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Editorial on the Research Topic

Animal Models of Anxiety and Depression: Exploring the Underlying Mechanisms of

Sex Differences

Anxiety and depression carry a significant burden and disproportionally affect more women than
men (Balta et al., 2019). Moreover, men and women differ in symptomatology and responses
to psychotropic agents, highlighting the need for a better understanding of the mechanisms
leading to these sex differences (Butlen-Ducuing et al., 2021). As the exact neurobiology of these
disorders still eludes us, animal models are routinely employed to study anxiety and depression.
Although male animals have been traditionally used in pre-clinical studies, the inclusion of both
sexes, as recently dictated by NIH policies (Clayton and Collins, 2014), presents an opportunity
to explore sex differences in the biological underpinnings, contributions to stress, and other
influences that may underlie emotional dysregulation and abnormal performance at behavioral
endpoints. Emerging evidence indeed uncovers significant sex differences in most animal models
of depression and anxiety, either at baseline or following treatment. Such differences may have
substantial implications for translating preclinical to clinical research (Kokras and Dalla, 2014,
2017). Unfortunately, animal models have also yielded inconsistent results and often report greater
anxiety- or depressive-like symptoms inmale than in female animals or do not show sex differences.
For example, a recent study found that the frequently-employed chronic unpredictable mild stress
model was more likely to induce depressive-like behaviors in male than in female rats (Iqbal et al.,
2020).

In this Research Topic, experiments performed by Eltokhi et al. at two different developmental
stages during adolescence revealed strain but no sex differences in a set of depression-related tests,
including tail suspension, sucrose preference, and forced swim tests. However, when tested in the
anxiety-related hyponeophagia test, male and female mice behaved differently. In continuation,
Pitzer et al. showed that, like in adolescent, neither adult C57BL/6N, DBA/2 or FVB/N present
significant baseline sex differences in behavioral tests measuring immobility in tail suspension and
forced swim tests, as well as anhedonia in the sucrose preference test. However, adult male and
female mice showed significantly different results in the baseline apathy-like behaviors depending
on the investigated strain. These studies by Eltokhi et al. and Pitzer et al. provide a good baseline
characterization of the C57BL/6N, DBA/2 and FVB/N mouse strains regarding the absence of
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FIGURE 1 | Animal models of anxiety and depression: Exploring the underlying

mechanisms of sex differences. Image created with BioRender.com.

sex differences at two different ages in certain tests. Moreover,
they highlight the importance of considering several factors,
such as strain, age, type of tests, and behavioral outcome
when studying sex differences. Such an approach that avoids
overlooking critical factors that can influence the planning,
conduct and results of studies can increase the reproducibility
of preclinical research (Sil et al., 2021). As Eltokhi et al.
and Pitzer et al. note, inconsistencies of results between
different laboratories investigating rodent models of depression
and anxiety call for better standardization and normalization
when designing experiments exploring sex differences. In this
context, it is important to use appropriate animal models that
reproduce specific aspects of the complex clinical manifestations
at the behavioral and molecular levels. In this Research Topic
Touchant and Lebonte summarize findings from animal models
and discuss genome wide transcriptional strategies for such
complex clinical manifestations. Such strategies may provide
crucial insights into the neurobiological underpinnings of these
diseases and the basis of sex-specific molecular responses in
experimental animals and humans. Another equally important
issue is screening for new psychotropic drugs using both
sexes. In this context, Yin et al. studied the effects of Yueju-
Ganmaidazao Decoction (YG), a substance with potential
antidepressant actions, in relation to NO-cGMP signaling. They

found that both YG and escitalopram induce antidepressant-
like behavioral responses in both sexes. However, both drugs
enhanced CaMKII-nNOS expression in the hippocampus of
female mice, in opposition to what was observed in male mice,
despite the same behavioral antidepressant response in both
sexes. This concept highlights another issue in studying sex
differences: that the same behavioral response can be observed
in both sexes, but the underlying neurobiological processes
that lead to the same behavioral response in male and female
brains are not necessarily identical, as also noted previously
(Kokras et al., 2011).

On the other hand, brain regions such as the hippocampus
and the prefrontal cortex have long been implicated in the
neurobiology of stress, anxiety and depression (Duman et al.,
1997). Emerging preclinical data identify prominent sexual
divergence in these regions as reviewed in this Research
Topic by Wallace and Myers, who suggest that chronic
stress has sex-specific effects on the rodent infralimbic cortex
excitatory/inhibitory balance that may account for sex differences
in the prevalence and course of mood disorders. Moreover,
McNamara et al. studied sex differences in limbic responses
after shock wave exposure, which resulted in a transient blood-
brain barrier (BBB) breach of variable severity. Subsequent
testing showed sex differences in various behavioral tests of
anxiety and depression and in c-Fos expression post-injury.
The authors suggest that the increased vulnerability of women
to post-traumatic stress disorder could be related to the mild
effects of post-injury behavioral and neuronal effects that they
observed in the female mice in their study. Sex differences
in the BBB is an emerging subject of interest. Dalla et al.
summarized preclinical and clinical findings on how sex and
sex hormones can influence the activity of BBB transporter
systems. They concluded that accumulated evidence supports the
existence of several sex differences in expression and activity of
BBB transport proteins, which are also modulated by gonadal
hormones. As is the case with the BBB, to understand sex
differences following stress, we must consider how all cell
types within the central nervous system are involved. Indeed
Wegener and Neigh in their review discuss the effects of
stress and sex steroids on astrocytes and oligodendrocytes.
They conclude that studies exploring the mechanisms by which
glia are altered by stress and steroids will provide insight
into sex differences in animal models. In a similar context
Michailidis et al. used the spared nerve injury (SNI) model
of neuropathic pain and noted that behavioral depressive-like
responses were first observed at different time points in male and
female animals. They then proceeded to immunohistochemical
analysis and showed that microglial cells were more numerous
in female mice in the contralateral ventral anterior cingulate
cortex, suggesting that different patterns of glial cell activation
may be associated with pain processing and affect in male and
female animals. As Gaspar et al. note in their study, microglia,
the immune cells of the brain, are involved in the stress-
related neuronal and behavioral response, and thus contribute
to the development of stress-related psychopathologies. The
authors found that following short-term unpredictable chronic
mild stress, both male and female rats showed anxiety-like
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behavior. However, after longer term chronic stress, male animals
demonstrated depression- and anxiety-like behaviors but females
demonstrated only the later. Subsequent investigation showed
that microglia cells in the dorsal hippocampus and in the
nucleus accumbens were found to adapt differently according to
duration of stress, brain region studied, and, importantly, sex of
the animals.

Finally, early life adversity in humans and rodents is associated
with sex-specific emergence of anxious and depressive behaviors,
and Ellis and Honeycutt summarized in this Research Topic such
findings and suggest the possibility of a combined role of sex
hormones and calcium-binding protein parvalbumin expressing
neurons driving differences in behavioral outcomes associated
with affective dysfunction following early life adversity. The
overall message from this Research Topic (Figure 1) is that sex
differences are observed in many different levels of preclinical

research, and as the field of sex differences in neuroscience
emerges and accumulates more data, a better understanding

of such differences may improve our understanding of
depression and anxiety, and lead to better treatments for
both diseases.
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Previous studies have demonstrated that Yueju-Ganmaidazao (YG) decoction induces
rapid antidepressant-like effects, and the antidepressant response is mostly dependent
on the suppression of nitric oxide-cyclic guanosine monophosphate signaling in
male mice. This study aimed to investigate the sex difference mediated by
calcium/calmodulin-dependent protein kinase II (CaMKII)-neuronal nitric oxide synthase
(nNOS) signaling involved in the antidepressant-like effect of YG in mice. We found that
the immobility times in the tail suspension test (TST) were found to be decreased after
the single injection of YG in male and female mice with the same dosage. Additionally,
chronic administration for 4 days of subthreshold dosage of YG and escitalopram
(ES) also significantly decreased the immobility time in mice of both sexes. Chronic
subthreshold dosage of YG and ES in LPS-treated mice and in chronic unpredictable
stress (CUS) mice both decreased the immobility time, which was increased by stress.
Meanwhile, in CUS-treated mice, sucrose preference test, forced swimming test, and
open field test were applied to further confirm the antidepressant-like effects of YG
and ES. Moreover, CUS significantly decreased the expression of nNOS and CaMKII,
and both YG and ES could enhance the expression in the hippocampus of female
mice, which was opposite to that in male mice, while endothelial nitric oxide synthase
expression was not affected by stress or drug treatment neither in male mice nor in
female mice. Finally, subthreshold dosage of YG combined with 7-nitroindazole (nNOS
inhibitor) induced the antidepressant-like effects both in female and in male mice, while
the single use of YG or 7-NI did not display any effect. However, pretreatment with
KN-93 (CaMKII inhibitor) only blocked the antidepressant-like effect of high-dosage YG
in female mice. Meanwhile, in CUS mice, chronic stress caused NR1 overexpression
and inhibited cAMP response element binding protein action, which were both reversed
by YG and ES in male and female mice, implying that YG and ES produced the
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same antidepressant-like effect in mice of both sexes. The study revealed that chronic
treatment with a subthreshold dose of YG also produced antidepressant-like effects
in female mice, and these effects depended on the regulation of the CaMKII-nNOS
signaling pathway.

Keywords: sex difference, YG, nNOS, CaMKII, CREB

INTRODUCTION

Depression is one of the most common mental disorders that
is associated with high morbidity and mortality, and it affects
more than 350 million people in the world (Menard et al.,
2016). People suffering from depression always display disrupted
mood, altered sleep, and memory dysfunction (Benson et al.,
2015). According to the World Health Organization (WHO),
depression is the leading cause of disability and will become the
second most common disease in the world at 2025. Sex is an
important factor in influencing the susceptibility to psychiatric
illness (Agarwal et al., 2020). Women are more likely to suffer
from anxiety disorders, while men are more likely to suffer
from substance-use disorders, suggesting that there are some
differences in the mechanisms of depression between the sexes.
More importantly, the incidence of depression in females is
about two to three times of that in males, and this issue has
attracted increasing attention in recent years (Bekker and van
Mens-Verhulst, 2007; Essau et al., 2010). Furthermore, evidence
suggests that the sex-dependent differences have been observed in
the antidepressant-like effects of ketamine, which are believed to
modulate the NMDA signaling in the brain, and thus potentially
indicates that there is a different underlying pathology between
men and women (Carrier and Kabbaj, 2013; Franceschelli et al.,
2015). Herein, we designed this study to search for clues
underlying the sex differences in depression in the response to
antidepressants.

Although a number of antidepressants exist, such as widely
used selective serotonin reuptake inhibitors (SSRIs), a remarkable
population of patients never attain a sustained remission of
their symptoms (Zanos et al., 2016). Fast-acting antidepressants
like ketamine may be used to treat depression in patients who
have no response to SSRIs and to relieve depressive symptoms
quickly (Ballard et al., 2015). Unfortunately, addictive and
side effects of ketamine limit its clinical application (Wang
et al., 2018). Yueju pill and Ganmaidazao decoction are widely
used prescriptions of traditional Chinese medicine. YG (Yueju-
Ganmaidazao) decoction has also been demonstrated to induce
a rapid and lasting antidepressant-like effect after a single
administration in male mice (Zhang H. et al., 2020). However,
it remains to be shown whether the chronic or a low dose of YG
will still reveal the antidepressant-like effects.

Yueju-Ganmaidazao can produce rapid antidepressant-like
effects mostly by reducing the nitric oxide-cyclic guanosine
monophosphate (NO-cGMP) pathway in the hippocampus of
male mice. Meanwhile, we have found that YG can rapidly
enhance the expression of cAMP response element binding
protein (CREB) signal in the hippocampus of mice. Furthermore,
pharmacological experiments show that blocking the NO-cGMP

pathway can reverse the rapid antidepressant-like effect of
YG after a single administration, suggesting that NO plays
a leading role in mediating the effect (Zhang H. et al.,
2020). In addition, escitalopram (ES), one of the commonly
used clinical antidepressants, showed a safer profile among
antidepressants treated in depression patients (Solmi et al.,
2020). ES has been found to depend on the NO pathway to
produce antidepressant-like effect (Ludka et al., 2013). In the
study, we used ES as a positive control. Our study implied
that NO signaling may play an important role in promoting
antidepressant-like effect of YG or ES. Our previous work
has also demonstrated that the NO concentration can be
affected by stress or Yueju pill, which induces depressive or
antidepressant-like behavior (Wang et al., 2018). However,
most existing research mainly focuses on males, while sex
differences in the antidepressant-like effects of drugs remain
elusive. Thus, it is essential to focus on whether the NO pathway
involved in an antidepressant-like effect is dependent on sex.
NO is formed by the NO synthase, endothelial nitric oxide
synthase (eNOS) and neuronal nitric oxide synthase (nNOS),
and plays an important role in the regulation of antidepressant-
like effect in mice. Administration of 7-nitroindazole (7-NI;
a nNOS-specific inhibitor) combined with YG can induce
antidepressant-like effects in male mice (Zhang H. et al.,
2020). It is also shown that nNOS is phosphorylated at Ser847
by calcium/calmodulin-dependent protein kinase II (CaMKII),
leading to neuroprotective effects against cerebral ischemia injury
(Osuka et al., 2002; Takata et al., 2020). More importantly,
nNOS exists in GABAergic inhibitory interneurons where
CaMKII co-localizes in the rat hippocampal primary neurons.
CaMKII phosphorylates and influences nNOS via its specific
Ser847 residue (Hayashi et al., 1999; Araki et al., 2020).
Meanwhile, like nNOS, CaMKII is a calcium-dependent enzyme
(Stein et al., 2020). The CaMKII–nNOS signaling was revealed
previously to display neuroprotective effects underlying ischemic
preconditioning (Wang et al., 2016), while the action of NO in
the adult brain was also demonstrated to be associated with the
different expression pattern of CaMKII–nNOS signaling (Packer
et al., 2005). Thus, whether the CaMKII–nNOS signaling is
participating in the antidepressant-like effect of YG or ES is worth
studying clearly.

Based on this, we proposed a hypothesis that the mechanisms
involved in sex differentiation of antidepressant-like effects in
mice are mediated by the differences in NO changes caused by
nNOS, which requires the activation of CaMKII. Here, we aimed
to investigate the antidepressant-like response to chronic YG
in male and female mice. Then, we determined the expression
levels of nNOS as well as eNOS, the potential upstream effector
CaMKII and NR1, and examined whether male and female mice
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exhibit similar or distinct molecular changes in response to stress
exposure as well as YG treatment, with a focus on whether
the same molecular pathways are influenced similarly across
the hippocampus.

MATERIALS AND METHODS

Animals
Male and female ICR mice (aged 7–8 weeks, 20–25 g)
were purchased from Shanghai Sippr BK Laboratory Animals
Company. Mice were adapted to animal facilities for 1 week
before the experiment. Mice were kept in standard laboratory
conditions (temperature: 23± 2◦C; indoor humidity: 50± 10%),
with a light/dark cycle of 12:12 h, and allowed free access to
rodent chow and drinking water. The procedures complied with
the Guidelines for the Care and Use of Laboratory Animals and
were approved by the Animal Care Committee.

Preparation of Formula
Yueju-Ganmaidazao decoction was processed and purified
as described in our previous work, and the quality control
demonstrated that the extract was stable for application
(Zhang H. et al., 2020). Briefly, the medicinal plants used
to prepare YG decoction were Cyperus rotundus L. (CR),
Ligusticum chuanxiong Hort (LC), Gardenia jasminoides
Ellis (GJ), Atractylodes lancea (Thunb) DC (AL), Massa
fermentata (MF), Curabitur triticum (CB), Licorice (LR),
and Fructus Ziziphus Jujuba (FZJ). The usages of single
herbs were CR 100 g: LC 100 g: GJ 100 g: AL 100 g: MF
100 g: CB 125 g: LR 250 g: FZJ 375 g. All medicinal Chinese
herbs were purchased from the outpatient department of
the School of Medicine. The above materials were soaked
with water (1:8 ratio) for 30 min and heated for 1 h, then
filtered, and collected. This procedure was repeated twice.
The yield of YG extraction was 20% and administrated
intragastrically. The dosage of each drug followed the
Chinese Pharmacopeia.

Animal Treatment
Chronic Drug Treatment in Normal Mice
Female and male mice were randomly divided into three groups,
namely, control group, YG (1 g/kg) group, and ES (10 mg/kg)
group, with eight mice in each group. YG and ES groups were
injected with drugs for 4 consecutive days, while the control
group received the same dose of saline.

LPS-Induced Procedure
Female and male mice were randomly divided into three groups,
namely, LPS-treated control (1 mg/kg) group, LPS+ YG (1 g/kg)
group, and LPS + ES (10 mg/kg) group, with eight mice in each
group. Lipopolysaccharide (LPS, Aladdin, L118716) was prepared
in saline (0.9% sodium chloride). LPS (i.p.) was administered
once daily, while YG and ES were given by gavage once a
day, and the control group was given the same amount of
saline; these above administrations were continued for 4 days.

Twenty-four hours after the last drug administration, behavioral
tests were performed.

Drugs Interaction Procedure
Female and male mice were pretreated with saline (0.9%) or 7-NI
(30 mg/kg, dissolved in 5% Tween 80) or KN-93 (5 mg/kg) for
1 h, and then the mice were treated with the administration
of saline, YG (2.5 g/kg, i.g.), or ES (20 mg/kg). After an hour,
the tail suspension test (TST) was performed to measure the
despair behavior of mice. All drugs were administered i.p.
except YG solution.

Chronic Unpredictable Stress
The CUS experimental protocol was followed as described in
Tang et al. (2015). Mice lived alone and received unpredictable
stress for 3 weeks. Stress was given in a random, unpredictable
order every day: food deprivation 24 h, drink deprivation 24 h,
45◦cage tilt for 24 h, cage shaking (high-speed horizontal shaking,
200 rpm) for 40 min, cage wet (200 ml water per cage) for 20 h,
overnight illumination and being bound in a 50-ml tube for 6 h.
All CUS mice were single-housed until the end of the experiment,
and the control mice were normally reared for comparison.

Tail Suspension Test
The tail of the mouse was taped to the hanging hook, and the
tip of the tail was about 1 cm from the tape. Mice were placed
in a universal sound-proof behavior box so that they were hung
upside down with their heads 20 cm from the bottom of the
box. The mice struggled to overcome the abnormal posture, and
animal activities were recorded. Any-maze software was used to
record the activity of mice for 6 min. The immobility time during
the last 4 min was analyzed.

Forced Swimming Test
The mice were placed in a 10-cm-deep beaker (10cm × 30cm)
filled with warm water (25 ± 2◦C). Mice were observed for
6 min, and the immobility time during the last 4 min was
recorded. When mice floated passively without struggling, they
were considered immobile. The immobility time was recorded by
using the Any-maze software.

Sucrose Preference Test
All mice were single-housed and adapted to a sucrose solution
(2%) for 72 h according to previous work (Xue et al., 2016).
After 18 h of fasting and no drinking, the mice were separated
in a single cage and presented with two bottles: one bottle of
2% sucrose solution and one bottle of pure water. The sucrose
consumption was observed in 2 h. Sucrose preference was
calculated by the formula: sucrose consumption/% = [(sucrose
intake) / (sucrose intake + water intake)] × 100%, and was
standardized by the weight of each animal.

Western Blot
Mice were sacrificed, the brains were rapidly removed, and
the hippocampus was dissected out and dissolved in a RIPA
buffer containing a protease inhibitor and a phosphatase
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inhibitor. Brain tissues were homogenized, and western blot
analyses were carried out. Protein lysates were separated by
8% SDS–PAGE and transferred to a polyvinylidene fluoride
(PVDF) membrane. After blocking with 5% BSA for 1 h,
the membrane was blocked with primary antibodies for eNOS
(Millipore, 1: 1000), nNOS (Millipore, 1: 1000), CaMKII and
NR1 (Cell Signaling Technology, 1: 1000), and β-tubulin
(Proteintech, 1: 5000) and incubated at 4◦C for 12 h, and
then the membrane was incubated with the secondary antibody
for 1 h at room temperature. The blots were visualized
using the SuperSignal West Pico Chemiluminescent Substrate
(Thermo Fisher Scientific Inc.). All target proteins were
normalized to β-tubulin. All experiments were performed at
least three times.

Statistical Analysis
Multiple comparisons were made using one-way ANOVA or two-
way ANOVA followed by Bonferroni post hoc tests. All data are
indicated as the mean ± SEM and are statistically significant
at the 0.05 level.

RESULTS

Single Administration of Effective
Dosage of YG Displayed the Same
Antidepressant-Like Effect in Both Male
and Female Mice
The TST was used to screen rapid antidepressant-like effects
of YG in female and male mice. Twenty-four hours after
a single administration of YG, the immobility time was
significantly reduced in female mice [Figure 1A, one-way
ANOVA, F(3,28) = 23.88, p < 0.0001] both at the dosage of
2.5 g/kg (p < 0.001) and at the dosage of 2.0 g/kg (p < 0.001), and
2.0 g/kg was equivalent to the human clinical dose. Meanwhile,
in male mice, the immobility time [Figure 1B, one-way ANOVA,
F(3,36) = 15.04, p < 0.0001] was significantly decreased only at
the dosage of 2.5 g/kg (p < 0.001). The results showed that YG
produced the same antidepressant-like effect in female and male
mice, but the effective dosage range was wider in female mice.

Subthreshold Dosage of YG Could Also
Induce Antidepressant-Like Effect in
LPS-Induced Model Both in Male and in
Female Mice
Previous studies have focused on the role of the rapid
antidepressant-like action of YG, but the chronic treatment with
the formula is more common clinically. The subchronic mice
with LPS-injection for 4 consecutive days were used to evaluate
the antidepressant-like effect of YG and ES. LPS is a well-known
proinflammatory drug and is widely employed to induce the
depressive-like behavior (Ali et al., 2020); 1 g/kg of YG (p < 0.001)
and 10 mg/kg of ES (p < 0.001) both produced antidepressant-
like effects in female mice [Figure 2A, left hind paw: one-way
ANOVA, F(2,23) = 103.9, p < 0.0001] after chronic injections.
Meanwhile, immobility times of male mice during the TST
[Figure 2B, left hind paw: one-way ANOVA, F(2,23) = 30.24,
p < 0.0001] were significantly decreased in YG-treated group
(p < 0.001) and ES-treated group (p < 0.001).

After chronic treatment with YG (p < 0.001) or ES (p < 0.001)
in LPS-treated mice, the immobility time was significantly
decreased compared to that of the control group [Figure 2A,
right hind paw: one-way ANOVA, F(2,21) = 17.93, p < 0.0001].
In male mice [Figure 2B, right hind paw: one-way ANOVA,
F(2,21) = 15.73, p < 0.0001], chronic treatment of YG (p < 0.001)
and ES (p < 0.001) both induced significant antidepressant-
like effects. After treating with LPS, the immobility time was
significantly increased both in female (p < 0.001) and in male
(p < 0.001) mice. This effect was not affected by sex [two-
way ANOVA, female interaction: F(2,44) = 0.7460, p = 0.4802,
male interaction: F(2,44) = 2.686, p = 0.0793]. Collectively, the
antidepressant-like effects of chronic YG and ES showed no
significant sex differences.

Chronic Administration of Subthreshold
Dose YG Could Also Induce
Antidepressant-Like Effect in CUS
Female and Male Mice
Both female and male mice received CUS for 2 weeks. Then,
mice were given either saline or YG (1 g/kg) or ES (10 mg/kg)

FIGURE 1 | Fast screen of potential rapid antidepressant-like effect of YG in TST of male and female mice. (A) Immobility time was measured for the last 4 min
during the total 6-min testing time in female mice after different dosages of YG treatments (1.0, 2.0, and 2.5 g/kg). (B) Immobility time was measured for the last
4 min during the total 6-min testing time in male mice after different dosages of YG treatments (1.0, 2.0, and 2.5 g/kg). Independent mouse was used to test the
behaviors at each time point. ∗∗∗p < 0.001, compared with the control group, one-way ANOVA, n = 8–10/group.
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FIGURE 2 | Chronic YG (1 g/kg) and ES (10 mg/kg) displayed significant
effects on immobility times in the TST both in (A) female and in (B) male mice
as well as in non-LPS treatment or LPS treatment. ***p < 0.001, compared
with the control group in non-LPS or LPS treatment, one-way ANOVA,
n = 8–10/group. The interaction between non-LPS and LPS treatment was
analyzed by two-way ANOVA. ###p < 0.001 compared to non-LPS control
group.

for 5 weeks after the establishment of CUS model. After the
last administration of saline or drug, the immobility time in the
TST and in the forced swimming test (FST) was measured in
both sexes, and the sucrose preference test (SPT) was used to
evaluate anhedonia-like stage of the mice (Figure 3A). The results
showed that, compared with the saline group, the preferences for
sucrose solution of female mice [Figure 3B, one-way ANOVA,
F(3,35) = 17.99, p < 0.0001] and male mice [Figure 3B, one-
way ANOVA, F(3,39) = 14.08, p < 0.0001] were significantly
reduced (female: p < 0.001, male: p < 0.001). After 5 weeks of
treatment, both YG (p < 0.001) and ES (p < 0.001) could rescue
the anhedonia phenomena induced by CUS. The total solution
(containing sucrose or not) was not affected by stress or drugs
treatment (Supplementary Figure 1). In the TST, the immobility
time was significantly increased after stress [Figure 3C, one-
way ANOVA, female: F(3,24) = 6.090, p < 0.01, p < 0.05
compared to the control group; male: F(3,28) = 34.00, p < 0.0001,
p < 0.001 compared to Con group], while YG (female: p < 0.01,
male: p < 0.001) and ES (female: p < 0.01, male: p < 0.001)
significantly decreased the immobility time compared to the CUS
group. In the FST, the CUS group displayed higher immobility
time, while YG group (female: p < 0.001, male: p < 0.05) and
ES group (female: p < 0.001, male: p < 0.05) showed lower
immobility times in both male and female mice [Figure 3D,
one-way ANOVA, female: F(3,32) = 13.19, p < 0.0001; male:
F(3,26) = 4.355, p < 0.05]. Meanwhile, the locomotor activity
was not affected by stress or drugs in total distance [Figure 3E,
one-way ANOVA, female: F(3,38) = 2.399, p = 0.0830; male:
F(3,43) = 0.7807, p = 0.5112] or in traveling time in center
area [Figure 3F, one-way ANOVA, female: F(3,38) = 0.5968,
p = 0.6210; male: F(3,43) = 1.656, p = 0.1907] in the open field
test (OFT). We found no significant sex differences after stress or
drug treatments [two-way ANOVA, Figure 3B: F(3,74) = 0.9566,
p = 0.4179; Figure 3C: F(3,52) = 3.211, p = 0.0304; Figure 3D:
F(3,58) = 1.271, p = 0.2928; Figure 3E: F(3,81) = 0.5919,
p = 0.6221; Figure 3F: F(3,81) = 1.211, p = 0.3110].

Subthreshold Dosage of YG Combined
With 7-NI Could Induce an
Antidepressant-Like Effect on Female
and Male Mice
The role of nNOS in YG’s antidepressant-like action was
assessed by using 7-NI, a nNOS inhibitor. 7-NI (30 mg/kg)
inhibited the antidepressant-like effect of YG (1 g/kg) in
female mice [two-way ANOVA, main effect of treatment,
F(1,30) = 23.88, p < 0.001; pretreatment, F(1,30) = 4.071,
p < 0.05; treatment × pretreatment interaction, F(1,30) = 20.38,
p < 0.001, Figure 4A]. 7-NI (30 mg/kg) also inhibited the
antidepressant-like effect of YG (1 g/kg) in male mice [two-
way ANOVA, the main effect of treatment, F(1,28) = 14.91,
p < 0.001; pretreatment, F(1,28) = 20.65, p < 0.001;
treatment × pretreatment interaction, F(1,28) = 7.205, p < 0.05,
Figure 4B]. Results displayed that YG combined with 7-NI could
produce antidepressant-like effects both in female and in male
mice (Zhang H. et al., 2020). Furthermore, in the FST, 7-NI
(30 mg/kg) inhibited the antidepressant-like effect of YG (1 g/kg)
in female mice [two-way ANOVA, the main effect of treatment,
F(1,34) = 10.46, p < 0.01; pretreatment, F(1,34) = 12.25, p < 0.01;
treatment × pretreatment interaction, F(1,34) = 6.625, p < 0.05,
Figure 4C].

nNOS and CaMKII Showed Different
Expression Patterns After Stress or Drug
Treatment in Male and Female Mice
Our previous work found that the antidepressant-like effect
of YG was dependent on NO-cGMP pathway. In this study,
we investigated whether the NOS expression was affected by
chronic YG or ES in mice of different sexes. After chronic
treatment with YG or ES in mice, neither in female mice
[Figure 5A, left hind paw, one-way ANOVA, F(2,9) = 0.1409,
p = 0.8705] nor in male mice [Figure 5B, left hind paw, one-
way ANOVA, F(2,9) = 0.5718, p = 0.5838], nNOS expression
was not affected by the drugs. In LPS-treated mice, we also
found that the expression of nNOS was not affected by YG
or ES in female mice [Figure 5A, right hind paw, one-way
ANOVA, F(2,9) = 0.05090, p = 0.9506] or in male mice
[Figure 5B, right hind paw, one-way ANOVA, F(2,9) = 0.1868,
p = 0.8327]. Neither LPS treatment nor sex showed differences in
nNOS expression by using two-way ANOVA [female interaction:
F(2,18) = 0.1887, p = 0.8297; male interaction: F(2,18) = 0.4441,
p = 0.6483]. Meanwhile, CaMKII expression was similar to the
nNOS expression in the hippocampus [Figure 5C, left hind paw,
one-way ANOVA, F(2,9) = 0.1161, p = 0.8917; right hind paw,
one-way ANOVA, F(2,9) = 0.03030, p = 0.9703; Figure 5D, left
hind paw, one-way ANOVA, F(2,9) = 0.05090, p = 0.9506; right
hind paw, one-way ANOVA, F(2,9) = 0.3785, p = 0.6953; two-
way ANOVA, female interaction: F(2,18) = 0.1660, p = 0.8483;
male interaction: F(2,18) = 0.2262, p = 0.7998]. Furthermore,
after CUS exposure, the expression of nNOS [Figure 5E, one-
way ANOVA, F(3,17) = 13.84, p < 0.0001] was significantly
decreased (p < 0.01), which was reversed by YG (p < 0.01)
and ES (p < 0.001) treatment in female mice. However, in
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FIGURE 3 | Antidepressant-like behaviors following chronic YG or ES in CUS mice. (A) Mice were exposed to chronic unpredictable stress (CUS) and received
treatment of YG or ES. Control (Con) mice were not exposed to stress but received saline treatment. Behaviors were tested after the last drug administration.
(B) Mice were tested in the SPT after the last drug administration. (C) Mice were tested in the TST in 2 days after the last drug administration. (D) Mice were tested
in the FST in 2 days after the last drug administration. Mice were tested in the OFT in 1 day after the last drug administration: (E) total distance and (F) time in the
center. ∗p < 0.05, ∗∗∗p < 0.001, compared with the control group; #p < 0.05, ##p < 0.01, ###p < 0.001, compared with the CUS group. One-way ANOVA,
n = 6–13/group.

FIGURE 4 | Antidepressant-like effects of YG following nNOS intervention. The effect of 7-NI (30 mg/kg, i.p.) pretreatment on the antidepressant response of YG
(1 g/kg, i.g.) in the TST of (A) female and (B) male mice. Meanwhile, (C) FST was also used to evaluate the interaction between YG and 7-NI. ∗∗∗p < 0.001,
compared with Control + Saline. Two-way ANOVA, n = 7–10/group.
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FIGURE 5 | CaMKII, nNOS, and eNOS expression in the hippocampus after chronic administration of stress, YG and ES in female and male mice. (A) nNOS
expression in female mice in non-LPS or LPS treatment. (B) nNOS expression in male mice in non-LPS or LPS treatment. (C) CaMKII expression in female mice in
non-LPS or LPS treatment. (D) CaMKII expression in male mice in non-LPS or LPS treatment. (E) nNOS expression in female mice after CUS or drug treatment.
(F) nNOS expression in male mice after CUS or drug treatment. (G) CaMKII expression in female mice after CUS or drug treatment. (H) CaMKII expression in male
mice after CUS or drug treatment. (I) eNOS expression in female mice after CUS or drug treatment. (J) eNOS expression in male mice after CUS or drug treatment.
(K) nNOS expression in normal female and male mice. (L) CaMKII expression in normal female and male mice. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 compared with
the control group; ##p < 0.01, ###p < 0.001, compared with the CUS group, one-way ANOVA or two-way ANOVA, n = 4–6/group.

male mice [Figure 5F, one-way ANOVA, F(3,13) = 10.60,
p < 0.001], chronic stress (p < 0.01) significantly increased
nNOS expression, while YG (p < 0.01) and ES (p < 0.001)
decreased the overexpression of nNOS. Meanwhile, CaMKII
protein expression was found to be similar to nNOS in female
and male mice [Figure 5G, one-way ANOVA, F(3,15) = 14.21,
p < 0.0001; Figure 5H, one-way ANOVA, F(3,16) = 23.13,
p < 0.0001]. We also investigated whether the eNOS participated
in the antidepressant-like effect of YG and ES. The results showed
that eNOS was not affected by stress or drugs neither in female
[Figure 5I, one-way ANOVA, F(3,18) = 0.4326, p = 0.7322] nor
in male mice [Figure 5J, one-way ANOVA, F(3,20) = 1.196,
p = 0.3367]. These results suggested that although female and
male mice exhibited a consistent phenotype under stress or drug

action, their potential molecular mechanisms might be different
and might be associated with CaMKII-nNOS signaling pathways.
In the normal mice, the protein expression levels of nNOS and
CaMKII at the basal level were also measured, and the results
showed that only nNOS expression in female mice was lower than
that in male mice (Figure 5K, t-test, p < 0.001; Figure 5L, t-test,
p = 0.8938).

KN-93 Only Block the
Antidepressant-Like Effect of YG and ES
in Female Mice
To explore whether the antidepressant-like effect of YG or ES
depends on CaMKII expression, KN-93 (a specific CaMKII
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inhibitor) was used to pretreat the mice before YG or ES. In the
normal mice, high dosage of YG (2.5 g/kg, p < 0.001) and ES
(20 mg/kg, p < 0.001) significantly decreased the immobility time
after single injection both in female [Figure 6A, left hind paw,
one-way ANOVA, F(2,21) = 18.90, p < 0.0001] and male mice
[Figure 6B, left hind paw, one-way ANOVA, F(2,22) = 21.62,
p < 0.0001]. However, after KN-93 pretreatment for 1 h before
YG or ES administration, the antidepressant-like effect induced
by YG or ES was blocked by KN-93 in female mice [Figure 6A,
right hind paw, two-way ANOVA, interaction: F(2,40) = 10.88,
p = 0.0002]. Meanwhile, in male mice, KN-93 [Figure 6B, right
hind paw, one-way ANOVA, F(2,21) = 13.05, p < 0.0001] could
not blunt the antidepressant-like effect of YG (p < 0.001) or ES
(p < 0.001).

YG and ES Could Regulate the
NR1-CREB Signaling Pathway to Display
the Same Antidepressant-Like Behavior
Phenotype in Female and Male
To find the potential mechanism underlying the antidepressant-
like effect in female and male mice after YG and ES treatments,
we first detected NR1 protein expression in mice. After
administration with a subthreshold dose of YG [Figure 7A,
one-way ANOVA, F(3,14) = 12.15, p < 0.001], NR1 expression
(p < 0.01) was significantly reduced compared to the CUS
group, which was significantly increased compared to the
control group, and this result was similar to the result of
ES administration (p < 0.001) in female mice. In male mice,
NR1 protein expression showed a similar decreasing tendency
[Figure 7B, one-way ANOVA, F(3,19) = 15.50, p < 0.0001].
Meanwhile, we further measured the phosphorylation CREB
and total CREB expressions, which were considered as factors
affecting by NR1 signaling. After the CUS procedure, pCREB
expression was significantly decreased (p < 0.001), and YG
(p < 0.001) and ES (p < 0.001) up-regulated pCREB expression
in female mice [Figure 7C, one-way ANOVA, F(3,16) = 17.41,
p < 0.0001]. In male mice, pCREB [Figure 7D, one-way ANOVA,

FIGURE 6 | The effect of pretreatment with saline or KN-93 on single YG
(2.5g/kg) or ES (20mg/kg) administration during the TST paradigm in (A)
female and (B) male mice. *** p < 0.001, compared with the control group of
saline pretreatment, one-way ANOVA, n = 7-9/group. The interaction between
saline and KN-93 pretreatment was analyzed by two-way ANOVA.
###p < 0.001 compared to non-LPS control group.

F(3,16) = 15.31, p < 0.0001] displayed the same trend as in
female mice. Meanwhile, total CREB was not affected by stress
or drug treatment in female mice [Figure 7E, one-way ANOVA,
F(3,16) = 0.5959, p = 0.6268] or male mice [Figure 7F, one-way
ANOVA, F(3,16) = 0.07369, p = 0.9732]. Meanwhile, the ratio of
pCREB/CREB was significantly decreased compared to control
group both in female mice [one-way ANOVA, F(3,15) = 9.325,
p = 0.001] and in male mice [one-way ANOVA, F(3,15) = 9.544,
p < 0.001], and YG and ES could rescue the deficit. Also,
we measured the baseline of pCREB and total CREB in mice,
and the results showed that pCREB (Figure 7G, p < 0.01)
displayed higher expression in female mice, while the total CREB
(Figure 7H) showed no difference in mice of both sexes.

DISCUSSION

In the present study, we have characterized the antidepressant-
like response of YG in male and female mice as well as the
potential neurobiological mechanisms in both sexes. We found
that: (1) single treatment with a high dose of YG could produce
antidepressant-like effects both in female and in male mice,
while the effective dosage in female mice was wider than that
in male mice; (2) chronic administration of a subthreshold dose
of YG or ES could produce antidepressant-like effects both in
female and in male mice as well as in normal or LPS-treated
mice; (3) a subthreshold dose of YG and ES could reverse
the depressive behavior induced by chronic mild stress without
sex differences; (4) nNOS expression showed different change
patterns in female and male mice after stress or drug treatment,
and 7-NI (nNOS inhibitor) combined with a subthreshold dose
of YG could effectively induce antidepressant-like effects both
in female and in male mice, indicating that YG revealed nNOS
activity-dependent antidepressant-like effects in both sexes; (5)
CaMKII expression also displayed the different change pattern
in female and male mice after stress or drug treatment; however,
KN-93 (CaMKII inhibitor) only blocked the antidepressant-like
effect of YG or ES in female mice, implying that YG and ES
produced antidepressant-like effects, which mostly depended on
the CaMKII-nNOS pathway in female mice; (6) YG and ES could
repair the abnormal expression of NR1-CREB signaling caused by
stress and thus formed consistent antidepressant-like phenotypes
in mice of both sexes.

Our group previously demonstrated that the ethanol extract
of Yueju pill induced a rapid and long-lasting antidepressant-
like effect in male mice (Xue et al., 2013, 2016; Tang et al.,
2015). However, higher dose of ethanol extract of Yueju pill
possibly caused side effects in patients compared to the one
of the water extracts. A meta-analysis of GM (Ganmai Dazao)
decoction in patient for depression suggested that GM showed
an antidepressant action without side effects. GM in combination
with regular antidepressants significantly reduced the side
effects and enhanced the antidepressant efficacies (Yeung et al.,
2014). Another study also revealed that modified GM induced
an equivalent efficacy to melitracen-flupentixol in climacteric
depression (Ma et al., 2014). Subchronic injection of GM reduced
CUS-induced depressive-like behavior in rats, and this was
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FIGURE 7 | NR1, pCREB, and CREB expression in the hippocampus after chronic subthreshold dosage administration of YG and ES in CUS mice. (A) NR1
expression in female mice after CUS or drug treatment. (B) NR1 expression in male mice after CUS or drug treatment. (C) pCREB expression in female mice after
CUS or drug treatment. (D) pCREB expression in male mice after CUS or drug treatment. (E) CREB expression in female mice after CUS or drug treatment.
(F) CREB expression in male mice after CUS or drug treatment. (G) pCREB expression in normal female and male mice. (H) CREB expression in normal female and
male mice. ∗∗p < 0.01, ∗∗∗p < 0.001, compared with the control group; ##p < 0.01, ###p < 0.001, compared with the CUS group, one-way ANOVA, n = 4–6/group.

associated with a reduction in glutamate levels and increased the
expression of NR2A and NR2B in the hippocampus (Lou et al.,
2010; El-Alfy et al., 2012). Thus, the water extraction of Yueju
pill combined with GM, which has been widely used in clinical
traditional Chinese medicine treatment without significant side
effects, showed significant antidepressant-like effects after a single
injection in male mice. In the present study, we further illustrated
that YG displayed antidepressant-like effects in female mice with
the same dosage as in male mice. Lower dose of drugs means less
risk of side effects, and we investigated whether a low dose of YG
induced antidepressant-like effects. Interestingly, in the normal
mice, LPS-induced mice, and CUS-treated mice, a low dose of YG
as well as the positive control ES all produced the antidepressant-
like effects without sex differences. It is implied that lower doses
of drugs can safely be used to treat depression such as YG and
ES. Previous research showed that the therapeutic effects of a low
dose of antidepressants merely disappeared, instead of becoming
aversive or toxic (Fitzgerald et al., 2020). However, chronic
treatment with antidepressants was more popular. Although a
high dose of YG was not found to have side effects, the lower dose
of drug means a less risk of side effects. In our study, chronic
treatment with a low dose of YG was demonstrated to have the
same effect as a high dose of YG.

To find the possible mechanisms of the antidepressant-like
effects of YG, we investigated nNOS expression, which was
reported to show sex-dependent effects after stress. First, mice
were treated with a single treatment of YG, and the effective
doses of YG in male and female mice were determined. The
subthreshold dose of YG (1 g/kg) combined with 7-NI induced

antidepressant-like effects in female and male mice. These results
indicated that there were sex differences in nNOS expression
after stress or drug treatment. Moreover, the eNOS expression
in female and male mice was not affected by stress or drug
treatment. These results suggested that nNOS was the key to the
antidepressant-like effect of YG and led to the sex differences,
rather than eNOS. This is consistent with Hu et al.’s (2012)
statement that there is a significant sex difference in NO levels
catalyzed by nNOS in the hippocampus after stress exposure.
Meanwhile, in the normal mice, nNOS expression was lower in
female mice than that in male mice, and the result might supply a
clue for the susceptibility to depression in female mice.

To investigate how nNOS is involved in the antidepressant-
like effects of YG, we also used ES as the positive control. We
measured the expression of nNOS and eNOS in the hippocampus
of mice, and the results showed that the depressive-like behaviors
in both sexes were significantly improved when compared with
the CUS group, and in male mice, YG and ES decreased the
expression of nNOS, but the eNOS expression did not change
significantly. Previous studies also reported that conventional
antidepressants like ES inhibited nNOS activity in male mice or
rats (Angulo et al., 2001; Ulak et al., 2008; Krass et al., 2010).
However, there are few reports regarding female rodents. In
female mice, YG and ES increased the expression of nNOS, but
did not change the expression of eNOS. Both YG and ES have
the same effects on the depressive-like behavior. This evidence
indicates that nNOS is an important factor contributing to the
antidepressant-like effects of YG and ES treatment in depressive
male and female mice.
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Furthermore, we explored the NMDA-CaMKII signal pathway
which is upstream of nNOS. As a downstream signal factor
of the NMDAR subunit, CaMKII is an extremely abundant
protein kinase in brain tissue that participates in a variety
of signaling cascade reactions and is an important mediation
center for the regulation of learning and memory (Zhang C.
et al., 2020). CaMKII has been shown to reposition within
the NMDAR complex in response to non-ionotropic NMDAR
signaling (Aow et al., 2015; Stein et al., 2020). Our results
showed that the expression of CaMKII in the hippocampus
of male mice decreased, while in female mice the protein
expression increased compared to the control group. The
expression of nNOS revealed a similar trend in mice of both
sexes after stress. Meanwhile, after YG or ES treatment, both
CaMKII and nNOS expression was significantly adjusted to
the baseline level. We speculated that the differences between
male mice and female mice were mostly dependent on nNOS
differential expression, which was activated by CaMKII. CaMKII
is known to activate and translocate from the cytoplasm to
the synaptic density where nNOS is predominantly located
(Araki et al., 2020). Some reported that phosphorylation of
nNOS at Ser847 by CaMKII attenuated the NO synthesis
activity of nNOS in vitro and in cells (Hayashi et al., 1999;
Komeima et al., 2000). CaMKII phosphorylates at Ser741 could
also lead to a reduction of nNOS activity by blocking the
binding of Ca2+/CaM (Song et al., 2004; Takata et al., 2020).
nNOS is a calcium-dependent enzyme, and we find that nNOS
requires downstream of CaMKII signaling in both sexes, and
the results are similar to those reported by Stein et al. (2015).
Furthermore, the antidepressant-like effects of a high dose of
YG and ES were prevented by the presence of KN-93 (CaMKII
inhibitor) in female mice but not in male mice, while KN-
93 alone showed no effect on the immobility time in mice.
After corticosterone exposure, the increase in AMPAR surface
trafficking can be pharmacologically modulated by tianeptine
in a CaMKII-dependent mechanism (Zhang et al., 2013). In
this study, there were no significant differences in CaMKII
expression between male and female mice. A previous study
reported that CaMKII activity was required for the expression
and not initiation of E2-induced synaptic potentiation in female
mice (Jain et al., 2019). Thus, this study clearly emphasized that
the antidepressant-like effects of YG and ES mostly depended on
the CaMKII-nNOS pathway in female mice.

The molecular mechanisms of the antidepressant-like effects
of YG and ES are different between the sexes, but the
antidepressant-like phenotypes in both sexes are consistent. The
expression of NR1, which is one of the important upstream
regulators of nNOS, was decreased in the hippocampus of
male and female mice after YG and ES treatment when
compared to the CUS mice. Additionally, our results showed
that, compared to the control group, the expressions of
phosphorylation CREB were both decreased in the hippocampus
of mice after stress and were reversed by YG and ES
without the sex differences. The pathology of depression was
caused by the decreases in neuroplasticity in emotion-related
brain regions (Hu et al., 2012), and the stress decreased the
expression of CREB in the hippocampus of mice. Inhibition

of CaMKIIβ-ERK1/2-CREB signaling mediates the chronic
ketamine use-associated cognitive impairments by restraining
synaptic signaling (Luo et al., 2020). Supplementation of
curcumin increases the ratio of pCREB to CREB and corrects
the depressive-like behaviors successfully in CUS-treated rats
(Liao et al., 2020). CREB signaling, which is inhibited by over-
activated GluN2B, participates in the antidepressant-like effects
of ketamine, and extrasynaptic CaMKIIα is also involved in
the CREB signaling. Studies have indicated that CREB plays an
important role in the antidepressant-like effect in rodents. We
also found that pCREB expression revealed a basic difference
between female and male mice. These results indicate that
NR1-CREB displays similar patterns without sex differences
after stress or antidepressants, but the potential mechanism
might be different.

CONCLUSION

In summary, we first confirmed that YG decoction induced
stable antidepressant-like effects both in male and in female
mice by using a subthreshold effective dosage in different CUS
mice. We speculated that the antidepressant-like effects of YG
worked through the nNOS pathway, which also had the function
of improving downstream synaptic plasticity, and the changes
of nNOS expression showed significant sex differences. Finally,
we have illustrated that nNOS is modulated by CaMKII but
not NR1 in mice after chronic treatment with YG or ES. The
CaMKII-nNOS signaling pathway could enhance CREB activity
to induce the same antidepressant-like effects in female mice.
Furthermore, we want to investigate which subtype of CaMKII
(α, β, γ, and δ) plays a dominant role in the mechanism
underlying the antidepressant-like effects of YG or ES as well
as a potential specific role of estrogen in regulating CaMKII
expression in female mice.
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The ventral portion of the medial prefrontal cortex (vmPFC) regulates mood, sociability,
and context-dependent behaviors. Consequently, altered vmPFC activity has been
implicated in the biological basis of emotional disorders. Recent methodological
advances have greatly enhanced the ability to investigate how specific prefrontal cell
populations regulate mood-related behaviors, as well as the impact of long-term stress
on vmPFC function. However, emerging preclinical data identify prominent sexual
divergence in vmPFC behavioral regulation and stress responsivity. Notably, the rodent
infralimbic cortex (IL), a vmPFC subregion critical for anti-depressant action, shows
marked functional divergence between males and females. Accordingly, this review
examines IL encoding and modulation of mood-related behaviors, including coping
style, reward, and sociability, with a focus on sex-based outcomes. We also review
how these processes are impacted by prolonged stress exposure. Collectively, the data
suggest that chronic stress has sex-specific effects on IL excitatory/inhibitory balance
that may account for sex differences in the prevalence and course of mood disorders.

Keywords: coping, depression, gonadal hormones, infralimbic cortex, reward, sociability, valence

INTRODUCTION

Negative mood states are a feature of numerous psychiatric conditions, including anxiety
and depressive disorders. Furthermore, major depression, characterized by sadness, reduced
motivation, and anhedonia, is the leading cause of years lived with disability worldwide (Friedrich,
2017). Although females are disproportionally impacted by mood disorders, preclinical studies have
historically focused on male neural regulation of depression-related behaviors (Kuehner, 2017).
However, recent policy and methodological advances have led to the discovery of significant sex
differences in the neurobiology of mood. Here, we examine recent studies exploring sex differences
in the prefrontal regulation of coping, reward, and sociability.

