matrix metallo-proteases Activation of TNF-alfa and generation of Epidermal Growth
Factor Receptor
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sperm-derived miRNA was further demonstrated by (Amanai
et al., 2006). Using anti-miRNA microinjection to oocytes,
(Amanai et al., 2006), showed that spRNA has a limited
function during early embryonic development in pigs.
Nevertheless, direct proof of the function of these RNAs is still
elusive. The presence of ncRNAs in livestock has been associated
with spermatogenesis, fertilization, early embryogenesis (Prakash
et al., 2020), and epigenetic modification of the sperm genome
(Jodar et al., 2013; Prakash et al., 2020).

Spermatozoal miRNA
The miRNAs are short single-stranded RNAs of ∼18–22
nucleotide length that are found abundantly in mammals and
are known to post-transcriptionally regulate the function of
mRNAs through inhibition or suppression of translation or
degradation of mRNA themselves. The significance of
miRNAs in male reproduction has been documented in the
maintenance of self-renewal and differentiation of SSCs into
spermatozoa as well as during the spermiogenesis process
(Chen X. et al., 2017). We previously showed that the let-7
family of miRNA is involved in regulating germ cell
proliferation and may be used as a marker of male germ cells
(Jung et al., 2010) in addition to imprinted miRNAs (Shin et al.,
2011). Similarly, miR-21, miR-34c, miR-183, miR-465a, etc., were
also found to be vital for SSC self-renewal through regulation of
Etv5, Cdnd1, and Stat3 expression in mice (Niu et al., 2011; He
et al., 2013). On the other hand, miR-224 and miR-322 regulate
the Wnt signaling pathway for self-renewal of mice SSCs by
increasing the expression of Gfrα1, Plzf, and Rassf8 (Cui et al.,
2016; Wang Y. et al., 2019) whereas miR-100 and miR-10b
promoted the proliferation of SSCs through Stat3 and Klf4,
respectively (Huang et al., 2017; Li et al., 2017). The miRNAs
were also shown to play crucial roles in the differentiation of mice
SSCs and spermatogenesis by targeting the Dmrt1 (Cui et al.,
2016) and through the retinoic acid pathway (Bellvé et al., 1977).

The complexity of the miRNA population has also been seen
in spermatozoa of several mammalian species, including cattle,
pigs, stallion, mice, and humans (Capra et al., 2017; Castillo et al.,
2018; Gòdia et al., 2018). However, the precise functions of these
sperm miRNAs in spermatogenesis or post-fertilization events
are yet to be established. Spermatozoal miRNAs are believed to
play essential roles during fertilization of oocytes and early
embryonic development (Castillo et al., 2018). They may also
affect the abundance and epigenetic status of maternal mRNAs in
oocytes and zygotes (Capra et al., 2017).

Spermatozoal miRNAs in Cattle
Spermatozoal miRNAs have been reported in healthy bulls and
those differeing in their spermatozoal motility or fertility
(Table 3). The whole miRNA profiling of bull spermatozoa
through deep sequencing identified 2022 miRNAs and
included a large number of isomiRs across different species
(Turri et al., 2021). RNA-seq analysis of high fertility and low
fertility bulls reported nine DE miRNAs (miR-2285n, miR-378,
miR-423-3p, miR-19, miR-2904, miR-378c, miR-431, miR-486,
andmiR-2478) in whichmiR-2285n, miR-378, andmiR-486 were
observed to have altered expression levels between low and high

motile sperm. The highest expression of miR-2285n and miR-486
was seen in low motile spermatozoa and the semen samples from
low fertility bulls. The miR-486 plays a crutial role in regulating
stemness and cell proliferation of SSCs. The miR-378 targets
mRNAs involved in metabolism and sperm motility (Liu et al.,
2019). Differential expression of spermatozoal miRNAs was also
observed upon microarray analysis of spermatozoal miRNA in
low vs. high motility spermatozoal and low vs. high fertility bull
(Sellem et al., 2020; Keles et al., 2021).

The miRNA profiling of bull sperm using microarray
presented an abundant quantity of miRNA along with DE
miRNA target genes from high vs. low fertility groups (Dai
et al., 2019) suggests the roles of miRNA in regulatory
mechanisms. Seven important miRNAs (hsa-aga-3155, 8197,
6,125, 6,727, 11,796, 13,659 and 14,189) were DE (using
human microarray probe set) and validated by qRT-PCR. The
target genes of these miRNAs included AQP7P1, CHN2-EPHA1-
EFNA2, DNM2, IFT80, TOB2, CHN2, CLUL1, BC035897,
BTBD2, possibly regulating gametogenesis, acrosome integrity,
and fertilization. An interactome model of miRNA target genes
has also been proposed to identify the master regulator of a set of
genes with a single miRNA molecule (Govindaraju et al., 2012).
The miR-26a and miR-455-5p were significantly up-regulated in
highly motile spermatozoa, whereas levels of miR-10a and miR-1
were significantly down-regulated. The miR-26a also participates
in PTEN and PI3K/AKT signaling pathways, affecting sperm
viability and motility (Dai et al., 2019). In another study, miR-
34b-3p and miR-100-5p were also significantly over-expressed in
spermatozoa of high fertility bull compared to those of low
fertility bull (Keles et al., 2021). The miRNAs, previously
known to be expressed testis, were also detected in bull
spermatozoa and included miR-34b/c miRNA cluster, which
plays vital roles in chromatin condensation during
spermiogenesis (Capra et al., 2017). Thus, miRNA profile
could be a useful indicator for high fertility spermatozoa.

The miRNA profiling has also found its application in
assessing the success of semen cryopreservation protocols.
Increased expression of miR-34c was seen in the highly motile
cryopreserved bull spermatozoa purified through Percoll density
gradient centrifugation. The miRNA profiling of differentially
motile cryopreserved spermatozoa revealed that spermatozoal
miRNAs target STAT3, PI3K/AKT, and PTEN signaling
pathways that play essential roles during mammalian
spermatogenesis, mitochondrial membrane potential, sperm
maturation, and fertilization. PTEN, the target of multiple
miRNAs (e.g., miR-17-5p, miR-26a-5p, and miR-486-5p),
inhibits AKT signaling and activates RAF1/ERK signaling to
initiate sperm maturation. Two miRNA viz. miR-122 and
miR-184 were upregulated in low motile fractions of semen,
which targets the AKT signaling pathway to cause apoptosis.
In addition, miR-17-5p and miR-20a- 5p, which were found to be
under-expressed in the low motile fraction of semen, targets
PTEN and STAT signaling pathways to trigger apoptosis (Capra
et al., 2017).

The spermatozoal miRNA have also been shown to differ in
gonadotoxicity, heat stress, and impaired spermatogenesis.
Differentially expressed miRNAs have been reported between
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normal and abnormal spermatozoa of bulls affected by Fescue
toxicosis (Stowe et al., 2014). An increased expression of let-7a
and miR-22 was shown in spermatozoa with abnormal morphology
due to toxicosis. Further, among the most abundant miRNAs, the
let-7 family and miRNA-146 were found to regulate the
differentiation of spermatogonia and impaired blastocyst
implantation in mice whereas, miRNA-16 is known to coordinate
cell-cycle (Zhang et al., 2012). A recent study suggests miRNA (e.g.,
miR-126-5p) accumulates during the final stage of spermatogenesis,
and epidydimal transit and their expression is affected during heat
stress, which might explain reduced fertility in heat-stressed bulls
due to impaired spermatogenesis and maturation (Dos Santos da
Silva et al., 2021). The miR-17-92 and miR-106b-25 are twomiRNA
clusters whose target genes were reported to be essential for the
progression of spermatogenesis (Tong et al., 2012). It was reported
that spermatozoa that exhibited normal morphology had mutant
miR-92a, implying that miR-92a might affect male fertility. The
miR-10a and miR-9-5p have been frequently reported in cattle and
pig spermatozoa. Both of these miRNAs were observed to be
upregulated in cryopreserved spermatozoa. On the other hand,
miR-10a-5p was found to be overexpressed in low motility
spermatozoa and was associated with spermatogenesis and DNA
repair capacity.

Spermatozoal miRNAs in Pig
The miRNAome of boar spermatozoa has been described in
several studies (Table 4) and may vary with season (Varona
et al., 2019). The miR- 34c, miR-191, miR-30d, miR-10b, and let-
7a were the most abundant spermatozoal miRNAs associated
with spermatogenesis in pigs. The differential expression of
several miRNAs is seen in low vs. high fertility boars, low vs.
high motility, and fresh vs. cryopreserved spermatozoa. The small
RNA libraries of fresh and frozen-thawed boar spermatozoa
revealed several potential cell signaling pathways governed by
spermatozoal miRNAs (Dai et al., 2019). For example, miR-17-
5p, miR-20a-5p, miR-26a-5p, miR-122-5p, miR-184, and miR-
486-5p were involved in regulating PTEN, PI3K/AKT, and STAT
signaling pathways that influence sperm motility, viability, and
apoptosis in frozen-thawed spermatozoa (Zhang Y. et al., 2017)
The increased expression of miRNAs such as let-7a, 7d, 7e, miR-
22, let-7d, and let-7e were seen in frozen-thawed spermatozoa
with morphological abnormalities or low motility. The

cryopreservation of boar sperm also led to reduced expression
of let-7c, miR-22, miR-26a, miR-186, and miR-450b-5p in
frozen-thawed boar spermatozoa (Capra et al., 2017). The
differential expression of these spermatozoal miRNAs may,
thus, have implications in sperm fertility as they are associated
with motility and apoptosis in frozen-thawed boar spermatozoa.

The miRNA microarray profile of high and low fertile boars
found 326 pig-specific miRNAs (Alvarez-Rodriguez et al., 2020),
among which miR-1285 was found to be related to sperm
production, promoting AMPK phosphorylation and regulating
oxidative stress (Jiao et al., 2015). Interestingly, miR-15/miR-16
was the most abundant miRNA and is known to suppress the
TGF-β signaling pathway (Ayaz and Dinç, 2018) and enhance
spermatogonial proliferation and spermatogenesis in
gonadotoxic patients (Moraveji et al., 2019). The mRNA
targets of these miRNA are involved in various essential
cellular functions such as lipid metabolism (e.g., miR-4332),
cell proliferation, and apoptosis (e.g., miR-671-5p, mir-425-5p)
(Qiu et al., 2018). Moreover, miR-425 and IL-23 were
downregulated in high fertile bulls, whereas its receptor (IL-
23R) was down-regulated in high-fertility boars (Lu et al.,
2019). The overexpressed miRNAs in high fertile boars
included miR-191, miR-42, which play significant role in
regulating the motility of spermatozoa inside the female
reproductive tract (Zhang et al., 2018). It has also been
indicated as a key activator of the NF-κB signaling pathway,
the regulator of estrogen receptors, and an inhibitor of the Wnt
pathway (Alvarez-Rodriguez et al., 2020). Two down-regulated
miRNAs, viz. miR-615, miR-221 are known to act as potential
targets for EGFR and regulate acrosome reaction (Michailov et al.,
2014) and PI3K-AKT and the estrogen signaling pathways
(Alvarez-Rodriguez et al., 2019).

The pioneer report on sperm capacitation-specific miRNA
profiling in boar was elucidated by (Li et al., 2018). This study
identified DE miRNAs in fresh non-capacitated and capacitated
spermatozoa. Some of the upregulated miRNAs in capacitated
spermatozoa included, miR-148a-3p, miR-151-3p, miR-425-5p,
miR-132, miR-451, miR7136-5p, miR-489, miR-1343, miR-1306-
3p and fresh spermatozoa were enriched for miR-378b-3p, miR493-
5p, miR-133a-3p, miR-362, and miR-214. Pathway analysis of
miRNA targets revealed their biological significance in PI3K-AKT,
MAPK, cAMP-PKA, and calcium signaling pathways, which are

TABLE 3 | Important non-coding microRNAs reported in cattle spermatozoa by transcriptome analysis.

Species Study type Groups MicroRNAs Function References

Bovine cDNA library High fertile vs Low
fertile

miR-34b/c Sperm chromatin
condensation

Lian et al. (2021)

miR-17-92 and miR-106b-25 Spermatogenesis
miR-10a-5p Motility

MicroRNA
microarray

High and low
fertile

miR-3155, miR-8197, miR-6727, miR-11796, miR-14189, miR-
6125, and miR-13659

Sperm fertilization Govindaraju et al.
(2012)

RNA-Seq Semen sample miR-365-2 Oocyte fertilization and
cleavage

Selvaraju et al.
(2017)

RNA-Seq Small RNA
sequencing

bta-miR-103, bta-miR- 30b-5p, bta-miR-17-5p, bta-miR-106b, bta-
miR-142-3p, bta-miR-34b, bta-miR-18a, bta-miR-34c, bta-miR-
455-5p, bta-miR-10b, bta-miR-99b, bta-miR-1246, bta-miR-99a-
5p, bta-miR-1388-5p

Motility Capra et al. (2017)
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considered necessary for protein tyrosine phosphorylation and sperm
capacitation. These miRNA targets also play a significant role in cell
proliferation, differentiation, sperm motility, hyper-activation, and
acrosome reaction, primarily via the ERK (Ras/Raf/MEK/ERK)
signaling pathway (Li et al., 2018). The cAMP-PKA signaling
activates the Ca2+ channel and is considered a crucial step for
sperm capacitation. The miR-134 was up-regulated in capacitated
spermatozoa and targets COL11A1 and PDE4A genes in PI3K-AKT
and cAMP-PKA signaling pathways. Some other miRNA targets
such as AKAP3 for miR-1285, VDAC1 and HSPA2 for miR-127,
CATSPER4 for miR-151-3p regulate spermmotility, ATPase activity,
sperm capacitation (Alvarez-rodriguez, 2017). CABYR and ACRBP
regulate tyrosine phosphorylation during capacitation processes
(Dong et al., 2015).

The abundance of miRNAs has also been documented in
epididymal spermatozoa and seminal plasma of boar semen
(Chen C. et al., 2017). A total of 221, 259, and 136 miRNAs
were DE between ejaculated spermatozoa and epididymal
spermatozoa; seminal plasma and epididymal spermatozoa;
and seminal plasma and ejaculated spermatozoa, respectively.
Further, three miRNAs viz. let-7a, miR-26a, and miR-10b were
among the top ten most abundant miRNAs in ejaculated
spermatozoa, epididymal spermatozoa, and seminal plasma.
The most abundant spermatozoal miRNAs targeted mRNA
transcripts of binding proteins, including metal ion binding,
ATP binding, and nucleotide-binding. However, caution is to
be exercised in analyzing spermatozoal miRNAs in boar
spermatozoa collected at different seasons. Studies have shown
that spermatozoal miRNAome may show seasonal variations in
boars (Varona et al., 2019). For example, miR-34c, miR-221-3p,
miR-362, miR-378, miR-106a, and miR-34c were down-
regulated, whereas miR-1306-5p and miR-1249 were

upregulated in boar spermatozoa collected during the winter
seasons. These miRNA targets primarily regulate fatty acid
metabolism and oxidative stress (Wu et al., 2017), suggesting
their role during the winter season. On the other hand, miR-106b,
miR-378, miR-221 were previously reported to regulate
autophagy machinery in different cell lines (Zhai et al., 2013;
Tan et al., 2018).

Spermatozoal miRNAs in Stallion
A few reports have also documented the spermatozoal miRNAs
in stallion spermatozoa. Direct sequencing of spermatozoal
miRNAs in stallion sperm revealed 82 sperm-specific miRNAs
(Das et al., 2013), out of which 68 miRNAs were previously
reported in human spermatozoa (He et al., 2009). Several
spermatozoal miRNAs of stallion were the same as identified in
the sperm of men (Krawetz et al., 2011), boars (Curry et al., 2009),
and mice (Liu et al., 2012). These spermatozoal miRNAs are
noteworthy because they were absent in oocytes but were present
in zygotes and were involved in regulating first cleavage division in
mice (Krawetz et al., 2011; Liu et al., 2012). Three highly abundant
miRNAs, viz. miR34B, miR34C, and miR449A, regulate early
embryonic development either by direct interaction with mRNAs
or via epigenetic mechanisms in humans (Liu et al., 2012). A total of
66 new miRNAs were reported in epididymal (cauda epididymis)
spermatozoa, whose predicted pathways suggested their role in sperm
motility, sperm viability, and early embryonic development (Das
et al., 2013).

Other Spermatozoal ncRNAs
Spermatozoal sncRNAs and piRNAs
Recent studies have documented the presence of thousands of
sncRNAs in spermatozoa of several animal species. These

TABLE 4 | Important non-coding microRNAs reported in pig spermatozoa by transcriptome analysis.

Species Study
type

Groups MicroRNAs Function References

Pigs qRT-PCR Ejaculated
spermatozoa

let-7a, -7d, and -7e Spermatogenesis Curry et al. (2011)
miR-22 Sperm structure

Epididymal and
ejaculated sperm

let-7a and miR-92a Calcium and camp signalling Chang et al. (2016)

ssc-let-7a, ssc-let-7d, ssc-let-7e and ssc-
miR-98 regulate

Sperm apoptosis

miR-19 and miR-26a AKT/PKB signalling pathway
miR-224, miR-19b,miR-504 and miR-676 Cell apoptosis and cell proliferation

RNA-Seq Fresh vs frozen
spermatozoa

miR-26a, and miR-455-5p PTEN, and PI3K/AKT signalling pathway Dai et al. (2019)

RNA-Seq Capacitated sperm miR-127, miR-1343, miR-151-3p Calcium signalling pathway and MAPK signalling
pathway

Li et al. (2018)

RNA-Seq Fresh vs frozen
semen

miR-17-5p, miR-26a-5p, miR-486-5p,
miR-122-5p, miR-184, and miR-20a-5p

Regulate PTEN, PI3K/AKT, and STAT signalling
influence motility, viability, and sperm apoptosis

Dai et al. (2019)

let-7a, -7d, -7e, miR-22, let-7d, and let-7e Sperm motility
miR-3155, miR-8197, miR-6727, miR-
11796, miR-14189, miR-6125, and miR-
13659

Bovine sperm fertilization

miRNAs, miR-26a, and miR-455-5p Sperm motility
miR-10a and miR-1 were Sperm motility

Microarray High fertile vs Low
fertile

miR-615 Capacitation Alvarez-Rodriguez et al.
(2020)miR-221 Wnt2, BDNF, CREB-related genes,PI3K-Akt and

the estrogen signalling pathway
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sncRNAs comprise rRNAs, tRNAs, tsRNAs, snoRNAs, piRNA, etc.
(Sellem et al., 2020) and are believed to play essential regulatory roles
in spermatogenesis and determining male fertility. The piRNAs are
26–32 nucleotide-long sncRNAs that exclusively represent the
germline population and are considered “guardian of germline” by
transposon surveillance to protect genome integrity (Krawetz et al.,
2011). At tissue-specific levels, piRNA modulates key signaling
pathways both at transcription and translational levels. These
sncRNAs are characterized to maintain transposon silencing and
genome stability during spermatogenesis (Luo et al., 2016). The
piRNAs represent the most abundant sncRNA population in
human sperm (Pantano et al., 2015) associated with sperm
concentration and fertilization rate. Some reports evaluated their
significance as semen quality parameters for cattle spermatozoa
(Capra et al., 2017).

Several growing pieces of evidences suggest that piRNAs may
regulate protein-coding genes in germ cells and engage in
determining sperm fertility and early embryonic development
(Suh and Blelloch, 2011). Although piRNAs are generally
produced from repeat-associated regions or transposons by
PIWIL2/PIWIL4-directed pathways, the PIWIL1-directed
pathway is the primary production pathway in mature bull
spermatozoa. In pig spermatozoa, piRNAs have been
annotated to sperm morphology, spermatogenesis, acrosomal
reaction, sperm hyperactivation, and male fertility (Ablondi
et al., 2021). Some potential coding transcripts falling within
the 5 kb region of centered piRNA are CATSPER2, CATSPERG,
OAZ3, ODF1, ODF2, PRM1, TEX14, TSSK2, TSSK3, and TSSK6.
The DE piRNAs in boar spermatozoa regulate spermatogenesis-
related cell signaling pathways such as cAMP, cGMP,MAPK, and
PI3K–AKT signaling pathways (Wang et al., 2021). Thus, taken
together, the involvement of piRNA in the maintenance of
genomic integrity during spermatogenesis and fertility seems
to be a potential molecular parameter for evaluating male
fertility in livestock animals.

Spermatozoal lncRNAs
Preliminary reports on lncRNAs considered these classes of
RNAs as noise in the RNA content of a species due to lack of
any protein-coding open coding frames (ORF) (Brownmiller
et al., 2020). Later on, collective evidences supported their
roles in epigenetic regulation, controlling transcription, and
post-transcriptional mechanism (Peris-Frau et al., 2019). The
role of lncRNA on spermatogenesis has been predicted by several
researchers (Wallrapp et al., 2001; Bianchi et al., 2006; Forsberg
et al., 2014; Falchi et al., 2018; Peris-Frau et al., 2019; Xu X. et al.,
2020), but functional studies exploring their mechanism of action
and relevance to spermatozoal fertility are lacking. Many targets
of spermatozoal lncRNAs have been predicted (Gao et al., 2019)
and were found to be enriched in apoptosis (e.g., PI3K-AKT, p53)
(Xiong et al., 2019) and capacitation-related pathways (e.g.,
Calcium, cAMP, and MAPK signaling) (Gao et al., 2017). In
stallion, comparative transcriptomics of dense and less-dense
spermatozoa revealed 1,492 bp lncRNA as the most prevalent
RNA (Ing et al., 2020). Further, the expression of 159 RNAs was
higher in dense spermatozoa than in less-dense spermatozoa.
Importantly, the dense spermatozoa resulted in a higher

pregnancy rate than those achieved by unfractionated stallion
spermatozoa (Morrell et al., 2011).

Spermatozoal circRNAs
Circular RNAs (circRNAs) are a class of ncRNAs having a
closed-loop structure formed by alternative back splicing of
pre-mRNA in which the 3′-end of an exon is spliced to the 5′-
end of an upstream exon (Gòdia et al., 2020). Depending on
their genomic locations, they can be of exonic, intronic, and
intergenic types (Zhou et al., 2019). The exonic circRNAs are
preferentially located in the cytoplasm, whereas intronic and
intergenic circRNAs are mainly found in the nucleus. Key
circRNAs can participate in testis development or
spermatogenesis (Xiong et al., 2019). CircRNAs Sry
(circSry) is the first reported testicular circRNA in mice
(Capel et al., 1993), whereas the first report on circRNA of
spermatozoa was reported in boars (Gòdia et al., 2020). Gene
Ontology of circRNA revealed their epigenetic functions such
as histone modification, histone H3-K36 methylation, and
chromatin organization during spermatogenesis, embryonic
development. Four genes viz. ATP6V0A2, PPA2, PAIP2, and
PAXIP1 have been directly implicated in spermatozoal
function and male fertility. Among these, the PPA2 is a
pyrophosphatase enzyme located at the mitochondrial
membrane and is involved in ATP production during sperm
capacitation and motility (Asghari et al., 2017). On the other
hand, PAXIP1 plays crucial functions in genomic stability and
chromatin condensation during spermiogenesis, and its
knockout resulted in testicular atrophy and male infertility
in mice (Schwab et al., 2013). The TESK2 is a protein kinase
that is primarily expressed in round spermatids and is
predicted to function during the early stages of
spermatogenesis (Røsok et al., 1999). The SPATA19 is vital
for mitochondrial function and ATP production for sperm
motility and fertilization (Luo et al., 2014). Genes related to
early embryonic development (e.g., ANGPT1, CDC73, DHX36,
IPMK, RICTOR, etc.) have also been found to be influenced by
circRNAs. Remarkably, four circRNAs host genes (DENND1B,
PTK2, SLC5A10, and CAMSAP1) showed a significant
correlation with the motility of spermatozoa.

The circRNAs reported in adult vs. piglet testis (Zhang et al.,
2021) were involved in regulating spermatogenic events (e.g.,
circRNA 10979 derived from POC1A gene) and germ cell
development (e.g., circRNA 18456 derived from the TDRD1
gene). Due to their stability and spatiotemporal specificity,
circRNAs such as circRNA 10187, circRNA 6,682, circRNA
10979, and circRNA 18456 could be used as biomarkers of
boar sexual maturity. The circRNA 1774 (derived from CDC42
gene) and circRNA 18184 (derived from PTEN gene) were
significantly downregulated whereas circRNA 40370 (derived
from the RICTOR gene) was significantly upregulated in the
testis of the sexually mature boars. The circRNAs were involved
in signaling pathways that regulate stem cell pluripotency (e.g.,
AKT3, AVCVR2A, FGFR1, ACVR1, FZD3, SMAD4), tight
junction (MYH15, PRKCA, AMOTL1, PPP2CB, CDC42,
PTEN), and adhesion connections (e.g., LEF1, NECTIN3,
SMAD2, AFDN), hedgehog signaling pathways (e.g., HHIP,
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GSK3B, PTCH1, SMO, RAB23), cAMP signaling pathways (e.g.,
PLD1, TIAM1, GNAI1, ADCY1), mTOR signaling pathways (e.g.,
BRAF, RICTOR, HIF1A), and phosphatidylinositol signaling
systems (e.g., CDS1, DGKH, PLCB1, DGKK). The expression
profile of circRNAs in neonatal and adult cattle testis revealed
some of the potential target genes of circRNAs mainly involved in
cell-to-cell junction, oocyte maturation, and TGFβ signaling
pathway (Gao et al., 2018). These transcripts included
PIWIL1, DPY19L2, SLC26A8, IFT81, SMC1B, IQCG, and
TTLL5. The host genes were associated with spermatogenesis
and included PIWIL1, SPATA6, TGFβ2, TGFBR2, ACVR2A, and
SMAD2.

RNA Population in Seminal Plasma and
Their Contribution to spRNA
Seminal plasma is the secretions of accessory glands containing
proteins and RNAs and has been overlooked for decades. Seminal
plasma components have no role in assisted reproductive
technologies (ART) and, therefore, are excluded from IVF and
intracytoplasmic injection (ICSI) of ejaculated sperm. The ARTs
have resulted in successful fertilization, pregnancy, and live birth
of offspring in humans (Marzano et al., 2020) and animals
(Morgan et al., 2020) without the use of seminal plasma.
However, recent studies have found that the spRNA
population may be contributed by seminal plasma via
exosome. Exosomes of seminal plasma are released by
epididymis and other accessory sex organs, which interact
with spermatozoa to unload RNA cargo to the sperm.
Therefore, analyzing the exosome of the epididymis
(epididymosomes) or seminal plasma may be used as a marker
of reproductive disease andmale infertility [reviewed in (Vickram
et al., 2021)]. Further, each ejaculation contain trillions of
exosomes that aids in fertilization in two ways, 1) exosome
exerts immunosuppressive effects on cells of mucosa layer and,
2) transfer of RNAs to the spermatozoa (Jodar, 2019). In humans,
exosomes contained miRNAs (21.7% of the total RNA), Y-RNA,
mRNAs, mature piwi-RNAs, and tRNAs, suggesting that
exosome delivers regulatory signals to the spermatozoa
(Vojtech et al., 2014).

In pigs, sequencing of seminal plasma-derived extracellular
vesicles showed diverse small RNAs, including mRNA (25% of
the total reads), tsRNA (0.01% of the total reads), miRNA, and
piRNA. There were 325 miRNAs, of which 37 novel miRNAs
were identified in boar (Xu Z. et al., 2020). The study identified
the adverse effects of miR-21-5p on boar sperm fertility. Likewise,
miRNA and piRNA have also been identified in beef bulls’
seminal plasma. Of 617 small RNA, nine miRNA were DE
between high and low fertility beef bulls (Stephanie, 2016).
The role of seminal plasma RNA in determining male fertility
seems to be undeniable. In another study, expression of PRM1 in
seminal plasma was positively correlated with mitochondrial
membrane potential, and lateral movement of sperm head was
associated with expression of BMP2, UBE2D3, TRADD, and
CASP3 (Shilpa et al., 2017). In this study, investigators have
found a positive association of high expression of nerve growth
factor (NGF) in the maintenance of post-thaw integrity of

membrane of bull’s spermatozoa. More studies need to be
conducted in other livestock animals as well to ascertain the
effectiveness of seminal plasma RNAs as markers of the
reproductive performance of male animals.

Epigenetic Control of spRNA Expression
The terminal stages of spermatogenesis are accompanied by
chromatin condensation and the replacement of histones by
protamines. These changes are primarily driven by transition
proteins and cleavage of rRNAs by nuclease activities and lead to
the progressive shutdown of transcriptional and translational
activities in mature spermatozoa (Jodar, 2019). Interestingly,
however, some studies have documented post-translational
modifications of histones in mature spermatozoa and included
acetylation (Johnson et al., 2011), ubiquitination (Wang T. et al.,
2019), methylation (Johnson et al., 2011), and phosphorylation
(Dada et al., 2012) that are known to be involved in regulating
chromatin remodeling. Thus, some canonical structures of
histone variants appear to have remained unchanged
throughout the final stages of spermatogenesis to maintain a
hierarchical layer of genomic organization in paternal chromatin.
Indeed, studies have shown that about 15% of the paternal
histone remains associated with the genome in mature
spermatozoa (Ward, 2009). Initially, these segments were
considered a mark of partial/incomplete transition of histone-
protamine exchange, but gradually these histone segments were
noted with a significant regulatory network by post-translational
modifications (Barrachina et al., 2018). Notably, the histone
retention in spermatozoa was not randomly positioned on
chromosomes, instead distinctly localized within the nucleus
(Johnson et al., 2011). It is, therefore, believed that specific
regions in sperm chromatin are differentially marked with
modified histones to have the potential for transcription
through epigenetic regulations (Krawetz et al., 2011).

A substantial proportion of coding spRNAs detected in
mature sperm are also considered as a spermatogenic leftover
from transcription events during the spermatogenesis process
(Jodar, 2019) and were under epigenetic control. During
spermatid elongation, protamines undergo phosphorylation by
serine/arginine protein-specific kinase 1 (SRPK1) and calcium/
calmodulin-dependent protein kinase 4 (CAMK4), followed by
rapid dephosphorylation to establish disulfide bonds between the
unmasked cysteine residues of dephosphorylated protamines
(Carrell et al., 2007). Histone acetylation was shown to be
essential for the initiation of chromatin remodeling in
spermatids (Stiavnicka et al., 2016). The hyperacetylated
testicular histones were gradually replaced upon relaxation of
the nucleosome complex. Testicular histone variants (H2B and
TH2B) incorporate into spermatids with the help of transition
proteins (TNP1, TNP2), which supersede with protamines
(PRM1, PRM2) (Carrell et al., 2007). Histone methylation also
has a significant role in the differentiation of spermatogonia,
especially for H3me (H3 methylation) and H4me (H4
methylation) variants. It was reported that reduced H4me and
hyperacetylation of H4 during spermatid elongation collectively
mediated the histone-protamine replacement (SHIRAKATA
et al., 2014). The significance of ubiquitination has also been
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implicated in spermatogenesis and sperm maturation to
eliminate dead and defective spermatozoa and epididymal cells
(Røsok et al., 1999). The stage-specific significance of epigenetic
alternations during spermatogenesis is summarised (Figure 2).

Relevance of spRNAs in Sperm Function in
Livestock Species
While recent literature on Microarray and high-throughput
RNAseq data have provided novel information on the
repertoire of RNA population in spermatozoa, their functional
validation is largely missing in the literature. Moreover, common
genes and pathways across different species are yet to be fully
deciphered. Nevertheless, the involvement of spRNAs in the
ontology of capacitation, motility, and fertilization are
apparent in various species. Among all spRNAs, protamines
were the most prominent sperm-specific transcript, which is
known to affect fertility in cattle (Chen et al., 2015), pigs
(Gòdia et al., 2018), horses (Kadivar et al., 2020), and human
(Jodar et al., 2013). Similarly, the phospholipase C (PLC)-
mediated pathway was the most common pathway affected by
spRNA in cattle (Selvaraju et al., 2017), pigs (Kasimanickam and
Kastelic, 2016), and horses (Varner et al., 1993). The PLC is an
essential regulator of intracellular Ca2+ oscillations that play a
critical role during oocyte activation. Several studies also
identified Calcium ion channels such as CatSper in the spRNA
population, which is essential in regulating capacitation and
sperm motility in livestock species as well as humans (Jan
et al., 2017; Li et al., 2018; Singh et al., 2019; Nicolas et al.,

2020). Besides these common sperm transcripts across various
livestock species, there were flagellar specific spRNAs and sperm
motility proteins such as BSP (de Souza et al., 2017; Pardede et al.,
2020), AKAP (Gilbert et al., 2007; Chatterjee et al., 2010;
Kasimanickam and Kastelic, 2016; Ing et al., 2020), ODF
(Chen et al., 2015; Li et al., 2018; Pardede et al., 2020; Özbek
et al., 2021), zinc finger nucleases (Card et al., 2013;
Kasimanickam and Kastelic, 2016; Corral-Vazquez et al., 2021)
and heat shock proteins. The heat shock proteins are a group of
tyrosine regulatory elements that participate in hyperactivation
and nitric oxide synthesis during fertilization (Feugang et al.,
2010; Mohamad et al., 2018; Nicolas et al., 2020; Lian et al., 2021;
Sun et al., 2021). The spRNAs such as calmegin (Guyonnet et al.,
2009; Card et al., 2013), clusterin (Singh et al., 2019; Lian et al.,
2021; Zhao et al., 2021), TSSK (Bissonnette et al., 2009; Li et al.,
2020; Ablondi et al., 2021), and CABYR (Selvaraju et al., 2017)
were also reported in cattle and pigs, are known to be essential for
male fertility.

A few transcripts related to sperm capacitation were also
reported in the spRNA population of cattle, pig, and horse
spermatozoa. The important spRNAs related to sperm
capacitation included CABYR (Bailey, 2010) and AKAP
(Maciel et al., 2018), which regulate calcium-binding and
tyrosine phosphorylation. On the other hand, CatSper,
VDAC1, and HSPA2 are involved in calcium signaling
whereas, COL11A1, PDE4A can participate in PI3K-Akt and
cAMP-PKA signaling pathways (Li et al., 2018), The HSP70
(Mohamad et al., 2018) and HSP90 (Jin and Yang, 2017),
involved in calcium signaling, were also reported in spRNA

FIGURE 2 | Chromatin dynamics and Epigenetic events during Spermatogenesis.
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population. Thus, it appears that calcium signaling and tyrosine
phosphorylation are important events of capacitation that
spRNAs may mediate. Functional studies such as gain or loss-
of function research are warranted to verify these findings further.

CONCLUSION

In conclusion, various types of protein-coding and non-coding
spRNAs have been documented in the literature with their
potential roles in regulating male reproduction and fertility.
These spRNAs may be exploited via transcriptome analysis of
spermatozoa to improve the conception rate of livestock by
crossbreeding, artificial insemination, or ARTs. Microarray
and RNA-seq have been extensively used as high throughput
transcriptome analysis tools and have established sperm
transcriptome as a subset yet distinct from testicular
transcriptome with some uniquely expressed transcripts in
spermatozoa. The spRNA profile, generated by microarray or
RNA-seq, may serve as a molecular signature to identify semen
with superior fertilizability, freezability, and fertility.
Alternatively, exosome analysis of seminal plasma, which

contributes to the spRNA population, may be used as a proxy
to spRNAs profiling. It is also emphasized that analysis of spRNA
population by high sensitive high throughput sequencing
technologies should involve stringent quality control measures
to avoid somatic cell contamination and batch-to-batch variation
in spRNA isolation protocols. Further, loss- and gain-of function
studies are required to validate the function of spRNAs in
spermatogenesis, fertilization, and early embryonic
development. Profiling of spRNA may also prove helpful in
understanding the mechanism of action of genotoxic agents,
drugs, capacitation agents, motility enhancers, etc. The next
generation sequencing (NGS) of spRNA may find its
application in semen evaluation for diagnosing idiopathic male
infertility and devising newer methods for treatment.
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Comprehensive Analysis of mRNA,
lncRNA, circRNA, and miRNA
Expression Profiles and Their ceRNA
Networks in the Longissimus Dorsi
Muscle of Cattle-Yak and Yak
Chun Huang1, Fei Ge1, Xiaoming Ma1, Rongfeng Dai1, Renqing Dingkao2, Zhuoma Zhaxi3,
Getu Burenchao3, Pengjia Bao1, Xiaoyun Wu1, Xian Guo1, Min Chu1, Ping Yan1* and
Chunnian Liang1*

1Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science,
Chinese Academy of Agricultural Sciences, Lanzhou, China, 2Livestock Institute of Gannan Tibetan Autonomous Prefecture,
Hezuo, China, 3Haixi Agricultural and Animal Husbandry Technology Extension Service Center, Qinghai, China

Cattle-yak, as the hybrid offspring of cattle (Bos taurus) and yak (Bos grunniens),
demonstrates obvious heterosis in production performance. Male hybrid sterility has
been focused on for a long time; however, the mRNAs and non-coding RNAs related
to muscle development as well as their regulatory networks remain unclear. The
phenotypic data showed that the production performance (i.e., body weight, withers
height, body length, and chest girth) of cattle-yak was significantly better than that of the
yak, and the economic benefits of the cattle-yak were higher under the same feeding
conditions. Then, we detected the expression profiles of the longissimus dorsi muscle of
cattle-yak and yak to systematically reveal the molecular basis using the high-throughput
sequencing technology. Here, 7,126 mRNAs, 791 lncRNAs, and 1,057 circRNAs were
identified to be differentially expressed between cattle-yaks and yaks in the longissimus
dorsi muscle. These mRNAs, lncRNA targeted genes, and circRNA host genes were
significantly enriched in myoblast differentiation and some signaling pathways related to
muscle development (such as HIF-1 signaling pathway and PI3K-Akt signaling pathway).
We constructed a competing endogenous RNA (ceRNA) network and found that some
non-coding RNAs differentially expressed may be involved in the regulation of muscle
traits. Taken together, this study may be used as a reference tool to provide the molecular
basis for studying muscle development.

Keywords: cattle-yak, Bos grunniens, transcriptome, ceRNA, lncRNA, circRNA, skeletal muscle

INTRODUCTION

Yak, a special germplasm resource mainly inhabiting the Qinghai-Tibet Plateau, has been
optimized for living and a source of living for the local herdsmen. The cattle-yak constitutes
the hybrid of cattle (Bos taurus) and yak (Bos grunniens) exhibiting outstanding hybrid vigor in
growth rate, meat performance, plateau adaptability, etc. The meat of cattle-yak is highly enriched
in protein but has lower fat than yak, meeting the requirements of a popular healthy and
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high-quality diet (Song et al., 2019; Wang et al., 2021b).
Inhabiting the high-altitude environment, cattle-yak provides
a natural green food favored by the consumers. The
crossbreeding technology has been widely applied in animal
breeding, as well as these hybrid individuals have been farmed
for a long time forming gradually new indigenous breeds.
Therefore, it is highly significant to understand the
mechanisms regulating muscle growth and development of
the generated crossbreed. The longissimus dorsi (LD) muscle
is one of the important representatives of muscle tissues in
animals, which is closely related to the individual skeletal
muscle growth and development, as well as with the
intramuscular fat content, and tenderness. A series of
reported myogenic regulatory molecules regulate the
myoblast’s proliferation and myophagism, further influencing
the growth process, including the identified genes MYOG
(Rudnicki and Jaenisch, 1995) and MYF5 (Xu et al., 2019),
which are involved in regulating the myoblast differentiation,
muscle growth, and meat quality traits in livestock. Previous
studies have indicated thatMYOD as a key regulator of myotube
formation promotes the myotube’s differentiation (Tapscott,
2005; Wang et al., 2017). The CAPN family are important
candidate genes in the growth and degradation of the muscle
fibers, and are specifically expressed in the skeletal muscle
(Gandolfi et al., 2011).

In fact, the studies indicated that the biological processes were
not only regulated by protein-coding RNA—mRNA, as the
sequencing technology developed. Non-coding RNAs
(ncRNAs), including long non-coding RNA (lncRNA), circular
RNA (circRNA), and microRNA (miRNA), are profoundly
involved in diverse biological processes and are regulating
them by various mechanisms. The lncRNAs universally
acknowledged participating in chromatin transcriptional/
epigenetic regulation by interacting with the chromatin
regulators as “molecular scaffold” or decoys to activate or
repress transcription (Caretti et al., 2006; Korostowski et al.,
2012). Many lncRNAs have been proven to play a vital role in
skeletal muscle development; for example, the lncRNA MAR1
positively correlates with muscle differentiation and growth
in vitro and in vivo (Zhang et al., 2018). The lnc-smad7/miR-
125b/Smad7 (SMAD family member 7) and IGF2 axes are
instrumental in myoblast differentiation and regeneration of
muscle in two different pig breeds (Song et al., 2018). In
addition, continuously growing discoveries have reported the
role of novel circRNA in skeletal muscle. CircZfp609 derived
from Zinc Finger Protein 609, can inhibit the myogenic
differentiation via the sponge miR-194-5p in the mouse
myoblast cell line C2C12 (Wang et al., 2019b). The circFGFR4
was generated from the fibroblast growth factor receptor 4
(FGFR4) and could simulate the bovine primary myoblast’s
differentiation through the circFGFR4-miR-107-WNT3A axis
in cattle (Li et al., 2018). MicroRNA response elements are
considered to be “talking mediators” of mRNAs, lncRNAs,
and transcribed pseudogenes (Ji et al., 2019), and these
response elements have important roles in various biological
processes by forming a large number of complex regulatory
networks. Numerous reports on the conjoint effect of miRNA

and mRNA conjointly on developing skeletal muscle have been
proved. FGFR1, which could prevent muscle fibrogenesis, is a
functional target of miR-214-3p (Arrighi et al., 2021). The miR-
183 and miR-96 were found to negatively regulate fat usage in the
skeletal muscle via targeting FoxO1 and PDK4 (Wang et al.,
2021a). Zhang et al. (2021) experimentally confirmed that miR-
22-3p regulated the WFIKKN2 gene in adipocyte differentiation
in muscle fat metabolism of Yanbian cattle. A targeted
relationship between the oar-miR-655-3p and oar-miR-381-5p
with ACSM3 and ABAT has been found to have crucial roles in
sheep muscle organogenesis, myoblast migration (Sun et al.,
2019).

In recent years, with the deepening of the research on the
function of miRNAs, a new theory named competing endogenous
RNA (ceRNA) has emerged. At the same time, some studies
reported that mRNAs, lncRNAs, and circRNAs might regulate
the gene function via miRNA and act as ceRNAs in various
biological processes (Salmena et al., 2011; Yu et al., 2019). In the
whole transcriptome, a comprehensive post-transcriptional
regulatory network formed by ceRNA activity has greatly
widened the cognition of functional genetic information in the
genome. There are effective interactions among the lncRNA,
circRNA, and mRNA with miRNA, and they can take
significant effect in various processes of regulation in animals.
LncRNAs act as molecular sponges for the miRNAs that
specifically inhibit the target mRNAs so that they can give
play to the protection of mRNAs (Li et al., 2019). For
instance, a previous study reported that MAML1 and MEF2C,
as transcription factors, activate the late-differentiation muscle
genes, and linc-MD1 can regulate their expression as a ceRNA by
sponging miR-133 and miR-135 (Cesana et al., 2011). LncRNA
H19 can regulate muscle differentiation as a molecular sponge for
the LET7 family in the developing embryo and adult muscles
(Kallen et al., 2013).

Until now, most studies have been based on focusing on the
cattle-yak for exploring the male sterility mechanism and barely
referred to the superiority in the growth mechanism. Here, we
have measured the growth traits of cattle-yaks and domestic
Ashidan yaks under the same feeding and management, and
systematically explored the differences of the longissimus dorsi
muscles for the first time using the whole-transcriptome
sequencing. Furthermore, the ceRNA network was constructed
to identify the key factors involved in muscle growth and
development. This study will thus help in improving yak
breeding and provide new ideas for studying the genetic
mechanism of muscle growth.

MATERIALS AND METHODS

Ethics Approval
All the animal experiments were approved by Lanzhou Institute
of Husbandry and Pharmaceutical Sciences of the Chinese
Academy of Agricultural Sciences (CAAS) with the grant
number: No. 2019-002. All the slaughter as well as sampling
procedures strictly complied with the Guidelines on the Ethical
Treatment of Experimental Animals of China.
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Phenotypic Data Collection and Samples
Preparation
Thirty cattle-yaks (Aberdeen Angus _ × Yak \) and 30 yaks were
tracked to measure the production performance indices (withers
height, body weight, chest girth, and body length) at three stages of
growth (i.e., birth, 3months, and 6months). Cattle-yaks (n � 3,
6 months old) and yaks (n� 3, 6 months old) were selected randomly
to be slaughtered for longissimus dorsi muscle. These samples were
collected for transcriptome sequencing and Real-time quantitative
polymerase chain reaction analysis (RT-qPCR). All the samples were
stored in liquid nitrogen (−80°C) for the subsequent tests.

RNA Isolation and Illumina Sequencing
The total RNAwas isolated with TRIzol (Invitrogen, Carlsbad, CA,
United States) following the manufacturer’s instructions, and the
concentration and quality of RNA were assessed by 1.5% agarose
gel electrophoresis and Thermo Scientific NanoDrop 2000c
(ThermoFisher Scientific Inc., Waltham, MA, United States).

Equal quantities of RNA were pooled from each sample. Then,
the TruSeq Stranded Total RNA with Ribo-Zero Gold Kit
(Illumina, San Diego, CA, United States) was used for
digesting the ribosomal RNA (rRNA) in the DNA-free RNA.
According to the manufacturer’s instructions, we performed the
construction of library preparation with NEB Next Ultra
Directional RNA LibraryPrep Kit for Illumina (NEB, Ipswich,
MA, United States). The size and purity of libraries were validated
by Agilent Technologies 2100 Bioanalyzer (Agilent, Santa Clara,
CA). Finally, the samples were sequenced using Illumina HiSeq
2500 Technology (LC Sciences, Houston, TX, United States) with
a 150-bp paired-end run.

Data Preprocessing, Read Mapping, and
Transcript Assembly
Raw reads generated during high-throughput sequencing were in
fastq format. The raw sequencing dataset supporting the results of
cattle-yaks in this study was deposited at NCBI’s Gene Expression
Omnibus database (http://www.ncbi.nlm.nih.gov/geo/, accession
number: PRJNA753699). The raw sequencing dataset of yaks has
been uploaded to the NCBI Database in the previous study (Ma
et al., 2020). To get high-quality clean reads that could be used for
later analysis, the Trimmomatic software (Bolger et al., 2014) was
applied to remove adaptors, low-quality bases, and N-bases.

The remaining high-quality cleaned reads of each sample were
aligned to the yak reference genome (BosGru_v2.0) using the HiSAT2
software (Kim et al., 2015). All the samples were assessed by genomic
and gene alignment. After obtaining the comparison result bam file,
the reads on the comparison gene were assembled using the StringTie
software (Pertea et al., 2015), and every single transcript assembled by
each sample was fused and spliced into a merged transcript.

LncRNAs Identification and LncRNAs
Target Gene Prediction
We performed the following steps to obtain the potential lncRNA
candidates for subsequent analysis: (1) The Cuffcompare software

(Ghosh andChan, 2016) was used to compare themerged transcripts
with the reference transcripts one by one, and the transcripts marked
with “i,” “u,” “x,” and “o” were retained after clarifying the position
class of the remaining transcripts. (2) Transcripts with length >200 nt
and exon number ≥2 were obtained. (3) The above transcripts were
analyzed about the coding ability by CPC2 (Kang et al., 2017), CNCI
(Sun et al., 2013), PLEK (Li et al., 2014), and Pfam (Sonnhammer
et al., 1998) software to remove the transcripts with coding potential
and obtain potential lncRNA candidates.

Cis-acting and trans-acting modes are two main ways to
predict the targets of lncRNAs (Mercer et al., 2009). We
calculated the locations of the paired lncRNAs and mRNAs
for the cis-acting prediction. The lncRNA with no nearest
protein-coding gene within 100 kb upstream or downstream
was excluded in subsequent analysis. For trans-acting
regulatory mode, the LncTar was used to calculate the free
energy between them to predict the regulatory targets, since
the expression of lncRNA is determined to be independent of
the location of mRNA.

CircRNA Identification
We used the CIRI software and predicted the circRNA based on
the BWA software (Li and Durbin, 2009; Gao et al., 2015). Since it
is an authoritative software, it has the characteristics of high
sensitivity and multiple screening for reducing false positives.
Firstly, we aligned the clean reads to the reference genome to
obtain the SAM file using the BWA software. Then, the CIRI
software was used to scan for PCC signals (paired chiastic
clipping signals), and circRNA sequences were predicted based
on junction reads and GT-AG cleavage signals. The expressional
levels of circRNAs were quantified by the RPM algorithm.

Differential Expression Genes and Pathway
Analysis
The expression levels of the mRNAs and lncRNAs were
calculated through the fragments per kilobase of transcript per
million reads mapped (FPKM) value (Liu et al., 2018) using the
Cuffdiff program. The DESeq software (Anders and Huber, 2010)
was used to standardize the counts of each sample and calculate
the fold change (FC). A negative binomial distribution test (NB)
was used to test the difference significance of counts. The
differentially expressed mRNAs (DEMs), lncRNAs (DELs),
and circRNAs (DECs) were screened according to the results
of |log 2 FC| >1 and p < 0.05 eventually.

To further understand gene function, Gene Ontology (GO,
http://www.geneontology.org) terms and the Kyoto Encyclopedia
of Genes and Genomes (KEGG, https://www.genome.jp/kegg/)
were used for enrichment analysis of functional pathways. Each
GO and KEGG enrichment term was confirmed by
Hypergeometric Distribution Test. Then, the p-value was
corrected by Benjamini and Hochberg multiple tests. The
enrichment with p-value lower than 0.05 was considered significant.

Construction of ceRNA Network
To acquire a better understanding of the interactions of the
mRNAs, lncRNAs, circRNAs, and miRNAs, a
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lncRNA–circRNA–miRNA–mRNA regulatory network was
constructed based on the ceRNA hypothesis (Salmena et al.,
2011). MiRanda (John et al., 2004) was used to predict the
pairs of miRNA–lncRNA, miRNA–mRNA, and
miRNA–circRNA. The Spearman correlation coefficient (SCC)
was used to evaluate the pairwise correlations of
miRNA–lncRNA, miRNA–mRNA, and miRNA–circRNA; the
value greater than 0.8 was considered relevant for constructing
the network and p < 0.05 was regarded as being statistically
significant. The Cytoscape software (version 3.5.1) was used to
display the results visually.

Quantitative Real-Time PCR for Validating
Gene Expression
The RNA for verifying the gene expression was the same as RNA
used in the above Illumina sequencing. The RNA was reverse
transcribed into cDNA by HiScript® II 1st Strand cDNA
Synthesis Kit (Vazyme, Nanjing, Jiangsu, China).
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), as
endogenous control, was used to normalize target gene
expression. The total 20-μl reaction system of qPCR included
10 ng of cDNA, 10 μl of SYBR Premix Ex Taq II (TaKaRa, Dalian,
China), each 1 μl of forward primer and reverse primer, and 7 μl
of ddH2O. The RT-qPCR conditions included the preincubation
at 95°C for the 30 s, 45 cycles of 10 s at 95°C and 60 s at 59°C, then
ended at 72°C for 30 s. Each experiment was repeated three times,
and the results of relative RNA expression were calculated
according to the cycle threshold (Ct) value 2–ΔΔCt (Livak and
Schmittgen, 2001).

RESULTS

Comparison of Production Performance
Analysis of the measurement results showed that the cattle-yaks
had a significant improvement in production performance
compared to the yaks in each age stage (p < 0.001). As can be
seen from Table 1, cattle-yaks were stronger and taller at birth
than yaks. In terms of body weight, at birth, the cattle-yak
increased by about 22.60% compared to the yaks, and the
body length, height, and chest girth of cattle-yaks were also
increased by 17.62%, 11.06%, and 8.92%, respectively. From
birth to 6 months old, the cattle-yak showed obvious heterosis
with varying degrees of improvement in various indicators.

The Prediction and Characteristic of
LncRNAs and CircRNAs
After filtering out the low-quality and supernumerary reads, we
obtained a total of 310,089,232 and 308,742,564 clean reads with
greater than 93.77% of Q30 from the LD muscles of cattle-yaks
and yaks, respectively. As shown in Supplementary Table S1, the
successful alignment of reads to the reference genome was
approximately over 94.55%.

After rigorous screening and filtration, we detected a large
number of lncRNAs and cirRNAs (Figures 1A,E). Among them,
1,817 lncRNAs with an average length of 1,449 bp were
discovered as novel lncRNAs (Figure 1B). The largest
proportion of lncRNAs was over 2,000 bp (19.37%) and the
proportion of lncRNA containing two exons was about 70.61%
(Figure 1C). The total lncRNAs of 135 exonic antisense, 219
intronic antisense, 105 intergenic downstream antisense, 202
intergenic upstream, 204 exonic sense, 380 intronic sense, 141
intergenic downstream sense and 140 intergenic up-stream sense
were identified in our results (Figure 1D). The average length of
detected circRNAs was 3,250 bp and the length of the most
circRNAs was over 2,000 bp (16.92%) (Figure 1F). As evident
in Figure 1E, the circRNAs of sense-overlapping accounts for
89% of the total. The number of circRNAs located in the exonic
and intronic was 332 and 137, respectively, while the antisense-
overlapping circRNAs occupied about 1%.

Differentially Expressed mRNAs, lncRNAs,
and circRNAs Between CY and Y Groups
The study identified 7,126 mRNAs, 791 lncRNAs, and 1,057
circRNAs to have significant differential expressions
(Supplementary Tables S2–S4). There were 6902 DE mRNAs,
742 DE lncRNAs, and 273 DE circRNAs, respectively, which were
detected in the cattle-yaks and yaks (Figures 2A–C). However,
119 mRNAs, 41 lncRNAs, and 232 circRNAs were detected to
express only in the CY group. Other 105 mRNAs, 8 lncRNAs, and
552 circRNAs were identified only in the Y group. To find the
overall distribution of differential expression, the volcano plot
was drawn based on the results of the differential expression.
Compared with the yaks of the control group, we found 3,563
upregulated mRNAs, 455 upregulated lncRNAs, and 353
upregulated circRNAs in the cattle-yaks. Meanwhile, there
were 3,563 downregulated mRNAs, 336 downregulated
lncRNAs, and 704 downregulated circRNAs, respectively, in
the cattle-yaks (Figures 2D–F).

TABLE 1 | The production performance between cattle-yaks and yaks.

Items Birth (Mean ± SE) 3 months (Mean ± SE) 6 months (Mean ± SE)

Yaks Cattle-yaks p-Value Yaks Cattle-yaks p-Value Yaks Cattle-yaks p-Value

Body weight (kg) 16.37 ± 0.23 20.70 ± 0.41 <0.001 37.56 ± 0.51 48.21 ± 0.62 <0.001 81.40 ± 1.31 90.76 ± 0.81 <0.001
Body height (cm) 57.23 ± 0.87 63.56 ± 0.56 <0.001 73.73 ± 0.98 84.80 ± 0.95 <0.001 85.43 ± 1.12 91.73 ± 0.86 <0.001
Body length (cm) 50.50 ± 1.10 59.40 ± 0.55 <0.001 75.63 ± 0.72 87.27 ± 0.78 <0.001 89.90 ± 0.77 98.07 ± 1.04 <0.001
Chest girth (cm) 58.63 ± 0.79 63.86 ± 0.54 <0.001 84.46 ± 0.60 97.23 ± 0.68 <0.001 112.83 ± 1.23 120.77 ± 1.20 <0.001

Note: SE: standard error.
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FIGURE 1 | The description of identified lncRNAs and circRNAs. (A) Screening of the candidate lncRNAs in longissimus dorsimuscle. (B) The length distribution of
the novel lncRNAs. (C) Exon number distribution of novel lncRNAs. (D) The classification of novel lncRNAs. (E) The structure type pie chart of circRNAs. (F) The length
distribution of circRNAs.
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FIGURE 2 |Comparative analysis of the differentially expressed mRNAs and ncRNAs between cattle-yaks and yaks. The specific and shared mRNAs (A), lncRNAs
(B), and circRNAs (C) between the two groups. The analysis of differentially expressed mRNAs (D), lncRNAs (E), and circRNAs (F) between two groups. Note: The red
and green points represented upregulated and downregulated mRNAs, lncRNAs, and circRNAs, respectively. The gray points represented no significant differences.
The gray vertical lines showed |log2FC| � 1, and the gray horizontal lines showed p � 0.05.
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Functional Analysis
GO analysis described the molecular functions performed by the
DE ncRNAs, the cellular environment in which they were located,
and the biological processes involved. We respectively selected
the top 10 biological processes with the most significant
enrichment of mRNAs, lncRNAs, and circRNAs (Figure 3A).
Obviously, the DEMs were mainly enriched in regulation of
osteoblast proliferation, negative regulation of fat cell
proliferation, and regulation of cellular response to hypoxia.
The targeted genes of DELs were most enriched in terms
involving regulation of fat cell differentiation, ephrin receptor
signaling pathway, and muscle contraction. Protein
autophosphorylation, fatty acid catabolic process, and
regulation of Rho protein signal transduction were the most
significant enrichment terms for the sourced genes for DECs.
As evident from Figures 3B–D, we conducted the KEGG analysis
using KEGG public pathway database and draw the augmented
scatter diagram of the selected target genes. Between cattle-yaks
and yaks, the DEMs were enriched in the PI3K−Akt signaling

pathway, MAPK signaling pathway, Fatty acid metabolism,
Citrate cycle, etc. (Figure 3B). The DEL adjacent genes were
significantly related to the protein digestion and absorption,
GnRH signaling pathway, alanine, aspartate and glutamate
metabolism, and so on (Figure 3C). The host genes of DECs
were significantly associated with some pathways, such as those
related to vitamin digestion, ABC transporters, cGMP−PKG
signaling pathway, etc. (Figure 3D). Interestingly, some DEMs
and the host genes of DECs were found to be enriched in the same
pathways (i.e., hippo signaling pathway, cell cycle-caulobacter,
and calcium signaling pathway), and some DEM and DEL
adjacent genes were enriched in the same oxytocin signaling
pathways.

In order to further explore the DEMs related to muscle growth
and fatness, we screened out the related genes. These 117 DEMs
related to muscle development and fat deposition are shown in
Supplementary Table S5. The functional predictions of GO in
DEMs (Figure 4A) mainly focused on some terms of skeletal
muscle development, muscle cell differentiation, and regulation

FIGURE 3 | (A)GO analysis with the top 10 enrichment biological processes for DEMs, DELs targets, and DECs host genes between cattle-yaks and yaks. KEGG
analysis with the top 20 KEGG enrichment pathways for DEMs (B), DELs target genes (C), and DECs host genes (D) between the cattle-yaks and yaks.
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of canonicalWnt signaling pathway, including positive regulation
of myoblast differentiation and skeletal muscle fiber
development. According to the KEGG pathway analysis

(Figure 4B), some pathways were enriched significantly by
these DEMs, such as Hippo signaling pathway, regulating
many biological processes involved in proliferation, survival

FIGURE 4 | Functional analysis of 117 differentially expressed genes associated with muscle development and fatness between the cattle-yak and yak. GO (A) and
KEGG (B) analysis.
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and differentiation of cell, organ size, and tissue homeostasis. In
addition, some DEMs enriched significantly in Notch signaling
pathway that can regulate the differentiation and development of
cells, tissues, and organs through the interaction between the
adjacent cells.

Construction of the ceRNA Coregulatory
Network
Previous studies have shown that mRNAs, lncRNAs, and
circRNAs may regulate gene function through miRNAs as
ceRNAs in different processes (Salmena et al., 2011; Yu et al.,
2019), indicating that ceRNAs and their miRNAs may work in
concert with each other. Combined with the DEMs, DELs, and
DECs related to muscle development and co-differentially
expressed, we constructed the integrated ceRNA network. This
ceRNA network contained 11 DEMs, 6 DELs, 8 DECs, and 33
relationships (Figure 5). Tcons-00034903 and bta-miR-2039
have a shared target gene WNT4. Similarly, we also found the
same results in bta-miR-2316-Tcons-00029868-MYH4 and bta-
miR-1777a-Tcons-00027748-SIX5. This ceRNA network might
provide valuable information for the development of the
longissimus dorsi in cattle-yaks and yaks.

Real-Time Quantitative PCR Validation of
Sequencing Data
Four mRNAs (MYH14, LOC106700760, PIK3R2, and FGFR4), 2
lncRNAs (Tcons-00034903 and Tcons-00004303), and 2
circRNAs (circ00012096 and circ00012564) were selected
randomly for verifying the sequencing results through real-
time quantitative PCR (Figure 6). The primers were designed
using the Primer-BLAST web tool from the National Center for
Biotechnology Information (NCBI) (Supplementary Table S6).

Their expression patterns were highly consistent with the
sequencing results, indicating that the gene expression profiles
obtained in this study had high repeatability and reliability.

DISCUSSION

Muscle growth is a complex economic trait owing to various
physiological and biochemical indices. It concomitantly involves
many gene expressions and regulations. To date, people have a
great demand for high-quality meat and nutrition with improving
living standards; it is an urgent problem for improving the

FIGURE 5 | The ceRNA co-regulation network. The blue circle, yellow box, red triangle and green V-type represented the differentially expressedmRNAs, lncRNAs,
circRNAs, and miRNA, respectively. The solid line indicated the co-regulation between miRNAs and other transcripts. The dotted line indicated the co-regulation
between the lncRNAs and mRNAs.

FIGURE 6 | The results of the real-time quantitative PCR validation of the
expression level. ** indicates p < 0.01, * indicates p < 0.05. The data
represented the mean ± SEM from three biological replicates, and each
measurement was repeated 3 times.
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performance of yaks. Cattle-yak, as hybrid offspring of yak (\)
and cattle (_), has been found to have significant improvement in
the production performance (Guo et al., 2019; Dingkao et al.,
2020; Luo et al., 2020; Jiang et al., 2021). However, the economic
benefit of cattle-yaks has been ignored for a long time. The
variations in the genes and proteins in the muscle structure
are presumed generally to be affected by production
performance (Joo et al., 1999); this study is the first time to
systematically explore the differences of growth and development
between cattle-yaks and yaks based on transcriptomics. To study
the regulatory mechanism of growth and muscle development of
cattle-yaks and yaks in a better way, we performed transcriptome
analysis of the longissimus dorsi muscle. It was also the first time
to compare the differences in the expression profiles of mRNA,
lncRNA, and circRNA between the cattle-yaks and yaks, so as to
determine the key factors involved in muscle growth and
development. We measured the phenotypic data strictly of
30 cattle-yaks and yaks at three age groups of growth using
the standard method of measurement, and the results obtained
were similar to the previous studies; in each period of cattle-yaks
with the same feeding conditions, production performance
indexes of cattle-yaks were significantly higher than those of
yaks (p < 0.001). We speculated that these differences may be due
to genetic factors rather than the effects of feeding management
on these traits. Therefore, the study on the mechanism regulating
muscle growth and development in hybrid yaks and yak breeds
can better help in enhancing the production performance of the
yaks, providing help for exploring the regulatory mechanism of
muscle development in mammals.

Typically, the growth and development of muscles are
regulated by the core genes and signal transduction pathways
(Myers et al., 2006; Ayuso et al., 2015). Compared to the yak
group, a total of 7,126 DEMs, 791 DELs, and 1,057 DECs were
identified in the cattle-yak group. Subsequently, the GO and
KEGG pathway enrichment analysis revealed some important
DEMs related to muscle growth and fat deposition, which was
consistent with the results obtained after measuring the
production performance, indicating that the production
performance of the cattle-yak was better than that of the yak
(Tumennasan et al., 1997). In addition, some DEMs, DELs, and
DECs related to the immune system have reflected the adaptation
of the yak to the high-altitude environment, and the adaptation of
the yaks to the cold and high-altitude environment was well-
preserved by the cattle-yaks. In succession, we focused on some
DEMs related to the production performance of cattle-yaks and
yaks. A total of 117 DEMs were identified that were related to the
differentiation and proliferation of myoblasts, AMPK signaling
pathway, MAPK signaling pathway, PI3K–Akt signaling
pathway, etc. (Neri et al., 2002; Anderson, 2006; Gehart et al.,
2010; Thomson, 2018). Among these DEMs, some have been
found to have known functions in muscle growth and
development. For example, myostatin (MSTN), as a member
of the TGF-β superfamily, has a proven role as a growth
differentiation factor (Kollias and McDermott, 2008; Li et al.,
2008) playing an important role in mice (McPherron et al., 1997),
cattle (McPherron and Lee, 1997), and humans (Schuelke et al.,
2004) by negatively regulating the growth and differentiation of

myoblasts, as well as other mammals via controlling both the
activation and proliferation of the satellite cells (skeletal muscle
stem cells) (McCroskery et al., 2003). The expression level of the
MSTN gene in our study was found to be downregulated in the
cattle-yaks; hence, the expression of this gene was considered to
be consistent with its function. This also provided new evidence
for the function of the MSTN gene in longissimus dorsi of cattle-
yaks and the high conservation across species. Myogenin
(MYOG), including myogenic factor 6 (MYF6), is a regulatory
factor in the family of Myogenic regulatory factors (MRFs), which
is mainly involved in the fusion and differentiation of myoblasts
(CHARGÉ and RUDNICKI, 2004; Buckingham and Vincent,
2009). Interestingly, the paired box transcription factor 7 (PAX7)
gene and the MYOG gene were found to be downregulated, but
the MYF6 expression was upregulated in the cattle-yaks. Previous
studies have shown that overexpression of gene PAX7 can induce
MYOG expression to inhibit myogenesis and prevent the
differentiation of the muscle cell (Chen et al., 2010; Dey et al.,
2011). Therefore, this also justified the downregulation of both
PAX7 and MYOG gene expression in cattle-yaks with better
production performance than yaks. Additionally, some genes,
such as actin alpha 1 skeletal muscle (ACTA1) and actin alpha
cardiac muscle 1 (ACTC1), also play a key role in the
differentiation and fusion of muscle cells, and have a positive
impact on the myogenesis of the skeletal muscles (Ciecierska
et al., 2020). Although these studies have helped in predicting the
functions and accuracy of the key genes, the other functional
DEMs related to muscle growth and development still need to be
further studied on their expression regulation in longissimus dorsi
muscle.

The main non-coding RNAs, the lncRNAs and circRNAs, are
receiving more and more attention, as they can participate in the
regulation of various biological processes in different ways (Liu
et al., 2017; Marchese et al., 2017; Wang et al., 2019a). The
identified DELs and DECs in this study were involved in
regulating the promotion of muscle growth and development.
LncRNA can exert its important action through various biological
and pathological processes by demonstrating trans, cis, and
antisense effects. Our results showed abundant differentially
expressed lncRNAs in the skeletal muscle of cattle-yak and
yak, suggesting that the lncRNAs may not be the exclusive by-
products of mRNA in the cattle-yak but have specific roles. The
long non-coding RNA acts differently in the nucleus and
cytoplasm due to their different locations, where they are
involved in the muscle development regulation on both
embryonic and growing stages. According to the KEGG
analysis, the differentially expressed lncRNAs and circRNAs
were identified to functionally relate to some hormone
regulation, myoblast proliferation, and metabolic pathways.
CircRNAs being another type of non-coding RNA also act as
an important regulatory role in skeletal muscle growth and
development (Greco et al., 2018). Multiple studies have
confirmed that abundant circRNAs exist in the skeletal muscle
and their expression levels change dynamically during the process
of myoblast differentiation (Legnini et al., 2017). Notably, we
found that many DECs host genes are enriched in the HIF-1
signaling pathway in the KEGG analysis. HIF-1 signaling
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pathway is the core signaling pathway induced by hypoxia
involved in regulating the proliferation and differentiation of
myoblasts upon hypoxic conditions (Ogilvie et al., 2000). HIF-1
pathway can upregulate its target genes, some of which involve
the regulation of proliferation and differentiation of myoblasts.
These DEC host genes were found to be significantly enriched in
the HIF-1 signaling pathway, indicating a close relationship with
the regulation of muscle growth and development under high-
altitude and hypoxic environments. The regulatory mechanism of
these circRNAs and their host genes on muscle development
hence deserves further studies. Furthermore, our studies also
indicated some lncRNAs and circRNAs to be specifically or
mainly expressed in the longissimus dorsi muscle of cattle-yaks
(e.g., Tcons-00005361, Tcons-00037918, and circRNA-02529),
indicating that these ncRNAs were generated on purpose to have
specific effects in the muscle development of the cattle-yaks.

In recent years, extensive studies on the function of miRNAs
have provided a new theory named competing for endogenous
RNA (ceRNA). To understand the process of development of
the skeletal muscle, a ceRNA regulatory network was
constructed based on the combination with the DEMs,
DELs, and DECs related to muscle development and were
expressed co-differentially. The results showed that 11
DEMs, 6 DELs, and 8 DECs cross-talked with another
through 8 differential expressions of the microRNAs. This
also indicated that the development of the longissimus dorsi
muscle in cattle-yak was a complex regulation process of a
balanced level of gene expression under a high-altitude and
hypoxic environment. As reported, peroxisome proliferator-
activated receptor delta (PPARD) acted as a vital regulator in
adipogenesis and lipid metabolism (Kim et al., 2006; Chen and
Yang, 2014). Ankyrin repeat domain 6 (ANKRD6) also played a
role in regulating crucial events in developing vertebrates and
invertebrates (Schwarz-Romond et al., 2002; Moeller et al.,
2006). Therefore, we speculated that these ncRNAs might
also contribute to muscle development by indirectly
regulating the gene expression of PPARD and ANKRD6. Not
only that, we observed three important ceRNA subnetworks
from the ceRNA network, showing that TCONS-00024051 and
its target SOX8 “talked” to each other through the same bta-
miR-1777a response element, while TCONS-00034903 and its
targetWNT4, TCONS-00029868 and its target ACTA1 “talked”
to each other through bta-miR-12039 and bta-miR-4449
response elements, respectively. Therefore, we speculated
that these three subnetworks may be crucially associated and
function in regulating muscle development. Notably, as a
member of the “unconventional” non-muscle myosin II
family of molecular motors, myosin heavy chain 14
(MYH14) gene has been identified as a key regulator of
muscle fiber type (van Rooij et al., 2009; Bell et al., 2010). In
our results, MYH14 and Tcons-00029868 were both
upregulated in longissimus dorsi muscle, which indicates that
this lncRNA may have a cis-regulatory relationship with
MYH14 gene. From our results, these DEMs, DELs, and
DECs were not only involved in the process of muscle
development, but might also be involved in lipogenesis as
ceRNAs.

CONCLUSION

In conclusion, we compared the production performance of
cattle-yaks and yaks, it was also the first time to compare the
expressional features of mRNAs, lncRNAs, and circRNAs in the
longissimus dorsi tissue of cattle-yaks and yaks. In our results,
the abundant mRNAs and ncRNAs were identified, some of
which were specifically expressed in cattle-yaks. According to
the bioinformatics analyses, the ncRNAs were found to be not
only connected with the myoblast differentiation and
proliferation, skeletal development, and signaling pathway of
muscle growth, but be also useful as ceRNAs of important
transcription factors (such as SOX8 and PPARD). In
addition, the ceRNA network (11 DEMs, 6 DELs, and 8
DECs) that we constructed may have the considerable effects
on regulation of muscle growth. This study provided new
insights into the genetic basis of muscle growth and laid the
foundation for further study of the role of these ncRNAs in
regulating muscle growth.
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Resveratrol (RSV) has been confirmed to benefit human health. Resveratrol

supplemented in the feeds of animals improved pork, chicken, and duck meat qualities.

