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Soilless crop production is a viable way to promote vertical agriculture in urban areas,
but it relies extensively on the use of mineral fertilizer. Thus, the benefits of fresher, local
food and avoiding the transportation and packaging associated with food import could
be counteracted by an increase in nutrient-rich wastewater, which could contribute to
freshwater and marine eutrophication. The present study aimed to explore the use of
mineral fertilizer substitutes in soilless agriculture. Phaseolus vulgaris (common bean)
was fertilized with a combination of slow-releasing fertilizer struvite (a source of N, P,
and Mg), which is a byproduct of wastewater treatment plants, and inoculation with
Rhizobium (a N2-fixing soil bacteria). The experiment included three bean-production
lines: (A) 2 g/plant of struvite and rhizobial inoculation; (B) 5 g/plant of struvite and
rhizobial inoculation, both irrigated with a Mg-, P-, and N-free nutrient solution; and
(C) a control treatment that consisted of irrigation with a full nutrient solution and no
inoculation. Plant growth, development, yields, and nutrient contents were determined
at 35, 62, and 84 days after transplanting as well as biological N2 fixation, which was
determined using the 15N natural abundance method. Treatments A and B resulted in
lower total yields per plant than the control C treatment (e.g., 59.35 ± 26.4 g plant−1

for A, 74.2 ± 23.0 g plant−1 for B, and 147.71 ± 45.3 g plant−1 for C). For A and
B, the nodulation and N2 fixation capacities appeared to increase with the amount of
initially available struvite, but, over time, deficient levels of Mg were reached as well
as nearly deficient levels of P, which could explain the lower yields. Nevertheless, we
conclude that the combination of struvite and N2-fixing bacteria covered the N needs of
plants throughout the growth cycle. However, further studies are needed to determine
the optimal struvite quantities for vertical agriculture systems that can meet the P and
Mg requirements throughout the lifetime of the plants.
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INTRODUCTION

From 1950 to 2018, the population living in urban areas grew
more than fourfold to an estimated 4.2 billion people. This
unprecedented population increase has greatly increased global
food demand, which has exerted great pressure on natural
resources (United Nations, 2019). In response, new ways to
efficiently produce vegetables while minimizing land use are
being explored (Sanyé-Mengual et al., 2015, 2018). One of these
initiatives is vertical farming with the use of soilless production
systems with growing media or substrates (Sonneveld and Voogt,
2009), which would reduce the transportation and packaging
of foodstuffs to cities (Sanyé et al., 2012). However, vertical
agriculture relies extensively on the use of mineral fertilizer,
which results in nitrates and phosphate being discharged into
wastewater, which can contribute to freshwater and marine
eutrophication (Anton et al., 2005; Gopalakrishnan et al., 2015;
Sanjuan-Delmás et al., 2018).

This extensive use of mineral fertilizers affects not only
the environment but can also be related to a high cost of
production and extraction, as is the case for nitrogen fertilizers
due to the Haber-Bosch process (Cherkasov et al., 2015) and
for phosphorous due to phosphate rock extraction (Cordell
and White, 2013). The widespread use of these nutrients has
caused vertical farming to rely entirely on them, which thus
makes this agricultural practice unsustainable in the long run.
The high energy cost of synthetic nitrogen production and
the ever-depleting sources of phosphate rock, when added to
the environmental cost of their disposal and emissions to
water and air (Rufí-Salís et al., 2020a,b), necessitates the search
for alternatives to further implement these technologies in a
sustainable way.

Many strategies have been described in recent years for the
implementation of organic fertilization in vertical farming, which
embraces a circular economy framework to reduce new resource
inputs into cities. Some examples include fertilization that is
based on gray water and urine (Ikeda and Tan, 1998; Karak
and Bhattacharyya, 2011) and the use of biofertilizers such as
Rhizobium for the cultivation of legumes (Kontopoulou et al.,
2015; Savvas et al., 2018) for the plant nitrogen supply. Other
methods describe the use of sewage sludge (Frossard et al.,
1996), sewage sludge ash (Nanzer et al., 2014), and struvite
(Rech et al., 2018) as alternative P sources. While these strategies
may reduce the direct inputs of specific inorganic fertilizers,
their use often results in lower crop yields and, in some cases,
require more infrastructure for irrigation systems. These studies
tend to focus on one particular nutrient alternative and do
not consider the combination of alternative methodologies.
Therefore, innovation to provide a solution for multiple mineral
fertilizers while avoiding the addition of infrastructure as well as
further environmental burdens due to local nutrient sourcing has
not been widely studied.

Struvite (MgNH4PO4.6H2O), which is a crystalline byproduct
of wastewater treatment plants that formes by spontaneous
or induced precipitation, usually contains high N and P
concentrations (Rahman et al., 2014) and is regarded as a
viable slow-releasing fertilizer due to its high P, Mg, and N

contents, which average 12.5%, 9.9%, and 5.7%, respectively
(Ahmed et al., 2018) and are suitable for plant growth (Degryse
et al., 2017; Ahmed et al., 2018). Due to struvite’s high nutrient
concentrations, there are many ongoing efforts to optimize
induced precipitation to make wastewater a valuable resource for
providing a P alternative to the use of the depleting phosphate
rock (Massey et al., 2007; Cordell et al., 2009; Talboys et al., 2016;
Degryse et al., 2017).

A further positive aspect of struvite as an agricultural fertilizer
substitute is its slow solubility in granular form (Talboys et al.,
2016) under alkaline and neutral pH soil conditions (Bhuiyan
et al., 2007). Thus, the risks of nutrient leaching and water
eutrophication are rather small under these conditions when
struvite is compared to common readily soluble fertilizers
(Ahmed et al., 2018). Furthermore, the removal of approximately
30–40% of N and P from wastewater to produce this substance
can prevent eutrophication in urban water cycles (González
Ponce et al., 2009; Antonini et al., 2012). The granular form
of struvite also causes it to be easily manageable and could be
applied in larger-scale productions by mixing it with soil or
applying it to the substrates in hydroponic production systems.
The use of struvite has already been tested in agriculture as
a substitute for phosphate from other sources and has shown
promising results with low or even no yield losses reported
(González Ponce et al., 2009; Cabeza et al., 2011; Liu et al., 2011;
Ackerman et al., 2013; Degryse et al., 2017; Ahmed et al., 2018).

Although struvite already contains N that is available to
plants, legumes have high N demands (McKey, 1994). Therefore,
the average N contents in struvite would not be sufficient for
soilless crops to achieve commercial yields and would require
a second source of N to do so. This N could be obtained
from Rhizobium, which is capable of forming an endosymbiotic
interaction with leguminous plants by entering root cells and
forming nodules. These nodules enable atmospheric N2 fixation
and ammonia (NH3) formation. Plants benefit from the bacteria
that generate these compounds, while the bacteria can profit
from photosynthesis-derived compounds (Long, 1989). This
symbiosis, on the other hand, may entail a major requirement
of nutrients from the plant, such as phosphorous, to satisfy
the needs of the bacteria and successful nodulation (Olivera
et al., 2004). Possible N2 fixation depends on successful
rhizobial root colonization, which is influenced by diverse
factors, such as phosphorous fertilization, salinity, drought, and
initial N availability (Araújo et al., 2007; Ntatsi et al., 2018;
Savvas et al., 2018).

Rhizobium as a second source of N was chosen due
to the lower inputs needed to achieve nitrogen intake by
plants (Gopalakrishnan et al., 2015). When using the N2-fixing
bacterium, Rhizobium, in hydroponic cultivation, Kontopoulou
et al. (2017) described the need to apply initial N fertilization
until nodulation in the root medium occurs, to further
encourage nodulation and therefore N fixation, plant growth, and
production. Even though previous studies have reported lower
production capacities for N2-fixing plants than for common
beans with N fertilization (Olivera et al., 2004; Kontopoulou
et al., 2017), a combination of the two N sources (e.g.,
struvite and N2-fixing bacteria) was used to determine the

Frontiers in Plant Science | www.frontiersin.org 2 May 2021 | Volume 12 | Article 6493046

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-649304 May 25, 2021 Time: 13:33 # 3

Arcas-Pilz et al. Alternative Fertigation Urban Vertical Agriculture

possibility of overcoming such lower yields (Pampana et al., 2017;
Savvas et al., 2018).

To determine how effective the two alternative fertilizers are
in providing N to plants, the 15N natural abundance method
was employed to determine the source of N throughout the
experiment (Shearer and Kohl, 1989). While plants with N
that is acquired from symbiotic atmospheric N2 fixation show
the lower richness of the 15N isotope, which corresponds to
the atmospheric abundance (0.3663%), plant tissues that are
subjected to other N sources can exhibit greater amounts of
the 15N isotope, which depend on the N fertilizer applied
(Robinson, 2001).

The present study aimed to add to this growing pool of
knowledge on vertical urban agriculture by exploring the use of
mineral fertilizer substitutes struvite and rhizobium combined
in an effort to reduce emissions of simultaneously N and P to
the environment in urban vertical agriculture. This combination
also aims to optimize crop yields while avoiding the installation
of additional infrastructure. In this study, we analyzed the
growth, development, and production of the common bean
(Phaseolus vulgaris), which was fertilized with a combination
of the slow-releasing fertilizer, struvite, and the soil bacteria,
Rhizobium. A combination of these alternative fertilizers can be
implemented easily in terms of cost and space and promotes
nutrient recycling within cities.

MATERIALS AND METHODS

Experimental Site, Materials, and Growth
Conditions
This experiment was conducted in the Rooftop Greenhouse
Laboratory (RTG-Lab) of the Environmental Science and
Technology Building (ICTA-UAB), which is located in the
Universitat Autònoma de Barcelona Campus (42◦29′24′′ E,
45◦94′36′′ N) (Sanjuan-Delmás et al., 2018). The bean variety
used in this experiment was Phaseolus v. Pongo, which had
previously been germinated in a commercial greenhouse 10 days
before transplanting in the RTG-Lab. The production system
was soilless with a perlite substrate in 40 L bags and the use of
fertigation through a 2 L/h drip irrigation system.

Bean seeds were treated with a commercial product (e.g.,
Nadicom GmbH©) which contained a mixture of Rhizobium
phaseoli and Rhizobium giardinii strains for inoculation before
planting. The inoculation procedure was an exposure of the
plant seeds with the liquid commercial product before planting.
A total of 5 days after the seedling was transplanted into
the perlite substrate, 5 ml liquid commercial mix was added
to each plant, therefore ensuring the presence of the bacteria
in the substrate. Once the plants were inoculated, they were
irrigated with an Mg-, P-, and N-free solution (Supplementary
Table 1b), and application of K2SO4 was increased to adjust
for the K requirements. The control plants, on the other
hand, were irrigated with a full nutrient solution. These
nutrient concentrations were maintained throughout the entire
experiment. The crops were irrigated four times a day for 3 min,
which provided a total amount of 400 ml per day per plant.

The inoculated plants were treated with two different struvite
amounts placed inside the perlite bag around the root area and
surface, varying the concentration of P and N available to the
plant from struvite: (A) 2 g (1.02 mmol of P and 0.46 mmol of
N) of granulated struvite per plant and (B) 5 g (2.57 mmol of P
and 1.15 mmol of N) of granulated struvite per plant. The amount
of struvite that was best for growth was determined in a previous
experiment conducted in the same i-RTG in which 2.57 mmol
P was deemed sufficient for common bean fertilization to reach
an equivalent level of commercial production as that of mineral-
fertilized beans. To ensure no struvite loss due to runoff, each
plant was planted inside an additional 1 L bag containing perlite
and the corresponding amount of struvite, with small holes to
allow water drainage.

Each treatment was arranged randomly in four rows with 16
plants each (four perlite bags with 4 plants per bag were planted
in a frame with an area of 0.125 m2), which resulted in a total of
64 plants per treatment (e.g., A, B, and Control), with 192 plants
in total (Supplementary Figure 1b). Due to the irrigation and
leachate recovery systems, randomization could only be achieved
for entire lines of four bags.

The plants were germinated and transplanted in duplicate and
were thinned to one plant at 21 days after transplanting (DAT).

Greenhouse conditions were monitored during the entire
experiment with T107 sensing devices (Campbell Scientific) that
were placed along the cropping area to measure temperature,
relative humidity, and radiation (see Supplementary Table 2b).
To ensure proper plant irrigation drainage volumes, the pH and
electrical conductivity levels of the leachate were recorded every
day for each irrigation line.

The phenological stages of the bean plants were determined
each week. This information was assessed to identify plant
growth, development, and productivity over time and provided
a clear view of the plant cycle, growth, and production peaks
that enabled accurate comparisons of plant development between
treatments and the control. This was performed by counting
leaves, flower buttons, and open flowers. The number of ripened
bean pods was also counted and weighed for each harvest.
These measurements were performed for each of the eight
plants that were in the two middle bags of each row (see
Supplementary Figure 1b) and started 14 DAT. To ensure
uniform counting, leaves under 5 cm length were not considered,
and only fully formed flower buttons with white coloration and
fully open flowers were counted. For the bean pods, a minimum
length of 11 cm was used for harvesting, while bean pods shorter
than this were retained for the next harvest. The average numbers
and bean pod weights per treatment were then calculated for
each week. At the same time and on a weekly basis, chlorophyll
content measurements were performed (with a SPAD CCM-200
plus; Opti-Sciences, Inc.) on the same eight plants in the center of
each row.

Description of Plant Sampling Methods
To determine the changes in plant development as well as
nutritional states and 15N concentrations, samples were taken
during the three different crop stages. The first sampling took
place 35 DAT, immediately before bean pod production started;
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the second sampling took place 62 DAT, during the productive
phase of the plants; and the last sampling took place 84 DAT,
at the end of the productive stage, which marked the last day
of the experiment.

The samples consisted of eight randomly chosen plants per
treatment (excluding the eight central plants of each row that
were kept for phenological analysis). Each plant was washed
with deionized water, excess water was dried off and each
plant was separated into the four main organs: leaves, shoots,
roots, and nodules. These were then weighed separately to
determine their fresh weights (FW). All organs were placed
separately in envelopes and left to dry in an oven at 65◦C until
stabilized dry weights (DW) were obtained, which occurred after
approximately 7–8 days. The means of the obtained values were
calculated for each treatment, each organ, and time. The numbers
of nodules were counted prior to drying to determine the mean
nodulation of each plant. In addition, fruit samples from each
treatment were taken at three different times (49, 62, and 77
DAT), which closely matched the three plant harvests.

Moreover, 25% of the total sampled leaves for each plant were
separated to determine their areas before the drying process.
To do so, these fresh leaves were scanned with a reference
pixel to obtain leaf areas using ImageJ software (Rueden et al.,
2017). These leaf areas were further extrapolated to 100% of the
leaf biomass of the plant. The leaf area index (LAI) was then
calculated by dividing the total leaf area by the area of the planting
frame of our crop (0.125m2).

Nitrogen Isotopic (δ15N) Analysis
The goal of inoculating treatments A and B with Rhizobium
was for the plants to indirectly fix N2 from the air and meet
their N needs in this way. To determine how much of the N
assimilated by the plants came from the atmosphere, we used
the natural abundance method (Shearer and Kohl, 1989) to
identify the origin of the N that was obtained by the plants,
which in our case, should be either struvite or atmospheric
N. While treatments A and B were actively inoculated with
Rhizobium strains and fertilized with struvite containing N, the
control treatment was fertilized through standard N fertilization
that was administered through irrigation. Additional nitrogen
sources were not considered due to the laboratory conditions and
production of inert perlite.

Analysis was performed with an elemental analyzer isotopic
ratio mass spectrometer (EA-IRMS; Thermo Fisher Scientific).
The devices used were a Flash EA 1112 analyzer and Delta
V Advantage spectrometer that was coupled with a Conflo III
interface. The plant and struvite samples were weighed in tin
capsules and were introduced into the EA-IRMS system to obtain
the δ15N values, as calculated with the following equation (Eq. 1)
(Robinson, 2001):

δ15N =
Sample atom %15N − 0.3663

0.3663
× 1000

Equation 1: δ15N is the natural tracer for our N sources, the
sample atom %15N is the previously obtained value of our plant
sample, and the value 0.3663 is a standard value that represents the
percentage of 15N in the atmosphere.

δ15N values provide an indication of the N sources in plant
tissues. Values close to 0 indicate that the plant N sources are
mainly due to atmospheric N2 fixation, while higher values can
be interpreted as indicating mixed sources or those dominated
by the N obtained from struvite. The δ15N value obtained for
the struvite used in the experiment was 7.1h. To determine
the relative contributions from the two sources considered, we
used Eq. 2, which yields an estimate of the percentage of N that
was derived from N2- fixation (%Ndfa) (Shearer and Kohl, 1993;
Unkovich et al., 2002; Arndt et al., 2004)

%Ndfa =
δ15N Source 2− δ15N Sink
δ15N Source 2−′ B′value

× 100

Equation 2: %Ndfa (nitrogen derived from N2 fixation from the
atmosphere), δ15N Source 2 (h) corresponds to the δ15N value of
struvite, δ15N Sink (h) corresponds to the δ15N value from the
sample, and the “B” value corresponds to the δ15N of N2 fixation
taking into account possible fractionation.

The “B” value is the isotopic fractionation observed in N2-
fixing P. vulgaris was set to –1.16h, which corresponded to the
lowest δ15N value obtained (Shearer and Kohl, 1989; Peoples
et al., 2002; Kermah et al., 2018) and was similar to the values
determined by Kontopoulou et al. (2017) in common bean that
was fertilized without N and inoculated with Rhizobium.

The biologically fixed nitrogen (BNF) levels were further
calculated with the obtained %Ndfa values as well as the obtained
values for the nitrogen contents in the plants. To extrapolate to
kg/ha, a theoretical plant density of eight plants/m2 was used.

Finally, the nitrogen use efficiency (NUE) for all treatments
was estimated. The methodology that was followed to perform
these calculations was given by Weih (2014), who provided a
tool to successfully calculate the NUE. To accomplish this, the
information provided was as follows:

– N content at the initial stage of the plant in g/m2 (previous
to the main production stage at 35 DAT),

– N content at the main productive stage in g/m2 (chosen at
84 DAT),

– N content in the harvested yield in g/m2,
– Biomass yield g/m2,
– Added N to the soil in g/m2 (in this case, perlite).

Plant Nutritional Analysis
Dried and ground plant organs were weighed (up to 0.25 g) and
digested using a single reaction chamber microwave (Milestone
Ultrawave) with concentrated HNO3. The digested samples were
then diluted with 1% HNO3 (v/v) and were analyzed by optical
spectrometry (ICP-OES) (Perkin-Elmer, Optima 4300DV). All
samples were weighed, digested, and analyzed in duplicate.

Statistical Analysis
All statistical analyses in this experiment were performed with
R studio software. Data normality in our values was tested
with Shapiro-Wilk test p > 0.05, and to ensure homogeneity
of variance the Levene test was performed p > 0.05. When
both criteria were validated Duncan’s multiple range test was
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used to assess the statistical significance of treatments. The
Kruskal-Wallis test was used for no parametric data. The
significance between the treatments was tested for each harvest
time separately.

RESULTS

Phenology, Biomass, and Yield
Weekly recordings of the phenological growth of the bean
plants exhibited differences among all treatments (Figure 1).
In this figure, we can see the evolution throughout the crop
development of biomass production as well as flower production
and finally bean pod production. The control plants (Treatment
C) showed greater biomass growth and faster development in
their transitions from flower buttons to open flowers and bean
pod production. Although the treatment performances were
similar in the earlier growth stages, once the production stage
started, greater differences were observed.

At 40 DAT and 50 DAT, treatments A and B began to perform
worse for leaf production as well as for the formation and
opening of flower buttons than the control plants (C). Between
60 DAT and 70 DAT, a second production peak can be seen
for the control treatment as well as rapid generation of flower
buttons, while treatments A and B showed a declining pattern for
bean pod production.

Table 1 shows the changes in the plant measurement results
that were conducted on the sampled plants at three different
developmental stages. While the first period of plant sampling,
35 DAT, showed very few significant differences among the
treatments (only in the case of dry weight), the later samplings at
62 and 84 DAT showed greater differences between treatments.
At this point, the leaf and shoot dry weights were greater for
the control treatment, as was the measured leaf area index. The
only parameter without significant differences among treatments
throughout the entire experiment was the root dry weight at
62 DAT. The dry weights of the nodules exhibited persistent,
significant differences for the three samplings among treatments
A and B and control treatment C and reached maximum values of
0.16 g, 0.12 g, and 0.05 g for treatments A, B, and C, respectively.
On the other hand, treatment B (with higher struvite quantities)
also exhibited significantly greater numbers of nodules as well
as higher weights than the other two treatments during the
third sample period.

When examining the SPAD measurements (Supplementary
Figure 2b), some differences in chlorophyll content were
observed throughout the experiment. Initially, we can see a
significant difference between the A and B treatments and the
control marking a greater chlorophyll content in the latter
that is sustained until 35 DAT. From 42 DAT to 63 DAT,
the chlorophyll content in treatments A and B increases while
treatment C remains stable. While differences toward the end
of the experiment remain small, we can appreciate a greater
chlorophyll content in the struvite fertilized treatments.

The final production amounts that were obtained for all three
treatments were 1899.2 g, 2375.6 g, and 4726.7 g of green bean
pods for treatments A, B, and C, respectively. Although the plants

treated with struvite and rhizobium produced approximately half
the yield of the mineral-fertilized plants, it is important to note
that they were healthy throughout the experiment. The average
yields provided per plant were 59.35 ± 26.4 ga plant−1 for A,
74.24 ± 23.0 ga plant−1 for B, and 147.71 ± 45.3 gb plant−1

for the control treatment C. These production differences can
also be seen in Figure 1 where the obtained yields are shown
as a function of time and show greater production peaks and a
more rapid ability to develop flower buttons and open flowers
after each harvest.

δ15N, %Ndfa and Biologically Fixed N
The results obtained for the δ15N values of plant tissues
and bean pods as seen in Figure 2 (and Supplementary
Figure 3b) show great variability in the enrichment of all
organs except for the nodules. While treatment C showed
clear enrichment over time, the pattern for treatments A and
B was the opposite. For the nodules, all three treatments
exhibited clear enrichment over time. Treatment B exhibited
intermediate δ15N values that were between those of A and
C, with decreasing δ15N values that were not as abrupt when
compared to the tissues that were exposed to treatment A.
It was also interesting to observe that the major decrease in
δ15N values for treatment A occurred between days 35 and
62 after transplanting and remained rather constant at 84
DAT. For the plants in treatment B, the value at 62 DAT
did not fall as drastically and experienced a more significant
change at 84 DAT.

When calculating the percentage of fixed atmospheric N
during our three sampling periods, we obtained the values shown
in Figure 3. This figure shows the approximate percentages of N
that were derived from atmospheric fixation relative to the total
N obtained by the plants.

As shown in the figure, the percentages of fixed N2 in all
three tissues were higher for the plants in treatment A, with
values of 65-80% at 35 DAT, which reached 90% by the end
of the experiment (84 DAT). On the other hand, treatment B
exhibited lower values throughout the experiment, with initial
values close to 50% to 60% (35 DAT), which reached final values
of 80% at 84 DAT.

While the plants with less struvite in the root medium
(treatment A) increased their percentages of fixed N2 more
rapidly (from 70% (35 DAT) to 90% (62 DAT) in the leaves), the
plants in treatment B took longer to reach this value (from 60%
(35 DAT) to 71% (62 DAT) in leaves). This corresponds to the
results for the δ15N values shown in Figure 2.

Table 2 shows the results of the estimations of biological
fixed nitrogen (BNF) contents expressed in kg/ha. These
results show the extrapolations of total N found in the plants
for each treatment to kg/ha values. The N percentages that
were of atmospheric origin (obtained previously) were further
used to attain the kg/ha of biologically fixed nitrogen for
each treatment as well as the N from struvite that was
used by the plants.

Here, we can see that as the percentages of atmospheric-
derived N and total N that were found in the plants increased, as
well as the kg/ha values of biologically fixed N. While the plants in
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FIGURE 1 | Graphic representation of the mean numerical count per plant for each organ (Leaves, flower buttons, open flowers) and yield in g/plant on a weekly
basis, DAT representing the days after transplanting inside the iRTG. The colors represent the three treatments: A = N.free solution with Rhizobium inoculation and
2g of struvite per plant. B = N.free solution with Rhizobium inoculation and 5g of struvite per plant. C = Complete nutrient solution without struvite and no inoculation
treatment.

TABLE 1 | Results for the mean values (n = 8) per plant of fresh weight (FW) and dry weight (DW) of the different organs as well as the Leaf Area Index (LAI) m2 plant−1 of
the three treatments (A = 2g Struvite + Rhizobium; B = 5g Struvite + Rhizobium; C = Control) in three different time periods: 35 DAT (1), 62 DAT (2), and 84 DAT (3).

