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Editorial on the Research Topic 
Greenhouse Gas Emissions and Terrestrial Ecosystems

In recent decades, greenhouse gas (GHG, particularly CO2 and CH4) emissions are mainly responsible for the increase in global mean temperature due to natural and anthropogenic activities (Hui et al., 2021; Kumar et al., 2021). Grossi et al. (2021) proposed a holistic methodological approach to estimate (quantitatively and qualitatively) the annual GHG emissions and removals occurring in the natural parks and suggest their significance in mitigation of climate change and respective adaptation. In general, the alarming rate of climate change and global warming is critically governed by the rapid increase in urbanization, industrialization, fossil fuel burning, forest fire, change in land use and land cover (LULC; responsible for 10–12% of anthropogenic GHG emissions), agricultural activities in the catchment, slash and burn activities, etc. (Kumar et al., 2021a). LULC change is estimated to emit 1.3 ± 0.5 peta-grams C y−1 (∼8% of annual emission). Sahoo et al. (2021) worked in the northeastern region of Indian forest and estimated biomass and carbon (C) storage potential under diverse land uses. He found a strong relationship between the biomass C storage and tree basal area. The mean vegetation C stock followed a pattern of temperate forests > subtropical plantations > subtropical forests > tropical forests > tropical plantations > temperate plantations and is useful for the C reduction strategies. Furthermore, accurate quantification of total C stock (forest biomass and soil) is a decisive commission in decision support related to climate and land use management. Nielsen et al. (2021) highlighted the importance of root: shoot (R/S) ratios in imprecise modeling evaluations of the soil C input. An increase in the number of annual cuts was found to lower the R/S (Nielsen et al., 2021). Thakur et al. (2021) worked on a protected area of dry tropical forest and estimated the mean value of net primary productivity (NPP) as 8.74 Mg ha−1 yr−1 (varied from 7.61 to 9.94 Mg ha−1 yr−1) where above-ground biomass contributes 1/3rd of total NPP and further plays an important role in carbon (C) mitigation in central India. In general, tropical ecosystems are hot spots of GHG emissions compared to temperate ones because of higher temperatures and low humidity.
The change in soil C stock under conservation agriculture practices in the Indo-Gangetic Plains and sub-Saharan Africa compared to conventional practice ranged from 0.16 to 0.49 Mg C ha−1 yr−1 and 0.28 to 0.96 Mg C ha−1 yr−1, respectively. These wide ranges energized the young scientists to explore in detail their ecological footprint, energy, and economic effectiveness. Moreover, the significant amount of methane (CH4) from rice fields, peat lands, bogs, etc.; nitrous oxide (N2O) from agricultural crops and forest floor; and CO2 from plants and animals through respiration; soil respiration (efflux of CO2) and sinks into the terrestrial ecosystems and in the form of crop production, the transportation and production of forest biomass, and agricultural activities also contributes to atmospheric GHG emissions (Figure 1). Kumar et al. (2021b) concluded that extensive inter-culture operations (i.e., sowing, irrigation, tillage, fertilizer application, and pest control management) extensively influence the GHG emissions (CO2 and N2O) from wheat–maize agricultural soil. However, O’Neill et al. (2021) concluded that management practices, especially row spacing width (125 and 750 mm) and variety of crops, have no consistent effect on soil emissions, and modifications in seed yield per plant countered differences in planting density in winter oilseed rape crop grown in Ireland.
[image: Figure 1]FIGURE 1 | Process, mechanism, and factors affecting carbon dynamics in terrestrial ecosystem.
The rapid climate change results in loss of terrestrial biodiversity and affects the C dynamics (source and/or sink) both directly and indirectly (Heimann and Reichstein, 2008; Liu et al., 2018). Mohsin et al. (2021) emphasize that a catchment area treatment planning in advance can be helpful in carbon reduction and further enhance the quality of the environment. Nowadays, sector-specific mitigation strategies play an important role in terrestrial GHG trade-offs. In recent decades, management practices, such as catchment area treatment plan, afforestation of plants having high carbon sequestration potential, forest protection (e.g., forest fire), agriculture conservation, zero tillage practices, and incorporation of waste residue could help in increasing C sink or mitigation of the C emission significantly from the terrestrial ecosystems. The rate of C sequestration and forest protection ranges from 0.04 to 7.52 t C·hm−2·a−1 and 0.33 to 5.20 t C·hm−2·a−1, respectively. Based on the comprehensive use of natural resources, Tian et al. (2021) suggested that the necessity and possibility of C trading and redistribution of the natural resources are highly recommended ways to ensure carbon reduction by 2060.
Forest vegetation and perennial crops have high C density (above- and below-ground biomass; ABG and BGB) and tree species richness to support ecosystem resilience to future climate change, besides a strong potential to support forest biodiversity and agricultural productivity (Sharma et al., 2021). Missing the Paris agreement target to achieve global mean temperature (i.e., 2°C) could destabilize Earth’s climate, terrestrial ecosystems with terrible consequences for ecosystem services, biodiversity, and humans. Therefore, a strategic management plan is urgently needed to reduce the potential of C by implementing climate change mitigation and adaptation measures in terrestrial ecosystems.
All the guest editors hope that the article (review/research) published in this special issue will help the policy makers, environmentalists, foresters, and young researchers to understand the carbon dynamics in the terrestrial ecosystem at the regional and/or global scale. Furthermore, the mitigation strategies suggested by the different authors will help in C reduction in the terrestrial ecosystem.
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Nowadays, rapid increases in anthropogenic activities have resulted in increased greenhouse gases (GHGs; CO2, CH4, N2O) release in the atmosphere, resulting in increased global mean temperature, aberrant precipitation patterns, and several other climate changes that affect ecological and human lives on this planet. This article reviews the adaptation and mitigation of climate change by assessing carbon capture, storage, and utilization by fruit crops. Perennial plants in forests, fruit orchards, and grasslands are efficient sinks of atmospheric carbon, whereas field crops are a great source of GHG due to soil disturbance, emission of CH4 and/or N2O from burning straw, and field management involving direct (fuel) or indirect (chemicals) emissions from fossil fuels. Thus, there is a need to establish sustainable agricultural systems that can minimize emissions and are capable of sequestering carbon within the atmosphere. Fruit orchards and vineyards have great structural characteristics, such as long life cycle; permanent organs such as trunk, branches, and roots; null soil tillage (preserving soil organic matter); high quality and yield, which allow them to accumulate a significant amount of carbon. Hence, the fruit plants have significant potential to sequester carbon in the atmosphere. However, the efficiency of carbon sequestration by different fruit crops and their management systems may vary due to their growth and development patterns, physiological behavior, biomass accumulation, and environmental factors.
Keywords: carbon emission, climate changes, fruit trees, production, storage
INTRODUCTION
The worldwide population is expected to be around 9.1 billion by 2050, which would be 34% higher than the existing population (UN, 2019). This will enhance the food demand to match the needs of the rising population. Horticultural commodities, in general, and fruits, in particular, have been designated as the sources of nutraceuticals (Sharma et al., 2021). The global mean surface temperature increment of pre-industrial values has reached up to 0.87 ± 0.10°C during the 2006–2015 decade (Hoegh-Guldberg et al., 2018). According to the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), 2013–2014, the mean global temperature of the land and the ocean showed a warming of 0.85°C, i.e., range b/w 0.65–1.06°C during 1880–2012 (Wolf et al., 2017). The main reason behind this increase is anthropogenic interference (Hartmann et al., 2013; Stocker et al., 2013). An IPCC Special Report has confirmed that the rise in the mean temperature globally affected peoples, different ecosystems, and livelihoods worldwide. Moreover, climate change might obstruct progress toward a world without hunger for all people. A robust change in global pattern is noticeable in the effects of the inclination of temperature on sustainable crop production. Due to climate change, the steadiness of food systems might be at risk because of the short-term variability in the supply chain (Wheeler and Von Braun, 2013). However, the prospective consequences are less clear at provincial scales, but climate change will directly impact food security in areas that are susceptible to hunger and malnutrition (IPCC, 2018). Similarly, it indirectly influences the household and individual earning and causes loss of access to drinking water and damage to health. The emissions of greenhouse gas (GHG) is inclining globally day by day, but many practices are available to maintain the emission of these gases, the most prevalent one being the cultivation and conservation of trees like fruit orchards or agroforestry (Boonen, 2015; Kumar and Sharma, 2015; Kumar et al., 2020; Sarkar et al., 2021; Thakur et al., 2021). This practice might be a vital solution to reduce the emission of harmful gases and has many positive effects on the environment, also known as “climate-smart cultivation” (Brown et al., 1995; Canadell and Raupach, 2008; Nair et al., 2010; Shaffer, 2010; Zanotelli et al., 2013; Chakrabarti, 2017). Fruit cultivation is considered a potential tool of good agricultural practices that might be reduced by the impact of climate change (Rana and Rana, 2003; Jhalegar et al., 2012). Hence, the combination of trees, usually in different systems, increases productivity, improves the nutrient cycle, and helps maintain the ecological balance because of the “biological carbon sequestration potential” (Ospina, 2017; Rana et al., 2020; Kumar et al., 2021; Rai et al., 2021; Sheikh et al., 2021; Tamang et al., 2021). Given the above-mentioned fact, this review article showed the complete effect of fruit crops on carbon sequestration, that is, the process by which carbon source is taken from the atmosphere and stored in another place. The present article mainly focuses on assessing the above-ground biomass (AGB) and below-ground biomass (BGB) of fruit orchards and their corresponding carbon stocks so that net contributors of GHG to the atmosphere could be estimated. Besides, mitigation measures are also suggested to reduce the C-stock and GHG emissions from fruit orchards in the future under CO2 enrichment and global warming.
RELATIONSHIP BETWEEN FRUITS TREE AND CARBON SEQUESTRATION
Carbon sequestration in terrestrial ecosystems is the process of net exclusion of carbon sources like CO2 from the environment or reducing its emissions from terrestrial ecosystems and storing them into another form in a productive manner (IPCC, 2018). The process of removal of carbon through photosynthesis process in green plant (vegetation) in which inclined CO2 uptake from atmosphere takes place and CO2 is stored in different photosynthetic or non-photosynthetic parts such as trunks, branches, leaves, and roots of the plants (IPCC, 2018). Carbon sequestration of soil induction of the possible amount of organic carbon (OC) into the soil also reduced the amount of atmospheric C (De Moraes Sá and Lal, 2009). CO2 gas is a chief source of the atmospheric greenhouse effect depiction (Figure 1). From 1951, the rapid changes in the level of CO2 took place, hence influencing global climate changes. According to NASA, the concentration of CO2 globally was 416.14 ppm up to March 2021 (NOAA, 2021). However, many other gases such as methane (CH4), water vapor (H2O), ozone (O3), and nitrous oxide (N2O) also play a vital role in climate change because of their higher global warming potential compared to the CO2 (Barbera et al., 2018). Land management practices are one of the important factors affecting carbon sequestration (Lal, 2018). The alteration in the global carbon balance occurs through anthropogenic activities such as burning of fuel, production of cement (67%), and agriculture and land use changes (33%) (Friedlingstein et al., 2020). Perennial crops, such as citrus, apple (orchards), kiwifruit, and grapes (vineyards), are significantly important for converting more atmospheric carbon compared to annual crops like flowers and field crops (Robertson et al., 2000; Xiao et al., 2003; Kalcsits et al., 2020).
[image: Figure 1]FIGURE 1 | Schematic diagram of carbon pools in an apple tree (redrawn from Buchmann and Schulze, 1999). The yearly NEP, GPP, and NPP are 403 g Cm−2, 1,346, and 906 g Cm−2 year−1, respectively. The average NECB indicates significant potential for CO2 sequestration. OM/OA: organic manures/organic amendment; GPP: gross primary production; NPP: net primary production; NEP: net ecosystem production; NECB: net ecosystem carbon balance; NBP: net biome productivity; RA: autotropic respiration; RH: heterotrophic respiration; Harvest: fruit production; RECO: ecosystem respiration.
In general, crops have some structural characteristics that allow them to capture more carbon sources because of their life cycle and large photosynthetic activity (Bationo et al., 2007; Xu et al., 2019). In addition, fruit growers not only depend on the quantity they produce but also on quality to enhance income (grape berry color and shape). Some fruit crops show less potential in terms of yield because of less distribution of carbon to the fruits than that of high-yielding crops (Kumari et al., 2020). Hence, the net primary production (NPP) is prevalent in the accumulation C cycle or distributed into the permanent structures of the tree. NPP is the distinction between total photosynthesis and respiration in flora and fauna and is assessed through estimating the quantity of the new organic matter (OM) formed, i.e., in living plants under a specific time given time (Clark et al., 2001; Levesque et al., 2019). There is limited literature available on the potential of fruit crops to sequestering carbon and environmental service. However, fruit orchards greatly influence sustainable development under changing climate scenarios (FAO, 2010). However, the benefit to the fruit growers is restricted or limited as compared to forest and plantation crops (Xiaoetal., 2003; Liu et al., 2018), but with the emergence of Kyoto protocol fruit, orchardists can derive their remuneration via carbon trading and gaining creditability (Page et al., 2011).
Fruits farming is a sustainable system of production where solar energy can be utilized at different levels, soil resources can be used efficiently and cropping intensity can also be altered (Nimbolkar et al., 2016). The system consists of three main components: main crop, filler crop, and intercrops, which occupy three different tiers in the production system (Nimbolkar et al., 2016). Orchards are recognized for carbon storage because they can capture a large quantity of C in their vegetative organs for a longer period of time (Nardino et al., 2013). Like orchards, soil is the primary terrestrial carbon sink globally (Hammad et al., 2020). However, its sequestering potential depends on several factors, such as climate, type of soil, crop and vegetation, and management practices (Meena et al., 2020). The carbon stored in soil organic matter (SOM) is affected by the addition of dead plant materials and loss of carbon through respiration, the microbial status process, and soil disturbance (natural and human disturbance) (Koné and Yao, 2021). The carbon capture process can be done by different plant organs: trunks, branches, leaves, flowers, fruits, and roots (Henry et al., 2020). There are various fruit trees, namely, avocado, banana, citrus, mangosteen, and mango, which significantly increase the rate of photosynthesis, thereby increasing the tree biomass. By applying CO2 at 800 ppm for one year, Schaffer (2009) has ameliorated the photosynthesis rate by 40–60% compared to ambient CO2 concentration in mangosteen. The heavy bearing ability of fruit trees has a great tendency to increase carbon capturing from the atmosphere and store it in the form of cellulose (Patil and Kumar, 2017; Zade et al., 2020). Fruit orchards can significantly contribute to sustainable fruit production under changing climate scenarios in tropical and sub-tropical areas (FAO, 2010; Nath et al., 2019).
CARBON SEQUESTERING IN TREES AND SOILS
Fruit orchards might play an important role in climate change via the sequestration of carbon, biological growth (increasing biomass), and deforestation (increasing carbon emissions) (Hammad et al., 2020; Khan et al., 2021). The process of photosynthesis is that a tree can capture the little amount of carbon stored in the form of carbohydrates and return some of the amount to the atmosphere through the respiration (Figure 1) process (Nunes et al., 2020). Carbon is stored not only in tree biomass but also in soils (Sedjo and Sohngen, 2012). Therefore, carbon present in the plant tissue is either consumed by humans (fruits) or added to the soil in the form of litter when the plant dies and decomposes (Patil and Kumar, 2017). Carbon is stored in the soil in the form of soil organic matter (SOM) (Cotrufo et al., 2019). It is a combination of carbon compounds formed after the decomposition of plant and animal tissues (Khatoon et al., 2017). These materials can be developed with the help of soil biotas such as protozoa, nematodes, fungi, and bacteria and then are associated with soil minerals (Zhang et al., 2021). Thereafter, carbon can remain stored in soils for a long time or can rapidly return back to the atmosphere via the respiration process by soil microbes (Sharma et al., 2018; Zhang et al., 2021). Various factors like climatic conditions, natural vegetation, soil physicochemical properties, drainage, and human land use affect the amount of carbon and the length of time carbon is stored in soil (Wiesmeier et al., 2019).
FACTOR AFFECTING CARBON SEQUESTRATION IN FRUIT CROPS
Numerous factors influence the carbon sequestration in fruit crops. Out of these factors, latitude, water availability, plant age and species, nutrients, temperature, and atmospheric gases highly influence the carbon sequestration rate.
Solar Radiation
Solar radiation is one of the important factors by which the photosynthesis process is directed (Pawar and Rana, 2019). The photosynthesis process depends on light duration intensity and the duration (Hüve et al., 2019) and further regulates the metabolic process of carbon in fruit trees. The rapid increase in carbon sequestration rate was found to increase significantly with incoming solar radiation (Gough et al., 2012; Rao et al., 2021). Moreover, the intensity of light increases or decreases the pattern of the carbon storage (Shaver et al., 1992).
Water Availability
Like light, water availability to the plants is also part of the photosynthesis process (Pawar and Rana, 2019). The availability of water affects NPP because the moisture content helps increase leaf area index (LAI) (Li et al., 2020). The density of foliage is directly proportional to the productivity of the tree because of the more capturing tendency for carbohydrates molecules (DeMattos et al., 2020). However, water scarcity will cause wilting of plants due to reduced photosynthetic activity, falling C uptake, and less carbon capture (Gower, 2001).
Nutrients Requirement
Nutrients are a vital component for several internal biological processes because crops species cannot complete their life cycle events in the absence of this element (Jones, 1997). There are 17 essential nutrient elements required for the tree species and the role of each nutrient element is specific to a specific plant species (Das and Avasthe, 2018). The tree foliages consist of variable numbers and amounts of nutrients (Gough et al., 2012). Trees species are able to proliferate themselves with an optimum supply of nutrients; therefore, a greater amount of carbon is sequestered (Pawar and Rana, 2019; Sharma et al., 2021).
Temperature
Temperature is an important ecophysiological factor that affects the ratio of plant growth and development (Restrepo-Díaz et al., 2010). The metabolic activities are also influenced by the rate of temperature. If the rate of temperature increases, then metabolic activities (photosynthesis and respiration) also increase significantly up to optimum temperature and then decline rapidly (Pawar and Rana, 2019). For this reason, temperate fruit crops capture the least amount of carbon in the winter because the canopy is leafless (winter dormancy). In contrast, more carbon is captured in the summer when the temperature is increased and carbon is gained via the photosynthesis process (Gough et al., 2012).
Atmospheric Gases
The concentration of atmospheric gases (particularly CO2 and O3) affects the rate of carbon sequestration. The rate of atmospheric CO2 levels affects carbon availability to the plants. Karberg et al. (2005) have revealed an increase in NPP (20%) with an increase in the rate of CO2. Unfortunately, some harmful compositions like ground-level ozone might be increased with the increment of carbon values in the atmosphere; therefore, NPP rate has decreased (Pregitzer et al., 2008).
CARBON CAPTURE OF LONG RESIDENCE WOODY, LEAF, FRUIT, AND ROOTS
The atmospheric CO2 is absorbed during the photosynthesis process; the carbohydrates and their accumulation follow anabolic pathways (Farquhar and Sharkey, 1982; Kumar et al., 2017). Similarly, the loss occurs through green and non-green organs via the process of respiration (Haslam and Treagust, 1987; Yu et al., 2018; Chen and Chen, 2019). The accumulated portion is conglomerated with organic compounds; later on, it is distributed into different plant parts, leading to the formation of new biomass, represented as the net primary production (NPP) (Clark et al., 2001). Gross primary product (GPP) and NPP are the prime phases of the carbon cycle under ecosystems where GPP is the aggregate CO2 level adjusted by photosynthesis, i.e., signifying the ability of crops to collect carbon and energy (Badawy, 2011). C losses occur at the ecosystem level because of the respiration of heterotrophic organisms under the soil (Rh) (Wang et al., 2019). The main difference between NPP and Rh is denoted as net ecosystem production (NEP). NEP is a vital ecological factor that signals out of the photosynthesis or respiration, which is a dominant factor used in assessing the ecosystem potential (Rodda et al., 2021). Moreover, net ecosystem carbon balance (NECB), particularly in agricultural systems, increases or decreases the carbon level by cultivation over a passage of time (Antar et al., 2021), as depicted in Figure 2. It is also dependent on the value of carbon that comes in via organic amendments and moves out via end-products like fruits or timber (Oviedo-Ocaña et al., 2021).
[image: Figure 2]FIGURE 2 | Relationship between fruit trees and carbon sequestration.
Literature available on carbon fluxes under fruit crop and NPP and GPP for horticultural crops, especially fruit crops (Ceschia et al., 2010; Marín et al., 2016; Shi et al., 2017; Khalsa et al., 2020), is summarized in Table 1. Fruit trees (woody, leaf, fruit, and roots) represent a valuable portion of land use in various areas and have an important role in capturing net carbon dioxide sink and storing carbon compounds in the permanent woody parts of the fruit tree (Scandellari et al., 2016; Chamizo et al., 2017; Tezza et al., 2019). Moreover, the prospect of using organic manures or soil amenders may ameliorate the capability of fruit orchards systems as CO2 sink. In horticultural systems, in terms of the addition or removal of carbon over time, for example, during cultivation (NECB), the volume of carbon entry depends on the amount of manure applied to the crop, and produce like fruits is an example of carbon removal. Furthermore, planting orchards is a valuable land use form worldwide.
TABLE 1 | Carbon fixation (NPP, NEP, and NECB) by different fruit tree orchards.
[image: Table 1]Scandellari et al. (2016) have analyzed the biomass, NPP and NECB, and net carbon balance by either direct or eddy covariance methodology. They showed that above-ground NPP ranged between 10 and 20 t ha−1 with direct methodology, whereas the below-ground NPP was reduced by 20 percent from the total NPP. The carbon removal through the fruit system ranged between 2 and 3 t ha−1. Fruit orchard ecosystems had shown significant results on the net ecosystem productivity, ranging from 4.30 to 7.5 t C ha−1 yr−1in Apple-2 and Grape-1, respectively. Moreover, NECB, ranging 0.6–5.9 t C ha−1year−1, indicates potential carbon capturing through long residence woody, leaf, fruit, and roots and storage of the carbon (Scandellari et al., 2016). Bhatnagar et al. (2016) have reported that carbon accumulation values in fruits ranged 32–41%, whereas the other structural organs like twigs, branches, and stems stored ∼25% of the total carbon. Hence, Nagpur mandarin is regarded as another vital sink for carbon partitioning of around 6 kg C−1 tree−1yr−1 (2.5 Mg C−1ha−1yr−1). Khalsa et al. (2020) have shown that the application of nitrogen (N) supplement an orchard enhanced the capturing of more C, thus lowering the net global warming potential (GWP) in a California almond orchard. In this intensive system, 309 kg N ha−1 yr−1 fertilizer N rates also increased the net primary productivity (Mg C ha−1), N productivity (kg N ha−1), and net nitrogen mineralization (mg N kg−1 soil d−1). Wu et al. (2012) have analyzed the carbon sequestration capability in apple orchards and stated that the capability of trees for carbon sequestration is enhanced when they reach 18 years of age and declines with age. The net carbon sink and C storage (biomass) in Chinese apple orchards are between 14 and 32 Tg C and 230 and 475 Tg C, respectively, from 1990 to 2010. The calculated net carbon sequestration in the apple from 1990 to 2010 was approx. 4.5% of the total net carbon sink in the terrestrial ecosystems in China. Therefore, apple production systems can be considered an important carbon sink in fruit culture (Wu et al., 2012). Similarly, many reports on carbon emission in various crops have been confirmed by other researchers globally (Piao et al., 2009; Bhatnagar et al., 2016; Marín et al., 2016; Shi et al., 2017; Khalsa et al., 2020).
Kumar et al. (2019) have used various models for estimating biomass of plants, i.e., 225 mg ha−1 with biomass accumulation and carbon storage reduced by roots followed by twigs and leaves and branches. Mehta et al. (2016) have reported a similar result in fruit orchards, i.e., fixation by the fruit crop is higher than that of annual and herbaceous crops. The mean AGB and BGB was 13.21 kg tree−1, where the above-ground contribution maximum share was 76% and the below-ground contribution was 24%. The maximum carbon was stored by the fruit biomass (2.10 Kg tree−1), followed by roots and branches in a six-year-old citrus plant in a plantation orchard. Many reports have studied the potential of carbon sequestration in many fruit orchards, mainly perennials species, which is the key point in mitigating climate change scenario (Marín et al., 2016). Navarro et al. (2008) have assessed carbon accumulation in vegetative organs of palm trees, which was approximately 16.1 Mg C−1 ha−1 yr−1. Likewise, Janiola and Marin (2016) have suggested that tropical fruit trees, like mango, are more capable of accumulating more carbon in fifteen-year-old orchards, i.e., 45 Mg C−1 ha−1 yr−1. Similarly, the carbon (1750 g C−1m2 yr−1) accumulation rates were found in citrus Pernice et al. (2006). Further, Rossi et al. (2007) have assayed the carbon storage (1,160 g C m−2) in kiwifruit cv. Hayward within seven months. Various researchers have confirmed that orchards like citrus, wine grape, apple, olive, peach, hazelnut, and orange could be a substantial sink for atmospheric carbon (Liguori et al., 2009; Granata et al., 2020). Similarly, any agricultural practices, like the use of organic manures or AM fungi, may act as carbon sinks (Shi et al., 2017; Sharma et al., 2018; Verbruggen et al., 2021). Several studies have shown that the application of organic manures improves the physicochemical properties of soil (Evanylo et al., 2008; Bravo et al., 2012; Sharma et al., 2018; Sharma et al., 2021) and ameliorates root development (Baldi et al., 2010; Sarita et al., 2019). Granata et al. (2020) have quantified the CO2 sequestered by Corylus avellana L. (hazelnut) orchards. They have reported that the total amount of CO2 accumulated by hazelnut was 58.8 ± 9.1 Mg ha−1 year−1, where the highest value of carbon capturing is in May (12.4 ± 2.0 Mg CO2 ha−1 month−1). Hence, not only is the cultivation of hazelnut is important from the nut production point of view, but it also has a greater role as a carbon sink. Ganeshamurthy et al. (2019a) have estimated the AGB and BGB carbon in the mango orchards in different states, ranging from 776.9 to 1,574 kg tree−1 (Table 2). The above reports have suggested that fruit orchards may act as a great means for carbon accumulation in biomass. Hence, this pool of carbon fixation might help reduce atmospheric CO2. Thus, fruit culture could play an efficient role in mitigating climate change scenarios.
TABLE 2 | Effect of different fruit tree species on biomass and carbon sequestration with special reference to age and spacing.
[image: Table 2]CONCLUSION AND THE WAY FORWARD
After careful deliberations, it can be concluded that climate change due to different anthropogenic activities could potentially disturb improvement toward a world without hunger. A robust and coherent global pattern is discernible of the impacts of climate change on crop productivity that could have consequences for food availability. Various fruit crops like apple mango, citrus, and grapes have shown their potential roles in sequestrating carbon, thus enhancing biological yield. The carbon sources also improve the NPP, NEP, and NECB of various fruits compared to those of annual crops. The calculation of C biomass gives an idea about the quantity and quality of carbon available in the area and how it behaves in tree species compared to the annual crops, where the carbon is eventually degraded to GHGs to the environment causing global warming and climate change. The recommendation of suitable mitigation measures is also given in order to reduce GHG emissions. Hence, crop-fixing carbon might help reduce atmospheric CO2 and has a great capability of CO2 capture, storage, and utilization of carbon sources.
Various crops have a tremendous potential toward sequestering the carbon; however, the potential of many fruit trees is still unexploited. Hence, there is an urgent need to know the carbon sequestration potential in fruit crop species. A smart approach is required to develop and identify suitable propagation methods, systems, and appropriate tree species to ameliorate carbon storage and enhance fruit production.
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Natural parks (NPs) have a primary role in supporting people’s welfare by maintaining natural and cultural resources. Various activities, such as those related to conservation of flora and fauna, forestry, agriculture and livestock, residential, and tourism, coexist within the boundaries of NPs. All these activities may contribute as a source or sink of carbon dioxide and, despite some NPs having started to promote their environmental services, there is currently a lack of information on their carbon footprint (CF). Although various international standards have provided guidelines to assess the CF of organizations, a lack of explicit formulation and procedure in these standards makes them difficult to apply, especially when the organizations to be evaluated embed a wide range of biological and anthropogenic activities. The framework proposed in this paper provides for the first time a holistic methodological approach to quantitatively and qualitatively estimate the annual greenhouse gas (GHG) emissions and removals occurring in NPs. The main data needed for the NP’s GHG inventory were directly collected on-site. The activity data and emissions factors as well as the methodologies involved were all referenced to their data sources, including the use of a biogeochemical model, IPCC equations, Ecoinvent database, and a literature review. This method highlighted that, by emitting 0.55 Mg CO2e ha−1 year−1, the NP generates an annual CF of about 3,300 Mg of CO2e. The agricultural activities with 43.4% of share showed the largest incidence, followed by wild fauna (17.8%), tourism (15.1%), and, to a lesser extent, all the other sectors considered in the assessment. On the other hand, when the annual soil and forest C sequestration rates were included in the balance, the NP contributes to sequester about 3.7 Mg CO2e ha−1 year−1, thus resulting in it being an important C-sink site (i.e., about 22,000 Mg CO2e year−1). By providing granular information on GHG emissions and carbon removals trend, the methodological approach involved in this study could help NPs in both planning effective mitigation strategies and supporting environmental certification processes. CF of NPs could increase tourists’ awareness of the important role that these protected natural areas have in climate change mitigation and adaptation.
Keywords: national parks, LCA, carbon footprint, carbon sequestration, mitigation
INTRODUCTION
Human activities such as those related to industries, transport, energy, and agriculture have led to the release of anthropogenic greenhouse gases (GHGs) into the atmosphere (Malyan et al., 2016; IPCC, 2019). Fortunately, as society prospers, there is an increasing awareness of the environmental impact of these activities. The Carbon Footprint (CF) is a term used to describe the measurement of GHG emissions generated by a product or an organization. Wiedmann and Minx (2008) define the CF as a measure of the total amount of CO2 emissions that are directly and indirectly caused over the life stages of a product or activity. However, as most of the anthropogenic activities emit other GHGs than CO2 (e.g., CH4, N2O, HFCs, etc.), the term carbon dioxide equivalent (CO2e) is commonly used in CF assessments. Specifically, the term equivalent means that the global warming factor of every GHG is calculated using CO2 as means of comparison (Tjandra et al., 2016). CF assessment may have a wide range of applications in the development of products, environmental policies, and marketing. The applications that, among others, can be highlighted are decision making, research and development, identification of areas of improvement, environmental labeling, and ecological product statement (Calderón et al., 2010).
The ISO 14064–1 is an international standard for quantifying and reporting GHG emissions and removals at the organization level (ISO, 2019). The ISO broadly classified GHG emissions as direct and indirect. The direct GHG emissions are the ones resulting from sources that are owned and controlled by the organization, while the indirect are those that are a consequence of the company’ activities but occur from sources owned or controlled by a different entity. A further classification is represented by the GHG removals. The ISO 14064–1 defines the C stocks as the quantity of C stored in soil organic matter (SOC), above and below-ground biomass, dead organic matter, and harvested wood products. Due to the reversibility of these C stock reservoirs (i.e., these could be re-emitted into the atmosphere), the ISO standards recommends reporting the GHG removals separately from the other GHG emissions, and, in doing so, it suggests expressing the net annual GHG flux as the net sum of CO2e emissions and C-sink from the atmosphere. This reporting aspect became particularly important when assessing CFs of NPs. Indeed, these protected areas, by both increasing C stock reservoirs and preventing the loss of C that is already present in forest biomass and soil organic matter, play an important role in regulating GHG concentrations in the atmosphere and became perfect candidates for mitigation strategies aimed at enhancing forest and land C-sinks.
To the best of our knowledge, there is not a specific methodological approach to assess CF of NPs. Although a study (Villalba et al., 2013) aimed to evaluate the CF of an NP was found in literature, the GHG emissions generated from soil and animals (i.e., wild and domestic) biological processes, as well soil and forest C-sinks dynamics, were outside the scope of that study. The present work aimed (i) to develop a methodological approach based on ISO 14064–1 to assess the CFs of NPs and (ii) to test its applicability on a practical case study.
MATERIAL AND METHODS
Greenhouse Gas Inventory Boundaries of National Park
The system boundary (SB) is the basis used to delimitate the processes included within the assessment of CF based on ISO 14064–1. Within the SB of an NP there are several sectors/activities that could take place, such as (i) nature-based tourism activities (e.g., camping, hiking, fishing, birdwatching, etc.), (ii) tourist facilities (e.g., restaurant, gift shops, hotel, etc.), (iii) construction and maintenance of infrastructure (e.g., buildings, roads, etc.), (iv) residential sector, (v) fauna and flora preservation and, (vi) agricultural and farming activities. The case study was conducted on Castelporziano Nature Reserve (Reserve hereinafter), a residence of the President of the Italian Republic1 that extends from the south-southwest of Rome towards the Tyrrhenian Sea and covers 5,980 ha of land (Figure 1).
[image: Figure 1]FIGURE 1 | Study area, Castelporziano Nature Reserve (Central Italy).
The largest part of the Reserve is covered with natural or semi-natural vegetation, and the area classified as woodland reaches 4,511 ha (i.e., 75.7% of the total). The Reserve can be considered a unique environment in the Mediterranean area since it includes uncontaminated beaches, recent and old stabilized sand dunes, ample back dune wetlands, Mediterranean scrubland, and thickets featuring typical evergreen and aromatic species. Recent investigations show that, within the Reserve, about 90% of the forest areas have maintained their destination use without changes since 1950 (Pignatti et al., 2015). Besides the great range of vegetation, the Reserve hosts native wild boars, fallow deer (Dama), and deer (Cervus elaphus). Small fauna (e.g., foxes, badgers, porcupines, etc.) is also present. Large predators are absent, and no sport hunting is allowed. Within the Reserve, native Maremmana beef cattle and Maremmano horses are bred in pureness, and about 620 ha of the Reserve are dedicated to the pasture and related cropping activities. As regards the touristic attractions, in addition to the several natural routes that can be enjoyed, the Reserve includes buildings from the 14th century, such as the castle and the historical residence. A naturalistic museum, an archaeological museum, and a carriages hall can also be visited. A canteen is open during lunchtime to tourists and Reserve employees/workers. Unless invited to the events organized during the year, tourists visiting the Reserve are not allowed to go inside using their own transportation, and a shuttle bus service is provided during the opening season (from March 14 to June 21). A small residential hamlet (i.e., 24 households) is present within the Reserve, and it is mainly composed of people who are in different ways involved in the activities taking place within the NP. Mechanical and carpentry workshops are also present. Within the Reserve, there are firefighters who patrol the area during the summer season, and security forces, which guarantees the safety of the Presidential Estate all year round. Finally, the Reserve promotes the implementation of scientific research programs aimed at enhancing its environmental and agroforestry-pastoral heritage. In fact, numerous researchers are involved in projects concerning sustainable development, conservation of biodiversity, climate change (CC), and desertification.
Quantification of the Greenhouse Gas Emissions
The boundary system setting involves the categorization of direct and indirect GHG emissions and removals (ISO, 2019). Specifically, direct GHG emissions and removals occur from GHG sources or sinks which are placed inside the boundaries that are owned or controlled by the Reserve. The indirect GHG emissions are those related to the Reserve’s activities but that are generated outside the boundaries of NP’s direct control. The boundary system of the Reserve with the direct, indirect, and GHG removals is shown in Figure 2. A comprehensive inventory of the primary and secondary data involved within each sector can be consulted in the supplementary material (Supplementary Table S1–S8).
[image: Figure 2]FIGURE 2 | System boundaries of the direct, indirect, and GHG removals considered within the Reserve carbon footprint assessment.
Direct Greenhouse Gas Emissions and Removals
The direct GHG emissions within the Reserve’s boundary have included those arising from (i) agricultural soils and animal’s (i.e., wild and domestic) biological processes (ii) energy combustion (i.e., fuel and gas); for farming, forestry, residential, offices, museum, and canteen and transport activity; and (iii) refrigerant gas leaks. Within the direct GHG removals were included the C-sinks related to the agricultural soil and the above-ground forest biomass growth. Below are indicated the methods adopted for accounting for the emissions sources. Further details were reported in the supplementary materials: emission factors (EFs) in Supplementary Table S9, and numbered [1–10] equations in Supplementary Table S10.
Different methods were involved for the estimations of the enteric methane emitted annually by cattle, horses, and wild fauna living within the Reserve. Specifically, the Tier 2 equation (Supplementary Table S10 [1]) proposed by IPCC (IPCC, 2019) was adopted for cattle. The IPCC Tier 1 EF (Supplementary Table S1) was involved for horses, while the equation (Supplementary Table S10 [2]) proposed by Smith et al. (2015) was used for wild animals (i.e., wild boars, fallow deer, and deer).
A Tier 3 approach involving the use of a process-based model named the Denitrification-Decomposition (DNDC) model (Li et al., 2000) was used for the assessment of GHG emissions (i.e., CH4, direct and indirect N2O) coming from the manure deposited on pasture by cattle (Grossi et al., 2020). A Tier 1 (Velthof, 2014; IPCC, 2019) approach was used for the estimations of the GHG from both horses and wild fauna’ manure (Supplementary Table S10 [3–4]).
The GHG emissions generated from the use of fuels (i.e., tillage and motor pumps) and natural gas (i.e., cooking in the canteen and heating office), were accounted for based on the annual consumptions provided by the Reserve and the EFs (Supplementary Table S9) provided by the Ecoinvent database (Wernet et al., 2016) and Bradbury et al. (2015), respectively. The estimation of the natural gas consumption of the several offices and museums placed inside the Reserve was estimated by a combination of primary data, equation (Supplementary Table S10 [5]) proposed by Moreci et al. (2016), and parameters indicated in De Rosa et al. (2015).
The GHG generated during the construction and maintenance of the paved road networks was accounted based on the area occupied by the Reserve’s roads and the EFs (Supplementary Table S9) proposed by Araújo et al. (2014).
The in-boundary transports have considered the use of vehicles inside the Reserve for (i) wild fauna monitoring and census (i.e., by cars), (ii) tourists (i.e., by shuttlebus and cars), (iii) food for canteens (i.e., lorries), (iv) commuting of employees and workers (i.e., by cars and buses), (v) policemen and firefighters’ patrols (i.e., by cars and lorries), and (vi) residents’ and other vehicles’ recorded activity (i.e., by cars). Annual distances traveled inside the Reserve were estimated for all types of in-boundary transports and different EFs (Supplementary Table S9) from the Ecoinvent database, and a bibliography was adopted in relation to the vehicle declared (Wernet et al., 2016; To et al., 2019).