In this study, we identified differentially expressed (DE) messenger RNAs (mRNAs) (n =

3,856) and microRNAs (miRNAs) (n = 93) for the weighted gene co-expression network

analysis (WGCNA) to investigate the co-expressed DE mRNAs and DE miRNAs in the

primary bovine myoblasts after RSV treatment. The mRNA results indicated that RSV

treatments had high correlations with turquoise module (0.91, P-value = 0.01) and

blue module (0.93, P-value < 0.01), while only the turquoise module (0.96, P-value <

0.01) was highly correlated with the treatment status using miRNA data. After biological

enrichment analysis, the 2,579 DE genes in the turquoise module were significantly

enriched in the Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways. The top two GO terms were actin filament-based process

(GO:0030029) and actin cytoskeleton organization (GO:0030036). The top two KEGG

pathways were regulation of actin cytoskeleton (bta04810) and tight junction (bta04530).

Then, we constructed the DE mRNA co-expression and DE miRNA co-expression

networks in the turquoise module and the mRNA–miRNA targeting networks based

on their co-expressions in the key module. In summary, the RSV-induced miRNAs

participated in the co-expression networks that could affect mRNA expressions to

regulate the primary myoblast differentiation. Our study provided a better understanding

of the roles of RSV in inducing miRNA and of the characteristics of DE miRNAs in the key

co-expressed module in regulation of mRNAs and revealed new candidate regulatory

miRNAs and genes for the beef quality traits.

Keywords: primary bovine myoblast, resveratrol, differentially expressed analysis, WGCNA, mRNA co-expression,

miRNA co-expression, mRNA-miRNA network
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INTRODUCTION

Resveratrol (RSV) is a natural polyphenol compound found
in grapes, nuts, and some blackberries. Researchers have
studied its health-promoting effects of neuroprotection (1)
and cardioprotection (2) as well as its inhibiting actions to
tumor cell proliferation (3) and microbial activity (4) and its
diminishing effects on inflammation in humans and animals
(5, 6). Its pro-differentiation properties to human lung fibroblasts
(7), embryonic cardiomyoblasts (8), and skeletal myoblast
have also been studied (9). For example, Dirks Naylor (10)
demonstrated the RSV effects on skeletal muscle metabolism,
protein catabolism, and muscle-related ischemia and reperfusion
injury disease in a review study (10). Resveratrol could also
help to improve muscle fatigue resistance (11), reduce aging-
induced muscle loss (12), improve muscle atrophy (13), and
enhance exercise performance (14). Resveratrol is contained in
the wine grape pomace, and adding it to feed will benefit the
feed efficiency and meat tenderness in lamb (15). In addition, the
antioxidant effects of RSV improved the heat-stressed and the
transport-stressed meat quality of broilers (16, 17). Resveratrol
alleviated the skeletal muscle mitochondrial dysfunction and
oxidative damage, when 80 mg/kg/day RSV was supplied in the
intrauterine growth retardation piglets (18). The same dose of
RSV also improved the meat quality by increasing the content of
oxidative muscle fiber and decreasing the lipid accumulation in
pigs (19). Dietary RSV supplements of 300–450 mg/kg in Peking
ducks improved meat quality through decreasing abdominal fat
rate and shear force, as well-increasing the flavor amino acid
and intramuscular fat deposition (20). In cattle, the beneficial
effects of RSV have been concluded in several studies on bovine
oocyte maturation and subsequent embryonic development (21),
inhibition of apoptosis and lipid peroxidation for the fertilization
capacity of bovine sex-sorted semen (22), rumen fermentation,
methane production, and prokaryotic community composition
(23). However, the effect of RSV on beef production and quality
still needs further investigation.

The carcass composition of beef cattle is influenced by
intrinsic factors (e.g., genetic, age, and sex) and extrinsic factors
(e.g., nutrition, environment, and management) (24). Bassel
et al. (25) suggested the establishment of global co-expression
network connections between genes by considering all samples
in Arabidopsis. Gene co-expression networks are constructed
by genes with significant co-expression relationships, where
the co-expressed genes show similar expression patterns across
samples that are controlled by the same transcriptional regulatory
programs (26, 27). The weighted gene co-expression network
analysis (WGCNA) has been used in analyzing the feed efficiency,
residual feed intake, carcass traits, and lactation in cattle (28–30).

Abbreviations: ACTG1, actin gamma 1 gene; DGAT1, diacylglycerol
acyltransferase-1 gene; DE, differentially expressed; FPKM, fragments per
kilobase of transcript sequence per million base pairs sequenced; FDR, false
discovery rate; FCs, fold changes; GO, Gene Ontology; IACUC, Institutional
Animal Care and Use Committee; MAD, median absolute deviation; mRNAs,
messenger RNAs; MRFs, myogenic regulatory factors; MEF2, myocyte enhancer
factor 2; RSV, resveratrol; TPM, transcript per million; KEGG, Kyoto Encyclopedia
of Genes and Genomes; WGCNA, weighted gene co-expression network analysis.

Our previous study focused on transcriptomic changes in
bovine skeletal muscle cells after RSV treatment and was
conducted to identify the differentially expressed (DE) genes
and microRNAs (miRNAs) (31, 32); therefore, this study mainly
focuses on the combined co-expressed transcriptomes, i.e.,
messenger RNA (mRNA) and miRNA studies for bovine muscle
in response to treatment with RSV, which aims to investigate the
roles of RSV in inducing miRNA for the better understanding, to
identify the characteristics of DEmiRNAs in the key co-expressed
module in regulation of mRNAs, and to reveal new candidate
regulatory miRNAs and genes underlying the beef quality traits.

MATERIALS AND METHODS

Primary Bovine Myoblast, Transcriptome
Sequencing, and Differential Expression
Analysis
The cultured primary myoblasts from the fetal beef longissimus
dorsimuscle, the transcriptome sequencing datasets after quality
control and alignment, and the differential expression analysis
results were achieved from our previous studies (31, 32).

All the animal procedures were carried out according to
the protocols approved by the Institutional Animal Care and
Use Committee (IACUC) of the College of Animal Science and
Technology, Northwest A&F University, China. Ninety-day-old
fetal cattle were collected from Tumen slaughterhouse in Xi’an,
Shaanxi Province. First, we used 75% alcohol and 1% double-
antibody sterile phosphate buffer solution (phosphate buffered
saline, PBS) to gently wash the epidermis of the fetal cow to
eliminate blood stains and bacterial contamination in an extra-
large plate. Second, we cut the muscle tissue pieces and placed
them in a 50-ml centrifuge tube, with collagenase I digestion
in Dulbecco’s modified Eagle’s medium (DMEM) at 37◦C for
1.5 h. Third, the suspension was filtered and centrifuged, and
the supernatant was removed. Fourth, we added four times the
volume of 0.25% trypsin in the sediment at 37◦C for 30min.
Fifth, the digested sample was filtered through 1-mm stainless
steel mesh and 100-µm mesh. Sixth, we added 500 µl of a
medium containing 15% fetal bovine serum (FBS) to the pellet
to terminate the digestion, and the cells were inoculated in a 6-
cm Petri dish. After 20-min culturing, we drew the upper culture
medium and continued the culturing process in a new 6-cm Petri
dish. When the cell density reached 80–90%, we used them for
the subsequent experiments.

RNA for each cell sample was isolated for mRNA sequencing
to generate 125 or 150-bp paired-end reads and for miRNA
sequencing to generate 50-bp single-end reads on an Illumina
Hiseq platform (Illumina, USA). We removed the unqualified
reads by quality control to achieve clean reads by in-house perl
scripts that were used in our previous studies (31, 32). Then, the
miRNA tags were mapped to the reference genome of Bos taurus
(UMD_3.1.1/bosTau8) by Bowtie software (version 0.12.9) (33).
The mapped miRNA tags were used to seek the known miRNAs
using miRBase20.0 as the reference, so the potential miRNA and
the secondary structures were obtained by miRDeep2 software
(version 2.0.0.5) (34).
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The expected number of fragments per kilobase of transcript
sequence per million base pairs sequenced (FPKM) of each
gene was calculated to achieve the average FPKM values for
the replicates. The threshold of gene expression was set for
mRNA, when the FPKM value is larger than 1. Following
the normalization formula (35), miRNA expression levels were
also estimated by transcript per million (TPM). A differential
expression analysis of two groups (case and control) for both
mRNA and miRNA was performed using the R package DESeq
(version 1.18.0) (36). The P-values were adjusted using the
Benjamini and Hochberg’s method for controlling the false
discovery rate (FDR). Differentially expressed mRNAs and DE
miRNAs were defined when the adjusted P-values were <0.05.
In addition, we calculated fold changes (FCs) between the case
and control groups based on the averaged FPKM values and
TPM values to define the up-regulated (log2FC > 0) and down-
regulated (log2FC < 0) mRNAs and miRNAs, respectively.

We used the skeletal muscle cells under the polyphenol
RSV treatment as the case group, while the skeletal muscle
cells without RSV treatment were considered as the control
group. Meanwhile, both the case and control groups had three
independent experiments separately for the skeletal muscle cell
collections. The correlation coefficients among samples were
visualized in the heatmaps using log10(FPKM + 1) for mRNA
and log10(TPM+ 1) for miRNA in Figure 1.

Gene Co-expression Network of mRNA
and miRNA and Their Associations With
RSV Treatment
The R package WGCNA (37) was used to construct the co-
expression network. It constructs a similarity matrix by Pearson
correlation coefficients to measure the similarity between the
gene expression profiles and then transforms the similarity
matrix into an adjacency matrix (A) raised to a β exponent (soft
threshold) based on the free-scale topology model. In this study,
a total of 18,329 genes were filtered from 26,332 genes in mRNA
data based on the median absolute deviation (MAD) of each gene
bigger than 0.01. The β power parameter (soft threshold) was
equal to 12 when the R2 of the free-scale topology was equal to
0.8 (Figure 2A). In the miRNA data, 650 miRNAs were filtered
from 765 genes, and the β power parameter (soft threshold) was
equal to 4 (Figure 2B).

We chose the soft threshold power (β = 12 for mRNA and
β = 4 for miRNA) based on the criterion of approximate scale-
free topology to construct a weighted gene network and detect the
consensus modules with the topological overlap matrix (TOM).
The minimum module size was set at 30 for both miRNA data
and mRNA data, and the maximum module sizes were set at
18,329 and 650 for mRNA data and miRNA data, respectively.
Based on the dissimilarity betweenmodule eigengenes (MEs), the
modules can be merged, where the first principal component of
each module represents the gene expression profiles within the
modules (38). Here, we set the cut height for module merging at
0.25, so the modules whose eigengenes are correlated above 0.75
will be merged.

A module association analysis was conducted between the ME
and the RSV treatment status (i.e., 0, 0, 0, 1, 1, 1 for three control
and three case groups, respectively) to calculate the correlations
for the relevant module identifications.We calculated themodule
significance (MS) [i.e., the average absolute gene significance
(GS) of all the genes involved in the module, where GS is
measured as log P-value in the linear regression between gene
expression and RSV treatment status] to evaluate the correlation
strengths. Normally, the module with the highest MS score is the
key module (37). Module significance genes in the association
analysis (P-value < 0.1) were assigned for functional enrichment
analysis. The hub genes were defined as the TOMvalues up to 0.8.

Gene Ontology and Pathway Enrichment
Analysis
R package clusterProfiler (version 3.6) (39) was used to test
the Gene Ontology (GO) terms and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichments. Significant
enrichment was defined with the adjusted P-value <0.1 for both
GO terms and pathways.

Predicted Target mRNAs of miRNA and
mRNA–miRNA Networks
The bovine genomic sequence (release-99) and the gene
annotation file were downloaded from the Ensembl FTP
site (http://www.ensembl.org/index.html). We used TBtools to
obtain the 3

′

UTR sequence of the bovine genomic transcripts
(40). Then, the transcript stable IDs were converted to the
Ensembl stable IDs using the BioMart website (http://www.
ensembl.org/biomart). Accordingly, we found the 3

′

UTR
sequence of the genes in the turquoise modules. The binding
capability of miRNAs and their target genes in the turquoise
modules was assessed by RNAhybrid (version 2.1.2) (41), with
the minimal free energy hybridization under −20 and the helix
constraint from 8 to 12.

RESULTS

Differentially Expressed mRNAs and
miRNAs Between the RSV Treatment and
Control Groups
From our previous study (31, 32), a total of 3,856 DE mRNAs
were identified from 18,329 mRNAs based on the threshold
of adjusted P-value <0.05; meanwhile, 93 DE miRNAs were
also identified from 650 miRNAs based on the same thresholds
(Table 1). The details of log2FC, P-value, adjusted P-value, and
DE mRNAs with FPKM and miRNAs with TPM of each sample
are listed in the Supplemental File 1.

Module Identification of the Gene
Co-expression Network for mRNA and
miRNA and Their Associations With RSV
Treatment
Using 18,329 mRNA and 650 miRNA data for the sample
clustering, we found that the samples with RSV treatment
were clustered together in mRNA analysis (Figure 3A), while
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FIGURE 1 | The heatmap of correlation coefficients among samples for (A) mRNA data and (B)miRNA data. R2 indicates the square of Pearson correlation coefficient.

FIGURE 2 | R2 of the free-scale topology and mean connectivity with soft threshold (power) for (A) mRNA data and (B) miRNA data.

TABLE 1 | Summary of differentially expressed mRNAs and miRNAs.

DE mRNA

(adjusted

P-value

<0.05)

DE mRNA

(adjusted

P-value

<0.0001)

DE miRNA

(adjusted

P-value

<0.05)

Up-regulated 1,805 450 44

Down-regulated 2,051 681 49

Total 3,856 1,131 93

Differentially expressed (DE) mRNA and miRNA results were achieved from our previous

study (31, 32).

RSV-treated samples were not clustered together by miRNA
data (Figure 3B). Generally, 18,329 mRNAs were grouped into
32 modules that had similar co-expressions using the average
linkage hierarchical clustering algorithm (Figures 3C,E), where

8,311 mRNAs were grouped into turquoise module as the
key module, followed by 2,210 mRNAs into blue module, etc.
(Figure 3E; Table 2). However, miRNAs were only grouped into
eight modules (Figures 3D,F; Table 2), where 285 miRNAs were
grouped into turquoise modules as the key module, followed
by 100 miRNAs into blue modules. The mRNAs and miRNAs
that were not assigned to any modules were grouped into gray
modules (Figures 3C–F).

The eigengene adjacency heatmap indicated that these
modules of mRNAs and miRNAs could be clustered further
together into groups (Figure 4). After incorporating the RSV
treatment trait, we found that the treatment status was clustered
with blue and turquoise modules for mRNAs (Figure 4A)
and with turquoise modules in a single cluster for miRNAs
(Figure 4B).

The module–trait relationship results revealed that RSV
treatment had high correlations with turquoise module (0.91,
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FIGURE 3 | Sample cluster with RSV treatment heatmap, dendrogram clustering plots with assigned module colors based on topological overlap analysis of

dissimilarity, and identified module size in different colors for (A,C,E) mRNAs and (B,D,F) miRNAs, respectively.

P-value = 0.01), blue module (0.93, P-value <0.01), and tan
module (−0.81, P-value = 0.05) using mRNA data (Figure 5A),
whereas only turquoise module (0.96, P-value <0.01) was highly
correlated with treatment status using miRNA data (Figure 5B).
Therefore, the turquoise module showed a strongly positive
relationship with RSV treatment no matter whether mRNA data
or miRNA data is used.

We also used the 3,856 DE mRNAs and 93 DE miRNAs for
the weighted gene network construction based on the same soft
threshold power (β = 12 for mRNA and β = 4 for miRNA)
and then visualized them in the TOM clusters (Figure 6). Here,
the minimum module size and maximum block size were set at
30 and 3,856, respectively, for mRNA and were set at 30 and

93, respectively, for miRNA. Only two cluster modules were
displayed for both mRNAs and miRNAs, i.e., turquoise and
blue modules. In the turquoise module, 2,579 DE mRNAs and
59 DE miRNAs were found, while 1,277 DE mRNAs and 34
DE miRNAs were found in the blue module. Furthermore, the
network heatmap of DE mRNAs and DE miRNAs showed a high
level of overlap densities among the two clusters (Figure 6).

Gene Ontology and Pathway Enrichment
Analysis
Based on the 2,579 DE mRNAs in the turquoise module, we
performed an enrichment analysis to reveal significant GO terms
and KEGG pathways. We found that the three most significant
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TABLE 2 | Summary of mRNA and miRNA module identifications.

Transcriptome sequencing Modules

Turquoise Blue Brown Yellow Green Red

mRNAs (n = 18,329) 8,311 (45.34%) 2,210 (12.06%) 925 (5.05%) 886 (4.83%) 824 (4.50%) 613 (3.34%)

miRNAs (n = 650) 285 (43.85%) 100 (15.38%) 58 (8.92%) 57 (8.77%) 47 (7.23%) 32 (4.92%)

FIGURE 4 | Eigengene dendrogram and adjacency heatmap of different co-expression modules for (A) mRNAs and (B) miRNAs, respectively.

GO terms were actin filament-based process (GO:0030029,
adjusted P-value = 1.86 × 10−6) with 37 DE genes that
were enriched in, followed by actin cytoskeleton organization
(GO:0030036, adjusted P-value= 4.33× 10−6) with 34 DE genes,
and actin filament organization (GO:0007015, adjusted P-value
= 6.86× 10−5) with 24 DE genes in the down-regulated category
(Figure 7A). Similarly, the three most significant pathways were
regulation of actin cytoskeleton (bta04810, adjusted P-value =

1.40 × 10−11) with 47 genes, tight junction (bta04530, adjusted
P-value = 2.32 × 10−6) with 33 genes, and axon guidance
(bta04360, adjusted P-value = 2.32 × 10−6) with 33 genes
(Figure 7B).

Networks Displaying the Relationships
Among Genes Within Co-expressed
Modules
We selected and constructed the network of four genes within the
turquoise module including two significantly up-regulated genes,
i.e., sushi domain containing 4 (SUSD4) gene and diacylglycerol
O-acyltransferase 1 (DGAT1) gene, and two significantly down-
regulated genes, i.e., fibroblast growth factor 18 (FGF18) gene and
actin gamma 1 (ACTG1) gene (Figure 8). SUSD4 has associations
with 186 genes including 8 up-regulated genes and 176 down-
regulated genes (Figure 8A). DGAT1 was closely connected with
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FIGURE 5 | Module–trait relationship heatmap between RSV treatment and control groups for (A) mRNAs and (B) miRNAs, respectively. Each row indicates module

eigengenes with the correlation coefficients (P-values in the brackets), where the red color represents positive correlation and the blue color represents negative

correlation.

70 genes where 32 genes were up-regulated (e.g., proliferating cell
nuclear antigen, PCNA) and 38 genes were down-regulated (e.g.,
phosphatase and tensin homolog, PTEN) (Figure 8B). FGF18
and ACTG1 were negatively connected with 36 and 51 up-
regulated genes, respectively (Figures 8C,D). The selected hub
gene ACTG1 was negatively related with skeletal muscle myosin
heavy chain 3 (MYH3) gene, fibroblast growth factor 2 (FGF2)
gene, and uncoupling protein-2 (UCP2) (Figure 8D).

Identification of miRNAs in the Key Module
and Target Gene Prediction of the miRNAs
for mRNA–miRNA Network
Based on the top significant RSV-induced up- and down-
regulated DE miRNAs in the turquoise module, we predicted
their target genes. The top four up-regulated miRNAs were
bta-miR-34c, bta-miR-432, bta-miR-2344, and bta-miR-154c that
targeted 21, 78, 22, and 49 down-regulated genes in the turquoise
module, respectively (Figure 9A). Likewise, the top four down-
regulated miRNAs, i.e., bta-miR-2310, bta-miR-452, bta-miR-
1814c, and bta-miR-199b targeted 59, 62, 58, and 15 up-regulated

genes in the turquoise module, respectively, where bta-miR-2310
and bta-miR-1814c targeted the same genes (n= 57) (Figure 9B).
Three up-regulated and three down-regulated miRNAs targeted
the top up-regulatedCDKN1A [adjusted P-value= 2.50× 10−104

and log2(FC) = 1.97], while five up-regulated and one down-
regulated miRNAs targeted the top down-regulated KCNK12
[adjusted P-value = 5.92 × 10−63 and log2(FC) = −2.32]
(Figure 9C).

DISCUSSION

Carcass weight is mainly influenced by the number and the
size of myoblasts that are generated from somite and through
proliferation, differentiation, and fusion into myofibers in an
embryonic stage (42). Skeletal muscle fiber characteristics can
be divided into fast and slow types based on the contraction
speed that can determine the meat quality traits such as
marbling (43). Internal (heredity) and external factors (nutrition
and environment) are combined to regulate the conversions
among the fiber types, such as arginine (44) and linoleic
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FIGURE 6 | Weighted differentially expressed (DE) (A) mRNA (n = 3,856) and (B) miRNA (n = 93) network heatmap of the co-expression interactions based on the

topological overlap matrix (TOM) dissimilarity. The gene dendrogram and module assignment are shown along the left side and the top, where the axe colors indicate

the different modules. The color intensity inside the heatmap represents the overlap degree, where a light color represents low overlap and a darker red color

represents higher overlap. DE mRNA and miRNA results were achieved from our previous study (31, 32).

FIGURE 7 | Scatter plots for the significant (A) Gene Ontology (GO) terms and (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the

down-regulated and up-regulated categories of 2,579 differentially expressed (DE) mRNAs in turquoise module. Only the top 20 significant GO terms and KEGG

pathways were visualized.

acid (45) that have been considered as the nutrients that
influence the conversion of skeletal fiber type. Researchers also
analyzed the omics data to reveal the effects of functional feed
additives to improve carcass characteristics and beef quality,
such as vitamin A, zinc propionate, etc. (46, 47). Our study

aims to illustrate the additive effects of natural polyphenol
compound RSV on primary bovine myoblast differentiation
through transcriptome sequencing.

Resveratrol effects have been extensively studied on various
cell types including cardiomyoblasts (8), fibroblasts (7),
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FIGURE 8 | The networks displaying the relationships of four key hub genes within co-expressed turquoise modules, i.e., (A) sushi domain containing 4 (SUSD4)

gene, (B) diacylglycerol O-acyltransferase 1 (DGAT1) gene, (C) fibroblast growth factor 18 (FGF18) gene, and (D) actin gamma 1 (ACTG1) gene.

hepatocytes (48), smooth muscle cells (49), mammary epithelial
cells (50), immune cells (6), and a multitude of various cancer
cell lines (3). Moreover, researchers paid more attention to the
RSV functions on human myoblast proliferation, injury, and
death, as well as the resistance against oxidative stress of RSV
to the skeletal muscle tissues in livestock (4, 11, 17, 20, 31). In
this study, we identified biologically relevant key modules of the
co-expressed mRNA andmiRNA networks for the differentiation
of bovine primary myoblast after RSV treatment. The results
showed that the significant modules of DE mRNAs and DE
miRNAs were strongly associated with RSV treatment status;

for example, the key mRNA module was turquoise module with
2,579 DE mRNAs induced by RSV, where 47 down-regulated
DE genes were enriched in the regulation of actin cytoskeleton
pathway (Figure 7B). The actin cytoskeleton is essential for
cell proliferation, differentiation, migration, phagocytosis, and
exocytosis, even when cells experience oxidative damage (51).
The actin cytoskeleton is also essential to maintaining the
stability of skeletal muscle functions. The absence of ACTG1
resulted in muscle weakness and a progressive myopathy in
mice (52); meanwhile, the reduced expression of ACTG1 was
closely associated with up-regulated MYH3 induced by RSV
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FIGURE 9 | mRNA–miRNA network of the top four differentially expressed (DE) miRNAs in the (A) up-regulated status (bta-miR-34c, bta-miR-432, bta-miR-2344,

and bta-miR-154c) and the (B) down-regulated status (bta-miR-199b, bta-miR-2310, bta-miR-1814c, and bta-miR-452) in the key turquoise module and their

targeted DE genes. (C) mRNA–miRNA network of the top two DE genes and the targeting DE miRNAs. DE mRNA and miRNA results were achieved from our

previous study (31, 32). The green color indicates the down-regulated miRNAs and genes, while the red color indicates the up-regulated miRNAs and genes.

(Figure 8D). MYH3 plays an important role in the skeletal
muscle metabolism and the content of distinct types of skeletal
muscle fibers (53). Thus, we suggested that RSV had functions
on the type switch of the primary bovine myoblast fiber, which
was consistent with the previous studies of RSV effects on C2C12
cells (54, 55).

Skeletal muscle development is elaborately regulated by
myogenic regulatory factors (MRFs), growth factors (e.g., TGF-β
and IGFs), signal pathways (e.g., IGF1-Akt-mTOR and Smad2/3
pathway), and non-coding RNAs (miRNAs) (56–58). MiRNAs
play important roles in regulating myogenesis and regeneration,
hypertrophy and atrophy, muscle disease, and aging (59, 60).
In recent years, the identified functions of miRNAs in skeletal
muscle development have been widely studied in cattle. Our
study also identified 59 DE miRNAs in the turquoise module
including bta-miR-432 and bta-miR-365-3p. They were highly
expressed in skeletal muscle tissues and differently expressed in
the fetal and adult stages of Qinchuan cattle; they may participate
in the myoblast differentiation with vital roles (61, 62).

Network construction that integrates miRNA andmRNA data
to identify the complex transcriptional regulating mechanism
of RSV is more significant to the biological pathways for
primary bovine myoblast than a separate analysis. This study

found that ACTG1 could be targeted by the significantly RSV-
induced up-regulated bta-miR-432 that potentially activated
the IGF2/AKT signaling pathway to promote the proliferation
and differentiation of myoblasts (61) (Figure 9A). Interestingly,
the RSV-induced down-regulated bta-miR-2310 and bta-miR-
1814c could co-target 57 RSV-induced up-regulated DE genes,
such as DGAT1 that is the functional candidate gene for
the improvement of meat and carcass fatness quality in beef
cattle (63) (Figure 9B). DGAT1 was also positively connected
with the myoblast proliferation gene (PCNA) and negatively
related with PTEN, which regulated the skeletal satellite cell
proliferation and differentiation (64) (Figure 9B). The RSV-
induced miRNAs participated in the complex co-expression
networks to regulate primary myoblast differentiation through
affecting mRNA expressions, which subsequently participated in
regulating skeletal development, metabolism, and skeletal muscle
fiber type switch, thereby functionally regulating the cattle carcass
weight and meat quality.

CONCLUSIONS

In summary, RSV treatments had high correlations with the
turquoise module (0.91, P-value = 0.01) and blue module
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(0.93, P-value <0.01) using mRNA data, but only had high
correlations with the turquoise module (0.96, P-value <0.01)
using miRNA data. The two top GO terms of actin filament-
based process (GO:0030029) and actin cytoskeleton organization
(GO:0030036) and the two top KEGG pathways of regulation
of actin cytoskeleton (bta04810) and tight junction (bta04530)
were revealed using 2,579 DE genes in the turquoise module.
The mRNA–miRNA network was then constructed based on the
co-expressions of DE mRNA and miRNA in the key module.
Our study provided a better understanding of the roles of RSV
in inducing miRNA and of the characteristics of DE miRNAs
in the key co-expressed module in regulation of mRNAs and
revealed new candidate regulatory miRNAs and genes for beef
quality traits.
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Ovarian Follicles of Goats via Long
Noncoding RNA Profile and
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Long noncoding RNAs (lncRNAs) were identified recently as a large class of noncoding
RNAs (ncRNAs) with a length ≥200 base pairs (bp). The function and mechanism of
lncRNAs have been reported in a growing number of species and tissues. In contrast, the
regulatory mechanism of lncRNAs in the goat reproductive system has rarely been
reported. In the present study, we sequenced and analyzed the lncRNAs using
bioinformatics to identify their expression profiles. As a result, 895 lncRNAs were
predicted in the pre-ovulatory ovarian follicles of goats. Eighty-eight lncRNAs were
differentially expressed in the Macheng black goat when compared with Boer goat. In
addition, the lncRNA XR_311113.2 acted as a sponge of chi-miR-424-5p, as assessed via
a luciferase activity assay. Taken together, our findings demonstrate that lncRNAs have
potential effects in the ovarian follicles of goats and may represent a promising new
research field to understand follicular development.

Keywords: goat, ovarian follicle, lncRNA, transcriptome, miRNA sponge

INTRODUCTION

Ovulation rate is an important goat reproductive trait that determines the upper limit of the
female goat litter size; in turn, the growth and development of follicles in the ovary determine
the ovulation rate (Cui et al., 2009). Follicle development is a very complex biological process
and its regulatory mechanism warrants further study. During mammalian ovarian
folliculogenesis, which involves multiple transcription factors, primordial follicles develop
into pre-ovulatory follicles, followed by ovulation, which releases mature oocytes (Choi and
Rajkovic, 2006; Pan et al., 2012). The Macheng black goat is an excellent goat breed that is
unique to China and is characterized by pure black hair color and its breed function is higher
than Boer goat (Tao et al., 2018). In the breeding production process, PMSG-hCG is usually
used to treat the ewe, and then artificial fertilization. We found that after hormone treatment,
the litter size of Macheng black goat remains above Boer goat. To investigate the
phenotypic differences, we analyze the pre-ovulatory follicles of ewes after hormone
treatment via High-throughput sequencing and analyze the development of follicles in a
highly fertile local goat.
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Noncoding RNAs (ncRNAs) have always been regarded as
“DNA junk” without the capability to encode proteins. More
recently ncRNAs, which include mainly microRNAs (miRNAs),
piwi-interacting RNAs (piRNAs), and circular RNAs (circRNAs),
were demonstrated to have important biological functions. They
are basically derived from the transcription activity of the genome
(Jin et al., 2018). Long noncoding RNAs (lncRNAs), which were
recently identified as a large class of ncRNAs, are defined as
ncRNAs of more than 200 bp in length with no protein-coding
capacity (Mercer et al., 2009; Hung and Chang, 2010). A recent
study showed that lncRNAs play multifunctional roles in a wide
variety of important biological processes, including cell
proliferation (Wang et al., 2017), cell apoptosis (Lu et al.,
2016), genomic splicing (Parikshak et al., 2016), chromatin
remodeling (Han and Chang, 2015), and transcription
(McHugh et al., 2015). In addition, lncRNAs regulate the
expression of miRNA by acting as molecular sponges and
reducing the inhibitory effect of miRNAs on their target genes
(Paraskevopoulou and Hatzigeorgiou, 2016).

During ovarian folliculogenesis, functional lncRNAs, such as
growth arrest specific 5 (GAS5) (Wang et al., 2018), lncRNA
HCG26 (Liu et al., 2017), lncRNA Neat1 (Nakagawa et al., 2014;
Li et al., 2017), and lncRNAMALAT1 (Li et al., 2018a), have been
found to regulate follicle development and regeneration through
diverse mechanisms. For instance, GAS5, which is expressed in
female germ-line stem cells (FGSCs) and oocytes, promotes
FGSC reproduction and survival in vitro and is highly
expressed in neonatal mouse ovaries (Wang et al., 2018). High
levels of lncRNA SRA stimulate the growth of mouse follicle
granulosa cells, increase the levels of estrogen and progesterone,
and upregulate the expression of key enzymes (i.e., cytochrome
P450 family 19, subfamily A, member 1 (CYP19A1) and
cytochrome P450 family 11, subfamily A, member 1
(CYP11A1)) (Li et al., 2018b). Although miRNAs and piRNAs
have been extensively studied in ovarian folliculogenesis, the role
of other valuable noncoding transcripts remains to be studied.
Moreover, researchers are paying increasing attention to the role
of lncRNAs in follicular development, and have used high-
throughput sequencing to analyze the expression pattern of
lncRNAs during follicular development. Finally, the
identification of the key lncRNAs for follicular development is
expected.

In the present study, differentially expressed lncRNAs were
detected through deep RNA sequencing (RNA-seq) in
samples of pre-ovulatory follicles from Macheng black
goats and Boer goats. Eight hundred and ninety-five new
lncRNAs were identified in the ovarian follicles of goats.
Eighty-eight lncRNAs were differentially expressed between
Macheng black and Boer goats. The lncRNA expression
patterns were validated using quantitative real-time
polymerase chain reaction (qRT-PCR). The greatly
differentially expressed lncRNA, XR_311113.2 was
demonstrated to sponge chi-miR-424-5p via a luciferase
activity assay. Therefore, in this study we examined the
expression of lncRNAs by RNA-seq during goat follicle
development and explored their expression profiles and
functions in goat follicles.

MATERIALS AND METHODS

Ethics Statement
All studies involving animals were conducted according to the
regulation (No. 5 proclaim of the Standing Committee of Hubei
People’s Congress) approved by the Standing Committee of
Hubei People’s Congress, P. R. China. Sample collection was
approved by the ethics committee of Hubei Academy of
Agricultural Sciences. Animals were humanely sacrificed as
necessary to ameliorate suffering.

Animals and Tissues
Aged adult ewes weighing 40 kg were obtained from the goat stud
farm of the Institute of Animal Husbandry and Veterinary
Medicine, Hubei Academy of Agricultural Sciences, feeding
with the same pattern and environment. Macheng black goats
(Kidding rate and fecundity rate: 219 and 346%) have higher
reproductive performance than Boer goats (Kidding and
fecundity rates: 189 and 210%). Three Macheng black goats
and three Boer goats exhibiting normal estrous cycles were
treated with 1000 IU PMSG (SanSheng, Zhejiang, China) and
500 IU hCG (SanSheng, Zhejiang, China) as previously described
(Saharrea et al., 1998; Torner et al., 1998). PMSG-hCG was used
to initiate and synchronize the follicular phase. After 36 h, the
PMSG-hCG stimulated ewes were slaughtered, and the ovaries of
each goat in the pre-ovulatory phase were immediately removed,
stored in liquid nitrogen until RNA extraction. The total RNAs
were extracted from fourteen tissues (i.e., liver, spleen, heart,
kidneys, small intestine, fat, ovarian folliclelungs, lungs, uterus,
abomassum, muscle, reticulum, rumen and omasum) of the
Boer goats.

RNA Extraction and Qualification
A total of 5 μg of RNA was isolated from each individual sample
using the TRIzol reagent (Invitrogen, MD, United States)
according to the manufacturer’s protocol. The purity and
quantity of the total RNA were measured using a NanoDrop
instrument and agarose gel electrophoresis. RNA integrity was
assessed using the RNA Nano 6000 Assay Kit of the Bioanalyzer
2100 system (Agilent Technologies, CA, United States), and only
the samples showing RNA integrity number (RIN) scores higher
than 6 were used in this study.

Library Preparation for lncRNA and mRNA
Sequencing
Three micrograms (μg) of RNA was used as input material.
Ribosomal RNA was completely removed using the Epicentre
Ribo-zero™ rRNA Removal Kit (Epicentre, WI, United States),
and then sequencing libraries were generated with the NEBNext®
Ultra™ Directional RNA Library Prep Kit for Illumina® (NEB,
Ispawich, United States) following manufacturer’s
recommendations. First-strand cDNA was synthesized using
M-MuLV Reverse transcriptase and random hexamer primers,
and second-strand cDNA was synthesized using RNase H and
DNA polymerase I. After adenylation of the 3′ ends of DNA
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fragments, NEB Next Adaptors were ligated to prepare for
hybridization. The library fragments were purified for selecting
cDNA fragments (150–200 bp in length). Finally, the products
were purified with an AMPure XP system (Beckman Coulter,
Beverly, United States). The libraries were sequenced on an
Illumina Hiseq 4000 platform, and 150 bp paired-end reads
were generated. Sequencing data were deposited with the
NCBI Sequence Read Archive (SRA) under accession number
PRJNA648013.

Quality Control and Transcriptome
Assembly
Firstly, Raw reads were processed through in-house Perl scripts
developed by the Novogene Bioinformatics Institute (Beijing,
China). The clean data were obtained by removing reads that
contain adapter or ploy-N and low-quality reads from raw data.
Meanwhile, The Phred score (Q20, Q30) and GC content of the
clean data were calculated. Reference genome and gene model
annotation files were downloaded from National Center for
Biotechnology Information (ARS1, https://www.ncbi.nlm.nih.
gov/genome/?term�goat). Index of the reference genome was
built by Bowtie v2.4.2 and paired-end clean reads were aligned to
the reference genome using TopHat v2.1.1. The mapped reads of
each sample were assembled by both Scripture (beta2) and
Cufflinks (v2.2.1).

Coding Potential and Conservative Analysis
We used a Coding Potential Calculator (CPC, 0.9-r2) (Kong et al.,
2007), Coding-Non-Coding-Index (CNCI, v2) (Sun et al., 2013)
and PfamScan (v1.3) (Punta et al., 2012) to assess the protein-
coding potential of each novel transcript. CPC examined
sequences in NCBI eukaryotes’ protein database and set the
e-value “1e-10.” Default parameters were used in CNCI
profiles. Pfam searches use default parameters of -E 0.001
-domE 0.001. Candidate sets of lncRNAs that possessed no
coding potential were chosen and filtered out from the
predicted transcript results from the three tools listed.

Analysis of Differential Expression
Cuffdiff (v2.2.1) was used to estimate the fragment per kilobase of
exon per million fragments mapped (FPKMs) of the transcripts in
each sample (Trapnell et al., 2012). The unit of measurement is
FPKM. Cuffdiff calculated for the level of expression in each
transcript. Gene and transcript expressions based on FPKM values
were calculated by Cufflinks transcript quantification engine.
Transcripts with a p < 0.05 were assigned as differentially expressed.

Target Gene and miRNA Binding Site
Prediction of lncRNAs
To explore the function of candidate lncRNAs, the target genes of
candidate lncRNAs were predicted in the cis way. Coding genes
100 k upstream and downstream of lncRNAs were examined as
the target genes in cis (co-location genes). The co-expression of
coding genes with lncRNAs in different chromosomes were
determined with the pearson correlation coefficient (PCC);

with PCC >0.95 or < −0.95, the lncRNA-mRNA pair was
considered to represent the target genes in trans (co-expressed
genes) (Schober et al., 2018). MiRNA binding sites were predicted
for the goats with miRanda software, whose principles are based
on the miRanda prediction algorithm (Enright et al., 2003). The
miRNAs and target lncRNAs were considered when the miRanda
score was 140 or higher, and the energy threshold was set to -1.

Analysis of lncRNA-miRNA Network
Interactions
The lncRNA-miRNA interaction network was built according to the
prediction of miRNA binding sites. The lncRNA-miRNA interaction
analysis was conducted with Cytoscape software (Version 3.6.1). In
the network diagram, the connections indicate possible regulatory
relationships. The square represents lncRNAs, the circle represents
miRNAs, the red represents up-regulated expression and the green
represents down-regulated expression.

Quantitative real-time PCR Analysis
Total cDNAwas synthesized using reverse transcriptaseKit (TaKaRa,
Dalian, China). QRT-PCR were performed using CFX96 Touch™
Real-Time PCRDetection System and SYBR® Green PCR Supermixe
(Bio-Rad, CA, United States). Each PCR reaction (in 20 μL) involved
10 μL SYBR® Green PCR Supermixe (Bio-Rad, CA, United States),
0.25 μL of each primer, 1 μL cDNA and 8.5 μL H2O. The cycling
conditions included an initial single cycle (94°C for 3min), and
followed by 40 cycles (94°C for 30 s; 60°C for 30 s; 72°C for 20 s). The
primers were designed using Primer 5 (shown in Table 1). The
expression level was defined based on the threshold cycle (Ct), and
relative expression levels were calculated via the 2−ΔΔCt method. The
correlation between the RNA-seq and qRT-PCR results was
calculated using the SPSS (Version 18.0.0). β-actin was served as
internal standard control, and all reactions were performed in
triplicate.

Plasmid Construction
Two fragments of XR_311113.2 sequence were amplified using I-5™
2 ×High-FidelityMasterMix (Tsingke,Wuhan, China). All the PCR
products were inserted into pmirGLO vector (Promega, WI,
United States), respectively. The primers are listed in Table 1.
Then two recombinant plasmids were digested with PmeI and
NheI (Thermo Scientific, WLM, United States). All constructs
were sequenced by Sangon Biotech Co., Ltd. (Shanghai, China).
The mutants of binding sites were generated using a MutanBEST Kit
(TaKaRa, Dalian, China) andmutagenic primers (shown inTable 1).

Cell Culture, Cell Transfection, and Dual
Luciferase Reporter Assays
The goat kidney epithelial cells (GK cells) were obtained from the
Kunming cell bank of the Chinese academy of sciences. Cells were
seeded at a density of 1.5 × 105/ml using Dulbecco minimum
essential medium (DMEM) (Hyclone, UT, United States)
supplied with 10% fetal bovine serum (FBS) medium
(Hyclone, UT, United States). The miRNA mimics and
negative control (NC) were synthesized by Ribobio (Ribobio,
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Guangzhou, China). The sequences used are shown in Table 1.
Cells were seeded in 24-well plates at a density of 1.5 × 105 cells
per well 24 h before transfection. The cells were co-transfected
with a mixture of 250 ng pmirGLO recombinant vector plasmid
and 3 μL miRNA mimics or NC per wells using lipofectamine
3000 (Life Technologies, MD, United States). The luciferase
activity in the transfected cells was then measured after 24 h
according to the manufacturer’s instructions with a VICTOR™
X3 PerkinElmer 2030 Multilabel Plate Reader (PerkinElmer, MA,
United States).

Statistical Analyses
Descriptive results of the study are expressed as means ± SD. All
data analyses were performed by GraphPad Prism 5 (San Diego,
CA). The means of the groups were compared by Student’s t-test.
p < 0.05 was considered to indicate statistically.

RESULTS

Identification of lncRNAs in Goat
Pre-ovulatory Follicles
To identify the expression of lncRNAs in goat pre-ovulatory
follicles, six goats average from two goat breeds, Boer and
Macheng goats, were sequenced using an Illumina HiSeq 4000
platform. A total of 41.3 Gb of lncRNA clean data were obtained
and mapped to the goat reference genome using TopHat2. We
carried out a series of rigorous screening analyses using three
analytical software programs (CPC, PFAM, and CNCI) (Figures
1A,B), and a total of 895 lncRNAs from 99,106 assembled
transcripts were identified (Figure 1C and Supplementary
Table S1). These lncRNAs consisted of 88.0% long intergenic
noncoding RNAs (lincRNAs) and 12.0% antisense lncRNAs, with
virtually no intronic lncRNAs being detected (Figure 1D). We
analyzed the characteristics and expression levels of the lncRNA
and mRNA transcripts. As shown in Figure 1E, we found that the

predicted lncRNAs were shorter in length than the mRNAs and had
fewer exons than the average mRNA. Furthermore, most of the
lncRNAs tended to exhibit a relatively shorter open reading frame
(ORF) length than the mRNAs. The mRNA levels were significantly
higher than those of lncRNAs or transcripts of uncertain coding
potential (TUCP) in the pre-ovulatory follicles of goat samples
(Figures 1F–H).

Expression Profiles of lncRNAs and mRNAs
in Goat Follicles
Here, we identified the differential expression profiles of lncRNAs
and mRNAs in the pre-ovulatory follicles of Boer and Macheng
Black goats. Specifically, a total of 88 lncRNAs (67 upregulated
and 21 downregulated) and 1216 mRNAs (743 upregulated and
473 downregulated) were differentially expressed (Figures 2A,B
and Supplementary Tables S2, S3). A hierarchical clustering
analysis was performed on the differentially expressed lncRNAs
and mRNAs, respectively. To gain insight into the similarities of
the pre-ovulatory follicles between the Boer and Macheng goats,
data from all of the differentially expressed lncRNAs and mRNAs
were used in a systematic cluster analysis. The heat map clearly
indicated self-segregated clusters in the Boer (BO) and Macheng
(MC) groups (Figures 2C,D).

Overview of Differential lncRNA Expression
Profiles
Five upregulated (XR_001297559.1, XR_311113.2,
XR_001297560.1, LNC_000026, and XR_310768.2) and two
downregulated (LNC_000155 and XR_001295597.1) lncRNAs
were randomly selected and amplified via qRT-PCR to
confirm RNA-seq accuracy. As shown in Figure 3A, log2-fold
changes (MC/BO) were calculated based on the RNA-seq and
qRT-PCR results. The observed expression trends indicated that the
two methods produced consistent results. Furthermore, the fold

TABLE 1 | The nucleotide sequence used in this study.

ID Forward sequence (59–39) Reverse sequence (59–39) Length (bp)

XR_001297559.1 TTGTACTCCGTGGCCCTAAT CCAGGCTAATCCTCCAACC 150
XR_311113.2 TTGAGAAAACAGCCAGTGC TACCGCCAGTGACAAGGAT 125
XR_001297560.1 TCTCATGCTAACCAGGACCC AAAGCCACTGTAACCGCACC 150
LNC_000026 GCTGGAGTCTTAACTATTGGAT ATCAGAAAGGATGGGTGTG 148
XR_310768.2 AGGCTTCCTCCTGCTTGTG ATCCGCATCATTTGTCCATT 279
LNC_000155 AGCCACAGTGAGCAGCATC AAAGGGAGTCATAGAGTGGG 451
XR_001295597.1 ATGTTCTTCATCGGCTTCACC CTCGTTCTTGTCGTAGTCCCAC 177
β-actin GTCACCAACTGGGACGACA AGGCGTACAGGGACAGCA 208
chi-miR-424-5p mimics CAGCAGCAAUUCAUGUUUUGA
chi-miR-3955-5p mimics UUUGAUGGCUGAUCCUCUCACU
NC UUCUCCGAACGUGUCACGUTT ACGUGACACGUUCGGAGAATT
pmiRGLO-1 GGGTTTAAACCTTGGAGCATAGTCTACAGCA CCGCTCGAGTCATACTGACCGACTTGTGC 1005
pmiRGLO-2 GGGTTTAAACAGAGAGGCATCCTTGTCACTG CCGCTCGAGAATTCCAACAGGCAATCGTT 1525
chi-miR-135a mut ACCCTTTGAGGGGGATTGCTCGGCTGAATCC GGATTCAGCCGAGCAATCCCCCTCAAAGGGT 1005
chi-miR-424-5p mut1 TGCCATATTGGGCATCATCATAGGGCCAAAG CTTTGGCCCTATGATGATGCCCAATATGGCA 1005
chi-miR-424-5p mut2 AGGAGAGAAGAACATCATCTTGTCATTGTAG CTACAATGACAAGATGATGTTCTTCTCTCCT 1525
chi-miR-544-5p mut CTACCGGCTGGACGGTGGACCACCATCTCAG CTGAGATGGTGGTCCACCGTCCAGCCGGTAG 1005
chi-miR-3955-5p mut CCCAGCAAGAGATTGCTGGTCACCCTCTGGG CCCAGAGGGTGACCAGCAATCTCTTGCTGGG 1525

Note: The part highlighted with gray was enzyme site induced.
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change values measured by RNA-seq and qRT-PCR were
significantly correlated (correlation coefficient, 0.944) (Figure 3B).
Moreover, we investigated the relative expression levels of the greatly
differentially expressed lncRNA XR_311113.2 in 14 goat tissues of
Macheng black goat and Boer goat (i.e., liver, spleen, heart, kidneys,
small intestine, fat, ovarian follicle, lungs, uterus, abomasum, muscle,
reticulum, rumen, and omasum) (Figure 3C). XR_311113.2 tended
to exhibit high expression levels in the liver, spleen, heart, and kidneys
ofMacheng black goat and Boer goat, followed by the small intestine,

fat, ovarian follicle, and lungs. By contrast, its low expression was
noted in the uterus, abomasum, muscle, reticulum, rumen, and
omasum. Notably, the expression level of XR_311113.2 in
Macheng ovarian follicle was far greater than Boer, and the fold
change was nearly 6. These results demonstrated that there was a
general consistency between the qRT-PCR and RNA-seq results,
although the fold changes were not exactly the same between the two
different technologies. In addition, XR_311113.2 was only
significantly dimorphically expressed in ovarian follicle.

FIGURE 1 |Characterization of pre-ovulatory follicles for goat lncRNAs, mRNAs, and TUCPs. (A,B). Steps of the novel lncRNA screening. (C)Coding potency filter
with three mainstream coding potential analytical methods (CPC, CNCI, and FFAM). (D)Classification of the lncRNAs identified here. (E) Transcript size distribution, ORF
length, and exon number of lncRNA and mRNA transcripts. (F−H) Box plot, violin plot, and density distribution diagram showing the expression features of lncRNAs,
mRNAs, and TUCPs in the pre-ovulatory follicles of goats.
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lncRNA-miRNA Interaction Networks
The lncRNA-miRNA interaction networks were constructed
using the RNA-seq data and potential lncRNA-miRNA
connections were explored using the Cytoscape 3.6.1 software
(http://www.cytoscape.org/). The lncRNA-miRNA interaction
network was established based on the relationship between the
differentially expressed (DE) lncRNAs and DE miRNAs. In the
network depicted in Figure 4A, we identified the top 20 lncRNAs
and top 20 miRNAs as differentially expressed profiles. The top
differentially expressed lncRNA XR_311113.2 included binding
sites for four miRNAs (chi-miR-135a, chi-miR-424-5p, chi-miR-
544-5p, and chi-miR-3955-5p). The interaction network of XR_
311113.2 and these four miRNAs was predicted by miRanda
(Figure 4B). This result implies that These results indicate that
the aforementioned miRNA and lncRNA might have a tight
correlation and regulation relationship, which could be our main
focus for further study.

The lncRNAs may affect the expression of miRNAs by
sponging them.

XR_311113.2 Serves as a Sponge for
Chi-miR-424-5p
The miRanda software was used to predict the putative miRNA
binding sites of XR_311113.2. Figure 5A indicates that four
miRNAs (chi-miR-135a, chi-miR-424-5p, chi-miR-544-5p, and
chi-miR-3955-5p) bind to XR_311113.2 via putative binding
sites. To verify that these four miRNAs bind to XR_311113.2,
the miRNA binding site regions and the mutated regions of chi-
miR-135a (719 bp/741 bp), chi-miR-424-5p (975 bp/995 and
3197 bp/3216 bp), chi-miR-544-5p (680 bp/700 bp), and chi-
miR-3955-5p (3569 bp/3591 bp) were cloned into two
pmirGLO vectors, named pmirGLO-1 (159 bp/1163 bp,
1005 bp) and pmirGLO-2 (2104 bp/3628 bp, 1525 bp),
respectively. Three miRNA mutants (chi-miR-544-5p mut, chi-
miR-135a mut, and chi-miR-424-5p mut) of pmirGLO-1 and two
miRNA mutants (chi-miR-424-5p mut and chi-miR-3955-5p
mut) of pmirGLO-2 were transfected into GK cells. We
discovered that chi-miR-424-5p mut (p < 0.001) and chi-miR-
3955-5p mut (p < 0.01) completely abolished the suppression of

FIGURE 2 | Differential expression of lncRNAs and mRNAs in the pre-ovulatory follicles of goats. (A,B) Volcano plots of differentially expressed lncRNA and mRNA
transcripts. (C,D) Hierarchical clustering of the expression profiles of differentially expressed lncRNAs and mRNAs.
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luciferase activity compared with the wild-type vector
(Figure 5B). These results suggest that chi-miR-424-5p and
chi-miR-3955-5p bind to the putative miRNA binding site of
XR_311113.2. To clarify further the binding activity of miRNAs,
the mimic of chi-miR-424-5p and chi-miR-3955-5p was
cotransfected with the pmirGLO-2 luciferase reporter plasmid
into GK cells. Compared with the NC group, chi-miR-424-5p
significantly reduced luciferase activity (p < 0.01) (Figure 5C).
These results suggest that XR_311113.2 serves as a sponge of chi-
miR-424-5p.

DISCUSSION

Goat is a domestic animal with a long history. TheMacheng black
goat is a unique breed indigenous to mountainous areas of

Central China Region and characterized by systemic black and
high prolificacy. Boer goat is one of the most popular breeds of
meat goat in the world due to their excellent carcass qualities and
high growth efficiency (Naing et al., 2010). The reproductive
performance of ewes is an important part of goat
productivity. The kidding and fecundity rates of Boer
goats are approximately 189% and 210% (Malan, 2000).
The Macheng black goat is highly fertile, the kidding rate
and fecundity rate are approximately 219% and 346% (Tao
et al., 2018). Recent studies indicate that a high ovulation rate
can increase the probability of higher litter size (Wang et al.,
2020). As a high propagation capability goat breed, how
lncRNAs regulate its follicular development is still unclear.
Therefore, we investigated the differential expression of
lncRNAs in ewe follicular development between Macheng
goat and Boer goat using RNA-seq.

FIGURE 3 | Validation of selected lncRNAs andmRNAs using qRT-PCR. (A) Fold changes in the relative expression of lncRNAs, as assessed by qRT-PCR. Results
of the comparison of the seven lncRNAs using qRT-PCR and RNA-seq. The vertical axis indicates the mean fold change (log2-fold change) of each lncRNA. (B)
Correlation analysis of the fold changes between qRT-PCR and RNA-seq. (C) Relative expression of lncRNAs. Expression profile of lncRNA XR_311113.2 in 14 tissues
of Macheng and Boer goat expressed as the mean ± SD. Data were normalized to the reference gene (β-actin).
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Folliculogenesis is a complex process that includes primordial
follicle recruitment, granulosa cell (GC) proliferation, oocyte
maturation, steroidogenesis, and ovulation (McLaughlin and
McIver, 2009; Field et al., 2014). GCs play a crucial role in
each stage of folliculogenesis, provide nutritional support for
the development of oocytes through the gap junction, and
enhance the maturation of oocytes. The interaction between
GCs and theca cells is an important condition for maintaining
follicular function and promoting normal development. The
growth and differentiation processes of GCs are key criteria
for the normal initiation and growth of primordial follicles,
and mediate the development and atresia process of growth-
period follicles, thereby playing an important regulatory role in
the development of follicles (Uyar et al., 2013; Johnson, 2015;
Sugiyama et al., 2016; Nguyen et al., 2019; Kim et al., 2020).

LncRNAs are newly discovered ncRNAs that have important
regulatory functions in a range of biological events (Peng et al.,
2017), especially their role as therapeutic targets and diagnostic
biomarkers of various diseases (Ji et al., 2003; Yan et al., 2015;
Huang et al., 2017; Huang, 2018; Simion et al., 2019; Yan et al.,
2019). A growing body of evidence has shown that lncRNAs are
widely distributed in mammals and plants (Necsulea et al., 2014;
Wang et al., 2014; Zhao et al., 2018; Sarropoulos et al., 2019), but
little has been reported regarding the folliculogenesis process of

goats. In the field of molecular biology, the genetic research of
goats is subject to many restrictions compared with the research
of other species, such as humans and mice. The database of
lncRNAs mainly targets common research subjects (humans,
mice, etc). The lack of various databases can hamper the
analysis of lncRNA data.

In the current study, we used high-throughput sequencing to
analyze the lncRNA profiles in goat ovarian follicle samples. In
addition, we investigated the manner in which lncRNA and
mRNA networks contribute to follicle development, and
confirmed the regulatory function of lncRNA XR_311113.2.
We predicted a total of 895 lncRNAs in samples of pre-
ovulatory follicles from Macheng black goats and Boer goats,
which was less than that detected in the developmental skeletal
muscle of fetal goat (3981) (Zhan et al., 2016) and the fetal skin of
goats (1336) (Ren et al., 2016), and more than that detected in the
anagen-phase skin samples of cashmere goats (437) (Zheng et al.,
2019). These results revealed that the expression of lncRNAs was
tissue-specific in different goat breeds.

A recent study has revealed that lncRNAs can function as
miRNA sponges to further affect the expression of miRNA target
genes (Du et al., 2016). For example, lncRNA TRPM2-AS acts as
the sponge of miR-612 to promote gastric cancer progression
(Xiao et al., 2020), and lncRNAMDNCR binds to miR-133a, thus

FIGURE 4 | Biomathematically predicted XR_311113.2 targeted in the lncRNA-miRNA network. The networks of lncRNA-miRNA were indicated by Cytoscape.
Red: upregulated gene; green: downregulated gene; circle: lncRNA; triangle: miRNA. (A) The interaction network of the top 20 differentially expressed lncRNAs and
mRNAs. (B) Predicted lncRNA-miRNA network of XR_311113.2 with four miRNAs.
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promoting cell differentiation in bovine primary myoblasts (Li
et al., 2018). In the present study, we found that lncRNA
XR_311113.2 was differentially expressed in the pre-ovulatory
follicles of the Boer andMacheng goat groups. The bioinformatics
analyses showed that four miRNAs potentially interacted with
XR_311113.2 (as shown in Figure 4). In addition, we validated
the interacting relationship between XR_311113.2 and chi-miR-
424-5p using luciferase activity assays (as shown in Figure 5).
Therefore, our results suggest that XR_311113.2 targets chi-miR-
424-5p directly by functioning as a sponge in the pre-ovulatory
follicles of goats. Moreover, the previous study results demonstrated
that miR-424-5p plays an important role in diseases of the
reproductive system by directly targeting several key functional
genes (Xu et al., 2013; Liu et al., 2018). In addition, miR-424
suppresses the proliferation and promotes the apoptosis of human
ovarian granulosa cells (Du et al., 2020). These observations suggest
that lncRNAs regulate goat ovarian follicular development by
binding to miRNAs that regulate target gene expression.

One result we find out is really interesting. In Figure 5B, when
we mutated the binding site of miR-3955-5p in XR_311113.2
sequence, the luciferase activity of the mutant pmirGLO vector
significantly increased compared with wild type pmirGLO vector.

The results showed that the mutant site might prevent miR-3955-
5p bind to pmirGLO, so that the luciferase activity of pmirGLO
will not be inhibited by miR-3955-5p. To clarify further the
binding activity of miR-3955-5p, the chi-miR-3955-5p mimic
was synthesized and co-transfected with the wild pmirGLO
plasmid. Compared with the NC group, chi-miR-3955-5p did
not significantly reduce luciferase activity of wild pmirGLO.
Why? The reason may be that the mutated binding site is not
necessarily the factual site of miR-3955-5p, but may be the
binding site of other unknown miRNAs. When this fake site is
mutated, the unknown miRNA cannot inhibit the luciferase
activity. This is why we continue to use the results of
Figure 5C to further eliminate the fake results of Figure 5B
and ensure the reliability of the results.

MiRNAs have emerged as key post-transcriptional regulators
of target expression through complementary base pairing with
the target (Filipowicz et al., 2008). A large number of
computational prediction tools for the prediction of putative
miRNA targets have been developed, and commonly used
tools in mammals include miRWalk, PicTar, miRanda,
Targetscan, RNAhybrid, PITA, miRmap, DIANA-microT and
RNA22V2 (Riffo-Campos et al., 2016). However, the described

FIGURE 5 | XR_311113.2 serves as a sponge for chi-miR-424-5p. (A) Alignment of potential chi-miR-135a, chi-miR-424-5p, chi-miR-544-5p, and chi-miR-3955-
5p base pairing with XR_311113.2, as identified by themiRanda software. (B) The luciferase activity of miRNA binding sites mutant pmirGLO vector by luciferase assay in
GK cells. Site-directedmutagenesis in the chi-miR-135a, chi-miR-424-5p, chi-miR-544-5p, and chi-miR-3955-5p binding site of the XR_311113.2. The pmirGLO-1 and
pmirGLO-2 were wild vector of XR_311113.2. (C) Luciferase reporter assay to determine the luciferase activity of pmirGLO-2 in GK cells transfected with chi-miR-
424-5p and chi-miR-3955-5p mimics, to identify miRNAs that bound to the XR_311113.2 sequence. **p < 0.01; ***p < 0.001; NS, not significant.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7604169

Tao et al. Characterization of XR_311113.2

254

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


tools are mainly developed for a few species such as humans,
mice, pigs etc. Some of these tools can only set a few parameters
and cannot enter sequences. For obscure livestock such as goats, it
is impossible to accurately predict the targeting relationship
between miRNA and target. The lack of various databases and
tools can make it difficult to carry out the study of goats.

CONCLUSION

In conclusion, we analyzed the lncRNA and mRNA expression
profiles of goat ewe pre-ovulatory follicles to predict the
interactions between lncRNAs and miRNAs. Overall, 895
lncRNAs were identified, 88 of which were preliminarily
determined to show a marked differential expression, indicating
potentially substantial effects on goat ovarian follicles. The tissue
expression profile of lncRNA showed tissue specificity. LncRNA
XR_311113.2 may function as a sponge of chi-miR-424-5p. Our
RNA-seq data contributed to the known types of lncRNA species.
LncRNAs may represent a promising new field of research in the
area of ovarian follicular development.
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Acyl-CoA synthetase family member 3 (ACSF3) carries out the first step of mitochondrial

fatty acid synthesis II, which is the linkage of malonate and, to a lesser extent,

methylmalonate onto CoA. Malonyl-coenzyme A (malonyl-CoA) is a central metabolite

in mammalian fatty acid biochemistry that is generated and utilized in the cytoplasm.

In this research, we verified the relationship between expression of the ACSF3 and the

production of triglycerides (TGs) at the cellular level by silencing and over-expressing

ACSF3. Subsequently, through Sanger sequencing, five polymorphisms were found

in the functional domain of the bovine ACSF3, and the relationship between ACSF3

polymorphism and the economic traits and fatty acid composition of Chinese Simmental

cattle was analyzed by a means of variance analysis and multiple comparison. The

results illustrated that the expression of ACSF3 promoted triglyceride synthesis in bovine

mammary epithelial cells and bovine fetal fibroblast cells. Further association analysis

also indicated that individuals with the AG genotype (g.14211090G > A) of ACSF3

were significantly associated with the fatty acid composition of intramuscular fat (higher

content of linoleic acid, α-linolenic acid, and arachidonic acid), and that CTCAG haplotype

individuals were significantly related to the fatty acid composition of intramuscular fat

(higher linoleic acid content). Individuals with the AA genotypes of g.14211055A >

G and g.14211090G > A were substantially associated with a larger eye muscle

area in the Chinese Simmental cattle population. ACSF3 played a pivotal role in the

regulation of cellular triacylglycerol and long-chain polyunsaturated fatty acid levels,

and polymorphism could serve as a useful molecular marker for future marker-assisted

selection in the breeding of intramuscular fat deposition traits in beef cattle.

Keywords: Acyl-CoA synthetase family member 3, Chinese Simmental cattle, fat deposition traits, single

nucleotide polymorphism, triglyceride (TG)

INTRODUCTION

As there are large numbers of Chinese Simmental cattle breeding groups, verifying the gene
function of this breed’s high-quality traits is an area in need of urgent research. The Chinese
Simmental has become a large-scale dairy andmeat breed in China since it was successfully selected
and bred in 2001. In recent years, with the maturity of sequencing technology, new association
studies have been conducted to assess whether genetic polymorphisms affect the economic traits
and fatty acid composition in cattle (1, 2). Molecular marker information can be used as a useful
tool for evaluating breeding value and selecting animal carcass and meat traits.
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Fatty acid synthesis occurs through two pathways, one of
which takes place in cellular structures called mitochondria.
Mitochondria convert the energy from food into a form that
cells can use, and fatty acid synthesis in these structures is
essential for their proper functioning. The ACSF3 enzyme is
found only in the mitochondria and is involved in mitochondrial
fatty acid synthesis. The ACSF3 provides instructions for making
an enzyme involved in the formation (synthesis) of fatty acids,
which are the building blocks used to make fats (lipids) (3).
The ACSF3 enzyme performs a chemical reaction that converts
malonic acid to malonyl-CoA, which is the first step of fatty
acid synthesis (4). Based on this activity, the enzyme is classified
as a malonyl-CoA synthetase (5). The ACSF3 enzyme also
converts methylmalonic acid to methylmalonyl-CoA, making it
a methylmalonyl-CoA synthetase as well (6). Studies have shown
that the single nucleotide polymorphism ofACSF3may be related
to meat quality traits, such as backfat thickness (7, 8). The bovine
ACSF3 gene is located on bovine chromosome 18:14,209,800–
14,248,433 and has 10 exons and 9 introns. The ACSF3 mRNA
sequence contains a 1,761 bp coding region (CDS) and a 276 bp
untranslated region. The open reading frame (ORF) encodes 586
amino acids and has a 94 and 84% homology with the coding
regions of sheep and swine, respectively. The transcriptome
analysis results of our previous study showed that ACSF3 was
a candidate gene related to bovine fat deposits. However, the
ACSF3 gene has been rarely studied in bovine lipid metabolism.

This study aims to reveal the regulatory effect of ACSF3 on
adipogenesis by intracellular gene RNA interference (RNAi)
and gene over-expression. Moreover, we investigate the
polymorphisms of the bovine ACSF3 gene functional domain to
explore the relationship between genotypes and fat deposition,
and the fatty acid composition traits of Chinese Simmental cattle.

MATERIALS AND METHODS

Ethics Statements
All the animal experiments in the present study strictly
complied with the relevant regulations regarding the care and
use of experimental animals issued by the Animal Protection
and Use Committee of Jilin University [permit no. SYXK(Ji)
pzpx20181227083].

Experimental Materials
The BMECs (bovine mammary epithelial cells) in this study were
purified and cultured according to the previous work carried out
by the Laboratory of Bovine Genetic Resources and Functional
Genomics (9). Briefly, bovine mammary tissues were cut into
1 mm3 nubbles and washed again with PBS solution until the
tissue was clean. The smaller pieces of tissue were transferred
onto cell culture dishes. A basal media was prepared in advance:
DMEM/F12 with 10% fetal bovine serum, 1% penicillin and
streptomycin (Hyclone, Logan, UT, USA), and 1% epithelial
growth factor. Next, the cell culture dishes with the tissue were
incubated at 37◦C in a 5% CO2 incubator. After 6 h, 5mL of basal
media were added to each dish, ensuring that the tissue would
not float and separate from the bottom of the culture dish. The
basal media was replaced with fresh media every 48 h until the

culture dish was full of cells. The cells were detached with 0.25%
trypsin-0.02%EDTA (Hyclone, Logan, UT, USA) and transferred
to new culture dishes that were used to remove the fibroblasts.
Subsequently, pure mammary epithelial cells were isolated after
3–5 passages.

The BFFs (bovine fetal fibroblast cells) were isolated and
preserved by the Genetic Breeding and Reproduction Laboratory
of Jilin University. Briefly, the BFFs were obtained by isolating
fetal bovine ear tip tissue using a tissue block apposition method
similar to that described above.

This study involved 135 Chinese Simmental cattle (28-month-
old bulls) from a Baolongshan cattle farm in Inner Mongolia.
These cattle were randomly selected from the offspring of a
Simmental cattle population with ∼2,000 cows and 25 bulls.
Blood samples (10mL each) were collected from jugular vein
with anticoagulant (Acid citrate dextrose, ACD) and stored in
−70◦C. DNA was extracted from 1mL whole blood with the
DNA extraction kit (Tiangen, Beijing, China) according to the
manufacturer’s protocol.

Trait Analysis
In this study, 36 traits were measured and 14 fatty acid
compositions of the Longissimus dorsi muscle were analyzed
(10, 11).

Before the measurements of carcass and fat deposition traits,
all the carcasses were stored in refrigerating chambers at the
temperature between 0 and 4 ◦C for 24 h. All the measurements
complied with the criterion GB/T17238-1998 cutting standard
of fresh and chilled beef of China (China Standard Publish).
Before slaughter, ultima live backfat thickness, body weight
and longissimus muscle area (by ultrasound) were recorded.
The weights of carcass, omental fat, mesenteric fat, kidney
fat (stripping kidney fat and weighting) was recorded at the
slaughter plant. And we also record fat coverage rate, marbling
score, fat color score, muscle color score, rib eye area, and backfat
thickness after slaughter. Weight of kidney fat was expressed as
an absolute value and also as a percentage of hot carcass weight.
Carcass yield was calculated as (hot carcass weight × 100)/final
weight. Marbling was measured by video image analysis and
expressed as the percentage of visible fat area over the total
area of a steak (Longissimus thoracis muscle taken between the
9 th and 10 th vertebrae from the right side of the carcass).
Moreover, the carcass length (measuring the shortest length
between the bun midpoint to the sciatic trailing edge), carcass
chest depth (measuring the shortest distance of the test cattle
between bun posterior border to pectoral by using a ruler),
hind leg circumference (measuring the surrounded degree in the
junction of femur tibia and fibula), hind leg width (measuring the
horizontal width since the end of the medial sag to thigh front),
thigh meat thickness (the vertical distance from the surface to the
midpoint of the autologous femoral body) and other carcass traits
were recorded at the slaughter plant.

Briefly, intramuscular fat was obtained from the Longissimus
dorsimuscle. The analysis was performed in accordance with the
ISO 5,509 (2,000) norms, and AOAC procedures (Association
of Official Analytical Chemists), and expressed as g/100 g of
fresh tissue. The intramuscular fat was collected in a glass
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methylation tube, mixed with 4.0mL of MeOH, 2.0mL of
chloroform (capillary GC; Sigma-Aldrich,MO, USA), and 1.5mL
of ddH2O, and placed in a rotating platform shaker for 10 s, then
left at room temperature for 15min. Chloroform and ddH2O
were added to the wells and mixed again, and left at room
temperature for 5min. The mixture was centrifuged at 1,500
g/min for 30min, then cooled to 16◦C, the upper layer removed,
and dried under nitrogen. Next, 1.5mL of 14% BF3/MeOH
reagent were added and mixed vigorously. The mixture was
heated at 90◦C for 30min, cooled to room temperature, and
4.0mL of hexane was added, then methyl esters were extracted in
the hexane phase following the addition of 1.5mL of ddH2O. The
samples were centrifuged for 1min, and then the upper hexane
layer was removed and concentrated under nitrogen. Fatty acid
methyl esters were analyzed by gas chromatography using a
fully automated HP5890 system (Agilent, Santa Clara, CA, USA)
equipped with a flame-ionization detector. An SP-2,560 column
(Supelco, PA, USA) 100m × 0.25mm × 0.20µm was used for
gas chromatographic detection. The detection procedure was in
an oven at 140◦C for 5min, 10◦C/min to 220◦C, and held for
50min. An injector/detector was used at 260◦C with helium as a
carrier gas at about 5 psi. The identification of components was
carried out by a comparison of the retention times with those of
authentic standards (Sigma-Aldrich, MO, USA).

Primer Design
Primer Premier 6 software (PREMIER Biosoft, San Francisco,
CA, USA) was utilized to design theACSF3 gene coding sequence
primers and the SNP primers, based on the bovine ACSF3 gene’s
existing published sequences (ENSBTAG00000015968).