Leaf DW (g) per plant Shoot DW (g) per plant Roots DW (g) per plant Nodules n per plant Nodules DW per plant (g) LAI

(1)

A 1.12a
± 0.22 0.46a

± 0.08 0.44a
± 0.10 132.50a

± 80.35 0.16b
± 0.07 0.57a

± 0.12

B 1.31a
± 0.46 0.56a

± 0.19 0.51a
± 0.15 156.75a

± 60.82 0.12b
± 0.06 0.62a

± 0.23

C 1.33a
± 0.57 0.58a

± 0.18 0.53a
± 0.14 148.75a

± 48.23 0.05a
± 0.02 0.65a

± 0.27

(2)

A 3.97a
± 1.25 2.02a

± 0.72 0.80a
± 0.28 127.88a

± 63.85 0.14b
± 0.09 1.28a

± 0.51

B 3.69a
± 1.53 2.24a

± 1.01 0.87a
± 0.34 172.25a

± 132.66 0.15b
± 0.14 1.29a

± 0.64

C 6.44b
± 3.09 3.85b

± 1.95 0.95a
± 0.44 82.25a

± 62.47 0.01a
± 0.01 2.64b

± 1.33

(3)

A 5.86a
± 2.96 3.09a

± 1.45 1.77a
± 0.79 136.88b

± 106.31 0.15b
± 0.13 1.74a

± 0.92

B 7.40a
± 2.17 4.53a

± 1.48 2.49a
± 0.57 186.25c

± 48.79 0.24b
± 0.11 1.80a

± 0.67

C 11.11b
± 1.51 6.91b

± 1.42 3.35b
± 0.88 39.13a

± 24.76 0.02a
± 0.02 3.72b

± 0.87

Significant differences (p < 0.05) between treatments marked with different letter (a,b,c).

treatment A had higher values of biologically fixed N during the
first two sampling periods at 84 DAT, the increase in the fixation
percentage and total N in the plants in treatment B increased
their amounts of biologically fixed N. On the other hand, the use
of N from struvite increased only for treatment B and remained
constant for treatment A.

Nutrient Content
The nutrient contents in the aboveground plant organs are
presented in Figure 4 (Supplementary Figure 5b for differences
between harvests). The observed concentrations of nutrients in
leaves for the three treatments were at sufficient levels except
for the less than optimal Mg2+ concentrations at 62 DAT for
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FIGURE 2 | Boxplot representing the obtained δ15N values (n = 4) for treatments: A = 2g of struvite + Rhizobium inoculation + P, Mg, N-free nutrient solution, B = 5g
of struvite + Rhizobium inoculation + P, Mg, N-free nutrient solution and C = standard nutrient solution - Rhizobium inoculation. These observed values are given by
plant organs in three different time periods: 35 days after transplanting, 62 days after transplanting, and 84 days after transplanting. Significant differences (p < 0.05)
between dates marked with different letter (a,b,c).

treatments A and at 84 DAT for treatments A and B and were
close to deficient levels P in both treatments A and B at 62 and
84 DAT according to Hochmuth et al. (2018). In the case of N,
in both leaf and shoot tissues, no deficient levels were found for
any of the treatments, and no significant differences were found
among treatments. On the other hand, a clear decline in P and
Mg2+ over time can be seen for treatments A and B in the leaves
as well as for P in the shoots. The control treatment (C), on the
other hand, remained stable.

Supplementary Figure 4b also indicates the total nutrient
contents that are bound to the total biomass of the sampled
plants. Here, it is apparent that treatment B, with more struvite,
provided results that were between those of the other treatments.
In the case of Mg at 35 DAT in leaves, treatment B showed
levels as high as those for the control treatment, but while the
latter remained constant over time, both A and B decreased.
The same trend can be seen for P in both leaves and shoots.
In the case of N, we can see an increase for all treatments
that was faster for control C, while A and B increased in a
similar fashion.

Finally, the NUEs obtained for all three treatments were
1.32 g/g, 0.55 g/g, and 0.29 g/g for A, B, and C, respectively. The
calculation methodology considered that N was in the soil, while
the fixed nitrogen was not considered; therefore, the use efficiency
can be very different for all three treatments.

DISCUSSION

Plant Growth and Development
The results indicate that once the first production peak was
reached, the control plants were more capable of continuing
to produce flower buttons, while the inoculated and struvite-
fertilized plants took longer. The relationship between their
development and the amount of struvite given to the plants
seems to be directly correlated. Generally, the biomass and
bean pod production was higher in the control plants, while
treatment B had a greater amount of struvite (5 g). Treatment
A, with the lowest amount of struvite (2 g), was determined to
be the treatment with the lowest growth and production rates.
These findings agree with those presented in previous literature
(Nanjareddy et al., 2014), for which lower KNO3 availability was
directly linked to a reduction in leaf and flower formation. This
reduction also seemed to be related to the P and Mg availability
over time due to struvite depletion, considering that the initial
performance was similar in all three treatments.

By observing the SPAD measurements, the chlorophyll
contents in all three treatments indicated that the N contents
in the leaves were not strongly affected by the treatments but
rather the LAI. Lower P availability resulted in a reduction in
LAI as well as in overall plant growth, which was observed in

Frontiers in Plant Science | www.frontiersin.org 7 May 2021 | Volume 12 | Article 64930411

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-649304 May 25, 2021 Time: 13:33 # 8

Arcas-Pilz et al. Alternative Fertigation Urban Vertical Agriculture

FIGURE 3 | Percentage of Nitrogen derived from atmospheric N2 fixation (%Ndfa) represented for treatments: A = 2g of struvite + Rhizobium inoculation + P, Mg,
N-free nutrient solution, and B = 5g of struvite + Rhizobium inoculation + P, Mg, N-free nutrient solution. These observed values are given for two plant organs (leaf;
shoot) as well as the bean pods in three different time periods: 35 days after transplanting, 62 days after transplanting, and 84 days after transplanting.

treatments A and B. These differences were not as great as those
for root weights (compared to the other plant organs), which have
been reported in the previous literature to be less affected by P
reductions (Chaudhary and Fujita, 1998; Rao et al., 2008).

The lower nodule dry weights in the control treatment,
compared to treatments A and B, have previously been
reported in other studies, in which the nodule fresh and dry
weights were found to be considerably reduced when inorganic
NO3

− fertilization was not restricted (Nanjareddy et al., 2014;
Kontopoulou et al., 2017). On the other hand, other authors
report that the nodule number was not affected when exposing
the crop to mineral and organic N sources but rather affected in
size and weight (Pampana et al., 2017).

The increasing nodule numbers and weights throughout
the experiment for the B treatment (with greater struvite),
when compared to treatment A, confirm Kontopoulou et al.
(2017). findings that low initial N fertilization can restrict
successful colonization. These differences, however, could also
be due to the lower P amounts in treatment A compared to
treatment B since P is a limiting factor for successful nodulation
(Olivera et al., 2004).

The lower bean productivities were similar to those in the
study reported by Olivera et al. (2004), where bean production
with lower P fertilization and Rhizobia inoculation turned out

to be insufficient to reach production levels as high as those
of conventionally fertilized beans. However, struvite fertilization
seemed to increase the production of inoculated plants by up to
25% when treatments with 2 g and 5 g per plant were compared

TABLE 2 | Results for percentage of Nitrogen derived from atmospheric N2

fixation (%Ndfa) in plant, Total amount of N in plant expressed in kg/ha
(Leaves+Shoot+Root+Beans) and Biologically fixed N expressed in kg/ha.

Date Treatment % Ndfa
plant−1

Total N in
plant kg/ha

Kg/ha
biologically

fixed N

Kg/ha N
from

struvite

35 DAT A 68% 7.5 ± 1.0a 5.4 ± 1.0a 2.2

B 60% 8.6 ± 2.2a 5.3 ± 1.4a 3.3

62 DAT A 89% 24.7 ± 5.0a 22.9 ± 4.0b 1.8

B 73% 24.6 ± 6.2a 18.7 ± 5.1a 5.9

84 DAT A 90% 27.3 ± 12.8a 25.4 ± 13.0a 1.9

B 82% 35.0 ± 9.2a 29.2 ± 7.8a 5.8

Results given for three treatments (n = 8 each) (A) 2g of struvite + Rhizobium
inoculation + P, Mg, N-free nutrient solution (B) 5g of struvite + Rhizobium
inoculation + P, Mg, N-free nutrient solution at three different time periods.
35 days after transplanting, 62 days after transplanting and 84 days after
transplanting. Significant differences (p < 0.05) between treatments marked with
different letter (a,b,c).
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FIGURE 4 | Nutrient concentration in Phaseolus vulgaris leaves and shoots, expressed in mg/g. Boxplot (n = 4) results given for three treatments: A = 2g of struvite
+ Rhizobium inoculation + P, Mg, N-free nutrient solution, B = 5g of struvite + Rhizobium inoculation + P, Mg, N-free nutrient solution and, C = standard nutrient
solution - Rhizobium inoculation at three different time periods: 35 days after transplanting, 62 days after transplanting, and 84 days after transplanting. Significant
differences (p < 0.05) between treatments marked with different letter (a,b,c).

(59.35± 26.4 g plant−1 in treatment A and 74.23± 23.0 g plant−1

in treatment B).
The effect of the struvite treatment on the increasing nodule

number and dry weight indicates successful nodulation and a
greater fixation capacity with the given N. The slow release of
N has presented itself as sufficient to increase the nodulation
capacity as well as production capacity, without inhibiting N2

fixation by the bacteria.

The Effect on Atmospheric N Fixation
Capacity
The aboveground organs showed a clear pattern throughout the
three measurements in terms of N assimilation. 15N enrichment
levels in the A and B treatments were lower than that in
the C treatment, which means that treatments A and B
obtained most of their N from the atmosphere. This difference
became even greater as time progressed and reflected a greater
dependence on N2 fixation in the A and B treatments. The
differences between these two treatments (A and B) themselves
can be due to the greater availability of struvite in the root
medium and therefore a greater availability of initial N and

P for treatment B than for treatment A (Olivera et al., 2004;
Kontopoulou et al., 2017).

The δ15N reductions in treatments A and B over time
corresponded to the availability of N provided by the struvite,
assuming that it decreased over time. These reductions can be
seen when the NO3

− concentrations in the drained water were
examined (see Supplementary Table 3b). While initially greater
amounts of N were detected in the leached water, by the end of
the experiment, very low concentrations were seen. Therefore,
while the δ15N values for the control treatment C remained
constant over time (except in the nodules), the δ15N values for
treatments A and B decreased progressively over time, which
corresponded to the available N that was provided by struvite in
the root medium.

This information indicates that a change in the source of
N for the plants took place during the time span of 35 to
62 DAT. We can therefore assume that the availability of
struvite and therefore N in the root medium was depleted
mainly during that time, which forced the plants to rely on
atmospheric N2 fixation. The results obtained for %Ndfa also
confirm that the levels of N2 fixation increased over time in
both treatments.
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The indicated timespan of 35 to 63 DAT corresponds to the
initial pod production of the plant, maximizing its nutritional
needs. Therefore, an N and P source capable to uphold these
needs during this stage must be contemplated. As seen in
Supplementary Table 3b a major reduction of NO3

− in the
leachate water is found between day 35 and 49 for treatments A
and B, indicating that the administered struvite was insufficient
to further support a greater production.

The nodules appeared to be highly enriched with 15N during
all three harvests, especially for treatments A and B. These results
agree with previous literature that attributes this enrichment to
the export of 15N-depleted ureides and import of 15N-enriched
amino acids. Nevertheless, these values do not have a great effect
on the total plant enrichment if the nodule biomass is considered
(Shearer and Kohl, 1986; Unkovich, 2013; Craine et al., 2015).

The quantity of fixed nitrogen did not reach 40-50 kg/ha,
which corresponds to low ranges, as reported in previous research
(Farid and Navabi, 2015). While treatment A, with less struvite,
had higher BNF values at the first two sampling times, treatment
B’s BNF value had increased by the end of the experiment.
These findings are in agreement with those mentioned in the
literature, where BNF was found to be restricted in the presence
of plant-available NO3

−, and the BNF values increased during
the mature stages of the plant with sufficient NO3

− fertilization
during early plant growth (Müller et al., 1993; Hungria et al.,
2006; Kontopoulou et al., 2017).

Plant Health and Nitrogen Assimilation
We conclude that all treatments had sufficient N since there
were minimal differences in N concentrations in the shoots and
leaves during plant growth and at the end of the experiment, as
was also found by Kontopoulou et al. (2015). We consider that
the lower yields were caused by the reduced uptake of K+ and
Mg2+ cations, which was cased by the electrochemical imbalance
generated by the reduced presence of NO3

− in the root medium.
This idea is reinforced by the results shown in Supplementary
Figure 4b, where N gradually increased in all three treatments
throughout the experiment, which indicated that fixation was
taking place for treatments A and B. The values increased from
less than 0.1 g N at 35 DAT up to 0.2 g at 84 DAT for both the A
and B treatments.

The slight increase in K by the end of the experiment in the
plants with less struvite (treatment A) was most likely due to
the lower availability of the Mg2+ cation, which facilitated cation
uptake (Marschner, 2002).

The declining N concentrations in the leachates led us to
believe that the decreases in P and Mg concentrations in the
aboveground organs could also be related to the depletion
of struvite in the medium. This depletion occurred faster in
treatment A than in treatment B, which was related to the initial
amounts of struvite provided in each treatment (2 g and 5 g,
respectively). It was seen that for the inoculated plants, greater
amounts of P were needed to support symbiosis and nodulation,
as has also been observed by other researchers (Olivera et al.,
2004; Ntatsi et al., 2018; Savvas et al., 2018). Whether the
additional required P can be assimilated by adding more struvite
to the substrate is worth pursuing in future studies.

These findings lead to the concept that a lack of N is not the
limiting factor that is entirely responsible for the lower yields
of the A and B treatments, but the limiting factor is instead the
progressive loss of P and Mg in the root medium as well as the
reduced cation uptake. When examining the NUEs that were
obtained for all treatments, it is evident that plants with lower
N inputs have greater use efficiency. This difference is very clear
in treatment A with a three-times higher efficiency compared
to treatment B. These differences can also be influenced by
atmospheric N fixation, which was not provided as “Soil” N
in the calculation tool (Weih, 2014). A higher fixation capacity
can therefore generate a higher NUE, which corresponds to
our BNF results.

For production on larger-scale vertical farms, fertilization
with struvite and Rhizobium seems possible, especially with
greater struvite quantities, as in treatment B, which shows great
compatibility with soil bacteria and produces larger yields than
those crops fertilized with only 2 g of struvite. The initial
fixation capacity of the control treatment and appearance of
nodules during the first sampling stage indicate that nodulation
could occur even with naturally occurring Rhizobium, which
could simplify the fertilization process in soil-based agriculture.
A limitation for larger-scale production could be providing
precise applications of struvite in the root areas. As seen in
this study, there were large production differences between the
applications of 2 g and 5 g of struvite, and large-scale production
in a vertical farm would mean precise weighting of the struvite
amounts per plant and direct applications to each rhizosphere
of each plant. As stated by Degryse et al. (2017), the location of
this slow-releasing fertilizer can have a great impact on successful
nutrient delivery to plants. These could thus be highly time- and
resource-consuming applications.

CONCLUSION

This work aimed to study the feasibility of using struvite and
inoculation with Rhizobium bacteria as alternative Mg, N, and
P fertilization methods for vertical agriculture systems. For
this purpose, we quantified the nitrogen sources, production,
and evolution of the phenological stages of Phaseolus vulgaris
with Rhizobium inoculation and different quantities of struvite
and compared the results to a control treatment. Three main
conclusions can be drawn from this study.

First, both alternative fertilizer treatments supplied the
necessary nutrients to fulfill the plant cycle in soilless growing
media. The lower yields compared to the control suggest the
necessity for evaluating higher struvite quantities to fulfill
plant requirements to achieve higher yields. Since previous
experiments conducted with struvite suggested successful
performance with 5 g/plant, its combination with the soil
bacteria, Rhizobium, causes this quantity to be insufficient due
to the additional nutritional requirements of the bacteria. This
can be seen by the great reduction in yields of treatments A and
B in comparison to the control.

Second, while nodulation seemed to not be hindered by
nitrogen input through struvite in the root medium, it did not
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significantly improve it either, although BNF appeared to increase
in the later stages for plants grown under the treatment with a
greater initial quantity of struvite.

Third, the limiting factor for struvite-fertilized and rhizobia-
inoculated treatments did not seem to be nitrogen, which was
maintained at sufficient concentrations in the plants throughout
the experiment, but rather was potassium, due to the lower
uptake capacity that was caused by an electrochemical imbalance
that was generated by the reduced presence of NO3

− in the root
medium as well as by magnesium and phosphorus, given that
struvite depletion was reflected by the reduced plant nutrient
concentrations over time.

An increase in the amount of applied struvite might be
a solution for a more sustained phosphorus and magnesium
supply for vertical agriculture but could also interfere with the
nodulation capacity of the plants. Furthermore, we encourage
the addition of nutrients in the form of anions to ensure the
electrochemical balance in the root area in case NO3

− is removed.
In this sense, further studies should aim to determine the
optimal struvite quantities for hydroponic bean production in
combination with Rhizobium inoculation.
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Distribution on the Net
Photosynthetic Rate of Cucumber
Leaves
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The effects of photosynthetic photon flux density (PPFD) fluctuations in sunlight have
already been investigated; however, the spectral photon flux density distribution (SPD)
has hardly been considered. Here, sunlight SPD fluctuations recorded for 200 min in
October in Tokyo, Japan were artificially reproduced using an LED-artificial sunlight
source system. The net photosynthetic rate (Pn) of cucumber leaves under reproduced
sunlight was measured and compared with the Pn estimated from a steady-state PPFD–
Pn curve for the same leaves. The measured and estimated Pn agreed except when the
PPFD was low, where the measured Pn was lower than the estimated Pn. The ratio
of measured Pn to estimated Pn was 0.94–0.95 for PPFD ranges of 300–700 µmol
m−2 s−1, while the value was 0.98–0.99 for 900–1,300 µmol m−2 s−1, and the overall
ratio was 0.97. This 3% reduction in the measured Pn compared with the Pn estimated
from a steady-state PPFD–Pn curve was significantly smaller than the approximately
20–30% reduction reported in previous experimental and simulation studies. This result
suggests that the loss of integral net photosynthetic gain under fluctuating sunlight can
vary among days with different fluctuation patterns or may be non-significant when
fluctuations in both PPFD and relative SPD of sunlight are taken into consideration.

Keywords: fluctuating light, light-emitting diode, light quality, LED artificial sunlight source system,
photosynthetic photon flux density, spectral photon flux density distribution

INTRODUCTION

The spectral photon-flux-density distribution (SPD) is a distribution of photon flux density (PFD)
per unit wavelength within a defined wavelength range. The SPD can be characterized by two
aspects: the integral of spectral PFD and the relative SPD. As an index of the former factor, the
photosynthetic PFD (PPFD), with an amount of PFD between 400 and 700 nm, is often used. The
latter factor is the “shape” of the SPD curve and may sometimes be called light quality. As elements

Abbreviations: DC, direct current; gs, stomatal conductance; LASS system, LED-artificial sunlight source system; LED,
light-emitting diode; PFD, photon flux density; PPFD, photosynthetic PFD; SPD, spectral photon-flux-density distribution;
Pn, net photosynthetic rate.
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of the light environment, both PPFD (Boardman, 1977;
Björkman, 1981) and relative SPD (McCree, 1972; Inada, 1976)
significantly affect the net photosynthetic rate (Pn) of leaves.

The SPD of sunlight in open fields and greenhouses fluctuates
during the daytime at various time scales, from seconds to hours,
because of a change in solar altitude, clouds covering the sun,
leaf movement due to wind, and so on. Recently, the effects
of PPFD fluctuations on instantaneous leaf photosynthesis have
been intensively studied (for reviews, see Kaiser et al., 2015,
2018; Yamori, 2016; Vialet-Chabrand et al., 2017a; Murchie et al.,
2018; Slattery et al., 2018; Tanaka et al., 2019). Reportedly,
photosynthetic performance under fluctuating PPFD conditions
is different from that under constant PPFD conditions. Most
previous studies employed simple periodic fluctuations in PPFD
in which PPFD alternated between two PPFD levels (Leakey et al.,
2002; Kono et al., 2014, 2017, 2020; Sejima et al., 2014; Kono and
Terashima, 2016; Yamori et al., 2016; Yang et al., 2019; Bhuiyan
and van Iersel, 2021) or a single event involving an increase or
decrease in PPFD (Kaiser et al., 2016; Qu et al., 2016; Soleh et al.,
2017; Zhang et al., 2019). Although these studies demonstrated
the significance of physiological responses to fluctuating light,
the PPFD fluctuation patterns differ from complex fluctuation
patterns observed in open fields and greenhouses under sunlight.

Vialet-Chabrand et al. (2017b) reproduced a sunlight PPFD
fluctuation measured on a relatively clear day using a light-
emitting diode (LED) light source. The researchers measured
a diurnal change in leaf Pn in Arabidopsis thaliana under the
conditions where PPFD fluctuated below 1,500 µmol m−2 s−1

and compared it with the Pn predicted from the separately
determined PPFD-response curve of steady-state Pn. They
reported that the measured Pn tended to be lower than the
predicted Pn and that the difference between the measured
and predicted Pn integrated over the diurnal period was 19–
30%. Similarly, model simulation studies reported that the daily
integral net photosynthetic gain under sunlight where PPFD
fluctuated was calculated as 21% lower than that estimated
by assuming that steady-state photosynthesis was attained at
any moment (Taylor and Long, 2017; Tanaka et al., 2019).
The reduction in Pn by PPFD fluctuations was thought to be
mainly attributed to the delayed response of photosynthesis to an
increase in PPFD, i.e., photosynthetic induction. Photosynthetic
induction comprises three processes: (i) the induction of
photosynthetic electron transport reactions in the thylakoid
membrane, (ii) the activities of Calvin cycle enzymes including
ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), and
(iii) gas diffusion conductance including stomatal opening,
each has a different time to respond of approximately 1–
2 min, 5–10 min, and 10–30 min, respectively (Pearcy, 1990;
Tanaka et al., 2019; Kimura et al., 2020; Yamori et al., 2020).
It has been considered increasingly important to understand
the nature of photosynthesis under sunlight with fluctuating
PPFD and its underlying physiological mechanisms for genetic
improvements of related traits (e.g., Adachi et al., 2019; Kimura
et al., 2020; Yamori et al., 2020). In addition, fluctuations in
environmental factors other than PPFD (e.g., CO2 concentration,
air temperature, relative humidity) have also been discussed
(Kaiser et al., 2015; Yamori, 2016). On the other hand,

most of the current greenhouse crop growth models (e.g.,
TOMSIM, Heuvelink, 1995, 1999) calculate leaf Pn in changing
environments using parameters obtained with the assumption
of steady-state conditions. However, such models simulate
crop growth reasonably well under a wide range of growth
conditions (e.g., Heuvelink, 1999; Heuvelink and Dorais, 2005;
Heuvelink et al., 2008), indirectly suggesting that steady-state
photosynthetic parameters are not too inappropriate to simulate
leaf Pn of greenhouse crops under sunlight. Furthermore,
a recent simulation study stated that the daily integral net
photosynthetic gain calculated considering the delayed response
of photosynthesis to an increased PPFD under various patterns
of diurnal sunlight PPFD fluctuation was, on average, only 3–6%
lower than Pn calculated assuming a steady-state (Murakami and
Jishi, 2021). Thus, further verification is needed as to whether the
approximately 20–30% reduction in Pn is a typical value under
various fluctuating light conditions.

In contrast to PPFD reproduction, relative SPD or “light
quality,” the other important aspect of sunlight SPD, has hardly
been considered. For example, the light sources used in previous
studies to artificially reproduce sunlight PPFD fluctuations were
a commercial LED light source (Vialet-Chabrand et al., 2017b)
and an LED light source attached to a commercial portable
photosynthesis system (Adachi et al., 2019; Kimura et al.,
2020; Yamori et al., 2020), of which the relative SPDs were
completely different from those of sunlight. It is known that
factors characterizing relative SPD, such as the proportions
of blue, red, and far-red light and/or their ratios, are known
to significantly influence instantaneous photosynthesis (e.g.,
Hogewoning et al., 2010; Murakami et al., 2016). Furthermore,
Kono et al. (2017, 2020) clarified the importance of far-red light
in the photosynthetic response to fluctuating PPFD; periodic
PPFD fluctuations without far-red light caused photoinhibition
of photosystem II, while it was suppressed when far-red light
was added. Thus, it is strongly desired that not only PPFD
but also the relative SPD of sunlight be reproduced when we
evaluate the effects of sunlight fluctuation on photosynthesis and
intend to extrapolate the results to open field or greenhouse
crop production. On the other hand, investigating photosynthesis
under sunlight in an actual open field or a greenhouse may
be another option to elucidate the responses of photosynthesis
to fluctuating light. However, such field experiments do not
allow us to confirm the reproducibility of the results obtained.
To ensure reproducibility, laboratory experiments under a
controlled environment must be useful.