The annual GHG emissions resulting from the refrigerant gas leaked from the fridges (i.e., canteen) and air conditioners (e.g., offices, museums, workshops, etc.) were accounted for based on the total number of devices, and the specific equipment’ gas leaks rates (Cowan et al., 2010; EPA, 2014) (Supplementary Table S10 [9]).
The annual GHG removals attributable to the agricultural soil C-sinks were quantified by using the DNDC model (Grossi et al., 2020). Differently, by assuming an equilibrium state (Demertzi et al., 2016; Peñaloza et al., 2019), the forest soil C-dynamics were not included in the CF. Ultimately, the annual C-sinks related to the annual above-ground forest biomass growth were estimated starting from the Reserve’s forest inventory data provided by Scrinzi et al. (2019).
Indirect Greenhouse Gas Emissions of Reserve
This category includes the GHG for the production, transportation, and end-of-life of goods (durable, and non-durable) functional to the Reserve activities but emitted outside its boundary. As for the direct ones, further details regarding EFs and equations involved in the assessment were reported in the Supplementary Tables S9, S10, respectively.
The GHG emissions generated by the electricity consumption from the Reserve activities (e.g., touristic attractions, offices, workshops, etc.) were calculated using the EF (Supplementary Table S9) referring to the Italian electricity mix provided by the Italian National Inventory of emissions (ISPRA, 2020).
The annual amount of electricity (kWh) was provided directly by the Reserve when available or estimated starting from the inventory of the electronic devices inside the building (e.g., lighting bulbs, air conditioners, PC, etc.) by following the approach (Supplementary Table S10 [6-7-8]) proposed by Tjandra et al. (2016). The annual amount of electricity (kWh) consumed by the residential sector (Supplementary Table S5) was extrapolated from average National statistics data (ISTAT, 2019).
The GHG emissions arising from the life cycle of the durable goods such: agricultural buildings and machinery (Wernet et al., 2016), paved roads (Araújo et al., 2014.), electronic devices (Wernet et al., 2016), and air conditioners (De Kleine, 2009) were accounted considering their potential lifespans. Regarding the non-durable goods, were included the GHG arising from the production of fossil fuel (Wernet et al., 2016), feed for livestock, seeds, and organic fertilizers for cropping (Adom et al., 2013; Wernet et al., 2016; Havukainen, 2018), meals (Wernet et al., 2016; Hanssen et al., 2017; Espinoza-Orias and Azapagic, 2018), kraft paper, and Low-Density Polyethylene (LDPE) used for the packaging (Wernet et al., 2016), printer paper (Wernet et al., 2016), and toners (Kara, 2010) (Supplementary Table S9).
All the GHG emissions generated by the out-boundary transports related to non-durable goods (including their disposal) were estimated considering the type of transports used, the weight carried, the distance driven, and the EFs (Supplementary Table S9) provided by Wernet et al. (2016). Furthermore, working with assumptions, it was possible to estimate the annual GHG emissions generated by the out-boundary transports related to the bus, minibus (Shorter, 2011), and cars involved in tourist activities (Supplementary Table S10 [10]). Particularly, because of the large involvement of organized excursions (e.g., school groups, elderly centers, etc.), it was assumed that all the visiting tourists reach the entrance of the Reserve by tour buses, which have a transporting capacity of 30 people transported for an average distance of 500 km (roundtrip). Regarding the out-boundary transport’ emissions associated with the cars, it was instead assumed that each car arriving at the park carries 2.5 people and drives for 300 km (roundtrip). The GHG emissions associated with the workers and employees commuting were accounted for as well. It was assumed an average commuting distance of 30 km, and that 75% of the employees/workers use their own car, and the remaining use public transport (i.e., bus). Finally, since the distance separating the security and firefighters’ headquarters from the Reserve was already accounted for within the annual kilometers provided by the related representatives, it was assumed that 85% of that distance was driven within the Reserve and the remaining 25% outside the boundary.
The GHG emissions arising from the end-of-life of durable goods, such as air conditioners (De Kleine, 2009), agricultural buildings and tractors (Wernet et al., 2016), and paved roads (Araújo et al., 2014), were assessed considering the associated lifespans. The end-of-life GHG contribution of non-durable goods like toners (Kara, 2010), Kraft papers and LDPE (Turner et al., 2015) to pack meals, and meal waste (Hanssen et al., 2017; Moult et al., 2018) were also accounted for.
Inventory Analysis and Impact Assessment
The annual emissions of CO2, CH4, and N2O were converted according to CO2e (equivalent) using the IPCC 100 years global warming characterization factors (IPCC, 2013), while characterization factors (100 years) provided by Tian et al. (2015) and EPA (2014) were used to convert in terms of CO2e gas leaks of the hydrofluorocarbons (HFCs).
The GHG sinks generated by the Reserve (reported separately from the active emissions) were quantified from the annual C-sinks related to both agricultural soils, and above-ground forest biomass growth. Specifically, the annual C-sinks were converted in CO2e considering the atomic weight of C and the molecular weight of CO2, therefore multiplying the amount of C by 3.67. The use of a DNDC model allowed us to account for soil GHG emissions and annual SOC dynamics (Grossi et al., 2020). Due to lack of data, the forest soil C stock changes were not accounted for and were assumed, according to the Tier 1 IPCC (2019) approach, to currently be in equilibrium (Demertzi et al., 2016; Peñaloza et al., 2019).
Nevertheless, the annual C stored by the growth of the aboveground woody biomass was included. Specifically, from the findings of Project ELITE/SIFTeC, which involved the use of Laser Imaging Detection and Ranging (LIDAR) and Geographical Information System (GIS), it was possible to obtain a detailed inventory of the whole forest area of the Reserve. Particularly, the live epigean biomass of the Reserve’ forest (given by the weight of the significant wood volume and the weight of the twig and foliage) exceeds 800,000 tons (in dry weight), and one million tons in fresh weight (Scrinzi et al., 2019). Therefore, by considering an average amount of 50% C content on wood dry biomass (Thomas and Martin, 2012), and an annual overall forest growth rate of 1.7% (value based on expert opinion), it was possible to account for the annual C sequestered by the aboveground forest biomass growth.
Uncertainty Assessment
According to the GHG protocol and Frischknecht et al. (2007), in all cases where measured single parameter uncertainties are unknown, a pedigree matrix (Weidema and Wesnaes, 1996) can be used to calculate uncertainties. Specifically, the data sources are assessed according to five Data Quality Indicators (DQIs): precision, completeness, temporal representativeness, geographic representativeness, and technological representativeness. Subsequently, each DQI is assigned a data quality rate (i.e., very good, good, fair, and poor), which is then used to estimate quantitatively the overall level of uncertainty.
The approach used in this case study has included a pedigree matrix for quantifying single parameter uncertainty, while a Taylor series expansion (Hong et al., 2010) has been adopted to propagate individual parameter uncertainties and to determine the overall system uncertainty (Bravo et al., 2017). The Taylor series expansion method requires the assumption that the uncertainty distribution for each input parameter is log-normally distributed.
An open-source tool2 developed by the WRI has been used for the quantitative uncertainty assessment of the annual GHG emission arising from the Reserve. Differently, the uncertainty range provided for the annual C-sinks rates coming from the agricultural soil (Grossi et al., 2020) and the aboveground forest growth (Scrinzi et al., 2019) were those reported by the authors of the estimations.
RESULTS
The Natural Reserve of Castelporziano generated a total CF of about 3,300 Mg of CO2e in 2018. The agricultural sector, with a 43.4% share, showed the largest incidence of overall CF (Figure 3). The GHG emissions generated from wild fauna (17.8%) and tourism activities (15.1%) were the second and third sources of GHG, respectively. Lower contributions accounted for paved road networks (5.6%); office, workshops and canteen activities (5.2%); residential sector (4.5%); security/vigilance services (4.1%); research activities (3.6%); and forest management (i.e., pruning) (0.7%).
[image: Figure 3]FIGURE 3 | Carbon footprint of the whole Reserve area including the incidence (%) of all sectors considered during the reporting year (2018).
Figure 4 shows the shares, both within the total and within each sector, of the direct and indirect GHG emissions, while Table 1 provides detailed information regarding the framework of the overall Reserve’s annual GHG emissions and removals.
[image: Figure 4]FIGURE 4 | Breakdown of the direct and indirect GHG emissions on the total Reserve’ carbon footprint and within each sector considered.
TABLE 1 | Overall GHG emissions and sink of the Reserve and incidence of the main emitting sources within each sector.
[image: Table 1]Greenhouse Gas Emissions From Direct Sources
The annual GHG emissions directly connected to the activities controlled by the Reserve accounted for 63% of the total CF. Specifically, wild fauna (99%), agricultural and livestock activities (92%), and forest management (59%) were the sectors where the direct GHG emissions contribute to the largest share (Figure 4).
Emissions generated by the agricultural sector were about 1,500 Mg CO2e, and, within it, enteric methane (44.6%) from cattle and N2O from soil (36.9%) were the main GHG contributors. Those arising from the wild fauna sector amounted to about 600 Mg CO2e year−1 and were almost totally (99%) attributable to the CH4 and N2O generated by the biological processes involving manure decomposition, and wild ruminant’ enteric methane (Table 1). Lastly, the forest sector generated about 22 Mg CO2e year−1, the combustion of the fossil fuel used for the pruning activities resulted as the main GHG source of the sector.
Greenhouse Gas Emissions From Indirect Sources
The annual GHG emissions indirectly connected to the Reserve’s activities accounted for 37% of the total CF. Individually, research activities (96%), paved roads network (96%), tourism activities (86%), residential sector (67%), and office, workshops, and canteens (63%) were the sectors where the indirect GHG emissions showed the largest incidence (Figure 4).
The GHG (i.e., about 500 Mg CO2e) from the touristic activities came mainly (about 82%) from the out-boundary transports. The raw materials extraction and mixtures production were the main (about 80%) hotspots of the total GHG emissions (180 Mg CO2e) arising from the life cycle of the paved roads (i.e., pre-construction, construction, maintenance, and end-of-life).
The overall activities related to the office, workshops, and canteen accounted for about 170 Mg CO2e. More than 50% of these emissions came from the out-boundary transports associated with the commuting of employees and business trips.
The GHG emissions arising annually from the residential sector were about 150 Mg CO2e, with the domestic’ electricity consumption being responsible for about 67% of this amount.
The whole annual activities associated with the security and vigilance services accounted for about 140 Mg CO2e. The in-boundary transports accounted for 40% of the sector, followed by the homemade meals consumed by the policemen (about 36%).
The out-boundary transports were the main GHG contributor (about 94% of 120 Mg CO2e) of the sector related to the research activities taking place within the Reserve.
Carbon Sinks
The C-sinks resulting from the annual forest above-ground biomass growth accounted for 6,840 Mg of C year−1, corresponding to about 25,000 Mg CO2e year−1. The oak wood (2,353 ha) and pinewoods (1,008 ha), due to the wide area taken within the Reserve, were the tree species showing the largest C- sinks contributions (Supplementary Table S8). The soil organic carbon (SOC) sequestered annually within the Reserve’s agricultural area (620 ha) due to the current soil management and grazing pasture was about 220 Mg of CO2e (Table 1).
DISCUSSION
The GHG emissions generated in 2018 from the whole Castelporziano Reserve sectors were about 0.55 Mg CO2e hectare−1. When including the agricultural soil and forest C-sinks in the CF assessment, the Reserve could be considered as an important CO2 sink that, in terms of net GHG emissions, in 2018 has stored about 3.7 Mg CO2e hectare−1, corresponding to a total of about 22,000 Mg CO2e removed from the atmosphere.
To successfully implement a green marketing strategy that engages the final consumers (tourists in this case) and makes it easier to understand the Reserve’ progress towards the environmental targets, the organizations need to effectively communicate and report their current achievements and future GHG reduction commitments. In this context, the GHG reporting standards defined by the ISO 14064–1, which propose to relate the GHG emissions and removals at organization levels (i.e., occurring within the system boundaries), are an effective way to communicate the progress achieved toward the sustainability. Nevertheless, this type of reporting becomes less suitable when comparing GHG emissions and removals generated by NPs characterized by different sizes. For this reason, in this paper, the GHG results were presented referring also to one representative hectare of the Reserve, a reference unit that lends itself well to cases where GHG comparations between parks different in size are needed.
According to Villalba et al. (2013), a different referring unit (i.e., GHG emissions/visitor-day) could potentially reflect better the annual CF, and the efficiency of the NPs in servicing the tourists. However, it is also true that, because of its potential large year-to-year variability, the application of this unit could fail in representing the effectiveness of specific mitigation strategies implemented during the year. Therefore, although other referring units can be developed and integrated to the one proposed by the ISO 14064–1, the authors agreed that the organization-level and the representative-hectare are the most effective in communicating the environmental goals and in comparing GHG results, respectively.
By providing both a general and a detailed picture of the GHG annually emitted by a system embedding a wide range of physical, chemical, and biological activities, the methodological approach proposed in this study has proved to be suitable in evaluating the CFs of such complex environments. Although characterized by different sizes and incidence, the sectors (e.g., residential, agriculture, public transportations, offices, etc.) included in the CF of the Reserve can be treated similarly to other systems different from NPs. Indeed, due to their analogies, the methodological approaches and the guideline proposed in this study could be suitable also for an estimation of the GHG sources/sinks, which are normally associated with cities and/or productive districts.
Greenhouse Gas Emissions From Direct Sources
When looking at the possible mitigation strategies that could be implemented, the direct GHG emissions are the ones where organizations should focus more considering the larger control exercised on them. However, in the specific case of the Reserve, where the main direct GHG emissions sources have biological origins (i.e., enteric and soil emissions), the reduction strategies need to consider complex interactions between climate, soil, and livestock in order to be really effective.
The losses in gross energy intake associated with the enteric methane of cattle resulted in a consistent contribution (19.4%) to the overall Reserve GHG emissions (Vitali et al., 2018). In pasture-based cattle farming like that investigated in this study, the adoption of adequate pasture management combined with the provision of high-quality hay (when grazing is not feasible) could potentially reduce the enteric CH4 emissions. The lignin content of the forage, which increases during plant maturity, is an aspect that severely affects enteric methane production by reducing plant digestibility and altering nutrient density (Thompson and Rowntree, 2020). Therefore, harvesting forage at an earlier stage of maturity is a practice that could effectively contribute to the reduction of this GHG emission source.
As concern the pasture management instead, the adoption of continuous grazing systems could potentially lead to overgrazing issues, which in turn could reduce plant diversity and increase undesirable or low-quality forages (Thompson and Rowntree, 2020). On the contrary, low-to-moderate grazing density prolonged for a limited time (i.e., rotational grazing) can directly stimulate biomass regrowth, carbon sequestration, and better land utilization (Byrnes et al., 2018). Indeed, the more uniform nitrogen excreta distribution resulting from greater control of the stocking density and grazing duration has been demonstrated to reduce soil N2O emissions (Eckard et al., 2010).
Greenhouse Gas Emissions From Indirect Sources
The out-boundary transports represented about 19% of the overall annual Reserve CF and more than 50% of the total indirect GHG emissions. Generally, within the sectors where transports are the biggest source of GHG emission, exploring a flexible way of working, and engaging people (e.g., tourists, workers, and employees) in reducing travel and commuting, could represent a good mitigation opportunity (McKinnon and Piecyk, 2012). This source of emission is a complex task to reduce and can only be accomplished with the agreement and participation of the stakeholders. For example, the organizations can encourage the use of public transport by offering free shuttle bus from nearby stations to their offices, or a discount on the entrance ticket to the tourists that reach the park using sustainable transports (e.g., public transport, electric vehicle, bicycle, etc.).
The Reserve’s electricity consumption accounted for 16% of the Reserve’s indirect GHG emissions. In this regard, a greater use of energy-saving light bulbs (e.g., in the office, museums, etc.), an optimal thermostat temperature setting of the air-conditioning in the office rooms (Mardookhy et al., 2014), or the switch to a totally renewable energy supply (Amponsah et al., 2014), are just some examples that could be effective in reducing the overall contribution of this scope. However, to reliably quantify the effectiveness of these sector-specific GHG mitigation strategies, attention shall be given to the inventory data collection.
In this context, an effective data lifecycle management based on the digitalization of the key input and output data could help NPs in both keeping track of the information that might make a significant difference in terms of environmental performance and in evaluating the effect of minor sector-specific mitigation strategies that otherwise could remain undetected. In presence of detailed and granular data (e.g., out-boundary distance driven, type of meals, number and type of lighting bulbs, etc.) it becomes then possible to quantify the benefits of equally detailed and granular mitigation strategies (e.g., a more efficient commuting, pattern diet shifts, greater use of energy-saving light bulbs, etc.). This is especially important when assessing those activities resulting in a significant contribution within each sector.
Carbon Sinks
The incidence of the forest sector on the overall Reserve’s CF becomes extremely significant when considering the related GHG sinks dynamics. Indeed, the forest plays a strategic role in carbon balance (Nunes et al., 2019), and protected natural areas can be effective in both preventing conversion of land uses and implementing mitigation strategies. For instance, providing sufficient time for forests to recover, reducing the intensity of each cut (Zhou et al., 2013), replacing dying or low productivity stands, protecting young sprouts from damage after harvest, and planting tree mixes that are more resilient (Bellassen and Luyssaert, 2014) are just some examples of managements that could help enhancing forest C storages.
Wildlife is integral to the life of the forest, and it is therefore normal for animals to feed there and leave signs of their presence. However, animals can cause damage to their environment, ranging from few minor depredations to severe ecological damage that reflects an overall imbalance. Wild boars are effective soil disturbers since, if soil conditions are favorable, they can root to a depth of 1 m (Tyler and Long, 2009). This bioturbation, by breaking up aggregates and aerating the soil, may have negative consequences for forest SOC stocks and can thus cause side effects for the global C cycle and climate change (Liu et al., 2020). Browsing (removal and consumption of young shoots) by cervidae (e.g., deer and fallow deer) is another problem that may affect forest regeneration (Moore et al., 2000), and then the aboveground C-sinks potential of trees. In this context, using a fencing system to prevent wild animals from reaching vulnerable areas is an effective way to prevent damage. Fencing can be permanent or temporary depending on the severity of the damage and seasonal patterns. Furthermore, a reliable census is crucial for any effective resource management or wild animal population control (Franzetti et al., 2012).
In terms of agricultural soil management instead, the adoption of less soil-invasive tillage practices could increase the current annual agricultural soil C-sink rates, which in turn could decrease the overall incidence of this sector on the total. In fact, a switch from the current Reserve’ soil tillage practices (i.e., 30 cm plowing) to no-tillage ones, showed a significant potential reduction (26%) of the GHG emissions arising from the beef cattle rearing (Grossi et al., 2020), which in turn has the potential to reduce the overall Reserve CF by about 8.5%.
CONCLUSION
To the best of our knowledge, the present study could be considered the first cradle-to-grave Carbon Footprint of a National Park. The proposed methodology is both feasible and suitable in terms of providing a granular picture of the main GHG emission sources and sinks of the Castelporziano Natural Reserve. Although anthropogenic activities such as agriculture and tourism are the main GHG sources within National Parks, mitigating solutions are possible to improve their sustainability. Moreover, the contribution to the C-sink of the protected natural areas may be considered strategic in planning adaptation and mitigation strategies at the country level.
The National Parks, by providing annual Carbon Footprint reports, may both effectively inform public opinion of their contribution to Climate Change and monitor the impact of the adoption of new specific mitigation policies. Finally, the guideline proposed in this paper could be the starting point for developing a widely accepted standard procedure to be followed to obtain environmental declarations (i.e., eco-labeling) for National parks.
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Winter oilseed rape is traditionally established via plough-based soil cultivation and conventional sowing methods. Whilst there is potential to adopt lower cost, and less intensive establishment systems, the impact of these on greenhouse gas emissions have not been evaluated. To address this, field experiments were conducted in 2014/2015 and 2015/2016 to investigate the effects of 1) crop establishment method and 2) sowing method on soil greenhouse gas emissions from a winter oilseed rape crop grown in Ireland. Soil carbon dioxide, nitrous oxide and methane emission measurements were carried out using the static chamber method. Yield (t seed ha−1) and the yield-scaled global warming potential (kg CO2-eq. kg−1 seed) were also determined for each management practice. During crop establishment, conventional tillage induced an initially rapid loss of carbon dioxide (2.34 g C m−2 hr−1) compared to strip tillage (0.94 g C m−2 hr−1) or minimum tillage (0.16 g C m−2 hr−1) (p < 0.05), although this decreased to background values within a few hours. In the crop establishment trial, the cumulative greenhouse gas emissions were, apart from methane, unaffected by tillage management when sown at a conventional (125 mm) or wide (600 mm) row spacing. In the sowing method trial, cumulative carbon dioxide emissions were also 21% higher when plants were sown at 10 seeds m−2 compared to 60 seeds m−2 (p < 0.05). Row spacing width (125 and 750 mm) and variety (conventional and semi-dwarf) were found to have little effect on greenhouse gas emissions and differences in seed yield between the sowing treatments were small. Overall, management practices had no consistent effect on soil greenhouse gas emissions and modifications in seed yield per plant countered differences in planting density.
Keywords: crop management, tillage, row spacing, seed rate, variety, GHG (greenhouse gases), oilseed rape
INTRODUCTION
Atmospheric concentrations of the greenhouse gases (GHG) carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) continue to rise globally due to anthropogenic activities. Agriculture is responsible for approximately 12% of global GHG emissions with livestock systems, soil cultivation, rice production and crop residue management making the more significant contributions (Ciais et al., 2014). In terms of land use impacts, croplands make one of the major contributions to agricultural GHG emissions through various farming and management activities. Field operations such as soil tillage, sowing, fertilizer addition and chemical treatment that are normally required to maximize plant productivity and yield can have significant impacts on GHG emissions through perturbations in the carbon (C), nitrogen (N) and water dynamics of these ecosystem (Bondeau et al., 2007; Osborne et al., 2010). Mitigation of GHG emissions from agricultural sources involves measures that aim to increase soil organic carbon (SOC) sequestration, reduce GHG emission rates, or both, through improved management practices (Smith et al., 2007; Minasny et al., 2017; Ogle et al., 2019). Cropland management practices that involve the adoption of less intensive soil cultivation and agronomic interventions that improve agricultural productivity may can lead to reductions in GHG emissions and determine whether these ecosystems function as sinks or sources of C (Ceschia et al., 2010).
Soil CO2 is produced by autotrophic and heterotrophic processes. Autotrophic respiration is derived from roots and/or the metabolism of photosynthetic substrates released by roots (Högberg and Read, 2006) whereas heterotrophic respiration is associated with the microbial decomposition of SOC or root exudates (Trumbore, 2000). Agriculture accounts for ∼60% of the global anthropogenic N2O emissions primarily due to increased N-fertilizer use (Smith, 2017), with croplands accounting for at least 80% these emissions (Tian et al., 2019). Nitrous oxide production in soils arise from nitrification; the conversion of ammonium (NH4+) to nitrite (NO2−) and subsequently nitrate (NO3−) in aerobic soils, and denitrification, the sequential reduction of NO3− to gaseous N2O or N2 in anaerobic soils (Butterbach-Bahl et al., 2013). The soil-atmosphere exchange of CH4 is largely governed by the balance between net CH4 production by methanogens and net CH4 oxidation/uptake by methanotrophs (Serrano-Silva et al., 2014). Although upland arable soils are generally aerobic and considered CH4 sinks, intensive soil management practices have reduced the capacity of many soils to oxidise CH4 (Suwanwaree and Robertson, 2005). Land management practices thus often govern whether cropland soils are net sinks or sources of GHGs (Ceschia et al., 2010).
Tillage and sowing are management practices that influence crop establishment, plant growth, nutrient uptake, canopy/soil microclimate and yield (Sharratt and McWilliams, 2005; Malhi et al., 2006; Soane et al., 2012), and subsequently impact on C and N and the GHG balance in croplands (Ceschia et al., 2010; Moors et al., 2010). Conventional tillage (CT) encompasses soil inversion, and crop residue incorporation, facilitating seedbed preparation for the succeeding crop. However, CT practices result in the mechanical disruption of soil aggregates and the release of protected organic C from soil organic matter (SOM) resulting in enhanced CO2 emissions. Altering the turnover rate of SOM can directly impact C sequestration and the emissions of CO2, N2O and CH4 (Six et al., 2004; Abdalla et al., 2013; Abdalla et al., 2016; Shakoor et al., 2021). Agricultural practices that minimize or reduce tillage operations can increase soil aggregate formation potentially retaining ∼30% of crop residues on the soil surface increasing nutrient availability and reducing soil erosion (CTIC, 2004). These practices include minimum tillage (MT), involving shallow cultivation to a depth of 5–10 cm, and strip tillage (ST), combining cultivated strips (25 cm depth) with direct drilling whilst leaving the inter-row spaces unaffected, have been promoted as alternative management practices to CT (Davies and Finney, 2002; Morris et al., 2010) that could reduce GHG emissions and increase C sequestration. In combination with these approaches crop residues may also be retained on the soil surface to protect the C in soil aggregates. The argument being that these non-inversion tillage systems will reduce the exposure and subsequent oxidation of SOC and lower GHG emissions.
In addition to CO2, soil tillage can also affect the emissions of N2O and CH4. Both N2O and CH4 have global warming potentials (GWP) that are 265 and 28 times higher than CO2, respectively (Myhre et al., 2013). In some cases, reductions in CO2 emissions that have been attributed to a particular tillage management may be off-set by increases in the emissions of N2O (Six et al., 2004). The rate of N2O production is controlled by factors that are affected by tillage intensity, such as the soil water-filled pore space (WFPS), soil organic C availability and temperature (Butterbach-Bahl et al., 2013). The reported effects of RT operations on N2O emissions are equivocal, showing either increases (Ball et al., 1999; Shakoor et al., 2021), decreases (Kessavalou et al., 1998; Chatskikh and Olesen, 2007; Ussiri et al., 2009) or similar N2O emissions (Abdalla et al., 2010; O’Neill et al., 2020).
Methane fluxes are regulated by factors such as soil moisture, temperature, oxygen availability, SOM content and C and N availability (Jacinthe and Lal, 2005). Therefore, tillage practices, through their effects on soil physicochemical properties, can influence net CH4 emissions (Hütsch, 1998). Well-aerated soils with higher oxygen availability that facilitate CH4 diffusion to methanotrophic sites tend to have higher rates of CH4 uptake than poorly drained soils that restrict CH4 oxidation (Prajapati and Jacinthe, 2014). Soils may also differ in their capacity to oxidise methane, however, the mechanism(s) involved is not fully understood (Lang et al., 2020).
Oilseed rape (Brassica napus L.; OSR) is the third most important oil crop in the world after oil palm and soybean (FAOSTAT, 2021). The winter OSR variety is predominantly cultivated in temperate climatic regions of Europe, where the mean yield of winter and spring OSR varieties (2.7 t ha−1) consistently exceed the global average (2.1 t ha−1) (FAOSTAT, 2021). In Ireland, WOSR is cultivated as a break crop in cereal production systems on ∼10,000 ha annually (Zahoor et al., 2015; CSO, 2020) and traditionally established via CT sowing operations (Forristal and Murphy, 2010). Compared to CT practices, the crop area under reduced tillage in Ireland is small at 40,000 ha (Meade and Mullins, 2005) although there is increasing interest by growers in the adoption of RT approaches for crop establishment for environmental and economic reasons.
Several studies have quantified GHG emissions from WOSR and/or canola systems. Management practices varied considerably between these experiments spanning 3 decades of research where the soil was cultivated by CT, RT or NT practices or the crops were established using a wide range of row spacing’s and seed rates (Table 1; Walter et al., 2015 and references therein). Another confounding factor in previous studies is that the chambers used for GHG emission measurements were either placed in the inter-row space between plant rows or enclosed both the plant row and inter-row areas. This could complicate an assessment of the impact of different management practices as the presence of plants could directly or indirectly have an impact on GHG emissions. Given the broad range of management practices used it is also difficult to generalize about the reason(s) for any observed differences in GHG emissions.
TABLE 1 | Management practices and GHG emission measurement methodologies as described in previous studies of OSR.
[image: Table 1]Other agronomic management practices, such as row spacing and seed rate, are often optimized by growers to encourage rapid plant emergence, canopy closure and development from sowing to harvest. Crop row spacing and plant density influence canopy architecture, which affects solar radiation interception, and the utilization of water and nutrients. Increasing row width and/or reducing the seed rate may expose surface soils to increases in solar radiation, precipitation and wind, resulting in microclimate-related modifications in soil temperature and moisture that influence GHG emissions.
Although there are some studies that have examined the link between WOSR yields, tillage practice, row spacing or seed rate (Christian and Bacon, 1990; Vann et al., 2016) the link between cultivation practices, GHG emissions and yield has not yet been examined. The objectives of this study were to examine the effects of: 1) non-inversion tillage and row spacing, 2) row spacing and seed rate, using two WOSR cultivars, on CO2, N2O and CH4 emissions, compared to the conventional management practice typically used on Irish farms (CT; 125 mm row spacing, 60 seeds m−2). Given the importance of agronomic practices that can contribute to GHG mitigation whilst having no yield penalty we also assess the effects on GWP per unit of yield (i.e., the yield-scaled GWP) in different WOSR cultivation systems.
MATERIALS AND METHODS
Experiment 1: Crop Cultivation
The different cultivation treatments (“Exp. 1”) were established in the Hockey field at Knockbeg (52°51′42″N, 6°56′28″W) around 5 km from the Teagasc Crops Research Facility in 2014/2015 (Figure 1B). The soil at this site is a sandy loam-to-loam texture (Conry, 1987) and before cultivation had been under a permanent pasture for at least 10 years. Since the 1990s the site has been under CT with continuous crop cultivation (van Groenigen et al., 2011).
[image: Figure 1]FIGURE 1 | Geographical overview of Ireland (A) and the locations of the study sites in (B) Knockbeg, Co. Laois and (C) Goresbridge, Co. Kilkenny, with the surrounding agricultural land uses (Google Earth; created on 31st July 2021). Orange lines indicate the location of the experimental trial plots.
Winter oilseed rape (Brassica napus L. cv. Compass) was cultivated using CT, strip tillage (ST) and MT. The CT treatment consisted of a primary cultivation, soil inversion to a depth of 200–250 mm, with a 5-fin mouldboard plough followed by one pass of a roller to consolidate the soil after ploughing. Secondary cultivation (power harrowing) was performed immediately prior to sowing the seed. The ST treatment is a modified non-inversion tillage technique where strips of soil (200 mm) are cultivated to the conventional plough depth (200–250 mm) whilst the inter-row spacing between plants is left uncultivated with the previous crop residue retained on the soil surface (He-va Sub-Tiller, Denmark). The MT treatment consisted of non-inversion soil cultivation to a depth of 100–125 mm using a stubble cultivator with tines spaced 300 mm apart followed by leveling discs and a cage roller (Horsch, Terrano FX3, United States). A dynamic 3 m cultivator drill (Vaderstad, Rapid 300S, Sweden) capable of working in a range of seedbed types delivered seed through individual hydraulic metering units to a disc coulter.
Plants were sown at a rate of 60 seeds m−2 at two row spacing’s, 125 and 600 mm, giving a total of five treatments as there was no 125 mm spacing for the ST treatment. The treatments (25 m × 5 m) were laid out in a randomised block design with four replications. Calcium ammonium nitrate (CAN) was applied in two split applications of 76 kg N ha−1 (March 16, 2015) and 150 kg N ha−1 (April 1, 2015). Management details are listed in the Supplementary Table S1 of the Supplementary Information. The crop was harvested on the August 8, 2015.
Experiment 2: Sowing Treatments
The sowing treatments (“Exp. 2”) were established in a privately-owned field in Goresbridge, Co. Kilkenny (52°38′8″N, 7°0′43″W) in 2015/2016 (Figure 1C). The soil is a loam texture and has been under continuous wheat cultivation for >10 years. The field was cultivated by deep MT (200–250 mm) (Horsch, Terrano Simba, United States) on the August 22, 2015 and conventional (cv. Compass: C) and semi-dwarf (cv. Troy: T) varieties of WOSR were sown on the August 31, 2015. Plants were sown at four row spacing’s (125, 250, 500 and 750 mm) and four seeding rates (10, 15, 30 and 60 seeds m−2). The experiment was a laid out in a randomised split-plot design with four replications. The main plots (variety) were divided into sub-plots (30 m × 5 m) each containing a combination of different row spacings and seed rates. For logistical reasons, only eight treatments that considered the row spacing/seed rate “extremes” were examined in this study: 1) C125/10, 2) C125/60 (control), 3) C750/10, 4) C750/60, 5) T125/10, 6) T125/60, 7) T750/10 and 8) T750/60. Nitrogen fertiliser (188 kg N ha−1) was supplied in three split applications: 53 kg ha−1 ammonium sulphate nitrate, 80 and 55 kg N ha−1 (both CAN). Fungicide, insecticide and herbicide were applied throughout the season and the crop was harvested on the July 29, 2016. Further management details are listed in Supplementary Table S1 of the Supplementary Information. Soil chemical properties for each site are described in Table 2.
TABLE 2 | Soil chemical properties for each site.
[image: Table 2]Soil CO2, N2O and CH4 Emission Measurements
Circular stainless-steel collars (225 mm ∅, area = 0.03 m2) with rubber gaskets were inserted into the inter-row spacing (100 mm depth) of all cultivation treatments. Soil CO2 emission measurements were carried out using an infrared gas analyzer (EGM-4, PP Systems, United Kingdom) by slowly sealing an unvented chamber (0.0034 m3) onto a rubber O-ring gasket lining the collar. The enclosure time was 120 s with readings taken every 20 s. After sampling, the chamber was removed, and the CO2 concentration was allowed to equilibrate before placement on the next collar. Gas accumulation was linear within the headspace and measurements with R2 > 0.8 were retained for analysis (Widén and Lindroth, 2003). Additionally, in Exp. 2, four PVC Collars (160 mm ∅) were inserted into bare soil which had plants removed adjacent to the main experimental plots to estimate soil basal/heterotrophic respiration (Rh).
Emissions of N2O and CH4 were measured using the manual closed chamber method (Chadwick et al., 2014). Accumulation of N2O within the chamber headspace, measured at four time points over 1 hour (T0, T20, T40, T60), was determined to be linear on 84% of occasions (O’Neill et al., 2020). The unvented chambers (above) were sealed onto the collars for an enclosure period of 40 min (T40) and sampling carried out between 9.00 and 13.00 h (Barton et al., 2015). The chambers were covered with aluminium foil to prevent solar radiation induced temperature changes inside the headspace during the enclosure period.
For gas sampling, headspace air was withdrawn through a stopcock fitted to the chamber vent using a 20 ml polypropylene syringe (BD Plastipak, Spain). The chamber headspace was mixed by flushing air slowly with the syringe plunger twice prior to the withdrawal of the gas sample. Using a hypodermic needle, samples were immediately transferred into pre-evacuated 7 ml glass exetainers (Sigma-Aldrich, United Kingdom) fitted with double wadded septa (Labco, High Wycombe, United Kingdom). The exetainers were injected with a 12 ml sample to create an overpressure and prevent back diffusion of ambient air during storage. Four ambient air samples were also taken near ground level before and after each sampling occasion to obtain a surrogate time zero (T0) sample for each chamber (Chadwick et al., 2014; Charteris et al., 2020). Sampling frequency was increased during the period of fertilizer application: four times per week for 2 weeks, then twice a week for 2 weeks, then once a week until harvest. Additional samples were taken before or after precipitation events, which are known to stimulate denitrification (Butterbach-Bahl et al., 2013).
Analysis of N2O and CH4 concentrations were carried out with a Gas Chromatograph with a 63Ni electron capture detector (ECD) at 60°C with a flame ionization detector (FID) at 300°C (Bruker Scion 456, Germany). Samples were injected into the GC using a Combi-PAL auto-sampler (CTC Analytics AG, Switzerland). Results were expressed in parts per million by volume (ppmv).
Daily GHG emissions were calculated using the Eq. 1:
[image: image]
where ∆C/∆t is the rate of change of CO2 (To to T2; IRGA) N2O and CH4 concentration (T0 to T40; GC), where ∆C is the change in concentration of the gas in the headspace volume (ppmv or ppbv), ∆t is the enclosure time period (minutes), MW is the molar mass of CO2-C (12 g), N2O-N (28 g) or CH4-C (12 g), P is the atmospheric pressure at the time of sampling (Pa), R is the gas constant (8.314 J mol−1 K−1), T is the air temperature at the time of sampling (K), V is the headspace volume within the chamber (m3) and A is the area covered by the base (m2). Cumulative GHG emissions (±SE) were calculated by trapezoidal integration of the daily means.
The global warming potential (GWP) was calculated for each management practice by converting N2O and CH4 emissions to CO2 equivalent emissions (CO2-eq.) for a 100 years time horizon. The radiative forcing potential used relative to CO2 was 265 for N2O and 28 for CH4 (Myhre et al., 2013). Yield-scaled GWP was calculated by dividing the CO2-equivalent emissions by the seed yield (harvested at 9% moisture) and expressed in units of kg CO2-eq. kg−1. The contribution of CO2 to GWP was excluded based on: 1) the assumption that the soil CO2-C efflux was largely off-set by high rates of net primary productivity (C input) and biomass removal at harvest (C export) (Smith et al., 2007) and 2) the absence of accurate crop residue (straw and root C) data to quantify the annual change in SOC (Mosier et al., 2006).
Soil and Climatic Measurements
Soil mineral N (NH4+ and NO3−) concentrations were determined during the spring-summer growth period. Soil cores (0–10 cm depth) were taken weekly after fertilization for 1 month and every 3–4 weeks thereafter until harvest. Soils were initially stored at 4°C and extracted either on the same day of collection, or within 24 h, using 2 M KCL at a ratio of 5:1 (v:w) water: soil (Maynard et al., 1993). The NH4+ and NO3− concentrations of the extract were analyzed with an Aquakem 600 discrete analyzer (Thermo Fisher Scientific, United States).
Soil volumetric moisture content (%) (GS3, Decagon Devices, United States) and soil temperature (oC; Exp. 2 only) (ELE International, Bedfordshire, United Kingdom) were measured (50–100 mm depth) in the inter-row spacing adjacent to the collars. Water-filled pore space (WFPS) was calculated using Eq. 2:
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where Bd is the bulk density measured at the soil surface (70 mm depth) and Pd is particle density estimated at 2.65 g cm−3 (Linn and Doran, 1984).
Climatic measurements of mean air temperature (oC), atmospheric pressure (Pa), rainfall (mm) and soil temperature (oC) were taken from the Met Eireann automated weather station at Oakpark, Co. Carlow, Ireland, which was located 5 km from the Exp. 1 and 30 km from the Exp. 2 sites.
Statistical Analysis
Statistical analysis was conducted using SAS 9.4 (Cary, NY, United States) and R software (R 3.6.1, R Core Team, 2019). Normality and homogeneity of variance were checked using histograms and residual graphs. Where necessary, log or square root transformations (y or y + constant) were applied to data to achieve homogeneity of variance. For Exp. 1, the PROC GLIMMIX procedure in SAS was used to test for differences between the treatments. Tillage (CT, MT, and ST) and row spacing (125 and 600 mm) were the main effects. To account for the missing treatment (i.e., ST125) in the model, additional parameters were created, each with two levels: a “Nested Group” (Factors = CT + MT; Single = ST) and a “Variable Group” (1 = CT125, 2 = all others). The _residual_ option was used in the RANDOM statement. Significant pairwise differences were determined according to the simulate post-hoc test (p < 0.05). For Exp. 2, a linear-mixed effects model (lmer) in the “lme4” (Bates et al., 2012) and “lmerTest” packages (Kuznetsova et al., 2017). Variety (cvs. Compass and Troy), row spacing (125 and 750 mm) and seed rate (10 m−2 and 60 m−2) were set as the main effects with block and block x variety set as the random effects. Model effects were examined using the emmeans function (Lenth, 2019) where ANOVA and pairwise comparisons (normal and back-transformed data) were examined by the Tukey method at a significance level of p < 0.05. Plots were made using the “ggplot2” package in R (Wickham, 2016).
RESULTS
Crop Cultivation
Meteorological data was similar for both sites during the gas measurement periods (Figure 2). The mean air temperatures were 10.9°C (2.9–19.9°C) and 11.0°C (3.6–19.8°C) for Exp. 1 and Exp. 2, respectively. Cumulative rainfall was similar from the period of 27th February to 22nd July each year in Exp. 1 (261 mm) and Exp. 2 (265 mm), representing 28 and 37% of the annual rainfall, respectively. During the growing seasons, the wettest months for Exp. 1 and Exp. 2 were May (90 mm) and April (64 mm) whilst the driest months were April (26 mm) and July (24 mm), respectively.
[image: Figure 2]FIGURE 2 | Daily air temperature (blue line) and rainfall (grey bars) recorded from the automated weather station at Oakpark covering the 2-year period from sowing in Exp. 1 to harvest in Exp. 2 (August 2014–August 2016). The shaded red areas indicate the gas measurement periods in Exp. 1 (17/03/2015 – 21/07/2015) and Exp. 2 (27/02/2016 – 22/07/2021).
A rapid loss of CO2 was observed after the implementation of CT (maximum recorded value of 2.34 g C m−2 hr−1) at a rate 2.5 times that of ST (maximum recorded value of 0.94 g C m−2 hr−1) and 14.6 times that of MT (maximum recorded value of 0.16 g C m−2 hr−1) (Figure 3). These decreased rapidly to 0.16 g C m−2 hr−1 (CT) and 0.07 g C m−2 hr−1 (ST) after the tillage events and then remained largely stable for the rest of the measurement period. Excluding the anomalously high value found in the MT treatment after 3 days, the daily soil CO2 emissions ranged from 0.04 to 1.38 g C m−2 h−1 across all treatments during the 12 days period.
[image: Figure 3]FIGURE 3 | Soil CO2 efflux after the initial soil cultivation event for conventional tillage (CT), strip tillage (ST) and minimum tillage (MT) over a 12-day period. The inset plot illustrates the soil CO2 efflux of CT, ST and MT up to 5 h after the initial soil cultivation.
Daily soil CO2 emissions where generally higher during the early part of the growing season and showed two peaks, each occurring around 7 days after the first and second N fertilizer applications, respectively (Figure 4A). Soil CO2 emissions tended to be greater in the CT125 system with maximum daily emissions of 4.0 and 4.2 g C m−2 d−1. The emissions of CO2 converged towards similar values in all systems by mid-April until June, where the mean CO2 loss was 1.16 ± 0.07 g C m−2 d−1. Higher CO2 emissions were generally observed between 32 and 70% WFPS, with a tendency for lower emissions under both drier (25% WFPS) and wetter (85% WFPS) conditions. Cumulative CO2 emissions were not significantly affected by the crop cultivation treatment, with values ranging from 1,083 to 1,683 kg C ha−1, although higher CO2 emissions were generally found in the 125 mm row spacing treatment (Table 3).
[image: Figure 4]FIGURE 4 | Soil CO2, N2O and CH4 emissions for each crop establishment system in Exp. 1: conventional tillage at 125 (CT125) and 600 mm (CT600) row spacing, minimum tillage at 125 (MT125) and 600 mm (MT600) row spacing, and strip tillage at 600 mm row spacing (ST600). Vertical dashed lines indicate fertilizer application and vertical lines on each data point represent the standard error of the means.
TABLE 3 | Cumulative GHG emissions, seed yield and yield-scaled GWP for Exp. 1.
[image: Table 3]Slight increases in N2O were observed in the ST600 system (11.6–27.3 g N ha−1 d−1) ca. 10 days after the first fertilization (Figure 4B). The highest N2O emissions were observed in the MT125 (53.8 g N ha−1 d−1), MT600 (62.8 g N ha−1 d−1) and ST600 (70.0 g N ha−1 d−1) treatments 4 days after the second N application and a second peak occurred in the ST600 (69.3 g N ha−1 d−1) treatment 2 days later. These were observed at 72–79% WFPS when the soil temperature was >10°C (Supplementary Information, Supplementary Figure S1), however, the majority of the N2O emissions occurred across a wide range of WFPS (25–90%) (Figure 4B). Maximum N2O emissions were lower in the CT125 and CT600 treatments, with values of 30.5 and 18.5 g N ha−1 d−1, respectively, occurring 58 days after fertilization. There was no significant effect of tillage or row spacing on the cumulative N2O emissions, with values ranging from 0.81 to 2.05 kg N ha−1 (Table 3).
Daily CH4 emissions displayed similar temporal patterns and ranged from −10.7 to 5.4 g C ha−1 d−1 (Figure 4C). Net CH4 emissions preceded by significant uptake of CH4 were observed after the second N application. With some exceptions, net CH4 uptake was generally sustained until June. For the cumulative CH4 uptake values, a significant tillage x nested effect (p < 0.05) was observed with a 55% increase in uptake in the CT (−0.34 ± 0.03 kg C ha−1) compared to the MT systems (−0.22 ± 0.03 kg C ha−1), with the total CH4 uptake in the ST treatment midway between the CT and MT treatments (Table 3).
Sowing Treatments
Daily GHG emissions for the two WOSR varieties are illustrated in Figure 5. Transient fluctuations in soil CO2 emissions were found during the season, ranging from 0.11 to 3.20 g C m−2 d−1 (Figure 5A), with no clear seasonal trend. Nitrogen fertilizer application tended to initially suppress CO2 emissions, which was followed by increases in CO2 emissions 1–2 weeks later. Soil CO2 emissions increased temporarily in the 125/10 and 750/10 plots in June, however, little variation existed between sowing treatments during the main growing season.
[image: Figure 5]FIGURE 5 | Soil CO2, N2O and CH4 emissions for each sowing method treatment in Exp. 2: the conventional (“cv. Compass”) and semi-dwarf (“cv. Troy”) biomass varieties sown at 125 mm or 750 mm row spacing with 10 or 60 seeds m−2. Vertical dashed lines indicate fertilizer application and the vertical lines on each data point represent standard error of the means.
Daily soil N2O emissions were clearly associated with N fertilizer applications (Figure 5B). Higher N2O emissions were found from the cv. Troy plots particularly the 125/10 treatment, and were also observed for soil temperatures >10°C and WFPS values approaching 80% (Supplementary Information, Supplementary Figure S1). Nitrous oxide emissions fell to background rates around 1 month after the final N application.
Daily soil CH4 emissions ranged from −38.2 to 26.3 g C ha−1 d−1 across all sowing treatments (Figure 5C). Low net CH4 uptake rates occurred after mineral N was applied to the soils. The sharp increase in CH4 uptake in April coincided with a decrease in soil NH4+ and NO3− concentrations in late-April (Supplementary Information, Supplementary Figures S2, S3). Several treatments associated with the Compass and Troy cultivars displayed transient net CH4 emission peaks but, in general, there was a consistent trend of increasing net CH4 uptake towards the summer months. The highest net CH4 uptake rates occurred within a narrow temperature range of 13–15°C but a broader range (26–45%) of WFPS. Combining the data from Exp. 1 and Exp. 2, WFPS explained around one quarter of the variance (R2 = 0.29) in the CH4 emissions (Supplementary Information, Supplementary Figure S4). Neither the cumulative N2O nor CH4 emissions were affected by row spacing, seed rate or variety (Table 4).
TABLE 4 | Cumulative GHG emissions, seed yield and yield-scaled GWP for Exp. 2.
[image: Table 4]Yield and Yield-Scaled GWP
Seed yields were unaffected by crop cultivation treatment, canopy management or sowing method (Tables 3, 4). Yields averaged 4.98 t seed ha−1 in Exp. 1 and 4.56 t seed ha−1 in Exp. 2. Yield-scaled GWP values ranged from 0.06 to 0.16 kg CO2-eq. kg−1 in Exp. 1 and 0.05–0.19 kg CO2-eq. kg−1 in Exp. 2. In the latter experiment, the mean yield-scaled GWP of cv. Troy (0.12 kg CO2-eq. kg−1) was double that of the cv. Compass sown plots (0.06 kg CO2-eq. kg−1) (p < 0.05).
DISCUSSION
Crop Management and GHG Emissions
In this study, short-term CO2 emissions after tillage operations were characterized by an initially rapid increase followed by a fast exponential decline (Figure 3). The CT treatment resulted in a maximum CO2 efflux rate ca. 2.5 times that of ST and 14.6 times that of MT which is consistent with an effect of gaseous diffusion due to soil disturbance (Jackson et al., 2003; La Scala et al., 2006; Reicosky and Archer, 2007; Morell et al., 2010). The large loss of CO2 from the MT plot (0.34 g C m−2 hr−1 or 8.15 g C m−2 d−1) ca. 3.5 days after tillage coincided with a rainfall event, a phenomenon often called the “Birch Effect” (Gebremichael et al., 2019). Increased organic matter mineralization after MT in combination with favorable soil moisture and temperature may have led to the relatively larger efflux of CO2 compared to CT and ST (Franzluebbers et al., 1995; Jabro et al., 2008). Overall, however tillage had very little impact on short-term CO2 emissions.
Soil CO2 emissions during spring-summer were unaffected by variations in tillage intensity (Table 3 and Table 4) in line with earlier studies that reported no significant effects of RT systems on CO2 emissions (Kessavalou et al., 1998; Chatskikh et al., 2008; Abdalla et al., 2014). Tillage management can affect soil CO2 emissions through its influence on soil moisture, soil temperature and soil organic C accumulation (Buyanovsky et al., 1986; Hendrix et al., 1988; Franzluebbers et al., 1995; Fortin et al., 1996). In RT systems this is often associated with the retention of crop residues that lower soil temperatures and increase soil moisture content (Chen and McKyes, 1993). However, daily soil temperatures and WFPS values varied little between treatments indicating that the effect of contrasting tillage regimes on residue retention had little effect on CO2 emissions. In this study, the highest soil CO2 emissions occurred during the spring period of the growing season suggesting that phenology, through its effects on root respiration processes and/or the rhizodeposition of labile C, contributed to CO2 production (Rood et al., 1984; Whipps, 1990; Franzluebbers et al., 1995; Rochette and Flanagan, 1997; Jans et al., 2010). In OSR, the highest values for leaf area index were reached close to flowering, which is consistent with the higher soil CO2 emissions observed in March and April across all experiments (except cv. Troy in Exp. 2). Crops allocate, on average, 21% of their photosynthetically fixed C to their roots of which a smaller proportion of this C is released to the soil in root exudates (Pausch and Kuzykayov, 2018). The absence of variation between tillage management may reflect either a low supply of labile C belowground or labile C substrate was not limiting CO2 production.
Tillage management had little impact on N2O emissions in this study (Table 2 and Table 3) in line with earlier work examining CT and RT systems (Abdalla et al., 2010; Liu et al., 2016). Peak N2O emissions that were found in the MT and ST but not in the CT treatments coincided with a higher WFPS (>70%) and higher temperatures (>10°C) as noted in previous studies (Adviento‐Borbe et al., 2007; Abdalla et al., 2010; Žurovec et al., 2017; O’Neill et al., 2020). This indicates that denitrification is the main source of N2O production and the N2O emissions are largely dependent on the extent of soil anaerobiosis. A lower WFPS and an associated increase in soil oxygenation may explain the absence of any impact of fertilization on N2O emissions in the CT systems (Figure 4B).
Cumulative CH4 uptake was ca. 55% greater in the CT compared to the MT treatments (p < 0.05, Table 2). Plaza-Bonilla et al. (2014) also reported a significantly higher cumulative uptake of CH4 in CT (2.69 kg C ha−1) compared to NT (1.16 kg C ha−1) under Mediterranean dryland conditions (p < 0.05). The authors suggested that the greater CH4 oxidation found under CT might be explained by the short duration of NT (3 years) and the possible lack of differences in soil pore structure and methanotrophic communities between CT/NT plots. Reduced tillage practices can however result in a more porous and stable soil structure that facilitates CH4 diffusion (Ball et al., 1997; Hütsch, 1998; Ussiri et al., 2009) and the long-term implementation of RT (>40 years) has been shown to restore the CH4 oxidation capacity of arable soil (Ussiri et al., 2009; Jacinthe et al., 2014). Although the reason(s) for the observed differences between tillage treatments in this study are not clear, it could be explained by both the enhanced diffusion of atmospheric CH4 into the soil and the greater CH4 oxidation rates under CT as the soils became drier in summer.
Soil WFPS had the largest effect on CH4 emissions and explained approximately one quarter of the variability in the daily CH4 emissions (Supplementary Information, Supplementary Figure S4). Higher soil water content inhibits the diffusive transport of CH4 and oxygen to active microbial sites, consequently reducing CH4 uptake in arable soils (Flessa et al., 1995; Drewer et al., 2012). The results of this study are consistent with the recent review by Cowan et al. (2020) who found soil volumetric water content as the strongest predictor of CH4 emissions across agricultural soils in the United Kingdom and Ireland (R2 < 0.1). This indicates that soil water content and its impact on diffusion processes may override the effect of tillage management in regulating CH4 exchange in arable soils.
Row spacing was found to have no significant effect on GHG emissions. In OSR, row spacing influences plant height, branching, leaf area, pod number and the overall canopy architecture. Plants sown in narrow rows reach canopy closure quicker than wide row cropping systems and thus, it was hypothesised that row spacing would influence factors such as root distribution, root C input, water use, N uptake, light interception and soil temperature, and directly or indirectly influence GHG emissions (Sharratt and McWilliams, 2005). Zapata et al. (2021) reported higher CO2 emissions from soybean compared to wheat (wide vs. narrow row spacing) due to prolonged exposure of surface soil to direct sunlight and high intensity rainfall. The absence of a row spacing effect in this study may be due to comparable above-ground vegetative growth rates and rapid canopy closure, irrespective of plant stand structure, thereby limiting the potential microclimatic effects of row spacing on GHG emissions.
Seed rate was a significant factor affecting GHG emissions in Exp. 2 (Table 3). Mean cumulative CO2 emissions (Compass and Troy) were 21% higher in the 10 seeds m−2 compared to the 60 seeds m−2 treatments (p < 0.05). Seed rate determines the plant density and the canopy architecture and, like row spacing, will influence light interception, water and nutrient use and soil microclimate. For OSR crops, Roques and Berry (2016) found that high seed rate plots accelerated flowering and earlier maturation whereas plots with low seed rates remain greener for longer. The longer a plant retains its leaves, or delays leaf senescence, the greater the photosynthetic capacity of the stand and the amount of labile C that is released via root exudates to the rhizosphere. Soil CO2 emissions in the bare soil plots (Rh) also tended to be higher during pod development in June (data not shown). This result points to a parallel increase in the rate of OM decomposition in the cropped soils caused by a reduction in shading and increases in soil temperature in the 10 seeds m−2 treatments. An increase in belowground OM inputs during vegetative growth and/or decomposition of native SOM at maturity may have both contributed to the greater soil CO2 emissions.
Variation in Yield and GWP Across Different Management Practices
Despite the use of a wide range of a management practices (tillage intensity, row spacing, seed rate and variety), seed yield was unaffected (Table 2 and Table 3). These results support earlier studies that found no effect of tillage, row spacing and seed rate on final seed yields (Degenhardt and Kondra, 1981; Christensen and Drabble, 1984; Christian and Bacon, 1990; Bonari et al., 1995; Vann et al., 2016; Wynne et al., 2020).
Although seed yield and yield components are determined by plant density (Leach et al., 1999; Diepenbrock, 2000; Rathke et al., 2006; Kuai et al., 2015), individual OSR plants can counter variations in plant density by increasing yield per plant (Diepenbrock, 2000), so that the seed yield is not compromised by sowing technique.
The two varieties also produced similar seed yields (Table 3). The shorter height of the cv. Troy plants had no detrimental impact on yield components and many of the commercially available semi-dwarf genotypes produce similar yields to conventional varieties (Sieling and Kage, 2008). Miersch et al. (2016) noted that semi-dwarf varieties yielded higher than the conventional types when N is the limiting resource. The non-limiting soil mineral N concentrations in this study (0–10 cm) may have resulted in the similar yields, although semi-dwarf varieties, such as cv Troy, may also perform better in low N input systems compared to conventional varieties. Semi-dwarf varieties may also be favoured by farmers for their higher lodging resistance plus easier harvesting and pesticide applications (Sieling and Kage, 2008).
Yield-scaled GWP values were unaffected by crop management practice. In Exp. 2, cv. Troy had a yield scaled GWP that was double that of cv. Compass (p < 0.05). Cumulative N2O emissions did not significantly differ between treatments, however, the greater GWP was attributed to N-fertilizer applied in excess in the 10 seeds m−2 cv. Troy plots, as indicated by the large N2O emission peaks after the third N application (Figure 5). Sowing at a higher seed rate may circumvent the high GWP of cv. Troy but puts the variety at an inferior position to cv. Compass insofar as low seed rates can achieve similar yields to conventional sowing without adversely affecting GWP.
Our yield-scaled GWP values 0.05–0.16 kg CO2-eq. kg−1 are within the range of those for crops reported in the literature. Linquist et al. (2012) calculated a yield-scaled GWP of 0.166 for wheat and 0.185 kg CO2-eq. kg−1 for maize in their meta-analysis of 57 cropland sites which included rice 0.657 kg CO2-eq. kg−1. Rajaniemi et al. (2011) found slightly higher yield-scaled GWP values for barley, oats, wheat and rye (0.57, 0.57, 0.59 and 0.87 kg CO2-eq. kg−1). Gan et al. (2012) calculated a farm-scale carbon footprint of 0.281–0.317 kg CO2-eq. kg−1 for barley succeeding oilseed rape. These studies, however, included the GWP of additional upstream sources such as fuel emissions, production and use of fertilizers and seed production.
The short measurement campaign (6-months) may pose some limitations for the longer-term interpretation of results. We did not take gas measurements after tillage in Exp. 2 meaning we may have missed any transient emissions of CO2, N2O or CH4, whilst the low temporal frequency of measurements in the winter/spring of Exp. 1 could have introduced large errors in the estimation of the cumulative GHG emissions when determined by linear interpolation. To reduce any bias, only the higher temporal frequency measurements made during spring were considered as representative of yield scaled GWP. Annual GWP values are also required to cover the fallow and post-tillage periods as these can be a large source of GHG emissions from croplands (Linquist et al., 2012). Including all factors leading to CO2 emissions on-farm (tillage, herbicide, pesticide, fertilization) as well as upstream activities (harvest, fertilizer manufacturing, other chemical inputs, transport) (Sainju, 2016) would provide a more complete assessment of the GHG balance of WOSR production systems.
CONCLUSION
Overall, management practice had a minimal effect on GHG emissions, crop yield and yield scaled GWP. Soil tillage and row spacing had no significant impact on CO2 and N2O emissions. Consequently, the management approach used for WOSR cropping systems can be tailored to the particular conditions and economic factors. The low seeding rate resulted in higher CO2 emissions irrespective of WOSR variety, whilst the yield-scaled GWP of cv. Troy was, on average, higher than that of the cv. Compass. Sowing the semi-dwarf variety at low seeding rates may therefore increase the risk of higher C and/or N emissions from OSR systems. The overall findings indicate that considerable flexibility is possible in the way that OSR crops are established, grown and managed according to local/regional conditions and economics, without compromising yield or GHG emissions. Longer-term, high temporal resolution measurements are required to examine whether the observed GHG and GWP values can be attributed more to management or climatic effects.
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In recent decades, climate change induced by enhanced global warming is one of the biggest challenges at the global level. Agriculture sectors significantly contribute to total anthropogenic greenhouse gas emission to the atmosphere. Wheat and maize, cultivated globally, and consumed in different forms, are considered as crucial staple cereal for ensuring food security to global population. The management practices involving land preparation, sowing, fertilizer application, irrigation, pest management, etc. significantly influence the emission of carbon dioxide (CO2) and nitrous oxide (N2O) from agricultural soil. In this study, CO2 and N2O emission were assessed from maize and wheat crops at four different levels of N fertilizer using cool farm tool model. Emissions of CO2 per hectare varied from 331.4 to 1,088.3 kgCO2 in maize and ranged from 292.3 to 765.3 kgCO2 in wheat on application of different doses of N. The total GHG emission in maize crops ranged from 859.5 to 3,003.4 kgCO2 eq per hectare with the application of nitrogen at varying levels (0–240 kg N per hectare). The highest N2O efflux (0.368 kg per ton) was observed at 240 kg N per hectare under wheat crop. The total on-farm emissions, through fertilizer production, account for about 33.7%, and emission of N2O contributes only 65.9%, whereas pesticides account merely 0.4% under maize-wheat cropping. This study confirms that the direct emission of N2O was totally dependent on N fertilizers application rate; however, the indirect emission was controlled by the fuels and energy consumption.
Keywords: maize, wheat, carbon dioxide, greenhouse gases, nitrous oxide, nitrogen fertilizer
INTRODUCTION
The production of food grains (maize, rice, wheat, etc.) is being adversely affected by climate change, and agricultural activities leading to emission of methane (CH4), carbon di-oxide (CO2), and nitrous oxide (N2O) (Malyan et al., 2021) serve as a major contributing factor to future climate change. The main anthropogenic source of CH4 (77%) and N2O (60%) emissions contributes in Indian Agriculture (Sharma et al., 2021). Methane emissions are confined to rice and enteric fermentation (Kumar et al., 2020b), while CO2 and N2O are uniformly released from all agricultural crops as consequences of crop raising activities such as soil manipulation and fertilizer applications (Kumar et al., 2016a; Kumar et al., 2016b; Bhattacharyya et al., 2018; Sapkota et al., 2021). The addition of nitrogen to agricultural soil changes GHG fluxes. Since 1960, consumption of nitrogen fertilizer has increased 66 times (Fagodiya et al., 2020a). In India, the use of irrational nutrient applications has resulted in low input use efficiency, lower income, and enhanced pollution (Pampolino et al., 2012). In India, fertilizer recommendation is based on response of a crop over a broad geographical area which could not concede the spatial variation in soil nutrient supplying ability (Majumdar et al., 2013). It is a well known fact that aeration, soil temperature, soil moisture, organic carbon (OC) supplies, fertilization, pH, and other environmental factors like production and transport influence N2O and CO2 emission in soil (Kumar and Sharma, 2017a; Kumar et al., 2020a; Fagodiya et al., 2020a).
In general, nitrogen is the most critical and limiting nutrient in agricultural production. The global consumption of nitrogen fertilizer has increased from 12 Tg (1960) to 113 Tg (2010) (Fagodiya et al., 2017). Moreover, the main components of nitrogen cycle are nitrification, assimilation, ammonification, and denitrification (Kumar et al., 2016b; Kumar and Sharma, 2017a; Kumar and Sharma, 2017b). Several compounds like NH3, NOx, NO, N2O, NO3 etc. could be released into the atmosphere during the nitrogen cycle, influencing the climate system. The reactive nitrogen (Nr) plays direct and indirect roles on N2O emissions in soil. N2O emissions are of major concern because of their extensive atmospheric lifespan (approx. 116 years), maximum potential of global warming (310 times that of CO2), and high global climate change potential (290 on a100−year basis) (Fagodiya et al., 2020a). N2O emissions can occur both directly and indirectly from fertilizer N input to the soil. Additional fertilizer N application to the same soil is referred as direct emissions (Holka and Bienkowski, 2020). Indirect N2O emissions are those that occur from the different sources except soil that should not be limited, like N2O generated through waters and leaching of NO3 to the soil (IPCC, 2006). Farms and horticultural enterprises account for just about 8% CO2 emission. N2O and CH4 are important GHG which contribute 57% and 35%, respectively, to global warming (FAS, 2014). N2O is a potent GHG that contributes directly to global warming. For a period of 100 years, N2O emissions were more sensitive than other GHG because of its long atmospheric habitation (114 years), global climate change potential (290 times higher than CO2), and global warming potential (265 times higher than CO2). All these gases contribute as the third most abundant GHG after CO2 and CH4. Approx. 18.09% of total GHG and 73.29% of total N2O were emitted from the agricultural sector in India during 2014. The use of nitrogen fertilizer fulfills the demand of food production considering the growing population, resulting in higher N2O emissions from the country’s agriculture.
Maize is an aerobic crop and unlike rice, puddling or submergence is not required for its cultivation. As a result, less energy is needed for tillage operation as well as less water is required for maize, resulting in fewer CH4 emissions in comparison to rice fields. Hence, maize is a better option for minimizing ground water depletion, soil degradation, and CH4 emissions from the Eastern plateau region of India. Maize, the third most important cereal crop, contributes 78.2 million tons to world total food grain production with an area of about 150 million hectares (McCann, 2007; Parihar et al., 2011). India is producing 30.41 million tons from 9.1 million hectares (mha) area with a productivity of 2,771 kgha−1 (USDA, 2019). Maize-wheat cropping system ranked third after rice-wheat and rice-rice cropping systems (Jat et al., 2014). Consequently, wheat can be grown in a variety of climates around the world, covering more than 200 mha. The estimated production of the world crossed 750 million metric tons in 2016–17. India contributed 87 million metric tons from 30.22 mha area in 2016–17, core production of wheat (98.5 million ton) was registered from 30.72 mha in 2017–18, and a forecast of reduction in production in 2018–19 was estimated to 94 million metric ton (USDA, 2018) suggesting a degree of uncertainty in production level. Being less CH4 gas emitter, maize-wheat is appealing as an alternative cropping system compared to rice-wheat system. Most of the studies conducted on mitigation of GHG emission in eastern plateau region of India are mainly based on rice-wheat cropping system. The N2O emissions from MWR have rarely been reported. The GHG emissions associated with the manufacture of synthetic N fertilizers were estimated to be 41.44 and 59.71 Mt CO2-eq year−1 for wheat and maize in China, respectively. And the direct N2O emissions derived from synthetic N fertilization were estimated to be 35.82 and 69.44 Gg N2O year−1 for wheat and maize, respectively (Chai et al., 2019). The carbon sequestration under maize-wheat cropping system provides promising prospects for reducing GHG emission. GHG emission can be measured with the help of Cool Farm Tool (Hillier et al., 2011) which has been defined as an empirical GHG quantification model into a single tool. Cool farm tool (CFT) enables the user to make choices appropriate to existing practices. The CFT is open-source software integrating several globally determined empirical models into a GHG emission calculator. At farm level, the tool identifies context-specific factors like pedo-climatic characteristics, output inputs, and other management activities that affect GHG emission. The Cool Farm Tool (CFT) calculates the total emission of GHG in terms of “per unit area” as well as “per unit product.” The key objective of this study is to estimate the CO2 and N2O emission under maize-wheat cropping system at four different levels of N fertilizer application and three modes of application, by using the CFT model as the direct measurement to GHG emission.
MATERIALS AND METHODS
Description of Research Site
The research programme was carried out during 2015–16 and 2016–17 at the research farm of Ranchi Agriculture College under Birsa Agricultural University, Ranchi, under Maize-Wheat cropping system (Figure 1). The research field was located at 23°19’ N and 83°17’ E, at altitude of 625 m above mean sea level (MASL) in the Chhotanagpur Plateau, which comes under the eastern section of the Deccan plateau and situated under Agro-climatic Zone V.
[image: Figure 1]FIGURE 1 | Experimental site under study.
The climate of state is falling under tropical and sub-tropical. During the summer season temperatures varied from 18 to 40°C, while during the winter, temperatures ranged from 0 to 22°C. The lowest temperature was recorded in the months of December and January; in some areas of Kanke sometimes the temperature dipping down to the freezing point. The annual total rainfall received by the experimental areas is about 1,430 mm (56.34 inches) and 78–91% rainfall is received during the peak period of monsoon through South West Monsoon (from June to September). The rest is received in different seasonal spells like North East Monsoon (6.5% with amount 92.4 mm) from October to December. In the winter season, it received 3.74% with amount 52.4 mm (January to February) and summer 7.5% with the amount 104.7 mm with thunderstorm showers. During the maize growing season, total rainfall was about 528 mm, with average temperatures ranging from 20.3 to 30.80°C; however, rainfall was around 47 mm, with temperatures ranging from 3.10 to 39.50°C during the wheat cropping season. From the second week of February to the first week of March 2016, the highest average morning relative humidity was 87%, and the lowest average evening relative humidity was 31% in the third week of March.
Treatments and Cropping Systems
This experiment consisted four levels of nitrogen application (0, 80, 160, 240 kg Nha−1 for maize and 0, 50, 100, 150 kg Nha−1 for wheat) with three different modes of application. Methods of application of nitrogen were two splits (50-0–50 kg ha−1) at basal and V10 stages, three splits (33-33-33 kgha−1) at basal, V4, and V10 stage and (33-33-33 on the basis of LCC), in case of wheat apply as basal, and at CRI stage (50-0-50), basal, CRI, and PI stage (33-33-33). The phosphatic (single super phosphate) and potassic fertilizer (Murate of Potash) at the rate of 100 kgP2O5 and 100 kg K2O−1ha were applied as basal irrespective of treatments as shown in Table 1. The date of sowing of maize was 26/June 25, 2015/16 and date of harvesting was 05/October 6, 2015/16. However, the phosphatic and potassic fertilizer at 90 kgP2O5 and 80 kgK2Oha−1 were applied as basal to all the treatment, and date of sowing were 10/December 11, 2015/16 and date of harvesting 12/April 13, 2016/17 respectively.
TABLE 1 | Treatments details of maize and wheat crop.
[image: Table 1]Methods Used for Calculating CO2 Emission From Farm Operation
The emission of CO2 from on farm and off farm through various activities like irrigation, tillage, fertilizer, and pesticide production are calculated from various published emission factors.
Irrigation
The emission of CO2 after irrigation was calculated at 30% electric pump efficiency (Nelson et al., 2009; Gupta et al., 2015) and 19% electric power transmission and distribution losses in India (World Bank, 2014) by the following formula:
[image: image]
where 2.724 is energy (kWh) needed to lift 1,000 m3 of water from 1 m depth without any loss in pump efficiency and 0.4062 is carbon density (kgC per kWh) of coal-based electricity generation (Nelson et al., 2009).
Tillage and Sowing
Two tillage operations were conducted and CO2 emission was calculated as per Gupta et al. (2015).
[image: image]
where 0.728 is CO2-C emissions (kg) from consumption of 1 L diesel (EPA 2005).
Pesticide Production and Transportation
The CO2 emission from pesticide production and transportation was calculated from the following equation
[image: image]
where 6.3, 5.1, and 3.9 is amount of CO2-C emitted from production and transportation of 1 kg of herbicide, insecticide, and fungicide respectively (Lal, 2004).
Fertilizer Production and Transportation
The CO2 emission from fertilizer production and transportation was calculated from the following equation
[image: image]
where 2.02, 1.84, 0.06, and 0.25 is CO2-C emission (kg) from the production and transport of 1 kg of N (urea), N (DAP), P2O5(SSP), and K2O (MOP) adopted from Kool et al., 2012.
RESULTS AND DISCUSSION
Carbon Dioxide Emission
CO2 emitted by maize grown during the wet season emission ranged from 331.4 to 1,088.1 kg ha−1, while in wheat (winter season) it varied from 292.3 to 765.3 kg ha−1 depending on the application rates of nitrogen fertilizer (Table 2). The mean value of emitted CO2 was 1,088.1 kgha−1, when maize received 240 kg N ha−1, while 836.0 kg CO2 ha−1 was released at 160 kg N ha−1. However, the emission of CO2 was lowest at a level of 0 kg N (331.4 kg CO2 ha−1). During the winter season, the highest CO2 emission (765.3 kg CO2 ha−1) was recorded at 150 kg N ha−1, followed by 100 kg N ha−1 (613.7 kg CO2ha−1). At 50 kg level of N fertilizer application, the emission was 456.0 kg CO2ha−1, that was 35.9% higher than that of the emission noted at 0 kg level (292.3 kg CO2ha−1). Soil manipulation like tillage triggers CO2 emission through biological decomposition of soil organic matter (SOM) acts as the primary source of CO2 from agriculture field. Disintegration of soil aggregates through ploughing increases oxygen availability and facilitates organic matter (OM) decomposition of exposed organic material (Bhattacharyya et al., 2018). Other sources of CO2 emissions include the fuel used for various agricultural activities and the burning of crop residues (Gupta et al., 2015). Carbon dioxide production at the time of manufacturing of fertilizers and pesticides is an off-site source (Pathak et al., 2010; Pathak et al., 2016).
TABLE 2 | Response of various doses of nitrogen treatments on GHG emission (maize–wheat cropping system).
[image: Table 2]Nitrous Oxide Emission
Emission of N2O from the soil occurs as a result of additional nitrogenous fertilizer application to the soil (within a defined boundary of producer’s field) referred as direct emissions (Sharma, 2020). N2O gas emission emitted off-site (beyond the boundary) are referred as indirect emissions, which do not include N2O gas produced through receiving runoff water and NO3 leaching in soil (Fagodiya et al., 2019). Nutrient management strategies had a significant impact on the amount of N2O gas released per hectare and per ton of crop yield. Different rates of nitrogen application showed a major impact during the estimation of N2O emission per hectare in both crops (maize and wheat). In maize, application of 160 kg N ha−1 estimated higher N2O emission (4.3 kg N2O ha−1) compared to 80 kg N ha−1 (2.8 kg N2O ha−1). However, calculated N2O emission was highest with N at 240 kg N ha−1 (6.5 kg N2O ha−1) and lowest value of 1.8 kg N2O ha−1 at 0 kg N ha−1 (Table 2). The same pattern of emission was not followed in case of emissions per ton of maize yield than per hectare. That might be directly associated to the crop yield, while per hectare value is preferably reliant on yield, fertilizer doses, and other factors influencing crop production. The calculated value of nitrous oxide emission per ton of maize yield was lower (0.27 kg tonne−1) at application of 160 kg N than that of 240 kg N ha−1 applied plot (0.37 kgton−1). The highest value was observed with the produce recorded at N omitted plot (0.94 kg ton−1). The calculated N2O emission per tone was 0.28 kg ton−1 at 80 kg N ha−1 that was marginally higher than the 160 kg N ha−1 applied plot (0.27 kg tonne−1) (Table 2). This has been found and reported that N inputs gradient in row-crop agriculture directly dependent to the emissions of N2O with different rate of nitrogenous fertilizer (Halvorson et al., 2008; Hoben et al., 2010; Millar et al., 2010). Application of increased nitrogen dose to the soil enhanced N2O emissions in both of crops. The latest IPCC (2006) greenhouse gas inventory calculations are based on many factors, like heat, structure, water holding capacity, and organic matter content of the soil, and these are directly responsible for the rise in N2O emissions. In general, management of crop residues and fertilizer application are major responsible factors for theN2O pollution in agro-ecosystems (Rochette et al., 2008). The estimated value of N2O emission per hectare in the case of wheat grown with 150 kg N ha−1 during winter season was maximum 4.1 kg ha−1, followed by 100 kg N ha−1 (3.5 kg N2O ha−1). The lowest value (1.8 kg N2O ha−1) was recorded with the omission of nitrogenous fertilizer. On the other hand, in terms of N2O emission per ton in wheat was highest (0.63 kg tonne−1) under the N-omitted plot (0 kg N ha−1), followed by the application of 150 kg N ha−1 (0.31 kg ton−1), and the lowest value (0.28 kg tonne−1) was recorded with the application of 100 kg N ha−1. It may be concluded that the variation in NO2 emission per ton is due to the variation in yield and urea application. Jain et al. (2016) recorded that factor of N2O emission varied from 0.48 to 0.58% and 0.40–0.46% in wheat and maize crops, respectively whereas, Bhatia et al. (2005) noted emission factor of 0.58–0.62% with the application of N fertilizers. Moreover, as per IPCC (2014) the default coefficient factor of nitrous oxide emission for N fertilizers was 1%.
Methane Emission
With removal of crop residues from the field at the time of tillage operation before sowing of maize and wheat, no methane gas emission was observed by using the CFT model. Soil CH4 production is reliant on a limited supply of oxygen (anaerobic condition), which is regulated by moisture content of soil. Sowing of wheat in dry soil during winter (devoid of submerged condition) may be one of the key factors which suppressed the methane gas emission (Aryal et al., 2015).
Total Greenhouse Gas Emission
Maize
Global warming potential (GWP) per hectare for total GHG emission and CO2-equivalent (CO2-eq) per ton of crop yield positively varied at various level of nitrogen application (Table 2). The extent of total GHG emissions in maize contributed from 859.5 to 3,004 kg CO2 eq ha−1, depending on the doses of N fertilizers at 0 kg N ha−1–240 kg N ha−1. Emissions of gases increased with the escalating amount of nitrogen fertilizer. The application of 240 kg N ha−1 resulted in the highest GHG emission, followed by 160 kg N ha−1 (2,109.1 kg CO2eq ha−1) and at 0 kg N ha−1 resulted the lowest emission (859.5 kg CO2eq ha−1). While the emission of gases at the rate of 80 kg N ha−1 was 1,417.1 kg CO2 eq ha−1, it was marginally inferior to the use of 160 kg Nha−1. The availability of mineral affected the enormity of N2O emissions throughout the crop growth. Under the control scenario, the overall predictable GHG emission in terms of CO2eqton−1 of product was considerably higher compared to the supplementary treatments. Application of different doses of nitrogen (0, 80, 160, and 240 kg N ha−1) in maize emits 450.0, 143.9, 132.5, and 170.3 kg CO2 eqton−1, respectively.
Wheat
The amount of produced total GHG followed the same trend per ha and per tons maize, with a lower magnitude. The application of nitrogen at150 kg ha−1 had the highest GHG emission per ha (1974.1 kg CO2 eq), subsequently with the addition of 100  kg N ha-1 released 1,650.2 kg CO2 eq per hectare and omission of N fertilizer (0 kg N) showed 820.2 kg CO2 eq per hectare (Table 2). Because of variation in wheat yield, the total anticipated GHG emission with respect to CO2eq ton-1 of produce was lowest at the rate of 100 kg N ha-1 (133.7 kg CO2 eq ton-1) and the highest value 287.5 kg CO2 eq ton-1 was at 0 kg N ha−1. Total GHG emission varied marginally between the application of nitrogen at the rate of 100 kg ha-1 (133.5 kg CO2 eq ton-1) and at 50 kg N per hectare (135.6 kg CO2 eq ton-1), while the higher value 1,545 kg CO2 eq ton-1 was found at the rate of 150 kg N ha−1. The yield, biological produce, and rate of N application all affected the value of total emission of GHGs by using CFT. The findings showed that when a greater amount of input was used, the total emission was higher than that at lesser amount of input. Among various emission sources, manufacture and use of synthetic fertilizers was found to be the most important source of pollution at the farm level. Pesticides account for just 0.50% of total on-farm emissions in maize, while synthesis of fertilizer and emissions of nitrous oxide account for 32 and 67% as whole farm emissions, respectively. Whereas, in case of wheat, fertilizer production and nitrous oxide emissions showed 35 and 64% of emissions, respectively, and pesticides account for only 0.6 percent. GHG emission by the use of nitrogenous fertilizer was split into two categories as intended towards N2O emissions and GHG emission from fertilizer synthesizer unit. Nitrous oxide emissions could occur from microbial activities in soils too (Table 3). In agriculture, the mineralization process of nitrogen (ammonium to nitrates and the reduction of nitrate to gaseous form of nitrogen) plays an important role for N2O production (Granli and Bockman 1994). N2O emission is accounting for approximately 57% of total annual global GHG emission (IPCC, 2006). During synthesis of chemical fertilizers such as ammonia, phosphoric acid, and nitric acid, all emit greenhouse gases (Kongshaug, 1998). In maize and wheat, the regression analysis for yield and fertilizer doses indicated substantial variation in yield with respect to fertilizer doses (R2 value of 0.91 and 0.92, respectively).