Construction of
pGPU6/GFP/NEO-shACSF3 Vector and
pBI-CMV3-ACSF3 Vector
The constructed RNAi-vector pGPU6/GFP/NEO-shACSF3 with
a size of 5276 bp and containing the shRNA sequence of bovine
ACSF3 gene. The enhanced green fluorescent protein (EGFP)
gene was used for transient expression in cells, and kanamycin
was used as a selection marker for prokaryotic cell (DH5α)
amplification (Figures 2A-II). The shRNA target sequences of
bovine ACSF3 mRNA were screened and designed by BLOCK-
iTTM RNAi Designer (https://rnaidesigner.thermofisher.com/
rnaiexpress/, Table 1). The shRNA sequence was cloned into a
pGPU6/GFP/Neo vector (GenePharma Corporation, Shanghai,
China) using the BbsI and BamHI (New England Biolabs,
MA, USA) restriction enzyme digestion method. The eukaryotic
expression vector pGPU6/GFP/Neo was double digested with
BbsI and BamHI in a 10µL reaction system: BbsI 0.75µL, BamHI
0.75 µL, NEBuffer 2.1TM 1 µL, pGPU6/GFP/Neo plasmid 2 µL,
Nuclease-free water 4.5µL, and incubated at 37◦C 5 h. Recovered
and ligated by T4 DNA Ligase (Takara, Dalian, China): T4 DNA
Ligase Buffer 2 µL, T4 DNA Ligase 1 µL, pGPU6/GFP/NEO
vector 1 µL, shRNA fragment 1 µL, Nuclease-free water 15 µL
and incubated at 4◦C overnight. The products were transformed
into competent E. coli (DH5α) cells (Tiangen, Beijing, China),
and then prepared the pGPU6/GFP/NEO-shACSF3 plasmid.

The kanamycin-positive clones were picked out and transferred
to 200mL of liquid Luria-Bertani (LB) medium and shaken
overnight at 37◦C. The pGPU6/GFP/NEO-shACSF3 plasmids
were extracted using the EndoFree Maxi Plasmid Kit (Tiangen,
Beijing, China) according to the manufacturer’s protocol. Briefly,
the bacterial broth was centrifuged to obtain the precipitate,
fully lysed and removed the endotoxin, and rinsed with enzyme-
free water to obtain the plasmid. The concentration and
purity of the plasmids were assessed using the agarose gel
and spectrophotometer (Nanodrop 2,000, Thermo Scientific,
Waltham, MA, USA).

The constructed overexpression vector pBI-CMV3-ACSF3,
which is 5,539 bp in size and contains the sequence of the
CDS region of bovine ACSF3 gene. The reef coral Zoanthus sp.
green fluorescent protein (ZsGreen) gene was used for transient
expression in cells and ampicillin was used as a selection marker
(Figures 2A-IV). The CDS region of ACSF3 synthesized by
Sangon Biotech (Shanghai, China) was ligased into a pBI-CMV3
vector (Clontech Laboratories, Mountain View, CA, USA) using
theMluI and HindIII (New England Biolabs, MA, USA) enzyme
digestion method. Briefly, using the method similar to that
described above, the resistance was replaced with ampicillin. The
ampicillin-positive clones were picked out and transferred to
200mL of liquid Luria-Bertani medium and shaken overnight
at 37◦C. The pBI-CMV3-ACSF3 plasmid was extracted using the
EndoFree Maxi Plasmid Kit (Tiangen, Beijing, China) according
to the manufacturer’s protocol.

The Culture and Transfection of BMECs
and BFFs
The BMECs and BFFs were proliferated for 24 h in six-well
plates (Jet Bio-Filtration Co., Ltd, Guangzhou, China), and
the final concentration of cells was 1.2 × 106 cells per well.
Each well was supplemented with 2mL of growth medium
containing DMEM/F12 (Corning, NY, USA) and 10% fetal
bovine serum (FBS; Tian Hang, Zhejiang, China), then incubated
at 37◦C in a 5% CO2 incubator (Thermo Fisher Scientific,
Massachusetts, USA).

In this study, the cells transfected with pGPU6/GFP/NEO-
shACSF3 vector were used as RNA interference group,
and cells transfected with pGPU6/GFP/NEO vector
were used as the control. While the cells transfected
with pBI-CMV3-ACSF3 vector were used as the ACSF3
gene over-expression group, cells transfected with
pBI-CMV3 vector were used as the control. After
referring to similar experimental methods in published
articles, this experiment adopted a transient transfection
method, using the cells 48 h after the vector was
transfected into the cells for subsequent experiments
(12, 13).

For transfection, each vector DNA (3.0 µg) and 7.5 µL
of FuGENE HD transfection reagent (Promega, Madison,
Wisconsin, USA) were diluted in 150 µL of DMEM/F12
media and mixed lightly. The mixture was incubated at room
temperature for 15min and then added to the pores of
each six-well plate. The cell culture medium was replaced
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TABLE 1 | The primer sequences.

Primer Forward sequences (5′-3′) Reverse sequences (5′-3′) Target sequences

SNPs primer for ACSF3 TGTGACCTCAGTGCCTTCTT CCTACATTTCTGGGTGCTTCC

shRNA of bovine ACSF3 AGAGGTATAAGGACCTCTACTTGC

GTTCAAGAGACGCAAGTAGAGGTCCTTAT

ACTTTTTTG

GATCCAAAAAAGTATAAGGACCTCTACT

TGCGTCTCTTGAACGCAAGTAGAG

GTCCTTATAC

GTATAAGGACCTCTACTTGCG

q-PCR primer of ACSF3 GTGGCTGTGATTGGAGTT TCTCGCTTGTTGACCTTC

ACACA GAAGGAGCGAGAGGAGTT GTAGAAGAAGGTGCGTGAA

ACACB CAAGATTGCCTCCACCAT CCTCCTGTAGACTGTGTTC

MCAT AAGGCGATTGATGTCAAGA CTTCCTCCTCTCGTATATGG

FASN CACGAACAACAGCCTCTT GCCTCCAGCACTCTACTA

CEBPα TGGACAAGAACAGCAACGAGT GGTCATTGTCACTGGTCAGCT

β-actin AGAGCAAGAGAGGCATCC TCGTTGTAGAAGGTGTGGT

after 6 h of transfection. After 36 h of transfection, green
fluorescent protein (GFP) expression was detected with a
fluorescence microscope (NikonTE2000, Tokyo, Japan). The
efficiency of transfection was also determined by calculating the
ratio of cells positive for green fluorescent protein expression
to the total number of cells. The experiment was repeated
three times.

Analysis of mRNA Levels of ACSF3 in
Transfected BMECs
The transfected cells were collected for analysis of the mRNA
expression levels. RNAiso Plus reagent (Takara, Dalian, China)
was used to extract the total RNA from cultured cells for
reverse transcription. cDNA was synthesized using a reverse
transcription kit (TransGen Biotech, Beijing, China), 1 µg of
total RNA, 4 µL of 5 × EasyScript R© All-in-One SuperMix for
qRT-PCR, and 1 µL of gDNA remover, and RNA-free water
was added to make the total volume of 20 µL. The cDNA
synthesis conditions were: incubate at 42◦C for 15min, and
at 85◦C for 5 s. Quantitative real-time PCR (qRT-PCR) was
followed through with SYBR Green Real-Time PCR Master Mix
(Takara, Dalian, China) utilizing the specific primers shown in
Table 1. qRT-PCR was performed in a 10 µL reaction with 5
µmoles in 0.5 µL of forward primer, 5 µmoles in 0.5 µL of
reverse primer, 5 µL of SYBR Green Real-Time PCR Master Mix
(Roche, Basel, Switzerland), 1 µL of cDNA, and 3 µL of ddH2O,
using the following procedure: 95◦C for 30 s and 45 cycles of
95◦C for 5 s, and 60◦C for 30 s in a PCRmax (Eco, Staffordshire,
UK). Experiments were repeated three times. Three technical
replicates were analyzed for each sample and β-actin was used
as an internal standard to normalize the mRNA expression level
using the 2−11CT method.

Determination of Triglyceride Content in
Cells of ACSF3 Interference and
Overexpression
In BMECs after interference or the overexpression of ACSF3,
the detection of TGs was performed with a tissue and cell TG
assay kit (Applygen Technologies Inc., Beijing, China) according

to the manufacturer’s protocol. Meanwhile, ACSF3 was over-
expressed in the BFFs and the TG content was examined. The
optical density of each sample was determined using a microplate
reader (Yong Chuang SM600, Shanghai, China). The experiment
was repeated three times and three technical replicates were
performed for each sample. The data regarding the triglyceride in
the cells were adjusted based on the quantity of the protein, and
the cellular content of triglyceride was corrected for the protein
concentration of each µg.

Polymorphic Loci Detection in ACSF3

Gene and Genotyping
We used a 20 µL system for PCR amplification, combining 10
pmol/µL of each primer, 140 ng of bovine genomic DNA, and 10
µL of green Taq mix, according to the manufacturer’s protocol
(Vazyme, Nanjing, China). The PCR amplification conditions
were as follows: incubation of the PCR mixture at 95◦C for
5min, 35 cycles of 95◦C for 30 s, the annealing temperature
of each fragment for 30 s, 72◦C for 1,000 bp/min, and a final
extension at 72◦C for 10min. The annealing temperature of
the polymorphism fragments of ACSF3 were 60◦C. The DNA
samples of 135 Chinese Simmental were amplified by PCR. Next,
PCR amplification was performed with the primer pairs of SNPs
of ACSF3 as per Table 1. The specificity of PCR products was
detected by 2% agarose gel electrophoresis. Nucleotide sequences
of PCR products were determined by Sanger sequencing (Sangon
Biotech Shanghai, China). Briefly, the nucleotide sequence
of the amplified product was determined by double-stranded
sequencing using the Sanger di-deoxy chain terminationmethod.
Finally, the genotypes of the cattle at each SNP were verified
by the sequencing results. Haplotype analysis of the SNPs was
performed using Haploview v.4.2 (https://www.broadinstitute.
org/haploview/haploview).

Statistical Analysis
Some relevant data relating to SNPs on theACSF3were calculated
according to the genotyping results, which were the genotypic
frequency, Hardy–Weinberg test, linkage disequilibrium
analysis, and polymorphism information content. The genotype
frequencies and allele frequencies were calculated for the
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FIGURE 1 | ACSF3 gene structure prediction and protein interaction prediction in lipid metabolism pathways (14, 15). (A) Tertiary structure of ACSF3 protein

(prediction). (B) Interacting proteins for ACSF3 gene in lipid metabolism pathway of cells.

examined Chinese Simmental-cross steers and were analyzed by
the significance test. An analysis of the genotypic effects of the
ACSF3 was carried out using the GLM procedure of SPSS 13.0
for Windows.

Yijk = u+ ysi +mj + eijk

where Yijk was the phenotypic observation of the kth individual
from the Simmental breed of genotype j in the ith-year season,
u was the population mean, ysi was the year effect of the ith-
year season, mj was the genotype effect of the genotype j, and
eijk was the random residual effect corresponding to the observed
value (10).

RESULTS

ACSF3 Gene Structure Prediction and
Protein Interaction Prediction in Lipid
Metabolism Pathways
SWISS-MODEL (https://swissmodel.expasy.org/) predicted the
tertiary structure of the ACSF3 protein (Figure 1A) (14). Protein
interaction analysis was performed with STRING (https://cn.
string-db.org/) (15). Bioinformatic data showed that 10 proteins,
such as FASN, ACADSB, ACADS, ACACA, and ACACB, can
interact with the ACSF3 protein (Figure 1B). The fatty acid
biosynthesis and metabolism process GO terms in the biological
process were enriched, implying that ACSF3 may be involved in
the fatty acid biosynthetic process (GO:0006633) and the fatty
acid metabolic process (GO:0006631).

The Effect of ACSF3 Gene Expression
Level on Triglyceride Content in Cells
According to the sequencing results, the siRNA target
oligonucleotide sequences for ACSF3 were successfully cloned
and framed into the BamHI/BbsI sites of the pGPU6/GFP/NEO
vector. Meanwhile, the CDS fragments of ACSF3 were cloned

into the multiple cloning site (MluI/HindIII) of pBI-CMV3
plasmid. The green fluorescence of the transfected cells was
observed in each group under fluorescent microscopy after
24 h of transfection (Figure 2), indicating that plasmids were
successfully transfected into BMECs.

To investigate the effect of the pGPU6/GFP/NEO-shACSF3
and pBI-CMV3-ACSF3 vectors on the bovine ACSF3 expression
level, the relative mRNA expression level of ACSF3 was analyzed
by qRT-PCR. Compared with the control group, the mRNA
expression of ACSF3 in the pGPU6/GFP/NEO-shACSF3 group
was significantly reduced (p < 0.01, Figures 2C-I). Moreover,
the expression level of ACSF3 mRNA in the pBI-CMV3-ACSF3
group was significantly increased compared with the control
group (p < 0.01, Figures 2C-II).

The triglyceride contents of BMECs after transfection with
the pGPU6/GFP/NEO-shACSF3 and pBI-CMV3-ACSF3 vectors
were investigated. The results demonstrated that, compared with
the control group, the content of TGs in the pGPU6/GFP/NEO-
shACSF3 group had a decreasing trend (Figures 2D-I). In
addition, the content of TGs in the pBI-CMV3-ACSF3 group
increased significantly (p < 0.01, Figures 2D-II). Similarly,
the results of ACSF3 on TG content in BFFs are consistent
with our validation on BMECs, where an over-expression
of the ACSF3 elevated triglyceride content in both types of
cells (p < 0.01, Figures 2E-III). These results indicated that
ACSF3 could promote the synthesis of triglyceride in the lipid
metabolism pathway.

The Effect of ACSF3 Gene Expression on
Lipid Metabolism-Related Genes
To further investigate the regulation of ACSF3 on BMECs lipid
metabolism-related genes, the expression levels of the related
genes that interacted with theACSF3 gene in the lipidmetabolism
pathway were analyzed. The mRNA expression level of the
CCAAT/enhancer binding proteinα (CEBPα), fatty acid synthase
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FIGURE 2 | Effect of ACSF3 gene interference or overexpression on triglyceride synthesis of transfected cells. (A) The maps of vectors used in this study including

size. I: Control vector for RNA interference of ACSF3 gene (pGPU6/GFP/NEO); II: RNA interference vector of ACSF3 gene (pGPU6/GFP/NEO-shACSF3); III: Control

for ACSF3 gene over-expression vector (pBI-CMV3); IV: ACSF3 gene over-expression vector (pBI-CMV3-ACSF3). (B) Expression of green fluorescence protein was

(Continued)
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FIGURE 2 | observed in two vector groups under fluorescent microscopy. I: Cells transfected with pGPU6/GFP/Neo vectors; II: Cells transfected with

pGPU6/GFP/NEO-shACSF3 vectors; III: Cells transfected with pBI-CMV3 vectors; IV: Cells transfected with pBI-CMV3-ACSF3 vectors. (C) The relative mRNA

expression level of ACSF3 mRNA in the two groups transfected with BMECs. I: Cells transfected with pGPU6/GFP/Neo or pGPU6/GFP/NEO-shACSF3 vectors; II:

Cells transfected with pBI-CMV3 or pBI-CMV3-ACSF3 vectors. (D) The two vector groups caused changes in triglyceride content after transfection of BMECs. I: Cells

transfected with pGPU6/GFP/NEO-shACSF3 vector caused a decrease in triglyceride content; II: Cells transfected with pBI-CMV3-ACSF3 vector caused an increase

in triglyceride content. (E) Overexpression vectors transfected with BFFs caused changes in triglyceride content. I: Cells transfected with pBI-CMV3 vectors; II: Cells

transfected with pBI-CMV3-ACSF3 vectors. III: Cells transfected with pBI-CMV3-ACSF3 vector caused an increase in triglyceride content. *** means p < 0.001, **

means p < 0.01.

FIGURE 3 | The mRNA expression of lipid metabolism-related genes in BMECs after interference (A) or overexpression of (B) the ACSF3 gene. *** means p < 0.001,

** means p < 0.01, * means p < 0.05.

(FASN), and acetyl-CoA carboxylase beta (ACACB) gene in the
pGPU6/GFP/NEO-shACSF3 group was significantly increased
compared with the control group (p < 0.01, Figure 3A).
The mRNA expression level of the malonyl-CoA-acyl carrier
protein trans acylase (MCAT) gene in the pGPU6/GFP/NEO-
shACSF3 group increased. Nevertheless, the mRNA levels
of the acetyl-CoA carboxylase alpha (ACACA) gene of the
pGPU6/GFP/NEO-shACSF3 group were significantly lower than
the control group (p < 0.01). In addition, in comparison with the
control group, the mRNA expression levels of the above genes
in the pBI-CMV3-ACSF3 group exhibited an opposite trend
(Figure 3B).

Genetic Diversity of the Functional Domain
of ACSF3 Gene in Chinese Simmental
Cattle
Meanwhile, we screened for SNPs in the key functional domain
of the bovine ACSF3 in the Chinese Simmental cattle population.

According to the PCR product sequencing results, there were
five polymorphisms (g.14210566C > T, g.14210668C > T,
g.14210887 T > C, g.14211055G > A, and g.14211090A > G)
screened in the second exon of the ACSF3 gene in Chinese
Simmental cattle (Figure 4A). Among the five loci screened,
the g.14211090A > G locus was a missense mutation (arginine
to glutamine), while the other four sites were synonymous
mutations. The allele frequency and genotype frequency of five
ACSF3 SNPs in Chinese Simmental cattle are presented in
Figure 4. Allele C had frequencies of 0.934, 0.798, and 0.954
at the g.14210566C > T, g.14210668C > T, and g.14210887 T
> C polymorphism sites. Allele A had a frequency of 0.926
at the g.14211055G > A polymorphism site. Allele G had a
frequency of 0.892 at the g.14211090A > G polymorphism site
(Figure 4B).

A haplotype analysis was performed on five SNPs loci
in this population. Among the different genotypes, the
frequency of the three haplotypes (CCCAG, CTCAG, and
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FIGURE 4 | Detection and genotyping of Single-nucleotide polymorphism sites of the ACSF3 gene in Chinese Simmental cattle. (A) Identify five SNPs in the second

exon of the ACSF3 gene. (B) Gene frequency and genotype frequency of five SNPs of ACSF3 gene. (C) The haplotypes composed of five SNPs of ACSF3 gene and

the frequency analysis of haplotypes.

CCCAA) was higher than 0.03, and the frequency of the
haplotype CCCAG was 0.496, which was the major haplotype
(Figure 4C).

Association Analysis of ACSF3 Gene SNP
With Economic Traits and Fatty Acids in
Chinese Simmental Cattle
Regarding economic traits, the association analysis results
revealed that, at the g.14211090G > A locus, for the individuals

with the G allele homozygous, a higher value of the eye muscle
area, spleen weight, and oxtail weight (71.33 ± 8.80 cm2,
0.75 ± 0.14 kg, and 1.17 ± 0.19 kg) were observed compared
with the heterozygous (65.20 ± 5.90 cm2, 0.65 ± 0.10 kg, and
1.03 ± 0.17 kg) individuals (p = 0.038, 0.040, 0.037, Table 2).
Furthermore, the individuals with the TT genotype (5.99± 0.29)
at g.14210668C > T had a significantly higher pH (24h) than
individuals with the CT genotype (5.80 ± 0.17, p = 0.008).
The values of the dressing percentage in individuals of the TT
genotype (51.82 ± 1.70%) were also significantly higher than
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TABLE 2 | Association analysis of five SNPs in the second exon of ACSF3 gene and economic traits in Chinese Simmental Cattle.

Traits g.14210566 C>T g.14210668 C>T g.14210887 C>T g.14211055 A>G g.14211090 G>A

CC (113) CT (15) CC (86) CT (34) TT (9) CC (118) TC (10) AA (111) GA (17) AA (9) AG (10) GG (110)

LW (kg) 460.77 ± 55.53a 429.47 ± 59.05b 457.94 ± 53.00 458.65 ± 65.46 441.00 ± 55.83 454.84 ± 56.03 464.40 ± 31.88 461.26 ± 55.87a 430.00 ± 55.57b 472.67 ± 86.53 432.25 ± 56.52 457.90 ± 53.38

CW (kg) 234.02 ± 32.07a 214.63 ± 34.54b 232.67 ± 31.29 230.09 ± 36.42 229.18 ± 34.69 230.91 ± 32.84 232.70 ± 16.94 234.24 ± 32.24a 215.48 ± 32.88b 234.02 ± 48.14 214.28 ± 35.29 233.15 ± 30.86

DP (%) 50.73 ± 2.13 49.87 ± 2.35 50.73 ± 2.07 50.13 ± 2.42b 51.82 ± 1.70a 50.69 ± 2.18 50.14 ± 2.22 50.73 ± 2.13 50.01 ± 2.32 49.48 ± 3.29 49.42 ± 2.80 50.86 ± 1.94

BW (kg) 21.19 ± 3.03 19.37 ± 2.39 21.10 ± 3.00 20.70 ± 2.90 21.04 ± 3.72 20.84 ± 2.98 22.20 ± 2.79 21.32 ± 3.04 19.29 ± 2.25 21.62 ± 3.37 19.59 ± 2.67 21.06 ± 2.99

FW (kg) 23.65 ± 2.67 22.61 ± 3.21 23.61 ± 2.52 23.61 ± 3.13 22.50 ± 3.15 23.47 ± 2.76 23.53 ± 1.19 23.68 ± 2.68 22.56 ± 3.00 23.60 ± 3.86 21.98 ± 2.67 23.67 ± 2.62

FHW (kg) 5.71 ± 0.58 5.39 ± 0.70 5.68 ± 0.56 5.68 ± 0.70 5.61 ± 0.64 5.66 ± 0.61 5.90 ± 0.47 5.71 ± 0.58 5.40 ± 0.66 5.76 ± 0.98 5.51 ± 0.69 5.68 ± 0.56

HHW (kg) 4.81 ± 0.56 4.61 ± 0.48 4.76 ± 0.57 4.83 ± 0.53 4.79 ± 0.46 4.77 ± 0.55 4.95 ± 0.54 4.81 ± 0.56 4.61 ± 0.46 4.94 ± 0.73 4.55 ± 0.40 4.79 ± 0.54

TaW (kg) 48.05 ± 5.87 44.32 ± 5.18 47.48 ± 5.88 48.37 ± 6.02 46.00 ± 5.55 47.46 ± 5.81 47.55 ± 4.12 48.09 ± 5.92 44.50 ± 4.88 47.92 ± 7.61 44.40 ± 6.17 47.88 ± 5.67

RRAW (kg) 8.24 ± 0.91 8.04 ± 0.73 8.20 ± 0.83 8.36 ± 0.99 7.71 ± 1.02 8.14 ± 0.86 8.76 ± 0.87 8.26 ± 0.91 7.96 ± 0.72 8.73 ± 1.23 8.03 ± 0.92 8.18 ± 0.86

OmW (kg) 4.57 ± 0.67 4.39 ± 0.71 4.54 ± 0.65 4.50 ± 0.72 4.68 ± 0.75 4.55 ± 0.69 4.55 ± 0.47 4.58 ± 0.67 4.32 ± 0.70 4.93 ± 0.90 4.48 ± 0.74 4.52 ± 0.65

HW (kg) 1.51 ± 0.20 1.38 ± 0.19 1.49 ± 0.21 1.50 ± 0.21 1.47 ± 0.17 1.48 ± 0.20 1.57 ± 0.14 1.51 ± 0.20 1.38 ± 0.18 1.53 ± 0.28 1.39 ± 0.23 1.50 ± 0.19

LW (kg) 4.74 ± 0.65 4.56 ± 0.67 4.72 ± 0.64 4.77 ± 0.70 4.45 ± 0.59 4.72 ± 0.64 4.55 ± 0.70 4.74 ± 0.66 4.57 ± 0.64 4.74 ± 0.87 4.55 ± 0.40 4.72 ± 0.66

LTW (kg) 2.78 ± 0.37 2.53 ± 0.26 2.71 ± 0.36 2.81 ± 0.39 2.90 ± 0.33 2.74 ± 0.37 2.81 ± 0.38 2.79 ± 0.37 2.52 ± 0.25 2.71 ± 0.55 2.59 ± 0.27 2.77 ± 0.36

KW (kg) 1.00 ± 0.13 0.92 ± 0.15 0.98 ± 0.12 1.02 ± 0.15 1.00 ± 0.16 0.99 ± 0.14 0.97 ± 0.09 1.01 ± 0.13 0.91 ± 0.14 1.05 ± 0.12 0.95 ± 0.11 0.99 ± 0.14

RAW (kg) 1.59 ± 0.54 1.54 ± 0.63 1.59 ± 0.57 1.56 ± 0.53 1.60 ± 0.49 1.58 ± 0.54 1.40 ± 0.40 1.60 ± 0.54 1.50 ± 0.59 1.53 ± 0.39 1.50 ± 0.65 1.59 ± 0.55

CPW (kg) 0.53 ± 0.07 0.49 ± 0.07 0.53 ± 0.07 0.51 ± 0.07 0.53 ± 0.05 0.52 ± 0.07 0.55 ± 0.06 0.53 ± 0.07 0.50 ± 0.07 0.50 ± 0.05 0.51 ± 0.09 0.53 ± 0.07

TeW (kg) 0.61 ± 0.12 0.56 ± 0.13 0.62 ± 0.12 0.60 ± 0.13 0.55 ± 0.09 0.61 ± 0.12 055 ± 0.11 0.62 ± 0.12 0.55 ± 0.13 0.51 ± 0.10b 0.60 ± 0.14 0.62 ± 0.12a

GFW (kg) 1.10 ± 0.25 0.98 ± 0.36 1.07 ± 0.26 1.17 ± 0.30 1.06 ± 0.25 1.09 ± 0.27 1.05 ± 0.24 1.10 ± 0.25 1.00 ± 0.35 1.17 ± 0.31 0.96 ± 0.39 1.10 ± 0.25

SW (kg) 0.75 ± 0.15 0.67 ± 0.12 0.74 ± 0.14 0.75 ± 0.15 0.73 ± 0.15 0.74 ± 0.15 0.72 ± 0.09 0.75 ± 0.15 0.69 ± 0.12 0.76 ± 0.22 0.65 ± 0.10b 0.75 ± 0.14a

OxW (kg) 1.17 ± 0.19 1.07 ± 0.22 1.18 ± 0.20 1.13 ± 0.19 1.05 ± 0.17 1.15 ± 0.19 1.21 ± 0.16 1.17 ± 0.19 1.07 ± 0.21 1.15 ± 0.22 1.03 ± 0.17b 1.17 ± 0.19a

pH (0 h) 6.81 ± 0.25 6.84 ± 0.18 6.83 ± 0.26 6.80 ± 0.21 6.73 ± 0.21 6.81 ± 0.25 6.82 ± 0.22 6.81 ± 0.25 6.82 ± 0.18 6.71 ± 0.17 6.84 ± 0.23 6.82 ± 0.25

pH (24 h) 5.85 ± 0.19 5.90 ± 0.20 5.87 ± 0.18 5.80 ± 0.17B 5.99 ± 0.29A 5.86 ± 0.19 5.80 ± 0.13 5.85 ± 0.19 5.88 ± 0.20 5.93 ± 0.16 5.92 ± 0.20 5.85 ± 0.19

CL (cm) 146.50 ± 5.84 142.47 ± 6.12 145.98 ± 5.81 146.38 ± 6.35 144.56 ± 6.78 145.87 ± 6.03 146.10 ± 4.53 146.55 ± 5.85 142.59 ± 5.95 147.44 ± 6.29 143.20 ± 6.20 146.12 ± 5.93

CD (cm) 65.54 ± 3.04 64.93 ± 4.23 65.44 ± 3.02 65.68 ± 3.67 65.33 ± 3.00 65.48 ± 3.24 65.50 ± 2.59 65.55 ± 3.03 64.94 ± 4.10 67.78 ± 3.46a 65.40 ± 4.58 65.31 ± 2.97b

CBD (cm) 66.53 ± 3.60 65.87 ± 3.60 66.64 ± 3.46 66.09 ± 3.93 66.44 ± 3.81 66.44 ± 3.67 66.35 ± 2.33 66.54 ± 3.62 65.88 ± 3.44 66.94 ± 3.71 66.00 ± 3.77 66.49 ± 3.60

HLC (cm) 48.20 ± 3.97 47.00 ± 4.39 48.49 ± 3.99 46.93 ± 3.95 48.53 ± 4.08 48.03 ± 4.06 48.53 ± 3.81 48.19 ± 4.00 47.18 ± 4.17 46.94 ± 3.43 47.85 ± 4.61 48.20 ± 4.02

HLW (cm) 44.68 ± 2.62 44.13 ± 3.20 44.74 ± 2.65 44.00 ± 2.87 45.61 ± 1.82 44.56 ± 2.77 45.10 ± 1.56 44.70 ± 2.64 44.06 ± 3.00 44.56 ± 3.39 44.85 ± 3.16 44.59 ± 2.60

HLL (cm) 84.39 ± 2.76 84.37 ± 2.58 84.43 ± 2.79 84.54 ± 2.53 83.48 ± 2.85 84.31 ± 2.75 85.40 ± 2.38 84.41 ± 2.87 84.24 ± 2.46 84.11 ± 2.76 83.90 ± 2.51 84.46 ± 2.75

TMT (cm) 17.44 ± 1.54 17.41 ± 1.57 17.47 ± 1.64 17.42 ± 1.45 17.42 ± 1.01 17.49 ± 1.53 17.11 ± 1.80 17.44 ± 1.55 17.36 ± 1.51 17.20 ± 1.56 17.92 ± 1.53 17.43 ± 1.55

WMT (cm) 6.02 ± 0.44 5.81 ± 0.39 6.01 ± 0.43 5.96 ± 0.48 5.93 ± 0.33 5.99 ± 0.43 6.00 ± 0.42 6.02 ± 0.44 5.81 ± 0.37 6.04 ± 0.55 5.81 ± 0.45 6.00 ± 0.42

BFT (cm) 0.27 ± 0.11 0.27 ± 0.12 0.28 ± 0.11 0.26 ± 0.12 0.26 ± 0.10 0.28 ± 0.12 0.21 ± 0.07 0.27 ± 0.11 0.28 ± 0.13 0.29 ± 0.15 0.29 ± 0.10 0.27 ± 0.12

FCR (%) 22.24 ± 8.05 22.20 ± 7.48 22.66 ± 7.99 20.74 ± 7.76 24.44 ± 8.08 22.34 ± 8.00 20.80 ± 7.44 22.19 ± 8.08 22.53 ± 7.27 21.67 ± 5.66 21.10 ± 8.86 22.44 ± 8.06

MS 5.88 ± 0.35 5.87 ± 0.35 5.90 ± 0.34 5.82 ± 0.39 6.00 ± 0.00 5.88 ± 0.35 6.00 ± 0.00 5.88 ± 0.35 5.88 ± 0.33 5.89 ± 0.33 5.90 ± 0.32 5.88 ± 0.35

EMA (cm²) 71.82 ± 9.04a 64.53 ± 5.38b 71.62 ± 8.71 69.15 ± 9.58 72.11 ± 8.87 70.86 ± 8.87 72.10 ± 10.71 71.99 ± 9.02A 64.29 ± 5.16B 73.44 ± 11.84a 65.20 ± 5.90ab 71.33 ± 8.80b

MC 4.95 ± 0.83 4.93 ± 0.88 4.99 ± 0.85 4.76 ± 0.78 5.33 ± 0.87 4.97 ± 0.86 4.90 ± 0.57 4.96 ± 0.83 4.82 ± 0.88 4.89 ± 0.60 4.90 ± 0.88 4.96 ± 0.86

FCS 3.59 ± 0.62a 3.13 ± 0.64b 3.47 ± 0.65 3.59 ± 0.56 3.89 ± 0.93 3.53 ± 0.66 3.50 ± 0.53 3.59 ± 0.62a 3.18 ± 0.64b 3.56 ± 0.73 3.20 ± 0.92 3.55 ± 0.61

a,bMeans with different letters were significant difference (p < 0.05), A,BMeans with different letters were significant difference (p < 0.01). SD, standard deviation; LW, liveweight; CW, carcass weight; DP, dressing percentage; BW, bone

weight; FW, front weight; FHW, front hoof weight; HHW, hind hoof weight; TaW, tare weight; RRAW, rumen, reticulum and abomasum weight; OmW, omasum weight; HW, heart weight; LW, liver weight; LTW, lung and trachea weight;

KW, kidney weight; RAW, renal adipose weight; CPW, cow penis weight; TeW, testicular weight; GFW, genital fat weight; SW, spleen weight; OxW, oxtail weight; CL, carcass length; CD, carcass depth; CBD, carcass breast depth; HLC,

hind legs circumference; HLW, hind legs width; HLL, hind legs length; TMT, thigh meat thickness; WMT, waist meat thickness; BFT, back-fat thickness; FCR, carcass fat coverage rate; MS, marbling score; EMA, eye muscle area; MC,

meat color; FCS, fat color score.
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in that of the CT genotype (50.13 ± 2.42%, p = 0.038). The
g.14210566C > T and g.14211055A > G loci showed a strong
linkage relationship (r2 = 0.887, LOD= 19.92).

Regarding fatty acid composition, as shown in Table 3,
the linoleic acid content of the AG genotype (0.131 ± 0.056
g/100g) at the g.14211090G > A locus was significantly
higher than that of the GG genotype (0.101 ± 0.032 g/100g,
p = 0.008, Table 3). The individuals with the TT genotype
(0.130 ± 0.054 g/100g) at the g.14210668C > T locus had
higher linoleic acid than the other two genotypes (0.102 ±

0.035 g/100 g, 0.100 ± 0.029 g/100g, p = 0.023, p = 0.022).
Similarly, individuals with the TC genotype (0.129 ± 0.054
g/100g) at the g.14210887C > T locus had higher levels of
linoleic acid than the other genotype (0.102 ± 0.032 g/100g, p
= 0.017).

Correlation Analysis of Polymorphic Locus
Haplotypes, Economic Traits and Fatty
Acids in Chinese Simmental Cattle
The haplotype CTCAG was significantly correlated with pH
(24 h) and fat color score (6.03 ± 0.27, 5.87 ± 0.18, 4.00 ±

0.93, 3.51 ± 0.59, p = 0.022, and p = 0.042, Table 4), and the
weight of the lung and trachea was significantly higher than in
other haplotype individuals (2.90 ± 0.35 kg, 2.23 ± 0.30 kg, p=
0.002). The front hoof weight of the haplotype CCCAG (5.71
± 0.53 kg) was significantly higher than that of CCCAA (5.13
± 0.52 kg, p = 0.044), the weight of oxtail (1.20 ± 0.19 kg)
was significantly higher than that of CTCAG (1.03 ± 0.16 kg,
p = 0.015), and the weight of the testis (0.63 ± 0.12 kg) was
significantly higher than that of CCCAA (0.46 ± 0.10 kg, p =

0.004). Similar to the results of the correlation analysis between
SNPs and fatty acid content, the content of linoleic acid in
haplotype CTCAG (0.130 ± 0.058 g/100g) was significantly
higher than that of haplotype CCCAG (0.097 ± 0.028 g/100 g,
p < 0.01, Table 5).

DISCUSSION

The candidate genes associated with carcass and meat quality
traits have been extensively validated in the livestock industry
in the expectation of obtaining better economic characteristics.
Single nucleotide polymorphisms as DNA markers for genetic
and molecular breeding preferences, combining gene function
studies with association analysis is more conducive to fully
explore the relationships and characteristics of genes. We
performed transcriptome sequencing analysis in cattle with
different fat deposition traits and obtained differentially
expressed genes, including ACSF3. Acyl-CoA synthetase family
member 3 (ACSF3), an essential enzyme that activates fatty acids
through the formation of thioester bonds to form acyl-CoA,
serves as the substrate for both de novo fatty acid synthesis and
oxidation (16). ACSF3 is valuable to be studied as a gene that
plays a role in the process of lipid metabolism.

In this study, we successfully constructed the RNA
interference and over-expression vectors of ACSF3, and
found that ACSF3 mRNA levels were positively correlated with

triglyceride content in cells. Five SNP loci were screened in
a population of 135 Chinese Simmental cattle, and haplotype
analysis and association analysis were performed on these five
SNP loci. The association between SNP loci, haplotypes and
economic traits and fatty acid composition was investigated,
and the results showed that these five SNP loci and haplotypes
were significantly associated with economic traits and fatty acid
composition of Chinese Simmental cattle.

Both milk lipid metabolism and meat lipid metabolism are
of interest in livestock industry research, and in the present
study, we were surprised to find that increased mRNA levels
of ACSF3 caused an increase in triglyceride content in both
BMECs and BFFs. This suggested to us that ACSF3 may play a
similar role in lipid metabolism, without tissue specificity. This
may be due to main role of ACSF3 is to activate the toxic,
endogenous antimetabolite malonate into malonyl-CoA that can
be decarboxylated to acetyl-CoA and therefore fully oxidized
within the TCA cycle. And one function of ACSF3 that has been
proposed was that it generated malonyl-CoA in the matrix of
the mitochondria to enable mitochondrial type II (mtFASII) fatty
acid synthesis (17, 18).

We found that it was co-annotated with genes such as
FASN and ACACA in the fatty acid biosynthesis and fatty
acid metabolism pathway of KEGG by predicting the ACSF3
protein interaction network. We hypothesized that ACSF3 may
affect genes related to lipid metabolism and thus affect lipid
metabolism. In the mitochondria, ACSF3 links malonate to CoA,
producing malonyl-CoA. In addition, when ACACA is inhibited,
TG synthesis will also be inhibited, and at the same time, fatty
acid synthesis is inhibited and fatty acid oxidation is stimulated
(19). The results of our qRT-PCR showed that the mRNA
expression levels of ACACA and ACSF3 changed consistently.
This may be due to the coordination of mammalian ACACA and
ACSF3 to produce the malonyl-CoA required for mitochondrial
fatty acid synthesis, indicating that ACACA also plays an essential
role in acetyl-CoA sensing. In mitochondria, malonyl-CoA is the
main signal of energy metabolism (20). It has been proved that
FASN inhibition leads to a rapid increase in malonyl-CoA in cells
(21). The result may be the reason why we found that ACSF3 and
FASN have a negative regulatory relationship at the mRNA level.

We screened five SNP loci in Chinese Simmental cattle
population, where the SNP of the g.14211090A > G loci
triggered missense mutations that resulted in the conversion of
the encoded amino acid from arginine to glutamine. In human
metabolic diseases research, ACSF3 as a cause of combined
malonic and methylmalonic aciduria (CMAMMA) has been
studied. Mutations in ACSF3 were identified, encoding the
putative methylmalonyl-CoA and malonyl-CoA synthase as the
cause of CMAMMA (16). A similar study found a homozygous
missense allele in the non-classical CMAMMA candidate gene
ACSF3 in patients (22). Hence, it is worth investigating whether
the mutation of ACSF3 could be used as an early molecular
marker for the detection of lipid metabolism in bovine.

For the carcass traits of Chinese Simmental cattle, the
g.14210566C > T and g.14211055A > G loci were significantly
associated with the liveweight and carcass weight. These results
suggest that these two SNPs may be associated with growth
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TABLE 3 | Association analysis of five SNPs in the second exon of ACSF3 gene and fatty acids in Chinese Simmental Cattle.

Types of fatty

acids

(g/100g)

g.14210566 C>T g.14210668 C>T g.14210887 C>T g.14211055 A>G g.14211090 G>A

CC (113) CT (15) CC (86) CT (34) TT (9) CC (118) TC (10) AA (111) GA (17) AA (9) AG (10) GG (110)

Myristic acid 0.020 ± 0.017 0.024 ± 0.018 0.020 ± 0.017 0.021 ± 0.019 0.023 ± 0.013 0.020 ± 0.017 0.025 ± 0.019 0.020 ± 0.017 0.025 ± 0.017 0.025 ± 0.022 0.029 ± 0.021 0.020 ± 0.016

Myristoleic

acid

0.002 ± 0.005 0.003 ± 0.004 0.002 ± 0.005 0.003 ± 0.004 0.002 ± 0.002 0.002 ± 0.005 0.004 ± 0.005 0.002 ± 0.005 0.002 ± 0.004 0.003 ± 0.005 0.003 ± 0.004 0.002 ± 0.005

Palmitic acid 0.258 ± 0.191 0.300 ± 0.184 0.265 ± 0.198 0.248 ± 0.181 0.296 ± 0.149 0.257 ± 0.190 0.313 ± 0.189 0.254 ± 0.191 0.318 ± 0.180 0.306 ± 0.211 0.347 ± 0.210 0.251 ± 0.185

Palmitoleic

acid

0.027 ± 0.031 0.031 ± 0.021 0.028 ± 0.034 0.026 ± 0.020 0.024 ± 0.013 0.027 ± 0.030 0.032 ± 0.023 0.027 ± 0.031 0.031 ± 0.020 0.029 ± 0.021 0.037 ± 0.023 0.027 ± 0.031

Margaric acid 0.011 ± 0.007 0.013 ± 0.007 0.011 ± 0.007 0.012 ± 0.008 0.014 ± 0.007 0.011 ± 0.007 0.014 ± 0.008 0.011 ± 0.007 0.014 ± 0.007 0.015 ± 0.010 0.015 ± 0.009 0.011 ± 0.007

Heptadecenoic

acid

0.005 ± 0.007 0.007 ± 0.005 0.006 ± 0.007 0.005 ± 0.006 0.003 ± 0.005 0.005 ± 0.007 0.005 ± 0.006 0.005 ± 0.007 0.007 ± 0.005 0.005 ± 0.006 0.009 ± 0.005 0.005 ± 0.007

Stearic acid 0.187 ± 0.112 0.221 ± 0.111 0.187 ± 0.104 0.188 ± 0.126 0.235 ± 0.131 0.186 ± 0.110 0.238 ± 0.140 0.184 ± 0.110 0.240 ± 0.117 0.241 ± 0.178 0.250 ± 0.123 0.181 ± 0.103

Oleic acid 0.365 ± 0.378 0.394 ± 0.224 0.379 ± 0.414 0.329 ± 0.230 0.404 ± 0.201 0.363 ± 0.372 0.424 ± 0.237 0.362 ± 0.381 0.410 ± 0.215 0.397 ± 0.271 0.462 ± 0.245 0.357 ± 0.377

Linoleic acid 0.101 ± 0.033b 0.120 ± 0.050a 0.102 ± 0.035b 0.100 ± 0.029b 0.130 ± 0.054a 0.102 ± 0.032b 0.129 ± 0.054a 0.101 ± 0.032b 0.122 ± 0.047a 0.106 ± 0.036 0.131 ± 0.056A 0.101 ± 0.032B

α-linolenic acid 0.006 ± 0.006 0.009 ± 0.013 0.007 ± 0.008 0.005 ± 0.005 0.010 ± 0.010 0.006 ± 0.006B 0.013 ± 0.015A 0.006 ± 0.006 0.009 ± 0.012 0.005 ± 0.005 0.011 ± 0.016a 0.006 ± 0.006b

Arachic acid 0.001 ± 0.003 0.001 ± 0.002 0.000 ± 0.001 0.001 ± 0.005 0.001 ± 0.001 0.001 ± 0.003 0.001 ± 0.002 0.001 ± 0.003 0.001 ± 0.002 0.001 ± 0.001 0.002 ± 0.002 0.001 ± 0.003

Eicosanic acid 0.001 ± 0.002 0.000 ± 0.001 0.000 ± 0.002 0.001 ± 0.002 0.000 ± 0.001 0.000 ± 0.002 0.001 ± 0.001 0.001 ± 0.002 0.000 ± 0.001 0.000 ± 0.001 0.001 ± 0.001 0.000 ± 0.002

Dihomo-γ-

linolenic

acid

0.010 ± 0.003 0.010 ± 0.003 0.010 ± 0.003 0.010 ± 0.003 0.009 ± 0.002 0.010 ± 0.003 0.011 ± 0.002 0.010 ± 0.003 0.010 ± 0.003 0.010 ± 0.001 0.011 ± 0.003 0.010 ± 0.003

Arachidonic

acid

0.049 ± 0.013 0.055 ± 0.019 0.050 ± 0.014 0.051 ± 0.013 0.049 ± 0.011 0.050 ± 0.013 0.056 ± 0.018 0.049 ± 0.013 0.053 ± 0.018 0.051 ± 0.012 0.059 ± 0.020a 0.049 ± 0.013b

a,bMeans with different letters were significant difference (p < 0.05), A,BMeans with different letters were significant difference (p < 0.01). SD, standard deviation.
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TABLE 4 | Association analysis of three haplotypes and economic traits in Chinese Simmental Cattle.

Types of fatty acids (g/100g) Haplotype (Mean ± SD)

Hap1 CCCAA (4) Hap2 CCCAG (63) Hap3 CTCAG (8)

Liveweight (kg) 423.63 ± 21.73 461.65 ± 50.83 442.94 ± 59.36

Carcass weight (kg) 213.00 ± 18.72 235.35 ± 30.33 229.88 ± 37.02

Dressing percentage 50.22 ± 2.00 50.91 ± 2.01 51.73 ± 1.80

Bone weight (kg) 18.68 ± 0.84 21.26 ± 3.04 20.88 ± 3.94

Front weight (kg) 21.44 ± 1.56 23.90 ± 2.52 22.63 ± 3.35

Front hoof weight (kg) 5.13 ± 0.52b 5.71 ± 0.53a 5.59 ± 0.68

Hind hoof weight (kg) 4.38 ± 0.48 4.82 ± 0.59 4.83 ± 0.47

Tare weight (kg) 43.20 ± 6.94 48.13 ± 5.59 46.55 ± 5.67

Rumen, reticulum and abomasum weight (kg) 7.79 ± 0.18 8.25 ± 0.83 7.81 ± 1.05

Omasum weight (kg) 4.75 ± 0.35 4.59 ± 0.66 4.79 ± 0.73

Heart weight (kg) 1.35 ± 0.09 1.50 ± 0.20 1.47 ± 0.18

Liver weight (kg) 4.19 ± 0.41 4.78 ± 0.62 4.48 ± 0.62

Lung and trachea weight (kg) 2.23 ± 0.30AB 2.79 ± 0.35B 2.90 ± 0.35A

Kidney weight (kg) 0.98 ± 0.04 1.00 ± 0.13 1.02 ± 0.16

Renal adipose weight (kg) 1.45 ± 0.20 1.63 ± 0.57 1.70 ± 0.40

Cow penis weight (kg) 0.48 ± 0.04 0.53 ± 0.07 0.52 ± 0.05

Testicular weight (kg) 0.46 ± 0.10B 0.63 ± 0.12A 0.56 ± 0.09

Genital fat weight (kg) 1.07 ± 0.33 1.10 ± 0.22 1.07 ± 0.27

Spleen weight (kg) 0.63 ± 0.09 0.76 ± 0.14 0.73 ± 0.16

Oxtail weight (kg) 1.05 ± 0.12 1.20 ± 0.19a 1.03 ± 0.16b

pH(0 h) 6.64 ± 0.18 6.84 ± 0.27 6.75 ± 0.22

pH(24 h) 5.95 ± 0.15 5.87 ± 0.18b 6.03 ± 0.27a

Carcass length (cm) 143.00 ± 3.74 146.70 ± 5.71 144.25 ± 7.19

Carcass depth (cm) 66.00 ± 2.31 65.48 ± 3.01 65.25 ± 3.20

Carcass breast depth (cm) 64.88 ± 0.85 66.78 ± 3.69 66.25 ± 4.03

Hind legs circumference (cm) 44.75 ± 1.50 48.66 ± 4.11 47.50 ± 2.83

Hind legs width (cm) 43.25 ± 3.20 44.76 ± 2.63 45.50 ± 1.91

Hind legs length (cm) 82.13 ± 2.46 84.61 ± 2.89 83.54 ± 3.04

Thigh meat thickness (cm) 16.80 ± 0.89 17.54 ± 1.64 17.31 ± 1.02

Waist meat thickness (cm) 5.75 ± 0.50 6.04 ± 0.44 5.95 ± 0.35

Back-fat thickness (cm) 0.28 ± 0.22 0.28 ± 0.11 0.26 ± 0.11

Carcass fat coverage rate (%) 21.50 ± 2.38 22.70 ± 8.09 25.63 ± 7.76

Marbling score 5.75 ± 0.50 5.92 ± 0.33 6.00 ± 0.00

Eye muscle area (cm²) 67.00 ± 9.63 73.14 ± 8.57 71.25 ± 9.07

Meat color 4.50 ± 0.58 5.11 ± 0.86 5.38 ± 0.92

Fat color score 3.50 ± 0.58 3.51 ± 0.59b 4.00 ± 0.93a

a,bMeans with different letters were significant difference (p < 0.05), A,BMeans with different letters were significant difference (p < 0.01). SD, standard deviation.

and development in cattle. For meat quality traits of Chinese
Simmental cattle, the g.14210566C > T, g.14211055A > G, and
g.14211090G > A loci were found to be significantly associated
with the eye muscle area. In Angus bulls, eye muscle area
had positive genetic (57%) and phenotypic (56%) correlations
with liveweight (23). The reason why the g.14210566C > T
and g.14211055A > G loci were found to be associated with
live weight and eye muscle area was attributed to the fact that
eye muscle area is genetically associated with live weight and
meat quality.

Similarly, the results of an association analysis of pork
quality traits and whole genomes showed that ACSF3 was a
candidate gene related to intramuscular fat (24). We examined
the fatty acid composition and content of intramuscular fat,
rather than measuring the percentage of intramuscular fat.
We were surprised to find that all the five SNPs obtained
from the screening were significantly associated with linoleic
acid. Linoleic acid is one of the essential fatty acids in the
human body. It plays a meaningful role in maintaining many
physiological functions of the human body, such as participating
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TABLE 5 | Association analysis of three haplotypes and fatty acids in Chinese

Simmental Cattle.

Types of fatty

acids

(g/100g)

Haplotype (Mean ± SD)

Hap1 CCCAA Hap2 CCCAG Hap3 CTCAG

(4) (63) (8)

Myristic acid 0.013 ± 0.005 0.020 ± 0.017 0.023 ± 0.014

Myristoleic

acid

0.000 ± 0.001 0.002 ± 0.006 0.002 ± 0.002

Palmitic acid 0.180 ± 0.014 0.261 ± 0.212 0.302 ± 0.159

Palmitoleic

acid

0.017 ± 0.005 0.029 ± 0.039 0.024 ± 0.014

Margaric acid 0.009 ± 0.002 0.010 ± 0.007 0.015 ± 0.008

Heptadecenoic

acid

0.002 ± 0.004 0.006 ± 0.008 0.003 ± 0.005

Stearic acid 0.149 ± 0.034 0.178 ± 0.102 0.243 ± 0.138

Oleic acid 0.247 ± 0.017 0.387 ± 0.475 0.409 ± 0.214

Linoleic acid 0.098 ± 0.022 0.097 ± 0.028B 0.130 ± 0.058A

α-linolenic acid 0.006 ± 0.005 0.005 ± 0.006 0.010 ± 0.011

Arachic acid 0.000 ± 0.001 0.000 ± 0.001 0.001 ± 0.002

Eicosanic acid 0.000 ± 0.001 0.000 ± 0.003 0.001 ± 0.001

Dihomo-γ-

linolenic

acid

0.010 ± 0.000 0.010 ± 0.003 0.009 ± 0.002

Arachidonic

acid

0.053 ± 0.012 0.049 ± 0.013 0.047 ± 0.011

A,BMeans with different letters were significant difference (p < 0.01). SD,

standard deviation.

in the synthesis of phospholipids and the metabolism of
other lipids, and has the effect of significantly lowering serum
cholesterol. Studies have shown that ACSF3 is significantly up-
regulated in the process of alcoholic liver disease, participates
in fatty acid and lipid metabolism, and accelerates liver
damage (25). Therefore, the SNPs of ACSF3 can be used
as a molecular marker for breeding cattle with high linoleic
acidity. The effect of bovine ACSF3 on lipid metabolism
is deserving of a follow-up in-depth study. Meanwhile, two
SNPs (g.14210887C > T and g.14211090G > A) were
significantly associated with α-linolenic acid. Linoleic acid
and α-linolenic acid are both beneficial to human health as
polyunsaturated fatty acids. Breeding individuals with a high
polyunsaturated fatty acid content in muscle is the goal of
specialized beef breed selection and high-quality beef production.
As a consequence, it is of great significance to screen the
genes and genetic markers that determine the polyunsaturated
fatty acids and to select high-quality beef cattle through the
application of molecular breeding techniques such as marker-
assisted selection.

The haplotype consisting of five SNPs was also associated
with linoleic acid. In an association analysis between SNPs
or haplotypes and meat quality traits, only the two traits of
fat color score and pH (24 h) were significantly associated.
The traits that were considered to be significant in the
association analysis of SNPs with traits did not exactly
match the results of haplotypes, which may be due to
the relatively small population of cattle collected in the
current experiment.

In conclusion, the function of the ACSF3 in bovine lipid
metabolism was preliminarily analyzed and we proposed an
association analysis report combining SNPs with economic
traits and fatty acid composition to support molecular marker-
assisted selection to predict the association analysis of SNPs with
economic traits of beef cattle.
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Effects of Heat Stress on the Ruminal
Epithelial Barrier of Dairy Cows
Revealed by Micromorphological
Observation and Transcriptomic
Analysis
Zitai Guo, Shengtao Gao, Jun Ding, Junhao He, Lu Ma and Dengpan Bu*

State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China

Heat stress (HS) alters the rumen fermentation of dairy cows thereby affecting the
metabolism of rumen papillae and thus the epithelial barrier function. The aim of the
present study was to investigate if HS damages the barrier function of ruminal epithelia.
Eight multiparous Holstein dairy cows with rumen cannula were randomly equally allocated
to two replicates (n � 4), with each replicate being subjected to heat stress or thermal
neutrality and pair-feeding in four environmental chambers. Micromorphological
observation showed HS aggravated the shedding of the corneum and destroyed the
physical barrier of the ruminal epithelium to a certain extent. Transcriptomics analysis of the
rumen papillae revealed pathways associated with DNA replication and repair and amino
acid metabolism were perturbated, the biological processes including sister chromatid
segregation, etc. were up-regulated by HS, while the MAPK and NF-kB cell signaling
pathways were downregulated. However, no heat stress-specific change in the
expression of tight junction protein or TLR4 signaling was found, suggesting that HS
negatively affected the physical barrier of the ruminal epithelium to some extent but did not
break the ruminal epithelium. Heat stress invoked mechanisms to maintain the integrity of
the rumen epithelial barrier by upregulating the expression of heat shock protein and
repairments in rumen papillae. The increase in amino acid metabolism in rumen papillae
might affect the nutrient utilization of the whole body. The findings of this study may inform
future research to better understand how heat stress affects the physiology and
productivity of lactating cows and the development of mitigation strategies.

Keywords: heat stress, dairy cow, ruminal epithelium, milk protein, rumen fermentation

INTRODUCTION

Heat stress (HS) has been a major concern for dairy producers in tropical and subtropical areas,
especially in summer, as HS can not only decrease milk yield but also decrease the content of milk
protein (Gao et al., 2017; Guo et al., 2018). Recently, perturbation of the inflammatory response
during HS was reported to be responsible, at least partially, for the declined milk protein synthesis
(Gao et al., 2019). The host inflammatory response was shown to be related to some of the abnormal
metabolites in the rumen, especially lipopolysaccharide (LPS) (Mani et al., 2012). In a previous study,
we revealed that HS increased the concentration of volatile fatty acid (VFA) in the rumen fluid before
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feeding (Gao et al., 2017). The alterations of rumen fermentation
in HS cows are similar to those observed in cows that suffer from
subacute ruminal acidosis (SARA). Indeed, the decline of rumen
pH during SARA increases the lysis of Gram-negative bacteria,
resulting in a rapid increase in LPS (Danscher et al., 2015).
However, it is difficult to determine the specific changes in
rumen fermentation in cows under HS.

It has been shown that HS can increase the intestinal
permeability of monogastric animals (Sakurada and Hales,
1998; Hall et al., 2001; Leon and Helwig, 2010). However, it
is not known if HS also increases the permeability of the rumen
epithelia, which are structured differently than the intestinal
epithelia. Unlike the intestinal epithelia of single monolayer
cells connected with tight junctions (Shen and Turner, 2006),
the ruminal epithelia have a multi-layered structure of
stratified squamous epithelium, the granulosum that has
tight junctions, spinosum, and basale (Graham and
Simmons, 2005). The complex structure of the rumen
papillae also plays an important role in defending against
harmful substances in rumen fluid, however, the blood
diversion from the viscera to the periphery might alter the
ruminal epithelial morphology under heat stress (Kregel, 2002;
Lambert et al., 2002). Though a recent study showed that mild
HS did not induce barrier dysfunction of the rumen papillae in
lactating dairy cows probably owing to a defense mechanism
and feeding adaptation (Eslamizad et al., 2020). The damages
of HS to the barrier function of ruminal epithelia in lactating
dairy cows remain elusive. We hypothesized that HS might
damage the barrier function of ruminal epithelia and induce
tissue inflammation, which could eventually decrease milk
protein synthesis. To this end, we evaluated the effect of HS
on the micromorphology and gene expression of the rumen
epithelia in lactating cows.

MATERIALS AND METHODS

Animals and Study Design
Eight multiparous Holstein dairy cows (238 ± 10 DIM; 618 ±
100 kg of BW; 23 ± 2.8 kg of milk/d) each with a permanent
rumen cannula were used in the current study. Due to
environmental chamber availability, the study was carried
out in two replicates with four different cows in each
replicate as reported in a previous study (Sun et al., 2019).
When four cows were being used in a replicate experiment, the
other cows were kept in a free-stall barn cooled with running
fans until they were required for another replicate experiment.
The four cows in one replicate were randomly allocated to four
individual environmental chambers (Beijing Kooland
Technologies Co., Ltd.) that had 12 h light (0600–1800) and
12 h dark (1800–0600) cycles. For the first 7 days, all cows were
maintained at thermal neutral conditions (20°C and 55%
relative humidity) and fed ad libitum for adaptation. The
experiment period lasted for 18 days including 9 days of the
control phase and 9 days of the trial phase. In the control
phase, all cows continued to be in thermal neutral conditions
[20°C and 55% of RH as configuration; 0600–1800 h of light]

and fed ad libitum. While in the trial phase, two of the four
cows were exposed to cyclical heat stress conditions (HS,
0600–1,800 h at 36°C, 1,800 to 0600 h at 32°C, and 40% of
RH) and fed ad libitum, whereas the other two cows were
maintained at the same thermal neutral conditions as
mentioned above but pair-fed (PFTN). The amount of feed
provided to the PFTN cows was calculated based on the
average feed intake of the HS cows 1 day earlier as
previously described by Wheelock et al. (2010); thus the
trial for the PFTN cows started 1 day after the HS cows. All
the cows had free access to drink water and were fed a total
mixed ration (TMR) formulated to meet the predicted
requirements of NRC in energy, protein, minerals, and
vitamins (Table 1). The cows were individually fed twice a
day (0500 and 1,700 h). The cows were milked twice a day
(0500 and 1700 h) and the milk yield was recorded at each
milking time. After the previous four cows exited the chamber,
the next four cows were randomly allocated to the four
chambers to repeat the experiment as described above. In
total, HS and PFTN each had four cows (n � 4).

Sampling and Measurements
In both the control and HS trial phases, rectal temperature
(RT), skin temperature (ST), and respiratory rate (RR) were
recorded for each cow four times daily (0100, 0700, 1,300, and

TABLE 1 | Ingredients and nutrients of experimental diet (DM basis).

Item Value

Ingredients (% of DM)
Bean meal 10.42
Cotton meal 5.03
Rapeseed meal 2.18
DDGSa 5.45
Feeding corn mealb 1.15
Steam-flaked corn 23.98
Limestone 0.91
Salt 0.55
Magnesium Oxide 0.36
Dicalcium Phosphate 0.42
Fat powder 1.15
Sodium bicarbonate 0.97
Supplementc 0.67
Corn silage 28.77
Alfalfa hay 17.99

Chemical analysis (% of DM)
NDFd 27.69
ADFe 18.57
CPf 15.31
Ash 7.88
Organic matter 92.12
Ether extract 2.1
NEL

g (Mcal/kg of DM) 1.69

aDistillers dried grains with solubles.
bFlour made with corn.
cContained (per kg of DM) aminimum of 250,000 IU, of vitamin A; 65,000 IU, of vitamin D;
2,100 IU, of vitamin E; 400 mg of Fe; 540 mg of Cu; 2,100 mg of Zn; 560 mg of Mn;
15 mg of Se; 35 mg of I; and 68 mg of Co.
dNeutral detergent fiber.
eAcid detergent fiber.
fCrude protein.
gNet energy of lactation.
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1900 h). To calculate the precise temperature-humidity-index
(THI) inside the chamber, ambient temperature (AT) and RH
were recorded four times daily (0100, 0700, 1,300, 1900 h)
automatically with an electronic thermometer; THI was
calculated using the equation below as previously described
(Buffington et al., 1981).

The weight of orts from each cow was recorded daily before
the morning feeding. On d 2, 4, 6, and 8 of the control and HS
trial phases, samples of rumen fluid were collected via rumen
cannula before morning feeding. The pH of the rumen fluid
was immediately measured after sampling using an electronic
pH meter. Then the rumen fluid samples were filtered through
four layers of gauze and divided into two aliquots (10 ml
each), with one aliquot being acidified with 0.1 ml of 6 M HCl
for ammonia concentration determination, while the other
aliquot being preserved following the addition of 1 ml of 25%
metaphosphoric acid for analysis of VFA. All samples of
rumen fluid were stored at −20°C until analysis. Milk
samples were collected daily from morning and afternoon
milking (25 ml for each milking) and mixed equally and
stored at 4°C until analysis after bronopol tablet (D&F
Control System, San Ramon, CA) was added as a preservative.

Before morning feeding on d 9 of the trial phase in each
replicate, six samples of rumen papillae were collected using
forceps via the rumen cannula from each cow. Three papillae
samples were gently rinsed in 0.9% NaCl solution as described by
Dieho et al. (2016), immediately frozen in liquid nitrogen, and
then stored at −80°C until RNA isolation, while the other three
papillae samples were fixed in buffered 4% paraformaldehyde for
micromorphological observation.

The fixed papillae samples were rinsed and dehydrated in a
series of ethanol baths and then deparaffinized in xylene. Each
papillae sample was stained with hematoxylin and eosin (H&E)
and then observed under a Leica S9 Stereo microscope (Leica
Microsystems Inc., Buffalo Grove, United States) as described
previously (Nishihara et al., 2019).

Analysis
Feed samples were dried at 65°C for 48 h and ground with a
Wiley mill (Arthur H. Thomas Co., Philadelphia, PA) for
analysis of ash, DM, CP, NDF, and ADF content. The NDF
content was measured using a fiber analyzer (Ankom
Technology, A200, Macedon, NY) using the method of Van
Soest et al. (1991), but α-amylase and sodium sulfide were
used. The Ash, DM, CP, and ADF contents were analyzed
according to the AOAC Official Method (Horwitz et al., 2010,
942.05 for ash; 2001.12-2005 for dry matter; 988.05 for CP, and
973.18 for ADF).

Milk samples were analyzed with the method of infrared
spectrophotometry using an automatic analyzer of milk
composition (MilkoScan Type 78,110, Foss Electric, Hillerød,
Denmark). The concentration of VFA in rumen fluid samples was
determined using gas chromatography (Agilent 6890A, Agilent
Technologies, California, United States) as described by Hu et al.
(2005). Ammonia-N in the rumen fluid samples was measured as
described by Broderick and Kang (Broderick and Kang, 1980).

Specimens of rumen papillae were microscopically
examined and analyzed using a panoramic scanner
(3DHISTECH Ltd., H-1141 Budapest, Hungary), meanwhile
the results were assembled and viewed. For each specimen,
four clear areas were selected and used to measure the total
thickness of ruminal epithelia and the thickness of the
corneum and granulosum. To acquire the distance, a
segment perpendicular to the screen section was made and
measured via the ruler tool in the application.

The effect of the HS on the gene expression in papillae was
evaluated using transcriptomics. The RNA extraction and
sequencing, analysis of differently expressed genes (DEGs)
and Go and KEGG enrichment analysis were conducted
following our former research (Gao et al., 2021), during
which the Dynamic Impact Approach (DIA), Database for
Annotation, Visualization, and Integrated Discovery (DAVID)
were used.

Statistical Analysis
Data of lactation performance, rumen fermentation, parameters
of rumen papillae, and vital signs were statistically analyzed using
SAS v. 9.4 (SAS Institute, Cary, NC) with all data tested for
normality. All data were analyzed using PROC MIXED.
Significance was declared at p ≤ 0.05, and the tendency was
declared at 0.05 < p ≤ 0.10.

TABLE 2 | The vital signs, lactation performance and rumen fermentation of
dairy cows.

Items PFTNa HS SEM p-value

Treatment Period

THIb 68.92 83.11 0.7996 0.0002 0.0145
RRc (counts/min) 27.42 72.62 3.7667 0.0006 0.4904
RTd, °C 38.49 39.82 0.4505 0.0484 0.3095
STe, °C 32.30 36.89 0.2374 0.0002 0.3138
DMIf, kg/d 10.25 10.01 1.0783 0.8293 0.1206
Milk yield, kg/d 17.94 11.80 2.2121 0.0480 0.2112
Protein, % 3.64 3.26 0.1387 0.0436 0.6024
Fat, % 4.88 5.41 0.9828 0.6295 0.8379
Lactose, % 4.74 4.92 0.5317 0.7408 0.7902
SCSg 7.31 8.40 1.8059 0.5783 0.0199
pH 6.71 6.34 — 0.0335 0.5840
LPSh, EU/mL *105 0.1817 0.1861 0.0285 0.8780 0.5218
NH3-N, mg/dL 17.04 19.07 2.2663 0.4707 0.2407
Total VFAi 58.01 76.34 2.3998 0.0001 0.9284
Acetate, mmol/L 32.65 45.55 4.2921 0.0189 0.7827
Propionate, mmol/L 14.25 20.99 1.9927 0.0244 0.9488
Isobutyrate, mmol/L 0.68 0.58 0.0579 0.1875 0.6024
Butyrate, mmol/L 7.96 9.58 0.8364 0.0671 0.9911
Isovalerate, mmol/L 1.29 1.15 0.1585 0.4265 0.9848
Valerate, mmol/L 0.65 1.05 0.0676 0.0107 0.6748

aPair-feeding thermal neutral.
bTemperature-humidity index.
cRespiration rate.
dRectal temperature.
eSkin temperature.
fDry matter intake.
gSomatic cell score.
hLipopolysaccharide.
iVolatile fatty acid.
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Analysis of differently expressed genes (DEGs) was conducted
with the DESeq2 package (1.26.0) in R (3.6.1). The mapped read
count tables of individual samples and genes were used as the

standard workflow instructed. The false discovery rate (FDR)
obtained by the method of Benjamin and Hochberg was used to
correct the p-value. Genes with p < 0.05 were regarded as DEGs.

FIGURE 1 | The rumen papillae structure of HS cows (A,B) and PFTN cows (C,D), and their thickness of the stratum corneum (SC) plus stratum granulosum (SG)
layers of the rumen epithelium (E) as well as total epithelial thickness (F). 1) Stratum Spinosum.2) Stratum Basale.3) Stratum Corneum.4) Stratum Granulosum.
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RESULTS

The Effect of HS on Vital Signs, Lactation
Performance, and Rumen Fermentation of
Dairy Cows
The effects of HS on vital signs, lactation performance, and
rumen fermentation are reported in Table 2. In brief, HS
increased the RR, RT, and ST (2.65-fold, 1.33°C and 4.59°C,
respectively; p < 0.01) compared with the PFTN conditions,
and reduced milk yield (by 34.22%, p < 0.05) and the content of
milk protein (by 10.44%, p < 0.05) compared with the PFTN
conditions. In addition, HS increased the concentration of
total VFA (by 31.60%, p < 0.01), acetate (by 39.51%, p < 0.05),
propionate (by 47.29%, p < 0.05), and valerate (by 61.54%, p <
0.05) in rumen fluid, while decreased the rumen liquor pH
compared with PFTN. The HS cows tended to have increased
concentration of butyrate (by 20.35%, 0.05 < p < 0.1) but not
isobutyrate or isovalerate.

The Effect of HS on Rumen Papillae
The HS cows showed obvious damage and slough off of the
corneum (Figures 1A,B), while the PFTN cows had intact
corneum (Figures 1C,D). Heat stress enlarged the intercellular
space of the granulosum and spinosum and induced obvious
separations of layers inside the rumen papillae (Figure 1B).
Furthermore, HS tended to increase the thickness of corneum
and granulosum (23.20 vs. 28.39 μm; 0.05 < p < 0.1; Figure 1E)
but did not affect the thickness of the whole rumen papillae
(Figure 1F).

The Effect of HS on the Gene Expression in
Rumen Papillae
A total of 15,654 unique expressed genes were detected in the
tissue of rumen papillae. Between the HS and PFTN cows, 501
genes were DEGs, including 238 up-regulated and 263 down-
regulated (Padj ≤0.05). The methods of DIA and DAVID were
used in the functional analysis of the DEGs. The whole DIA
output, the results of perturbations on the main categories and
subcategories of the KEGG in rumen papillae between HS and
PFTN cows, and the top 20 most impacted pathways, as
uncovered by the DIA, in the rumen papillae of HS cows
compared with PFTN cows are available in supplement File
S2. All the results of DAVID analysis using the KEGG and
GO Biological Process (GO_BP) are shown in Figure 2. In the
HS cows, the GO_BP analysis revealed 7 and 16 different terms
that were downregulated DEGs and upregulated DEGs (p ≤ 0.05),
respectively.

DISCUSSION

Heat stress significantly decreases feed intake and milk performance
(Beede and Collier, 1986; West, 2003; Ranjitkar et al., 2020). A THI
of 68–69 was considered to cause some HS when evaluated with
respect to rising respiratory rates and rectal temperature
(Brügemann et al., 2012; Collier et al., 2012; Umar et al., 2021).
However, in this study, theHS cows suffered amore severe reduction
in milk yield compared with PFTN cows, which is consistent with
our previous study (Gao et al., 2017). The results of vital signs, milk
yield, and THI indicated that the HS and pair-fed model was

FIGURE 2 | The significantly enriched pathways in rumen epithelial tissues of the HS and the PFTN cows as determined using Database for Annotation,
Visualization and Integrated Discovery (DAVID) analysis against the GO_BP and KEGG databases.
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successfully performed. Evidently, HS probably directly decreased
milk synthesis through the regulation of the growth hormone axis as
proposed previously (Rhoads et al., 2010).

As the major products of rumen fermentation, VFA are the main
energy source for ruminants (Sutton et al., 1988; Owens and Basalan,
2016). However, slight perturbations in rumen fermentation can
change the concentration of individual VFAs. Heat stress can
increase the frequency of feed ingestion and drinking (Eslamizad
et al., 2020; Herbut et al., 2021). It is believed that such adaptations
were the results of self-regulation in response to HS (West, 2003).
Robles et al. (2007) found that increasing the frequency of daily
feeding (2 or 4 times) increased the concentration of total VFA
compared with cows fed only once daily. In the current study, the
amount of ingested fermentable organic matter was similar between
the HS and the PFTN cows. There was a small chance that feeding
changes would affect VFA concentration by reducing or increasing
DMI. Faster dilution in the rumen caused by increased water intake
was proved to promote microbial growth in an early study (Nocek
and Braund, 1985). The rumen microbes can provide moderate
concentrations of fermentation end product source of the ingesta
provided by the ruminant (Calamari et al., 2013), which were
ultimately metabolized to VFAs and absorbed through the rumen
wall (Hyder et al., 2017). Thus, the higher rumen liquid turnover rate
in the HS cows caused by feeding changes might be attributable to
their increased VFA concentration in the rumen.