Clinical neuroimaging studies associate activity in the ventral medial prefrontal cortex (vmPFC)
with depressive disorders, and emotional regulation broadly. The vmPFC is also essential for goal-
directed and contextually-appropriate behaviors, mood, and stress responding (Nestler et al., 2002;
Krishnan and Nestler, 2008; McKlveen et al., 2015). Further, in studies of males and females
vmPFC activity is linked with reward processing and positively correlates with the severity of
anhedonia (Keedwell et al., 2005; Green et al., 2019). In particular, the vmPFC subregion Brodmann
Area 25 (BA25) has decreased volume in MDD patients across sexes, and is a target for deep
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brain stimulation in treatment-resistant depression (Drevets
et al., 1997, 2008; Crowell et al., 2019; Sankar et al., 2019).
A meta-analysis of imaging studies using males and females
revealed BA25 is responsive to reward and emotional processing
(Beckmann et al., 2009), as well as social exclusion (Vijayakumar
et al., 2017). Though these studies indicate BA25 activity
associates with depressive disorders, results examining BA25
function in depression are varied. Mixed sex studies have
reported both reduced metabolic activity in MDD patients
(Drevets et al., 1997), as well as hyperactivity in treatment-
resistant depression measured by cerebral blood flow (Mayberg
et al., 2005). Yet, both conventional antidepressant treatment
and deep brain stimulation reduce BA25 activity (Mayberg
et al., 2005, 2013). The heterogeneity of neural populations
in BA25 may contribute to these divergent results. BA25 is
principally composed of excitatory pyramidal neurons that
project throughout limbic and brainstem nuclei, with a smaller
but diverse population of inhibitory interneurons (Beckmann
et al., 2009). Mounting evidence indicates that changes to
the excitation/inhibition balance of the vmPFC relate to
depressive symptomology, but the contributions of specific
neural populations to behavior are difficult to address clinically
(Fogaça and Duman, 2019; McKlveen et al., 2019). Further,
although clinical studies commonly include both males and
females, few analyze outcomes for sex differences (Vijayakumar
et al., 2017). However, recent advances in neurobiology have
allowed studies to establish casual roles for specific genetically-
defined cell populations for processing and regulating behavior
across sexes.

The infralimbic cortex (IL) is the rodent anatomical homolog
of primate BA25 and is well-positioned for behavioral regulation
based on projections throughout the limbic system (Vertes, 2004;
Wood et al., 2018). The IL contains glutamatergic projection
neurons with inhibitory interneurons providing local network
regulation (McKlveen et al., 2015, 2016; Wood et al., 2018). While
pharmacological and lesion studies have linked IL activity with
depression-relevant behaviors, advances in cell-type specificity
have identified sex-dependent roles in stress, reward, and
social processes.

NEGATIVE VALENCE: STRESS COPING

Coping with negatively-valenced stimuli involves coordinated
behavioral and physiological responses to address real or
perceived stressors. Ultimately, stress exposure initiates a
neurohormonal cascade that leads to the synthesis of adrenal
glucocorticoids that then provide feedback to the brain at
glucocorticoid receptors (GR) and mineralocorticoid receptors
(MR) to promote behavioral and physiological adaptation
(McKlveen et al., 2013; Myers et al., 2014; Herman et al., 2016).
An increasing number of studies have identified a role for the
IL in stress coping (Table 1), with similarities and differences
between male and female rodents.

The IL is acutely stress-responsive, as identified by
histological markers of neuronal activation, and expresses
both GR and MR in multiple cell types (Granholm et al., 1985;

Reul and De Kloet, 1986; Cintra et al., 1994; Cullinan et al., 1995;
McKlveen et al., 2013, 2016, 2019). Knockdown of male IL GR
expression increases passive coping in the forced swim test
(FST) and glucocorticoid responses to acute stress (McKlveen
et al., 2013). However, pharmacological manipulations of male
IL activity have yielded mixed results on coping behaviors.
For instance, IL inactivation via GABAA receptor activation
reduces FST immobility in males, an antidepressant-associated
phenotype (Slattery et al., 2011). Similarly, non-specific synaptic
blockade in the male IL reduces passive coping in the FST
(Scopinho et al., 2010), as does long-term knockdown of IL
glutamatergic output in males (Pace et al., 2020). However, both
the NMDA antagonist ketamine and the muscarinic antagonist
scopolamine increase IL activity and reduce male FST immobility
(Fuchikami et al., 2015; Navarria et al., 2015). Further, deep brain
stimulation in male rodents reduces passive coping in the FST
(Hamani et al., 2010) and increases open arm time in the elevated
plus maze (EPM), an anxiolytic-like phenotype (Shimizu et al.,
2018). The mixed outcome of pharmacological interventions
highlights the need to determine endogenous neural activity
patterns during behavior, as well as more temporally- and
genetically-specific modulation of neural activity.

In vivo recordings indicate the male IL processes anxiogenic
stimuli and acute stressors. IL neural activity, measured by
multiunit electrodes, increases in the seconds preceding entry
into the open arms of the EPM (Shimizu et al., 2018). More
generally, multiunit electrode array recordings of male mPFC
neurons at the border between the IL and prelimbic (PL)
area have variable activity in response to FST. Although many
neurons are inhibited during FST, a large portion have selectivity
for immobile vs. mobile periods and the majority of those
increase activity during mobile periods (Warden et al., 2012).
The heterogeneity of cellular responses underscores the need
to examine the contributions of specific IL neural populations.
Advances in optogenetics have permitted temporally-precise
and cell-type specific modulation of IL activity. Activation of
male IL glutamatergic neurons 24 h before testing reduces FST
passive coping (Fuchikami et al., 2015), suggesting IL stimulation
induces pyramidal neuron plasticity. Although, it remains to be
determined how this stimulation may regulate IL efferent activity.
Optogenetic modulation also permits synaptic stimulation,
which indicates output targets differentially influence behavioral
outcomes. For instance, Warden et al. stimulated male mPFC (IL
and PL) glutamatergic neurons without affecting FST behavior.
However, evoked glutamate release from mPFC terminals in
the dorsal raphe increased active coping, while projections to
the lateral habenula decreased active coping (Warden et al.,
2012). Taken together, these results indicate differing behavioral
outcomes from modulating male IL activity, likely relating to
the cellular specificity of interventions and/or the differential
engagement of output targets.

In line with regulating coping behavior, the IL also mediates
physiological responses to acute challenges. Viral-mediated
knockdown of male pyramidal neuron vesicular glutamate
transporter 1 (vGluT1) reduces glutamate release and increases
hypothalamic-pituitary-adrenal (HPA) axis, heart rate, and
blood pressure responses to restraint (Myers et al., 2017;
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TABLE 1 | Negatively valenced stimuli.

References Sex Species IL Manipulation Timing Stressor Outcome

McKlveen et al., 2013 Male Spraque-Dawley
rats

shRNA GR knockdown 5–6 weeks before
testing

FST and
restraint
stress (RS)

FST immobility ↑ RS
corticosterone ↑

Slattery et al., 2011 Male Spraque-Dawley
rats

Muscimol 10 min before
testing

FST Immobility ↓

Scopinho et al., 2010 Male Wistar rats CoCl2 synaptic
blockade

10 min before
testing

FST Immobility ↓

Pace et al., 2020 Male Spraque-Dawley
rats

siRNA vGluT1
knockdown

6 weeks before
testing

FST Immobility ↓

Fuchikami et al., 2015 Male Spraque-Dawley
rats

Ketamine and
muscimol
CaMKII-ChR2
stimulation: 15 ms,
10 Hz, 5 mW

24 h before
testing

FST Ketamine: immobility ↓
Ketamine + muscimol: no
change ChR2 stim: immobility ↓

Navarria et al., 2015 Male Spraque-Dawley
rats

Scopolamine and
muscimol

24 h before
testing

FST Scopolamine: immobility ↓

Scopolamine + muscimol: no
change

Hamani et al., 2010 Male Spraque-Dawley
rats

Electrical stimulation After first FST
and prior to
second FST

FST Immobility ↓

Shimizu et al., 2018 Male Spraque-Dawley
rats

Electrical stimulation During behavior EPM Open arm time ↑

Warden et al., 2012 Male Long-Evans rats CaMKII-ChR2
stimulation: 5 ms,
20 Hz, 10–20 mW

During behavior FST mPFC stim: no change mPFC
to DRN: immobility ↓ mPFC to
habenula: immobility ↑

Myers et al., 2017 Male Spraque-Dawley
rats

siRNA vGluT1
knockdown

6 weeks before
testing

RS ACTH ↑ Corticosterone ↑

Schaeuble et al., 2019 Male Spraque-Dawley
rats

siRNA vGluT1
knockdown

6 weeks before
testing

RS Heart rate ↑ Blood pressure ↑

Wallace et al., 2021 Male
and
Female

Spraque-Dawley
rats

CaMKII-ChR2
stimulation: 5 ms,
10 Hz, 3 mW

During behavior RS and novel
environment
(NE)

Males: RS: corticosterone and
glucose ↓ NE: heart rate and
blood pressure ↓ Females:
RS: glucose ↑ NE: heart rate ↑

IL effects on coping during acute stressors.

Schaeuble et al., 2019). Similarly, optogenetic stimulation of
male IL glutamatergic neurons reduces both corticosterone
and glucose responses to restraint stress, as well as heart
rate and blood pressure responses to a novel environment.
In contrast, optogenetic stimulation of female IL glutamate
neurons increases glucose responses to restraint and heart
rate reactivity to a novel environment (Wallace et al., 2021).
Collectively, these data suggest that male IL glutamatergic
neurons are both necessary and sufficient to reduce autonomic
and neuroendocrine responses to stress, while female IL
glutamate neurons facilitate stress reactivity. It remains to be
determined what mechanisms account for sex differences in IL
function. While IL c-Fos expression following FST is similar
in males and females, males have greater activation following
acute restraint, suggesting differences in stress reactivity may be
stimuli-specific (Sood et al., 2018). Further, ovarian hormones
may be involved as lateral ventricle infusion of corticotrophin
releasing hormone leads to negative correlations between IL
c-Fos expression and grooming behavior in both male and
diestrus female rats. However, IL activity positively associates
with grooming in proestrus females (Wiersielis et al., 2016).
Overall IL neural populations signal distinct aspects of stressors,

while male IL glutamatergic neural activity constrains the
physiological stress response and bidirectionally regulates coping
style depending upon projection sites. In contrast, female IL
glutamatergic neural activity facilitates the physiological stress
response and divergent IL responses to stressors may relate to
ovarian hormone signaling.

POSITIVE VALENCE: REWARD

The IL has a prominent role in coordinating context-appropriate
reward-seeking behaviors (Table 2). Pharmacological inhibition
of the male rat IL with combined GABAA and GABAB
agonists reduces inhibitory control in a food reward-seeking
task (Capuzzo and Floresco, 2020), as well as extinction and
renewal of context-conditioned food reward (Eddy et al.,
2016). Moorman and Aston-Jones (2015) used a similar
pharmacological approach and found that IL inhibition reduces
both lever presses to a reward-associated stimulus and extinction
of reward-seeking after the stimulus is no longer paired with
reward. Furthermore, male IL multiunit potential recordings
found that putative pyramidal neurons heterogeneously respond
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(significantly increase or decrease activity) to cue-evoked reward-
seeking and extinction (Moorman and Aston-Jones, 2015).
Additionally, male IL neurons have prolonged firing in response
to rewarded but not unrewarded operant responses and IL
inhibition increases the latency to reward acquisition (Burgos-
Robles et al., 2013). IL pyramidal neuron regulation of midbrain
dopamine signaling may be important for effects on reward
and motivation. Ferenczi et al. utilized a stable-step function
opsin (SSFO) to optogentically increase male IL glutamate
neuron excitability and found reduced sucrose preference.
In females, the SSFO approach also reduces the rewarding
quality of ventral tegmental area stimulation in a real-time
place preference assay (Ferenczi et al., 2016), suggesting IL
inhibition of dopamine signaling may contribute to anhedonia.
In contrast, SSFO-induced increases in the excitability of
IL GABAergic/vasoactive intestinal peptide (VIP)-expressing
interneurons reduces high-calorie palatable food consumption
without impacting food reward motivation or low-calorie chow
intake (Newmyer et al., 2019). Overall, these studies indicate
that male IL neurons signal multiple aspects of food reward
acquisition, including contextually-appropriate reward-seeking
and behavioral inhibition. Although, specific IL cell populations
likely have opposing effects on hedonic feeding.

Fewer publications have investigated the role of the female
rodent IL in reward seeking and motivational behaviors. To
date, evidence suggests that the female IL may have more
limited involvement in reward processing and positive affect.
For instance, optogenetic activation of the glutamatergic IL to
nucleus accumbens shell (NAcSh) pathway following conditioned
taste aversion reduces aversive taste reactivity in males but
not females. However, both sexes lever press for IL-NAcSh
stimulation and a prior history of IL-NAcSh stimulation increases
sucrose preference in males and females (Hurley and Carelli,
2020). Further, optogenetic stimulation of IL glutamatergic
neurons induces a real-time place preference in males without
affecting place preference or aversion in females, suggesting a
positive valence to IL glutamatergic activity in males but not
females (Wallace et al., 2021). These studies collectively indicate
that, in males, IL activity is necessary for contextual appraisal
during reward acquisition and that glutamatergic activity has
positive valence. In contrast, current evidence suggests that
female IL glutamatergic activity does not affect place preference
or conditioned aversion, although activity in specific projections
may be rewarding.

SOCIAL BEHAVIOR

Reduced sociability is a common symptom of mood disorders.
Additionally, decreased motivation for social interaction further
worsens the course of depressive illness (Kupferberg et al.,
2016). Consequently, determining how neural circuits encode
and regulate social behavior is a critical area for investigation.
Growing evidence indicates that male IL neural output
regulates the affective and motivational processes that underly
social interaction (Table 3), possibly through descending
limbic integration (Vertes, 2004; Wood et al., 2018). Indeed,

pharmacological inactivation of the IL reduces both the
frequency and duration of social play in adolescent male
rats (Van Kerkhof et al., 2013). Furthermore, Minami et al.
(2017) conducted electrical recordings of IL activity during
social behavior and found that male IL neurons increase firing
during the termination of social behavior, an effect absent
in isolation-reared rats suggesting experience-dependent social
encoding. SSFO enhancement of male IL glutamatergic neuron
excitability reduces social interaction with a juvenile interactor
(Ferenczi et al., 2016). In contrast, acute optogenetic stimulation
of male IL glutamate neurons increases conspecific social
motivation (Wallace et al., 2021), providing further evidence for
contextual factors impacting IL-mediated behaviors. Increasing
the excitability of male IL GABAergic VIP interneurons reduces
novel social investigation, as well as novel object interactions
(Newmyer et al., 2019). Other interneuronal investigations
examined GABAergic parvalbumin (PV) neurons in the male
and female mouse mPFC and found that PV neural activity
increases in both sexes during social interactions compared to
novel object interactions, a phenotype missing in the CNTNAP2
knockout autism model. Further, SSFO-increased excitability of
PV interneurons rescues social deficits in the CNTNAP2 model,
without impacting sociability in wildtype mice (Selimbeyoglu
et al., 2017). Ultimately, these studies highlight the need to further
investigate how specific interneuronal populations within the
mPFC differentially encode and modulate social behavior.

Currently, evidence suggests the female IL may have a
different role in social behavior. Optogenetic stimulation of IL
glutamatergic neurons does not alter female social motivation
or social novelty prefrence (Wallace et al., 2021). Further, the
female IL appears to be less responsive to social interaction
with conspecifics as female rats have less c-Fos expression
compared to males after social interaction (Mikosz et al.,
2015). Moreover, male rats have greater c-Fos responses to a
previously-stressed interactor than an unstressed conspecific, an
effect that does not occur in females. This sex difference may
be independent of ovarian hormones as both intact cycling
females and ovariectomized (OVX) females have similar IL
c-Fos following social interaction (Mikosz et al., 2015). However,
specific projection-defined IL neurons are necessary for social
motivation. Huang et al. (2020) chemogenetically inactivated
female basolateral amygdala-projecting IL neurons and abolished
social preference in a 3-chamber social test. Overall, the data
suggest that the male IL is more responsive to conspecific social
interaction and that increasing male IL glutamatergic activity can
bidirectionally modulate social motivation, dependent upon the
method of stimulation, while interneuron stimulation produces
opposing effects. Additionally, the female IL has less neural
activity than males after conspecific interaction and stimulation
of female IL glutamate neurons does not alter sociability.
Although, amygdala-projecting female IL neurons are necessary
for social preference.

While the female IL may be less involved in conspecific
interaction, Pereira and Morrell (2020) demonstrated that
the IL plays a critical role in maternal behaviors. Using a
conditioned place preference paradigm, new mother rats spend
equivalent time in chambers associated with cocaine reward
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TABLE 2 | Positively valenced stimuli.

References Sex Species IL manipulation Timing Reward Outcome

Eddy et al., 2016 Male Wistar rats Baclofen/muscimol 30–45 min
before testing

Food pellet Response in rewarding
condition ↓ Response in
extinct condition ↑

Capuzzo and Floresco,
2020

Male Long-Evans rats Baclofen/muscimol 10 min before
testing

Sucrose pellet Inhibitory trial success ↓

Moorman and
Aston-Jones, 2015

Male Sprague-Dawley
rats

Electrical recording
Baclofen/muscimol

Immediately
prior

Sucrose Recording: IL neural activity
during sucrose acquisition
↑ Baclofen/muscimol:
Lever press for reward ↓
Extinction ↓

Anthony
Burgos-Robles et al.,
2013

Male Sprague-Dawley
rats

Electrical recording
Muscimol

30 min before
testing

Sucrose pellet Recording: IL neural activity
during sucrose acquisition
↑ Muscimol: Reward
collection latency ↑

Ferenczi et al., 2016 Male and
Female

Male:
Sprague-Dawley
rats Female:
Long-Evans
TH-ChR2 rats

Male: CaMKII-SSFO:
continuous, 4× over 6 h
testing Female:
CaMKII-SSFO: continuous

During behavior Male: Sucrose
Female:
Dopamine
stimulation

Males: Sucrose preference
↓ Females: Preference for
dopamine stimulation ↓

Newmyer et al., 2019 Male VIP-Cre transgenic
mice

Cre-dependent SSFO:
continuous

5 min before
testing

Palatable
high-calorie diet

Palatable food intake ↓

Hurley and Carelli, 2020 Male and
Female

Sprague Dawley
rats

IL-NAcSh CamKII-ChR2
stimulation: 5 s, 20 Hz, 10
mW

During behavior Sucrose and
stimulation

Males but not females:
Aversive taste response ↓
Both sexes: Respond for
stimulation ↑

Wallace et al., 2021 Male and
Female

Spraque-Dawley
rats

CaMKII-ChR2 stimulation:
5 ms, 10 Hz, 3 mW

During behavior Real-time place
preference

Males: Time in stimulation
side ↑ Females: No
preference

IL effects on reward behavior.

TABLE 3 | Social behavior.

References Sex Species IL manipulation Timing Test Outcome

Van Kerkhof et al., 2013 Male Wistar rats Baclofen/muscimol 5 min before
testing

Free interaction Social play ↓

Minami et al., 2017 Adolescent
Male

Spraque-Dawley
rats

Electrical recordings During behavior Free interaction IL neural activity during
interaction termination ↑

Ferenczi et al., 2016 Male Sprague-Dawley
rats

CaMKII-SSFO: continuous,
4× during testing

2 days prior
and on testing
day

Male juveline in
homecage

Social interaction ↓

Selimbeyoglu et al.,
2017

Male and
Female

PV-Cre C57BL/6J
mice

Border of IL and PL
GCaMP6f photometry

During behavior Free interaction Both sexes: PV neural
activity during social
interaction ↑

Newmyer et al., 2019 Male VIP-Cre transgenic
mice

Cre-dependent SSFO:
continuous

5 min before
testing

Conspecific in
homecage

Social interaction ↓

Wallace et al., 2021 Male and
Female

Spraque-Dawley
rats

CaMKII-ChR2 stimulation:
5 ms, 10 Hz, 3 mW

During behavior 3-chambered
social test

Males: Social motivation
↑ Females: No change

Huang et al., 2020 Female C57BL/6J mice Cre-dependent inhibitory
DREADD hM4Di in IL
CAV2-Cre in BLA

CNO 30 min
before testing

3-chambered
social test

Social preference ↓

Pereira and Morrell,
2020

Female Sprague Dawley
rats

Bupivacaine hydrochloride 5 min before
testing

Pup-associated
conditioned
preference

Time in pup-associated
zone ↓ Pup retrieval ↓

IL effects on social behavior.

and pups. However, blockade of sodium conductance in the
female IL leads to an exclusive preference for the cocaine-
paired chamber. Furthermore, IL inactivation reduces maternal

behaviors including nest building and retrievals. In fact, none
of the IL-inactivated mothers fully retrieved all pups, while all
vehicle-treated females did (Pereira and Morrell, 2020). Further,
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histological evidence indicates that the female IL shows greater
activation following exposure to newborns than juvenile pups
(Pose et al., 2019). Thus, the female IL may be more tuned to
facilitate pup rearing than conspecific social interactions.

GONADAL HORMONE INFLUENCES

The impact of gonadal hormones on neural activity may
contribute to sexually divergent IL function. Gonadal hormones
influence circuit regulation through both organizational effects
in development as well as activational effects in adulthood.
The importance of gonadal hormones for mPFC development,
synapse formation, and pruning has been recently reviewed
(Premachandran et al., 2020; Delevich et al., 2021). In adult
rodents, estrogen receptors α and β (ERα and ERβ) are present
in the male rodent mPFC (Figure 1), distributed broadly across
cortical layers in both pyramidal and non-pyramidal putative
interneurons (Montague et al., 2008). Further, ultrastructural
analysis found ERα, ERβ, and G protein-coupled estrogen
receptor 1 (GPER1) in the female mPFC. Interestingly, GPER1
is expressed at over twice the levels of ERα and ERβ, suggesting a
significant fast-acting component to ER signaling (Almey et al.,
2014). Moreover, ER localization is largely extranuclear, with
most receptors located axonally (Almey et al., 2014). Growing
evidence suggests that ER signaling plays an important role
in mPFC regulation of female behavior. For instance, 17β-
estradiol (E2) localized to the female PL/IL junction shifts the
cognitive strategy used for maze navigation (Almey et al., 2014).
Further, ERα and ERβ agonist treatment in diestrus females
potentiates the antidepressant-like effect of ketamine (Dossat
et al., 2018). Recent evidence from OVX females also indicates
that E2 increases the excitability of IL pyramidal neurons
in slice and enhances extinction of reward-seeking (Yousuf
et al., 2019). While more research is needed to determine the
mechanisms by which estrogens regulate prefrontal function,
these studies suggest that cyclic fluctuations in intrinsic network
activity impact depression-related behaviors. Considerably less
is known about the effects of cortical progesterone signaling.
The female rodent frontal cortex expresses both progesterone
receptor a (PRa) and b (PRb), with PRb levels decreasing
during estrus (Guerra-Araiza et al., 2003). Although there are
no reports, to our knowledge, of PR expression in males,
repeated progesterone administration increases GABAA receptor
subunit α1 expression in the mPFC of both sexes (Andrade
et al., 2012). Thus, cyclic increases in progesterone likely affect
mPFC E/I balance.

Androgens may also play a role in IL functional differences
as androgen receptors (AR) are expressed in the frontal
cortex of male and female rodents (DonCarlos et al., 2006).
Expression is higher in males than females and current evidence
indicates little to no astrocyte expression, though this could
be age-dependent (Feng et al., 2010). Further, AR expression
in midbrain-projecting neurons suggests putative pyramidal
expression (Aubele and Kritzer, 2012; Low et al., 2017). In
addition, androgens regulate dopamine (DA) inputs to the male
rodent mPFC. Orchiectomy increases DA axonal density and

extracellular DA levels within the mPFC, an effect reversed by
testosterone administration (Kritzer, 2003; Aubele and Kritzer,
2012). Further, a large portion of ventral tegmental area-
projecting IL neurons express AR. Taken together, these results
suggest a bidirectional interaction between androgen signaling
and mesocortical DA circuitry that may influence IL network
excitability as well as mood and behavior. Further evidence
for gonadal hormone regulation of mPFC activity comes from
studies indicating that androgens and estrogens have opposing
effects on mPFC metabolism of DA, norepinephrine, and
serotonin during a novel environment stressor (Handa et al.,
1997). Collectively, this evidence suggests gonadal hormones
modify IL function. Due to the widespread expression of these
receptors in mPFC cell populations and varied actions on
neural activity, considerable work remains to understand how
hormonal fluctuations across the lifespan impact prefrontal
network function.

CHRONIC STRESS IMPACTS

The two greatest predictors of depressive outcomes are
cumulative lifetime traumas and severe life stressors (Cassileth
et al., 1984), indicating that the neural consequences of
repeated or severe stress dictate disease burden. Mood-
related symptoms, including negative affect, anhedonia, despair,
and social withdrawal, are also frequently initiated and/or
exacerbated by prolonged stress (Kennedy and Adolphs, 2012;
Lupien et al., 2009). Accordingly, chronic stress exposure has
been a primary preclinical paradigm for studying depression and
mood disorders in animal models. In recent years, there has been
growing interest in the sexual basis of chronic stress impacts
on limbic structures. Multiple excellent reviews have covered
the topic in-depth (McLaughlin et al., 2009; Bourke et al., 2012;
Shansky and Woolley, 2016; Shors, 2016; Shepard and Coutellier,
2018; Fogaça and Duman, 2019; Moench et al., 2019; Page and
Coutellier, 2019). Here, we review IL-specific effects.

Chronic stress-induced IL pyramidal neuron dendritic
hypotrophy has been consistently reported in male rodents,
though this varies based on projection targets (Cerqueira et al.,
2005; Goldwater et al., 2009; Shansky et al., 2009; Luczynski et al.,
2015; Czéh et al., 2018). Further, measurement of the long-term
activation marker 1FosB indicates the male IL is responsive to
chronic stress exposure, an effect not present in other frontal
regions such as the anterior cingulate or orbital cortices (Flak
et al., 2012; Pace et al., 2020). However, studies of chronic stress
effects on male IL glutamatergic excitability have yielded mixed
results, contributing to opposing hypothesis of either hyper- or
hypo-inhibition. McKlveen et al. (2016) found that IL pyramidal
neurons of male rats exposed to a 2-week variable stress paradigm
had increased inhibitory currents and more GABAergic synaptic
appositions, suggesting increased inhibition of IL glutamatergic
neurons. GR was also reduced specifically in PV interneurons
(McKlveen et al., 2016), pointing to the importance of
glucocorticoid feedback for regulating local inhibition. In support
of hyper-inhibition, chemogenetic inhibition of male mouse IL
PV interneurons during CVS reduces passive coping in FST
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FIGURE 1 | Gonadal hormone receptor expression in infralimbic cortex (IL) cell types. Depiction of gonadal hormone receptor expression and localization. Filled
symbols indicate evidence for expression in the cell type and cellular compartment. Empty symbols denote lack of information as to the presence or absence of the
receptor. Progesterone receptor cell-type specifity has not been reported. Androgen Receptor (AR), Progesterone Receptor A (PRa), Progesterone Receptor B
(PRb), Estrogen Receptor α (ERα), Estrogen Receptor β (ERβ), G protein-coupled estrogen receptor 1 (GPER1). #AR expression is higher in males than females.
*PRa, PRb, and GPER1 expression has only been reported in females. Created with BioRender.com.

(Nawreen et al., 2020). Furthermore, chronic stress increases
GAD67 mRNA in the male mouse IL (Shepard et al., 2016).
Additionally, 3 weeks of daily restraint stress in male mice
increases dendritic arborization of GAD67-positive interneurons
but reduces GAD67-positive somas (Gilabert-Juan et al., 2013). In
support of hypo-inhibition, Czéh et al. (2018) found reductions
in both IL interneuron populations and inhibitory currents in
an anhedonic subpopulation of male rats exposed to 9 weeks
of variable stress (Czéh et al., 2018). Similarly, 3 weeks of
chronic unpredictable stress reduces GAD67 mRNA in male
rats, although vGluT1 mRNA is also reduced (Ghosal et al.,
2020). Thus, there are data to support both increased and
decreased inhibition of male IL pyramidal neurons after chronic
stress. Multiple factors including differences in methodology,
stress paradigms, and temporal factors may contribute to the
discrepant findings. Further, how these post-mortem changes
affect neural network activity and behavioral outcomes remains

to be determined. In vivo, electrophysiology studies indicate
male IL neurons increase firing during a shock-predicting cue;
however, this effect is not present after repeated stress (Wilber
et al., 2011). Taken together, chronic stress reduces male IL
glutamatergic dendritic complexity and spine density, yet the
chronic stress effects on inhibitory neural populations are mixed
and have yet to reach a consensus.

Numerous female studies suggest that estrogen may be
protective against chronic stress effects on IL function. Though
not specific to the IL, Wei et al. (2014) found that repeated
restraint stress reduced mPFC miniature excitatory postsynaptic
current (mEPSC) amplitude and frequency in males but not
females. The decreased excitability was accompanied by a
male-specific reduction in glutamate receptor surface proteins.
However, ER antagonism in females unmasked stress effects
on mEPSC frequency and glutamate receptors, suggesting ER
prevents excitatory hypofunction following stress. Intriguingly,
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estrogen delivery in males is sufficient to prevent stress effects
on mEPSC amplitude and frequency, as well as partially
restore glutamate receptor surface protein expression (Wei
et al., 2014). Moreover, female IL neurons generally do not
show stress-induced dendritic remodeling. However, female
IL pyramidal neurons projecting to the basolateral amygdala
have estrogen-dependent increases in dendritic branching after
repeated restraint stress (Shansky et al., 2010). Further, repeated
stress increases spine density in this projection regardless
of estrogen treatment (Shansky et al., 2010). Others have
reported sex-specific effects of chronic variable stress based
on IL projection target. Here, chronically-stressed female mice
have increased EPSCs in the IL-NAc projection, while males
have greater loss of dendritic complexity in VTA-projecting
IL neurons. Additionally, chemogenetic inhibition of NAc-
projecting IL neurons rescues chronic stress-induced behaviors
only in females (Bittar et al., 2021). In contrast to pyramidal
cells, PV interneurons appear to be more stress susceptible in
females than males. Female IL PV mRNA increases following
2 weeks of daily stress exposure, with a further increase at
4 weeks. Females at 4 weeks also have increased PV neuron
density and reduced IL c-Fos expression following open-field,
effects that are absent in males (Shepard et al., 2016). However,
both male and female mice have increased c-Fos in PV cells (Page
et al., 2019), indicating increased interneuron activity. Although,
chemogenetic activation of IL PV interneurons induces anxiety-
like behavior only in females. Overall, these results indicate that
estrogen is protective for female IL glutamatergic neurons, sex
differences in chronic stress effects are projection-dependent, and
interneuron populations are more susceptible to chronic stress
in females.

CONCLUSION

The increased attention on females in preclinical research
and the rapid development of neurobiological techniques with
enhanced genetic and temporal specificity have isolated sex-
specific regulatory roles of IL neural populations. Manipulations
that induce long-term changes in pyramidal E/I balance
(SSFO-mediated hyperexcitability or lentiviral knockdown of

glutamate release) can lead to divergent and sometimes
contradictory behavioral outcomes. However, acutely increasing
activity of IL glutamate neurons regulates numerous stress
coping, motivational, and social behaviors in male rodents.
The aggregate data suggest these cells promote active coping,
context-appropriate reward-seeking, motivation, and sociability.
Although, specific projections may have differing or even
opposing actions. Less work has examined stress coping in
females, but IL glutamate neurons have sexually divergent effects
on physiological stress responses. Female IL pyramidal neurons
may also play a smaller role in reward-seeking and motivational
behaviors. In terms of sociability, the female IL seems less
involved in conspecific interactions, with significant involvement
in maternal behaviors. Many of these differences may be mediated
by gonadal hormone signaling in different components of the IL
neural and glial network. Generally, estrogens seem to protect
glutamate neurons from the effects of chronic stress while
androgens modulate cortical dopamine function. The sex-specific
functions of the numerous IL interneuron subtypes remain
to be determined. Further, the effects of chronic stress on IL
cellular excitability are mixed for both sexes. Ultimately, complex
interactions between sex and stress impact many aspects of
vmPFC local networks and, consequently, brain-wide synaptic
signaling. Determining the mechanistic basis of E/I balance
in these cell groups is likely to significantly push forward
our understanding of mood disorders and identify sex-specific
treatment options to improve health outcomes.
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Depression is a major neuropsychiatric disorder, decreasing the ability of hundreds
of millions of individuals worldwide to function in social, academic, and employment
settings. Beyond the alarming public health problem, depression leads to morbidity
across the entire age including adolescence and adulthood. Modeling depression in
rodents has been used to understand the pathophysiological mechanisms behind this
disorder and create new therapeutics. Although women are two times more likely to
be diagnosed with depression compared to men, behavioral experiments on rodent
models of depression are mainly performed in males based on the assumption that the
estrous cycles in females may affect the behavioral outcome and cause an increase
in the intrinsic variability compared to males. Still, the inclusion of female rodents in
the behavioral analysis is mandatory to establish the origin of sex bias in depression.
Here, we investigated the baseline depression-like behaviors in male and female mice
of three adolescent wild-type inbred strains, C57BL/6N, DBA/2, and FVB/N, that are
typically used as background strains for mouse models of neuropsychiatric disorders.
Our experiments, performed at two different developmental stages during adolescence
(P22–P26 and P32–P36), revealed strain but no sex differences in a set of depression-
related tests, including tail suspension, sucrose preference and forced swim tests.
Additionally, the 10-day interval during this sensitive period uncovered a strong impact
on the behavioral outcome of C57BL/6N and FVB/N mice, highlighting a significant
effect of maturation on behavioral patterns. Since anxiety-related behavioral tests are
often performed together with depression tests in mouse models of neuropsychiatric
disorders, we extended our study and included hyponeophagia as an anxiety test.
Consistent with a previous study revealing sex differences in other anxiety tests in
adolescent mice, male and females mice behaved differently in the hyponeophagia test
at P27. Our study gives insight into the behavioral experiments assessing depression
and stresses the importance of considering strain, age and sex when evaluating
neuropsychiatric-like traits in rodent models.

Keywords: depression, sex differences, tail suspension test, sucrose preference test, forced swim test,
hyponeophagia test
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INTRODUCTION

Depression is a long-lasting heterogeneous neuropsychiatric
disorder and one of the most common mental diseases, which
places a significant economic burden on public health and
decreases individuals’ quality of life (Wittchen et al., 2011; Lim
et al., 2012; Murray et al., 2013; Whiteford et al., 2013). It
affects approximately 4.4% of the world’s population with an
incidence rate above the rate of global population growth (Flux
and Lowry, 2020). The symptoms include sadness, helplessness,
guilt and loss of appetite, sexual desire, and interest in activities
that once were pleasurable (for at least 2 weeks) along with
recurrent thoughts of suicide (McCarter, 2008; American-
Psychiatric-Association [APA], 2013). Because of the unique
and complex features in addition to the subjective symptoms
of human depression, the generation of valid and insightful
depression models for the development of new therapeutic
drugs is not straightforward. Still, different rodent models
have shown high face validity to human depression and are
used in preclinical studies. These depression-like behaviors can
be induced in rodents by several means including genetic,
environmental, chemical and pharmacological manipulation and
brain lesions [for recent reviews, see (Flux and Lowry, 2020;
Becker et al., 2021)]. Several tests are usually performed to
assess distinct components of depression in rodent models. For
example, the tail suspension and forced swim tests measure
despair, the splash test measures apathy, while the sucrose
preference test evaluates anhedonia (Eltokhi et al., 2018; Becker
et al., 2021). Additionally, tests that measure anxiety including
open field, elevated plus maze and light/dark compartment are
often performed complementary to depression tests for the full
characterization of rodent models of neuropsychiatric disorders
(Belovicova et al., 2017).

The prevalence and clinical characteristics of depression differ
between women and men with women suffering from depression
nearly twice as frequently as men during lifetime, independently
of race or ethnicity (Weissman and Klerman, 1977; Cyranowski
et al., 2000; Andrade et al., 2003; Ford and Erlinger, 2004; Patten
et al., 2006; Bromet et al., 2011; Salk et al., 2017). However,
male rodent models have traditionally been used in genetic and
pharmacological studies of depression. Performing behavioral
experiments on male rodents is linked to the assumption of
estrous-linked changes in the baseline behavioral activity in
females. This concern may require testing female rodents at
each of the four stages of the estrous cycle to generate reliable
data, which may complicate the experimental design. On the
other hand, neglecting the sex difference in depression-related
experiments may provoke false interpretations of the results
and prevents a successful translation of experimental data into
the clinic. Thus, it is essential incorporating female rodents
in behavioral, molecular and electrophysiological analyses to
decipher the biology behind the sex bias of depression as a
prerequisite for improving therapeutics. Unfortunately, so far,
rodent models have yielded inconsistent results in different
studies and often reported more depression-like symptoms
in males than females (Kokras et al., 2009; Dalla et al.,
2010; Barkus, 2013; Van den Hove et al., 2013; Najjar et al.,

2018; Becker et al., 2021). By standardization of behavioral
experiments and by taking into consideration factors that affect
behavioral outcomes, the variability in results on sex differences
can be likely reduced. Additionally, the sex differences of
depression rodent models may also be induced by differences
in the general performance and baseline activity of male and
female wild-types in depression-related behavioral tests. To test
these hypotheses, we investigated the baseline depression-like
behaviors of both male and female wild-type mice in three
standard behavioral tests, tail suspension, sucrose preference
and forced swim tests. We performed our analysis in three
inbred strains, C57BL/6N, DBA/2, and FVB/N, well-established
to affect the behavioral outcome (McFadyen et al., 2003; Brooks
et al., 2005; Moy et al., 2007; Peleh et al., 2019; Eltokhi et al.,
2020, 2021), and typically used as background strains in mouse
models of neuropsychiatric disorders. Furthermore, although
behavioral studies are frequently performed in adult mice taking
the advantage of easy handling and complex behaviors, we
performed our analysis at two different developmental stages
during adolescence since the onset of neuropsychiatric symptoms
emerges mainly during adolescence, with more than 50% of
adults with neuropsychiatric disorders receiving a diagnosis
before 15 years of age (Kim-Cohen et al., 2003; Paus et al., 2008).
Because behavioral results are known to be sensitive to small
developmental progress during adolescence (Peleh et al., 2019;
Eltokhi et al., 2020), we compared the results of these behavioral
experiments between these two developmental stages in mice
differing only by a few days in age.

Our work indicates that the performance of mice in
depression-related behavioral tests during adolescence is mainly
strain and age dependent with no obvious effect of sex. This
outlines the drawbacks of using an individual strain in genetic
and pharmacological studies of depression and highlights the
benefits of using adolescent mice in characterizing rodent models
of depression, which may reduce inconsistency of results between
different laboratories.

MATERIALS AND METHODS

Animals and Housing Conditions
Animals and housing conditions were similar to our previous
studies (Eltokhi et al., 2020, 2021). The experiments were
conducted in strict compliance with national and international
guidelines for the Care and Use of Laboratory Animals. The
behavioral analysis was carried out following the ARRIVE
guidelines and was approved by the animal ethic committee
of the (Regierungspräsidium Karlsruhe) Government of Baden
Württemberg (G-101/16).

Experimental Design and Groups
Depression and anxiety-related behavioral tests were carried out
during the daylight cycle starting at 7 a.m. Mice were habituated
to the behavioral room for half an hour before the start of the
tests. We analyzed the depression-like behaviors in 2 cohorts
of group-housed mice of both sexes with one cohort starting
at P22 till P26 and the second starting at P32 till P46. The
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TABLE 1 | Mouse cohorts, number and age of the adolescent mice used in the behavioral test battery.

Cohorts Strains Mice (#) Behavioral test at postnatal day (P#)

Male ♂ Female ♀

P22–26 C57BL/6N
DBA/2
FVB/N

11
11
7

7
12
14

Tail suspension (P22)
Sucrose preference (P22–25)

Forced swim (P26)

P32–36 C57BL/6N
DBA/2
FVB/N

10
9
7

14
9

11

Tail suspension (P32)
Sucrose preference (P32–35)

Forced swim (P36)

P27 C57BL/6N
DBA/2
FVB/N

7
11
6

8
12
6

Hyponeophagia test

P37 C57BL/6N
DBA/2
FVB/N

15
5
7

10
6

11
Hyponeophagia test

number of mice per cohort and the type of the behavioral
experiments are listed (Table 1). The tail suspension test was
the first test to be applied to each cohort. Starting the same
day, we performed the sucrose preference test for 4 consecutive
days. On day 5 the forced swim test was performed. For the
anxiety-related hyponeophagia test, two other cohorts of mice
were tested at P27 and P37.

The Behavioral Test Battery
The Tail Suspension Test
This test is useful in the screening of potential antidepressants
and assessing depression-like behaviors in mice (Can et al.,
2012). Each mouse was suspended to a rod by its tail with an
adhesive tape at 55 cm above the surface. The latency for the first
immobility and total immobility duration were measured during
6 min. An increased immobility duration or a reduced latency
to first immobility are indicative of a depression-like phenotype.
The test was videotaped and immobility time was analyzed by an
independent observer.

The Forced Swim Test
This test was first introduced as a behavioral test to screen
antidepressants (Porsolt et al., 1977; Porsolt, 1997). Mice were
placed into a glass cylinder (20 cm in height, 14 cm in diameter)
filled with water (24 ± 1◦C) to a level that allowed mice to
swim or float without their hind limbs or tails touching the
bottom of the cylinder. The behavior of mice was monitored
with the SYGNIS video tracker system (Sygnis Tracker 3) for
6 min and the immobility duration between 2 and 6 min was
measured. Immobility was defined as a lack of swimming with
only minimal movement of one hindlimb that was necessary to
keep the head above water.

The Sucrose Preference Test
On day 1, the test was performed at P22 or P32 on single-housed
mice in cages with two water bottles each. On the following day
(day 2), both bottles were removed and changed with a bottle
filled with water and a second one filled with a 1% sucrose
solution. Both bottles were weighed before placing them into the
cage. On day 3, bottles were weighed to determine the liquid

consumption during the previous 24 h. Bottles were then refilled
and weighed and placed into the cage with an alternated position
of the sucrose vs. water bottle to avoid place preference. On
day 4, bottles were weighed. The sucrose preference index was
calculated as the average consumed sucrose across the last 2-day
period divided by the average volume of total consumed liquid
(average water plus average sucrose solution).

The Hyponeophagia Test
The hyponeophagia test measures the reduction in feeding in
response to a novel environment and a portion of new food
or drink, since they induce anxiety, resulting in a delayed food
intake. Therefore, this test can be used for the assessment of
emotionality and anxiety. To perform the test, we followed the
protocol suggested by Deacon (2011) with minor modifications.
1 day prior to testing, food was rationed, and mice were given
small pellets of 1 g per mouse. A food well filled with 1:1 milk
diluted with water was placed under an inverted transparent
jar (15 cm diameter). The mouse was carefully placed under
the jar facing away from the food well. The latency to lick the
milk continuously for >2–3 s during 2 min was measured. After
finishing trial 1, the mouse was placed back into its home cage.
After 3 min in the home cage, the mouse was placed again under
the jar for another 2 min as trial 2, and the latency to lick the
milk was measured.

Statistical Analysis
Two-way ANOVA was used with sex and genotype as the two
factors. This was followed by Tukey’s post hoc test for multiple
comparisons to determine differences between the three strains
C57BL/6N, DBA/2, and FVB/N and Bonferroni correction to
check differences between males and females within each strain.
To compare the two developmental stages (P22–26) and (P32–
36) within each strain, two-way ANOVA was used with sex
and age as the two factors. A P value ≤ 0.05 was considered
statistically significant. To unravel the effect of the interaction
between strain, sex, and age, three-way ANOVA was performed
using a confidence interval of 95% and a tolerance of 0.0001.
A Pr(>F) less than 0.05 was considered statistically significant.
Statistical analysis was performed using GraphPad Prism 7 and
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FIGURE 1 | Baseline depression-like behaviors in P22–26 mouse cohort. (A) In the tail suspension test, C57BL/6N mice showed a significant increase in the
baseline immobility duration compared to both DBA/2 and FVB/N mice. Additionally, FVB/N mice showed a significant increase in the latency to first immobility
compared to both C57BL/6N and DBA/2 mice. (B) In the sucrose preference test, DBA/2 mice showed a lower sucrose preference index than both C57BL/6N and
FVB/N mice. (C) In the forced swim test, FVB/N mice showed lower immobility duration and increased latency to first immobility than C57BL/6N and DBA/2 mice.
C57BL/6N showed a decreased total traveled distance compared to DBA/2 and FVB/N mice. In (A–C), no sex difference was revealed within any of the
aforementioned strains. Blue and red dots represent males and females, respectively. Two-way ANOVA followed by Tukey post hoc test,*p ≤ 0.05, **p ≤ 0.01, and
***p ≤ 0.001. Error bars indicate the standard error of the mean (SEM).

Microsoft Office Excel including the XLSTAT software. The
respective numbers of male and female mice per cohort are
described in Table 1.

RESULTS

Baseline Depression-Like Behaviors in
P22–26 Mouse Cohort
In the first set of experiments, we tested the baseline depression-
like behaviors in the wild-type mice using three tests that are
well known to assess depression in rodent models. Both forced
swim (Porsolt et al., 1977; Porsolt, 1997) and tail suspension
tests (Steru et al., 1985) measure the immobility of rodents as an
indication of despair when they cannot escape from an aversive
situation. Additionally, we performed the sucrose preference test
as a reward-based test to assess anhedonia or decreased ability to
experience pleasure, as a core symptom of depression (Willner
et al., 1987; Papp et al., 1991).

We started our experiments by investigating the depression-
like behaviors in male and female mice from a very young cohort
(P22–P26). At P22, the tail suspension test revealed a significant
increase in the baseline immobility duration of C57BL/6N mice
compared to both DBA/2 and FVB/N mice (P < 0.0001 vs. DBA/2
and DBA/2; Figure 1A). Additionally, FVB/N mice showed
increased latency to first immobility compared to both C57BL/6N
and DBA/2 mice (P < 0.0001 vs. C57BL/6N, P = 0.007 vs.
DBA/2; Figure 1A). For the sucrose preference test, DBA/2 mice
showed an increased baseline anhedonia-like behaviors by having
a significantly decreased sucrose preference index compared to
both C57BL/6N and FVB/N mice (P < 0.0001 vs. C57BL/6N
and FVB/N; Figure 1B). In the forced swim test at P26, FVB/N
mice showed no immobility at all, and C57BL/6N mice showed
a significant decreased latency to first immobility and total
traveled distance compared to both DBA/2 and FVB/N mice
(Immobility duration: C57BL/6N vs. DBA/2: P = 0.78, C57BL/6N
vs. FVB/N: P = 0.004, DBA/2 vs. FVB/N: P = 0.015; Latency to
first immobility: C57BL/6N vs. DBA/2: P < 0.0001, C57BL/6N
vs. FVB/N: P < 0.0001, DBA/2 vs. FVB/N: P < 0.0001; Traveled
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distance: C57BL/6N vs. DBA/2: P = 0.001, C57BL/6N vs. FVB/N:
P < 0.0001, DBA/2 vs. FVB/N: P = 0.16; Figure 1C). Interestingly,
comparing the performance of male and female mice within each
strain revealed no significant difference in their behaviors in any
of the aforementioned tests (Table 2).

Baseline Depression-Like Behaviors in
P32–36 Mouse Cohort
Similar to the results at P22 (Figure 1A), the tail suspension test
at P32 revealed a significant increase in the baseline immobility
duration of C57BL/6N mice compared to both DBA/2 and
FVB/N mice (P < 0.0001 vs. DBA/2 and FVB/N; Figure 2A).
Additionally, C57BL/6N mice showed a significantly decreased
latency to first immobility compared to DBA/2 and borderline
decreased latency compared to FVB/N mice (P = 0.0001 vs.
DBA/2, P = 0.09 vs. FVB/N; Figure 2A). For the sucrose
preference test, DBA/2 mice showed an increased baseline
anhedonia-like behaviors by having a significantly decreased
sucrose preference index compared to both C57BL/6N and
FVB/N mice (P < 0.0001 vs. C57BL/6N and FVB/N; Figure 2B).
Moreover, FVB/N mice showed an increased sucrose preference
index compared to C57BL/6N mice (P < 0.0001). In the
forced swim test at P36, C57BL/6N mice showed an increased
immobility duration, a decreased latency to first immobility and
a decreased total traveled distance compared to both DBA/2
and FVB/N mice (Immobility duration: C57BL/6N vs. DBA/2:
P = 0.001, C57BL/6N vs. FVB/N: P < 0.0001, DBA/2 vs. FVB/N:
P = 0.73; Latency to first immobility: C57BL/6N vs. DBA/2:
P < 0.0001, C57BL/6N vs. FVB/N: P < 0.0001, DBA/2 vs.
FVB/N: P = 0.004; Traveled distance: C57BL/6N vs. DBA/2:
P < 0.0001, C57BL/6N vs. FVB/N: P < 0.0001, DBA/2 vs. FVB/N:
P = 0.09; Figure 2C). Similar to the P22–26 mouse cohort, the
P32–36 mouse cohort did not reveal a significant sex difference
in the depression-like behaviors in any of the aforementioned
tests (Table 2).

Comparison Between the P22–26 and
P32–36 Mouse Cohorts Within
C57BL/6N, DBA/2, and FVB/N Strains
To test whether the age difference of 10 days can affect the
baseline depression-like behaviors during adolescence, results
of the behavioral test battery were compared between the
two cohorts. In the tail suspension test, P32 C57BL/6N and
P32 FVB/N mice showed a significantly increased immobility
duration compared to P22 C57BL/6N and P22 FVB/N mice,
respectively (C57BL/6N: P < 0.0001, FVB/N: P < 0.0001;
Figure 3A). In contrast, P32 C57BL/6N and P32 FVB/N mice
showed a significantly decreased latency to first immobility
compared to P22 C57BL/6N and P22 FVB/N mice, respectively
(C57BL/6N: P = 0.0005, FVB/N: P = 0.0004). On the other hand,
no difference in the immobility duration (P = 0.17) or latency
to first immobility (P = 0.78) was found between P32 and P22
DBA/2 mice (Figure 3A). This discrepancy in the effect of age
on strain is evident by the significant Pr(>F) value in the three-
way ANOVA test [Strain∗Age: Pr(>F) < 0.0001 for both the
immobility duration and latency to first immobility] (Table 3).