TABLE 3 | Response of various level of nitrogen application on GHG emission (kg ha−1) from various sources of farm (maize-wheat cropping system).
[image: Table 3]Correlation Matrix
Maize
Correlation coefficient(r) among yield, total GHG emission, and various soil properties were presented in Table 4. Yield was positively correlated with GHG emission (r = 0.832**) and negatively correlated with available P and K (−0.779** and −0.940**, respectively). Available P content in soil had negative relationship with GHG emission (r = −0.610*) while positively correlated with yield (r = 0.739**). Available K was significantly and negatively correlated with GHG emissions (−0.749**) and yield (−0.940**).
TABLE 4 | Correlation among yield, total GHG emission, and various soil properties (maize).
[image: Table 4]Wheat
Coefficient (r) values in wheat were illustrated in Table 5, with respect to produce and different variables. It was observed that yield had significant and positive association with GHG emission (r = 0.889**). Available P and available K showed significant and negatively correlation with yield (r = −0.739** and −0.649*) and GHG (−0.730** and −0.770**). The correlation coefficient among soil pH, yield (r = −0.860**), and GHG emission (r = −0.868**) was calculated and observed to be a significant and negative correlation, thus it could be stated that increased amounts of N application increases the amount of yield and GHG emission. Similarly, soil’s available P registered a significant and negative correlation with GHG emission (r = −0.730**), which had a positive “r” value with pH (r = 0.710*). Soil available K was found to have a negative relation with GHG emission (r = −0.770**), and positively correlated with available P (r = 0.780**) and pH (r = 0.799**).
TABLE 5 | Correlation among yield, total GHG emission, and various soil properties (wheat).
[image: Table 5]The fertilizer recommendation and GHG emission mitigation for the entire cropping system may be given by using the prediction equation with soil test value estimated after harvesting of crops and GHG emission. In derived equations, the relationships are among GHG emission, soil properties after harvest, applied fertilizer quantity, and yield of maize and wheat (Table 6). These equations yielded R2 values significant at 5% of important parameters. Such can be used for prediction of GHG emission, yield of crop, and status of available P and K after crop harvest can be predicted using regression equations and accordingly, optimum fertilizer recommendation can be made with the perspective of environment (Verma and Singh, 1991; Bera et al., 2006). Table 7 stated that split application of N at 160 kg ha−1 to maize (basal, knee high, and tasseling stage) along with 100 kg P2O5 + 100 kg K2O ha−1 as basal and split application of N at 100 kg ha−1 to wheat (basal, crown root initiation, and panicle initiation stage) along with 90 kg P2O5 + 80 kg K2O ha−1 as basal could be the most effective in terms of yield (71.76 and 41.97 qha−1, respectively, Table 7), GHG emission (2,109.1 and 1,650.2 kgCO2 eq ha−1, respectively), economic benefit, and available nutrient status of soil.
TABLE 6 | Regression equation among different parameters (yield of maize and wheat with GHG emission, available P and K in soil, and various doses of nitrogen to GHG emission).
[image: Table 6]TABLE 7 | Response of various doses and time of nitrogen application on yield (q ha−1) and harvest index.
[image: Table 7]CONCLUSION
Direct measurement of the GHG is comparatively costlier. The GHG measurement through modeling provides not only the economic options, but variation of the key controlling factors can also be used to trap the minute changes in the GHG effluxes. Therefore, the present investigation is an attempt to utilize the Cool Farm Tool to optimize the N fertilizers and its subsequent effect on the GHG effluxes. In this study, greenhouse data (2015-16 and 2016-17) under maize-wheat cropping system was used to estimate CO2 and N2O emission from maize and wheat crops at four different levels of N fertilizer using cool farm tool model. Results stated that emissions of CO2 per hectare varied from 331.4 to 1,088.3 kg in maize and 292.3–765.3 kg in wheat on application of different doses of N. The total GHG emission in maize crops ranged from 859.5 to 3,003.4 kg CO2 eq per hectare with the application of nitrogen at varying levels (0–240 kg N per hectare). The highest N2O efflux (0.368 kg per ton) was observed at 240 kg N per hectare under wheat crop. The total on-farm emissions, through fertilizer production, account for about 33.7%, and emission of N2O contributes only 65.9%, whereas pesticides account for merely 0.4% under maize-wheat cropping. This study confirms that the direct emission of N2O was totally dependent on N fertilizers application rate; however, the indirect emission was controlled by the fuels and energy consumption. This study establishes the efficacy of nutrient expert (N-management) rather make a prediction in implementing of site-specific nutrient management to smallholder production systems to enhance the crop yields and improve the increment of farmers’ income considering to minimize GHG emission.
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Facing irreversible and catastrophic changes on the earth, China has committed to peak the net carbon emission by 2030 and to achieve carbon neutrality by 2060. The pledge requires significant mitigation immediately and sustainably. Considering this background, some perspectives are given in this article based on the comprehensive use of natural resources. First, utilizing the STIRPAT (stochastic impacts by regression on population, affluence, and technology) model and statistical data, net carbon emissions of provinces in China are anticipated, which lays a foundation for the further “three-step” carbon neutralization route. Second, a strategy of water–temperature–radiation–land coupling use is proposed, considering 1) the carbon emission cut, which relies on comparing the energy intensity and energy structure in China with those in developed countries; 2) the carbon sink increase, which depends on the evaluation of constraints of hydrometeorological factors on ecological productivity. Finally, the necessity and possibility of carbon trading and redistribution of the natural resources are discussed to ensure that China's national net carbon emission would be reduced to zero by 2060.
Keywords: carbon neutrality, carbon emission estimation, energy consumption, biological carbon sink, carbon trading
INTRODUCTION
Greenhouse gas (GHG) emission is continuously increasing worldwide, which has received wide attention from researchers, governments, and the whole society. Since 2010, the GHG emission has been growing at a speed of 1.3%/a without land-use-change (LUC) emissions and reached a record high of 52.4 GtCO2e in 2019 (The UN Environment Programme 2020). Although 2020 has witnessed a dip in carbon emission due to COVID-19, it has a negligible impact on long-term climate change (Le et al., 2020). The global GHG emission is predicted to surge to around 59 GtCO2e in 2030 under current policies (The UN Environment Programme 2020).
The increasing GHG concentration in the atmosphere has led and will continue to lead to irreversible climate change on a global scale, bringing more unprecedented survival crises for human beings. As it has been reported by the Intergovernmental Panel on Climate Change Special Report on 1.5°C (IPCC 2018), human activities have induced the increase in the global mean surface temperature (GMST) of 0.87°C during the decade 2006–2015 relative to 1985–1900, resulting in multiple negative impacts on the natural and human system. The rising trends of frequency, intensity, and duration of extreme weather (i.e., heat waves, floods, and droughts) have been detected worldwide (Landsea 2005; Trenberth et al., 2014; Fischer and Knutti 2015; Perkins–Kirkpatrick and Lewis 2020). In addition, other hazards also occur more frequently, such as earthquakes, landslides, volcanic activities, and wildfires. According to the analysis of the UN Office for Disaster Risk Reductions (2020), the number of natural disasters in the world doubled during the past 20 years compared with the period 1980–1999. Moreover, some other slow but hazardously evolving disasters are gradually appearing, such as the melting glaciers on the polar, rising sea levels, weakening Atlantic Meridional Overturning Circulation (AMOC), and intensified seabed methane release (Serreze et al., 2007; James et al., 2016; Sevellec et al., 2017; Kulp and Strauss 2019).
Threatened by these multiple and cascading risks, a comprehensive low-carbon transition for all countries is in urgent need. As the world’s largest developing country, energy consumer, and carbon emitter, with the most frequent natural disasters (UN Office for Disaster Risk Reductions, 2020), China has made announcements to become carbon neutral by 2060, and to peak the CO2 emission in the next decade (Central People’s Government of the People’s Republic of China 2021; The Guardian 2020; Chinadialogue 2020). Oriented at this target, China promised to lower its carbon dioxide emissions per unit of Gross Domestic Production (GDP) by 65% by 2030 compared with the 2005 levels, while boosting the forest stock volume by 6 billion m3 from the 2005 levels. In addition, China also pledged a 25% share of nonfossil fuels in primary energy consumption and over 1.2 billion kilowatts of its total installed capacity of wind and solar power by 2030 (Reuters 2020).
Although the climate goal of China reignites the hope for controlling global warming and may even attract more countries to the track of carbon cut, the discrepancy between the ambitiousness and the status quo is still vast. On the one hand, despite a slowdown during 2010–2016 after the rapid growth during the 2000s, the GHG emission of China speeded up again in 2019 (3.1%/a), reaching a record high of 14 GtCO2e and accounting for more than 25 percent of the global GHG emission (The UN Environment Programme 2020). On the other hand, unlike developed countries, which have peaked carbon emission and therefore possess 50–70 years to rein in fossil fuel use and to offset the remaining emission (The UN Environment Programme 2020), the time from carbon emission peak to neutrality is only 30 years for China. China is bearing a heavier burden, but given a tighter time line. Therefore, China undoubtedly needs more investment in related researches and more vigorous measures and policies, especially during the 14th Five Year Plan (FYP for 2021–2025). And it is widely accepted that China should expand the generation and consumption of clean power while encouraging more capture, utilization, and storage for carbon (CCUS) both biophysically and chemically (Li et al., 2016; Zhou et al., 2016; Li et al., 2021).
However, the clear and quantitative roadmap for the Chinese carbon neutrality is still unclear, which is vital for implementing the commitments. Even if the carbon neutrality goal of China has been translated into several near-term breakdowns of energy and climate goals from the country’s viewpoint, regional research remains to consider the uneven distribution of social and natural resources (Zhang and Hao 2015). Generally, China’s population, urban regions, and carbon emissions are mainly concentrated in northeastern and eastern China (Chen et al., 2016; Chen et al. 2019; Chen et al. 2020), while China’s main carbon sequestration is concentrated in southwestern and south China (Wang et al., 2020). In other words, there is a natural contradiction between the “carbon debt” (i.e., the positive amount of net carbon emission) and the “carbon credit” (i.e., the negative amount of net carbon emission) in various regions of China. Furthermore, the spatial distribution of water, soil, and heat resources is also not completely matched in China, leading to the inhomogeneous distribution of the carbon sequestration potential (Tao et al., 2005; Beer et al., 2010; Huang et al., 2019). As a result, the pathways for carbon neutrality in 2060 should vary with provinces, which nevertheless are currently unclear.
Furthermore, few strategies have been put forward from the perspective of hydrology and hydraulic engineering, which have played an important role in carbon removal for a long time. For the carbon cut, up to 2019, the hydropower of China has generated electricity more than 16 trillion kilowatt-hours, approximately equivalent to 15.4 billion tons of carbon dioxide emission reduction (China Society for Hydropower Engineering 2020). For carbon sequestration, water resources have become one of the key constraints for revegetation in relatively arid regions (Zhou et al., 2019), like China’s Loess Plateau (Feng et al., 2016), thus limiting the opportunities for intensifying biological carbon sequestration. Furthermore, water resources play an important role in determining clean energy generation and ecological production not solely but coupled with other hydrometeorological factors like radiation, wind, and temperature. Therefore, long-term deep decarbonization in the context of hydrology, hydraulic engineering, and comprehensive natural resource use can give a worthy sight to achieving carbon neutrality.
Under this situation, this perspective paper is aimed to explore the solutions for the two issues mentioned above. In The Roadmap for Chinese Carbon Neutrality Considering Differences Between Provinces, the Chinese carbon neutrality goal is split into three steps considering the characteristics of carbon emission variation in different provinces. In A Strategy of Water-temperature-radiation-land Coupling Use for Carbon Neutrality of China, a strategy of carbon cut from the perspective of water–temperature–radiation–land coupling use is elaborated. In Discussions, the Chinese carbon cut is further discussed in the context of carbon trading and redistribution of natural resources in the foreseen future.
The Roadmap for Chinese Carbon Neutrality Considering Differences Between Provinces
The net carbon emission is estimated by extracting the carbon sink from the carbon emission. The data and methods used to assess the carbon emission and carbon sink are provided in Supplementary Text S1.1 and Text S1.2 in detail, respectively. Supplementary Figure S1 (in Supplementary Material) presents the tendency of net carbon emission in the whole China and the three representative provinces under four different scenarios (including the scenario of total green development, S1; the scenario of strong energy conservation and emission reduction, S2; the scenario of energy conservation and emission reduction, S3; and the scenario of extensive development, S4), which are described in detail in Supplementary Table S1 (in Supplementary Material). As shown by the blue solid line in Supplementary Figure S1A, only in the S1 scenario, carbon neutrality will be realized in China by 2060. However, it is still difficult to kick the coal habit quickly in a period as short as 1 or 2 decades, considering the inertia in energy consumption and the economic development of China. As a result, a gradual transition is more feasible. As presented by the red dashed line in Supplementary Figure S1A, the whole country is suggested to develop the S3 scenario before 2030. Thereafter, the transition is supposed to be made from the S3 to the S2 scenario by 2040. From then on, more efforts must be made to accomplish the total green development in all fields (the S1 scenario) and to finally cut the net carbon emission to zero by 2060.
After the national pathway is clear, the net carbon emission for different provinces is projected considering their economic structure, industrial development, and vegetational cover, to evaluate the challenge of meeting the regional targets. As shown in Supplementary Figure S1B, Qinghai has peaked carbon emission and has the potential to achieve carbon neutrality from 2037 to 2053 as long as Qinghai would not develop its economy by extensively using its fossil fuel (the S4 scenario). Comparatively, the possible carbon neutrality is much later for Hubei, which can approximately be achieved by 2052, and the total green development (the S1 scenario) is the only choice for Hubei. Furthermore, carbon neutrality is much harder for Guangdong, the earliest time for which to cut the carbon emission is 2060, which is only possible under the S1 scenario.
Under this situation, China’s 2060 carbon neutrality target could be split into three steps based on the carbon emission estimation for more provinces. As shown in Supplementary Table S3 (in Supplementary Material), in the first step, by 2045, the demonstrational areas of Chinese carbon neutrality should meet the standards, including the western provinces such as Qinghai and Xinjiang. In the second step, by 2055, the key areas of Chinese carbon neutrality should cut the carbon emission to zero, including Sichuan, Hubei, and Hunan etc. Finally, in the third step, by 2060, it is time for the difficult areas of Chinese carbon neutrality to reach the standard, including Henan, Shaanxi (105°E–111°E, 31°N–39°N), and Guangdong etc. It is worthy to note that some provinces, Liaoning, for instance, may be hard to realize carbon neutrality even in 2060. As a result, the demonstrational areas need to take their advantages and contribute to the carbon sink of the difficult areas after offsetting the carbon emission of their own, thus guaranteeing the achievement of national carbon neutrality.
A STRATEGY OF WATER–TEMPERATURE–RADIATION–LAND COUPLING USE FOR CARBON NEUTRALITY OF CHINA
After the general route of China’s carbon neutrality is made clear, reformation should be performed in every field to reach the objectives, among which the natural resource regulation plays pivotal roles. In this context, a strategy of water–temperature–radiation–land coupling use is proposed, which is divided into two dimensions as the following:
Cutting the Carbon Emission
The carbon emission is largely determined by the efficiency and structure of the energy consumption, which can be represented by the energy consumption per unit of gross regional production (GRP), or carbon intensity, and the proportion of nonfossil fuel in primary energy. The data and methods used to assess the carbon intensity and the account of nonfossil fuel in primary energy are provided in Supplementary Text S1.3 detail. The results of different provinces in China in 2017 are shown in Figure 1.
[image: Figure 1]FIGURE 1 | (A) Energy consumption per unit of GRP and (B) the proportion of nonfossil fuel in primary energy of different provinces in China in 2017. Some provinces are not presented because of the data deficiency.
In 2017, the energy consumption per GDP of China, America, and Europe are approximately 0.4, 0.2, and 0.1 tons of standard coal per ten thousand yuan, respectively (National Bureau of Statistics of China 2000–2019). Moreover, as presented in Figure 1A, the carbon intensity in the majority of provinces in China exceeds the average value for America (0.2). Generally, southern, eastern, and southeastern China have relatively low energy consumption per unit of GRP, ranging from 0.35 (Jiangsu) to 0.69 (Guizhou) tons of standard coal per ten thousand yuan, although the net carbon emission is relatively high there (Chen et al., 2020). On the contrary, the northwestern, northern, and northeastern provinces have a lower efficiency of energy usage, with the energy consumption per unit of GRP varying from 1.02 (Heilongjiang) to 2.13 (Ningxia) tons of standard coal per ten thousand yuan. Notably, Ningxia, Qinghai, Xinjiang, and Inner Mongolia have especially high carbon intensity, asking for quick reformation of the energy utilization structure.
Apart from the use efficiency of the primary energy, the components of energy consumption also account for the final carbon emission. In other words, the fewer fossil fuel is consumed, the less GHGs would be generated. The average proportion of the nonfossil fuel of China is 15.6% in 2017, less than that of America (18%) and Europe (27%). Several provinces, such as Qinghai (34.7%), Guangdong (27.7%), Sichuan (25.6%), and Fujian (25.5%), have widely applied hydro, wind, and solar energies, thus gaining a higher proportion of nonfossil fuel than that of America. The ratio of the zero-emission resources is urgently needed to be increased in more provinces, especially in Shandong, Liaoning, Beijing, and Shanxi.
Enhancing the Biological Carbon Sequestration
Apart from cutting the carbon emission, the amount of carbon sequestration needs to be increased in the meanwhile, because even in the S1 scenario, about 1.6 billion tons of carbon emission (not the net one) would be emitted in total in 2050, which remains to be offset both naturally and artificially. In other words, increasing carbon sequestration capacity is not a risk compensation but a rigid demand for 2060 carbon neutrality. From 2010 to 2016, the whole terrestrial ecosystem in China absorbed approximately 1.11 billion tons of carbon annually, accounting for about 10% of the Chinese total carbon emissions in that period and 45% of the carbon released in total fossil fuel combustion and cement production (Wang et al., 2020). In the Chinese terrestrial ecosystem, the forest is of vital significance, with its vegetation carbon storage amounting to 5.49 PgC on average (Ni 2013). And the grassland also explains a lot for the carbon sink, accounting for about 40% of the country’s land area (the NBS) and storing the carbon of approximately 1.41 PgC (Ni 2013). Therefore, growth in forest and grassland stock during the next 3 decades is the key to striving for carbon neutrality by 2060.
The carbon sequestration capacity of both forests and grasslands is affected by natural factors such as, among others, climate conditions, soil quality, and water resources, which all show obvious temporal and spatial heterogeneities (Bastin et al., 2019). To give some scientific supports for China’s afforestation, the restrictions of temperature, water, and radiation on the gross primary production (GPP) in China during 2000–2019 are calculated based on the data and method provided in Supplementary Text S1.4, and the results are presented in Figure 2. It is found that the major factors determining the carbon capture of plants vary with the region and the season. Except for winter, the water resource is the most important factor in northwestern China, especially for Xinjiang, Inner Mongolia, and Qinghai, and its effect is more pronounced in the summer. Comparatively, radiation accounts for more in southeastern China, and its influences extend to the northeastern areas in the summer. As for the temperature, it reasonably controls northern China in the winter and also explains the limited carbon sink over the large part of the Tibet Plateau nearly all over the year.
[image: Figure 2]FIGURE 2 | Geographic distribution of potential climatic constraints to plant growth derived from long-term (2000–2019) climate statistics in (A) spring, (B) summer, (C) autumn, and (D) winter. R, T, and W represent radiation, temperature, and water resources, respectively. Deeper green indicates stronger constraints of radiation on GPP, deeper blue indicates stronger constraints of temperature on GPP, and deeper red indicates stronger constraints of water on GPP.
DISCUSSIONS
Carbon Trading
Based on the anticipation of the net carbon emission of provinces introduced in The Roadmap for Chinese Carbon Neutrality Considering Differences Between Provinces, the net carbon emissions of representative provinces in 2050 under the scenario of total green development (the S1 scenario) are provided in Supplementary Table S4, which quantifies the potential and the need of different provinces for the carbon trading in China. As it is presented in Supplementary Table S4, in 2050, Qinghai, Sichuan, and Hunan can additionally sequestrate 20.45 GtCO2e, 14.08 GtCO2e, and 9.52 GtCO2e in addition to local carbon emission, respectively, which can be regarded as the “carbon credit.” On the contrary, the net carbon emissions of Liaoning, Chongqing, Guangdong, Henan, Shanxi, and Hubei in 2050 are still positive, ranging from 10.98 to 103.49 GtCO2e, which can be regarded as the “carbon debt.” In other words, provinces with a relatively low economic development level and high potential of carbon sequestration, like Qinghai, can swap the net carbon sinks for economic support and resource supply from those provinces having difficulties in carbon mitigation.
Moreover, embedded in distinctive political, economic, and institutional contexts, the emission trading systems (ETSs) can control carbon emission both effectively and economically. Comprehensive ETSs rely on the ex-ante investigation of carbon footprint, improvement of carbon tax policy, reasonable carbon pricing, fair allowance allocation among sectors and enterprises, unified carbon market construction, and ex-post impact assessments (Lu et al., 2010; Wang et al., 2015; Jiang et al., 2016; Zhang et al., 2020; Wei 2021).
Redistribution of Natural Resources
Figure 2 shows significantly different features of the climate constraints on plant growth in northwestern China and southeastern China. For further investigation, we present the multiyear-averaged distribution of minimum temperature, precipitable water, and cloud cover in Supplementary Figures S2–S4 based on the data from NCEP-DOE Reanalysis 2 (Kanamitsu et al., 2002). Moreover, the distribution of elevation in China is drawn in Supplementary Figure S5 based on the 90 m digital elevation model (Jarvis et al., 2008). The dividing line from southwest to northeast can be found in Supplementary Figures S2–S4, mainly due to the latitudes and spatial characteristics of the elevation in China (Supplementary Figure S5), which decreases from northwest to southeast. With higher elevation, northwestern China experiences lower temperature (Supplementary Figure S2) and thinner air overlying it, which together led to less precipitable water in the region (Supplementary Figure S3) and thus less cloud cover (Supplementary Figure S4). Since the reflection and absorption of radiation by the clouds are less, more radiation can arrive at the surface in northwestern China. Apart from that, southeastern China is close to the South China Sea, western North Pacific, and the East China Sea, thus having adequate moisture supply and experiences frequent moisture convergence due to the large-scale atmospheric circulation (Huang et al., 2018).
Further, Figure 2 implies that rational redistribution of natural resources is conducive to the enhancement of the carbon fixation capacity. For example, land resources are adequate in western China, which nevertheless severely lacks the water and heat resources, and therefore has restricted the growth of grasslands. According to Figure 2B, the ecological productivity in the northwestern Qinghai (around the Chaidamu Basins) during the growing season (approximately in the summer season) can be added if more water resources were transferred there. The pronounced positive trend in natural precipitation has been observed around the Chaidamu Basins based on the Climate Forecast System Reanalysis (CFSR) product during 1980–2016, favoring the increases in ecological carbon capture (Ayantobo et al., 2016). If the artificial precipitation enhancements are performed at the places where the moisture converges and are followed by water resource regulation of surface water conservancy projects, the precipitation over the Chaidamu Basins can be increased by around 2.4 billion cubic meters per year during 2020–2060 (Meng and Wang 2019), which can largely boost the net ecological productivity there.
CONCLUSION
In this study, based on the statistical data and grid data, using the STIRPAT model (Pan et al., 2021) and Nemani’s (Nemani et al., 2003) method, the roadmap is drawn for the Chinese commitment to peak emissions in 2030 and reach carbon neutrality in 2060. Further, a strategy of water–temperature–radiation–land coupling use for carbon neutrality of China is provided. Specifically, our major findings are as the following:
1) China’s 2060 carbon neutrality target is supposed to be split into three steps based on the carbon emission estimation of provinces. The demonstrational areas (such as Qinghai and Xinjiang), the key areas (such as Sichuan, Hubei, and Hunan), and the difficult areas (such as Henan, Shaanxi, and Guangdong) should cut the net carbon emission to zero by 2045, 2055, and 2060, respectively. Also, carbon trading is a requisite considering the interprovincial dispatch of economic development levels, natural resource storage, and carbon emission.
2) The energy intensity of China is higher than that of Europe and America, while the account of nonfossil fuels in China is lower than those of Europe and America. Thereby, more efforts should be made to improve the efficacy of energy consumption in China.
3) In summer, the plant growth in northwestern and southeastern China is limited by water and radiation, respectively. Rational redistribution of natural resources is conducive to the enhancement of the carbon fixation capacity.
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The COVID-19 pandemic has compelled countries worldwide to enforce stringent measures to maintain social distancing, by locking down populations and restricting all kinds of transport. Besides their impact on the virus, these dramatic changes may also have positively contributed to a sustainable environment. The study aims to measure the effect of COVID-19 on environmental sustainability by employing the autoregressive distributed lag (ARDL) model. The study is based on the daily data of COVID-19 confirmed cases; confirmed deaths; manually generated lockdown data by the indexing method; and NO2, NH3, SO2, and CO levels from March 3, 2020, to July 27, 2021. This research study investigates the long- and short-term relationship between COVID-19 and the aforementioned greenhouse gases. The findings suggest conclusively that NO2, SO2, and CO declined during the COVID-19 period in India because these gases are anthropologically emitted by transport, industries, and fossil fuel burning. On the other hand, the evolving NH3 is not related to COVID-19 confirmed cases and deaths but is impacted by lockdown because ammonia emission is directly related to agricultural activities. Therefore, a decline in pollutants such as greenhouse gases during the COVID-19 period until July 2021 was observed. This means the prioritized control of human activities can be helpful to enhance the quality of the environment.
Keywords: greenhouse gas, COVID-19, ARDL, environmental sustainability, India
INTRODUCTION
Over the years, phenomenal advances in epidemiology have predicted the emergence of wide epidemics in the human population. The globalization of human communities has facilitated the transmission of infectious diseases, leading to a higher risk of global outbreaks. The distressing effects of the great pandemics of the past have potentially influenced human development, while the historical evolution of epidemics has drastically modified the living standards, affecting worldwide economies.
Similarly, the recent coronavirus pandemic (COVID-19) has strongly affected the global economy. The shift in the rhythm of people’s livelihoods has transformed the world’s socio-economic structure, developing an inextricable relationship between human development and epidemics. In December 2019, the massive disruptions caused by COVID-19 imposed a new strain in many countries causing them to experience an extensive turmoil. The emergence of the causative virus was first reported from Wuhan, China (Huang et al., 2021). Its clinical manifestation has caused an extensive turbulence worldwide. The wide spread of this deadly disease has seen a high fatality rate, with vulnerable population particularly experiencing its severity. The latest statistics (August 1, 2021) report 210 million confirmed cases, with more than 4 million people dying because of COVID-19 (Ritchie et al., 2020). However, besides the unprecedented consequences of the pandemic, research has also revealed that the impact of COVID-19 has improved the environmental conditions, thereby limiting the greenhouse emissions (Kumar and Kumar, 2020; Mandal et al., 2020; Mishra and Kumar, 2021).
Air is an essential element needed for human survival. It plays a fundamental role in sustaining a healthy environment, thereby providing a safe and clean place to live. Improved air quality enhances individual well-being, making humans enjoy substantial health benefits.
In contrast, the historical reputations of air pollutants correctly make environmental containments the chief agent leading to the great tragedies of human civilization (Vulichi et al., 2021). The greenhouse emissions are crucial determinants of atmospheric quality. Environmental substances such as toxic gases produce a high concentration effect, thereby reducing the air quality. The greenhouse gases (GHSs) (i.e., CO2, NO, NH4, and SO3) result in environmental degradation (Manisalidis et al., 2020). Research shows that among these GHGs, CO2, SO2, and NO2 are the most harmful environmental contaminants affecting the global climate (Conibear et al., 2018). The emission of these gases deteriorates the air quality, resulting in environmental depletion (Gautam and Hens, 2020).
Subsequently, due to the increasing greenhouse emission, environmental unsustainability has become a global concern that hinders long-term social benefits. Unsustainable resources cause adverse effects such as atmospheric deterioration, air pollution, and global warming. The tremendous increase in pollution due to anthropogenic activities has made environmental sustainability the prime concern for meteorologists. Therefore, to maintain sustainable atmospheric conditions, unwanted greenhouse emissions should be restricted. Environmental sustainability should be ensured, mitigating the negative consequences of climate changes and thus achieving a clean atmosphere.
While the pandemic has undoubtedly had an adverse overall impact on human health, significant developments have been witnessed regarding the health of natural assets such as land, water, and air. It has been found that lockdown measures during COVID-19 reduced pollution levels, including air pollution, a crucial determinant of environmental quality during the COVID-19 period. According to a recent study, the decrease in human activities in China during the lockdown restrictions resulted in a significant decline in air containment (Wang et al., 2020). Furthermore, other findings illustrate that the global lockdown conditions remarkably reduced the atmospheric concentration, thereby positively modifying the air quality (Kumar et al., 2021; Sharma et al., 2020). This suggests that the precautionary policies during the lockdown period relieved the environment from some of the burden of human activities. Hence, the health-damaging impact of COVID-19 during the lockdown restriction significantly reduced the pollution level across the globe.
COVID-19 has disturbed the globalized economy, thereby throwing many countries into deep recessions. An immense increase in the death rate has had negative consequences for countries. To prevent the rapid transmission of the virus, governments enforced severe lockdown conditions worldwide. In the case of India, lockdown implications halted the nation’s economy while the number of confirmed cases grew. As of August 1, 2021, the data record 31.70 million confirmed cases, causing 424,773 to lose their lives. This vulnerable situation in India provoked the government to implement strict lockdown measures. Indeed, to manage the outbreak during this global emergency, a public curfew was officially announced on March 24, 2020, whereby Indian citizens were encouraged to practice social distancing. Socio-economic activities were also suspended (MHA, 2020). All industrial and commercial establishments remained closed. This abrupt lifestyle changes in India forced people to follow lockdown guidance, leaving their homes only as the final resort for their survival.
However, the pandemic and the steps taken to mitigate it reduced air pollution across the Indian Territory. A significant reduction in air containments reveals a decrease of poisonous substances in most of the cities of India (i.e., New Delhi, Bangalore, and Mumbai). Given this statement, a notable decline in the greenhouse concentration (i.e., NO2) was recorded across the Indian region (e.g., New Delhi, Ahmedabad, Bangalore, and Nagpur) (Vadrevu et al., 2020). Likewise, the recent finding demonstrates that during the lockdown situation in India, the decline in the concentration level of greenhouse emissions (e.g., NO2, CO2, and O3) lead to an improvement in the national environment (Kumar ad Gupta, 2020; Sharma et al., 2020; Kumar et al., 2021). Perhaps, aside from curtailing COVID-19, the findings provide a clear justification for the Indian government to accelerate efforts to improve the national air quality (McDonald et al., 2020).
Over various geographical regions of India during COVID-19, a healthy correlation was witnessed between the pollution intensity and COVID-19 severity. The decline in socio-economic activities improved the pollution status, reducing the exhausting environmental emissions (Kumar and Kumar, 2020; Mishra and Kumar, 2021; Singh et al., 2020). As such, the viral outburst of COVID-19 has drastically enhanced air quality, contributing to the recovery of the global environment, albeit perhaps temporarily.
Altogether, the results show that the COVID-19 implications have enhanced the environment by widely improving the air quality. This temporary improvement in atmospheric conditions has demonstrated the importance of reducing greenhouse emissions, thereby gaining environmental sustainability. Primarily, therefore, this study aims to determine the air pollution level during the COVID-19 lockdown period. It investigates the fundamental relationship between the pollution status and COVID-19 susceptibility. As such, this study has great significance in the context of India during the lockdown period.
The reduction in air substances and improvement in public health conditions reflect the truth regarding the atmospheric quality. The deadly COVID-19 pandemic provides a broad scope to the meteorologists and policymakers studying and planning for the rejuvenation of environmental health. This study aims to provide a scientific research that articulates pollution parameters to achieve air quality standards. Perhaps, the sustainable environmental management unintentionally implemented during the COVID-19 escalation gives reason to express the optimism regarding the recovery of global meteorological conditions. However, the question remains as to whether nations will be able to maintain the same kind of pollution reduction in the future. This research is conducted to find the solution to this question. Overall, this study suggests that countries can control greenhouse emissions, thereby achieving long-term environmental sustainability.
MATERIALS AND METHODS
Data Description
This research aims to analyze the GHG emission data during the COVID-19 pandemic, in the period from March 3, 2020, to July 27, 2021. The fundamental reason behind the data selection period is that the first COVID-19 confirmed case in Delhi was recorded on March 3, 2020, and all data available at time of writing were included. The GHGs are considered as dependent variables, i.e., the nitrogen dioxide (NO2), ammonia (NH3), sulfur dioxide (SO2), and carbon monoxide (CO) measured in µg/m3, which shows the micrograms of gaseous pollutant per cubic meter of ambient air in India. The daily data series of GHGs are presented in Figure 1. The COVID-19 factors are used as the independent factors i.e., Lockdown (LD), Confirmed COVID-19 Cases (CC), and Confirmed COVID-19 Deaths (CD). The daily data series of GHGs are obtained from the Central Control Room for Air Quality Management—All India, and the COVID-19 data are obtained from the World Health Organization (WHO). The lockdown data are generated based on restrictions, with the proxies generated as 1 representing restriction and 0 showing no restraint in the specified areas.
[image: Figure 1]FIGURE 1 | Daily data series of greenhouse gases from March 3, 2020, to July 27, 2021.
Research Methodology
This research specifies the four log–log models with NO2, NH3, SO2, and CO with COVID-19. The simplest form of models is presented below:
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The log–log form of models:
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Nitrogen dioxide (NO2), ammonia (NH3), sulfur dioxide (SO2), and carbon monoxide (CO) are considered as dependent variables. The measurement scale of these selected greenhouse gases is micrograms of gaseous pollutant per cubic meter of ambient air. The COVID-19 parameters for structuring the models are lockdown, and confirmed cases and confirmed deaths of COVID-19. The last term of the equation [image: image] is an indication of an error term that measures data disturbance (Dar et al., 2021; Naseem et al., 2021; Sarfraz et al., 2021).
After designing the fundamental research structure, first, the stationarity of time series data is checked for the accuracy of different results. Then, the unit-root presence is confirmed with the nonstationarity of the data series. Finally, the basic equation of the Augmented Dickey–Fuller test is given as follows:
[image: image]
In the above equation, [image: image]is a constant, [image: image], and[image: image]. The deterministic trend is coming from [image: image], and the stochastic intercept term is coming from [image: image], resulting in what is referred to as a stochastic trend.
Autoregressive Distributed Lag Model
The long- and short-run relationship can be checked by implementing the ARDL model’s cointegration approach on the selected data series. The ARDL model is the best model when the integration orders are a mixture of level I(0) and the first difference I(1) (Naseem et al., 2020; Mohsin et al., 2021). ARDL instantaneously acquires the dynamic, short- and long-run coefficients. Additionally, the OLS method is employed to check the cointegration relationship of NO2, NH3, SO2, and CO with COVID-19. The conditional error-correction model is given as follows:
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In the above equations, cointegration among the dependent and independent variables is checked individually, such as NO2 ([image: image], NH3 ([image: image], SO2 ([image: image], and CO ([image: image]. The null hypothesis of this method shows that no cointegration exists among variables, which can be presented as [image: image] The alternative hypothesis has shown the existence of cointegration by utilizing the equation as [image: image] The third measuring scale of cointegration is inconclusive cointegration, which is checked based on the lower bound value and upper bound value with a comparison of the F-statistics value (Sulaiman and Abdul-Rahim, 2018). The confirmation of cointegration among variables is a clear indication to apply the short- and long-run ARDL models.
Short-run ARDL model:
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Long-run ARDL model:
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The main models of short run and long run are presented above. The ECT term of the short-run model is to measure the speed of adjustment from the short to the long run. The sign of [image: image] is used for the coefficient of ECT term. The ECT value must be between 0 and −1, while the lagged ECT value checks the error ratio in the previous period. Finally, the post-normality tests (serial correlation, heteroskedasticity, and functional form) are employed in the last method implication process to check the validity of the results.
EMPIRICAL RESULTS
Table 1 contains the summary of descriptive results of the data series. The mean values are NO2 (27.489), NH3 (25.698), SO2 (14.599), and CO (1.040), confirmed COVID cases (524379), and confirmed deaths (27.489). The maximum range and minimum range of the data series are highly differentiated against each other, leading to instability. The content of the dependent variables is from 0.200 to 116.150, while the range of the independent variables is highly unpredictable and fluctuates between 0.630 and 1436207. Due to the unstructured data series with increasing trend, especially in COVID-19 cases and deaths, the standard deviation lies between 0.547 and 482,055. The confirmed cases of COVID-19 have shown a highly deviated series in the selected set of variables. The skewness confirms the positive skewness in all variables. The value of kurtosis is more than 3 in all series except the confirmed cases of COVID-19. The confirmed cases of COVID-19 show the normal distribution, and the remaining series are all leptokurtic. The range of Jarque–Bera is 54.665–1123.102, which is used to check the goodness-of-fit test.