Elevated concentrations of propionate and butyrate in the rumen
can stimulate the development of the rumen papillae, hence
enhancing VFA absorption across the ruminal epithelium
(Kristensen and Harmon, 2004; Storm et al., 2011). Butyrate is
likely to be oxidized into β-hydroxybutyrate after being absorbed in
the ruminal epithelium cells, directly providing energy to the rumen
papillae (Ślusarczyk et al., 2010). Steele et al. (2012) showed that
butyrate promotes the length of rumen papillae by perfusion trials.
Moreover, a low concentration of butyrate was shown to inhibit cell
apoptosis (Xu et al., 2018). Therefore, elevated rumen concentrations
of propionate and butyrate corroborate the increased thickness of the
corneum and granulosum observed in the HS cows.

The corneum of rumen papillae in the HS cows was shed and
the inside layers appeared separated. The corneum is in direct
contact with rumen content and is colonized with rumen
microorganisms and thus the epithelial tissues are updated
regularly (Lavker and Sun, 1983). The update frequency is
related to diet ingredients, with high-concentrate diets
significantly reducing the renewal frequency. Tajima et al.
(2001) indicated that long-term feeding of high-concentrate
diets decreased the acetate:propionate ratio in the rumen fluid
whereas it increased the concentration of total VFA, suggesting
that ruminal corneum exfoliation in HS cows may also be
attributed to increased total rumen VFA concentration. In
addition, the transport and absorption of VFA by the ruminal
epithelium depend on the integrity of the corneum and the degree
of keratinization (Galfi et al., 1991; Del Bianco Benedeti et al.,
2018). Yohe et al. (2019) reported that the exfoliation of the
corneum and the hyperkeratosis of the epithelium reduce the
ability of the ruminal epithelium to transport and absorb VFA.
Therefore, the increased VFA concentration in the HS cows
might be a major reason for the exfoliation of the corneum.

The HS treatment affected the expression of some genes in the
rumen papillae. Among the 20 most impacted pathways (as
detected with the DIA analysis), HS activated one pathway
related to membrane transport (ABC Transporter). The ABC
transporters transport various substrates including amino acids,
peptides, and cellular metabolites across the cell membrane
(Schneider and Hunke, 1998; Dean et al., 2001). Except for the
upregulation of ABC transporters, HS upregulated the expression
of HSPA5 and DNAJB9, which encode heat shock proteins (Hsp)
70 and 40, respectively. Hsp has functions in maintaining
physiological and stabilizing the structure of cells (Sharp et al.,
1999), and among all the known Hsp, Hsp70 has the most
prominent functions in most animals under stress (Kiang and
Tsokos, 1998; Bhat et al., 2016). Considerable increases in the
expression of Hsp are usually directly associated with stress
(Feder and Hofmann, 1999). Herein, the upregulation of Hsp
observed in the rumen papillae of the HS cows is beneficial to the
repair and maintenance of the cells. As a result, the absorption
and utilization of amino acids in the rumen papillae increased as
indicated by the upregulation of six amino acid metabolism
pathways by HS. The up-regulation of the amino acids
metabolism indicates that amino acid utilization in the
ruminal epithelium was enhanced by Hsp in the HS cows,
suggesting the amino acid concentrations in rumen fluid were
increased. The source of amino acids in rumen fluid was mainly
from diet protein as well as the degradation of rumen
microorganisms. Some rumen microorganisms could directly
synthesize some amino acids from VFA and ammonia. The
increased rumen concentration of VFA could provide the
carbon source for amino acid synthesis, meanwhile causing
the death of gram-negative bacteria in rumen. Furthermore,
the concentrations of the amino acids whose metabolism was
up-regulated by HS were also increased in the rumen by SARA,
and SARA can also exacerbate the breakdown of bacteria and
increase the rumen concentration of amino acids. Thus, the
activation of amino acids metabolism in the papillae in the HS
cows might be similar to that observed in cows suffering from
SARA, which is mostly related to the changing of rumen
fermentation.

Besides up-regulating the metabolism of amino acids, HS also
influenced the replication of DNA and the repair of ruminal
epithelial cells. Four of the 20 most impacted pathways are
relevant to the replication and repair of genetic information
processing, among which homologous recombination, Fanconi
anemia pathway is related to the repair process (San Filippo et al.,
2008; Krokan and Bjørås, 2013; Rodríguez and D’Andrea, 2017).
While homologous repair is the most important mechanism of
repair of DNA double-strand breaks (Baumann and West, 1998).
HS leads to excessive production of reactive oxygen species (ROS)
in dairy cows, inducing oxidative stress (OS) in their body (Guo
et al., 2021). The mitochondrial dysfunction following OS can
induce pro-apoptotic factors in the mitochondrial inner
membrane and activate endogenous apoptosis and ultimately
lead to tissue apoptosis (Kannan and Jain, 2000; Antonsson,
2001). Propionate and butyrate were believed to play an
important role in cell growth, but several studies have
contradictory opinions on the effects of these two VFAs
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(Baldwin, 1999; Shen et al., 2005). Liu et al. (2014) indicated that
butyrate needed to be used in combination with insulin-like
growth factor-1 (IGF-1) to significantly promote DNA
replication, and otherwise it can inhibit DNA replication. In
the present study, we found up-regulation of the gene encoding
insulin-like growth factor binding protein 5 in the HS cows,
which might enhance the biological effects of IGF-1. Therefore,
the OS induced by HS could aggravate the damage to the
epithelial cells in rumen papillae. Such damage might activate
the repairing of intracellular DNA. To protect the epithelial cells,
Hsp synthesis needs to increase, and ruminal epithelial cells need
to upregulate their amino acid metabolism. Because nutrients are
partitioned between the liver and mammary gland in cows under
HS (Bu et al., 2017), the increase in amino acid metabolism in
rumen papillae would decrease the supply of precursors for milk
production by the mammary glands. However, further
correlation analysis of nutrient utilization among the rumen
epithelia, mammary gland, and other tissues is still needed to
support this premise.

The results of our DAVID analysis verified the activation of
replication and repair in rumen papillae. All the up-regulated DEGs
are involved in DNA replication and cell division, while the down-
regulated DEGs are involved in the MAPK signaling pathway and
the NF-kB cell signaling pathway in rumen papillae. Mitogen-
activated protein kinases (MAPKs) are a type of protein kinases
that are widely present in animal cells. They are activated in cells in
which DNA damage or oxidative damage occurs, inducing a pro-
apoptotic effect (Seger andKrebs, 1995; Zumsande andGross, 2010).
The TLR4/NF-kB pathway is closely related to the anti-
inflammatory immunity of the body (Zusso et al., 2019).
Moreover, one study has found that TLR4 in epithelial cells
could recognize LPS and activate related pathways (Bäckhed
et al., 2002). Taken together, the rumen papillae in the HS cows
did not exhibit leukocyte migration or up-regulation of the NF-kB
pathway, suggesting that TLR4 related upstream receptors might
have not been activated. Furthermore, the expressions of tight
junction protein including claudin, occludin, and ZO-1 showed
no difference between the HS and PFTN cows. The tight
junctions among ruminal epithelial cells are the most important
connection between cells and serve as the barrier preventing harmful
substances from the rumen (Zhang et al., 2019;Ma et al., 2021). They
can also assist in the transport of ions and nutrients. The results of
the present study suggest that the expression of Hsp may participate
in the protection of tight junctions.

CONCLUSION

Heat stress exhibited direct impacts on rumen fermentation and
metabolism of rumen papillae. Heat stress promoted the
proliferation of the rumen papillae but aggravated the
shedding of the corneum and may negatively affect the
physical barrier of the ruminal epithelium to a certain extent.
The increase in VFA concentration induced by heat stress might
stimulate the development of rumen papillae. However, heat
stress did not break the intact barrier function, since neither a
change in tight junctions nor perturbation to inflammatory

response was observed in ruminal papillae, and heat stress did
not alter the expression of TLR4-related upstream receptors. Heat
stress up-regulated the expression of heat shock protein and
activated the repair of damaged epithelial cells in rumen papillae.
These mechanisms contribute to the maintenance of the integrity
of rumen tissue. The up-regulated metabolism of amino acids
along with Hsp synthesis may affect the supply of the precursors
for milk protein synthesis, but correlation analysis of the
utilization of amino acids in organs and the whole body is
needed in future studies.
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Skeletal Muscle Expression of
Actinin-3 (ACTN3) in Relation to
Feed Efficiency Phenotype of F2
Bos indicus - Bos taurus Steers
Robert N. Vaughn1, Kelli J. Kochan1, Aline K. Torres1, Min Du2, David G. Riley1, Clare A. Gill 1,
Andy D. Herring1, James O. Sanders1 and Penny K. Riggs1*

1Department of Animal Science, Texas A&M University, College Station, TX, United States, 2Department of Animal Sciences,
Washington State University, Pullman, WA, United States

In this study, actinin-3 (ACTN3) gene expression was investigated in relation to the feed
efficiency phenotype in Bos indicus - Bos taurus crossbred steers. A measure of relative
feed efficiency based on residual feed intake relative to predictions from the NRC beef
cattle model was analyzed by the use of a mixed linear model that included sire and family
nested within sire as fixed effects and age, animal type, sex, condition, and breed as
random effects for 173 F2 Nellore-Angus steers. Based on these residual intake
observations, individuals were ranked from most efficient to least efficient. Skeletal
muscle samples were analyzed from 54 steers in three groups of 18 (high efficiency,
low efficiency, and a statistically average group). ACTN3, which encodes amuscle-specific
structural protein, was previously identified as a candidate gene from a microarray analysis
of RNA extracted from muscle samples obtained from a subset of steers from each of
these three efficiency groups. The expression of ACTN3 was evaluated by quantitative
reverse transcriptase PCR analysis. The expression of ACTN3 in skeletal muscle was 1.6-
fold greater in the inefficient steer group than in the efficient group (p = 0.007). In addition to
expression measurements, blocks of SNP haplotypes were assessed for breed or parent
of origin effects. A maternal effect was observed for ACTN3 inheritance, indicating that a
maternal B. indicus block conferred improved residual feed efficiency relative to the B.
taurus copy (p = 0.03). A SNP haplotype analysis was also conducted for m-calpain
(CAPN2) and fibronectin 1 (FN1), and a significant breed effect was observed for both
genes, with B. indicus and B. taurus alleles each conferring favorable efficiency when
inherited maternally (p = 0.03 and p = 0.04). Because the ACTN3 structural protein is
specific to fast-twitch (type II) muscle fibers and not present in slow-twitch muscle fibers
(type I), muscle samples used for expression analysis were also assayed for fiber type ratio
(type II/type I). Inefficient animals had a fast fiber type ratio 1.8-fold greater than the efficient
animals (p = 0.027). Because these fiber-types exhibit different metabolic profiles, we
hypothesize that animals with a greater proportion of fast-twitch muscle fibers are also less
feed efficient.
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INTRODUCTION

Efficient use of resources is regarded as a critical area of emphasis
for livestock production (Kenny et al., 2018; Brito et al., 2021).
Feed costs can contribute to 70% of total livestock production
costs (Becker 2008). Environmental costs associated with beef
production have become increasingly important to the consumer.
Although the beef industry made substantial strides in reducing
the environmental footprint of cattle production over several
decades (Capper 2011), feed efficiency remains a target today in
beef producers’ efforts toward sustainability. In considering
nutrient security for humans, utilizing new and emerging
technologies to better understand the complex physiological
mechanisms of production traits will be key for enabling even
greater efficiency of food animal production (Riggs et al., 2017;
Riggs et al., 2018). Increased access to nutrient-dense animal
source foods requires greater production volume if global
population growth reaches 9.8 billion people in the coming
decades (FAO, 2018). Additionally, a systematic review of
literature that examined life cycle assessment in cattle
(published between 2000 and 2016) contained climate change
as a category, with nearly a third of those papers focusing on only
that topic (McClelland et al., 2018). Understanding feed efficiency
in the context of breeds adapted to specific environmental
conditions—particularly hot, dry conditions found in much of
the world’s grazing lands—has important economic and
environmental implications.

Brunes et al. (2021) noted that feed efficiency traits in beef
cattle are highly complex and affected by numerous biological
and polygenic mechanisms. In their GWAS analysis of feed
efficiency from 4,329 Nellore cattle, multiple genomic regions
were identified that harbor sequence variation associated with
greater than 0.5% of the additive genetic variance for feed
efficiency in the population (Brunes et al., 2021). Genes within
the identified regions contribute to the metabolism of protein,
lipids, and numerous metabolic, energetic, and behavioral
pathways. A study of dairy cattle in New Zealand (Puillet
et al., 2021) examined gene-by-environment interactions. As
might be expected, this work demonstrated that the
relationships between feed efficiency and other production
traits are complex and must be carefully balanced when one
considers overall measures of lifetime production efficiencies.

In the present study, we focused on aspects of feed efficiency
influenced by skeletal muscle by specifically examining ACTN3
within a genetic mapping herd of beef cattle that utilized Bos
indicus–Bos taurus cattle suited to the subtropical environment of
Texas. Resting energy consumption contributes to feed efficiency
as a major component of an animal’s overall energy requirements.
Skeletal muscle has lower energy requirements by weight
compared to other tissue types. However, because skeletal
muscle mass contributes as much as half of the live animal’s
weight, a great deal of an animal’s total caloric intake may be
utilized for the growth and maintenance of this tissue.
Approximately 20% of an animal’s overall energy consumption
is consumed by the skeletal muscle (Ortigues 1991), and this
percentage can increase drastically during stress, activity, or
changes in temperature.

We evaluated ACTN3 sequence haplotypes and gene
expression in F2 Nellore-Angus steers that had been evaluated
for efficiency. For the study we describe here, we specifically
wanted to investigate whether different ACTN3 alleles in this
population corresponded to feed efficiency rates. This gene was
identified as one candidate contributing to a feed efficiency
phenotype from a pilot gene expression network analysis, and
we suspected that animals differed in muscle turnover rate. We
hypothesized that we could identify genetic variation in ACTN3
responsible for differences in muscle physiology and homeostasis
that are important for overall feed efficiency. In pigs, a
relationship between muscle turnover and residual feed intake
was previously described (Cruzen et al., 2013). In beef cattle, the
negative correlation of muscle proteolysis rate and feed efficiency
has been noted (McDonagh et al., 2001). Other investigators
have evaluated skeletal muscle gene expression in beef cattle
feed efficiency studies. For example, Lam et al., 2020
developed an RNA sequencing pipeline from liver and
muscle transcriptomes (Tizioto et al., 2016) to identify
single nucleotide polymorphisms (SNP) associated with
feed efficiency in Nellore steers classified with high or low
residual feed intake (RFI). In this study, the authors suggested
relationships between feed efficiency and both immune and
metabolic function in livestock. Regulation of the RAC1 gene
was associated with less efficient cattle. Interestingly, the
genetic pathways that include RAC1 and ACTN3 may have
related functional roles associated with calcium metabolism-
based regulation of immune function (Calender et al., 2020).

Also contributing to energetic requirements, different skeletal
muscle fiber types have different energy requirements. Type II, or
fast-twitch fibers, have greater energy demands than type I, or
slow-twitch fibers. A study in horses identified ACTN3 as a
potential element associated with muscle performance (Ropka-
Molik et al., 2019). Welch et al., 2013 found a positive correlation
between relative feed intake (RFI) and type II muscle fibers. This
finding is consistent with the idea that the physiological skeletal
muscle phenotype of an animal contributes to its overall
efficiency phenotype. Because ACTN3 is expressed only in
type II fibers, this study also examined fiber type profiles in
muscle samples.

MATERIALS AND METHODS

Feed Efficiency Phenotype
For this study, feed and carcass data, obtained from 173 Nellore-
Angus F2 steers in 13 full-sibling families produced by embryo
transfer from the Texas A&M McGregor Genomics research
population located in central Texas (latitude: 31.3865,
longitude: −97.4105), were utilized, as described by Amen
(2007). Briefly, calves were produced in the spring and fall
calving seasons, and this study used calves born from 2003 to
2005. After weaning (approximately 230 days of age), the animals
were grass-fed for approximately 130 days until they reached
11–13 months of age. Steers were moved to a Calan Broadbent
Feeding System (American Calan, Northwood, NH, USA) to
measure individual feed intake. Over 28 days, the steers were
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adjusted to the finishing diet (Table 1). Feeding was ad libitum,
and uneaten feed was removed and measured every 7 days.
Animals were weighed every 28 days for ~140 days at the same
time of day and in the same order of pens at each weigh day to
equalize gut fill effects across time, as much as possible.

Using the NRC (2000) model application, the daily feed intake
required to achieve observed ADG was predicted. Model inputs
included feeding period mid-weight (used as the current
reference weight for model predictions) and final weight at
slaughter for each animal. Standardized inputs were used for
animal type (growing/finishing), age (14 months), sex (steer),
BCS (5), breed (Nellore-Angus two-way cross), management
(ionophore), diet (Table 1), and quality grade (select).
Environmental factors in the model were set to be
thermoneutral. The model predicted intake was subtracted
from the observed dry matter intake (DMI), and the difference
is defined as residual feed intake based on the NRC model
(RFINRC), such that those animals that consumed less than
predicted (thus, were more efficient) had negative RFINRC (Liu
et al., 2000). Mixed procedures of SAS were then used to analyze
RFINRC with fixed factors of sire and family nested within sire
(Amen 2007). This method of residual prediction parallels more
typical calculations of RFI, in which individual residuals represent
a deviation from a modeled mean intake at an observed rate of
gain. However, the standard method is generally restricted to use
within a single contemporary group fed simultaneously or with
the use of the contemporary group as a model effect. Importantly,
in this case, a standard model (the NRC) was utilized to construct
the modeled mean intake rather than a regression on observed
data, thus enabling animals in multiple contemporary groups to
be evaluated against a common model.

Sample Selection
For gene expression analysis, 36 animals were identified at the
tails of the efficiency distribution based on RFINRC as described
above. A total of 18 animals were classified as most “efficient” for
this population and had negative RFINRC residuals indicating that
they had consumed less feed than would be expected based on the
model. A total of 18 animals were classified as most “inefficient,”

with positive RFINRC residuals indicating they had consumed
more feed than would be expected based on the model. Muscle
samples from these 36 animals were used for subsequent
expression analysis. In addition, a statistically average group of
18 animals with an RFINRC residual clustered around zero was
included for comparison purposes. Thus, a total of 54 animals
from the middle, and both tails of the residual distribution were
analyzed for gene expression. Means for these groups are
presented in Table 2. The distribution of these groups across

TABLE 2 | Simple means (±STD err) for RFINRC residuals by efficiency groups.

Item Efficient Average Inefficient

n 18 18 18
RFINRC residuals −2.3 ± 0.1a 0.0 ± 0.0b 2.3 ± 0.1c

aMeans within a row with different superscripts differ significantly (p < 0.01).
bMeans within a row with different superscripts differ significantly (p < 0.01).
cMeans within a row with different superscripts differ significantly (p < 0.01).

TABLE 3 | Birth year season (BYS) distribution among efficiency groups.

Group N F03 F04 F05 S03 S04 S05

Efficient 18 0 1 0 1 2 14
Average 18 3 4 4 1 4 2
Inefficient 18 5 4 6 1 2 0

Season is designated as Fall (F) or Spring (S).

TABLE 4 | Frequency table of family distribution across BYS contemporary
groups from animals evaluated for feed efficiency in a previous study (Amen,
2007).

Contemporary group

Family
IDa

S2003 F2003 S2004 F2004 S2005 F2005 Total

70 1 5 4 (E 1) 2 (I 1) 1 (E 1) 4 17
71 2 2 5 4 2 (E 2) 0 15
72 4 (E 1) 0 5 (I 1) 0 2 (E 2) 7 18
73 2 3 0 0 0 0 5
74 4 0 0 0 0 0 4
75 5 (I 1) 0 0 2 4 (E 1) 0 11
76 2 3 0 0 0 0 5
77 1 5 (I 5) 1 (I 1) 1 9 (E 3) 0 17
80 0 7 3 (E 1) 16 (I 1) 0 1 27
81 0 1 11 3 5 (E 3) 5 (I 3) 25
82 0 0 0 0 0 6 6
83 0 0 3 2 4 (E 2). (I 1) 2 (I 2) 11
84 0 0 0 1 7 (E 1) 4 (I 1) 12

Total 21 26 32 31 34 29 173

Season is designated as Fall (F) or Spring (S). Distribution of animals identified in the
group of 18 most efficient (E-n) or 18 most inefficient (I-n) evaluated in the current study is
identified in parentheses.
aSire ID and respective families 297J–70, 71; 432H–72, 73; 437J–74, 75, 81, 82, 83;
551G–76, 77, 80, 84. Although not all families are represented in all contemporary
groups, sires aremuchmore evenly distributed across these groups. All sires had at least
three steers per contemporary group except for 432H in Fall 2004 (n = 0) and Spring
2005 (n = 2) and 437J in Fall 2003 (n = 1).

TABLE 1 | Ration formulation used for steers in study.

Ingredient %

Ground milo 20.00
Ground corn 31.25
Cottonseed meal 9.00
Cottonseed hulls 25.00
Molasses 10.00
Premixa 3.00
Ammonium chloride 0.25
R-1500b 1.50

Ingredients are represented as a percent on an as-fed basis.
aComposition of premix: ground limestone, 60%; trace mineralized salt, 16.7% (NaCl,
98%; Zn, 0.35%; Mn, 0.28%; Fe, 0.175%, Cu, 0.035%, I, 0.007%, Co, 0.007%); mono-
dicalcium phosphate, 13%; potassium chloride 6.7%; vitamin premix, 3.3% (vitamin A,
2,200,000 IU/kg; vitamin D, 1,100,000 IU/kg, vitamin E, 2,200 IU/kg); zinc oxide, 0.33%.
bR-1500 contains 1.65 g monensin sodium (RumensinTM) per kg.
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birth year seasons (BYS) is shown in Table 3. In addition, the
frequency distribution of animals from the Amen (2007) study is
presented in Table 4, with the set of most and least efficient
animals shown in parentheses. Amen (2007) noted that
imbalance exists among families across BYS. While this
imbalance may complicate efforts to separate family effects
from year-season effects, the approach provides a means to
examine the combined overall impact of gene X
environmental interactions on resultant phenotypes to
understand the influence of gene function on phenotype
despite a range of regional climate conditions.

Tissue Collection and Extraction of RNA
Steers were harvested at 18 months of age at the Rosenthal Meat
Center at Texas A&M University in College Station, TX using
humane harvesting procedures, as described by Savell and Smith
(2000). Animals were restricted from feed for approximately 12 h
before harvest but had continual access to water. Animals were
immobilized using a captive bolt stunning mechanism and
further processed using standard industry procedures.
Approximately 1 g of muscle tissue from the Longissimus
cervicis (in the neck region of the carcass) was collected before
electrical stimulation (ES; less than 1 h after exsanguination) of
the carcass. The muscle sample was flash-frozen in liquid
nitrogen to prevent mRNA degradation. Samples were stored
at −80°C until RNA was extracted.

Total RNAwas extracted from a portion (~100–200 mg) of the
frozen whole muscle tissue samples (L. cervicis) from each of the
54 animals with TRI Reagent® (Molecular Research Center,
Cincinnati, OH, USA) and 1-bromo-3-chloropropane
(Molecular Research Center). Next, RNA was precipitated with
isopropanol (Sigma Aldrich, St. Louis, MO, USA), washed with
70% ethanol (Sigma Aldrich), and reconstituted in 50 µl nuclease-
free water (Invitrogen, Carlsbad, CA, USA). The quality of the
RNA was assessed via an Agilent 2100 series Bioanalyzer (Agilent
Technologies, Palo Alto, CA, USA) according to the
manufacturer’s protocol. Samples with an RNA integrity
number (RIN) >8.0 and appropriate electropherogram image
were treated with DNase (Invitrogen) and column-purified via
the RNeasy Mini kit (Qiagen, Valencia, CA, USA). Samples were
quantified by spectrophotometry (NanoDrop 1000), and identical
quantities of total RNA for each sample were utilized in
downstream applications. RNA extracts were stored at −80°C
prior to expression analyses.

Microarray Procedures
Microarray analysis (described in Vaughn, 2013; Riggs and
Vaughn, 2015) was conducted prior to this study as a pilot
study with the Agilent 44k bovine array (B. taurus oligo
microarray V2 Agilent 4x44k GPL11649) according to
manufacturer’s recommendations. Twenty-four RNA
samples (200 ng each from eight most efficient and eight
least efficient animals) were labeled for two-color
microarray gene expression analysis (Quick Amp Labeling
Kit, Agilent Technologies) according to the manufacturer’s
protocol. Following hybridization and scanning, normalization
and quality control were performed using embedded quantile

normalization functions in the Genespring GX v11.0.2
software. Following quality filtering, the Mann–Whitney
unpaired test was utilized. A non-parametric test was used
to avoid relying on the a priori assumption of a normal
distribution of gene expression within these populations
selected for extremes. In this experimental design, samples
fail the assumption of independence, making false discovery
analyses invalid. A cut-off of p ≤ 0.05 and a fold-difference of
1.4-fold or greater were set as thresholds to generate lists of
probes for subsequent pathways analysis. Pathway analysis was
performed using DAVID Bioinformatics Resources 6.7 (http://
david.ncifcrf.gov/). Gene Ontology analysis was also
performed within the DAVID software using the same data
set used for pathway analysis. The GO-fat category was used
with the default ease setting of 0.1 and a minimum count of 2.
From these pathways analyses, as well as a separate and
independent array and pathway experiments (not described
here), muscle metabolic pathways we formed a hypothesis
related to genes involved in skeletal muscle turnover. As a
result, ACTN3 was identified as a target for further
investigation by qRT-PCR and haplotype analysis. Array
data are deposited in the Gene Expression Omnibus, GEO
accession number GSE56705 https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE56705.

Real Time Quantitative Reverse
Transcriptase Polymerase Chain Reaction
Quantitative RT-PCR analysis was conducted on the full set of 54
samples. Synthesis of cDNA from all RNA samples with the high-
capacity cDNA Reverse Transcription Kit (Invitrogen) was
accomplished with a starting quantity of 2 µg mRNA per 40 μl
reaction. Oligo(dT)20 primers (Integrated DNA Technologies,
Coralville, IA, USA), 5 μM final concentration, were used for
reverse transcription. cDNA was diluted 1:2 in yeast tRNA
(25 ng/μl; Invitrogen). Samples were amplified in a total
volume of 20 µl containing 1X SYBR GreenER™ qPCR
SuperMix (Invitrogen), 300 nM primers and 2 μl template
cDNA. Real-time quantitative RT-PCR (qRT-PCR) was
performed at 95°C for 10 min followed by 40 cycles of 15 s at
95°C and 60 s at 60°C, in a 7900HT thermal cycler (Applied
Biosystems).

Primers for genes validated by qRT-PCR were designed within
Oligo 6 Primer Analysis Software v6.71 (Molecular Biology
Insights, Cascade, CO, USA). The analyzed genes included
actinin-2 (ACTN2), actinin-3 (ACTN3), adipose
differentiation-related protein (ADFP, also known as perilipin
2 (PLIN2)), ATP synthase H+ transporting, mitochondrial F1
complex, beta polypeptide (ATP5B), hexokinase 2 (HKII), and
lactate dehydrogenase B (LDHB). Ribosomal protein S20 (RPS20)
was utilized as a reference gene. Genes and primers used are
described in Table 5. Primer pairs were evaluated by BLAST
sequence similarity search (Altschul et al., 1990). Primer pairs
were selected, which did not cross-amplify across species or
between different mRNA transcripts. Additionally, primers
were selected to span an exon junction to prevent genomic
amplification.
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To quantify qRT-PCR results, amplification data were
analyzed via Sequence Detection System v2.4 software
(Applied Biosystems, Carlsbad, CA, USA). Expression was
normalized to RPS20 as a reference gene (De Jonge et al.,
2007), and relative expression was quantified as described by
Livak and Schmittgen (2001). A threshold value of 0.20 was used
to determine the Ct value. In summary, raw Ct values were
normalized to RPS20 based on internal expression stability
between groups (Vandesompele et al., 2002). The normalized
value was subtracted from the raw Ct for each sample (Δ Ct).
From the Δ Ct, the average value of the efficient group was
subtracted (ΔΔ Ct). The ΔΔ Ct value was linearized by conversion
to the inverse negative log2 (RQ). The efficient group in this study
thus has a median expression value of 1.0. It should be noted that
these are arbitrary units (AU) of expression and that no direct
comparison between different genes in total expression levels can
be reliably made. All values are relative and applicable directly
only as a within-group comparison of relative expression.

Muscle Fiber Type Classification
Fiber type analysis was determined by gel electrophoresis. L. cervicis
muscle samples (0.1 g) were homogenized in 500 μl buffer consisting
of 250mM sucrose, 100mM KCl, 5 mM EDTA, and 20mM Tris-
HCl pH 6.8. The homogenate was filtered through nylon cloth to
remove debris and centrifuged at 10,000 × g for 10 min. The pellet
obtained was resuspended in 500 μl washing buffer (200 mM KCl,
5 mMEDTA, 0.5%TritonX-100, and 20mMTris-HCl pH6.8). The
suspension was centrifuged at 10,000 × g for 10min. The pellet
containing purified myofibrillar proteins was resuspended in 200 μl
water and 300 μl of standard 2X sample loading buffer, boiled for
5 min, and then centrifuged at 12,000 × g for 5min. The resultant
supernatant was used for electrophoresis.

Stacking gels consisted of 4% acrylamide (acrylamide: bis =
50:1) and 5% (v/v) glycerol, 70 mM Tris-HCl pH 6.7, 0.4% (w/v)
SDS, 4 mM EDTA, 0.1% (w/v) APS, and 0.01% (v/v) TEMED.
The separation gel contained 5% (w/v) glycerol, acrylamide: bis
(50:1) at a concentration ranging from 5 to 20%, 200 mM Tris
pH 8.8, 4 mM EDTA, 0.4% (w/v) SDS, 0.01% (v/v) TEMED, and
0.1% (w/v) ammonium persulfate. The upper running buffer
consisted of 0.1 M Tris-HCl pH 8.8, 0.1% (w/v) SDS, 150 mM
glycine, and 10 mM mercaptoethanol, and the lower running
buffer consisted of 50 mM Tris-HCl pH 8.8, 0.01% (w/v) SDS,
and 75 mM glycine. Gels were run at 8°C in a Hoefer SE 600
(Hoefer Scientific, San Francisco, CA, USA) unit, at constant
200 V for 24 h (Bamman et al., 1999). After electrophoresis, gels
were stained with Coomassie blue and scanned with a
densitometer to determine the amount of each myosin
isoform and the percentage of type I and type II muscle
fibers was reported (Underwood et al., 2007).

TABLE 5 | Complete list of primer pairs used for qRT-PCR assays and their function in muscle.

Gene symbol Description Sequencea

ACTN2 Actinin, alpha 2 5ʹ-GGTCTTTGACAACAAGCA-3ʹ
5ʹ-TGATGGTTCTGGCGATA-3ʹ

ACTN3 Actinin, alpha 3 5ʹ-CGGGAGACAAGAACTACATCA-3ʹ
5ʹ-CGTAGAGGGCACTGGAGAA-3ʹ

ATP5B ATP synthase, H+ transporting 5ʹ-CCCATCAAAACCAAGCAA-3ʹ
Mitochondrial F1 complex 5ʹ-TCAACACTCATCTCCACGAA-3ʹ
Beta polypeptide

CAPN1 Calpain 1, (mu/I) large subunit 5ʹ-GACCATAGGCTTCGCTGTCT-3ʹ
5ʹ-AGGTTGATGAACTGCTCGGA-3ʹ

CAPN2 Calpain 2, (m/II) large subunit 5ʹ-CGACTGGAGACACTGTTCAGGA-3ʹ
5ʹ-CTTCAGGCAGATTGGTTATCACTT-3ʹ

CAST Calpastatin 5ʹ-GCTGTCGTCTCTGAAGTGGTT-3ʹ
5ʹ-GGCATCGTCAAGTTCTTTGTTGT-3ʹ

HKII Hexokinase 2 5ʹ-TCAACACTCATCTCCACGAA-3ʹ
5ʹ-CACCACAGCAACCACATC-3ʹ

LDHB Lactate dehydrogenase B 5ʹ-CAGAAATGGGAACAGACAA-3ʹ
5ʹ-GACTTCATAGGCACTCTCAAC-3ʹ

MYH1 Myosin, heavy chain 1, skeletal muscle, adult 5ʹ-TGAGGAAGCGGAGGAACAAT-3ʹ
5ʹ-TGGGACTCGGCAATGTCA-3ʹ

MYH2 Heavy chain 2, skeletal muscle, adult 5ʹ-CAATGACCTGACAACCCAGA-3ʹ
5ʹ-CCTTGACAACTGAGACACCAGA-3ʹ

RPS20 Ribosomal protein S20 5ʹ-ACCAGCCGCAACGTGAA-3ʹ
5ʹ-CCTTCGCGCCTCTGATCA-3ʹ

aRPS20 primer sequences provided by Kochan et al. (2009).

TABLE 6 | SNP haplotype block location information.

Gene Chromosome Coordinate (UMD 3.1) Number of SNPs in
1 Mb region

CAPN1 29 44063463 44113492 24
CAPN2 16 27781671 27840011 24
CAPN3 10 37829007 37885645 24
CAST 7 98444979 98581253 18
ACTN2 28 9403203 9450920 16
ACTN3 29 45230630 45242406 16
MYH1/2 19 30110728 30165109 18
FN1 2 103881402 103950562 12

Locations according to Bos taurus UMD 3.1 genome assembly.
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Haplotype Analysis
All individuals (n = 776) from the first three generations of the
experimental population were previously genotyped with the
Illumina BovSNP50 v1 assay (Illumina, Inc., San Diego, CA,
USA), and data were available for use in this study. The haplotype
analysis from these data allowed us to trace the inheritance of
Nellore or Angus blocks of SNPs and identify the parent of origin
for the 173 Nellore-Angus F2 steers for which RFINRC data and
tissue samples were collected and used in this study. After
pruning genotypes to remove animals with poor completion
rate (<0.9), SNP with low minor allele frequency (<0.05), SNP
with poor completion rates (<0.9), and those SNP that deviated
from Hardy–Weinberg equilibrium (p < 0.0001), 39,890
genotypes per individual remained. To determine whether
breed of origin or parent of origin played a role in the
efficiency phenotype, SNP genotypes spanning 1 Mb intervals
flanking several genes of interest (Table 6) based on expression
analyses were extracted using PLINK v1.07 (Purcell et al., 2007)
and formatted for phase v2.1.1 software (Stephens et al., 2001).
Haplotypes were established using 100 iterations of phase v2.1.1,
with a thinning interval of 2 and a burn-in of 10. Resultant phased
haplotypes were ordered by generation, and breed (Nellore or
Angus) and parent of origin were manually tracked through the
pedigree to assign the source of each haplotype block in the F2
generation. Because gene expression analyses of μ-calpain
(CAPN1), m-calpain (CAPN2), calpastatin (CAST), myosin
heavy chain 1 (MYH1), and myosin heavy chain 2 (MYH2)
genes were also available from another study and are relevant
to pathways associated with muscle growth and proteolysis
(Vaughn 2013), their relationship with feed efficiency was also
examined. The ACTN2 gene was selected for analysis because it is
expressed in all skeletal muscle fiber types and has conserved
structural and functional similarity toACTN3. The genes CAPN1,
CAPN2, and CAST were examined because of their roles in
muscle proteolysis (Goll et al., 2003), and MYH1 and MYH2
were selected for their function in muscle fibers (Wang et al.,
2012).

Statistical Analysis
SPSS 16.0 software (IBM, Armonk, NY) was used for all statistical
analyses. To test for significance between efficiency groups, an
independent samples t-test was used. Correlation analysis used a
bivariate two-tailed Pearson’s correlation. All qRT-PCR
expression was normalized to the RPS20 reference gene (De
Jonge et al., 2007). Expression data are reported relative to the
feed efficient group, which was set to a value of 1.0. The inefficient
and average groups are represented as fold difference relative to
the efficient group. One sample was removed from all analyses
because expression values measured for the reference gene,
RPS20, were not consistent with other samples.

RESULTS

Gene Expression Analysis
Following an initial pilot microarray (GEO accession number
GSE56705) and network pathway analysis, the ACTN3 gene was

selected for further investigation. From the initial hypothesis
generating microarray experiment, 58 genes were expressed
significantly differently between efficiency groups with a fold
difference between groups of 1.5-fold or greater (Supplementary
Table S1). The ACTN3 gene was expressed as 2.5-fold greater in the
inefficient group of steers but fell short of significance (p = 0.051).
However, because different alleles of this gene have been associated
with differential athletic performance in humans, and ACTN3
genotype is thought to contribute to variation in muscle
phenotype (North et al., 2003; Yang et al., 2003), ACTN3 was
selected for further investigation. Despite missing the initial
statistical cut-off, ACTN3 also remained of interest because it is a
member of skeletal muscle networks determined to be relevant.
Following these early investigations, this study was developed to
examineACTN3 as a candidate gene contributing to a feed efficiency
phenotype. Genes used for qRT-PCR analysis are described in
Table 5. Additional genes that have some relationship to ACTN3
and the skeletal muscle pathways in which it participates were
included in qRT-PCR expression and haplotype analyses. These
genes were selected prior to expression and haplotype analysis as
negative control genes or as genes expected to function similarly in
given pathways. We thought that, by examining haplotypes
according to parent of origin, we may be able to differentiate
favorable Bos indicus and Bos taurus alleles that would be of use
for selection. The ACTN2 gene was selected for analysis because it is
expressed in all skeletal muscle fiber types and has conserved
structural and functional similarity to ACTN3. Although their
functions are not identical, evidence exists that ACTN2 can
largely compensate for the absence of ACTN3 (Mills et al., 2001;
Lek et al., 2010). The previously evaluated reference genes were
tested for stability, and RPS20 was utilized as a control reference
gene. Because of our hypothesis that ACTN3 was associated with
feed efficiency and might reflect differences in overall metabolic
activity, we also selected a set of genes that are known to play a role in
other metabolic processes within muscle tissue to examine at the
same time. For example, ADFP was selected because of its role in
lipid metabolism and storage (Hiller et al., 2012). Genes that place a
role in muscle metabolism and glucose homeostasis (ATP5B, HKII,
and LDHB) were also examined because these are genes that play a

TABLE 7 | Relative mRNA expression of selected genes by qRT-PCR analysis.

Gene Ratio average/efficient Ratio inefficient/efficient

N 18 18
ACTN3 1.6 ± 0.06a 1.6 ± 0.05a

ACTN2 1.2 ± 0.050 1.0 ± 0.050
COX3 1.7 ± 0.05a 1.4 ± 0.06b

COX7C 1.1 ± 0.030 0.9 ± 0.040
HKII 0.9 ± 0.040 0.8 ± 0.050
LDHB 0.6 ± 0.03a 0.9 ± 0.04b

PRDX3 0.9 ± 0.030 1.0 ± 0.040

Relative expression for the average and inefficient groups is calculated and presented as
a fold ratio compared to the efficient group. Expression was normalized to RPS20, and
expression value is presented as the geometric mean ratio of arbitrary expression units
relative to expression in the efficient group. Each group (average, efficient, inefficient)
reflects samples from 18 animals.
aMeans with superscripts differ from the efficient group (p < 0.05).
bMeans with different superscripts differ from each other (p < 0.05).
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role in muscle metabolism (Rajesh et al., 2011; Egan and Zierath
2013; Li et al., 2013). The genes CAPN1, CAPN2, and CAST were
examined because of their roles in muscle proteolysis (Goll et al.,
2003), and MYH1 and MYH2 were selected for their function in
muscle fibers (Wang et al., 2012).

By qRT-PCR, expression of ACTN3 was 1.6-fold greater (p =
0.009) in the average and inefficient groups than in the efficient
group (Table 7). ACTN2 expression did not vary significantly
between any of the groups, nor did it correlate significantly with
ACTN3 expression or fiber type ratio (as expected). Of the other
genes assayed, LDHB expression was significantly lower in the
average group but not the inefficient group, relative to the
efficient steers. The mRNA quantity of the remaining genes
examined (Table 7) did not differ significantly between groups.

Post-transcriptional modifications, other regulatory
mechanisms, and differences in the timing of expression can
make the correlation of mRNA expression with protein
expression difficult (Greenbaum et al., 2002). To verify that
the observed difference in ACTN3 gene expression translated
to actual differences in muscle protein expression, 12 samples
(portions of the same samples used for qRT-PCR) from each tail
of the distribution (n = 24) were assayed for fiber type ratios based
on gel separation of muscle fiber type specific isoforms. The ratio
of fast-twitch to slow-twitch muscle fiber (type II/type I) was 1.8-
fold greater (p = 0.027) in the inefficient group compared to the
efficient group (Figure 1).

Haplotype Analysis
Haplotype block analysis was conducted for ACTN2, ACTN3,
CAPN1, CAPN2, CAPN3, CAST, FN1, andMYH1/2. Three of the
haplotype blocks were associated with significant differences in

efficiency between Angus and Nellore in the larger population
studied. The CAPN2 and ACTN3 Nellore haplotype blocks were
associated with a superior efficiency when inherited maternally
(p = 0.03). The FN1 Angus haplotype block was associated with a
superior efficiency when inherited maternally (p = 0.04). Neither
the CAST nor the CAPN1 haplotypes were associated with any
improvement in efficiency (Table 8).

Season of test feeding period may have influenced efficiency. A
general linear model was used to produce the least square means
using RFINRC residuals as the dependent variable with birth year
season (BYS) as the fixed factor described in Amen (2007). Six
BYS groups were included in this study: F03 (n = 26), F04 (n =
31), F05 (n = 29), S03 (n = 21), S04 (n = 32), and S05 (n = 34), with
a total of 87 spring-born animals weaned in the fall and 85
weaned in the spring. Steers weaned in the spring were more
efficient than those weaned in the fall; linear contrast of fall
RFINRC residuals means minus spring RFINRC residuals means
was 1.09 + 0.15 (p < 0.0001). One BYS level, Spring of 2005, had a
lower mean RFI than the other BYS groups (p < 0.0001). Within
the subset selected for expression analysis, 14 of the 18 samples in
the efficient group were from that BYS level (Table 3). The
distribution of most and least efficient animals examined is also
described in Table 4.

ACTN3 expression was higher in fall weaned animals than
spring weaned animals by 2.1-fold (p < 0.001). No significant
differences between seasons were noted in any other genes
assayed. Additionally, a difference (p < 0.001) in fiber type by
the season of weaning was observed. Those calves weaned in the
fall (n = 11) had a fast-to-slow-twitch (type II/type I) fiber type
ratio 1.6-fold greater than those weaned in the spring (n = 13).
These ratios were 0.23 and 0.14, respectively.

DISCUSSION

Multiple biological and developmental processes, driven by
complex genetic networks and response to environmental
conditions, each contribute to phenotypic measures of
efficiency and the overall relationships of inputs (e.g., feed
intake) to outputs (e.g., meat and other products). The
identification of specific genetic variation contributes to better
understanding and insight into mechanisms of growth and
energy utilization. Such knowledge can drive further gains in
productivity, reducing waste and environmental impacts.
Increased feed efficiency can reduce production costs (Ho
et al., 2013) and environmental footprint, both of which are
important in a world with an expanding population to feed and
finite resources for the production of necessary animal source
foods. Waste concerns, from feed waste to methane production,
have also gained emphasis in recent years (Brito et al., 2020).
Simultaneously, consumers are demanding environmentally
conscious options, while producers strive to maintain fiscal
viability.

In the present study, a difference in ACTN3 expression
between groups was confirmed by qRT-PCR analysis in
skeletal muscle samples from the high and low feed efficiency
groups of steers. Expression of ACTN2 did not differ between

FIGURE 1 | Proportion of fast-to-slow-twitch (type II/type I) fiber ratio
was correlated with expression of actinin-3 (r = 0.622, p < 0.001).

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 7960387

Vaughn et al. ACTN3 and Bovine Feed Efficiency

287

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


groups. Relative to the efficient group, the inefficient group
overexpressed ACTN3 1.6-fold. The fiber type ratio measured
by fast-twitch (type II)/slow-twitch (type I) differed between
groups, with a 1.8-fold increase in the inefficient group
relative to the efficient group. Season of weaning may have
influenced the results since steers weaned in the fall also had a
greater fast-twitch to slow-twitch fiber type ratio and greater
expression of ACTN3 compared with those weaned during
spring. However, the model predicted RFINRC does consider
birth year season. Feed intake and efficiency have been
previously shown to be affected by seasonal effects (Mujibi
et al., 2010).

Although not all families are represented in all contemporary
groups for which feed efficiency data were collected (Table 4),
sires are much more evenly distributed across these groups. All
sires had at least three steers per contemporary group except for
432H in Fall 2004 (n = 0) and Spring 2005 (n = 2) and 437J in Fall
2003 (n = 1). Because RFINRC is a population-based calculation
rather than a cohort-based calculation, its use may produce
unequal numbers of efficient/inefficient observations per
contemporary group. Although only 1 or 0 animals are
evaluated from a single contemporary group, this should not
bias the results compared to if all animals were included in the
analyses.

Our use of RFINRC enabled animals to be compared across BYS
groups. However, as evidenced by the imbalance of animals
deemed “most efficient” across BYS, we are likely observing
the impact of G X E interaction on the efficiency phenotype.
However, despite a potential environmental influence that also
affected efficiency, we identified the most efficient animals across
all BYS. We are interested in understanding genes and gene
networks that contribute to multigenic traits such as feed
efficiency in the context of variably subtropical conditions that
are typically experienced in beef cattle-producing regions such as
Texas.

AsACTN3 is expressed only in type II fibers, the fiber type data
are consistent with our expression data. The inefficient group also
had a larger standard error than the efficient group. A possible
explanation for this variability in expression could be that an

animal may be inefficient, or just simply average, due to a wide
array of combined genotypic, environmental, and other factors.
In contrast, an efficient animal might be expected to possess only
specific genotype combinations that, in conjunction with certain
environmental conditions, return an efficient phenotype. Fiber
type ratio is also just one variable among many that could
possibly reduce overall efficiency.

A role for ACTN3 variation in growth and metabolism is
supported by studies in other species, including humans. A
relationship between ACTN3 expression and metabolic rates
has been reported in rodents (MacArthur et al., 2007;
MacArthur et al., 2008; Ogura et al., 2009) and humans
(North and Beggs 1996; North et al., 2003; Yang et al., 2003).
Additionally, the relationship between the ACTN3 R577X (loss of
function) polymorphism and elite athletic performance has been
described in humans (Roth et al., 2008; Ahmetov et al., 2010;
Fiuza-Luces et al., 2011). Interestingly, loss of function has been
shown to be associated with the reduced cross-sectional area and
thigh muscle volume in older women (Min et al., 2016; Kiuchi
et al., 2021).

Among all steers with records, across all seasons in the study (n =
173), from which a subset was used for gene expression assays,
parent and breed of origin of the ACTN3 haplotype block had a
significant impact on efficiency as measured by RFI residuals. The
Nellore (Bos indicus) haplotype block was associated with greater
efficiency when inherited maternally (RFI residual −0.47 for
maternal Nellore inheritance compared to 0.49) regardless of the
breed of origin of the paternal haplotype block. If efficiency is
represented in terms of feed efficiency during a 180-day feedlot
finishing period in kg/d, at current US prices of $0.352/kg, this
difference will result in about $63 savings per animal for the most
efficient animals. Additionally, the Nellore haplotype blocks of
CAPN2 and FN1 were associated with differences in efficiency
when inherited maternally. For CAPN2, a maternally inherited
Nellore haplotype was linked to improved efficiency (RFI residual
−0.50 compared to 0.50). The FN1 Angus haplotype block was
associated with improved efficiency relative to the Nellore (−0.40
compared to 0.50). No paternal haplotype blocks were implicated to
play a role in this trait. These results suggest that parent of origin

TABLE 8 | RFI residuals based on haplotype block analysis.

Haplotype block Paternal Maternal

NN NA AN AA NN/NA AN/AA NN/AN NA/AA

RFI res −0.7 ± 0.5 0.5 ± 0.4 −0.3 ± 0.4 0.5 ± 0.4 0.0 ± 0.3 0.1 ± 0.3 −0.5a ± 0.3 0.5b ± 0.3
CAST n 46 43 42 43 89 85 88 86

RFI res 0.5 ± 0.4 −0.8 ± 0.4 0.2 ± 0.3 0.2 ± 0.5 −0.1 ± 0.3 0.2 ± 0.3 0.4 ± 0.3 −0.3 ± 0.3
CAPN1 n 23 39 37 75 62 112 60 114

RFI res −0.6 ± 0.6 0.4 ± 0.4 −0.3 ± 0.4 0.2 ± 0.4 0.0 ± 0.3 0.0 ± 0.3 −0.4 ± 0.3 0.3 ± 0.3
CAPN2 n 41 52 40 41 93 81 81 93

RFI res −0.7 ± 0.5 0.5 ± 0.4 −0.3 ± 0.4 0.4 ± 0.5 0.0 ± 0.3 0.1 ± 0.3 −0.5a ± 0.3 0.5b ± 0.3
FN1 n 59 52 32 31 111 63 91 83

RFI res 0.4 ± 0.3 −0.5 ± 0.5 0.6 ± 0.5 −0.4 ± 0.5 0.0 ± 0.3 0.1 ± 0.3 0.5a ± 0.3 −0.4b ± 0.3

NN, NA, AN, AA refer to breed haplotype. N refers to a haplotype inherited from Nellore, A from Angus. Male is listed first and female second. For example, NA refers to a homozygous
animal that has inherited the Nellore haplotype paternally and the Angus haplotype maternally.
aMeans within a row with different superscripts differ significantly (p < 0.05).
bMeans within a row with different superscripts differ significantly (p < 0.05).

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 7960388

Vaughn et al. ACTN3 and Bovine Feed Efficiency

288

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


effects or other epigenetic effects may play an important role in the
efficiency phenotype and should be investigated further to optimize
management practices. Reciprocal differences in birthweight
between B. indicus X B. taurus and B. taurus X B. indicus
offspring are well known (Dillon et al., 2015). Epigenetic
differences in regulation of skeletal muscle growth have also been
described, notably in callipyge sheep, where certain transcripts
detected in skeletal muscle are transcribed from only a single
parental allele (Bidwell et al., 2004). Although feed efficiency data
are available only for the F2 steers utilized in this study and not the
parent/grandparent generations nor sibling heifers, these findings
are relevant for beef cattle production strategies in subtropical
regions. It will be necessary to understand the impact of these
same regions on heifers, replacement cows, and future sires.
Additionally, these data begin to contribute to the understanding
of parent-of-origin effects on the inheritance of chromosomal
regions—particularly important for regions where Bos taurus–Bos
indicus cross cattle are utilized.

Regarding fiber types, fast- and slow-twitch muscle fibers rely
primarily on different metabolic pathways. Fast-twitch fibers (type
II) rely on the anaerobic degradation of glucose for energy
(glycolysis). In contrast, slow fibers (type I) utilize the aerobic
citric acid cycle as a primary energy source. Due to the
differences in metabolic pathways utilized, a shift in one direction
can lead to overall differences in energy utilization during the
lifespan of the animal. A reduction in ACTN3 can result in
differences in glycogen phosphorylase activity in muscle and
changes in calcium metabolism (MacArthur et al., 2007; Quinlan
et al., 2009; Quinlan et al., 2010). Mice entirely deficient in Actn3
show an increase in expression of enzymes relating to the glycolytic
pathway and a decrease in expression of enzymes of the aerobic
cellular respiration pathway (MacArthur et al., 2008). Aerobic
cellular respiration in total produces 38 molecules of ATP per
molecule of glucose input compared to only two molecules of
ATP produced by glycolysis per molecule of glucose, making
aerobic metabolism 19 times more efficient than glycolysis.
Therefore, any shift towards one over the other may affect the
overall efficiency of energy metabolism. A greater abundance of
ACTN3 and Type II fibers may contribute mechanistically to
seasonal differences.

Cattle facing insufficient nutrition degrade fast-twitch muscle
fibers initially to preserve slow-twitch muscle fibers (Lehnert et al.,
2006), suggesting a preference for higher efficiency muscle under
periods of nutritional stress. To our knowledge, a role for ACTN3
expression specifically influencing bovine metabolic efficiency has
not been previously described. However, Nolte et al., 2019 examined
biological networks to identify key long non-coding RNAs (lncRNA)
associated with bovine metabolic efficiency. Of three key lncRNAs,
one lncRNA with connectivity to low metabolic efficiency
(MSTRG.10337) and expressed in muscle tissue was correlated
with calcium signaling and other skeletal muscle genes, including
ACTN3. It is unclear what role CAPN2 and FN1 might play in
affecting efficiency, but these results are also consistent with the
Nolte study of a potential role for calcium and cytoskeletal signaling.
Because both CAPN2 and FN1 are associated with muscle turnover
and growth, it is possible they are linked to differences in the rates of
these physiological functions, which would, in turn, alter the

metabolic rate of the animal. Interestingly, Karisa et al. (2013)
demonstrated the association of CAST genes with efficiency. The
animals in their study were crossbred Bos taurus breeds reared in
Canada. Potentially, the favorable Bos indicus ACNT3, CAPN2, and
FN1 haplotypes reflect the more favorable suitability of these breeds
for subtropical environments.

In this experiment, we demonstrated that, in skeletal muscle of
Nellore-Angus F2 steers, samples from animals classified as feed
efficient (relative to RFINRC) contained fewer ACTN3 transcripts
in comparison to the inefficient group. Similarly, muscle samples
from the efficient group possessed fewer type II muscle fibers than
the inefficient group. Maternal inheritance of the Nellore Bos
indicus ACTN3 haplotype block conferred the greatest
improvement in efficiency. Two additional genes involved in
skeletal muscle turnover, CAPN2 and FN1, were also associated
with improved efficiency when inherited as maternal Bos indicus
haplotype blocks. Collectively these data demonstrate that
expression of ACTN3, the gene network in which it resides,
and its regulation, may represent a novel target for improving
feed efficiency in cattle, particularly in subtropical environments.
WhileACTN3may reflect just one element of a trait, these data, in
connection with other studies, help provide a base for a better
understanding of complex biological mechanisms and their
interaction with fluctuating climatic conditions.
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In this study, genome-wide association study (GWAS) was conducted for identifying

significantly associated genomic regions/SNPs with milk protein and minerals in the 96

taurine-indicine crossbred (Vrindavani) cows using 50K SNP Chip. After quality control,

a total of 41,427 SNPs were retained and were further analyzed using a single-SNP

additive linear model. Lactation stage, parity, test day milk yield and proportion of

exotic inheritance were included as fixed effects in GWAS model. Across all traits, 13

genome-wide significant (p < 1.20 x 10−06) and 49 suggestive significant (p < 2.41

x 10−05) SNPs were identified which were located on 18 different autosomes. The

strongest association for protein percentage, calcium (Ca), phosphorus (P), copper (Cu),

zinc (Zn), and iron (Fe) were found on BTA 18, 7, 2, 3, 14, and 2, respectively. No

significant SNP was detected for manganese (Mn). Several significant SNPs identified

were within or close proximity to CDH13, BHLHE40, EDIL3, HAPLN1, INHBB, USP24,

ZFAT, and IKZF2 gene, respectively. Enrichment analysis of the identified candidate genes

elucidated biological processes, cellular components, and molecular functions involved

in metal ion binding, ion transportation, transmembrane protein, and signaling pathways.

This study provided a groundwork to characterize the molecular mechanism for the

phenotypic variation in milk protein percentage and minerals in crossbred cattle. Further

work is required on a larger sample size with fine mapping of identified QTL to validate

potential candidate regions.

Keywords: crossbred cattle, genome-wide association studies, milk minerals, milk protein, Vrindavani

INTRODUCTION

Milk and dairy products are considered a nutrient-rich diet, consisting of fat,
protein, lactose along with several essential micronutrients including vitamins
and minerals. Minerals representing a small fraction (∼9 g/L) of bovine
milk, are important for nutritional and technological properties of milk (1).
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The minerals in milk are present either as an inorganic ion
(soluble phase) or form colloidal complexes with organic matter
such as proteins, carbohydrates, and ligands including amino
acids and citrates (2, 3).

Minerals play an important role in several physiological
and biological activities. For instance, calcium, phosphorus,
and magnesium are involved in the development of connective
tissues such as bones, muscles, cartilages, and teeth in humans
(4). Calcium has been reported to play an important role in
reducing cholesterol absorption, and in regulating blood pressure
in humans (5). The zinc, manganese, iron, and copper are
important components of several enzymes and play role in the
immune system (6). These elements also serve as catalysts for
many biochemical processes such as muscle contraction, nervous
transmission, and nutrient absorption (7).

The concentration of milk minerals influences the
stabilization of casein micelle in milk. Calcium, phosphorus,
and magnesium are an important components of casein micelle
and positively regulates the coagulation properties of the milk
(8). The milk minerals are complex traits, influenced by both
genetic and non-genetic factors, including nutrition, lactation
stage, parity, season, and breed (9). Studies have shown that milk
minerals have low to moderate heritability for Cu, Zn, Fe, and
Mn (10); and moderate to high heritability for Ca, P, and Zn (1).
This provides the possibility to alter the concentration of bovine
milk minerals through selective breeding.

The genome-wide association studies may improve our
understanding of the genetic architecture and underlying
molecular mechanism for variation in protein and minerals
content in bovine milk. Studies have revealed about several
potential candidate genes associated withmilk protein percentage
in different cattle breeds (11, 12). However, for milk minerals
only a limited number of genome-wide association studies has
been reported (1, 3). Thus, the aim of this study was to identify
genomic regions associated with milk protein percentage (%) and
milk minerals including Ca, P, Cu, Zn, Fe, and Mn in Vrindavani
cattle, a tropically adapted composite crossbred breed of dairy
cattle of India.

MATERIALS AND METHODS

Animals and Phenotypes
Morning milk samples (50ml) were collected from 96 crossbred
Vrindavani cattle of the ICAR-Indian Veterinary Research
Institute, Bareilly. Vrindavani is a composite breed developed
at Indian Veterinary Research Institute by crossing indicine
(Hariana) with three taurine breeds (Holstein, Brown Swiss,
and Jersey). Details of population structure and synthetic breed
information of the Vrindavani population were described in a
prior study by (13). The cows were kept in a loose housing system
with free-stall dairy barn, fed ad libitum with mixed ration, and
milked in a free-stall barn using automated milking systems. The
cows were in milk (24-403 days) and from parity 1-8.

The protein percentage in milk was determined using a
LactoScan milk analyzer (10). The milk minerals (Ca, P,
Cu, Zn, Fe, and Mn) were estimated using Flame Atomic

Absorption Spectrometer in technical triplicate samples. For the
mineralization of milk samples, 5ml of milk were dried in silica
crucible using a hot-air oven. The dried samples were ashed using
a muffle furnace. The ashed sample was mixed with 15ml 1:1
diluted HCl and heated to dissolve the acid-soluble portion of
total ash. The soluble portion was filtered and diluted to 100ml
using double distilled water. The digested samples were analyzed,
using a flame atomic absorption spectrophotometer (14).

Genotyping and Quality Control
Blood samples were collected from individual cows, with the
approval from the Institutional Animal Ethics Commit- tee
(IAEC) on ICAR-Indian Veterinary Research Institute, Bareilly.
Genomic DNA was isolated using Qiagen DNeasy Blood Mini
Kit (Qiagen, Valencia, CA) according to the manufacturer’s
instructions. The quality and quantity of DNA were evaluated
using NanoDrop spectrophotometer, agarose gel electrophoresis
and Qubit fluorometer. The extracted genomic DNA were
genotyped using Illumina BovineSNP50 Bead Chip platform
(Illumina Inc., San Diego, CA) consisting of 53,218 SNPs across
the genome. The quality control of the SNP genotypes was
performed using PLINK v 1.9 (15). SNPs with call rate <

90%, minor allele frequency (MAF) < 0.05 and significantly
deviating from the Hardy-Weinberg equilibrium were excluded
from the analysis. A total of 41,427 SNPs mapping autosomes
were retained for further downstream analysis.

Statistical Analyses
Prior to GWAS, the admixture profile and the level of
exotic inheritance of individual animal was estimated using
ADMIXTRE V.13.0 (16) using a reference panel of purebred
taurine (Holstein-Friesian, Brown Swiss, and Jersey) and
indicine (Hariana) cattle downloaded from WIDDE (http://
widde.toulouse.inra.fr/widde/widde/main.do?module$=$cattle)
and KRISHI (https://krishi.icar.gov.in/jspui/handle/123456789/
31167) web portals. The fixed effect of lactation stage, parity,
test day milk yield, and the proportion of exotic inheritance
(percentage of Holstein-Friesian, Jersey and Brown Swiss,
estimated by admixture analysis) were tested with lm function in
R. A single-SNP linear regression of phenotype on genotype was
fitted for GWAS analysis using snpStats package in R following
Gondro (17). The genotypes were tested for additive effect
using model.

y = Xβ + Zα + e

Where y is the vector of phenotypic observations; X is an
incidence matrix relating the phenotypes to the fixed effects
including lactation stage, parity, test day milk yield, and the level
of exotic inheritance computed by admixture analysis; β is the
vector of fixed effects; Z is incidence matrix of genotypes (0 for
the first homozygote AA; 1 for the heterozygote AB or BA; 2 for
the second homozygote BB) of the fitted SNP; α is the vector of
effects of the regression coefficient for SNPs, and e is the vector
of residual effects with a normal distribution N ∼ (0, Iσ 2

e ), where
σ 2
e is the residual variance.
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The Bonferroni correction using 0.05/N, where “N” is the
number of SNPs, was applied to the genome-wide significance
threshold (18). The SNP effects were declared significant at a
genome-wide level of P = 1.20 x 10−06 (0.05/41,427). Since
Bonferroni correction was stringent, a suggestive significance
threshold of P = 2.41 x 10−05 (1/41,427) was calculated (19).
Association between individual SNPs and each trait are shown
in the Manhattan plot using R.

The Ensembl database UMDv3.1 (https://www.ensembl.
org/Bos_taurus/Info/Annotation) was used to search for
genes flanking a region of 500 kb from the genome-wide
significant and suggestive SNPs using BEDtools (20). Candidate
genes close or containing significant SNPs were analyzed
for functional enrichment using DAVID 6.8 (21). The
significantly enriched pathways were identified based on
enriched scores.

RESULTS AND DISCUSSION

The descriptive statistics for protein percentage and 6 individual
minerals (Ca, P, Cu, Mn, Zn, and Fe) in the milk of Vrindavani
cattle are presented in Table 1. A total of 9 (2 genome-wide and
7 suggestive) significant SNPs for protein percentage; and 53 (11
genome-wide and 42 suggestive) significant SNPs for six different
mineral traits were identified.

Protein Percentage
For protein percentage, two genome-wide significant SNPs (p <

1.20 x 10−06) and 7 suggestive significant SNPs (p< 2.41 x 10−05)
were detected on BTA 3, BTA 6, BTA18, and BTA22 (Figure 1;
Table 2). Of these, four significant SNPs found on BTA18 (7.63-
99.15Mb) includes Beta-carotene oxygenase 1(BCO1), C-Maf
inducing protein (CMIP), N-terminal EF-hand calcium binding
protein 2 (NECAB2), Cadherin 13 (CDH13), oxidative stress
induced growth inhibitor 1 (OSGIN1) and Solute carrier family
38 member 8 (SLC38A8) genes.

Minerals
Among minerals, a total of 4, 17, 10, 7, and 15 significant SNPs
were detected for Ca, P, Cu, Zn, and Fe, respectively. However,
no significant SNP was detected for Mn (Figures 2A-F; Table 3).

A total three genome-wide significant and 1 suggestive
significant SNPs on BTA7 (86.04-89.65Mb) were found to be

TABLE 1 | Descriptive statistics for protein percentage (%) and mineral (Ca, P, Cu,

Mn, Zn, and Fe) in the Vrindavani milk.

Traits Mean SD Min Max CV

Protein percentage(%) 2.814 0.193 2.480 4.170 6.859

Ca(mg/l) 1,471 589 681 2,960 40.015

P(mg/l) 1,192 319 602 2,360 26.762

Zn(mg/l) 3.694 1.526 1.130 7.773 41.310

Cu(mg/l) 0.892 0.709 0.130 2.213 79.442

Fe (mg/l) 8.925 4.423 3.180 22.400 49.560

Mn(mg/l) 0.794 0.350 0.180 1.930 44.121

associated with Ca. The region contains several genes including
Hyaluronan and proteoglycan link protein 1 (HAPLN1),
Versican (VCAN), EGF like repeats, and discoidin domains
3 (EDIL3). A total of three genome-wide and 14 suggestive
significant SNPs were found to be associated with P. The most
significantly (p = 6.89 x 10−09) associated SNP (Hapmap45428-
BTA-47987) was located 0.10Mb downstream from Inhibin
subunit beta B (INHBB) gene and 0.81Mb downstream from
Cilia and flagella associated protein 221 (CFAP221) gene
on BTA2. Total 1 genome-wide and 9 suggestive significant
SNPs were observed to be associated with Cu. The most
significantly (p = 1.68 x 10−07) associated SNP (ARS-BFGL-
NGS-1062) with Cu was identified at 0.63Mb downstream
from the 24-dehydrocholesterol reductase (DHCR 24) gene
on BTA3. The SNP (BTA-59703-no-rs) significantly associated
with Cu (p = 4.73 x10−06) on BTA25 was located within
Calcium voltage-gated channel auxiliary subunit gamma 3
(CACNG3) gene. A total of 2 genome-wide and 5 suggestive
significant SNP were associated with Zn. Out of these 7
SNPs, 5 significant SNPs were located within 5.29Mb (4.17-
9.47Mb) region of BTA14. The most significant (p = 3.50
x 10−07) SNP (ARS-BFGL-NGS-76248) associated with Zn
was located 0.09Mb upstream from the ST3 beta-galactoside
alpha-1 (ST3GAL1) gene. A total of 2 genome-wide and 15
suggestive significant SNPs were significantly associated with
Fe. Total six significant SNPs were identified within 4.10Mb
region (65.60-72.17Mb) on BTA2. The most significant (p
= 3.26 x 10−07) SNP (ARS- BFGL-NGS-96204) associated
with Fe was located 0.45Mb away from NCKAP5 gene on
BTA2. The most significantly (p = 1.02 x 10−04) associated
SNP (Hapmap58269-rs29018185) with Mn was located on
BTA 19, although it was below the cut-off threshold level
of significance.

The functional enrichment of genes close to significant
SNPs was involved in ion transport (GO:0005248),
metal ion binding (GO:0005509), integral and
transmembrane protein (GO:0086010), and signaling
pathway (Supplementary Table S1).

In the present study, several significant SNPs found
to be associated with protein percentage and individual
mineral concentration in the milk of Vrindavani cattle. To
our knowledge, this is the first study to identify genomic
regions associated with milk mineral content in composite
Vrindavani cattle. Detection of several previously reported
genes and genomic regions associated with different milk
composition traits indicates their potential role in regulating
the concentration of minerals and protein percentage in
bovine milk.

For protein percentage, the significant 1.9Mb region (8.03-
9.94Mb) on BTA 18 was partly overlapping with previously
reported QTLs associated with milk coagulation (22). The milk
coagulation is directly influenced by the casein composition,
which indicates that this region may have the potential to
influence the protein percentage in milk (23). This region
includes the CDH 13 (Cadherin-13) gene which is expressed in
mammary tissues and associated with the protein content of the
milk (24).
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FIGURE 1 | Manhattan plots for protein percentage in Vrindavani cattle milk. The red line represents genome-wide significant level (p < 1.20 x 10−06), and the blue

line represents suggestive significant level (p < 2.41 x 10−05).

On BTA2, 18 significant SNPs were identified for P and
Fe content. Two significant SNPs associated with P and Fe
were 0.10 and 0.35Mb away from the inhibin subunit beta
B (INHBB) gene on BTA2. In humans, INHBB gene plays a
major role in regulating calcium and phosphorus during bone
formation (25). More specifically, INHBB facilitates interaction
with the beta glycan, which stimulates extracellular matrix
mineralisation (26). The SNP associated with Fe is located
0.35Mb downstream from the IKAROS family zinc finger 2
(IKZF2) is involved in metal ion binding (27) and host immune
response (28).

On BTA3, three significant SNPs were associated with milk
Cu content. Buitenhuis et al. (1) identified several significant
SNPs for Cu on BTA3 (91.0-91.3Mb) in Danish Holstein
milk. However, these SNPs do not overlap with the significant
SNPs for Cu identified in our study. The most significant
SNP associated with Cu is located 0.79Mb upstream from
the Ubiquitin Specific Peptidase 24 (USP24) gene. The USP24
gene belongs to the cysteine proteases family and plays role in
protein deubiquitination of the proteins which influences the
stability of the casein micelle in the milk (29). However, the
role of this gene in the regulation of milk Cu concentration is
not known.

On BTA7, four significant SNPs associated with Ca, were
located close to HAPLNI, VCAN, and EDIL3 genes. These
genes are referred to as calcium-binding proteins (GO:0050850,
positive regulation of calcium-mediated signaling) and are
involved in tissue calcification and bone mineralization in
vertebrates (30). In chickens, the EGF-like repeats and discoidin
domains 3 (EDIL3) gene bind with the calcium ion to guide
vesicular transportation of minerals during eggshell calcification
(31). Even though its role in milk calcium is not known,
EDIL3 could be considered as a candidate gene, which warrants
fine mapping.

The SNP named Hapmap3 1987-BTC-062044
was significantly (p = 3.50 x 10−07) associated
with Zn, is located at 0.12Mb away from the Zinc
finger and AT-hook domain containing (ZFAT) on

TABLE 2 | Genome-wide and suggestive significant SNPs for protein percentage

in Vrindavani milk.

SNP BTA Position P-value Nearest

candidate

gene

ARS-BFGL-NGS-

73708

18 8037156 2.16 x 10−07 BCO1, CMIP

ARS-BFGL-NGS-

85875

18 9948949 1.06 x 10−06 NECAB2,

CDH13

ARS-BFGL-NGS-

39549

18 9915057 1.62 x 10−06 OSGIN1,

SLC38A8

Hapmap24079-

BTA-136416

22 21000933 4.25 x 10−06 BHLHE40

Hapmap33287-

BTC-032371

6 33026144 1.00 x 10−05 -

Hapmap33121-

BTC-033043

6 33441527 1.24 x 10−05 -

Hapmap52589-

rs29020496

18 7630875 1.24 x 10−05 CENPN,

CMC2

ARS-BFGL-NGS-

1337

3 113666410 1.41 x 10−05 USP 40,

ATG16L1

BTB-00158861 3 113701688 2.28 x 10−05 MROH2A,

UGT1A1

BTA14, which is involved in the transcription of
immune-related genes.

CONCLUSION

Our study identified several candidate genes associated
with milk protein percentage and milk minerals, that are
involved in ion transport, signaling pathways via integral
protein, transmembrane membranes, zinc-fingers, and
metal ion binding. The strongest association for protein
percentage was identified on BTA18. Among studied
minerals, the strongest association for Ca, P, Cu, Zn, and
Fe were found on BTA 7, 2, 3, 14, and 2, respectively.
These roles of genes and genomic regions suggested
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FIGURE 2 | Manhattan plots for minerals in Vrindavani cattle milk. (A) Ca, (B) P, (C) Cu, (D) Zn, (E) Fe, (F) Mn. The red line represents genome-wide significant level (p

< 1.20 x 10−06), and the blue line represents suggestive significant level (p < 2.41 x 10−05).
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TABLE 3 | Genome-wide and suggestive significant SNPs for minerals (Ca, P, Cu, Zn, Fe, and Mn) in Vrindavani milk.