For the sucrose preference test, FVB/N mice showed an
increased sucrose preference index in older compared to younger
mice with no effect of age on C57BL/6N and DBA/2 strains
(C57BL/6N: P = 0.96, DBA/2: P = 0.32, FVB/N: P < 0.0001;
Figure 3B), suggesting a sensitivity of the strain effect to mouse
age [Strain∗Age: Pr(>F) < 0.0001] (Table 3). In the forced swim
test, P36 C57BL/6N and P36 FVB/N mice showed a significantly
increased immobility duration compared to P26 C57BL/6N and
P26 FVB/N mice, respectively (C57BL/6N: P = 0.008, DBA/2:
P = 0.52, FVB/N: P = 0.002; Figure 3C). For the latency of the
first immobility, only P36 FVB/N mice showed a significantly
decreased latency to the first immobility compared to P26 mice
(P < 0.0001; Figure 3C). These results suggest different effects of
age on the behavioral outcome in the forced swim test depending
on which strain is used [Immobility duration: Strain∗Age:
Pr(>F) = 0.01], latency of the first immobility: Strain∗Age:
Pr(>F) = 0.004 (Table 3). In contrast, all three strains showed
a similar decrease in the traveled distance in older compared to
younger age (C57BL/6N: P < 0.0001, DBA/2: P = 0.04, FVB/N:
P = 0.04; Figure 3C), and suggesting no interaction between
strain and age [Strain∗Age: Pr(>F) = 0.785] (Table 3).

Anxiety-Related Hyponeophagia Test at
P27 and P37
Since anxiety-related behavioral tests are often performed
together with depression tests in mouse models of
neuropsychiatric disorders (Cryan and Mombereau, 2004;
Millstein and Holmes, 2007; Krishnan and Nestler, 2011; Jung
et al., 2014; Belovicova et al., 2017; Sokolowska et al., 2021), we
extended our study and investigated sex differences in an anxiety
test, the hyponeophagia test. Consistent with our previous study
revealing sex differences in other anxiety tests in adolescent
mice (Eltokhi et al., 2020), female C57BL/6N and DBA/2 mice
showed an increased latency to drink the diluted milk compared
to male mice at P27 (Trial 1: C57BL/6N: P = 0.006, DBA/2:
P = 0.041 FVB/N: P = 0.99; Trial 2: C57BL/6N: P = 0.014, DBA/2:
P = 0.027, FVB/N: P = 0.55; Figure 4A and Table 2). In contrast,
this sex effect was not present at P37, highlighting the effect of a
10-day interval effect on the behavioral outcome (Figure 4B and
Table 2). At both P27 and P37, no strain difference was found
in the latency to drink the diluted milk (P27 trial 1: C57BL/6N
vs. DBA/2: P = 0.75, C57BL/6N vs. FVB/N: P = 0.20, DBA/2 vs.
FVB/N: P = 0.44; P27 trial 2: C57BL/6N vs. DBA/2: P = 0.75,
C57BL/6N vs. FVB/N: P = 0.16, DBA/2 vs. FVB/N: P = 0.37; P37
trial 1: C57BL/6N vs. DBA/2: P = 0.95, C57BL/6N vs. FVB/N:
P = 0.23, DBA/2 vs. FVB/N: P = 0.24; P37 trial 2: C57BL/6N
vs. DBA/2: P = 0.62, C57BL/6N vs. FVB/N: P = 0.78, DBA/2 vs.
FVB/N: P = 0.33).

DISCUSSION

The global increased prevalence of depression in women
compared to men suggests that the differential risk is
highly dependent on biological sex differences rather than
race, culture or other potentially confounding social and
economic factors (Albert, 2015). As the onset of depression

Frontiers in Behavioral Neuroscience | www.frontiersin.org 5 October 2021 | Volume 15 | Article 75957434

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-15-759574 October 6, 2021 Time: 14:8 # 6

Eltokhi et al. Baseline Depression-Like Behaviors in Adolescent Mice

TABLE 2 | List of the P values of the comparison between male and female mice of C57BL/6N, DBA/2, and FVB/N strains in the behavioral test battery.

C57BL/6N DBA/2 FVB/N C57BL/6N DBA/2 FVB/N

P22–26 cohort P32–36 cohort

Tail suspension test: Immobility duration 0.979 0.087 >0.999 0.160 >0.999 >0.999

Tail suspension test: Latency to immobility >0.999 0.470 >0.999 >0.999 >0.999 0.321

Sucrose preference index >0.999 >0.999 >0.999 >0.999 >0.999 >0.999

Forced swim test: Immobility duration 0.117 0.422 >0.999 0.401 >0.999 >0.999

Forced swim test: Latency to immobility 0.243 >0.999 >0.999 >0.999 >0.999 >0.999

Forced swim test: Total traveled distance >0.999 >0.999 >0.999 0.581 0.996 >0.999

P27 cohort P37 cohort

Hyponeophagia test trial 1: Latency to drink 0.006 0.041 >0.999 >0.999 >0.999 >0.999

Hyponeophagia test trial 2: Latency to drink 0.014 0.027 0.550 >0.999 0.721 >0.999

The italic indicates significant results.

FIGURE 2 | Baseline depression-like behaviors in P32–36 mouse cohort. (A) In the tail suspension test, C57BL/6N mice showed a significant increase in the
baseline immobility duration compared to both DBA/2 and FVB/N mice. C57BL/6N mice showed a significantly decreased latency to first immobility compared to
DBA/2 and borderline decreased latency compared to FVB/N mice. (B) In the sucrose preference test, DBA/2 mice showed an increased baseline anhedonia-like
behaviors by having a significantly decreased sucrose preference index compared to both C57BL/6N and FVB/N mice. Moreover, FVB/N mice showed an increased
sucrose preference index compared to C57BL/6N mice. (C) In the forced swim test, C57BL/6N mice showed an increased immobility duration, a decreased latency
to first immobility and a decreased total traveled distance compared to both DBA/2 and FVB/N mice. In (A–C), no sex difference was revealed within any of the
aforementioned strains. Blue and red dots represent males and females, respectively. Two-way ANOVA followed by Tukey post hoc test, **p ≤ 0.01, ***p ≤ 0.001.
Error bars indicate the standard error of the mean (SEM).

in women peaks in their reproductive years, the increased
prevalence of depression may be explained in part by sex
hormones. Indeed, the female hormonal fluctuation during
puberty, menstruation, pregnancy, and menopause is a

trigger for depression (Albert, 2015). The risk of depression
increases during the perimenopausal transition (Cohen et al.,
2006), with hormone replacement therapy being effective
in the prevention of postmenopausal depression in women
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FIGURE 3 | Comparison between the P22–26 and P32–36 mouse cohorts within C57BL/6N, DBA/2, and FVB/N strains. (A) In the tail suspension test, P32
C57BL/6N and P32 FVB/N mice showed a significantly increased immobility duration and decreased latency to first immobility compared to P22 C57BL/6N and P22
FVB/N mice, respectively. (B) In the sucrose preference test, FVB/N mice showed an increased sucrose preference index in older compared to younger mice with no
effect of age on C57BL/6N and DBA/2 strains. (C) In the forced swim test, P36 C57BL/6N and P36 FVB/N mice showed a significantly increased immobility duration
compared to P26 C57BL/6N and P26 FVB/N mice, respectively. For the latency to the first immobility, only P36 FVB/N mice showed a significantly decreased
latency to the first immobility compared to P26 mice. For the total traveled distance, all three strains showed a decreased traveled distance in older compared to a
younger age. Two-way ANOVA followed by Tukey post hoc test,*p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001. Error bars indicate the standard error of the mean (SEM).

(Gordon and Girdler, 2014). Androgens seem to have anxiolytic
properties whereas estrogens receptors (ER) activation has
opposite consequences with ERα having largely anxiogenic-like
properties and ERβ serving to generate anxiolytic-like effects
(Borrow and Handa, 2017).

Here we evaluated depression-like behaviors in adolescent
mice at two different developmental stages. Our previous studies
unraveled that sex differences during adolescence are apparent in
certain strains and behaviors such as general activity, anxiety and
cognitive function (Eltokhi et al., 2020) as also shown for adult
mice (Tarantino et al., 2000). Given the divergent susceptibility
of males and females to depression, there is an urgent need for
tackling the effect of sex in rodents on behavioral tests assessing
depression-like behaviors. However, in all the tests commonly
used to assess depression-like behaviors in rodents, we did not
find any sex difference in C57BL/6N, DBA/2, or FVB/N strains
at these two developmental stages during adolescence. Since we
investigated the baseline depression-like behaviors only in young
mice before puberty corresponding to P42 in mice (Taft et al.,
2006; Dutta and Sengupta, 2016), with no severe effect of sex
hormones, we interpret the finding that the effect of sex may
become apparent only in adult mice. Indeed, a sex difference
in the prevalence of patients with major depressive disorder
appears mainly after puberty (Bebbington et al., 1998; Merikangas

et al., 2010; Mehta et al., 2013). In adult C57BL/6J mice, the
baseline immobility durations in the tail suspension tests were
lower in males than females (Liu and Gershenfeld, 2001). Thus,
the biological maturation occurring during puberty along with
the intensification of sex-specific social roles may be a major
key of sex differences in depression (Dalla et al., 2010). On the
other hand, a more recent piece of evidence suggests that the
sex difference in depression begins in childhood and becomes
more pronounced during adolescence (Breslau et al., 2017).
Irrespective of these analyses in humans, inconsistent results
for depression and anxiety-like behaviors have been reported
when comparing male and female adolescent rodents to adults
(Slawecki, 2005; Doremus et al., 2006; Hefner and Holmes, 2007;
Doremus-Fitzwater et al., 2009; Martínez-Mota et al., 2011).
Thus, further developmental and longitudinal studies in rodents
should be performed to assess the baseline depression in males
and females along different developmental stages. Since the onset
of puberty is strain dependent (Pintér et al., 2007), a rough
dating of puberty of rodent models should be employed using
various markers including the vaginal opening, first vaginal
cornification, onset of cyclicity in females and balanopreputial
separation in males.

Strain differences in behavioral tests assessing
neuropsychiatric-like phenotypes in adolescent mice were
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TABLE 3 | List of the Pr(>F ) after performing three-way ANOVA test to assess the effect of the interaction between strain, sex and age on the depression-like behavior.

Tail suspension test: Immobility duration Forced swim test: Immobility duration

Strain*Age <0.0001 Strain*Age 0.010

Strain*Sex 0.447 Strain*Sex 0.372

Age*Sex 0.447 Age*Sex 0.901

Tail suspension test: Latency to immobility Forced swim test: Latency to immobility

Strain*Age <0.0001 Strain*Age 0.004

Strain*Sex 0.295 Strain*Sex 0.313

Age*Sex 0.699 Age*Sex 0.672

Sucrose preference index Forced swim test: Total traveled distance

Strain*Age <0.0001 Strain*Age 0.785

Strain*Sex 0.616 Strain*Sex 0.991

Age*Sex 0.655 Age*Sex 0.195

The italic indicates significant results.

repeatedly reported by our group (Peleh et al., 2019; Eltokhi
et al., 2020, 2021). The contribution of genetic factors specifically
in the depression-related behaviors of adult inbred rodents as
well as in the efficacy of antidepressant drug treatment has been
previously shown (Vaugeois et al., 1997; Liu and Gershenfeld,
2001; Lucki et al., 2001). In our study, the baseline depression-
like behaviors differed between different strains. In both tail
suspension and forced swim tests, C57BL/6N mice showed
the highest immobility duration and the lowest latency to first
immobility compared to DBA/2 and FVB/N. Interestingly,
FVB/N mice at P26 did not show any immobility in the forced
swim test. This behavior can be explained by their severe
hyperactivity as previously reported (Eltokhi et al., 2020). These
data are consistent with a former study showing adult FVB/NJ
mice having the least baseline immobility duration in the forced
swim test, DBA/2J being intermediate and C57BL/6J showing
the highest immobility duration (Lucki et al., 2001). On the
other hand, adolescent FVB/N mice showed the highest sucrose
preference index, highlighting the suitability of this test to be
performed on mice with FVB/N background. In contrast, DBA/2
mice showed low ability to perform the sucrose preference
test and had a high baseline anhedonic level, which may mask
the depression behavior in mouse models of neuropsychiatric
disorders and should be taken into consideration in designing
the experiments and analyzing the data. Nonetheless, DBA/2 can
be a good strain to test the effect of anti-depressant drugs. Thus,
the choice of the strain should be related to the specific scientific
question being asked.

As our previous studies uncovered strong changes in
behavioral outcomes including activity, anxiety and social
interaction in a small developmental window during adolescence
(Eltokhi et al., 2020, 2021), we here extended these findings
assessing despair by tail suspension and forced swim tests. Both
C57BL/6N and FVB/N mice showed an increase in immobility
within 10 days of adolescence. For the sucrose preference test,
the effect of the 10-day interval was only apparent in FVB/N
mice. Interestingly, DBA/2 mice did not show any difference
in the behavioral outcome at both time points, highlighting a
direct correlation of the effect of age to specific strains. One
limitation of our study is that the same mice were tested in

a series of depression-related tests, which may have caused
earlier tests to affect subsequent performance in later tests. To
mitigate this possibility, we ordered the tests in such a way that
the two stressful tests, tail suspension and forced swim tests,
were not consecutive but separated by the sucrose preference
test that was performed in the mouse homecage. Still, the
single housing during the sucrose preference test may have
also induced some levels of stress on mice, which may have
affected their behaviors in the forced swim test. However, we
believe that the possible effect of single housing was not strong
as indicated by the similar pattern of behaviors in both tail
suspension and forced swim tests at both developmental stages,
with C57BL/6N mice showing increased immobility durations in
both tests. Our findings suggest that taking the effect of age and
strain into account will decrease variabilities and inconsistencies
and increase the reproducibility of behavioral results between
different laboratories.

Anxiety-related behavioral tests are often performed together
with depression tests in mouse models of neuropsychiatric
disorders since anxiety usually co-morbids with depression
(Cryan and Mombereau, 2004; Millstein and Holmes, 2007;
Krishnan and Nestler, 2011; Jung et al., 2014; Belovicova et al.,
2017; Sokolowska et al., 2021). Several behavioral tests based
on the conflict between competing behaviors of exploring novel
environments and avoiding potential threatening situations have
been validated to assess anxiety, including the elevated plus
maze (Pellow et al., 1985; Lister, 1987), open field (Treit and
Fundytus, 1988), and light/dark box (Crawley and Goodwin,
1980; Crawley, 1981; Blumstein and Crawley, 1983), where our
previous studies revealed sex differences in the open field and
elevated plus maze tests with female C57BL/6N and FVB/N mice
being less anxious (Eltokhi et al., 2020). To unravel whether
different anxiety paradigms tax distinct aspects of anxiety, we
here investigated the sex difference in another anxiety-related
test, the hyponeophagia test. Female C57BL/6N and DBA/2
but not FVB/N mice showed higher latency to consume the
unfamiliar drink in an unfamiliar arena compared to males,
reflecting increased bait shyness as an indication of anxiety. This
discrepancy of results of males vs. females in different anxiety
tests suggests that a battery of different tests should be used in
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FIGURE 4 | Anxiety-related hyponeophagia test at P27 and P37. Female C57BL/6N and DBA/2 mice showed an increased latency to drink the diluted milk
compared to male mice in both trials 1 and 2 at P27 (A) but not at P37 (B). At both P27 and P37, no strain difference was found in the latency to drink the diluted
milk. The green asterisk indicates a significant difference between males and females. Two-way ANOVA followed by Tukey post hoc test,*p ≤ 0.05, **p ≤ 0.01. Blue
and red dots represent males and females, respectively. Error bars indicate the standard error of the mean (SEM).

studies of anxiety-related behaviors to draw the full picture of
mouse phenotype (van Gaalen and Steckler, 2000).

Taken together, since depression is a complex disorder
with several endophenotypes including despair, anhedonia and
apathy, a complete test battery combining the well-established,
robust behavioral tests should be employed when testing rodent
models of neuropsychiatric disorders or investigating the effect
of anti-depressant drugs. Sex, strain and age are suggested to
have different effects on distinct behavioral tests. Therefore,
performing a complete test battery will provide important
information per animal/drug that cannot be covered in separate
behavioral studies. Notably, there should be at least a 1-
day rest period between each of the tests in the behavioral
battery, with some rodent strains requiring even longer
durations (Lad et al., 2009). Some paradigms currently used
for assessing antidepressant and/or depression-like behaviors
in mice are still questionable. For example, in recent years,

there is a trend to interpret the transition from swimming to
immobility in the forced swim test as a coping mechanism
with inescapable stressors, rather than an indication of
despair (Molendijk and de Kloet, 2019). However, the majority
of researchers still qualify the rodent’s floating response as a
depression-like behavior since the persistence of coping with
inescapable stressors may indeed enhance the vulnerability to
depression (Molendijk and de Kloet, 2019). These different
scientific perspectives confirm the necessity of performing a
complete test battery in order to draw a full picture of the
depression-like behavior.

Finally, we want to touch on the issue of reproducibility of
behavioral results in depression-related studies. One potential
factor of discrepancy is the slightly different protocols between
laboratories. Worth noticing, behavioral tests may cause stress
and put unwanted burdens on rodents. To this end, the order of
tests on a specific cohort can also play a role in the variabilities
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between the results of different laboratories. Moreover, different
rodent strains and sex dependence of the stress response
frequently result in apparent discrepancies in published data.
However, our study, exemplified by trials 1 and 2 in latency to
drink (Figure 4), demonstrated that consistency of results can
be easily achieved by adequate test settings. Furthermore, during
adolescence, no sex differences were found. This finding does not
exclude an impact of sex in other developmental stages. However,
in studies where sex differences are suggested to provoke an
additional complication in depression analysis, adolescent mice
may open a window for clearly identifying such effects since the
general performance and baseline depression activity of male and
female wild-type mice are similar.

Thus, strain, age and sex should be taken into account when
analyzing neuropsychiatric disorders in mouse models. Without
question, optimization and standardization of depression-
related tests in rodent models will help in understanding
pathophysiological mechanisms and in identifying novel targets
for depression treatment.

CONCLUSION

To our knowledge, this is the first study investigating sex, age
and strain effects on the baseline depression-like behaviors.
We confirmed that genetic strain differences and even small
differences in developmental stage are important determinants
of depression-related behavioral outcomes. We suggest using
adolescent mice, at least in the three investigated depression-
related behavioral tests, to reduce variability and inconsistency
between different laboratories. Nonetheless, sex differences in
mice still need a thorough evaluation throughout their lifetime.
Taken together, our behavioral studies in adolescent mice can be
used as a guiding platform for the choice of the most suitable

combinations of assays and appropriate strain, age and sex
selection in mouse models of neuropsychiatric disorders.
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Chronic pain and depression are intimately linked; the combination of the two leads
to higher health care costs, lower quality of life, and worse treatment outcomes with
both conditions exhibiting higher prevalence among women. In the current study, we
examined the development of depressive-like behavior in male and female mice using
the spared nerve injury (SNI) model of neuropathic pain. Males displayed increased
immobility on the forced-swim test – a measure of depressive-like behavior – 2 weeks
following injury, while females developed depressive-like behavior at 3-week. Since the
pathogenesis of chronic pain and depression may involve overlapping mechanisms
including the activation of microglial cells, we explored glial cell changes in brain regions
associated with pain processing and affect. Immunohistochemical analyses revealed
that microglial cells were more numerous in female SNI mice in the contralateral ventral
anterior cingulate cortex (ACC), a brain region important for pain processing and affect
behavior, 2-week following surgery. Microglial cell activation was not different between
any of the groups for the dorsal ACC or nucleus accumbens. Analysis of astrocyte
density did not reveal any significant changes in glial fibrillary acidic protein (GFAP)
staining in the ACC or nucleus accumbens. Overall, the current study characterized
peripheral nerve injury induced depression-like behavior in male and female mice, which
may be associated with different patterns of glial cell activation in regions important for
pain processing and affect.

Keywords: chronic pain, depressive-like, microglia, astrocytes, forced swim test and tail suspension test

INTRODUCTION

Chronic pain is one of the most prevalent and debilitating conditions affecting as many as 20% of
the population worldwide (Goldberg and McGee, 2011). It is the foremost cause of long-term sick
leave, and disability imposing a profound health care burden that not only affects the individual
but also permeates throughout all avenues of social, work, and family life (Lynch, 2011; Gaskin and
Richard, 2012). However, despite the prevalence of chronic pain, it remains challenging to treat,
in part because it is associated with a high incidence of comorbid conditions, including anxiety
and depression (Nicholson and Verma, 2004). Approximately 50% of patients diagnosed with
major depressive disorder reportedly suffer from chronic pain, and the risk of developing comorbid
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depression in chronic pain patients is greater among women
(Radat et al., 2013). Further, patients suffering from chronic
pain and depression have a poorer prognosis than patients
suffering from each illness alone (Arnow et al., 2006; Munce
and Stewart, 2007). Clinically, it is well known that chronic
pain and depression are related; however, the neurobiological
changes responsible for the co-occurrence of these conditions
are not well-understood, and the sex-specific mechanisms that
might help explain the high prevalence of these conditions in
women remain unknown.

Microglia, a principal immune cell, comprise approximately
5–12% of the glial cell population and emerge from either
erythromyeloid precursors of the embryonic yolk sac or invade
the central nervous system (CNS) via myeloid progenitors
and proliferate during embryonic and postnatal development
(Hristovska and Pascual, 2015). Microglia interact with and
prune synapses during healthy brain development to modify
their structure and function (Chen et al., 2018b). As such, in a
healthy resting state, microglia actively sense the environment
to maintain normal physiological conditions; however, following
tissue damage or inflammation, microglia transition from an
inactive ramified state to an active amoeboid state – characterized
by enlarged cell bodies and shortened processes and increased
expression of microglial markers such as ionized calcium-binding
adapter molecule 1 (IBA-1) and CD11b (Ohsawa et al., 2004; Ji
et al., 2013; Chen et al., 2018b). A few studies have demonstrated
that chronic pain hypersensitivity is dependent on microglia
in male but not female rodents (Sorge et al., 2015; Chen
et al., 2018b; Mapplebeck et al., 2018). Further, spinal microglial
activation promotes BDNF release and pain hypersensitivity in
male but not female rats – an effect that is conserved in humans
(Dedek et al., 2021).

An abundance of research has focused on spinal mechanisms;
however, there is evidence to suggest that brain microglia may
contribute to the development and maintenance of chronic
pain and its associated comorbidities. A study by Miyamoto
et al. (2017) showed that intracerebroventricular injections of
minocycline – a broad-spectrum antibiotic known to inhibit
glial cell activity – reduced microglial activation in the anterior
cingulate cortex (ACC) and reversed tactile allodynia. In a rat
model of diabetic neuropathy, ammoxetine, a novel, potent
serotonin, and norepinephrine reuptake inhibitor, reversed
mechanical allodynia and depressive-like behavior that coincided
with decreased spinal microglial activation (Zhang et al., 2018).
Furthermore, a recent study using a rodent model of neuropathic
pain, called chronic constriction injury (CCI), revealed that male
mice developed affective disorders, albeit at a delayed time point,
which was associated with activation of microglia characterized
by increased numbers and cell body size in the prefrontal cortex,
amygdala, and hippocampus (Barcelon et al., 2019).

There is also evidence to suggest that brain astrocytes may
be involved in regulating pain sensitivity and affect following
injury (Chen et al., 2018b). Several studies have demonstrated
that activated astrocytes in the ACC and hippocampus are
involved in the maintenance of chronic pain and the onset of
depression (see Li et al., 2019 for a review). Narita et al. (2006)
demonstrated that peripheral nerve injury in mice increased glial

fibrillary acidic protein (GFAP) expression in the ACC, which
was associated with increased affective behaviors. Similarly,
Ikeda et al. (2013) used a mouse model of inflammatory pain
and showed increased astrocytic expression in the ACC resulted
in increased affective behavior that was attenuated with the
administration of L-α-aminoadipate (L-AA), an astroglia toxin.
Further, the administration of antidepressant drugs inhibits
hippocampal astrocyte activation and reduces nerve injury-
induced pain hypersensitivity (Zhu et al., 2009). However, there
seems to be a paucity of research on astrocytes in chronic pain
and depression, necessitating further investigation.

The primary goal of the present study was to identify whether
sex influenced the development of depressive-like behavior in
mice following spared nerve injury (SNI). A secondary goal was
to characterize whether brain glial activation was increased in
a time-, sex-, and-, brain region-dependent manner following
injury. Based off clinical studies showing a greater degree of
comorbid depression in female chronic pain patients (Munce
and Stewart, 2007), we hypothesized that female mice would
display greater and more robust signs of depressive-like behavior,
which would be associated with increased glial activity. We used
a battery of behavioral tests and examined two early time points
(2 and 3 weeks) following nerve injury. Microglia and astroglia
in the ACC (ventral and dorsal compartments) and the nucleus
accumbens were quantified given data supporting a role for
these regions in clinical anhedonia and response to treatment
(Pizzagalli et al., 2001; Wacker et al., 2009; Carl et al., 2016).

MATERIALS AND METHODS

Mice
Outbred CD-1 male and female mice (6–8 weeks old) obtained
from Charles River were used and maintained in the University
of Toronto Mississauga’s Animal Care Facility. All mice were
housed in non-ventilated cages in groups of 2–4, maintained in
a temperature-controlled (20 ± 1◦C) environment with 12:12 h
light: dark cycle (lights on at 7 am and off at 7 pm) with access
to food (Harlan Teklad 8604) and water ad libitum. Experiments
were conducted only during the light period. All procedures were
performed in accordance with the guidelines of the Canadian
Council on Animal Care and approved by the University of
Toronto Animal Care Committee.

Behavioral Measures
The automated von Frey, forced swim test (FST), tail suspension
test (TST), open field, and sucrose preference assays were used
on three independent cohorts of mice. In all experiments, mice
were habituated to the testing environment for at least 1 h before
the experiment. The first cohort was used to assess mechanical
sensory thresholds and forced swim behavior at the indicated
time points. Following baseline von Frey measurement, mice
were randomly assigned to either the SNI or sham group and
the 2-week or 3-week post-surgery timepoint groups. FST was
only tested once for each animal on its respective timepoint
(i.e., at 2-week post-surgery or 3-week post-surgery). If a
mouse was assigned to the 3-week time point, its mechanical
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threshold was measured at 2-week post-surgery and 3-week post-
surgery, while FST was only measured at 3-week post-surgery.
Following the FST, mice were sacrificed, and brain tissue was
collected for immunohistochemical analysis. The second cohort
was tested for tail suspension and open-field behavior at the
indicated time points, while a third cohort was tested for sucrose
preference weekly.

Automated von Frey
An automated von Frey test (Ugo Basile Dynamic Plantar
Aesthesiometer) was used to assess mechanical nociceptive
thresholds in all mice. Mice were placed in custom-constructed
Plexiglas cubicles (6.3 cm × 5.5 cm × 10 cm) on a perforated
metal floor and allowed to habituate for 1 h before testing. A blunt
probe was raised toward the plantar surface of the hind paw, upon
which pressure was gradually increased until the mouse withdrew
its hind paw; the maximal pressure displayed at that point was
then recorded. Five consecutive measures were taken on both
hind paws. In all experiments, von Frey measurements were taken
in both ipsilateral and contralateral hind paws before surgery
(baseline), 2-week, and 3-week post-surgery. However, only data
from the hind paw ipsilateral to the injury are presented as no
significant differences on the contralateral paws were observed.

Spared Nerve Injury
The spared nerve injury (SNI) model, an experimental nerve
injury, was used to produce neuropathic pain in mice (Decosterd
and Woolf, 2000). Mice were randomly assigned to one of two
surgery groups, sham or SNI. Briefly, mice were anesthetized with
isoflurane (4% for induction; 2.5% for maintenance), and the
biceps femoris muscle was bluntly dissected to expose the sciatic
nerve. The common peroneal and tibial branches of the sciatic
nerve were ligated with silk sutures (7.0 silk, Ethicon), and a 1 mm
portion of the nerve was removed below the suture, leaving the
sural nerve intact. The muscle and skin were then stitched with
sutures (6.0 coated vicryl, Ethicon). The sham surgery consisted
of a similar blunt dissection of the biceps femoris muscle without
dissection of the nerve. Mice were allowed to recover in their
home cages for 2 weeks following surgery.

Forced Swim Test
The forced swim test was used as a measure of behavioral despair.
All mice were placed in glass cylinders (25 cm × 14.6 cm)
filled with water (24 ± 1◦C) 15 centimeters deep for 6 min
and recorded using standard Sony video recording devices. Solid
brown dividers were placed between each glass container to
prevent mice from observing each other. Videos were uploaded
to a tracking software (EthoVision, Noldus) which automatically
calculated the time spent immobile in seconds.

Tail Suspension Test
In a subset of mice, the tail suspension test was used as a measure
of learned helplessness. This test monitors the amount of time
spent immobile when suspended by the tail over 6 min. The
mouse was securely fastened by the end of the tail to a flat surface
that was suspended in a Plexiglas box (40 cm × 40 cm × 40 cm).
Behavior was recorded using a video camera and analyzed for
immobility using Noldus EthoVision.

Open Field Test
Mice were placed in a Plexiglas box (40 cm × 40 cm × 40 cm)
and videotaped for offline analysis. The open field was divided
into a 4 by 4 grid. The four center squares in the grid were
considered the “open area,” while the 12 perimeter boxes were
analyzed as “wall areas.” All videos were recorded and analyzed
using Noldus EthoVision.

Sucrose Preference Test
Mice were habituated to a 2% sucrose solution in their home cage
(150 ml) for 2 days. Two bottles were then attached to the home
cages of individually housed mice to ensure sucrose preference
before starting the experiment. Mice were then randomly divided
into the sham or SNI condition. Mice were then given free access
to two bottles, one containing a 2% sucrose solution (150 ml) and
the other water (150 ml) for 24 h. Following the 24 h interval,
the amount of liquid consumed was then measured, and sucrose
preference was calculated as the average of the daily amount of
sucrose solution consumed divided by the total liquid consumed
from both bottles. Food and water were restricted for 17 h (4:00
pm – 9:00 am), preceding a two-bottle choice as previously
done (Chu et al., 2016). During the 2-bottle choice, mice had
free access to food.

Immunohistochemistry
Following behavioral testing, mice were deeply anesthetized
with pentobarbital and transcardially perfused with cold
phosphate buffered saline (PBS) and 4% paraformaldehyde
(PFA). Immediately following transcardial perfusions, whole
brains were isolated and post-fixed in 4% PFA for 4 h at 4◦C
and then cryoprotected in 30% PBS-sucrose until sectioning.
Brains were hemisected along the sagittal axis and then sectioned
using a cryostat (−13◦C to −20◦C) into 40 µm coronal sections
and stored in tissue storage buffer until needed for staining.
Sections were washed with PBS for 5 min and then washed in
0.1% PBS-T three times for 5 min. Slices were blocked with goat
serum for 2 h and washed three times for 5 min in 0.1% PBS-T.
Finally, slices were incubated using two primary antibodies [Anti-
Iba1, Red Fluorochrome (635)-conjugated, Wako Chemical;
and Anti-GFAP, Cy3 Conjugate, Millipore Sigma] for 48 h
at 4◦C. Following a post-incubation period of 48 h, slices
were washed with PBS for 5 min and then mounted onto
Superfrost slides and imaged using the Cytation 5 Cell Imaging
Multimode Reader (BioTek, Winooski, VT, United States) at 20x
objective. Image acquisition settings were identical for all slices
across all time points. Negative controls omitting the primary
antibody resulted in a complete absence of positive staining.
Immunohistochemistry was run in batches of slices with sections
from each group/condition included in each run.

Glial Cell Quantification
Microglia and astrocytes were measured in the contralateral
and ipsilateral dACC (n = 5–6/sex/timepoint), vACC (n = 5–
6), and Nac (n = 5–6). Briefly, microglia numbers were imaged
and counted across three brain slices per region of interest
(ROI) for each hemisphere. Images were taken using the
Cytation 5 Imaging Multi-Mode Reader (BioTek, Winooski, VT,
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United States) at 4X for regional identification and 20X for cell
counting. For each slice, a z-stack projection of 40 µm was
generated, and each region of interest was outlined and measured
using Gen5 software (BioTek, Winooski, VT, United States).
Cells expressing fluorescence were counted manually by an
experimenter who was blind to experimental conditions using the
same area settings for each brain region. Cells were considered
microglia based on colocalization between Iba-1 and DAPI.
Astrocytes were quantified by measuring GFAP fluorescence
signal in the ROI using the GEN5 software. GFAP intensity
was calculated to be the GFAP-integrated intensity minus the
background-integrated intensity for each ROI. All GFAP images
were acquired using the same exposure settings. In all instances,
the individual performing this analysis was blind to the condition.

Statistical Analyses
SPSS Statistics 24 (IBM, Chicago, IL, United States) software was
used to perform all analyses using three- or four-way ANOVAs
as appropriate. Unless otherwise stated, a p-value of less than
0.05 was considered statistically significant. Post hoc testing was
performed using paired or independent t-tests between sham and
SNI mice within sex and time point.

RESULTS

Depressive- and Anxiety-Like Behavior Is
Expressed Differently in Male and
Female Mice Following Spared Nerve
Injury
To determine the effect of chronic pain on depressive-like
behavior in mice, we used the SNI model of neuropathic pain
(Decosterd and Woolf, 2000). Following surgery, SNI mice
demonstrated a significant increase in hind paw mechanical
hypersensitivity compared with sham controls when tested 2-
and 3-week post-surgery [three-way repeated measures (RM)
ANOVA, main effect of surgery: F1,28 = 262.45, p < 0.001; main
effect of sex: F1,28 = 3.47, p = 0.08; main effect of time (RM):
F2,27 = 30.79, p < 0.001; surgery× time interaction: F2,27 = 75.28,
p < 0.001, Figure 1A]. There was no difference in hypersensitivity
between male and female SNI mice (surgery × sex interaction:
F1,28 = 0.007, p > 0.05). To determine whether neuropathic
pain altered behavioral despair, mice were tested for immobility
on the forced swim test (FST). Male and female mice with
SNI displayed overall greater immobility on the FST. However,
immobility was greater for male SNI mice 2-week following
surgery, while female SNI mice showed more immobility 3-week
following surgery when compared with sham controls (three-
way ANOVA, main effect of surgery: F1,55 = 27.29, p < 0.001;
main effect of sex: F1,55 = 1.868, p = 0.17; main effect of
time: F1,55 = 2.01, p = 0.16; surgery × sex × time interaction:
F1,55 = 5.42, p = 0.02; Figure 1B). Using a separate cohort of
mice, we used the tail suspension test (TST) to determine whether
the effects of SNI on male and female mice extrapolated to
another measure of behavioral despair. In line with the results
of our FST, SNI mice displayed greater immobility on the TST

with female mice showing greater signs of behavioral despair
3-week following surgery (three-way ANOVA, main effect of
surgery: F1,56 = 23.52, p < 0.001; main effect of sex: F1,56 = 12.72,
p < 0.001; main effect of time: F1,56 = 0.57, p = 0.32; sex × time
interaction: F1,56 = 9.56, p = 0.003; Figure 1C). This same cohort
of mice was also tested for time spent in the center of the
open field as a general measure of anxiety. Female SNI mice
showed reduced time spent in the center area of the open field
3-week following surgery, indicating an anxiety-like phenotype
at this time point (three-way ANOVA, main effect of surgery:
F1,56 = 5.92, p = 0.018; main effect of sex: F1,56 = 6.95, p = 0.011;
main effect of time: F1,56 = 1.33, p = 0.25; surgery × sex × time
interaction: F1,56 = 8.44, p < 0.01; Figure 1D). Walking distance
in the open field was not significantly different between the
groups indicating that differences on these tests were not caused
by mobility issues (three-way ANOVA, All F1,56 values < 1.88,
and all p values > 0.17; data not shown). Finally, we tested a
third cohort of mice on the sucrose preference assay to measure
whether SNI induced a state of anhedonia in male and female
mice. SNI did not alter sucrose preference in male or female mice
following surgery. There was only a slight sex difference with male
mice displaying a greater sucrose preference (three-way ANOVA,
main effect of surgery: F1,26 = 0.003, p = 0.95; main effect of sex:
F1,26 = 4.24, p = 0.05; main effect of time: F3,78 = 1.187, p = 0.32;
Figure 1E).

Microglial Expression in the Ventral
Anterior Cingulate Cortex Is Different
Between the Sexes Following Spared
Nerve Injury
Next, to understand whether the expression of microglia in
brain regions associated with depressive-like behavior may be
associated with the sex-specific effects on the FST and TST,
we examined microglial cell numbers in the dorsal and ventral
ACC, and nucleus accumbens. To analyze microglia cell number
in each brain structure, four-way mixed ANOVAs [hemisphere
(RM) × surgery × sex × timepoint] were conducted on
each region. For the ventral ACC, microglial cells were more
numerous in the contralateral (i.e., right) hemisphere in female
SNI mice compared with sham female mice at the 2-week
timepoint [main effect of hemisphere (RM): F1,34 = 1.26, p = 0.26;
main effect of surgery: F1,34 = 7.28, p = 0.011; main effect of
time: F1,34 = 6.06, p = 0.02; main effect of sex: F1,34 = 2.71,
p = 0.11; hemisphere (RM)× condition× sex× time interaction:
F1,34 = 4.43, p = 0.043; Figures 2A,B]. However, analysis of the
dorsal ACC did not reveal any significant effects [main effect
of hemisphere (RM): F1,34 = 3.52, p = 0.07; main effect of
surgery: F1,34 = 1.86, p = 0.18; main effect of sex: F1,34 = 2.17,
p = 0.14; main effect of time: F1,34 = 3.35, p = 0.08; Figure 2C].
Finally, analysis of the nucleus accumbens revealed an effect
of hemisphere [main effect of hemisphere (RM): F1,34 = 4.38,
p = 0.044; main effect of surgery: F1,34 = 1.001, p = 0.32; main
effect of sex: F1,34 = 1.71, p = 0.2; main effect of time: F1,34 = 0.29,
p = 0.59; hemisphere × surgery × sex × time interaction:
F1,34 = 3.38, p = 0.074; Figure 2D].
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FIGURE 1 | SNI induces mechanical sensitivity and depressive-like behavior. (A) Mechanical allodynia is evident in male and female mice following SNI, but not sham
surgery, 2- and 3-week post-injury (n = 16 for BL and WK2; n = 8 for WK3/sex/condition). (B) SNI increases immobility on the forced swim test in male mice 2-week
post-surgery, while immobility increases in female SNI mice 3-week post-surgery (n = 8/sex/condition). (C) SNI increases immobility on the tail suspension test in
female mice 3-week post-surgery (n = 8/sex/condition). (D) Female SNI mice spend less time in the center area of the open field 3-week post-surgery
(n = 8/sex/condition). (E) SNI did not alter sucrose preference in male and female mice at any of the tested timepoints (n = 7–8/sex/condition). ∗p < 0.05;
∗∗p < 0.001; ∗∗∗p < 0.0001.

Astrocyte Density in Male and Female
Mice Following Spared Nerve Injury
Since astrocytes have been shown to contribute to depressive-
like behavior (Zhang et al., 2020) and are increased in the
brain following nerve injury (Zhu et al., 2009), we measured
the fluorescence intensity of GFAP+ staining in the same brain
regions as microglial analysis. Fluorescence intensity was used
for astrocyte quantification due to their larger size and lack of
clear definition, which made it difficult to determine whether
branches were from one astrocyte or several. There was a
significant hemispheric effect for the ventral ACC with greater
intensity of GFAP+ staining in the ipsilateral hemisphere that
was independent of surgery condition (four-way ANOVA, main
effect of hemisphere: F1,34 = 8.11, p < 0.01; main effect of surgery,
F1,34 = 0.2, p = 0.66; main effect of sex: F1,34 = 0.038, p = 0.54;
main effect of time: F1,34 = 0.09, p = 0.76, Figure 3A). We
did not observe any significant effects for GFAP staining in the
dorsal ACC (four-way ANOVA, all F’s < 1.499; all p’s < 0.23,
Figure 3B). In the nucleus accumbens, there was a slight main
effect for sex with males exhibiting overall higher GFAP staining
and an interaction between surgery condition and sex that
was due to higher GFAP staining in male SNI mice (four-way
ANOVA, main effect of hemisphere: F1,34 = 0.36, p = 0.55;
main effect of surgery: F1,34 = 1.83, p = 0.18; main effect of sex:

F1,34 = 4.23, p = 0.04; main effect of time: F1,34 = 0.06, p = 0.8;
surgery× sex interaction: F1,34 = 4.379, p = 0.044; Figures 3C,D).

DISCUSSION

The current study used a mouse model of chronic neuropathic
pain and investigated the development of depressive-like
behavior in male and female mice. We also characterized changes
in microglia number and astrocyte density as a measure of
activation following injury. Overall, there were sex differences
in the onset of depressive-like behaviors in male and female
mice such that males displayed immobility on the forced swim
test at an earlier time point than females, and only female mice
developed immobility on the tail suspension task following nerve
injury. In the contralateral vACC, microglia cell number was
significantly greater for female SNI mice than sham. No other
changes in glial cells were apparent.

The onset of the depressive-like phenotype was different in
male and female mice, which mirrors the human literature on
the prevalence of depression and shows different onset rates for
each sex (Romans et al., 2007). In our study, males developed
the depressive phenotype 2-week following injury, while females
developed depressive- and anxiety-like behavior at 3-week,

Frontiers in Behavioral Neuroscience | www.frontiersin.org 5 October 2021 | Volume 15 | Article 75825146

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-15-758251 October 25, 2021 Time: 15:33 # 6

Michailidis et al. Chronic Pain, Depression, and Glial Cells

FIGURE 2 | Microglia changes in selected brain regions following SNI. (A) Representative fluorescent micrographs taken from the contralateral ventral ACC for male
and female mice across surgery condition and timepoints. Scale bar = 100 µM. (B) SNI increases microglial number in the contralateral ventral ACC 2-week
post-surgery. Microglia remained elevated in female mice 3-week post-surgery but was no longer significant from the sham condition. SNI did not alter microglia
numbers in the (C) dorsal ACC, or (D) nucleus accumbens (n = 5–6/sex/condition, three tissue samples per mouse). ∗p < 0.05.

suggesting that initially, females may be more resilient than
males, or changes in affect may take longer to manifest in females.
However, depressive-like behaviors have been shown to manifest
in male mice at later time points (i.e., 8-week following injury)
when the chronic constriction injury model of neuropathic pain
was used (Barcelon et al., 2019). We do not believe that the effects
of nerve injury on FST immobility are related to movement
because nerve injury did not affect walking or general movement
in the OFT. However, the possibility exists that depending on sex,
behavioral tests such as the FST and TST might be more sensitive
for the detection of subtle behavioral differences. As another
behavioral measure, we assessed anhedonia using the sucrose
preference test; however, nerve injury did not alter sucrose intake.
We do not believe that the lack of effect for the sucrose preference
test was related to our testing procedures because during pilot
studies sucrose intake was decreased when we used a positive
control (i.e., restraint stress, data not shown). Anhedonia is
challenging to induce in mice, and various pain models fail to
cause a robust change in sucrose preference following injury
(Schwartz et al., 2014). The sucrose preference test did reveal
lower baseline preference for female than male mice. This is
interesting because there have been reported sex differences in
sucrose preference, but they typically are in the opposite direction
with female rodents showing a greater preference (McCall et al.,
2013). However, a few studies have shown that behavioral taste
responses to dilute sucrose solutions are decreased by estrogen,
whereas ovariectomy abolishes this effect (Curtis et al., 2004).

This suggests that higher levels of estrogen in female mice may
elevate the threshold for gustatory detection of sweet taste, a
possibility that has been previously suggested (Curtis et al., 2005).
Thus, sex differences in this assay may depend on estrogen-
modulation of taste responses to specific concentrations of
sucrose in these testing procedures.

Human studies are far more complicated than the current
mouse experiments and the prevalence of comorbid depression
with pain may depend on how and where the patients were
assessed and the criteria for depression used, such as severity,
assessment method and sample selection (Okifuji and Turk,
2016). While many studies have examined the prevalence of
comorbid pain and depression (Tunks et al., 2008; Rayner et al.,
2016), few studies fail to specifically examine coping strategies
when patients suffer from both conditions as well as recovery
time for pain and/or depression. A human study by Rovner
et al. (2017) demonstrated that although the severity of chronic
pain was the same for females and males, females were more
accepting of the pain, remained more active, and reported fewer
mood disturbances than males, supporting the idea that initially,
females are better able to cope with chronic pain. In humans,
females are more likely to endorse rumination (Meints et al.,
2017) and rely on social support (Rovner et al., 2017) than males.
These coping strategies may be the result of female patients
reporting greater levels of pain dismissal (Igler et al., 2017), which
may contribute to delayed-onset depression. Unfortunately, no
study using a human population has examined whether there is a
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FIGURE 3 | Astrocyte changes in selected brain regions following SNI. Astrocyte expression is not changed following SNI in the (A) ventral ACC, (B) dorsal ACC, or
(C) nucleus accumbens in a time and sex-dependent manner (n = 5–6/sex/condition, three tissue samples per mouse). (D) Representative images taken from the
contralateral nucleus accumbens show astrocyte expression for male and female mice at the 2-week time point. Fluorescence is presented as arbitrary units.

sex-difference in the relationship between chronic pain duration
and the onset of depression. Thus, it is possible that female
patients are likely to cope with pain better than males, but
when coping strategies fail, such as lack of social support the
consequence may be increased prevalence of depression.

In addition, pain severity, pain duration and number of pain
locations are associated with the recurrence of depressive and
anxiety disorders (Gerrits et al., 2014; Sharpe et al., 2017). To
our knowledge, no single study has examined whether male
patients recover from comorbid depression quicker than females;
however, inflammatory markers are predictive of depression
in men, but not in women suggesting that the etiology of
depressive disorders within the patient population are different
between genders (Ernst et al., 2021). In our study, increased
inflammation may have contributed to the early behavioral signs
of depression in male mice, however, we did not measure general
inflammation at the 2-week time point and cannot be certain that
this was the precise mechanism. Further, male mice recovered
from the depressive phenotype at 3-week, suggesting that males
may adapt to chronic pain and eventually recover from affect-
related disorders. These results are in line with studies in mice
(Sellmeijer et al., 2018) and may explain why there is a higher
incidence of depression in women with chronic pain than men
(Munce and Stewart, 2007).

While several research groups have used microglial cell
body size to quantify microglia activation (Taylor et al., 2017;
Guneykaya et al., 2018), we used microglial cell number as a
less subjective metric (Barcelon et al., 2019). In the contralateral

vACC female SNI mice displayed significantly more microglia
cell bodies than sham controls whereas SNI mice did not display
overall changes in astrocyte intensity. Previous research has
indicated that sex differences exist for microglia in the brain,
but following nerve injury, the degree of microglia and astrocyte
activation is similar between the sexes (Chen et al., 2018a).
A possible explanation for this is that following nerve injury,
cortical microglia may not be activated in the same way that
spinal microglia have been characterized (Coull et al., 2005).
Recent evidence suggests that there is an interaction between
the spinal dorsal horn and the ACC in pain modulation, but
mechanisms in the spinal cord do not necessarily transfer
to cortical mechanisms (Tsuda et al., 2017). Previous reports
characterizing brain microglia have mainly used CCI-induced
nerve injury in male mice, suggesting that injury type may impact
microglial or astrocyte activation in the brain differently between
the sexes (Taylor et al., 2017).

We used Iba1 and GFAP as molecular markers for activated
microglia and astrocytes, respectively, because of their roles in
demonstrating morphological features at different microscopic
levels (Shapiro et al., 2008; Sofroniew and Vinters, 2010).
However, limitations do exist with these two markers and
should be noted. Iba1 is not only a marker for activated
microglia but also other macrophages that are recruited during
nerve injury as well as other subpopulations of microglia (i.e.,
ramified microglia) (Ohsawa et al., 2004; Shapiro et al., 2009).
So, Iba1 immunohistochemical expression may not be limited
to just activated microglia and thus may affect analysis and
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interpretation of results. It is challenging to acquire quantitative
data with the IHC techniques used in the current paper. While
some, but not all papers complement their IHC results with
qPCR for verification, we did not do this and is a limitation
of the present study. In addition, GFAP does not always label
healthy CNS astrocytes (Sofroniew and Vinters, 2010), which
could alter the difference observed in astrocyte density between
nerve-injured and control mice. Further, we considered using
Sholl analysis to capture astrocyte complexity; however, in
our staining the larger size of the astrocytes and their lack
of clear definition, made it difficult to determine whether
branches were from one astrocyte or many. The center point
of many astrocytes was also not always evident, making other
quantification methods difficult. Thus, it would be important
to consider the use of complementary techniques or other
activated microglia and astrocyte markers, such as TMEM-119
(a transmembrane protein found only on microglia) (Bennett
et al., 2016) and SOX9 (expressed exclusively by astrocytes)
(Sun et al., 2017), respectively. These markers may be better
suited for detecting active glia states and understanding reactive
changes in glial cells.

Since, spinal nociceptive afferents are expected to innervate
the contralateral side of the brain, our analysis considered
whether lateralization occurred in any of the brain regions
following injury as previously shown (Taylor et al., 2017).
Our results stand in contrast to Taylor et al. (2017), where
robust lateralization and regional differences were uncovered;
however, we did find a lateralization effect for the number of
microglia in the vACC of female SNI mice. Here, microglia
cell number per square millimeter was significantly greater in
SNI versus sham mice. Notably, there were minimal changes
in microglia, and astrocytes even though several other studies
have shown microglia changes in the thalamus, amygdala, ventral
tegmental area (VTA), nucleus accumbens, bed nucleus of the
stria terminalis, and periaqueductal gray following peripheral
nerve injury (Taylor et al., 2015; Ni et al., 2016; Liu et al.,
2017). Given that we found minimal differences, we did not
pursue a mechanistic line of inquiry and we do not know
whether glial changes in the ventral ACC are related to the
depressive-like behavior in female SNI mice. As with some of
our behavioral results, comparing between the 2- and 3-week
time points is difficult because there may be inherent baseline
expression differences between the mice. There may also be
inherent sex differences in microglial expression as previously
shown with male microglia being more numerous in the cortex,
hippocampus, and amygdala (Guneykaya et al., 2018).