Fujiwara and Sawada (2006); Fujiwara et al. (2007), and
Fujiwara and Yano (2011) have been developing an LED-
artificial sunlight source (LASS) system. A second-generation
LASS system (Fujiwara et al., 2013) can produce SPDs at the
same level as full irradiation of ground-level sunlight, within a
range of 380–940 nm, with a high approximation accuracy at the
light outlet of 7.1 cm2 (30 mmφ). Moreover, it also has a time-
varying (dynamic) light production program and can change
the SPD at the light outlet to an arbitrarily modified SPD at an
arbitrarily set time interval of more than 2 s. To our knowledge,
this system is the most appropriate for elucidating the effects of
sunlight SPD fluctuations, taking both PPFD and relative SPD
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into consideration, as well as ensuring a high reproducibility of
sunlight SPD fluctuations.

In this study, we measured sunlight SPD fluctuations
and artificially reproduced them using the LASS system.
Characteristics of the measured sunlight SPD fluctuations and
reproducibility of PPFD and relative SPD with the LASS
system were evaluated. Then, the Pn of cucumber leaves under
reproduced sunlight was compared with the Pn estimated from a
steady-state PPFD–Pn curve of the same leaves.

MATERIALS AND METHODS

Measurement of Fluctuations in Sunlight
SPD
Fluctuations in sunlight SPD were measured at the top of a seven-
storied building located in Bunkyo, Tokyo, Japan (35◦43′N) with
a spectroradiometer (MS-720, EKO Instruments Co., Ltd., Tokyo,
Japan). The SPDs between 350 and 1,050 nm were measured
and recorded once every 15 s. To protect the spectroradiometer
from sudden strong wind and rain, it was placed in a box
(450 mm × 450 mm × 300 mm) covered with a fluoropolymer
film (F-CLEAN Clear, AGC Green-Tech Co., Ltd., Tokyo, Japan)
with an almost constant spectral transmittance (>90%) within
the wavelength range measured. Measurements were repeated
several times from April to October 2017. Data collected from
11:10 to 14:30 on October 12, 2017, in which relatively large
amplitudes and frequent fluctuations in PPFD were observed,
were selected for reproduction. The measurement periods of
200 min (3 h and 20 min) corresponded to the maximum number
of storable data (800) of the spectroradiometer.

Reproduction of Fluctuations in Sunlight
SPD With an LED-Artificial Sunlight
Source System
Hardware and software system configurations of the second-
generation LASS system were described in detail in Fujiwara et al.
(2013). The hardware system comprises a light source unit, an
LED temperature control system, and an SPD control system
(Figure 1A). The light source unit comprises an LED module
containing 625 LEDs with 32 different peak wavelengths (385–
910 nm) (Figure 1B) and a hollow conical reflection condenser
that condenses and mixes light from the LEDs to the light
outlet of 7.1 cm2. The SPD control system comprises 32 direct
current (DC) power supplies, a DC power supply controller,
controller expansion units, and a laptop computer used to
send voltage value signals to the DC power supply controller.
The software installed in the computer enables production of
the desired SPD at the light outlet by transmitting a set of
appropriate, previously determined voltage signals to the DC
power supply controller, which is then applied to each type
of LED in the light source unit. According to the original
procedure (Fujiwara et al., 2013), four-step procedures are taken
to determine the set of appropriate voltages: (i) preparation of
a voltage–spectral irradiance database; (ii) calculation of the set
of appropriate voltages; (iii) re-approximation using feedback

control; and (iv) light production. In this study, we did not use
the re-approximation function. This function can minimize the
difference in spectral distributions between the reproduced light
and target light using feedback control with a spectroradiometer
(Fujiwara et al., 2013). However, roughly 10 min was needed
as one routine operation for each of the SPDs that we wanted
to reproduce. In this study, we had 800 SPD data points
to reproduce, and too much time was needed to finish the
procedure; thus, we had to omit the third step for the use of the
re-approximation function.

Plant Materials and Growth Conditions
Cucumber (Cucumis sativus L. ‘Hokushin’, Takii & Co., Ltd.,
Kyoto, Japan) seeds were sown into moistened rockwool cubes
(AO36/40, ROCKWOOL B.V., Roermond, the Netherlands) in a
plug tray. Then, the tray was placed in a temperature-controlled
growth chamber (MIR-554-PJ, PHC Holdings Corp., Tokyo,
Japan) equipped with an LED panel [HMW120DC6 (1N-40Y),
Kyoritsu Densho Co., Ltd., Osaka, Japan] composed of phosphor-
converted white LEDs (GSPW1651NSE-40Y-TR, Stanley Electric
Co., Ltd., Tokyo, Japan) (Figure 2). The seedlings were grown
at a PPFD of 300 µmol m−2 s−1 at the tops of plants for
16 h d−1 and air temperatures of 25/20◦C (day/night). The
growth chamber was ventilated with external air using an air
pump with the number of air exchanges of 1.0 h−1. At 7 days
post-seeding, seedlings were transplanted onto rockwool cubes
(Delta 6.5G, ROCKWOOL B.V.) and grown for another week
under the same environmental conditions. The rockwool cubes
were subirrigated once per day or every 2 days with a nutrient
solution (prescription A, OAT Agrio Co., Ltd., Tokyo, Japan) at
an electrical conductivity of 0.13 S m−1.

Measurement of Leaf Gas Exchange
Rates
The gas exchange rates of the first true leaves of the 13- to 15-
day-old cucumber seedlings (Figure 1C) were measured using
a portable photosynthesis system (LI-6400XT, LI-COR, Inc.,
Lincoln, United Kingdom). A leaf chamber of the portable
photosynthesis system was not equipped with any light source
provided by the manufacturer. The light outlet of the hollow
conical reflection condenser of the LASS system was placed in
contact with a surface of 2 × 3-cm transparent polypropylene
film covering the leaf chamber (Figure 1D). Environmental
conditions of the leaf chamber, other than PPFD, were set
as follows: CO2 concentration of incoming air was 420 µmol
mol−1, air temperature was 25◦C, and relative humidity was
70%. The airflow rate to the leaf chamber was 500 µmol s−1.
Measurements consisted of (1) changes in gas exchange rates
under the reproduced sunlight and (2) steady-state Pn in response
to PPFD. For (1), leaves were first kept at a constant PPFD of
500 µmol m−2 s−1 with a reference sunlight spectrum, which
is defined by IEC 60904-3:2019 (International Electrotechnical
Commission, 2019), for 20 min. The reference sunlight spectrum
is defined for the global (direct and diffuse) solar radiation and at
an air mass of 1.5. Leaves were then irradiated with light with an
SPD at the beginning (0 min) of the reproduced sunlight (PPFD
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FIGURE 1 | (A) The LED-artificial sunlight source (LASS) system. Left: 32 DC power supplies, a DC power supply controller, and three controller expansion units in a
rack; right: the light source unit comprising an LED module, a cooling unit of the LED temperature control system, and a hollow conical reflection condenser, and a
spectroradiometer in a temperature-controlled chamber; bottom: a DC power supply and a PID controller of the LED temperature control system and a laptop
computer. (B) Bottom views of the LED module when all LEDs are off (left) and on (right). (C) 13-day-old cucumber seedlings grown under phosphor-converted
white LED light. (D) During the measurement of net photosynthetic rate (Pn), a part of a cucumber leaf was sandwiched in a leaf chamber of the portable
photosynthesis system, and the surface of transparent film covering the top of the leaf chamber was placed in contact with the light outlet of the hollow conical
reflection condenser of the LASS system.

ca. 1,200 µmol m−2 s−1) for 20 min. Subsequently, leaves were
irradiated with the reproduced sunlight for 200 min. The SPD
was changed every 15 s. Pn and stomatal conductance (gs) were
recorded every 3 s, and five gas exchange measurement data (3,
6, 9, 12, and 15 s) were recorded for each SPD of light. The
means of the gas exchange parameters collected at 12 and 15 s
were regarded as corresponding to the SPD of light to minimize
the effects of the transient responses of the LASS system and the
portable photosynthesis system. The readings of the reference
and sample infrared gas analyzers (IRGAs) were matched after
the sample gas was temporarily passed through the reference
IRGA once every 20 min. For (2), leaves were first kept at a
constant PPFD of 400 µmol m−2 s−1 with a relative SPD of the
reference sunlight for 20 min. Then, leaves were irradiated with
light with a relative SPD of the reference sunlight at different
PPFD levels in the following order: 1,200, 1,000, 800, 600, 400,
200, and 0 µmol m−2 s−1. Each PPFD level was maintained for
20 min, and the mean Pn and gs values for the last 5 min (15–
20 min) were regarded as the steady-state values. Matching of the
reference and sample IRGAs was carried out at 14–15 min after
each PPFD level was attained.

We used 12 plants for measurements. Six plants were first
subjected to measurement (1) followed by measurement (2),
while the other six were subjected to measurements in the

FIGURE 2 | The SPD of phosphor-converted white LED light for cucumber
seedling growth at a PPFD of 300 µmol m−2 s−1.

opposite order. Because no significant differences were found in
the results between the two irradiation patterns, data for 12 plants
were averaged irrespective of the irradiation pattern order.
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FIGURE 3 | Time course of sunlight SPD between 380 and 940 nm measured in Bunkyo, Tokyo, Japan (35◦43’N) from 11:10 to 14:30 on October 12, 2017.

FIGURE 4 | Time course of PPFD of actual sunlight measured in Bunkyo,
Tokyo, Japan (35◦43’N) from 11:10 to 14:30 on October 12, 2017 and that of
sunlight reproduced with the LASS system. The height of gray area at a given
time represents the standard deviation of the PPFD of the reproduced sunlight
(n = 12).

The steady-state Pn averaged for 12 plants in response to PPFD
was fitted with the following nonrectangular hyperbolic function
(Johnson and Thornley, 1984) using the least-squares method:
Pn = {φI + Pmax − [(φI + Pmax) − 4θφIPmax]0.5} / 2θ − Rd,
where I is PPFD, mol m−2 s−1; φ is the initial slope, mol mol−1;
Pmax is the maximum rate of gross photosynthetic rate, mol m−2

s−1; θ is the convexity of the curve, dimensionless; and Rd is the
dark respiratory rate, mol m−2 s−1.

RESULTS AND DISCUSSION

Time Course of Sunlight SPD
Figure 3 is a three-dimensional surface plot showing the time
course of SPD of actual sunlight between 380 and 940 nm.

When focusing on PPFD (red line in Figure 4), the value
was approximately 1,300 µmol m−2 s−1 at the beginning of
measurement and then fluctuated in the range between 1,300
and 400 µmol m−2 s−1 because clouds sometimes covered the
sun and direct solar radiation was largely attenuated. The relative
SPD, or the shape of the SPD, may not be apparently different
among times (Figure 3). However, sunlight with a lower PPFD
tended to contain a relatively large number of photons below
600 nm and that with a higher PPFD tended to contain a relatively
large number of photons above 700 nm (data not shown). Most
likely, occasional reductions in PPFD by clouds that covered the
sun enhanced the fraction of diffuse solar radiation from the sky
in global solar radiation and the diffuse radiation was rich in light
with a shorter waveband compared with direct radiation (Kume
et al., 2018). Thus, both the PPFD and relative SPD of sunlight
changed dynamically.

Reproduction of the Time Course of
Sunlight SPD With the LED-Artificial
Sunlight Source System
Figure 4 also shows the time course of the PPFD of reproduced
sunlight with the LASS system averaged over 12 replications (a
blue line). The PPFD of reproduced sunlight agreed with that of
actual sunlight except that it was lower than that of actual sunlight
when the actual sunlight PPFD was greater than 1,200 µmol
m−2 s−1 (Figure 4). Overall, the difference in PPFD between
actual and reproduced sunlight at a given time was minor and
considered to be acceptable.

The relatively lower reproducibility of artificial sunlight PPFD
in the high PPFD range was primarily due to the limited
maximum output capacity of the LASS system, although it was
reported that the LASS system could reproduce full irradiation
of ground-level sunlight (Fujiwara et al., 2013). Specifically,
there were two main reasons for the limitation generated in
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this experiment. One reason was that we did not use the re-
approximation function in this study (see section “Materials
and Methods”). Figure 5 shows the reference sunlight spectra
with PPFDs of 1,600, 1,300, and 1,000 µmol m−2 s−1, as well
as those of reproduced sunlight without the re-approximation
function. The extent of approximation of the reproduced sunlight
to the reference sunlight spectrum declined as the target PPFD
increased: the coefficients of variation calculated at every 1 nm
between 380 and 940 nm were 13.6, 15.0, and 18.4% for 1,000,
1,300, and 1,600 µmol m−2 s−1, respectively. The other reason
was that the transparent polypropylene film (Propafilm C)
covering the leaf chamber of the portable photosynthesis system
significantly reduced the PPFD on the leaf surface. The spectral
transmissivity of the film was approximately 85–90% between 380
and 940 nm and hardly dependent on wavelength (Meiwafosis
Co., Ltd., personal communication), indicating that the film
reduced SPDs within this range to a similar extent. However, the
extent of sunlight SPD reproduction here must be the highest
among those employed in previous experiments investigating the
effects of fluctuating light on photosynthesis.

Time Course of Leaf Gas Exchange
Rates Under Reproduced Sunlight
Figure 6A shows the time course of Pn in cucumber leaves
measured under reproduced sunlight and Pn estimated from a
PPFD-response curve of steady-state Pn in leaves of the same
plants (Figure 6C). The measured and estimated Pn agreed well
except when the PPFD was 500 µmol m−2 s−1 or lower (see
Figure 3), where the measured Pn was lower than the estimated
Pn. The time course of measured gs (Figure 6B) resembled that
of measured Pn, while the response of gs to changes in PPFD
appeared to be delayed relative to that of Pn. A slow response of gs
to a change in PPFD has been frequently reported (e.g., Lawson
et al., 2012; Slattery et al., 2018). As a result, the amplitude of
fluctuation appeared smaller in gs than in Pn.

We grew cucumber seedlings under phosphor-converted
white LEDs, of which relative SPD (Figure 2) was quite different
from that of the reproduced sunlight (Figure 5). One notable
difference was the spectral PFD of far-red light: the white
LED light contained a less proportion of far-red light than the
reproduced sunlight. In leaves grown under light containing less
far-red light, light is preferentially absorbed by photosystem II
(PSII) compared with photosystem I (PSI) (“PSII-light”), and
the ratio of the amount of PSII to that of PSI (PSII/PSI ratio)
decreases to counteract the imbalance excitation (Chow et al.,
1990a,b; Melis, 1991; Walters and Horton, 1994, 1995; Wagner
et al., 2008; Hogewoning et al., 2012). One might suggest that the
shift of the growth light of “PSII-light” to the Pn measurement
light of “PSI-light” affected the response of Pn to the sunlight
SPD fluctuations. However, Murakami et al. (2016) showed that
cucumber leaves grown under phosphor-converted white LED
light supplemented with and without far-red LED light did not
show a significant difference in steady-state Pn measured under
reproduced sunlight. This suggests that the effect of the shift from
“PSII-light” during growth to “PSI-light” for Pn measurement in
this study was also not significant.

FIGURE 5 | The SPDs of reference sunlight at PPFDs of 1,600 (A), 1,300 (B),
and 1,000 (C) µmol m−2 s−1 and reproduced sunlight of which SPDs were
approximated to those of the reference sunlight with the LASS system.

Relationship Between the Ratio of
Measured Pn to Estimated Pn and PPFD
or the Change in PPFD
To further analyze the effect of reproduced sunlight PPFD on
the difference between measured and estimated Pn, the ratio
of measured Pn to estimated Pn was plotted against PPFD
(Figure 7A). Overall, a large part of the ratio was distributed
below 1, indicating that the measured Pn was generally lower than
the estimated Pn. The ratio appeared to vary in an intermediate
PPFD range of 400–700 µmol m−2 s−1 compared with lower and
higher PPFD ranges. The linear regression was not statistically
significant (r2 = 0.195). We summarized these data by averaging
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FIGURE 6 | (A,B) Time course of Pn (A) and stomatal conductance gs (B) in cucumber leaves measured under reproduced sunlight. For Pn, values estimated from
the steady-state PPFD-response curve of Pn (C) are also shown. The height of gray area at a given time represents the standard errors of the means for the
measured values (n = 12). (C) Steady-state Pn in cucumber leaves in response to PPFD. Solid circles are the means of measured values (n = 12), and the line is a
fitting curve with a nonrectangular hyperbolic function, of which parameter values are shown within the panel. Standard errors of the means are smaller than the
diameter of the circles and are invisible.

FIGURE 7 | The ratio of measured Pn to estimated Pn in response to PPFD at a given moment (A) and the ratio in response to a change in PPFD for 15 s (1PPFD)
(B). Positive and negative 1PPFD values represent increases and decreases in PPFD, respectively.

the measured and estimated Pn, respectively, within every 200
µmol m−2 s−1 PPFD range between 300 and 1,300 µmol m−2

s−1 and computed the ratio (Table 1). The ratio was relatively
low at low PPFDs; 0.95 and 0.94 for PPFD ranges of 300–500
and 500–700 µmol m−2 s−1, respectively. On the other hand,
this value was slightly higher at high PPFDs; 0.98 and 0.99 for
900–1,100 and 1,100–1,300 µmol m−2 s−1, respectively. The
overall ratio of measured Pn to estimated Pn between 300 and
1,300 µmol m−2 s−1 was 0.97, indicating that the reduction
in Pn measured under reproduced sunlight compared with Pn

estimated from the steady-state PPFD–Pn curve throughout the
measurement was 3%.

This 3% reduction was significantly smaller than the 20–30%
reduction reported in previous experimental (Vialet-Chabrand
et al., 2017b) and simulation (Taylor and Long, 2017; Tanaka
et al., 2019) studies but close to the 3–6% reduction on average
reported by a more recent study employing comprehensive
simulation over a wide range of diurnal PPFD fluctuations
(Murakami and Jishi, 2021). There are several possible reasons for
the difference between the values of calculated reduction. The first
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TABLE 1 | The ratio of mean measured Pn to mean estimated Pn calculated in
different PPFD ranges.

PPFD range
(µmol m−2 s−1)

Measured Pn

(µmol m−2 s−1)
Estimated Pn

(µmol m−2 s−1)
Measured Pn/
estimated Pn

300–500 10.4 10.8 0.95

500–700 12.9 13.8 0.94

700–900 15.9 16.5 0.96

900–1,100 18.0 18.3 0.98

1,100–1,300 19.0 19.2 0.99

All (300–1,300) 14.3 14.7 0.97

reason is the relative SPD. Reproducing both the PPFD and the
relative SPD of sunlight could reduce the difference between the
measured and estimated Pn, compared with reproducing PPFD
only. The second reason is the pattern of PPFD change. The
difference between the measured and estimated Pn can depend
on the pattern of PPFD change (Naumburg and Ellsworth,
2002). Murakami and Jishi (2021) also performed a simulation
of diurnal courses of Pn under various PPFD fluctuation patterns
of sunlight using a steady-state photosynthesis model and a
dynamic photosynthesis model incorporating the response delay
of Pn to an increase in PPFD. They showed that the difference in
Pn calculated with the two models was largely dependent on the
PPFD fluctuation pattern. The amplitudes of PPFD fluctuations
in previous studies were ca. 100–2,000 µmol m−2 s−1 (Taylor and
Long, 2017), 100–1,500 µmol m−2 s−1 (Vialet-Chabrand et al.,
2017b), and 200–2,200 µmol m−2 s−1 (Tanaka et al., 2019), which
are greater than those in the present study (400–1,300 µmol
m−2 s−1). According to our data, the difference between the
measured and estimated Pn tended to be high under low PPFD
conditions (Figure 7A and Table 1). The levels and duration of
low PPFDs in the PPFD fluctuating pattern, in relation to the
shape of the PPFD-response curve of Pn in leaves considered, may
be important to account for the difference between the measured
and estimated Pn. The third reason is the Pn measurement
duration under fluctuating light. Vialet-Chabrand et al. (2017b)
reported that when the overall PPFD level was high (mean: 460
µmol m−2 s−1), the extent of measured Pn reduction compared
with the estimated Pn became greater, especially after 4–6 h after
the measurement started. However, when the mean PPFD was
low (230 µmol m−2 s−1), the reduction was apparent at the
beginning of the measurement (Vialet-Chabrand et al., 2017b).
The interactive effects of the fluctuating PPFD pattern and the
timing at which the measured and estimated Pn started to
significantly differ should be examined in detail in future work.

Finally, we evaluated the effect of PPFD change (1PPFD) on
the ratio of measured Pn to estimated Pn (Figure 7B). There was
a negative trend between the ratio and 1PPFD; a large increase
and decrease in PPFD tended to decrease and increase the ratio,
respectively, although the linear regression was not statistically
significant (r2 = 0.166). This trend may partly reflect the response
delay of the portable photosynthesis system. In particular, the
overvalued Pn when 1PPFD was negative was likely due to the
response delay, as the response of Pn to a decrease in PPFD
was reportedly faster than that to an increase in PPFD (Bhuiyan

and van Iersel, 2021). On the other hand, this trend suggests
that Pn estimated using the steady-state PPFD-response curve
(Figure 6C) tended to be particularly undervalued under the
fluctuating SPD condition when the rate of PPFD increase was
high. A similar result was reported by Bhuiyan and van Iersel
(2021) that it took a longer time until Pn reached a steady state
when the extent of PPFD increase was high.

CONCLUSION

In this study, we reproduced a time course of sunlight SPD
(both PPFD and relative SPD) using the LASS system. The Pn
of cucumber leaves measured under the reproduced sunlight
and that estimated from the steady-state PPFD–Pn curve of the
same leaves were compared. The measured Pn tended to be
lower than the estimated Pn under low PPFD conditions. The
extent of measured Pn reduction compared with the estimated
Pn averaged over all PPFD levels was 3%, which was smaller
than the values of approximately 20–30% reported by previous
studies (Taylor and Long, 2017; Vialet-Chabrand et al., 2017b;
Tanaka et al., 2019). This finding suggests that the loss of
integral net photosynthetic gain under fluctuating sunlight can
vary among days with different fluctuation patterns or may be
nonsignificant when fluctuations in both PPFD and relative SPD
of sunlight are reproduced. More experimental observations of
Pn under various patterns of reproduced fluctuating sunlight
must be acquired and analyzed to discuss the quantitative
importance of considering sunlight SPD fluctuations in leaf
instantaneous photosynthesis.
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Published work indicates that high percentage of blue light can enhance pigment
levels but decreases growth, while addition of far-red light to growth light can increase
quantum efficiency and photosynthesis in leafy greens. Combining high-energy blue light
with low-energy far-red light may increase both vegetative growth and pigment levels.
However, the effect of high-energy blue and low-energy far-red light on the vegetative
growth and pigments synthesis is unclear. This information can be potentially useful
for enhancing the levels of pigments with nutritional value (e.g., beta-carotene and
anthocyanins) in the produce grown in vertical farms. We grew romaine lettuce (cv.
Amadeus) under similar light intensity (approximately 130 µmol·m−2

·s−1) but different
proportions of red: blue: far-red including 90:10: 0 (“High-R”), 50: 50: 0 (“High-B”), and
42: 42: 16 (“High-B+FR”) for 31 days. Results indicated that canopy area and leaf
photosynthetic rate of lettuce plants was reduced in the High-B, thereby reducing plant
growth. We did not observe photosynthesis enhancement in the High-B+FR. Instead,
plants clearly showed photomorphogenic effects. The phytochrome photostationary
state (PSS) decreased with far-red addition, resulting in reduced leaf number per plant.
This was likely to shift the allocation of resources toward elongation growth for shade
avoidance. Further, we observed an increase in the area of individual leaves, canopy
area, and shoot dry weight in the High-B+FR. However, these appear to be an indirect
consequence of decreased leaf number per plant. Our results also indicate that changes
in expansion growth at individual leaf scale largely regulated pigment concentration
in plants. As individual leaf area became smaller (e.g., High-B) or larger (e.g., High-
B+FR), the levels of pigments including chlorophylls and beta-carotene increased or
decreased, respectively. Area of individual leaves also positively influenced canopy area
(and likely light interception) and shoots dry weight (or vegetative growth). Our study
provides additional insights into the effects of high-energy blue and low-energy far-red
light on individual leaf number and leaf growth, which appear to control plant growth
and pigment levels in lettuce.