Minerals SNP BTA Position P-value Nearest candidate gene

Ca BTB-01363189 7 86130978 8.20 x 10−08 HAPLN1, VCAN

Ca BTB-00005259 7 86801082 2.29 x 10−07 EDIL3

Ca BTB-01259879 7 89658972 2.29 x 10−07 RASA1

Ca BTB-00326076 7 86044835 8.72 x 10−06 XRCC4

P Hapmap45428-BTA-47987 2 72214554 6.89 x 10−09 INHBB,CFAP221

P ARS-BFGL-NGS-85372 2 72369610 5.47 x 10−08 CFAP221

P Hapmap39006-BTA-116188 2 30481073 1.03 x 10−06 SCN9A,SCN1A, SCN7A, TTC21B

P BTB-01987495 2 29215002 1.27 x 10−06 XIRP2

P BTB-01902301 2 59461527 3.91 x 10−06 HNMT

P UA-IFASA-4860 16 20472340 6.17 x 10−06 ESRRG

P ARS-BFGL-NGS-20615 29 5085168 6.67 x 10−06 NAALAD2

P ARS-BFGL-NGS-105277 15 65530435 8.04 x 10−06 NAT10

P ARS-BFGL-NGS-20993 2 70957217 9.92 x 10−06 EN1

P ARS-BFGL-NGS-109852 2 61611083 1.08 x 10−05 CXCR4

P ARS-BFGL-NGS-104967 13 55642499 1.44 x 10−05 CDH4

P Hapmap38699-BTA-81626 2 55831708 1.55 x 10−05 -

P ARS-BFGL-NGS-58619 2 71779928 1.60 x 10−05 CFAP221

P ARS-BFGL-NGS-25171 21 34486610 2.01 x 10−05 ARID3B

P Hapmap60572-rs29010980 16 78157760 2.15 x 10−05 CRB1

P Hapmap49377-BTA-91839 16 21134492 2.28 x 10−05 ESRRG

P ARS-BFGL-NGS-82451 16 81016831 2.37 x 10−05 CACNA1S

Cu ARS-BFGL-NGS-1062 3 92082212 1.68 x 10−07 DHCR24, USP 24

Cu BTB-01155381 3 79282515 3.40 x 10−06 INSL5

Cu BTA-59703-no-rs 25 22197501 4.73 x 10−06 CACNG3

Cu BTB-00280101 6 110508154 7.04 x 10−06 CLNK

Cu BTA-107777-no-rs 3 73921609 9.19 x 10−06 -

Cu ARS-BFGL-NGS-100916 6 105095758 9.61 x 10−06 PPP2R2C

Cu BTB-01951920 6 21332376 1.12 x 10−05 PPA2

Cu ARS-BFGL-NGS-116643 4 96258114 1.25 x 10−05 PLXNA4

Cu Hapmap32870-BTA-162083 5 14189730 1.46 x 10−05 SLC6A15

Cu ARS-BFGL-NGS-54036 3 48734443 2.24 x 10−05 ALG14,ABCD3

Zn ARS-BFGL-NGS-76248 14 8879810 3.50 x 10−07 ST3GAL1

Zn Hapmap31987-BTC-062044 14 8425401 8.59 x 10−07 ZFAT

Zn UA-IFASA-7842 14 9472109 1.81 x 10−06 PHF20L1,KCNQ3

Zn ARS-BFGL-BAC-10375 14 6616434 2.42 x 10−06 -

Zn Hapmap26527-BTC-005059 14 4176618 4.31 x 10−06 AGO2, DENND3

Zn ARS-BFGL-NGS-92308 13 67081069 1.13 x 10−05 MANBAL

Zn ARS-BFGL-NGS-94105 22 7691228 1.34 x 10−05 FBXL2

Fe ARS-BFGL-NGS-96204 2 65600025 3.26 x 10−07 NCKAP5

Fe ARS-BFGL-NGS-32707 2 67078207 5.59 x 10−07 -

Fe BTA-11592-rs29017351 2 69569936 1.75 x 10−06 CFAP221

Fe ARS-BFGL-NGS-101411 2 72163562 1.75 x 10−06 INHBB

Fe ARS-BFGL-NGS-22157 2 71906695 6.42 x 10−06 TMEM177

Fe BTB-01536946 2 68429456 6.70 x 10−06 DPP10

Fe ARS-BFGL-NGS-29914 18 42706451 7.38 x 10−06 DPY19L3

Fe Hapmap40319-BTA-19899 2 102634206 8.86 x 10−06 VWC2L

Fe ARS-BFGL-NGS-5074 18 43588701 1.10 x 10−05 RHPN2, FAAP24, LRP3

Fe Hapmap43494-BTA-122491 10 94570405 1.12 x 10−05 -

Fe ARS-BFGL-NGS-60714 2 102060979 1.33 x 10−05 IKZF2

Fe Hapmap49519-BTA-19205 2 68058489 1.39 x 10−05 DPP10

Fe ARS-BFGL-NGS-113875 11 3106988 1.41 x 10−05 ACTR1B, ZAP70

Fe ARS-BFGL-NGS-40198 10 2617295 1.41 x 10−05 YTHDC2

Fe Hapmap57118-rs29009938 24 39365195 2.35 x 10−05 EPB41L3
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that milk mineral concentration is probably regulated by
transportation and homeostasis of ions. These identified
variants are a step forward to characterize the molecular
mechanism affecting milk minerals in Vrindavani cattle.
However, additional validation of detected variants and
their association with milk minerals is required on large
sample size.
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In sheep meat production, the rib eye area is an important index to evaluate carcass traits.
However, conventional breeding programs have led to slow genetic progression in rib eye
muscle area. Operationalizing molecular marker assisted breeding is an optimized
breeding method that might improve this situation. Therefore, the present study used
whole genome sequencing data to excavate candidate genes associated with the rib eye
muscle. Male Hu lambs (n = 776) with pedigrees and 274 lambs with no pedigree were
included. The genetic parameters of the rib eye area were estimated using a mixed linear
mixed model. The rib eye area showed medium heritability (0.32 ± 0.13). Whole-genome
sequencing of 40 large rib eye sheep [17.97 ± 1.14, (cm2)] and 40 small rib eye sheep
[7.89 ± 0.79, (cm2)] was performed. Case-control genome-wide association studies and
the fixation index identified candidate rib eye-associated genes. Seven single nucleotide
polymorphisms (SNPs) in six genes (ALS2, ST6GAL2, LOC105611989, PLXNA4, DPP6,
and COL12A1) were identified as candidates. The study population was expanded to
1050 lambs to perform KASPar genotyping on five SNPs, which demonstrated that SNPs
in LOC105611989, DPP6, and COL12A1 correlated significantly with the rib eye area,
which could be used as genetic markers for molecular breeding of the rib eye area. The
results provided genetic parameters estimated on the rib eye area and information for
breeding based on carcass traits in Hu sheep.

Keywords: whole genome sequencing, case-control GWAS, genetic parameters, association analysis, sheep
breeding

INTRODUCTION

Improvement of carcass traits is very important for farmers and the sheep industry, because the
commercial value of a sheep carcass is determined by a range of different aspects, notably the rib eye
area. Studies suggest that the rib eye area is significantly associated with the carcass lean meat yield
(Anderson et al., 2015). Among many carcass traits, the first to be assessed using ultrasonic scanning
was the rib eye area, which revealed the importance attached by consumers and farmers to this trait
(Arias et al., 2007). Therefore, adding the rib eye area to breeding programs is an important tool to
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improve sheep carcass values. Hu sheep predominate among
Chinese mutton sheep breeds, but show huge variation in their rib
eye area because of the selection pressure resulting from breeding
methods and geographical differences. The ability to accurately
predict the size of the rib eye area early in the life of Hu sheep is
extremely valuable for producers to meet the requirements of
their target market, and for genetic selection.

In the last 20 years, the heritability of sheep carcass traits has
been estimated in many sheep breeds from different regions and
countries using different models and approaches (Kefelegn et al.,
1999; Greeff et al., 2015; Mortimer et al., 2017; Blasco et al., 2019;
Savoia et al., 2019). Several studies have quantified the heritability
of certain measured or scored meat quality traits in sheep breeds
in different farming and market systems, which demonstrated the
existence of genetic variability among these traits, which could be
exploited for genetic improvement. However, because the
techniques used to obtain phenotypes at the population level
are expensive and laborious, it is very rare for measurements of
the rib eye area to be used directly in the selection of specialized
breeds, e.g., in cattle (Savoia et al., 2019). Carcass merit traits are
expressed at the later stages of animal production and are mostly
assessed at slaughter, which sacrifices potential breeding stock,
although real-time ultrasound imaging technologies can be used
to measure the rib eye area (Meirelles et al., 2011; Li et al., 2018).

Reducing the generation interval while maintaining a good
level of selection accuracy would improve breeding efficiency
(Kefelegn et al., 1999). Early selection is a practical and
effective method, which is mainly caried out using genomic
selection and molecular marker-assisted breeding (Dekkers,
2003; Tong and Sun, 2015). Identification of the quantitative
trait major genes of the rib eye area is necessary. Mutation sites
identified using Whole genome sequencing (WGS) represent
the ideal pan DNA markers for genetic analyses, because
theoretically, they contain all causative polymorphisms. In
cattle breeding, genome-wide association studies (GWAs)
on production, meat quality, and lactation traits have been
reported widely and have been applied in practical production
(Lin et al., 2020; Mukiibi, 2020). However, in sheep, only a few
GWAs for body size, body weight, and wool traits have been
reported (Kominakis and Hager-Theodorides, 2017; Palombo
et al., 2020; Tao et al., 2020), and most research used single
nucleotide polymorphism (SNP) chips, not the whole genome
sequence.

Designing effective breeding programs based on accurate
estimates of genetic parameters and molecular markers is one
way to solve the problem of slow genetic progression of the rib eye
area of sheep. In the present study, the genetic parameters of the
rib eye area were estimated using different models, and some
genetic correlations between the rib eye area and economic traits
were estimated. WGS of High and Low rib eye area groups from a
reference population of Hu sheep was performed. The aim was to
estimate the heritability of the rib eye area. In addition, we aimed
to establish the feasibility of adding the rib eye area trait to
breeding goal, and to identify candidate genes that could be used
in molecular marker assisted breeding, which will increase the
breeding value of Hu sheep.

MATERIALS AND METHODS

Animal Management and Data Collection
In the present study, a total of 1050 male Hu lambs, born between
2018 and 2019, were included. Among them, 776 individuals
possessed a complete pedigree record. The full pedigree of the
experiment population comprised 1500 individuals, including 70
male parents and 600 female parents, which were from three
National Core Breeding Farms of Sheep and Goats (NCBFSG)
(Gansu Zhongtian Sheep Industry Co. Ltd., Gansu Zhongsheng
Huamei Sheep Industry Co. Ltd., and Gansu Pukang Sheep
Industry Co. Ltd.) and a large scale Hu sheep farm (Gansu
Sanyang Sheep Industry Co. Ltd.). The population with
pedigree information could be used to estimate genetic
parameters. Each lamb was weaned at 56 days old and
transferred to Minqin Defu Agricultural Technology Co., Ltd.
(Performance Measurement Centre, PMC; Gansu Province,
China). There were two batches in 2018 (May to September
and September to December, respectively) and two batches in
2019 (May to September and September to December,
respectively).

From 64 days old, all male Hu lambs were raised indoors in
individual 0.8 × 1 m pens until the lambs were 180 days old, and
each column of pens had a separate trough and drinking bowl for
the sheep to feed freely. Before the study, a 14-day transition
period was implemented, during which the proportion of pellets
in the diet was gradually increased by 7.1% per day, until the diet
became totally granulated. The formula, raw materials, and
manufacturing plant of the feed were consistent. The
experiment began with lambs at 80 days of age. They were
weighed at 80 days to obtain their initial weight (BW80) and
raised for up to 180 days. The body weight of each lamb at
180 days old was measured as the final weight (BW180). The feed
intake of the lambs during the experimental period was recorded
every 20 days. The feed intake for 80–180 days was calculated
from five records. Then, we calculated the average daily gain
(ADG) and average daily feed intake (ADFI). In addition,
individual feed efficiency [residual feed intake (RFI) and feed
conversion ratio (FCR)] were estimated. RFI was the residual of
the multiple linear regression of ADFI on ADG and the medium
metabolic weight [MBW = (0.5 × (BW80 + BW180))0.75]
(Tortereau et al., 2020). The FCR was calculated as the ratio
of ADFI and ADG.

At the 180 days old, blood was collected and the lambs were
slaughtered in accordance with established national standards by
Ministry of Agriculture and Rural Affairs of the People’s Republic
of China (NY/T 3471-2019). The blood was stored at −20°C until
DNA isolation. Twenty-four hours after slaughter, the rib eye
muscle area was covered with oleic acid paper from between the
fifth and sixth thoracic vertebrae, and used to sketch out the
muscle area in a one-to-one ratio. These sketches were scanned
using an EPSON Scanner (V19, IDN, Epson, Nagano, Japan) and
analyzed using ImageJ (1.8.0; NIH, Bethesda, MD, USA) from
which we obtained the rib eye area [REA (cm2)]. Thickness (cm)
of the backfat (BF) above the REA was measured using calipers.
We then selected 5% of the lambs (776 × 0.05 ≈ 40 individuals)
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with extreme REA phenotypes and categorized them into high
and low groups, respectively.

DNA Isolation and Sequencing
Genomic DNA of every lamb was isolated using an EasyPure
Blood Genomic DNA Kit (TransGen Biotech, Beijing, China),
according to the manufacturer’s product description. The quality
and integrity of the DNA was measured using the A260/280 ratio
and by agarose gel electrophoresis. Then, 1.5 µg of high quality
genomic DNA from the high and low groups (80 individuals)
were used to generate 80 paired-end sequencing libraries with an
inset size of 500 bp. The libraries were sequenced as 150 bp paired
end reads using the Illumina NovaSeq PE 150 platform (Illumina,
San Diego, CA, USA).

Sequence Alignment and Single Nucleotide
Polymorphism Calling
Quality control was performed on the raw data to improve
subsequent analyses using FastQC (Version 0.11.1). Reads with
joint sequences and sequences for which the number of
undetected bases in single-end sequencing exceeded 10% of
the total length of the sequence were eliminated. Sequences
with low-quality bases with a mass value of Q ≤ 5 in the
single-end sequence were removed. The clean reads were
mapped onto the Ovis aries reference genome
(Oar_rambouillet_v1.0) using BWA (Burrows-Wheeler
Aligner) (Version 0.7.8) software with default parameters (Li
and Durbin, 2009). To reduce mismatches generated by PCR
amplification before sequencing, duplicated reads were removed
using Genome Analysis Toolkit (GATK, version 3.4.0) and
GATK was used to generate variant call format (VCF) files
(Mckenna et al., 2010). SNPs were filtered using Vcftools
(version 0.1.14) software and processed as follows: SNPs with
call rates <75%, minor allele frequencies (MAF) < 0.05, and
minor coverage depth <3. Thus, 80 individuals with 9,875,037
SNPs were kept for further genomic analysis (Danecek et al.,
2011).

Statistical Analysis
Estimation of (co)variance Components and Genetic
Parameters
To accurately estimate (co)variance components, we constructed
an animal mixed model with univariate and bivariate analysis
between each pair of feature pairs, using the restricted maximum
likelihood (REML) method implemented in the ASReml software
(Gilmour et al., 2009). First, the random effects included in the
analyses were the direct additive genetic effect of the animal,
maternal genetic effects, and random errors. The fixed effects
tested and their levels were: Litter size at individual birth (four
levels), fattening season (two levels), and the farm before weaning
(four levels). All the fixed effects that significantly affected the
trait (p-value < 0.05), as determined using the ASReml Wald
program, were incorporated into the (co)variance estimation.
Three models that accounted for the genetic effects and bivariate
genetic (co)covariance were fitted and were as follows:

Y � Xβ + Zaa + e (1)
Y � Xβ + Zaa + Zmma + e (cov(a,ma) � 0) (2)

G � [Aσ2 0
0 Aσ2

m
]

Where Y is the phenotype measurement vector of a trait, while β,
a, ma, and e are vectors of fixed, additive direct animal genetic
effects, maternal genetic effects, and residual effects, respectively,
with association matrices X, Za, and Zm. G is the variance
structure of the model; A is the additive relationship matrix
based on the pedigree; and σ2 and σ2m are the additive direct and
maternal genetic. Residuals were assumed to follow a normal
distribution, e ~ N(0, R ⊗ I).

The bivariate model was as follows:

[ y1
y2

] � [X1 0
0 X2

][ b1
b2

] + [Z1 0
0 Z2

][ a1
a2

] + [ e1
e2
] (3)

G � [ σ2
a1

rgσa1σa2

rgσa1σa2 σ2
a2

] ⊗ A

Where y1 and y2 are the phenotypic measurement vectors of traits
1 and 2, b1 and b2 are the fixed effect vectors previously described;
a1 and a2 are the vectors of the animal random genetic effects;
and e1 and e2 are the vectors of random residuals. X1 and X2 are
design matrices of the fixed effects and Z1 and Z2 are design
matrices relating traits to random animal genetic effects. σa1 and
σa2 represent the additive genetic variances of traits 1 and 2, and
rg represents the genetic correlation between them. We used
Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC), and Loglik to judge the merits of the model
through ASreml software.

Candidate Gene Screening
Threemethods (fixation index (FST), Fisher’s exact test, and the Chi-
squared test) were used to screen mutation sites with significant
differences in their allele frequency between the High and Low
groups. FST quantified the allele frequency differences between the
High and Low groups using Vcftools software (version 0.1.14)
(Danecek et al., 2011). We used FST because Weir and
Cockerham proposed that genetic structures (or genetic
polymorphisms) cause the degree of population differentiation
and formulated the FST value (0–1) to represent the degree of
allele frequency differences (Cockerham, 1984; Danecek et al., 2011).
In the present study, mutation sites with the top 20 FST values were
identified as putative selection sites. The genomic data of 80
individuals were subjected to principal components analysis
(PCA) [using PLINK (version 1.9)] and permutational
multivariate analysis of variance (PERMANOVA) (using Vegan
R packages) to verify whether there is population stratification. We
constructed a genome-wide case/control design within the High and
Low groups using Fisher’s exact test and the Chi-squared test to
calculate the p-values using PLINK (version 1.9) (Purcell et al., 2007).
In addition, the first five principal components were added as
covariates for the association analysis using Fisher’s test. We used
the false discovery rate (FDR) method to set the p-value threshold.
The genome-wide threshold value was calculated according to an
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FDR of 0.05. The p.adjust function of R (version 4.0.3) was used to
calculate the FDR. (Supplementary Tables S1, S2).

Genotyping and Association
We selected SNPs that met the requirements in all three screening
methods (FST, Fisher’s exact test, and the Chi-squared test). PCR
extension primers for the SNPs were designed using the genomic
DNA sequences. DNA samples from 1050 lambs with phenotypic
records were genetyped using KAspar genotyping technology
(LGC Genomics, Hoddesdon, UK) (Smith and Maughan, 2015)
to further screen the SNPs. The general linear model analysis in
the SPSS 22.0 software (IBM Corp., Armonk, NY, USA) was used
to analyze the association between the genotypes and the REA
(Zhang et al., 2019). The linear model with the fixed and covariate
effects was as follows:

yigkl � μ + Genotypei + Batchj + Seasonk + 180BW + εigkl

In this model, yigkl is the vector of the phenotypic
information; μ is the population mean; Genotypei is the ith

genotype; Batchj is the effect of the jth batch; Seasonk is the
effect of the kth season; 180BW was a covariate added to the
model; εigkl is the residual corresponding to the trait
observation value with ε ~ N(0, σ2). All effects met the
statistically significant criterion (p < 0.05).

RESULTS

Phenotype and Genetic Parameters
In the present study, 776 animals with their REA phenotypes
were included to estimate the genetic parameters. The average

REA was 12.64 ± 2.46 cm2. The probability density of the
phenotype data is shown in Figure 1A. The REA of the high
(mean = 17.97 ± 1.14 cm2) and low (mean = 7.89 ± 0.79 cm2)
groups screened from the large population are shown in
Figure 1B.

Heritability and variance components for the REA are shown
in Table 1. The REA heritability estimated using different models
showed little difference (0.32 and 0.28). The litter common
environmental effect accounted for the majority of the REA.
The REA trait showedmoderate heritability. Maternal heritability
was significantly greater than zero for the REA trait in Hu sheep;
however, the influence of the maternal genetic effect on the
heritability and the additive variance component estimation of
the REA trait was minimal. We calculated the parameters (AIC
and BIC) of the two evaluation models (Table 1).

FIGURE 1 | Probability density map of the original phenotype data (A). The distribution of the included rib eye area (REA) from the high and low groups (B).
Photograph of the REA (C).

TABLE 1 | Estimates of heritability (h2) and variance components.

log σ2a σ2e σ2m h2 hm AIC BIC

Mod1 −1357.78 1.42 ± 0.62 3.04 ± 0.58 0.32 ± 0.13 2719.568 2729.525
Mod2 −1356.14 1.27 ± 0.83 2.96 ± 0.61 0.25 ± 0.43 0.28 ± 0.13 0.06 ± 0.05 2718.275 2733.210

Note: Mod1 Y � Xβ + Zaa + e; Mod2 Y � Xβ + Zaa + Zmma + e; σ2a additive effect variance component; σ2e residual variance component; σ2m Maternal genetic effect variance component;
h2 heritability; hm Maternal heritability; AIC: Akaike information criterion; BIC: Bayesian information criterion.

TABLE 2 | Estimates of genetic (rg) and phenotypic (rp) correlations for rib eye
area, carcass, and important economic traits in Male Hu sheep.

Character REA

rg rp

BW80 0.58 ± 0.18 0.32 ± 0.03
BW180 0.80 ± 0.19 0.42 ± 0.03
ADFI80–180 0.55 ± 0.24 0.37 ± 0.03
ADG80–180 0.91 ± 0.16 0.34 ± 0.03
FCR80–180 −0.05 ± 0.08 -0.02 ± 0.03
RFI80–180 −0.01 ± 0.10 0 ± 0.03
BF 0.06 ± 0.33 0.11 ± 0.03

Note: rg: genetic correlation; rp: phenotypic correlation; REA = rib eye area (cm2); BW80
= weight at 80 days old (kg); BW180 = weight at 180 days old (kg); ADFI = average daily
feed intake (kg); ADG80–180 = average daily gain (kg); FCR80–180 = Feed conversion
ratio; RFI80–180 = residual feed intake (kg); BF = backfat (cm).
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Estimates of genetic and phenotype correlations between
the REA and important economic traits (body weight, feed
intake, feed efficiency, and backfat, respectively) are shown in
Table 2. The correlations were high for the REA and
production traits, with high genetic correlations between
BW80, BW180, ADFI80–180, ADG80–180, and REA (0.58,
0.80, 0.55, and 0.91, respectively). Positive moderate
phenotype correlations were estimated between the REA
and production traits, at 0.32, 0.42, 0.37, and 0.34,
respectively. Genetic correlations between feed efficiency
traits and the REA were negligible (−0.05 and −0.01). Low
correlations were estimated between feed efficiency and the
REA at the phenotypic level (−0.02 and 0). BF and the REA
were genetically correlated with a large standard error, while
there was a positive phenotypic correlation between the BF and
the REA.

Candidate Genes and SNPs
To identify variation in the REA in sheep genomes, we
identified the candidate genes associated with an increased
REA in Hu sheep. We performed WGS of Hu lambs in the high
and low groups. We obtained a total of 700 Gb of raw data,
with an average depth of 5-fold for each individual. The
average number of reads was 58785931 and the average %
GC was 43.6. (Supplementary Table S3). The effective
sequencing rate was 99.42%, which suggested that the data
had high quality and could be used for further in-depth
analysis.

In the present study, three methods were used to identify SNPs
and genes associated with the REA in Hu sheep. Figure 2 shows
that population stratification did not appear. The top two
principal components accounted for a small proportion of the
variance (6.7 and 6.3%). In addition, we performed permutational
multivariate analysis of variance (PERMANOVA) using vegan

packages, which produced a p-value of 0.0014. This verified that
there were no subgroups in the population (p < 0.05). To detect
strongly selected signals, we searched the sheep genome for single
SNPs with an increased genetic distance (FST).We set a threshold
to select the top 20 SNPs and we used the PLINK software for
PCA. The first five principal components were included in
Fisher’s exact test. According to the p-value of every SNP,
eleven significant SNPs (Supplementary Table S1) were
identified for the REA at the secondary identified signal (p <
4.82 × 10−8). Then, we used the Chi-squared test to detect seven
significant SNPs (Supplementary Table S2) for the REA at the
secondary identified signal (p < 3.77 × 10−8). Manhattan maps of
the GWAS are shown in Figure 3.

We found that the SNPs selected using the three methods
were decreasing and coincident (Fst > Fisher’s exact > Chi-
squared). Subsequently, seven target SNPs were selected that
overlapped among the three methods and were annotated to
the closest gene in the Oar_rambouillet_v1.0 genome. Six
genes containing these seven SNPs were defined as
candidate genes (Table 3).

Association Analysis of the Candidate
Genes With the REA
To determine whether the selected candidate genes had a
significant effect in the REA, in the enlarged experimental
population (n = 1050), five SNPs (ST6GAL2 (encoding
ST6 beta-galactoside alpha-2,6-sialyltransferase 2) SNP
g.65927208 T > C, LOC105611989 SNP g.65927208A > T,
DPP6 (encoding dipeptidyl peptidase like 6) SNP
g.126636893A > G, COL12A1 (encoding collagen type XII
alpha 1 chain) SNP g.2261361 T > A, and COL12A1 SNP
g.2261369 T > A) were subjected to genotyping, which
generated three genotypes (Figure 4). The result of association
analysis indicated that LOC105611989 SNP g.65927208A > T,
DPP6 g.126636893 SNP A > G, COL12A1 SNP g.2261361 T > A,
and COL12A1 SNP g.2261369 T > A were significantly associated
with the REA (p < 0.05); however, ST6GAL2 SNP g.65927208 T >
C did not have a significant impact on the REA. For
LOC105611989, the male Hu sheep with the TT genotype had
largest REA and those with the AA genotype had the smallest
REA among the three genotypes (p < 0.05). The REA of male Hu
sheep carrying the AA and AG genotypes of the DPP6 SNP
g.126636893A > G was increased compared with that in male Hu
sheep carrying the GG genotype (p < 0.05). The effect of the
COL12A1 g.2261361 T > A and COL12A1 g.2261369 T > A SNPs
s were significant on the REA. For COL12A1 SNP g.2261361 T >
A, male Hu sheep with the TT genotype had a larger REA than
those with the AA genotype. By contrast, the REA in the
experimental population with the TT genotype of the
COL12A1 g.2261369 T > A SNP was significantly lower
compared with that in the sheep with the AT genotype.

LOC105611989 SNP g.65927208A > T, COL12A1 SNP
g.2261361 T > A, and COL12A1 SNP g.2261369 T > A were in
Hardy–Weinberg equilibrium (p > 0.05). However, ST6GAL2
SNP g.65927208 T > C andDPP6 SNP g.126636893A >G did not
conform to the Hardy–Weinberg equilibrium (p < 0.05).

FIGURE 2 | Principal component analysis (PCA) plots of Hu sheep whole
genome sequencing data.
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DISCUSSION

Genetic improvement has played an important role in
productivity gains in animal farming. The REA is a valuable
economic trait that could affect production traits in animals
(Savoia et al., 2019). The REA has been reported in many
studies that mainly investigated nutrition (Silva et al., 2019;
Jiao et al., 2020; Redoy et al., 2020); however, there have been
relatively few studies reporting the genetic mechanism of the
REA, and it was not until 2013 that a GWAS for the REA in sheep
was reported (Zhang et al., 2013), although GWAS studies had
been used earlier to study the REA in other livestock.

In our study, we estimated the genetic parameters of the REA
in Hu breeding, and candidate gene mining was carried out. The
heritability of the REA-based genetic parameters with different
models was moderate. Roden et al. reported lower estimates of for
rib eye muscle depth and width (0.11 and 0.08) in Scottish
Blackface breed than those in the present study (Roden et al.,
2003). In our population, maternal genetics was not an important
influence on the REA. Previous studies on different cattle breeds
(Nellore, Red Angus, and Piedmontese) reported h2 values for the
REA ranging from 0.21 to 0.26 (Boldt et al., 2018; Savoia et al.,
2019). In 2007, rib eye muscle depth heritability of Kivircik lambs

was estimated using Bayesian inference as 0.23 (Cemal et al.,
2016). Our results of the heritability of the REA are also similar to
those of a previous report (0.23) (Pollott and Greeff, 2004).

In addition, we found interesting correlations between the
REA and certain important economic traits. Positive genetic
correlations were estimated between the REA and production
traits (0.58 for BW80, 0.80 for BW180, 0.55 for ADFI, and 0.91 for
ADG). As expected, the size of an individual has a decisive impact
on the size of the REA. Mortimer et al. reported high genetic
correlations (from 0.37 to 0.70) between the REA and body
weight at different stages (Mortimer et al., 2018). Phenotype
correlation analysis supported the results of the genetic
correlation analysis (Table 2).

We identified negligible genetic correlations between REA and
feed efficiency traits (−0.05 and −0.01), and ADFI and BW
correlated positively with the REA, suggesting that animals
with a larger REA grow faster and consume more feed, so it is
expected that their feed efficiency would be the same. A negative
genetic correlation between the measured muscle depth and feed
efficiency traits (−0.3 ± 0.15) with RFI and −0.15 ± 0.18 with FCR)
has been observed in other breeds (Tortereau et al., 2020). This
correlation suggests that animals with a larger REA are expected
to have excellent feed efficiency. In 2004, the genetic correlation

FIGURE 3 |Genome-wide distribution of Fst (A), Fisher’s exact test (B), and the chi-squared test (C). The horizontal black line in the figure shows the threshold of
methods at the secondary identified signal [-log (4.82 × 10−8) and -log (3.77 × 10−8), respectively].

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8247426

Zhao et al. Breeding for Rib Eye Muscle

305

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 4 | Genotyping of ST6GAL2 (A), LOC105611989 (B), DPP6 (C), and COL12A1 (D and E) single nucleotide polymorphisms (SNPs). Note: Red, green,
and blue represents three genotypes, respectively; while the pink dots indicate genotyping failure.

TABLE 3 | The significant SNPs for the rib eye area in Hu sheep.

Chr Position Gene Fst-
value

Fisher’s-
p-Value

Chi-
squared-
p-Value

REF ALT Post
type

chr2 218145714 ALS2 0.41 8.38e-09 1.28e-08 T C downstream
chr3 65927208 ST6GAL2 0.39 5.04e-09 8.02e-09 T C downstream
chr3 163720238 LOC105611989 0.39 1.52e-08 1.81e-08 A T downstream
chr4 104628299 PLXNA4 0.39 8.81e-09 7.92e-09 TC T intronic
chr4 126636893 DPP6 0.41 2.10e-09 9.13e-09 A G intronic
chr8 2261361 COL12A1 0.39 9.38e-09 1.26e-08 T A intronic
chr8 2261369 COL12A1 0.36 2.39e-08 2.14e-08 T A intronic

Gene: Gene obtained by annotation of significant SNP.

TABLE 4 | Association between the REA and different genotypes of the ST6GAL2, LOC105611989, DPP6, and COL12A1 genes.

Gene/Loci Genotype N p-value REA HWE (p-value)

ST6GAL2 T:T 93 0.40 12.42 ± 2.18 <0.001
chr3:65927208 T:C 356 12.68 ± 2.33
T > C C:C 587 12.38 ± 2.37
LOC105611989 A:A 145 0.0004 11.78 ± 2.43c 0.792
chr3:163720238 A; T 479 12.40 ± 2.35b

A > T T:T 415 12.82 ± 2.27a

DPP6 A:A 25 0.019 12.89 ± 2.30a 0.007
chr4:126636893 A:G 198 12.67 ± 2.27a

A > G G:G 727 12.27 ± 2.29b

COL12A1 T:T 222 <0.01 12.50 ± 4.46a 0.094
chr8:2261361 A:T 449 12.44 ± 2.22ab

T > A A:A 279 12.13 ± 2.21b

COL12A1 T:T 267 0.19 12.12 ± 2.22b 0.248
chr8:2261369 A:T 460 12.47 ± 2.25a

T > A A:A 226 12.43 ± 2.22ab

p-value: Significance of genotype as fixed effect in linearity model (p < 0.05); REA: The mean value of rib eye muscle area in three genotypes; The letters (a,b,c) represents the mean value
with different superscripts differ significantly (p < 0.05); HWE(p-value): The Significance of Hardy–Weinberg equilibrium.
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between fat depth and the REA was estimated as 0.05 (Pollott and
Greeff, 2004). In our study, negative genetic relationship between
the REA and BF was estimated (0.06) However, the genetic
correlation between the REA and BF had a large standard
error. Fat serves as an energy store in animals. A previous
study found evidence that the genetic correlation between fat
reserves and production traits can change across environments
(Pollott and Greeff, 2004). Based on the results of the genetic
parameters, we suggest that the REA trait should be incorporated
into breeding of Hu sheep.

The REA is commonly used to reflect the muscular development
of the carcass. To further investigate the mechanisms affecting the
REA, we identified genes that regulate the REA in the Hu sheep
genome using three methods. SNPs were identified in six genes:
ALS2 (encoding Alsin Rho guanine nucleotide exchange factor 2)
SNP g.218145714 T > C, ST6GAL2 SNP g.65927208 T > C,
LOC105611989 SNP g.163720238A > T, PLXNA4 (encoding
plexin A4) SNP g.104628299 TC > T, DPP6 SNP g.126636893A
> G, COL12A1 SNP g.2261361 T > A, and COL12A1 SNP
g.2261369 T > A.

The mutations in the ALS2 gene may case Familial
amyotrophic lateral sclerosis type 2, which is a juvenile
autosomal recessive motor neuron disease. The ALS2 gene
product, ALS2/alsin, forms a homophilic oligomer and acts as
a guanine nucleotide–exchange factor (GEF) for the small
GTPase Rab5. This oligomerization is crucial for both Rab5
activation and ALS2-mediated endosome fusion and
maturation in cells (Asako et al., 2003; Sato et al., 2018). ALS2
might act as a modulator in neuronal differentiation and
development through regulation of membrane dynamics
(Otomo et al., 2008). Actin and myoglobulin is involved in
guiding regulation of membrane dynamics (Poukkula et al.,
2011). Macro pinocytosis is the cytoplasmic membrane folding
mediated by actin that can non-selectively encapsulate a large
number of extracellular nutrients and liquidmacromolecules, and
transport them to the lysosome for degradation after the cell is
stimulated by nutrient factors or pho wave ester. Macro
pinocytosis alters the nutritional physiology of muscle cells.
The development and nutritional metabolism of muscle cells
are inseparable from this process. The mutation of ALS2 has led
to a certain degree of muscle atrophy in the longissimus dorsi
muscle in Hu sheep. This caused the REA to become smaller. The
association analysis of the larger group also supported this view.

Studies have reported that PLAXN4 and Semaphorin3A show
a high degree of interaction (Quintá et al., 2014; Poltavski et al.,
2019; Limoni et al., 2021). PLAXN4 is used as a star gene in the
Axon guidance - Homo sapiens KEGG category. PLAXN4 acts
directly upstream of Rac, p21-activated kinase (PAK), and RhoD
functions. Rho GTPases are known to regulate actin dynamics
(Ridley, 2006). In motile cells, during the process of mitosis, the
activities of GTPases of different Rho families are separated in
intracellular space (Pal et al., 2020). A previous study found that
RhoD could stimulate actin polymerization and affect plasma
membrane protrusion and/or vesicular traffic (Ridley, 2006). Pal
et al. (2020) reported that manipulating Rac and Arp2/3 activity
resulted in polar body defects during mitosis and meiosis in sea
urchin embryos and sea star oocytes, and suggested that Rac and

Arp2/3-mediated actin networks might directly antagonize Rho
signaling. PAK is an effector downstream target of Rho-GTPases
Rac1 and Cdc42, which can activate its downstream target cofilin
via LIM kinase-1, and subsequently supports cell migration and
invasion through the polymerization of actin filaments (Mierke
et al., 2020). The Rac/PAK/GC/cGMP signaling pathway allows
the action of RAC and PAK to affect actin simultaneously (Guo
et al., 2010). Actin forms part of the muscle cytoskeleton. If there
is a lack of actin production, the development and mitosis of the
longissimus dorsi muscle will be affected, resulting in muscular
dysplasia and thus reducing the rib eye area muscle.

DPP6 is an auxiliary subunit of the Kv4 family of voltage-gated K
(+) channels, which is known to enhance channel surface expression
and potently accelerate their kinetics. Many studies suggest that
DPP6 is consistently and strongly associated with susceptibility to
amyotrophic lateral sclerosis (ALS) in different human populations
of European ancestry (Del Bo et al., 2008; Es et al., 2008; Lin et al.,
2014). This suggests that DPP6 acts as a susceptibility gene for
muscle atrophy symptoms in humans. It is possible that DPP6 has
the same effect on muscle atrophy in animals.

After fitting multiple factors in the association analysis in a
large population, we found that the COL12A gene is related to the
size of the REA of Hu sheep. COL12A is mainly involved in the
degradation of the extracellular matrix pathway and collagen
chain trimerization. In 2014, a myopathy/anhydrotic ectodermal
dysplasia (EDA)-like disease caused by heterozygous COL12A1
variants was reported (Punetha et al., 2017). Mice with Col12A1
knockout showed muscle weakness with decreased grip strength,
combined with bone fragility, short stature, and kyphoscoliosis
(Yaqun et al., 2014). Delbaere et al. (2020) believed that mixed
myopathy was caused by defects in collagen XII and VI, and by
variant-specific alterations in the extracellular matrix resulting
from COL12A1mutation. We believe that this disease also occurs
in Hu sheep.

In addition, we performed genotyping and association analysis
on the seven SNPs in the enlarged experimental population. Five
loci were typed successfully and three loci were significantly
associated with the REA. These three SNPs could be used for
marker-assisted selection. Therefore, we hypothesized that these
candidate genes might affect muscle development in Hu sheep.
We cannot perform whole genome sequencing in a large Hu
sheep population because of the cost; however, further studies are
needed to confirm the biological effects of the identified SNPs in
the rib eye area.

According to the association analysis of candidate genes, we
found that in male Hu sheep ST6GAL2 SNP g. 65927208 T > C
has no association with the REA. The results showed that the SNP
has skewness in this population, which led to a lack of association
with the REA. Although this research verified the association
between candidate SNPs and the REA in a large population,
verification at the cell and protein levels is still needed.

CONCLUSION

The results obtained in the present study showed that the rib eye
area was heritable and there is genetic variability, which could
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theoretically be exploited for the genetic improvement of sheep.
We identified LOC105611989 SNP g.65927208A > T, DPP6 SNP
g.126636893A > G, COL12A1 SNP g.2261361 T > A, and
COL12A1 SNP g.2261369 T > A, whose protein products have
metabolic functions in muscle cells, as candidate genetic markers
of the rib eye area. Our results could be applied to marker assisted
breeding of sheep and are expected to improve for the slow
genetic progress of the rib eye area in sheep. Moreover, this study
provides important information for estimating the heritability
parameters of the rib eye area and for molecular breeding of
carcass traits in Hu sheep.
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Genome-Wide Association Study and
FST Analysis Reveal Four Quantitative
Trait Loci and Six Candidate Genes for
Meat Color in Pigs
Hang Liu1,2,3†, Liming Hou1,2†, Wuduo Zhou1, Binbin Wang1,2, Pingping Han1, Chen Gao1,2,
Peipei Niu2, Zongping Zhang2, Qiang Li4, Ruihua Huang1,2 and Pinghua Li1,2*

1Institute of Swine Science, Nanjing Agricultural University, Nanjing, China, 2Huaian Academy, Nanjing Agricultural University,
Huaian, China, 3Hangzhou Academy of Agricultural Sciences, Hangzhou, China, 4Huaiyin Pig Breeding Farm of Huaian City,
Huaian, China

Meat color is the primary criterion by which consumers evaluate meat quality. However,
there are a few candidate genes and molecular markers of meat color that were reported
for pig molecular breeding. The purpose of the present study is to identify the candidate
genes affecting meat color and provide the theoretical basis for meat color molecular
breeding. A total of 306 Suhuai pigs were slaughtered, and meat color was evaluated at
45 min and 24 h after slaughter by CIELAB color space. All individuals were genotyped
using GeneSeek GGP-Porcine 80K SNP BeadChip. The genomic estimated breeding
values (GEBVs), heritability, and genetic correlation of meat color were calculated by DMU
software. The genome-wide association studies (GWASs) and the fixation index (FST) tests
were performed to identify SNPs related to meat color, and the candidate genes within
1 Mb upstream and downstream of significant SNPs were screened by functional
enrichment analysis. The heritability of L* 45 min, L* 24 h, a* 45min, a* 24 h, b* 45 min,
and b* 24 h was 0.20, 0.16, 0.30, 0.13, 0.29, and 0.22, respectively. The genetic
correlation between a* (a* 45 min and a* 24 h) and L* (L* 45 min and L* 24 h) is
strong, whereas the genetic correlation between b* 45min and b* 24 h is weak. Forty-
nine significant SNPs associated with meat color were identified through GWAS and FST
tests. Among these SNPs, 34 SNPs were associated with L* 45min within a 5-Mb region
on Sus scrofa chromosome 11 (SSC11); 22 SNPs were associated with a* 45 min within a
14.72-Mb region on SSC16; six SNPs were associated with b* 45min within a 4.22-Mb
region on SSC13; 11 SNPs were associated with b* 24 h within a 2.12-Mb region on
SSC3. These regions did not overlap with meat color–associated QTLs reported
previously. Moreover, six candidate genes (HOMER1, PIK3CG, PIK3CA, VCAN,
FABP3, and FKBP1B), functionally related to muscle development, phosphatidylinositol
phosphorylation, and lipid binding, were detected around these significant SNPs. Taken
together, our results provide a set of potential molecular markers for the genetic
improvement of meat color in pigs.
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INTRODUCTION

In recent years, global meat consumption is increasing year by
year (Katare et al., 2020). As an indicator of meat freshness and
safety, meat color can directly affect the consumer purchase
desire of pork (Tomasevic et al., 2021). The discoloration of
meat surface will cause huge economic losses and is harmful to
the meat industry (Suman et al., 2014). It is important for
producers to use objective and scientific methods to evaluate
the meat color (Wu and Sun, 2013). Currently, the CIELAB
(Commission Internationale del’Éclairage LAB) color space is the
most commonly used system for assessing meat color. It is a
three-dimensional Cartesian space containing three mutually
independent parameters, including L* (lightness), a* (redness),
and b* (yellowness).

Meat color is influenced by many factors, including genetic,
nutrition, and slaughter methods, among which the genetic
method has a greater impact (Sellier, 1998). The heritability of
meat color is low to moderate and varies among different
population. Cabling et al. reported that the heritability of L*,
a*, and b* was 0.44, 0.68, and 0.64 in 690 Duroc pigs, respectively
(Cabling et al., 2015). However, Miar et al. reported that the
heritability of meat color of 2075 offsprings from Duroc x Large
White pigs was slightly lower, and the heritability of L*, a*, and b*
was 0.28, 0.26, and 0.31, respectively (Miar et al., 2014). Meat
quality traits have been declined because the previous swine
breeding program has been focused on improving the pig’s
growth rate and lean meat yield (Chen et al., 2018). However,
meat quality traits are now being incorporated into the pig farm
breeding objective because of the demand of the consumer
market for high-quality pork (Wu et al., 2017). Traditional
breeding methods are difficult to improve meat color because
the determination of meat color is expensive and can only be
performed after slaughter. Currently, molecular breeding
technology has been widely used owing to the cost of genome
sequencing, and gene chip scanning is reducing. Marker-assisted
selection (MAS) is an important method of molecular breeding in
which population selection is carried out through molecular
markers and quantitative trait loci (QTLs) related to target
traits (Borakhatariya, 2017; Visscher and Haley, 1995). The
Animal QTLdb has included 651 QTLs related with meat
color of pig; these QTLs are mainly distributed on the Sus
scrofa chromosomes SSC6, SSC7, SSC15, and SSC16. Previous
studies have reported that the RN gene and PRKAG3 gene can
affect the a* value of flesh color and the RYR1 gene can improve
the L* value of flesh meat (Bertram et al., 2000; Küchenmeister
et al., 2000; Gunilla, 2004). Of late, theMYH3 gene was identified
associated with the a* value of meat by the genome-wide
association studies (GWASs) (Cho et al., 2019).

China has more than 83 local pig breeds, and the meat quality
of these local pig breeds, especially meat color, is better than
Western commercial pigs, such as Landrace or LargeWhite (Jiang
et al., 2012; Lebret et al., 2015; Zhang et al., 2015). The Suhuai pig
is a new cross-bred lean-type pig breed containing 25% lineage of
Huai pig and 75% lineage of LargeWhite (Wang et al., 2019). The
Huai pig is one of the local pigs in North China and is well-
documented for its excellent meat quality and redder meat color,

while Large White is a commercial breed with a fast growth rate
and poor meat quality (Yang et al., 2014; Liu et al., 2018). Briefly,
after 23 years of artificial selection of the cross-bred offspring of
the Large White and Huai pig, a new breed was developed, called
the Xinhuai pig, which contains 50% Huai pig and 50% Large
White (1954–1977). Subsequently, LargeWhite pigs were crossed
with Xinhuai pigs in 1998, and their offsprings were selected and
bred for 12 years to obtain the Suhuai pig (1998–2010). The
Suhuai pig is an excellent experimental population for identifying
genes associated with meat color because there is phenotypic
variation of meat color existent in Suhuai pig population.
Moreover, the Suhuai pig’s lineage contains Huai pig lineage
and Large White lineage, and the meat color of the Huai pig is
better than that of Large White. These two mixed lineages may
result in the differentiation in the regions of the genome that
affect the Suhuai pig’s meat color. This study aims to estimate the
heritability and genetic correlation of meat color and identify the
candidate genes and molecular markers of meat color in Suhuai
pigs, which will be beneficial for pig molecular breeding.

MATERIAL AND METHODS

Ethics Statement
All pigs were raised in accordance with the guidelines for the care
and use of laboratory animals prepared by The Institute of
Animal Welfare and Ethics Committee of Nanjing Agricultural
University. All experimental schemes have been approved by the
Animal Care and Use Committee of Nanjing Agricultural
University (certificate no. SYXK (Su) 2017-0007).

Animals and Phenotype Measurements
Three-hundred and six Suhuai pigs (227 sires and 79 dams) were
used in this study. The Suhuai pigs were all fed in three batches on
the Huaiyin breeding farm (Huaian, China) under the same
fodder and standard management environment. The animals
were slaughtered in three batches on Jinyuan Meat Products
Co., Ltd. (Huaian, China). The means and standard errors of
slaughter age and carcass weight were 218.3 ± 1.09 (day) and
59.1 ± 0.39 (kg), respectively. After slaughter, ear tissue samples
were gathered and stored in 75% alcohol solution, and
Longissimus dorsi (LD) muscle samples were collected from
the last rib of the left half carcasses and immediately stored at
4°C. CIELAB color space of meat color was evaluated by
MiniScan EZ (HunterLab Corp., New York, USA) which was
calibrated according to a standard white plate. The diameter
aperture was 8 mm, and D65 illuminant and 0° standard observer
angle were applied. The average of the CIELAB color space from
three random positions on the surface of LD muscle samples at
45 min and 24 h after slaughter (L* 45 min, L* 24 h, a* 45 min, a*
24 h, b* 45 min, and b* 24 h) was used for subsequent analyses.

Genotyping and Quality Control
Genomic DNA was extracted from ear tissue samples following
the standard phenol–chloroform method (Elder et al., 1983). All
DNA samples were genotyped using the GeneSeek GGP-Porcine
80 K SNP BeadChip according to the manufacturer’s protocol.
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Genotype quality control was performed for selected SNPs by the
PLINK 1.07 base on the follow criteria: SNP call rate ≥95%, minor
allele frequency (MAF) > 1% and the p-value chi-square test of
Hardy–Weinberg equilibrium >10−5 (Purcell et al., 2007). After
the quality control and removing the SNPs from the sex
chromosomes, 306 individuals and 52640 SNPs (Sus scrofa
11.1) were remained for subsequent analyses. The raw
genotyped data of these 306 samples are available at https://
doi.org/10.6084/m9.figshare.16573700.v4.

Statistics Analyses
The mixed linear model of SAS 9.4 software (SAS Institute, Inc.,
Cary, NC, USA) was used to fit the fixed effects and the covariates
of each CIELAB color space parameter. The relationship matrix
of individuals was built based on the marker genotype
information developed by VanRaden (Vanraden, 2008). The
additive genetic variance and residuals of CIELAB color space
parameters were calculated using AI-REML arithmetic of DMU
software (Madsen, 2006), and the genomic estimated breeding
values (GEBVs) and residuals of each individual were estimated
using the following model:

y � μ +m + c + a + e,

where y is phenotypic observation, μ is overall mean, m is the
fixed effect (L* and b* used batch and season as fixed effects; a*
used batch as fixed effects), c is the covariates (L* used age and
carcass weight as covariates; b* used age as covariates), a is
random additive genetic effect of animal, and e is random
residual error [e ~ N(0, σ2e)]

The covariance between CIELAB color space parameters was
calculated using the multitrait model of DMU software. The
heritability and genetic correlation between CIELAB color space
parameters were calculated by the following formula:

h2 � σ2
a/(σ2

a + σ2e), rgxy � covgxy/
�������
σ2gxpσ

2
gy

√
,

where h2 is heritability, σ2a is additive genetic variance, σ2e is
random residual variance, rgxy is the genetic correlation of trait x
and y, covgxy is genotype covariance of trait x and y, σ2gx is additive
genetic variance of trait x, and σ2gy is additive genetic variance of
trait y.

Genome-wide association studies for meat color were
performed using a single-marker regression mixed linear
model of Genome-wide Efficient Mixed-Model Association
(GEMMA) software (Zhou and Stephens, 2012). The model is
as follows:

Y � Wα + xβ + µ + ε; µ~MVNn(0, λ−1T k), ε~MVNn(0, T−1/n ),

where Y is the vector of the corrected phenotype that is the sum of
GEBV (genomic-estimated breeding value) and residuals of
individuals. W is an matrix of fixed effects that is a column of
1, α is a vector of the corresponding coefficient including the
intercept, x is a vector of marker genotypes, β is the effect size of
SNP, µ is an vector of random effects, ε is an vector of errors, T−1
is the variance of the residual errors, λ is the ratio between the two
variance components (genetic variance and environmental
variance), K is a known relationship matrix which removed
the SNPs in the same chromosome to avoid overfitting of the
SNP effect on a chromosome, and MVNn denotes the
dimensional multivariate normal distribution (Zhou and
Stephens, 2012).

The significance threshold of the test was corrected by the
Bonferroni method for GWAS; the genome-wide significance
threshold was defined as 0.05/N = 8.89 * 10−7, and the suggestive
significance threshold was defined as 1/N = 1.78 * 10−5 (N = the
number of SNPs using in GWAS, 52640) (Yang et al., 2005).

We sorted the individuals according to the GEBV for each
meat color parameter (L* 45 min, L* 24 h, a* 45 min, a* 24 h, b*
45 min, and b* 24 h), and selected the highest and lowest 30
individuals for these six parameters. GENEPOP 4.0 was used to
calculate the FST statistic of each SNP for evaluating the degree of
genetic differentiation in these groups (Rousset, 2008). The
threshold of FST was 0.2.

Analysis of Gene Ontology and Metabolic
Pathways
The SNPs that reached both thresholds of GWAS and FST tests
were used as a collective for subsequent analysis. BioMart
software was used to detect candidate genes in the 1-Mb
region of theses SNPs up and downstream using the Ensembl
database (Hou et al., 2016). Gene Ontology (GO) term annotation
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses were performed on the annotated genes using
DAVID version 6.8 (Huang et al., 2007).

TABLE 1 | Significance of the fixed effects and covariant in the mixed model for the
analysis.

Parameters N Fixed effects Covariant

Sex Batch Season Age Cw

L* 45 min 306 NS ** * * *
L* 24 h 306 NS ** ** * *
a* 45 min 306 NS ** NS NS NS
a* 24 h 306 NS ** NS NS NS
b* 45 min 306 NS * ** ** NS
b* 24 h 306 NS ** * * NS

**p < 0.05
*p < 0.01
NS, non-significant.
Cw = carcass weight.

TABLE 2 | Descriptive statistics of meat color.

Parameters N Mean ± SE Max Min CV (%) h2±SE

L* 45 min 306 40.07 ± 0.22 56.30 32.52 9.62 0.20 ± 0.10
L* 24 h 306 45.32 ± 0.24 57.40 31.04 9.17 0.16 ± 0.11
a* 45 min 306 5.14 ± 0.09 9.22 1.32 31.32 0.30 ± 0.12
a* 24 h 306 5.99 ± 0.10 14.41 2.17 28.22 0.13 ± 0.10
b* 45 min 306 11.62 ± 0.08 15.67 8.12 11.81 0.29 ± 0.11
b* 24 h 306 12.71 ± 0.09 20.45 9.22 12.33 0.22 ± 0.10
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RESULTS

Description of Phenotypic and Genetic
Parameters of Meat Color
The fixed effects and covariates of the mixed linear model for
analyzing meat color were evaluated according to the
significance of factors. As shown in Table 1, the batch
showed an effect on L*, a*, and b*; season and age showed
an effect on L* and b*; and carcass weight showed an effect on
L*. Descriptive statistics and the heritability of CIELAB color
space parameters are shown in Table 2. The heritability of L*
45 min, L* 24 h, a* 45 min, a* 24 h, b* 45 min, and b* 24 h was
0.20, 0.16, 0.30, 0.13, 0.29, and 0.22, respectively. The coefficient
of variation of meat color ranges from 9.17% (L* 24 h) to 31.32%
(a* 45 min). The genetic correlation of these parameters is
shown in Table 3. Apart from b*, L* and a* showed a strong
positive genetic correlation at two different time points (45 min
and 24 h), which were 0.62 and 0.65, respectively. L* 45 min
showed a weak negative genetic correlation with a* 45 min and
a* 24 h, which are −0.45 and −0.47, respectively, but showed no
genetic correlation with b*. Moreover, L* 24 h showed no
genetic correlation with a* but showed genetic correlation
with b* 45 min (−0.43) and b* 24 h (0.52). The genetic
correlation of a* 45 min and b* were 0.62 (b* 45 min) and
0.27 (b* 24 h), respectively, and the genetic correlation of a*
24 h and b* were 0.35 (b* 45 min) and 0.70 (b* 24 h),
respectively.

GWAS and FST Identified the SNPs
Associated With Meat Color
The results of GWAS showed that there are 139 SNPs
significantly associated with meat color, including 129 SNPs
that reached the suggestive significance threshold (L* 45 min,
32 SNPs; L* 24 h, 5 SNPs; a* 45 min, 38 SNPs; a* 24 h, two
SNPs; b* 45 min, 34 SNPs; and b*24 h, 18 SNPs) and 10 SNPs
that reached the genome-wide significance threshold (L*
45 min, six SNPs; a* 45 min, 1 SNP; b* 45 min, one SNP;
and b* 24 h, two SNPs) (Figure 1, Supplementary Table
S1). It is to be noted that 34 SNPs significantly associated
with L* 45 min were located in a 5.17-Mb region on SSC11
(40.13–45.30 Mb); 22 SNPs significantly associated with a*
45 min were located in a 14.72-Mb region on SSC16
(20.32–35.02 Mb); six SNPs significantly associated with b*
45 min were located in a 4.22-Mb region on SSC13
(117.69–121.91 Mb); and 11 SNPs significantly associated

with b* 24 h were located in a 2.12-Mb region on SSC3
(57.52–59.64 Mb).

Genome-wide fixation coefficient (FST) values were calculated
for each SNP between the highest and lowest individuals sorted
by the GEBV for meat color. A large number of SNPs that reached
the threshold (FST value >0.2) are shown in Figure 2. We focused
on the overlapping results of GWAS and FST analyses. In total, 49
significant SNPs were overlapped in both GWAS and FST tests
(Supplementary Table S2). Among them, 34 SNPs were
identified associated with L* 45 min within a 5.17-Mb region
on SSC11. Moreover, one, two, 10, and two SNPs were identified
associated with L* 24 h, a* 45 min, b* 45 min, and b* 24 h,
respectively.

Identify the Candidate Genes Associated
With Meat Color
BioMart software was used to annotate the genes located within
the upstream and downstream 1Mb of significant SNPs, and 163
genes in total were identified (Supplementary Table S3). A total
of 28 GO terms and six KEGG pathways were enriched by the
DAVID platform (Figure 3). It is worth noting that five
significant GO terms (p < 0.05) and one GO term which tends
to be significant (p = 0.0501) are possibly relevant to meat color
(Table 4). Six genes were identified in these terms that may affect
meat color; a* 45 min (HOMER1), b* 45 min (PIK3CA and
VCAN), b* 24 h (FABP3 and PIK3CG), and L* 24 h (FKBP1B).
These genes can be used as candidate genes of meat color in
Suhuai pigs. It is noted that most of the SNPs were located in
intron and intergenic regions, except rs81361290, which is
located in one of the exons of a non-coding transcript
(Supplementary Table S4).

DISCUSSION

As a direct indicator of pork quality, meat color can significantly
affect the economy of the meat market. In this study, the
heritability and genetic correlation of meat color were
calculated by DMU software, which provided the genetic
theoretical basis for molecular breeding of meat color. In
order to improve the accuracy and reliability of QTLs for
meat color, GWAS and FST were used in this study, and the
overlapping regions identified by these two methods were used
to identify candidate genes of meat color (Tang et al., 2020). The
GWAS identified the candidate loci by a mixed linear model,

TABLE 3 | Genetic correlation ±standard error between meat color.

Parameters L* 45 min L* 24 h a* 45 min a* 24 h b* 45 min

L* 24 h 0.62 ± 0.04 — — — —

a* 45 min −0.45 ± 0.05 −0.14 ± 0.06 — — —

a* 24 h −0.47 ± 0.05 −0.07 ± 0.06 0.65 ± 0.05 — —

b* 45 min −0.14 ± 0.06 −0.43 ± 0.04 0.62 ± 0.04 0.35 ± 0.05 —

b* 24 h 0.06 ± 0.06 0.52 ± 0.05 0.27 ± 0.06 0.70 ± 0.04 0.06 ± 0.07
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and FST identified the candidate loci by detecting SNP
differentiation between high and low groups according to
GEBV. Through a combination of GWAS and FST tests, the
candidate SNPs related to meat color were identified, and

relevant functional candidate genes were detected by
bioinformatic analysis.

The meat color at two different time points (45 min and 24 h)
after slaughter was measured in this study, which represented the

FIGURE 1 |Manhattan plots of GWAS of meat color. (A) L* 45 min; (B) L* 24 h; (C) a* 45 min; (D) a* 24 h; (E) b* 45 min; and (F) b* 24 h. The x-axis indicates the
chromosome (1-18) where the SNPs were located, and y-axis denotes the −log10 p-value. The gray dashed line represents the suggestive significance threshold (1.78 *
10−5), and the gray solid line represents the genome-wide significance threshold (8.89 * 10−7). Blue dots and red dots stand for SNPs that reached the suggestive
significance threshold and genome-wide significance threshold, respectively.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 7687105

Liu et al. GWAS analysis for meat color

314

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


meat color of fresh meat and chilled meat production with
different economic values. For more effectively and accurately
measuring meat color, the CIELAB color space was used. In this
study, the effects affecting meat color are different, but the batch

showed significant effect on meat color that may be due to the
difference of the environment. The season showed significant
effect on L* and b* but has no significant effect on a*. a* is
mainly related to the content and state of myoglobin, while L*

FIGURE 2 | Manhattan plots of FST of meat color. (A) L* 45 min; (B) L* 24 h; (C) a* 45 min; (D) a* 24 h; (E) b* 45 min; (F) b* 24 h. The x-axis indicates the
chromosome (1-18) where the SNPs were located, and y-axis denotes the FST value. The line represents the threshold of differentiation (FST = 0.2). Blue dots and red
dots represent SNPs that reached the suggestive significance threshold and genome-wide significance threshold, respectively.
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FIGURE 3 | Bubble chart of GO terms and KEGG pathways for the enrichment analyses. The y-axis represents the gene functions or pathways and the x-axis is a
ratio between the number of candidate genes that are annotated to the target terms to the number of background genes.

TABLE 4 | Enrichment analysis results related with meat color.

Categories Terms p-value Genes

GOTERM_BP_DIRECT GO:0046854~phosphatidylinositol phosphorylation 0.0063 PIK3CG, PIK3CA, and EFR3B
GOTERM_BP_DIRECT GO:0001501~skeletal system development 0.0343 HAPLN1, VCAN, and CHRD
GOTERM_CC_DIRECT GO:0030018~Z disc 0.0463 SYNC, HOMER1, and FKBP1B
GOTERM_MF_DIRECT GO:0046934~phosphatidylinositol-4,5-bisphosphate 3-kinase activity 0.0268 PIK3CG and PIK3CA
GOTERM_MF_DIRECT GO:0035005~1-phosphatidylinositol-4-phosphate 3-kinase activity 0.0400 PIK3CG and PIK3CA
GOTERM_MF_DIRECT GO:0008289~lipid binding 0.0501 PFN4, FABP3, and AP2M1
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and b* are greatly affected by the biochemical reaction of
muscles which may be affected by temperature and humidity.
It was reported that a* was related to the proportion of
muscle fiber types in the skeletal muscle (Kim, 2010). The
value of a* was relatively high when the skeletal muscle is
dominated by slow-oxidative muscle fibers, which have a
high content of myoglobin (Vierck et al., 2018). L* was
identified not only related to the proportion of fiber types in
the muscle, but it is also related to the glycogen content and the
ability of glycolysis in the muscle (Ryu et al., 2008). Meanwhile,
L*, especially L* 24 h, was affected by the fiber structure in the
muscle, which determines the light absorption and reflection
ability of the meat (Hughes et al., 2020).Studies have reported
that b* could be affected by lipid (Ha et al., 2017). Meat color
was affected by factors which were influenced by the storage
environment; therefore, it can be seen that the heritability of
meat color at 24 h was less than that at 45 min. The heritability
of meat color ranges from 0.1 to 0.3, which belongs to low and
middle heritability, and this results are consistent with other
reports (Khanal et al., 2019).

We defined |R|< 0.2 as irrelevant, 0.2 < |R| < 0.5 as weak
correlation, and |R| > 0.5 as strong correlation. Our
results showed that the genetic correlation of a* (a* 45 min
and a* 24 h) and L* (L* 45 min and L* 24 h) is strong, but b*
45 min and b* 24 h have no genetic correlation with each
other, indicating that the genetic background of b*45 min
and b* 24 h may be different. Our results showed that the
main influencing factors for a* 45 min and a* 24 h are
similar, whereas the main influencing factors of b* 45 min
and b* 24 h could be different. There was a weak negative
genetic correlation between L* 45 min and a* (a* 45 min and
a* 24 h), which may be related to the proportion of muscle
fiber types (Hughes et al., 2020). There is no genetic correlation
between L* 24 h and a* (a* 45 min and a* 24 h), indicating that
L* 24 h may be more affected by other factors such as pH, water-
holding capacity, and structure of muscle fibers etc. It is
worth noting that L* 24 h has a weak negative genetic
correlation with b* 45 min and strong positive genetic
correlation with b* 24 h, which indicated that the main
influencing factors of b* 45 min and b* 24 h are different.
The a* and b* showed strong positive genetic correlation at
the same time point and weak positive genetic correlation at
different time points, indicating that although b* is complex, it
may have the same genetic background with a*. Indeed, it is
noteworthy that the parameter of meat color could affect
each other.

Among the meat color of Suhuai pigs, the variation
coefficient of a* is the largest, which is over 30%, while the
variation coefficient of L* is over 9%. Therefore, SNPs and
genes affecting meat color could be identified by GWAS in
Suhuai pigs. In order to reduce the false-positive rate and
improve the power of the GWAS model and FST tests, we
used GEBV plus residual as the corrected phenotype. In total,
we identified 49 SNPs and both reached the significance
threshold of FST value and GWAS, which could act as the
candidate sites associated with meat color in this study.
Interestingly, the parameter at the two time points after

slaughter did not share the same significant SNPs, which
indicated that the main influencing factors of meat color at
45 min and 24 h after slaughter may be different from a genetic
perspective. The meat color at 24 h after slaughter may be
mainly affected by metabolic reactions in the muscle, such as
glycolysis reaction of the muscle after slaughter; however, the
meat color at 45 min after slaughter may be primarily
determined by the content of muscle substances such as
myoglobin, fat, and moisture etc. These SNPs were not
overlapped with the previously reported QTL intervals
related with meat color. Meat color is a complex economic
trait which is regulated by complex genetic networks, and the
genes causing the different meat color in different pig breeds
may be located at different regulatory network nodes, which
may be the reasons why the current study identified a few new
associated genetic regions that were not identified by previous
studies.

Although meat color was evaluated using different
parameters (L*, a*, and b*) at different time points (45 min
and 24 h) after slaughter, the genetic correlation of meat color
parameters range from −0.47 to 0.70 (Table 3). Therefore, genes
within 1 Mb upstream and downstream of all significant sites
were used as a collective for functional enrichment
analyses. The results enriched multiple pathways, including
muscle development (GO:0001501 and GO:0030018),
phosphatidylinositol phosphorylation (GO:0046854, GO:
0046934, and GO:0035005) and lipid binding (GO:0008289).
Phosphatidylinositol is involved in a variety of physiological
functions in the body, including muscle contraction,
cell proliferation, and differentiation. The genes within the
region on SSC11 (40.13–45.30 Mb) related to L* 45 min
were not enriched in any pathway and were not reported to
affect meat color. It is possible that there is a regulatory
element in this region that regulates the expression of
downstream genes. In total, we identified six candidate genes
in these pathways related to meat color. Of these candidate
genes, only the HOMER1 gene was associated with muscle
development, and the rs81360833 (p = 1.21E-05) was
suggestive to be significantly associated with a* 45 min and
was located in the region of the HOMER1 gene. Homer1 is
one of the homer family members that play a role in activity-
dependent control of neuronal responses (Worley, 1998). As the
scaffolding protein, the lack of Homer1 can cause the
dysregulation of transient receptor potential (TRP) channels.
It was reported that mice lacking Homer1 showed the
decreasing of the muscle fiber cross-sectional area and
skeletal muscle force generation, which may cause
increasing spontaneous calcium influx (Michel et al., 2004;
Stiber et al., 2008). The HOMER1 gene has different
expression patterns in the skeletal muscle of three different
pig breeds, including Large White (lean-type), Tongcheng
(obese-type), and Wuzhishan (mini-type) (Hou et al., 2016).
These studies suggested that HOMER1 may play an important
regulatory role during skeletal muscle growth, which could
affect the proportion of muscle fiber types in the skeletal
muscle and resulted in different redness (a*) of the skeletal
muscle.
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Four candidate genes associated with the b* were identified,
which were involved in the physiological function of fat deposition.
The PIK3CA gene encoded the P110α protein, which is a member of
the enzyme phosphoinositide 3-kinase (PI3k) family and plays an
important role in glucose metabolism, angiogenesis, and cellular
growth. PIK3CA is a key mediator in insulin signaling, which can
regulate glucose and lipid metabolism and the expression of major
gluconeogenic-related genes (Sopasakis et al., 2010). The PIK3CA
gene was differentially expressed in the two groups which were
divided according to the degree of fat deposition in the muscle and
enriched in the pathways related to the differentiation of adipose
tissue (Cánovas et al., 2010). P110γ, encoded by the PIK3CG gene, is
the unique catalytic subunit of the PI3K family, and it is involved in
the Akt pathway of glucose transport and fat production (Puig-
Oliveras et al., 2014). Studies related to the PIK3CG gene were
mainly focused on signal transduction of inflammation, and p110γ is
a major driver of metabolic diseases, such as fatty liver disease and
type-2 diabetes (Van Greevenbroek et al., 2013). The PIK3CG gene
has been identified as a candidate gene affecting intramuscular fat
(IMF) and fatty acid (FA) in the swine muscle of Iberian X Landrace
backcross animals (Puig-Oliveras et al., 2014). Versican (VCAN), is
considered critical to several key cellular processes which may
influenced the growth of adipose tissue, including cellular
adhesion, proliferation, differentiation, migration, and
angiogenesis (Du et al., 2011). It has been reported that the
VCAN gene is associated with glucose tolerance in obese patients
(Minchenko et al., 2013). The VCAN gene is associated with pork
quality and fat deposition in pork (Piorkowska et al., 2018). Cardiac
fatty acid–binding proteins (FABP3) participate in lipid metabolism
by ingesting or utilizing long-chain fatty acids. An SNP located in
FABP3 promoter region was found in purebred LargeWhite, Duroc,
and Pietrain populations, which was identified related to
adipogenesis (Sweeney et al., 2015). These four candidate genes
(PIK3CA, PIK3CG, VCAN, and FABP3) have been reported to be
involved in the regulation of fat metabolism pathways and affected
the changes of fatty acid content and glycogen content in themuscle,
which could be one of the reasons for the variation of
yellowness (b*).

Genes located in the region of L* 45 min–associated SNPs
were not enriched into any pathways; thus, further studies
are needed to reveal the genetic basis for L* 45 min in other
pig breeds. The FKBP1B gene was identified near the
significant SNP of L* 24 h. FKBP1B is a member of the
peptide-proline isomerase family and can be detected in a
variety of cells. Studies have found that mir-34a mimic
can regulate fat production by reducing the expression of
FKBP1B mRNA in preadipocytes, indicating the importance of
FKBP1B in fat production (Jang et al., 2015). In addition to
muscle fiber types and the structure of the muscle fiber, L* may be
affected by FKBP1B through fat metabolism.