Further investigations may want to explore whether
microinjections of glial inhibitors into either the ipsilateral
or contralateral hemisphere reverse the pain or depressive
phenotype. In line with this, a previous study showed that
microglia and astrocytes were increased in the ACC of nerve
injured mice and microinjections of minocycline into the
contralateral ACC partially reversed mechanical allodynia
(Cooper et al., 2018). However, the side of nerve injury (i.e., left
vs. right) plays a big role in whether functional pain responses
are altered by brain region and hemispheric manipulations. For
instance, inactivation of the right or bilateral central amygdala

(CeA) attenuates mechanical allodynia and hyperalgesia when
SNI is performed on the left side of the body, while inactivation
of the left CeA has no effect. The same paper also showed
that following right-sided SNI, mechanical allodynia was
attenuated only by inactivation of the left CeA, while mechanical
hyperalgesia was reduced by left, right and bilateral inactivation
of the CeA (Cooper et al., 2018). There is also evidence showing
that overproduction of interleukin-1β, a cytokine that activates
microglia is a common mechanism underlying the generation of
neuropathic pain, memory deficits, and depressive-like behavior
in mice (Gui et al., 2016). Thus, a potential strategy may be to
target upstream activators of microglia, rather than focus on
direct glial inhibition.

Overall, the most important aspect of the current study was
the demonstration that SNI induced depressive- and anxiety-
like behavior differently in male and female mice. However,
this study encourages further research on comorbid pain and
depression using both sexes as there are clear behavioral
sex differences and understanding the sex-specific mechanisms
should be further explored.
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The early life environment markedly influences brain and behavioral development,
with adverse experiences associated with increased risk of anxiety and depressive
phenotypes, particularly in females. Indeed, early life adversity (ELA) in humans
(i.e., caregiver deprivation, maltreatment) and rodents (i.e., maternal separation, resource
scarcity) is associated with sex-specific emergence of anxious and depressive behaviors.
Although these disorders show clear sex differences in humans, little attention has
been paid toward evaluating sex as a biological variable in models of affective
dysfunction; however, recent rodent work suggests sex-specific effects. Two widely used
rodent models of ELA approximate caregiver deprivation (i.e., maternal separation) and
resource scarcity (i.e., limited bedding). While these approaches model aspects of ELA
experienced in humans, they span different portions of the pre-weaning developmental
period and may therefore differentially contribute to underlying mechanistic risk. This
is borne out in the literature, where evidence suggests differences in trajectories of
behavior depending on the type of ELA and/or sex; however, the neural underpinning
of these differences is not well understood. Because anxiety and depression are
thought to involve dysregulation in the balance of excitatory and inhibitory signaling
in ELA-vulnerable brain regions (e.g., prefrontal cortex, amygdala, hippocampus),
outcomes are likely driven by alterations in local and/or circuit-specific inhibitory activity.
The most abundant GABAergic subtypes in the brain, accounting for approximately
40% of inhibitory neurons, contain the calcium-binding protein Parvalbumin (PV). As
PV-expressing neurons have perisomatic and proximal dendritic targets on pyramidal
neurons, they are well-positioned to regulate excitatory/inhibitory balance. Recent
evidence suggests that PV outcomes following ELA are sex, age, and region-specific
and may be influenced by the type and timing of ELA. Here, we suggest the
possibility of a combined role of PV and sex hormones driving differences in behavioral
outcomes associated with affective dysfunction following ELA. This review evaluates the
literature across models of ELA to characterize neural (PV) and behavioral (anxiety- and
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depressive-like) outcomes as a function of sex and age. Additionally, we detail a putative
mechanistic role of PV on ELA-related outcomes and discuss evidence suggesting
hormone influences on PV expression/function which may help to explain sex differences
in ELA outcomes.

Keywords: early life adversity, parvalbumin, sex differences, estrogens, testosterone, anxiety, depression,
development

INTRODUCTION

Adversity in early life is widespread (Finkelhor et al., 2013)
and places individuals at an increased risk for developing
later-life psychiatric disorders, such as anxiety and depression
(Gatt et al., 2009; Nugent et al., 2011; Heim and Binder,
2012). Further, experiencing adverse environmental stressors
during early development and/or childhood has been linked
to impaired cognitive function and maladaptive behavioral
outcomes (Chapman et al., 2004; Krugers et al., 2017; Vaiserman
and Koliada, 2017), with onset often occurring in a protracted
manner, years after the adverse experience (Spertus et al., 2003;
Hagan et al., 2015; Russell et al., 2018). Early-life adversity (ELA)
manifests in a variety of instances and includes both physical
and sexual abuse, emotional/psychological abuse, adverse family
circumstances, neglect, poverty, and other environmental factors
(Felitti et al., 1998; Kuhlman et al., 2020). The 2021 report
released by the National Child Abuse and Neglect Data System
(NCANDS) found that approximately 4.4 million children in
the United States received a Child Protective Services referral of
suspected abuse or neglect in 2019, with over 650,000 identified
victims of abuse/neglect (U.S. Department of Health and
Human Services, Administration for Children and Families,
Administration on Children, Youth and Families, Children’s
Bureau, 2021). It is important to note that these numbers are
likely lower than the actual number of abuse or neglect cases,
as most instances of child abuse or neglect go unreported.
Early life experiences play a significant role in shaping short-
and long-term outcomes regarding both cognitive-behavioral
and neural development (Kundakovic and Champagne, 2015;
Chen and Baram, 2016). While it is clear that a history
of ELA is a significant risk factor in the development of
affective disorders (Hoppen and Chalder, 2018), the underlying
mechanism(s) by which ELA confers this risk remain largely
unknown. Therefore, it is critical that we leverage findings from
preclinical models to identify putative neurobiological drivers of
sex-specific risk following ELA to reveal windows of opportunity
for individualized intervention and/or treatment.

Several rodent models of ELA exist to approximate distinct
aspects and types of adverse experiences to elucidate the role
of adversity on neural and behavioral consequences across the
lifespan. One widely used model leverages maternal separation
(MS) as an analog of early caregiver deprivation during the
postnatal and pre-weaning periods. MS protocols typically
involve the removal and isolation of pups from dam and
littermates for a designated period of time over a series of days,
typically ranging from 3–4 h per day from postnatal day (P)
2 to 20 (e.g., Grassi-Oliveira et al., 2016; Coley et al., 2019;

Köhler et al., 2019; Honeycutt et al., 2020; Drastichova et al.,
2021), though some research groups only maintain separations
for the first 14 days of life (e.g., Uchida et al., 2010; Callaghan
and Richardson, 2011; Teissier et al., 2020). This ELA model is
widely used as it closely models early life caregiver deprivation
seen in institutionalized rearing (Kundakovic and Champagne,
2015), and MS in rodents also shows outcomes comparable to
those in humans with a history of abuse (Teicher et al., 2006;
Nemeroff, 2016). Importantly, this model approximates early
life psychosocial neglect which is one of the most prevalent
forms of ELA in the United States, accounting for approximately
78% of mistreatment cases (National Scientific Council on
the Developing Child, 2012). Another widely utilized model
of ELA is the limited bedding (LB) paradigm, which aims
to model resource scarcity (Molet et al., 2014). Increasing
evidence suggests that the LB model results in disruption of
maternal behavior, thereby leading to fragmented, abuse-like,
and unpredictable maternal care (Ivy et al., 2008; Rice et al., 2008;
Walker et al., 2017). While these are both models of ELA, it is
clear that the type of adversity model used (and therefore the
specific type of adversity experienced) impacts both neural and
behavioral outcomes (Murthy and Gould, 2018; Brenhouse and
Bath, 2019; Demaestri et al., 2020).

There is undeniable evidence suggesting that biological sex
plays an important—and alarmingly understudied—role in both
short- and long-term outcomes following adversity in both
humans (e.g., Altemus et al., 2014; Colich et al., 2017; LoPilato
et al., 2019) and rodent models (e.g., Bath, 2020; Eck et al.,
2020; Honeycutt et al., 2020). In humans, women are more
likely than men to develop anxiety-related disorders in their
lifetime (Kessler et al., 1994), with anxiety in women more
likely to be clinically significant (McLean et al., 2011). Because
ELA is associated with an increased risk of anxiety-related
outcomes in both humans and rodent models, it is important
that we understand the disparate sex-specific outcomes to
better approach individualized risk assessment and treatment.
Preclinical findings suggest that male mice with a history of
MS show no changes in social interaction following ELA, while
MS females show increased social interaction and increased
anxiety-like behaviors (Bondar et al., 2018). Interestingly, in
this same study MS males exhibited significant variability in
locomotor activity, which may account for some of the effects
observed. Despite clear evidence for sex differences in affective
disorders, most studies examining affect-and, in fact, most
studies across behavioral neuroscience-have looked only at
males, neglecting to include females or to explicitly consider
sex as a biological variable (SABV; Shansky, 2019). As such,
more research is needed to understand sex differences following
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ELA to: (1) better model mental illness in preclinical assays;
(2) address glaring sex differences in symptom onset and
patient outcomes; and (3) determine neurobiological drivers of
affective dysfunction in an attempt to identify putative targets for
intervention and treatment. In this review, we shed light on sex
differences as observed in preclinical ELA models (specifically,
MS and LB models) and discuss their possible interactions
with identified neural markers of pathological risk and circuit
dysfunction.

There are several neural changes thought to contribute to
deleterious behavioral outcomes associated with anxiety and
depression: two affective disorders that show increased risk of
emergence following exposure to ELA (Nugent et al., 2011;
Pagliaccio and Barch, 2016). One widely observed neural change
involves alterations in overall inhibitory/GABAergic function
(Page and Coutellier, 2019; Prévot and Sibille, 2021), which
are likely exacerbated by adverse experiences (Maguire, 2014).
Parvalbumin (PV), a calcium-binding protein expressed within a
specific subset of GABAergic neurons, is thought to be involved
in affective dysregulation characteristic of anxiety (e.g., Page
et al., 2019; Xiao et al., 2020) and depression (e.g., Perova
et al., 2015; Thaweethee-Sukjai et al., 2019). Indeed, reduced PV
levels are associated with increased anxiety-like behavior and
affective dysfunction in rodent studies (Godavarthi et al., 2014;
Lussier and Stevens, 2016; Xu et al., 2016; Todorović et al., 2019;
Vojtechova et al., 2021) and indirectly in human studies looking
at Tourette syndrome, which is thought to be closely related to
anxiety (Kalanithi et al., 2005; Kataoka et al., 2009). A multitude
of studies have also found a reduction in PV interneurons in the
hippocampus (HPC), prefrontal cortex (PFC), and basolateral
amygdala (BLA), all of which are thought to be important for
affective regulation following ELA (Leussis et al., 2012; Wieck
et al., 2013; Ganguly et al., 2015; Grassi-Oliveira et al., 2016;
Gildawie et al., 2021).

The goal of the present review is to synthesize the limited
amount of prior work examining PV outcomes at the intersection
of ELA and sex, to identify patterns that might explain how
these factors contribute to affective outcomes. Specifically, we
address disparate observations in PV outcomes following ELA
that might be mediated by sex hormones, adversity type, and/or
the timing of adversity/tissue collection. A discussion on the
developmental time course of PV outcomes alongside changes
in sex hormone and receptor levels is also presented to evaluate
a possible relationship that may help to explain the observed
sex-specific effects of ELA.

Parvalbumin
PV is a calcium-binding protein that supports the fast-spiking
phenotype of PV-expressing neurons, a property that ideally
positions them for synchronizing the activity of surrounding
cells (Sohal et al., 2009; Chen et al., 2017; Kawaguchi et al.,
2019). PV-containing neurons are the most abundant subtype
of GABAergic interneurons in the central nervous system,
accounting for ∼40% of all neocortical GABAergic neurons
(Rudy et al., 2011). These PV cells are characterized as
fast-spiking with low input resistance, leading to a rapid
sequence of action potentials (Kawaguchi and Kubota, 1997;

Woodruff and Sah, 2007). The high frequencies of action
potentials, in addition to their perisomatic synapses on target
cells, allow for the synchronization of electrical activity by
orchestrating the timing of principal neuron spiking (Freund and
Buzsáki, 1996; Woodruff and Sah, 2007). This synchronization
plays an important role in the excitatory/inhibitory (E/I) tone
of individual neurons as well as regional activity, which is
thought to be altered by ELA (Singh-Taylor et al., 2015; Ohta
et al., 2020). There are two distinct subtypes of PV-expressing
cells: basket cells, which target proximal dendrites and their
soma, and chandelier cells, which target synapses on the axon
initial segment (Kawaguchi and Kubota, 1997). Both subtypes
significantly contribute overall E/I tone in target neurons/regions
(Ferguson and Gao, 2018), and therefore are well-positioned to
orchestrate neuronal ensembles of activity. There is mounting
evidence suggesting that ELA in rodent models leads to a
decrease in PV cells in various regions of the brain, particularly
the PFC (Brenhouse and Andersen, 2011; Leussis et al., 2012;
Wieck et al., 2013; Holland et al., 2014; Ganguly et al., 2015; do
Prado et al., 2016; Grassi-Oliveira et al., 2016), the HPC (Murthy
et al., 2019), and the BLA (Gildawie et al., 2020). Given the
orchestrating role of PV cells, these alterations in PV expression
and/or functionmay contribute to some of the aberrant cognitive
and neurobehavioral outcomes of ELA associated with neuronal
inhibition and affective dysfunction, as seen in depression,
schizophrenia, and anxiety (Brown et al., 2015; Gonzalez-Burgos
et al., 2015; Zou et al., 2016; Perez et al., 2019; Murthy and Gould,
2020). However, it is noteworthy to underscore the variability
in PV outcomes following ELA that are likely mediated by
methodological differences in ELA application (i.e., MS vs. LB),
age of tissue collection, species, and sex. We have provided an
overview of PV outcomes in Table 1 that details these findings
with an emphasis on implemented methodology and PV levels,
as well as related behavioral outcomes.

In rodent models, ELA generally leads to a decrease in
PV-expression in the PFC in rats (e.g., Brenhouse and Andersen,
2011; Leussis et al., 2012; Wieck et al., 2013; Holland et al.,
2014; Ganguly et al., 2015; do Prado et al., 2016; Grassi-Oliveira
et al., 2016; Lukkes et al., 2017), the orbitofrontal cortex in
mice (Goodwill et al., 2018), the HPC in both rats and mice
(e.g., Katahira et al., 2018; Murthy et al., 2019), and the BLA
in rats (e.g., Lukkes et al., 2017, 2018; Gildawie et al., 2020),
all of which are regions considered to be key mediators of
anxiety- and depressive-like behaviors (Kent and Rauch, 2003;
Bannerman et al., 2004; Bertoglio et al., 2006; Pandya et al.,
2012; Huang et al., 2018). These decreases in PV cells in the
HPC (e.g., Murthy et al., 2019) have also been associated with
increases in anxiety-like behaviors within the elevated plus
maze (EPM) in male mice. The work outlined in Table 1
constitutes all relevant research, to our knowledge, that has
looked at PV outcomes following ELA (specifically, MS or LB).
Of note, out of all studies looking at ELA induced effects on
PV (n = 22), only 10 included both males and females in their
analyses (with an additional two studies looking only at female
subjects), underscoring the need for ELA studies to use SABV
in methodological approaches to understand how sex mediates
adversity-related outcomes.
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TABLE 1 | PV and behavioral outcomes as a function of sex, age, and ELA type.

PV Outcome Anxiety and Depressive Behaviors

Study Sex Species Type of ELA Age of
ELA

Age of
Brain
Collection

PV Meas. Male Female Male Female

Short-Term Maternal Separation (1–12 days) and/or Early Weaning
Murthy et al. (2019) M Mouse MS +Early

weaning (P17)
P2–16 P60-P70 IHC ↓HPC (ventral) - ↑ anxiety (EPM)

↑ activity (NE)
-

Katahira et al.
(2018)

M Mouse MS: 1 day,
24 hs

P4 P4, P5,
P14, P28

IHC ↓(left HPC on
P14 and P28)

- - -

Aksic et al. (2021) M Rat MS: 1 day, 24 h P9 P60 IHC ↓(CA1, PFC) - - -
Giachino et al.
(2007)

M Rat MS: 12 days
3 h/day

P2–14 P35 IHC ↑(LA)
n.c. (HPC, BLA)

- ↓ (SI) -

Richardson et al.
(2021)

M + F Rat MS: 12 days
3 h/day

P2–14 P18 IHC n.c. (PFC) n.c. (PFC) - -

Long-Term Maternal Separation (18–19 days)
Soares et al. (2020) M + F Rat MS: 18 days

4 h/day
P2–20 P20 IHC n.c. (PFC, CA1,

DG) ↓(BLA, CA3)
n.c. (PFC, CA1,
DG) ↓(BLA, CA3)

- -

Gildawie et al.
(2020)

M + F Rat MS: 18 days
4 h/day

P2–20 P20, P40,
P70

IHC ↓(BLA at P40) n.c.
(PFC)

n.c. (PFC, BLA) - -

Gildawie et al.
(2021)

M + F Rat MS: 18 days
4 h/day

P2–20 P85 IHC n.c. (PFC) n.c. (PFC) n.c. (EZM) n.c. (EZM)

Brenhouse and
Andersen (2011)

M Rat MS: 18 days
4 h/day

P2–20 P25, P40 WB, IHC ↓(PFC at P40) - ↓Working memory
(W/S)

-

Lukkes et al. (2017) F Rat MS: 18 days
4 h/day

P2–20 P41 WB - ↓(PFC, BLA, DR) - ↑ depression (LH)

Lukkes et al. (2018) F Rat MS: 18 days
4 h/day

P2–20 P41 WB - ↓(Amygdala, PFC) - n.c. (LH)

Wieck et al. (2013) M Rat MS: 18 days
4 h/day

P2–20 P40 WB, IHC ↓(PFC) - - -

Ganguly et al.
(2015)

M Rat MS: 18 days
4 h/day

P2–20 P43 IHC ↓(PFC) - ↑ anxiety (EPM,
OFT)

-

Leussis et al. (2012) M + F Rat MS: 18 days
4 h/day

P2–20 P40, P100 WB, IHC ↓(PFC at P40) ↓(PFC at P40) ↑ depression (LH) ↑ depression (LH)

Holland et al. (2014) M + F Rat MS: 18 days
4 h/day

P2–20 P25–27 or
P42–45

WB ↓ (PFC in
adolescence)

↓ (PFC in juvenility) ↓ (SI in
adolescence)

↓ (SI in juvenility)

do Prado et al.
(2016)

M + F Rat MS: 18 days
4 h/day

P2–20 P56 WB ↓(PFC) n.c. (PFC) ↓Working memory
(W/S)

-

Grassi-Oliveira et al.
(2016)

M + F Rat MS: 18 days
4 h/day

P2–20 P40 IHC ↓(PFC) n.c. (PFC) ↓Working memory
(W/S)

↓Working memory
(W/S)

(Continued)
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Indeed, in some studies, ELA leads to marked differences
in PV expression that are sex-specific, and it is important to
note that PV expression and/or staining intensity reportedly
varies by sex across brain regions including the PFC, BLA,
and HPC (e.g., Blurton-Jones and Tuszynski, 2002; Wu et al.,
2014; Soares et al., 2020), with some reports showing similar
developmental trajectories in control rats (e.g., Gildawie et al.,
2020). In typical mice, there are some documented differences in
the developmental trajectory of PV between males and females.
In both the dorsal HPC and the ventral HPC females see a
continuous increase in PV from week 3 to week 12 of age.
This consistent increase is not observed in male mice, whose
PV levels appear to remain constant from week 3 to week
12 after an initial pre-weaning surge (Wu et al., 2014; Ueda
et al., 2015). However, sex differences in PV development have
not been particularly well characterized; see Figure 1 for a
generalized normative trajectory of PV protein expression across
age in typically developing rodents. In relation to ELA, male
rats are more likely to have a decrease in PV cells in the BLA
(Gildawie et al., 2020) and the PFC (do Prado et al., 2016; Grassi-
Oliveira et al., 2016). There also may be a difference in timing,
as males experience a decrease in PV cells in the PFC during
adolescence while females show a decrease in PV expression in
the PFC during juvenility following ELA (Holland et al., 2014).
Sex differences also appear in the developmental trajectory of PV
(Wu et al., 2014; Du et al., 2018), which may explain some of
the variability in results. Again, however, few studies have looked
at the difference in PV development between males and females,
particularly as it relates to ELA. Taken together, prior work
suggests that PV likely plays a significant role in the outcomes
associated with ELA and is, therefore, a key protein to further
characterize within this context. It is possible that alterations
in PV expression and/or function significantly contribute to
ELA-related affective dysfunction across the lifespan and are
influenced by sex hormones to drive sex-specific individual
outcomes following adversity, which will be further discussed in
this review.

Adversity Type
The type of adversity impacts acute and chronic
outcomes—spanning molecular to functional
domains—following ELA, with evidence clearly borne out
in recent work for review (see Brenhouse and Bath, 2019). Here,
we focus on two widely used models of ELA: MS and LB, with
MS being most closely associated with caregiver deprivation
and LB being most closely associated with resource scarcity and
infant maltreatment. Evidence suggests that there are differences
in ELA type on later PV outcomes. Specifically, MS has been
associated with a decrease in PV cells in the HPC (Katahira et al.,
2018; Murthy et al., 2019), the BLA (Lukkes et al., 2017; Gildawie
et al., 2020), and the PFC (Leussis et al., 2012; Wieck et al., 2013;
Ganguly et al., 2015). Conversely, LB has been associated with
an increase in PV in the BLA (Manzano-Nieves et al., 2020),
PFC (Manzano-Nieves et al., 2020), and HPC (Bath et al., 2016).
However, decreased PV following LB has been observed in
the OFC of females but not males (Goodwill et al., 2018). The
mechanisms underlying these opposing findings in response to
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FIGURE 1 | Developmental trajectories of estradiol and PV. A summary of
the developmental trajectory of estradiol (E2) concentrations in male (solid
orange) and female (solid purple) rodents across early postnatal development
through young adulthood, as well as the general developmental trajectory of
PV levels in the PFC (dashed gray) and HPC (dashed green). Both males and
females see a spike in E2 around P15. PV concentrations across
development have not been well studied; however, existing developmental
work suggests that PV levels in the HPC steadily increase through early
adulthood, while PV levels remain relatively stable in the PFC. Figure adapted
from data presented in Bell (2018), de Lecea et al. (1995), and Du et al.
(2018). PFC, prefrontal cortex; HPC, hippocampus; PV, parvalbumin.

different models of ELA remain unknown but may be influenced
by length and timing of experience. Typically, LB models last
for 7 days, while MS models last for 18 days, and it is, therefore,
possible that the difference in duration of adversity contributes
to the disparity observed between adversity types. MS stress may
lend itself more to isolation stress, while LB may lead to more
aversive stress, as modified LB methods have been related to
abusive maternal care (e.g., Lewin et al., 2019). It is possible that
the types of stress elicited by the models differ, leading to unique
changes in PV.

Sex may also be a factor to consider when evaluating the
impact of adversity type. One study looking at sex differences
following ELA using the LB model found that cognitive ability,
via rule shifting, was impaired more in females than in males
(Goodwill et al., 2018). This same study also revealed that female
rats have a decrease in PV levels in the OFC following LB, while
male rats see no change. This is a different pattern of results
than seen in studies that use an MS model, which often find that
males experience a long-term decrease in PV following adversity
while females do not (e.g., Holland et al., 2014; do Prado et al.,
2016; Grassi-Oliveira et al., 2016). This suggests that the type of
adversity may also affect males and females differently. However,
it is worth noting that there are few studies that have directly
compared males and females in this way, and therefore this sex
disparity may be biased due to a lack of relevant research.

While the type and timing of ELA appear to markedly
influence later life outcomes when presented during the
pre-weaning period, the length of the experience during that
time may also be important. Prolonged ELA experience, as
modeled by MS up until weaning, confers increased risk

of PV decreases and/or dysfunction, with most of the past
research reporting decreased PV levels following ELA via MS
(see Table 1). This general decrease in PV expression after
ELA is also associated with concomitant changes in anxiety-
and depressive-like behaviors (e.g., Leussis et al., 2012; Grassi-
Oliveira et al., 2016), suggesting a possible link between these
outcomes.

Developmental Age
An important factor that warrants consideration when evaluating
PV expression following ELA is the age at which the animal
experiences ELA, as well as the age of tissue collection
and evaluation. In rodents experiencing adversity in early
development (P0–20) or even juvenility (P20–35) there were
generally decreases in PV levels in the PFC and HPC, particularly
after MS (see Table 1). However, this was true for when
brain tissue was collected in adolescence (approx. P35–50) or
young adult/adulthood (approx. P50-P70) following ELA, but
not during juvenility (Holland et al., 2014; do Prado et al., 2016;
Grassi-Oliveira et al., 2016). This indicates that both the timing of
adversity and the age of brain collection are important factors to
consider. Adult rodents, however, were found to have increased
PV levels following chronic stress in adulthood in the PFC
(Shepard et al., 2016; Shepard and Coutellier, 2017), suggesting
that age may have differing effects on the brain’s response to
stress. It is possible that stress occurring after the brain has fully
developed elicits a different response than stress that occurs while
the brain is still undergoing major development (Romeo and
McEwen, 2007). PV cell density increases in the PFC throughout
juvenility and adolescence before decreasing again in adulthood
(Ueno et al., 2017). Therefore, stress that occurs during juvenility
or adolescence may impact the development of PV cells, while
stress in adulthood may have a compensatory effect and leads to
an increase in PV cells.

There is also evidence suggesting that ELA, specifically MS,
may have a delayed impact on PV cell density. Brains that
were collected immediately (or within a few days) after ELA
experience generally had no significant differences in PV levels
compared to control-rearing (Giachino et al., 2007; Brenhouse
and Andersen, 2011; Soares et al., 2020; Richardson et al., 2021),
while brains collected later in life (in adolescence and/or P40 and
older) generally had decreased PV levels (Leussis et al., 2012;
Wieck et al., 2013; Ganguly et al., 2015; Lukkes et al., 2017,
2018; Kim et al., 2020; Aksic et al., 2021). Since PV cells have
been found to increase significantly in number from juvenility to
adolescence in brain regions such as the PFC (Caballero et al.,
2014; Wu et al., 2014), it is possible that ELA may inhibit the
maturational time course of PV cells. However, this regulation
may also be regionally dependent, as some groups have identified
decreases in HPC PV across development from juvenility to
adolescence in typical rats (e.g., Honeycutt et al., 2016), making
the dynamic nature of PV protein expression even more
apparent. Furthermore, developmental timing of other insults
(for instance, exposure to NMDA antagonists which appear to
disproportionately impact PV cell functionality; (Kinney et al.,
2006; Abekawa et al., 2007), also mediate PV outcomes in an
age-dependent manner (e.g., Honeycutt and Chrobak, 2018).
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This research suggests that there may be a compounding effect of
ELA and downstream neural changes that lead to the decrease in
PV levels following adversity. Furthermore, as males and females
have slightly different developmental timelines, it is important to
consider sex as a variable when looking at developmental age and
ELA effects.

Sex Hormones
An important area of consideration, which has more recently
been gaining traction in the field, for ongoing and future research
is to systematically investigate sex differences in relation to
ELA. The majority of ELA research (and admittedly, research
in general) has focused on the investigation of male subjects.
However, males and females have different physiological and
behavioral responses to ELA (Donner and Lowry, 2013; Maeng
andMilad, 2015; Perry et al., 2021), as previously mentioned. For
example, juvenile male rats did significantly worse on non-spatial
and spatial memory tasks following MS, while female rats had
no impairment (Frankola et al., 2010). Social and aggression-
related behavior following ELA also differs between males and
females (Farrell et al., 2016). Prior work in rodents has shed
some light on these differences, suggesting that MS in mice leads
to opposite effects in adult offspring, with MS males showing
decreased latency to attack a resident intruder, and lactating MS
females showing decreased latency in the same task (Veenema
et al., 2007), with ELA also leading to increased aggression/play-
fighting in male rats (Veenema and Neumann, 2009). Therefore,
it is important to consider how sex hormones may be interacting
with underlying putative mechanisms, including PV cells, to
identify possible relationships that may drive sex-specific risk
and/or resilience following ELA.

Estrogens and Aromatase
Estrogens may be a potential explanation for the sex differences
observed in PV levels following ELA. Estrogens play many
important roles in brain function, including the modulation
of neurotransmitters (Herbison, 1997; Rubinow et al., 1998),
cognition (Sherwin and Henry, 2008; Albert and Newhouse,
2019), and synaptic plasticity (Albert and Newhouse, 2019).
Estrogen receptors (ER) are crucial in the development and
behavioral outcomes in both males and females (e.g., Hess and
Cooke, 2018), including behaviors such as fear extinction and
aggression (Ogawa et al., 1997; Scordalakes and Rissman, 2003;
Graham and Milad, 2014). Estrogens have been implicated in
contributing to anxiety-related outcomes (Borrow and Handa,
2017) and depression (Albert and Newhouse, 2019), with
decreased levels of estrogens in the PFC (Shansky et al., 2004),
amygdala (Walf and Frye, 2006), and HPC (Xu et al., 2015, 2016)
associated with the development of anxiety- and depressive-like
behaviors following stress.

Low levels of estrogens and ERs are associated with increased
anxiety behavior, both in rodents (e.g., Walf and Frye, 2006;
Borrow and Handa, 2017) and in humans (e.g., Wittchen and
Hoyer, 2001; Almeida et al., 2005; Solomon and Herman, 2009;
Holsen et al., 2011). Estradiol and ERs, specifically ERα and ERβ,
have been found to have protective effects against anxiety- (Lund
et al., 2005; Walf and Frye, 2006, 2010; Filova et al., 2015) and

depressive-like (Galea et al., 2001; Walf et al., 2009; Österlund,
2010) behaviors. These protective effects may be due to the role
of estradiol and ERs in preventing cell death by promoting the
release of anti-inflammatory proteins (Behl et al., 1995; Patrone
et al., 1999; Simpkins and Dykens, 2008; Smith et al., 2011) and
promoting axonal sprouting by increasing axodendritic synapse
formation (Matsumoto and Arai, 1979; Kadish and Van Groen,
2002). Estradiol may also play a role in neuronal regeneration
by stimulating the release of glial apolipoprotein and enhancing
antioxidant mechanisms (Sudo et al., 1997; Stein, 2001; Struble
et al., 2007). Finally, estradiol and ERs may also increase synaptic
transmission (Garcia-Segura et al., 2001), perhaps due to the
antioxidant properties of estradiol molecules (Behl et al., 1997)
and the neuroprotective signal cascades that begin with binding
to ERs (Sohrabji et al., 1994; Lagrange et al., 1997) or interactions
with estrogens (Sohrabji et al., 1995; Singer et al., 1999; Singh
et al., 1999).

This has led to the use of estrogens in several human studies
as a successful treatment for anxiety and depression in women,
with perimenopausal women receiving treatments of estrogens
experiencing significantly lower levels of anxiety and depression
(Schmidt et al., 2000; de Novaes Soares et al., 2001; Grigoriadis
and Kennedy, 2002; Ancelin et al., 2007; Misra et al., 2013).
While not a common treatment for anxiety and depression,
the results of these studies suggest that estrogens might have
potential as a successful treatment, and therefore warrants
further investigation to understand the mechanism(s) by which
it mediates affective function. In line with these human findings,
ovariectomized female rodents show significantly more anxiety-
and depressive-like behaviors, but these effects are significantly
reduced following replacement of estrogens (Estrada-Camarena
et al., 2003; Shansky et al., 2004; Walf et al., 2008, 2009; Walf
and Frye, 2010; Kiss et al., 2012; Daendee et al., 2013; Furuta
et al., 2013; Tian et al., 2013; Xu et al., 2015). Therefore, the
use of estrogens, especially in women with low baseline levels
of estrogens or older women who have experienced a decrease
in estrogens following menopause, may be important in the
treatment of anxiety and depression.

Furthermore, increasing evidence suggests that both artificial
and natural increases in estrogens and ERs lead to increases in PV
levels (Ross and Porter, 2002; Wu et al., 2014; Bunratsami et al.,
2015). Specifically, ovariectomized rats had a decreased number
of ERα and ERβ receptors as well as a decrease in PV levels. This
effect was reversed following estradiol replacement (Bunratsami
et al., 2015). In typical rats, the developmental trajectory of
parvalbumin is very similar to the developmental trajectory of
estradiol in females (Figure 1; Wu et al., 2014). There is also
colocalization of ERβ and PV in inhibitory neurons located
in the amygdala, HPC, cortex, and basal forebrain (Blurton-
Jones and Tuszynski, 2002) and colocalization of ERα and PV
in the dorsal HPC of mice (Wu et al., 2014). Therefore, a
strong connection can be drawn between estrogens and PV.
Additionally, the developmental time course of PV expression
lines up closely with the developmental timing of estrogens
fluctuations (Alcántara et al., 1993; del Río et al., 1994; de
Lecea et al., 1995; Bell, 2018). In both male and female rodents,
estrogens are fairly low in concentration until peaking around

Frontiers in Behavioral Neuroscience | www.frontiersin.org 7 November 2021 | Volume 15 | Article 74145458

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Ellis and Honeycutt Early Adversity and Sex Differences

P15 before decreasing again and staying at relatively similar levels
until females experience a pubertal increase again at P39 (Bell,
2018). In rodents, PV protein expression in most brain regions
begins to emerge around P10 and typically peaks in density
and intensity around P15 (Alcántara et al., 1993; del Río et al.,
1994; de Lecea et al., 1995). In a large number of neocortical
regions, as well as in the HPC, adult levels of PV have been
observed around P21 (Alcántara et al., 1993; de Lecea et al., 1995).
In females, PV levels remain consistent in the PFC throughout
adolescence (Du et al., 2018). However, in males, there is a
significant increase in PV in both the infralimbic and prelimbic
areas of the PFC during adolescence (Du et al., 2018). One
explanation for this difference is pubertal timing. Males typically
begin puberty around P42, which is when an increase in PV was
observed while females begin puberty earlier and experience an
earlier increase in PV (Du et al., 2018). Of note, ELA via MS
in rats has been shown to impact pubertal timing, accelerating
pubertal onset in females, while delaying in males (Cowan and
Richardson, 2018). However, in an LB rat model, sex hormone
levels, but not pubertal onset, were impacted (Eck et al., 2020).
It is therefore prudent to consider the impact of ELA-induced
alterations in development as a possible driver of sex-specific
neural and behavioral outcomes.

Estrogen may have specific implications for the timing of PV
decreases and anxiety- and depressive-like behaviors associated
with ELA. Females experience the emergence of these changes
as early as juvenility, while males experience these alterations
in PV expression beginning in adolescence and into adulthood
(Holland et al., 2014; do Prado et al., 2016; Grassi-Oliveira et al.,
2016). During puberty, females exhibit a surge in estradiol, which
may explain why females exhibit altered PV levels before puberty
but not after. It is possible that, in females who have experienced
adversity, the estradiol surge results in a subsequent surge in PV,
while also protecting against the emergence and continuation of
anxiety and depression. It is important to note that males also
experience a surge in estradiol during puberty; however, most
of this estradiol is converted to testosterone by aromatase so
the circulating levels of estradiol remain relatively low in males
throughout puberty (Oyola and Handa, 2017; Bell, 2018)

While some research has looked at the role of estrogens in
development, fear extinction, and aggressive behaviors in males
(Ogawa et al., 1997; Scordalakes and Rissman, 2003; Graham
and Milad, 2014; Hess and Cooke, 2018), few studies have
considered the role of estrogens and stress in males. Interestingly,
Tsuda et al. (2014) observed that ERβ knockout mice exhibit
increased anxiety-like behavior, whereas male knockouts showed
increased aggression that was lessened by MS. Further, MS has
been associated with alterations in Erβ gene methylation in male
mice (Wang et al., 2013), suggesting a role of altered estrogenic
function in behavioral outcomes in both sexes. However, an
important consideration is the function of aromatase, which
is responsible for the conversion of testosterone to estrogens
(Eck et al., 2020). This is particularly important during early-life
development, as well as with the development of sexual behaviors
during puberty (McCarthy, 2008; Bell, 2018). As estrogen levels
are higher in males following ELA, it is possible that ELA leads
aromatase to be more efficient in converting testosterone to

estradiol (Eck et al., 2020), which may have a protective effect
(Wei et al., 2014). Additionally, the aromatase inhibitor letrozole
administered in juvenility has been associated with increased
anxiety-like behavior in rats (Borbélyová et al., 2017), which
suggests that decreased levels of estrogens may be an important
consideration in males as well. However, more research is
needed to directly determine how ELA impacts the levels and
functionality of aromatase, as well as the interaction between
aromatase and PV, which could be an important aspect of the
sex differences that emerge after ELA.

Testosterone
In addition to estrogens, testosterone may also play an important
preventative role in the development of anxiety and depression
(Aikey et al., 2002; Buddenberg et al., 2009; Roohbakhsh et al.,
2011; Giltay et al., 2012; Hodosy et al., 2012; McHenry et al.,
2014). Testosterone is a hormone typically found in higher levels
in males than females (Fahey et al., 1976). Males experience a
surge in testosterone right before birth and maintain a moderate
level of testosterone throughout juvenility until experiencing
another surge during puberty (Bale and Epperson, 2017; Bell,
2018). ELA has been found to lead to a change in testosterone
levels, but it is unclear whether it leads to an increase (e.g.,
Veenema et al., 2006; Zito et al., 2017) or decrease (e.g., Llorente
et al., 2011; Tsuda et al., 2011). Interestingly, decreases in plasma
testosterone were shown to be associated with less aggressive
behavior in male mice, though these findings were dependent on
age in 5–9 week old mice (Tsuda et al., 2011).

Testosterone has been observed to have anxiolytic and
antidepressant effects in both males and females (Goldstat et al.,
2003; Miller et al., 2009; Zarrouf et al., 2009; McHenry et al.,
2014). Males with hypogonadism, which leads to a decrease in
testosterone levels, have significantly higher rates of anxiety and
depression (Shores et al., 2004; Zarrouf et al., 2009; Wainwright
et al., 2011; Aydogan et al., 2012). Furthermore, hormone
replacement therapy in men with a testosterone deficiency
prevents or alleviates anxiety and depression (Wang et al., 1996;
Seidman and Rabkin, 1998; Seidman et al., 2001; Pope et al.,
2003; Kanayama et al., 2007; Zarrouf et al., 2009; Jung and
Shin, 2016). Similarly, gonadectomized male rodents exhibit
increased anxiety and depressive-like behavior, which is reversed
following testosterone replacement treatment (Frye and Seliga,
2001; Edinger and Frye, 2005; Carrier and Kabbaj, 2012; Carrier
et al., 2015). While little research has been conducted looking
at testosterone therapy in women, a small number of studies
found promising evidence that low-dose testosterone treatment
led to a decrease in depressive-like behavior in SSRI treatment-
resistant women of various ages with major depressive disorder
(Miller et al., 2009) and reduced fear potentiated startle in
healthy women (Hermans et al., 2006). Furthermore, low levels
of salivatory testosterone may lead to an increased risk of females
developing anxiety and depression (Carrier et al., 2015).

Despite the potential role of testosterone in anxiety and
depression, little research has found clear interactions between
PV and testosterone, which is in contrast to the overlap that
is seen with PV and estrogens. One study looking at canaries
found that an increase in testosterone was associated with higher
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levels of PV in the HVC, robust nucleus of the arcopallium, and
Area X, which are all regions associated with bird song (Cornez
et al., 2020). Another study in mice found no interaction between
PV and testosterone (Wu et al., 2014), which may explain why
males see a decrease in PV but females do not, following ELA.
As previously discussed, PV colocalizes extensively with ERs,
suggesting that higher availability or ERs within key brain regions
may be capable of modulating PV function through ER signaling
(Blurton-Jones and Tuszynski, 2002; Wu et al., 2014), whereas
testosterone may not have the ability to modulate PV function
this robustly. However, the anxiolytic and antidepressant roles
of testosterone, specifically in promoting neuroplasticity, may
explain differences in anxiety and depressive-like behavior
between sexes (Carrier and Kabbaj, 2012;Wainwright et al., 2016;
Walther et al., 2019), although these differences may depend on
the behavioral assays used (Polanza, 2001; Scholl et al., 2019).

DISCUSSION

ELA is a prevalent issue globally, and its contribution to
individual risk of developing later-life psychiatric disorders
places an undue burden on society at large. A potential
mechanism of ELA-associated outcomes (such as affective
dysfunction) may be a reduction in PV expression in the PFC
andHPC. However, these changes in PV levels are not ubiquitous
and appear to be differentially impacted by adversity type, age,
and sex. Here, we detail that the two of the most prominent
models of ELA, MS and LB, have markedly different effects on
PV outcomes both acutely and in the long-term. LB models have
led to increases in PV in the PFC (Bath et al., 2016; Manzano-
Nieves et al., 2020) of male mice, and the OFC of female, but
not male rats (Goodwill et al., 2018). Conversely, MS leads to a
general decrease in PV in the PFC (Leussis et al., 2012; Wieck
et al., 2013; Ganguly et al., 2015) and HPC (Katahira et al., 2018;
Murthy et al., 2019) of rats, which differs based on sex (see
Table 1). It is likely that both the duration of the two ELAmodels
(i.e., 7 vs. 18 days), as well as the type of adversity conferred by
these models, lead to different neural outcomes.

Age of adversity also plays an important role in PV levels,
with pre-weaning adversity generally leading to a decrease in PV
(Holland et al., 2014; do Prado et al., 2016; Grassi-Oliveira et al.,
2016), and adversity occurring in adulthood typically resulting in
an increase in PV cells (e.g., Shepard et al., 2016; Shepard and
Coutellier, 2017). The mechanism(s) underlying PV outcomes,
as well as manifestations of anxiety- and depressive-like
behaviors, as a function of both age and adversity type, remain
largely unknown. Interestingly, the research overviewed here
suggests males and females may be differentially susceptible
to ELA-induced PV pathology, particularly following MS.
Specifically, in those studies examining both sexes, female PV
outcomes were either comparable to those seen in males (a
decrease or no change compared to controls; Leussis et al.,
2012; Guadagno et al., 2020; Soares et al., 2020; Gildawie et al.,
2021; Richardson et al., 2021), or females showed a lack of PV
decrease while males showed amarked decrease in PV expression
following ELA (do Prado et al., 2016; Grassi-Oliveira et al.,
2016; Gildawie et al., 2020). Even more intriguing, was that

Holland et al. (2014) revealed an age-dependent decrease in the
PFC after MS, with females showing earlier decreases in PV
than males. While this disparity in findings based on sex is
not yet understood, it is worth noting that PV neurons show
substantial co-expression of ERs (Blurton-Jones and Tuszynski,
2002), which may serve a protective function preventing
ELA-induced expression phenotypes. Indeed, administration of
17-β estradiol increased PV levels in Pvalb heterozygous mice
(Filice et al., 2018), and estradiol administration further protects
PV expression outcomes in models of ischemic brain injury
(Koh, 2014). Therefore, the presence of estrogens, particularly
during key points of PV development (see Figure 1), may
play a protective role in neural outcomes following ELA
in females. However, while this is promising, it does not
account for the increased incidence of ELA-related affective
dysfunction/aberrant behavior that is often observed in females,
raising the possibility that alterations in PV cell function—and
not simply reduced PV protein—may also be linked to ELA risk
(Murthy and Gould, 2020).

In addition to underscoring the need to increase our
understanding of how sex impacts ELA-associated outcomes,
we detail compelling data that may suggest an overarching role
of PV expression/function on ELA-related affective dysfunction.
Indeed, as PV cells are well-positioned to orchestrate local circuit
oscillatory patterns, it follows that significant changes in PV
protein expression and/or PV neuron function would disrupt
the delicate E/I balance within discrete brain regions/circuits.
This careful balance of overall E/I tone is critical for mediating
behavior, and therefore PV disruption leads to downstream
neural and behavioral alterations characteristic of affective
dysfunction (Ferguson and Gao, 2018). Taken together, we show
that ELA leads to sex-dependent changes in PV outcomes,
and that type/age of ELA and age of brain tissue collection
further contribute to these observations. Most importantly, we
also overview evidence suggesting that estrogens may serve a
protective role due to colocalization of ERs on PV cells, perhaps
blunting females from some of the PV-associated outcomes
seen in males. Given the prevalence of ELA and the increased
risk of later-life affective dysfunction, it is essential that the
field recognizes that key methodological differences (i.e., age of
adversity/tissue collection) and sex contribute to ELA outcomes.
By systematically addressing these factors and by including
SABV, we can work toward individualized prevention and
treatment.
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Animal models have been utilized to explore the mechanisms by which mood disorders
develop. Ethologically based stress paradigms are used to induce behavioral responses
consistent with those observed in humans suffering from anxiety and depression. While
mood disorders are more often diagnosed in women, animal studies are more likely
to be carried out in male rodents. However, understanding the mechanisms behind
anxiety- and depressive-like behaviors in both sexes is necessary to increase the
predictive and construct validity of the models and identify therapeutic targets. To
understand sex differences following stress, we must consider how all cell types within
the central nervous system are influenced by the neuroendocrine system. This review
article discusses the effects of stress and sex steroids on the macroglia: astrocytes and
oligodendrocytes. Glia are involved in shaping the synapse through the regulation of
neurotransmitter levels and energy resources, making them essential contributors to
neural dynamics following stress. As the role of glia in neuromodulation has become
more apparent, studies exploring the mechanisms by which glia are altered by stress
and steroids will provide insight into sex differences in animal models. These insights will
facilitate the optimization of animal models of psychiatric disorders and development of
future therapeutic targets.

Keywords: glia, astrocytes, oligodendrocytes, stress, anxiety, depression, sex differences

INTRODUCTION

Despite their variety and vast numbers within the central nervous system (CNS), glial cells
were initially considered to function only in a supportive capacity to the electrically excitable
neurons. However, following decades of research, glial cells have emerged as active contributors to,
and modulators of, neuronal activity with functions in neurodevelopment and neuromodulation
through the release of gliotransmitters (substances released by glia to facilitate communication) that
continuously shape neuronal activity (Allen and Barres, 2005). There are twomain classifications of
glial cells within the CNS, macroglia and microglia. Two of the major macroglia include astrocytes
and oligodendrocytes (Zhou et al., 2020). Astrocytes make up the majority of glial cells within the
brain (Eroglu and Barres, 2010). A single astrocyte process may contact up to 100,000 synapses,
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allowing for direct contact and the ability to influence synaptic
communication. Along with microglia, astrocytes are considered
to be essential immune cells within the brain, and are involved
in neuroinflammation and neurodevelopment through the
promotion and maintenance of synapses (Schwarz and Bilbo,
2012). Oligodendrocytes are responsible for producing myelin
within the CNS, providing insulation to axons, and increasing
the speed of neuronal action potential propagation (Edgar
and Sibille, 2012). Increased understanding of the intimate
relationship of glia with the synapse has raised the question
of how glia may regulate neuronal abnormalities and the
development of disorders, as well as serve as potential therapeutic
targets (Halassa et al., 2007).

Given the central role of glial in CNS function, it is essential
to develop a complete understanding of their contribution
to normal and pathological outcomes. One domain in which
glial dysfunctions have been implicated is the development of
neuropsychiatric disorders, such as anxiety and depression. This
may not be surprising considering that canonical pathways
dysregulated in these mood disorders include glutamate
homeostasis and inflammation, both of which are tightly
regulated by glial cells (Kalivas, 2009; Bilbo et al., 2012).
Additionally, glia pathology has been recorded in patients that
suffered from major depressive disorder (MDD; Miguel-Hidalgo
et al., 2000; Rajkowska and Stockmeier, 2013), and astrocyte-
oligodendrocyte communication deficits have been implicated in
depression, as shown by decreased glia coupling in postmortem
brain tissue of male-depressed suicide victims (Tanti et al., 2019).
Although complex neuropsychiatric disorders like anxiety and
depression cannot be recapitulated in other animals (Dalla et al.,
2010), advances in understanding the neurobiology of depression
and anxiety have been facilitated by examination of models of
chronic stress, a known catalyst of depression and anxiety in
humans (Carr et al., 2013). Therefore, this review will focus
largely on the impact of chronic stressors on glia biology and
function. Finally, we view glia through the lens of sex differences
and examine gaps in understanding.While the number of studies
evaluating the role of glia in neuropsychiatric disorders has
increased, a full understanding of sex differences within these
cell-types requires further examination. Women are twice as
likely to suffer from anxiety and depression as men (Albert,
2015). However, neuroscience has extensively utilized male
rodents in preclinical studies (Mamlouk et al., 2020), including
animal models of anxiety- and depressive-like behaviors. The
under-representation of females in both clinical and preclinical
research leaves a significant gap in the understanding of the
biology of mood disorders. Because the topic of sex differences
and microglia has been extensively reviewed elsewhere (Bilbo
et al., 2012; Bekhbat and Neigh, 2018; Rainville and Hodes,
2019), this review focuses on the macroglia: astrocytes and
oligodendrocytes.

PRIMER ON STEROIDS AND THE
NERVOUS SYSTEM

We begin with a brief overview of the influence of steroids in
the CNS. Steroids are a class of hormones which are highly

lipophilic and are synthesized on demand both by endocrine
organs and in the central nervous system (Schmidt et al.,
2008; Diotel et al., 2018). The most studied class of steroid
receptors are the nuclear receptors which act as transcription
factors and thereby can exert profound and long-lasting effects
within the brain and periphery (Lösel and Wehling, 2003).
Steroids are further subdivided into corticosteroids and sex
steroids. The corticosteroids include mineralocorticoids and
glucocorticoids and are critical in modulation of circadian
functions, such as sleep and feeding behavior (Oster et al., 2006;
Dickmeis, 2009), and the response to physical and psychological
stressors (Jauregui-Huerta et al., 2010). The sex steroids include
progesterone, estrogen, and testosterone. All types of sex steroids
exist in both sexes. In addition to the influence of sex steroids
over reproductive behaviors and secondary sex characteristics
(Morris et al., 2004), sex steroids also influence a wide range of
normal and pathological functions unrelated to reproduction.