Keywords: controlled environment agriculture, photoinhibition, phytochrome photostationary state, light
interception, proximity response
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INTRODUCTION

Vertical farming involves growing food crops at multiple
vertically stacked levels in controlled environments to maximize
productivity per unit area (Despommier, 2010). The concept
of vertical farming was mainly developed to produce food
in urban areas where available space can be limited for
growing crops. Vertical farming can aid in increasing the
supply of fresh food, which is needed in many urban areas
(Avgoustaki and Xydis, 2020). Because of its importance
to food production, the industry is growing rapidly in the
United States, with an estimated market value of $3 billion
by 2024 (Qiu et al., 2020). At present, leafy greens such as
lettuce are the major crops grown in vertical farms (Frazier,
2017). With developments in science and technology, the
range of species, including vegetables, medicinal plants, and
ornamentals, that can be grown in vertical farms is expected to
increase in the future.

Plant pigments such as beta-carotene (precursor of vitamin A
biosynthesis) and anthocyanins (aid in reducing inflammation
and blood pressure, Karlsen et al., 2007; Jennings et al.,
2012) have beneficial effects on human health. Nutrients
consumed through plant-based foods are regarded as more
efficacious than those consumed through supplements (Martin
and Li, 2017). However, the levels of nutrients beneficial
to human health are generally low in plants (Lako et al.,
2007; Thoma et al., 2020). For example, a salad bowl of
lettuce (approximately 60 g) can provide only a third of
recommended daily allowance of vitamin A (Institute of
Medicine US Panel on Micronutrients, 2001; USDA, 2019).
Breeding efforts to improve the levels of nutrients in leafy
greens is at its infancy. The current research focus in the
area of vertical farming is on increasing crop productivity
and optimizing resource-use during production. Relatively less
effort is being made to explore the potential of vertical
farms to supply nutrient-dense foods to urban population.
Given this, environmental manipulation appears to be the
only viable option for enhancing the level of healthy nutrients
in leafy greens.

Light emitting diode (LED) lights with a wide range of
customized light spectra are used to grow plants in vertical
farms (Kong et al., 2019). Spectral composition of light can
significantly affect pigment levels in plants (Amoozgar et al.,
2017; Naznin et al., 2019; Camejo et al., 2020). Addition
of high-energy blue light is usually associated with increased
accumulation of pigments such as carotenoids and anthocyanins
(Li and Kubota, 2009; Johkan et al., 2010; Ouzounis et al.,
2015; Amoozgar et al., 2017), and chlorophylls (Cope et al.,
2013; Fan et al., 2013; Zhen and Bugbee, 2020). However,
blue light is less efficient at driving photosynthesis than red
light (McCree, 1972). Plants exposed to excess blue light
show decreased leaf expansion (Hernandez and Kubota, 2016;
Craver et al., 2020; Kusuma et al., 2020), stem elongation,
and growth (Ohashi-Kaneko et al., 2007; Fan et al., 2013;
Kang et al., 2016; Craver et al., 2020). Blue light is also
involved, via cryptochrome receptors, in de-etiolation of
hypocotyls and photoperiodic responses related to flowering

(Yu et al., 2010), and phototropism (Ahmad et al., 1998) in
plants. Far-red light addition enhanced quantum efficiency (or
efficiency with which absorbed light is used in photosynthesis)
when supplemented with light containing shorter wavelengths
of photosynthetically active radiation (Zhen and van Iersel,
2017). It was reported that the absorbed far-red photons
(700–750 nm) were equally efficient for photosynthesis when
combined with photosynthetically active radiation (400–700 nm;
Zhen and Bugbee, 2020). Increases in leaf area and canopy
light interception (Park and Runkle, 2017; Kang et al., 2019;
Zhen and Bugbee, 2020) were reported with far-red addition.
However, far-red addition resulted in a decrease in the levels
of carotenoids and anthocyanins (Li and Kubota, 2009; Stutte
and Edney, 2009), and chlorophylls (Meng and Runkle, 2019;
Zhen and Bugbee, 2020).

Moreover, far-red light has been associated with
photomorphogenic effects associated with shade avoidance
(e.g., stem elongation) in plants (Ballaré et al., 1990; Gommers
et al., 2012; Yang and Li, 2017). A small increase in the proportion
of far-red light in the environment can elicit “proximity” shade
responses in plants, prior to actual canopy shading by neighbors
(Martinez-Garcia et al., 2014). Based on the published research
(Lorrain et al., 2008; Martinez-Garcia et al., 2014; Yang and Li,
2017), shade stimulus is perceived by phytochrome (P) receptor.
The receptor exists in two photo-convertible forms i.e., red
light absorbing Pr (inactive) and far-red light absorbing Pfr
(active) form. The Pr form converts to Pfr upon absorption of
red light and the Pfr form reverts to Pr form after absorbing
far-red light or in the dark. Among the important light signaling
components, phytochrome interacting factors (PIFs) play an
important role in shade avoidance response. The activation of
PIFs is necessary for eliciting shade avoidance responses such
as elongation. A lower proportion of Pfr form in plants results
in activation of PIFs and subsequent gene expression required
for shade avoidance responses. This happens when relatively
more Pfr converts to Pr form, i.e., when plants are exposed
to far-red light.

Addition of low-energy far-red light to growth spectrum
containing relatively high proportion of high-energy blue
light may increase photosynthesis, crop growth rate, and
pigment concentration in the produce grown in vertical farms.
However, addition of far-red light may elicit photomorphogenic
responses including elongation and may have little direct
impact on photosynthesis in the long-term. Shade-avoidance
responses due to far-red exposure may lower levels of
pigments in the cells, as additional resources are needed
for the elongation growth. Further, elongation growth may
decrease plant quality. The interactive effects of high-energy
blue light and low-energy far-red light on vegetative growth
and pigment levels in plants is unclear. This information
is important to exploit the benefits of blue and far-red
spectrum in vertical farming. The objectives of the study
were to quantify the effects of blue and combination of
blue and far-red spectrum on vegetative growth and pigment
concentration and to understand how light composition affects
the interplay between vegetative growth and pigment synthesis
in lettuce plants.
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FIGURE 1 | (A) Experimental setup used in the study showing different experimental units. (B) A closeup picture of one experimental unit.

TABLE 1 | Total light intensity (400–750 nm), phytochrome photostationary state (PSS), and spectral composition of light in different treatments.

Treatment Intensity PSS Spectral composition

Blue Red Far-red

(µmol·m−2·s−1) (%)

High-R 128.9 (1.67) a 0.90 (0.0008) a 8.3 (0.39) c 91.7 (0.39) a 0 (0.00) b

High-B 132.2 (1.44) a 0.86 (0.0008) b 47.2 (0.24) a 52.8 (0.24) b 0 (0.00) b

High-B+FR 138.1 (1.52) a 0.78 (0.0008) c 41.6 (0.20) b 41.5 (0.28) c 16.9 (0.12) a

Percentages of photons associated with broadband blue (400–500 nm), red (600–699 nm), and far-red (700–750 nm) light are shown. Values represent least square
means and standard errors (±) (in parenthesis).

MATERIALS AND METHODS

Plant Production, Growing System, and
Environmental Conditions
Romaine lettuce (Lactuca sativa cv. Amadeus) was grown
from seed purchased from Paramount Seeds Company (Stuart,
FL, United States). The selected variety has green foliage
(i.e., contain low level of anthocyanins) and low crop yield
(Miller et al., 2020), making it suitable for studying treatment
effects on pigment levels and vegetative growth. Seeds were
germinated in plug flats (72-cell; 3.5 cm × 3.5 cm × 5.9 cm,
30.2 mL per cell, Landmark Plastic, Akron, OH, United States)
filled with a soilless substrate (80% peat, 15% perlite, and
5% vermiculite, BM-2, Berger, Saint Modeste, QC, Canada).
The plug flats were placed under mist for 7 days to ensure
uniform germination. Light treatments started immediately
after germination (see section “Treatments”). After 10 days,
seedlings in each light group were transplanted into square
pots (10.6 cm × 10.6 cm × 8.4 cm, 943 mL, Kord Products
Ltd., Brampton, ON, Canada) filled with the same soilless
substrate used in the germination trays and arranged in a
predetermined experimental design (see section “Experimental
Design and Statistical Analyses”). Plants were harvested after
31 days from transplanting.

The vertical growing system was custom-built using chrome-
wire shelves (1.22 m× 0.61 m× 1.37 m, H-6948, Uline, Pleasant
Prairie, WI, United States) and LED fixtures. Each shelf had two
levels spaced 0.6 m apart. Each level was further divided into
two grow spaces (0.61 m × 0.61 m, of 0.37 m2) and each grow

space housed plants in pots (Figure 1). Customized LED fixtures
(0.6 m × 0.6 m, Applied Electronic Materials, Fort Wayne, IN,
United States) with different spectral composition were fastened
to the chrome-wire shelves in each grow space. The light fixtures
had separate circuits for blue (450 ± 18 nm), red (660 ± 19 nm),
and far-red (730 ± 30 nm) LEDs (Oslon SSL, Osram, Munich,
Germany). Each light fixture comprised of five individual bars
(60 cm long), each containing six LEDs of a given wavelength.
The LEDs were spaced 10 cm apart in the circuit and emitted light
at 120◦ angle from the source. The intensities of red, blue, and far-
red wavebands emitted from each fixture were adjusted using a
controller (Time-Keeper MAX, Touch-Plate Light Controls, Fort
Wayne, IN, United States). The LED fixtures were hung 0.5 m
above the pots in each grow space.

Plants were grown using sole-source lighting from the LED
fixtures. As the vertical growing system was located in a
greenhouse, it was covered with two layers of black cloth
(WeedBlock, Jobes Co., Waco, TX, United States) that allowed
air movement but blocked sunlight to ensure a sole-source
LED lighting environment for plants. Average day/night air
temperature, daily light integral, photoperiod, and relative
humidity during the study were 21.7 ± 1.43/19.5 ± 0.81◦C,
11.4 ± 0.17 mol·m−2

·d−1, 24 h, and 62 ± 12.5%, respectively.
Overhead irrigation with a fertilizer solution was provided as
needed during the production to avoid any drought stress.
Plants were fertigated with a water-soluble fertilizer containing
20N-4.4P-16.6K (20-10-20, Peters Professional, Summerville,
SC, United States) at an electrical conductivity (EC) level of
1.7± 0.04 dS·m−1 and pH of 5.8± 0.04.
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Treatments
Plants were grown under three light treatments with different
spectral composition and similar light intensity (Figure 2 and
Table 1). Light treatments comprised of different percentages red:
blue: far-red light in the total light including 90: 10: 0 (“High-R”),
50: 50: 0 (“High-B”), and 42: 42: 16 (“High-B+FR”). Black plastic
sheets (0.61 m× 0.4 m, HomeDepot, Atlanta, GA, United States)
were used to separate the grow spaces in each shelf and contain
the dispersed light within each treatment. The total light intensity
(400–750 nm) ranged between 129 and 138 µmol·m−2

·s−1 in
different treatments (Table 1).

Measurements
Air temperature (◦C) was measured in each experimental
unit (see section “Experimental Design and Data Analyses”)
using thermistors (ST-110, Apogee Instruments, Logan, UT,
United States) connected to a data logger (CR1000, Campbell
Sci. Logan, UT, United States). Total incident light intensity

FIGURE 2 | Spectral composition in different light treatments: (A) red: blue:
far-red = 90: 10: 0 (“High-R”), (B) red: blue: far-red = 50: 50: 0 (“High-B”), and
(C) red: blue: far-red = 42: 42: 16 (“High-B+FR”). Peak wavelength numbers
are shown for each broadband.

(Itot, µmol·m−2
·s−1) and spectral composition were measured

at plant height using a spectroradiometer (SS-110, Apogee
Instruments, Logan, UT, United States) with a hemispherical
field-of-view (180◦). From spectroradiometer measurements,
broadband intensities of blue, red, and far-red wavelengths
(I, µmol·m−2

·s−1) were calculated by adding intensities of
individual wavelengths between 400–499 nm, 600–699 nm, and
700–750 nm, respectively. Percentage of blue, red, and far-red
photons in the total light was calculated as 100 × I

Itot
.

The proportion of Pfr to total phytochrome in plants was
calculated as phytochrome photostationary state (PSS) using
spectral composition and intensity of light received by plants
(Sager et al., 1988; Stutte, 2009):

PSS =
∑750

400 (Nλσrλ)(∑750
400 Nλσrλ +

∑750
400 Nλσfrλ

)
Where Nλ is light intensity (mol·s−1

·m−2) at each wavelength
(λ). The σrλ and σfrλ are phytochrome photochemical cross-
sections for red and far-red absorbing states (m2

·mol−1) at each
λ based on measurements made by Sager et al. (1988) on isolated
phytochrome. The λ levels used in the calculation were 400, 425,
450, 475, 500, 600, 625, 660, 675, 700, 725, 730, and 750 nm.
The Nλ was measured by a spectroradiometer (SS-110, Apogee
Instruments, Logan, UT, United States).

Leaf photosynthetic rate (LPR, µmol·m−2
·s−1) was measured

as described by Long et al. (1996) on the youngest fully
expanded leaf during the last week before harvest using an
open gas exchange system with CO2, humidity, temperature,
and light control (LI-6400XT, Li-Cor Biosciences, Lincoln, NE,
United States). A clear-top leaf chamber was used to measure leaf
gas exchange rate in different light treatments. This allowed us
to measure leaf gas exchange under similar spectral composition
and intensity of light incident on the plants in a given treatment.
A reference CO2 concentration of 400 µmol·mol−1, RH of
60%, and air temperature of 25◦C were maintained during
the measurement inside the leaf chamber. Measurements were
recorded when gas exchange reached steady state, which occurred
between 2 and 3 min after enclosing the leaf inside the chamber.

A representative plant from the center of each experimental
unit was used to measure canopy area (CA, cm2

·plant−1), leaf
area (LA, m2

·plant−1), shoot fresh weight (SFW, g·plant−1),
and shoot dry weight (SDW, g·plant−1) at harvest. CA was
measured as described by Adhikari and Nemali (2020) on
the 31st day of the study using an imaging system (TopView
phenotyping system, Aris B.V. Eindhoven, Netherlands). The
distance between the camera and top of the plant was maintained
similar during measurements. The software of the image station
automatically segmented plants from the background, measured
plant pixel area, and converted plant pixel area to CA by
multiplying with a magnification factor (100) specific to the
imaging system. Number of leaves on each plant (LN) was
counted prior to harvest. Plants were harvested at the base
of the shoot and SFW was measured. Leaves were separated
from plants and LA was measured by running separated
leaves through the rollers of a leaf area meter (LI-3100C,

Frontiers in Plant Science | www.frontiersin.org 4 July 2021 | Volume 12 | Article 66740731

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-667407 July 7, 2021 Time: 11:41 # 5

Kong and Nemali Blue and Far-Red Effects

FIGURE 3 | Representative romaine lettuce plants from different light treatments. (a) High-R, (b) High-B, and (c) High-B+FR treatments. See Table 1 for a
description of treatments.

TABLE 2 | Effect of different light treatments (see Table 1 for treatment
description) on shoot fresh weight (SFW), shoot dry weight (SDW), leaf area (LA),
canopy area (CA), leaf photosynthesis rate (LPR), leaf number (LN), and average
area of a single leaf (LAs) in green romaine lettuce.

Measurement Treatment

High-R High-B High-B+FR

SFW (g·plant−1) 151.7 (7.09) a 136.9 (7.09) b 138.2 (7.09) b

SDW (g·plant−1) 9.8 (0.52) a 8.1 (0.52) b 9.0 (0.52) a

LA (m2
·plant−1) 0.208 (0.0100) a 0.191 (0.0100) a 0.182 (0.0100) b

log10(CA) 1.96 (0.056) a 1.81 (0.056) b 1.94 (0.056) a

LPR (µmol·m−2
·s−1) 4.5 (0.25) a 3.6 (0.25) a1 3.5 (0.25) a2

LN (plant−1) 19.7 (0.88) a 18.7 (0.88) a 11.3 (0.88) b

LAs(m2) 0.008 (0.0009) b 0.007 (0.0009) b 0.012 (0.0009) a

Least square means and standard errors (±) (in parenthesis) are shown. Least
square means followed by different letters are statistically different at P ≤ 0.05.
1PHigh−R vs High−B = 0.062.
2PHigh−R vs High−B+FR = 0.052.

Li-Cor Biosciences, Lincoln, NE, United States). Area of a
single leaf (LAs, m2) was calculated as the ratio of total leaf
area to leaf number. Separated leaves and remaining plant
material were dried in a forced-air oven set to 70◦C for
1 week to measure SDW.

Levels of chlorophylls (Chl), including chlorophyll-a (Chla)
and chlorophyll-b (Chlb), and beta-carotene (β-carotene) were
measured as described by Nagata and Yamashita (1992). Plant
samples collected from each experimental unit was used to
analyze plant pigments at harvest stage. Two mature leaves from
a plant were flash-frozen in liquid nitrogen and ground into fine
power using a mortar and pestle. Approximately 0.2 g of the
ground tissue was extracted with 1.8 ml acetone-hexene (2:3,
v/v) solvent until the tissue turned white. Then the samples
were centrifuged at 12,000 rpm for 3 min using a benchtop
centrifuge (Sorvall Legend Micro 21 micro-centrifuge, Thermo
Fisher Scientific, Waltham, MA, United States). The supernatant
was then applied to a 1.4 ml quartz cuvette (Fisher Scientific,
Waltham, MA, United States) to measure the absorption at 663,
645, 505, and 453 nm using a spectrophotometer (GENESYS 180
UV-Vis, Thermo Fisher Scientific, Waltham, MA, United States).

The concentration of pigments was calculated on a fresh weight
basis (mg·100 g−1) as follows:

Chla = [0.999× A663]− [0.0989× A645]
Chlb = [−0.328× A663]+ [1.77× A645]
Chl = Chla + Chlb
β-carotene = [0.216× A663]− [1.22× A645]−

[0.304× A505]+ [0.452× A453]

Anthocyanins were extracted from the same leaf samples
used for Chl and β-carotene analyses. A total of 0.1 g of the
ground tissue was extracted using 4 ml of pre-cooled (4◦C) 1%
HCL-methanol solution (v/v) in tubes covered with aluminum
foil, and placed in a refrigerator (dark) maintained at 4◦C for
20 min. The mixed solution in the tubes was shaken several
times during extraction. Later it was centrifuged at 12,000 rpm
for 3 min using a benchtop centrifuge (Sorvall Legend Micro 21
microcentrifuge). The supernatant was then applied to 1.5 ml
cuvettes (Fisher Scientific, Waltham, MA, United States). Optical
density (OD) were measured at 530 nm (OD530) and 600 nm
(OD600) using the spectrophotometer (GENESYS 180 UV-Vis).
The difference of OD between 530 and 600 nm was used to
estimate a relative measure of anthocyanins concentration on a
fresh weight basis (1OD·100 g−1) as follows:

Anthocyanins = (OD530-OD600)

Concentration of above pigments was also expressed on a leaf
area basis (mg or 1OD×m−2) as follows:

[
Pigmentarea basis

]
=

[
Pigmentfresh weight basis

]
100

×
FW
LA

Experimental Design and Statistical
Analyses
There were two experiments in the study. Both experiments
were laid out using a randomized block design. Light treatments
were randomly allotted in each replication. An experimental
unit comprised of a set of three plants belonging to a light
treatment, replicated three and four times in experiments 1
and 2, respectively. Photosynthesis measurements were made
in experiment 1 while Anthocyanin and LN were measured
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TABLE 3 | Effect of different light treatments (see Table 1 for treatment description) on the levels of anthocyanins, beta-carotene (β-carotene), chlorophylls (Chl) and ratio
of chlorophyll-a to chlorophyll-b [Chl(a/b)] in green romaine lettuce.

Measurement Treatment

High-R High-B High-B+FR High-R High-B High-B+FR

Fresh weight basis (1OD or mg·100 g−1) Leaf area basis (1OD or mg·m−2)

Anthocyanins 0.012 (0.0037) a 0.013 (0.0037) a 0.009 (0.0037) a 0.069 (0.0181) a 0.072 (0.0181) a 0.051 (0.0181) a

β-carotene 5.98 (0.693) ab 6.99 (0.693) a 4.85 (0.693) b 46.1 (4.71) ab 50.7 (4.71) a 40.1 (4.71) b

Chl 63.6 (6.78) ab 70.7 (6.78) a 54.4 (6.78) b 453.1 (46.13) a 488.6 (46.13) a 406.8 (46.13) a1

Chl(a/b) 2.44 (0.063) a 2.42 (0.063) a 2.26 (0.063) b – – –

Data was expressed on both fresh weight and leaf area basis. Least square means and standard errors (±) (in parenthesis) are shown. Least square means followed by
different letters are statistically different at P ≤ 0.05.
1PHigh−B vs.High−B+FR = 0.077.

FIGURE 4 | Linear relationship between leaf number (LN) and phytochrome
photostationary state (PSS) in romaine lettuce. A linear regression was fitted to
data from three light treatments and three replications per treatment.

in experiment 2. All the other measurements were made in
both the experiments. Data were analyzed using a linear-mixed
model (MIXED procedure) of statistical analysis software (SAS
ver 9.4, Cary, NC, United States). Treatments were considered
as fixed effects while both replications and experiments were
considered as random effects in the model. Least-square means
were separated using Tukey’s honestly significant difference
(HSD) procedure. Relationship between any two variables was
tested using both the linear and quadratic regression procedures
of SAS. A pre-determined alpha value of 5% (P-value≤ 0.05) was
considered statistically significant for all analyses.

RESULTS AND DISCUSSION

Light Spectral Composition
Average instantaneous light intensity received by the plants
was not statistically different and within 10 µmol·m−2

·s−1

among different light treatments (Table 1). However,
spectral composition significantly varied among different
light treatments (Figure 2). The actual percentages of
red, blue, and far-red light were slightly different from
the intended treatment values (Table 1). Further, small
standard errors of least square means indicate that total light
intensity and light composition were highly consistent among
different replications belonging to a light treatment. The
PSS values were significantly different among the three light
treatments, with highest in High-R, followed by High-B, and
lowest in the High-B+FR. This indicates that phytochrome
equilibrium differed among treatments and suggests that
the relative amount of Pfr to total phytochrome was likely
highest in the High-R, followed by High-B, and lowest in the
High-B+FR treatment.

Morphological, Growth, and
Physiological Differences
Plants appeared visually different in the High-B and High-
B+FR treatments compared to High-R treatment (Figure 3).
Plants and individual leaves were generally smaller in the
High-B treatment compared to High-R and High-B+FR
treatments. These differences may indicate lower LPR and/
or light interception in High-B treatment. In the High-
B+FR treatment, plants had both elongated and expanded
leaves. In addition, plants were pale with fewer leaves in
the High-B+FR compared to the other treatments. The
canopy was open with relatively less intra-canopy shading in
the High-B+FR treatment. These phenotypic characteristics
may indicate that plants in the High-B+FR exhibited shade
avoidance responses.

Shoot fresh weight was significantly higher in the High-R
than High-B and High-B+FR treatments (Table 2). There were
no significant differences in SFW between High-B and High-
B+FR treatments. The SFW of plants increased by 9.8 and 8.8%,
respectively, in the High-R compared to High-B and High-B+FR.
Whereas SDW of plants was significantly lower in the High-B
treatment compared to the other treatments and not different
between High-R and High-B+FR treatments. The increase in
SDW of plants in the High-B+FR and High-R compared to
High-B was 13% and 18%, respectively. A decrease in both
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FIGURE 5 | Relationship between (A) level of chlorophylls per unit leaf area (Chlarea) and average area of a single leaf (LAs), (B) level of beta-carotene per unit leaf
area (β-carotenearea) and LAs, (C) level of anthocyanins per unit leaf area (Anthocyaninsarea) and LAs, (D) levels of chlorophylls per unit fresh weight (Chlweight) and
LAs, (E) level of beta-carotene per unit fresh weight (β-caroteneweight) and LAs, (F) level of anthocyanins per unit fresh weight (Anthocyaninsweight) and LAs in romaine
lettuce. Data from three light treatments and three replications per treatment are shown. A linear regression was fitted to data in panels (A,D) and a quadratic
regression was fitted to data in panels (B,E).

SFW and SDW of plants in the High-B compared to High-R
indicates slower growth rate in the High-B treatment. Further,
the results indicate that reduced growth rate in High-B was
reversed by the addition of far-red light. No differences in SFW
but an increase in SDW in the High-B+FR than High-B suggest
increased shoot water content in High-B than High-B+FR.
Similarly, decrease in SFW in High-B+FR but no differences in

SDW between High-B+FR and High-R suggest a decrease in
shoot water content of plants in the High-B+FR compared to
High-R.