TABLE 1 | Descriptive statistics.
[image: Table 1]The ADF results are presented in Table 2, which is employed to check the stationarity of the data series. The alternative hypothesis of ADF is checked on the stationary method, and the results indicate that some variables are stationary at the level and some at first difference. This mixture of results confirms the feasible ground to run the ARDL method (Sulaiman and Abdul-Rahim, 2018; Mishra and Kumar, 2021). All dependent variables are significant at the level, and the first difference is at 1% significance level. In comparison, the independent variables, i.e., confirmed cases and death via COVID-19, are significant at first, showing a 1% significance level.
TABLE 2 | Augmented Dickey–Fuller (ADF) test results.
[image: Table 2]Table 3 contains the result of the bound test, which is generally used to check the binding of variables for long-term and short-term interactions. This test is based on the mixture of integrated results of ADF to avoid spurious results (Naseem et al., 2021; Sarfraz et al., 2021). The value of F-statistics is higher than tabulated, which confirms the significance of all variables at 1% significance level. The significance of all variables indicates that the long-run relationship among variables and the rejection of the null hypothesis of no cointegration exists.
TABLE 3 | Bound test results.
[image: Table 3]The short-run ARDL model is employed, and the results are presented in Table 4. Before explaining the results, it is necessary to mention that the software automatically selected the lags and behavior of variables and delivered the final form (Sarfraz et al., 2020; Naseem et al., 2021; Sarfraz et al., 2021), which is presented in Table 4 under consideration of a specific set of variables. The first and third interacted variables toward the independent variable are NO2 and SO2, which authorize the significance of confirmed cases and deaths of COVID-19 at a 1% level of significance. The values of the ECT coefficient are −0.257156 and −0.246966, which satisfy the basic assumption of negative significance. According to the value of the coefficient, long-run equilibrium speed from the short run is corrected about 25.7156 and 24.6966%, which is slow, taking approximately 3.89 and 4.05 periods, respectively. The second variable, NH3, elucidated its relationship with lockdown only at 1% significance level, while the ECT term is negatively significant with the value of −0.199436. The value of the ECT coefficient demonstrates that the return to equilibrium from the short to long run required almost 5.01 periods. The last dependent variable, CO, shows a significant relationship with lockdown, confirmed cases, and deaths at 1% level. The error correction term is also negative and significant, with a value of −0.264676. The short-term return to the long-run equilibrium with 26.4676% speed will take approximately 3.78 periods. The values of R2, Durban–Watson statistic, Akaike information criterion (AIC), and F-statistic are presented for individual variables to check the model fitness.
TABLE 4 | The estimated short-run coefficients based on Akaike information criterion (AIC).
[image: Table 4]The long-run ARDL model is employed, and the extracted results of the long-run are presented in Table 5. The results reveal that lockdown and confirmed cases and deaths of COVID-19 have a long-run relationship with NO2 and CO at a 1% level of significance. SO2 emission shows a significant relationship with confirmed cases and confirmed deaths, while NH3 is significantly related to lockdown only. The sign of negativity with coefficients of variables indicates emission reduction in specific gases under specific circumstances. Nitrogen dioxide (NO2) and carbon monoxide (CO) are primarily emitted in air by fuel burning (Somani et al., 2020). Meanwhile, the primary source of nitrogen dioxide emissions is vehicles, i.e., trucks, cars, and buses; power plants; and offload equipment. The confirmed cases have a positive interaction with NO2 because of people using vehicles to travel from home to hospitals. Still, the confirmed deaths and lockdown are negatively related because the lockdown reduces the percentage of traveling and established deaths are behind the lockdown (Beig et al., 2021; Mele and Magazzino, 2021). The sources of NH3 emission are agriculture, animal husbandry, and NH3-based fertilizer applications; hence, it does not show any relationship with confirmed cases and deaths. The lockdown restricted people in their homes, which strongly affected all human activities (Mohsin et al., 2021; Naseem et al., 2021). The SO2 emission sources are related to burning of fossil fuels such as coal, oil, diesel, and materials containing a minor or significant quantity of sulfur. The main hubs of SO2 emission are power plants and metal processing and smelting facilities, which are more relevant to labor than public lockdown. The threatening condition of the pandemic breakout restricted people from going to workplaces, and most workplaces were closed. Hence, a relationship was detected toward confirmed cases and deaths rather than lockdown.
TABLE 5 | ARDL long-run form and bound test results.
[image: Table 5]The results of the ARDL diagnostic test are given in Table 6, which covers three main reliability tests, i.e., serial correlation, heteroskedasticity, and functional form. In our data series (NO2, NH3, and SO2), the variance is unequal over a range of measured values or unequal scattered residuals of regression; this caused the issue of heteroskedasticity to be observed in the series. Furthermore, the data series used in this research for analysis are strongly related to each other, so diagnostic tests show significance due to the strong interaction of data series (Sulaiman and Abdul-Rahim, 2018). Finally, the serial correlation test strongly rejects the null hypothesis and confirms the reliability of the results.
TABLE 6 | The results of the autoregressive distributed lag diagnostic tests.
[image: Table 6]DISCUSSION
The National Capital Territory (NCT) of Delhi is one of the world’s oldest cities. New Delhi, the capital of India, is also in the Union Territory of Delhi. This 1,484 square kilometers (573 Sq mi) historical city is interlinked with Haryana and Uttar Pradesh. According to the United Nations (UN), with regional coverage of 28 million people, Delhi is the second-largest urban populated area in the world. The air quality of Delhi is hazardous (500+), which causes lung diseases, especially asthma and cancer. The GHG emissions and poor quality of air have reduced the winter temperature of Delhi since 1998, the fundamental reason for the quick spreading of COVID-19 in Delhi. Being the capital of India, an industrial hub, cultural core, and contributor of GDP, the GHG emissions are a significant problem for the city. As COVID-19 became a game-changer for the world, Delhi also went through some positive changes. On March 3, 2020, the first confirmed case was reported in Delhi and the notification of lockdown was circulated on March 24, 2020. This research has explored the analytical data from March 3, 2020, to July 27, 2021. The results of this research confirmed a negative and a long-term relationship among the dependent and independent variables. The COVID-19 pandemic and lockdown dramatically reduced the level of toxic GHG emissions and enhanced Delhi’s air quality. A vibrant change is observed in NO2, SO2, and CO emissions due to the reduction in fuel burning, transport, material processing, and plant running activities. At the same time, NH3 was not highly affected because it is directly related to agricultural activities. This research identified that the mismanagement of city policies and carelessness in terms of environmental sustainability in Delhi are the key reasons for over-toxic emissions. The collaborative efforts of the Government of India, city governance, policymakers, and environmentalists can reduce GHG emissions and improve the quality of the environment.
CONCLUSION
India was severely affected by COVID-19 due to its temperature range between 27°C and 32°C and humidity level from 25 to 45% (Sasikumar et al., 2020). These specific ranges of humidity and temperature are most ideal for the survival and growth of COVID-19. Rapidly increasing temperature ranges are undoubtedly related to global warming. The release of unnecessary GHGs into air is the cause of uncontrollable global warming. As such, by leading to reductions in the GHG release, social distancing, SOPs, lockdown, and other precautions adopted positively contributed to the environmental sustainability in India.
This research work also explains the behavior of various GHGs during the COVID-19 period. In this research, we examined the daily data regarding GHG emissions in Delhi from March 3, 2020, to July 27, 2021. The data series were collected from official websites, i.e., the World Health Organization (WHO) and the Central Control Room for Air Quality Management—All India. Our findings revealed a short- and long-run relationship between NO2, NH3, SO2, and CO and COVID-19.
Although the speed of adjustment from the short-run to long-run equilibrium was minor in all the variables, the error correction term’s negative significance supported the existence of a long-run relationship among the exogenous and endogenous variables. NO2, SO2, and CO are anthropologically related to fossil fuel burning, transport, material processing, and plant running, which were closed under the lockdown, except for household fuel burning. These dramatic changes showed a declining trend in the emission of these GHGs. The results were also confirmed by the negative significance of variables for the short and long run. Meanwhile, NH3 comes from agricultural activities, which were not highly affected in the long and short run. Undoubtedly, agricultural activities were also restricted during the pandemic breakout, but the fields were still able to grow as normal.
Recommendations, Limitations, and Future Direction
The main limitation of this research is the data variables. The data are collected during the COVID-19 period by considering specific variables, and the current study considers overall specific time period data. Therefore, future research can be divided into three parts, i.e., Delhi before COVID-19, Delhi under COVID-19, and Delhi under farmer protest. These topics can be individually discussed and compared with different situations concerning GHG emissions and the environmental quality. In the analytical implementation, divergent econometric methods such as the ARDL method, linear regression, and dynamic regression can be utilized.
Overall, the current research work can act as a guideline for the Government of India, policymakers, and environmentalists to design new policies and frameworks for a sustainable environment. The main reasons for the toxic gases emission are now recognized due to the unique situation caused by the COVID-19 pandemic. As such, it is apparent that there is a need for improvements in transport systems, industries, material processing plants, and environment-friendly technology in every field of life. As per the environmental performance index, if India is unable to maintain ecological sustainability and enhance the quality of the environment, more people will die than from COVID-19.
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In the modern era, rapid anthropogenic activities in the vicinity of the Himalayas disturb the carbon sequestration potential resulting in climate change. For the first time, this study estimates the biomass and carbon storage potential of Northeast India’s diverse land uses through a biomass estimation model developed for this region. The mean tree density in tropical, subtropical, and temperate forests was 539, 554, and 638 trees ha−1, respectively. The mean vegetation carbon stock was the highest for temperate forests (122.09 Mg C ha−1), followed by subtropical plantations (115.45 Mg C ha−1), subtropical forests (106.01 Mg C ha−1), tropical forests (105.33 Mg C ha−1), tropical plantations (93.00 Mg C ha−1), and temperate plantations (50.10 Mg C ha−1). Among the forests, the mean soil organic carbon (SOC) stock up to 45 cm depth was the highest for tropical forests (72.54 Mg C ha−1), followed by temperate forests (63.4 Mg C ha−1) and subtropical forests (42.58 Mg C ha−1). A strong relationship between the tree basal area and biomass carbon storage was found for all land-use types. The land-use transformation from agriculture to agroforestry, and grassland to plantations increased both vegetation carbon (VC) and SOC stocks. The corresponding increase in VC and SOC was 40.80 and 43.34 Mg C ha−1, respectively, in the former, and 83.18 and 97.64 Mg C ha−1 in the latter. In general, the landscape-level estimates were drawn from site-level estimates in a given land-use type, and therefore, the corresponding values might be overestimated. Nevertheless, the results provide baseline information on carbon stock which may serve as a reference for devising appropriate land-use change policies in the region.
Keywords: biodiversity hotspots, carbon storage, forest types, land use, species richness
INTRODUCTION
Since the mid-1900s, many objectives of global climate change research have shifted to reducing terrestrial carbon sources and enhancing sinks as a means of combating future climate change under carbon dioxide (CO2) enrichment (Kumar et al., 2017). In general, CO2 is a predominant greenhouse gas (GHG) in the atmosphere and a major contributor (>50%) to global warming. Studies have reported that a rapid change in land-use alone contributes to nearly 10% of global anthropogenic CO2 emissions (IPCC, 2007; Le Quere et al., 2016). The tropical zones have shown an increased accumulation of atmospheric CO2 to >400 ppm in 2015 (Betts et al., 2016), and this accumulation is projected to exceed 500 ppm by 2050 (Cai et al., 2014). Furthermore, the rapid increase of atmospheric CO2 concentration will increase earth’s surface temperature and further cause negative impacts (e.g., sea level rise, flooding, and increase ecological and human health risk) (IPCC, 2007; IPCC, 2014; Kumar et al., 2021). To combat these effects of climate change, the United Nations Framework Convention on Climate Change (UNFCCC) formulated “Reduction of Emissions from Deforestation and Forest Degradation” (REDD) policy in 2007, which was further enacted as REDD+ in 2010 (UNFCCC, 2008) to conserve and manage 2015 Pg (1 Pg = 1 giga ton = 1015g = 1 million metric ton) of global terrestrial C stock. As per an estimate, the carbon emission from land-use change was 0.9 Pg C yr−1 during 2005 to 2014 (Le Quere et al., 2016). The Paris Agreement (2015) further emphasized on limiting the global temperature increase to 2°C by 2,100 and pursuing efforts to generate more carbon via agricultural materials through both conventional mitigation efforts and alternative routes (Gupta and Kumar, 2020; Kumar and Gupta, 2020), so as to limit the global temperature increase to 1.5°C. Terrestrial carbon stocks, especially in northeast India, are hotspots of current research as it covers an area of 26.3 million hectares which is equivalent to 8% of the total geographical area, and represents ∼25% of the country’s total forest area. In this perspective, studies on carbon accumulation in various pools (e.g., soil, vegetation, litter, etc.) in the terrestrial ecosystem can advance our understanding of climate change adaptation and mitigation. The rapid land-use change in Northeast India is driving climate change and biodiversity loss (Brahma et al., 2018; Ahirwal et al., 2021a; Deb et al., 2021). Thus, the conservation and sustainable development of land-use systems are expected to stabilize CO2 accumulation at the local, regional, and national levels. Moreover, the accurate estimation of biomass, soil carbon stocks, and their spatial distribution in various habitats will be crucial to understanding carbon storage potential and its dynamics (Weiskittel et al., 2015; Singh et al., 2018a).
Biomass estimation models are of immense importance for climate change studies. There is a continuous change of biomass density at individual forest stand and other woodlands due to land-use change, and anthropogenic activities triggered by climate change events (Ahirwal et al., 2021a). These changes are of paramount importance in influencing the global carbon cycle (Qiu et al., 2015; Pellikka et al., 2018). The measurement of biomass at plot levels especially on a mountainous hilly terrain is extremely labor intensive, and due to heterogeneity in landscape, it is practically impossible to cover vast landscape for carbon accounting without bias (Brahma et al., 2021). A precise estimation of carbon across different ecosystems will be desirable to increase our understanding of the location and magnitude of carbon density, and identify the carbon source and sink. The use of the locally developed robust biomass model would be critical in this direction for a more reliable and accurate biomass estimation, and reporting to national carbon stock enhanced knowledge on the carbon budget at both local and regional scales and in relation to the current climate change scenario (Thangjam et al., 2019).
Several factors such as land history, inherent climatic conditions, vegetation patterns and types, and land-use and its management practices play a vital role in influencing the carbon storage and sequestration rate in different carbon pools (Zhang et al., 2015). Over the last decades, environmentalists and policy-makers have become more aware of the vital role that tree diversity plays in combating climate change, and this has prompted them to be more conscious while designing any climate change mitigation and adaptation strategy (Con et al., 2013; Bhat et al., 2020; Sheikh et al., 2021). It has been established that plantation forestry (Brahma et al., 2017; Singh et al., 2018a; Nath et al., 2018; Kurmi et al., 2020), agroforestry (Tamang et al., 2021), and home gardens (Singh et al., 2015; Singh and Sahoo, 2021) have great potential for carbon sink in the Northeastern region of India. Similarly, secondary forests (accounting for variation in age) play an important role in carbon storage (Gogoi et al., 2020; Thong et al., 2020). One of the basic prerequisites for the accurate estimation of biomass stock at the regional and global scales is the use of appropriate models. Till today, only generic models, including those developed by Brown et al. (1989), Chambers et al. (2001) Chave et al. (2005), and Chave et al. (2014), have been used to estimate biomass and carbon stocks for diverse forests in the Northeastern region of India. However, the accuracy of biomass estimates using these models has rarely been tested. To overcome this uncertainty, there is an urgent need to develop a regional biomass estimation model to predict medium and long-term biomass and carbon stocks under different land uses, which could be highly useful for regional and/or global biodiversity conservation.
Computation of the landscape level and carbon storage facilitates the understanding of biogeochemical cycle, carbon dynamic (source/sink), and regional carbon cycle (Weiskittel et al., 2015). Geostatistics and remote sensing techniques have been frequently used for the purpose of extrapolation (Kumar et al., 2015). The use of active remote sensing images like the Moderate Resolution Imaging Spectroradiometer (MODIS), Light Detection and Ranging (LIDAR), Phased Array L-based Synthetic Aperture Radar (PULSAR), and indices such as the Normalized Difference Vegetation Index (NDVI), and the Leaf Area Index (LAI) coupled with field inventory are on the rise to estimate biomass in timely and cost-effective manners, especially on hilly terrains. In Northeast India, some efforts have been made to estimate forest biomass and carbon stock using remote sensing images for a particular state or a forest type in Tripura (Pandey et al., 2019), Manipur (Sharma et al., 2020), Arunachal Pradesh (Kumar et al., 2019), and Assam (Hussain et al., 2019). The use of remote sensing techniques for estimating carbon stock from a variety of complex land uses is often more challenging due to the lack of accurate and consistent measurement methods (Issa et al., 2020). For example, using remote sensing to trace transitions from intact forests to degraded forests on the same landscape may yield the same closed canopy area, while the carbon stock may have plummeted to 75% (UNFCCC, 2006). Low-vegetation signal-to-noise ratios, high soil background reflectance in shifting cultivation areas, and high spatial heterogeneity from plot to state-level data hamper the calibration and evaluation of data (Issa et al., 2020). These constraints pose unique challenges specific to varying environmental conditions and result in high inaccuracies when applying biomass estimation techniques for other ecosystems/land uses. To overcome these challenges and in view of the fact that there are no efforts to estimate the biomass of different habitats at a regional level, innovative ground-level field inventories using the best-fit equations for tree and other woody vegetation were necessitated (Brahma et al., 2021). The present study is the first of its kind for accounting for carbon from different land-use sectors at a regional scale. Further lack of accurate data on carbon stock and sequestration potential under land-use sectors makes this study indispensable. Therefore, the objective of the present study was to develop a robust regional model to estimate tree diversity, biomass, carbon stock, and sequestration potential under different land uses in the Northeast region of India. It also aimed to develop a relationship between tree basal areas and density with the biomass carbon storage at different pools for various land uses so that effective mitigation and adaptation strategies could be developed in advance to combat future climate change.
MATERIALS AND METHODS
Study Area
Northeast India accounts for 8% of the geographical area and ∼25% of the forest cover of India. The region is currently facing dual pressure of economic growth and environmental protection. The region is endowed with diverse land-use types. Besides various forest types, several other tree-based ecosystems such as traditional agroforestry, home gardens, plantations, and secondary forests that provide livelihood opportunities for rural populace are widely prevalent in the region. We selected seven major land uses viz., 1) forest: tropical, subtropical, and temperate; 2) bamboo forest; 3) plantation: tropical, subtropical, and temperate; 4) shifting cultivation fallows: <5 years, 5–10 years, and 11–20 years; 5) agricultural lands; 6) agroforestry; and 7) grasslands, in Northeast India. The agricultural land includes wet rice cultivation. The plantations include rubber (Hevea brasiliensis), areca nut (Areca catechu), oil palm (Elaeis guineensis), and orange (Citrus sinensis), while agroforestry involved traditional home gardens, coffee (Coffea sp.), piper (Piper betel), sugarcane (Saccharum officinarum), and mango-based systems (Mangifera indica) for the study. The area and proportion of each land use have been given in Supplementary Table S1. The estimated above ground biomass (AGB) data of each land use for different northeast Indian states was used to prepare the spatial distribution map. The classified Land Use and Land Cover (LULC) map of each state in the studied region was utilized to estimate the total area coverage under each land use (Figure 1). The LULC map was developed by integrating land image data of the concerned area over a particular time span (from November 2015 to February 2016) using freely available Landsat 8 Operational Land Imager (Landsat OLI) present on the data portal of the United States Geological Survey (USUG): “Earth Explorer”(https://earthexplorer.usug.gov). All the imageries were geo-referenced to Common Universal Traverse Mercator (UTM) projection UTM zone 46 and WSG 84 datum.
[image: Figure 1]FIGURE 1 | Spatial distribution of major land uses showing sampling plots in northeast India.
Field Inventory on Tree Composition, Biomass, and Soil Carbon Estimation
All the major land-use sectors were stratified, and sub-stratified/classified based on forest types, canopy cover, crop composition, and age of plantation/shifting cultivation, and representative eight permanent sites (250 m × 250 m) were established in each of the eight northeastern states following the ISRO–GBP/NCP–VCP protocol (Singh and Dadhwal, 2009). The field inventory on tree composition, biomass, soil, and carbon estimation from various pools was estimated from the sample quadrant plots of representative size: 0.1 ha (31.62 m × 31.62 m) following standard methods and other studies carried out during 2016–2019. For each site and each land use, four 0.1 ha permanent plots were fixed at the four corners of the site. The number of sampling sites in tropical, subtropical, temperate, and bamboo forests were 231, 40, 12, and 12, respectively. The number of sampling sites for tropical, subtropical, and temperate plantations were 87, 31, and 9, respectively, and for <5 years, 5–10 years, and 11–20 years shifting cultivation fallows, the number of sampling sites were 34, 17, and 7, respectively. The data for agroforestry, agriculture, and grasslands were drawn from 69, 89, and 23 sampling sites, respectively. All trees having ≥ 10 cm dbh (diameter at breast height, i.e., 1.37 m from the base) in each plot were measured for vegetation parameters such as species richness, density, and diversity following standard methods. Diversity indices including the Shannon–Wiener diversity index (Shannon and Weiner, 1963), species richness (Margalef, 1958), species evenness (Pielou, 1966) and species dominance (Simpson, 1949) were determined for all the major land uses. The basal area values of these trees were collected from the calculated mean of four plots at four corners of the site in a given sampling site and were further expanded to per hectare basis.
In Northeast India, the widely used generalized models for estimating biomass have rarely been validated by ground truthing. Besides this, different species-specific models have certain limitations in adhering to sufficient sample size, sampling strategy, validation, etc., resulting in large degrees of uncertainty in obtaining accurate biomass estimation from diverse forest ecosystems (Weiskittel et al., 2015). To overcome these issues, we used the biomass model developed by Nath et al. (2019) using 303 sample tree harvested data drawn from four major forest types of the region for calculation of AGB as
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where AGBest = above ground biomass (Kg tree−1), D = diameter at breast height, and 1.32 = correction factor.
Cross-validation is usually recommended to determine how accurately the biomass estimation model will perform when applied to an independent dataset. Usually, 5-fold or 10-fold cross-validation provides a good balance between bias and variance (Sileshi, 2014; Thangjam et al., 2019). However, a 10-fold cross-validation was employed to evaluate the predictive performance of the biomass estimation models developed by Nath et al. (2019). The goodness of fit criteria were calculated for the validation dataset using the lava and forecast packages of the R package. It was found that with high R2 and low AICc, RMSE, and MAPE values (Nath et al., 2019), the biomass model was best suited for tree biomass estimation in Northeast India over the generic model developed by Brown (1989) and the two pantropical models developed by, Chave et al. (2005), Chave et al. (2014). Details of the model development and validation procedure are available in the study by Nath et al. (2019).
We also used species-specific biomass estimation models for rubber and areca nut plantation developed for this region (Brahma et al., 2018). Belowground biomass (BGB) was calculated from the equation given by Mokany et al. (2006), and its carbon stock was calculated as BGB = 0.205 × AGB when AGB < 125 Mg ha−1 and BGB = 0.235 × AGB when AGB > 125 Mg ha−1. Aboveground biomass carbon (AGBC) was estimated from the default value (47%) of total biomass (IPCC, 2003). Two soil profiles (1 m × 1 m × 1 m) were dug randomly within each 250 m × 250 m sized site, totaling eight profiles for a site, twice in 2016 and 2018. Soil samples in triplicates were collected from three depths (0–10, 10–20, and 20–45 cm) using a soil corer (5.6 cm dia). In addition to this, 72 bulk soil samples (8 profile × 3 depth × 3 replication) were obtained for each land use, air-dried, and sieved using 100 micron mesh for the assessment of SOC concentration following a widely used method called “wet oxidation method” (Walkley and Black, 1934). The SOC stock for each depth was computed following the method proposed by Blanco-Canqui and Lal (2008). Values for different soil depths were summed up to obtain SOC stock up to 0–45 cm. Soil bulk density (BD) was calculated following the procedure of Robertson et al. (1974). The carbon stock of major pools (AGB, BGB, and SOC stock) was summed up for particular land use to arrive at the total carbon stock (TCS). The rate of change (sequestration) in carbon stock was determined from the initial/baseline value (2016) to the final value (2018). The age of the land use was recorded by questioning the farmers during field survey. The carbon sequestration rate was estimated by dividing the change in the carbon stock values (between prior (CLU0) and immediate (CLUn) values) by the age of the land use/age interval (Dung et al., 2016), which is expressed as
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Statistical Analysis
The variation in tree density, basal area, and carbon stock under different land use was determined using the analysis of variance and Tukey HSD tests at 5% level. The relationships among tree basal area, density, and carbon in different pools of all land-uses were computed using correlation and regression analyses with statistical package SPSS-21 (SPSS Inc., Chicago, IL, United States ). All the basic analyses were done using Microsoft Office -2010.
RESULTS
Tree Species Richness, Diversity, Stand Density, and Biomass Stock
The mean value of species richness varied significantly (p < 0.05) among land uses and ranged from 1.0 (subtropical plantations) to 12.22 (tropical forest). Tree species richness differed significantly (p < 0.05) between forest types and shifting cultivation fallows (Table 1). The Shannon–Wiener diversity index (H) varied significantly (p < 0.05) among different land uses, showing maximum value (2.40) in 11–20 years shifting cultivation fallows followed by temperate forest (2.39), tropical forest (2.20), 5–10 years shifting cultivation fallow (1.99), and minimum (0.02) in subtropical plantation (Table 1). The Simpson dominance index ranged from 0.09 (11–20 years shifting cultivation fallow) to 0.83 (tropical forest) and Pileou’s evenness index was maximum (0.99) in <5 years and 11–20 years shifting cultivation fallows and minimum (0.55) in bamboo forest (Table 1). Margalef’s species richness index was maximum (3.21) in tropical forests followed by 11–20 years shifting cultivation fallow (2.81) and minimum (0.61) in tropical plantation. Tropical forests had a mean stand density of 539 trees ha−1, and the corresponding values for subtropical and temperate forests were 554 trees ha−1 and 578 trees ha−1, respectively (Table 2). Among the tree plantations, those located in subtropical climate showed the highest stand density (840 trees ha−1), followed by tropical (598 trees ha−1) and temperate (344 trees ha−1). The culm density in bamboo forests was 6,550 culms ha−1. The mean tree density in shifting cultivation fallows varied from 140 trees ha−1 (<5 years fallow) to 703 tree ha−1 (11–20 years fallow). In agroforestry systems, the stand density was 744 trees ha−1 with a mean basal area of 14.35 ± 4.02 m2 ha−1. The temperate forests had the highest average basal area (29.50 ± 2.63 m2 ha−1) followed by subtropical (26.71 ± 2.18 m2 ha−1) and tropical forests (25.07 ± 1.01 m2 ha−1). The basal area of tree plantations also varied significantly and was in the order of subtropical (30.63 ± 6.46 m2 ha−1) > tropical plantation (26.86 ± 1.83 m2 ha−1) > temperate plantation (11.43 ± 1.57 m2 ha−1). Biomass values varied significantly (p < 0.05) between different land uses and ranged from 2.53 ± 0.51 Mg ha−1 (in grassland) to 259.77 ± 15.43 Mg ha−1 (in temperate forest), and were in the order of natural forests > plantations > older shifting cultivation fallows (5–10 and 11–20 years) >agroforestry > bamboo forest > agriculture (Table 2). The details of the dominant species and their respective density, importance value index, basal area, and biomass stock are provided in Supplementary Table S1
TABLE 1 | Species richness and diversity indices of the tree species across different land-use sectors of Northeast India.
[image: Table 1]TABLE 2 | Stand density, basal area, and biomass in major land-use sectors of Northeast India.
[image: Table 2]Vegetation Carbon Stock
The mean value of AGBC stock was the highest (100.51 ± 11.33 Mg C ha−1) in temperate forest and lowest (0.96 ± 0.31 Mg C ha−1) in grassland. The mean vegetation carbon stock (ABG + BGB) was the highest (122.09 ± 13.59 Mg C ha−1) in temperate forests followed by subtropical (106.01 ± 11.59 Mg C ha−1) and tropical forests (105.33 ± 3.88 Mg C ha−1). The AGBC and total vegetation carbon in bamboo forest were 17.79 ± 1.46 Mg C ha−1 and 21.98 ± 1.80 Mg C ha−1, respectively (Figure 2). Vegetation carbon stock in the plantations were in the order of subtropical (115.45 ± 21.20 Mg C ha−1, range 57.15–266.5 Mg C ha−1) > tropical (93.00 ± 7.80 Mg C ha−1, range 7.23–341.92 Mg C ha−1) > temperate (50.10 ± 6.72 Mg ha−1, range 18.75–75.05 Mg C ha−1) zones. The agricultural land showed an average vegetation carbon stock of 2.71 ± 0.36 Mg C ha−1. The cumulative aboveground carbon storage in four major land-use sectors in Northeast India amounts to 212,675,8462 Mg C (2.13 Pg C) to which tropical, subtropical, and temperate forests contributed 67.68, 10.44, and 13.77%, respectively (Supplementary Table S2).
[image: Figure 2]FIGURE 2 | Vegetation carbon and soil organic carbon stocks (0–45 cm soil depth) in major land uses in Northeast India.
Soil Organic Carbon Stock, Total Carbon Stock, and Carbon Sequestration
Among the forest types, the mean SOC stock was in the order of tropical forests (72.54 ± 2.02 Mg C ha−1) > temperate forests (63.4 ± 6.94 Mg C ha−1) > subtropical forests (42.58 ± 3.32 Mg C ha−1). SOC values in tropical forests ranged from 10.13–119.65 Mg C ha−1, and in temperate forests, its value varied between 22.32 and 114.59 Mg C ha−1. The mean SOC stock was 29.83 ± 0.97 Mg C ha−1, with variations from 25.28 to 34.67 Mg C ha−1 in bamboo forests (Table 3). The SOC stock in plantations was in the order of tropical > subtropical > temperate zones. On average, the SOC stock was the highest in 5–10 years fallows (84.56 ± 3.99 Mg C ha−1) followed by 11–20 years fallows (78.19 ± 2.09 Mg C ha−1) and <5 years fallows (75.76 ± 7.86 Mg C ha−1), and the mean SOC stock in agriculture land-use was 40.13 ± 1.77 Mg C ha−1. Total carbon stock (TCS) was maximum (185.5 ± 15.55 Mg C ha−1) in tropical forests and minimum (40.55 ± 7.77 Mg C ha−1) in grassland (Figure 2).
TABLE 3 | Mean annual carbon increment (Mg C ha−1 yr−1) in different carbon pools of major land uses in Northeast India.
[image: Table 3]The mean annual increment (carbon sequestration) in vegetation pools varied between 1.80 Mg C ha−1 yr−1 (tropical plantations) and 5.51 Mg C ha−1 yr−1 (temperate forests). The carbon sequestration rate was significantly higher in forests (2.81–5.51 Mg C ha−1 yr−1), followed by plantations (1.80–5.08 Mg C ha−1 yr−1) and secondary forests (1.35–2.84 Mg C ha−1 yr−1). The results revealed that tree-based land uses registered an increase in vegetation carbon by 2.68 ± 0.12 Mg C ha−1 yr−1. SOC sequestration was the highest in temperate forests (1.85 ± 0.31 Mg C ha−1 yr−1), followed by subtropical forests (1.78 ± 0.28 Mg C ha−1 yr−1) and tropical forests (1.0 ± 0.18 Mg C ha−1 yr−1). Agriculture land use and shifting cultivation fallows (<5-years) showed the lowest rate of SOC sequestration (Table 3). The carbon sequestration rate was found to be significantly (p < 0.05) higher in plant biomass than in soil.
Relationship Among Tree Diversity, Basal Area, and Carbon Stock in Different Pools
Significant positive relationships were observed between the basal area and tree density for all land uses, except temperate forests. However, no relationship between the basal area and SOC stock was observed, except in the tropical forests. Similarly, there was no relationship between the basal area and BGB carbon stock in the old (11–20 years) shifting cultivation fallows (Table 4).
TABLE 4 | Relationships among density, aboveground biomass carbon (AGBC), belowground biomass carbon (BGBC), vegetation carbon (VC), soil organic carbon stock (SOCS), and total carbon stock (TCS) with basal area of the trees in different land-use sectors of Northeast India.
[image: Table 4]Carbon Dynamics and Land-Use Changes
Both progressive and retrogressive carbon change were noticed due to land-use change management. When the shifting cultivation fallows were vegetated with plantation/agroforestry, total biomass carbon stock increased, and it ranged from 21.58 to 97.34 Mg C ha−1 (Figure 3). This conversion, however, resulted in SOC loss from 3.87 to 17.66 Mg C ha−1. The conversion of land use from both agriculture and grassland to plantation, on the other hand, resulted in an increase of carbon in all pools (SOC and vegetation carbon). The conversion of natural forest to grassland, current shifting cultivation fallow (<5 years), plantation, and agroforestry resulted in the total carbon stock (TCS) loss which ranged from 28.68 Mg C ha−1 (plantation) to 126.32 Mg C ha−1 (grassland). These conversions also resulted in the maximum loss of vegetation carbon (VC) in grasslands (106.33 Mg C ha−1), followed by the current shifting cultivation fallow (101.80 Mg C ha−1) and the least in plantations (23.15 Mg C ha−1). The conversion of agroforestry to agriculture resulted in the loss of carbon from all pools. The increment in vegetation carbon was the highest (3.62 Mg C ha−1 yr−1) when the grasslands were converted to plantation forests. The SOC stock registered a 0.95 Mg C ha−1 yr−1 increase when less than 5 years shifting cultivation fallows were converted to tree plantations. Similarly, this land-use conversion (<5 years fallows to tree plantations) resulted in the highest (3.71 Mg C ha−1 yr−1) increase in total carbon sequestration (Table 5).
[image: Figure 3]FIGURE 3 | Changes in soil organic carbon stock (SOCS) (Mg C ha−1), vegetation carbon stock (VCS) (Mg C ha−1), and total carbon stock (TCS) (Mg C ha−1) with respect to (A) progressive and (B) retrogressive land-use change in Northeast India (the values of SOCS refers to 0–45 cm soil depth).
TABLE 5 | Vegetation carbon (VC), soil organic carbon (SOC), and total carbon (TC) sequestration after progressive land-use changes in Northeast India.
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Tree Diversity in Different Land Uses
Evidence from the existing literature advocates that climate change in the anthropogenic era has a direct effect on biodiversity, forcing tree species to adapt either through migrating, developing new physiological traits, or changing phenological cycles (Behera et al., 2019). Higher tree species richness indicates a more stable ecosystem and may demonstrate a better ecosystem/carbon service (Ives et al., 2001). Earlier reports from a similar geographical area suggest management practices and other human-induced disturbances such as small-scale mining, forest encroachment for agricultural expansion, fuelwood, and different non-timber forest product extraction influence tree richness and densities (Gogoi et al., 2018). Additionally, varying community structure, composition, topography, elevation, soil properties, and other microclimatic conditions also influence the tree-based ecosystems’ structural and functional attributes (Nath et al., 2018; Kurmi et al., 2020). Tree size and their growth pattern can influence the basal area and carbon stock (Borah et al., 2015). Many agroforests had lower diversity than the shifting cultivation fallows/secondary forests, and their total carbon stock was similar to the re-growing forests. The single-story vegetation in plantations favor homogenous growth environment, in contrast to the natural forests and shifting cultivation fallows. The forests, agroforests, and shifting cultivation fallows, as expected, had higher tree density and basal area than the plantation forests occupied by monoculture trees (Singh et al., 2018a). Relatively lower organic inputs and higher soil disturbance in the latter could have caused lower SOC stock than the former land uses (Singh et al., 2018b). Land uses may be non-randomly distributed based on the climatic conditions which subsequently influence tree biodiversity (Garcia-Vega et al., 2020). Natural forests had higher species richness, Shannon–Weiner diversity, and the species evenness index than other land uses. The presence of higher evenness or higher richness or both can result in increase in the Shannon–Wiener diversity (Magurran et al., 2004). Shannon diversity in different forests ranged from 1.21 to 2.66 in tropical, 0.28–2.65 in subtropical, and 1.93–2.56 in temperate forests. These values are well within the range reported by Nayak and Sahoo (2020), who found 1.59–2.56 in ten different tropical forest stands of the state of Odisha in India, while in Northeast India, the lowland rainforests showed tree diversity from 2.44 to 3.46 (Gogoi et al., 2018). In dry deciduous forests of central India, tree diversity values reported were 0.77–2.53 (Dar et al., 2019). Rapid urbanization and forest clearing deteriorate forest ecosystem adversely affect the microclimate, regeneration, and soil dynamics, and enhance the emission of greenhouse gases (Qiu et al., 2015; Pellikka et al., 2018). The scale of land-use transition in the region has significantly transformed the forest ecosystem processes, and this could mainly be responsible for poor diversity in all terrestrial ecosystems other than the temperate forests. In the temperate region, the physiography is mostly undulating, population density is thin, and accessibility is somewhat poor, and thus, anthropogenic activities are minimum in the temperate forest. These might have favored almost similar species richness and the Shannon diversity index as tropical forests in the region (Table 1). Furthermore, most tropical forests lie in moist to deciduous forest zone, leading to more homogeneity in species composition.
Species richness and diversity are two essential attributes in an ecosystem that may affect the total biomass and carbon stock (Solomon et al., 2017; Zuo et al., 2017). Habitat variability and other prevailing local factors also influence these indices (Jansen and Oksanen, 2013; Fischer et al., 2014). Higher tree diversity observed in the forests is well within the range reported by Saikia et al. (2017). Higher values of dominance in different forest types and temperate plantations than other land uses revealed an inequitable distribution of trees in these habitats. As there was a weak relationship between tree density and carbon storage, particular tree species having high DBH or basal area in these habitats could have also influenced the carbon storage as argued by Kirby and Potvin (2007).
Aboveground Biomass Carbon Stock