Chronic and traumatic stress influence the manifestation
and progression of mood disorders (McEwen, 2007); therefore,
we begin by discussing the interactions among glia and
glucocorticoids. Disruptions in homeostasis, whether physical
or perceived, activate the hypothalamic-pituitary-adrenal (HPA)
axis. This leads to an increase in circulating glucocorticoids
(GCs) in the bloodstream that bind to glucocorticoid (GR)
andmineralocorticoid receptors (MRs) throughout the organism
(McEwen, 2007). HPA axis activation is a normal and healthy
response to a perceived threat or physical perturbation; however,
continuous HPA axis activation during chronic stress can evoke
maladaptive consequences within stress-sensitive brain regions
as well as in other organ systems. Although GR binds with
lower affinity than MR, GR appears to be more complicit
in chronic stress-induced effects. The pervasive impact of GR
is at least in part driven by the genomic impact of GR
such that activation of the GR can lead to transcriptional
changes of up to 10% of genes through glucocorticoid
response elements (Jauregui-Huerta et al., 2010). The robust
influence of GR is regulated by multiple chaperones and
co-chaperones and the effects can be cell-type specific. GR
expression has been demonstrated on glia cells within the brain
(Vielkind et al., 1990; Bohn et al., 1991). Engagement of the
transcriptional influences of steroids is also evident in macroglia.
In primary oligodendrocytes cultures isolated from male and
female mice, steroid hormones differentially influenced cell
survival (Swamydas et al., 2009). Cultured astrocytes respond
to corticosterone application with an altered expression of
141 mRNAs, an effect that was attenuated by co-administration
with the GR antagonist RU486 (Carter et al., 2012). Additionally,
corticosterone treatment in rats resulted in decreased expression
of the astrocyte enriched structural protein glial fibrillary
acidic protein (GFAP; O’Callaghan et al., 1989; Nichols et al.,
1990).

Sex steroids are present in both sexes and differ in
concentrations and timing of developmental surges (McCarthy
et al., 2002). In addition to the well-known functions of
sex steroids in reproductive behaviors and secondary sex
characteristics, these steroids catalyze a range of changes in
physiology through neuronal actions (McEwen and Parsons,
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1982) and influence glial development (McCarthy et al., 2002;
Marin-Husstege et al., 2004) and function (Kuo et al., 2010).
Importantly, sex steroids and GCs also interact with one
another and influence the impact of one another to influence
both physiology and behavior (Conrad et al., 2004; Hiroi
and Neumaier, 2006) illustrating the centrality of considered
sex differences in the examination of stress and related
neuropsychiatric disorders. This is particularly important in
the context of glial biology because, in addition to the
impact of sex steroids on glia through estrogen receptors
expressed on both astrocytes and oligodendrocytes (Azcoitia
et al., 1999; Takao et al., 2004), glia also influence sex
steroid function in that they provide a central source of
steroid synthesis. Although peripheral sources of steroids
(i.e., ovaries, testes, and adrenals) exert substantial influence
in the CNS due to their highly lipophilic nature which
facilitates the crossing of the blood-brain barrier, neuroactive
steroids can be generated centrally from cholesterol synthesized
by astrocytes and oligodendrocytes (Arbo et al., 2016).
Thus, sex steroids are positioned to influence a plethora
of functions in the brain that are outside the realm of
reproductive behaviors.

ASTROCYTES

The role of astrocytes in neural function, pathology, and
repair has provided foundational information for studying the
possible role of glia in neuropsychiatric disorders. For instance,
progesterone and estrogen have demonstrated neuroprotective
effects following injury, inflammation, and stress at the level
of glia (Garcia-Ovejero et al., 2005; Arbo et al., 2016). Even in
the absence of injury, sex steroids influence astrocyte function.
The estrous cycle stage of female rats is associated with glia
process ensheathment of synaptic terminals within the arcuate
nucleus, with ensheathment decreasing during estrus compared
to proestrus (Olmos et al., 1989). Further, the relationship
between astrocytes and sex steroids is bidirectional. Glial
cells express estrogen receptors and can produce estrogen,
thus they can be the driver of estrogen’s protective effects
within models of CNS disease (Arevalo et al., 2010). For
example, ERα located on astrocytes are responsible for the
protective effects of estrogen within a model of autoimmune
encephalomyelitis, not neuronal ERα, as seen by decreased
levels of macrophage and T-cells of ERα ligand treated animals
(Spence et al., 2011).

Although not as easily defined as neural injury studies, a
relationship between astrocytes, steroids, and neuropsychiatric
disorders has begun to be established. Altered expression of
astrocyte density, as seen in post-mortem human tissue, has
been implicated in the development of anxiety and depression
(Rajkowska and Miguel-Hidalgo, 2007). A similar relationship
has been detailed using animal models. Chemically induced
deficits of the astrocyte population within the prefrontal cortex
(PFC) using the astrocyte toxin L-alpha-aminoadipic acid (L-
AAA) induce depressive-like behaviors in rodents (Banasr
and Duman, 2008). In addition, exogenous administration of
corticosterone, the primary glucocorticoid in rodents, leads

to a decrease in the astrocyte structural protein GFAP
mRNA (Nichols et al., 1990) and protein (O’Callaghan
et al., 1989) within the hippocampus, a stress-sensitive brain
region. Changes in GFAP-immunoreactivity (GFAP-IR) may
indicate less coverage of the synapse, suggesting a relationship
between glucocorticoids and synaptic activity. Changes in cell
proliferation rate within the adult CNS can also contribute
to altered expression of GFAP positive cells, as seen in male
mice that underwent chronic stress and expressed a decreased
number of newborn astrocytes in the hippocampus compared to
controls (Dioli et al., 2017). In addition, comparison of GFAP-IR
in the male Wistar-Kyoto (WKY) rat, which is commonly
used as a model in studies of anxiety-like and depressive-like
behaviors due to heightened stress-sensitivity, to male Sprague-
Dawley rats, found that overall GFAP expression was lower
in the PFC, basolateral amygdala (BLA), and hippocampus of
the WKY rats (Gosselin et al., 2009). This lower expression
of GFAP in stress-sensitive brain regions of the WKY strain
suggests that the magnified stress-induced behaviors observed
may be due to basal differences in the astrocyte profile within
these regions.

While the preceding studies did not include the variable
of sex, differences in astrocyte complexity may vary by sex.
Ovariectomized (OVX) female rats given estradiol display
an increase in GFAP surface density compared to OVX
controls in the hippocampus and globus pallidus (Trangue
et al., 1987) demonstrating the ability of estradiol to influence
astrocytic proteins. In addition, GFAP-IR in the hippocampus
of adult Wistar rats was greater in the CA1 region in
females, with males displaying greater reactivity in CA3
(Conejo et al., 2003). These findings demonstrate baseline
differences in a marker of astrocyte complexity which may
be reflective of sex differences in astrocyte phenotype in
stress-sensitive brain regions. Further, animal models of stress
show sex differences in astrocyte complexity in the medial
PFC (mPFC) following chronic stress, results that were sex
steroid dependent (Bollinger et al., 2019). This suggests that
sex steroids have direct actions on glia activity and may drive
sex differences in the glial response to stress, which could
facilitate sex differences in behavioral outcomes following stress
exposure.

Astrocytes have an established role in neurotransmitter
modulation. Importantly, astrocyte-mediated regulation of
glutamate basal tone and dysregulation of glutamate homeostasis
may contribute to the potentiation of anxiety and depression
(Blacker et al., 2019). To this end, the astrocyte enriched
glutamate transporter GLT-1 has decreased expression in
postmortem tissue obtained from individuals diagnosed with
MDD (Choudary et al., 2005; Rajkowska and Stockmeier, 2013).
Similarly, preclinical research suggests a role of GLT-1 in
behaviors related to mood disorders. Knockout of the GLT-1
gene in astrocyte using male transgenic GFAP-Cre mice results
inincreased anxiety-like behaviors in the elevated plus maze
(Jia et al., 2020). However, the effects of GLT-1 are region
dependent such that deletion of GLT-1 within the lateral
habenula increased depressive-like behavior as measured by
social interaction and behavior in the novelty-suppressed feeding
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paradigm (Cui et al., 2014). The brain region specific effects of
GLT-1 may also be sex specific. Male and female Long-Evans
rats exposed to chronic stress displayed reductions in GLT-1
expression (Rappeneau et al., 2016). However, females had
decreased GLT-1 and GFAP mRNA within the PFC and nucleus
accumbens (NAc), whereas, males displayed reductions in GLT-1
only in the striatum. Furthermore, comprehensive evaluation
of overall glutamate homeostasis in male mice that underwent
varying lengths of stress suggests that neuronal and glia protein
expression are altered (Nasca et al., 2017). Unfortunately,
female mice were not included in this study leaving a gap in
knowledge regarding sex differences in glutamate homeostasis
following stress which will be important to address given that
evidence for differential glutamate homeostasis as a function
of sex is evident from postmortem human studies. Analysis of
ionotropic and metabotropic glutamate receptor expression in
postmortem tissue reveals that females with MDD have higher
expression of both receptor classes in the dorsolateral PFC,
while males with MDD only display variation in the glutamate
metabotropic receptor 5 (GRM5) expression (Gray et al., 2015).
While this study focused on neuronal proteins, it suggests there
may be sex differences in glutamate homeostasis during the
clinical state of depression. Given that astroglia are essential
in maintaining glutamate homeostasis and astrocyte-enriched
proteins that regulate glutamate clearance are differentially
altered in males and females following stress, a comprehensive
evaluation of the role of astrocyte enriched protein expression
in females following stress will be foundational in building an
understanding of the role of astrocytes in the regulation of
glutamate homeostasis in the context of both normal brain
function and neuropsychiatric disorders.

OLIGODENDROCYTES

White matter consists of oligodendrocytes that ensheath axons
and allow neurons to propagate action potentials (Bonnefil
et al., 2019). Similar to astrocytes, our understanding of
oligodendrocytes and their relationship to steroids was bolstered
by the study of neural injury. Examination of a model of
autoimmune encephalomyelitis demonstrated that estradiol
promotes oligodendrocyte myelin protein survival (Offner and
Polanczyk, 2006). Again in line with astrocytes, evidence
exists to indicate a relationship between oligodendrocytes and
neuropsychiatric diseases. Reductions in white matter are visible
in patients with MDD using neuroimaging (Coloigner et al.,
2019). Analysis of the anterior cingulate cortex from male
victims of suicide with a history of active depression found
decreased gap junction coupling between oligodendrocytes and
astrocytes, compared to controls (Tanti et al., 2019). Although
causality cannot be assessed in this type of study, animal
models can be leveraged to investigate how social experience
may alter oligodendrocytes and myelinationcreating a risk factor
for developing a neuropsychiatric disorder (Toritsuka et al.,
2015). Chronic stress in male mice caused morphological
changes of oligodendrocytes in the corpus callosum, including
increased length of the paranode and juxtaparanode regions
and upregulation of multiple adhesion molecules (Miyata et al.,

2016) suggesting compromised function. Following chronic
social defeat of male mice, the percent area in the NAc
covered with myelin basic protein (MBP) is decreased along
with the altered length of myelin segmentation in the mPFC
(Bonnefil et al., 2019). In the same study, a demyelination
compound was directly targeted at the mPFC and decreased
social preference in male mice demonstrating that decreasing
myelination alone can lead to altered social behavior, similarly to
the depletion of astrocytes in the PFC leading to depressive-like
behaviors (Banasr and Duman, 2008). Further, male mice
that underwent chronic variable stress displayed increased
depressive-like behaviors and oligodendrocyte transcriptional
changes in the PFC, NAc, amygdala, and corpus callosum
(Liu et al., 2018). Thus, changes in oligodendrocyte function
are not limited to social stress alone—at least for male
organisms as all of the studies discussed excluded females
from the analysis.

Despite the frequent exclusion of female subjects from
research studies, there is substantial evidence for sex differences
in oligodendrocytes. The density and proliferation of
oligodendrocytes vary between male and female mice, with
adult castrated male mice displaying similar proliferation in
the corpus callosum as females which supports a causative role
of sex steroids in oligodendrocyte proliferation (Cerghet et al.,
2006). This influence of sex on oligodendrocyte proliferation has
been confirmed in vitro as demonstrated by greater expression of
genes associated with oligodendrocyte proliferation in primary
cultures obtained from neonatal female rats compared to
males (Yasuda et al., 2020). In addition to basal differences,
sex differences in oligodendrocyte markers have been reported
following acute stress with differentially altered MBP levels in
male and female mice. Male mice displayedincreased levels of
MBP in the amygdala and hippocampus 12 days after the stressor
(Breton et al., 2020). Conversely, females did not have altered
MBP levels until 2 months after the stressor and exhibited
increases in the PFC, amygdala, and hippocampus.Thus,
the temporal influence of stress on oligodendrocytes
differs between the sexes and couldrepresent an important
and understudied mechanism driving sex differences in
neuropsychiatric diseases.

ANTIDEPRESSANTS AND MACROGLIA

There is robust evidence to support the role of glial cells in
the development of neuropsychiatric disorders as identified
in human post-mortem pathology and the rodent studies
discussed. This relationship is further supported by evidence
that glial cells are responsive to the influence of some
antidepressant treatments. For instance, astrocyte enriched gap
junction protein connexin 43 is lowered by chronic unpredictable
stress, but the administration of fluoxetine or duloxetine
recovered expression deficit in male rats (Sun et al., 2012).
In addition, the antidepressant clemastine rescues behavioral
deficits and restores MBP coverage in the PFC of socially
isolated male mice (Liu et al., 2016). However, antidepressants
are not universally efficacious in reversing stress effects on
macroglia as evidence of the failure of citalopram to prevent
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FIGURE 1 | Within the CNS, glia cells are positioned in close contact with neighboring neurons. This positioning allows the glial cells to tightly control the
environment and facilitate neuronal communication. Following stress, this regulation can become dysregulated. Key proteins involved in astrocyte function are
downregulated leading to decreased cradling at the synapse and altered glutamate homeostasis. Oligodendrocytes will experience downregulation of the key myelin
basic protein and altered wrapping at the neuronal axon. Preclinical works suggest protein dysregulation following stress is different between males and females, but
more work is needed to understand these mechanisms. ∗Microglia are intimately associated with the synapse and other nearby glia cells. The interactions between
microglia and neurons can be disrupted following stress. While microglia are not discussed in this review, other reviews have extensively outlined the ways microglia
contribute to sex differences in the stress response (Bilbo et al., 2012; Bekhbat and Neigh, 2018; Rainville and Hodes, 2019). Created with Biorender.com.

stress-induced reductions of GFAP in astrocytes of male rats
(Araya-Callís et al., 2012). These studies did not consider
females and illustrate that only partial responsivity of glia
to current antidepressants exists. This represents both an
opportunity to directly target macroglia in the treatment of
mood disorders and the tremendous need to consider females in
these assessments.

CONCLUSIONS

The goal of this mini-review was to highlight the importance
of sex in the consideration of the role of macroglia in mental
health disorders and altered affective-like behaviors. Glia are
involved in shaping the synapse through the regulation of
neurotransmitter levels and energy resources, making them
essential contributors to neural dynamics following stress. We
have highlighted astrocytes and oligodendrocytes, both of which
are implicated in the progression of MDD (Figure 1). To
date, studies have focused on the role of glia or neuronal
proteins in the progression of anxiety and depression; however,
opportunities to identify expression variations in multiple cell
types within a single condition or preclinical model could

elucidate the overall change in tone at the synapse and provide
an important contribution to advancing our understanding.
Additionally, assessment of glia-glia communication following
stress will be a critical area of future study in order to determine
how macroglia change the dynamics of neural resources and
overall communication. Furthermore, as the role of glia in
neuromodulation continues to be elucidated, studies exploring
the mechanisms by which glia are altered by stress and steroids
will provide insight into sex differences in animal models and
inform our understanding of sex differences in the clinical
setting. Finally, clarification of macroglia function in health and
disease in both sexes will provide the foundation for novel
mechanistic interventions that may have the capacity to treat
beyond the symptoms and target the biological nexus fromwhich
symptoms manifest.
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Stress exposure has been shown to induce a variety of molecular and functional
alterations associated with anxiety and depression. Some studies suggest that
microglia, the immune cells of the brain, play a significant role in determining neuronal
and behavioral responses to chronic stress and also contribute to the development
of stress-related psychopathologies. However, little is known about the impact of
the duration of stress exposure upon microglia and neurons morphology, particularly
considering sex differences. This issue deserves particular investigation, considering that
the process of morphologic remodeling of neurons and microglia is usually accompanied
by functional changes with behavioral expression. Here, we examine the effects of short
and long unpredictable chronic mild stress (uCMS) protocols on behavior, evaluating in
parallel microglia and neurons morphology in the dorsal hippocampus (dHIP) and in the
nucleus accumbens (NAc), two brain regions involved in the etiology of depression. We
report that long-term uCMS induced more behavioral alterations in males, which present
anxiety and depression-like phenotypes (anhedonia and helplessness behavior), while
females only display anxiety-like behavior. After short-term uCMS, both sexes presented
anxiety-like behavior. Microglia cells undergo a process of morphologic adaptation
to short-term uCMS, dependent on sex, in the NAc: we observed a hypertrophy
in males and an atrophy in females, transient effects that do not persist after long-
term uCMS. In the dHIP, the morphologic adaptation of microglia is only observed in
females (hypertrophy) and after the protocol of long uCMS. Interestingly, males are more
vulnerable to neuronal morphological alterations in a region-specific manner: dendritic
atrophy in granule neurons of the dHIP and hypertrophy in the medium spiny neurons of
the NAc, both after short- or long-term uCMS. The morphology of neurons in these
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brain regions were not affected in females. These findings raise the possibility that,
by differentially affecting neurons and microglia in dHIP and NAc, chronic stress may
contribute for differences in the clinical presentation of stress-related disorders under
the control of sex-specific mechanisms.

Keywords: chronic stress, microglia morphology, sex differences, dorsal hippocampus, nucleus accumbens,
neurons morphology

INTRODUCTION

Exposure to stress has a detrimental impact on certain brain
functions, depending on the duration, type, and severity of
stress. Uncontrollable stress is a contributing factor for major
depressive disorder (Iwata et al., 2013), a severe and debilitating
psychiatric illness characterized by a significant change in mood
and accompanied by symptoms such as anhedonia and disrupted
sleeping, eating, and cognitive deficits (Kessler, 2012).

A wide variety of animal models have been used to mimic
human depression, but, as a heterogeneous disorder, many of
its symptoms (depressed mood, feelings of worthlessness, and
suicidal ideation) are hard to be mimicked in laboratory animals
and, for an animal model to be valid, it is not necessary to exhibit
all the traits of depression, since patients do not manifest every
symptoms of the disease (Belzung and Lemoine, 2011).

Unpredictable chronic mild stress (uCMS) protocol is widely
used and involves a permanent exposure to a variety of mild
stressors in an unpredictable manner. In adult rodents, uCMS is
a valid model of depression (Willner, 2005) and induce a variety
of behavioral alterations, including anxiety, anhedonia, decreased
exploratory behavior, and increased immobility/despair behavior
when exposed to stressful environments, as well as impaired
spatial cognition (Henningsen et al., 2009; Hill et al., 2012; Bessa
et al., 2013; Morais et al., 2014; Patricio et al., 2015).

Stress impact various aspects of immunity that in turn
promote stress susceptibility. As innate immune cells of the
brain, microglia play an integrative role in maintaining neuronal
homeostasis (Salter and Stevens, 2017). These cells are distributed
throughout the brain and function as a critical line of defense
against injury and pathogenic insults (Hanisch and Kettenmann,
2007). It has been reported that stress induces morphologic
changes of microglia (Sugama et al., 2007), namely promoting
microglial hyper-ramification in the prefrontal cortex (PFC)
(Tynan et al., 2013), which supports the theory that these
cells play an important role in modulating stress responses
(Reus et al., 2015). In the healthy adult central nervous system
(CNS), microglia have a ramified morphology characterized by
long and thin processes that support the ability for searching
potential threats for local homeostasis (Nimmerjahn et al., 2005;
Kettenmann et al., 2011; Xavier et al., 2014; Wu et al., 2015). Some
studies have described that when microglia respond to insults,
they change their morphology, the processes retract and the cell
body enlarges, giving microglia an amoeboid shape (Davalos
et al., 2005; Cho et al., 2006). However, in our recent studies we
report a diversity of morphologic changes that globally depend
on the time of stress exposure (prenatal versus adult stress),
on the sex of the animal and on the brain region under study

(Caetano et al., 2017; Duarte et al., 2019; Gaspar et al., 2021).
Our observations suggest that microglia remodeling upon stress
are not limited to the acquisition of an amoeboid phenotype,
as previously described (Sugama et al., 2007; Tynan et al., 2010;
Kreisel et al., 2014), but instead may vary from different degrees
of atrophy to hypertrophy.

In addition to microglial changes, several studies also point
toward stress-induced sex differences in neurons morphology
(Galea et al., 1997; Garrett and Wellman, 2009; Bock et al.,
2011; Breach et al., 2019), although the majority of studies were
performed exclusively in males (Magarinos and McEwen, 1995;
Lambert et al., 1998; Radley et al., 2006; Bessa et al., 2009a,
2013; Morais et al., 2014; Melo et al., 2015; Patricio et al., 2015).
In fact, stress-induced morphologic changes in microglia and
neurons are associated with behavioral alterations in rodent
models, including anhedonia, anxiety-like behavior and despair-
like behavior (Fonken et al., 2018; Liu et al., 2019).

Sexual dimorphism at multiple levels, including cellular,
molecular, and immune system in stress response suggest that
stress-elicited neuroinflammatory priming may vary between
sexes (Couch et al., 2013; Kreisel et al., 2014; Bekhbat and
Neigh, 2018; Wohleb et al., 2018). However, little is known
about the morphologic adaptation of brain cells in its relation
with depression vulnerability between sexes when subjected to
stress protocols of different duration. Therefore, in this study, we
examined the effects of the exposure to short and long uCMS in
both sexes upon behavior and plastic changes of microglia and
neurons. We used a set of different behavioral tests to evaluate
anxiety- and depression-like profiles of adult rats exposed
to uCMS. Using an automated methodology, we quantified
how uCMS alters several morphologic properties of microglia
and neurons in the dorsal hippocampus (dHIP) and nucleus
accumbens (NAc), two key brain regions in stress responses.

MATERIALS AND METHODS

The timeline of all procedures is shown in Figure 1A.

Animals
Adult male and female rats (Wistar Han), 3-months old
(Charles River Laboratories, L’Arbresle, France) were housed and
kept under standard laboratory conditions: 22◦C, 55% relative
humidity, and 12 h light/dark cycle with free access to food and
water. A complete timeline of all manipulations and behavioral
tests is provided in Figure 1A. The handling and health
monitoring were performed according to federation of european
laboratory animal science associations (FELASA) guidelines. All
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FIGURE 1 | Unpredictable chronic mild stress (uCMS) induces a dysregulation of body weight in males and in the circadian corticosterone secretion pattern in both
sexes. (A) Schematic drawing of the uCMS protocol. (B,C) Corticosterone serum levels measured at 8:00 a.m. in female and male rats exposed to stress in
adulthood. (D,E) Body weight of female rats exposed to short- or a long-term protocol of chronic mild stress for 2 and 6 weeks, respectively. (F,G) Body weight of
male rats exposed to short- or a long-term protocol of chronic mild stress for 2 and 6 weeks, respectively. Results are presented as the mean ± SEM of 10–20
animals (body weight) 6–10 animals (corticosterone); comparing with control, calculated using a two-way Analysis of Variance (ANOVA) followed by a Bonferroni
post-hoc test. ∗p < 0.05 and ∗∗p < 0.01.
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experimental procedures were approved by european union
(EU) – Directive 2010/63/EU and the Portuguese National
Authority for animal experimentation, Direção-Geral de Animal
e Veterinária (DGAV). All protocols were approved by the Ethics
Committee of the Life and Health Sciences Research Institute and
by DGAV (#19074).

Unpredictable Chronic Mild Stress
At posnatal day (PND)90, animals were randomly divided into
four experimental groups and placed in separate rooms: a group
of animals exposed to uCMS for 2 weeks (Short-term uCMS –
Stress); a group not exposed to uCMS for 2 weeks (Short-term
uCMS – Control); a group of animals exposed to uCMS for
6 weeks (Long-term uCMS – Stress); a group not exposed to
uCMS for 6 weeks (Long-term uCMS – Control). An adapted
version of the previously described and validated uCMS protocol
(Willner, 2005; Alves et al., 2017), was applied for two periods
of different duration (2 and 6 weeks). The uCMS protocol
consisted of a variety of unpredictable mild stressors, including
confinement to a restricted space for 1 h, placement in a tilted
cage (30◦) for 3 h, housing on damp bedding, 15 h of food
deprivation followed by exposure to inaccessible food for 1 h,
water deprivation for 15 h followed by exposure to an empty
bottle for 1 h, exposure to stroboscopic lights during 4 h and
reversed light/dark cycle for 48 h, every 7 days. Rats subjected
to stress were randomly exposed to 2–4 stressors every day for
2 or 6 weeks (Supplementary Figure 1). The controls were
left undisturbed under the previously described maintenance
conditions. Body weight was monitored weekly to monitor the
overall effects of the stress paradigms.

Behavioral Analysis
At the end of the uCMS protocol, a series of behavioral tests were
performed in sequence to evaluate anxiety and depressive-like
behavior. The Elevated Plus Maze (EPM) and Forced Swimming
Tests (FST) were conducted during the light period of animals
(9:00 a.m.–5:00 p.m.); the Sucrose Preference Test (SPT) test was
performed during the dark period, from 9:00 p.m. to 10:00 p.m.

Elevated Plus Maze
To assess anxiety-like behavior, the EPM test was performed at
PND105 (short-term) and at PND133 (long-term). The maze
(ENV-560; Med Associates Inc., St. Albans, VT, United States)
has two closed (50.8 cm × 10.2 cm × 40.6 cm) and two open
arms (50.8 cm × 10.2 cm), raised 72.4 cm above the floor
and illuminated by a dim light. Each animal was positioned
in the center of this elevated plus-shaped platform for 5 min.
The performance of rats in EPM was video-recorded and
subsequently analyzed. The ratio of time spent in the open arms
per total time spent in the open and in close arms was calculated
as an index of anxiety-like behavior.

Sucrose Preference Test
This test was performed at PND106 (short-term) and PND134
(long-term). Briefly, after 12 h of food and water deprivation,
rats were presented with two pre-weighted bottles containing

tap water or a solution of sucrose 2% for 1 h. The liquid
intake from each bottle was calculated by comparing the
differences in bottle weights before and after the test. The
sucrose preference was determined as the percentage of sucrose
solution intake that was calculated according to the formula:
SP = [sucrose intake/(sucrose intake + water intake)] × 100, as
previously described (Bekris et al., 2005). Low sucrose preference
represented anhedonia, a core symptom of depression. When
the preference test ended, rats were given free access to water
and food.

Forced Swimming Test
The test was performed at PND107-108 (short-term) and
PND135-136 (long-term) after SPT. On the 1st day, rats were
placed individually in a glass cylinder with water (62 cm
height; 25.4 cm diameter; depth no less than 50 cm, 23◦C)
for 5 min. Then, the rats were dried and transported back to
their home cages. In the 2nd day, the rats were subjected to
one 5-min session of swimming. The test session was video-
recorded, and the immobility time of each rat was measured using
the EthoVision XT 11.5 tracking system (Noldus Information
Tecnhology, Wageningen, The Netherlands). Immobility was
defined as floating state in the water, without struggling and
making only those movements to keep the head above water.
Depressive-like behavior was defined as an increase in the
immobility time.

Immunohistochemistry and 3D
Morphometric Analysis of Microglia
After completion of stress protocols and behavioral tests,
all groups of rats were deeply anesthetized with sodium
pentobarbital (20%; Eutasil R©, Sanofi, Gentilly, France) and
transcardially perfused with 0.9% saline. The brains were
removed and one hemisphere from each brain was used for Golgi
staining technique and the other for immunohistochemistry
for ionized calcium-binding adaptor protein-1 (Iba-1) followed
by the 3D reconstruction of microglia cells. The right
hemispheres, used for Iba-1 immunohistochemistry, were post-
fixed in 4% paraformaldehyde (PFA), cryoprotected in 30%
sucrose overnight, and then embedded in Optimal Cutting
Temperature compound (OCT, ThermoScientific, Waltham,
MA, United States), snap-frozen and stored at −80◦C. Coronal
sections (50 µm) of the hippocampal dentate gyrus (DG)
(stereotaxic coordinates of interaural 5.20 mm and bregma
−3.80 mm) and NAc (stereotaxic coordinates of interaural
10.20 mm and bregma 1.2 mm) were further stained to
visualize microglia cells. Microglia were visualized using the
following protocol: free-floating sections were blocked 2 h with
5% bovine serum albumin (BSA) in phosphate-buffered saline
(PBS) + 0.1% Triton X at room temperature (RT) and incubated
for 48 h at 4◦C with an antibody specific to Iba-1 (1:1,000;
Wako Chemicals Inc., Richmond, VA, United States) in 5%
BSA/0.1% Triton X/PBS. Iba-1 is constitutively expressed in
microglia, being involved in cytoskeletal reorganization, and is
up-regulated in response to microglial cell activation. Sections
were then rinsed and incubated for 2 h at RT with the
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appropriate secondary antibody (donkey anti-rabbit, 1:1,000,
Invitrogen, Waltham, MA, United States) and 4’,6-diamidino-
2-phenylindole (DAPI, 1:5,000). Sections were rinsed and
mounted on gelatinized slices, using glycergel (DAKO mounting
medium, Santa Clara, CA, United States). Images of 10 random
microglial cells from each animal were acquired with a laser
scanning confocal microscope LSM 710 META connected to
ZEN Black software (Zeiss Microscopy, Oberkochen, Germany)
using a 63x objective lens (oil immersed, Plan-Apochromat
63x/1.40 Oil DIC M27). Microglia cells were reconstructed
using the Neurolucida software (MBF Bioscience, Williston,
VT, United States). Morphometric data related to branch
analysis were extracted by the Neurolucida Explorer software
(MBF Bioscience, Williston, VT, United States). The parameters
analyzed were the total number and the length of cellular
processes and their measures per branch order, considering
processes of order 1 those emerging directly from the cell body,
processes of order 2 those arising from processes of order 1, and
so forth (Caetano et al., 2017).

Neuronal Morphology
To assess the dendritic morphology of granule neurons of
DG and spiny medium neurons of NAc, three-dimensional
morphological analysis was performed on Golgi-Cox stained
material. The left hemispheres were immersed in a Golgi-
Cox solution (1:1 solution of 5% potassium dichromate
and 5% mercuric chloride diluted 4:10 with 5% potassium
chromate) for 14 days, cryoprotected with 30% sucrose solution
for 72 h, and sectioned at 200 µm in a vibratome in a 6%
sucrose solution. Brain sections were mounted on gelatin-
coated slides, lightly pressed and kept in moist container
until developed, clarified, and then cover slipped. For each
selected neuron, dendritic branches were reconstructed at
1,000× (oil) magnification, using a motorized microscope
(Axioplan 2; Carl Zeiss, Oberkochen, Germany) and
Neurolucida Neuron Tracing Software (MBF Bioscience,
Williston, VT, United States). For each animal, approximately
10 neurons were analyzed in the dHIP and in the NAc.
Data for process length was obtained using Neurolucida
explorer (MBF Bioscience, Williston, VT, United States).
Measurements from individual neurons from each animal were
averaged. Total dendritic length was compared among the
experimental groups. Branching of the neurons was evaluated
using 3D Sholl analysis; for this, the number of dendritic
intersections with concentric circles positioned at radial intervals
of 20 µm was determined.

Corticosterone Levels Measurement
For all animals, serum corticosterone levels were measured
using a commercially available ELISA kit (Abcam, Cambridge,
United Kingdom), according to the manufacturer’s instructions.
Blood sampling (tail venipuncture) was performed during the
diurnal nadir (N, 8:00–9:00 a.m.) at the end of the stress protocol.
Results are expressed as ng of corticosterone per ml of serum.
Absorbance at 450 nm was determined using a microplate reader
and corticosterone concentration (ng/ml) was extrapolated from

a standard curve. The coefficient of variation for intra- assay was
5.7% and for inter-assay was 10.2%.

Estrous Cycle Analysis
In the day of sacrifice, vaginal cytology was performed. Exfoliate
cytology was examined under light microscope (Leica DM
4000B, Leica, Wetzlar, Germany) with a 10x objective lens (Plan
63x/0.25PH1) and estrous cycle was determined based on the
morphology of the cells present in the smear as previously
described (Westwood, 2008).

Data Analysis
All data are presented as mean ± standard error of the mean
(mean ± SEM). GraphPad Prism 6 Software was employed
for statistical analysis. Outliers were identified using GraphPad
Prism 6. Two-way Analysis of Variance (ANOVA) followed by
a Bonferroni post-hoc test was used to assess the effects of stress
(Control vs. Stress) and duration of stress (Short- vs. Long-term
uCMS). The level of significance for all analysis was a set at
p < 0.05.

RESULTS

Unpredictable Chronic Mild Stress
Induces a Dysregulation of the Circadian
Corticosterone Secretion Pattern in Both
Sexes and in the Body Weight of Males
It is known that stress impairs the activity of the hypothalamus-
pituitary-adrenal (HPA) axis and results in disrupted secretion
of corticosteroids (Pariante and Lightman, 2008; Willner et al.,
2013). In this work, we exposed animals of both sexes to a well-
established uCMS protocol (Willner, 2005; Bessa et al., 2009a;
Mateus-Pinheiro et al., 2013) for either 2 or 6 weeks. To validate
the uCMS protocol, we measured corticosterone levels as an
indicator of HPA axis function. In basal conditions, control
females exhibited higher corticosterone levels than males. At
the end of short- and long-term uCMS protocol, basal serum
corticosterone levels were higher in both sexes exposed to stress
[females: Figure 1B; F(1,24) = 10.94, p = 0.003; males: Figure 1C;
F(1,30) = 15.28; p = 0.0005], although only statistically significant
in the case of the short-term protocol. We also monitored weekly
the body weight until the end of the uCMS protocol. In the case
of females, short and long uCMS protocols did not significantly
affect total body weight [F(1,55) = 1.79, p = 0.19; Figures 1D,E].
Male rats exposed to uCMS displayed a reduction of body weight
[F(1,56) = 12.02, p = 0.001] after completion of short- (post-hoc
analysis, p = 0.0277) or long- term (post-hoc analysis, p = 0.0388)
uCMS protocols (Figures 1F,G).

Unpredictable Chronic Mild Stress
Induces Anxiety- and Depressive-Like
Behavior That Is More Pronounced in
Males
Unpredictable chronic mild stress induced anxiety-like behavior
in females [F(1,54) = 19.97, p < 0.0001], as demonstrated
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FIGURE 2 | Unpredictable chronic mild stress induces anxiety and depressive-like behavior, an effect more pronounced in males. (A,B) Time spent in open arms per
total time of the elevated plus maze (EPM) test performed to evaluate anxiety-related behavior of females and males. (C,D) Anhedonic-like behavior assessed by the
preference for sucrose in the sucrose preference test (SPT) in females and males. (E,F) Depressive-like behavior assessed by the total time of immobility in the
forced swimming test (FST) for females and males. Results are presented as the mean ± SEM of 10–20 animals comparing with control, calculated using a two-way
Analysis of Variance (ANOVA) followed by a Bonferroni post-hoc test. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001. #p < 0.05 (stress effect).

by the reduced time spent in open arms, after 2 (post-hoc
analysis, p = 0.001) or 6 weeks of uCMS (post-hoc analysis,
p = 0.029; Figure 2A). Like females, we also found a significant
effect of stress in males [F(1,50) = 23.40, p < 0.0001]. Males
exposed to a short- or long-term uCMS presented anxiety-like
behavior (post-hoc analysis, p = 0.002; p = 0.003, respectively;
Figure 2B).

In the SPT, that evaluates anhedonia, no main effect of
stress [F(1,58) = 0.4701, p = 0.4957] or duration of exposure
to uCMS [F(1,58) = 0.138, p = 0.712] was found in females
when assessing the percentage of sucrose solution consumed
(Figure 2C). In males, we observed a significant stress effect

[F(1,55) = 14.24, p = 0.0004], although only males exposed to
a long-term protocol of uCMS showed a decrease in sucrose
consumption when compared with controls (post-hoc analysis,
p = 0.004; Figure 2D) with an increase in water consumption
(Supplementary Figure 2).

In the FST, behavioral despair was calculated as time of
immobility. In females, no differences in immobility were
observed (Figure 2E). In males, a main effect of duration of
exposure to stress [F(1,61) = 12.41, p = 0.0008] was found since
males exposed to a long-term uCMS showed significantly higher
levels of despair behavior, when compared to controls (post-hoc
analysis, p = 0.0019; Figure 2F).
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The estrous cycle analysis was performed in females and
demonstrated that females were distributed by all phases of the
estrous cycle (Supplementary Table 1).

Unpredictable Chronic Mild Stress
Induces Sex-Dependent Morphologic
Adaptation of Microglia
Our group described that prenatal stress induces changes
in the morphology of microglia (Caetano et al., 2017;
Duarte et al., 2019; Gaspar et al., 2021), but the effect of

uCMS with different duration and potential sex differences
have not been explored. In order to better understand the role
of stress in the morphology of microglia, we performed the
morphometric analysis of microglia in adult female and male rats
in two different brain regions, the dHIP and the NAc. A detailed
analysis of microglia, including the number of processes per
branch order, the total number of branches and the total length
of branches was performed.

In the dHIP, short-term uCMS did not induce alterations
in microglia morphology in females (Figures 3A–D and
Supplementary Table 2). Conversely, long-term exposure to

FIGURE 3 | Unpredictable chronic mild stress induces remodeling of microglia, an effect more pronounced in females. Microglial morphometric structure was
manually reconstructed in the Neurolucida software based on 3D images of Iba-1 stained microglia. (A) Representative microglia cells of the dorsal hippocampus
(dHIP) in females. (B) Number of processes per branch of microglia of the dHIP in females. (C,D) Total number and length of microglia cells of the dHIP in females.
(E) Representative microglia cells of the dHIP in males. (F) Number of processes per branch of microglia of the dHIP in males. (G,H) Total number and length of
microglia cells of the dHIP in males. (I) Representative microglia cells from of the nucleus accumbens (NAc) in females. (J) Number of processes per branch of
microglia of the NAc in females. (K,L) Total number and length of microglia cells of the NAc in females. (M) Representative microglia cells of the NAc in males of the
NAc. (N) Number of processes per branch of microglia of the NAc in males. (O,P) Total number and length of microglia cells of the NAc in females. Results are
presented as the mean ± SEM of 40–50 cells from 4 to 5 animals; comparing with control, calculated using a two-way ANOVA followed by a Bonferroni post-hoc
test. ∗p < 0.05, ∗∗p < 0.01, ***p < 0.001, and ****p < 0.0001. ##p < 0.01 and ###p < 0.001 (stress effect).
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uCMS induced a hypertrophy of microglia in the dHIP in females,
when compared to control animals, either in the total number
of processes (post-hoc analysis, p = 0.002) and in total length
[F(1,140) = 3.08, p = 0.005; Figures 3C,D]. In males, we did
not observe any effect of stress (both short or long) in the
morphology of microglia either in terms of total number or
length (Figures 3E–H and Supplementary Table 2).

In the NAc, we observed opposite differences between sexes.
Short-term uCMS in females induced a general decrease in
the total number of processes [F(1,126) = 19.47, p < 0.0001;
Figures 3I,K] and in the length [F(1,126) = 14.23, p = 0.0002;
Figures 3I,L] (atrophy). Long-term uCMS induced also a
decrease of microglia morphology, but only in the number
of processes per branch order (Figure 3J and Supplementary
Table 3). On the other hand, males exposed to short-term
uCMS presented an increase in the total number of processes
[F(1,123) = 0.69; p = 0.0088] and in the length (hypertrophy)
[F(1,123) = 3.49, p = 0.0069] of NAc microglia, but long-term
uCMS did not induce alterations in microglia morphology in
males (Figures 3M–P and Supplementary Table 3).

When we compared microglia morphology under
physiological conditions in both regions, we observed that
microglia cells of females in the NAc exhibited a more complex
morphology compared with dHIP. No differences between dHIP
and NAc were observed in males microglia (Supplementary
Figures 3A,B and Supplementary Table 4).

Unpredictable Chronic Stress Induces
Contrasting Patterns of Neuronal
Dendritic Remodeling in the Dorsal
Hippocampus and Nucleus Accumbens
in Males
Neuronal morphology was assessed by three-dimensional
morphometric analysis of Golgi impregnated granule neurons in
the DG of dHIP and spiny medium neurons in NAc.

Unpredictable chronic mild stress revealed no significant
effect in the morphology or in the Sholl analysis of neurons
of the dHIP in females (Figures 4A–C). In males, exposure to
stress induced an atrophy of granule neurons of the dHIP, with a
significant decrease in their total dendritic length [F(1,10) = 59.75,
p < 0.00001] as compared with neurons of control animals
(Figures 4D–F). Both short- (post-hoc analysis, p = 0.0003) and
long-term of CMS (post-hoc analysis, p = 0.0008) significantly
decreased total dendritic length in granule neurons of the dHIP
(Figure 4E). In Sholl analysis we also observed an effect of stress:
males presented a less complex morphology when compared with
controls [F(3,120) = 53.39, p < 0.00001; Figure 4F].

We next analyzed the morphological effects of stress in NAc
neurons. In females we did not observe any effect of stress in the
morphology or in the Sholl analysis of spiny medium neurons
(Figures 4G–I). Contrarily to what we observed in the dHIP,
uCMS induced a hypertrophy in the NAc medium spiny neurons
of males, which displayed a significant increase in dendritic
length [F(1,10) = 79.65, p < 0.00001; Figures 4J,K]. Both short-
(post-hoc analysis, p = 0.0003) and long-term CMS (post-hoc
analysis, p = 0.0001) significantly increased total dendritic length

of medium spiny neurons (Figure 4K). Sholl analysis revealed
more complex medium spiny neurons in males exposed to long-
term uCMS compared to controls [F(3,112) = 3.122, p = 0.028;
Figure 4L].

DISCUSSION

The present study explored how short- and long-term uCMS at
adulthood alters behavior in males and females and identified
changes in the morphology of microglia and neurons of the dHIP
and NAc. This issue deserves particular investigation, considering
that the process of morphologic remodeling of neurons and
microglia is usually accompanied by functional changes with
behavioral expression.

The uCMS model is one of the most widely used rodent
models to produce behavioral deficits and neuroplastic changes
with strong face validity to human depression, that include not
only anhedonia, but also anxiety and cognitive impairments
in spatial memory and object recognition tasks (Willner et al.,
1987; Willner, 1997, 2005; Bessa et al., 2013). However, the
differential risk for anxiety and depressive-like behavior between
sexes considering a short- (2 weeks) and long-term (6 weeks)
uCMS protocol is still not fully elucidated, in particular in
what concerns to the characterization of cellular (neurons
and microglia) plasticity in an attempt to find a correlation
pattern. Considering the marked differences in the prevalence
of depression in men and women (Marcus et al., 2005),
there has been a considerable interest in sex specificities in
anxiety- and depression-like symptoms expressed in animals
exposed to stress. Nevertheless, sex differences in the risk and
resilience to stress are complex and vary according to the
characteristics of the stressor, such as timing, type and severity
(Hodes and Epperson, 2019). The basis for these differences
is unknown, in part because much of the work in the field
is performed mostly in male rodents (Klein et al., 2015),
perhaps due to the challenges associated with carrying out
experiments influenced by fluctuating gonadal hormones in
females (O’Connor and Barrett, 2014).

First, our results showed that body weight is affected (reduced)
in males, but not in female rats after short- or long-term uCMS
protocols. Although consistent with several studies, showing that
chronic stress has a higher impact in reducing male weight gain
(Konkle et al., 2003; Mateus-Pinheiro et al., 2013; Patricio et al.,
2015), it is important to consider the influence of conditions,
such as the type and the intensity of stressor, as well as the age of
stress onset. For instance, chronic stress in late adolescent female
animals reduces body weight gain (Wulsin et al., 2016).

Assessment of corticosterone levels as an index of the
stress response revealed higher levels in both sexes exposed to
uCMS comparing to control animals. It is important to note
that females have higher basal concentrations of corticosterone
and secrete higher levels after stress exposure, as previously
described by other authors (Kitay, 1961; Goel et al., 2014;
Oyola and Handa, 2017).

In behavioral tests, we showed that male rats are more
affected than females by these protocols of stress. Both sexes
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FIGURE 4 | Unpredictable chronic mild stress induces remodeling of neurons only in males. (A) Representative manual reconstruction of Golgi-impregned granule
neurons of the dorsal hippocampus (dHIP) in females. (B,C) Total dendritic length and sholl analysis of dendritic distribution of neurons in the dentate gyrus of the
dHIP in females. (D) Representative manual reconstruction of Golgi-impregned granule neurons of the dHIP in males. (E,F) Total dendritic length and sholl analysis of
dendritic distribution of neurons in the dentate gyrus of the dHIP in males. (G) Representative manual reconstruction of Golgi-impregned medium spiny neurons of
the nucleus accumbens (NAc) in females. (H,I) Total dendritic length and sholl analysis of dendritic distribution of neurons in the NAc in females. (J) Representative
manual reconstruction of Golgi-impregned medium spiny neurons of the NAc in males. (K,L) Total dendritic length and sholl analysis of dendritic distribution of
neurons of the NAc in males. Results are presented as the mean ± SEM of 30–40 cells from 3 to 4 animals; comparing with control, calculated using a two-way
Analysis of Variance (ANOVA) followed by a Bonferroni post-hoc test. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

exhibited anxiety-like behavior in response to stress, but only
male rats presented anhedonia and despair-like behavior, cardinal
symptoms of depression.

Unpredictable chronic mild stress-induced anxiety-like
behavior in both sexes is consistent with other studies showing
that animals exposed to chronic stress spent less time in the open
arms in the EPM test (Kompagne et al., 2008; Yue et al., 2017;
Wang et al., 2018).

Furthermore, 6 weeks of uCMS lead to anhedonia and
helplessness/despair behaviors in male animals, core symptoms
of depression that have been also described as characteristics
of stress-related conditions (D’Aquila et al., 1994; Willner
et al., 1996; Bekris et al., 2005; Bessa et al., 2009a; Patricio
et al., 2015). Stress-induced differences in sucrose consumption

between males and females were somehow expected due to
sex differences in taste and/or ingestion responses (Clarke and
Ossenkopp, 1998; Curtis et al., 2004) or in reactivity to reward
(Michaels and Holtzman, 2007). Indeed, other studies support
the present observation that stress-induced alterations in sucrose
consumption are differently expressed between male and female
animals (Dalla et al., 2005, 2008; Pitychoutis et al., 2009).
Regarding despair behavior (here assessed by the FST), our data,
although in line with other studies [showing that females exposed
to CMS cope better and present increased active behavior in the
FST, whereas males are more vulnerable (Bielajew et al., 2003;
Dalla et al., 2005)] are particularly intriguing because in humans,
depression is more prominent in females (Frank et al., 1988;
Marcus et al., 2005; Wittchen et al., 2011).
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In this study we explored the effect of stress on microglia
morphology in the dHIP and NAc, two key brain regions in
the control of depressive-like behavior (Di Chiara et al., 1999;
Nestler, 2001; Nestler and Carlezon, 2006; Bessa et al., 2013;
Alves et al., 2018). Microglia are diverse in shape and function
and may present phenotypic differences according to the brain
region analyzed (Caetano et al., 2017; De Biase et al., 2017; De
Biase and Bonci, 2019; Duarte et al., 2019; Gaspar et al., 2021)
and determined by sex (Lenz et al., 2013; Caetano et al., 2017;
Villapol et al., 2017; Gaspar et al., 2021). All these variables may
contribute to adapted functional responses to different insults
(Schwarz et al., 2012; Villapol et al., 2017; Guneykaya et al.,
2018; Perkins et al., 2018; Villa et al., 2018). Thus, it is not
surprising that chronic stress elicits brain region- and sex-specific
alterations in microglial phenotypes that likely contribute to
divergent neurobiological and behavioral responses (Hinwood
et al., 2013; Kreisel et al., 2014; Milior et al., 2016; Franklin
et al., 2018). In the dHIP, microglia from males are not affected
by chronic stress (shorter or longer periods of exposure), while
females, although requiring a longer period of exposure to
stress, present hypertrophied microglia (more and longer cellular
processes). In line with these results, our group described that
prenatal stress exposure induces a hypertrophy of microglia in
females with no differences in males (Gaspar et al., 2021). These
findings are consistent with other study reporting the absence
of changes in the morphology of microglia in males in the HIP
following chronic stress (Lehmann et al., 2016). In the case of
NAc, microglia from both sexes is affected by stress, but changes
observed after 2 weeks of stress are apparently transient and
no longer observed after 6 weeks of stress exposure. To our
knowledge, our group described for the first time alterations
in microglia morphology in the NAc after stress exposure.
Recently we showed that prenatal exposure to stress induced

also sex-specific alterations in microglia (atrophy in females
and hypertrophy in males) (Gaspar et al., 2021). It is becoming
evident that microglia morphology is robustly and differently
affected by stress in different brain regions. For example, 21 days
of restraint stress increased the complexity of microglia in
males, enhancing ramifications in the PFC (Hinwood et al.,
2013). Studies from our team have shown that prenatal stress
triggers long-lasting sex differences in microglia morphology in
the mPFC, dHIP, and NAc (Caetano et al., 2017; Duarte et al.,
2019; Gaspar et al., 2021). Given that microglia present sexual
dimorphic features, namely density, function, and morphology
in several brain regions (Bilbo et al., 2012; Schwarz and Bilbo,
2012; Schwarz et al., 2012; Caetano et al., 2017; Duarte et al.,
2019; Gaspar et al., 2021), some of which conserved among
species (Simoes-Henriques et al., 2019), sex differences after stress
are not surprising.