Leaf area of plants was not different between the High-R
and High-B and significantly lower in the High-B+FR treatment
(Table 2). These results indicate a lack of association between LA
and SDW. Although LPR was not statistically different among
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FIGURE 6 | Linear relationship between the levels of beta-carotene
(β-carotene) and chlorophylls (Chl) in romaine lettuce. A linear regression was
fitted to data from three treatments and all seven replications from two
experiments.

treatments, it was numerically higher in the High-R compared
to High-B (P = 0.062) and High-B+FR (P = 0.052) (Table 2).
There were no statistical differences in LPR between High-B and
High-B+FR treatments. Further, this indicates that the addition
of far-red light to high percentage of blue light did not “enhance”
LPR of lettuce in the long-term. In addition, the results indicate
that LPR is highly sensitive to high-energy blue light as lower
LPR was observed in both treatments with high percentage of
blue light (i.e., High-B and High-B+FR). However, CA responses
were similar to those observed for SDW. Log transformed CA
was not significantly different between the High-R and High-
B+FR treatments but significantly lower in the High-B treatment,
similar to that of SDW. A lower CA in the High-B treatment may

suggest that plants intercepted less incident light and an increase
in CA in the High-B+FR compared to High-B indicate that plants
intercepted more incident light.

Vegetative growth is related to both light interception by
the canopy and light use in photosynthesis (He et al., 2019;
Liao et al., 2019). Because LA, CA, and LPR were highest,
maximum vegetative growth was observed in the High-R
treatment (Table 2). Other studies also reported that high
percentage of red light can efficiently drive photosynthesis,
promote leaf expansion, stem elongation, and dry mass gain
in plants (Gómez and Izzo, 2018; Kusuma et al., 2020). Shoot
growth was lowest in the High-B treatment likely due to
significant decrease in CA and numerical decrease in LPR,
compared to the High-R treatment. The CA measurement in
our study is proportional to the non-shaded leaf area. In other
studies, CA was related to light interception (Zhen and Bugbee,
2020) and biomass production (Zhu et al., 2010; Jones et al.,
2015) in plants. Thus, lower CA likely contributed in part
to decreased growth in the High-B than High-R. Blue light
was found to be photosynthetically less efficient than red light
(McCree, 1972; Cope et al., 2013; Kusuma et al., 2020). Therefore,
lower LPR also likely contributed to decreased growth in the
High-B than High-R. Although LPR decreased in High-B+FR,
an increase in CA was observed in this treatment suggesting
increased light interception (Table 2). The absorbed far-red
photons (700–750 nm) can be equally efficient for photosynthesis
when combined with photosynthetically active radiation (400–
700 nm) (Zhen and Bugbee, 2020). Collectively these can
explain increased dry weight in the High-B+FR compared
to High-B.

The percentage of blue light in the High-B (47.2%) was much
higher than the recommended level of 10–15% of total light
(Hoenecke et al., 1992; Son and Oh, 2013; Ouzounis et al., 2014;
Runkle, 2016). High-energy blue light was reported to increase
oxidative stress (Ohnishi et al., 2005), resulting in damage
to photosynthetic machinery. Anthocyanins are synthesized in
the cytosol (Tanaka et al., 2008), absorb blue and green wave
bands (Pietrini and Massaeei, 1998; Kusuma et al., 2020), and

FIGURE 7 | A model showing the effects of blue, red, and far-red radiation on physiological responses at cellular and leaf scales that affect vegetative growth and
pigment synthesis in romaine lettuce. Model parameters include blue light (B), red light (R), far-red light (FR), leaf photosynthesis rate (LPR), phytochrome
photostationary state (PSS), average leaf number per plant (LN), average area of individual leaf (LAs), chlorophylls level (Chl), beta-carotene level (β-carotene),
anthocyanins level, canopy area (CA), and shoot dry weight (SDW). Black and red arrows indicate positive and negative relationships, respectively, between two
parameters.
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screen photosynthetic machinery from damage due to high-
energy radiation (Close and Beadle, 2003; Hughes et al., 2012).
Anthocyanins function by attenuating the light that reaches
chloroplasts (Gould et al., 1995; Mendez et al., 1999; Smillie
and Hetherington, 1999; Close, 2001; Zhang et al., 2010). We
observed no differences in anthocyanins between High-B and
High-R and decrease between High-R and High-B+FR. It is
possible that the decreases in LPR in High-B and High-B+FR
treatments are likely due to a large fraction of photosynthetically
less efficient blue radiation (McCree, 1972) in these treatments.
Enhancement in LPR was reported with the addition of far-red
light to broadband white light due to simultaneous activation
of both photosystem II and I reaction centers (Zhen and van
Iersel, 2017). There were no differences in LPR between High-
B+FR and High-B, indicating no enhancement of photosynthesis
due to addition of far-red light to high-energy blue radiation in
our study. Chla, an integral component of the reaction center
of photosystem (Horton et al., 2002; Fromme et al., 2006),
was significantly lower [based on Chl(a/b) ratio, Table 3] in
the High-B+FR than High-B. In addition, β-carotene levels
were significantly lower in in the High-B+FR than High-
B (Table 3). β-carotene is mostly present in the reaction
center of photosystem (Härtel and Grimm, 1998; Ruiz-Sola and
Rodríguez-Concepción, 2012) and aid in absorbing light in the
range of 450–570 nm where Chl absorption declines (Ruiz-Sola
and Rodríguez-Concepción, 2012). Collectively, these may have
partly contributed to lack of photosynthesis enhancement in the
High-B+FR treatment.

Leaf Number and Individual Leaf Area
A significant reduction in LN was observed in the High-B+FR
compared to High-B and High-R treatments (Table 2). The
result indicates a decrease in leaf primordia in plants with
the addition of far-red light. There was a linear and positive
relationship between LN and PSS (Figure 4), indicating that LN
increased with increasing Pfr to total phytochrome in plants. As
Pfr increases with increasing red light incident on plants, the
results indicate that high proportion of red light increases LN.
Previously, decrease in LN due to far-red addition in lettuce was
reported (Meng and Runkle, 2019). There was no association
between LA or CA and LN (data not shown), indicating leaf
development happened independent of leaf primordia number or
initiation in plants. The linear and positive relationship between
LN and PSS (Figure 4) indicates that lower LN in the High-
B+FR is likely associated with lower phytochrome equilibrium
or increased proportion of Pr to total phytochrome in the
High-B+FR treatment due to increased far-red light. Plants use
increased proportion of far-red light in the environment as an
indicator of proximity of neighbors and respond by exhibiting
suit of traits (e.g., elongation) that reduce future canopy shading
(Ballaré et al., 1990; Gommers et al., 2012; Yang and Li, 2017). The
“proximity response” can happen even due to a slight decrease
in red to far-red ratio and does not require a reduction in the
intensity of total or red light (Martinez-Garcia et al., 2014).
Increased proportion of far-red light (which lowers PSS value)
resulted in reduced leaf primordia (Carabelli et al., 2007; Yang and
Li, 2017) and increased elongation growth (Lorrain et al., 2008;

Martinez-Garcia et al., 2014; Yang and Li, 2017). Thus, reduced
LN in the High-B+FR is most likely due to increased proportion
of far-red light in this treatment.

A significantly higher LAs was observed in the High-B+FR
compared to High-R and High-B treatments (Table 2). This
means, leaf lamina of individual leaves expanded more in the
High-B+FR treatment compared to other treatments. The plants
in the High-B+FR likely exhibited proximity responses but were
not “truly” exposed to shade during growth. Due to decreased LN
and reduced leaf layers (Figure 3), there likely was little intra-
canopy shading and increased light interception in the High-
B+FR. As plants did not experience shade or low light intensity
after initiating shade responses, products of photosynthesis were
available continuously to a small number of leaves, thereby
resulting in expansion growth of individual leaves. This is the
likely reason for increased LAs in the High-B+FR than High-B.
The LPR was not different between High-B and High-B+FR, but
products of photosynthesis were distributed to relatively more
number of leaves in the High-B, resulting in smaller LAs. Thus,
the increased CA or LAs in the High-B+FR than High-B is likely
a consequence of reduced LN and continued photosynthesis,
albeit at a lower rate. Meng and Runkle (2019) and Zhen and
Bugbee (2020) indicated that increased vegetative growth with
far-red addition was related to increased canopy photon capture.
Our results agree with the above two studies. In addition, our
results point to the additional fact that increased SDW from
increased CA in the High-B+FR is an indirect consequence of
a negative effect of far-red light on LN in lettuce.

Plant Pigments
On a fresh weight basis, the levels of β-carotene and Chl were
highest in the High-B, intermediate in the High-R, and lowest in
the High-B+FR treatment (Table 3). Anthocyanins levels were
not statistically different but trended similar to other pigments.
The levels of β-carotene and Chl in the High-B was higher by
31 and 23%, respectively, than High-B+FR treatment. Pigment
differences expressed on a leaf area basis were generally similar to
those expressed on fresh weight basis. The level of β-carotene was
highest in the High-B, intermediate in the High-R, and lowest
in the High-B+FR (Table 3). The levels of anthocyanins and
Chl were not statistically different when expressed on a leaf area
basis. The levels trended lower in High B+FR. These results
indicate that high percentage of blue light can increase pigments
levels in romaine lettuce. Pigments were consistently lower in the
High-B+FR than High-B in spite of exposure to relatively high
percentage of blue light (42%) in the High-B+FR treatment. This
indicates that far-red light has more influence on plant responses
than blue light in the High-B+FR treatment. The Chl(a/b) ratio
was significantly lower in the High-B+FR compared to other
treatments, while no differences were observed between the
High-R and High-B treatments (Table 3). This suggests that
lower level of Chl in the High-B+FR treatment is likely due to
relatively larger decrease in the concentration of Chla than Chlb.

When data from all light treatments were pooled, negative
linear and quadratic relationships were observed between the
level of Chl or β-carotene expressed on leaf area or fresh
weight basis and LAs, respectively (Figures 5A,B,D,E). Although
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the response was not significant, similar trend was observed
between anthocyanins levels per unit leaf area or fresh weight
and LAs (Figures 5C,F). This indicates that, regardless of light
composition, pigment levels per unit leaf area decreased as LAs
increased. Further, this indicates that the differences in pigment
levels can be explained mostly by changes in the LAs. In other
words, levels of pigments were regulated likely at the individual
leaf scale. As LAs became smaller (e.g., High-B treatment),
the pigment levels increased and as the LAs became larger
(e.g., High-B+FR treatment), a decrease in pigment levels was
observed. This is likely because resources for leaf expansion and
pigment synthesis share a common source, i.e., glucose from
photosynthesis. For example, precursors of anthocyanin (e.g.,
malonyl CoA; Tanaka et al., 2008), and Chl, and β-carotene
(e.g., pyruvate and glyceraldehyde 3-phosphate; Meier et al.,
2011; Ruiz-Sola and Rodríguez-Concepción, 2012) are formed in
glycolysis that uses glucose from photosynthesis as the substrate
(Horton et al., 2002). However, more work is needed to further
understand the involved biochemical mechanisms.

A linear and positive relationship was observed between the
level of Chl and β-carotene expressed on fresh weight basis
(Figure 6). These results suggest that the increase in the level of
Chl was associated with an increase in the level of β-carotene
in plants. Both Chl and β-carotene synthesis were shown to
be upregulated by blue light (Fu et al., 2012; Tuan et al.,
2017) and dependence of β-carotene synthesis on biosynthesis
of Chl was previously reported (Bohne and Linden, 2002; Fu
et al., 2012). Further, coordinated transcription of phytoene
synthase and many isoprenoid biosynthesis genes was shown
to be critical for regulating biosynthesis of carotenoids and Chl
(Meier et al., 2011) and involvement of a STAY-GREEN protein
for regulation of lycopene and β-carotene biosynthesis during
ripening processes was reported in tomato (Luo et al., 2013).
The linear relationship between β-carotene and Chl in our study
suggests that the proportionate change in both pigments was
not different among the light treatments in our study. Similar to
our results, Härtel and Grimm (1998) indicated that β-carotene
to Chl ratio remained mostly unchanged in tobacco under low
and high light environments. These results indicate that factors
that increase Chl (e.g., tissue nitrogen concentration) can likely
increase β-carotene levels in leaves.

CONCLUSION

Our objectives were to understand the effects of high-energy
blue and low-energy far-red on vegetative growth and pigment
synthesis in plants. In our study, effects of light composition on
vegetative growth and pigment synthesis appear to be mediated
by LN and LAs (Figure 7). Romaine lettuce plants provided

with high proportion of blue light showed decreased growth
and increased levels of Chl and β-carotene. Plants provided
with high proportion of blue radiation showed decreased LPR,
likely due to lower photosynthetic efficiency of blue light.
Addition of far-red light to high proportion of blue light
resulted in relatively more photomorphogenic effects on plants.
We observed morphological changes including lower LN and
increase in the LAs in plants exposed to far-red light. Addition
of low-energy far-red light to high-energy blue light did not
enhance LPR. When LN increases without a change in LPR
as in the High-B compared with High-B+FR, the products
of photosynthesis are distributed to larger number of leaves
thereby resulting in smaller LAs. Whereas when LN decreases
without change in LPR as in High-B+FR compared to High-
B, the products of photosynthesis will be allocated to a fewer
number of leaves thereby resulting in larger LAs. The High-R
treatment showed positive effects on both LPR and LN, resulting
in LAs intermediate to that of the High-B and High-B+FR
treatments. Larger LAs in the High-B+FR likely resulted in
larger CA (and likely increased light interception) and SDW.
Whereas, intermediate LAs coupled with increased LPR in High-
R, likely resulted in increased SDW. In contrast, smaller LAs
and decreased LPR likely resulted in smaller CA and SDW in
the High-B. Pigment levels increased with decreasing LAs and
decreased with increasing LAs. Because of this, the levels of
Chl and β-carotene (and anthocyanins likely) were highest in
the High-B, followed by the High-R, and lowest in the High-
B+FR treatment. The results from this study indicate that high-
energy blue and low-energy far-red light affect the number and
expansion of individual leaves differently, thereby influencing
both vegetative growth and pigment synthesis in lettuce. We
hope that the information generated in this study can aid in
increasing our understanding of plant responses to high-energy
blue and low-energy far-red radiation and optimizing lighting
environment in vertical farms.
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UV-B (280–315 nm) radiation has been used as an effective tool to improve bioactive 
compound contents in controlled environments, such as plant factories. However, plant 
structure changes with growth progress induce different positional distributions of UV-B 
radiation interception, which cause difficulty in accurately evaluating the effects of UV-B on 
biosynthesis of bioactive compounds. The objective of this study was to quantitatively 
analyze the positional distributions of UV-B radiation interception and bioactive compound 
contents of kales (Brassica oleracea L. var. acephala) with growth progress and their 
relationships. Short-term moderate UV-B levels did not affect the plant growth and 
photosynthetic parameters. Spatial UV-B radiation interception was analyzed quantitatively 
by using 3D-scanned plant models and ray-tracing simulations. As growth progressed, the 
differences in absorbed UV-B energy between leaf positions were more pronounced. The 
concentrations of total phenolic compound (TPC) and total flavonoid compound (TFC) were 
higher with more cumulative absorbed UV-B energy. The cumulative UV energy yields for 
TFC were highest for the upper leaves of the older plants, while those for TPC were highest 
in the middle leaves of the younger plants. Despite the same UV-B levels, the UV-B radiation 
interception and UV-B susceptibility in the plants varied with leaf position and growth stage, 
which induced the different biosynthesis of TFC and TPC. This attempt to quantify the 
relationship between UV-B radiation interception and bioactive compound contents will 
contribute to the estimation and production of bioactive compounds in plant factories.

Keywords: flavonoids, phenolic content, plant structure, three-dimensional analysis, ultraviolet yield, vertical farm

INTRODUCTION

Brassica vegetable crops are known to have beneficial effects on human health (Heimler et  al., 
2007; Podsędek, 2007; Francisco et  al., 2017). Among them, kale (Brassica oleracea L. var. 
acephala), which is a rich source of health-promoting phytochemicals, such as polyphenols 
and carotenoids (Olsen et al., 2009; Walsh et al., 2015), has been widely cultivated and consumed 
for several centuries (Šamec et  al., 2019). Recently, to improve individual phytochemicals, the 
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nutritional contents and profiles of Brassica vegetables have 
been studied (Krumbein et  al., 2010; Ishida et  al., 2014). As 
strategies for optimizing and balancing these profiles, 
manipulation of environmental factors has been attempted (Oh 
et al., 2009; Davies and Espley, 2013). Variations in the amounts 
and patterns of compounds have been attributed to abiotic 
stress factors, including temperature, drought, salinity, and 
ultraviolet (UV) radiation (Ramakrishna and Ravishankar, 2011; 
Linić et  al., 2019; Podda et  al., 2019; Toscano et  al., 2019). 
In particular, UV-B (280–315  nm) has a great impact on plant 
defense mechanisms and is used as an effective tool to increase 
bioactive compound contents over short-term periods in various 
crops (Czégény et  al., 2016; Escobar-Bravo et  al., 2017; 
Yavaş et  al., 2020).

Many previous studies have focused on the effects of 
UV-B energy (dosage) levels on bioactive compounds in 
many crops for application in controlled environments, such 
as plant factories (Martínez-lüscher et  al., 2013; Hectors 
et  al., 2014; Zhao et  al., 2020). UV-B levels have been 
determined from the energy emitted by UV-B light sources 
(Bian et  al., 2014; Acharya et  al., 2016). However, plant 
responses to UV-B are driven not by the energy released 
but by the energy absorbed by leaves (Meyer et  al., 2009), 
which changes with leaf position (Morales et  al., 2011). 
UV-B exposure on upper leaves was more advantageous 
for absorbing light, but lower leaves had no choice but to 
receive the transmitted light in the plant canopy (Filella 
and Peñuelas, 1999). In Arabidopsis, the light capture efficiency 
of simulated leaves with spiral phyllotaxis increased with 
leaf order (Strauss et al., 2020). Therefore, the accumulation 
pattern of UV-B absorbing compounds should be considered 
with respect to leaf position (Grammatikopoulos et al., 1999;  
Liakoura et  al., 2003).

In most previous studies, accumulation of bioactive 
compounds according to leaf position has been interpreted 
as an influence of UV-B susceptibility that is related to leaf 
age (Behn et  al., 2011; Majer and Hideg, 2012; Holub et  al., 
2019). Considering the three-dimensional (3D) plant structure, 
bioactive compounds at each leaf were determined with UV-B 
radiation interception as well as with leaf age in kale (Yoon 
et  al., 2021). As plant growth progresses, changes in lighting 
distance (Kim et  al., 2020b) or planting density (Portes and 
Melo, 2014; Xue et al., 2015) can affect the spatial distribution 
of light interception for whole plants, which is directly related 
to plant growth and biomass production. Accumulation of 
bioactive compounds is regulated by the overall developmental 
stages of whole plants as well as by the specific developmental 
state of each leaf (Lois, 1994). In particular, under UV-B 
exposure, secondary metabolites are affected by plant 
developmental ages in pak choi (Heinze et al., 2018). Therefore, 
plant growth progress may cause large variations in absorbed 
UV-B based on leaf position as well as the UV sensitivity 
due to leaf age. Their influences on metabolite accumulation 
cannot be distinguished without quantification of the absorbed 
UV-B energy distribution.

Recently, the light distribution for a whole plant was 
quantitatively analyzed using 3D plant models and ray-tracing 

simulation analysis (Kim et  al., 2020a,b). However, spatial 
analysis of light distribution has not been applied to UV-B 
radiation. These methods allow interpretations of absorbed 
UV-B distributions based on plant structure. This study 
hypothesized that, for individual plants, light interception 
depends on leaf position as well as growth stage, which will 
affect UV-B-induced biosynthesis of bioactive compounds. The 
objective of this study was to quantitatively analyze the positional 
distributions of UV-B radiation interception and bioactive 
compound contents of kales with growth progress and their 
relationships using 3D analysis.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Kale seeds (B. oleracea L. var. acephala, “Manchoo collard,” 
Asia Seed Company, Seoul, South Korea) were sown and 
germinated on sponge cubes by hydroponic methods under 
fluorescent lamps at a photosynthetic photon flux density of 
150  μmol  m−2  s−1. After the first leaf appeared, the seedlings 
were supplied with a nutrient solution for Brassica modified 
from a previous study (Choi et  al., 2005): N 137.8, P  30.9, 
K 140.9, Ca 104.6, Mg 54.8, Fe 2.76, Cu 0.02, Zn 0.05, Mn 
0.68, B 0.50, and Mo 0.01 mg  l−1, at an electrical conductivity 
(EC) of 0.6  dS  m−1. At 4 weeks after germination, seedlings 
were transplanted into plant factory modules with a deep 
flow technique system, and each module was 150 
H × 80 W × 50 L (cm) in size. The modules were maintained 
at 24°C/20°C light/dark temperatures, 70% relative humidity, 
and 500  μmol  mol−1 CO2 concentration. The transplanted 
plants were irradiated with light-emitting diodes (LEDs) at 
200  μmol  m−2  s−1 over a waveband of 400–700  nm for a 
16  h light period and were supplied with 1.2  dS  m−1  EC 
nutrient solution. The spectrum of the LED for growth was 
measured using a spectroradiometer (Blue-Wave spectrometer, 
StellarNet Inc., Tampa, FL, United  States) in the range of 
380–900  nm (Figure  1A). Three plants per treatment were 
harvested at 14 days after transplanting (DAT), and two plants 
per treatment were harvested at 28  DAT.

Growth Characteristics
Fresh leaf weights were determined at harvest with three 
replicates per treatment, and dry leaf weights were measured 
after drying in an oven for 120 or 168  h for the 14  DAT 
and 28 DAT plants, respectively. After photographing all leaves, 
total plant leaf areas were calculated with the image analysis 
software ImageJ (National Institutes of Health, Bethesda, MD, 
United States). Leaf positions (upper, middle, and lower leaves) 
were determined in the order from youngest to oldest, and 
consisted of 3, 2, and 2 leaves at 14  DAT and 3–4, 3, and 3 
leaves at 28  DAT, respectively.

UV-B Treatment
All plants were irradiated with supplemental UV-B LEDs 
(Ericson Company Ltd., Bucheon, South Korea) with 1.2 W m−2 
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at a spectrum peak approximately 310  nm. The irradiance 
and spectrum of UV-B LEDs were measured by a UV sensor 
(MU-200, Apogee Instruments Inc., Logan, UT, United States) 
and the spectroradiometer in the range of 250–400  nm 
(Figure  1B). UV-B exposure periods were 6 and 12  h per 
day for 1, 2, and 3  days before harvest, which resulted in 
a total of six treatments (e.g., 1  d 6  h, 1  d 12  h, 2  d 6  h, 
2  d 12  h, 3  d 6  h, and 3  d 12  h), and the experimental 
setup is shown in Figure  1C. The cumulative UV-B doses 
of six treatments were 21.6, 43.2, 43.2, 86.4, 64.8, and 
129.6  kJ  m−2 for 3  days, respectively, which are equivalent 
to biologically effective UV-B radiation (UV-BBE) doses of 
2.1, 4.2, 4.2, 8.4, 6.3, and 12.6  kJ  m−2 for 3  days, respectively. 
UV-BBE was calculated using a plant action spectrum in the 
UV range (Flint and Caldwell, 2003). After UV-B exposure, 
all plants had a recovery time of 4  h per day. At the end 

of 14 and 28  DAT, the plants from all treatments were 
harvested simultaneously.

Chlorophyll Fluorescence
Chlorophyll fluorescence was measured for 30  min dark-
adapted leaves using a chlorophyll fluorescence meter (Handy 
PEA fluorometer, Hansatech, Kings Lynn, United  Kingdom) 
according to a previous study (Rapacz, 2007). At 14 and 
28 DATs, all measurements were performed after the recovery 
time with three replicates per treatment and leaf position. 
Measurements were performed using a saturating pulse of 
1,500  μmol  m−2  s−1 for 1  s to determine the minimal 
fluorescence (F0) and maximal fluorescence (Fm) values. The 
maximal photochemical efficiency of photosystem II (Fv/Fm) 
was calculated as (Fm  −  F0)/Fm.

A

C

B

FIGURE 1 | Experimental design. Light spectra of the red, blue, and white light-emitting diodes (LEDs) for plant growth (A) at 200 μmol m−2 s−1 over a waveband of 
400–700 nm and UV-B LED (B) of 1.2 W m−2 at a spectrum peak of 310 nm. The schedules of UV-B treatments (C) consisting of supplemental UV-B exposures of 
6 and 12 h per day for 1, 2, and 3 days before harvest were the same for both harvest dates at 14 and 28 days after transplanting (DATs).
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Bioactive Compounds and Antioxidant 
Capacity
Total Phenolics
Total phenolic compounds (TPCs) were measured by the Folin-
Ciocalteu colorimetric method (Ainsworth and Gillespie, 2007). 
Powdered samples (50  mg) were mixed with 1  ml of 80% 
methanol, incubated for 48  h in the dark at room temperature 
and centrifuged at 1.1  ×  104  g for 10  min. Supernatants of 
samples (50  μl) were collected in 2  ml microtubes and were 
then mixed with 750  μl of 10% Folin-Ciocalteu solution and 
135  μl of distilled water using a vortexer. After mixing, 600  μl 
of 700  mm Na2CO3 was added, and the samples were then 
incubated for 2  h at room temperature. Sample absorbances 
were read at 765  nm using a spectrophotometer (PhotoLab 
6100 VIS, Weilheim, Germany). The standard unit for TPC 
was expressed as milligrams of gallic acid equivalent per gram 
of dry weight (mg  GAE  g−1  DW).