CONCLUSIONS

The a* value of meat color has a large degree of variation in Suhuai
pigs. The heritability of L* 45 min, L* 24 h, a* 45min, a* 24 h, b*

45 min, and b* 24 h was 0.20, 0.16, 0.30, 0.13, 0.29, and 0.22,
respectively. The genetic correlation between a* (a* 45min and
a* 24 h) and L* (L* 45 min and L*24 h) is strong. Forty-nine
potential meat color–related SNPs were identified using GWAS
and FST tests in Suhuai pigs, and six candidate genes (HOMER1,
PIK3CG, PIK3CA, VCAN, FABP3, and FKBP1B), which are
functionally related to muscle development, phosphatidylinositol
phosphorylation, and lipid binding, were detected around these
significant SNPs. These findings provide theoretical and
molecular basis for genetic improvement of meat color in pigs.
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Water buffalo (Bubalus bubalis), belonging to the Bovidae family, is an economically
important animal as it is the major source of milk, meat, and drought in numerous
countries. It is mainly distributed in tropical and subtropical regions with a global
population of approximately 202 million. The advent of low cost and rapid sequencing
technologies has opened a new vista for global buffalo researchers. In this study, we
utilized the genomic data of five commercially important buffalo breeds, distributed
globally, namely, Mediterranean, Egyptian, Bangladesh, Jaffrarabadi, and Murrah.
Since there is no whole-genome sequence analysis of these five distinct buffalo
breeds, which represent a highly diverse ecosystem, we made an attempt for the
same. We report the first comprehensive, holistic, and user-friendly web genomic
resource of buffalo (BuffGR) accessible at http://backlin.cabgrid.res.in/buffgr/, that
catalogues 6028881 SNPs and 613403 InDels extracted from a set of 31 buffalo
tissues. We found a total of 7727122 SNPs and 634124 InDels distributed in four
breeds of buffalo (Murrah, Bangladesh, Jaffarabadi, and Egyptian) with reference to the
Mediterranean breed. It also houses 4504691 SSR markers from all the breeds along with
1458 unique circRNAs, 37712 lncRNAs, and 938 miRNAs. This comprehensive web
resource can be widely used by buffalo researchers across the globe for use of markers in
marker trait association, genetic diversity among the different breeds of buffalo, use of
ncRNAs as regulatory molecules, post-transcriptional regulations, and role in various
diseases/stresses. These SNPs and InDelscan also be used as biomarkers to address
adulteration and traceability. This resource can also be useful in buffalo improvement
programs and disease/breed management.

Keywords: bovine, lncRNA, miRNA, molecular markers, web-resource, CircRNAs

INTRODUCTION

Water buffalo, scientifically known as Bubalus bubalis, is the major source of milk, meat, and
drought in various countries, making it an economically important animal. This livestock
species belonging to the Bovidae family is mainly distributed in tropical and subtropical
regions. Based on morphology and behavior, the two categories of domestic Asian water
buffalo are river buffalo (2n = 50) and swamp buffalo (2n = 48) (Iannuzzi, 1994). The global
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population of water buffalo is ~217 million in 34 countries
(FAOSTAT, 2020) with ~82% and ~18% river buffalo and
swamp buffalo, respectively. South Asia holds the majority of
water buffalo as India ranks first in buffalo breeding with a
share of 50.5%, followed by Pakistan and China (Taşcioğlu
et al., 2020). Buffalo are largely domesticated by small
farmers in Asia. This indicates the popularity and
dependence of water buffalo as compared to any other
species that are domesticated. India has the lion’s share
(69%) in river buffalo. Milk yield is more in buffalo than
cattle. Also, buffalo milk has a higher nutritional value than
cattle on account of higher fat content (8.0%), higher
unsaturated fatty acid levels, higher protein content (4.5%),
and lower phospholipid and cholesterol levels. It is a more
preferred milk for dairy products (Du et al., 2019).

The fast decline in DNA sequencing costs has paved the way
for researchers across the globe to revolutionize genome
analysis. Assembly and decoding of the genome of water
buffalo is in continuous progress. The following five
genome assemblies of water buffalo exist on the NCBI
database (https://www.ncbi.nlm.nih.gov/assembly/?term=
Bubalus) (Last accessed: July 2021): GCA_003121395.1 of
the Mediterranean breed from University of Adelaide,
Australia; GCA_019923935.1 of the Murrah breed from
National Dairy Development Board, India; GCA_004794615.
1 of the Bangladesh breed from BGI-Shenzhen, China; GCA_
002993835.1 of the Egyptian buffalo breed from Agriculture
Genetic Engineering Research Institute and Nile University,
Egypt, and GCA_000180995.3 of the Jafarabadi breed from
Anand Agricultural University, India. GCA_003121395.1 and
GCA_019923935.1 are chromosome level assemblies with 25
chromosomes, however, RefSeq annotation has not yet been
provided for GCA_019923935.1.

Whole-genome sequencing and transcriptome studies provide
insights on genetic makeup, numerous trait markers, and their
expression in organisms. Simple sequence repeats (SSR) are the
information source for genetic diversity among different breeds/
varieties of the same species (Patzak et al., 2012). There are 22
buffalo breeds (only river subspecies) distributed all over the
world with different characteristics like shape, size, color, weight,
and lactation period, etc. Genomic variation results in single
nucleotide polymorphisms (SNPs), insertions, and deletions
(Surya et al., 2018). These variations are stable and are
transferred from one generation to the next. These variations
impinge start codon gain or loss, stop codon gain or loss, or frame
shift. The presence of such variations in protein coding regions
culminates in synonymous or non-synonymous amino acid
replacement.

Long non-coding RNAs are a group of RNAs which are
greater than 200 nt and lack open reading frames or have <100
amino acids in length. lncRNAs regulate gene expression
through methylation and demethylation (Bhat and Jones
2016; Fernandes et al., 2019) and through chromatin
modifications by interfering with transcription factors
[binding with DNA and regulating transcription (Griffiths
et al., 2000)] and miRNAs. lncRNAs perform post-
translational regulation through capping, alternative

splicing, editing, transport, translation, degradation, and
stability of mRNA targets. Apart from their biological roles,
lncRNAs can also function as biomarkers. At the organism
level, lncRNAs are known to be abnormally expressed in many
diseases therefore playing a role in diagnosis (Kosinska-Selbi
et al., 2020).

miRNAs are 18–25 nucleotide-long regulatory sequences,
which play an important role in response reactions during
anorganism’s exposure to biotic or abiotic conditions (O’Brien
et al., 2018). They regulate gene expression by binding to the
target sequence with the help of AGO protein and make an
miRNA-induced silencing complex (mi-RISC) (Kawamata and
Tomari, 2010). Water buffalo are adapted to higher to
lower altitudes, hence they face a wide range of stresses
like low/high temperatures (Liu et al., 2019), pathogens
(Dhanoa et al., 2019; Lecchi et al., 2019), etc. Previously
known miRNAs specific to buffalo have been reported from
various transcriptome studies involving such stress
conditions (Dhanoa et al., 2019; Lecchi et al., 2019; Liu
et al., 2019).

Other regulatory non-coding RNAs, known as circular RNAs
(circRNAs), spawn through back-splicing of RNAs. They are
more stable than RNAs (Chen et al., 2017; Wang et al., 2017). The
functions of circRNAs are not well known but still it is reported
that they play a significant role in post-transcriptional regulation
of gene expression (Lukiw, 2013). CircRNAs function as a sponge
of miRNAs by sequestering them by binding and interacting with
lncRNAs (Lei et al., 2021). These are being employed as
biomarkers for controlling and treating diseases (Meng et al.,
2017; Lu, 2020).

Before release of the buffalo reference genome, most of the
studies related to buffalo involving omics analyses were based on
the Bos taurus reference genome. The available whole-genome
assemblies of five buffalo breeds represent a highly diverse
ecosystem. Their utilization in whole-genome sequence
analyses and in extraction of rapid polymorphic markers at
lower costs for the breeders is warranted. In 2018, a buffalo
reference genome with 24 chromosomes along with X and MT
chromosomes was released by the Italian Buffalo Genome
Consortium (https://www.ncbi.nlm.nih.gov/assembly/GCA_
003121395.1). For the current study, the different omics
studies in buffalo were performed using the GCA_003121395.1
buffalo reference genome to extract non-coding RNAs such as
miRNAs, lncRNAs, and circRNAs in the 31 buffalo tissues, which
had not been attempted earlier. Also, the various genetic markers
such as SSRs, SNPs, and InDels from five breeds of buffalo
(Mediterranean, Egyptian, Bangladesh, Jaffrarabadi and
Murrah) were mined. After extraction of the mentioned
molecular markers and non-coding RNAs, a web-based
genomic resource, BuffGR was developed to facilitate the
buffalo research community with user-friendly, single-window
retrieval of buffalo omics data to be utilized for further scientific
research and studies. This buffalo web resource is state-of-the-art,
holistic, and currently the largest collection related to buffalo
including the most important breed of India, i.e., Murrah from
the latest 2021 assembly as well as the world, i.e., Mediterranean
from the latest 2018 assembly.
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MATERIALS AND METHODS

Data Retrieval and Processing
In order to extract the breed-wise molecular markers and variants
like SSRs, SNPs, and InDels, in five buffalo breeds, namely,
Mediterranean, Egyptian, Bangladesh, Jaffrabadi, and Murrah,
their genome assemblies were retrieved from NCBI (Table 1).

For extraction of cirRNAs, SNPs, and InDels, RNA-seq data of
a total of 31 buffalo tissues were retrieved fromNCBI, which were
mapped with the GCF_003121435.1 genome assembly of the
Mediterranean breed using Bowtie2 (Langmead and Salzberg,
2012), while HISAT2 (Kim et al., 2019) was used in the case of
lncRNAs (Table 2). For the extraction of miRNAs, cirRNAs, and
lncRNAs, the genome assembly of the Mediterranean breed was
used (GCF_003121435.1).

Identification of SNPs and InDels
For extraction of variants, namely, SNPs and InDels, the four
buffalo breeds (Murrah, Jaffrabadi, Bangladesh, and Egyptian)
were mapped to the water buffalo reference genome of the
Mediterranean breed (GCA_003121395.1, the UOA_WB_1
assembly). These mapped reads of RNA-seq data were first

sorted and indexed using Samtools (Li et al., 2009; Li, 2011)
along with the indexed reference genome (GCA_003121395.1).
Then, coverage extraction of each nucleotide was performed
using Samtools mpileup. Further, SNPs and InDels were
extracted using bcftools (Danecek et al., 2021) call. Finally,
significant SNPs were filtered using bcftools view at p-value
<0.05, read depth >10, quality depth >30, minimum root
mean square mapping >40, and flanking sequence length =50.
This was followed by functional annotation of extracted SNPs and
InDels using Perl script utilizing the annotation file of the genome
of Mediterranean buffalo (GCA_003121395.1).

Identification of SSRs Markers
MIcroSAtellite (MISA) (Beier et al., 2017) was used to extract
SSRs from genome assemblies of all the five breeds utilizing
parameters such as ≥10, ≥6, ≥5, ≥4, and ≥4 repeats for mono, di,
tri, tetra, and penta nucleotide (nt) motifs, respectively along with
length of compound SSRs ≤100 nt and minimum distance
between two SSRs ≥50 nt (Zhao et al., 2017). The functional
annotation of mined SSR markers was performed using Perl
scripts utilizing the annotation of the Mediterranean buffalo
RefSeq genome (GCA_003121395.1). Finally, based on the

TABLE 1 | The list of assemblies of buffalo from public domain.

Accession Breed Submitter Assembly
level

Remarks

GCA_003121395.1 Mediterranean University of Adelaide Chromosome-
wise

UOA_WB_1 (https://www.ncbi.nlm.nih.gov/assembly/
GCF_003121395.1/)

GCA_019923935.1 Murrah National Dairy Development Board, India Chromosome-
wise

NDDB_SH_1 (https://www.ncbi.nlm.nih.gov/assembly/
GCF_019923935.1/)

GCA_004794615.1 Bangladesh BGI-Shenzhen Scaffold level Bubbub1.0 (https://www.ncbi.nlm.nih.gov/assembly/
GCA_004794615.1/)

GCA_002993835.1 Egyptian Egyptian Water Buffalo Genome Consortium
(Agriculture Genetic Engineering Research Institute
and Nile University)

Scaffold level ASM299383v1 (https://www.ncbi.nlm.nih.gov/
assembly/GCA_002993835.1/)

GCA_000180995.3 Jaffrabadi Anand Agricultural University, Anand, Gujarat, India Scaffold level Bubalus_bubalis_Jaffrabadi_v3.0 (https://www.ncbi.nlm.
nih.gov/assembly/GCA_000180995.3/)

TABLE 2 | The details of RNA-seq data from the International Water Buffalo Genome Project representing different buffalo tissues along with SRA IDs and mapping %.

Tissue SRA IDs Mapping % Tissue SRA IDs Mapping %

Tongue ERR315616 95.71 Ovary-corpus luteum ERR315632 94.30
Rumen ERR315617 93.69 Ovary follicle ERR315633 97.60
Abomasum ERR315618 95.91 Oviduct ERR315634 96.67
Small intestine ERR315619 93.88 Endometrium ERR315635 96.59
Large intestine ERR315620 96.03 Mammary gland ERR315636 95.18
Obex ERR315621 94.02 Embryo pool ERR315637 70.87
Hypophysis ERR315622 96.84 Embryo single ERR315638 73.61
Spinal Cord ERR315623 95.40 Thymus ERR315639 96.71
WBC ERR315624 97.04 Mesenteric lymph node ERR315640 96.47
Cerebellum ERR315625 90.61 Spleen ERR315641 96.07
Bone Marrow ERR315626 95.55 Liver ERR315642 96.57
Muscle longissimus dorsai ERR315627 96.21 Pancreas ERR315643 96.70
Muscle semitendinosus ERR315628 96.62 Kidney ERR315644 95.23
Testis ERR315629 97.40 Lung ERR315645 96.53
Thyroid ERR315630 96.19 Testis SRR527266-72 90.02
Heart ERR315631 94.68 Milk SRR7091387-98 94.88
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result of MISA, primer3 software (Untergasser et al., 2012) was
used to design the primer pairs at default parameters, taking the
flanking sequences of SSRs of the Mediterranean breed.

Identification of microRNAs
For the prediction of miRNAs, first-known miRNAs and pre-
miRNAs of Bos tauras frommiRBase (Griffiths-Jones et al., 2006)
were collected and duplicates were removed using CD-HIT
(Huang et al., 2010). The pre-miRNA sequences of non-
redundant Bos tauras miRNAs were aligned with the buffalo
RefSeq genome (GCA_003121395.1) using BLASTn and
sequences with 0 gap and ≤3 mismatches were taken along
with 500 nt up and downstream stretches, making these
>1000 nt length sequences (Altschul et al., 1990). Further,
200 nt fragments were taken from these sequences by using
25 nt sliding windows using the SegKit tool (Shen et al., 2016).
The obtained sequences were again clustered using CD-HIT to
obtain non-redundant sequences. Non-redundant sequences
were used to predict the secondary structure by RNAfold
(Lorenz et al., 2011) at minimum free energy (MFE) > −20.
Further, sequences with <60 nt, non-AUGC, and multi-loop in
structure, and pseudo pre-miRNAs were removed by Triplet-
SVM classifier (Xue et al., 2005). These putative pre-miRNAs
were used for further prediction of mature miRNAs using
MiRdup (Leclercq et al., 2013). Finally, psRANTarget (Dai and
Zhao, 2011) was used at an expectation value of 2 to predict
mRNA targets of predicted miRNAs.

Identification of Circular RNAs
For the identification of circRNAs from the mapped RNA-seq
reads of 31 buffalo tissues, CIRI v2.0.4 (Gao et al., 2015) was
used. As circRNA-looping sites cannot be aligned directly to
the genome, find_circ (Memczak et al., 2013) was used for the
first 20 base pairs of each read end that were incompatible with
the genome to anchor independent reads, thus map them with
the buffalo reference genome (GCA_003121395.1), and finally
to find only the mapped site. If the two anchors aligned in the
linear region were in the reverse direction, anchor reads were
extended until circRNA junctions were found. The sequence
was considered a circRNA if the two sides of sequences
corresponded to GT/AG splicing signals as mentioned by
Fu et al. (2018). CIRI was also used to annotate circRNAs
by using the annotation file of the GCF_003121395.1 genome
assembly.

Identification of Long Non-Coding RNAs
For the identification of lncRNAs, from RNA-seq data of 31
buffalo tissues, first, mapping was performed using HISAT2 (Kim
et al., 2019), followed by assembly using Stringtie v1.3.5 (Pertea
et al., 2015). Then, putative lncRNAs were predicted from
assembled reads using CPC2 (Kang et al., 2017) and passed
through subsequent steps (a and b) for further validation as
non-coding transcripts, i.e., 1) the transcripts with length ≥200bp,
open reading frame (ORF) ≤100 aa, strand information (+/-
strand), and CPC2 score <0.5 were selected using OrfPredictor
(Min et al., 2005) and passed through annotation using the
annotation file of the GCF_003121395.1 genome assembly by

GffCompare (Burset and Guigo, 1996). 2) These were then
searched against the NCBI-nr protein database through blastx
(E value 0.01, coverage >80%, and identity >90%) and the Pfam
protein database through HMMER (Finn et al., 2011). Finally, the
validated lncRNAs were classified based on origin of lncRNAs as i
(within a reference intron), j (alternative lncRNAs isoforms of
known genes), o (lncRNAs with exonic overlap with a known
transcript), u (intergenic lncRNAs), and x (exonic overlap on the
opposite stand) as classified by Roberts et al. (2011). Transcripts
with FPKM ≥0.5 for multi-exon transcripts and FPKM ≥1 for
single-exon transcripts were selected as lncRNAs.

Development of Buffalo Web Genomic
Resource, BuffGR
The Buffalo Genomic Resource Database, BuffGR is a ‘three tier
architecture’ relational database developed using client, server,
and database tiers. The analyzed datasets were catalogued in
BuffGR on a Linux server. The following steps were involved in
the development of BuffGR (Figure 1A): 1) Extraction of SNPs/
InDels, SSR markers, lncRNAs, miRNAs, and circRNAs from the
reference genomes of different breeds of buffalo and SRA data of
31 tissues of buffalo. These data are absolute, rather than having
relative quantification. 2) Development of relational database in
MySQL version 10.4.17, which includes 11 tables for all the fields,
namely, for SNPs/InDels, SSR markers, lncRNAs, miRNAs, and
circRNAs (Figure 1B); 3) development of web interface in PHP,
HTML, and Java. Web hosting of this interface was done by
Apache2 server version 3.2.4. A request was sent to the web server
from the user’s system in PHP. A query was generated following
the request of the user on the web server and sent to MySQL. The
database response was prepared in MySQL and sent back to the
web server. Finally, a response prepared in PHP was displayed in
the user’s system.

RESULTS

Identification of SNPs and InDels
A total of 6028881 SNPs and 613403 InDels were extracted from
the set of 31 buffalo tissues. The highest number of SNPs and
InDels was extracted from milk tissue (1625901 SNPs/174256
InDels) followed by testis (448640 SNPs/46172 InDels) and large
intestine (152608 SNPs/17552 InDels) (Figure 2A). However, the
variants detected breed-wise showed a maximum number of
SNPs and InDels in the Murrah breed (6313245 SNPs/510515
InDels), followed by Bangladesh (906446 SNPs/114319 InDels)
and Egyptian (447224 SNPs/5920 InDels), while the least was
seen in Jaffarabadi (60207 SNPs/3370 InDels) (Figure 2B).
Table 3 represents the extracted tissue-wise genes showing
abundance of SNPs and InDels by functional annotation. A
total of 7727122 SNPs and 634124 InDels were collectively
distributed in the four breeds of buffalo (Murrah, Bangladesh,
Jaffarabadi, and Egyptian) with reference to the Mediterranean
breed. From functional annotation of breed-wise SNP/InDels,
12326/8469, 15152/2044, 4798/1100, and 21762/17222 genes
were found to have abundance of SNPs/InDels in Bangladesh,
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Egyptian, Jaffrabadi, and Murrah breeds, respectively (Figure 2C
for SNPs and Figure 2D for InDels). SNP discovery plays an
important role in obtaining varying alleles associated with
different traits of interest (Mishra et al., 2020). This can be
useful in marker trait association studies for various traits
(Pareek et al., 2008).

A total of 12 genes (SPP1: chr7, SCD: chr23, SREBF1: chr3,
STAT1: chr2, TG: chr15, LALBA: chr4, INSIG2: chr2, GHRL:
chr21, DGAT1: chr15, CSN1S1: chr7, BTN1A1: chr2, ADRA1A:
chr3) with abundance of milk tissue SNPs from the present study

were found to be common out of 19 candidate genes reported to
be associated with milk production trait by Du et al. (2019)
(Table 4). We also found 10 genes (COL1A2, APOB, GDF7,
KLHL29, NRXN1, RGS22, VPS13B, MFSD14A, SLC35A3,
PALMD) with abundance of SNPs of different breeds from
the present study to be common out of 12 candidate genes for
different QTL traits such as milk yield, fat yield, protein yield, fat
%, and protein % identified from GWAS analysis of Italian
Mediterranean buffalo using the SNP-ChIP technique by
Iamartino et al. (2017) and Liu et al. (2017) (Table 4).

FIGURE 1 | (A) Database preparation and data retrieval for BuffGR; (B) Layout of data, data options, and data tables of BuffGR.

FIGURE 2 | Frequencies of SNP/InDels in (A) 31 different buffalo tissues (B) different breeds of buffalo: Common and unique genes with abundance of (C) SNPs
and (D) InDels in different breeds of buffalo.
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Identification of SSR Markers
Maximum number of SSRs were observed in Jaffrabadi
(1028180), followed by Bangladesh (9463410) and
Mediterranean (908402), while the least was found in Egyptian
(726405) (Figure 3A). The number of SSRs based on repeat types
(mono, di, tri, tetra, penta, hexa-nucleotide repeats) along with
their proportions, frequency of SSRs per Mb, and distance
between the two SSRs are listed in Table 5. In all the breeds,
abundance of mononucleotides was observed which might be
because of the inherent limitation of the chemistry employed in
next-generation sequencing for data generation (Haseneyer et al.,
2011) (Figure 3B). A similar higher proportion of mono repeats
has been found in other animals like cattle, horse, and camel (Ma,
2016; Khalkhali-Evrigh et al., 2019). The relative distributions of
various SSR motif lengths in genomes differ from species to
species (Sharma et al., 2007). A total of 4329, 4284, 1435, 29822,
and 4326 putative genes with an abundance of SSRs in
Bangladesh, Egyptian, Jaffrabadi, Mediterranean, and Murrah

breeds, respectively, were annotated. Figure 3C shows the
common genes with abundance of SSRs in different breeds.
The reported putative molecular markers can be used in
marker trait association studies for buffalo genetic
improvement programs (Sikka and Sethi, 2008; Bhuyan et al.,
2010; Kannur et al., 2017).

Identification of microRNAs
We identified a total of 938 miRNAs from the genome assembly
of the Mediterranean breed. The pre-miRNA sequences,
secondary structure, target information, and location of origin
were extracted for each miRNA along with mature miRNA
sequence and anti-miRNA star sequence. It was observed that
chromosome 11 had the maximum frequency of miRNAs (132
miRNAs) followed by chromosomes 23 (81 miRNAs) and 13 (80
miRNAs) (Figure 4B). A target search for 938 miRNAs was
performed, out of which 88 miRNAs were found to have 3451
mRNA targets (predicted mode of action of miRNAs was

TABLE 3 | Annotated genes with abundance of extracted SNP/InDels from buffalo tissues.

Tissue Genes with
SNPs

Genes with
InDels

Tissue Genes with
SNPs

Genes with
InDels

Tongue 14392 6944 Muscle longissimus dorsai 12381 5149
Rumen 13503 5751 Muscle semitendinosus 12428 5038
Obex 15038 7404 Small intestine 14322 6867
WBC 13422 6813 Large intestine 15438 7879
Testis 16121 8588 Ovary-corpus luteum 13538 5821
Thyroid 14227 6429 Ovary follicle 14208 6751
Heart 13279 6125 Cerebellum 14711 7385
Thymus 14602 7179 Endometrium 14882 7376
Oviduct 14728 7109 Mesenteric lymph node 14445 7189
Spleen 14629 7479 Mammary gland 14674 7052
Liver 13969 6593 Spinal cord 14583 7229
Pancreas 14620 7128 Bone marrow 13376 6252
Kidney 14726 7303 Embryo pool 9531 3510
Lung 14989 7600 Embryo single 6008 1338
Testis 16121 8588 Hypophysis 14763 7144
Milk 16090 9308 Abomasum 14877 7514

TABLE 4 | Genes with abundance of extracted tissue/breed SNPs found to be common within the reported candidate genes of QTL traits.

Genes with abundance
of SNPs: Chromosome
(reported candidate genes)

Total SNPs (within
respective genes)

Tissue/breed of extracted
SNPs

QTL trait Reference

SPP1: chr7, SCD: chr23, SREBF1: chr3, STAT1: chr2, TG:
chr15, LALBA: chr4, INSIG2: chr2, GHRL: chr21, DGAT1:
chr15, CSN1S1: chr7, BTN1A1: chr2, ADRA1A: chr3

15, 22, 17, 53, 122, 04, 18,
03, 19, 13, 05, 01

Milk tissue Milk production Du et al. (2019)

COL1A2: chr8, APOB: chr12 112, 193 Murrah, Bangladesh, Egyptian,
Mediterranean

Milk yield Iamartino et al.
(2017)

GDF7: chr12 1598 Murrah, Bangladesh,
Mediterranean

Milk yield Iamartino et al.
(2017)

KLHL29: chr12 1458 Murrah, Bangladesh, Egyptian,
Jaffrabadi, Mediterranean

Milk yield Iamartino et al.
(2017)

RGS22: chr15, VPS13B: chr15 3249 Murrah, Bangladesh, Egyptian,
Jaffrabadi, Mediterranean

Milk yield, fat yield,
protein yield

Liu et al. (2017)
344

MFSD14A: chr6, SLC35A3: chr6, PALMD: chr6 60, 41, 215 Murrah, Bangladesh, Egyptian,
Mediterranean

Fat %, protein % Liu et al. (2017)
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cleavage of mRNA targets to destroy them or binding with
mRNA targets to sequester them) and included in the web
resource. Protein encoded by target mRNA, aligned as paired-
unpaired sequences of the binding site between mRNA target and
miRNA, were also mentioned in the web resource. The miRNAs
have the future prospective to be used as biomarkers and for
disease management and treatment. miRNAs can be used as a
powerful tool to understand the regulatory mechanisms related to
disease pathogenesis (Singh et al., 2020; Do et al., 2021).

Identification of Circular RNAs
Out of the total 1702 circRNAs extracted from the 31 buffalo
tissues, 1458 were unique circRNAs. Figure 4A shows that the
maximum number of circRNAs was found in milk (833) tissues
followed by embryo pool (153), testis (88), and tongue (52)
tissues. Information of genomic localization into intron, exon,
and intergenic regions of circRNAs along with genes of origin and
strand of origin was extracted by functional annotation of

circRNAs from different tissues which were catalogued in the
web resource. The chromosome-wise distribution of circRNAs
showed that most of the circRNAs originated from chromosome
2 (227), followed by chromosomes 3 (160) and 4 (155)
(Figure 4B). circRNAs have multiple regulatory roles which
can enrich breeding and improve economic traits related to
buffalo (Fu et al., 2018; He et al., 2021; Yang et al., 2021).

Identification of Long Non-Coding RNAs
A total of 44221 lncRNAs were identified in the 31 buffalo tissues.
Abundance of lncRNAs was observed in milk tissue 17387)
followed by testis (5048) and pooled embryo 4419)
(Figure 4A). Genomic annotation based on the site of origin
of lncRNAs found distribution of 37712 unique lncRNAs into five
classes such as intron (14252), isoform/pseudogene (1308), exon
(1358), intergenic (17134), and antisense exon (3659) regions.
Protein and transcript information was also included for genic
origin of lncRNAs. Genomic annotation of unique lncRNAs from

TABLE 5 | Breed-wise frequencies of SSRs, their proportions, SSR density, and distance between two SSRs in different repeat motifs.

Breeds Repeats Number Proportion % Frequency of
SSRs per Mb

Distance between
two SSRs

in Kb

Mediterranean Mono 515343 57.01 191.64 5.22
Di 176276 19.24 65.55 15.25
Tri 113425 12.40 42.18 23.71
Tetra 10120 1.10 3.76 265.72
Penta 13514 1.48 5.03 198.98
Hexa 289 0.03 0.11 9304.68
Compound 79435 8.75 29.54 33.85

Egyptian Mono 436413 60.08 145.18 6.89
Di 152723 21.02 50.81 19.68
Tri 71979 9.91 23.95 41.76
Tetra 6521 0.90 2.17 460.96
Penta 5122 0.71 1.70 586.87
Hexa 107 0.01 0.04 28092.99
Compound 53541 7.37 17.81 56.14

Jaffrabadi Mono 580010 56.41 154.26 6.48
Di 209586 20.38 55.74 17.94
Tri 127585 12.41 33.93 29.47
Tetra 11688 1.14 3.11 321.70
Penta 14154 1.38 3.76 265.65
Hexa 343 0.03 0.09 10962.04
Compound 84815 8.25 22.56 44.33

Murrah Mono 516017 57.63 196.77 5.08
Di 174481 19.49 66.53 15.03
Tri 112283 12.54 42.82 23.36
Tetra 10097 1.13 3.85 259.73
Penta 13527 1.51 5.16 193.87
Hexa 300 0.03 0.11 8741.53
Compound 68658 7.67 26.18 38.20

Bangladesh Mono 533868 56.41 192.71 5.19
Di 190507 20.13 68.77 14.54
Tri 113377 11.98 40.93 24.43
Tetra 10575 1.12 3.82 261.96
Penta 12246 1.29 4.42 226.22
Hexa 268 0.03 0.10 10336.79
Compound 85501 9.03 30.86 32.40
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all tissues depicted abundance in the intergenic (17134), followed
by intron 14252) regions in our study. The graphical
representation of lncRNA frequencies based on their length

showed that most lncRNAs had a length of 200–399 bps and
had a decreasing trend in frequency with increase in lncRNA
length (Figure 4C). The role of lncRNAs in genomic studies has

FIGURE 3 | (A)Breed-wise frequencies of SSRs. (B)Breed-wise representation of different repeat motifs. (C)Common and unique genes with abundance of SSRs
in the five breeds of buffalo.

FIGURE 4 | (A) Tissue-wise frequencies of circRNAs and lncRNAs (B) chromosome-wise frequencies of miRNAs and circRNAs; (C) length-wise frequencies of
lncRNAs in buffalo.
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been found to be critical in linking the gap between livestock
genotype and phenotype (Kosinska-Selbi et al., 2020).

Development of Buffalo Web Genomic
Resource
BuffGR is a comprehensive, first-of-its-kind web resource, with a
holistic collection of buffalo molecular markers and variants of
five buffalo breeds (Murrah, Mediterranean, Jaffarabadi,
Bangladesh, and Egyptian). It is a user-friendly web
resource, which catalogues SNPs, InDels, and SSRs along
with ncRNAs such as mircoRNAs, lncRNAs, and
circRNAs from the five buffalo breeds and 31 tissues. It has
a left vertical section which provides access to varying sections
of the web page including Home, Statistics, Data, and Team.
The Home page includes the brief introduction of the buffalo
web genomic resource along with a description about RNA/
transcripts and molecular markers of buffalo. The
Statistics section provides the statistics of extracted buffalo
genomic data represented in the form of various graphs and pie
charts.

The Data section includes hyperlinked images of each data
point included in the web resource, and by clicking on the image,
the user navigates to the next page of the respective data which
provides the user varying options including type of tissue or
chromosome number or breed, etc. (as shown in detail in
Figure 1B). After selecting the combination of options, the
user gets a complete table of the related data. The last
column of each table provides a hyperlink to the genome

browser, which navigates to the genomic location of the
respective marker or ncRNA. In the case of miRNAs, each
miRNA sequence is hyperlinked, which navigates to its mRNA
target/s wherever available; the Team page includes the name
of the team members with their profile. The Tutorial page
guides users regarding the use of this web genomic resource
(Figure 5).

Utility of Buffalo Web Genomic Resource
The computational approach of discovery of SSR markers, SNPs,
and InDels along with miRNAs, lncRNAs, and circRNAs
utilizing the available genomic data of different breeds
resulted in a ready-to-use, user-friendly, rapid, and
economical approach for genomic resource development. The
developed web resource, BuffGR can be of immense use to the
international buffalo research community, which can utilize the
information of genomic attributes from five breeds from India
(Murrah and Jaffrabadi), Italy (Mediterranean),
Bangladesh (Bangladesh), and Egypt (Egyptian). The
catalogued SNP/InDel markers from different breeds could
be used to study genetic diversity among different breeds of
buffalo (Camargo et al., 2015; Deng et al., 2016; El-Halawany
et al., 2017; Iamartino et al., 2017; Liu et al., 2017; Dutta et al.,
2020). Highly variable SSR markers extracted in the present
study could be utilized to find genetic diversity (Barker et al.,
1997; Zhang et al., 2020). The SSRmarkers from different breeds
could be used to find polymorphic SSRs (Moore et al., 1995) and
their utilization in the study of genetic diversity of respective
breeds (Moioli et al., 2001; Merdan et al., 2019; Vohra et al.,

FIGURE 5 | Web interface of BuffGR.
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2021; Ünal et al., 2021). We also extracted ~270000 polymorphic
SSRs in theMediterranean buffalo breed with respect toMurrah,
Bangladesh, Jaffrabadi, and Egyptian breeds. The species-
specific genetic markers (SNP/InDels and SSRs) can also be
used as biomarkers of species to be used in the meat industry to
trace adulteration or trafficking/traceability (Kannur et al.,
2017).

Two coding variants were detected in the ASIP gene by Dutta
et al. (2020), one synonymous variant at chr14:19947421 and
another non-synonymous variant at chr14:19947429. Dutta
et al. (2020) also reported that the alternative allele at the
synonymous variant was not observed in Murrah, Surti, or
Mediterranean breeds. The potential of extracted SNPs from
this study as biomarkers can be seen from the example that the
Murrah andMediterranean breeds in the present study only had
one non-synonymous SNP at 19947429 in the ASIP gene on
chr14 as reported by Dutta et al. (2020). Significant SNPs could
be utilized to find candidate genes specific to a certain function.
The variants and SSRs can also be utilized in GWAS
(El–Halawany et al., 2017) and later in MTA (marker trait
association) analysis and QTL analysis by interval mapping
(Deng et al., 2016; Mishra et al., 2020). The present study
also shows the potential utilization of extracted markers in
marker trait association as few of the genes with abundance
of extracted tissue/breed SNPs were found in common with the
candidate genes of the few reported QTL traits determined from
GWAS studies. We found 12 genes with abundance of milk
tissue SNPs to be in common with candidate genes of milk trait,
and 10 genes with abundance of SNPs from different breeds to
be in common with candidate genes of QTL traits such as milk
yield, fat yield, protein yield, fat %, and protein % from other
GWAS analyses (Iamartino et al., 2017; Liu et al., 2017; Du et al.,
2020).

Tissue-specific lncRNAs could be helpful in studying post-
transcriptional regulation by targeting certain mRNAs by
cleaving or binding (Zhang et al., 2021) with target mRNAs.
lncRNAs could be competitors of miRNAs, which targeted
certain mRNAs, where lncRNAs sequestered miRNAs
by binding to them and preventing miRNA from cleaving
the respective mRNA (Li et al., 2020). Also, tissue-
specific lncRNAs could be helpful in utilization in
transcriptional regulation by targeting or modulating
transcription regulatory proteins by facilitating their
binding to a certain site or blocking binding at their target
site (Cai et al., 2019; Pan et al., 2021). Another important fact is
that the provided tissue-wise lncRNAs are the largest reported
group of annotated lncRNAs of buffalo in a single study while
several studies report tissue-specific lncRNAs in various
species of livestock such as Bos taurus, Gallus gallus, Sus
scrofa (Kosinska-Selbi et al., 2020), and Bos indicus
(Alexandre et al., 2020). The TCONS_00011978 lncRNA,
identified from muscle tissue in the present study, was
reported to have regulatory potential in muscle with the
highest degree of connectivity within the muscle network by
Alexandre et al. (2020), reaffirming the potential of our
extracted lncRNAs to be utilized in various future studies of
buffalo. The buffalo miRNAs and their target mRNAs

extracted in the present study can be utilized in post-
transcriptional regulation of certain mRNAs and their
encoding proteins by cleaving or binding with their target
mRNAs (MacFarlane and Murphy, 2010; Hammond, 2015;
Chen et al., 2020; Singh et al., 2020) along with recognition, de-
capping, and degradation of 3′ UTR, and de-adenylation and
adenylation of 3’ UTR of mRNAs (Shukla et al., 2011). The
miRNAs could be used to find their lncRNAs target; action of
miRNAs on lncRNAs could be sequestering them by binding
or destroying them by cleaving (Assmann et al., 2019; Xie et al.,
2020). The tissue-wise extracted circRNAs in the present study
could be utilized in the studies of tissue-specific post-
transcriptional regulation involving circRNAs and their role
in various buffalo diseases (Gao et al., 2018; He et al., 2021; Lei
et al., 2021; Yang et al., 2021).

SNP and SSR markers can also be used in parentage and
relatedness testing required in breeding and conservation
programs (Labuschagne et al., 2015). SNP markers can also be
used in estimating inbreeding and effective population sizes
required in conservation management monitoring genetic
diversity (Panetta et al., 2017). They can be used to compute
global co-ancestries of un-pedigreed populations. Such an
approach can be of immense use in formulation of selective
mating plans based on minimum co-ancestry mating and
minimizing inbreeding (Fernández et al., 2005). Both SSR and
SNP markers can be used in individual animal identification and
breed traceability (Zhao et al., 2020). Water buffalo miRNAs and
SNPs can be further used as genomic resources. Such use has been
reported in cattle where SNPs and miRNAs have been found
associated with bovine phenotypes to be used in breed
improvement (Sousa et al., 2021).

CONCLUSION

Through this study, we report the first comprehensive and user-
friendly web genomic resource for buffalo (BuffGR) including
genomic findings of five commercially important buffalo breeds,
namely Mediterranean, Egyptian, Bangladesh, Jaffrarabadi, and
Murrah. BuffGR catalogues a total of 6028881 SNPs and 613403
InDeLs extracted from the set of 31 buffalo tissues. Collectively, a
total of 7727122 SNPs and 634124 InDels were distributed in the
four breeds of buffalo (Murrah, Bangladesh, Jaffarabadi, and
Egyptian) with reference to the Mediterranean breed. The web
resource has 4504691 SSR markers from all the breeds, 1458
unique circRNAs and 37712 lncRNAs from 31 buffalo tissues,
and 938 miRNAs from the genome assembly of the
Mediterranean breed. This information can be widely used by
the buffalo researchers across the globe for studying the genetic
diversity among the different breeds of buffalo, studies involving
post-transcriptional regulation, and their role in various buffalo
diseases. The provided markers can be used as biomarkers in the
meat industry to trace adulteration, trafficking, and breed
traceability. These can be used not only for knowledge
discovery research but also for marker trait association, which
will be helpful in the improvement and management of buffalo
breeds.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 80974110

Khan et al. Genomic Resource for Water Buffalo

330

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found in the article/Supplementary
Material.

AUTHOR CONTRIBUTIONS

MI, DK, and SJ conceived the theme of the study. AaK, KS, SJ,
MR, RJ, AnK, AG, JK, MI, and UA performed the
computational analysis and developed genomic resources.
KS, AaK, MI, SJ, and DK drafted the manuscript. VN, AR,
TD, and DK edited the manuscript. All co-authors read and
approved the final manuscript.

ACKNOWLEDGMENTS

The authors are thankful to the Indian Council of Agricultural
Research (ICAR), Ministry of Agriculture and Farmers’Welfare,
Government of India for providing financial assistance in the
form of a CABin grant as well as the use of the Advanced Super
Computing Hub for Omics Knowledge in Agriculture
(ASHOKA) facility at ICAR-IASRI, New Delhi, India created
under the National Agricultural Innovation Project, and funded
by the World Bank. The authors further acknowledge the
supportive role of the Director of ICAR-IASRI, New Delhi
and Director, ICAR-CIRB, Hisar, India. The grant of Junior
Research Fellowship to AaK by the Indian Council of
Agricultural Research is duly acknowledged. Authors are also
thankful to Lal Bahadur Shastri Outstanding Young Scientist
Scheme, ICAR for necessary support.

REFERENCES

Alexandre, P. A., Reverter, A., Berezin, R. B., Porto-Neto, L. R., Ribeiro, G.,
Santana, M. H. A., et al. (2020). Exploring the Regulatory Potential of Long
Non-coding RNA in Feed Efficiency of Indicine Cattle. Genes 11 (9), 997.
doi:10.3390/genes11090997

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic
Local Alignment Search Tool. J. Mol. Biol. 215 (3), 403–410. doi:10.1016/s0022-
2836(05)80360-2

Assmann, T. S., Milagro, F. N., and Martínez, J. (2019). Crosstalk between
microRNAs, the Putative Target Genes and the lncRNA Network in
Metabolic Diseases. Mol. Med. Rep. 20 (4), 3543–3554. doi:10.3892/mmr.
2019.10595

Barker, J. S. F., Moore, S. S., Hetzel, D. J. S., Evans, D., Byrne, K., and Tan, S. G.
(1997). Genetic Diversity of Asian Water buffalo (Bubalus Bubalis):
Microsatellite Variation and a Comparison with Protein-Coding Loci. Anim.
Genet. 28 (2), 103–115. doi:10.1111/j.1365-2052.1997.00085.x

Beier, S., Thiel, T., Münch, T., Scholz, U., and Mascher, M. (2017). MISA-web: a
Web Server for Microsatellite Prediction. Bioinformatics 33 (16), 2583–2585.
doi:10.1093/bioinformatics/btx198

Bhat, S., and Jones, W. D. (2016). An Accelerated miRNA-Based Screen Implicates
Atf-3 in Drosophila Odorant Receptor Expression. Sci. Rep. 6 (1), 1–8. doi:10.
1038/srep20109

Bhuyan, D. K., Sangwan, M. L., Gole, V. C., and Sethi, R. K. (2010). Studies on DNA
Fingerprinting in Murrah Buffaloes Using Microsatellite Markers. Indian
J. Biotechnol. 9 (4), 367–370.

Burset, M., and Guigó, R. (1996). Evaluation of Gene Structure Prediction
Programs. Genomics 34 (3), 353–367. doi:10.1006/geno.1996.0298

Cai, R., Tang, G., Zhang, Q., Yong, W., Zhang, W., Xiao, J., et al. (2019). A Novel
Lnc-RNA, Named Lnc-ORA, Is Identified by RNA-Seq Analysis, and its
Knockdown Inhibits Adipogenesis by Regulating the PI3K/AKT/mTOR
Signaling Pathway. Cells 8 (5), 477. doi:10.3390/cells8050477

Chen, L., Zhang, S., Wu, J., Cui, J., Zhong, L., Zeng, L., et al. (2017).
circRNA_100290 Plays a Role in Oral Cancer by Functioning as a Sponge
of the miR-29 Family. Oncogene 36 (32), 4551–4561. doi:10.1038/onc.2017.89

Chen, Z., Xie, Y., Luo, J., Chen, T., Xi, Q., Zhang, Y., et al. (2020). Milk Exosome-
Derived miRNAs fromWater buffalo Are Implicated in Immune Response and
Metabolism Process. BMC Vet. Res. 16 (1), 123–125. doi:10.1186/s12917-020-
02339-x

Dai, X., and Zhao, P. X. (2011). psRNATarget: a Plant Small RNA Target Analysis
Server.Nucleic Acids Res. 39 (Suppl. l_2),W155–W159. doi:10.1093/nar/gkr319

Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., et al.
(2021). Twelve Years of SAMtools and BCFtools. GigaScience 10 (2), giab008.
doi:10.1093/gigascience/giab008

de Camargo, G., Aspilcueta-Borquis, R., Fortes, M., Porto-Neto, R., Cardoso, D.,
Santos, D., et al. (2015). Prospecting Major Genes in Dairy Buffaloes. BMC
Genomics 16 (1), 1–14. doi:10.1186/s12864-015-1986-2

Deng, T. X., Pang, C. Y., Liu, M. Q., Zhang, C., and Liang, X. W. (2016).
Synonymous Single Nucleotide Polymorphisms in the MC4R Gene that Are
Significantly Associated with Milk Production Traits inWater Buffaloes. Genet.
Mol. Res. 15, 1–8. doi:10.4238/gmr.15028153

Dhanoa, J. K., Singh, J., Singh, A., Arora, J. S., Sethi, R. S., andMukhopadhyay, C. S.
(2019). Discovery of isomiRs in PBMCs of Diseased Vis-À-Vis Healthy Indian
Water Buffaloes. ExRNA 1 (1), 1–12. doi:10.1186/s41544-019-0013-1

Do, D. N., Dudemaine, P.-L., Mathur, M., Suravajhala, P., Zhao, X., and Ibeagha-
Awemu, E. M. (2021). miRNA Regulatory Functions in Farm Animal Diseases,
and Biomarker Potentials for Effective Therapies. Ijms 22 (6), 3080. doi:10.
3390/ijms22063080

Du, C., Deng, T., Zhou, Y., Ye, T., Zhou, Z., Zhang, S., et al. (2019). Systematic
Analyses for Candidate Genes of Milk Production Traits in Water buffalo
(Bubalus Bubalis). Anim. Genet. 50 (3), 207–216. doi:10.1111/age.12739

Dutta, P., Talenti, A., Young, R., Jayaraman, S., Callaby, R., Jadhav, S. K., et al.
(2020). Whole Genome Analysis of Water buffalo and Global Cattle Breeds
Highlights Convergent Signatures of Domestication. Nat. Commun. 11 (1),
1–13. doi:10.1038/s41467-020-18550-1

El-Halawany, N., Abdel-Shafy, H., Shawky, A.-E. -M. A., Abdel-Latif, M. A., Al-
Tohamy, A. F. M., and Abd El-Moneim, O. M. (2017). Genome-wide
Association Study for Milk Production in Egyptian buffalo. Livestock Sci.
198, 10–16. doi:10.1016/j.livsci.2017.01.019

FAOSTAT (2020). The Food and Agriculture Organization (FAO) of the United
Nations Statistics Division. Available at: https://www.fao.org/faostat/en/#home
(Accessed August 2021).

Fernandes, L. G. V., Guaman, L. P., Vasconcellos, S. A., Heinemann, M. B.,
Picardeau, M., and Nascimento, A. L. T. O. (2019). Gene Silencing Based on
RNA-Guided Catalytically Inactive Cas9 (dCas9): a New Tool for Genetic
Engineering in Leptospira. Sci. Rep. 9 (1), 1–14. doi:10.1038/s41598-018-
37949-x

Ferna´ndez, J., Villanueva, B., Pong-Wong, R., and Toro, M. A. (2005). Efficiency
of the Use of Pedigree and Molecular Marker Information in Conservation
Programs. Genetics 170 (3), 1313–1321. doi:10.1534/genetics.104.037325

Finn, R. D., Clements, J., and Eddy, S. R. (2011). HMMER Web Server: Interactive
Sequence Similarity Searching. Nucleic Acids Res. 39 (Suppl. l_2), W29–W37.
doi:10.1093/nar/gkr367

Fu, Y., Jiang, H., Liu, J.-B., Sun, X.-L., Zhang, Z., Li, S., et al. (2018). Genome-wide
Analysis of Circular RNAs in Bovine Cumulus Cells Treated with BMP15 and
GDF9. Sci. Rep. 8 (1), 1–10. doi:10.1038/s41598-018-26157-2

Gao, Y., Wang, J., and Zhao, F. (2015). CIRI: an Efficient and Unbiased Algorithm
for De Novo Circular RNA Identification. Genome Biol. 16 (1), 1–16. doi:10.
1186/s13059-014-0571-3

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 80974111

Khan et al. Genomic Resource for Water Buffalo

331

https://doi.org/10.3390/genes11090997
https://doi.org/10.1016/s0022-2836(05)80360-2
https://doi.org/10.1016/s0022-2836(05)80360-2
https://doi.org/10.3892/mmr.2019.10595
https://doi.org/10.3892/mmr.2019.10595
https://doi.org/10.1111/j.1365-2052.1997.00085.x
https://doi.org/10.1093/bioinformatics/btx198
https://doi.org/10.1038/srep20109
https://doi.org/10.1038/srep20109
https://doi.org/10.1006/geno.1996.0298
https://doi.org/10.3390/cells8050477
https://doi.org/10.1038/onc.2017.89
https://doi.org/10.1186/s12917-020-02339-x
https://doi.org/10.1186/s12917-020-02339-x
https://doi.org/10.1093/nar/gkr319
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1186/s12864-015-1986-2
https://doi.org/10.4238/gmr.15028153
https://doi.org/10.1186/s41544-019-0013-1
https://doi.org/10.3390/ijms22063080
https://doi.org/10.3390/ijms22063080
https://doi.org/10.1111/age.12739
https://doi.org/10.1038/s41467-020-18550-1
https://doi.org/10.1016/j.livsci.2017.01.019
https://www.fao.org/faostat/en/#home
https://doi.org/10.1038/s41598-018-37949-x
https://doi.org/10.1038/s41598-018-37949-x
https://doi.org/10.1534/genetics.104.037325
https://doi.org/10.1093/nar/gkr367
https://doi.org/10.1038/s41598-018-26157-2
https://doi.org/10.1186/s13059-014-0571-3
https://doi.org/10.1186/s13059-014-0571-3
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Gao, Y., Wu, M., Fan, Y., Li, S., Lai, Z., Huang, Y., et al. (2018). Identification and
Characterization of Circular RNAs in Qinchuan Cattle Testis. R. Soc. Open Sci.
5 (7), 180413. doi:10.1098/rsos.180413

Griffiths, A. J., Miller, J. H., Suzuki, D. T., Lewontin, R. C., and Gelbart, W. M.
(2000). Transcription: An Overview of Gene Regulation in Eukaryotes. An
Introduction to Genetic Analysis. 7th edition. New York: W. H. Freeman.
Available at: https://www.ncbi.nlm.nih.gov/books/NBK21766/.

Griffiths-Jones, S., Grocock, R. J., Van Dongen, S., Bateman, A., and Enright,
A. J. (2006). miRBase: microRNA Sequences, Targets and Gene
Nomenclature. Nucleic Acids Res. 34 (Suppl. l_1), D140–D144. doi:10.
1093/nar/gkj112

Hammond, S. M. (2015). An Overview of microRNAs. Adv. Drug Deliv. Rev. 87,
3–14. doi:10.1016/j.addr.2015.05.001

Haseneyer, G., Schmutzer, T., Seidel, M., Zhou, R., Mascher, M., Schön, C.-C., et al.
(2011). From RNA-Seq to Large-Scale Genotyping - Genomics Resources for
rye (Secale Cereale L.). BMC Plant Biol. 11 (1), 1–13. doi:10.1186/1471-2229-
11-131

He, T., Chen, Q., Tian, K., Xia, Y., Dong, G., and Yang, Z. (2021). Functional Role of
circRNAs in the Regulation of Fetal Development, Muscle Development, and
Lactation in Livestock. Biomed. Res. Int. 2021, 5383210. doi:10.1155/2021/5383210

Huang, Y., Niu, B., Gao, Y., Fu, L., and Li, W. (2010). CD-HIT Suite: a Web Server
for Clustering and Comparing Biological Sequences. Bioinformatics 26 (5),
680–682. doi:10.1093/bioinformatics/btq003

Iamartino, D., Nicolazzi, E. L., Van Tassell, C. P., Reecy, J. M., Fritz-Waters, E. R.,
Koltes, J. E., et al. (2017). Design and Validation of a 90K SNP Genotyping
Assay for the Water buffalo (Bubalus Bubalis). PloS One 12 (10), e0185220.
doi:10.1371/journal.pone.0185220

Iannuzzi, L. (1994). Standard Karyotype of the River buffalo (Bubalus Bubalis L., 2n =
50). Report of the Committee for the Standardization of Banded Karyotypes of the
River buffalo. Cytogenet. Cel. Genet. 67 (2), 102–113. doi:10.1159/000133808

Kang, Y.-J., Yang, D.-C., Kong, L., Hou, M., Meng, Y.-Q., Wei, L., et al. (2017).
CPC2: a Fast and Accurate Coding Potential Calculator Based on Sequence
Intrinsic Features. Nucleic Acids Res. 45 (W1), W12–W16. doi:10.1093/nar/
gkx428https://www.ncbi.nlm.nih.gov/assembly/GCF_003121395.1/ https://
www.ncbi.nlm.nih.gov/assembly/GCA_000180995.3/ https://www.ncbi.nlm.
nih.gov/assembly/GCA_004794615.1/ https://www.ncbi.nlm.nih.gov/
assembly/GCA_002993835.1/ https://www.ncbi.nlm.nih.gov/assembly/GCF_
019923935.1/

Kannur, B. H., Fairoze, M. N., Girish, P. S., Karabasanavar, N., and Rudresh, B. H.
(2017). Breed Traceability of buffalo Meat Using Microsatellite Genotyping
Technique. J. Food Sci. Technol. 54 (2), 558–563. doi:10.1007/s13197-017-
2500-4

Kawamata, T., and Tomari, Y. (2010). Making Risc. Trends Biochemical Sciences 35
(7), 368–376. doi:10.1016/j.tibs.2010.03.009

Khalkhali-Evrigh, R., Hedayat-Evrigh, N., Hafezian, S. H., Farhadi, A., and
Bakhtiarizadeh, M. R. (2019). Genome-wide Identification of Microsatellites
and Transposable Elements in the Dromedary Camel Genome Using Whole-
Genome Sequencing Data. Front. Genet. 10, 692. doi:10.3389/fgene.2019.00692

Kim, D., Paggi, J. M., Park, C., Bennett, C., and Salzberg, S. L. (2019). Graph-based
Genome Alignment and Genotyping with HISAT2 and HISAT-Genotype. Nat.
Biotechnol. 37, 907–915. doi:10.1038/s41587-019-0201-4

Kosinska-Selbi, B., Mielczarek, M., and Szyda, J. (2020). Review: Long Non-coding
RNA in Livestock. Animal 14 (10), 2003–2013. doi:10.1017/
s1751731120000841

Labuschagne, C., Nupen, L., Kotzé, A., Grobler, P. J., and Dalton, D. L. (2015).
Assessment of Microsatellite and SNPMarkers for Parentage Assignment in Ex
Situ African Penguin ( Spheniscus demersus ) Populations. Ecol. Evol. 5 (19),
4389–4399. doi:10.1002/ece3.1600

Langmead, B., and Salzberg, S. (2012). Fast Gapped-Read Alignment with Bowtie 2.
Nat. Methods 9, 357–359. doi:10.1038/nmeth.1923

Lecchi, C., Catozzi, C., Zamarian, V., Poggi, G., Borriello, G., Martucciello, A., et al.
(2019). Characterization of Circulating miRNA Signature in Water Buffaloes
(Bubalus Bubalis) during Brucella Abortus Infection and Evaluation as
Potential Biomarkers for Non-invasive Diagnosis in Vaginal Fluid. Sci. Rep.
9 (1), 1945. doi:10.1038/s41598-018-38365-x

Leclercq, M., Diallo, A. B., and Blanchette, M. (2013). Computational Prediction of
the Localization of microRNAs within Their Pre-miRNA. Nucleic Acids Res. 41
(15), 7200–7211. doi:10.1093/nar/gkt466

Lei, Z., Wu, H., Xiong, Y., Wei, D., Wang, X., Luoreng, Z., et al. (2021). ncRNAs
Regulate Bovine Adipose Tissue Deposition. Mol. Cel Biochem 476 (7),
2837–2845. doi:10.1007/s11010-021-04132-2

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009).
The Sequence Alignment/Map Format and SAMtools. Bioinformatics 25,
2078–2079. doi:10.1093/bioinformatics/btp352

Li, H. (2011). A Statistical Framework for SNP Calling, Mutation Discovery,
Association Mapping and Population Genetical Parameter Estimation from
Sequencing Data. Bioinformatics 27 (21), 2987–2993. doi:10.1093/
bioinformatics/btr509

Li, H., Huang, K., Wang, P., Feng, T., Shi, D., Cui, K., et al. (2020). Comparison
of Long Non-coding RNA Expression Profiles of Cattle and buffalo
Differing in Muscle Characteristics. Front. Genet. 11, 98. doi:10.3389/
fgene.2020.00098

Liu, J. J., Liang, A. X., Campanile, G., Plastow, G., Zhang, C., Wang, Z., et al. (2017).
Genome-wide Association Studies to Identify Quantitative Trait Loci Affecting
Milk Production Traits in Water buffalo. J. Dairy Sci. 101, 433–444. doi:10.
3168/jds.2017-13246

Liu, S., Ye, T., Li, Z., Li, J., Jamil, A. M., Zhou, Y., et al. (2019). Identifying Hub
Genes for Heat Tolerance in Water buffalo (Bubalus Bubalis) Using
Transcriptome Data. Front. Genet. 10, 209. doi:10.3389/fgene.2019.00209

Lorenz, R., Bernhart, S. H., Höner Zu Siederdissen, C., Tafer, H., Flamm, C.,
Stadler, P. F., et al. (2011). ViennaRNA Package 2.0. Algorithms Mol. Biol. 6 (1),
26–14. doi:10.1186/1748-7188-6-26

Lu, M. (2020). Circular RNA: Functions, Applications and Prospects. ExRNA 2 (1),
1–7. doi:10.1186/s41544-019-0046-5

Lukiw, W. J. (2013). Circular RNA (circRNA) in Alzheimer’s Disease (AD). Front.
Genet. 4, 307. doi:10.3389/fgene.2013.00307

Ma, Z.-J. (2016). Abundance and Characterization of Perfect Microsatellites on the
Cattle Y Chromosome. Anim. Biotechnol. 28 (3), 157–162. doi:10.1080/
10495398.2016.1243551

MacFarlane, L.-A., and Murphy, P. R. (2010). MicroRNA: Biogenesis, Function
and Role in Cancer. Cg 11 (7), 537–561. doi:10.2174/138920210793175895

Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., et al. (2013).
Circular RNAs Are a Large Class of Animal RNAs with Regulatory Potency.
Nature 495 (7441), 333–338. doi:10.1038/nature11928

Meng, S., Zhou, H., Feng, Z., Xu, Z., Tang, Y., Li, P., et al. (2017). CircRNA:
Functions and Properties of a Novel Potential Biomarker for Cancer. Mol.
Cancer 16 (1), 1–8. doi:10.1186/s12943-017-0663-2

Merdan, S. M., El-Zarei, M. F., Ghazy, A., Ayoub, M. A., Al-Shawa, Z. M., and
Mokhtar, S. A. (2019). Genetic Differentiation between Egyptian Buffalo
Populations UsingMicrosatellite Markers. J. Anim. Poult. Fish Prod. 8 (1), 21–28.

Min, X. J., Butler, G., Storms, R., and Tsang, A. (2005). OrfPredictor: Predicting
Protein-Coding Regions in EST-Derived Sequences. Nucleic Acids Res. 33
(Suppl. l_2), W677–W680. doi:10.1093/nar/gki394

Mishra, D. C., Sikka, P., Yadav, S., Bhati, J., Paul, S. S., Jerome, A., et al. (2020).
Identification and Characterization of Trait-specific SNPs Using ddRAD
Sequencing in Water buffalo. Genomics 112 (5), 3571–3578. doi:10.1016/j.
ygeno.2020.04.012

Moioli, B., Georgoudis, A., Napolitano, F., Catillo, G., Giubilei, E., Ligda, C., et al.
(2001). Genetic Diversity between Italian, Greek and Egyptian buffalo
Populations. Livestock Prod. Sci. 70 (3), 203–211. doi:10.1016/S0301-
6226(01)00175-0

Moore, S. S., Evans, D., Byrne, K., Barker, J. S. F., Tan, S. G., Vankan, D., et al.
(1995). A Set of Polymorphic DNA Microsatellites Useful in Swamp and River
buffalo (Bubalus Bubalis). Anim. Genet. 26 (5), 355–359. doi:10.1111/j.1365-
2052.1995.tb02674.x

O’Brien, J., Hayder, H., Zayed, Y., and Peng, C. (2018). Overview of microRNA
Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 9, 402.
doi:10.3389/fendo.2018.00402

Pan, Y., Yang, S., Cheng, J., Lv, Q., Xing, Q., Zhang, R., et al. (2021). Whole-
Transcriptome Analysis of LncRNAs Mediated ceRNA Regulation in
Granulosa Cells Isolated from Healthy and Atresia Follicles of Chinese
Buffalo. Front. Vet. Sci. 8, 680182. doi:10.3389/fvets.2021.680182

Panetto, J. C. D. C., Machado, M. A., da Silva, M. V. G. B., Barbosa, R. S., dos
Santos, G. G., Leite, R. d. M. H., et al. (2017). Parentage Assignment Using SNP
Markers, Inbreeding and Population Size for the Brazilian Red Sindhi Cattle.
Livestock Sci. 204, 33–38. doi:10.1016/j.livsci.2017.08.008

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 80974112

Khan et al. Genomic Resource for Water Buffalo

332

https://doi.org/10.1098/rsos.180413
https://www.ncbi.nlm.nih.gov/books/NBK21766/
https://doi.org/10.1093/nar/gkj112
https://doi.org/10.1093/nar/gkj112
https://doi.org/10.1016/j.addr.2015.05.001
https://doi.org/10.1186/1471-2229-11-131
https://doi.org/10.1186/1471-2229-11-131
https://doi.org/10.1155/2021/5383210
https://doi.org/10.1093/bioinformatics/btq003
https://doi.org/10.1371/journal.pone.0185220
https://doi.org/10.1159/000133808
https://doi.org/10.1093/nar/gkx428
https://doi.org/10.1093/nar/gkx428
https://www.ncbi.nlm.nih.gov/assembly/GCF_003121395.1/
https://www.ncbi.nlm.nih.gov/assembly/GCA_000180995.3/
https://www.ncbi.nlm.nih.gov/assembly/GCA_000180995.3/
https://www.ncbi.nlm.nih.gov/assembly/GCA_004794615.1/
https://www.ncbi.nlm.nih.gov/assembly/GCA_004794615.1/
https://www.ncbi.nlm.nih.gov/assembly/GCA_002993835.1/
https://www.ncbi.nlm.nih.gov/assembly/GCA_002993835.1/
https://www.ncbi.nlm.nih.gov/assembly/GCF_019923935.1/
https://www.ncbi.nlm.nih.gov/assembly/GCF_019923935.1/
https://doi.org/10.1007/s13197-017-2500-4
https://doi.org/10.1007/s13197-017-2500-4
https://doi.org/10.1016/j.tibs.2010.03.009
https://doi.org/10.3389/fgene.2019.00692
https://doi.org/10.1038/s41587-019-0201-4
https://doi.org/10.1017/s1751731120000841
https://doi.org/10.1017/s1751731120000841
https://doi.org/10.1002/ece3.1600
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1038/s41598-018-38365-x
https://doi.org/10.1093/nar/gkt466
https://doi.org/10.1007/s11010-021-04132-2
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btr509
https://doi.org/10.1093/bioinformatics/btr509
https://doi.org/10.3389/fgene.2020.00098
https://doi.org/10.3389/fgene.2020.00098
https://doi.org/10.3168/jds.2017-13246
https://doi.org/10.3168/jds.2017-13246
https://doi.org/10.3389/fgene.2019.00209
https://doi.org/10.1186/1748-7188-6-26
https://doi.org/10.1186/s41544-019-0046-5
https://doi.org/10.3389/fgene.2013.00307
https://doi.org/10.1080/10495398.2016.1243551
https://doi.org/10.1080/10495398.2016.1243551
https://doi.org/10.2174/138920210793175895
https://doi.org/10.1038/nature11928
https://doi.org/10.1186/s12943-017-0663-2
https://doi.org/10.1093/nar/gki394
https://doi.org/10.1016/j.ygeno.2020.04.012
https://doi.org/10.1016/j.ygeno.2020.04.012
https://doi.org/10.1016/S0301-6226(01)00175-0
https://doi.org/10.1016/S0301-6226(01)00175-0
https://doi.org/10.1111/j.1365-2052.1995.tb02674.x
https://doi.org/10.1111/j.1365-2052.1995.tb02674.x
https://doi.org/10.3389/fendo.2018.00402
https://doi.org/10.3389/fvets.2021.680182
https://doi.org/10.1016/j.livsci.2017.08.008
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Pareek, C. S., Czarnik, U., Pierzchała, M., and Zwierzchowski, L. (2008). An
Association between the C> T Single Nucleotide Polymorphism within Intron
IV of Osteopontin Encoding Gene (SPP1) and Body Weight of Growing Polish
Holstein-Friesian Cattle. Anim. Sci. Pap. Rep. 26 (4), 251–257.

Patzak, J., Paprštein, F., Henychová, A., and Sedlák, J. (2012). Comparison of
Genetic Diversity Structure Analyses of SSR Molecular Marker Data within
Apple (Malus×domestica) Genetic Resources. Genome 55 (9), 647–665. doi:10.
1139/G2012-054

Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T.-C., Mendell, J. T., and
Salzberg, S. L. (2015). StringTie Enables Improved Reconstruction of a
Transcriptome from RNA-Seq Reads. Nat. Biotechnol. 33, 290–295. doi:10.
1038/nbt.3122

Roberts, A., Pimentel, H., Trapnell, C., and Pachter, L. (2011). Identification of
Novel Transcripts in Annotated Genomes Using RNA-Seq. Bioinformatics 27
(17), 2325–2329. doi:10.1093/bioinformatics/btr355

Sharma, P. C., Grover, A., and Kahl, G. (2007). Mining Microsatellites in
Eukaryotic Genomes. Trends Biotechnology 25 (11), 490–498. doi:10.1016/j.
tibtech.2007.07.013

Shen, W., Le, S., Li, Y., and Hu, F. (2016). SeqKit: A Cross-Platform and Ultrafast
Toolkit for FASTA/Q File Manipulation. PloS One 11 (10), e0163962. doi:10.
1371/journal.pone.0163962

Shukla, G. C., Singh, J., and Barik, S. (2011). MicroRNAs: Processing, Maturation,
Target Recognition and Regulatory Functions. Mol. Cel. Pharmacol. 3 (3),
83–92. PMC3315687.

Sikka, P., and Sethi, R. K. (2008). Genetic Variability in Production Performance of
Murrah Buffaloes (Bubalus Bubalis) Using Microsatellite Polymorphism.
Indian J. Biotechnol. 7, 103–107.

Singh, J., Dhanoa, J. K., Choudhary, R. K., Singh, A., Sethi, R. S., Kaur, S., et al.
(2020). MicroRNA Expression Profiling in PBMCs of Indian Water Buffalo
(Bubalus Bubalis) Infected with Brucella and Johne’s Disease. ExRNA 2, 1–13.
doi:10.1186/s41544-020-00049-y

Sousa, M. A. P. D., de Athayde, F. R. F., Maldonado, M. B. C., Lima, A. O. D.,
Fortes, M. R. S., and Lopes, F. L. (2021). Single Nucleotide Polymorphisms
Affect miRNA Target Prediction in Bovine. Plos One 16 (4), e0249406. doi:10.
1371/journal.pone.0249406

Surya, T., Vineeth, M. R., Sivalingam, J., Tantia, M. S., Dixit, S. P., Niranjan, S. K.,
et al. (2019). Genomewide Identification and Annotation of SNPs in Bubalus
Bubalis. Genomics 111 (6), 1695–1698. doi:10.1016/j.ygeno.2018.11.021

Taşcioğlu, Y., Akpinar, M. G., Gül, M., Karli, B., and Bozkurt, Y. (2020).
Determination of Optimum Agricultural Policy for buffalo Breeding. Revista
Brasileira de Zootecnia 49, 1–10. doi:10.37496/rbz4920200120

Ünal, E. Ö., Işık, R., Şen, A., Geyik Kuş, E., and Soysal, M. İ. (2021). Evaluation of
Genetic Diversity and Structure of Turkish Water Buffalo Population by Using
20 Microsatellite Markers. Animals 11 (4), 1067. doi:10.3390/ani11041067

Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M.,
et al. (2012). Primer3-new Capabilities and Interfaces. Nucleic Acids Res. 40,
e115. doi:10.1093/nar/gks596

Vohra, V., Singh, N. P., Chhotaray, S., Raina, V. S., Chopra, A., and Kataria, R. S.
(2021). Morphometric andMicrosatellite-Based Comparative Genetic Diversity

Analysis in Bubalus Bubalis from North India. PeerJ 9, e11846. doi:10.7717/
peerj.11846

Wang, K., Gan, T.-Y., Li, N., Liu, C.-Y., Zhou, L.-Y., Gao, J.-N., et al. (2017).
Circular RNA Mediates Cardiomyocyte Death via miRNA-dependent
Upregulation of MTP18 Expression. Cell Death Differ. 24 (6), 1111–1120.
doi:10.1038/cdd.2017.61

Xie, F., Liu, Y. L., Chen, X. Y., Li, Q., Zhong, J., Dai, B. Y., et al. (2020). Role of
MicroRNA, LncRNA, and Exosomes in the Progression of Osteoarthritis: a
Review of Recent Literature. Orthop. Surg. 12 (3), 708–716. doi:10.1111/os.
12690

Xue, C., Li, F., He, T., Liu, G. P., Li, Y., and Zhang, X. (2005). Classification of Real
and Pseudo microRNA Precursors Using Local Structure-Sequence Features
and Support Vector Machine. BMC Bioinformatics 6 (1), 310–317. doi:10.1186/
1471-2105-6-310

Yang, Z., He, T., and Chen, Q. (2021). The Roles of CircRNAs in RegulatingMuscle
Development of Livestock Animals. Front. Cel. Dev. Biol. 9, 163. doi:10.3389/
fcell.2021.619329

Zhang, R., Wang, J., Xiao, Z., Zou, C., An, Q., Li, H., et al. (2021). The Expression
Profiles of mRNAs and lncRNAs in Buffalo Muscle Stem Cells Driving
Myogenic Differentiation. Front. Genet. 12, 1048. doi:10.3389/fgene.2021.
643497

Zhang, Y., Colli, L., and Barker, J. S. F. (2020). AsianWater buffalo: Domestication,
History and Genetics. Anim. Genet. 51 (2), 177–191. doi:10.1111/age.12911

Zhao, C., Qiu, J., Agarwal, G., Wang, J., Ren, X., Xia, H., et al. (2017). Genome-wide
Discovery of Microsatellite Markers from Diploid Progenitor Species, Arachis
Duranensis and A. Ipaensis, and Their Application in Cultivated Peanut (A.
hypogaea). Front. Plant Sci. 8, 1209. doi:10.3389/fpls.2017.01209

Zhao, J., Li, A., Jin, X., and Pan, L. (2020). Technologies in Individual Animal
Identification and Meat Products Traceability. Biotechnol. Biotechnological
Equipment 34 (1), 48–57. doi:10.1080/13102818.2019.1711185

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Khan, Singh, Jaiswal, Raza, Jasrotia, Kumar, Gurjar, Kumari,
Nayan, Iquebal, Angadi, Rai, Datta and Kumar. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 80974113

Khan et al. Genomic Resource for Water Buffalo

333

https://doi.org/10.1139/G2012-054
https://doi.org/10.1139/G2012-054
https://doi.org/10.1038/nbt.3122
https://doi.org/10.1038/nbt.3122
https://doi.org/10.1093/bioinformatics/btr355
https://doi.org/10.1016/j.tibtech.2007.07.013
https://doi.org/10.1016/j.tibtech.2007.07.013
https://doi.org/10.1371/journal.pone.0163962
https://doi.org/10.1371/journal.pone.0163962
https://doi.org/10.1186/s41544-020-00049-y
https://doi.org/10.1371/journal.pone.0249406
https://doi.org/10.1371/journal.pone.0249406
https://doi.org/10.1016/j.ygeno.2018.11.021
https://doi.org/10.37496/rbz4920200120
https://doi.org/10.3390/ani11041067
https://doi.org/10.1093/nar/gks596
https://doi.org/10.7717/peerj.11846
https://doi.org/10.7717/peerj.11846
https://doi.org/10.1038/cdd.2017.61
https://doi.org/10.1111/os.12690
https://doi.org/10.1111/os.12690
https://doi.org/10.1186/1471-2105-6-310
https://doi.org/10.1186/1471-2105-6-310
https://doi.org/10.3389/fcell.2021.619329
https://doi.org/10.3389/fcell.2021.619329
https://doi.org/10.3389/fgene.2021.643497
https://doi.org/10.3389/fgene.2021.643497
https://doi.org/10.1111/age.12911
https://doi.org/10.3389/fpls.2017.01209
https://doi.org/10.1080/13102818.2019.1711185
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Improvement of Genomic Predictions
in Small Breeds by Construction of
Genomic Relationship Matrix Through
Variable Selection
Enrico Mancin†, Lucio Flavio Macedo Mota†, Beniamino Tuliozi *, Rina Verdiglione,
Roberto Mantovani‡ and Cristina Sartori‡

Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Legnaro, Italy

Genomic selection has been increasingly implemented in the animal breeding industry, and
it is becoming a routine method in many livestock breeding contexts. However, its use is
still limited in several small-population local breeds, which are, nonetheless, an important
source of genetic variability of great economic value. A major roadblock for their genomic
selection is accuracy when population size is limited: to improve breeding value accuracy,
variable selection models that assume heterogenous variance have been proposed over
the last few years. However, while these models might outperform traditional and genomic
predictions in terms of accuracy, they also carry a proportional increase of breeding value
bias and dispersion. These mutual increases are especially striking when genomic
selection is performed with a low number of phenotypes and high shrinkage
value—which is precisely the situation that happens with small local breeds. In our
study, we tested several alternative methods to improve the accuracy of genomic
selection in a small population. First, we investigated the impact of using only a subset
of informative markers regarding prediction accuracy, bias, and dispersion. We used
different algorithms to select them, such as recursive feature eliminations, penalized
regression, and XGBoost. We compared our results with the predictions of pedigree-
based BLUP, single-step genomic BLUP, and weighted single-step genomic BLUP in
different simulated populations obtained by combining various parameters in terms of
number of QTLs and effective population size. We also investigated these approaches on a
real data set belonging to the small local Rendena breed. Our results show that the
accuracy of GBLUP in small-sized populations increased when performed with SNPs
selected via variable selection methods both in simulated and real data sets. In addition,
the use of variable selection models—especially those using XGBoost—in our real data set
did not impact bias and the dispersion of estimated breeding values. We have discussed
possible explanations for our results and how our study can help estimate breeding values
for future genomic selection in small breeds.