The aboveground biomass carbon storage in the present study was comparable with various studies reported by others in Northeast India, for example, 16.24–130.82 Mg C ha−1 in Assam (Borah et al., 2013), 60.09–121.43 Mg C ha−1 in forests of Manipur (Thokchom and Yadava, 2017), while being lower than the reported value of 460.5 Mg C ha−1 in an old-growth pine forest of Meghalaya (Baishya and Barik, 2011). The estimated total biomass and carbon pool of the Northeast India forest sites are within the range reported from other Indian forest systems (Ravindranath et al., 1997; Chhabra et al., 2002; Devi and Yadava, 2015; Wagner et al., 2015; Gandhi and Sundarpandian, 2017; Solomon et al., 2017; Gogoi et al., 2020; Tamang et al., 2021). Several factors such as the age of the forest stand (Kolh et al., 2017), tree density (Garcia-Vega et al., 2020), diversity, and basal area (Joshi and Dhyani, 2018) influence the biomass and total vegetation carbon. Among the land uses, forests store more biomass and biomass carbon, which implies that they must be prevented from deforestation and other anthropogenic activities to mitigate the elevated atmospheric CO2 concentration in the region.
Soil Carbon Pools
SOC content is influenced by soil organic matter accumulation, which is governed by litter input and decomposition (Sahoo et al., 2019), quality of litter, rate of mineralization coupled with stand type, and age (Cao et al., 2018; Ahirwal et al., 2021b). A high lignin-containing litter with relatively lower soil moisture in plantation forests (rubber, areca nut, and oil palm) (Nath et al., 2018) might have been responsible for the reduced SOC stock in these systems. The average SOC stock for the different land-use sectors of the present study can be comparable with the findings reported in other regions of India. For example, Chhabra et al. (2002) reported the SOC stock of 37.5 Mg C ha−1 in dry tropical deciduous forests, while Ramachandran et al. (2007) found SOC stock of 76.85 Mg C ha−1 in thorn forests to 175–369 Mg C ha−1 in forests of Kolli hills of Tamil Nadu (Mohanraj et al., 2011) in the same region.
Relationship Among Tree Basal Area, Density, and Carbon Stock
Basal area is a good predictor for biomass (Gebrewahid and Meressa, 2020) and is often used as a surrogate for biomass and carbon (Balderas Torres and Lovett, 2013). In the present study, basal area was strongly correlated with tree density and with vegetation (AGB + BGB) carbon in line with the findings of many others (Poorter et al., 2015; Salunkhe and Khare, 2016; Amara et al., 2019; Tamang et al., 2021). However, the tree basal area did not have any relationship with the SOC stock, except tropical forests. The variation in biomass and carbon pool in subtropical and temperate forest stands were due to the variation in vegetation composition, forest management practice, forest stand age, girth class, and altitude. The temperate forest has higher amount of biomass and carbon stock than tropical forest stands. It was also found that in the temperate forests, the five most dominant species viz. Quercus sp. (D-71.7, IVI-25), Alnus sp. (D-56.7,IVI-19), Illicium griffithi (D-47.8, IVI-18), Rhododendron sp. (D-44.4, IVI-15), and Castanopsis hystrix (D-38.3, IVI-14) together contributed more than half (154.2 Mg ha−1) to total aboveground stand biomass (Supplementary Table S1).
Effect of Land-Use Change on Carbon Balance
Carbon sequestration is affected by several site factors such as tree age, diameter, and height of the tree; temperature, water, and nutrient (particularly carbon and nitrogen) requirements for the soil; and organic matter decomposition by microbes (Poorter et al., 2016). The annual precipitation and soil-water holding capacity of the land use also regulate net primary productivity. In infertile soil, trees allocate more biomass to the roots in order to increase nutrient uptake (Grower, 2003). The confounding effects from other soil characteristics and management regimes may affect carbon stock too (Newaj et al., 2016). The rate of carbon sequestration in a habitat is influenced by several factors such as age of the stand/ maturity index, management, and woody species composition (Singh et al., 2018a). The elevation, slope, and aspect could also influence the carbon sequestration rate (Gogoi et al., 2020; Thong et al., 2020). Significantly higher vegetation carbon sequestration in temperate forests (5.51 Mg C ha−1 yr−1) and subtropical plantations (5.08 Mg C ha−1 yr−1) in the present study could be due to favorable growth of certain species over others, resulting in high productivity in the habitats when one species is dominant. In our earlier studies, we found that a 10-year-old oil palm plantation can sequester 3.70 Mg C ha−1 yr−1 vegetation carbon (Singh et al., 2018b) and that shifting cultivation fallows can enhance the total carbon stock to 137.86–140.08 Mg C ha−1 within a span of 15 years of succession (Thong et al., 2020). Similarly, an increase of 33.47 Mg C ha−1 SOC stock and 26.55 Mg C ha−1 of vegetation carbon was reported when the shifting cultivation fallows were left to restore within a span of 15–20 years (Gogoi et al., 2020). Secondary forests show promising CO2 uptake and their role in the recovery of vegetation carbon storage if kept undisturbed over time, though our results showed CO2 uptake of secondary forests is slightly lower than the reported 3.05 Mg C ha−1 yr−1 carbon sequestration of neo-tropical secondary forests (Poorter et al., 2016).
Management Implications
Land-use change is nevertheless the most important factor in the alternation of carbon balance in the Indian Himalayas (Ahirwal et al., 2021a). Conversion of forests to oil palm and other agricultural land use is on the rise in the region to feed the growing population (Singh et al., 2018b). Conversion of forest to other land uses enhances decomposition and removal of carbon through harvest. On the other hand, SOC pools that are the most sensitive to land-use change were found to substantially improve when the shifting cultivation was converted to plantation. In addition to forests that store high amount of AGBC, agroforestry and plantation also show much promise in the region as key component land uses contributing to stronger mitigation and future climate solutions. So eco-restoration through plantation forestry could be the most effective strategy in the region (Gogoi et al., 2021). Furthermore, agroforestry systems were very effective in restoring soil carbon, besides adding to VC through trees. Under the current climate change, this study advocates converting much of the prevailing degraded shifting cultivation to agroforestry and plantation in order to enhance the C stock and abate GHG emissions. Carbon management through enhancing carbon uptake and storage by forests is now globally recognized as a vital strategy to mitigate climate change. Assessing carbon stocks of forest stands will help in prioritizing tree species-specific land-use practices to ensure sustainability. A combined approach of field-based inventory with geospatial techniques is highly recommended for improved carbon estimation at the national level. Such a study would provide more insight into climate change response to minimize the impact at a regional scale for better ecosystem structure and function. Besides, this will help the policy-makers take an appropriate decision for land-use change, reduce deforestation and land degradation, and maintain carbon balance in the global climate scenario.
CONCLUSION
Quantification of carbon stock at the regional/landscape level of Northeast India is crucial for sustainable management of various land uses that are undergoing various anthropogenic changes. The carbon stock at various terrestrial pools is affected by tree species richness, tree density, and diversity. For the various land uses in Northeast India, the relationship of tree species diversity with aboveground biomass carbon appears to be highly variable, indicating that tree diversity conservation and management may not necessarily assure higher biomass carbon storage. The findings of this study suggest that the various land uses in Northeast India are important for storing carbon. However, the underlying mechanisms governing the complex relationship between tree species diversity and carbon stock are not elucidated yet and need further study. The total carbon stock showed positive gains following land-use conversion from agriculture to agroforestry and grassland to agroforestry, which suggests that the tree-based systems can enhance greater carbon storage and thus help in climate change mitigation and adaptation. This study provides baseline information to environmentalists and policy-makers, who are capable of devising strategies that can help in climate change mitigation and adaptation at the regional, national, and global scale.
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In recent decades, degradation and loss of the world’s forest ecosystems have been key contributors to biodiversity loss and future climate change. This article analyzes plant diversity, biomass, carbon sequestration potential (CSP), and the net primary productivity (NPP) of four vegetation types viz., Dense mixed forest (DMF); Open mixed forest (OMF); Teak plantation (TP), and Sal mixed forest (SMF) in the dry tropical forest ecosystem of central India through remote sensing techniques together with physical ground observations during 2013–2018. The total C storage in trees varied from 16.02 to 47.15 Mg ha−1 in studied vegetation types with the highest in DMF and lowest in OMF. The total C storage in stem wood, branches, and foliage falls in the range of 52.93–78.30%, 9.49–22.99%, and 3.31–12.89% respectively. The total standing biomass varied from 83.77 to 111.21 Mg ha−1 and these variations are due to different vegetation types, with the highest in DMF followed by TP, SMF while the lowest was estimated in OMF. The net primary productivity (NPP) [aboveground (AG) + belowground (BG)] varied from 7.61 to 9.94 Mg ha−1 yr−1 with mean values of 8.74 Mg ha−1 yr−1 where AG shares a maximum contribution of 77.66%. The total biomass production was distributed from 64.09 to 82.91% in AG and 17.08–35.91% in BG components. The present study outlines that the studied forest ecosystem has the substantial potential of carbon sequestration and a great possibility of mitigating local and global climate change.
Keywords: diversity index, C storage, litterfall, biomass production, remote sensing
INTRODUCTION
In recent decades, there is a growing concern among the scientific community, researchers, environmentalists, foresters, and policy developers around the globe regarding the sustainable management of natural resources (Kumar et al., 2021a,b). Overexploitation of natural resources is causing severe ecological deprivation and affecting the functioning of various natural ecosystems. Studies have shown that human activities changed carbon stocks in terrestrial pools through rapid land-use transformations (Pan et al., 2011; Thakur et al., 2014; Jones et al., 2019; Jhariya and Singh, 2021). Remote sensing techniques have immense potential in determining carbon and biomass storage, net primary productivity, species diversity, and change in land use land cover (LULC) of the region (FSI, 2015, FSI, 2019; Thakur et al., 2019). In the mainland of Southeast Asia, almost 30% of dry forests are currently in existence, while 60% of Indian forests are considered tropical dry forests (Poffenberger, 2000; Waeber et al., 2012). The current study was designed to objectively assess biomass production along with land use pattern, plant diversity, structure and composition of plant communities, and carbon sequestration potential, in tropical dry forests (TDF) of the protected area of the Achanakmaar Amarkantak Biosphere Reserve (AABR) in central India, using remote sensing techniques assisted by ground-based direct measurements. Biomass production assessment is one of the major criteria for correlating ecosystem functioning and productivity in the forest ecosystem. To scale up the assessment at the landscape level, satellite data coupled with sampled ground verification gives more reliable information more economically and in less time. Furthermore, it helps the forest managers make suitable plans and design the required interventions as a management strategy for the improvement of protected habitats like biosphere reserves.
The flora and fauna of AABR are a key sign of the natural legacy of species diversity. Due to environmental implications, AABR was declared as the 14th biosphere reserve of India in 2005 and UNSECO tagged it as the world’s greatest heritage site in 2012. Ecological degradation by anthropogenic activities like forest cutting, forest fire, overexploitation of overstorey and understorey vegetation, encroachment, mining, site development, and settlements are placing severe pressure on biological resources, leading to loss of biodiversity, the vegetational ecology, and carbon sequestration potential of the tropics of India were also studied and gave similar findings (Jhariya, 2017; Jhariya et al., 2019; Kumar and Kumar, 2020; Thakur et al., 2020; Thakur et al., 2021).
The structure and composition of vegetation play a strong role in controlling many important ecosystem processes like photosynthesis, evapotranspiration, and canopy light interception. The plant communities in any ecosystem largely determine the energy exchange, biomass accumulation, and gaseous exchange between plant canopies, thus regulating atmospheric concentrations of carbon dioxide (CO2) which in turn is useful for understanding the carbon budgets of the vegetation type (Nelson et al., 1999; Houghton et al., 2015; Anderson-Teixeira et al., 2016; Chazdon et al., 2016; Kumar et al., 2017; Wang et al., 2019; Tripati et al., 2020; Chaturvedi et al., 2021). In the past, a few studies have indicated that the multispectral satellite images are useful and can assist in monitoring the structure, and composition of a forest type, its diversity, and spatial arrangements (Lepine et al., 2016; Shiklomanov et al., 2016; Ali et al., 2017; Middinti et al., 2017), before addressing any functional ecological and biophysical processes of an ecosystem (such as above-ground biomass (AGB), net primary production (NPP), evapotranspiration, energy exchange, and biomass allocation patterns). Tropical forests are considered as productive terrestrial environments with a maximum potential of carbon sink and NPP per unit area (Fearnside, 1996; Gaston et al., 1998; Chave et al., 2001; Clark et al., 2001; Malhi et al., 2004; Malhi et al., 2009; Beer et al., 2010; Bijalwan et al., 2010; Mohommad and Joshi, 2015; Anderson-Teixeira et al., 2016; Poorter et al., 2016; Moore et al., 2018; Wallis et al., 2019; Wang et al., 2019). The structure of vegetation helps to facilitate suitable management practices and obtain higher rates of biomass production with maximum economic returns. The structure of vegetation assists with facilitating suitable management practices to obtain higher rates of biomass production with maximum economic returns (Chaturvedi et al., 2011; Chaturvedi and Raghuwanshi, 2015). Therefore, the importance of structural inputs for ecosystem analysis at different spatial scales has been well recognized as hotspots for present research.
There is an increasing need to improve understanding of carbon pools and fluxes in dry tropical ecosystems particularly in the central part of India. The annual loss of forest cover in the tropics ranged between 15–17 million ha (FAO, 1995; Reich, 2012; Popkin, 2018). The biomass burning from forest areas of the world ranged between 12–13 million ha, of which 87% occurs in the tropics region (FAO, 1995). At present, the CO2 levels in the atmosphere are increasing annually at 2 ppm per year triggering a major threat to the functioning of different ecosystems. Tropical forests have a great potential for atmospheric carbon sequestration and currently accumulate 55% of global terrestrial carbon (IPCC, 1996; Pan et al., 2011; Grace et al., 2014; Jones et al., 2019). Thus analysis of vegetation dynamics and LULC are urgently required for formulating constructive policies for biodiversity management, finding the best possible ways of augmenting carbon sequestration rates, and planning progressive management strategies for achieving sustainable development goals (SDGs). For evaluating and understanding the structural and functional processes of different land cover types, geospatial techniques have proved indispensable tools, which provide large spatial, multi-temporal, and synoptic data of dynamic land surface features and frequently monitor the carbon sequestration in space and time (Popkin, 2018). Earlier, several researchers demonstrated the potentials of geospatial technology for monitoring and creating an inventory of vegetation (Swamy, 1998; Mandal and Joshi, 2014). However, satellite remote sensing (RS) when combined with GIS techniques provides improved information and also helps in developing valuable strategies for natural resource management. Therefore, in the backdrop of reviews, we explored the potential of satellite images to forecast species diversity, carbon sequestration potential (CSP), AGB, and forest productivity in the TDF of AABR, India.
MATERIALS AND METHODS
Study Area
The AABR protected area is located in the central part of India with an area of 626.76 km2 of dry tropical forest. The current study was conducted in the AABR area during 2013–2018 to assess species diversity, carbon sequestration potential, biomass, and NPP in four different vegetation types viz.; TP, SMF, DMF, and OMF. The geo-coordinates of the study area fall between 21°15′ to 21°58′ N and 82°25′ to 82°5′ E. The map along with identified plots at selected sampling sites is presented in Figure 1. The climatic condition of the study area is moderate humid throughout the year, with a peak rainfall from July to September and a dry period from April to June. The rainfall varies from 1,050–1,500 mm yr−1 and the mean annual temperature is 25.8°C. The study area falls under the Biosphere Reserve where all harvesting or felling is banned. The methodologies adopted for various study parameters are described briefly in the sub-section given below.
[image: Figure 1]FIGURE 1 | Layout map along with identified sample plots, in yellow boxes at different locations in dry tropical forests of AABR.
Satellite Remote Sensing Data Predictors
Resourcesat-2A satellite data were procured from the National Remote Sensing Agency (NRSA), Hyderabad, India. All the electromagnetic wavelength/bands were stacked in Resourcesat-2A satellite data and pre-processed by ERDAS, including geometric and atmospheric corrections. The vegetation indices and climatic factors derived from different vegetation types were charted (Thakur et al., 2014; Wallis et al., 2019; Wang et al., 2019). The generation of spectral vegetation indices such as Advance Vegetation Index (AVI), Ratio Vegetation Index (RVI), Normalized Difference Moisture Index (NDMI), Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Very Dense Vegetation Index (VDVI) map was established using ERDAS Imagine (Version 9.3) software, as illustrated in Table 1.
TABLE 1 | Topographical, vegetation indices/spectral and diversity index.
[image: Table 1]Phytosociological, Diversity and Leaf Area Index Analysis
The systematic vegetation characterization was performed by quantifying the different parameters of vegetation composition, structure, and species richness. Phytosociological studies were conducted in two stages viz., in the first stage, different forest vegetation was characterized in terms of its spatial organization of plant communities. The stand or forest level community structural information is useful for local/patch scale simulation process models and also filtering information on structural attributes and variations for regional-scale process models. In the second stage, phyto-sociological studies were conducted on type-level to recognize the overall pattern and organization of plant communities in a given type in the region. The type-level community structural information is essential for regional ecosystem simulation models, primarily for the functional process of an ecosystem. In the second stage, phyto-sociological studies on type-level to recognize the overall pattern and organisation of plant communities and groups in a given type in the region. The type-level community structural information is essential for regional ecosystem simulation models, primarily for the functional process of an ecosystem.
The phytosociological exploration was determined from different sampling plots of 20 m × 20 m for trees (TV; diameter above 20 cm), 5 m × 5 m for shrubs (SV; height up to 5 meter), and 1 m × 1 m size for herbaceous species (HV). In each sampling plot, TV, SV, and HV were enumerated for their diameter values. The diameter of trees measured at 1.37 m above ground level, shrubs 15 cm above ground level, and herbs at color zone. The TV and SV in forty quadrats were marked for periodic measurements of diameter at breast height (dbh) and height increment values for estimation of biomass and its production. The formula used for the analysis of density, abundance, frequency, and basal area were performed according to Curtis and Mc Intosh (1950). Moreover, analysis of the species diversity of various forests of AABR was determined by the formulas used in Table 1. The mortality in different stages of trees was also estimated by considering the deterioration status of the trees. The leaf area index (LAI) of the species was estimated by taking ten sample leaves randomly from respective plots for each tree, shrub, and herb with the help of a leaf area analyzer.
Estimation of Carbon Sequestration Potential
The Muffle furnace combustion methods were used for the determination of carbon concentration in the various components of TV, SV, and HV by adopting the methods of Negi et al. (2003) as follows:
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Where; [image: image] denotes Carbon content of [image: image] vegetation type; [image: image] : Area of [image: image] vegetation type; [image: image]: Carbon in Tree layer; [image: image] : Carbon in Shrub layer; [image: image] : Carbon in Herbaceous layer of [image: image] vegetation type
[image: image]
Where; [image: image] denotes Stem Carbon; [image: image] : Branch Carbon; [image: image] : Leaf Carbon; [image: image]: Root Carbon; [image: image] : Wood Carbon corresponding to [image: image] vegetation type
Estimation of Biomass
TV and SV biomass, Tybi (Mg ha−1) in different vegetation types was estimated by using the allometric regression model established by Singh and Mishra (1979). Therefore, available biomass allometric equations (Supplementary Tables S1, S2) for dry tropical forests were used to estimate biomass precisely, only those regression equations were taken into consideration which were developed with similar climatic (temperature and rainfall) and edaphic conditions (soil type). The biomass was estimated by the non-harvest method by measuring dbh and height and applying biomass allometric equations. While using equations, dbh and height were used as independent variables while component biomass was used as a dependent variable. The different components of TV, SV, HV (i.e., stem, branch, foliage, and root) biomass, and fine roots were summed up to calculate total standing biomass (Mg ha−1) in each sample plot for different vegetation types and the component-wise biomass was computed and extrapolated. The soil core method was used for the estimation of fine root biomass. The fine roots (<5 mm diameter) were sampled from four monoliths (15 cm × 15 cm x 15 cm) randomly drawn from each forest type at two different depths, i.e., 0–50 and 50–100 cm, during rainy, winter and summer seasons. In total 120 (2 soil depths x 20 samples x 3 seasons) soil cores were drawn for each forest type. The total fine root biomass was obtained by taking the mean fine root biomass of rainy, winter, and summer seasons. All these biomass values were extrapolated on a Mg ha−1 basis. The mean of the biomass of twenty sample plots represents the standing biomass of a particular forest type. To obtain the total existing biomass of different vegetation types, the mean biomass values were multiplied with their respective areas of vegetation types derived from satellite data.
Estimation of Litterfall
The litterfall of dry tropical forests of AABR was measured in different seasons (i.e., rainy, winter, summer) by randomly laying five litter traps (each size of 50 cm × 50 cm x 50 cm) on the forest floor in every identified sample plot. Overall, litterfall was recorded in 50 sample plots (5 traps x 10 quadrats) and collected in each season i.e. rainy, winter and summer from the different vegetation types. The collected litterfall sealed in the polyethylene bags was brought to the laboratory, where the samples were separated into leaf, wood, fruits, flower, and bark components followed by oven-dried at 80°C for 24 h and weighted to determine oven-dry weights. The weights of dried components were added to derive the total litterfall of respective sample plots of a vegetation type. Furthermore, data of all three seasons were added to obtain the total annual litterfall (Mg ha−1), and the mean of the litterfall of ten sample plots represented the litterfall of that vegetation type.
Estimation of Net Primary Productivity
To estimate the annual net primary productivity on a hectare basis, ΔBi (Mg ha−1 yr−1), the dbh of TV and SV were repeatedly measured for three successive years i.e., 2016, 2017, and 2018 in marked sample plots of different vegetation types. The biomass increment of TV and SV were estimated from the dbh values of respective periods using a regression equation. The biomass of herbs was estimated in respective years by harvest procedure using vegetation collection and measurement methods. The average biomass production of individual components (TV, SV) of the sample plots of each vegetation type were calculated using the expression = {(B3 – B2) + (B2 – B1)/2}. The total net production of a given sample plot of vegetation type was measured by adding the respective production of trees, shrubs, herbaceous layers, fine root (peak), and total litterfall of that vegetation type. In order to obtain the total NPP of different vegetation types, the mean NPP values were multiplied with their respective areas of vegetation types, which were derived from satellite data.
Expression used for computing NPP as follows:
[image: image]
Where; [image: image] denotes rate of biomass increment of tree, shrub and herb layer of [image: image] forest type;
[image: image] : [image: image] ; [image: image]: Tree biomass increment; [image: image]: Shrub biomass increment; [image: image] : Herbaceous biomass increment corresponding to [image: image] forest type; :[image: image] Annual detritus production (litterfall and root hairs mortality) corresponding to [image: image] forest type; G: Annual grazing losses /burning/other removals (not accounted).
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TNPP = Total net productivity, [image: image] n = NPP of [image: image] , [image: image], [image: image] vegetation types
Correlations Among Vegetation Indices, Shannon Index, Leaf Area Index, Carbon Sequestration Potential, Biomass, Litterfall, and NPP
The correlation relationship was carried out between spectral vegetation indices (NDVI, RVI, AVI, EVI, VDVI, and NDMI) with Shannon index, carbon storage, leaf area index (LAI), biomass, and NPP of all the vegetation types of AABR. The sample points used for the ground survey were overlaid on vegetation indice images to extract spectral vegetation indices data, which was performed in ARC-GIS (Version 10.3). Correlations were drawn between the spectral vegetation indices derived from satellite data and ground measurements. The results acquired from the two parameters were used to determine the strength of the relationship. The correlation between vegetation indices and species diversity was tested at p < 0.01.
Aspect and Slope Maps
Aspect and slope maps were generated by analyzing topographic data in a GIS environment. The map shows eight aspect classes and was merged to form only four major aspect classes (north (N), south (S), east (E), and west (W)). Among different aspects, northern and eastern aspects occupied a large area compared to southern and western aspects. The altitudinal range of the study area varied from 505.43 to 719.65 m in different forests and nine slope classes were delineated between 0–20% slope, which was merged to form a gentle slope class, from 21–40% slopes into a medium slope and slope categories >40% were merged to form steep slope class. The largest area was covered by gentle slope class, while only a relatively small area was occupied by steep slope class. Furthermore, slope, aspect, drainage, and Digital Elevation Model (DEM) were also generated using TIN data (Figure 2).
[image: Figure 2]FIGURE 2 | Satellite map (A) Digital elevation model (DEM); (B) Drainage pattern; (C) Aspect map of the study area; (D) Slope map of AABR.
Statistical Analysis
Data on structure, composition, diversity, biomass, and carbon sequestration potential were analyzed using one-way analysis of variance. To understand the relationship between stand diversity and the functional parameters in the TDF ecosystem, correlation analysis was performed among diversity indices and functional attributes viz., carbon storage, and net productivity. Correlations were also drawn between spectral vegetation indices (viz. NDVI, AVI, RVI, EVI, VDVI, and NDMI) derived from satellite data and ground measured structural and functional variables. Attempts were also made to develop empirical models for directly estimating the diversity, carbon storage, and biomass production of TDF of AABR from satellite imagery. Towards this, a simple regression analysis was executed and multivariate analysis of the data by using MINITAB version 15.0 software.
RESULTS AND DISCUSSION
Structure, Composition, and Diversity
The composition of the flora of dry tropical forest ecosystems of AABR is very diverse. A variety of flora in these forests distributes species in three distinct canopy layers. Thirty-four species were found in TV, thirty species in SV, and sixty-four species were found in HV (Table 2; Supplementary Tables S3, S4, S5). The secondary associated tree species were Terminalia tomentosa and Buchanania lanzan respectively contributing high density, frequency, relative basal area, and IVI in the SMF and TP. The dominant representative of tree species like Shorea robusta, Diospyros melanoxylon, and Terminalia arjuna was observed as predominant in DMF and OMF.
TABLE 2 | Species diversity indices in dry tropical forest of AABR.
[image: Table 2]The results of density, BA distribution, and species richness of different forest types are illustrated in Figures 3A–C. The structural analysis shows that the density of various forests varied from 467.5 to 652.5 stems ha−1 and a maximum in SMF followed by DMF, TP, and a minimum in OMF. BA values lie between 9.26 and 34.12 m2 ha−1 in each vegetation type and SMF exhibited maximum BA followed by DMF and TP while the minimum in OMF. The structural attributes significantly varied among each forest type in the current research. Bijalwan et al. (2010) also reported that the density of TDF ranged from 206 to 812 trees ha−1 and BA from 7.27 to 20.8 m2 ha−1, and the number of tree species in each forest was reported as from 9 to 26. Interestingly, the structural analysis (number of tree species, density, and BA) of the TDF ecosystem has been attempted by several workers (Murphy and Lugo, 1986; Singh and Singh, 1991; Ravan, 1994; Sunderpandian and Swamy, 2000; Chaturvedi et al., 2011; Chaturvedi and Raghubanshi 2014; Kamruzzaman et al., 2017; Thakur, 2018; Darro et al., 2020). Singh and Singh, (1991) reported density 349 to 627 treeha−1, 9.0–14.79 m2 ha−1 BA, and 9 to 14 species in TDF of Uttar Pradesh, India. Murphy and Lugo (1986) also revealed a BA of 17–40 m2 ha−1 in Puerto Rican subtropical dry forests.
[image: Figure 3]FIGURE 3 | Structural parameters of dry tropical forests of AABR. (A) Density of tree layer, (B) Basal area distribution, (C) Species richness.
Various diversity indices viz., species diversity (H′), the concentration of dominance (cd), species richness (d), equitability (e), and beta diversity (bd) were computed for different forest types to analyze the difference in species diversity among each vegetation type. Attempts were also made to compute the different components of the tree, shrub, and herbaceous vegetation. The results for species diversity of different vegetation types are illustrated in Table 2. Species diversity in various vegetation types lies from 0.67 to 2.34 for tree vegetation (TV) with a maximum in DMF and minimum in TP. Similarly, the concentration of dominance values varied from 0.09 to 0.75 in the vegetation of each forest type with a maximum in TP followed by SMF and minimum in DMF. The Margelef index values varied from 5.31 to 12.54 where DMF showed maximum values followed by OMF and SMF. Pielou’s evenness index lies from 0.25 to 0.67 for TV. Beta diversity varied from 1.20 to 1.72 with OMF recorded maximum and DMF minimum. In the SV layer, Shannon-Weiner values varied between 0.84 and 3.05 where DMF recorded higher and TP as lower. Simpson index accounted for maximum values in TP followed by OMF and SMF, while, the Cd values were recorded as a minimum in DMF in shrub layer, where it varied from 0.05 to 0.63. The species richness value was higher in DMF followed by SMF, and OMF. Margalef’s index values were reported in the range of 0.19–3.49 depending on vegetation types, where TP had a minimum value. Equitability accounted for 0.02 to 0.97 in all the vegetation types with the highest equitability in DMF and SMF, and minimum TP under the SV category. TP showed a maximum beta diversity index and the minimum was observed for DMF in SV, which varied from 1.13 to 2.0 in all the forest types in the AABR. For the herbaceous layer (HV), the Shannon-Weiner values were found maximum in DMF followed by OMF and SMF, while it was observed minimum for TP which is ranged from 0.23 to 0.32. On the contrary, Cd was recorded maximum in SMF and OMF, which ranged from 2.86 to 3.25 in different forest types. The species richness was recorded maximum in SMF followed by DMF and OMF and varied from 0.04 to 1.45. Similarly, equitability values in HV ranged from 1.20 to 1.42 in different forest types. DMF and SMF showed maximum values, while TP and OMF with minimum values. The beta diversity ranged from 1.89 to 2.95 with the maximum in OMF exhibited minimum in DMF. The species diversity values in various tropical forests are comparable with the present study as reported by various researchers (Ramprasad and Pandey 1992; Pandey, 2005; Thakur et al., 2019). Singh and Singh (1991) also revealed that the species diversity values range lies between 1.9 and 2.8, Simpson index values from 0.18 to 0.75, Margalef index values range between 0.21 and 0.93 in the U.P state of India. Ramprasad and Pandey (1992) analyzed the sal and teak forests of Madhya Pradesh state in India where Shannon diversity index ranged from 0.32 to 3.76 and Simpson index values from 0.07 to 0.63. However, many plant species are lost due to anthropogenic stress in this region (Thakur et al., 2021). Other workers (Ravan, 1994; Bijalwan et al., 2010; Thakur 2018) have also conducted studies on tropical forest ecosystems and reported similar observations. Swamy (1998), mentioned high precipitation (>2,500 mm), the number of rainy days, and better soil conditions, which resulted in rich diversity and complexity in tropical evergreen forests.
The NDVI values were positively performed with density, basal area, and species diversity (Table 3). The study indicated a positive correlation among the structural attributes and diversity with NDVI and other vegetation indices (Figure 4 and Figure 5). Several researchers demonstrated similar research in TDF ecosystems (Franklin, 1986, Cohen and Spies, 1992 Spanner et al., 1990, Pandey, 2005, Jones et al., 2019, Wallis et al., 2019; Wang et al., 2019).
TABLE 3 | Pearson correlations among important spectral vegetation indices and structural attributes.
[image: Table 3][image: Figure 4]FIGURE 4 | (A) Exponential relationship among NDVI and Carbon storage; (B) Relationship between NDVI and Shannon- Weiner Index; (C) Relationship between NDVI and Biomass of dry tropical forests; (D) Exponential relationship between NDVI and Net primary productivity; (E) Relationship between NDVI and Litterfall; (F) Exponential relationship between NDVI and Leaf Area Index of dry tropical forests of AABR.
[image: Figure 5]FIGURE 5 | Spectral vegetation indices (A) Normalized difference vegetation index (NDVI); (B) Ratio vegetation index (RVI); (C) Enhance vegetation index (EVI); (D) Advance vegetation index (AVI); (E) Very dense vegetation index (VDVI); (F) Normalized difference moisture index (NDMI).
The slope and aspect in the current study showed a marked effect on structure, diversity, volume, and biomass of TDF of Central India (Table 1 and Figure 2). Integration of slope and aspect along with forest types helped in improving the stratification and accounted for the physiographic variation in structure, diversity, volume, and biomass in a given forest type. Cook et al. (1989) reveal the importance of satellite data in the estimation of forest structure the NPP of North American forests. Ravan (1994) also demonstrated the topographical parameters, density, and TDF information in the GIS environment and derived homogenous vegetation strata, which were used for estimating the structural parameters of TDF ecosystems.
Total Carbon Sequestration Potential in Vegetation
Total carbon storage in the tree layer (TV) varied from16.02–47.15 Mg ha−1 where; DMF was recorded with the maximum amount of the C, while OMF had minimum. Total C storage was statistically alike in SMF and OMF. The DMF had 1.22, 1.54, 1.50, and 7.69 times higher C content than TP, SMF, and OMF, respectively. Total C storage ranges in stem wood accounted 52.93–78.30%, branches 9.49–22.99%, foliage 3.31–12.89%, coarse root 1.80–11.22% and fine roots 1.72–3.24% in different forest types. Similarly, in shrub vegetation (SV) the C ranged from 1.88 to 5.18 Mg ha−1 with a maximum in OMF followed by SMF, TP, and minimum in DMF. OMF had 1.67, 1.07, and 1.67 times higher C content than TP, SMF, and DMF, respectively. Further, C in total stem wood ranged between 56.27 and 67.79%, foliage 2.73–3.31%, and coarse root 29.45–41.12% in different forest types whereas in herb layer (HV) it ranged between 0.91–2.73 Mg ha−1, with OMF registering highest C as compared to SMF, TP, and lowest in DMF.
In our study, total C storage accounted for 65.22–75.71% for shoots and 25.64–34.78% for roots in different forest types, while total carbon storage of forest vegetation (TV + SV + HV) i.e. standing biomass ranged between 18.0 – 50.40 Mg ha−1 in different forests. The maximum C storage is reported in DMF while the minimum was in OMF (Table 4; Figure 6). Similar results were also revealed by various researchers (Chaturvedi et al., 2011; Chaturvedi and Raghubanshi, 2015; Bahera et al., 2017; Thakur et al., 2014, Thakur et al., 2019). In the study of Srinivas and Sundarapandian (2019) the C content of trees varied from 44.51 to 218.84 Mg ha−1.
TABLE 4 | Consolidated statistics of forest biomass, productivity variables, and carbon storage.
[image: Table 4][image: Figure 6]FIGURE 6 | Estimates of Carbon storage in tree/shrub/herb vegetation with 95% C.I. in dry tropical forest of AABR (Mg/ha).
Aboveground and Belowground Biomass
The biomass of different forest types for the components of trees, shrubs, and herbaceous flora results revealed that the total biomass (TV + SV + HV) varied from 83.77 to 111.21 Mg ha−1 (Table 4; Figure 7). It was highest in DMF followed by TP, SMF, and lowest in OMF. Total standing biomass (TV + SV + HV) varied significantly in each forest type. The total mean vegetation mass reported 95.85 Mg ha−1 of the total biomass of which 90.23% contributed for AGB and 9.77% for belowground biomass (BGB). TV, SV, and HV contributed 90.42, 8.74, and 0.71% respectively. These standards were more or less analogous to those assessed in other TDF, as Pandey (2005) reported total biomass ranging from 37.12 to 100.88 Mg ha−1 in TDF of Central India. Thakur et al. (2019) also reported biomass in the range of 20.25–103.43 Mg ha−1 in the TDF of Chhattisgarh. The estimated biomass in the current study was lower than other stated tropical dry deciduous forests worldwide. In their study, Murphy and Lugo (1986) reported 30–273 Mg ha−1 AGB for tropical dry forests, and similarly, the AGB varied from 58.04 to 368.39 Mg ha−1 according to Srinivas and Sundarpandian (2019) while Chave et al. (2008) reported 356–398 Mg ha−1 AGB in the rainforest of Eastern America. Likewise, Jaramillo et al. (2003) estimated 143.1 Mg ha−1 ABG and BGB for dry tropical forests in Mexico. Similar results were revealed by Malhi et al. (2004), Raich et al. (2006), Dube and Mutanga (2015), Kamruzzaman et al. (2017), and Wallis et al. (2019). Comparatively erratic rainfall patterns, a lower number of rainy days in a year, harsh hot weather conditions, and poor topsoil conditions might be reasons for lower biomass in the study area. Forest dwellers in these areas are consistently dependent on these forests for their subsistence livelihood, such as via the collection of NTFP’S, fuelwood, etc. Anthropogenic disturbances are moderate to severe in these forests e.g., forest surface fire, unlawful felling, and feeding of livestock are foremost to the squalor of these forests. Fine root biomass was estimated in different depths (0–20 cm, 20–40 cm) in three seasons under four forest types (Figure 8). The results show annual root biomass was more in DMF than others. Similarly comparing the season, the rainy season produced more fine root biomass in all types of forests. The root biomass is an indicator of the growth and productivity of the forests. Ecologically it has a long-term effect, not on the improvement of the rhizosphere but also on the health of total forest biota.
[image: Figure 7]FIGURE 7 | Estimates of standing biomass with 95% C.I. of different components of tree, shrub and herb layers in tropical forests of AABR (Mg/ha).
[image: Figure 8]FIGURE 8 | Estimates of season wise fine root biomass (Mg/ha) for TP, SMF, DMF and OMF forest types during 2016–2018 with 95% C.I.
Litterfall
The total mean annual litterfall fluxes 1.99–4.15 Mg ha−1 in various forests (Table 4; Figure 9). There was a significant difference in the quantity of litterfall due to seasons and components (wood, leaf, twig). The wood litterfall accounted for between 15.83–18.06% of the total litterfall of different forests. The leaf litterfall values varied from 1.52 to 3.05 Mg ha−1 in different forests. The highest litterfall values were recorded in TP followed by DMF, SMF, and the lowest in OMF. The percentage contribution of leaf fall to the total litterfall was 72.15–76.38% in different forest types. Similarly, the twig litterfall values varied from 0.16 to 0.38 Mg ha−1 which accounted for between 7.79–9.83% of the total litterfall of different forests. The total litterfall distributed in two annual cycles contributed between 39–42.61%, 28.48–29.12%, and 27.21–32.93% in winter, summer, and rainy seasons, respectively in different forest types. A similar finding was also reported by Thakur and Thakur (2014).
[image: Figure 9]FIGURE 9 | Estimate annual litterfall biomass (Mg/ha) with 95% C.I. for TP, SMF, DMF and OMF forest types during 2016–18 for season.
Net Primary Productivity
The total tree biomass production (AGB + BGB) varied from 7.61 to 9.94 Mg ha−1yr−1 (Table 4; Figure 10). The highest tree biomass production was observed in TP followed by DMF, SMF, whereas the lowest was in OMF. The aboveground and belowground net production contributed between 64.09–82.91% and 17.08–35.91%, respectively of the total tree biomass production. The average net production of trees across all the forest types was 8.74 Mg ha−1yr−1, where AGB distributed maximum share as 77.66% and BGB share minimum as 22.34%. The total shrub biomass production (AGB + BGB) varied from 1.88 to 3.77 Mg ha−1yr−1. The highest shrub production was observed in SMF followed by DMF and OMF and it was lowest in TP. The aboveground and belowground net shrub biomass production contributed 56.31–80.08% and 19.91–43.69%, respectively. The average net production of shrubs in different forest types was 2.58 Mg ha−1yr−1fn1 of which 73.45% was contributed by aboveground and 26.54% by belowground biomass. The herbaceous species turnover of less than 1 year was considered equal to net production in these forests. The NPP for herbaceous biomass ranged from 0.51–0.80 Mg ha−1yr−1. The contribution of herbaceous production to the total stand NPP was ranged from 3.0–6.35%.