Total Flavonoids
Total flavonoid compound (TFC) amounts were measured by 
an aluminum chloride colorimetric method (Dewanto et  al., 
2002; Lee et  al., 2012). Powdered samples (50  mg) were mixed 
with 1  ml of 80% methanol, incubated for 24  h in the dark 
at 4°C, and centrifuged at 1.1  ×  104  g for 10  min. The 
supernatants (50  μl) of the samples were collected in 2  ml 
microtubes, and 135  μl of distilled water and 45  μl of 5% 
NaNO2 were added. Ninety microliters of 10% AlCl3 and 300 μl 
of 1  M NaOH were added after 5 and 6  min, respectively, 
and 165  μl of distilled water was then added. After incubating 
for 30  min, sample absorbances were then read at 510  nm 
using a spectrophotometer, and the standard unit for TFC 
was expressed as milligrams of catechin acid equivalent per 
gram of dry weight (mg  CE  g−1  DW).

Antioxidant Capacity
Total antioxidant capacity was measured using the 2, 2-diphenyl-
1-picrylhydrazyl (DPPH) assay method (Brand-Williams et  al., 
1995; Andarwulan et  al., 2010). A DPPH solution was prepared 
with 500  ml of 80% methanol and 12  mg of DPPH. Powdered 
samples (50 mg) were mixed with 1 ml of 80% methanol, incubated 
for 48  h in the dark at room temperature and centrifuged at 
1.1  ×  104  g for 10  min. Supernatants (50  μl) were then collected 
in 2  ml microtubes, and 1.95  ml of DPPH solution was added. 
After incubating for 30  min, the sample absorbances were then 
read at 517  nm by the spectrophotometer and used methanol 
as the blank. Antioxidant activity was expressed as radical scavenging 
activity (RSA), which was calculated using the following equation:
 
RSA A A Acontrol nm sample nm control nm% /( )= −( ) ×517 517 517 100  (1)

where the Acontrol 517  nm and Asample 517  nm are the absorbances of 
the samples at 517 nm without and with leaf extracts, respectively.

Light Interception With 3D Plant Structure
Light interceptions of kale plants were analyzed using 3D-scanned 
plant models and ray-tracing simulation analysis method 

(Kim et al., 2020a,b; Yoon et al., 2021). The detailed procedure 
and condition from scan to simulation were described in 
Supplementary Figure S1.

Construction of 3D-Scanned Plant Models
The plants were scanned with a high-resolution portable  3D 
scanner (GO!SCAN50TM, CREAFORM, Lévis, Quebec, Canada). 
The scanner resolution was set at 2  mm. The scanned plants 
were randomly selected as one plant per treatment (Control, 
UV6  h and UV12  h) before and after treatment, and a total of 
six scanned models were generated at each growth stage. The 
scanned data were exported to 3D mesh data with its scanning 
software (VXelement, CREAFORM). Holes and noise in the 
mesh data were fixed, and segmented mesh data were 
reconstructed to a surface model to perform ray-tracing 
simulations by reverse engineering software (Geomagic Design X, 
3D Systems, Rock Hill, SC, United  States).

Ray-Tracing Simulation
For the ray-tracing simulations, the transmittance and reflectance 
of each leaf position and module material were measured using 
the spectroradiometer with an integrating sphere (IC-2, StellarNet 
Inc.) in a range of 250–700 nm to determine optical properties 
for the plant models (Supplementary Figure S1). A virtual 
growth bed and LED bars were reconstructed using 3D computer-
aided design software (Solidworks, Dassault Systèmes, Vélizy-
Villacoublay, France) with the same size and layout as the 
actual growth environment. Twenty-four or twelve surface 
models of scanned plants were placed on the virtual growth 
bed equal to the actual planting density for each growth stages, 
14 or 28  DAT, respectively. Ray-tracing simulations were 
performed by using a ray-tracing software (Optiworks, OTIS 
Inc., La Farlède, France). After setting up all leaf surface models 
as separate detectors, the simulation outputs were averaged 
according to leaf position and treatment. All simulation results 
are presented as the average light interceptions in the 
photosynthetically active radiation (PAR) range of 400–700 nm 
and the UV range of 250–400  nm.

Statistical Analysis
Comparison of mean value were performed with one-way or 
two-way ANOVA and Tukey’s HSD test to assess the effects 
of treatments or leaf positions with R software (R 1.2.5, 
R Foundation, Vienna, Austria). The UV energy yields for 
TPC and TFC contents were considered as the increase rate 
based on cumulative absorbed UV energy, and the increase 
rates compared to the control were regressed into a nonlinear 
regression as follows:

Increase rate of TPC or TFC a UV b  % /( )= +∆  (2)

where a and b are the regression coefficients for the relationships 
between bioactive compounds and absorbed UV. ∆UV is the 
UV absorbed on leaves in each treatment. Linear and nonlinear 
regressions were conducted with Python (Python 3.6.7, Python 
Software Foundation, Wilmington, United  States).
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RESULTS

Plant Growth
The plant growth characteristics did not show any significant 
differences among the treatments at either growth stage during 
cultivation (Figure  2). In the UV12  h treatments (e.g., 1  d 12  h, 
2  d 12  h, and 3  d 12  h), fresh leaf weights and dry leaf 
weights slightly decreased with the UV-B exposure period at 
28  DAT (Figures  2C–F), and leaf areas were 10–25% lower 
than those of the control (Figures  2A,B). Fv/Fm values at 14 
and 28  DATs were 0.82–83  in all treatments and did not differ 
among treatments (data not shown). Therefore, UV-B levels 
did not affect the growth or photochemical efficiency in 
all treatments.

Vertical Distributions of PAR and UV 
Radiation Interception
Photosynthetically active radiation and UV radiation interceptions 
were simulated well with the 3D structure of the plants, i.e., 
leaf positions and leaf angles (Figure 3). Radiation interception 

levels increased with plant height and leaf position in the 
order of upper, middle, and lower leaves for both growth stages 
(Figure  4). Plants at 14  DAT had lower plant heights but the 
leaves at each position received higher light intensities compared 
to those at 28  DAT (Figure  4A). At 14  DAT, the absorbed 
UV levels of the upper leaves were 12.1 and 54.5% higher 
than those of the middle and lower leaves, respectively 
(Figure  4B). The differences in absorbed UV light between 
leaf positions were more pronounced at 28  DAT, for which 
the UV radiation interceptions of the upper leaves were 34.1 
and 88.8% higher than those of the middle and lower leaves, 
respectively.

Bioactive Compounds and Antioxidant 
Capacity
TFC and TPC concentrations and antioxidant capacity (RSA) 
were higher with greater UV-B doses and higher leaf positions 
(Figure  5). Only on the upper leaves at 14  DAT were the 
TFC and TPC levels significantly higher than those at other 
positions (Figures  5A,C,E), while those at 28  DAT increased 

A B

C D

E F

FIGURE 2 | Total leaf areas (A,B); leaf fresh weights (C,D); and dry weights (E,F) of kales grown under the control and UV-B treatments at 14 and 28 days after 
transplanting (DATs). Vertical vars indicate the standard deviation of mean. Refer to Figure 1C for the UV treatments.
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significantly in the order of upper, middle, and lower leaves 
(Figures  5B,D,F). In all treatments at 14  DAT, the TFC and 
TPC levels in the upper leaves were 35.9–63.1% and 29.6–55.2% 
higher than those of the other leaves, respectively. At 28  DAT, 
those values in the upper leaves were 29.3–36.8% and 70.1–82.6% 
higher than those of the other leaves, respectively. Overall, 
the TFC, TPC, and RSA values for the 2  d 12  h and 3  d 
12  h treatments were higher than those for the control at 
both growth stages.

Relationships Between UV Light 
Interception and Bioactive Compounds
Across all data, the TPC and TFC concentrations relative to 
the cumulative amounts of UV absorbed for 3  days showed 
linear relationships at each leaf position (Figure  6). The 
coefficients of determination (R2) of the linear regressions are 
shown in Table  1. As growth progressed from 14 to 28  DATs, 
the gradients of TFC levels against absorbed UV increased 
slightly for the upper leaves (Figures  6A,B). In contrast, the 
gradients of TPC levels for the upper leaves decreased by 25% 
but only increased by 13.8% in the middle leaves at 28  DAT 
compared to those at 14  DAT.

Changes in TFC and TPC levels relative to cumulative 
absorbed UV amounts were regressed according to leaf positions 
and growth stages using rectangular hyperbolic equations 
(Figure  7; Eq.  2). The R2 values of these nonlinear regressions 
are shown in Table  1. The patterns of increase rates, i.e., the 
cumulative UV energy yields, were dependent on the type of 

bioactive compound. UV yields for TFC were highest in the 
upper leaves at 28  DAT (Figure  7B), but those among leaf 
positions did not differ noticeably at 14  DAT (Figure  7A). 
On the other hand, UV yields for TPC were highest in the 
middle leaves at both growth stages and decreased for all leaf 
positions at 28  DAT compared to those at 14  DAT 
(Figures  7C,D).

DISCUSSION

Effect UV-B Radiation on Plant Growth
In most previous studies, growth inhibition in UV-B-acclimated 
plants was observed for numerous species (Hofmann et  al., 
2001; Jansen, 2002; Hectors et al., 2007). As growth progressed, 
all growth characteristics under UV-B exposure were slightly 
lower than those of the control (Figure  2). In addition, Fv/Fm 
values for all treatments remained at 0.82–83, which indicated 
normal growth conditions (Baker, 2008). In this study, the 
UV-BBE doses were 2.1 or 4.2  kJ  m−2  d−1 in UV6  h and UV12  h 
treatment, and the daily light integral in the PAR range was 
11.5  mol  m−2  d−1. These unrealistic ratios of UV-BBE and PAR 
for a day are far from those under sunlight (Bornman et  al., 
2019). The photon ratio of 1.3% between the UV-B (not UV-BBE) 
and PAR also differed from sunlight, which is less than 0.2% 
(Robson et  al., 2019). Despite of the higher UV-B/PAR ratio, 
the short-term UV-B duration was not sufficient to affect the 
growth and photosystem II activity. These results were consistent 
with the previous results, which did not have a negative effect 
on the growth of kale exposed to UV-B radiation for 2–3  days 
before harvest (Yoon et  al., 2020, 2021).

UV-B Radiation Interception With Growth 
Progress
Several studies have determined the spatial distributions of 
light interception in plant canopies by use of a mathematical 
or functional structural plant model in soybean, maize, and 
tomato (Wells et  al., 1993; Stewart et  al., 2003; Sarlikioti et  al., 
2011). Similar to the previous results, UV radiation interception 
increased with leaf height and leaf position for both growth 
stages (Figures  3, 4). However, average light interception 
decreased with growth progress for all leaf positions (Figure 4B). 
In contrast, the previous reports for taller crops showed higher 
light interception than for shorter crops with growth progress 
(Xue et  al., 2015; Cabrera-Bosquet et  al., 2016). Unlike natural 
light, the narrow radiation ranges of artificial light sources, 
such as LEDs in controlled environments, affects the irradiation 
area depending on lighting distance and planting conditions. 
Calculation based on the scanned plant models, the distance 
of the upper, middle, and lower leaves from the light source 
was 29, 30, 33  cm at 14  DAT and 24, 27, 30  cm at 28  DAT, 
respectively (data not shown). In the center of an empty growth 
chambers, the light intensities of LED modules increased as 
the lighting distance increased from 15 to 45  cm (Hitz et  al., 
2019). Under the LED arranged vertically above lettuce plants, 
the total light interception also increased as the lighting distance 

A

B

FIGURE 3 | Representative light interception distributions on 3D-scanned 
kale models at 14 and 28 days after transplanting (DATs). Each light 
interception represents the photosynthetic photon flux density (PPFD) 
absorbed at at 400–700 nm (A) and UV absorbed at 250–400 nm (B).
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increased from 20 to 35  cm (Kim et  al., 2020b). Therefore, 
although the upper leaves at 28  DAT were irradiated closer 
to the UV LEDs compared to those at 14  DAT, the average 
light interception would have been relatively low due to less 
overlap of radiation. As growth progresses, higher leaf density, 
which called leaf area index, causes shading at the single or 
canopy level and reduces UV-B radiation interception along 
with the narrow radiation range of LEDs. In this study, planting 
densities used in the simulation and actual cultivation were 
24 and 12  plants per one bed at 14 and 28  DAT, respectively, 
which correspond to 22.2 and 11.1 plants  per  m2 
(Supplementary Figure S1). Due to the growth progress, the 
leaf area indexes were 0.40 and 1.60 calculated as total leaf 
area per one bed area (m2/m2). Similarly, Kang et  al. (2019) 
found in paprika that the estimated light interception rapidly 
decreased with a relative increase of surrounding plants. Due 
to the higher leaf area index, leaf angles in the middle leaves 
were twisted close to 90° or overlapped with each other and 
thus prevented irradiation. Similar to Arabidopsis, which has 
spiral phyllotaxis leaves at intervals of 137.5°, kale’s overlapping 
leaves within individual plants affect light interception patterns 
(Strauss et  al., 2020). Therefore, these results showed that the 

growth progression, along with self-shading or neighboring 
plants, alters the positional distributions of light interception 
under UV LEDs.

Phenolic Compound With UV-B Radiation 
Interception
UV-B has been used to irradiate various crops to enhance 
bioactive compound contents in controlled environments 
(Czégény et  al., 2016; Yavaş et  al., 2020). In this study, the 
longer daily time and duration of UV-B exposure, i.e., greater 
cumulative UV-B dose, induced higher TFC and TPC levels 
(Figure  5). Similarly, a UV-B dose-dependent response of 
biosynthesized secondary metabolites was found in St. John’s 
wort and sweet basil with continuous or repeated UV-B exposure 
(Brechner et  al., 2011; Mosadegh et  al., 2018). However, the 
UV-dose dependence of TFC and TPC at 28  DAT appeared 
only in the upper leaves, which were exposed to higher UV-B 
intensities (Figures  4, 5). As growth progressed, similar to 
the vertical distribution of light interception, the differences 
in UV-B-induced TFC and TPC among leaf positions became 
highly distinct (Figure 5). This result suggested that the patterns 

A

B

FIGURE 4 | Vertical distributions of light interception on kales according to plant heights (A) and leaf positions (B) at 14 and 28 days after transplanting (DATs). 
Each light interception represents the photosynthetic photon flux density (PPFD) absorbed at 400–700 nm and UV absorbed at 250–400 nm. Vertical vars indicate 
the standard error of mean (n = 2; average of 12 and 6 plant models for 14 and 28 DATs, respectively). Different letters represent significant differences between leaf 
position at p < 0.05 by two-way ANOVA and Tukey’s HSD test.
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of bioactive compound accumulation were affected by UV 
radiation interception patterns according to plant structure. A 
previous study indicated that flavonol profiles were highly 
associated with characteristics that were related to canopy 
structure and light interception (Martínez-Lüscher et al., 2019). 
One of the main flavonoids, catechins, in an albino tea cultivar, 
significantly decreased with plant shading, which was associated 
with DNA methylation involved in the flavonoid biosynthesis 
pathway (Xu et  al., 2020). In this study, RSA levels in the 
upper leaves were also highest for both growth stages 
(Figures  5E,F). Antioxidant capacity is an indicator that can 
indirectly show a plant’s physiological ability of its leaves (Blum-
Silva et  al., 2015). Phenolic acids and flavonoids containing 
catechol structures have been highly correlated with their radical 
scavenging capacity (Ayaz et  al., 2008; Zietz et  al., 2010; Fiol 
et  al., 2012).

UV-B Stress Susceptibility According 
to Leaf Developmental Age
Developmental age of leaves, as well as UV-B energy, determines 
antioxidant capacity and flavonoid accumulation, and thereby 

cause within-individual heterogeneity of UV-B response (Csepregi 
et  al., 2017; Yoon et  al., 2021). Heinze et  al. (2018) reported 
that phenolic and hydroxycinnamic acids accumulated to higher 
levels in plants with mature leaves than in plants with younger 
leaves, which indicated that they can also be applied to mature 
and young leaves in individual plants. In addition, the growth 
progress caused large variations in leaf age within plants. In 
this study, TFC and TPC levels in lower (older) leaves at 
28  DAT showed the lowest values among treatments 
(Figures  5C,D). RSA levels in lower leaves at 28  DAT were 
significantly lower than those at 14  DAT (Figures  5E,F). Even 
for the same position, the leaf ages of the lower leaves were 
at least 2  weeks at 14  DAT and were at least 4  weeks at 
28  DAT. Similarly, younger leaves also exhibited higher 
antioxidant capacities than older leaves in grapevines (Majer 
and Hideg, 2012). The linear correlations between TPC and 
TFC levels and cumulative UV absorbed for 3 days were clearly 
distinguished by leaf position and age (Figure 6). The gradient 
of the regression line, i.e., the increase rate of TPC and TFC 
against UV energy, was interpreted as the age-dependent UV-B 
stress susceptibility (Figure 7). As growth progressed, the TFC 
increase rate in the upper leaves increased noticeably (Figure 7B). 

A B

C D

E F

FIGURE 5 | Concentrations of total flavonoid compounds (TFC; A,B); total phenolic compounds (TPC; C,D); and antioxidant capacity represented as DPPH radical 
scavenging activities (E,F) of kales grown under control and UV-B treatments according to leaf positions at 14 and 28 days after transplanting (DATs). Vertical vars 
indicate the standard deviation of mean, n = 3. Different letters represent significant differences for each parameter at p < 0.05 by two-way ANOVA and Tukey’s 
HSD test. Refer to Figure 1C for the UV-B treatments.
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In other words, young leaves had the highest UV-B susceptibility 
for TFC, which was consistent with the previous findings of 
general stress susceptibility with leaf age (Sperdouli and 
Moustakas, 2014; Moustaka et  al., 2015; Kanojia et  al., 2020). 
As growth progressed, the TFC and TPC increase rates increased 
or decreased for all leaf positions, but the actual concentrations 
were similar between 14 and 28  DAT (Figures  5, 7). These 
results were caused by both higher UV-B light interceptions 
at 14  DAT and higher concentrations with growth progress 
in the control without UV-B exposure. This tendency is consistent 

with the results of a previous study, which showed the increases 
in TFC, TPC, and total glucosinolate contents in kale without 
UV-B exposure in plant factories (Yoon et  al., 2019).

Potential of UV Energy Yield for Phenolic 
Profiles in 3D Plant Structure
In general, the radiation use efficiency is obtained as the slope 
of the regression line for biomass accumulated with PAR light 
intercepted by a plant (Chakwizira et  al., 2014). Accordingly, 
the slope of the regression line of the accumulated TPC or 
TFC content with absorbed UV energy can be  regarded as UV 
energy yield (Figures  6, 7). Canopy distributions of nitrogen 
(N) and phosphorus, whose levels remained constant or gradually 
decreased in aging leaves, were inferred to be  related to UV 
energy yields for TFC and TPC (Coleman, 1986; Chakwizira 
et  al., 2011). Radiation use efficiency was determined not only 
by canopy N distributions but also by leaf N allocations in the 
thylakoid light-harvesting proteins of Brassica crops (Fletcher 
et  al., 2013; Liu et  al., 2020). In this study, the cumulative UV 
energy yields for TFC or TPC accumulation were determined 
by plant ages as well as by leaf ages (Figure  7). Although the 
actual leaf ages of the upper leaves were the same at approximately 
1–2  weeks from their appearance between 14 and 28  DATs, 
the TFC increase rate was markedly higher at 28  DAT 
(Figures  7A,B). In contrast, the UV-B increase rate for TPC 
was highest in the middle leaves (Figures  7C,D). The result 

A B

C D

FIGURE 6 | Relationships between compound concentrations and cumulative absorbed UV for 3 days of kales grown under the control and UV-B treatments 
according to leaf position and growth stage; total flavonoid compounds (TFC; A,B) and total phenolic compounds (TPC; C,D) at 14 (A,C) and 28 (B,D) days after 
transplanting (DATs). The cumulative absorbed UV means the integration of UV irradiation absorbed by each leaf for 3 days. Refer to Figure 1C for the UV-B 
treatments and Table 1 for R2 of the linear regression.

TABLE 1 | Coefficients of determination (R2) from linear regressions for bioactive 
compound contents and from nonlinear regressions for change rates with 
cumulative absorbed UV for 3 days according to leaf position and growth stage. 
Refer to Eq. 2 for the nonlinear regression equation.

Growth 
stage

Leaf 
position

Linear regression Nonlinear regression

TFCz TPCy TFC TPC

14 DATx Upper 0.79 0.70 0.64 0.59
Middle 0.73 0.84 0.66 0.74
Lower 0.73 0.39 0.71 0.37

28 DAT Upper 0.73 0.64 0.59 0.84
Middle 0.45 0.87 0.34 0.91
Lower 0.41 0.07 0.61 0.11

zTFC, total flavonoid compounds; yTPC, total phenolic compounds; and xDAT, days after 
transplanting.
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was consistent with a previous study, which showed that the 
TPC increase rate in the middle leaf was the highest because 
younger leaves had higher TPC even without UV-B exposure 
(Yoon et  al., 2021). Similarly, UV-B-induced metabolite 
accumulations depended on chemical structure as well as chalcone 
synthase activity (Neugart et al., 2012; Ghasemzadeh et al., 2016). 
Despite the predominance of UV energy yield in the middle 
leaves at 28  DAT (Figure  7D), actual TPC concentrations were 
significantly higher in the upper leaves (Figure  5D). If the 
amount of UV radiation interception in the middle leaves was 
not intercepted by the upper leaves at 28 DAT, TPC concentrations 
in the middle leaves could be  higher than those in the upper 
leaves. Therefore, the UV-B-induced bioactive compound contents 
in the plant structure can be estimated when the age-dependent 
cumulative UV energy yields and distributions of UV-B radiation 
interception are considered simultaneously.

Application to Bioactive Compound 
Production in Plant Factories
Several studies about modeling the light environment perceived 
by the plant organs using various techniques, such as 3D plant 
model and Monte Carlo ray-tracing, have been focused on 
light interception in the PAR range (Vos et al., 2010). Recently, 
Kim et  al. (2020a) demonstrated the structural accuracy of 
3D-scanned parametric model and their application for estimating 
photosynthetic rates as well as light interception of sweet pepper. 
Kim et al. (2020b) applied the same technique to lettuce canopy 
in plant factories with electrical lighting, which allowed the 
interpretation and evaluation of light use efficiency according 

to planting density and lighting condition. In the same way, 
our previous study applied the radiation interception analysis 
to the UV-B range and confirmed that the UV-B radiation 
interception of a whole plant determines intraindividual 
distribution of phenolic contents in kales along with leaf age 
(Yoon et  al., 2021). In this study, we  suggested the concept 
of UV energy yield for phenolic contents in short-term UV-B 
exposure and showed its applicability to other crops with self- 
or neighboring shading at various plant stages in controlled 
environments. In a further step, the UV-induced accumulation 
of bioactive compounds can be  estimated for various plants 
and lighting condition, such as wavelengths, shape, arrangement, 
and distance. For example, the UV sensitivity of TPC was 
unexpectedly highest in the middle leaves at both growth stages 
(Figure  7). Considering the largest proportion of the middle 
leaves in plants, further studies are possible on the lateral 
UV-B irradiation method that focuses on the middle leaves.

From a commercial point of view, maximizing production 
efficiency against input costs is more important than the output 
itself. The annual production of TPC and TFC in plant factories 
could be  estimated using the content per plant at various 
growth stages without neighboring shading, which could 
determine the optimal harvest time (Yoon et  al., 2019). 
Chowdhury et  al. (2021) reported that health-promoting 
components, specifically glucosinolates and anthocyanin, in 
kale grown in a plant factory can be estimated through spectral 
reflectance. Similar to these studies, the annual production of 
UV-B-induced bioactive compounds can be  estimated through 
UV-B radiation interception analysis. Ultimately, the application 
of 3D plant model and radiation interception analysis will 
enable us to evaluate the UV illumination strategies to maximize 
production vs. UV energy or electrical input in commercially 
controlled environments.