Keywords: genomic selection accuracy, single-step GBLUP, SNP selection methods, machine learning, local breed
cattle, Rendena, genomic selection
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INTRODUCTION

Genomic information has been successfully implemented in
animal breeding due to its effectiveness in bringing significant
improvements in accuracy (Blasco and Toro, 2014). These
improvements in accuracy can lead to an increase in the rate
of genetic gains and have reduced the cost of progeny testing by
allowing to preselect animals with great genetic merit early
(Meuwissen et al., 2001). Combining these advancements with
the progressively reduced cost of genotyping makes single-
nucleotide polymorphism (SNP) panels a promising tool to
select small local breeds (Biscarini et al., 2015).

SNP marker information allows for better modeling of
Mendelian sampling than the traditional pedigree-based best
linear unbiased prediction (PBLUP) (VanRaden, 2008a), which
used only pedigree information. The genomic BLUP (GBLUP)
method was developed to replace the pedigree-based
relationships for genomic relationships estimated from SNP
markers, which captured the genomic similarity between
animals but are limited to the use of only genotyped animals
(Habier et al., 2013). In addition, Legarra et al. (2009) proposed a
naive method, single-step GBLUP (ssGBLUP), in which
genotyped and non-genotyped animals are jointly combined
under the assumption that the genomic and pedigree
relationship matrixes are multivariate and normally
distributed. Due to its straightforward computational approach
(Misztal et al., 2013) and unbiased breeding values predictions,
compared to the GBLUP with its multistep approach (Masuda
et al., 2018), the ssGBLUP has become a routine method for
genomic evaluations in many livestock breeds and species
(Aguilar et al., 2010; Christensen and Lund, 2010).

However, one major challenge in using (ss)GBLUP remains
the accuracy of estimation when phenotyped animals are limited
in number, such as in local breeds (Meuwissen et al., 2001). For
example, Karaman et al. (2016) reported that GBLUP showed
lower performance than that of models using only SNPs selected
through a Bayesian hierarchical model as Bayes B and Bayes C,
but only when phenotyped animals were few. Indeed, when
presented with a small number of animals and many SNP
markers (n < p), models that select a number of priority SNPs
(variable selection models) and models that assume heterogenous
variance can lead to improvements in EBV accuracy. These
models can accomplish this by reducing the number of
variables to estimate and by preventing overfitting linked to
high-dimensional data (Gianola 2013). Frouin et al. (2020)
went as far as deriving the prediction accuracy of GBLUP as a
function of the ratio n/p, while Pocrnic et al. (2019) regarded the
accuracy of GBLUP as not only strictly dependent on the number
of SNPs but also on the number of independent chromosome
segments.

Several studies thus focused on relaxing the assumption of
ssGBLUP that all SNPs must show a common variance by
applying different weights to the SNPs when the G matrix is
calculated. Methods such as weighted ssGBLUP (WssGBLUP)
(Wang et al., 2014) were widely reported to outperform
ssGBLUP’s accuracy of prediction (Gualdrón Duarte et al.,
2014; Gualdrón Duarte et al., 2020; Mehrban et al., 2021; Ren

et al., 2021), but their use led to a proportional increase of
breeding value bias and dispersion (Mancin et al., 2021b;
Botelho et al., 2021; Cesarani et al., 2021; Mehrban et al., 2021).

Moreover, it is unclear how models considering heterogenous
variances account for selection since only k-fold cross-validation
is usually applied (Zhu et al., 2021). In real-life breeding
scenarios, time cross-validation should be considered (Liu,
2010) because this validation method mimics the true
accumulation of information across time. The estimated
breeding values (EBVs) are in fact used to select young bulls,
and after 3–5 years, the bulls will receive daughter information; it
is thus desirable that EBVs would highly correlate to the final
EBVs. However, the few studies that evaluated the impact of
WssGBLUP using time cross-validation with small samples of
individuals (e.g., Cesarani et al., 2021) found higher bias and
overdispersion. These mutual increases are relevant when a low
number of phenotypes and high shrinkage values are present, and
the reasons behind the loss of these unbiased properties in
heterogenous SNP regression or GBLUP are still not
entirely clear.

This issue is not trivial as the bias and the slope of the
regression (dispersion) need to be considered, especially when
proven, and young animals are mixed in the population as young
candidates will have unfair EBVs (Legarra and Reverter, 2017).

Thus, the abovementioned issues of lack of accuracy of
ssGBLUP when used in contexts with a few animals have not
been conclusively resolved. For this reason, in the present study,
we intend to explore alternative methods to improve accuracy in
small populations within a single-step framework. A possible
solution could come from implementing a naïve approach, where
instead of giving each SNP a specific weight, we removed the non-
informative ones or variable selection models. Thus, we aimed to
investigate the impact, in terms of accuracy of predictions,
dispersion, and bias, of reducing the dimensionality of the G
matrix by constructing it using only a subset of informative
markers.

In order to accomplish this, we tried different machine
learning and variable selection algorithms with the aim to
identify the most informative SNPs by indirect prediction.
These algorithms were as follows: least absolute shrinkage and
selection operator (LASSO), spike-and-slab LASSO (SSLASSO),
recursive feature elimination using ridge regression (RfeRR),
recursive feature elimination using support vector machine
regression (RfeSVM), and extreme gradient boost (XGBoost).

We aimed to test suitable procedures for genomic estimation
by considering both the abovementioned variable selection
models ssGBLUP and the predictions of BLUP, classical
ssGBLUP, and WssGBLUP. To do that, we created different
simulated populations and also considered a local population,
the Rendena cattle. We then used different cross-validation
methods to assess our results.

MATERIALS AND METHODS

For a graphical representation of our methodology for testing
BLUP models, see Figure 1.
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Data sets
Simulated Data sets
Simulations were performed with the QMSim simulation
program (Sargolzaei and Schenkel, 2009). A total of four
different populations were simulated based on various
combinations of quantitative trait locus (QTL) number and
effective population size (Ne). Each simulation was replicated
five times.

All simulations were generated starting from the historical
population using a similar structure to that used by Pocrnic et al.
(2019): we created an initial bottleneck contracting the historical
population size from 5,000 to 1,000 animals in 1,250 generations
and then expanded it to 25,000. In the first generation, 10 bovine
autosomes were simulated, placing evenly spaced 80,000 ca.
biallelic SNPs with equal allele frequencies and a recurrent
mutation rate of 2.5e−5 per generation. The number of SNPs
per chromosome was set to 8,000, while the QTL number
changed according to different simulation strategies. In two of
the four simulations, one biallelic and randomly distributed QTL
per chromosome was sampled from a gamma distribution with a
shape parameter equal to 0.4 (oligogenic scenarios). In the other

two simulations, 100 QTLs per chromosome were generated
using the same parameter (polygenic scenarios). In all these
simulations, 10 discrete generations were created by randomly
mating 750 females and a different number of sires according to
the simulation strategies. In two scenarios, one oligogenic and
one polygenic, we assumed a large Ne, with 100 males per
generation used as sires, while in simulations with a low Ne,
only 10 males per generation were used as sires. The following
four populations were, thus, created by mixing different numbers
of QTL and different Ne values, and five replicates for each
population were generated:

FIGURE 1 | Graphical representation of our methodology for testing model predictions both in simulated and real populations. Each replicate of a simulated
population is represented with a circle; SIM1 is polygenic with lowMe, SIM2 polygenic with high Me, SIM3 is oligogenic with lowMe, and SIM4 is oligogenic with high Me.
Each phenotype (both real and simulated) is represented with an arrow.

TABLE 1 | Number of QTLs and effective population size in the four different
simulated populations.

QTL Ne

SIM1 1,000 40
SIM2 10 350
SIM3 1,000 40
SIM4 10 350
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• SIM1 polygenic population with small Ne
• SIM2 polygenic population with large Ne
• SIM3 oligogenic population with small Ne
• SIM4 oligogenic population with large Ne

The effective population size and number of QTLs in the four
different simulated populations are reported in Table 1, and
numbers of -genotyped animals are reported in Table 2 (2,250
animals). We simulated a single trait with heritability of 0.3, close to
the heritability of the traits in the real data set further described. To
do that, we obtained a single phenotype record per animal by adding
an overall mean of 1.0 to the sum of the QTL effects together with a
residual effect. As in the study by Pocrnic et al. (2019), only
phenotypes from generations 8 to 9 were retrieved, and genomic
information of animals belonging to generations 8 to 10 was used for
further analysis (750 × 3 = 2,250 animals). The structure of simulated
populations is reported in Table 2. Before proceeding with genomic
prediction, SNPs with a minor allele frequency (MAF <0.01) and
with high linkage disequilibrium (LD > 80) were removed using the
SNPrune program (Calus and Vandenplas, 2018).

Real Data set
A real data set containing information from the performance test
evaluations of young bulls belonging to the Rendena cattle breed was
provided by the National Breeders Association of Rendena
(ANARE). ANARE also provided herdbook information about
the whole population traced back to the 1950s, whereas genomic
data of bulls were, in part, provided by ANARE (PSRN
DualBreeding, www.dualbreeding.it) and, in part, obtained under
academic funding (SID Project, BIRD183281). Rendena is a small
local population (6,384 heads for 249 breeding males and 6,135
breeding females belonging to 202 herds censed on 31.12.2020; fao/
dad.is.org) bred for the dual-purpose attitude of milk and meat.
Rendena is native to the Northeastern Alps in Italy but is now
widespread also in the adjacent lowland territory on the right side of
the Brenta River in the Veneto region (Po Valley; Guzzo et al., 2018).

The real phenotypes considered in this study were single
individual records of average daily gain (ADG), in vivo estimates
of carcass fleshiness (CF) and dressing percentage (DP) collected in
the years 1985–2020. These traits have been extensively described in
Guzzo et al. (2019) and Mancin et al. (2021b). The Illumina Bovine
LD GGP v3, comprising 26,497 SNP markers (low-density panel:
LD), and Bovine 150K Array GGP v3 Bead Chip, including 138,974
SNPs (Illumina Inc, San Diego, CA, United States; high-density
panel: HD), were used for genotyping Rendena cattle.

The LD panel belonging to 1,416 individuals with 26,497
SNPs was imputed on the HD panel with 138,974 SNPs
belonging to 554 bulls. The overlap between the two panels
was about 60%. Information about data quality control and
imputation is reported in greater detail by Mancin et al. (2022).
In addition to the previous study, further quality control was
performed by removing SNPs with high linkage disequilibrium
(>80), using SNPrune (Calus and Vandenplas, 2018): this
removed a total of 28,049 SNPs. An amount of 85,331 SNPs
was finally retained for analysis. Overall, the study considered
1,691 young bulls with only phenotypic information, 1,739
animals with only genotypic information, and 687 animals
with both phenotypic and genotypic information. The data
structure of the real data set used for genomic prediction is
reported in Table 2.

Prediction Models
The breeding values for the single trait of the four simulated
populations and the three performance test traits of the real
Rendena data set were estimated using several BLUP models.
First, we used four ‘classical’ BLUP models:

1) standard pedigree best linear unbiased prediction (PBLUP,
described in Pedigree Best Linear Unbiased Predictor);

2) single-step genomic BLUP (ssGBLUP, described in Single-Step
Genomic Best Linear Unbiased Predictor);

3) small shrinkage weighted single-step genomic BLUP
(WssGBLUP1, described in Weighted Single-Step Genomic
Best Linear Unbiased Predictor);

4) high shrinkage weighted single-step genomic BLUP
(WssGBLUP2, described in Weighted Single-Step Genomic
Best Linear Unbiased Predictor).

Then, we performed five ssGBLUPs with preselected SNPs
(described in 2.2.4). SNP selection was achieved using the
following algorithms:

5a) least absolute shrinkage and selection operator [LASSO,
described in Least Absolute Shrinkage and Selection
Operator (LASSO)];

5b) spike-and-slab LASSO (SSLASSO, described in Spike-and-
Slab LASSO);

5c) recursive feature elimination using ridge regression [RfeRR,
described in Recursive Feature Elimination Using Ridge
Regression (RfeRR)];

TABLE 2 | Population structure of simulated and real data sets.

Simulated Real

SIM1–SIM3a SIM2–SIM4a

Number of records 1,500 1,500 1,691
Number of animals in the pedigree 3,413 3,794 6,926
Number of genotyped animals 2,250 2,250 1739
Number of genotyped animals with records 1,500 1,500 687
Inbreeding from pedigree 0.0126 0.0009 0.0316

aSince population structure is the same for SIM1 and SIM3 and for SIM2 and SIM4, populations were grouped together in pairs in the table.
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5d) recursive feature elimination using support vector machine
[RfeSVM, described in Recursive Feature Elimination Using
Support Vector Machine (RfeSVM)];

5e) extreme gradient boosting (XGBoost, described in Boosting
Ensemble).

Pedigree Best Linear Unbiased Predictor
PBLUP was the first method used to estimate predictors, and it is
described by the following equation (Henderson, 1975):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
X′X X′Z

Z′X Z′Z + A−1σ
2
e

σ2
a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦[ μ̂â] � [X′y
Z′y ]

where y is the vector of phenotypic observations, X is the matrix
of the incidence of fixed effects, and b is the vector of these effects.
In the real data set, fixed effects are represented by the
contemporary group (young bulls tested at the same period in
the same pen; 142 levels) and parity group of dams in four classes
(Guzzo et al., 2019). In the simulated data sets, X was substituted
by a vector of 1’s; thus, b stands for the mean of the models.
Matrix Z represents the incidence matrix that relates the random
genetic additive effect, included in vector a, to the phenotype. The
random residual error was included in a vector e showing normal
distribution N(0, Iσ2e), where σ2e is the residual variance. The
vector of additive genetic effects is distributed as N(0, Aσ2a),
where σ2a is the genetic variances and A is the identical by descent
(IBD) relationship matrix constructed from pedigree data.

Single-Step Genomic Best Linear Unbiased Predictor
We used ssGBLUP as a benchmark to evaluate the impact of other
models (see further, WssGBLUP and ssGBLUP with selected
SNPs). The ssGBLUP method presents the same structure of
equation as in 2.2.1, except for the (co)variance matrix of random
genetic effects, which is substituted byH, as described by Aguilar
et al. (2010):

H−1 � A−1 + [ 0 0
0 G−1 − A−1

22
]

where A and A−1
22 are the reverse of the IBD matrix for all animals

and for only genotyped animals, respectively, and G is the
genomic matrix including the genomic relationships among
animals.

The G matrix was built using the first methods proposed by
VanRaden (2008b):

G0 � MM′
2∑pi(1 − pi)

where p is the allele frequency of the ith locus andM is a matrix of
SNP content centered by twice the current allele frequencies.
Since the frequencies of the current genotyped population are
used to center G, pedigree and genomic matrices have different
bases, G was adjusted so the average diagonal and off-diagonal
matched the averages of diagonal and off-diagonal in A22, as
described by Vitezica et al. (2011).

Weighted Single-Step Genomic Best Linear Unbiased
Predictor
The WssGBLUP is the third method we used (two models, each
with a different CT value, as explained below). This approach is
equal to model 2.2.2, except for the matrix G, built following the
second method of VanRaden (2008a), as shown below:

G0 � MDM′
2∑pi(1 − pi)

where p is the allele frequency of the ith locus, M is a matrix of
SNP content centered by twice the current allele frequencies, and
D is the diagonal matrix in which SNP specific weights are
contained. The iterative algorithm reported by Zhang et al.
(2016) has been used as a weighting strategy. The SNP
weights presented in D were obtained as a function of the
estimated SNP effect (û). The weighting function used in this
study was called non-linear A, as reported by Fragomeni et al.
(2019). This method was preferred over other weighting strategies
due to its stability among the iterations. The iterative algorithm
applied followed the steps reported below:

1. The initial parameter was set as
t � 1, D(t) � I, G(t) � MD(t)M′

2∑ pi(1−pi)
, where I is an identity matrix;

2. GEBV (â) is obtained, where â is the vector of solutions of
additive genomic breeding value using the ssGBLUP
algorithm;

3. The SNP effect (û) is obtained, as in Gualdrón Duarte et al.
(2014):

û � 1
2∑p(1 − p)DM′[MDM′]−1â.

4. di(t+1), as in Fragomeni et al. (2019), is transformed in

CT
|ûi |
sd(û)−2, where CT is a shrinkage factor determining how

much the SNP effect distribution deviates from normality;
5. The weight of SNPs is standardized by maintaining a constant

genetic variance among iterations:

D(t+1) � tr(D(1))
tr(D(t+1)) tr(D(t+1)).

6. Matrix G is then recreated by including the new
weights: G(t+1) � MD(t+1)M′

2∑ pi(1−pi)
;

7. Set t � t + 1 and go to point 2 for a new iteration.

We created two different WssGBLUP models with two
different CT values: WssGBLUP1 had a CT value of 1.105,
while WssGBLUP2 had a CT value of 1.250. This process was
carried out to grant WssGBLUP1 the lowest possible shrinkage
effect and WssGBLUP2 the highest possible shrinkage effect. For
both models, the maximum number of iterations was set to five.
For simplicity, we reported only two WssGBLUP predictions
instead of the 10 analyzed in this study (combination of two CT
values and five iterations). Thus, we retained two opposite
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WssGBLUP scenarios: WssGBLUP1, which presents the lowest
SNPs shrinkage effect, and WssGBLUP2, which provides the
highest shrinkage effect.

Single-Step Linear Unbiased Predictor With Only
Informative SNPs
The last group of models (five models) consisted of ssGBLUP in
which the Gmatrix of 2.2.2 was constructed using SNPs obtained
after applying the different variable selection algorithms
(described below, Section 2.4). The number of columns in Z
is, thus, different for each trait and each data set.

Model Computations
A was built with the pedigree information tracking back up to
three generations in all models. In addition, according to Cesarani
et al. (2019), the variance components of each data set were
estimated under PBLUPmodels by tracing back all animals in the
pedigree. Variance components were estimated using the AIReml
algorithm (Gilmour et al., 1995). All genetic and genomic
prediction analyses were performed using the BLUPF90 family
of programs (Aguilar et al., 2018). The consistency of all this
information is reported in Table 2. Preliminary analysis, such as
LD calculation, was conducted using preGSf90 (Aguilar et al.,
2018, belonging to the BLUPF90 family of programs).

Featured Selection Algorithms
The EBVs of the target trait were used to map the major SNP
markers associated with the phenotype, using five different
statistical approaches. The genome content was considered a
covariance matrix, while EBVs of genotyped animals (â)
(estimated using models in 2.2.2) were considered as the
observed variable. The genome content was scaled in advance.
Hyperparameter search and the choice of best models were
performed by dividing the data set into a training group and a
test group. In the real data set, young animals born after 2015
belonged to the test group, while older animals belonged to the
training group. In the simulation, animals of 8th to 9th
generations were part of the training group, while animals of
the 10th generation belonged to the test group.

Least Absolute Shrinkage and Selection Operator
In the high-dimensional information literature, many penalized
likelihood approaches have been proposed. Given the baseline
yi � β0 + ∑p

j�1xijβj + ei, a variant of the penalized likelihood
approach can be described as follows:

β̂ � argmax − 1
2

����������∑
N

i�1

⎧⎨⎩yi − ⎛⎝β0 +∑
p

j�1
xijβj⎞⎠

���������
2

2

+ penλ(β)
where N is the number of animals for each trait, β0 is model
mean, βj is SNP contribution, p is the number of columns in x, N
is the number of data, λ is the regularization parameter; and
penλ(β) is a penalty function. In LASSO (Tibshirani, 1996), the
penalty is as follows:

penλ(β) � − λ∑p
j�1

∣∣∣∣∣βj
∣∣∣∣∣

A grid search was performed to find the optimal values
obtained by testing values from 0 to 20 in increments of 0.1.
These values were used to maximize the LASSO model
performance, based on the highest coefficient of determination
and the lowest mean squared error (MSE) in the training set. To
carry out this calculation, we used the glmet R package (Friedman
et al., 2010).

Spike-and-Slab LASSO
Spike-and-slab LASSO (SSLASSO) was proposed by Ročková and
George (2018). It is based on the idea that every penalized
likelihood has a Bayesian interpretation (Bai et al., 2021). For
instance, the LASSO penalization is equivalent to a Laplace
distribution regulated by hyperparameter λ, where the
posterior mode of β is as follows:

p(β|λ) � ∏p
j�1

λ
2
e−λ
∣∣∣∣βj∣∣∣∣

The SSLASSO is the equivalent to a two-point mixture of
Laplace distributions defined as follows:

p(β|λ) �∏p
j�1
[(1 − γj)(λ2e−λ0

∣∣∣∣βj∣∣∣∣) + γj(λ2e−λ1
∣∣∣∣βj∣∣∣∣)]

wherep(γ|θ) � ∏p
j�1[θγj(1 − θ)1−γj ] and p(θ) ~ Beta[a, b].

The Bayesian prior can be rearranged in a penalized likelihood
context by taking this marginal logarithm as a prior (Bai et al.,
2021); after some derivation, the following can be obtained:

λθ(βj) � λ1pθ(βj) + λ0[1 − pθ(βj)]
where

pθ(βj) � 1

1 + (1−θ̂)
θ̂

λ0
λ1 exp[ −

∣∣∣∣∣βj
∣∣∣∣∣(λ0 − λ1)]

SSLASSO was computed using the SSLASSO R package
(Ročková and George, 2018), error variances were assumed to
be unknown, and a self-adaptive penalty was set. In so doing, θ
was assumed to be random and different shrinkage was applied to
each βj.

Recursive Feature Elimination Using Ridge
Regression
Similar to LASSO, ridge regression is based on a principle of
penalized likelihood, with a penalty equal to λ∑p

j�1βj. Before
proceeding with recursive feature elimination, the optimal values
of λ were obtained as in LASSO selection. The glmet R package
was used (Friedman et al., 2010).

After that, a recursive feature elimination using penalized
ridge regression was performed as follows. In each iteration,
the SNP effect βj was estimated based on training data. Then,
10% of the variable with lowest |βj| was removed from the
subsequent iterations. The variable (SNP) present in the
iteration with the lowest mean squared error (MSE) was
considered for the prediction. MSE was calculated as
(ytest − ŷtest)2, where ytest is the EBV which belongs to the
test database and ytest is the predicted one.
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Recursive Feature Elimination Using the Support
Vector Machine
The SVM is a kernel-based supervised learning technique, often
used for regression analysis. Depending on the kernel function
considered, the SVM can map linear or nonlinear relationships
between phenotypes and SNP markers. The best kernel function
to map genotype to phenotype was determined in different
training subsets: a five-fold split was used to determine which
kernel function was a better fit for the data, either with linear,
polynomial, or radial basis. We found that performing the SVM
with a linear basis function outperformed the polynomial and
radial basis function of about 12.5% in predictive ability.

The general model for the SVM (Evgeniou and Pontil, 2005;
Hastie et al., 2009) can be described as follows:

ypi � b + h(m)pw + e

where h(m) represents the linear kernel basis function
(h(m) � m’m) used to transform the original predictor
variables (i.e., SNP marker information (m)), b denotes model
bias, and w represents the unknown weight vector. In the SVM
model, the learn function h(m) was given by minimizing the loss
function as follows: C∑N

i�1L(yp
i − ŷp

i ) + 1
2‖w‖2. The C represents a

regularization parameter, which controls the trade-off between
predictor error and model complexity, and w2 denotes the
squared norm under a Hilbert space. The SVM model was
fitted using an epsilon-support vector regression that ignores
residual absolute value (|yp

i − ŷp
i |) smaller than some constant (ε)

and penalizes larger residuals (Vapnik, 2000). The parameters C
and ε were defined using the training data set as proposed by
Cherkassky and Ma (2004): C � max(|yp + 3σyp |, |yp − 3σyp |)
and ε � 3σyp( ������

ln(n)/n√ ), where yp and σyp are the mean and
standard deviation of the target EBV for the traits on the training
population, respectively, and n represents the number of animals
in the training set. The SVM was performed using the e1071 R
package (Meyer et al., 2020).

After that, recursive feature elimination using the SVM was
performed using the same procedure described for RfeRR in the
study by Sanz et al. (2018).

Boosting Ensemble
The boosting approach (XGBoost) is an ensemble technique that
combines gradient descent error minimization with boosting,
aiming to convert weak regression tree models into strong
learners (Hastie et al., 2009; Natekin and Knoll, 2013). This
ensemble process combines different predictor variables
sequentially in the regression tree model, using regularization
via selection and shrinkage of the predictors to control the
residual from the previous model (Friedman, 2002). In
addition, the XGBoost can use parallel computation to use
more regularized models to prevent overfitting. The XGBoost
approach can be described as follows:

y � ∑W
w�1

βwh(x, γw) + e

where y is the vector of the target EBV; W is the number of
iterations (expansion coefficients); βw is shrinkage factor, also

known as “boost”; h(x, γw) is base learner, a function of the
multivariate argument x with a set of parameters
γw � {γ1, γ2, . . . , γw}; and e is the vector of the residuals.
Expansions of the coefficients {βw}W1 and parameters {γw}W1
are used to map the predictor variables (x), that is, SNP
markers to the target EBV (y) considering the joint
distribution of all values (y, x) and minimizing the loss
function L{yi, F(x)} given as [y, Fw−1(xi) + h(yi;xi, pw)],
where pw is the predictor to minimize ∑n

i�1L[y, Fm−1(xi) +
h(yi;xi, pm)]. Our XGBoost follows the algorithm specified by
Chen and Guestrin, 2016. In the XGBoost method, a
regularization term is added in the loss function, representing
the weight vectors learned in the loss function: this term penalizes
the ponderation of large weights. This regularization term is
defined as follows: ∑n

i�1L[y, Fm−1(xi) + h(yi;xi, pm)] +∑
n
Ω(fn), where L is the error between the true value of the

target trait and the predicted value and Ω(fn) is the
regularization function used to prevent overfitting: Ω(fn) �
γT + 0.5λω2, where T is the number of leaves in the regression
tree fn and ω represents the weight for the leaves in each tree
(i.e., the predicted values stored at the leaf nodes). Including in
the objective function makes the tree less complex, which
minimizes the loss function and helps reduce overfitting; γT is
a constant penalty for each additional tree leaf, and λω2 penalizes
extreme weights. The γ and λ are the regularization terms L1 and
L2, respectively (Mitchell and Frank, 2017). The random search
for XGBoost was performed considering the four most important
parameters able to increase prediction accuracy and minimize the
prediction error. These hyperparameters were Ntree (total
number of trees in the sequence used in the model), learning
rate (determines the contribution of each tree to the final model
and performs shrinkage to avoid variable overfitting), maximum
tree depth (controls the depth of the individual trees to be
considered in the model), and minimum samples per leaf
(controls the complexity of each tree). The Ntree values
ranged from 600 to 5,000 in intervals of 200; the learning rate
was in the range of 0.05–1 in intervals of 0.05; the maximum tree
depth was determined with a value ranging from 5 to 80 in
intervals of 5; the minimum sample per leaf was set from 5 to 100
in intervals of 5 and considering lambda and alpha regularization
values ranging from 0 to 1 in intervals of 0.05. The random grid
search XGBoost was performed using the h2o.grid function of the
h2o R package (https://cran.r-project.org/web/packages/h2o),
considering as fixed parameter a maximum of 150 models
with random combinations of the hyperparameters over 60 min.

Effective Population Size Calculations
The effective population size (Ne) has been computed from the
individual increase in inbreeding (ΔF) (Falconer and Mackay,
1996) to compare real and simulated data properly. Individual ΔF
was calculated as follows:

ΔF � Fn − Fn−1
1 − Fn−1

Ne � 1
2ΔF
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where Fn is the inbreeding in the nth generation. Ne was
calculated using the purge R package (https://cran.r-project.
org/web/packages/purgeR).

Validation
Validation in the Simulated Data set
Quality of prediction was measured as the correlation and MSE
between the genomic breeding values estimated under different
models and the true breeding values for animals belonging to the
10th generation, that is, the last generation of animals, including
individuals without phenotypes but with genotype.

Validation in the Real Data set
In the real data set, two different cross-validation methods were
applied. The first method we used to cross validate predictive
ability was to calculate both the correlation and MSE between
predicted and observed phenotypes. In this case, five-fold cross-
validation with 10 iterations was performed. Since not all animals
were genotyped in each iteration, 1/5 of non-genotyped and 1/5
of genotyped animals were masked. The current study considered
predictive ability metrics only for genotyped animals; however,
results about non-genotyped animals were also obtained
(Supplementary Figure S1).

Linear regression (LR) (Legarra and Reverter, 2018) was used
as the second cross-validationmethod. It compares the prediction
performances of different models on groups of focal individuals
born after a given date, in this case, the young bulls. LR is
particularly suited to the specific needs of the Rendena
population since predicting the future performance of young
bulls without phenotype is one of the main objectives of the
breeding plans for performance tests (Mancin et al., 2021a).

The LR method evaluates the goodness of a model by
comparing its performance in a complete data set and a
partial data set. The complete data set contains the whole
amount of information or it is the data set used for
prediction. A partial data set is referred to as the complete
data set with some animals with the phenotype removed,
usually young animals known as candidates to selection.
According to Macedo et al. (2020), we built partial data sets
by excluding phenotypes since a target recent birth year of young
bulls (since 2012–2020; since 2014–2020; and since 2017–2020)
to describe possible variations and random deviations of the
estimator; consistencies are reported on Table 3. LR considered
the following three parameters: bias, dispersion, and accuracy.
Bias is the difference between the expected breeding values

estimated under the complete and partial data sets. Dispersion
was calculated as the regression coefficient considering the
breeding values from the complete data set on the ones
estimated from the partial data and accuracy as correlations
between the two breeding values.

RESULTS

Genomic Structure
Genomic Structure in Simulated Data sets
Figure 2 highlights the different genomic assets of small Ne
populations (SIM1 and SIM3; 10 sires per generation) and large
Ne populations (SIM2 and SIM4; 200 sires per generation). Since
the different number of QTLs assumed for the populations with
the same Ne (that is, 10 vs. 1000 QTL) did not impact G matrix
dimensionality, only SIM1 and SIM2 were plotted for simplicity.
In SIM1, 193 eigenvalues were necessary to explain 98% of G
matrix variance, while in SIM2, 795 eigenvalues were necessary to
explain 98% of G matrix variance. When only ten sires per
generation were used, it was possible to observe different
subpopulations (Supplementary Figure S2); however, no
population structure was found when plotting the first two
eigenvalues. On the other hand, SIM2 appeared homogenous,
and individuals seemed almost unrelated. In addition, when LD
per chromosome was calculated, a greater value was observed in
SIM1 (0.161 ± 0.076) than that in SIM2 (0.067 ± 0.054; data not
shown). An Ne value of 81.18 ± 4 was determined for SIM1 and
SIM3 and 1869 ± 546 for SIM2 and SIM4.

Genomic Structure in the Real Data set
We also investigatedG’s dimensionality on the real data set of the
Rendena cattle population (Figure 3). The real data set presented
a situation closer to SIM1 and SIM3 than to SIM2 and SIM4. It
showed, indeed, an average Ne value of 108.2 ± 0.74 calculated
from pedigree data. It is possible to observe a few clusters in the
genomic relationship matrix (Figure 3); however, they are not as

TABLE 3 | Description of different validation sets used in cross-validation. The first
and last years of birth of animals in the training data set and the number of
animals (individuals) used in the validation cohort are reported.

First Last Individuals

2012 2020 178
2013 2020 154
2014 2020 130
2015 2020 109
2016 2020 106
2017 2020 72
2018 2020 45

FIGURE 2 | Cumulative explained variance of all eigenvalues of the
genomic relationship matrix of two representative simulated populations.
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straightforward as in SIM. We, therefore, can note that no
population structure is present in Rendena breed (i.e., no
subpopulations), which is in line with previous research
(Mancin et al., 2022). Only 633 eigenvalues explained 98% of
G variance; thus, the scenario was closer to SIM2 than SIM1. In
addition, we observed an average LD of 0.187 ± 0.107 per
chromosome (Mancin et al., 2022).

SNPs Retained by Variable Selection
Models
SNPs Retained in Simulated Data sets
Figure 4 reports the impact of the different algorithms in terms of
the number of informative markers retained. Specifically, we were
interested in identifying the impact that different G matrix
dimensionality and number of QTLs had on the number of
SNPs considered informative. In all simulations, LASSO and
SSLASSO retained the lowest number of SNPs (roughly 2,000
SNPs averaged across simulations), and they presented lower
intra- and between-scenario variability. On the contrary, RfeSVM
and RfeRR algorithms retained higher numbers of SNPs, on
average 12,000 for RfeRR and 7,000 for RfeSVM. RfeSVM also
presented an extreme variability across scenarios (Figure 4).
XGBoost retained an intermediate number of SNPs, with an
average of 3,000 SNPs retained across simulations. As shown in
Figure 4, different numbers of QTLs did not affect the number of
SNPs retained by each algorithm. In fact, no difference was
observed between SIM1 vs. SIM3 and SIM2 vs. SIM4; only
LASSO and SSLASSO algorithms seem to be slightly affected
by the number of QTLs. Interestingly, the dimensionality of theG
matrix seems to be more influential as scenarios with higher Ne
presented a higher number of SNPs (SIM1 and SIM2). The
XGBoost is the only algorithm where this trend was not seen.
Crucially, we observed that the negative gap in model accuracy
present in simulations with lower QTL (SIM3 and SIM4) fades
when variable selection models are introduced.

SNPs Retained in the Real Data set
We showed the impact of variable selection methods regarding
the number of informative markers retained in the Rendena
population in Figure 5. Although the number of initial SNPs
was similar to that of the simulated populations, in general, the
algorithms retained a higher number of SNPs in the real data set.
Similar to what was reported in the simulated data, LASSO and
SSLASSO were the most restrictive algorithms of SNP selection,
with an average of 2,000 SNPs retained across the simulations.
The XGBoost was the second most restrictive algorithm in terms
of SNPs retained by the models, about 3,000 on average. RfeSVM
and RfeRR algorithms retained almost half of the SNPs presented
in the panels (40,000 SNPs). No clear patterns were identified
across different phenotypes: some algorithms found a greater
number of SNPs in certain traits and some in others. For example,
the lowest number of informative markers retained by RFE
algorithms was identified on the DP trait, but the opposite
situation occurred for XGBoost, where the number of
informative SNPs retained for DP was almost twice the
number of informative SNPs retained for other traits.

Breeding Value Prediction
We compared the prediction accuracy of four ‘classical’ models
for BLUP and ssGBLUP with five different SNP preselection
strategies. The models are detailed inMaterials and Methods and
summarized as follows: 1) PBLUP; 2) single ssGBLUP; 3)
WssGBLUP1; 4) WssGBLUP2; 5a) ssGBLUP with SNPs
preselected via LASSO; 5b) ssGBLUP with SNPs preselected
via SSLASSO; 5c) ssGBLUP with SNPs preselected via RfeRR;
5d) ssGBLUP with SNPs preselected via RfeSVM; and 5e)
ssGBLUP with SNPs preselected via XGBoost. Table 4
provides a qualitative summary of the results, described in the
following paragraphs.

Breeding Value Prediction in Simulated Data sets
Different prediction model accuracies are reported in Figure 6,
with correlation and MSE as comparison metrics. MSE values
were comparable to those obtained for correlations. Standard
BLUP models achieved the lowest accuracy. A substantial
increase in accuracy was observed in ssGBLUP models, that is,
when genomic data were integrated: this increase of accuracy was
more relevant for populations with small Ne (SIM1 and SIM3).

A slightly greater accuracy than that in ssGBLUPwas observed
when a heterogenous distribution of SNPs was considered within
the matrix G (WssGBLUP). The gap in accuracy was greater in
the populations with few QTLs (SIM3 and SIM4), especially for
WssGBLUP2. On the other hand, the increase in accuracy for
SIM1 and SIM2 under WssGBLUP was almost close to zero. A
substantial variation in accuracy values was observed when
ssGBLUP was performed with G matrixes constructed with
selected SNPs; however, the accuracy of the prediction
performance of each variable selection model changed
according to the simulation structure. Generally, SSLASSO
presented the highest increase in accuracy among the genetic
models in all simulations, except for SIM2, where we observed a
dramatic drop in accuracy. On the other hand, LASSO achieved

FIGURE 3 | Cumulative explained variance of all eigenvalues of the
genomic relationship matrix of Rendena populations.
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greater accuracy on both SIM1 and SIM2. Other algorithms
presented an intermediate increase in accuracy among the
genetic models in all simulations, namely, RfeRR, RfeSVM,
and XGBoost, with different rankings in different scenarios.

Breeding Value Prediction in Real Data set
With our real data sets, we were first interested in evaluating the
performance of these models in terms of prediction; then, we
wanted to evaluate the feasibility of introducing them in a real
breeding plan scenario. This point was achieved using LR cross-
validation methods (Legarra and Reverter, 2018). Figure 7
presents the results of repeated five-fold cross-validation. The
integrations of genomic data led again to a substantial increase in
accuracy: the PBLUP presented the overall lowest correlation (r)
values (r from 0.36 to 0.53). The ssGBLUP presented the lowest
correlation values among genomic models (r from 0.46 to 0.62),
while a slight increment was observed for WssGBLUP1 (from
0.55 to 0.67) and for WssGBLUP2 (from 0.67 to 0.75). As with

simulated data, variable selection models improved model
accuracy substantially. Again, the highest correlations were
found for LASSO and SSLASSO, with values of r ranging from
0.83 to 0.92, while other algorithms presented intermediate values
(r around 0.70). This pattern was observed across all traits. MSE
reflected the results obtained with correlations.

LR methods evaluated dispersion and bias in addition to
accuracy. Figure 8 represents the different results obtained
using LR cross-validation methods in various validation sets
from 2015–2020. This set of years was chosen as
representative of all seven validation cohorts. Figure 9 reports
the summary statistics of all seven validation cohorts.

Accuracy trends of the real data set measured with the LR
method were similar to the accuracies obtained with five-fold
cross-validation. However, looking at the other statistics (slope
and bias), we can observe that LASSO, SSLASSO RfeRR, and
RfeSVM cannot be considered suitable variable selection
approaches in real breeding plans due to their higher bias and

FIGURE 4 | Bar plot representing the number of SNPs retained by each algorithm on the four simulated population; error bars represent standard deviation.
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dispersion values, especially if compared with ssGBLUP.
Conversely, XGBoost was the only model with similar or even
lower bias and dispersion values than ssGBLUP but with greater
accuracy. As seen in Figure 9, we demonstrate that these trends
are consistent over different validation cohorts.

DISCUSSION

The present study had two objectives: testing if reducing the
number of SNPs used to construct G could lead to an increase in

the accuracy of (ss)GBLUP and whether this method could be
introduced in genomic evaluations of a real population with a
small size, such as the Rendena breed.

In our study, using both simulated and real data sets, we
demonstrated that the accuracy of (ss)GBLUP increases when it is
performed when the number of SNPs to constructGwas reduced.
This finding agrees with that of the extensive literature supporting
the increased accuracy of Bayesian variable selection models in
many different species (Lourenco et al., 2014; Mehrban et al.,
2021; Yoshida et al., 2018; Zhu et al., 2021). For example,
Akbarzadeh et al. (2021) integrated only a subset of chosen

FIGURE 5 | Bar plot representing the number of SNPs retained by each algorithm on the three phenotypes of the Rendena population.

TABLE 4 | Summary of results obtained using the nine models considered in the study and the cross-validations applied.

Method name Accuracy across simulations
(Correlation/MSE)

Accuracy in real data set
(Correlation/MSE)

Bias/Slope in LR cross-validation in real
data set

PBLUP Poor Poor Good
ssGBLUP Medium Medium Best
WssGBLUP1 Medium Medium Good
WssGBLUP2 Medium Good Poor
LASSO-selected ssGBLUP Best Best Poor
SSLASSO-selected
ssGBLUP

Best Best Poor

RfeRR-selected ssGBLUP Good Good Poor
RfeSVM-selected
ssGBLUP

Good Good Poor
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SNPs into the GBLUP framework based on a classical GWAS
analysis (i.e., 1, 5, 10, and 50% of significant SNPs). A slightly
greater accuracy than that in the canonical GBLUP was observed
when G was constructed using only the best 10 and 50% SNPs;
contrariwise, models using the 1 and 5% of the SNP prediction
underperformed. Furthermore, Akbarzadeh et al. (2021) reported
a dramatic decline in performance when the same percentage of
SNPs was randomly chosen. We tried preliminary tests of a
similar approach—construction of the G matrix using the top
500, 1,000, and 50,000 SNPs ranked by their absolute SNP effect
values calculated through back solutions—in Rendena breed;
however, we immediately discarded this approach because of
the extreme bias and inflated breeding value predictions (these
findings are reported by Mancin et al., 2022 in press). In addition,
choosing so few and unrepresentative SNPs reduced a lot the
compatibility between A and G matrices, and thus ssGBLUP
properties were affected (Misztal et al., 2013).

Li et al. (2018) and then Piles et al. (2021) showed how using
different methods to select the most informative SNPs could

significantly improve the performance of the variable selection
models. Li et al. (2018) constructed the G matrix using the best
400, 1,000, and 3,000 SNPs, ranking SNPs effects by three
different machine learning models. As in the previous case, an
increase in accuracy was obtained only with a certain number of
selected SNPs (1,000 SNPs), while a lower accuracy than that in
the canonical GBLUPwas observed with a lower number of SNPs.
In addition, Piles et al. (2021) and Azodi et al. (2019) showed that
by combining different variable selection algorithms with various
parametric and nonparametric prediction models (i.e., ensemble
predictions), it is possible to obtain a consistent increase in
accuracy compared to models without variable selection.
However, our study has not explored these scenarios since
prediction methods other than ssGBLUP or ssSNP-BLUP
(Fernando et al., 2017) do not seem to bring any concrete
improvement for livestock traits (Abdollahi-Arpanahi et al.,
2020). Furthermore, ssGBLUP and ssSNP-BLUP are the only
methods that allow combining straightforwardly non-genotyped
animals with genotyped ones—a crucial feature for a real-life

FIGURE 6 | Bar plot representing correlation (corr) and mean squared error (MSE) between predicted and true breeding values on the four different simulated
populations. Error bars represent standard deviations.
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routine selection plan and something that the other algorithms
cannot do.

Our result that reducing the number of parameters positively
impacts accuracy is also supported by Frouin et al. (2020). In that
study, it was demonstrated that the error of the prediction tends to
linearly increase when n > p until the “irreducible” error (1 − h2)
occurring when n ≫ p. In addition, Pocrnic et al. (2019),
demonstrated that the accuracy of (ss)GBLUP is connected by
the distribution of eigenvalues of G; thus, “n” becomes the
number of independent chromosome segments (Me) captured by
SNPs (Pocrnic et al., 2019). In highly related populations (small Ne),
higher accuracy values can be achieved than in populations with
larger Ne because fewer eigenvalues and thus a small “n” are
necessary to explain G. As a matter of fact, in large Ne
populations, more data are needed to increase accuracy. This
issue is also intuitive since prediction error accuracy (Henderson,
1975) is directly proportional to the coefficient Caa (defined below);
thus, in highly related populations, Caa tends to have lower values.
Caa is the inversion of the coefficient matrix of the mixed model
equation where aa is the block referring to the genetic effect of
animals. What was reported by Pocrnic et al. (2019) could explain
the lower performance identified by Akbarzadeh et al. (2021) when
subsets of 1 and 5% of SNPs were considered (Akbarzadeh et al.,
2021). Indeed, discarding toomany SNPs from the construction ofG

may omit the inclusion of important eigenvalues. From another
perspective, Fragomeni et al. (2017) demonstrated the positive
impact of removing non-informative SNPs on GBLUP. The
authors showed in a simulated data set that better accuracy was
found when the G was built by eliminating all SNPs outside the
windowwhere theQTLwas situated or using onlyQTL information.
However, a practical limit to this method is that knowing all the
QTLs within a genome is nearly impossible, especially when the
population is small (Mancin et al., 2021a).

Our simulated results support the abovementioned theory, as
simulations with lower Ne presented higher accuracy of ssGBLUP
(SIM1, SIM3). Furthermore, differences between scenarios emerge
when comparing simulations differing for their number of QTLs.
ssGBLUP showed lower performance in SIM3 and SIM4 (QTL10)
than in SIM1 and SIM2 (QTL1000); however, this discrepancy in
accuracy decreases by applying variable selection. This result agrees
with that by Daetwyler et al. (2010), which demonstrated that SNP
selection via Bayes B presents substantial advantages when the
number of QTLs is small compared to the number of
independent chromosome segments.

As mentioned above, Bayesian SNP regression, or (ss)GBLUP
using a weighted realized relationship matrix (Tiezzi and
Maltecca, 2015; Zhang et al., 2016), always provides higher
prediction accuracy than models assuming homogenous

FIGURE 7 | Box plot representing correlation (corr) and mean squared error (MSE) between predicted and true breeding values of phenotypes recorded in
Rendena performance testing stations. Target phenotypes are ADG: average daily gain; CF: in vivo carcass fleshiness; DP: in vivo dressing percentage.
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variance among SNPs (GBLUP or SNP-BLUP). However this
increase in accuracy is often connected with increases in bias,
especially when time cross-validation is used (Mehrban et al.,
2021), instead of five-fold or leave-one-out cross-validation (Zhu
et al., 2021). However, when the goal is to achieve the “best
predictor”, namely, a value closer as possible to real one, models
assuming heterogenous variances and models with variable
selection can be identified as the best models. They have,
indeed, the highest MSE, intended as bias-variance trade-off
(Gianola, 2013). In this regard, LASSO and SSLASSO, thus,
appeared as “best models” for both simulated and real data.
We showed that (SS)LASSO regression performs automatic
feature selection, especially in the presence of linearly
correlated features, such as SIM1 and SIM3, since their
simultaneous presence will increase the value of the cost
function. Thus, LASSO regression will try to shrink the
coefficient of the less important SNPs to 0 to select the best
features.

However, in real-life breeding scenarios, time cross-validation
must be considered (Liu, 2010; Legarra and Reverter, 2017) as this
procedure simulates the natural accumulation of information
across time. Only a few studies evaluated the impact of

heterogenous or variable selection models using time cross-
validation with small samples of individuals. Cesarani et al.
(2021) and Mancin et al. (2021b) found higher bias and
overdispersion values in WssGBLUP than in ssGBLUP.

The same pattern emerged when we performed LR cross-
validation (Mancin et al., 2021b; Cesarani et al., 2021), namely,
that higher shrinkages or selected SNPs have high accuracy but
carry higher bias and dispersion values. Specifically, (SS)LASSO
models showed the best accuracy in all three traits when
measured with LR. Conversely, other feature selection models
and WssGBLUP presented lower accuracy. Among the variable
selection models, we found slightly lower values of accuracy in the
XGBoost; however, we suggest that XGBoost could be regarded as
the best variable selection model among those tested as it is the
only model that presented higher accuracy than ssGBLUP, at a
net of better bias and dispersion.

Several questions persist about the use of these models in routine
evaluation. One of these issues concerns the implementation of
preselected SNPs in multitrait models. However, this is a recurring
problem not only when the Gmatrix is built with preselected SNPs
but also more in general whenever models take into account the
specific genomic architecture of traits, as WssGBLUP does. A

FIGURE 8 | Bar plots representing accuracy, dispersion, and bias of the Rendena data set estimated using LR cross-validation in the validation cohort of
2015–2020. Dispersion was defined as 1, the absolute value of dispersion, while bias as absolute values of bias divided by its genetic variance to improve assessment of
model rankings. Horizontal lines represent the values of ssGBLUP to permit easier comparison among models.
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possible solution to bypass this issue might be using multiple G
matrix prediction models, one for each trait: yet, this is not
computationally straightforward. A preliminary selection of SNPs
by multiobjective optimization framework algorithms, as in Garcia
(2019), could be a more concrete approach for future studies.

Another possible concern about the large-scale use of variable
selection ssGBLUP is the fluctuations of SNPs across generations.
Similarly to the issue with multitrait models, this regards all
genomic selections (Hidalgo et al., 2020); however, it is true that
with respect to other methods, such as Bayesian SNP regression,
generation-by-generation recalibration of SNP preselection
algorithms can be highly computationally demanding,
especially when algorithms such as XGBoost are chosen.
Finally, SNP preselection could be influenced by variability in
SNP frequency across animals or more in general in the presence
of population structure, as with subpopulations. Nonetheless, in
our study, the PCA plots referring to SIM1 (Supplementary
Materials S2), where some clusters are present, show that variable
selection models overcome this issue quite effectively. It would be
interesting to choose one or more variable selection models in
future studies and evaluate their impact on more stratified
populations.

Besides increasing the EBV accuracies, developing an optimal
strategy for SNP variable selection in high-density panels will be
particularly useful in local breeds. It would in fact allow the use of
informative but lower density and cheaper panels, accounting for
the best SNPs suitable for the target trait and population.
Furthermore, given that small breeds cannot attract the same

level of technological investment as their cosmopolitan
counterparts (e.g., Holstein), decreasing the costs of genomic
selection could be critical to help guarantee their selection, and
thus their survival.

Aside from the economic factors, the importance of
developing ad hoc selection methods for small-population
cattle, especially for local breeds, is of primary importance for
their conservation. Maintaining genetic progress for the
productive characters and at the same time keeping intact the
genetic variability and the distinct characteristics of the breeds
can be guaranteed through breeding plans implementing careful
selection (Biscarini et al., 2015). These plans are needed to
preserve genetic variability within livestock local populations, a
goal which, in the medium term, is critical for the animal
husbandry industry to ensure the conservation of native
breeds, their productive and reproductive efficiency, health,
survival, and overall resilience to future changing
environmental pressures (Mastrangelo et al., 2014).

CONCLUSION

Genomic information, especially the single-step GBLUP
technique, has brought great improvements to selection and
breeding decisions in livestock. However, these methods still
present methodological issues when applied to populations
with a small size, such as local and endemic cattle breeds. Our
rigorous testing of different algorithms for variable selection of

FIGURE 9 | Line plot representing accuracy, dispersion, and bias of Rendena data set estimated using LR cross-validation in the validation cohort of 2021.
Dispersion was represented as 1, absolute value of dispersion, while bias as absolute values of bias divided by its genetic variance.
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informative SNPs has highlighted that prediction accuracy of
variable selection ssGBLUP (especially that of XGBoost) was
greater than that of other ssGBLUP methods, without the
inflated bias and dispersion that accompany the weighted
ssGBLUP. Our use of machine learning models could thus
represent a solution to the issue of genomic selection in small
populations. Local cattle breeds are an often untapped resource of
genetic diversity and have great potential to adapt to varying
environmental conditions. The methods presented here might,
thus, be used in their conservation, study, and increase their
economic competitiveness.
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Conventional animal selection and breeding methods were based on the phenotypic
performance of the animals. These methods have limitations, particularly for sex-limited
traits and traits expressed later in the life cycle (e.g., carcass traits). Consequently, the
genetic gain has been slow with high generation intervals. With the advent of high-
throughput omics techniques and the availability of multi-omics technologies and
sophisticated analytic packages, several promising tools and methods have been
developed to estimate the actual genetic potential of the animals. It has now become
possible to collect and access large and complex datasets comprising different genomics,
transcriptomics, proteomics, metabolomics, and phonemics data as well as animal-level
data (such as longevity, behavior, adaptation, etc.,), which provides new opportunities to
better understand the mechanisms regulating animals’ actual performance. The cost of
omics technology and expertise of several fields like biology, bioinformatics, statistics, and
computational biology make these technology impediments to its use in some cases. The
population size and accurate phenotypic data recordings are other significant constraints
for appropriate selection and breeding strategies. Nevertheless, omics technologies can
estimate more accurate breeding values (BVs) and increase the genetic gain by assisting
the section of genetically superior, disease-free animals at an early stage of life for
enhancing animal productivity and profitability. This manuscript provides an overview of
various omics technologies and their limitations for animal genetic selection and breeding
decisions.

Keywords: omics, selection, animal improvement, phenomics, data analysis

INTRODUCTION

Genetic selection and breeding are crucial tools for livestock improvement. They have resulted in
genetically superior and disease-free animals with improved production and efficiency in various
livestock species (Rexroad et al., 2019; Erasmus and van Marle-Köster 2021). In earlier days, the
genetic selection of animals for breeding was primarily based on their phenotypic characteristics,
such as production traits and breeding value (BV) estimation. Later, other economic traits, including
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reproduction and longevity traits, animal health, stress tolerance,
disease resistance, animal welfare traits, etc., also became vital
components of genetic improvement programs (Brito et al., 2020;
Brito et al., 2021). Selective breeding of genetically superior
animals ensured rapid genetic progress of production
efficiency traits to the next generation. Many breeding
techniques have thus, evolved to accrue the desired trait in
genetically selected animals to meet the market demand for
production and animal welfare (Plieschke et al., 2016).

Several selection indices have been developed for the genetic
selection of animals for breeding. However, no single trait is ideal
for these selection indices in all populations (Cole et al., 2021).
Further, while animals for selective breeding can be identified
based on phenotypic recordings, traits that are sex-limited,
expressed at a later stage of life, difficult to measure, or have
low heritability pose difficulties (Calus et al., 2013). The use of
complex statistical models, advanced analytic tools, and new
molecular methods may divulge newer traits and help identify
animals for efficient genetic selection and breeding with greater
accuracy (Stock et al., 2020).

The past three decades have seen tremendous advancements
in molecular genetics that have provided a better genetic
understanding of quantitative economic traits (Dekkers and
Hospital 2002). A number of genes and gene combinations
have been found to directly correlate with animal performance
and production efficiency (Rexroad et al., 2019; Ruan et al., 2021).
Many quantitative trait loci (QTL)—gene loci responsible for trait
diversity—have been identified for various production and
reproductive traits and used for selection and breeding
decisions (Zhang et al., 2021; Al-Sharif et al., 2022). Several
genetic markers have also been discovered for use in marker-
assisted selection (MAS) of breeding stock (Ma et al., 2021; Raza
et al., 2021). More recently, with advancements in high
throughput omics technologies, genome selection is becoming
widely accepted for the selection of animals for breeding (Tan
et al., 2017; Yang et al., 2020). The application of omics tools in
livestock improvement may provide a more accurate technology
for animal selection and breeding and therefore has become a hot

spot of research (Pedrosa et al., 2021; Ruan et al., 2021). This
manuscript provides an overview of various omics tools and
technologies for their application in livestock selection and
improvement programs.

OMICS TECHNOLOGY

Omics technologies such as genomics, metagenomics,
metabolomics, proteomics, transcriptomics, epigenomics,
translatomics, etc., can allow rapid and effective detection of
subtle phenotypic changes, dietary responses, and innate
phenotypic propensities in animals (Mu et al., 2022; Wang et al.,
2022). The utilization of omics tools in animal selection and
breeding programs is thus, expected to provide an accurate
estimation of BV for early selection, reduce generation interval
and increase the rate of genetic gain (Figure 1). The word ‘omics’
originates from the suffix ‘-ome’, derived from a Greek word that
means “whole”, “all” or “complete”. The suffix “-omics” is frequently
used to refer to a field of study in life sciences that emphasizes large-
scale high throughput data/information to understand life summed
up in “omes” (Yadav, 2007). Several omics tools have been
developed in the last two decades to collect and analyze high-
throughput data on proteins (proteomics), mRNA transcripts
(transcriptomics), gene sequences (genomics), microbial diversity
(metagenomics), epigenetic regulation of gene expression
(epigenomics), metabolic profile (metabolomics), lipid profile
(lipidomics), etc., of a particular cell, tissue, organ or whole
organism at a specific time point. The time (temporal) and
space (spatial) level information from omics data can be
integrated through robust bioinformatics and computational
tools to the systems biology level (Odom et al., 2021; Velten
et al., 2022). Network modeling of omics data can be used to
study the mechanism, relationship, interaction, and function of
cells, tissues, organs, and the whole organism at a molecular level in
an unbiased manner (Aardema and MacGregor, 2003). More
recently, multi-omics has emerged as high-dimensional biology
(HBD) for simultaneous study of genetic variations in biological

FIGURE 1 | Impact of omics technology in animal improvement.
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systems at the genes, transcripts, proteins, and metabolites level
(Romero et al., 2006; Krassowski et al., 2020).

In the last two decades, a few landmark technological
revolutions took place in omics technologies that
revolutionized their application in genetic selection for animal
breeding. In 2007, the first “high density” panel of bovine genetic
markers was released commercially with a set of 54,001 single
nucleotide polymorphisms (SNPs). Using such high-density SNP
chips, genome-wide association studies (GWAS) demonstrated
the link between SNPs and QTLs, such as coat color and presence
or absence of horns (Matukumalli et al., 2009). In other studies,
high-density SNP chips were shown to be useful in the genetic
characterization of pig breeds for preserving their genomic
variability (Muñoz et al., 2019). Whole-genome sequencing
(WGS) by massively parallel sequencing was yet another
breakthrough for detecting molecular signatures for the
selection and breeding of animals (Elsik et al., 2009; Bovo
et al., 2020). The Bovine Genome Sequencing and Assembly
project (Elsik et al., 2009; The Bovine Genome Sequencing and
Analysis Consortium et al., 2009; The Bovine HapMap
Consortium, 2009) provided a landscape of genome sequence
that subsequently led to a paradigm shift in QTL- and candidate
gene-based approaches for genetic selection.

Molecular databases of NCBI (United States), EMBL (Europe),
and DDBJ (Japan) provide vast information on nucleotide and
protein sequences. These databases have been utilized in omics
technology for understanding the genomic variability and
molecular and physiological basis of economic traits (Wu
et al., 2018; Ng et al., 2021). Unfortunately, however, very
scant information is available on the precise regulatory
networks through which these genes and proteins determine
the phenotypic expression of economic traits. Further, a
significant unexplained source of variation among phenotypes
of various economic traits remains a matter of concern in
livestock. Newer machine learning (ML) tools have been
developed recently that can be exploited to analyze high
throughput omics data, available in databases, for a greater
understanding of gene regulatory networks (GRNs) and
identification of functional genes by a systems biology
approach (Guttula et al., 2020; Guttula et al., 2021; Ng et al.,
2021).

Omics technologies can help identify functional SNPs and
their prioritizing to increase the accuracy of genetic selection
(Chang et al., 2019). They can also be used for selecting
animals resistant to production diseases such as mastitis
and thereby enhance their productivity (Russell et al., 2012;
Bhattarai et al., 2017; Jaiswal et al., 2021). Further, population-
level omics (e.g., population genomics) hold tremendous
potential for classifying individuals based on allelic diversity
and identifying genetically-related individuals (Lippert et al.,
2017). Such strategies can help calculate homozygosity and
inbreeding coefficients (Ghoreishifar et al., 2020; Sumreddee
et al., 2021) for designing appropriate breeding programs to
maintain genetic diversity and avoid inbreeding depression
(Alemu et al., 2021; Bu et al., 2021). However, while many
WGS databases and consortiums have been formed in humans
(Zhang et al., 2018) (GenomeAsia 100K Consortium, 2019), no

high-resolution database of population-level genetic variants is
available for animals.

GENOMICS

The genome is defined as the complete set of genetic material
present in an organism. The term “genomics” was coined in 1986
by scientists who were naming a new journal (Kuska, 1998), and
thus, the era of omics began. The major developments in
genomics are the discovery of the genes and genetic codes,
polymerase chain reaction (PCR), Genome sequencing by
Sanger sequencing or Next Generation Sequencing (NGS), and
genome editing tools such as Transcription activator-like effector
nuclease (TALEN), Zinc-finer nuclease (ZNF), an Clustered
regularly interspaced short palindromic repeats (CRISPR)/
CRISPR-associated protein 9 (CRISPR/Cas9) technologies. The
field of genomics started gaining popularity after the invention of
PCR in the year 1985. Thereafter, MAS- and candidate gene-
based approaches for selecting genetically superior animals
became very popular and were found to be better than
conventional phenotype-based selection and breeding
(Williams 2005). Gene map construction was also used for
genome sequencing. The gene map construction was initially
based on the segregation of enzyme markers across panels of
hybrid cell lines. However, with advancements in recombinant
DNA (rDNA) technology, denser physical and genetic maps
formed an important framework for genome sequencing
(Riggs and Gill, 2009). During the early 2000s, most livestock
genome sequencing was based on linkage maps using single
markers and quantifying one or a few genes by real-time
quantitative PCR (qPCR). Elsik and associates, in 2009,
published the first bovine genome assembly (Elsik et al., 2009).
Since then, rapid progress has been made in developing and using
several whole genome-omics tools that have accelerated cattle
genetics research (Reverter et al., 2013; Snelling et al., 2013).

The concept of “Genetical Genomics”, which integrates
structural and functional genomic data, has evolved with the
development of microarray technology for gene expression
analysis, which divulged marker genotypes across whole
genome. The field of Genetical Genomics has expanded with
the availability of high throughput tools for genomic analysis such
as high-density (HD) genotyping-chips (Illumina, San Diego,
CA), WGS, genotyping by sequencing, and RNA-sequencing
(RNAseq) to measure the gene expression in the entire
transcriptome (Wickramasinghe et al., 2014). Several SNP
chips of 60 K for pig and chicken, 50 K for sheep, and 77 K
for cattle have also been developed (Suravajhala et al., 2016). The
GWAS studies have become very popular among different
livestock species focusing on production and health traits
(Shamra et al., 2015). For example, GWAS on female
reproduction traits in tropically adapted beef cattle (Hawken
et al., 2012), feed efficiency traits in pigs (Do et al., 2013 and
2014), body weight in broilers (Wang et al., 2014), and obesity
and metabolic diseases using the pig as a model (Kogelman et al.,
2014) have been conducted. The genomic selection is particulary
advantagious as it can be used for selecting animals for breeding
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at an early stage of life without having reference to their own
breeding or production records. Studies have shown that genomic
selection improved the genetic gain as much as 60–120% in dairy
cattle by decreasing genetic interval by 2 years, although the
extent of added genetic gain was lower in other livestock
species (Table 1). The term “systems genetics” or “systems
genomics” was also proposed by Kadarmideen (2014). This
branch has a wide range of approaches ranging from relating
the individual’s omics levels data to their functional annotation
and analysis of signaling pathways by integrating different multi-
omic levels data to phenotypes.

TRANSCRIPTOMICS

Transcriptomic methods can be used to compare a biological
response to different conditions or treatments or to assess
physiological responses to external stimuli (Brannan et al.,
2014). Whole transcriptome sequencing is the most widely
used method for studying RNA functions, exploring and
analyzing the gene structure and function, and revealing
intrinsic links between gene expression and life phenomena
(Shi and Zhang, 2019). To date, extensive research has been
carried out in different livestock species using high-throughput
RNAseq technology that has replaced the earlier usedMaxam and
Gilbert chemical degradation sequencing method. The NGS
technologies generate sequence data by producing millions of
short DNA fragments in parallel. The template is broken into
many smaller fragments by sheering, which are then ligated to
adapters to create cDNA libraries by the bridge (e.g., Illumina
sequencing) or emulsion (e.g., pyrosequencing) PCR. The clones
of cDNA fragments of each library are then sequenced to obtain
short reads; the length and number of the reads vary with the
specific technology but generally range between 30 and 300 bases,
which is shorter than those obtained from Sanger sequencing
(Ghaffari et al., 2013). NGS has led to the characterization and
quantification of many omics, including genomics (DNA
sequencing), transcriptomics (RNA and cDNA sequencing),
and epigenomics (ChiP-seq and DNA methylation analysis).
More recently, third-generation sequencing methods involving
single-molecule real-time (SMRT) sequencing have emerged
(Sahoo et al., 2021a; Sahoo et al., 2021b). These newer SMRT
sequencing methods do not require PCR amplification of

templates and hence are devoid of PCR biases. Moreover, the
SMRT sequencing approaches generally produce longer reads for
better genome assembly and identification of indels
(Athanasopoulou et al., 2021). However, SMRT methods such
as NanoporeTM and PacBioTM sequencing also offer versatility in
terms of rapid time and the transportability of the equipment.
Newer techniques such as tunneling currents DNA sequencing,
sequencing with mass spectrometry, microscopy-based
sequencing, etc., are under development.

The RNAseq has made a revolutionary impact on
transcriptome analysis (Mortazavi et al., 2008). RNAseq has
major advantages such as a large dynamic range and
sensitivity, precise, unbiased quantification of transcripts, and
comprehensive coverage of all expressed sequences in a given
tissue sample. The direct RNAseq is vital for functional studies to
capture the dynamic RNA population under different
environmental conditions (Athanasopoulou et al., 2021). It has
revolutionized gene annotation, which was hitherto very difficult
with genome sequencing. The RNAseq also finds application in
analyzing molecular features such as alternate isoforms, splice
variants, fusion transcripts, RNA editing, etc. (Li and Wang
2021). Combination of genome sequencing with RNAseq can
be utilized to interpret mutations on regulatory regions of genes,
which do not produce an obvious effect on the protein sequence
(Cohen et al., 2020).

Today, very accurate and efficient sequencing platforms are
available, which can distinguish closely related transcripts from
each other (Marguerat and Braga-Neto, 2015). Therefore,
RNAseq has become very popular for the identification and
quantification of splice variants, fused transcripts, and
mutants. In RNAseq technology, messenger RNAs are first
randomly fragmented into small pieces by sheering and
converted to a library of complementary DNA (cDNA)
fragments. These cDNA fragments are then amplified and
sequenced in parallel and mapped to a given region of the
target genome. PCR-free cDNA sequencing and direct
RNAseq without first-strand cDNA synthesis have also
become possible with SMRT technology such as NanoporeTM

sequencing. In expression quantification, a count, which is
determined by the number of reads mapping to each gene
(FPKM or TPM; fragments per kilobase of transcripts per
million mapped reads or transcripts per million), is a discrete
measure of the corresponding gene expression level
(Ghaffariet al., 2013, Li et al., 2012) (Figure 2). The
differentially expressed genes (DEGs) between two samples
can be obtained by transcript compilation with gene
annotation file followed by gene identification and differential
expression analysis based on FPKM or TPM values (Alessandrì
et al., 2019). Functional analysis of DEGs by bioinformatics tools
revealed that the immune and inflammatory responses were the
most impacted pathways between purebred and crossbred cattle
populations (Moridi et al., 2019). Such type of RNAseq-based
transcriptomic studies on animals of high- and low-genetic merit
may be helpful for the selection and breeding of elite animals in
the future to enhance health, productivity, and profitability.

Canovas et al. (2014) integrated the RNAseq data with GWAS
and bovine transcriptional factors in multiple tissues from pre-

TABLE 1 | Impact of genomic selectiona.

Animals Added genetic Gain References

Dairy cattle 60–120% Pryce and Daetwyler, (2011)
Beef cattle 15–44% Pimentel and Konig, (2012)
Dairy goat 26.2% Shumbusho et al. (2013)
Dairy sheep 51.7% Shumbusho et al. (2013)
Meat sheep 17.9% Shumbusho et al. (2013)
Pig 23–91% Lillehammer et al. (2011)
Layers 60% Sitzenstock et al. (2013)
Broilers 20% Dekkers et al. (2009)
Dairy Bulls 30–71% Doublet et al. (2019)

aSource: Modified from Ibisham et al., 2017.
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and post-pubertal cattle and constructed co-expression GRNs,
which revealed genes and their complex interactions during
puberty in cattle. Therefore, early selection of individuals
based on multi-omics data from early sexual maturity may
help increase the genetic gain by reducing generation intervals.
In another study, the resistance or susceptibility of Creole goats to
gastrointestinal nematodes was studied by RNAseq (Aboshady
et al., 2021). Aboshady et al. (2021) reported that the T-cell
receptor signaling pathway was one of the top significant
pathways that distinguish the resistant from the susceptible
genotype, with 78% of the genes involved in this pathway
showing genomic variants in Creole goats. This shows another
important example of applying omics for selecting disease-
resistant animals.

PROTEOMICS

Wilkins and Williams first described proteomics in the mid-1990s
(Speicher, 2004). Proteomics allows analysis of all proteins, including
their isoforms, in a particular cell, tissue, or organ at a specific time in
a single experiment. Advance proteomic tools can also provide
information on various protein isoforms, their quantification, and
protein-protein interaction. However, the application of proteomics
in livestock research has been limited in the past due to its high cost
and lack of optimized protocols for various cell types in different
species (Baykalir et al., 2018). Nevertheless, with advancements in
new analytical methods and computational tools for the analysis of

proteomic data, reports on proteomics studies in animal science are
increasing for understanding the animal health status and
production and reproduction efficiency (Zhao et al., 2021; Kaya
et al., 2022; Ye et al., 2022).