The morphologic adaptation of neurons to stress has been
also studied by several authors. In general, it is accepted that
stress induces an atrophy of neurons in the HIP (Watanabe et al.,
1992; Magarinos and McEwen, 1995; McLaughlin et al., 2007;
Bessa et al., 2009a; Morais et al., 2014; Patricio et al., 2015) and
a hypertrophy in the NAc (Bessa et al., 2013; Melo et al., 2015).
One of the main goals of this work was to analyze behavior and,
in parallel, microglia and neurons morphology. Interestingly, the
morphometric analysis of neurons in the dHIP revealed that these
cells are morphologically not responsive to stress in the case
of females, but males present an atrophic pattern after 2 weeks
of stress, an effect that persists until 6 weeks of stress. In the
NAc, only males present changes (conversely to the dHIP, a
hypertrophy was observed), which are observable after a short
protocol of stress and persist after longer periods of exposure.

In summary, neuronal changes in this brain region seem to
be exclusive to males and opposite between dHIP and NAc. In

FIGURE 5 | Unpredictable chronic mild stress alters the behavior and the morphology of microglia and neurons in a brain region- and sex-specific manner.
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line with our results, some studies (only performed in males)
demonstrated that chronic stress caused an atrophy of neurons
in the DG of HIP (Bessa et al., 2009b; Morais et al., 2014; Patricio
et al., 2015) and in the mPFC (Radley et al., 2005; Shansky
et al., 2009; Melo et al., 2015). Interestingly, chronic adult stress
triggered a hypertrophy of medium spiny neurons in the NAc,
that was associated with a depressive-like phenotype (Bessa et al.,
2013; Melo et al., 2015). Thus, the NAc neuronal hypertrophy
that we observed in this study can contribute for the depressive-
like phenotype that is observed in males. In this framework, the
lack of changes in females is in agreement with the absence of a
phenotype in the SPT and FST.

CONCLUSION

The present results show that chronic stress significantly alters
the behavior and the morphology of microglia and neurons in a
brain region- and sex-specific manner: males are more affected
by stress, presenting anxiety- and depression-like behaviors,
hypertrophy of microglia, and dendritic hypertrophy in the NAc.
Females present anxiety-like behavior, but no depression-like
behavior, with remodeling of microglia in dHIP (hypertrophy)
and NAc (atrophy) (Figure 5). Globally, our results show that the
morphology of neurons is not affected by chronic stress in females
and this morphologic stability is accompanied by a process of
microglia remodeling. In the case of males, neurons are affected
in both regions, but microglia seem to be only and transiently
affected in the NAc. This study led us to question if microglia
plasticity is related with the morphologic stability of neurons
observed in females, eventually underlying stress resilience, a
hypothesis that deserves further investigation.
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Depression affects women nearly twice as frequently as men. In contrast, rodent models
of depression have shown inconsistent results regarding sex bias, often reporting
more depression-like behaviors in males. This sex discrepancy in rodents modeling
depression may rely on differences in the baseline activity of males and females in
depression-related behavioral tests. We previously showed that the baseline despair
and anhedonia behaviors, major endophenotypes of depression, are not sex biased
in young adolescent wild-type mice of C57BL/6N, DBA/2, and FVB/N strains. Since
the prevalence of depression in women peaks in their reproductive years, we here
investigated sex differences of the baseline depression-like behaviors in adult mice
using these three strains. Similar to the results in young mice, no difference was found
between adult male and female mice in behavioral tests measuring despair in both tail
suspension and forced swim tests, and anhedonia in the sucrose preference test. We
then extended our study and tested apathy, another endophenotype of depression,
using the splash test. Adult male and female mice showed significantly different results
in the baseline apathy-like behaviors depending on the investigated strain. This study
dissects the complex sex effects of different depression endophenotypes, stresses the
importance of considering strain, and puts forward a hypothesis of the inconsistency of
results between different laboratories investigating rodent models of depression.

Keywords: sex difference, tail suspension test, forced swim test, sucrose preference test, splash test, C57BL/6N,
DBA/2, FVB/N

INTRODUCTION

Depression is one of the most prevalent and life-threatening neuropsychiatric disorders
accompanied by a high incidence rate and severe economic burden (Hasin et al., 2018; Greenberg
et al., 2021). This heritable disorder is characterized by remarkable interindividual differences
in symptoms ranging from weight changes, diminished interest or pleasure in activities, sleep
disturbances, feelings of worthlessness or guilt, decreased cognitive ability and recurrent suicidal
thoughts (McCarter, 2008; American-Psychiatric-Association, 2013; Pu et al., 2017; Park and
Zarate, 2019). It straddles all races and ethnicities and affects different age groups, with more
prevalence among elderly people (Sjöberg et al., 2017; Malhi and Mann, 2018). Irrespective of
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race or other possible confounding social and economic factors,
women suffer from depression nearly twice as frequently as men
(Weissman and Klerman, 1977; Cyranowski et al., 2000; Andrade
et al., 2003; Ford and Erlinger, 2004; Patten et al., 2006; Bromet
et al., 2011; Albert, 2015; Salk et al., 2017). There is evidence
suggesting the contribution of biological factors, such as sex
hormones, to the increased prevalence of depression in women
(Albert, 2015).

Much research on depression has been undertaken, with
its progress being coupled with the development of rodent
models. Indeed, several features of depression have homologies
in mouse and rat behaviors. Accordingly, rodent models
have been developed to improve our understanding of the
pathophysiological mechanisms of depression. Still, the origin
of sex bias in depression is not well established. One reason
is the underrepresentation of female rodents in preclinical
studies of depression due to the presumption that the estrous
cycles may increase the intrinsic variability. Additionally,
the comparison between male and female rodent models
of depression yielded inconsistent results, with some studies
revealing lower depression-like behaviors in females (Alonso
et al., 1991; Brotto et al., 2000; Dalla et al., 2005, 2008;
Grippo et al., 2005; Brummelte et al., 2006; Chen et al., 2006;
Kamper et al., 2009; Martínez-Mota et al., 2011; Bai et al., 2014;
Burke et al., 2016), higher depression-like behaviors in females
(Konkle et al., 2003; Bhatnagar et al., 2004; Drossopoulou et al.,
2004; Pitychoutis et al., 2009, 2011; Dalla et al., 2010; Bourke
and Neigh, 2011; Kokras et al., 2012; Xing et al., 2013; Hodes
et al., 2015; Page et al., 2016; Goodwill et al., 2019), or no
differences between males and females (Poltyrev et al., 2005;
Alves et al., 2008; Olivier et al., 2008; Eltokhi et al., 2021). This
inconsistency between different laboratories demands optimizing
the standardization of experimental settings and consideration
of confounding factors possibly causing variability in rodent
behaviors. These factors include the rodent species and strain,
age, tested endophenotypes, methodology of behavioral tests,
and model of depression (genetic, environmental, chemical,
pharmacological, etc.). While the aforementioned factors can
explain the lack of reproducibility of sex differences between
different laboratories, they cannot safely answer why, contrasting
to humans, male rodent models often show more depression-like
behaviors than their female counterparts.

In this study, we hypothesized that the baseline performance
of male and female wild-type mice in depression-related
behavioral tests may play a role in the sex differences
in rodent models. The suggested baseline differences in
performance can mask or exaggerate depression-related genetic
or pharmacological-induced effects. To test this hypothesis, we
investigated three depression endophenotypes in three wild-
type inbred strains, C57BL/6N, DBA/2, and FVB/N, during
adulthood. Accordingly, we performed the tail suspension and
forced swim tests to assess despair-like behaviors, the sucrose
preference test to evaluate anhedonia-like behaviors, and the
splash test to measure apathy-like behaviors (Eltokhi et al., 2018;
Planchez et al., 2019; Becker et al., 2021). Distinct from our
previous study performed in adolescent mice before puberty
(Eltokhi et al., 2021), we here used adult mice since biological

maturation following puberty and clear sex-specific social roles
in adults may be major factors of a sex bias of depression
(Dalla et al., 2010).

Our work indicates that sex differences in the baseline
depression-related behaviors are present in wild-type mice
and depend on the strain and investigated endophenotype.
These results may explain the inconsistency of results between
laboratories experimenting on different mouse strains as well as
the increased depression-like behaviors in males in some studies.

MATERIALS AND METHODS

Animals and Housing Conditions
Male and female C57BL/6N, DBA/2, and FVB/N mice were
maintained at the Interdisciplinary Neurobehavioral Core at
Heidelberg University as previously described (Peleh et al., 2019).
Male and female mice were housed separately in groups of three
per cage with free access to food and water under a standard
12-h light/dark cycle (7:00 p.m.–7:00 a.m.) with a regulated
temperature of 22◦C and at a relative humidity of 40–50%.
Behavioral tests were conducted on 14-weeks old male and
female mice. Notably, we used new mouse cohorts different from
the ones investigated in our previous study performed during
adolescence (Eltokhi et al., 2021) to avoid the familiarity of
mice with the behavioral tests. The experiments were conducted
in strict compliance with national and international guidelines
for the Care and Use of Laboratory Animals and carried out
following the ARRIVE guidelines. The animal ethic committee
of the (Regierungspräsidium Karlsruhe) Government of Baden
Württemberg approved the study (G-101/16).

Experimental Design
All behavioral tests were performed during the daylight cycle.
Mice were habituated to the behavioral room for half an hour
before the start of the tests. We started the behavioral test battery
with the tail suspension test. Starting the same day, we performed
the sucrose preference test for 4 consecutive days. On day 5, the
forced swim test was carried out. Mice were allowed to rest for
3 days before performing the splash test on day 9.

The Behavioral Test Battery
The Tail Suspension Test
The test started by suspending the mouse to a rod by its tail with
adhesive tape at 60 cm above the surface. The behavior of the
mouse was videotaped, and the latency to first immobility and
immobility duration within 6 min were scored manually by an
independent observer.

The Forced Swim Test
The test started by placing the mouse in a glass cylinder (26 cm
in height, 16 cm in diameter) filled with water (24 ± 1◦C,
20 cm in height). The level of water was sufficient to allow the
mouse to swim or float without its hind limbs or tail touching
the bottom of the cylinder. The swimming path was tracked
via a top-mounted video camera connected to proprietary high-
resolution tracking software (SYGNIS tracker 3 v4.1.14.). The
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video-based tracking system was detecting the change in pixel
level. A constant illumination of 40–42 lux has been set for
all behavior measurements. The total duration of the test was
6 min, and the immobility duration between 2 and 6 min was
measured. Immobility was defined as a lack of swimming with
only minimal movement of one hindlimb that was necessary to
keep the head above water.

The Sucrose Preference Test
On day 1, each single-housed mouse was left in its homecage
with two water bottles. On day 2, both bottles were changed
with a bottle filled with water and a second one filled with a
1% sucrose solution. Both bottles were weighed before placing
them into the cage. On day 3, bottles were weighed to determine
the liquid consumption during the previous 24 h. Bottles were
then refilled, weighed and placed into the cage with an alternated
position of the sucrose vs. water bottle to avoid place preference.
On day 4, bottles were weighed. The sucrose preference index was
calculated as the average consumed sucrose across the last 2-day
period divided by the average volume of total consumed liquid
(average water plus average sucrose solution).

The Splash Test
The test started with squirting a 10% sucrose solution on
the dorsal coat of the mouse in its home cage. Due to the
high viscosity of the sucrose solution, it dirtied the mouse fur,
which induced a grooming behavior. After applying the sucrose
solution, the latency of first grooming and total durations of
grooming were assessed for 5 min as an indication of self-
care and motivation.

Statistical Analysis
Two-way ANOVA was used with sex and genotype as the two
factors. This was followed by Tukey’s post-hoc test for multiple
comparisons to determine differences between the three strains
C57BL/6N, DBA/2, and FVB/N and Bonferroni correction to
check differences between males and females within each strain.
Statistical analysis was performed using GraphPad Prism 7 and
Microsoft Office Excel.

RESULTS

Baseline Despair-Like Behaviors in Male
and Female C57BL/6N, DBA/2, and
FVB/N Mice
We tested the sex difference in the baseline despair-like behaviors
in three inbred strains, C57BL/6N, DBA/2, and FVB/N, using
the well-known tail suspension (Steru et al., 1985) and forced
swim tests (Porsolt et al., 1977; Porsolt, 1997). In the tail
suspension test, one FVB/N and two DBA/2 mice climbed up
their tails and ran away from the adhesive tape and were excluded
from all behavioral tests. Male and female mice within each
strain exhibited similar performance in both tail suspension and
forced swim tests [Immobility duration in tail suspension test:
F(1,57) = 1.11, P = 0.2964; Latency to immobility in tail suspension
test: F(1,57) = 1.021, P = 0.3165; Immobility duration in forced

swim test: F(1,57) = 0.02646, P = 0.8713; Latency to immobility in
forced swim test: F(1,57) = 0.01275, P = 0.9105; Traveled distance:
F(1,57) = 0.2099, P = 0.6486] (Figure 1). The comparison between
strains in the tail suspension test revealed a significant increase in
the baseline immobility duration of adult C57BL/6N compared
to both DBA/2 and FVB/N mice [F(2,57) = 73.78, P < 0.0001;
Interaction between strain and sex: F(2,57) = 0.2436, P = 0.7846]
(Figure 1A). On the other hand, the latency to first immobility
was higher in adult DBA/2 than C57BL/6N and FVB/N mice
[F(2,57) = 49.51, P < 0.0001; Interaction between strain and sex:
F(2,57) = 0.08017, P = 0.9231] (Figure 1B). In the forced swim
test, adult C57BL/6N mice showed a higher immobility duration
and lower latency to first immobility as well as a decreased total
traveled distance compared to adult DBA/2 and FVB/N mice
[Immobility duration: F(2,57) = 16.83, P < 0.0001; Interaction
between strain and sex: F(2,57) = 1.616, P = 0.2076; Latency to
first immobility: F(2,57) = 22.5, P < 0.0001; Interaction between
strain and sex: F(2,57) = 1.903, P = 0.1585; Traveled distance:
F(2,57) = 31.13, P < 0.0001; Interaction between strain and sex:
F(2,57) = 3.041, P = 0.0556] (Figures 1C–E).

Baseline Anhedonia- and Apathy-Like
Behaviors in Male and Female
C57BL/6N, DBA/2, and FVB/N Mice
Considering anhedonia-like behaviors, male and female
C57BL/6N, DBA/2, and FVB/N mice showed similar
performance in the sucrose preference test [F(1,57) = 0.05388,
P = 0.8173] (Figure 2A). The comparison between these strains
revealed a lower sucrose preference index in DBA/2 compared
to C57BL/6N and FVB/N mice, suggesting an increase in
the intrinsic anhedonia-like behaviors in the DBA/2 strain
[F(2,57) = 64.06, P < 0.0001; Interaction between strain and
sex: F(2,57) = 0.08282, P = 0.9206] (Figure 2A). In the splash
test that assesses apathy-like behaviors, C57BL/6N and FVB/N
strains showed significant sex differences. Interestingly, this sex
effect depended on the strain, with male FVB/N mice showing
a decrease in the duration of grooming and increased latency
to the first grooming compared to their female littermates,
while male C57BL/6N mice exhibited increased duration of
grooming compared to females [Interaction between strain and
sex in grooming duration: F(2,57) = 10.61, P = 0.0001; interaction
between strain and sex in the latency of grooming: F(2,57) = 2.817,
P = 0.0481] (Figures 2B,C). The comparison between strains
revealed a decrease in the duration of grooming in FVB/N
compared to C57BL/6N and DBA/2 mice [F(2,57) = 22.49,
P < 0.0001] (Figure 2B). On the other hand, C57BL/6N mice
showed a decreased latency to first grooming compared to DBA/2
and FVB/N mice [F(2,57) = 16.76, P < 0.0001] (Figure 2C).

DISCUSSION

Depression is a complex non-homogenous pathology with a
wide range of core and additional symptoms as well as other
comorbidities such as anxiety and social withdrawal (Hasler
et al., 2004). This complexity is recapitulated in rodent models
of depression by several distinct endophenotypes including
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FIGURE 1 | Baseline despair-like behaviors in adult C57BL/6N, DBA/2, and FVB/N mice. (A) In the tail suspension test, adult C57BL/6N mice exhibited a higher
duration of baseline immobility than DBA/2 and FVB/N mice. (B) Adult DBA/2 mice showed a significantly increased latency to first immobility compared to
C57BL/6N and FVB/N mice. In the forced swim test, adult C57BL/6N mice showed a higher immobility duration (C), a lower latency to first immobility (D) and a
lower total traveled distance (E) than DBA/2 and FVB/N mice. In panels (A–E), male and female mice within the aforementioned strains showed similar performance
in the tail suspension and forced swim tests. Blue and red dots represent males and females, respectively. Two-way ANOVA was used followed by the Tukey’s
post-hoc test for multiple comparisons to determine differences between the three strains, C57BL/6N, DBA/2, and FVB/N (**p ≤ 0.01, ***p ≤ 0.001) and Bonferroni
correction to check differences between males and females within each strain. Error bars indicate the standard error of the mean (SEM).

despair-, anhedonia- and apathy-like behaviors, which can be
assessed using different behavioral tests. In contrast, other
depression symptoms like feelings of worthlessness, guilt and
suicidal attempts are difficult to be tested in rodents, which
limits achieving a complete face validity of rodent models of
depression and hinders a full correlation to the clinical condition
of individuals with depression (Planchez et al., 2019).

The inconsistent sex differences in the behaviors of rodent
models added another layer of complexity in reaching a complete
face validity of depression. Several studies in rodents failed to
recapitulate the increased susceptibility of women to depression,
with some studies revealing even lower depression-like behaviors
in female rodents [for a review, see Kokras and Dalla (2014)].
More importantly, contradicting findings between different
studies on the sex effect on the behavioral performance of
rats were observed in the forced swim and sucrose preference
tests (Kokras and Dalla, 2014). Multiple factors may have
jointly promoted this inconsistency including different genetic

backgrounds, protocols of behavioral tests, models of depression
(genetic, environmental, chemical, pharmacological, etc.) and
the age of tested rodents. Additionally, small differences in
testing conditions can affect the results in the forced swim
test including differences in tank dimensions, temperature,
water depth, number of sessions, housing, etc. (Ma et al.,
2018). Generally, the lack of observing consistent increased
depression-like behaviors in female rodents compared to males
may point out that some specific behavioral paradigms in
rodents are not strictly equivalent to the clinical phenotype of
individuals with depression. For example, the transition from
swimming to immobility in the forced swim test may not be
a measure of despair but rather a coping mechanism with
inevitable situations (Molendijk and De Kloet, 2019). However,
the persistence of coping with inescapable stressors in the forced
swim test may still be a measure of an ultimate vulnerability
to depression. Despite the use of the sucrose preference test for
assessing anhedonia-like behaviors, the situation is more complex
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FIGURE 2 | Baseline anhedonia- and apathy-like behaviors in adult C57BL/6N, DBA/2 and FVB/N mice. (A) In the sucrose preference test, adult DBA/2 mice
showed increased baseline anhedonia-like behaviors by having a lower sucrose preference index than C57BL/6N and FVB/N mice. Additionally, FVB/N mice showed
a higher sucrose preference index than C57BL/6N mice. (B) The splash test revealed a decreased grooming duration in FVB/N compared to C57BL/6N and DBA/2
mice. (C) C57BL/6N mice exhibited a decreased latency to first grooming in the splash test compared to DBA/2 and FVB/N mice. In panel (A), no sex difference
was revealed in the sucrose preference test within any of the aforementioned strains. In panel (B), male FVB/N mice showed a decreased duration of grooming,
while male C57BL/6N mice showed an increase in the duration of grooming compared to their female littermates. In panel (C), male FVB/N mice showed an
increased latency to first grooming compared to their female littermates. Blue and red dots represent males and females, respectively. Two-way ANOVA was used
followed by the Tukey’s post-hoc test for multiple comparisons to determine differences between the three strains C57BL/6N, DBA/2, and FVB/N (**p ≤ 0.01,
***p ≤ 0.001) and Bonferroni correction to check differences between males and females within each strain (in green: #p ≤ 0.05, ##p ≤ 0.01). A green rectangle
indicates a significant difference between sexes within a strain. Error bars indicate the standard error of the mean (SEM).

regarding sadness in depression (Planchez et al., 2019). Apathy-
relevant behavioral tests such as splash test and nest building can
also be used to assess other behaviors including self-care and
social interaction, respectively. Therefore, the results obtained
from behavioral tests in rodents should be taken with caution
before a direct correlation with complex human behaviors.
Notably, the symptoms of patients with depression are very
heterogeneous with a high degree of within-disorder variability
(Olbert et al., 2014), which may complicate modeling the sex bias
of depression in rodents. Another possibility for the discrepancy
between rodents and humans in the sex bias of depression is the
development of currently used behavioral tests in male rodents,
and thus, the results of females may not accurately tap into
feminine attributes.

Sex differences in the behaviors of depression in rodent models
may be partially induced by a difference in the general and
baseline performance of male and female mice. In a previous
study, we tested this possibility for despair and anhedonia in
three wild-type inbred mouse strains, C57BL/6N, DBA/2, and
FVB/N during adolescence. Baseline depression-like behaviors
were strain and age dependent, but no sex effect was seen in
adolescent mice (Eltokhi et al., 2021). In the current study, we
tested the sex difference of depression-like behaviors in adult
mice since the increased prevalence of depression in women
in their reproductive years suggests that biological maturation
following puberty can be a major factor in the sex bias of
depression. Additionally, we extended our study using the splash
test to evaluate apathy, another endophenotype of depression.

In adult mice, the baseline depression-like behavior showed
sex-related effects in C57BL/6N and FVB/N mice in apathy-,
but not despair- or anhedonia-relevant behavioral tests. Having

investigated only three mouse strains, testing other strains is
mandatory to confirm a correlation between strains and specific
endophenotypes. Indeed, looking at apathy-like behaviors in the
splash test, sex effects were opposite in C57BL/6N and FVB/N
strains, with decreased grooming durations in male FVB/N and
female C57BL/6N mice, highlighting the high intercorrelation
between sex and strain in depression-related behaviors. Even
though these results in adult mice complicate the investigation
of sex bias in depression in rodent models, accepting this
additional complexity is unavoidable. In fact, the apparent sex
effect in a specific endophenotype may suggest as well a sex
bias in specific symptoms of depression in humans. Gotland’s
studies postulated male depressive syndrome proposing that
men show symptoms of depression different from common
depression symptoms among women, which can be assessed
by the Gotland Scale of Male Depression (GSMD) (Rutz et al.,
1995; Rutz, 1999). These male symptoms include but are not
limited to irritability, anger attacks, aggression and alcohol use,
which may mask the diagnosis of depression in men and can
be the reason for their high suicidal rate (Möller-Leimkühler,
2003; Oquendo et al., 2003). However, the specificity of this
male depressive syndrome is still disputed, and remains to be
answered whether GSMD, specifically devised for the diagnosis
of depression in men, is a reliable screening (Zierau et al., 2002;
Möller-Leimkühler et al., 2004; Möller Leimkühler et al., 2007;
Rihmer et al., 2009; Innamorati et al., 2011). To this end, whether
some depression symptoms in humans show a male/female bias
is still an open question.

Strain differences in depression-like behaviors in rodents
have been previously reported (Vaugeois et al., 1997; Liu and
Gershenfeld, 2001; Lucki et al., 2001). In our study, C57BL/6N
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mice showed increased immobility durations and decreased
latencies to first immobility compared to DBA/2 and FVB/N mice
in both tail suspension and forced swim tests. In the sucrose
preference test assessing anhedonia-like behaviors, DBA/2 mice
showed the lowest sucrose preference index, which may mask the
depression-like behavior in mouse models of neuropsychiatric
disorders. Adult mouse strains showed a similar pattern of
differences to that of adolescent mice (Eltokhi et al., 2021). This
suggests that the effect of genetic differences in strains exceeds
that of age differences, which is in line with the results of
comparing mouse strains at distinct developmental stages during
adolescence (Eltokhi et al., 2021).

One limitation of our study is the lack of examination of
females’ estrous cycle phases and their effect on the behavioral
outcome. Previously, the estrous cycle was assumed to cause
an intrinsic variability in female rodents, which resulted in an
underrepresentation of females in behavioral tests (Meziane et al.,
2007). On the other hand, a meta-analysis reported a comparable
variability in male and female mice in several behavioral assays
(Prendergast et al., 2014). For depression-relevant behavioral
tests, the effect of the estrous cycle of rats on the behavioral
outcome in the forced swim test was not conclusive (Kokras
et al., 2015). Out of 22 studies between 1990 and 2013, 12 studies
revealed no effect of the estrous cycle on behavioral performance.
The other 10 studies showed some effects with questionable
power and opposite results, suggesting a little influence of
the estrous cycle of naturally cycling females. The different
effects of the estrous cycle between studies is probably related
to different methodological approaches and factors influencing
the behavioral responses as suggested in Kokras et al. (2015).
Ideally, female rodents in the normal distribution of all phases
of the estrous cycle should be used to avoid the chance of
over-representation of a particular phase causing skewed results
and wrong interpretations of the data. However, this approach
will ultimately increase the number of tested rodents in each
behavioral study. Several methods of evaluating the estrous
cycle are used including visual assessment, vaginal cytology,
histological exa mination of the reproductive organs, vaginal
wall impedance, and urine biochemistry [for a review, see Ajayi
and Akhigbe (2020)]. Although visual assessment of the female
estrous cycle is simple, cheap and less stressful to animals, it
may cause more handling of female mice than males, which is
known to affect the behavioral outcome including the immobility
of rodents in the forced swim test (Cannizzaro et al., 2002).

CONCLUSION

In conclusion, the sex difference in the baseline depression-
like behaviors in adult mice depends on the investigated
endophenotype and strain. These effects can mask or
exaggerate the behavioral outcomes in rodent models of
depression and may explain the poor data reproducibility
of different studies. Thus, the intercorrelation between the
investigated endophenotype, strain and sex requires caution
when comparing the behavioral results between different

laboratories. Additionally, the proper choice of behavioral
tests assessing specific endophenotypes should be based on a
profound knowledge of behavioral genetics and the specific
goals of the study. As a rule, several behavioral tests covering
different endophenotypes of depression should be used in
characterizing new mouse models of neuropsychiatric disorders.
We also urge researchers to standardize sources of variability
including using the same apparatuses, standardized operating
protocols and testing conditions for better reproducibility of
behavioral outcomes. Since the handling of rodents affects their
baseline behavior, automated methods using, for example, video
tracking systems with minimum handling of rodents may play a
role in increasing the reproducibility of results. Ultimately, the
optimized characterization of sex differences in the established
rodent models of depression will pave the way to decipher the
sex-specific mechanisms of depression and further develop
sex-specific therapeutics.
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Major depressive disorder (MDD) is amongst the most devastating psychiatric conditions
affecting several millions of people worldwide every year. Despite the importance of this
disease and its impact on modern societies, still very little is known about the etiological
mechanisms. Treatment strategies have stagnated over the last decades and very little
progress has been made to improve the efficiency of current therapeutic approaches. In
order to better understand the disease, it is necessary for researchers to use appropriate
animal models that reproduce specific aspects of the complex clinical manifestations at
the behavioral and molecular levels. Here, we review the current literature describing
the use of mouse models to reproduce specific aspects of MDD and anxiety in males
and females. We first describe some of the most commonly used mouse models and
their capacity to display unique but also shared features relevant to MDD. We then
transition toward an integral description, combined with genome-wide transcriptional
strategies. The use of these models reveals crucial insights into the molecular programs
underlying the expression of stress susceptibility and resilience in a sex-specific fashion.
These studies performed on human and mouse tissues establish correlates into the
mechanisms mediating the impact of stress and the extent to which different mouse
models of chronic stress recapitulate the molecular changes observed in depressed
humans. The focus of this review is specifically to highlight the sex differences revealed
from different stress paradigms and transcriptional analyses both in human and animal
models.

Keywords: stress, rodents, sexual dimorphism, resilience, susceptibility, behavioral stress responses,
transcription profiles/signatures

INTRODUCTION

Major depressive disorder (MDD) represents one of the top causes of disability worldwide (Vos
et al., 2017). Recent studies estimate that more than 20% of the population worldwide will be
affected at least once in their life by depressive episodes which ultimately translates into a major
burden on modern societies (Alonso et al., 2004). Despite the importance of the disease, little
progress has been made in understanding the etiologies of MDD. However, recent progress with
fast-acting antidepressant molecules shows promising perspectives in the treatment of this disorder
(Berman et al., 2000; Thelen et al., 2016; Mandal et al., 2019; Polis et al., 2019; Ouyang et al., 2021).
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From a clinical perspective, MDD is a highly heterogenous
disease defined by complex clinical manifestations including
depressed mood or irritability, anhedonia, grief, guilt, apathy,
self-injury, indecision, and concentration disorders. This also
includes psychomotor retardation, vegetative symptoms with
sleep, appetite, and stress hormone dysregulation that is
associated with either gain or loss of weight, suicidal ideation,
and cognitive disorder (American Psychiatric Association, 2003).
These clinical features are expressed and shared by both men and
women with MDD despite important sex differences (Weissman
and Klerman, 1977; Nolen-Hoeksema, 1987; Salk et al., 2017;
Eid et al., 2019). Past and recent epidemiological studies show
that the prevalence of MDD is about 20% in a lifetime with
a higher incidence in women, and females are two-three times
more susceptible than males. Women also exhibit earlier age
of onset (Kessler et al., 1993), higher symptom severity from
childhood (Kessler et al., 2007; Marcus and Flynn, 2008; McLean
et al., 2011; Avenevoli et al., 2015), and higher rates of depressive
episodes (Bertschy et al., 2016) than men. At the clinical
level, men and women diagnosed with MDD express more
or less the same symptoms although their prevalence varies
in a sex-specific fashion. For instance, aggression, substance
abuse, and risk-taking behaviors are more prevalent in males
(Martin et al., 2013), while women with MDD exhibit higher
rates of comorbid anxiety (Regier et al., 1990; Kessler et al.,
1994; Schuch et al., 2014). A higher prevalence of atypical
depression is also observed in women. In men and women, this
is defined by the expression of reactive mood to environmental
cues, increased appetite, hypersomnia, leaden paralysis, and
interpersonal rejection sensitivity. While MDD in women is
defined by a higher prevalence of internalized disorders such as
ruminating and emotionality, externalized symptoms are more
common in men including constraint and aggressive behavior
(Krueger et al., 2001).

Crucial insights into the molecular and functional
mechanisms underlying differences between males and
females with MDD have resulted from studies performed
in human populations or post-mortem tissue, some of
which have forged our pathophysiological conception of
the disease (Rajkowska, 2003; Tham et al., 2011; Zhao
et al., 2019). For instance, studies have revealed functional,
morphological, and molecular changes affecting the activity
of several brain regions in MDD (Frodl et al., 2008;
Ramezani et al., 2014; Lu et al., 2016; Li et al., 2021). These
studies alone have generally provided limited mechanistic
insights into the pathophysiological processes underlying the
expression of the disease. Mechanistic insights have also been
obtained using animal models of stress or depressive-like
behaviors. Indeed, past decades have seen the development
of several animal models of stress-induced depressive-like
behaviors. These models have mostly been developed
based on McKinney and Bunney’s criteria (McKinney
and Bunney, 1969) of external validity that was later
refined by Willner (Willner, 1984, 1991) as predictive, face,
and construct validity. This has led to the development
of a wide variety of mouse models based on physical,
psychosocial, and/or genetic paradigms, each reproducing

common and distinct aspects of stress and anxiety-like
behaviors in humans (Deussing, 2006; Abelaira et al., 2013;
Planchez et al., 2019).

With technological developments to map transcriptional
profiles induced by different types of stress, these models
provide unique insights into the transcriptional programs that
underly the expression of complex behavioral phenotypes in
MDD. Importantly, by combining human and mouse data,
these studies are now providing highly translational insights
into the morphological and functional impact of stress and the
function of the brain while highlighting some of the molecular
mechanisms underlying these effects (aan het Rot et al., 2009;
Duman and Voleti, 2012; Penninx et al., 2013). However, most
of the research on this topic has been performed in males,
predominantly leaving females understudied for years. Several
of the most widely used mouse models of stress and anxiety
were originally developed in males; only very recently have
the models been revisited to include female cohorts (Lopez
and Bagot, 2021). This will provide new opportunities to
better understand the common but also distinct mechanisms
underlying the development and expression of anxiety and
depressive-like behaviors in males and females.

In this review, we first elaborate on the behavioral features
exhibited by mouse models of stress with an emphasis on their
respective validity in bothmales and females.We then discuss the
most recent findings generated by genome-wide transcriptional
studies in both human and mouse models. We also review
the main findings that describe the transcriptional impact of
different types of chronic stress inmales and females. Along these
lines, we draw important parallels with findings from studies
in humans with MDD to evaluate the capacity of these models
to reproduce the transcriptional signatures associated with the
expression of the human disease in a sex-specific fashion.

ANIMAL MODELS OF DEPRESSION

The clinical heterogeneity of MDD and anxiety has always
represented a challenge in selecting appropriate mouse models.
According to McKinney and Bunney (1969), animal models
should mimic the human condition (face validity), be relevant
to human pathological mechanisms (construct validity), and
demonstrate drug efficacy (predictive validity). In this context:
(1) face validity refers to the capacity of a model to reproduce
the phenomenological, behavioral, anatomical, or phenotypic
properties observed in human patients; (2) construct validity
refers to the stress paradigm (psychosocial, physical, etc.) to
explain theoretically what humans experience in real life; and
(3) predictive validity refers to the capacity of pharmacological
or non-pharmacological treatments to rescue anxiety and
depressive-like behaviors as it would in humans (Willner, 1984,
1991; McKinney, 2001; Willner and Mitchell, 2002; Nestler and
Hyman, 2010). Additional features have since then been included
in these criteria including mechanistic (common underlying
mechanisms in humans and animals), homological (adequate
species and strains), and pathogenic (challenges triggering the
expression of the pathological state) validity (Belzung and
Lemoine, 2011). In the following section, we start by describing
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some of the most widely used mouse models of anxiety- and
depressive-like behaviors to evaluate their respective capacity to
achieve high levels of validity in both males and females.

Chronic Unpredictable/Variable Stress
Models of stress based on the administration of physical stressors
refer to the idea that low levels of chronic and unpredictable
physical stress, mimicking daily-life stress exposure in humans,
trigger the expression of anxiety and depressive-like behaviors
in individuals (Kendler et al., 1998, 1999; Haroon et al., 2012).
Indeed, clinical and epidemiological studies report that mild
but repeated stressors throughout life increase vulnerability to
anxiety and depression in men and women (Kessler et al.,
1985). Examples of these models that rely on the repeated
administration of physical stressors include chronic mild stress
(CMS; Katz et al., 1981; Katz, 1982; Forbes et al., 1996; Willner,
2016), chronic unpredictable stress (CUS; Monteiro et al.,
2015), chronic unpredictable mild stress (CUMS; Frisbee et al.,
2015; Burstein and Doron, 2018), and chronic variable stress
(CVS; Willner et al., 1992; Hodes et al., 2015; Labonté et al.,
2017) models. CUMS/CMS involves continuous (6–8 weeks)
unpredictable exposure to stressful stimuli including wet cage,
damp bedding, bedding removal, cage tilt, alterations of
light/dark cycle, shallow water bath, restraint, and predator
sounds/smells (Katz et al., 1981; Willner, 2016). CVS involves
daily exposure to mild foot shocks, tail suspension, or tube
restraint for 3 weeks (LaPlant et al., 2009; Hodes et al., 2014;
Labonté et al., 2017). Importantly, each model induces a complex
phenotype defined by anxiety, behavioral despair, and anhedonia
in bothmales and females. Additionally, subchronic CVS (sCVS),
consisting in exposing mice to 6 days of stress rather than
21 days, has been shown to induce an anxiety and depressive-like
phenotype in females but not males, mimicking variations in
stress susceptibility in both sexes (Hodes et al., 2015; Fatma and
Labonté, 2019). The chronic restraint stress (CRS) has often been
used as an alternative to CUMS or CVS. However, the nature of
the paradigm, along with the type of behavioral consequences
induced by CRS, challenges its construct and face validity
criteria. Males seem to respond to CRS in a time-dependent
manner (Selye, 1976; Beck and Luine, 1999, 2002; Gomez
et al., 2012; Gomez, 2013), which confirms the allostatic load
concept (McEwen and Stellar, 1993), while females demonstrate
a resilient phenotype (Bowman et al., 2001; Bowman and Kelly,
2012). Chronic treatment with antidepressants reverses these
depressive-like phenotypes (Stone et al., 1984; Ulloa et al., 2010;
Yu et al., 2012).

Learned Helplessness
Learned helplessness is a model in which animals are exposed to
unpredictable stress, after which they develop behavioral deficits
in escaping aversive situations. Subjecting mice to situations
in which they have no control (e.g., electroshocks) results in
motivational, cognitive, and emotional deficits (Abramson et al.,
1978). The behavioral deficits induced by learned helplessness
are characterized by anxiety, anhedonia, and behavioral despair
in males and females (Caldarone et al., 2000; Anisman and
Merali, 2001; Chourbaji et al., 2010) that can be reversed by

the administration of fast-acting antidepressants drugs (Ramaker
and Dulawa, 2017). Additionally, not all mice in this model
display helplessness (22%), with a high percentage (78%)
exhibiting resilience regardless of the mice’s sex (Kim et al.,
2016), further supporting the face validity. However, it should
be noted that controversial aspects restrict its usage (Teasdale,
1978). Indeed, it has been suggested that learned helplessness
may rely on the motivation to avoid aversive challenges (Maier
et al., 1976; Dweck and Wortman, 1982; Kuhl, 1984), rather
than inducing a robust emotional response (Beck, 1967, 1987;
Abramson et al., 1989; Rose and Abramson, 1992; Possel and
Thomas, 2011; Liu et al., 2015). Even though this model
reproduces certain behavioral aspects of anxiety and depression
in humans, further validation is required to truly reproduce the
emotional responses associated with anxiety and MDD in men
and women.

Social Isolation
Psycho-social stress refers to any situation that threatens the
psychological need of being affiliated with others and tomaintain
social self (Cannon, 1932). This can range from social evaluation
of performance achievement to social devaluation such as
bullying (Björkqvist, 2001; Silver and Teasdale, 2005; Brunstein
Klomek et al., 2007; Nedg et al., 2011; Vinkers et al., 2014). In
animals, this concept has been modeled by different approaches
but mainly through prolonged social isolation (SI; Panksepp
et al., 1991). SI has a high construct validity and is highly relevant
to the study of human depression and anxiety disorders (Costello
and Kendrick, 2000; Heinrich and Gullone, 2006; Wallace et al.,
2009). SI also achieves good face validity from a behavioral
perspective. For instance, losing a partner or chronic SI induces
the expression of depressive-like behaviors in monogamous
prairie voles, notably anhedonia, with females being more
sensitive to isolation (Grippo et al., 2007). Prolonged SI also
induces sex-specific depressive and anxiety-like behaviors such
as despair, compulsive and obsessive behaviors, and cognitive
defects in a wide range of species including mice, rats, flies,
birds, and monkeys (Mercier et al., 2003; Cacioppo et al., 2006;
Nonogaki et al., 2007; Apfelbeck and Raess, 2008; Cacioppo and
Hawkley, 2009; Han and Richardson, 2010; Makinodan et al.,
2012; Amiri et al., 2014; Hom et al., 2017; Tan et al., 2019; Rogers
et al., 2020). Interestingly, rather than inducing social avoidance,
socially isolated mice have been reported to interact more
with their congeners (Lefebvre et al., 2020). Furthermore, when
returned to social groups, the behavioral alterations induced by
SI are rapidly rescued by social interactions (Zhao et al., 2021).
Nonetheless, several molecular alterations that reproduce the
human condition have been reported in socially isolated animals,
further supporting the face validity of this model. Yet, most of
these studies have been performed in males (Lu et al., 2003; Liu
et al., 2012; Siuda et al., 2014; Cole et al., 2015; Ieraci et al., 2016).

Chronic Social Defeat Stress
The chronic social defeat stress (CSDS) animal model reproduces
the context of bullying and excessive competitive behaviors
in a social environment. In humans, these stressors are
strongly associated with a significant increase in adverse mental
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health consequences and elevated suicide rates (Meltzer et al.,
2011). CSDS involves submitting a mouse, either male or
female, to repeated bouts of physical subordination followed by
prolonged sensory stressors (odor, vocalization, intimidation)
without physical contact (Berton et al., 2006; Golden et al.,
2011; Harris et al., 2018). By design, it represents a model
combining physical and psychosocial bases. Given that male
mice are naturally not aggressive with female congeners,
protocol adaptations have been proposed to study the impact
of chronic social stress in females. One involves luring the
resident male by masking the females’ scent and pheromones
(Harris et al., 2018). Consequently, the resident males impose
repeated bouts of physical aggression on the intruder females.
Another approach involves triggering aggressive behaviors
in resident male mice by chemogenetically activating the
ventromedial hypothalamus. This results in prolonged aggressive
behaviors toward female intruders (Takahashi et al., 2017).
Interestingly, male and female mice that endure CSDS develop
phenotypes of susceptibility or resilience to social stress.
This confirms the high levels of face validity. Susceptibility
to social stress in both sexes is defined by the expression
of social withdrawal, anhedonia, anxiety, behavioral despair,
cognitive impairments, and metabolic alterations (Takahashi
et al., 2017; Harris et al., 2018). In contrast, resilient animals
do not express social withdrawal nor anhedonia but exhibit
anxiety-like behaviors (Krishnan et al., 2007; Golden et al.,
2011; Takahashi et al., 2017; Harris et al., 2018). Importantly,
susceptibility-related behavioral deficits can be rescued by the
administration of conventional and fast-acting antidepressant
molecules supporting the predictive validity of this model
in both males and females (Hare et al., 2017; Hashimoto,
2019).

It should be noted that susceptibility and resilience to social
stress are greatly influenced by the mouse’s genetic background
(Goyens and Noirot, 1975; Kudryavtseva and Bakshtanovskaya,
1989; Kudryavtseva, 1994; Fuchs et al., 2001; Berton et al., 2006;
Huhman, 2006; Miczek et al., 2008; Golden et al., 2011; Laine
et al., 2018). The original CSDS protocol (Berton et al., 2006;
Golden et al., 2011) was designed with the C57BL/6J mouse
strain and reported a rate of resilience to social stress around
30% to 40% (Berton et al., 2006; Golden et al., 2011). However,
studies that compared different inbred mouse strains reported
varying proportions, with 23% of BALB/c, 19% of 129, and 5%
of D2 mouse strains being resilient to CSDS (Dadomo et al.,
2011; Razzoli et al., 2011; Savignac et al., 2011; Laine et al., 2018).
Together, this suggests that the genetic background in mice has
an important impact on the coping strategies with social stress,
and more work should be performed with male and female mice
to test whether the same conclusions stand.

Vicarious Chronic Social Defeat Stress
Interestingly, CSDS paradigm variations are now used to study
the impact of witnessing social defeat in mice. The vicarious
CSDS model (Warren et al., 2013; Sial et al., 2016; Iñiguez
et al., 2018) consists of having mice witnessing conspecifics
during repeated bouts of social defeat. As such, it relies
on emotional and psychological stressors with an important

social component. The model induces a variety of behavioral
alterations including decreased social interaction, anxiety, weight
loss, and increased corticosterone levels (Warren et al., 2013;
Qi et al., 2022) expressed in a transient but also prolonged
fashion. Similar to the CSDS model, susceptible and resilient
phenotypes are also produced. Antidepressant treatments
improved the depressive-like behaviors (Savignac et al., 2011;
Yoshioka et al., 2022).

Social Instability Stress
Another model with a strong psychosocial component is the
social instability stress (SIS) model (Schmidt et al., 2008; Green
and McCormick, 2013; Scharf et al., 2013; Yohn et al., 2019)
where, male and female mice are exposed to unstable social
hierarchies every 3 days for 7 weeks, and results in the expression
of depressive- and anxiety-like behaviors. Anhedonia is a striking
feature of the SIS model while hormonal stress response and
novelty response remain unchanged (Dadomo et al., 2011). These
effects are reversed by fluoxetine in both sexes (Yohn et al.,
2019). This paradigm doesn’t discriminate between resilient and
susceptible phenotypes.

Early-Life Stress
Models such as maternal separation in mice (Plotsky and
Meaney, 1993; Meaney, 2001; Millstein and Holmes, 2007) and
variations in maternal behavior in rats (Champagne et al., 2003;
Brunelli et al., 2015) are also commonly used to reproduce the
impact of early-life stress (ELS) on the capacity to deal with
stress later in life. In humans, early life trauma, childhood abuse,
and parental neglect have significantly been associated with the
development of mood disorders (Negele et al., 2015; Lippard and
Nemeroff, 2020) in men and women. In rodents, ELS during
postnatal development results in lifelong cognitive and emotional
alterations that interfere with animals’ ability to react and cope
with subsequent stressful events (Everson-Rose et al., 2003). For
instance, separated pups are more submissive, and generally
seek passive coping strategies later in life (Ménard et al., 2016).
Similarly, maternal separation inmice increases the susceptibility
to social and physical stress in adulthood in both males and
females (Tsuda and Ogawa, 2012; Rana et al., 2015).

Male and female pups raised by mothers that provide low
levels of licking and grooming early in life also develop anxious
and depressive-like behaviors during adulthood, as opposed to
pups raised with high licking and grooming mothers (Liu et al.,
1997; Caldji et al., 1998; Zhang et al., 2005). Variations in
maternal care can also be induced by either the destruction of
the nests or the reduction of nesting material available to the
pups (Brunson et al., 2005; Cui et al., 2006; Ivy et al., 2008;
Rice et al., 2008). Indeed, these manipulations increase maternal
anxiety that trigger deficient and abusive maternal care (Dalle
Molle et al., 2012; Murthy and Gould, 2018). Pups raised in
these conditions exhibit anxiety- and depressive-like behaviors in
adulthood, supporting the translational validity of this approach
(Ivy et al., 2008; Wang et al., 2011; Raineki et al., 2012; van
der Kooij et al., 2015) although negative results have also been
described (Brunson et al., 2005; Rice et al., 2008; van der Kooij
et al., 2015).
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Environmental and Genetic Constructs
Models based on genetic considerations are also used to study
anxiety and depressive-like behaviors in both sexes. For instance,
the Flinders Sensitive rat strain displays behavioral changes such
as diminished appetite, psychomotor retardation, as well as sleep
and immune alterations that resemble specific aspects of clinical
MDD attributes in males and females (Overstreet et al., 2005;
Dalla et al., 2009; Kokras et al., 2009; Kokras and Dalla, 2014).
However, these rats do not exhibit anhedonia, one of the main
clinical manifestations of MDD (Overstreet andWegener, 2013).
Wistar Kyoto rats are hypertensive and exhibit high anxiety-like
behavior in control conditions (Will et al., 2003; McAuley
et al., 2009). Males exhibit anhedonia, hypophagia, and weight
loss/gain, while these characteristics in females are absent (Burke
et al., 2016). Similarly, rats with high (bHR) and low (bLR)
levels of exploratory activity in novel environments (Clinton
et al., 2011) are used to reproduce aspects of internalizing and
externalizing behaviors associated with psychiatric conditions
such as anxiety and MDD. High responder rats (bHR) are often
highly exploratory, disinhibited, hyperactive and aggressive while
low responders (bLR) exhibit hypo-locomotion, anxiety, and
depressive-like behaviors to novelty (Stead et al., 2006; Flagel
et al., 2010, 2014; Stedenfeld et al., 2011; Prater et al., 2017; Birt
et al., 2021). Importantly, these features in both strains begin
in early developmental phases, supporting both the construct
and face validity of this model. However, as for most models,
the majority of studies performed with these rat lines have been
accomplished in males.

Overall, these models support the idea that distinct stress
types induce common behavioral phenotypes but also distinct
behavioral responses (i.e., social withdrawal, anhedonia,
behavioral despair, etc.; Figure 1). It also suggests that no single
mouse model can reproduce the full complexity of anxiety
and MDD conditions in humans. Rather, one should consider
using a model to reproduce one specific aspect, symptom,
and/or clinical manifestation of the disease. One also needs
to know if these models can reproduce the molecular and
transcriptional alterations associated with the human condition.
In the next section, we elaborate on the capacity of these models
to reproduce not only some of the behavioral features relevant
to the disease in humans, but also the transcriptional alterations
affecting the brain of men and women suffering from anxiety
and depression.

SEX-SPECIFIC MOLECULAR
ALTERATIONS IN MDD

In addition to its capacity to reproduce behavioral features
relevant to a human condition, a model’s face validity also
relates to its ability to replicate the molecular alterations
associated with the disease. This important aspect has been
investigated by several groups over the past years, most
often using gene candidate approaches (Fatma and Labonté,
2019). Historically, this strategy has been mostly applied to
the study of males. Nevertheless, there has been a recent
interest in the identification of molecular mechanisms that

FIGURE 1 | Schematic representation of a circle diagram regrouping the
main symptoms (anxiety, social withdrawal, behavioral despair, metabolic
dysregulation, and anhedonia) characterizing stress responses in a variety of
animal models in males and females. Some unknown results remain,
particularly for the resilient group of the vicarious CSDS model, as well as the
controversial results concerning the anxiety displayed or not in the social
instability model. Abbreviations: CVS/CUMS, chronic variable stress/chronic
unpredictable mild stress; CSDS, chronic social defeat stress; SI, social
isolation; ELS, early life stress.

could underly some aspects of the sexual differences in the
expression of anxiety and MDD in men and women. With
the availability of genome-wide approaches, combined with the
development of highly comprehensive computational strategies,
recent studies revealed the transcriptional structures that define
stress responses.

Transcriptional Studies in Human
Post-mortem Tissue
Global analyses of the male transcriptome in MDD have revealed
several gene-related alterations to different pathways including
the glutamatergic, GABAergic, serotonergic, and polyaminergic
systems across several cortical and subcortical brain regions
(Choudary et al., 2005; Sequeira et al., 2007, 2009, 2012;
Klempan et al., 2009; Bernard et al., 2011; Duric et al., 2013).
Other studies of cortical regions reported alterations in lipid
metabolism, immune response, ATP synthesis, regulation of
transcription and translation, fibroblast growth factor signaling,
and cell proliferation (Evans et al., 2004; Iwamoto et al.,
2004; Kang et al., 2007; Tochigi et al., 2008; Klempan
et al., 2009; Lalovic et al., 2010). Furthermore, changes in
the regulation of the hypothalamic–pituitary–adrenal (HPA)
axis and in the control of circadian rhythms have been
reported in the hypothalamus (Wang et al., 2008) and
cortical/subcortical regions (Li et al., 2013). However, fewer
studies have assessed female transcriptional regulation in MDD.
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The large majority of these studies adopted a candidate gene
approach, showing alterations in brain-derived neurotrophic
factor (BDNF), GABAergic, somatostatin (SST), cholinergic,
serotonergic, and glutamatergic systems as well as alterations
in mitochondrial, energy metabolism, and circadian rhythms in
cortical and limbic regions (Boldrini et al., 2008; Szewczyk et al.,
2009; Goswami et al., 2010; Lin et al., 2011; Guilloux et al.,
2012; Tripp et al., 2012; Bassi et al., 2015; Gray et al., 2015;
Seney et al., 2015).