CONCLUSION

The positional distributions of UV-B radiation interception and 
bioactive compound contents in kale leaves were quantitatively 
analyzed with 3D-scanned plant models and 3D light analysis. 
Concentrations of total flavonoid and phenolic compounds 
showed their highest values in the upper leaves for both growth 
stages. As growth progressed, variations in absorbed UV-B, as 
well as UV susceptibility, at each leaf position became evident. 
This study confirmed that biosynthesis of bioactive compounds 
in plant structures was determined by UV-B radiation interception 
and cumulative UV-B energy yield based on leaf position, leaf 
age, and plant growth stage. This attempt to quantitatively 
analyze the relationships between secondary metabolites and 
UV-B light interception can be  applied to model bioactive 
compound production in plant factories.
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FIGURE 7 | Nonlinear regression for increase rates of compound 
concentrations compared to the control with cumulative absorbed UV for 3 
days of kales according to leaf positions and growth stages; total flavonoid 
compounds (TFC; A,B) and total phenolic compounds (TPC; C,D) at 14 (A,C) 
and 28 (B,D) days after transplanting (DATs). The cumulative absorbed UV 
means the integration of UV irradiation absorbed by each leaf for 3 days. 
Refer to Eq. 2 for the nonlinear regression equation, and Table 1 for R2 of the 
nonlinear regression.
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As natural agroecology deteriorates, controlled environment agriculture (CEA) systems
become the backup support for coping with future resource consumption and potential
food crises. Compared with natural agroecology, most of the environmental parameters
of the CEA system rely on manual management. Such a system is dependent
and fragile and prone to degradation, which includes harmful bacteria proliferation
and productivity decline. Proper water management is significant for constructing a
stabilized rhizosphere microenvironment. It has been proved that water is an efficient
tool for changing the availability of nutrients, plant physiological processes, and
microbial communities within. However, for CEA issues, relevant research is lacking at
present. The article reviews the interactive mechanism between water management and
rhizosphere microenvironments from the perspectives of physicochemical properties,
physiological processes, and microbiology in CEA systems. We presented a synthesis
of relevant research on water–root–microbes interplay, which aimed to provide detailed
references to the conceptualization, research, diagnosis, and troubleshooting for CEA
systems, and attempted to give suggestions for the construction of a high-tech artificial
agricultural ecology.

Keywords: controlled environment agriculture (CEA), water management, rhizosphere microenvironment,
microbe, root exudates

INTRODUCTION

The rapid expansion of modern cities has brought unprecedented challenges to sustainable
development. It has caused urban complex diseases, such as environmental pollution and resource
shortages (Despommier, 2011; Xie et al., 2017). While agroecology is suffering tremendous
damage, requirements for the quality of agricultural products are getting higher, thus creating
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a contradictory situation within the current agroecological
system (Orsini et al., 2013). In particular, with reference to
European food safety policy, many countries and regions have
stricter requirements for food safety and hygiene, labeling rules,
regulations on plant health, control of pesticide residues, and
food additives. Environmental issues bring people to contemplate
the future of agriculture. As one of the solutions, high-tech
agricultural technology is currently known as the manifestation
of sustainable intensification (Pretty, 2018). It has taken the lead
in large-scale development in developed regions, including the
Americas and Europe. Through the construction of urban high-
tech agricultural projects, one can solve the problems of climate
change and urban food supply efficiently (Fatemeh et al., 2018;
Fricano and Davis, 2019; Farhangi et al., 2020).

Controlled environment agriculture (CEA) is becoming a
backup technology to cope with resource consumption and
potential agricultural environmental deterioration in the future
(Despommier, 2011). In CEA systems, the key parameters
of production are artificially controlled. By controlling light,
temperature, CO2, and humidity, indoor environments can
become feasible for the growth of plants inside built-up
spaces (Fatemeh et al., 2018; Farhangi et al., 2020). Various
environmentally controlled structures can be classified as
CEA systems, including soil-based CEA systems (e.g., high
tunnels, greenhouses, growth chambers, and warehouse
farming) and soilless cultivation (e.g., hydroponics, aeroponics)
(Niu and Masabni, 2018).

Through long-term development and practices, CEA
represents highly dependent modern agricultural technology.
If a CEA system has more controllable environmental factors,
correspondingly, it has a higher degree of closure and system
integrity (Shi et al., 2009; Despommier, 2011; Hong et al., 2014;
Wang et al., 2017; Fatemeh et al., 2018; Singh H. et al., 2020). The
practice has shown that, under precise artificial regulation, water
consumption can be reduced by 90%, and the yield can reach 20
times than that of incumbent agricultural production practices
(Barbosa et al., 2015; Fatemeh et al., 2018). However, high-energy
consumption, poor nutrient condition stability, the potential
proliferation of pathogenic bacteria, and degradation of system
productivity, etc., could be the mixture of uncontrollable factors
that hampers CEA development (Hosseinzadeh et al., 2017; Niu
and Masabni, 2018; Salazar-Moreno et al., 2020).

The popularization of CEA requires great effort, especially
from developing countries where the substrate-based low-to-
medium-cost CEA systems have not yet formed an industrial
scale. The main technical difficulty lies in the scarcity of
implementation standards for planting substrate management.
The rhizosphere is the most valuable constituent of a CEA
system (Zhang et al., 2019), and water is responsible for substrate
decomposition, mass balance, and energy conversion. It is also
vital for the microbial community (Singh et al., 2011; Arikan
and Pirlak, 2016). At this stage, we propose that the first step is
to establish an understanding of the nature of the rhizosphere
microenvironment based on water management.

As growing cycles of replanting can be very short (e.g.,
less than 4 weeks for some leafy greens) in CEA systems,
replant disease and negative legacy effects during certain planting

generations can be significant due to nutrient consumption,
rhizosphere bacterial community reshaping, and unfavorable
rhizodeposition (Yuan et al., 2018; Sun et al., 2019; Yao et al.,
2020). There were clear legacy effects from moisture regimes
prior to planting on soil, specifically in terms of physicochemical
properties, plant growth and nutrition, and the formation
of microbial responsiveness (Cavagnaro, 2016). Hence, while
CEA systems satisfy plant growth, proper management of
substrate water still needs to improve by increasing the input of
endogenous organic matter, reducing the demand for exogenous
mineral nutrients, and enhancing beneficial biological activity
(Jain et al., 2020). Water management is, therefore, a challenge
with significant influence on the availability and sustainability of
the planting substrate (Qin et al., 2019) that plays a vital role
in both eliminating negative legacy effects and maintaining the
long-term health of the rhizosphere for the whole system. Hence,
water management is of great importance for successive planting
generations (de Zeeuw et al., 2011; Poncet et al., 2015; Napawan
and Townsend, 2016). The aim of water management in CEA
in this review is to (1) regulate the availability of nutrients in
the rhizosphere microenvironment, (2) regulate the physiological
processes of plants, and (3) construct the microbial community
structure for system benign output.

In this review, first, we summarize the advances and
distribution of practical CEA systems worldwide, emphasize the
characteristics of rhizosphere microenvironments and the role of
water management in CEA systems, and analyze the influences
on the physicochemical properties of the substrate, including
aeration, solute dissolution, nutrient availability, transformation,
and consumption. Next, we consider the effect of water content
variation on the biochemical processes of the rhizosphere,
address the interaction of root exudation and rhizosphere
moisture stabilization, and discuss the rhizosphere water stress
tolerance under water-limited conditions. Afterward, we analyze
the influence of water content variation on microbial community
structure and discuss the influences on microbial population,
nutrient type, metabolism, and proliferation. Accordingly, we
then summarize relative practice cases, showing that establishing
a reasonable and stable rhizosphere microbial community
structure is beneficial to the benign output of the CEA system.
Then, we address the model characterization for microbial traits
for microenvironment interaction and discuss the interplay of the
abovementioned regulatory phenomena. Finally, we conclude by
discussing the limitations and technical challenges of the current
research on CEA systems, proposing two issues on the possibility
and potential for future science and technology to improve
water management of CEA, and offering suggestions about the
construction of high-tech artificial agricultural ecologies for the
future. The literature retrieval report related to this review was
attached to Supplementary Material.

While we attempted to synthesize the available literature
by summarizing results into practicable management methods,
we acknowledge that there are many factors that may further
affect the microenvironment that we were not able to introduce
in detail, including root exudation patterns and responses in
mixed communities, relationships between plant signal and
microbial response, molecular mechanisms of host plants against
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pathogens, growth-promoting characteristics of endophytic
bacteria and rhizobacteria, etc. (Ullah et al., 2019; de Vries et al.,
2020; Williams and de Vries, 2020; Yadav et al., 2020).

Furthermore, our understanding of the response of
rhizosphere microenvironments to artificial water management
is hampered by the fact that there is only a very limited number
of available studies on how water conditions in CEA relate
to substrate physicochemical properties, root physiological
processes, and rhizosphere microbiology; of those studies that
do concern this topic, only a modest proportion focuses on
controlled environments. In this review, we argue that an
increased understanding of the complex feedback between water
management and rhizosphere microenvironment evolution will
pave the way for the conceptualization, construction, research,
diagnosis, and troubleshooting of CEA systems.

CONCEPT AND CHARACTERISTICS OF
CEA SYSTEMS

Understanding of the CEA System
Modern controlled environment agriculture has become an
emerging form of land use in many developed regions (Sanye-
Mengual et al., 2018), and the emergence is caused by the
need to meet growing centralized demand for agricultural
products and requirements for higher food security (Eigenbrod
and Gruda, 2015). Advanced agriculture systems provide
opportunities to improve food supply, the health of residents,
the local economy, social integration, and environmental
sustainability altogether (Orsini et al., 2013). An emerging
CEA system has some notable characteristics: resource
intensiveness, controllability, environmental fragility, high
energy consumption, and high output.

Meanwhile, the CEA system usually has different
manifestations. In vertical agriculture, plant growth substrates
are strictly isolated and the system regulates nutrients to
achieve clean, efficient, and high yield (Despommier, 2011;
Fatemeh et al., 2018). In plastic greenhouse agriculture,
the soil ecosystem is not completely isolated because the
water, solutes, and microbes in the greenhouse soil still
have interactions with the external environment, but the air
composition is controlled, especially for some greenhouses
with good airtightness (Shi et al., 2009; Hong et al., 2014;
Wang et al., 2017; Singh H. et al., 2020). In closed hydroponic
agriculture, plants are cultivated by using a mixture of nutrient
salts and water instead of soil. The water is under treatment
while circulation, therefore, the interaction between plant
roots and the rhizosphere microenvironment is eliminated
(Hosseinzadeh et al., 2017).

In a narrow sense, a CEA system is a set of agricultural
planting facilities established in a specific enclosure. However,
spatial isolation cannot accurately differentiate its intrinsic
properties from traditional cultivation systems (Orsini et al.,
2013). Therefore, a more specific definition could be, an
industrialized agriculture system established in an independent
space to maintain the continuous and stable regulation of plant
growth factors through intensive management, thereby achieving

optimal agricultural production and system sustainability
(Eigenbrod and Gruda, 2015; Burchi et al., 2018).

Advances and Distribution of Emerging
CEA Practices Worldwide
In the context of the global agricultural revolution, the CEA
system construction is meant to be combined with actual local
conditions and social needs, and the functions of the CEA system
are improving to serve the local food production (Napawan and
Townsend, 2016; Clucas et al., 2018; Amato-Lourenco et al.,
2020; Zulfiqar et al., 2020). Decades ago, in Israel, precision
agriculture in greenhouses was employed for biological control
(Boari et al., 2008). This approach allowed the irrigation system
to be more compatible with the integrated treatment of biological
control. In recent years, there has been a growing number
of innovative treatments, using irrigation systems, such as the
application of biosurfactants (Singh R. et al., 2020), generation
of nanobubbles (Xiao et al., 2020), air injections (D’Alessio et al.,
2020), and so on. In the Netherlands (Hemming et al., 2020),
artificial intelligence (AI) algorithms and sensor data were used
to determine climate set points and crop management strategies
in greenhouse operations. Based on this technology, a greenhouse
that could control ventilation, irrigation, heat, light, and CO2
was developed to maximize the net profit. As shown in Figure 1,
at present, many representative emerging CEA systems in the
world are mainly distributed in North America, Europe, the
Middle East, etc., and their development orientation is toward
integration into the urban context, aerospace engineering, and
exploration into the integration of emerging AI and Internet of
Things (IoT), and so on (Fatemeh et al., 2018; Lakhiar et al.,
2018; Hemming et al., 2020; Halgamuge et al., 2021; Shuyu et al.,
2021).

Significance and Characteristics of the
Soil- and Substrate-Based CEA Systems
Studies have shown that the development of CEA is driven
by policy and economic factors (Hunold et al., 2016; Ghosh
et al., 2018). On a global scale, however, the emerging
CEA systems are currently incompatible with major food
supplies due to high land prices and pollution in cities
(Eigenbrod and Gruda, 2015). The soil- and substrate-based
CEA systems, as a transitional form of traditional agriculture
to agriculture industrialization, are integral parts of the
agricultural supply chain in many parts of the world and are
of central importance to research, technological improvement,
and acceptance by the global agricultural economy. At the
current stage of global CEA development, energy ratio and
economic benefits are key factors (Farhangi et al., 2020; Hemming
et al., 2020; Ntinas et al., 2020), while solid substrates have
the advantages of low energy consumption, relatively high
stability, and nutrient accumulation, which will have long-
term existence in CEA development (Sanye-Mengual et al.,
2018). Hence, compared with other forms of cultivation
methods (the roots are in direct contact with the solution
and air and do not adhere to solids), such as hydroponics
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Turkey: High-tech greenhouses were
employed for geothermal utilization.
Based on a geothermal well at high
temperatures and CO2 application in a
Venlotype greenhouse, high yields and
a short payback period were achieved in
terms of economic point of view.

South Korea: Nutrient management was 
conducted for reducing the contaminant 
load on soil and groundwater from plastic 
greenhouse cultivation. This practice can 
serve as a baseline for the long-term 
monitoring of greenhouse nutrient loads.

Netherlands (Bleiswijk): 
Greenhouse was tested to 
maximize net profit by 
controlling environmental 
factors via artificial 
intelligence (AI) techniques.

Netherlands (Amsterdam): 
High-tech urban agriculture 
was established to make 
growing food vertically 
inside built-up spaces 
feasible.

Germany: Study the 
optimization of LED lamp 
radiant energy control for 
plant management.

UK: Presented a glasshouse 
and growth chamber–based 
speed breeding approaches 
with supporting data from 
experimentation with several 
crops.

USA: Grew plants aeroponically 
without using pesticides that are 
sometimes necessary to control 
pathogens through using liquid 
biocontrol. Hence astronauts on the 
space shuttle would likely have to 
rely upon an on board aeroponics 
system to grow vegetables.

Israel: Biocontrol agents were used
for plants and soil protection. The
system could be used for soil release
of biocontrol agents, to control all the
bio-constraints constraints attacking
or threatening the root system.

FIGURE 1 | Exploration and application of controlled environment agriculture (CEA) systems worldwide. The figure compiled information based on the following
references: Boari et al. (2008), Hong et al. (2014), Eigenbrod and Gruda (2015), Tuzel and Oztekin (2016), Ghosh et al. (2018), Lakhiar et al. (2018), Farhangi et al.
(2020), Hemming et al. (2020).

and aeroponics, the use of solids as a growth substrate is
still irreplaceable.

Considering the cost of the CEA system, managers always
hope to improve its sustainability and expect to find more
scientific approaches toward improving stability and resistance
(Balafoutis et al., 2017; Al-Kodmany, 2018). A high-tunnel
greenhouse is widely used in China (Shi et al., 2009). Research
studies have shown that intensive production had a significant
impact on soil and water quality. The rate and composition

of fertilizers applied to vegetable plants were controlled for
higher yield; meanwhile, it was equally important to protect
the nutrient balance in rhizosphere soil and groundwater
safety. In South Korea (Hong et al., 2014), the ecological
safety of soil and groundwater was also closely considered
during the implementation of plastic greenhouses. The substrate
temperature is another factor that influences greenhouse
cultivation. In Turkey, the CEA system (the main structure was a
Venlo-type greenhouse, with 8 m width, 6 m gutter, and 7 m ridge
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height) took advantage of its geothermal resource by using heat
exchanger-based heating systems on geothermal wells (Tuzel and
Oztekin, 2016). Such heating systems enabled the CEA to obtain
high yields and short payback periods in terms of an economic
point of view for long-season production.

However, current pilots are quite scattered worldwide, and
no universal technical specifications and standards have been
formed, resulting in slow promotion and weak reproducibility
(Shamshiri et al., 2018). To address these problems, soil-
and substrate-based cultivation is emphasized in the following
sections of this review. Since we discussed the relationship
between water and crop plants, many crops are relatively tall and
with large biomasses (such as maize); traditional hydroponics
and aeroponics have not yet been applied to many food crops.
On the other hand, since the water is treated in the recycling
process, hydroponics and aeroponics are generally not involved
in the concept of the rhizosphere microenvironment. Therefore,
the CEA system discussed in this study refers specifically to soil-
or substrate-based cultivation. With these considerations, the
CEA mainly refers to soil- and substrate-based systems unless
otherwise specified in this study.

The Issue of Water Management for the
Growth Media in CEA Systems
Comparing with the emerging CEA systems, the underlying
logic for the establishment of soil- and substrate-based CEA
is sustainability and low-resource consumption, which require
inheriting the traits of rhizosphere microenvironments
from natural soil-plant interaction. Water management is a
basic yet efficient method for building a stable rhizosphere
microenvironment (Gao et al., 2019). In terms of cultivation, the
difficulty of CEA development lies in the management of growth
substrates, nutrition, and irrigation (Orsini et al., 2013; Hong
et al., 2014). Water content variation also affects physical and
chemical properties and root exudation and then drives microbes
to change their resource utilization strategies under different
nutrient conditions (Preece and Penuelas, 2016). As a result
of these changes in rhizosphere microenvironments, microbial
populations and community structures can be determined.

The practice has proven that growth media substrates can
significantly change the water status of their rhizospheres
as compared to soil (Banitalebi et al., 2019; Videgain-Marco
et al., 2020). These materials include a wide range of organic-
and mineral-based substrates (mineral wool, peat, coconut
fiber, lignite, straw, composted bark and wood fiber, perlite,
vermiculite, sandy soil, clayey soil, etc.) (Gajc-Wolska et al.,
2008; Słowińska-Jurkiewicz and Jaroszuk-Sierocińska, 2011). The
physical properties of these materials are varied, and such
discrepancies give a great scope for using multiple components
for combination. Wider ranges of properties, such as volumetric
density (30–1,400 kg·m−3), porosity (45–99% vol), water-holding
capacity (-10 cm H2O, 15–85% vol), and air-holding capacity (–
10-cm H2O, 20–80% vol), can also be obtained to adapt to a
particular planting pattern (Lazny et al., 2021).

Compared with natural agroecology, fragility is the major
challenge for the sustainability of substrate-based CEA, which

FIGURE 2 | Important influential units of a CEA system under rhizosphere
water management (drawn by the authors).

means that the system is less resistant to adversity, pests, diseases,
and pathogenic bacteria (Niu and Masabni, 2018) and, thus, has
to rely on precise and intensive management to maintain stability.
As shown in Figure 2, the rhizosphere is the most important area
of a CEA system. It refers to the small volume of soil or substrate
that is directly influenced by root exudations and associated
microbes (Pii et al., 2015; Ahmadi et al., 2017). Different from
the microbial abundance in the natural ecological environment,
which is dominated by a diversity of local plant species and
stable microbiomes (Qin et al., 2019), a CEA system depends on
planned artificial regulation, such as substrate selection, water
management, crop rotation, soil heritage, and inoculation of
symbiotic bacteria. A well-managed rhizosphere has a higher
microbial abundance and provides good nutrient accessibility
with higher turnover rates (Herman et al., 2006; Landi et al., 2006;
Holz et al., 2018a).

Water management for growth media, which is one of the
most basic projects for agriculture, is particularly important for
CEA systems. Based on supporting plant growth, balancing the
input of endogenous organic matter and demand for exogenous
mineral nutrients is the key to the optimization of system
stability and low-resource consumption (Qin et al., 2019). It
is crucial to reduce the maintenance cost brought about by
substrate renewal on one hand, but, more importantly, to
serve a long-term, sustained, and high-yield artificial agriculture
system by constructing a specific rhizosphere microenvironment
(Philippot et al., 2013; Qin et al., 2019). Furthermore, proper
water management should focus on the availability of nutrients
related to microbiology, as it is crucial to fostering the presence
of beneficial microbes and reducing the level of pathogenic
microbes, thus achieving system sustainability and benign output
(Fierer, 2017; Degrune et al., 2019).
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EFFECT OF WATER MANAGEMENT ON
THE AVAILABILITY OF THE CEA
SUBSTRATE VIA AFFECTING ITS
PHYSIOCHEMICAL PROPERTIES

Aeration and Solute Dissolution
In rhizosphere microenvironments, water content has a large
influence on the physicochemical properties of the substrate.
The overall resource utilization of the system is related to O2
concentration (Chen et al., 2019b; Li Y. et al., 2020), solute
transport and diffusion (Nobel and Cui, 1992; Carminati et al.,
2009; Ahmadi et al., 2017), and substrate decomposition of
microbes (Tang et al., 2016; Zhang et al., 2020). A deeper
understanding of its operating mechanism is the prerequisite for
proper management.

In saturated substrates, pores are filled with water and
the nutrients are sufficiently dissolved and supplied to plants
for uptake. However, stagnant water brings about anaerobic
conditions. At this stage, organic matter, rhizosphere exudates,
and other substances are used for anaerobic decomposition (Tang
et al., 2016; Zhang et al., 2020). A longer anaerobic period
may cause major changes to the structure of the substrate
microenvironment system because the anaerobic conditions
are conducive to the growth of anaerobic bacteria. Anaerobic
experiments have observed an increase in the abundance
of methane-producing archaea and a significant increase in
methane emissions (Miller et al., 2001; Bao et al., 2014).
Therefore, an increase in water content is conducive to improving
the activity of anaerobes and the utilization of substrates (Tang
et al., 2016), but, from another perspective, it exacerbates the
net loss of organic carbon, which needs to be evaluated by
system managers.

When water content drops to field water-holding capacity
(50–80% of the saturated water content), aerobic conditions are
initially formed. In this case, large pores are filled with air, which
is conducive to the diffusion of O2, and small pores are filled with
water, which is conducive to the diffusion of soluble substrates.
The soil or substrate emits a large amount of CO2 through
heterotrophic respiration. At this time, aerobic metabolic activity
reaches its maximum, while the CO2 flux is at the maximum
(Zhou et al., 2014). In general, microbial activity at approximately
moderate humidity (60% of water-filled pore space) is higher than
activity at very wet or very dry conditions (Suseela et al., 2012).

As the substrate dries, the interconnection of pores promotes
the formation of aerobic conditions. Meanwhile, roots shrink
and partially detach from substrates, and air fills into the
gaps between the roots and substrates. Consequently, the lower
hydraulic conductivity induces the restriction of water and
transport of nutrients to the roots and limits the activity
of the rhizosphere microenvironment (Nobel and Cui, 1992;
Carminati et al., 2009; Ahmadi et al., 2017). For substrates,
solute transport and diffusion are reduced due to thinner
water film and a more tortuous transfer path on a particle
surface, thus limiting the rate of substrate diffusion to microbial
cells (Stark and Firestone, 1995). Finally, concentrations of
free ions in the residual solution increase, including calcium

carbonate, sodium, potassium (K), phosphorus (P), and other
redox-sensitive compounds (aluminum, iron, molybdenum, etc.)
relevant to plants (Bouskill et al., 2016b).

Low water content causes a decrease in water potential in
cells, thereby reducing hydration and activity in enzymes (Stark
and Firestone, 1995), restricting the migration of enzymes for
decomposers to decompose the substrate (Manzoni et al., 2012),
thus inhibiting microbial activity. In general, a decrease in
water content corresponds to a slowdown of biogeochemical
processes in the rhizosphere microenvironment. Therefore, the
rhizosphere microenvironment under water-saving measures
undergoes resource redistribution, forcing microbes to change
their way of resource utilization, such as carbon and nitrogen (N)
utilization pathways (Schimel et al., 2007; Bachar et al., 2010).

Nutrient Availability
Variation in water content is one of the greatest impacts on
the rhizosphere microenvironment (Fierer, 2017); as a result,
nutrient availability is determined. Considering the nutritional
requirements of the CEA system, it is necessary for managers
to focus on the nutrient content of the substrates. It is an
economic and environmentally friendly approach to maintaining
a sustainable nutritional supply through water management.