[image: Figure 10]FIGURE 10 | Estimates of total production (Mg/ha/yr) with 95% confidence interval of trees, shrubs and herbs for different forest types in tropical forests of AABR.
The total net production (tree, shrub, herb, and litterfall) varied from 10.53 to 13.15 Mg ha−1yr−1 with a mean value of 12.02 Mg ha−1yr−1. It was highest was in SMF followed by TP and DMF while the lowest was in OMF. SMF had 1.06, 1.22, and 2.41 times higher net production than DMF, TP, and OMF. For all the forest type trees, shrub, herb, and litter accounted for 56.43–72.0%, 11.94–23.67%, 2.59–5.82%, and 12.93–14.58%, respectively. The species diversity (H), LAI, litterfall, carbon sequestration, biomass, and NPP generated from the satellite in tropical dry forests are illustrated in Figure 11. All these maps reflect that the coherence will field verified data.The illustrated maps for different layers of parameters are easy to understand at the landscape level and assist forest managers to design proper management plans. These types of satellite-generated maps are more in use globally for better forest ecosystem management.
[image: Figure 11]FIGURE 11 | (A) Species diversity map of AABR; (B) Leaf area index map of study site; (C) Carbon storage map (Mg/ha); (D) Biomass map (Mg/ha), (E) Litterfall production map (Mg/ha); (F) Net primary productivity map (Mg/ha/yr).
Correlation Between Vegetation Indices, Diversity, Structural Attributes, Leaf Area Index, Carbon Storage, Biomass, and Net Production
Correlation analysis among the structural attributes, vegetation indices, LAI, Carbon sequestration, biomass, and NPP in tropical dry forests are illustrated in Table 3. The correlation relationship among NDVI with pooled data of species diversity, LAI, carbon storage, biomass, litterfall, and NPP is shown in Figure 4. Species diversity values were computed using stratified random sampling and a significant correlation was found between vegetation indices and diversity. It was evident from the result that density, basal area, and diversity were positively correlated with NDVI, whereas it was insignificant with AVI, EVI, NMDI, VDVI, RVI, and density. The present study showed that C storage, biomass, and NPP were positively correlated with NDVI, AVI, EVI, VDVI, NDMI, and RVI indices while NDVI was significantly correlated. The DMF recorded the highest values of NDVI, which is depicted in Figure 5A. The results demonstrated that NDVI from remotely sensed images could identify areas of high species richness, C storage, and biomass production values. In our study, we reported a positive relationship among spectral vegetation index (i.e., NDVI), carbon storage, species diversity, LAI, biomass, litterfall, and NPP (pooled data of TV + SV) for the entire vegetation types of AABR (Figure 5A). The RVI, EVI, AVI, VDVI, and NDMI images are represented in Figures 5B–F, respectively. The present study also indicated a positive and significant correlation between NDVI and Shannon index, C storage, biomass, and NPP for different vegetation types of the study area, which confirms the reports of earlier workers (Swamy, 1998; Thakur et al., 2019) who found NDVI as a key variable strongly correlated to vegetation analysis.
CONCLUSION
This study concluded that satellite remote sensing techniques are one of the most reliable tools for the assessment of vegetation structure, diversity, carbon storage, biomass, and NPP for the dry tropical forest ecosystems of AABR of India. Biomass and productivity studies contribute significantly to the global carbon pool and, being very young forests, AABR has the potential to mitigate a significant amount of carbon from the atmosphere. Forest degradation by anthropogenic activities (e.g., forest cutting, forest fire, overexploitation of flora, encroachment, mining, human settlements) are placing severe pressure on forest ecosystems. Planting of multipurpose trees and shrubs in SMF could be explored for the enrichment of vegetation cover. These strategies will assist in reducing the biotic pressure and also restoring and conserving the fragile dry tropical forest ecosystems of Central India. The study also indicated that the Resourcesat-2A satellite data is likely to improve the retrieval of carbon values, leaf area index, biomass, and the NPP of the dry tropical forests of India due to their moderate spectral and spatial resolution as compared to IRS and Landsat satellite images. The empirical relationships drawn between structural aspects and spectral responses are important for predicting few important structural attributes of vegetation directly from multispectral satellite data. Therefore, there is a need to have an extensive forest management plan for AABR in India for optimum forest health.
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Quantifying soil organic carbon stocks (SOC) is a critical task in decision support related to climate and land management. Carbon inputs in soils are affected by development of belowground (BGB) and aboveground (AGB) biomass. However, uncertain fixed values of root:shoot ratios (R/S) are widely used for calculating SOC inputs in agroecosystems. In this study, we 1) assessed the effect of harvest frequency (zero, one, two, and five times annually) on the root and shoot development of the perennial grasses Phalaris arundinacea (RCG), Festuca arundinacea (TF), and Festulolium (FL); 2) determined the effect of management on the carbon and nitrogen content in AGB and BGB; and 3) assessed the implications of R/S for SOC quantification. We found the highest yields of BGB in zero-cut treatments with 59% (FL)–70% (RCG) of total biomass. AGB yield was highest in the five-cut treatments with 54% (RCG)–60% (FL), resulting in a decreasing R/S with frequent management, ranging from 1.6–2.3 (zero cut) to 0.6–0.8 (five cuts). No differences in R/S between species were observed. Total carbon yield ranged between 5.5 (FL, one cut) and 18.9 t ha−1 year−1 (FL, zero cut), with a higher carbon content in AGB (45%) than BGB (40%). We showed that the input of total organic carbon into soil was highest in the zero-cut treatments, ranging between 6.6 and 7.6 t C ha−1 year−1, although, in the context of agricultural management the two-cut treatments showed the highest potential for carbon input (3.4–5.4 t C ha−1 year−1). Our results highlighted that using default values for R/S resulted in inaccurate modeling estimations of the soil carbon input, as compared to a management-specific application of R/S. We conclude that an increasing number of annual cuts significantly lowered the R/S for all grasses. Given the critical role of BGB carbon input, our study highlights the need for comprehensive long-term experiments regarding the development of perennial grass root systems under AGB manipulation by harvest. In conclusion, we indicated the importance of using more accurate R/S for perennial grasses depending on management to avoid over- and underestimation of the carbon sink functioning of grassland ecosystems.
Keywords: root:shoot ratio, perennial grass, peatland, soil organic carbon, paludiculture, wetland, carbon sink
INTRODUCTION
Undisturbed mires are wetland biomes where peat accumulates, typically at rates of ∼1 mm year−1 over centuries (Parish et al., 2008), making these ecosystems one of the largest global organic carbon (C) reserves with substantial impact on atmospheric carbon dioxide (CO2) concentrations (Moomaw et al., 2018). In Denmark, wetlands with >6% organic C cover about 291,000 ha, of which 59% are used for agriculture (Greve et al., 2021). The massive losses of C from these agroecosystems are controlled by the balance between current net C inputs and peat mineralization, which is substantial and largely depends on the drainage conditions (Straková et al., 2012). National emission factors for drained organic agricultural soils in Denmark were established by empirical gas flux measurements in 2008–2009 and averaged 35 Mg CO2 ha−1 year−1 across eight sites in crop rotation and with permanent grass (Elsgaard et al., 2012). Climate change mitigation by rewetting of agricultural soils with >6% organic C is currently supported by national governmental incentives. Following this, it is envisaged that an area of 88,500 ha potentially can be rewetted and converted to permanent natural grassland (Ministry of Food, Agriculture and Fisheries of Denmark, 2021). Whereas reductions in CO2 emissions from slower peat mineralization are well documented in relation to increasing groundwater tables (Renou-Wilson et al., 2014), there is an unmet challenge in documenting the net C sequestration from new plant biomass on wet organic soils. This is in particular true for wetlands with >12% organic C and cultivated with perennial grasses, also known as paludiculture, which may contribute to greenhouse gas (GHG) mitigation (Tanneberger et al., 2020) and nutrient retention (Giannini et al., 2017; Vroom et al., 2018).
The input and cycling of organic C in soil ecosystems is highly affected by plant mechanisms regulating the development of aboveground (AGB) and belowground (BGB) biomass (i.e., shoots and roots, respectively) and consequently the quantity of litter input (Kumar et al., 2017), while decomposition of soil organic matter (SOM) is affected by soil nutrient stoichiometry (Kumar et al., 2021). Factors controlling AGB production of perennial grasses are well studied, but little is known about BGB, in particular for flood-tolerant perennial grasses. Roots play a significant role in the soil C cycle (Puget and Drinkwater, 2001; Moore et al., 2019; Dijkstra et al., 2020), indicate productivity (Thakur et al., 2021) and are crucial for the buildup of SOM on both mineral soils and peatlands (Klingenfuß et al., 2014; Leifeld et al., 2020). Not only root biomass but also in particular root exudates, secretions, lysates, cap cells, and mucilages (Carminati and Vetterlein, 2013; van Veelen et al., 2018) are important C inputs affecting the soil status of being either a source or a sink of C. For the estimation and modeling of changes in soil C stocks, a fixed default root:shoot ratio (R/S) is widely used to account for total biomass C. However, R/S is known to vary as a result of multiple environmental and climatic factors as well as management (Kibet et al., 2016; Sainju et al., 2017a; Hu et al., 2018). The optimal partitioning theory (OPT) of plant biomass allocation between AGB and BGB proposes that environmental factors will force plants to allocate new biomass to those parts needed to secure the most deficient resources for optimal plant growth (Fraser et al., 2015; Yang et al., 2018). In contrast, the isometric allocation hypothesis (IA) states that BGB scales linearly with AGB, independent of abiotic factors. Further, it has been stated that defoliation of AGB by harvest or grazing will decrease total BGB (Reid et al., 2015). However, due to the high on-site variability and the challenge of root extraction, in particular for perennial grasses, accurate estimations of R/S under different conditions are rare (Bolinder et al., 2002). Instead, and notably for grassland ecosystems, the allometric approach, using a fixed R/S (Bolinder et al., 2007), is used for modeling of BGB soil C inputs. Nevertheless, recent research highlighted the potential overestimation as well as uncertainty of this modeling approach (e.g., Mokany et al., 2006; Taghizadeh-Toosi et al., 2016; Keel et al., 2017).
While currently an effort is made to review R/S for different biomes and climate zones (e.g., Qi et al., 2019), an assessment of the R/S of grasses under different harvest frequencies is still lacking. This is particularly true for flood-tolerant grass species, which are increasingly introduced on both wetland and upland soils for both climate change mitigation and added-value products, such as grass protein as a substitute for soy (Nielsen et al., 2021). Hence, there is a need for consolidated estimates of R/S for commonly used paludiculture crops under different harvest frequencies (Karki et al., 2014). In the present study, we addressed this need in an annual trial and hypothesized that different R/S would be observed in flood-tolerant perennial grasses by manipulating the harvest frequency during the growth season under provision of adequate nutrient availability. The specific aims of the study were 1) to determine the effect of harvest frequency on the root and shoot development in the first year of cultivation of the perennial grasses reed canary grass (RCG; Phalaris arundinacea L.), tall fescue (TF; Festuca arundinacea Schreb.) and festulolium (FL; Festuca spp. × Lolium spp.), 2) to assess species-specific differences in R/S biomass ratios, 3) to determine the effect of harvest frequency on the C and nitrogen content in above- and belowground biomass, and 4) to assess the implications of R/S for soil C modeling.
MATERIALS AND METHODS
Site Description and Experimental Design
The experiment was performed at the outdoor semi-field facilities of Aarhus University Foulum, Denmark. The average air temperature in the 8-month study period from March to November 2019, representing the annual growth period of grasses, ranged between 5.0°C and 16.8°C, with August as the warmest month. Monthly average precipitation ranged between 12 and 122 mm, with April as the driest and October as the wettest month. Global and net radiation was highest in June, with 20 and 8 MJ m−2, respectively (Figure 1).
[image: Figure 1]FIGURE 1 | Environmental data for the year 2019 showing (A) precipitation (in mm), (B) temperature in Celsius, (C) global radiation (MJ m−2), and (D) net radiation (MJ m−2). Bold lines for temperature and radiation indicate the daily means, while dashed red lines indicate zero.
The perennial grasses RCG (cultivar: Lipaula), TF (cultivar: Kora), and FL (cultivar: Hykor) were grown in polyvinyl carbonate (PVC) cylinders (diameter 15 cm, depth 50 cm) that were placed in three trenches at the semi-field facility. The PVC cores were filled with coarse sandy soil (1.5% total organic C, 17.5 kg NH4-N ha−1, 35.0 kg NO3-N ha−1, pH 5.8) and maintained at a controlled water table depth (WTD) of ‐20 cm. This setup was chosen to simplify root washing as compared to peat soil where separation of new and old plant remains is unfeasible. The WTD control was ensured by placing the PVC tubes in tubs (78.5 cm × 48.5 cm × 30 cm) with the soil surface at ground elevation. The tubs allowed for overflow of excess water and were automatically filled twice daily with demineralized water to maintain a stable WTD (Figure 2). Sowing of seeds (25 kg ha−1) was performed by hand on March 14, 2019 (week 11). The cylinders (n = 20) in each cultivar group were randomly assigned to four harvest and fertilization treatments, including zero, one, two, and five annual cuts with five replicates each (Table 1). The treatment with one annual biomass harvest was chosen to determine BGB development in the first half of the growing period. Initial fertilization of all treatments was applied on March 19, 2019. The setup was exposed to natural changes in temperature and precipitation.
[image: Figure 2]FIGURE 2 | Schematic sketch of the experimental setup representing water table depth (WTD) control of the polyvinyl carbonate (PVC) cylinders, filled with soil and cultivated with the various grass species.
TABLE 1 | Dates and amounts of fertilizer application, calendar weeks of aboveground biomass harvest occurrences, and dates for root extraction following the final biomass harvest for the various treatments as indicated by number of cuts.
[image: Table 1]Above and Belowground Biomass and Net Primary Productivity
AGB was harvested at a stubble height of 5 cm in calendar weeks 21, 25, 31, 37, and 44, depending on treatment regarding harvest frequency (Table 1). Stubble and BGB were separated and determined following the last AGB harvest. Roots were extracted from the soil by fine washing: two rinsing cycles using a soft spray nozzle with demineralized water and a 20-cm-diameter soil sieve with 2-mm mesh size, followed by three rinsing cycles and a 250-µm mesh size sieve. Total biomass dry matter (DM) for each cut and plant fraction was determined after oven-drying at 60°C to constant weight. Following drying, all samples were milled (Retsch SM 200, Retsch GmbH, Haan, Germany) and analyzed for total nitrogen (TN) and total organic carbon (TC) concentrations using a vario MAX CN (Elementar Analysesysteme GmbH, Hanau, Germany). Recovered roots were considered as BGB, and harvested yields and stubble were considered as AGB. Root:shoot ratios and NPP were calculated as
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The calculation of NPP has been chosen to be simplified, in our study excluding the, unquantified contribution of, e.g., root secretions and exudates to NPP. The amount of C in AGB and BGB plant parts was calculated by multiplying the biomass (t DM) and the TC concentration in biomass (Mg C t−1 DM).
Extrapolation of Results for Calculation of Soil Carbon Input
We calculated the soil carbon input from biomass for each treatment under the following observations and assumptions of 1) observed yields of AGB and BGB, 2) the determined R/S, and 3) the various individual concentrations of TC in AGB and BGB as well as the stubble fraction of AGB. The method has been adapted from Kätterer et al. (2011) and Poeplau (2016) under the modification to account for specific TC concentrations in the stubble fraction, and BGB. Hence, we calculated the TC input into soil using the following assumptions and equations: ANPP is the aboveground NPP, which was calculated by multiplying the AGB yield by the carbon concentration in AGB as derived by biomass analyses for the various treatments (Eq. 3).
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BNPP is the belowground NPP, calculated as the harvested AGB yield multiplied with the derived R/S for the various treatments and multiplied with the carbon concentration in BGB as derived by biomass analyses for the various treatments (Eq. 4).
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ACin (t C ha−1 year−1), the TC input into the soil from AGB, was calculated as the yield of the not harvested stubbles multiplied by the carbon concentration is those, divided by two. This was a conservative estimate, based on the assumption that only approximately 50% of the stubble biomass (S) fraction becomes available as structural soil carbon input according to Schneider et al. (2006) (Eq. 5).
[image: image]
BCin, the TC input into soil (t C ha−1 year−1) for a depth of 50 cm, as equivalent to the length of the used PVC tubes, was calculated according to Equation 6. This is in detail described by Poeplau (2016), where d is the sampling depth (in cm), dr is the assumed maximum rooting depth for a flooded soil, and d50 is the depth of 50% of BNPP distribution. In our calculations, d was set to 50 cm as the depth of the PVC tubes, dr to 70 cm, since the maximum rooting depth under high WTDs is not likely to significantly exceed the sampling depth (Kohzu et al., 2003; Fan et al., 2017; D’Imperio et al., 2018), and d50 to 15 cm, according to average observations from this study across treatments. This was multiplied by 0.65 according to a conservative root turnover estimation for temperate wetlands with similar mean annual average temperature and precipitation values as our study site (Gill and Jackson, 2000; DuPont et al., 2014; Leifeld et al., 2015).
[image: image]
This resulted in the final TC input into soil (t C ha−1 year−1), which was calculated as the sum of ACin and BCin (Eq. 7).
[image: image]
Scenarios of Soil Carbon Input Based on Default R/S
Two commonly used R/S were applied for default calculation of soil carbon input: first, an R/S of 0.8 as stated by Bolinder et al. (2007) for grass species in eastern and western Canada. This ratio is based on a literature review on 35 publications. Second, we used the R/S of 2.8, which is derived from semi-arid grassland data, but used as a default expansion factor by the IPCC (2006) and applied in Denmark’s National Inventory Report (2020). These R/S values were applied to averaged total AGB yields and the commonly used average of 45% TC within biomass (Kätterer et al., 2011).
In addition, the carbon input into soil for RCG treatments was exemplarily calculated identical to the R/S scenarios, assuming identical biomass yields, for better comparability.
Statistical Analyses
Observations were averaged and summed up to yields over the entire growing period. Standard error was reported to present the distribution of data. Two-way analyses of variance were performed using linear mixed models with the function lmer of the package lme4 (Bates et al. (2015), Version 1.1–23, 2020) in the statistical software R (R Core Team (2020) Version 4.0.2—“Taking Off Again”), in which the following model was used:
[image: image]
where [image: image] is the observed dependent variable, [image: image] is the overall mean, [image: image] is the fixed effect of species, [image: image] is the fixed effect of combined harvest frequency and fertilization treatment, [image: image] is the species by treatment interaction, and [image: image] is the experimental error. The model residuals were inspected for normality and homoscedasticity, and variables were log-transformed in order to stabilize the variance and normal distribution. A Tukey’s HSD test at the 95% confidence level was used to test for significance of differences between treatment means. Correlation effects between the observed R/S and the various biomass treatments were determined by multiple linear regression using Pearson’s correlation.
RESULTS
Root and Shoot Measurements
Cumulated Biomass Yield
Cumulated DM plant biomass at the end of the growing season ranged between 16.8 t ha−1 year−1 (FL, five cuts) and 46.2 t ha−1 year−1 (FL, zero cuts) across all treatments (Table 2) and were affected by the annual harvest strategy [χ2 (3) = 110.4, p < 0.001]. Generally, and for all species, the highest yields were found in the zero-cut treatments, ranging between 39.4 (TF) and 46.2 (FL) t ha−1 year−1. There was a consistent decrease of BGB and cumulative biomass yield with increasing number of annual cuts, with the one-cut treatment being an exception due to the different timing of harvest, presumably in combination with lesser N availability. However, while for RCG and TF there was no difference of total yields between the one-to five-cut treatments, there was, for FL, a significant (p < 0.001) increase of both AGB and BGB development, when comparing the one- and two-cut treatments. Species alone did not affect total biomass yield despite the observation of high overall yields for the FL two-cut treatment, close to three-fold as compared to the FL five-cut treatment. For all species, there was a significant difference (p < 0.001) between yields of the zero-cut treatment and all other treatments. Overall and across treatments, RCG and TF yields were near identical.
TABLE 2 | Yields of dry matter (DM) of aboveground (AGB), belowground (BGB), and stubble (S) biomass for the various species and treatments. Total yields for above- and belowground plant fractions are indicated as sums. The root to shoot (R/S) ratio indicates the ratio of belowground to combined aboveground and stubble biomass. Letters indicate differences between treatments, where treatments with the same letters are not significantly different. Standard error is given in brackets (n = 5).
[image: Table 2]Root:shoot Ratio
The ratio between AGB and BGB (R/S) varied between 0.6 (FL, five cuts) to 2.3 (RCG, zero-cuts), significantly (p < 0.001) affected by the annual harvest strategy (Table 2). The smallest contribution of BGB to total biomass was observed for the five-cut treatments, ranging between 38% (FL) and 45% (RCG). In the zero-cut treatments, BGB contributed with 61% (FL) to 70% (RCG) of total biomass. For all species, the R/S of the zero-cut treatment was significantly (p < 0.001) higher than for the other treatments [χ2 (2) = 46.8, p < 0.001], while no differences in R/S were observed for the one-to five-cut treatments. There was no significant (p > 0.5) difference of R/S in between species across the various treatments. The differences between one and two annual cuts and between two and five annual cuts were non-significant (Figure 3). However, the Pearson correlation identified strong positive correlations between AGB and BGB based on yield results combined for treatment but differentiated for species (minimum R > 0.61), combined for species but differentiated for treatment (minimum R > 0.76), and differentiated for both species and treatment (minimum R > 0.71) (Figures 4A–C).
[image: Figure 3]FIGURE 3 | Differences of root:shoot ratios (R/S) for the various treatments of zero, one, two, and five annual cuts across species. Stars denote statistical significances between treatments according to p-values with ns indicating non-significance.
[image: Figure 4]FIGURE 4 | Pearson correlation showing the relation between aboveground (AGB) biomass (kg m−2) and belowground (BGB) biomass (kg m−2) for (A) species and treatment, (B) treatment across species, and (C) species across treatments.
Total Carbon
The mean content of TC across all species and treatments was 45% for aboveground grass biomass, 44% for stubble biomass, and 40% for belowground biomass. A decreasing trend of TC content within AGB was observed with increasing number of cuts for all species (Table 3). TC yield (t TC ha−1 year−1) within biomass generally followed the pattern of total DM biomass yield, with an increasing aboveground TC yield with increasing number of annual cuts and an increasing belowground TC yield with fewer annual cuts. The highest total plant TC yeild was found in the FL zero-cut treatment (18.9 t ha−1 year−1) and the lowest in FL one-cut (5.5 t ha−1 year−1). There were no significant differences for TC yields between the zero- and five-cut treatments in AGB. Generally, TC yield was highly affected by management [χ2 (15) = 80.9, p < 0.001].
TABLE 3 | Yields of total carbon (TC) and total nitrogen (TN), as well as TC and TN content in percentages, of aboveground (AGB), belowground (BGB), and stubble (S) biomass for the various species and treatments. Total yields for above- and belowground plant fractions are indicated as sums. Letters indicate differences between treatments, where treatments with the same letters are not significantly different. Standard error is given in brackets (n = 5).
[image: Table 3]Total Nitrogen
TN in biomass was significantly affected by treatment [χ2 (3) = 53.2, p < 0.001]. For all species and treatments, the content of TN was higher in AGB than in BGB and stubble biomass. Averaged across species, TN content in AGB increased from 1.4% in the zero-cut treatment to 4.0% in the five-cut treatments (Table 3). This is also depicted in TN yields, where more TN was harvested in the five-cut treatments (26.4–34.4 g N m−2 year−1) as compared to the zero-cut treatments (13.6–17.8 g N m−2 year−1), despite similar or lower AGB yields. In contrast to AGB, the TN content in BGB was not affected by increasing harvest and fertilization frequencies (p < 0.5). On a cumulative basis, the highest plant TN yield was found in the zero-cut treatment for RCG (51.1 g m−2 year−1) and TF (41.6 g m−2 year−1), while for FL, most TN (51.1 g m−2 year−1) was found in the two-cut treatment.
Carbon-to-Nitrogen Ratio
We found that for all three grass species, the carbon-to-nitrogen (C/N) ratio within AGB, as well as in the combined AGB and S (AGB + S) biomass, decreased significantly (p < 0.001) with increasing number of annual cuts. For instance, in AGB + S, the C/N decreased from 32.1 (RCG)–39.3 (FL) for the zero-cut treatment to 15.4 (RCG)–19.0 (TF) for the treatment with five annual cuts (Table 4). Regarding S biomass, the C/N was for all treatments higher as compared to the C/N of AGB, with significant (p < 0.001) differences for the one-to five-cut treatments. For BGB, no significant difference of the C/N ratio between the various treatments was observed, except for FL. However, cumulative across all plant parts, the C/N ratio followed the pattern of the C/N in AGB + S, showing significant (p < 0.001) differences between the treatments with zero and five annual cuts, with one- and two-cut treatments ranging in between.
TABLE 4 | Carbon-to-nitrogen (C/N) ratios in aboveground biomass (AGB), stubble biomass (S), combined aboveground and stubble biomass (AGB + S), and belowground biomass (BGB), as well as across all plant parts (cum) for the various treatments and species. Letters indicate differences between treatments, where treatments with the same letters are not significantly different.
[image: Table 4]Scenarios of Soil Carbon Input
The input of TC into soil was for all species highest in the zero-cut treatments, ranging between 6.6 t C ha−1 year−1 (TF) and 7.6 t C ha−1 year−1 (FL). A gradient of lesser TC input with increasing number of cuts was observed for all species, with the five-cut treatment being significantly lower than the treatment with zero harvests (Table 5). The one-cut treatment, harvested in August, was not significantly different to the five-cut treatment. Generally, TCin was significantly (p < 0.001) affected by the random effect of harvest and fertilization treatment. When theoretically assuming equal AGB yields for all treatments on the example of RCG and the two literature-derived R/S scenarios (Table 6), TCin ranged between 2.8 t C ha−1 year−1 (five cuts) and 7.3 t C ha−1 year−1 (zero cuts) for RCG. TCin using the R/S from Bolinder (2007) and the IPCC (2006) was 3.1 and 9.6 t C ha−1 year−1, respectively. For all treatments and scenarios, TCin was significantly affected by the R/S [X2 (1) = 56.4, p < 0.001].
TABLE 5 | Total annual harvested biomass yields in t dry matter (DM) ha−1 year−1 of the three perennial grasses under the various treatments, the content of total carbon (TC) in aboveground (AGB), stubble (S), and belowground (BGB) biomass and the determined root:shoot ratio (R/S), used for the calculation of aboveground net primary productivity (ANPP), stubble net primary productivity (SNPP), and belowground net primary productivity (BNPP), the input of carbon into soil from aboveground biomass residues (ACin) and belowground biomass (BCin), resulting in the total carbon input (TCin) over a rooting depth of 50 cm. Letters indicate differences between treatments, where treatments with the same letters are not significantly different.
[image: Table 5]TABLE 6 | Calculation of the total carbon input into soil using averaged biomass yields on the example of reed canary grass and two literature-derived scenarios, applying different root to shoot (R/S) ratios. The contents of total carbon (TC) in aboveground (AGB), stubble (S), and belowground (BGB) biomass and the determined R/S were used for the calculation of aboveground net primary productivity (ANPP), stubble net primary productivity (SNPP), and belowground net primary productivity (BNPP), the input of carbon into soil from aboveground biomass residues (ACin), and belowground biomass (BCin), resulting in the total carbon input (TCin) over a rooting depth of 50 cm. Yields are indicated in t dry matter (DM) ha−1 year−1.
[image: Table 6]DISCUSSION
In this study, we highlight that AGB and BGB as well as R/S differed greatly among the various harvest frequencies, with frequent cuts resulting in reduced BGB yields and lower R/S for all assessed species. However, while the effects of water saturation and nutrient availability on biomass development and the R/S are relatively well known (e.g. Guo et al., 2016), there are only little comparable data available regarding R/S for RCG, TF, and FL under various annual cuts within the first year of establishment. Mander et al. (2012) reported an R/S of 0.91 (unfertilized) and 0.67 (fertilized) for RCG on an abandoned peat extraction site in Estonia without harvest, while Klimesová (1994) found a R/S of between 1.9 and 2.1 for RCG in a pot experiment under similar soil and water conditions and for the same timeframe as in this study. The latter values are similar to the R/S of 2.3 for the RCG treatment without harvest in our study. Bolinder et al. (2002) reported for RCG and TF in the second year after cultivation R/S values of 1.0 and 0.6 for a treatment with two annual cuts. These values, 0.2 and 0.4 lower than the corresponding R/S from RCG and TF under two annual cuts observed in our study, are within a similar range. However, the higher R/S observed in our study probably results from a younger sward age, indicating the plant’s need for optimal biomass allocation under the establishing growth period. Cougnon et al. (2013) reported 1 kg DM m−2 more BGB for TF with five annual cuts than in our experiment for an already established sward, receiving 100 kg N ha−1 and 100 kg K ha−1 more than in this study, and 300 (FL)–700 (TF) g DM m−2 more BGB in 3-year-old swards with five annual cuts, receiving similar fertilization amounts as in our study (Cougnon et al., 2017). We also found such differences in R/S for treatments without any harvest. For instance, Xiong et al. (2009) determined an R/S of 6.5 for RCG after a full year of growth, which differs significantly to our observed value of 2.3 after 210 days. Since the water table has been permanently controlled to –20 cm, a depth indicated as optimal for AGB development of flooding-tolerant perennial grasses (Miller and Zedler, 2003; Ustak et al., 2019), and adequate nutrients were provided, we interpret the observed differences in R/S for all species regarding harvest frequencies as a response of the plant’s biomass allocation. This is in accordance with the OPT (Kobe et al., 2010), where, as a consequence of more frequent harvest and removal of biomass involved in light energy capturing, more biomass is allocated to AGB organs in order to maximize photosynthesis. Further, the IA was supported by significant linear relationships between AGB and BGB, which is in line with other studies for temperate grasslands (e.g., Wang et al., 2010; Yang et al., 2018), indicating a coexistence of the OPT and IA theories. However, even though we were able to confirm our hypothesis, that different ratios between AGB and BGB will be observed in flood-tolerant perennial grasses under different harvest frequencies during the growth season under provision of adequate nutrient availability, there might remain a limitation of our observation for wet organic soils: that the R/S analysis was not performed on samples grown on peat soil cores. However, since R/S is rather affected by nutrient availability than soil types (Lambert et al., 2014; Pinno et al., 2014; Lehtonen et al., 2016), we assume a reliable validity of the indicated R/S for similar growth conditions, including fertilizer management, also on peat soils. This is supported by other research, comparing differences in R/S for certain species and treatments between cultivation on mineral and organic soil types. Xiong et al. (2009) for example found similar R/S for RCG under different fertilization rates on both mineral and organic soils. Björk et al. (2007) reported similar findings for root mass in Swedish heath and meadow tundra ecosystems, and Lambert et al. (2014) stated that R/S of Arundo donax was stable across soil types. Nonetheless, we propose that future research not only has to emphasize an assessment of cultivation treatments on R/S on mineral and organic soils but also needs to monitor TC and TN in AGB and BGB, as well as their development with increasing production years, due to expected variations (Sainju et al., 2017b). The C/N ratio can aid as an indicator for litter quality, with easier decomposable substrates having low C/N ratios (Rydin and Jeglum, 2013). Recalcitrant plant litter, indicated by high C/N ratios (Poirier et al., 2018), hence has the potential to increase soil C input-either directly to the pool of particulate organic matter (POM) or as microbial necromass following decomposition by microorganisms in the acrotelm (Worrall et al., 2017; Rossi et al., 2020). The potential for long-term C storage in the POM pool is in particular high for wet organic soils due to anoxic conditions in the catotelm, indicated by higher contents of lignin with increasing peat depth (Williams and Yavitt, 2003). Further, in soils with <12% SOC, additional C storage through the POM pool has the potential to overcome soil C saturation (Cotrufo et al., 2019). However, for drained soils where microbial activity is found in deeper layers, there is no consensus whether the C/N in BGB can be used as a predictor for the decomposability of root litter, and hence the C storage potential, as indicated by interspecific variation (Bonanomi et al., 2021). However, while R/S and C in biomass have been assessed for RCG on mineral and organic soils (Xiong et al., 2009; Xiong and Kätterer, 2010), this study was to our knowledge among the first to, besides R/S, also assess C/N in AGB and BGB parts.
The input of carbon into soil is a critical component of the global C cycle, thus significantly contributing to various aspects of ecosystem functioning. Modeling existing and changing soil organic carbon (SOC) stocks hence is a critical task in decision support related to optimal climate and land management (Taghizadeh-Toosi et al., 2016). However, while it is recognized that C allocation in belowground plant organs depends on vegetation type (Keller and Phillips, 2019), growing conditions (Whitehead, 2020), and plant development stages and management (Pausch and Kuzyakov, 2018), only few of these complex relationships (Cheng et al., 2014) are set into context with soil geochemistry and accounted for during SOC modeling (Finke et al., 2019). For instance, previously reported R/S for perennial grasses showed a broad distribution of median values, which has been shown in reviews by Bolinder et al. (2007) and Pausch and Kuzyakov (2018). Given the critical role of BGB carbon input, our study highlights the importance of acquiring more extensive knowledge regarding the development of perennial grass root systems depending on AGB manipulation by harvest. We only found marginally significant differences in R/S for the various treatments and species, apart for the, in agriculturally used grasslands, uncommon zero-cut strategy, which could indicate that a fixed R/S for perennial grasses might be reasonable to use if accurately defined.
However, our calculation of soil C input for perennial grasses under different harvest frequencies revealed significant differences for the various management options and applied R/S. This highlighted a potential risk for over- and underestimation of the C sink functioning of wetlands and grassland ecosystems. While, for instance, using the IPCC default R/S of 2.8 resulted in an estimated annual carbon input into soil of 9.6 t C ha−1 year−1 for a RCG yield of 10 t DM ha−1 year−1, our results ranged between 2.8 and 7.3 t C ha−1 year−1 for the same AGB yield, depending on annual harvest frequencies. Since, for instance, the default IPCC (2006) estimate of R/S of 2.8 is applied in the Danish National Inventory Report (2020), the discrepancy of TC input from BGB resulting from varying R/S might have far-reaching consequences for policymaking. For instance, depending on whether management measures are extensive, e.g., designated nature areas without any biomass manipulation, or intensive, e.g., biomass harvest up to five times annually, the choice of R/S for the quantification of an organic soil C sink function must be made carefully and adapted to the ecosystem in question. This is in particular true for the designation of rewetting measures on wetland areas, including the choice of land use and land cover, for climate considerations. In the context of optimum grassland management for agricultural production, we showed that a strategy with two annual cuts has the highest potential to contribute to SOC buildup. We hence advocate an inclusion of more accurate R/S for modeling, taking differences resulting from grass management, as well as site-specific climatic and biogeochemical conditions (Sahoo et al., 2021), into consideration to reduce uncertainties for policymaking on agroecosystems.
However, a limitation of this study is the assessment of harvest frequency on R/S during the establishment year only, which emphasizes the need for more long-term data on root growth of managed and unmanaged perennial grasses in wet environments. Hence, we suggest a future multi-annual study, with at least 2 years of trial, to increase the validity of results by accounting for the plants long-term response to management, taking interannual climatic variability into consideration. Previous studies demonstrated that R/S varies with ley age (Bolinder et al., 2002; Acharya et al., 2012; Huang et al., 2021), the associated interannual climatic variability (Poorter et al., 2012; Li et al., 2021), and nutrient availability (Cong et al., 2019); hence, further years of experimental analysis have to determine whether our findings regarding the effect of harvest frequency on R/S and the associated implications of management for SOC input are applicable on the long term. Further, it is yet unclear how the determined R/S for the assessed grasses can be applied in the evaluation of SOC input by plant biomass in wet or rewetted agricultural wetlands. For wet organic soils and in the context of paludiculture, we suggest that not only root growth but also rooting depth and specific root turnover rates have to be assessed. Only few studies assessed the maximum potential rooting depth by flood-tolerant perennial grasses in correlation with the WTD profile on organic soils, as compiled by Fan et al. (2017). Houde et al. (2020) highlighted the significance of turnover of perennial grass roots for the C storage potential, and Schwieger et al. (2020) emphasized the significance of roots as the main peat-forming component in grass-covered fen peatlands. However, while wetland ecosystems potentially have the second-highest root turnover rates of all ecosystems (Gill and Jackson, 2000), the complexity between rooting depth, WTD, C/N, and litter recalcitrance (Shurpali et al., 2010; Straková et al., 2012; Leifeld et al., 2015; D’Imperio et al., 2018) as well as AGB manipulation and root turnover rates for soil C input still needs to be defined.
With an increasing policy focus on wetland restoration, including paludiculture, for GHG mitigation and nutrient retention, as well as the concomitant need to point out sites with the highest mitigation potential, not only assessments of GHG emissions and optimum management (e.g., Geurts et al., 2019; Tanneberger et al., 2020; Nielsen et al., 2021) but also site- and plant community-specific BGB NPP should be taken into consideration for an accurate evaluation of the C sink potential.
CONCLUSION
While it is known that C inputs in soils are affected by development of AGB and BGB, as well as a variety of biotic and abiotic factors, little has been known so far on the effect of harvest frequency on the R/S of perennial grasses. In conclusion, this study found significant differences in the R/S for the flood-tolerant perennial grasses Phalaris ar., Festuca ar., and Festuca × Lolium, affected by annual harvest frequencies of AGB, with less biomass allocated to belowground parts with increasing number of cuts. No species-specific differences in the ratio were observed for any treatments. In addition, our results showed that both the OPT of plant biomass allocation and the IA hypothesis seemed to coexisted. Further, we demonstrated the importance to accurately define R/S for the calculation of carbon input into soils to avoid significant over- or underestimation. Our results showed that there are significant differences regarding the annual carbon input into soils, depending on the R/S applied. We found that using the IPCC default factor for R/S of 2.8, applied for both managed and unmanaged grasslands, resulted in 55%–71% higher carbon input rates as compared to our scenarios with two and five annual cuts, commonly applied in agricultural systems. This discrepancy indicates a significant inaccuracy for modeling and quantification of the C sink or source function of wet organic grassland areas, which might have far-reaching consequences for policymaking and carbon accounting. Further, we not only demonstrated how measurements of AGB and BGB provided a more accurate baseline for estimation of soil carbon input but also indicated the need for further assessment of R/S and C/N of perennial grasses, particularly for those cultivated on wet organic soils, to define the soil C sink capacity.
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Land uses Species richness