Proteomics techniques range from one-dimensional (ID) gel
electrophoresis, two-dimensional (2D) gel electrophoresis,
Chromatography (liquid and gas) methods to sophisticated mass
spectrometry (MALDI-MS, ESI-MS, LC-MS/MS, MALDI-TOFMS,
etc.,), whichmeasures mass-to-charge (m:z ratio) of ionized peptides
to identify proteins (Gupta et al., 2009a). In a typicalMS experiment,
the proteins are isolated from target cells/tissue/organ/biological
fluid, separated by 1D or 2D gel electrophoresis or liquid
chromatography, and digested by a sequence-specific protease
such as trypsin (Figure 3). The trypsin digests are then purified
by affinity chromatography or biochemical fractionation and ionized
by electronspray ion (ESI), matrix-assisted laser desorption
ionization (MALDI), or surface-enhanced laser desorption
ionization (SELDI) before being pushed into the mass
spectrometer to measure the m:z ratio. The m:z ratio can be
measured in quadrupole (Q), ion trap (e.g., quadrupole ion trap
or QIT and linear ion trap or LIT), time-of-flight (TOF), quadrupole
mass filters (QMF), ion cyclotron resonance (ICR), high-resolution
orbitraps, or a hybrid of mass spectrometers. The MS spectra are
then matched with protein databases to identify proteins using a
variety of algorithms that usually come in-built with the MS
machines (e.g., SpectraMillTM) (Gupta et al., 2009b). Several
methods have also been developed for relative or absolute
quantification (AQUA) of proteins and identification of post-

FIGURE 2 | A software pipeline and computational resources used for analysis of RNAseq data. Each type of RNAseq has distinct requirements and challenges but
there is a common workflow/pipeline.
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translational modifications bymodifiedMS such as selected reaction
monitoring (SRM), isotope labeling of amino acids in cell culture
(SILAC), isotope-coded affinity tags (ICAT), isobaric mass tagging
(iTRAQ), etc.

The number of proteomics studies associated with
reproductive problems has been increased dramatically in the
last decade (Peddinti et al., 2011). The research applications in
proteomics range from early growth and development to
postmortem events important for meat quality (Yarmush and
Jayaraman, 2002; Bendixen, 2005). One of the major areas of
interest in proteomics is finding out robust protein biomarkers
that could be useful in disease surveillance, monitoring the health
and wellbeing of animals, elucidating disease mechanisms, and
assessing pharmacologic response to therapeutics (Oskoueian
et al., 2016) (Muhanguzi et al., 2022). Proteomics can also be
applied for different animal products post-harvest like meat, milk,
cheese, etc., to identify genetic variants with desirable traits for
selection and breeding (Almeida et al., 2015).

Proteomics has also enabled the identification of candidate
protein markers of fertility for molecular breeding. The LC-MS/
MS analysis of pig sperm revealed eight fertility-related proteins
over-represented in Tibetan pigs having heritable adaptation to
hypoxic environments (Zhao et al., 2021). In another study,
analysis of seminal plasma proteins by LC-MS/MS found a
consistent correlation of 1,343 proteins with fertility (Willforss
et al., 2021). Thus, identifying fertility markers by proteomics can
help identify fertile bulls to reduce non-return rates (NRR) and
increase productivity. Proteomic tools can also be harnessed to

identify superior genetic variants to dietary response and muscle
growth for selective breeding. By a newly described
transcriptome-assisted label-free shotgun proteomics method,
Mullins et al. (2021) identified 24 differentially abundant
proteins in liver tissues from cattle that were fed ad libitum or
restricted diet. Identifying protein markers by proteomics could
help the selection of genetic variants for compensatory growth
upon undernutrition, which may accelerate genetic gain and
increase profitability (Mullins et al., 2021).

METABOLOMICS

An emerging area in the application of omics tools is the
interrogation of the metabolome. Metabolomics is a
comprehensive, qualitative and quantitative study of all the
small molecules in an organism (Kalaiselvi et al., 2019; (Lippa
et al., 2022). Metabolomic tools are being increasingly used to
generate an unbiased global profile of metabolites in samples
(i.e., untargeted analysis) or to quantify with high sensitivity a
small panel of metabolites (targeted analysis) (Riggs et al., 2017;
Evans et al., 2020). In dairy cattle, many potential biomarkers of
milk yield and quality have been detected by studying the
metabolome of different body fluids (Sun et al., 2015). One
advantage of profiling metabolites is exploring the impact of
metabolism on systemic health by monitoring the production and
further metabolism of compounds present in the diet, digesta, and
plasma (Seidel et al., 2014). It can also be used to evaluate feed

FIGURE 3 | Workflow of global proteome sequencing and quantification by mass spectrometry (MS/MS).
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conversion efficiency, metabolic response of animals to
environmental conditions, and estimation of production
efficiency and carcass quality traits (Jorge-Smeding et al., 2021;
Martin et al., 2021; Artegoitia et al., 2022). Studies have also
shown that the heritability of water-soluble compounds such as
free amino acids, nucleotides, and sugars in beef was less than
0.30 and varied with animal age (Sakuma et al., 2016). However,
these water-soluble compounds were negatively correlated with
carcass weight and beef marbling standard at the genetic level.
Thus, metabolomics may help identify animals with high carcass
quality for breeding. In another study, metabolic profiling of
muscle by GC-MS and LC-MS could distinguish grass- and grain-
fed cattle with 100% predictive accuracy (Carrillo et al., 2016).
These results suggest that metabolic signatures could be a good
indicator of animals’ feeding habits and carcass quality and,
therefore, could be utilized to select animals with desired traits
(Figure 4).

Metabolomic selection is an emerging breeding technology
based on nuclear magnetic resonance (NMR) or LC-MS
metabolomics (Evans et al., 2020; Lippa et al., 2022). The
NMR spectra of biological samples can be analyzed for
chemical shifts, peak intensities, and coupling patterns to
identify and quantify various metabolites and generate NMR
fingerprints of the sample (Figure 4). Metabolomic studies on
muscle and fat from cattle, pigs, and poultry have shown tissue-
and species-specific differences in metabolites with specific
compounds detected in each species (Ueda et al., 2018). The
GC-MS could also distinguish between cattle breeds (Ueda et al.,
2018). Thus, comparing NMR spectra from different animals
such as those from low- and high-performing animals may help
identify NMR fingerprints in high-performing animals. Such
NMR fingerprints can then be used for the genetic selection of
animals for breeding purposes (Figure 4). Metabolomic analysis
of muscle from Nellore cattle having high- or low-growth traits

revealed that high growth animals had a distinct metabolic profile
with a higher concentration of specific metabolites affecting
protein and fatty acid metabolism (Cansolo et al., 2020) that
can be harnessed for selection of animals for growth.

High-resolution MS (HRMS) can detect metabolites at nano-
to the pico-molar concentration of metabolome and, therefore,
can provide a better landscape of metabolites than NMR
(Goldansaz et al., 2017). The MS is usually combined with
separation techniques such as capillary, liquid, or gas
chromatography, depending on the polarity and lipophilicity
of the metabolites of interest. The separated molecules are
ionized by ESI, electron ionization (EI), chemical ionization
(CI), or atmospheric pressure CI (APCI) and evaluated for m:
z ratio in the mass spectrometer based on TOF, Fourier
transformation ion cyclotron resonance (FT-ICR) or orbitrap
to obtain structural information for identifying the metabolites.
Several databases such as METLIN, Human Metabolome
Database (HMDB), and MassBank are available that can be
used to match the MS spectra of metabolites for their
identification. A number of statistical and bioinformatic tools
can then be applied to discover molecular pathways involved in
the generation of critical metabolites. Software such as
MetaboAnalyst and Kyoto Encyclopedia of Genes and
Genomes (KEGG) can be used for multivariate analysis and
visualization of metabolic pathways. The correlation analysis
between animal performance parameters and metabolic
profiles may help identify key metabolic markers of animals’
performance for genetic selection. Metabolomics has also been
used in GWAS for metabolite-featured phenotyping and animal
breeding (Fontansesi, 2016).

The metabolomic tools can also be combined with molecular
breeding tools such as WGS and high-density SNP chips to
increase the accuracy of genetic selection and livestock
breeding (Wang and Kadarmideen 2020) (Ehret et al., 2015).

FIGURE 4 | Workflow for application of metabolomics on genetic selection of animals.
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Given that genomic prediction to predict breeding values based
on phenotypic, pedigree, and genomic data is insufficient to
describe the genetic potential of animals, incorporating the
whole-metabolomic data in the genomic prediction equation
may play a crucial role in increasing the genetic gain by
increasing the accuracy of selection. The latter is further
substantiated by the fact that metabolites represent cells’
ultimate physiological response and thereby represent a link
between genotype and phenotype (Wang and Kadarmideen
2020). GWAS-based studies, using SNP chips and LC-MS
metabolomics, the identified mechanism underlying the
genetic variation in pigs for feed efficiency (Banerjee et al.,
2020; Wang and Kadarmideen 2020). Integrating high-density
SNP data and metabolite information with predictive value was
also found to help improve the accuracy of genetic selection in
cattle (Ehret et al., 2015). The power of metabolomics is that it
non-invasively detects subtle phenotypic changes, innate
phenotypic propensities, and dietary responses in livestock
research, breeding, and assessment through new varieties of
bio-samples such as semen, amniotic fluid, saliva, and urine.

Wu et al. (2021) found that small metabolite profiling of pig
feces by LC-MS metabolomics correlated with their feed
efficiency and can be used as a reference for selecting animals
with high feed conversion efficiency and responsiveness to new
feed additives (Wu et al., 2021). Given that fecal metabolome are
reflections of intestinal microbiota, cellular metabolism and
digestion/absorption of nutrients in the gut (Zierer et al., 2018;
Malheiros et al., 2021), the metabolites present in the feces could
indicate their feed conversion efficiency (Wu et al., 2021). Fecal
metabolome was also shown to change as a function of stress in
beef cattle (Valerio et al., 2020). Thus, metabolic profiling of fecal
matter may be used to identify animals with “metabolic
fingerprints” that are known to exist in animals of high feed
conversion efficiency or tolerance to stress. Such animal can then
be selected for breeding purposes. Metabolomics has also been
used to study the effect of genetic selection on indirect genetic
effects (IGE) in breeding programs (Dervishi et al., 2021). Future
metabolomics research may be integrated with multi-omics
experiments using various analytical platforms/techniques (e.g.,
ICP-MS, MSI, and fluxomics) by using more sensitive platforms,
such as ESI-MS, to get more accurate information.

METAGENOMICS

Metagenomics is the collection and analysis of genetic material
(genomes) from a mixed community of organisms.
Metagenomics is an area of considerable research interest,
particularly in ruminant animals to study microbial
communities in rumen and milk. In metagenomics, genomic
sequencing tools are used to identify the complex structure of the
rumenmicrobiota and their changes in response to diet in concert
with the host ruminant genome. These rumen microbiotas may
influence a range of phenotypes in the host, including feed
efficiency, the inflammatory state in the digestive tract, and
volume of methane production in the rumen (Morgan et al.,
2014; Ritchie et al., 2015). Metagenomics is also the best way to

reveal modern species’ phylogenetic and evolutionary
relationships with the natives and ancestors of livestock and
poultry (Sahu et al., 2017). Other important applications of
metagenomics in livestock improvement are to identify the
disease-resistant strains for drug of choice and information
generation for genotype and environmental interactions for
better control over management (Sahu et al., 2017).

A typical metagenomic experiment involves isolation of genomic
DNA from microbial population and amplicon sequencing of 16
rRNA hypervariable V3-V4 region of bacteria and/or WGS by NGS
(e.g., IlluminaTM sequencing) or the third-generation sequencing
[e.g., Oxford Nanopore TechnologyTM (ONT) and PacBioTM]
(Figures 5, 6). The DNA reads obtained from WGS data are
assembled computationally to obtain larger DNA sequences and
identify the operational taxonomic units (OUTs) of the microbes.
Statistical tools can then be utilized to estimate richness (number of
taxonomic groups) and evenness (distribution of abundances of the
groups) of various microbial populations by computing alpha and
beta-diversities. A number of tools such as Mothur, QIIME2
(Quantitative Insights Into Microbial Ecology), DADA2 (Divisive
Amplicon Denoising Algorithm), Usearch etc. are available for
amplicon sequencing of 16 rDNA in bacteria. A typical
bioinformatics pipeline and relavent tools for analysis of amplicon
sequencing is shown in Figure 5. On the other hand, while WGS
allows high analysis of entire community of microbs, including
viruses and fungi, they are relatively expensive, time consuming
and computationally demanding. A bioinformatic pipeline and tools
forWGS analysis ofWGS is shown in Figure 6. The details of various
metagenomic pipelines for amplicon sequencing and WGS can be
seen elsewhere (Florian et al., 2019).

Metagenomic studies have been used extensively in cattle, pigs,
and horses to understand the importance of the microbiome in
the gut and mammary microbiome and their relation to feeding
efficiency, immunity, and mastitis (Chen C. et al., 2021; Gomez
et al., 2021). Metagenomics has shown that gut microbiota can
affect feed intake, feed conversion ratio, and production traits
such as daily weight gain and back-fat thickness in pigs (Aliakbari
et al., 2021; Jiang et al., 2021; Tiezzi et al., 2021). It can also relieve
immune stress and help maintain homeostasis in the intestine
(Sun et al., 2021). Similarly, parasitic infestations of tapeworm in
horses were also found to alter the colonic microbiome (Slater
et al., 2021). Such changes in gut microbiota showed implications
in individual animals’ performance and metabolic health. An
improved understanding of gut microbiota by metagenomics can,
therefore, help to genetic selection of animals for better animal
health and productivity. The meganomic profile of fecal matter or
oral swab may be used to identify animals with “microbial
fingerprints” that are known to exist in animals of high
genetic merit and can subsequently be used for breeding
purposes. Thus, metagenomics may offer a non-invasive
means of animal selection and breeding. Metagenomic studies
have also revealed that the milk microbiome varies with health
status (e.g., mastitis, endometritis, bacteremia, etc.,), age, parity,
lactation duration, and feed composition (Bach et al., 2021).
Consequently, characterization of milk microbiomes may help
identify novel “microbial fingerprints” for healthy mammary
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FIGURE 5 | A software pipeline for analysis of amplicon sequencing of bacteria. Each type of experiment has distinct requirements and challenges but there is a
common workflow/pipeline.

FIGURE 6 | A software pipeline for analysis of whole genome metagenomic sequencing data. Each type of experiment has distinct requirements and challenges
but there is a common workflow/pipeline.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 7741139

Chakraborty et al. Omics Technologies for Livestock Selection

360

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


glands and genetic selection of healthy dairy animals (Andrews
et al., 2019).

EPIGENOMICS

Epigenomics is another branch of omics technology that deals with
studying epigenetic changes in a cell. Epigenetic changes regulate gene
expression without changing the actual DNA sequence. Epigenetic
modifications can be altered by external or internal environmental
factors such as diet, exercise, drugs, and chemicals and can change gene
expression and define specific phenotypes. Mapping epigenomics
components in many cell types helped identify millions of putative
regulatory elements (Zentner and Henikoff, 2015). A whole-genomic
bisulfate sequencing identified breed-specific hypomethylated regions
that were associated with male fertility (Chen S. et al., 2021).
Epigenomic biomarkers of male fertility were also identified in the
genome-wide DNA methylation map of pig testis (Wang and
Kadarmideen 2019). However, studies on global-level epigenomics
for genetic selection and breeding of animals are very limited.

ANALYSIS OF OMICS DATA

Omics technologies generate a voluminous amount of complex
data in gigabyte to terabyte range (hence, called Big Data) that are
difficult to handle by traditional data management tools (Angerer

et al., 2017). Expertise from different biological fields, skilled and
knowledgeable bioinformaticians, statisticians, and computer
scientists are required to analyze and interpret these data
(Riggs et al., 2017). The tremendous high-dimensional data
resulting from a large number of experimental variables (e.g.,
physiological state, age, sex, parity, nutritional status,
experimental design, etc.) and simultaneous evaluation of
multiple genes/proteins/metabolites/transcripts, etc. requires
implementation of complex statistical techniques and models
to avoid spurious results and misinterpretation of research data.
Various open-source and commercial bioinformatics softwares
are now available in online and offline modes in R packages of
Bioconductor, EMBOSS, Galaxy, Staden, Biophython, Bioconda,
Linux, etc., for various omics data analysis (Table 2).

Data handling is a vital component of analyzing raw data from
omics experiments for their correct biological interpretation. Data
handling must address issues related to data filtering, imputation,
transformation, normalization, quality control, and scaling (Li
et al., 2022). Several algorithms and pipelines are now available
for the analysis of various omics data, including transcriptomics
(Figure 3), proteomics (Figure 4), and metagenomics (Figure 4).
However, using one pipeline or tool may yield different results
from other pipelines. One approach to avoid this problem is to
use multiple well-documented analysis pipelines for each step in
the pipeline (Misra et al., 2019). The detailed discussion on
various omics and multi-omics pipelines is beyond the
manuscript’s scope. There are excellent reviews available on

TABLE 2 | Overview of some free bioinformatics software for integrating information across several omics techniques.

Name Integration of types of
omics

References and URL

Cytoscape Mainly protein-protein, protein–DNA, and DNA–DNA interactions, but
plug-ins (apps) are available for all types of omics

https://cytoscape.org/; Shannon et al. (2003)

MOFA All types (multi-omics) https://github.com/bioFAM/MOFA; Argelaguet et al. (2018)
LUCID Mainly genomics and metabolomics; integration of phenotypic data https://github.com/USCbiostats/LUCIDus; Peng et al. (2020)
MultiDataSet Epigenomics, transcriptomics, assay data, feature data, phenotypic

data stored in a single object
https://bioconductor.org/packages/release/bioc/html/MultiDataSet.
html; Hernandez-Ferrer et al. (2017)

Logicome Profiler Applied to genomics and metagenomics, but applicable to any omics
data

https://github.com/fukunagatsu/LogicomeProfiler; Fukunaga and
Iwasaki, (2020)

CoCoNet Integration of GWAS and gene expression data http://www.xzlab.org/software.html; Shang et al. (2020)
NEO Integration of GWAS and gene expression data https://horvath.genetics.ucla.edu/html/aten/NEO/; Aten et al. (2008)
WGCNA Mainly gene-expression data, but can be applied to other omics https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/

Rpackages/WGCNA Zhang and Horvath, (2005); Langfelder and
Horvath, (2008)

DIABLO in mixOmics All types (multi-omics) http://mixomics.org/mixdiablo Tenenhaus et al., (2014); Rohart et al.,
(2017); Singh et al. (2019)

The Cancer Genome
Atlas (TCGA)

RNA-Seq, DNA-Seq, miRNA-Seq, SNV, CNV, DNA methylation, and
RPPA

https://cancergenome.nih.gov/

Omics Discovery Index Genomics, transcriptomics, proteomics, and metabolomics https://www.omicsdi.org/ Perez-Riverol et al. (2017)
OMICtools NGS, microarray, polymerase chain reaction (PCR), MS and NMR

technologies
http://omictools.com/

NGOMICS-WF Metagenomic, metatranscriptomic, RNA-seq and 16S data https://github.com/weizhongli/ngomicswf
Paintomics Integrated visual analysis of transcriptomics and metabolomics data http://www.paintomics.org
GalaxyP, GalaxyM Integrated omics analysis, proteomics informed by transcriptomics

analysis
https://usegalaxy.org/

Omics Integrator Integrate proteomic data, gene expression data and/or epigenetic data
using a protein-protein interaction network

http://fraenkel.mit.edu/omicsintegrator, https://github.com/fraenkel-
lab/OmicsIntegrator

IMPaLA Joint pathway analysis of transcriptomics or proteomics and
metabolomics data

http://impala.molgen.mpg.de
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transcriptomic (Wadapurkar et al., 2021), proteomic (Halder
et al., 2021), metagenomic (Yang et al., 2021), and
metabolomic (Du et al., 2022) pipelines and their integration
formulti-omics (Subramanian et al., 2020; Reel et al., 2021), which
can be referred. GitHub (https://github.com/danielecook/
Awesome-Bioinformatics) and Biostars (https://www.biostars.
org/) are also good sources of various updates on omics-
related softwares and data analysis, respectively.

CHALLENGES IN APPLICATIONS OF
OMICS STRATEGIES IN LIVESTOCK
SELECTION AND BREEDING
Applications of omics technology to explore the full potential of
livestock face many practical challenges. Some of those challenges
are as follows:

Proper Maintenance of Data
Data recording and handling of raw data is a big challenge for breeders.
To avoid errors and bias in data processing and analysis, suitable
cutoffs (e.g., microbial relative abundance, gene expression threshold,
metabolite similarity, differential expression cutoff, enriched function
cutoff, significant impact value of pathways), data preprocessing
options (e.g., data baseline filtering and calibration, peak alignment,
deconvolution analysis, peak identification), data normalization, data
transformation, and data scaling methods should be carefully
considered and addressed within each study. Database construction
is an important way for data storage and data maintenance. One such
database is ASlive, which has been designed for livestock to capture
alternative splicing events in heterogeneous samples from awide range
of tissues, cell types, and biological conditions (Liu et al., 2020). More
such databases will accelerate the study and applications of omics
technology for animal improvement.

Lack of Phenomics Data
Most organized animal farms maintain the performance records of
various economic traits, including production traits, reproduction
traits, and growth traits. However, organism-wide phenotypic data
of animals during different growth phases, various physiological or
production stages, in response to dietary changes or upon their
selective breeding (i.e., phenome-level data) are challenging to
maintain and are generally missing (Pérez-Enciso and Steibel
2021). Accurate phenomics data on adaptability, fitness, body
conformation, disease resistance/susceptibility, production
performance, reproduction, and growth characteristics will help
better estimate accurate BV and selection of genetically superior
animals (Juárez et al., 2021; Pérez-Enciso and Steibel 2021).
Particular emphasis should be given for multi-omics with other
“big data”; for example, those detected by advanced management
technologies (e.g., using remote sensors communicating with the
Internet of Things to measure physiological and behavioral data,
which can be applied to monitor estrus, lameness, or rumination)
to have complete data set (Sun et al., 2019). The systematic
collection of large data sets from different biological layers will
help generate a more holistic understanding of the biological
factors affecting the performances of the animals.

Expertise
Omics technology generates enormous amounts of data at the
genome, transcriptome, proteome, or metabolome levels. Proper
handling of omics data and advanced knowledge of statistics and
bioinformatics are prerequisites for the adequate utilization of
omics technology. One should have good knowledge in the above-
mentioned fields and computer knowledge to interpret the data
generated through omics technology. Lack of good expertise may
mislead for selection of suitable animals. There are many
challenges associated with proper data recording, processing,
quality control, normalization, and genetic prediction (Yamada
et al., 2021). Breeders, biological scientists, veterinarians,
statisticians, and computer scientists should be trained to
overcome these problems. All should collaborate to interpret
and adequately utilize omics data, including phenomics data for
animal improvement.

CONCLUSION

The goal of animal production is to achieve increased
productivity to fulfill human demand while enhancing the
health and wellbeing of animals. Population growth, climate
change, resource depletion, human health and nutrition, and
sustainability are all issues with which the world is grappling.
Different new breeding technologies and molecular technologies
such as genomic selection, WGS, and gene editing contribute
tremendously to the selection and breeding of livestock species
for sustainable improvement in productivity and profitability.
Omics technologies such as genomics, proteomics,
transcriptomics, metagenomics, and metabolomics offer
powerful analytical tools that can be combined with molecular
breeding for the accurate selection of animals for improved
productivity. Genomics, in particular, can make conventional
breeding and advanced breeding techniques more efficient and
precisely targeted by increasing consistency and predictability.
Integration of multi-layers of omics technology, including
phenomics, into the breeding models, will be helpful for
proper selection and breeding for animal improvement in the
near future.
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NewMendelian genetic conditions, which adversely affect livestock, arise all the

time. To manage them effectively, some methods need to be devised that are

quick and accurate. Until recently, finding the causal genomic site of a new

autosomal recessive genetic disease has required a two-stage approach using

single-nucleotide polymorphism (SNP) chip genotyping to locate the region

containing the new variant. This region is then explored using fine-mapping

methods to locate the actual site of the new variant. This study explores

bioinformatic methods that can be used to identify the causative variants of

recessive genetic disorders with full penetrance with just nine whole genome-

sequenced animals to simplify and expedite the process to a one-step

procedure. Using whole genome sequencing of only three cases and six

carriers, the site of a novel variant causing perinatal mortality in Irish moiled

calves was located. Four methods were used to interrogate the variant call

format (VCF) data file of these nine animals, they are genotype criteria (GCR),

autozygosity-by-difference (ABD), variant prediction scoring, and registered

SNP information. From more than nine million variants in the VCF file, only one

site was identified by all four methods (Chr4: g.77173487A>T (ARS-UCD1.2

(GCF_002263795.1)). This site was a splice acceptor variant located in the

glucokinase gene (GCK). It was verified on an independent sample of animals

from the breed using genotyping by polymerase chain reaction at the candidate

site and autozygosity-by-difference using SNP-chips. Bothmethods confirmed

the candidate site. Investigation of the GCR method found that sites meeting

the GCR were not evenly spread across the genome but concentrated in

regions of long runs of homozygosity. Locating GCR sites was best

performed using two carriers to every case, and the carriers should be

distantly related to the cases, within the breed concerned. Fewer than

20 animals need to be sequenced when using the GCR and ABD methods

together. The genomic site of novel autosomal recessive Mendelian genetic

diseases can be located using fewer than 20 animals combined with two

bioinformatic methods, autozygosity-by-difference, and genotype criteria. In
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many instances it may also be confirmed with variant prediction scoring. This

should speed-up and simplify the management of new genetic diseases to a

single-step process.

KEYWORDS

cattle, glucokinase gene, recessive genetics, runs of homozigosity, WGS, Irish Moiled,
perinatal mortality

Introduction

A review of 34 articles detailing work to map 38 novel

autosomal recessive genetic conditions to their position on the

genome (Pollott, 2018) suggested that finding the site of such a

condition required the use of at least a two-stage methodology.

First, the use of a suitable single-nucleotide polymorphism (SNP)

chip in a case/control study to locate the region containing the

new variant combined with a method searching for long runs of

homozygosity (ROH), the more traditional chi-squared method

being shown to be inadequate. The second stage used a range of

“fine-mapping” methods to search within the highlighted region

for the site of the new variant, many of which resulted in whole

genome sequencing (WGS) of a few cases and controls. More

recent methods have been developed, which use WGS as an

initial step but such methods typically require additional

resources or sequencing a large number of animals.

The objective of the current study was to see if it is possible to

locate the position of a novel autosomal recessive genetic

condition directly using the ideas contained in Pollott (2018)

on WGS methodology and using a small number of cases and

controls (in this case carriers) without recourse to more extensive

resources, which may not always be available. To achieve this, we

investigated combining this approach with a range of other

bioinformatic tools and genetic ideas which may indicate the

site of such a variant by reading the various signals in the WGS

data. Using the variant call format (VCF; VCF (2019)) files from

a suitable combination of cases and controls, it was suggested that

typically about 16 animals would need to be sequenced in order

to locate a new autosomal recessive variant using a “genotype

criteria” approach (GCR; Pollott (2018)).

Whole genome sequencing is becoming more widely used to

locate single novel variants with major effects, and a number of

approaches have been used. In a large scale analysis of Holstein

cattle WGSs, seven dominant conditions were located using the

genome criteria approach (Bourneuf et al., 2017) involving one

case for each of the seven conditions and a control population of

1,230 animals. The trio approach has been used by a number of

authors (see for example Sayyab et al., 2016). This method takes

WGSs of one affected offspring and its two parents and uses the

genotype criteria method to find possible sites for the causative

variant. The large number of sites identified is further reduced by

a range of methods. Using one dog example (Sayyab et al., 2016),

a filtering pipeline was established with seven steps, including

genotype criteria and SIFT analysis, Sanger sequencing

verification and sequencing of an additional 24 cases/controls.

Runs of homozygosity methods have been widely used with SNP-

chip data (Pollott, 2018) and Letko et al. (2020) report an

example of using this method in Zwartbles sheep to locate a

novel autosomal recessive condition associated with type

1 primary hyperoxaluria. Their study relied upon additional

data from both the Sheep genomes project and 79 publicly

available genomes of various breeds to provide “control” data

for the GCR method. The methods reviewed here all required

further data and analyses in order to locate the novel causative

variant. In this article, we have tried to minimize this by looking

for complementary methods, which can be used on the dataset

alone.

Here, we test these ideas on a novel genetic disease found

in Irish Moiled cattle. The Irish Moiled is an ancient hornless

cattle breed native to the island of Ireland. It was popular in

the 1800s, but by the late 1970s the pedigree herd numbered

only 30 breeding females and two bulls. In 1979 the Rare

Breeds Survival Trust recognized the Irish Moiled cattle as

endangered and placed the breed on its “critical” list (Irish

Moiled Cattle Society, 2020). The population size now

numbers about 875 females and 90 bulls. Fortunately, novel

fatal genetic diseases are relatively rare but when they do occur

it is important to find the cause and implement plans to

manage the condition via selective breeding, as soon as

possible. A number of Irish Moiled cattle breeders were

concerned about the seemingly high occurrence of early

calf deaths in their herds. Affected calves had the following

characteristics: days 1–2, the calf appeared slightly hyperactive

with more playing/skipping than normal, and may have been

seen drinking water from troughs or puddles, and also

urinating more frequently than normal. Days 2–4, the calf

started to deteriorate and became dull and lethargic. Days 4–6,

the calf became dehydrated, very weak, and unable to stand.

Death followed soon after. A 2–4 day-old calf was clinically

very similar to a calf with septicemia; however, in contrast to

septicemic calves, these calves did not respond to antibiotics

and fluids given via an intravenous drip. Also when the blood

glucose level of such calves was tested levels exceeded

30 mmol/L (Normal = 8 mmol/L). Breeders referred to this

condition as “diabetes.”

An initial analysis was undertaken which suggested that there

was likely a genetic basis to the disease (see Supplementary File

Page S18), and since it was fatal, it could only be inherited as a

recessive condition.
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Materials and methods

Throughout this article the ARS-UCD1.2

(GCF_002263795.1) build of the cattle genome was used and

all chromosome positions quoted relate to it (Ensembl, 2020).

Sample collection

Farmers were contacted via the Irish Moiled breed society

and asked to submit hair samples for analysis. Clean tufts of tail

hairs were plucked from either live cows/bulls or recently dead

calves (within 8 h postmortem) by the animals’ owners. These

were sealed in a paper envelope for posting to the laboratory.

Information recorded included the sample type (bull, dam or

dead calf); ear tag numbers of dam and sire; dam herd ID; calving

date; calf sex; and time of calf death (stillborn/days after calving).

DNA was then extracted from the hair follicles for processing as

described in the Supplementary File (Page S2).

Whole genome sequencing

Nine DNA samples were used in these analyses comprising

three dead calves (cases) and six carriers (controls), which were

either parents of the cases or parents of other dead calves (and

grandparents of the cases) as illustrated in the pedigree

(Supplementary Figure S3). These nine samples were

sequenced on an Illumina NGS platform after sample

preparation as described in Supplementary File (Page S2).

Briefly, 1 µg of DNA per sample was processed using a

TruSeq Nano DNA LT Library Prep Kit (Illumina,

United States), according to the supplied protocol. This

produced randomly sheared 350 bp inserts. After end repair

and adapter ligation, DNA was amplified via polymerase

chain reaction (PCR), and the product was purified using

AMPure XP (Beckman Coulter, United Kingdom). Size-

selected DNA from each animal was sequenced on the HiSeq

machine to achieve 150 bp paired-end reads to cover the bovine

genome with an average 30X coverage (>90 Gbp raw data

with >85% Q30 (Phred-scaled)). Alignment, mapping, variant

calling, and preparation of the final VCF file were carried out on

the subsequent reads as described in Supplementary File

(Page S2).

Genotype criteria

Information derived from WGS data on a small sample of

cases and parental carriers may contain a number of signals

indicating the site of a novel autosomal recessive condition.

“Across”-animal data should show a typical pattern of

homozygous cases and heterozygous parental carriers at the

candidate site; the “genotype criteria” approach (Pollott,

2018). Considering a single base position with a reference

allele A for the given species and a new variant C which

causes a novel autosomal recessive genetic disease, then the

expected outcomes from matings between carriers in the

population will be offspring with the genotypes AA, AC, and

CC in the classical Mendelian ratio of 1:2:1. Lethals (CC) would

be observed in the dataset if the effect of the new homozygous

variant occurred after the time of recording the animal’s health

status. The term “genotype criteria” (GCR) was used to mean the

particular combination of case and control genotypes, which was

required to indicate that a base position could harbor the novel

lethal variant (Pollott, 2018). For example, in a dataset

comprising five cases and 10 parental carriers, we would

expect to find the novel lethal variant at a position showing

CC genotypes in all five cases and a genotype containing the C

allele in the 10 parental carriers, or all AC in the case of a biallelic

position. The probability of occurrence of GCR under this

condition would be 1/3n in cases and 1/3m in parental carriers,

where n is the number of cases and m is the number of carriers

that have been whole genome-sequenced (Pollott, 2018). If the

VCF data file comprised 14 million positions (~0.005 of the cattle

genome), then a minimum of 15 animals would probably need to

be genotyped in order to find one position with the required

genotype criteria, that is, 1/315 × 14 million = 0.98 (i.e. ~1), the

expected number of sites with the “correct” genotype criteria

from the genome of 15 animals.

A script was written in Perl 5.28 to scan the final VCF file

(containing all nine WGS animals) for the expected GCR pattern

across cases and controls (i.e. all cases homozygous for the same

allele and all controls heterozygous and containing this allele). In

order to qualify for selection, a site had to have all genotypes with

a Phred-scaled quality score greater than 12 and a depth of

coverage more than 11 reads (Broad Institute, 2020). The identity

of these sites was stored along with their relevant VCF record for

later scanning and use.

Autozygosity-by-difference and runs of
homozygosity

“Within”-animal data should show long ROH around the

new variant in cases, which are not present in controls. Variants

causing a novel autosomal recessive genetic disease are expected

to carry with them a very long haplotype originating from the

animal in which the variant first arose.When a new case animal is

formed then it contains two copies of this long haplotype, only

broken up by any recombination events that have occurred since

the formation of the original variant, and the new variant will be

situated in a long ROH. This idea has been the basis for locating

novel variants using SNP-chips for a number of years (see Pollott

(2018) for a review) and can be used in a number of ways with

VCF data. Long ROH throughout the genome could be found
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and one would expect to find the novel variant in the longest

ROH in cases, possibly with adjustment for the situation in

controls.

The autozygosity-by-difference (ABD) method measures

runs of homozygosity on each chromosome of each individual

in the dataset, cases, and controls, using genomewide single-

nucleotide variant (SNV) (or SNP) genotypes (Pollott, 2018).

Mean ROH length, in Kb, at each SNV positon is calculated for

cases and controls separately and then their difference calculated

as the ABD score. Missing genotypes were assumed to be

homozygous reference allele. The likely site of the new variant

is in the region with the greatest mean ROH in cases, after taking

into account any breed-specific ROH found in controls, that is,

the ABD score. The ABD method was programmed in Perl 5.28.

The final VCF file was used as the basis to generate a file of sites as

input to the ABDmethod. This method is sensitive to incorrectly

called genotypes and so the VCF file was subjected to hard

filtering as recommended by the Broad Institute (2020) in the

absence of suitable databases to use for the recommended variant

quality score recalibration (VQSR). A file of SNV were generated

from the final VCF file, which passed the quality control tests

shown in Supplementary Table S1, following a summary of the

quality statistics of the VCF file (see Supplementary Figures

S1, S2).

The ABD scores were used to look for the potential site of the

novel variant causing calf mortality in the Irish Moiled dataset.

The probability of each ABD score was tested using

100 permutations of the data based on the random allocation

of animals to phenotypes and recalculation of the ABD scores

(Pollott, 2018). Significance at the p < 0.01 level was considered as

an indicator of a possible site of the new variant.

Sorting intolerant from tolerant (SIFT)
score

In a fatal genetic disease one would expect to find that the

products from any change in the sequence would have a drastic

effect on the phenotype of the animal so one could not only

search for SNV with a potentially drastic effect but could also

eliminate those with “silent” changes. The Variant Effect

Predictor (VEP; McLaren et al., 2016) is a bioinformatic tool,

which can take a change in a base at a given position on the

genome and predict the outcome of that change on the

corresponding coding or non-coding genomic feature. Using

this method it is possible to model each base position in the

VCF file to see the effect of the new variant on the phenotype in

the form of a SIFT score (Ng and Henikoff, 2002).

The final VCF file from all the animals was annotated for

variant effect prediction using Ensembl VEP command line v90.5

(McLaren et al., 2016), given the following flags: --tab --fork 8 --

offline --species bos_taurus_merged. The VEP was used on all

variant sites in the merged VCF file, and the results filtered for

HIGH SIFT scores using VCF (Danecek et al., 2011). Various

outcomes are given in the VEP but here the HIGH outcome was

used for the SIFT score since this was a lethal variant. SIFT

predicts whether an amino acid substitution affects protein

function based on sequence homology and the physical

properties of amino acids. The variant impact categories are

subjective agreements between the VEP and SNPEff databases.

However, high-impact variants are considered to have protein

level disruption or change, while modifier or moderate variants

impact non-coding regions of the genome. The SIFT score closer

to zero is mostly represented by HIGH or modifier impact

categories, while tolerated levels (SIFT score of 0.05–1) would

show “minimal” to “no consequence” for the function of the

genes under said variants. All sites with high-impact scores were

captured in a separate file for further processing.

Novel variants

The dbSNP database of NCBI (NCBI, 2019) contains data on

variants already reported by researchers. Novel variants are

unlikely to be contained in these datasets and so will not

already have an RS number. Their absence may be another

way to reduce the search area along the genome, as novel

variants are likely to be found at sites that are not already

logged in the relevant SNP database. Sites in the final VCF

file that did not have an RS number were possible positions

for the new variant. The VCF file was scanned for positions that

did not have a previously allocated RS number, using a script

written in Perl 5.28. Such sites were output for further analysis.

The sites identified in this way were summarized by the number

of genotypes containing the variant allele found at each site.

Candidate sites contained a “potential” variant allele in all nine

samples.

Comparing datasets

Putting all these ideas together should make locating the site

of the new variant on the genome possible using WGS data from

a small number of animals without the need for any other data

sources. The aforementioned analyses resulted in four

independently derived sets of data, each of which could

contain an indication of where the new variant might be

found on the genome. These were 1) the sites with the

appropriate GCR, 2) sites in long ROH, with a high ABD

score significant at p < 0.01, 3) sites with a high-impact SIFT

score, and 4) sites with no RS number. Each dataset was derived

from the final VCF file by a method independent of the other

three. If a site appears in all four datasets this is likely to be the site

of the new variant. The four datasets were compared for

overlapping positions by reading them into an Access

database and linking on the site position.
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Predicting the effect of the novel variant

The SIFT scoring method described earlier is one method for

modeling the effects of a new variant on the phenotype of the

animal. PHYRE2 (Kelley et al., 2015) is an alternative approach,

which searches for homologous sequences in a database of

known proteins. The reference sequence and its equivalent

using the new variant were entered into the PHYRE2 database

to see the effect of the site of the proposed new variant on amino

acid sequence and protein structure.

Methods used to confirm the likely base
position of the variant

Two independent methods were used in an attempt to

confirm the site derived from the methods used on the WGS

data described earlier. A sample of Irish Moiled animals

comprising three bulls, 42 cows, and 18 dead calves (male and

female) were genotyped using SNP-chips. The DNA from

these animals were then analyzed using 1) genotyping by PCR

at the suggested site and 2) the ABD method on the SNP-

chip data.

SNP processing
DNA samples extracted as described in the Supplementary

File (Page S2) were genotyped in the Department of

Pathology, University of Cambridge (United Kingdom) and

Gen-Probe (Heron House, Oaks Business Park, Crewe Road,

Wythenshawe, Manchester, M23 9HZ, United Kingdom)

using either 1) the Illumina BovineSNP50 BeadChip

(Version 1, Illumina Inc., San Diego, CA, United States)

(50k SNP, n = 17); 2) the BovineHD Genotyping BeadChip

(777k SNP, n = 68), or 3) both chips (n = 7).

The SNP genotypes were prepared for all subsequent analyses

using PLINK 1.9 (Purcell et al., 2007; Chang et al., 2015; PLINK,

2017). Quality control parameters were used to edit the data. This

involved setting a lower limit on both sample and SNP quality at

a call rate greater than 90%, and SNPs were retained in the dataset

if they were in Hardy–Weinberg equilibrium. This was

determined using Fisher’s Exact Test, with a probability

threshold of 0.05 and using the mid-p adjustment described

in Graffelman and Moreno, 2013. The latest SNP positions were

updated to ARS-UCD1.2 (GCF_002263795.1) build of the bovine

genome using SNPchiMp (Nicolazzi et al., 2014; Nicolazzi et al.,

2015). In addition, a merged set of data was produced using

SNPchiMp, combining all genotyped animals from both the LD

and HD datasets with common SNP. This merged dataset was

then used in KING (Manichaikul et al., 2010) to generate

relatedness coefficients between all genotyped animals, based

on whole genome SNP genotypes and to aid pedigree checking.

Any animal whose pedigree did not match the relatedness

information from the SNP data was discarded. In all

13 animals were discarded for both pedigree and quality

control reasons. Because nine animals were also used for the

WGS analysis, they too were excluded from the SNP ABD

analysis, in order to produce a dataset of independent animals.

Autozygosity-by-difference
The ABD method (Pollott, 2018), described earlier, was used

on the merged SNP-chip dataset. The probability of each SNP

ABD score (difference between mean ROH length (Kb) from

cases and controls at each SNP position) was tested using

1,000 permutations of the dataset based on random allocation

of animals to phenotypes and recalculation of the ABD scores.

Significance at the p < 0.001 level was considered as an indicator

of a possible site of the new variant.

Genotyping by PCR analysis
Primers (5′-CATGAACCCAGTGTCACAGC-3′ and 5′-

CTCTCCGTGGAAGAGCAGAT-3′) were designed using

Primer3 (version 4.1.0; http://primer3.ut.ee) to amplify a

218 bp product spanning the identified variant locus. The

primer design was based on the published sequence for the

Bos taurus (UMD3.1; GCF_000003055.6) glucokinase gene

ENSBTAG00000032288. Exon/intron boundaries were derived

from this in combination with mRNA RefSeq NM_001102302.

PCR was performed using AmpliTaq Gold polymerase (Applied

Biosystems), according to the manufacturer’s protocol. Products

were purified using the QIAquick PCR purification kit (Qiagen)

and sequenced by Sanger sequencing using the forward and

reverse primers. Sequence analysis was carried out in CLC

Genomics Workbench (Qiagen, 2013). The candidate site was

updated to the ARS-UCD1.2 (GCF_002263795.1) genome build

using the UCSC Genome LiftOver facility (UCSC, 2020).

Results

The WGS data from all nine animals, three cases, and six

carriers, resulted in a final VCF file comprising 8,234,367 biallelic

autosomal single-nucleotide variants, which were to be used for

all subsequent WGS analyses. These are summarized by

chromosome in Table 1 along with the length of each

chromosome aligned in ARS-UCD1.2 (GCF_002263795.1)

build of the cattle genome.

Genotype criteria

Searching the final VCF file for sites with the appropriate

genotype criteria (all homozygous cases for the same genotype

and all carriers heterozygous containing one allele forming the

homozygote in cases) resulted in the identification of 730 sites.

These are shown broken down by chromosome in Table 1.

Applying the formula, 1/3n cases and 1/3m parental carriers to
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over 9 million SNV and indels, we would expect to find ~496 sites

fitting the genotype criteria. There were clearly more GCR sites

than expected in this set of animals. Chromosomes 1 and

23 appeared to have more sites than expected (Table 1).

Autozygosity-by-difference method

In order to run the ABD method on the final VCF file, the

hard-filtering criteria shown in Supplementary Table S1 were

used on the extracted biallelic SNVs for the dataset. This resulted

in a file of 629,716 SNV for the ABD analysis. ABD software was

used to generate the Manhattan plots shown in Figure 1 and

Supplementary Figure S4. The two plots in S4 show the mean

ROH length at each of the base positions in the VCF file for cases

and carriers, respectively, while Figure 1, the ABD score, shows

the difference between them. Long ROH were found on

BTA4 and BTA18. Probabilities for the ABD scores were

generated from 100 permutations of the dataset, and the

regions of the genome with p < 0.01 are summarized in

Supplementary Table S2. The 0.01 probability level was

computed to be at an ABD score of 9,034 Kb. Supplementary

Table S2 shows that the length of BTA4 above the

0.01 probability threshold was 7.804 Mb. The highest mean

ROH length in cases was 14.197 Mb so the long ROH found

on BTA4 continued on either side of the significant region.

Similarly on BTA18, the highest mean ROH score in cases

was 22.4 Mb long.

TABLE 1 Summary of results by chromosome.

BTA Length
(bp)

Number of
SNV in
VCF file

Number of
indels in
VCF file

Estimated
number
of GCR

Actual number
of GCR

Number of SIFT
sites

Number of
NoRS9 sites

1 158,534,110 535,135 101,947 32 582 251 694

2 136,231,102 452,534 82,255 27 4 279 165

3 121,005,158 394,128 70,162 24 0 383 271

4 120,000,601 373,759 72,506 23 22 485 347

5 120,089,316 401,056 71,836 24 2 458 173

6 117,806,340 362,930 71,311 22 4 174 221

7 110,682,743 358,947 67,655 22 2 491 250

8 113,319,770 319,261 62,634 19 3 204 486

9 105,454,467 328,559 62,502 20 2 179 185

10 103,308,737 353,791 63,775 21 1 293 162

11 106,982,474 324,386 58,178 19 9 337 134

12 87,216,183 335,302 63,750 20 21 139 148

13 83,472,345 232,616 43,728 14 2 249 188

14 82,403,003 262,990 49,112 16 1 108 135

15 85,007,780 285,748 54,791 17 2 374 160

16 81,013,979 268,622 49,356 16 0 225 388

17 73,167,244 278,406 50,191 17 5 198 108

18 65,820,629 194,623 37,810 12 0 522 384

19 63,449,741 227,124 39,664 14 0 449 110

20 71,974,595 230,092 43,456 14 1 110 84

21 69,862,954 202,249 38,102 12 2 205 261

22 60,773,035 180,922 33,961 11 1 147 164

23 52,498,615 255,467 42,220 15 58 566 337

24 62,317,253 228,628 39,037 14 3 83 109

25 42,350,435 142,293 25,212 9 0 225 43

26 51,992,305 177,147 33,190 11 1 133 120

27 45,612,108 175,471 32,421 11 1 99 88

28 45,940,150 179,521 31,214 11 1 92 99

29 51,098,607 172,660 31,952 10 0 306 358

Total 2,489,385,779 8,234,367 1,523,928 496 730 7,764 6,372

BTA, chromosome number; GCR, genotype criteria sites; NoRS9, number of sites with no RS number and with at least one alternate allele in all nine genotypes. “Estimated number of GCR

sites” assumes an even spread across the genome. “Number of SIFT sites” was the number of sites with a “HIGH” SIFT score.
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SIFT score

Using the VEP to estimate the effect of each of the SNVs and

indels in the final VCF file resulted in 65,961 records of HIGH

impact SNVs located at 7,764 different autosomal positions. The

distribution of these sites is summarized by chromosome in Table 1.

Sites with no RS number

The VCF file contained 340,893 sites with no RS number.

Only 11% (6,372) of the sites had genotypes, other than the

homozygous reference genome, in all nine cases and carriers

(NoRS9). The breakdown of these by chromosome is

summarized in Table 1. These are likely to contain the novel

variant.

Overlap of GCR, ABD, NoRS9, and SIFT
results

So far, four possible datasets were generated that might

contain the site of the novel variant causing this new

autosomal recessive condition. The overlap between the

FIGURE 1
Manhattan plots of the ABD analysis of nine WGS animals (Kb). p < 0.01 at ABD score = 9,034 Kb where the ABD score on the y axis was the
difference between the mean length of cases minus that of controls at each site.

TABLE 2 Overlap between the four methods for locating a likely novel variant site.

Method Genotype criteria (GCR) Autozygosity-by-difference (ABD) High-impact
SIFT score (SIFT)

No registered SNP
number (NoRS9)

GCR 730 (22)

ABD 22 (10) 896 (635)

SIFT 1 (1) 12 (12) 7,764 (12)

NoRS9 78 (8) 41 (40) 8 (1) 6,372 (40)

GCR+ABD 1 (1) 8 (8)

GCR+SIFT 1 (1)

ABD+SIFT 1 (1)

GCR+ABD+SIFT 1 (1)

The table shows the number of sites in the final VCF file identified by each method (numbers in the BTA4 high-ABD region shown in parentheses).
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four datasets is summarized in Table 2. The genotype

criteria method resulted in the fewest sites identified (730),

with the other methods increasing in the order autozygosity-

by-difference, no RS number with nine genotypes, and

high SIFT score. Combining the GCR method with each of

the others in turn allowed the identification of 22 (ABD), 1

(HIGH SIFT), and 78 (NoRS9) sites in common. One

site appeared in all four datasets located at position Chr4:

g.77173487A>T (ARS-UCD1.2 (GCF_002263795.1). We

may tentatively conclude that this is the site of the

novel variant, causing early calf death in the Irish moiled

breed.

PHYRE2 prediction

The PHYRE2 prediction (Kelley et al., 2015) of secondary

structures between the reference genome and new variant GCK

model at the beginning of exon 8, which contains the possible site

of the new variant, Chr4: g.77173487A>T (ARS-UCD1.2

(GCF_002263795.1), predicted the amino acid sequence

NPGQQLWY from the reference genome being changed to

NPGQQLLY with the new variant.

Independent confirmation of the results

Sanger sequencing
A sample of 41 animals was Sanger sequenced at position

Chr4: g.77173487A>T (ARS-UCD1.2 (GCF_002263795.1)),

following PCR of the region surrounding this site. Table 3

shows the Fisher’s exact test (Fisher, 1922) results (Freeman

and Halton. (1951)) for animals falling into three categories;

calves, carriers, and live animals of the unknown status by three

genotypes.

Table 3 shows that all TT animals were calves, all of which

died of the symptoms described earlier. All live animals were

either AA or AT. The overall results were significant with a

probability = 1.868e−05 (0.00001868) for this 3 × 3 table arising

by chance, thus indicating a likely association between genotype

and health status at this site.

ABD method based on genotypes derived from
the PCR analysis

The merged dataset (HD and LD chip data merged using

SNPchiMp) comprised 63 animals (19 cases and 44 controls)

and 42,453 SNPs after quality control conditions were met.

The 42 animals used in the PCR analysis were selected for the

ABD analysis, which excluded the WGS animals so that this

analysis was independent of the WGS ABD analysis. The

animals were allocated to their case/control status based on

their PCR genotype at the highlighted location. The results of

the ABD analyses are summarized in Figure 2 and

Supplementary Figure S5 and showed a 20.8 Mb length of

BTA4 with a permuted probability <0.001, from

1,000 permutations, equivalent to an ABD score greater

than 7,023 Kb. This region was from position Chr4: g.

62872037 to g. 83635054 (ARS-UCD1.2

(GCF_002263795.1)), which includes the site highlighted as

the putative causal variant from the WGS analyses.

The results in Supplementary Figure S5 show a long ROH on

BTA21 but this was present in both the case and control animals,

which negated each other in the ABD score analysis. This is a

good example of the benefit of the ABD method. Also, the long

ROH found inWGS cases on BTA18 (Figure 1) was not a feature

of this larger set of results. There was reduced variability of these

results with a higher number of animals compared to those from

the WGS dataset analysis with only nine animals.

Discussion

This work had two objectives. One general and the other

more specific. The generally applied objective was to test the idea

that it is possible to find the site of a novel autosomal recessive

variant using just a small number of whole genome-sequenced

animals and appropriate bioinformatic methods, thus

circumventing the need for the commonly-used two-stage

approach highlighted by the review of Pollott (2018) or the

collection and/or use of further data. The specific objective

was to find the site of a new autosomal recessive condition

thought to exist in Irish Moiled cattle.

Bioinformatic methods used with WGS
data to find the site of a new autosomal
recessive variant using a small number of
cases and controls

In the current study, four bioinformatic methods were tested

to try to find the location of the new variant causing early calf

death in the nine Irish Moiled animals and relied on the “correct”

site appearing in all four methods. No additional data from the

Irish Moiled or any other breeds were used. Two of the methods

TABLE 3 Animal status by genotype for the 41 Sanger-sequenced
animals at Chr4: g.77173487A>T (ARS-UCD1.2
(GCF_002263795.1)).

Animal status AA AT TT Total

Calves 4 2 7 13

Known adult carriers (live) 0 6 0 6

Status unknown adults (live) 13 9 0 22

Total 17 17 7 41
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(GCR and ABD) do not require any prior information about

genes, SNP, or other genomic features but rely on across- and

within-animal patterns of information contained in the

genotypes at each SNV/indel found in the VCF file. Ideally

one would like to use these two methods alone since they are

not only independent of any prior knowledge about genome

features (except the reference genome for the alignments and

generation of the VCF file) but they will also be able to find a new

variant causing an autosomal recessive condition anywhere on the

genome, even when located outside a protein-coding region: a

useful feature of the two methods. As has been seen, using three

cases and six controls with the ABD method and GCR combined

revealed 10 possible sites in a 7.795 Gb stretch of

Chr4 between g.70889821 and g.78684588 (ARS-UCD1.2

(GCF_002263795.1)), involving 18,705 SNVs. The underlying

implication of this approach is that with more animals, either

cases or controls, we would find fewer sites and so make the search

considerably more straightforward and find just a single causative

variant site.

It is worth noting that when using WGS methods, the depth

of coverage can have an important effect on the results and is

related to the costs of genotyping. In this article, a 30X coverage

of the genome was used. In a study looking at the relationship

between depth of coverage and the ability of an experiment to

locate novel variants, Jiang et al. (2019) found 10X to be an ideal

balance between cost and accuracy. Not suprisingly, the higher

the depth of coverage, the greater is the ability to discover novel

variants.

The genotype criteria approach
The method used to find the sites meeting the genotype

criteria was based on a number of implied assumptions not stated

by Pollott (2018). First, GCR sites would be evenly distributed

across the genome. Second, the higher the number of animals

used the greater the chances of finding the GCR site of the new

variant. Third, a GCR site was not dependent on the balance of

cases and controls in the samples. Fourth, the location of a single

GCR site was independent of the genetic relationship between

cases and controls. Each assumption was tested using the data

analyzed in this study, either the final VCF file for BTA4 or the

SNP-chip data with phenotypes allocated by the PCR results as

appropriate. The detail of these investigations is given in the

Supplementary File (Pages S10–S17).

Evenly spaced GCR sites across the genome

The results in Table 1 show that some chromosomes contain

no GCR candidate sites at all (BTAs 3, 16, 18, 19, 25, and 29).

Many chromosomes contained far fewer GCR sites than expected

whereas others contained a much greater number than expected

(BTAs 1 and 23). A GCR site (in this case) comprises two

components; the 0/1 in all controls and the 1/1 in all cases

(using 0 to mean the reference allele and 1 the new or alternative

FIGURE 2
Manhattan plot of the ABD analysis of the SNP-chip analysis based on the genotypes found in the PCR analysis (Kb). These results were based on
animals with phenotyping informed by the PCR results (p < 0.001 at ABD score = 7,023 Kb where the ABD score on the y axis was the difference
between the mean length of cases minus that of controls at each site).
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variant). We might expect the chromosomes containing long

ROH in cases potentially to have many more GCR sites than

others. Inspection of Supplementary Figure S4 shows BTA4 and

BTA18 as having the longest mean ROH but only BTA1 had a

large excess of GCR sites. Using the information shown in

Supplementary File, the original implied assumption from

Pollott (2018) of an even distribution of GCR sites across the

genome has not been verified here, and this has implications for

the number of animals required to find a new variant site using

WGS data alone. Clearly, the long ROH on BTA4were linked to a

large number of GCR sites but that was not so on BTA18.

Finding a causative variant

The second assumption about the use of GCR sites to locate a

novel autosomal recessive variant was that the greater the

number of animals that are genotyped, the better the chance

of locating the new variant. It appears, from the work reported in

Supplementary File, that the number of genotyped animals

required to find the single candidate sites is three to four

times greater than the predicted original formula of Pollott

(2018); one case and 29 controls appears to require the fewest

total animals genotyped to find the single candidate site in the

SNP-chip dataset used. However, this “long tail” is due to several

GCR sites being close together around the candidate site and

always being “found” in the generated datasets. Differentiating

between them may require another method or using a different

set of controls, perhaps from more distantly related individuals.

The balance of cases and controls

The basic calculation of the number of animals required to find

a GCR site is independent of the balance between the number of

cases and controls used. Supplementary Figure S10 demonstrates

that the lower the number of cases used, the fewer the total number

of animals required to be genotyped. At first sight, these are rather

startling results. However, outside the candidate site, it is much

more unlikely to find all controls with a heterozygote genotype,

whereas there will be many sites with all homozygous genotypes in

cases; after all long ROH imply many 1/1 genotypes and so more

sites potentially could meet the genotype criteria. The information

in the Supplementary File (pages S10–S16) clearly demonstrates

that the number of animals required is much closer to the

theoretical numbers when large ROH regions are excluded

from the analyses. The minimum number of animals required

to find the candidate site is still slightly greater than the theoretical

figure but this may be due to some other small areas of ROH not

removed from the dataset. There are an enduring number of GCR

sites in the high-ROH regions, which inflate the results in contrast

to the theoretical number of sites expected. This illustrates why

theory and “practice” may differ.

The genetic relationship between cases and controls

The nine animals used in the WGS analysis comprised three

cases and six parental controls. In order to investigate whether

the closely related controls might inflate the number of GCR sites

found, an alternative SNP-chip dataset was derived using

controls that were most distantly related to the cases

(Supplementary File and Supplementary Figure S12). In this

case, the number of animals required to find the new variant

site was much closer to the theoretical expectation than with the

parental controls.

The autozygosity-by-difference method
The ABD method was developed originally to locate regions

of the genome likely to contain a new autosomal recessive variant

using SNP data (see for example Posbergh et al., 2018). In the

current analysis, it has been applied to WGS data from animals

for the first time, as well as being used to confirm the results in an

independent sample of SNP-genotyped animals. Because the

method is sensitive to incorrectly called genotypes, a feature

of WGS data, it was necessary to employ hard filtering criteria

(see Supplementary Table S1) of both sites and genotypes in

order to get a useable set of data. In this case, the VCF file was

reduced from ~12 million to ~630,000 sites but this would differ

under alternative hard-filtering criteria. Since VQSR methods

were not available in the current situation (due to the species and

number of animals genotyped) an alternative approach was

taken; selecting sites and genotypes to fall within ±2 s.d. of

the mean (or peaks in the case of bimodal variables). This allowed

the location of several long ROH, one of which was found, by

additional methods, to contain the new variant.

As well as using alternative hard-filtering criteria, it may be

possible to use other approaches, including site sampling or

sliding windows, to locate the region containing the new

autosomal recessive variant. Using a site-sampling approach

with a VCF file one could randomly select, say, 5–10% of sites

evenly spread across the genome with the ABD method.

Repeated samples of these SNVs, (say 100), could be

randomly drawn and the 100 sets of ABD results averaged at

each site. Alternatively, one could use a sliding window of, say,

10,000 base positions and count the number of homozygous

variant case and control genotypes in each window. The window

would then be moved along the genome at a given interval, say

every 1,000 base positions, and the results plotted. One would

expect to find the new variant causing the autosomal recessive

condition in the region with the highest ABD-type score. Both

these methods would overcome the problem of a single

incorrectly called genotype disrupting the long ROH in the

ABD results and the need for hard filtering.

Using ABD on the hard-filtered WGS data resulted in the

identification of two regions of the genome having an ABD score

above the 0.01 probability threshold, and therefore likely to

contain the new variant (Figure 1). Two aspects of Figure 2

and Supplementary Figure S4 are of note. First, there were a

number of long ROH found in the controls throughout the

genome with BTA18 having the largest mean ROH length.

This was also found in the cases, but the effect of combining
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the two sets of data in the ABD score was to remove many of

these “breed-specific” ROH and leave those which probably

harbored the new variant. This is one of the advantages of the

ABD method, particularly in rare breeds, but it has also been

shown to be effective in removing long breed-specific ROH in

studies of new variants in the myostatin gene in both Texel sheep

(Pollott, 2013) and Piedmontese cattle (Biscarini et al., 2013).

The ABD method was also used for another purpose in this

work; to confirm the WGS results on an independent set of

animals with SNP-chip-derived data (Figure 2). As with theWGS

ABD results, there were many long ROH in the SNP-chip dataset

in both cases and controls. In this instance, there were two very

long ROH on BTA4 and BTA21, but interestingly not BTA18 as

was found in the WGS data. The smaller number of animals used

in the WGS analysis probably resulted in BTA18 having a long

ROH due to sampling of closely related individuals.

Supplementary Figure S5 also shows BTA18 to have a long

ROH but it was less pronounced in this larger dataset. In

Figure 2, the result of subtracting the control ROHs from that

of cases at each site reduced the noise considerably and left

BTA4 as the only significant peak by a considerable margin. Once

again it has been demonstrated that the power of the ABD

method to remove noise works effectively to highlight the

region containing the potential causal variant.

GCR, ABD, SIFT score, and RS number
The approach in this work has been to use several

bioinformatic methods on WGS data to see if they can

pinpoint the site of a causal variant of a new autosomal

recessive condition. Table 2 has highlighted a significant

region on BTA4 using the ABD method that contained

12 sites meeting the genotype criteria. The earlier discussion

has suggested that using more animals may have reduced the

number of candidate sites by a small amount, but a greater use of

unrelated controls may have reduced the number of GCR sites in

the target area more effectively.

In this set of results, the SIFT scores were the crucial factor in

determining the suggested site of the new variant. Position Chr4:

g.77173487A>T (ARS-UCD1.2 (GCF_002263795.1) was the

only one of the 22 GCR sites in the target area to have a

high-impact SIFT score (0–0.05). However, only sites in or

near a coding region are scored using the SIFT method so it

is not always going to find the causative site if it is located outside

these regions of the genome.

The use of the absence of an RS number could be useful but,

in this case, did not prove to be the final factor locating the novel

variant site.

Other types of inheritance and effects

This article reports the search for a new autosomal recessive

variant causing a fatal condition in calves using a range of

bioinformatic methods. It raises questions relating to whether

the methods would work with autosomal recessive conditions

with differing phenotypes or with other modes of inheritance.

In this example, the phenotype was mortality in early

postnatal life. This had the advantage of being an obvious

phenotype. As the deaths occurred on widely scattered farms

it was, however, not possible in this instance to collect suitable

pre- or postmortem samples for follow-up analyses. A new non-

fatal condition may be less easy to identify initially but there are

likely to be more opportunities to collect appropriate samples to

confirm phenotype diagnosis.

Having suggested this WGS approach for finding a new

autosomal recessive variant, the question arises about its

general usefulness with variants involving other modes of

inheritance. A dominance mode of inheritance can be thought

of as the reverse of the recessive mode. One would expect to find

cases to be 0/1 or 1/1 and controls to be 0/0 so the genotype

criteria would be different compared to the recessive mode of

inheritance. However, the number of animals required to use the

GCR method would be very similar with cases being 2/(3n) and

controls 1/(3m); the numerator having little effect with such a

large denominator. The ABD method could only be used if all

cases were 1/1 but that is unlikely with a dominant condition due

to the large number of heterozygotes likely to be in the

population. Alternatively, if there was some way to

phenotypically distinguish 1/1 from 1/0 cases this would be

useful. The 0/0 controls are unlikely to be situated in long

ROH since they are likely to have been subjected to many

generations of recombination, so alternative methods may be

required. The new dominant variant would be situated in a long

haplotype so it may be possible to adapt haplotype discovery

methods to this situation. Both the SIFT score and RS number

methods would be applicable but they are less powerful than the

other two because they rely on previous knowledge and, in the

case of SIFT, it only works for a limited distance around a

protein-coding region.

These methods could be used for a recessive sex-linked new

variant, that is, one found on the X chromosome. Males would

provide no useful data in this case so only females would be

required. Both the ABD and the GCR methods would work the

same way but with a lot fewer sites to search (only the X

chromosome data would be needed).

Finding the causative variant for a perinatal
mortality syndrome in Irish Moiled cattle

The likely site for the causative variant of this fatal perinatal

condition in Irish Moiled animals has been successfully located

using just six parental control animals and three cases. Perinatal

mortality (within 24 h of birth) typically occurs in about 6–10%

of calves born (Brickell et al., 2009), with a further 3–4% dying in

their first month, mainly from infectious disease (Johnson et al.,
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2017). The site highlighted at Chr4: g.77173487A>T (ARS-

UCD1.2 (GCF_002263795.1) was located in the glucokinase

gene (GCK) and is a splice acceptor variant. Analysis of the

OMIA website (Nicholas and Hobbs, 2013; OMIA, 2020) showed

splice acceptor variants to be responsible for ~8% of known

variants in non-laboratory animals. There was a clear difference

in the PHYRE2 prediction of the secondary structures between

the reference genome and new variant GCK model. As observed

from the SIFT score results, this is expected to have a disruptive

effect on the operation of the GCK gene.

Glukokinase is a key enzyme found in the liver, pancreas,

brain, and endocrine cells of the gut. It catalyzes the starting point

of glycolysis by phosphorylating glucose to form glucose-6-

phosphate (Matschinsky et al., 1993). The crystal structure has

revealed that glucose binds in a deep cleft between a large and

small domain of GCK, resulting in a conformational change and

enzyme activation (Kamata et al., 2004). Glucokinase stimulates

glucose uptake, glycolysis and glycogen synthesis by hepatocytes,

whereas in pancreatic β-cells it plays a crucial role in glucose-

stimulated insulin secretion. Glucose homeostasis is essential in

mammals and is under tight endocrine control, with insulin

acting as the key regulator.

There are currently 922 SNPs listed within the bovine GCK

gene (NCBI, 2019) but the closest to the new variant site flanking

either side were at Chr4: g.77173441 (an intron variant) and

Chr4: g.77174392 (ARS-UCD1.2 (GCF_002263795.1)), some

46 and 905 bp away, respectively. A segment of the ARS-

UCD1.2 (GCF_002263795.1) genome 30 bp either side of the

candidate variant was selected and BLASTn (Altschul et al., 1990)

was used with the 61 bp sequence to find any homologous region

on the human genome. A 40 bp length of sequence was found

with 35 identical bases and a score of 50.9 bits (55) and no gaps.

This was located on the reverse strand of human Chr7:

g.44146590 to g.44146629 (GRCh38.p13 (GCF_000001405.39),

in the GCK gene. The location on the human genome equivalent

to the candidate variant found in Irish Moiled calves was at Chr7:

g.44146620 (GRCh38.p13 (GCF_000001405.39). This was a

highly conserved site with 96 out of the 100 vertebrate

genomes shown on the UCSC (UCSC, 2020) genome browser,

all having a T on the forward strand, the remaining four being

not reported. No SNP was found at this site in the human

database but there was an SNP reported at the adjacent

position (Chr7: g.44146619; GRCh38.p13

(GCF_000001405.39)), which was cataloged as rs1167675604,

a C>T change on the forward strand. This site was also highly

conserved in 96 out of the 100 vertebrate genomes on the UCSC

genome browser and was also a splice site acceptor variant. The

ClinVar (ClinVar, 2020) record for this variant states that “the

variant disrupts a canonical splice site and is therefore predicted

to result in the loss of a functional protein, found in at least one

symptomatic patient, and not found in general population data.”

Its incidence was estimated to be well below 0.001% of the

population. In addition, the Varsome (Varsome, 2020) record

for this SNP states that the effect of the variant was “Very

Strong,” which means “Null variant (intronic within ±2 of

splice site) affecting gene GCK, which is a known mechanism

of disease (gene has 378 known pathogenic variants, which is

greater than minimum of 3), associated with diabetes mellitus,

permanent neonatal 1, maturity onset diabetes of the young, type

2, and hyperinsulinemic hypoglycemia, familial 3.”

Themouse genome was also investigated in the same way but

no SNPs were found in the candidate region.

Over 600 variants have been reported in the human GCK

gene, which have varying effects depending on their location

(Osbak et al., 2009; OMIM 138079). Heterozygous inactivating

variants cause a condition known as maturity onset diabetes of

the young, characterized by mild fasting hyperglycaemia.

Homozygotes are much rarer in the human population, and

neonates present earlier with permanent neonatal diabetes

mellitus. In mice, however, pups born with global GCK

knockout (−/−) are slightly smaller than wild-type animals

(+/+), have glucose levels about eight-fold higher and die

within 3–5 days (Grupe et al., 1995). Tissue specific β-cell
knockouts die within 4 days of birth, whereas hepatic

knockout impairs glucose utilization and glycogen synthesis

but with only mild hyperglycaemia (Postic et al., 1999).

Pregnancy outcome in women depends on a combination of

the genotype of both mother and fetus (Spyer et al., 2001). When

the fetus carries a single GCK variant, this affects glucose

homeostasis with reduced insulin secretion, so both placental

and birth weight are reduced (Hattersley et al., 1998; Spyer et al.,

2008). During pregnancy, the fetal glucose supply is derived

almost entirely from the dam across the placenta using facilitated

diffusion by glucose transporters. In ruminants, this uptake is

regulated sequentially by GLUT1 and GLUT3 (SLC2A1 and

SLC2A3) (Wooding et al., 2005).

The fetus has a low capacity for endogenous glucose

production but this increases in late gestation, in response to

the pre-term increase in glucocorticoid production, together with

catecholamine and thyroid hormone stimulation. These promote

hepatic glycogen synthesis and gluconeogenesis, which are

essential in providing the neonatal calf with an adequate

glucose supply as milk lactose on its own is insufficient

(Hammon et al., 2013). The postnatal maturation in the

regulation of energy supply may thus explain why lack of

GCK activity is fatal at this stage of life.

Concluding remarks

The original intention for this work was to locate the site of a

potential novel variant, causing perinatal mortality in Irish Moiled

calves. This has been achieved, and shown to be located in the GCK

gene, but in the process it became apparent that there were no

straightforward ways to achieve this objective. At best, a two-stage

approach was required, involving genotyping a group of cases and
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controls, identifying the genomic region likely to contain the novel

variant followed by further work to sequence the identified region

and look for appropriate signals in the data. Consequently, a further

objective was set in order to simplify the process and investigate

whether it would be possible to use a single whole genome

sequencing stage with appropriate bioinformatic methodology to

find the candidate site. This too has been achieved by sequencing

nine animals, three cases, six parental controls, and applying four

methods to the data. In the process, it has been possible to investigate

some of these methods in more detail and arrive at some general

conclusions to aid future such studies.

The VCF file format has proven to be a very practical source

of data for this study particularly because it reduced the search

“area” from over 2.5 billion base positions down to one involving

only 9 million sites. In addition, the VCF file format facilitated

finding the novel site when combined with methods to

interrogate it for genotype criteria, long runs of homozygosity,

and the predicted effects of variants on the phenotype of the

animal. Using these three methods allowed the identification of a

single variant site, which was found to have both the genomic and

biological properties associated with this novel condition.

In the process of carrying out this work it has been possible to

refine the genotype criteria method to demonstrate that in reality

only a small number of cases and controls are required, and controls

should outnumber cases by 2:1 and controls should bemore distantly

related to cases. In addition, it has been possible to show that using a

runs-of-homozygosity method, previously used only on SNP-chip

genotype data with whole genome sequence data, it was possible to

locate the region of the genome containing the novel variant.

In future it should be possible to use the combination of

genotype criteria and runs of homozygosity methods with the

appropriate number of cases and controls, suitably distantly

related, to locate the site of any new autosomal recessive

genetic condition in a relatively short time. This should then

facilitate a more speedy elimination of the harmful variant from

the population by using an appropriate genetic test on available

animals.
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