Unfortunately, very few studies directly compared male and
female transcriptional profiles. This leaves little comprehension
of the molecular mechanisms underlying the expression of
the disease in both sexes. The extent to which transcriptional
signatures differ between males and females in MDD was
assessed by a series of studies published recently. Using RNAseq,
Labonté et al. (2017) compared transcriptional signatures across
six post-mortem brain regions frommen and women with MDD
reporting roughly 5%–10% of genes differentially expressed in
males and females across all six brain regions. Not only was
there a small overlap reported between men and women with
MDD, but the directionality of the effects was often opposite in
different brain regions. A similar lack of overlap was reported
in independent studies also performed on post-mortem brain
samples from men and women with MDD (Seney et al., 2018;
Girgenti et al., 2021). More recently, analyses of peripheral blood
cell samples from MDD patients reported mostly an overlap of
the transcripts regulated by the glucocorticoid receptor activation
in both men and women. But genetic variants acting on
downstream epigenetic and regulatory elements were regulated
in a sex-specific manner. This finding was correlated to the
transcriptional signatures found in post-mortem brain tissue and
the genome-wide association studies (GWAS) analyses showing
an enrichment of these variant transcripts associated with MDD
(Moore et al., 2021).

These results have been further expanded by the use
of network-based approaches. Combined with conventional
differential gene expression analyses, network-based approaches
provide detailed data-driven molecular classifications associated
with specific pathological states such as Alzheimer’s disease
(Zhang et al., 2013), autism (Parikshak et al., 2013; Willsey
et al., 2013), post-traumatic stress disorder (Breen et al., 2015),
neurodegenerative diseases (Narayanan et al., 2014), stress in
mice (Bagot et al., 2016, 2017; Labonté et al., 2017; Lorsch
et al., 2018, 2019; Scarpa et al., 2020; Walker et al., 2022a),
and MDD in humans (Labonté et al., 2017; Scarpa et al.,
2020). This strategy revealed the existence of male and female
MDD-specific gene networks modulating stress susceptibility in
a sex-specific fashion via the activity of hub genes controlling
distinct functional pathways. For instance, the authors identified
the gene encoding for DUSP6 in females and EMX1 in males
as drivers of stress susceptibility in a sex-specific fashion.
The downregulation of DUSP6 in the medial prefrontal cortex
(mPFC) increased stress susceptibility while its overexpression
rescued stress-induced depressive and anxiety-like behavioral
deficits in females but not males (Labonté et al., 2017). This was
associated with changes in the activity of the ERK intracellular
signaling cascade and in the activity of pyramidal neurons in the

mPFC of females but not males. Alternatively, the overexpression
of EMX1 in the mPFC increased depressive and anxiety-like
behavioral responses in males but not females. This was also
consistently associated with a potentiation of pyramidal neuron
activity in a sex-specific fashion (Labonté et al., 2017). It should
be emphasized that DUSP6 was consistently downregulated in
the mPFC of both women with MDD and stressed female mice
after CVS. Additionally, an increased phosphorylation of ERK
was found in females from both species in pyramidal neurons
but not GABAergic interneurons. DUSP6 downregulation in the
mPFC, while increasing stress susceptibility, also reproduced
a large proportion of the transcriptional changes observed
in depressed and stressed females. Together, these findings
highlight the contribution of DUSP6 in the mPFC as a female-
specific driver of stress susceptibility, and strongly supports the
capacity of CVS to reproduce specific behavioral and molecular
aspects of MDD in a sex-specific fashion.

Similar analyses with human cohorts also revealed a major sex
difference in the expression of long non-coding RNAs (lncRNAs;
Issler et al., 2020). Issler and colleagues recently revealed
regulation of lncRNAs associated with depression in brain region
and in a sex-specific fashion. Roughly 3% of differentially
expressed lncRNA were commonly affected in men and women
withMDD, similar to the levels reported above for protein coding
genes (5%–10%; Labonté et al., 2017). The authors identified the
primate-specific lncRNA LINC00473 as a potential sex-specific
mediator of depression in females specifically. The analyses
revealed that this lncRNA was consistently downregulated
across brain regions in women but not men with MDD, and
its expression was strongly correlated with protein coding
genes previously associated with MDD including DUSP6, ARC,
NR4A1, EGR1, and EGR2 (Orsetti et al., 2008; Covington et al.,
2010; Li et al., 2015; Labonté et al., 2017). Interestingly, the
downregulation of LINC00473 in the mPFC was sufficient to
rescue the social withdrawal induced by CSDS, and anxiety-
and compulsive-like behaviors induced by CVS in females but
not males (Issler et al., 2020). The authors further provided
functional data suggesting that the pro-resilient effects induced
by the downregulation of this lncRNA are associated with a
reduction of the activity of pyramidal neurons (Issler et al., 2020).
Interestingly, these effects are similar to what was reported with
the downregulation of DUP6 in females’ mPFC (Labonté et al.,
2017), by impacting the activity of the CREB pathway known
for its involvement in MDD (Carlezon et al., 2005). Whether
these effects may be mediated by similar intracellular cascades
or not, these results suggest that lncRNAs, while interacting with
protein coding genes, are involved in the control of depressive-
and anxiety-like behaviors in humans and mice.

More recently, insights into the transcriptional signatures
associated with depressive traits and states have been made
(Shukla et al., 2021). Using RNAseq from the anterior cingulate
gyrus, Shukla and colleagues investigated transcriptional
signatures from four different cohorts during: a first depressive
episode; remission after the first episode; recurrent episodes,
or remission after recurrent episodes. Interestingly, these
analyses highlighted several patterns of differentially expressed
genes, some of which showed consistent changes across every
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phase, but also robust patterns oscillating between episodes
and remission phases. Importantly, only minimal overlap was
found between genes found in the episode and remission
phases. Further deconvolution analyses suggested that a cluster
of genes co-expressing GABAergic markers such as SST, VIP
(vasoactive intestinal peptide), and CRH (corticotrophin-
releasing hormone) displayed phasic changes according to the
disease states. This suggests that changes in interneuron function
in the mPFC may be involved in the transition from state to
trait phases in men’s MDD. Unfortunately, this study included
only a limited number of samples from women, that prevented
the authors to perform sex-specific analyses. It would be wrong
to assume these findings are applicable to women with MDD,
as transcriptional signatures from men and women with MDD
differ. More work will be required to identify the transcriptional
signatures defining state and trait MDD in the female brain.
Nevertheless, these findings are consistent with previous studies
performed in humans and mouse models of stress and support
the alteration of the GABAergic signaling as a potential driver
of depressive-like behaviors (Tripp et al., 2012; Soumier and
Sibille, 2014; Hodes et al., 2015; Lin and Sibille, 2015; Shepard
et al., 2016; Fee et al., 2017; Fuchs et al., 2017; Czéh et al.,
2018; Shepard and Coutellier, 2018; Todorović et al., 2019;
Girgenti et al., 2021). By dissociating transcriptional changes
identified with depressive state and trait, these findings represent
a significant step forward in the understanding of the molecular
mechanisms underlying the expression and the consolidation of
the disease.

Transcriptional Studies in Mouse Models
It is interesting to note that a number of studies confirmed the
capacity of different types of stress to reproduce a significant
proportion of the molecular alterations associated with MDD in
both sexes. For instance, consistent low transcriptional overlap
has been reported in the mPFC and nucleus accumbens (NAc)
of males and females after CVS (Hodes et al., 2015; Labonté
et al., 2017). Several functional pathways have also been shown
to be enriched with differentially expressed genes (DEG) in
both human MDD and stressed males and females (Labonté
et al., 2017; Scarpa et al., 2020). These changes result from
alterations in the epigenetic regulation of gene expression that
include modifications at the DNA methylation level. Indeed,
the overexpression of the DNA methyltransferase 3 alpha
(Dnmt3a) in the NAc was shown to increase stress susceptibility
in both sexes while its downregulation made female mice
resilient to 6 days of variable stress with no effect in males
(Hodes et al., 2015). Interestingly, these behavioral effects were
associated with significant transcriptional alterations distinctly
affecting males and females. CVS was also shown to alter
the regulation of microRNA (miRNA) expression discernably
in males and females (Pfau et al., 2016). Previous analyses
using RNAseq to screen miRNA profiles in males and females
that underwent CVS revealed highly sex-specific signatures
proposing that susceptibility and resilience to sCVS exhibited
by males and females may result from a complex remodeling of
miRNA signatures affecting coding genes. This was suggested for
lncRNAs in human brains as well (Issler et al., 2020).

A similar reorganization of transcriptional structures was
observed following CSDS (Bagot et al., 2016, 2017; Lorsch et al.,
2018, 2019; Scarpa et al., 2020). In addition to what extent
stress changes transcriptional profiles in the brain, these studies
confirmed that resilience is a mechanism involving the activation
of specific transcriptional programs required to elaborate and
consolidate appropriate behavioral strategies to cope with stress.
This was reported both at the differential expression and the
gene network levels (Bagot et al., 2016, 2017; Lorsch et al., 2018,
2019; Scarpa et al., 2020), similar to what was observed in human
MDD, but also after CVS and SI (Labonté et al., 2017; Seney
et al., 2018; Scarpa et al., 2020). However, none of these studies
included females, limiting their interpretation to males only. At
the differential expression level, the number and identity of genes
differentially expressed across brain regions were drastically
different between males susceptible and resilient to CSDS (Bagot
et al., 2016, 2017; Scarpa et al., 2020). The transcriptional
organization of gene networks was also different between both
phenotypes, with distinct gene networks being associated with
the expression of stress susceptibility and resilience in males
after CSDS. Importantly, the behavioral contribution of these
gene networks was confirmed by a series of behavioral and
functional studies. The susceptible-specific hub genes encoding
for the Dickkopf Like Acrosomal Protein 1 (Dkkl1) and the
neurogenic differentiation transcription factor 2 (NeuroD2),
increased susceptibility to social stress, and induced behavioral
despair and anxiety-like behaviors when overexpressed in the
ventral hippocampus (vHPC) but not in the mPFC of male
mice (Bagot et al., 2016). Overexpression of the gene sidekick
cell adhesion molecule 1 (Sdk1), in the vHPC also promoted
depressive and anxiety-like behavioral features to social stress.
However, its overexpression in the mPFC induced pro-resilient
effects in male mice (Bagot et al., 2016). Interestingly, the
behavioral effects observed after the overexpression of these
genes were associated with changes in neuronal activity in the
vHPC. The overexpression of both Dkk1l and Sdk1 increased
spontaneous excitatory postsynaptic current frequency with no
effect on amplitude (Bagot et al., 2016). Furthermore, the
overexpression of these two hub genes induced a significant
reorganization of the transcriptional structure of their respective
gene networks in the vHPC (Bagot et al., 2016). Overall, this
suggests that the regulation of specific hub genes promotes
the expression of stress susceptibility by imposing functional
changes in the activity of specific neuronal populations via a
reorganization of its own network transcriptional structure. As
these findings apply to males only, more work is needed to
define the transcriptional profiles underlying the expression of
susceptibility and resilience to social stress in female mice.

Further research on the transcriptional organization of gene
networks in susceptible and resilient mice identified the Esr1
gene, encoding for the estrogen receptor 1, as an upstream
regulator that drives resilience to social stress in the NAc.
The overexpression of Esr1 in the NAc generated a robust
pro-resilient phenotype in males exposed to CSDS and in
females that experienced sCVS (Abelaira et al., 2013). These
behavioral changes coincided with a consistent reorganization
of transcriptional signatures. The authors noted a major
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overlap between transcriptional signatures from males after
Esr1 overexpression and resilient but not susceptible males
after CSDS. In contrast, no significant overlap was observed
between transcriptional signatures from males and females after
Esr1 overexpression, suggesting that the molecular mechanisms
underlying the expression of resilience induced by Esr1 may
differ in males and females. It is also important to consider
that Esr1 may indeed be a driver of stress resilience but only in
CSDS; classically, CVS in males and females does not induce the
expression of a resilient phenotype. Further work is needed to
address these important questions.

Lorsch et al. (2019) identified the transcription factor Zinc
finger protein 189 (Zfp189) as an additional driver of resilience
to social stress in the mPFC. The analyses revealed that Zfp189
is one of the most connected key drivers within a resilient-
specific gene network, and significantly upregulated in the mPFC
of resilient mice after CSDS. Consistently, the human homolog
ZNF189 was significantly downregulated in the mPFC from
MDD post-mortem tissue. Interestingly, the overexpression of
Zfp189 in the mPFC was shown to trigger pro-resilient responses
when administered before stress exposure and rescued the
susceptible phenotype when injected after exposure to CSDS
consistent with a pro-resilient and antidepressant-like role for
this key-driver. Further analyses confirmed that the pro-resilient
effect of Zfp189 was mediated by a specific reorganization of
its own gene network, which is associated with resilience in
the mPFC. More importantly, the authors showed that this
effect was driven through direct interactions with CREB. Despite
that Zfp189 and its gene network have been identified in
males, CREB knockdown (KO) induced the expression of a
depressive-like phenotype to social stress in males and sCVS in
females. The expression of Zfp189 in CREB KO mice rescued
these effects in both sexes (Lorsch et al., 2019). These results
strongly support the role of Zfp189 as a driver of resilience
to stress in both sexes, regardless of the type of stress used.
Finally, the direct relationship of both proteins was shown
through an elegant set of experiments that combined CRISPR
gene editing with behavioral assessment. The authors used a
specific strategy to specifically target CREB and Zfp189 to either
associate or segregate them in order to induce or prevent
their physical interactions. Interestingly, targeting CREB to
Zfp189 via this approach increased resistance to social stress
while creating a repressive environment around Zfp189 gene
loci. This decreased its expression in the mPFC and induced
a pro-susceptible phenotype in male mice. Together these
analyses provide substantial evidence for the role of Zfp189 in
mediating pro-resilient effects via a complex molecular cascade
that involves direct interactions with CREB in the mPFC.

ELS has also been recently shown to induce different
transcriptional changes across brain regions of males and
females. This series of analyses was based on the two-hit stress
model in mice: postnatal stress that occurs during postnatal
days 10–20 increases susceptibility to social stress later in life
(Peña et al., 2017, 2019). These behavioral effects have been
associated with a series of transcriptional changes affecting
several brain regions differently, including the ventral tegmental
area (VTA), NAc, and mPFC in males and females, depending

on the history of previous ELS. These analyses suggest that
ELS primes molecular programs in different brain regions
to be in a depressive-like state, thus being more plastic to
a significant reorganization when challenged by additional
stress during adulthood (Peña et al., 2017, 2019), or even
drug abuse in a sex-specific fashion (Walker et al., 2022a).
These findings led to the identification of specific genes as
upstream regulators of transcriptional structures in these brain
regions driving stress responses in a sex-specific fashion. While
the genes encoding for alpha-synuclein (SNCA) and beta
catenin (CTNNB1) were both predicted upstream regulators in
female VTA and NAc, the orthodenticle homeobox 2 encoding
gene, Otx2, was the highest-ranked upstream regulator of the
pro-depressive transcriptional signature in males’ VTA (Peña
et al., 2017, 2019). The functional and behavioral implication of
Otx2 as an upstream regulator of pro-depressive transcriptional
signatures was further assessed by a series of behavioral
experiments following its viral modification directly in the
VTA. Transient Otx2 overexpression in the VTA of juvenile
male mice blocked susceptibility to adult social defeat and
rescued the downregulation of several Otx2 targets in this brain
region (Peña et al., 2017). The transient juvenile suppression
of Otx2 expression in the VTA recapitulated the effects of
postnatal stress on the expression of susceptibility to social
stress during adulthood, which is associated with significant
changes in the expression of its downstream target genes. It is
important to note that these effects were specifically associated
with the juvenile developmental period, as the overexpression
of Otx2 during adulthood only partially rescued behavioral
and transcriptional effects, while its downregulation failed to
induce behavioral susceptibility and changes in Otx2 target gene
expression (Peña et al., 2017).

Further analyses suggest that these effects may be mediated
at least in part by epigenetic changes. Indeed, several targets
of Otx2 in the VTA were predicted to be enriched with the
presence of the open chromatin mark H3K4me3 (Peña et al.,
2017). Similar observations have been made concerning the
epigenetic mechanisms mediating the effects of ELS in the NAc
of males and females (Kronman et al., 2021). Kronman and
colleagues showed that ELS induces a significant suppression
of the repressive histone mark H3K79 specifically in males
(Kronman et al., 2021). These effects were accompanied by
cell-type-specific changes in the expression of the H3K79 writer
and eraser, Dot1l and Kdm2b, respectively, in the NAc following
a developmental trajectory. The expression of both genes
was significantly increased in D2-expressing medium spiny
neurons (MSN) of both males and females, an effect that
was not seen early postnatally (PND21) but that became
significant at a later developmental stage (PND35). This
was maintained until adulthood, suggesting an incubation
effect of ELS across developmental stages. Interestingly,
Dot1l downregulation in D2-MSNs reversed the behavioral
consequences of ELS-mediated behavioral susceptibility, while
its overexpression in the same neuronal population replicated
the behavioral phenotype induced by ELS in males, and to
a lower extent in females. Conversely, the overexpression
of Kdm2b in D2 expressing MSNs reversed ELS-induced
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behavioral phenotypes, whereas its downregulation increased
stress susceptibility in males exclusively. As shown before with
other key drivers and upstream regulators, the transcriptional
profiles initiated by ELS were strikingly similar to those induced
by Dot1l overexpression and inversed to Dot1l downregulation
in D2 MSNs. Interestingly, further analyses were done to address
the discrepancy between the upregulated expression ofDot1l and
the downregulation of H3K79me2 in whole NAc after ELS. The
results showed that the upregulation of Dot1l is associated with
increased deposits of H3K79me2 at more genomic sites, but the
loss of H3K79me2 found at a subset of sites is more important.
This loss could be due to the coordinated induction of Kdm2b in
the NAc.

Interspecies Transcriptional Studies
Each of these studies provides valuable evidence that distinct
mouse models are useful in testing the contribution of specific
genes and transcriptional programs on behavioral responses to
chronic stress. However, they still do not directly compare the
extent of how they can accurately reproduce the transcriptional
signatures relevant to MDD in the brain. This precise question
was recently addressed by comparing the RNAseq transcriptional
profiles generated from human post-mortem brain samples and
three models of chronic stress including CVS, SI, and CSDS
(Labonté et al., 2017; Scarpa et al., 2020). These analyses revealed
a significant overlap between transcriptional alterations in the
mPFC and NAc from human MDD and stressed mice, with
each of the chronic stress paradigms capturing distinct aspects
of MDD abnormalities. At the differential expression level, CVS
and SI were shown to better reproduce the human conditions in
the NAc and mPFC (Scarpa et al., 2020). It should be mentioned
that these analyses have been done by controlling for the effect of
sex. Indeed, not every dataset included females, and sex-specific
analyses were not possible which limits the interpretation of these
results. Nevertheless, these findings are consistent with previous
comparative studies showing that both males and females that
experienced CVS reproduce a significant proportion of the
differential expression profiles observed in men and women
with MDD (Labonté et al., 2017). These analyses also revealed
a significant number of functional pathways that are enriched for
DEGs in humans with MDD, and each of the different mouse
models of stress. This suggests that the behavioral consequences
of stress may be mediated by similar functional pathways in both
species (Scarpa et al., 2020).

Importantly, network-based approaches provided similar
conclusions. Consistent with previous studies (Tsaparas et al.,
2006; Monaco et al., 2015; Eidsaa et al., 2017), all three
mouse models were shown to share a significant level of
co-expression structure in the mPFC and the NAc, although
it is accepted that the human transcriptome acquired a certain
complexity throughout evolution that is not shared in mouse
(Pembroke et al., 2021). This approach identified gene networks
sharing common co-expression structures associated with MDD
and stress and enriched with genes differentially expressed in
human and mouse models. For instance, the authors reported
a gene network associated with the function and structure of
oligodendrocytes (Scarpa et al., 2020). Interestingly, impaired

myelin-related gene expression, along with reduced myelin
thickness, have been reported in the cortex from suicide
completers with a history of child abuse (Lutz et al., 2017;
Tanti et al., 2018, 2021). Similarly, prolonged social isolation and
social stress in mice have been shown to change oligodendrocyte
gene expression that interferes with myelin integrity in the
mPFC (Liu et al., 2012; Zhang et al., 2016). Amongst all the
genes in this network, Gab1 was identified as a hub gene
preserved in humans with MDD and each of the three mouse
models of chronic stress. Gab1 is also known to enhance
PI3K/AKT activation and to extend the duration of Ras/MAPK
signaling (Kiyatkin et al., 2006). Additionally, it was shown to
indirectly trigger myelination by increasing the expression of
Egr2 when activated by the protein kinase A (PKA; Ghidinelli
et al., 2017). Altered oligodendrocyte function in MDD has
also been supported by a recent study using single nuclei
RNA sequencing to probe changes in gene expression across
every cell type found in the mPFC of men with MDD
(Nagy et al., 2020). Amongst all genes found differentially
expressed, the majority were found in oligodendrocytes and
a subpopulation of deep layer excitatory cells in the mPFC.
Based on their predictions, the authors concluded that the
relationship between these two clusters of cells could be
explained in part by impairments in fibroblast growth factor
signaling, steroid hormone receptor cycling, immune function,
and cytoskeletal regulation, which could underly changes in
mPFCsynaptic plasticity (Nagy et al., 2020). These results are also
consistent with previous results showing metabolic, functional,
and morphological changes in the mPFC with depression and
chronic stress (Hare and Duman, 2020).

Overall, these studies suggest that each mouse model can
reproduce common but also unique molecular features relevant
to the expression of the disease in humans with no unique model
better than the others (Table 1; Figure 2). In other words, the
decision for an appropriate model should be based not only on
its capacity to reproduce certain behavioral aspects, but also its
capacity to reproduce the transcriptional alterations relevant to
the human condition. However, as female transcriptional data
are not consistently available for each model, it is impossible
to predict whether this capacity applies to both males and
females. This cannot be simply addressed by directly overlapping
human and mouse profiles, as important considerations such
as gene orthology, correlation structures, and connectivity need
to be taken when comparing the transcriptional structures
of two different species. Additional clinical variables such as
age, hormonal status, and pathological comorbidities that are
difficult to account for in human post-mortem studies are
also important considerations when performing interspecies
sex-specific studies. Nevertheless, based on previous findings
from human and mouse studies (Labonté et al., 2017; Lorsch
et al., 2018, 2019; Scarpa et al., 2020), it is tempting to speculate
that both males and females would reproduce specific aspects
of the human condition, but most likely not the same. More
work will be required to address this important question and
consolidate the benefits of using mouse models to study specific
molecular mechanisms underlying the expression of MDD in
both sexes.
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TABLE 1 | Summary of recent transcriptomic analyses done by RNA-sequencing characterizing transcriptional profiles in human MDD post-mortem brains and different animal models of depressive-like behaviors.

Transcriptional studies in humans from post-mortem tissues:

Human sex samples
(M/W)

Sample size Region of Interest Main Findings Studies

M & W 26 MDD (13 M & 13 W)
and 22 Ctrl (13 M & 9 W);
A cohort of 32 M
(15 MDD & 17 Ctrl); A
cohort of 18 W (6 MDD &
12 Ctrl)

vmPFC, OFC, dlPFC,
aINS, NAc, vSUB

Low transcriptional
overlap and divergent
gene network structures
between males and
females across brain
regions

Labonté et al. (2017)

M & W 50 MDD (26 M &
26 controls, 24 W &
24 Ctrl)

dlPFC, sgACC, BLA Low transcriptional
overlap between males
and females across brain
regions

Seney et al. (2018)

M & W 143 samples from 46 Ctrl
(26 M & 20 W), 52 PTSD
(26 M & 26 W), and
45 MDD (27 M & 18 W)

PFC, AMY, HIPP, dlPFC Divergent transcriptomic
signatures between
PTSD and MDD. Low
transcriptional overlap
between males and
females

Girgenti et al. (2021)

M & W; adolescents &
children (M & W)

Cohort 1: 289 samples
from 93 W (48 MDD &
45 Ctrl) and 1960 M
(81 MDD & 115 Ctrl);
Cohort 2: 584 children
and adolescents with
350 MDD & 234 Ctrl;
Cohort 3: 1774 samples
from 879 MDD & 756 Ctrl

Blood samples analysis
associated with six brains
regions of interest. Only a
significant result with
BA25/ACC is presented

High overlap of the GR
transcripts between
sexes with only an
enrichment of the eQTL in
females

Moore et al. (2021)

M & W Cohort of 50 MDD & Ctrl OFC, dlPFC, vmPFC,
NAc, aINS, vSUB

LINC00473 is a
sex-specific mediator of
depression in females
specifically

Issler et al. (2020)

M & W with few
proportions of W

90 samples (20 Ctrl,
20 MDD, 15 in remission
after one episode, 20 in
recurrent episodes &
15 remissions after
recurrent episodes)

dlPFC/ACC Changes in interneurons
function in the mPFCare
involved in the transition
from state to trait in MDD

Shukla et al. (2021)

M & W 78 samples (27 MDD
suicided with CA,
25 without CA & 26 Ctrl)

ACC CA induces epigenetic
reprogramming of myelin
in adults

Lutz et al. (2017)

M & W 36 samples (18 MDD with
CA & 18 MDD without
CA)

vmPFC Long-term changes in
connectivity related to
imbalance of
oligodendrocytes and
myelin remodeling in
MDD patients with CA

Tanti et al. (2018)
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TABLE 1 | Continued

Transcriptional studies in humans from post-mortem tissues:

Human sex samples
(M/W)

Sample size Region of Interest Main Findings Studies

M & W 11 Ctrl from 9 M & 2 W,
26 MDD without CA
from 14 M & 12 W,
12 MDD with CA from
9 M & 3 W

vmPFC/BA11-12 Decreased
neuroplasticity of
cortical circuits through
the enhancement of
developmental
OPC-mediated PNN
formation in MDD
patients with CA

Tanti et al. (2021)

M 34 samples (17 MDD &
17 Ctrl)

dlPFC Significant differential
expression of
oligodendrocytes
associated with
dysregulation of
excitatory neurons in
MDD

Nagy et al. (2020)

Transcriptional studies in mouse models:

Animals Models Sample size Age Region of Interest Main Findings Studies

C57BL/6J M & F mice CVS 40 mice (10 M/groups,
& 10 F/groups)

8 weeks vmPFC and NAc DUSP6 and EMX1 are
drivers of stress
susceptibility in a
sex-specific manner

Labonté et al. (2017)

C57BL/6J M & F mice CVS 3-5 mice/groups 8 weeks OFC, dlPFC, vmPFC,
NAc, aINS, vSUB

LncRNA LINC00473 is
a sex-specific mediator
of depression in
females specifically

Issler et al. (2020)

C57BL/6J M & F mice sCVS 48 (4 mice/library &
3 libraries/sex/stress
condition)

8-12 weeks NAc Low overlap between
transcriptional profiles
in the NAc and PFC in
stressed males and
females

Hodes et al. (2015)

C57BL/6J M & F mice sCVS 60 (5 mice/library &
3 libraries/sex/stress
condition)

8 weeks NAc Little overlap of the
transcriptional and
post-transcriptional
profiles between sexes

Pfau et al. (2016)

C57BL/6J M mice CSDS 12 (4 mice/library &
3 libraries/sex/stress
condition)

8 weeks vHIP, PFC, NAc, AMY Overexpression of two
specific hub genes
induced a significant
reorganization of the
transcriptional structure
of their respective gene
networks in the vHIP

Bagot et al. (2016)
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TABLE 1 | Continued

Transcriptional studies in mouse models:

Animals Models Sample size Age Region of Interest Main Findings Studies

C57BL/6J mice CSDS 10 Ctrl, 8 resilient, 14
non-responders to
treatments (8 + 6),
6 susceptible,
12 responders to
treatments (6 + 6)

PFC, NAc, HIP, AMY Transition from
susceptible to resilient
transcriptional profiles
following
pharmacological
treatments

Bagot et al. (2017)

C57BL/6J mice CSDS (M), CVS (F) 27 mice (6-8M
mice/groups & 6-7 F
mice/groups)

8 weeks NAc, PFC Estrogen receptor 1 is
an upstream regulator
that drives resilience to
social stress

Lorsch et al. (2018)

C57BL/6J M & F mice CSDS (M) & sCVS (F) 10 mice (5/groups) 8 weeks PFC, vHIP, BLA, NAc Zfp189 is a hub gene
driving resilience to
social stress

Lorsch et al. (2019)

C57BL/6J M & F mice ELS (MS and limited
nesting) alone or
followed by STVS or
CSDS

4-6 mice/groups
5-6 mice/groups

Adult mice VTA, NAc, PFC ELS primes molecular
programs toward a
reorganization when
challenged by stress
during adulthood

Peña et al., 2019

C57BL/6J M mice 2-hit stress model,
CSDS

3 mice/groups/sex Adult and adolescent
mice

VTA Otx2 overexpression
rescued depressive-like
behaviors and reversed
Otx2-targets gene
expression

Peña et al. (2017)

C57BL/6J M & F mice CSDS, ELS 2 mice/groups/sex 10-12 weeks for CSDS NAc ELS induces a sex and
cell type specific
reorganization of
H3K79 profiles

Kronman et al. (2021)

Interspecies transcriptional studies:

Subjects Models Age Sample size Region of Interest Main Findings Studies

C57BL/6J mice; M & F
humans

CSDS, SI, CVS MDD: 45+/-17 years
old & Ctrl: 48+/-17

26 MDD (13 M & 13 W),
22 Ctrl (13 M & 9 W);
10 CVS mice/sex; 30 SI
M & 15 M Ctrl; 11 M
CSDS/phenotypes

PFC & NAc CVS, SI and CSDS
reproduce common but
also unique
transcriptional changes
relevant to the
expression of MDD

Scarpa et al. (2020)

Abbreviations: M, men/males; W, women; F, females; PTSD, post-traumatic stress disorder; MDD, major depressive disorder; Ctrl, controls; CA, child abuse; eQTL, cis-expression quantitative trait loci; LncRNA, long non-coding RNA;
sCVS, subchronic variable stress; CVS, chronic variable stress; CSDS, chronic social defeat stress; ELS, early life stress; MS, maternal separation; STVS, subthreshold variable stress; SI, social isolation; OPC, oligodendrocytes progenitor
cells; PNN, perineuronal nets; vmPFC, ventromedial prefrontal cortex; OFC, orbitofrontal cortex; dlPFC, dorsolateral prefrontal cortex; aINS, anterior insula; NAc, nucleus accumbens; vSUB, ventral subiculum; sgACC, subgenual anterior
cingulate cortex; AMY, amygdala; HIPP, hippocampus; mPFC, medial prefrontal cortex; vmPFC, ventromedial prefrontal cortex; vHIP, ventral hippocampus; PFC, prefrontal cortex; BLA, basolateral amygdala; VTA, ventral tegmental area;
BA, Brodmann area; ACC, anterior cingulate cortex.
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FIGURE 2 | Males and females with MDD or stress share minimal
transcriptional overlap across brain regions. These sex differences may be
driven by biological factors such as sex chromosomes and hormonal
variations. Similar differences are also observed at the gene network level
where sex-specific transcriptional networks are associated with the
expression of MDD in either males or females in humans but also with the
expression of stress susceptibility or resilience in stressed male and female
mice. These transcriptional changes interfere with the activity of several
molecular, biological, and cellular processes such as neuronal activity,
epigenetic and transcriptional regulation, the function of the HPA axis, and
immune response. Ultimately, this leads to the expression of converging
depressive-like behaviors in males and females sharing similar symptomatic
and behavioral features. The orientation of the arrows next to listed genes
indicates whether gene expression is upregulated or downregulated in the
depressed/stressed conditions. ♂: male symbol, ♀: female symbol.

CONCLUSION

Fundamental research using animals is an absolute necessity to
improve our understanding of complex human conditions. Here,
we have reviewed the strengths and weaknesses of some of the
most widely used models to study the molecular and functional
impact of chronic stress on the expression of depressive and
anxiety-like behaviors. Amongst the multiple conclusions that
can be drawn, no unique model can fully reproduce the human
condition. Indeed, the clinical manifestation of the disease
varies between individuals either qualitatively or quantitatively

(Soderlund and Lindskog, 2018) which cannot be accounted
for in animals. Several complex behavioral features and traits
related to the disease cannot be evaluated without falling
into anthropomorphic considerations. Furthermore, the clinical
representation of the disease keeps evolving throughout the
pathological process (Zahn-Waxler et al., 2000). Thus, rather
than mimicking MDD and anxiety in mice as a whole, one
should consider modeling specific aspects of the disease that
can be accurately reproduced and quantified in mice and more
importantly differently in each mouse model.

Nevertheless, data strongly support the use of animal models
to study the molecular mechanisms underlying the expression
of stress susceptibility and resilience in both males and females,
although only a few studies properly integrated females in their
analysis. As of now, studies investigating the transcriptional
programs underlying the expression of MDD and anxiety in
humans have revealed drastic differences between men and
women. This should be considered carefully since the lack of
overlap in DEG between stressed males and females should not
always be interpreted as a sign of sex differences (Mukamel,
2022). With the development of novel approaches combining the
assessment of differential expression profiles with transcriptional
overlap, gene ontology and gene network-based approaches
integrating correlation structures and connectivity measures, the
sum of converging evidence is strongly supporting the existence
of true sex differences in the transcriptional organization of
gene networks across the brain that may drive the expression
of behavioral alterations in a sex-specific fashion (Labonté et al.,
2017; Lorsch et al., 2018, 2019; Seney et al., 2018; Walker et al.,
2022a,b).

Most importantly, the transcriptional signatures associated
with each type of stress share common core features but
also unique aspects relevant to the human condition. In this
sense, types of stress with psychosocial constructions affect
the brain transcriptome differently than other stress types
relying on physical paradigms. In perspective, this is in line
with our understanding of how environmental challenges
are impacting brain activity through epigenetic mechanisms
(Fatma and Labonté, 2019) and adds to the importance of
considering not only the behavioral features but also the
molecular systems affected by different types of stress when
choosing an appropriate mouse model. Ultimately, this choice
may have a crucial impact on behavioral, morphological,
functional, and molecular findings. For instance, transcriptional
alterations that increase the activity of mPFC neurons have been
shown to promote stress susceptibility in animals undergoing
CVS (Labonté et al., 2017; Issler et al., 2020) while changes
that induce similar functional impacts on mPFC activity have
been associated with resilience and anti-depressant properties
in the CSDS model (Bagot et al., 2016). Similarly, certain
transcriptional changes triggering stress susceptibility in females
induce no effect in males and the opposite has also been shown
(Labonté et al., 2017).

Probably the most important remaining question is what
are the mechanisms underlying these differences either at
the behavioral or transcriptional levels. Amongst the different
potential players, sex chromosomes and gonadal hormones come
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to mind. Both X and Y chromosomes contain genes encoding
for different chromatin writers and erasers as well as several
transcription factors (Sene et al., 2013; Seney et al., 2013; Dossat
et al., 2017). These genes are crucially involved in various
developmental processes and are likely to be impacted differently
by environmental factors and ultimately by hormonal influences
(Puralewski et al., 2016; Jaric et al., 2019). Similarly, molecular
processes and emotional responses are also importantly regulated
by gonadal hormones which broaden the contribution of
sex-specific biological correlates underlying stress responses in
males and females (Bangasser and Cuarenta, 2021; Bhargava
et al., 2021; Rainville et al., 2022). More recently, FCG mice
were used to dissect the behavioral and transcriptional impact of
gonadal hormones and sex chromosomes over stress responses
in males and females (Paden et al., 2020). Interestingly, results
show that XX male carriers recapitulate XX females’ behavioral
profiles. Similar findings were also reported for XY female
carriers and XY males. At the transcriptional level, 25% of
the differences between males and females were related to sex
chromosomal influences while 23%–31% of these differences
were associated with gonadal hormones (Paden et al., 2020).
Interestingly, despite the extent of the transcriptional differences,
the authors reported that a large proportion of the transcriptional
changes in males and females were in fact clustered on similar
functional pathways (Paden et al., 2020). This is very similar to
the findings reported in human post-mortem tissue (Labonté
et al., 2017; Seney et al., 2018; Girgenti et al., 2021) and
supports the idea that common functional pathways may be
impacted in males and females with MDD but via different
genes. However, the contribution that sex chromosomes and
gonadal hormones have, especially during crucial developmental
phases, remains unknown andmore work will be required to fully
understand the complex interplay between sex chromosomes,
gonadal hormones, and transcriptional programs in controlling

the development of emotional responses in stressed males and
females (Paden et al., 2020; Seney and Logan, 2021).

Overall, this suggests that several transcriptional programs
are in place to control neuronal activity and brain function
and these programs are affected distinctly by different types of
stress in males and females. As of now, only the tip of the
iceberg has been revealed and much more work is needed to
provide a better understanding of the molecular mechanisms
underlying stress susceptibility and resilience in males and
females. While work in human populations is crucial to drive
this initiative, animal models remain one of the best strategies to
provide mechanistic insights into the effects. With this in mind,
future work should consider using these approaches to reveal
the transcriptional signatures underlying specific symptomatic
profiles in humans. With the knowledge that each of the models
can accurately reproduce specific behavioral and molecular
aspects ofMDD and anxiety inmales and females, such initiatives
should provide interesting insights into the systems to target
more precisely in order to treat specific symptoms, rather than
the complex syndrome.
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Treatment of neuropsychiatric disorders relies on the effective delivery of therapeutic
molecules to the target organ, the brain. The blood–brain barrier (BBB) hinders such
delivery and proteins acting as transporters actively regulate the influx and importantly
the efflux of both endo- and xeno-biotics (including medicines). Neuropsychiatric
disorders are also characterized by important sex differences, and accumulating
evidence supports sex differences in the pharmacokinetics and pharmacodynamics
of many drugs that act on the brain. In this minireview we gather preclinical and
clinical findings on how sex and sex hormones can influence the activity of those BBB
transporter systems and affect the brain pharmacokinetics of psychotropic medicines.
It emerges that it is not well understood which psychotropics are substrates for
each of the many and not well-studied brain transporters. Indeed, most evidence
originates from studies performed in peripheral tissues, such as the liver and the
kidneys. None withstanding, accumulated evidence supports the existence of several
sex differences in expression and activity of transport proteins, and a further modulating
role of gonadal hormones. It is proposed that a closer study of sex differences in
the active influx and efflux of psychotropics from the brain may provide a better
understanding of sex-dependent brain pharmacokinetics and pharmacodynamics of
psychotropic medicines.

Keywords: sex differences, blood–brain barrier, psychotropics drugs, transporters and channels, brain, females,
transporters, mental disorders

INTRODUCTION

Neuropsychiatric disorders carry a significant burden and disproportionally affect more women
than men (Wittchen et al., 2011). Their treatment relies on effective drug delivery to the brain.
However, such drug delivery is challenging, as the blood–brain barrier (BBB) allows only endo-
and xeno-biotics (including medicines) with specific physicochemical characteristics (lipophilicity,
molecular weight, and charge) to enter. This barrier is achieved as brain capillary endothelial cells
(BCECs), in very close proximity between them, form complex and tight junctions (Figure 1).
The BBB functions within the context of the neurovascular unit (McConnell et al., 2017), a
structure consisting of neurons, interneurons, astrocytes, pericytes, basal lamina covered with
smooth muscular cells, microglia as well as endothelial cells and extracellular matrix, and regulates
the cerebral blood flow (Muoio et al., 2014). Although some substances may diffuse passively
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FIGURE 1 | Graphical representation of the blood–brain barrier and its transporters.

though the BBB, the influx and efflux of most substances
is actively regulated by a complex system of transporters
expressed on the BBB. Emerging evidence suggests that brain
pharmacokinetics, and thus psychotropic pharmacodynamics is
greatly influenced by these transport systems (O’Brien et al.,
2012). However, such knowledge is relatively new and now
unfolding for many of those systems, especially with the help
of evidence gathered from the presence of those transporters
in peripheral barriers, such as in the gastrointestinal tract,
the liver, and the kidneys. On the other hand, there is
strong evidence that many neuropsychiatric disorders present
significant sex differences (Balta et al., 2019) and preclinical
research is progressing into incorporating sex as an important
biological variable (Butlen-Ducuing et al., 2021). Moreover,
psychotropic medication present noteworthy pharmacodynamic
and interestingly, pharmacokinetic sex differences (Kokras et al.,
2011; Seeman, 2021). Given that psychotropic medication must
reach the brain to exert their therapeutic action, it emerges
that potential sex differences in the brain’s transport systems
might be involved in the action of psychotropic medicines
in men and women. Therefore, in this minireview, we gather
preclinical and clinical findings on how sex and sex hormones can
influence the activity of BBB transporters and, discuss the current
state of the art.

P-GLYCOPROTEIN

The ABCB1 gene expresses P-glycoprotein (P-gp) (or multi-
drug resistance protein 1) in humans and two homologs in
rodents, the abcb1a and abcb1b (O’Brien et al., 2012). P-gp has
a broad binding site for a wide range of substances, as it is
not restricted stereochemically and currently is the most studied
transport protein. Regarding psychiatric disorders, P-gp plays
an important role in CNS drugs bioavailability (De Klerk et al.,
2011). Several antidepressants, like citalopram/escitalopram,

paroxetine, imipramine, and venlafaxine are substrates of P-gp
(Uhr and Grauer, 2003; Karlsson et al., 2010; O’Brien et al.,
2013a,b). Thus, their brain pharmacokinetics are altered by
P-gp and response to treatment is affected (Lin et al., 2011).
However, other drugs appear not affected by P-gp, like fluoxetine
and mirtazapine (Uhr et al., 2000, 2003). Interestingly, some
psychotropic medications show a complex interaction with P-gp.
For example, sertraline displays a biphasic and time-dependent
interaction, fluctuating between inhibition and stimulation of
P-gp (Kapoor et al., 2013). Another example is that high
doses of nortriptyline saturate the P-gp-dependent transport
and thus decrease its clearing effectiveness (Ejsing and Linnet,
2005). Abundant evidence indicates sex differences in the P-gp
transport (Baris et al., 2006; Lifschitz et al., 2006; Ueno and Sato,
2012; Tornatore et al., 2013). However, there are also reports
showing no significant sex differences (Dagenais et al., 2001;
Gottschalk et al., 2011; Long et al., 2016). Such discrepancies, as
discussed later, are probably explained by several factors, such as
differences in species, the studied substrate, the tissue sampled,
etc. Moreover, many P-gp polymorphisms affecting therapeutic
drug efficacy are reported (Dizdarevic et al., 2014; Peng et al.,
2015; Skalski et al., 2017; Rahikainen et al., 2018). Some are
linked with sex-differentiated drug responses and development
of specific side effects (Alzoubi et al., 2013; Rahikainen et al.,
2018). This highlights the importance of sex segregation in
pharmacogenetic research. Lastly, there is evidence that gonadal
hormones, such as estrogens, testosterone and progesterone affect
the activity of P-gp, and its activity may vary across the menstrual
cycle (Axiotis et al., 1991; Peng et al., 2015; Kanado et al., 2019).

BREAST CANCER RESISTANT PROTEIN

Breast cancer resistant protein (BCRP) is an ABC transporter
expressed in different tissues, including the brain epithelial
cells, and may be responsible for the low bioavailability of

Frontiers in Behavioral Neuroscience | www.frontiersin.org 2 May 2022 | Volume 16 | Article 844916119

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-16-844916 May 21, 2022 Time: 12:8 # 3

Dalla et al. BBB Transporters: Sex Differences

several psychotropics. A recent study showed that sertraline is a
BCRP substrate along with its P-gp inhibiting properties (Feng
et al., 2019). Venlafaxine dose-dependently induces the BCRP
expression (Bachmeier et al., 2011). Moreover, BCRP is known to
work in synergy with P-gp, cooperatively eliminating xenobiotics
from the brain and thus impeding treatment (Kodaira et al., 2010;
Agarwal et al., 2011). Several preclinical studies highlight sex
differences in BCRP, whose regulation is testosterone-induced
and estradiol-inhibited, and point to a higher expression of
BCRP in males (Teo et al., 1993; Fu et al., 2012). Hormonal
manipulations, such as gonadectomy or hormonal treatment
significantly affected its expression, and in general lower BCRP
expression in females led to higher drug exposure (Merino et al.,
2005; Gulilat et al., 2020). However, most results are obtained
from tissues other than the brain. Interestingly a single study
showed that specifically in the brain, BCRP expression is higher
in female than male mice (Tanaka et al., 2005).

MULTIDRUG RESISTANCE-ASSOCIATED
PROTEINS

Multidrug resistance-associated protein (MRP) is a family
of ABC transporters comprising of currently seven known
members which are located at luminal membranes, and also
found at the BBB (Ueno et al., 2010). Although considered to
be an important drug transport mechanism, there is limited
information regarding most psychotropics. One study showed
that phenytoin and carbamazepine brain levels were lower
following upregulation of MRP1 (Chen et al., 2013). Interestingly,
no sex differences were identified regarding Mrp1 and Mrp2
mRNA expression in the choroid plexus. However, after its
removal, BBB expression levels of Mrp1, Mrp2, and Mrp4 were
twice as higher in female mice than in males (Flores et al., 2017).
Studies in tissues such as the liver and the kidneys generally
corroborate that females have higher MRP expression (Maher
et al., 2005; Lu and Klaassen, 2008) and some evidence points to
a progesterone and/or dehydroepiandrosterone regulation of this
sex difference (Rost et al., 2005; Evseenko et al., 2007).

ORGANIC ANION TRANSPORTERS

Organic anion transporter (OAT) is an heterogenous family
of negatively charged proteins, mainly located in kidneys and
the liver, but OAT1/OAT3 are also found in the brain and
are responsible for transporting hydrophobic organic anions.
Evidence suggests that valproate, used as a mood stabilizer,
is a substrate of OAT1 and homovanillic acid, a metabolite
of dopamine, is a substrate of OAT3 (Sekine et al., 2000;
Mori et al., 2003). In the kidneys and the liver, OAT
expression is affected by androgens, and perhaps different
OAT isoforms are stronger expressed in males and females
in these tissues. Overall, renal Oat1 expression is androgen-
regulated, renal Oat2 expression is modulated by female GH
secretion pattern, and hepatic Oat3 expression is influenced by
both androgens and female GH secretion pattern (Buist et al.,

2003). Although OAT sex differences have been demonstrated
in rodents, the direction of sex difference is not consistent
and are not confirmed in other species, such as in rabbits
(Groves et al., 2006) and in human cells (Breljak et al., 2016).
Moreover, regarding specifically the brain, an in vivo BBB
preclinical study did not identify a sex difference in OAT3
(Ohtsuki et al., 2005).

ORGANIC ANION TRANSPORTING
POLYPEPTIDES

These transporters form a superfamily of membrane-solute
carriers characterized by significant functional diversity and a
widespread role in the transport of endo/xenobiotics (Hagenbuch
and Meier, 2004). There is scarce data on whether they are
involved in the brain transport of psychotropics, but we know
that transport of DHEA-S and opioids occurs via OATP1A2 and
a small sex difference favoring women was recently reported
(Asaba et al., 2000; Gao et al., 2000; Taniguchi et al., 2020).
However, DHEA administration led to a gender-neutral Oatp1a1
and Oatp1b2 decrease and a further decrease in Oatp1a4
expression only in males (Rost et al., 2005). Evidence on sex
differences is convoluted because there are many organic anion
transporting polypeptide (OATP) transporters with a broad tissue
distribution. Most preclinical evidence converges that activity
of Oatp1a4, which is also expressed in the BBB, is higher
in females, with testosterone probably suppressing it (Zhang
et al., 2013; Brzica et al., 2018). However, several preclinical
studies showed a tissue-specific variability in the direction or
even absence of sex differences regarding various members
of the OATP family (Cheng et al., 2005, 2006; Fu et al.,
2012; Muzzio et al., 2014; Prasad et al., 2014; Badee et al.,
2015).

ORGANIC CATION TRANSPORTERS

Organic cation transporter (OCT) are responsible
for transporting cationic substances, like monoamine
neurotransmitters, nicotine, the opioid agonist oxycodone,
and antipsychotics like amisulpride and haloperidol (Bostrom
et al., 2006; Okura et al., 2008; Sekhar et al., 2019). Interestingly,
OCT2 and rOCT are found in the brain, and regulate the
concentration of neurotransmitters in the neurons rather
than the BBB (Busch et al., 1998). Very few data exist on
potential sex differences, mostly on renal OCT2, which is
expressed more strongly in males than females and it is
upregulated by androgens (Alnouti et al., 2006; Groves et al.,
2006; Basit et al., 2019). Plasma membrane monoamine
transporter (PMAT/SLC29A4), a known transporter for
cationic substances, is implicated in the efflux of amisulpride
and haloperidol from the brain and is inhibited by nicotine
(Tega et al., 2018; Sekhar et al., 2019). Some evidence on
sex differences exist for PMAT, as behavioral changes were
noted only in female, but not male, PMAT knockout mice
(Gilman et al., 2018).
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MONOCARBOXYLATE TRANSPORTERS

Monocarboxylate transporter (MCT) mediate the transport of
short chain monocarboxylates such as lactate and pyruvate,
indicating their involvement in regulating brain energy
substrates. Of 14 MCT members identified, MCT1, MCT2,
MCT4, and the sodium-coupled SMCT1 have been described
in the brain (Pierre and Pellerin, 2005). They are implicated
in the brain transport of several drugs, including notably
statins, salicylates and in relation to psychotropics, valproic
acid, and γ-hydroxybutyrate (GHB) (Vijay and Morris, 2014).
Sex differences have been identified, and are attributed in a
tissue-specific regulation by both male and female sex hormones
(Felmlee et al., 2020). Hepatic MCT1 and MCT4 regulation
appears dependent on both estrogens and androgens (Cao et al.,
2017). In muscles testosterone increases MCT1/4 expression
but decreases testicular MCT2/4. However, there is a paucity of
data regarding sex-dependent patterns of brain MCT regulation,
which is important given the tissue-specific profile that emerges.