(plot-level)
Forest (tropical) 12.22 + 0.51°°%
Forest (subtropical) 11.49 + 0.85°°%
Forest (temperate) 11.61 + 0.78°%
Forest (bamboo) 1.38 +0.03
Plantation (tropical) 2.92 +0.76*
Plantation (subtropical) 1.0 £0.0*
Plantation (temperate) 1.64 £ 0.23%
Shifting oultivation fallow (< 5 years) 1.8+ 003%
Shifting cultivation fallow (5-10 years) 2.8+ 002%
Shifting cultivation fallow (11-20 years) 36+0.12%
Agroforestry systems 30£00%

Simpson’s dominance
index

0.83 + 0.05
0.68 + 0.02
212+ 0.07
0.18 £ 0.0
021 £0.10
0.64 +0.08
0.30 + 0.41
021 +0.0
0.15+0.0
0.09 +0.0
0.56 + 0.06

‘Shannon-Weiner diversity
index

220 +0.07
1.88 £0.125
2.39 + 0.092
1.07 £0.32
0.49 + 0.22
0.02 +0.0
017 +0.24
1.69 +0.03
1.99 + 0.06
240 +0.16
1.24 +£0.32

The value with the same letter between in species richness between the land uses is significantly different at p < 0.05.

Pielou’s evenness
index

0.73 £+ 0.03
0.69 + 0.01
0.59 + 0.01
0.55 + 0.04
0.59 + 0.03
0.61+0.03
0.58 + 0.55
0.99 + 0.0
0.98 + 0.0
0.99 + 0.0
0.596 + 0.0

Margalef's species
richness index

321+082
1.91+063
121 £ 087
0.67 + 0.03
0.61 +0.08
1.06 + 0.2
210+ 037
204 +0.06
222+0.08
281+017
1.70 £ 0.32
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Land uses Stand density (number
of trees ha™)
Forest (tropical) 539 + 17.61°
Forest (subtropical) 554 + 48.38°
Forest (temperate) 578 + 80.15°
Forest (bamboo) 655 + 46.8°
Plantation (tropical) 598 + 41.31°
Plantation (subtropical) 840 + 174.15'
Plantation (temperate) 344 + 92.98'
Shifting oultivation fallow (<5 years) 188 + 31.72%%0
Shifting cutivation fallow (5-10 years) 431+ 63.02'
Shifting oultivation fallow (11-20 years) 703 + 79.06°
Agroforestry systems 744 +144.88°
Agriculture -
Grassland -

Basal area (m® ha™")

2507 +1.01*
2671 +2.18°
29.50 + 263°
7.68 + 0.39°
26.86 + 1.83%
30.63 + 6.46%
11.43 £ 1579
5.86 + 1.58%
17.58 + 4.36"
15.24 + 0,65
1435 + 4.02

Biomass (Mg ha™)

224.11 + 8.26%
226,55 + 24.66°
250.77 + 15.43°
46.77 + 2.35%
198.58 + 16.55%
24564 + 45.10"
106.60 + 14.29%
23,09 + 587
85.12 £ 12.42%
167.60 + 14.29"
92.58 + 28.73™°
6.48 + 1.26°°
253 + 0.81%

+Standard error of mean;: Tukey's post hoc test was used for pair-wise separations. The value with the same letter between the land uses is significantly different at p < 0.05.
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Land uses

Al tree-based land uses

Forest (tropical)

Forest (subtropical)

Forest (temperate)

Forest (bamboo)

Plantation (tropical)

Plantation (subtropical)

Plantation (temperate)

Shifting cultivation fallow (< 5 years)
Shifting cultivation fallow (5-10 years)
Shifting cultivation fallow(11-20 years)
Agroforestry systems

Agriculture

Grassland

AGBC. above ground biomass carbor: BGBC, belowground biomass carbon; VG, vegelation carbor: SOC, sod organic carb

AGBC

2.16 + 0.09
2.27 + 0.1
3.32 + 0.51
4.46 + 0.80
297 + 0.49
1.46 +0.28
4.11 £ 044
202 +0.48
1.10 £ 0.42
1.64 +0.17
230 + 0.12
0.56 + 0.17

BGBC

0.51 + 0.02
0.53 + 0.03
0.78 + 0.12
1.05+0.19
0.70 + 0.12
0.34 + 0.06
0.97 + 0.10
0.47 +0.11
0.26 + 0.10
0.39 + 0.04
0.54 + 0.08
0.13 + 0.04

vC

268 +0.12
281 +0.14
4.10 + 0.18
551099
3.67 + 0.61
1.80 + 0.34
5.08 + 0.5
249 + 0.59
1.35 + 0.52
203 +0.21
284 +0.15
0.69 + 0.21

SEM.

soc

1.05 + 0.09
1.00 £0.18
1.78 + 0.28
1.85 +0.31
0.60 +0.03
1.68 +0.27
0.81 +0.06
0.81 +0.06
051 £0.12
0.39 +0.07
0.67 +0.08
0.56 +0.09
0.32 +0.15
0.49 +0.12
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Land use

Tropical forest

Subtropical forest

Temperate forest

Tropical plantation

Subtropical plantation

Temperate plantation

Shifting cultivation fallows (<5 years)

Shifting culttivation fallows (5-10 years)

Shifting cutivation fallows (11-20 years)

Agroforestry

Variables

Density
AGBC
BGBC
Ve
s00s
TCS
Density
AGBC
BGBC
Ve
s00s
TCS
Density
AGBC
BGBC
ve
S0Cs
TCcS
Density
AGBC
BGBC
Ve

TCS
Density
AGBC
BGBC
ve

TCS
Density
AGBC
BGBC
Ve

TC8
Density
AGBC
BGBC
Ve
s0Cs
TCS
Density
AGBC
BGBC
ve
S0Cs
TC8
Density
AGBC
BGBC
Ve

TCS
Density
AGBC
BGBC
e
socs
TCS

Model

y = 5.8863x + 402.23
2.0618x + 31.08
.6967x + 5.7528
=3.1357x + 30.233
1057x + 43.649
.7642x + 80.481
1.973x + 234.53
.6584x ~ 11.892
.8597x — 2.7946
.5182x - 14.687
= 0.4691x + 30.043
.9873x + 15.357
.2776x + 303.69
.4545x — 1.4143
.7003x + 0.9199
.6806x + 4.8344
0.1373x + 67.45
y = 3.5432x + 72.285
3.308x + 221.27
y =1.9378x + 7.36

5097x - 0.2886
.6786x - 1.5167
.2245x + 47.567
2.903x + 46.051

y = 24.868x + 112.17
.7103x + 6.9391
.6369x + 1.6307
.3472x + 8.5698
.1381x + 38.226
.4853x + 46.796
13.808x + 223.8
y =2.3199x + 29.943
.5132x + 5.9818
.6969x + 31.436
.3911x + 60.498
3.088x + 91.934
16.49x + 91.427
1.3793x + 0.708
y = 0.3241x + 0.1664
.7034x + 0.8744
y = 3.6985x + 54.1

.4019x + 54.974
.8559x + 310.52
5891x + 22.288
147 1x + 47719
=0.7731x + 25.078
y =0311x + 79.09

0841x + 104.17
16.11x - 1067.2
0.011x - 90.706
.2131x + 13.644
1198 + 71.702
.6139x + 53.594
2.7337x + 1263
1.368x + 294.17
.4838x — 0.4093
.6837x - 0.0962
0675x - 0.5055
.2758x + 56.869
3.3433x + 56.364

P

<< <<

y=
¥
y
¥
¥
y=

* Significant at p < 0.5 and p < 0.01, respectively (2-tailed): ne, non-signilicant: n = no of siles.

0.1172
0.4093
0.5448
0.5448
0.2935
05377
0.2909
0.7218
07218
0.7218
0.005
0.7232
0.0926
0.642
05624
0.5624
0.0027
0.3648
0.4587
0.5485
06181
06181
0.0329
0.5811
0.883
0939
0939
0939
0.0355
0.8894
0.2746
0.3184
0.28
0.28
0.0278
0.2873
0.6704
0.9437
09437
0.9437
05492
0.7231
0.2258
0.2927
0.3305
0.3305
0.1159
02734
0.8986
0.9525
0.2796
0.2796
0.2488
0.8228
0.7578
0.8229
0.8229
0.8229
0.2575
0.8272

R

0.342*
0.64*
0.738"
0.738"
0.542"
0.733"
0.539"
085
0.85
085"
0.308"°
085
0.304"
0.801"
075"
075"
0.052"
0.604"
0677
0.741"
0.786"
0.786"
0.181Ne
0.762"
094"
0.969"
0.969"
0.969"
0.188"
0.943*
0.524"
0564
0.520"
0.520"
0.167"
0.536"
0.819"
0.931*
0931+
0.931*
0.472"
0.904*
0.475"°
0541"
0575"
0575"
034"
0.667"
0.948"
0.976"
0.529'°
0.529"°
0.499"
0.907"
0.871"
0.907"
0.907*
0.907"
0.507"
0.909"

239
239
239
239
239
239
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LU change managements

<5 years shifting cultivation fallow to plantation
<5 years shifting cultivation fallow to agroforest
Agriculture to agroforest

Grassiand to plantation

Grassland to agroforest

Agroforest to plantation

VC sequestration
(Mg C ha™' yr")

268
1.02
0.69
3.62
0.68
243

SOC sequestration
(Mg C ha™' yr™")

0.96
0.04
0.44
0.09
0.63
0.54

TC sequestration
(Mg C ha™"yr™")

363
1.06
113
an
131
297
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Variable

Tree Layer (TV)

Tree Density (per Ha)
Number of Species

Basal area (m” ha™')

Frequency

Total number of Species Censused (S)
Shannon-Wiener index (H)

Simpson’s concentration index (Cd)
Margalef's index of species richness (D)
Pielou’s evenness index (E)

Beta Diversity (B)

Shrub Layer (SV)

Shrub Density (per Ha)
Number of Species

Basal area (m” ha™)

Frequency (%)

Total number of Species Censused (S)
Shannon-Wiener index (H)

Simpson’s concentration index (Cd)
Margalef's index of species richness (D)
Pielou’s evenness index (E)

Beta Diversity (B)

Herbaceous Layer (HV)

Herb Density (m?)

Number of Species

Basal area (m” ha™')

Frequency (%)

Total number of Species Censused ()
Shannon-Wiener index (H')

Simpson’s concentration index (Cd)
Margalef's index of species richness (D)
Pielou’s evenness index (E)

Beta Diversity (8)

TP

470
11
28.81
26.36
1
0.67
075
5.79
025
1.27

3148.72
13
0.36
40.23
13
0.84
0.63
0.19
0.02
2.00

137.2
24
0.00297
40
24
0.23
325
0.05
1.20
222

SMF

652.5
14
34.12
24.28
14
0.90
0.65
5.31
028
1.58

5870.59
15
0.48
60
17
2.63
0.08
2.72
0.97
171

141.6
33
0.0037
34.84
33
0.28
3.64
1.45
1.39
1.94

DMF

587.5
29
29.05
30
29
2.34
0.09
12.54
0.67
1.20

6053.33
23
0.64
41.15
28
3.06
0.06
3.49
0.97
113

328.40
29
0.00296
27.93
29
0.32
3.16
0.06
1.42
1.89

OMF

4675
22
9.26
31.36
22
228
014
9.45
0.63
172

4579.31
14
161
46.551
24
1.00
039
032
038
1.86

233.60
31
0.00237
&

31
0.30
2.86
0.04
1.23
295





OPS/images/fenvs-09-757976/fenvs-09-757976-t001.jpg
Metrics Abbreviation Expression

Topographical Elevation DEM Digital Elevation Model
Drainage Drainage Generate through DEM data (USGS)
Slope Slope Gradient of DTM in degree
ASPECT Aspect Compass Direction
Vegetation indices/Spectral Normalized difference vegetation index NDVI Nt
Enhanced vegetation index EVI G* oty G (Gain factor) = 2.5, C1 =6,C2 = 7.5, L =1

NFTCTHed-C2 BT

Normalized difference moisture index NDMI Ne-qwm
Ratio vegetation index RVI RED /NR
Advance vegetation index AV [NIR * (1-Red) * (NIR-Red)]
Very dense vegetation index vovi enhonghe

Diversity index Shannon-Wiener index H' H' =-pilog 2 pi
Simpson’s concentration index oH ! Ni/N) 2
Margalef's index of species richness D 1/inN
Pielou’s evenness index E E=H/ins

Beta Diversity B B=So/s
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Parameter

NDVI
AVI
EVI
RVI

vDVI
NDMI
Density
Basal Area
Shannon
Index

LAI
Carbon

storage
Biomass

Litterfall

NPP

“Correlation is significant at the 0.01 level (2-tailed).
“Correlation is significant at the 0.05 level (2-tailed).

NDVI

1
073
067°
0.49°
050°
049°
067°
084°

0.548°

061*
0.74%

0.79*
0.55%

0.68*

NS denotes non-signiicant.

AVI

1
0.93*
0.28
NS
0.22
NS
0.37
NS
0.37
NS
0.61*

032
NS

0.45°
0.55°
0.56°
0.40°

0.35
NS

g
020
NS
023
NS
023
NS
031
NS
0.49°

025
NS
0.54°
0.48°
058"
0.43°

0.27
NS

RVI

043°

032
NS
022
NS
043°

021
NS
051°
037
NS
032
NS
032
NS
031
NS

vovI

0.23
NS
0.19
NS
0.55%

0.19
NS
059*
0.43°
052°
0.44°

0.29
NS

NDMI

028
NS
037
NS
010
NS
0.43°
023
NS
031
NS
028
NS
024
NS

Density

1

0.68*

0.098NS 0.11NS

0.68*
0.53°

0.62*
0.52°

0.48°

Basal
area

1

057*
0.62*

0.59*
0.46°

051°

Shannon

index

1

0.64*
0.59°

0.67*
0.39 NS

041°

LAl

0.67*
0.70°*
0.57*

0.54°

Carbon
storage

0.74%
0.61*

0.79*

Biomass Litterfall

0.67*

0.87*

0.77*

NPP

1
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Tree vegetation

Forest Biomass

Forest Productivity

Litterfall

Fine root biomass

Carbon storage

Response variable

Biomass (AGB + BGB)

Total Net production (AGNP + BGNP)

FLP

FRB

Carbon storage (AGCS + BGCS)

Unit

Mg/ha

Mg/hayr

Mg/ha

Mg/ha

Kg/ha

Study site/Forest
type

Teak forest
Sal mixed

Dense mixed
Open mixed

Teak forest
Sal mixed

Dense mixed
Open mixed

Teak forest
Sal mixed

Dense mixed
Open mixed

Teak forest
Sal mixed

Dense mixed
Open mixed

Teak forest
Sal mixed

Dense mixed
Open mixed

Minimum

76.10
62.94
92.62
64.13

8.31
7.07
8.93
6.95

3238
282
267
2.54

226
1.84
2.44
1.86

29646.79
31914.34
27961.67
15163.22

Mean

101.07
91.24
11.21
83.74

12.33
12.52
13.00
10.53

4.19
3.76
3.36
393

320
285
373
279

43674
39126
50640
36489

Maximum

129.63
117.33
130.00
102.57

16.46
16.93
16.71
13.81

517
470
411
5.31

418
3.76
4.84
3.49

56921.84
46199.88
67302.36
50113.72

AGB, above ground biomass; BGB, Below ground biomass; AGNP, above ground net production; BGNP, below ground net production; FLP, fine litter production; TNINP, Total net

primary production: AGCS, Above ground carbon storage: BGCS, Below ground carbon slorage.





OPS/images/fenvs-09-716636/fenvs-09-716636-g003.gif
Temparys FO).






OPS/images/fenvs-09-716636/fenvs-09-716636-g004.gif





OPS/images/fenvs-09-716636/fenvs-09-716636-g005.gif





OPS/images/fenvs-09-706880/fenvs-09-706880-t001.jpg
Sector

Agricuttural sector

Wid fauna

Tourism activities

Paved roads network

Office workshops and canteen

Residential sector

Security and vigiance

Research activities

Forest management

G -sinks

Category

Direct

Indirect

Direct

Indirect

Direct

Indirect

Direct
Indirect

Direct

Indirect

Direct

Indirect

Direct

Indirect

Direct

Indirect

Direct
Indirect

Total annual GHG emissions generate annually by the Reserve
Agricultural soi

Sub-sector

Enteric methane

Soil emissions.

Fuel combustion
Extra-fam feed %)
Fuel ®

Auxiliary products %)
Others

Manure emissions
Enteric methane
In-boundary transport
Com grains 9
Out-boundary transport

Heating and cooking
In-boundary transport
Refrigerant gas leaks
Electricity
Out-boundary transport
Meals ®+)

Air conditioners !

In-situ operations
Transport

Raw materials extraction
Mixture production

In-boundary transport
Heating and cooking
Refrigerant gas leaks.
Electricity
Out-boundary transport
Meals 49

Others

In-boundary transport
Electricity

In-boundary transport
Refrigerant gas leaks.
Heating system
Electricity

Meals ®9)
Out-boundary transport
Others

In-boundary transport
Out-boundary transport
Meals ®

Fuel combustion
Fuel ©
Tractors ©™

Mg CO,,/year

636.84

525.81

152.75
55.48
21.85
19.02
14.82

387.8

187.2
045
72
07

17.0
57
43

221

a3
15.0
09

68
30.7
69.3
76.9

109
134
30
350
8.1
165
26

488
100.8

542
26
06
104
495
159
24

45
114
24

132
22
69

Forest biomass growth

% on sector

44.6%
36.9%
10.7%
3.9%
1.5%
1.3%
1%

66.5%
32.1%
0.1%.
1.2%
0.1%

3.4%
1.1%
0.9%
85%
82.9%
3%
02%

37%
16.7%
37.7%
41.9%

6.4%
7.9%
18%
20.6%
52%
9.7%
1.5%

32.6%
67.4%

40%
19%
0.4%
7.7%
36.5%
11.8%
1.8%

3.8%
94.2%
2%

59.3%
9.9%
30.8%

Total Mg COy,/year

1,427 (1,084; 1877)

583 (379; 897)

496 (207; 1,184)

184 (131; 267)

169 (83; 346)

150 (100; 223)

136 (68; 271)

118 (43; 326)

22 (18; 28)

3,285 (2,679; 4,027)
-216 + 30°
25,108 + 6275°

*D = Production; t = Transport; m = Maintenance; e = Enc-of-ife. The values in the brackets are the lower and upper limits respectively of the 95% confidence interval (C).
“Uncertainty range reported by the authors of the paper (Grossi et al, 2020).
SUncertginty range naported by the authors of the paper (Scrind et al,, 2019).
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Treatment

Festulolium

0 Cut
1 Cut
2 Cuts
5 Cuts

Reed canary grass

0 Cut
1 Cut
2 Cuts
5 Cuts

Tall fescue

Ocut
1cut
2cuts
5 cuts

DM (t ha™" year™)

AGB

14.0 (+2.8)ab
56 (:08)c
18.1 (z2.1a
96 (+1.5)c

1.2 (£1.5%
67 (0.9
9.4 (+1.7)ab
1.2 (+1.4)

1.1 (#1412
64 (:0.7b
85 (+2.2)ab
11.0 (+2.0)2

BGB

281 (+43)a
63 (1.6
189 (3.1)b
64 (x1.1)c

280 (+3.7)a
9.5 (+0.9b
135 (+2.8)b
10.0 (0.7)b

25.1 (+3.0)a
9.9 (+1.4)0
10.5 (+2.0)b
9.5 (+1.0b

42 (:07)a
1.3 (0.3
39 (:08)a
08 (:0.2b

1.1 (x0.1)b

1.3 (x0.2)ab

19 (+0.5)a
0.8 (+0.1)b

3.1 (x0.6)a

2.2 (+0.5)ab

29 (0.5
1.2 (x0.2b

Sum

462 (+7.7)a
132 (z2.7)b
410 (+6.0)a
16.8 (:2.8)b

403 (+5.3)a
17.4 (+2.0b
248 (5.0
220 (2.2

39.4 (+5.1)a
185 (+2.5)0
21.9 (+4.7)b
217 (+3.2)b

R/S

16 (0.2
0.9 (0.1
08 (£0.1) b
06 (:0.00

23 (0.1)a
1.2 (20.1)b
1.2 (:0.3b
0.8 (0.0

1.8 (x0.1)a
1.2 (+0.1)b
1.0 (x0.1)b
0.8 (+0.1)b
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Number of cuts Fertilizer application Fertilizer Biomass Root
date (week no.) harvest (week no.) extraction (week no.)

Zero 40kgN and K ha™" year™! 12 45 45

One 1x100kg N and K ha™' 12 31 31

Two 2x100kgNand K ha™! 12,26 25,37 37

Five 5x40kgNand K ha™' 12, 22, 26, 31, 38 21,25, 31,37, 44 44
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Variables

NO,
c
A NOz(-1))
A [NOo(-2))
A(CO)
A[CCH-1))
A[CC(-2]
A(CD)
ECT(-1)

R?: 0.169, DW-statistic: 2.00, AIC: 6.945, F-stat.: 13.94** (0.000)

NH;
c
A NH5(-1)]
A[CO)
A(CD)
ALD(-1)]
A(LD)
ECT(-1)

R?: 0.1147, DW-statistic: 2.00, AIC: 7.09, F-stat.: 31.429"** (0.000)
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Note:

+ and * represent 1, 5, and 10% respectively”.
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co
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", ™\ and * are significant at 1, 5, and 10% levels, respectively’"

LM-version

CHSQ(2) = 0.607282 (0.7381)
CHSQ(35) = 47.47963 (0.0776)
CHSQ(474) = 0.293541(0.7692)

CHSQ(2) = 1160904 (0.5596)
CHSQ(1) = 75.90042(0.000)
CHSQ(481) = 0.854845 (0.3931)

CHSQ(2) = 6.251483 (0.0439)
CHSQ(1) = 18.65458(0.000)
CHSQ(472) = 3.044351(0.0025)

CHSQ[2) = 0.296043(0.8624)
CHSQ(100) = 90.26277(0.7469)
CHSQ(478) = 3.100357 (0.002)

F-version

F(2,473) = 0.295889 (0.744)
F(35,415) = 1.395153(0.0709)
F(1,474) = 0.086166 (0.7692)

F (2,480) = 0.572298 (0.5646)
F (1,485) = 89.54449 (0.000)
F (1,481) = 0.73076 (0.3931)
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F(2,477) = 0.145369 (0.8647)
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cc

524379
1436207
6
482056
0.7568
2.380
54,665

cD

27.489
88.870
0.630
16.408
1215
4.594
172.043





OPS/images/fenvs-09-764294/fenvs-09-764294-t002.jpg
Variables

NO,
NH,
SO,
co

LD

cC

Level
-5.794"
0.000)
-6.359"
0.000]
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t DM ha™" year™' % tTC ha™ year™!

AGB yield Syield  TCin  TCinS  TCin RIS  ANPP  SNPP  BNPP  AC, BC, TG,
AGB BGB

Reed canary grass scenario

0 cut 100 20 47 4 4“1 23 47 08 13 0.4 6.9 73
Tout 100 20 46 45 39 12 46 09 56 04 34 39
2 cuts 100 20 45 45 44 12 45 09 6.3 0.5 38 43
5 cuts 100 20 45 44 40 08 45 09 38 04 23 28
Scenarios

Bolinder 100 20 45 45 45 08 45 09 43 05 26 31

IPCC 100 20 45 45 45 28 45 09 15.1 0.5 92 96
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4
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38
40
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18
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49

SNPP

1.9
0.6
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Treatment

Festulolium

0 cut
1 cut
2 cuts
5 cuts

Reed canary grass

Ocut
1cut
2cuts
5 cuts

Tall fescue

Ocut
1cut
2 cuts
5 cuts

C/N AGB

38.8 (+4.3a
18.0 (+1.6)b
295 (+2.3)a
16.9 (+1.1)b

316 (+30)a
251 (+2.0/ab
218 (+2.1)ab
15.0 (+1.3p

38.0 (+4.6)a
20.1 (x2.1)b
249 (+3.8)ab
18.2 (+1.5b

C/NS

420 (£5.5)ab
30.3 (x2.9)b
52.5 (+5.7)a
32.6 (+4.6)o

386 (:5.4)ab
545 (+7.3a
43.4 (+5.1)ab
22.3 (2.3

429 (+7.6
36.1 (+6.2a
47.5 (x7.2)a
349 (#5.1)a

C/N AGB

393 (+4.4)a
19.4 (+1.6)
319 (+2.7)a
16.6 (1.2

321 (£3.1)a
27.4 (+23)a
23.8 (+23)ab
15.4 (+1.3b

39.0 (+5.2)a
222 (2.4
28.3 (+4.3)ab
19.0 (+1.6)b

C/N BGB

38.6 (+2.9)a
27.0 (+1.0)b
39.2 (+1.7)a
33.0 (x2.5)ab

38.0 (+2.4)a
34.8 (+2.4)
39.6 (+6.0)a
34.1 (20.7)2

39.6 (+4.9)a
309 (+3.0)a
41.0 (+3.9a
39.8 (+4.8)a

C/N Cum

38.9 (+3.5)a
222 (+1.3)b
34.6 (2.0
20.0 (+1.4p

357 (+2.6)a
30.7 (+2.4)ab
296 (+3.5)ab
19.7 (£1.5)b

39.4 (x4.6)a
25.8 (+2.7)ab
32.5 (+4.0)ab
239 (+2.0)b
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Treatment TC (tha™ year™) TN (g m™ year™) TC % TN %

AGB  BGB s Sum  AGB  BGB s Sum  AGB  BGB s AGB  BGB s
Festulolium
Ocut 6.4 10.7 19 189 16.1 27.2 45 47.8 45.6 37.6 446 12 1.0 1.1
(#13) (182 (03a (35a (25b (:34a (06 (66ab (:0.32a (+100b (:047a (:015d (:0.06b  (:0.16)
ab ab
1 cut 24 26 06 55 138 98 2.2 258 423 414 431 24 15 15
(04)c (07 (0N (+1.2b (28b (28b (:08) (65c (:066c (:097)a (:061) (024)c (:008)2 (019
be ab
2 cuts 82 80 17 179 276 208 83 51.1 443 423 439 32 1.4 09
(102 (132 (04a (262 (20 (80a (:05) (562 (:0.12b (:054)a (:0.14) (0.11b (0.05b (0.1}
ab ab
5 cuts 42 24 03 70 26.4 ¥a 1 34.6 43.6 385 426 39 12 1.4
(07) (04 (0b (+1.b (:B4a (08p (02c (+44bc (:030b (:092b (+1.08b (020 (:0.10) (021
b ab

Reed canary grass

0 cut 53 116 05 174 178 320 13 51.1 474 43 414 15 14 1.2
(072 (1.6 (0N (24a (t40a (:7.0a (02a (+11.2a (041  (:046) (+1.68b (t0.15)c (:008)a (:0.16)b
ab
1cut 3.4 37 06 73 131 109 13 253 46.1 392 446 19 1.4 09
(04 (:02b (:01) (207 (BM)a (+15b (:04a (50b (007D (+1.67b (016 (:019c (:0.04a (0150
ab
2 cuts 4.4 5.8 09 141 20.7 1741 22 40.1 45.4 435 45.4 31 12 7
(08 (12b (02a (22b (50a (:63b (08a (+121) (017 (:025a (:025a (:031b (:0.19a (:013b
ab ab
5 cuts 5.1 40 04 95 34.4 1.9 7 47.9 445 40.0 43.8 47 1.2 23
(07 (:04b (00b (+10b (72b (+13b (02a (872 (:033d (+1.10b (094 (:030a (005 (023
ab
Tal fescue
0 cut 5.1 96 14 16.1 13.6 246 34 41.6 45.4 384 441 13 1.0 1.2
(072 (+1.2a (03a (202 (15b (:20a (06 (4l (:010a (:060) (0482 (t0.16)c (:0.12a (:0.24)a
ab
1 eut 29 37 09 75 159 133 36 329 444 382 429 24 13 1.4
(:03b (:04) (:02) (:09b (:42) (:33b (+16a (:92a (015p (150 (:008b (:035b (:0.17}a (:0.31)a
ab ab ab
2 cuts 38 41 13 92 18.3 10.7 3.1 321 44.4 40.0 440 341 1.0 1.0
10 (07 (02a (1.9b (732 (21b (08a (+102a (:028b (1362 (0262 (029 (:0.10a (0.16)
ab
5 cuts 49 35 05 90 274 93 14 382 44 371 429 36 1.0 1.3

(#0.9)a (04 (x0.1b (x1.4b (¢65) (1.3 (*0.1b (¢7.0a (x0.19b (x0.67)b (x040b (x0.19)a (x0.11)a (x0.18)a
ab
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Treatments

N1

N2

N3
N4
N5
N6
N7
N8
N9
N10
N11
N12

Treatments details for maize/wheat

0/0kg N

80/50 kg N (33-33-33)

160/100 kg N (33-33-33)
240/150 kg N (33-33-33)
0/0kgN

80/50 kg N (33-33-33 LCC)
160/100 kg N (33-33-33 LCC)
240/150 kg N (33-33- 33LCC)
0/0kgN

80/50 kg N (50-0-50)

160/100 kg N (50-0-50)
240/150 kg N (50-0-50)

Application schedule for maize

S1(33/33/33 at basal, V4 and V10)

$2 (33/33/33 (LCC)at
basal, V4 and V10)
83 (60-0-50 at basal and V10)

Note: LCC-Leaf Color Chart and CRI-Crown Root Initiation and Pl-Panicle Initiation stage.

1 (33/33/33 at basal, Crown root iniiation)
Stage (CRY), Panicle

Initiation stage ()

S2 (33/33/33 LCC)

At basal, CRI and Pl stage)

S3(50-50 at basal and CR | stage)
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Maize Wheat

Dose of nitrogen co, CH, N0 Total emission co, CH, N.O Total emission

(kg ha™) kgha™)  (@ha™)  4gha) (kgton) (g CO,eqha) (kgCOzeqton) (@Ma™)  (KON)  4gpat) (kgton) (kg CO; eqha) (kg CO2 eqton™)
N1 (0/0 kg N} 3314 o 18 094 859.5 450.0 2923 [ 18 063 8204 287.5

N2 (80/50 kg N) 583.7 [ 28 028 14171 1439 456.0 0 ar 029 12437 1356

N3 (160/100 kg N} 8360 [ 43 027 21001 1325 6137 [ 35 028 1,650.2 1337
Ne(4O1S0kgN) 10883 0 65 ow 004 103 7653 o PR 19741 1480
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Study

Ball et al. (1999)

Chatskikh et al. (2008)

Dobbie et al. (1999)

Drewer et . (2012)

Hénault et al. (1998)

Jeufroy et al. (2013)

Kaiser et al. (1998)

Kavdr et al. (2008)

Keane et al. (2018)

Kem et al. (2012)

Li et al. (2016)

Merino et al. (2012)

Ruser et al. (2017)

Schwenke et al. (2015)

Thers et al. 2019; Thers et al. 2020
Vinzent et al. (2018)
Wagner-Riddle and Thurtell (1998)

Tillage

CT/NT
CT/RT/DD

DD
cT
CcT
DD
cT
CT/NT
cT
CcT

NT
eTe

cT

Winter barley straw was removed prior to ploughing.

Ci

Row spacing
(mm)

480-500
125

sanventional tage; AT = Reduced tilage; NT = No-tlage; DD = Direct driling.

Seed rate

Cultivar

Hyola555 TT
Standing

Visby

Hyola 50

DK Exclusiv
Xenon and Avartar

Chamber methodology

Inter-row spacing
Plant + Soil
Plant + Soil
Inter-row spacing
Inter-row spacing
Plant + Soil
Plant + Soil
Inter-row spacing
Plant + Soil
Inter-row spacing
Plant + Soil
Inter-row spacing
Inter-row spacing
Inter-row spacing
Inter-row spacing
Inter-row spacing
Inter-row spacing
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Depth (cm) SOM (%) SOC (%)° TN (%) Soil pH

Knockbeg-Hockey Field 0-30 4.80 2.40 0.167 7.21
30-60 312 1.66 0.067 7.94
60-90 258 1.29 0.041 8.13
Goresbridge 0-30 4.70 235 0.190 7.16
30-60 220 1.10 0.048 7.87
60-90 120 0.60 0.071 8.42
ISOC = (SOM x 0.5) (Pribyl, 2010).
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Tillage

Conventional tilage
Conventional tilage
Minimum tilage
Minimum tilage
Strip tilage

ANOVA

Nested
Tilage*Nested
RowNested
Tilage"Row'Nested

Different lowercase letters indicate significant variation between treatments.

Row spacing
(mm)

126
600
125
600
600

co,
(kg C ha™)

1,683 + 277
1,108 + 137
1,289 + 89
1,083 + 126
1218 + 116

NS
NS
NS
NS

N0
(kg N ha™)

145+ 048
1.00 £ 0.50
0.81 +0.16
1.13+0.18
2,05 +0.86

NS
NS
NS
NS

CH,
(kg C ha™)

-0.39 + 0.03a
-0.29 £ 0.04a
-0.24 + 0.06b
-0.21 + 0.03b
-0.27 £ 0.03ab

NS
p <005
NS
NS

Yield
(tDM ha™)

4.82 +0.15
5.00 + 0.06
5.14+0.13
5.00 + 0.10
4.98 £ 0.22

NS
NS
NS
NS

Yield-scaled GWP
(kg CO,-eq. kg™ seed)

0.11 +0.04
0.09 £ 0.05
0.06 +0.01
0.09 £ 0.01
0.16 £ 0.07

NS
NS
NS
NS
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Variety

Compass

Troy

ANOVA

Variety

Row

Seed

Variety'Row

RowSeed
Variety'Row"Seed

Row spacing
(mm)

125
125
750
750

125
125
750
750

Seed rate
(m?)

10
60
10
60

10
60
10
60

co,
(kg C ha™")

1,655 + 215b
1,110 + 33a
1,312 + 118b
1,166 + 180a

1,280 + 212b
1,189 + 113a
1,304 + 99
1,028 + 40a

NS
NS

p <005
NS
NS
NS

Different lowercase letters indicate significant variation between treatments.

N0
(kg N ha™)

1.38 +0.29
1.01 +0.10
1.34 £+ 0.36
1.14 +0.33

228 +0.70
112 +0.26
1.66 + 0.36
1.89 + 048

NS
NS
NS
NS
NS
NS

CH,
(kg C ha™)

-1.58 + 0.24
-1.81 + 0.46
-2.07 + 0.68
-3.15 +1.50

-1.20+ 022
-2.35 + 0.60
-1.61 £ 0.49
-1.65 + 0.65

NS
NS
NS
NS
NS
NS

Yield
(tDM ha™")

4.64 +0.07
459 +0.18
4.80 +0.22
458 +0.13

441 +0.14
437 +0.05
4.46 + 0.07
464 +0.15

NS
NS
NS
NS
NS
NS

Yield-scaled GWP
(kg CO,-eq. kg™ seed)

0.09 + 0.03a
0.06 + 0.01a
0.07 + 0.02a
0.03 + 0.02a

0.19 + 0.07b
0.05 + 0.03b
0.12+ 0.03b
0.13 + 0.04b

p <005
NS
NS
NS
NS
NS
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C(irrigation) (kgClha) =
(amount o irigation water applied (m’ Iha)] x [2.724/1000)

 Groung water depth ()] [100/pump eficiency ()]
x [100power lossin transmission (%)) *0.4062
I
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CO; - C{tillage) (kgctha)=duration of tractor operation (hour/ha)
diesel consumption rate (literfhour) x 0.728 (2)





OPS/images/fenvs-09-710108/math_3.gif
CO; - C(kgClha) = Herbicide(kg/ha) x 6.3 + Insecticide (kg/ha)
5.1+ fungicide (kg/ha) 3.9
(3)
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CO; - C(kg/ha) = Amount of N applied by urea(kg/ha) x 2.02
+Amount of N applied by DAP (kg/ha) x 1.84
+Amount of P;0s applied by SSP (kg/ha) x 0.06
+Amount of K,0 applied by MOP (kg/ha) x 0.25

(4)
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GHG (kg CO2 eq ha™)
pH
Org. C (gkg™)

Av. N (kg ha™")
Av.P (kg ha™")
AvK (kg ha™")

Yield (gha™)

0.832"
-0.192%
0052

-0.017"
-0.779™
-0.940%

GHG (kg CO, egha™)

-0.319"
0.025"

-0.064"
-0.610%
-0.749"

0.506"°

-0.417"
-0.129"
0.193"

Org. C (gkg™)

-0.551"
-0499™°
-0.002"

Av. N (kg ha™")

0.234"
-0.094"

Av. P (kg ha™)

0.739*

Av. K (kg ha™)
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GHG (kg CO2 eq ha™")
oH

Org. C (g kg™

Av. N (kg ha™")

Av. P (kg ha™")

Av. K (kg ha™")

Yield (q ha™)

0.889™
-0.860"
0.262%
0.271N
-0.739"
-0.649*

GHG (kg CO; eq ha™)

-0.868"
0.128"
0.197"
-0.730"
-0.770"

pH

-0.180%
-0.207"
0.710*
0.799™

Org.C (gkg™)

0.016"
-0.151N
0.038"

AVN (kg ha™)

-0.264"°
-0.395"

AV.P (kg ha™)

0.780*

AVK (kg ha™)
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Crop

Maize Grain yield

Maize Nrate

Wheat Grain yield

Wheat Nrate

Parameters

GHG emission
Available P
Available K
GHG emission
Grain Yield
GHG emission
Available P
Available K
GHG emission
Grain Yield

Regression equation R?

y = 104.79x + 505.71
y=-0611x + 115.73
y = -0.6536x + 154.82
y = 37.745x + 1054.1
y = 0.3032x + 12.072
y = 116.39x + 634.25
1.5956 + 178.3
1.0646x + 18534 0.4243"
2677x + 17425 0.9319”
.2512x + 11.809 0.9267"

y
y
y
y
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Nitrogen rate
(kg ha™)

N1(0 kg N)
N2(80/50 kg N)
N3(160/100 kg N)
N4 (240/150 kg N)
CD (0.05)
Nappiication Timing

1 (33/33/33)

2 (33/33/33LCC)

3 (50-0-50)

CD (0.05)

CVo%

Maize

Wheat

Grain yield (q ha™")

5.80
40.20
71.69
76.08
4.929

48.30
49.09
47.98
NS
10.35

Straw yield (q ha™)

13.37

58.26

87.39
100.30
8.154

63.10
67.16
64.37
NS
12.78

Harvest index (%)

31.90
40.68
45.20
43.09
6.57

40.48
39.47
40.72
NS
16.61

Grain yield (q ha™)

9.04
28.18
41.97
45.92

3.97

31.70
31.61
30.52
NS
1291

Straw yield (q ha™")

19.50
63.55
81.44
87.46

7.53

61.09
68.21
59.66
6.52
1214

Harvest index (%)

31.53
30.85
34.01
34.60
NS

33.60

31.45

33.19
NS
9.75
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Dose of nitrogen (kg ha™")

N1 (0/0 kg N)
N2 (80/50 kg N)

N3 (160/100 kg N)
N4 (240/150 kg N)

Fertilizer
production
(kg ha™)

1,392
1,669
1946
2223

Direct and indirect
N2 production
(kg ha™)

528
1,661
3914
8920

Pesticides production
(kg ha™")

21
-4 |
2
2

Fertilizer
production
(kg ha™)

1,253
1,426
1,599
1772

Direct and indirect
N2 production
(kg ha™)

850
1720
3083
5316

Pesticides
production
(kg ha™)

205
2056
20.5
205