MULTIDRUG AND TOXIN EXTRUSION
PROTEINS

Multidrug and toxin extrusion protein (MATE) family
transporters function in concert with OCT, are mostly expressed
in the liver and the kidneys, but they are also found in the brain,
and are involved in the transport of cationic drugs (Lickteig
et al., 2008). Amisulpride and haloperidol, both antipsychotics,
as well as nicotine, have been identified as possible substrates of
MATE1 (Tsuda et al., 2007; Sekhar et al., 2019). This family of
transporters is very recently discovered, and few data exist on
potential sex differences. No data is available for the brain, but
it appears that hepatic mRNA of MATE1 was notably increased
in females in relation to males, but on the contrary, renal mRNA
expression was found notably lower in females compared to
males (Lickteig et al., 2008; Fu et al., 2012).

OTHER TRANSPORTERS

Several other transporters, of which relatively little is known,
are located at the BBB. Alanine/serine/cysteine transporter 2
(ASCT2) is located at the abluminal membrane of BACEs
and is the only transporter of the Solute Carrier 1A (SLC1A)
family to transport glutamine (Albrecht and Zielinska, 2019).
BBB also expresses Betaine/GABA transporter-1, which in mice
can be found as GAT2 transporter, regulating the efflux of
GABA, and is different from GABA transporters, GAT1/3, that
mediate transport across neurons and astrocytes (Takanaga et al.,
2001). Enkephalins and AVP are effluxed by Peptide Transport
System 1 and 2, respectively (Banks, 2006; Ueno et al., 2010).
Several sodium-coupled transporters (NHE1, NHES, NBCn1,
and NKCC1) are implicated in the active transport of lithium, a
mood stabilizer across the BBB (Luo et al., 2018). System A and
System L are transport systems of small and large neutral amino
acids, respectively. Several drugs are carried by system L into

the brain, and there is a strategy to design drugs that resemble
the amino acids L-histidine and L-tryptophan for enhanced CNS
delivery through LAT1 transporter (Hall et al., 2019). However,
for all those transport systems little is known about their potential
sex differences.

DISCUSSION

In this minireview we summarized findings about sex differences
in brain transport systems. These may affect pharmacokinetics
of psychotropic medications in a sex-dependent manner and are
important for precision medicine and treatment. In summary,
for many transporter systems little is known about their function
and the role of sex and gonadal hormones. Some protein
transporters are indeed recently discovered, but for many other,
evidence accumulates at a slow pace. Moreover, data are more
abundant for the peripheral expression and function of these
transporters, and less is known about the BBB, with the exception
perhaps of the P-gp. This is surprising, as brain-transport
systems regulate the influx and massively the efflux (clearance) of
psychotropics. Moreover, BBB dysfunction has been implicated
in many neuropsychiatric disorders and other diseases which
are sex-differentiated (Greene et al., 2020; Profaci et al., 2020;
Dion-Albert et al., 2022b). Admittedly, studies on peripheral
transporters are methodologically easier, especially in humans
where access to the BBB is significantly hindered. However,
preclinical studies are also lacking, and more research is needed
on which psychotropics are substrates of which BBB transporter
system and whether this is sex-differentiated. This research could
lead to clinical important findings regarding the treatment of
psychiatric disorders in a more precise way.

Despite the paucity of evidence, preclinical studies collectively
support the notion of male and female predominant transporters
mainly in the periphery (Maher et al., 2005; Klaassen and
Aleksunes, 2010; Zhu et al., 2017; Basit et al., 2019). The
existence of protein transporter systems in the periphery also
adds another layer of complexity in understanding their impact
on pharmacokinetics. Most, if not all, of those transporters
are heavily expressed in peripheral tissues (intestine, liver, and
kidneys) that are crucially implicated in absorption, distribution,
and metabolism of drugs. Peripheral transporters play as much an
important role in psychotropic pharmacokinetics as do the BBB
transporters in delivering to and clearing psychotropics from the
brain. Therefore, a psychotropic that is a substrate for a specific
transporter may be more extensively absorbed, more broadly
distributed and at the same time more readily cleared from the
brain and then metabolized and excreted. It remains unknown
whether these effects cancel themselves out and, in the context of
this review, whether male or female sex affects those transporters
equally, in all of their expression sites (brain and periphery)
(Cummins et al., 2002; Gottschalk et al., 2011). It is possible that
their function is also influenced locally by estrogens – or other
steroid – receptors in the BBB. These local interactions represent
an interesting new research pathway that could promote our
understanding of the BBB and its transporter proteins in the
healthy and diseased brain in a sex-dependent way.
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Indeed, transporter function, and thus potential sex
differences, are not necessarily identical in peripheral tissues
(such as in liver, kidneys, and intestine) and the brain. Although
transporters present significant, but not absolute conservation
across species, some sex differences observed in one species are
not confirmed in another. Therefore, future research should
focus on whether findings from one species to another are
translatable, regarding both substrates for each transporter,
as well as on the significance of potential sex differences
of transporters in relation to human disease and treatment.
A recent study on P-gp comparing gastro-intestinal tissue
from Wistar rats and humans confirmed the translatability
of experimental findings on discovered sex differences (Mai
et al., 2021). P-gp activity is altered in patients with depression
and recent evidence, in post mortem brain, suggest that
vascular alterations in the BBB are present in women with
depression (de Klerk et al., 2009; Dion-Albert et al., 2022b).
Interestingly, BBB dysfunction has been associated with many
other diseases, such as dementia, autoimmune disorders,
epilepsy, and stroke, that also present sex differences and
often co-exist with depression (Greene et al., 2020; Profaci
et al., 2020). Therefore, future studies should investigate sex
differences in specific transport proteins of the BBB in relation
to its dysfunction during depression and other comorbidities.
Moreover, transporter activity may be affected by factors
such as stress, disease, exercise, or diet in a brain-region
specific manner. Indeed, chronic variable stress altered BBB
integrity in female, but not in the male mouse prefrontal
cortex and this could have contributed to stress vulnerability
(Dion-Albert et al., 2022b).

This mini-review focused on sex differences in psychotropic
transport across the BBB. As the purpose of such sex
differences remains unclear, it is postulated that the mammalian
reproductive process exerted a selection pressure that explains
those sexual dimorphisms (Gilks et al., 2014; Della Torre
and Maggi, 2017). As elegantly reviewed elsewhere, this is
reflected to several sex differences at the BBB in health
and disease, regarding, but not limited to BBB strength,

metabolism, response to stressors and involvement of several
pathways, classic and non-classic genomic, as well as non-
genomic, involving NO signaling, matrix metalloproteinases,
the RhoA/Rho-kinase-2 pathway and other estrogens-mediated
pathways (Weber and Clyne, 2021; Dion-Albert et al.,
2022a).

In conclusion, accumulated evidence supports the existence
of several sex differences in expression and activity of
BBB transporters, and a further modulating role of gonadal
hormones. A closer study of sex differences in the active influx
and efflux of psychotropics from the brain may provide a
better understanding of sex-dependent brain pharmacokinetics
and pharmacodynamics of psychotropics. This would have
a significant impact in precision medicine and treatment.
Furthermore, in combination with BBB permeability studies,
research on sex differences in BBB transporters will contribute
to our understanding of the neurobiology and treatment of
psychiatric diseases and their relationship with other disorders,
such as autoimmune and neurological.
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Blast traumatic brain injury (bTBI) presents a serious threat to military personnel and
often results in psychiatric conditions related to limbic system dysfunction. In this
study, the functional outcomes for anxiety- and depressive-like behaviors and neuronal
activation were evaluated in male and female mice after exposure to an Advanced
Blast Simulator (ABS) shock wave. Mice were placed in a ventrally exposed orientation
inside of the ABS test section and received primary and tertiary shock wave insults
of approximately 15 psi peak pressure. Evans blue staining indicated cases of blood-
brain barrier breach in the superficial cerebral cortex four, but not 24 h after blast,
but the severity was variable. Behavioral testing with the elevated plus maze (EPM)
or elevated zero maze (EZM), sucrose preference test (SPT), and tail suspension test
(TST) or forced swim test (FST) were conducted 8 days–3.5 weeks after shock wave
exposure. There was a sex difference, but no injury effect, for distance travelled in
the EZM where female mice travelled significantly farther than males. The SPT and
FST did not indicate group differences; however, injured mice were less immobile than
sham mice during the TST; possibly indicating more agitated behavior. In a separate
cohort of animals, the expression of the immediate early gene, c-Fos, was detected
4 h after undergoing bTBI or sham procedures. No differences in c-Fos expression
were found in the cerebral cortex, but female mice in general displayed enhanced c-Fos
activation in the paraventricular nucleus of the thalamus (PVT) compared to male mice.
In the amygdala, more c-Fos-positive cells were observed in injured animals compared
to sham mice. The observed sex differences in the PVT and c-Fos activation in the
amygdala may correlate with the reported hyperactivity of females post-injury. This study
demonstrates, albeit with mild effects, behavioral and neuronal activation correlates in
female rodents after blast injury that could be relevant to the incidence of increased
post-traumatic stress disorder in women.

Keywords: anxiety, blood-brain barrier, c-Fos, depression, limbic, post-traumatic stress disorder, blast traumatic
brain injury (bTBI), righting reflex
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INTRODUCTION

Blast exposure is the leading cause of traumatic brain injury
(TBI) in military personnel and a serious threat to civilian
populations in proximity to regional conflicts and civil unrest.
Blast TBI (bTBI) is considered the “invisible wound” in modern
day combat zones, such as Iraq and Afghanistan, and milder
injury with ∼80% prevalence is the most common form. Blast
exposure has been associated with a variety of psychiatric
conditions, including post-traumatic stress disorder (PTSD),
depression, and anxiety (Walker et al., 2015). Post-mortem
examination of chronic bTBI cases also found histories of
enduring neuropsychiatric symptoms (Rosenfeld and Ford, 2010;
Shively et al., 2016; Mac Donald et al., 2017; Ryan-Gonzalez et al.,
2019).

Preclinical reports have shown central nervous system (CNS)
limbic system areas are particularly vulnerable to bTBI, and
are often associated with neurobehavioral changes related to
anxiety, depression, and PTSD (Elder et al., 2012; Blaze et al.,
2020; Kostelnik et al., 2021). Alterations in the basolateral
amygdala (BLA) have been reported following bTBI with changes
to neuronal cytostructure, gene expression, and neuroimmune
responses with associated anxiety-like behavior (Sajja et al., 2015;
Ratliff et al., 2019; Blaze et al., 2020). Likewise, blast injury
in rats altered a marker associated with PTSD, stathmin 1, in
the amygdala, but not in the hippocampus (Elder et al., 2012).
However, ultrastructural rat hippocampal changes have been
reported after blast (Cernak et al., 2001). The paraventricular
nucleus of the thalamus (PVT) is another important area for
emotion-based responses, especially fear. The PVT is primarily
involved in stress, arousal, and motivated behaviors with
projections to the amygdala and limbic cortex (Kirouac, 2015;
Azevedo et al., 2020; Rowson and Pleil, 2021), and it was recently
found to mediate PVT-central amygdala freezing responses (Ma
et al., 2021). The PVT’s connection to depressive-like behavior
is less understood, but reduced tail suspension test immobility
with PVT inhibition has been reported (Kato et al., 2019; Barson
et al., 2020). Other cortical changes after bTBI include a decrease
in Thy-1 stained cortical neuronal afferents, possibly from the
medial prefrontal cortex, which terminate in the BLA (Heldt
et al., 2014). These limbic regions are also involved in fear
conditioning; a common preclinical model for evaluating PTSD.
Blast exposure increased responses in the acoustic startle reflex
and anxiety-related behaviors in the elevated plus and zero
mazes (Xie et al., 2013; Awwad et al., 2015). Preclinical and
clinical imaging data following blast exposure correspondingly
indicate greater amygdala activation and long-term anxiety post-
bTBI, including region-specific imaging differences in brain
metabolism in the amygdala and blood-brain barrier (Matthews
et al., 2011; Rubovitch et al., 2011; Jaiswal et al., 2019).

Acute immediate early gene (IEG) responses in the cerebrum
are observed after a broad range of stimuli including cell
insults, immune activation, apoptosis, neuronal depolarization,
and learning and memory experiences (Curran and Morgan,
1995; Raghupathi et al., 1995; Chaudhuri, 1997; Gallo et al.,
2018). Alterations in c-Fos expression may play a role in encoding
transient stimuli to long-term genetic changes. A marker of

neuronal activation, c-Fos expression becomes elevated in the
PVT after stressors such as the forced swim test and elevated plus
maze (Curran and Morgan, 1995; Gallo et al., 2018; Barson et al.,
2020). Changes in c-Fos have been reported as early as 1–3 h after
blast exposure in the hippocampus and amygdala (Säljö et al.,
2002; Du et al., 2013; Rex et al., 2013; Ou et al., 2022), and elevated
levels can persist (Säljö et al., 2002; Russell et al., 2018b). As
described earlier, the PVT and central amygdala are involved in
fear conditioning, and increased c-Fos activation in these regions
was reported in a single prolonged stress mouse model of PTSD
(Penzo et al., 2015; Park and Chung, 2019; Azevedo et al., 2020).
Only one study has examined IEG response 7 days after a restraint
stressor and bTBI, and found sex differences in c-Fos response in
the paraventricular nucleus of the hypothalamus (Russell et al.,
2018b). Sex differences in functional outcome are also observed
with more activity displayed by females compared to males after
TBI (Tucker et al., 2016, 2017). One group described increased
risk behavior in males in response to negative outcomes, lack of
reward during a gambling task with the choice to select a more
secure option, compared to female rats (Ishii et al., 2018).

The objective of this exploratory study was to determine
how a shock wave exposure alters physiological and behavioral
outcomes. To assess the effects of primary and tertiary shock
wave injury, the Advanced Blast Simulator (ABS) was utilized
as a reliable state-of-the-art model of bTBI (Sawyer et al., 2016).
The elevated plus and zero maze (EPM, EZM), sucrose preference
test (SPT), tail suspension test (TST), and forced swim test (FST)
were performed to assess anxiety- and depressive-like behaviors
after ABS, while blood-brain barrier (BBB) and c-Fos neuronal
activation were studied for acute pathological changes.

MATERIALS AND METHODS

Animals
Eight-week old male and cycling female C57BL/6J mice (00664)
were obtained from the Jackson Laboratory (Bar Harbor, ME,
United States) and housed in an AAALAC-accredited animal
facility for at least 3 days of acclimation before the experiments
were started. All procedures were approved by the Uniformed
Services University of the Health Sciences (USUHS) Institutional
Animal Care and Use Committee. Until the SPT was conducted,
all animals were group-housed (five per cage), had access to
food (Harlan Teklad Global Diets 2018, 18% protein) and water
ad libitum, and were maintained on a standard 12 h: 12 h light-
dark cycle. Animals that underwent the SPT were divided into
separate cages with standard enrichment (cotton nestlets and
huts) for the duration of the study, but singly housed mice were
still able to view neighboring cages. All experimental procedures
were performed by female investigators.

Advanced Blast Simulator
Male and female mice were randomly assigned to injured or
sham conditions. Injured groups were exposed to a single blast
overpressure∼ 15 psi peak pressure using the USUHS Advanced
Blast Simulator (ABS) as previously described (Vu et al., 2018).
Briefly, the ABS contains a driver and driven chamber with
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pressure transducers placed within the inner wall to monitor
incident pressure and shock wave velocity. A pencil gauge probe
immediately adjacent to the mouse holder measured incident
pressure (Quartz, free-field, ICP blast pressure pencil probe,
50 psi, 104.2 mV/psi, 137B23A, PCB Piezotronics). A membrane
consisting of two or three 0.254-mm thick clear acetate sheets
(Grafix Plastics, Cleveland, OH, United States) and two layers
of vinyl-coated polyester mesh (Pet Screen, Hanover/New York
Wire, Cat. No. 70589, mesh size: 14.5 × 10 grids/in2, wire
diameter: 0.635 mm) separated the driver and the driven
chambers. Sham-treated mice were anesthetized and placed near
the blast chamber, but were not exposed to the blast wave. All
mice were first placed in an isoflurane induction chamber (3%
isoflurane in 100% oxygen for 4–6 min) and once anesthetized,
head and body wraps (a modified tongue depressor and Vet
Wrap) were used to minimize movement before the mouse was
placed inside the simulator. A hatch in the driven chamber
allowed the ABS mouse to be secured in a mesh holder (same
material as the membrane, 14cm × 15cm with a cross-sectional
areal occlusion of ∼5.6% for the shock wave) supported by
metal posts (12.7 mm diameter, about 2.9 m distal to the driver
membrane) in a vertical orientation, exposing the ventral surface
of the mouse to the oncoming blast wave. Once the hatch to
the driven chamber was tightly sealed with the mouse inside the
ABS, compressed air was allowed to accumulate in the driver
end, until the pressure (150–160 psi) was great enough to rupture
the membrane and the shock wave travelled down the ABS
to where the animal was placed (about 2.9 m away from the
membrane). After the blast wave was delivered, the mouse was
removed from the mesh pocket and assessed for the occurrence
of apnea. Sham-treated mice were placed in a clean cage in a
supine position outside of the ABS, and the latency to recover
the righting reflex was recorded for all mice. Once both ABS
and sham animals regained consciousness, they were returned
to their home cages and provided with acetaminophen (Tylenol)
in their drinking water (1 mg/ml; ∼200 mg/kg b.w. for 24 h).
Animals were weighed both immediately before and one day
after ABS exposure.

Behavioral Testing
Animals were randomly assigned to different behavioral task
cohorts. The five cohorts consisted of n = 18–20 mice evenly
distributed between males and females as well as injured and
sham conditions (Figure 1). Following ABS as described above,
each cohort underwent one of two testing paradigms: Elevated
Plus Maze (EPM, 8 days post-injury) then Sucrose Preference
Test (SPT, 2 weeks post-injury) and Tail Suspension Test (TST,
3.5 weeks post-injury), or Elevated Zero Maze (EZM, 8 days post-
injury) then Sucrose Preference Test (SPT, 2 weeks post-injury)
and Forced Swim Test (FST, 3.5 weeks post-injury).

Elevated Plus Maze
The EPM (Stoelting, Wood Dale, IL, United States) was
conducted 8 days following ABS to assess anxiety-like behavior
(Pellow et al., 1985). The EPM is a cross-shaped platform with
equal 35 cm length and 5 cm width arms raised 50 cm above the
floor. Two opposite side arms are “open,” with 1 cm high edges
and the remaining arms are “closed” with opaque, dark 16 cm

FIGURE 1 | Advanced Blast Simulator and behavioral testing paradigms.
A single shock wave (∼15 psi) was delivered with the mouse in an upright
position with the ventral surface of the mouse exposed to the oncoming
shock wave (see Vu et al., 2018 for a detailed description of the ABS). Eight
days post-injury, animals underwent either EPM or EZM testing followed by
the SPT 2 weeks post-injury or sham treatment, and lastly either TST or FST
3.5 weeks following ABS. Images reproduced from Abelaira et al. (2013), with
permission from the Brazilian Journal of Psychiatry. Images reproduced from
Brigman et al. (2010), Tucker and McCabe (2017).

high walls (Figure 1). Animals were allowed to acclimate to the
room for 30 min before testing began. Overhead fluorescent lights
illuminated the maze during testing with 1600 lux illuminance for
the open arms and 200 lux for the closed arms. To start the test,
individual mice were placed at the 5 cm center square region and
allowed to explore the maze for 5 min. A ceiling camera and Any-
Maze software (Stoelting) tracked animal movement throughout
the test and were used to calculate the time spent in the open and
closed arms, distance travelled, and number of entrances to the
open arms during the session.

Elevated Zero Maze
The Stoelting EZM (Shepherd et al., 1994) as previously described
by Tucker et al. (2017) was performed 8 days post-injury to
examine anxiety-like behavior. Briefly, the EZM is a 60 cm
diameter ring platform raised 50 cm above the floor. The
ring is divided into four equally sized areas with two opposite
side “open” quadrants and two remaining “closed” quadrants
(Figure 1). The open quadrants have 1 cm high edges and
are exposed to 1600 lux light from overhead fluorescent lamps
whereas the closed quadrants have 16 cm high dark, opaque
walls and have a brightness of 200 lux. All quadrants have
5 cm width lanes. Animals spent 30 min acclimating to
the room before starting the test. At the beginning of the
test, mice were placed individually at an arbitrary boundary
between an open and closed quadrant facing the closed
quadrant. Animals were allowed to freely explore the maze
for 5 min and a ceiling camera tracked the animal movement
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throughout the test. Any-Maze software was used to calculate
the time spent in the open and closed quadrants, distance
travelled, and the number of entrances to the open quadrants
during the test.

Sucrose Preference Test
The SPT was administered 2 weeks following injury as a measure
of anhedonia. Due to laboratory spatial and time constraints,
housed mice cages were randomly selected so that ∼57% of the
mice were tested. Cages of mice not selected for testing remained
group housed. Individually housed mice were evaluated over the
course of 5 days. Mice were offered two 20 mL bottles of 1%
sucrose diluted with water placed about 7.5 cm apart at equal
heights in their home cages for the first 2 days of testing to
acclimate them to the sweet taste and to the new bottles. The
amount of sucrose consumed was measured by weighing each
bottle daily. On the third day, one bottle was replaced with filtered
tap water, so that each mouse was given a choice of drinking
solutions of sucrose or tap water. On the fourth day, the positions
of the bottles were switched to control for potential side bias. SPT
bottles were again weighed and the sucrose preference ratio was
calculated for the final 48 h of testing with the following equation:
sucrose preference ratio =

consumed sucrose
consumed water + consumed sucrose

x 100

Tail Suspension Test
The TST to measure depressive-like behavior was performed
3.5 weeks after ABS. As previously described by Can et al.
(2012), mice were suspended from their tails from laboratory
benches with tape (12 mm wide, 24 cm long). The tape was
adhered about 1 cm from the tip of the tail and a 4 cm length
hollow polycarbonate tube (1.3 cm inner diameter, McMaster-
Carr, Santa Fe Springs, CA #8585K41) was placed around the
base of the tail to prevent tail-climbing during the test. Padding
was placed below the mice in case of falls and mice were
monitored throughout the 6 min test. A standard video camera
was used to record the sessions and videos were uploaded into
Any-maze. The time spent immobile (defined as animals with
minimal movement) during the last 5 min of the session to
account for initial test acclimation was later scored using Any-
Maze with manual key presses by an investigator blinded to injury
condition where a computer key was held down for the duration
of animal immobility.

Forced Swim Test
The Porsolt FST (Porsolt et al., 1977) to study learned
helplessness was conducted 3.5 weeks post-injury. As described
by Tucker et al. (2017), FST chambers (Stoelting) were clear
42 cm in height and 19 cm diameter Plexiglas cylinders. The
chambers were filled to a depth of about 25 cm with water at
25◦C. Mice were placed into the cylinders for 6 min and allowed
to swim or float. Mice were closely monitored from a separate
room. Once the test concluded, mice were gently dried with paper
towels and placed in a clean cage under a heat lamp to dry.
FST cylinders were rinsed and replaced with fresh water for each

animal. A standard video camera was used to record sessions and
videos were imported into Any-Maze with key presses to measure
immobility (defined as animals floating on the water surface with
minimal movements). The first minute of the test was not scored
to account for initial acclimation to the FST, so an investigator
blinded to injury condition only scored the last 5 min of the test.

Immunohistochemistry
A separate cohort of animals, which did not undergo behavioral
testing, were exposed to a single ABS shock wave (about 15 psi)
and examined for the presence of Evans blue as a marker of
blood-brain barrier disruption. An animal restrainer was used
to intravenously administer Evans blue (2% diluted in buffer,
0.1 mL per animal) via the tail veil immediately prior to ABS
exposure. The mice were euthanized 4 h (n = 25, n = 6–7 per
injury and sex condition) or 24 h (n = 15, with Evans blue
injection after ABS) post-injury and tissue was collected for c-Fos
immunohistochemistry from only the 4 h group. Briefly, mice
were anesthetized with a mixture of ketamine and xylazine and
then transcardially perfused with cold phosphate buffer solution
(0.1 M) and 4% paraformaldehyde in phosphate buffer. Brains
were dissected and further fixed in paraformaldehyde for an
additional 24 h. They were then transferred to 20% sucrose
solution in phosphate buffer for 72 h before freezing the tissue
and storage (−80◦C) until sectioning. A Leica microtome was
used to cut 30 µm thick coronal sections. The tissue was initially
washed in tris-buffered saline with 0.05% triton (TBS-T). Sections
were then processed with 0.3% hydrogen peroxide for 30 min
and afterwards washed with TBS-T again before blocking buffer
(TBS-T with 0.20% triton, goat serum, and 10% bovine serum
albumin; BSA) incubation for 1 h at room temperature. C-Fos
(1:1000; Millipore Sigma Cat: ABE457, Lot: 3585299) antibody
was applied to the sections before storage at 4◦C overnight.
The next day, sections were washed with TBS-T and secondary
antibody goat-anti-rabbit IgG (1:1000 Jackson Immunoresearch
Cat: 111-065-003, Lot: 117316) was applied in blocking buffer
(TBS-T with 0.05% triton, goat serum, and 10% BSA) for 1 h
at room temperature. Sections were again washed with TBS-T
before incubation in ABC solution (Vectastain ABC HRP Kit,
PK-4000, Vector Laboratories) for 45 min at room temperature.
The tissue was washed a final time with TBS-T prior to DAB
development with the DAB Substrate Kit, Peroxidase (HRP), with
Nickel, 3,3′-diaminobenzidine (SK-4100, Vector Laboratories)
for 1 min. The free-floating sections were mounted onto glass
slides and left to dry overnight. Lastly, sections were dehydrated
in ethanol gradients (75–100%), cleared in xylene, and cover
slipped with Permount mounting media the next day for analysis.
Positive, activated neural tissue from restrained ABS-exposed
mice, and negative, tissue processed without primary antibody,
controls were included in all immunohistochemistry procedures.

Three regions of interest (ROIs), bilateral cerebral cortex,
bilateral amygdala, and the PVT, were analyzed for c-Fos staining.
Six mice per group were selected for Carl Zeiss El-Einsatz model
#451485 light microscope imaging. Images for the PVT were
taken at 100× magnification, the cerebral cortex at 50×, and
the amygdala was captured at 25× magnification. To quantify
c-Fos in each ROI, the threshold and particle analysis functions
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on Image J software (NIH) were used for cell counts on
black/white c-Fos images. The particle count was employed as
an estimate for the number of c-Fos positive cells. The values
were averaged for three or more sections per animal. Cresyl violet
(Chroma-Gesellschaft Schmid GmbH & Co 1 A 396) and H&E
(haematoxylin Sigma-Aldrich Cat: GHS132-1L, Lot: SLCH6216
and eosin Sigma-Aldrich Cat: HT110332-1L, Lot: SLCJ2544)
staining were performed to indicate anatomical consistency for
the ROIs and for microbleed analysis, respectively.

Statistics
GraphPad Prism version 8.42 (GraphPad Software, San Diego,
CA, United States) and SPSS version 27.0.1.0 (IBM, Armonk,
NY, United States) were used for statistical analysis and figure
generation. Body weights were measured on the day of injury
and 24 h later. Since there was a noticeable difference in baseline
(before injury) body weights, a two-way Injury × Sex analysis of
variance (ANOVA) was performed for the mice as a percentage
of body weight loss after sham or injury treatment. Mann-
Whitney U tests were performed to analyze righting time data
using within sex comparisons and between sex comparisons for
male ABS and female ABS groups. Photographs of the brains
from the cohort of mice that were euthanized after Evans blue
infusion and ABS exposure were visually ranked for degree of
staining. The rankings for Evans blue staining intensity were
evaluated with respect to righting reflex to determine if there
was an association between staining and the duration of the
righting reflex. Due to smaller samples sizes and score ties, the
SPSS program to determine Kendall’s tau (τ) was employed
and the SPSS bootstrap procedure for estimation of the 95%
confidence interval for the correlation coefficient, based upon
1000 bootstrapped samples, was performed.

Two-way ANOVAs (injury × sex) were performed for all
behavioral tasks (EPM, EZM, SPT, FST, and TST). Behavior
graphs depict the scores for individual animals and the embedded
horizontal bar shows the arithmetic means for each group.
Histology for c-Fos was analyzed using two-factor (injury × sex)
ANOVAs. p < 0.05 was considered significant.

RESULTS

Shock Wave Characteristics, and Mouse
Body Weight, Righting Times, Apnea,
Morbidity
The ABS produced a characteristic Friedlander-like curve with
a consistent peak pressure across the study (mean 15.56 psi,
coefficient of variation = 4.5%) (Figure 2). The shock wave
velocity was approximately 469.73 m/s and the positive and
negative phases were 5.62 and 8.40 ms, respectively, with an
average impulse (pressure× time) of 0.0358 psi× s.

Figure 3A summarizes the body weights of individual female
and male mice before and after sham or ABS exposure. Since
the baseline (preinjury) body weights for the mice in the ABS
and sham groups were not equivalent, an Injury × Sex ANOVA
was computed using the percentage change in body weights after

FIGURE 2 | Representative Friedlander-like ABS waveform. The ABS device
produced a waveform with an average of 15.56 psi peak incident pressure
and 469.74 m/s shock wave velocity. The shock wave positive phase duration
was 5.62 ms and negative phase duration was 8.40 ms.

ABS injury or sham treatment compared to pre-injury body
weights. The average percent change in body weight was −2.23
and 0.574% for the female and male mice, respectively, on the
day after sham treatment, while the females lost −8.22 and the
males−5.79% of their preinjury body weight after ABS exposure.
The ANOVA indicated there was a significant overall main effect
between the females and males in percentage of body weight
loss before to after sham or ABS treatment (−2.619% change,
F1,76 = 24.214, p < 0.001) and a difference in the percentage of
body weight loss after ABS injury compared to sham treatment
(−7.002%, F1,76 = 134.584, p < 0.001), but no interaction effect
to suggest the injuries had a different effect on female and male
mice (F1,76 = 0.123, p = 0.727).

Behavior and Evans blue-treated cohorts were combined
for righting reflex analysis. Mann-Whitney U analyses showed
injured animals required a longer time to regain consciousness
compared to sham mice. Female shock wave exposed mice
(462.5 s median) had increased righting times compared to
female sham mice (46.0 s median; U = 3, p < 0.0001) and
male shock wave exposed mice (316.0 s median) displayed longer
righting reflexes than male sham animals (43.0 s median; U = 1.5,
p < 0.0001). A third Mann-Whitney test showed injured male
and female mice were significantly different, with male animals
exhibiting overall shorter reflex durations than female mice
(U = 370.5, p = 0.0026, Figure 3B). Five cases of apnea, ranging
from about five to thirty seconds, were observed in two male
and three female injured animals. One case with about 5 s of
apnea corresponded to the longest female ABS righting time. Six
animals died following ABS. Five female mice died immediately
after injury and one male mouse died 4 days after ABS exposure.

Anxiety-Like Behavior
For the EPM and EZM, injured mice overall spent less time
in the open regions, but the two-way ANOVAs were not
statistically significant (Figures 4A,B). No statistical differences
were detected for either EPM or EZM test in terms of the amount
of time spent in or the number of entries into the open areas
(Figures 4C,D). No difference in the total distance travelled
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FIGURE 3 | Weight and righting time changes after bTBI. (A) Animal weight before and one day after ABS exposure for the behavior cohort of mice. Due to
differences in baseline body weights, the percentage change in body weight for each mouse was computed for pre- and post-injury sham or ABS treatment (data
not shown; see text). ANOVA indicated there was a significant greater difference in females compared to males overall and a significantly greater percentage of body
weight loss in ABS animals, but no sex differences due to injury. (B) Righting times of all cohorts, behavior and Evans blue, immediately after a single blast. The
Mann Whitney U test (U = 3, p < 0.0001) demonstrated that the duration of the righting reflex was longer for shock wave exposed females compared to female
sham mice. Male injured mice also demonstrated a longer righting reflex compared to sham counterparts (U = 1.5, p < 0.0001). A comparison of righting reflex
duration in injured mice indicated the responses after shock wave exposure in males and females were significantly different (U = 370.5, p = 0.0026) with longer
righting times for female mice. Bars indicate means. ∗p ≤ 0.05, ∗∗p ≤ 0.01, ∗∗∗∗p ≤ 0.0001. No significant correlations were found between righting reflex and loss
of body weight (τ = 0.000, p = 1.000) or percentage loss of body weight (τ = 0.032, p = 0.846) for females, or righting reflex and loss of body weight (τ = –0.167,
p = 0.312) or percentage loss of body weight (τ = –0.105, p = 0.516) for males.

during EPM testing was evident, but for the EZM there was a
main effect of sex in which female animals travelled a greater
distance compared to male mice (F1,45 = 6.999, p = 0.0112,
Figures 4E,F).

Depressive-Like Behavior
The two-way ANOVA for the SPT data did not detect statistical
differences between the sham and injured or male and female
mice for sucrose intake. However, the two-way ANOVA for the
TST data showed a main effect of injury (F1,45 = 6.763, p = 0.0125)
with shock wave exposed animals spending less time immobile
than sham-treated mice. No sex differences were reported for the
TST. The FST two-way ANOVA indicated no group differences
for immobility (Figure 5).

Behavioral Testing Sequence Effects
Post hoc analyses to determine whether or not prior behavioral
tests affected later testing performance was assessed. Specifically,
we evaluated whether or not the EZM or EPM may have affected
performance on the SPT, and if subgroups of mice that were or
were not evaluated on the SPT may have affected performance on
the subsequent TST and FST. The performance ratio measures
in mice that previously received testing on the EPM and EZM
were compared using a three-factor (Injury × Sex × EPM/EZM
Testing). ANOVA indicated there was no significant main effect
of EPM vs. EZM on the subsequent SPT (F1,49 = 1.131, p = 0.293).

Likewise, a three-factor ANOVA (Injury× Sex× SPT Testing/No
SPT Testing) indicated there was no difference on either the TST
or the FST as a function of mice having been tested on the SPT
(and single housing) compared to mice that had not been used
on this test (and remained in group housing). The main effect
for Injury on the TST was significant, as expected (F1,41 = 8.206,
p = 0.007), indicating the time immobile on the TST was less in
injured mice compared to the sham animals. For the FST, there
were no significant differences between groups on any factors.

Histology
Evans Blue Staining
Evans blue staining was evaluated in a separate cohort of sham
and injured animals 4 h post-ABS. No staining appeared on
the brain parenchyma of sham animals (Figure 6). Of note
was the observed variability in Evans blue deposition in the
cerebral cortex following injury, and there was a trend (albeit
with a small sample size) for the appearance of a more intense
uptake in some females. There appeared to be one case of
subdural hemorrhage isolated in the left hemisphere of an injured
female (top photograph for the Female ABS mice in Figure 6)
and general staining near the superior sagittal sinus in several
animals. A smaller cohort of mice was analyzed for the presence
of Evans blue 24 h after shock wave exposure, but no staining was
evident in either the injured or sham animals (Figure 6). Kendall’s
tau was computed to determine whether or not there was an
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FIGURE 4 | No changes in anxiety-like behaviors on the EPM of EZM after injury, but a sex difference was displayed for EZM distance travelled. The results from the
(A) EPM and (B) EZM testing show no difference in terms of time spent in the open areas for injury or sex. The number of open region entries also did not
significantly differ for (C) EPM or (D) EZM. ABS group and sham animals for each behavioral task. (E) The total distance travelled was not statistically different
between injured (ABS) or sham mice for EPM. (F) Results from the EZM testing indicated there was a main effect of sex where females travelled significantly farther
than male mice (p = 0.0112). Bars indicate means. # indicates main effect of sex p ≤ 0.05.
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FIGURE 5 | Decreased time immobile on the TST following bTBI. (A) SPT did not show any significant difference in sucrose consumption as an effect of shock wave
injury or sham treatment. (B) TST displayed a significant effect of injury with ABS mice spending less time immobile compared to sham mice. (C) The time immobile
on the FST was not significant. Bars indicate means. ∗p ≤ 0.05 for main effect for the difference between uninjured and ABS exposed mice.

FIGURE 6 | Evans blue was evident 4 but not 24 h after shock wave exposure. Evans blue staining was present on the brain parenchyma of ABS-exposed male and
female mice 4 h after injury, but was not apparent on the brains of sham animals. One day after shock wave exposure, Evans blue was not observed on the brain
parenchyma of either ABS-injured male and female or sham animals.

association between the intensity of Evans blue staining 4 h after
ABS injury and the duration of the righting reflex. There was a
significant association, where longer righting reflex duration was
associated with more intense Evans blue staining (τ = 0.580, 95%
confidence interval = 0.029–0.924, p = 0.030). A summary of the
measures is presented in Figure 7.

H&E and Cresyl Violet
Qualitative analysis of H&E did not reveal any microbleeds
in any brain regions in the samples from ABS or
sham animals (data not shown). Adjacent sections
immunolabeled for c-Fos were stained with Cresyl Violet

to confirm consistent anatomical location of the amygdala
(data not shown).

c-Fos
Data are presented collapsed across anatomical sides. No
significant differences were observed in the cerebral cortex
(Figures 8A,D). There was a main effect of sex for staining in the
PVT (F1,14.497 = 15.781, p = 0.001) with females exhibiting more
c-Fos staining compared to male mice (Figures 8B,E). There
was a main effect of injury in the amygdala (F1,44.567 = 16.036
p = 0.001) with ABS-injured mice expressing more c-Fos positive
cells compared to sham mice (Figures 8C,F).
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FIGURE 7 | Correlation of righting reflex time and Evans blue staining 4 h
post-injury. The scatterplot displays the righting time of injured male and
female mice 4 h after shock wave exposure with respect to the amount of
Evans blue staining intensity ranked 1 (least) –4 (most), and Kendall tau
analysis indicated a significant correlation between stain intensity and the
duration of the righting reflex (τ = 0.508, p = –0.030). No correlations (data not
shown) were detected between Evans blue ranking and peak ABS pressure
(τ = –0.025, p = 0.925), Evans blue and body weight (τ = 0.090, p = 0.719),
righting time and peak pressure (τ = 0.244, p = 0.325).

DISCUSSION

Physiological Changes After Blast
Traumatic Brain Injury
The current study found that male and female mice experienced
longer righting reflex times after shock wave exposure compared
to sham animals, and female ABS-exposed mice expressed longer
periods of unconsciousness than male injured mice. The sex
differences observed for righting times may be correlated with
variations in body weight. As expected, males were larger than
females, which may affect injury-related biomechanics during
the shock wave exposure, causing the smaller female mice to
move more during the blast event. The decrease in body weight
following shock wave, as well as the increase in righting reflex
for animals in the injured condition, indicate that the shock
wave produced physiological effects. The loss in body weight
suggested that, acutely, injured animals were physically unable or
uninterested in eating following ABS. The observed weight loss
and longer righting reflexes after ABS are consistent with a recent
ABS study in the laboratory with identical conditions (Nonaka
et al., 2021), as well as other reports (Schindler et al., 2020).
Previous experiments demonstrated only transient changes in
water and food consumption post-blast with vertical orientation
exposure, or no differences in male and female body weight
after ABS when animals were placed in a prone position (Russell
et al., 2018b; Vu et al., 2018). The sex differences in weight and

righting time immediately following bTBI suggest that female
mice sustained greater damage initially compared to male mice.

Effects of Blast Traumatic Brain Injury on
the Blood-Brain Barrier
Behavioral and neuropathological changes have been reported in
blast studies in which the animal is placed in a vertical orientation
(Koliatsos et al., 2011; Vu et al., 2018; Nonaka et al., 2021)
and in a prone position (Bailey et al., 2016; Sawyer et al., 2016;
Russell et al., 2018a; Arun et al., 2020). Body orientation may be
particularly relevant to cases of tertiary blast effects. The BBB, for
example, is an essential element in brain homeostasis and is one
of the first sites to be altered following bTBI, and is a structure
particularly vulnerable to impact compression (Gama Sosa et al.,
2014; Huber et al., 2016). Acute cerebral vascular impairment and
BBB protein dysregulation have been reported after single and
multiple ABS exposure, respectively (Heyburn et al., 2019, 2021;
Rodriguez et al., 2019), and our data support these findings with
acute BBB permeability to Evans blue 4 h following ABS. Finite
element modeling and shock tube experiments demonstrate
that the prone orientation produces a lesser degree of damage
compared to other body orientations (Hubbard et al., 2014;
Heyburn et al., 2019; Unnikrishnan et al., 2021). In this study
the vertical orientation was employed and Evans blue staining
provided evidence of BBB disruption, but it was evident only
on the dorsal surface of the brain. This suggests that the fixed
vertical animal positioning enabled tertiary, acceleration artifacts
from the shock wave-associated blast wind that pushed the mouse
backwards, compressing the top of the head into the mesh
holder. Interestingly, (Unnikrishnan et al., 2021) used almost
identical peak pressure (100 kPa or 14.5 psi) modeling of vertical
orientation inside of the ABS, and reported higher pressure on
the ventral brain than the dorsal side.

Assessment of the degree of Evans blue staining on the
dorsal surface of the neuraxis, 4 h after ABS injury, was
associated with the duration of the righting reflex, suggesting
longer righting reflex duration was reflected in greater severity
of BBB compromise (Figure 7). However, although Evans blue
staining was present in some injured animals 4 h after bTBI,
H&E staining did not indicate the presence of microbleeds
and no c-Fos changes were observed in the cerebral cortex,
suggesting that the extent of the damage was limited to albumin
extravasation to the superficial surface, but not deeper cortical
layers (Weng et al., 2011). The damage, however, might be
transient since only subtle changes in behavior were observed at
later time points (Yang et al., 2016). Another study demonstrated
the extravasation of dyes smaller than 70 kDa with barrier
integrity restoration one day post-blast (Hue et al., 2015), which
is consistent with the observed absence of Evans blue 24 h
following shock wave exposure in the current study, indicating
that the BBB may be repaired in rodents one day after bTBI.
Evans blue has been used historically, but caution must be
used with extravasation interpretation and its quantification
continues to present challenges (Saunders et al., 2015). Taken
together, many potential artifacts are present in preclinical
bTBI designs and additional complications with Evans blue
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FIGURE 8 | c-Fos differences by sex and injury in the PVT and amygdala, respectively. Representative images of the (A) cerebral cortex, (B) PVT, and (C) amygdala
(basolateral and central nucleus) with regions of interest outlined in dashed lines and magnified inserts of areas within the measured regions. All scale bars indicate
100 µm. (D) The cerebral cortex did not show any significant difference between injury or sex. (E) The PVT displayed an overall effect of sex in which females had
more c-Fos positive cells compared to males. (F) There was a main effect of injury in the amygdala, where injured mice had greater c-Fos cell density than sham
mice. Bars indicate means. ## indicates main effect of sex p ≤ 0.001, ∗∗ indicates main effect of injury p ≤ 0.001.

quantification, including observed variability in stain intensity,
hinder definitive conclusions from being made regarding BBB
disruption in this study.

Acute Changes in c-Fos Activation in the Amygdala
and Paraventricular Nucleus of the Thalamus
Following Blast Traumatic Brain Injury
In addition to BBB disruption, there were increases in c-Fos
activation in the amygdala (males and females) following TBI
and overall in the PVT (females only). The c-Fos activation
reported in this study supports previous investigations of
behavioral changes after blast injury through limbic activation.

In previous studies, increases in c-Fos appeared in the central
and basolateral amygdala and subsequent increases occurred
in anxiety-like behavior and fear circuitry (Rowson and Pleil,
2021; Ou et al., 2022). Reports of changes in cytostructure
after bTBI also may shed light on possible mechanisms of
hyperactivity in the amygdala with increased dendritic branching
and spine density after injury (Ratliff et al., 2019, 2020). The
sex differences in c-Fos seen in the PVT may correspond to the
higher hypothalamic-pituitary-adrenal axis activation in females
and maladaptive behaviors in response to stress (Ishii et al.,
2018; Rowson and Pleil, 2021). The acute changes in neuronal
activation observed primarily in the amygdala after ABS and
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overall c-Fos sex differences in the PVT were consistent with
some of the behavioral alterations seen at later time points.

Effects of Blast Exposure on Depressive-
and Anxiety-Like Behaviors
The mild and transient nature of the bTBI as assessed
histologically was associated with only subtle changes in behavior.
Previous bTBI studies described increased anxiety-like behavior
in the EZM and EPM in injured rats and mice (Elder et al., 2012;
Xie et al., 2013; Awwad et al., 2015; Russell et al., 2018a). However,
the present study did not find significant differences for time in
the open region, nor for the number of entrances into the open
zones for EPM and EZM. Some of the differences in reported
anxiety-like behavior could be due to the type of shock tube
used. One group reporting anxiety-like behaviors following bTBI
used a compact, focal blast tube with animal head-only exposure
(Awwad et al., 2015), whereas another group used a full body
shock tube, but with multiple blast injuries (Elder et al., 2012).
A different design of repetitive, automated blast exposures was
implemented in an air blast chamber with anxiety-like behavior
performed 5 min after injuries (Xie et al., 2013). Russell et al.
(2018a) employed an injury paradigm that closely resembled the
current study, but animals were placed in a prone instead of
vertical orientation. These differences in animal body orientation
and blast tube design alter injury biomechanics and therefore
functional outcomes (Needham et al., 2015; Unnikrishnan et al.,
2021).

While there was no change in the total distance travelled
in the EPM, females travelled farther than males in the EZM.
Hyperactivity has been observed in females during open field
tests following controlled cortical impact (Tucker et al., 2016,
2017). Likewise, a recent study with repetitive concussive injuries
directed at the frontal region likewise observed increased distance
travelled in the open field test, and that female mice travelled
farther in an acute test 4 days after injury, but not at later
time points (Vu et al., 2021). The higher levels of activity,
particularly in females as observed in the EPM and in open
field in other studies, could be related to activational effects
of estrogen (Morgan and Pfaff, 2002; Ogawa et al., 2003), but
further investigation is needed to understand the mechanism and
duration of this increased activity in female mice after blast.

Behavioral tasks measuring depressive-like behaviors showed
varying trends. No sex differences were found, but the injured
group had reduced immobility in the TST compared to sham-
treated controls, an unexpected finding. Reduced immobility
after blast exposure may indicate injury-induced agitation or a
panic-like reaction and has been reported after other concussive
TBI models (Anyan and Amir, 2018; Tucker et al., 2019).
Interestingly, a study of CRF neurons after bTBI and restraint-
induced stress found sex differences with females showing
increased amygdala CRF2 gene expression and hippocampal
decreased expression, whereas males displayed the opposite
(Russell et al., 2018a). Increased neuronal activation in the
amygdala of injured females was consistent with the current
study. Hyperarousal is an element of PTSD and as discussed
previously, blast is able to induce PTSD-like traits where greater

activity levels during the TST in injured animals may correspond
to the hyperactivity observed in female mice in the EZM (Elder
et al., 2012; Perez-Garcia et al., 2019). Activity level, however,
has been criticized as an inaccurate measurement of anxiety
(Lister, 1990; Tucker and McCabe, 2021). The TST and FST are
arguably models of acute stress, which could be interpreted as
changes in anxiety rather than depression (Lister, 1990; Nestler
and Hyman, 2010; Tucker et al., 2017; Anyan and Amir, 2018).
Further study is needed to define the relationship between bTBI
and subsequent hyperactivity.

Study Limitations and Future Prospects
Results from behavioral tests can depend on the animal strain
and sex (McCabe and Tucker, 2020). Overall, female rodents
exhibit more activity compared to males during behavioral
tasks and this inherent difference can make data interpretation
challenging (Tucker et al., 2016, 2017). Females may also
have subtle neuroprotective effects associated with estrogen and
progesterone, but estrous cycle stage does not appear to have a
predominant effect on behavioral outcome after TBI (Wagner
et al., 2004). Likewise, housing conditions with respect to sex
differences in behavior should also be considered. Animals
in the current study were singly housed for the SPT and
remained individually housed for subsequent testing with the
TST and FST. In this study, single housing did not affect
depressive-like behavior. Increased corticosterone and anxiety-
like behavior have been reported in female rodents that are
singly housed, whereas individually housed males display less
anxiety-like behavior (Brown and Grunberg, 1995; Palanza
et al., 2001). A potential confound of this study’s histological
data included additional animal restraint during intravenous
Evans blue administration, but injured and sham-treated mice
underwent the same injection procedure. Previous literature
demonstrated that blast alone without a stressor could increase
contextual fear conditioning (Elder et al., 2012; Perez-Garcia
et al., 2019; Perez Garcia et al., 2021). TST and FST alone
can cause changes in c-Fos activation (Yanagida et al., 2016;
Hiraoka et al., 2017), so separate cohorts of animals were included
for behavioral testing and pathology in this study, and no
behavioral stress confounds occurred for c-Fos staining (Cullinan
et al., 1995; Yanagida et al., 2016; Hiraoka et al., 2017). Since
c-Fos activation has been reported in other areas after bTBI,
such as the paraventricular nucleus of the hypothalamus and
hippocampus, additional brain regions should be investigated
(Du et al., 2013; Russell et al., 2018b; Ou et al., 2022) and
given reports of different PVT cellular divisions, specific PVT
circuitry should be identified (Kirouac, 2015; Gao et al., 2020).
Future directions could also include investigation of multiple
blast exposures and bTBI with chronic stress as more clinically
relevant designs for military populations (Owens et al., 2008;
Kontos et al., 2013). The evaluation of later time points after
blast for behavioral tasks may indicate delayed or biphasic
behavioral changes, such as slowed onset or immediate deficits
followed by a recovery and then prolonged alterations (Stemper
et al., 2016; Arun et al., 2020; Perez Garcia et al., 2021).
This study further highlights the importance of investigating
potential sex differences, and indicates overall variance in limbic
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activation and functional outcome between male and female
rodents following bTBI exposure.
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