Compared with the natural agricultural environment, nutrient
availability in the CEA system is more sensitive to water changes
(Niu and Masabni, 2018; Shamshiri et al., 2018). In natural
systems, water affects the dynamics of nutrient availability by
altering the balance between the death and growth of organisms;
thus, the overall balance can be relatively stable in the long
term (Blazewicz et al., 2014). However, the CEA system is
not an ecosystem in any case; it largely relies on artificial
control. For optimal nutrient conversion to production, it is
important to coordinate fertilization with water management,
because nutrients must be in an available form before roots
can absorb them (Holland et al., 2018). The dry substrate
has difficulty in providing available nutrients because the
substrate has great matric potential for nutrients, which makes
it impossible to uptake by the roots (Somma et al., 1998;
Vetterlein and Jahn, 2004; Jin et al., 2015). This part of the
nutrients is the nutrient pool of the substrate and is retained
by 0.1–1.5 MPa of matric potential (an approximate wilting
point). When water content increases, the potential decreases;
thus, nutrients can be released for roots to absorb, including
NH4

+, NO3
−, H2PO4

2−, HPO4
2−, K+, Ca2+, Mg2+, SO4

2−,
BO3

3−, Cl−, Cu2+, Fe2+, Fe3+, Mn2+, MoO4
2−, Zn2+, etc.

(Kim et al., 2009). In addition to ion availability, organic
matter in CEA systems is a key nutrient factor in sustainable
operation. Water content affects respiration by changing the O2
content, composition and activity of microbes, and utilization of
substrates (Linn and Doran, 1984a; Williams, 2007; Zhou et al.,
2014; Sierra et al., 2015), hence determining the decomposition of
organic matter (Huang et al., 2016). The detailed transformation
and consumption of macroelements, the complex interplay of
microbial trophic type, substrate nutrition variation, and roots
exudation in relation to water management are discussed in the
following sections.
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Macroelements Transformation and
Consumption
A sustainable CEA system must have “living” substrates instead
of inert substrates like rock wool or perlite; thus, the CEA system
has strict requirements for nutrient use efficiency, which is a
water–fertilizer coupling problem (Wang et al., 2018; Rasool
et al., 2020). Within the limited rhizosphere, the transformation
and consumption of macroelements are very sensitive to water
content variation (Liu et al., 2015; Koch et al., 2020). Water
management is even more important than fertilizer management
in certain water-deficient conditions (Epie and Maral, 2018).
N, P, and K are the most important macroelements, and their
occurrences and transformations exhibit different characteristics
in water content dynamics with the participation of microbes
(Dhaliwal et al., 2019).

Nitrogen
Nitrogen exists in soil or substrate systems in many forms and
changes (transforms) very easily from one formation to another
(Cameron et al., 2013). The main forms of N include organic
N, NH4

+-N, and NO3
−-N. N is among the vital elements

needed for plant growth. Since plants cannot use or take N
directly from the air, uptake is through N forms that include
ammonium and nitrate in substrates (Hachiya and Sakakibara,
2017). However, in the rhizosphere, their transformation process
is related to nitrification and denitrification by microbes, while
water is the key environmental factor to regulate this process and
the transformation balance is closely related to rhizosphere water
content variation (Chen et al., 2019b). The microbes involved
are mainly ammonia-oxidizing archaea (AOA), ammonia-
oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), etc.
(Gleeson et al., 2010).

As for N transformation in the substrate, the importance
of O2 as a controlling factor in regulating the magnitude
and pathway of N has been recognized (Wrage et al., 2001);
however, O2 concentrations are rarely measured in practice,
and soil moisture content has generally been accepted as a
measurable proxy for O2 availability (Zhu et al., 2013). Water-
filled pore space (WFPS) is a widely used moisture indicator,
as it provides integrated information about water content, total
porosity, and O2 concentration of a soil or substrate system
(Zhu et al., 2013; Qin et al., 2020). As shown in Figure 3,
quick detection could be done by evaluating the N status based
on WFPS and moisture content empirically or experimentally,
because a gradual increase of the WFPS reflects the conversion
of nitrification to denitrification. When the WFPS is 35–60%, O2
diffusion is favorable, the metabolic activity of aerobic microbes
is at its most vigorous, and nitrification is dominant. Among
them, net N2O emission is the lowest at approximately 40%
WFPS (He et al., 2019), and more favorable conditions for
nitrification is at 60% WFPS (Linn and Doran, 1984b; Skopp
et al., 1990; Parton et al., 1996). When the WFPS is at 70–
75%, O2 dissolution and diffusion rates decrease significantly,
and it is impossible to provide O2 to aerobic microbes in time,
which promotes denitrification and keeps the N2O emission
rate at a high level (Orwin et al., 2010). Among them, 70–75%

WFPS is a favorable condition for N2O emission. Denitrification
consumes a large amount of NO3

− and allows N2O emission
to reach its peak (Novosad and Kay, 2007; Qin et al., 2020).
With increasing WFPS, O2 diffusion into the soil becomes
restricted and the proportion of soil volume, which is anaerobic,
increases. Due to the high mobility of NO3

−, it may quickly
diffuse into a substrate compartment with low O2 content,
thereby providing substrate for biological denitrification. In
addition, the massive production of NO3

− also promotes the
volatilization of NH3. When WFPS is at 75–95%, the nitrification
rate decreases significantly, and when WFPS is at approximately
80%, the denitrification effect could be at its utmost (Kool et al.,
2011). When a substrate is nearly saturated (WFPS 90%), a
large amount of NO3

− is lost and the production of N2O is
mainly determined by NO3

− denitrification. When WFPS is at
100–125%, it becomes extremely anaerobic (Qin et al., 2020).
Complete denitrification may occur, and NO3

− becomes the
main substance for denitrification. As a result, N2O is completely
converted to N2 under such anaerobic conditions (Zhu et al.,
2013). This is because the anaerobic environment hinders the
emission of N2O and promotes its further reduction to N2
(Qin et al., 2020).

Phosphorus
Phosphorus exists in various statuses and differs in its behavior
and fate in soils or substrates (Hansen et al., 2004). Under water
content variation, P has transformations among solution P (Sol-
P), labile P (L-P), and non-labile P (NL-P). Sol-P is completely
accessible for plants, but the bulk of P is virtually inaccessible,
which can be described as NL-P. This fraction accounts for more
than 90% of total P and is present as an insoluble and fixed
form, including primary phosphate minerals, humus P, insoluble
phosphate of calcium, iron and aluminum, and P fixed by
hydrous oxides and silicate minerals (DeLonge et al., 2013). L-P
is presented in phosphate precipitations and is held on substrate
surfaces. It is also in rapid equilibrium with Sol-P. Consumption
of Sol-P disturbs the equilibrium between Sol-P concentration
and the L-P pool at a solid phase, which leads to supplementation
for Sol-P (Bünemann, 2015).

Phosphorus in soil or substrate is mostly immobile and
unavailable to plants and is further restricted when water
availability is limited (Somaweera et al., 2017). Thus, the water
content can be important to determining the P bioavailability
and net primary productivity in planting systems (DeLonge et al.,
2013). In general, higher water content is beneficial for the
release of L-P and the improvement of P bioavailability, while,
in saturation, reduction via anaerobic conditions may contribute
to Sol-P release and result in the highest Sol-P concentration at
wet extremes (Cournane et al., 2010).

The change of L-P content also follows a similar rule as Sol-
P. Takahashi et al. (2016) found that L-P increased steadily when
the water content was higher than the standard level (1 kg/kg)
in incubated growth substrate. Epie and Maral (2018) suggested
that L-P is best for root development, tillering, and growth when
the water content is more than 75% field capacity; however, P
availability is greatly reduced when the water content is less than
30% of field capacity. At this point, the effect of fertilization
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FIGURE 3 | A schematic diagram of the main pathways of nitrogen (N) transformation and its gas production vs. varied water content in substrate. The figure is
remade by compilation of the following research: Bateman and Baggs (2005), Gleeson et al. (2010), Kool et al. (2011), Zhu et al. (2013).

is limited by water stress. Yang et al. (2009) indicated that an
ideal L-P content was obtained at 50% of field capacity, as it was
suitable for substrate phosphatase to enhance activity, and thus
promoted the release of L-P from NL-P.

As irrigation after extreme drying, L-P content increased
significantly; this phenomenon was found in Styles and Coxon
(2006); DeLonge et al. (2013), and Sun et al. (2018). But it
has to be noted that water content is positively related to L-P
dissolution; meanwhile, it was regulated by microbial activities.
Vandecar et al. (2011) found a delayed response of L-P release
under high-water content (50–66%), while DeLonge et al. (2013)
indicated that large pulses of water input may facilitate L-P
release, but the process has an 8 days delay. Microbial activities
play an important role in P mineralization and immobilization
and consequently affect L-P supplementation and depletion. It
is clear that wet-dry circulation affects L-P content via the
alternation between community composition and acceleration of
organic matter decomposition, thus enhancing P mineralization
(Sun et al., 2018). Similar results demonstrated that microbial
immobilization of P was stimulated initially; however, a time lag
of up to 10 days was found due to subsequent mineralization
(Campo et al., 1998).

Altogether, how does L-P release largely depend on antecedent
and current substrate moisture conditions (Howard and Howard,
1993; Yuste et al., 2007). L-P can be increased in the short term
by drying and rewetting, with its effect dependent on both the size
and timing of water management (DeLonge et al., 2013).

Potassium
Potassium is another primary nutrient required by plants. K is
found within plant cell solutions and is used for maintaining
the turgor pressure of the cell (meaning it keeps the plant
from wilting) (Abd El-Mageed et al., 2017; Abd El-Gayed and
Bashandy, 2018). In addition, K plays a role in the proper
functioning of stomata (cells located at the bottom of leaves that
open and close to allow water vapor and waste gases to escape)
and acts as an enzyme activator (Xu et al., 2020). In a given
substrate, total K is almost certain because it depends on the
presence of K, which bears primary and secondary minerals,
namely, fixed or mineral K (Ghiri and Abtahi, 2011; Škarpa
and Hlušek, 2012). Hence, managers are more concerned about
how water content variation affects the transformation between
soluble K (Sol-K) and exchangeable K (Ex-K).

Exchangeable-K is the major bioavailable form of K in
substrates. There is rapid equilibrium between Sol-K and Ex-
K, which can be described by the Gapon equation (Beckett and
Nafady, 1967). The consumption of Sol-K at a root-solid matrix
interface causes a readjustment of Ex-K to satisfy the equilibrium
equation as mentioned above, releasing more Ex-K into solution,
thereby buffering Sol-K against consumption.

With regard to Sol-K, higher water content is conducive to
K dissolution while also contributing to K dilution, depending
on the substrate components that adsorb K. Research from Abd-
Elrahman and Taha (2018) showed that humates and sulfates
have the strongest ability to hold Sol-K because they prevent K+
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ions from leaching, owing to the influence of multiple functional
groups including carboxyl, phenol, and hydroxyl that, in turn,
contribute to K+ binding (Wang and Huang, 2001). Marchuk
and Marchuk (2018) demonstrated that a high level of Sol-K
has deleterious effects on the structural stability of a growth
matrix, while the fraction of clay minerals could decrease cation
exchange capacity and increase a mineral fraction of K, resulting
in K fixation as a non-exchangeable form. As Ex-K diffusion and
Sol-K are consumed, an ever-widening zone of K consumption
spreads out from the root surface, leading to the development of
a rhizosphere several millimeters in radius (Kuchenbuch et al.,
1986; Hamoud et al., 2019). Therefore, the amount of K is closely
related to the cation exchange capacity of the substrate.

In practice, Abd-Elrahman and Taha (2018) showed that
soils amended with either humate or sulfate under 50% of
the irrigation requirement recorded the highest increases in
the fraction of Ex-K; however, increasing the irrigation water
level from 75 to 100% led to a significant reduction in the
Ex-K fraction, suggesting that the increasing level of water
irrigation seemed to be of no further significant effect on the
Ex-K content. Higher water content does not increase Ex-K
content, and this result also applies to longer-term effects, as
consistent results were found in the study by Škarpa and Hlušek
(2012). As with the importance of Sol-K and Ex-K, fixed or
mineral K is the K source for sustained supply. Ghiri and
Abtahi (2011) suggested K-bearing minerals could be considered
as the K pool; meanwhile, intentionally, K fixation by wetting
and drying treatment could also be a practical method for
conservative planting.

EFFECT OF WATER MANAGEMENT ON
ROOT PHYSIOLOGICAL PROCESSES IN
CEA

Root Growth and Exudation
Root exudates are fluids emitted through roots. These substances
influence the rhizosphere around roots to inhibit harmful
microbes and promote plant growth (Williams and de Vries,
2020). Root exudates contain a wide variety of molecules that
are released into soil (Bobille et al., 2019). They act as signaling
messengers that allow for communication between microbes
and roots (Calvo et al., 2017). In CEA systems, rhizosphere
exudation has more significance because the rhizosphere is
bounded; hence, roots, microbes, exudates, and all sensitive
substances are squeezed into the limited volume of a substrate
cube. Thus, the impact of water changes is higher than in the
natural environment (de Vries et al., 2020).

Plants release a large part of their photosynthetic products
into soil or substrate through rhizodeposition, including low-
molecular-weight compounds such as polysaccharides, amino
acids, and organic acids (Fischer et al., 2010), and high-
molecular-weight compounds such as mucoid biopolymers
(Ahmadi et al., 2017). Most of the low-molecular-weight
rhizosphere exudates are released from the growing tips of roots
(Jones et al., 2009; Pausch and Kuzyakov, 2011). Root elongation

is sensitive to water content variation and has an important
influence on rhizodeposition due to major modification of the
length and velocity of the exuding root zone (Sharp et al.,
2004). An increase in rhizosphere water content enhances
diffusion of exudate and increases its microbial decomposition
(Holz et al., 2018a), while the diffusion has a strong influence
on exudate distribution and the root exudation rate (Jones
et al., 2004). The release and the diffusion capacity of exudates
directly affect carbon distribution in the rhizosphere. Meanwhile,
decomposition of rhizosphere exudates, root hair biomass, and
adsorption capacity of microbes also affect the rhizosphere
carbon content (Kuzyakov et al., 2003; Jones et al., 2009;
Holz et al., 2018b).

However, limited irrigation quantities, a common water
management measure in CEA systems, may cause water stress
and initially promote redistribution of recently assimilated
carbon, transfer it to roots, and synthesize rhizosphere exudates,
whereas they may lead to a decrease in exudation intensity and
ultimately weaken rhizodeposition (Sharp et al., 2004). They may
affect the rhizodeposition process and change solute composition
in the growth substrate in the long term.

Rhizosphere Allelopathy
Rhizosphere exudates are also known as allelochemicals and can
have beneficial (positive allelopathy) or detrimental (negative
allelopathy) effects on rhizosphere microenvironments (Scavo
et al., 2019). Maintaining the beneficial rhizosphere allelopathy
and reducing the allelochemicals phytotoxicity is of central
importance. The exudates of allelochemicals are responsible for
the recruitment of beneficial microbes through the alteration of
the rhizosphere microenvironment, thus mitigating unfavorable
conditions (Li et al., 2014; Holz et al., 2018a; Naylor and
Coleman-Derr, 2018).

Rhizosphere microbes are inseparable from plant rhizosphere
allelopathy because the secreted allelochemicals are accepted
as the energy source for microbes (Holz et al., 2018a);
meanwhile, the allelochemicals play a role in communicating
with rhizosphere microbes as signal compounds (Shah and
Smith, 2020). Rhizosphere microbes give different kinds of
feedback to plants under various nutritional conditions, while
water is the key to regulating the process. Generally, the
rhizosphere microenvironment tends to recruit microbes that
can produce plant hormones when the substrate is enriched with
minerals and nutrients under water sufficiency, which is known
as the eutrophication state (Pascault et al., 2013; Hartmann et al.,
2017). On the contrary, insufficient rhizosphere water leads to
the formation of oligotrophic conditions. Taking rhizosphere
allelopathy into account, one could ascertain that the significance
of water management is the opportunity to take advantage of the
recruitment effect and achieve proper mineralization, nutrient
dissolution, and plant absorption (He and Dijkstra, 2014).

To improve water use efficiency in CEA systems, deficit
irrigation is commonly employed. Declining water content causes
changes to plant physiology and biochemistry. Significant impact
lies in the change of substrate pH, root morphology, the total
amount of carbon input, and the rhizosphere exudates (including
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soluble sugar, organic acid, mucilage, enzymes, and exfoliated
cells, etc.) (Grierson and Adams, 2000; Marschner et al., 2005).

As with the changes in solution concentration, water
deficiency is, essentially, a kind of osmotic stress on plant
physiology. On the other hand, the bulk of situations of water
deficiency increases enzyme activity during plant growth periods;
meanwhile, it increases the concentration of organic acids in root
exudates, thereby contributing to drought tolerance. Under water
stress, the rhizosphere microenvironment of corn (Zea mays
L.) has increased protease, catalase, alkaline phosphatase, and
invertase activities. Osmotic stress increases the concentration of
malic acid, lactic acid, acetic acid, succinic acid, citric acid, and
maleic acid in root exudates (Song et al., 2012). Water deficiency
enriches the root exudates of barley (Hordeum vulgare L.) with
more proline, K, and phytohormone, which play important
roles in promoting root growth osmotic protection and stress
signal transduction (Calvo et al., 2017). Studies also showed
the dependence of the microbial communities on activities of
protease, urease, and phosphatase; these changes in substances
are results of the rhizosphere allelopathy regulated by water
(Marschner et al., 2005).

Water-stressed rhizosphere allelopathy could be an
opportunity for one to make good use of it. Rhizosphere
N-fixing bacteria have a higher N-dissolving ability under water
shortage conditions, which is an approach to enhance plant
growth (Knoth et al., 2014). Meanwhile, one can change the
process of plant carbon assimilation, distribution, and deposition
in the rhizosphere (Holz et al., 2018a), as well as the regulation
of N mineralization (Akter et al., 2018). Detailed practical
cases of water management with regard to the microbiome and
production are discussed in Section “Microbial Community.”

Rhizosphere Physiological Adaptation
Plants can adapt to varied rhizosphere hydro-environments by
nature (Ahmed et al., 2018) because the rhizosphere exudation
is responsible for the adjustment of plants to substrate moisture,
especially when the water content is undergoing wet-dry
circulation (Carminati et al., 2010; Ahmed et al., 2016). The
exudate, commonly found to be mucilage, plays an important
role in substrate moisture regulation. The exudation intensity
is largely affected by water content, while, in turn, exudates
affect soil or substrate hydrophilicity, thereby changing the
moisture status, which is a unique process in rhizosphere
microenvironments (Palta and Gregory, 1997; Sanaullah et al.,
2012). In CEA systems, mucilage is easily spread throughout the
planting substrates because the substrate cubes are generally kept
to a minimum size. Hence, the mucilage is more significant for
wettability regulation and water retention in the limited volume
of a substrate cube.

As shown in Figure 4, continuous mucilage exudation is
a kind of self-compensation under water stress. The mucilage
increases the local moisture content in the root direction
and ultimately compensates for the negative impact of water
deficiency. It is a strategy to maintain rapid diffusion of exudates
and high microbial activity (Holz et al., 2018a). The influence
of rhizosphere exudates on the rhizosphere microenvironment
starts from the contact part between root sheath and substrate.

The root sheath has several important functions for water and
nutrient absorption, especially under water stress (Hsiao and Xu,
2000). This is because the root sheath keeps the root system in
contact with the substrate during the drying process, thereby
enhancing the hydraulic connection between the root system
and the substrate and creating a rhizosphere microenvironment
that is compatible with water (Drenovsky et al., 2004; Kuzyakov
and Blagodatskaya, 2015). Under water-deficient conditions,
roots secrete polysaccharide mucilage to preserve relatively more
water, but the mucilage reduces the substrate hydrophilicity.
This, in turn, reduces water flux in the rhizosphere, and
thereby reduces water consumption by roots (Zarebanadkouki
and Carminati, 2014). When the rhizosphere is subsequently
wetted again, the water content will be lower than that of the
blank substrate because of the previously reduced hydrophilicity.
This mechanism ensures the relative stability of the rhizosphere
microenvironment during alternation of wetting-drying (Read
et al., 1999), which has also been proved experimentally.

The mucilage secretion strongly affects the biophysical
properties of the rhizosphere, which determines the ability
of roots to extract water and nutrients from its growing
substrate. The rhizoligand is a mucilage analog (such as the
commercial surfactant of AC 1820 acrylate copolymer) that is
defined as an addictive substance that increases the wettability
of the rhizosphere and links the mucilage network to main
intimate contact with the root surface. Ahmadi et al. (2017)
used the exogenous rhizoligand to demonstrate the influence
of rhizosphere exudates on substrate hydrophilicity during the
wetting-drying cycle. It was found that the rhizoligand improved
hydrophilicity and enhanced the communication between the
rhizosphere microenvironment and plants, thereby making
the root sheath more developed. Meanwhile, the activities of
chitinase, sulfatase, and β-glucosidase were 4, 7.9, and 1.5
times greater, respectively, and biomass was 1.2-fold that of
water-irrigated plants. By adjusting hydrophilicity, this approach
harnesses water availability without using conventional irrigation
methods (Ahmed et al., 2016; Ahmadi et al., 2018).

In controlled environment agriculture systems, water
deficiency or moderate drought may be an approach to enhance
the mass and energy utilization efficiency of the system (Sposito,
2013; Ahmed et al., 2018). Owing to the small rhizosphere space
and concentrated allelochemical substances as described above,
self-stabilization of moisture in the microenvironment can be
fully utilized to achieve better results than traditional irrigation.
One can realize optimized economical resource input by fully
exploiting the potential instead of simply satisfying the greatest
physiological needs of plants (Qin et al., 2019), which could be
an innovative concept for CEA management.

EFFECT OF WATER MANAGEMENT ON
RHIZOSPHERE MICROBIOLOGY IN CEA

Microbial Physiology
System designers of controlled environment agriculture need
to guide the rhizosphere microbiology to a beneficial and
sustainable status (Colla et al., 2017). In terms of water
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FIGURE 4 | A mechanism of rhizosphere microenvironment stabilization under water content variation (drawn by the authors).

management that acts upon rhizosphere microbial physiology,
the main impact, in effect, is on carbon catabolism and cellular
osmosis regulation (Vurukonda et al., 2016; Rajkumar et al.,
2017). The regulatory significance lies in the regulation of
hydrolytic enzymes and osmolytes production, which, in turn,
influences the overall pattern of resource utilization (Blazewicz
et al., 2014; Naseem et al., 2018; Sammauria et al., 2020).

Water saturation is favorable for facultative anaerobe to
enhance substrate respiration and enzymatic degradation,
which further increases the labile carbon fraction via carbon
speciation. For instance, carbohydrates are particularly important
in the carbon catabolism of a microbial community (Tate,
1979; Wilson et al., 2011; Fierer, 2017). It is clear that
water saturation creates a nutrient-rich microenvironment
and brings microbial proliferation; however, water deficiency
can still stimulate the proliferation of oligotrophic bacteria
in the dry rhizosphere (Naylor and Coleman-Derr, 2018);
meanwhile, water use efficiency can be improved under
relatively nutrient-poor conditions (Enebe and Babalola, 2018),
despite the resource limitation for most microbes. On the
other hand, as for the eutrophic microbes, water deficiency
reduces microbial activity through dehydration and substrate

limitation, and reduces the microbial metabolic process (Stark
and Firestone, 1995); consequently, the formation of rhizosphere
nutrients is determined.

As shown in Figure 5, microbes under varied nutritional
conditions release extracellular enzymes that can regulate
depolymerization and decomposition (Bouskill et al., 2016b;
Igalavithana et al., 2017), thereby mediating the overall
circulation rate of a nutritional substance (mainly carbon and
N) in the rhizosphere (Frossard et al., 2000; Schimel and
Bennett, 2004). For example, when the rhizosphere undergoes
water deficiency, changes occur in the functional potential of
microbial communities that are concomitant with an increase
in hydrolase activity (Alster et al., 2013). As is exhibited from
the data on functional gene regulation, the genes-encoding
extracellular enzymes that degrade chitin, cellulose, lignin, pectin,
and enzymes involved in hemicellulose (xylose) catabolism were
of higher relative abundance in water deficiency; meanwhile, the
specific activities of the corresponding classes of enzymes were
also higher (Bouskill et al., 2016b).

Osmotic stress is the driving factor in the physiological
processes depicted above. Specifically, as substrate dries and
water potential drops, cells must accumulate solutes to reduce
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their internal water potential to avoid dehydration or death
(Schimel et al., 2007). Hence, the synthesis of osmolytes is
necessary, and a large amount of carbon input is required.
Under this circumstance, it was found that, as a response to
osmotic stress, the intracellular carbon demand and production
of compatible solutes increases (Bouskill et al., 2016b). For
bacteria, amino compounds are typically used as osmolytes, such
as proline, glutamine, and betaine (Csonka, 1989); while, for
fungi, polyols, such as glycerol, erythritol, and mannitol, are used
(Witteveen and Visser, 1995).

These physiological performances and adaptations are
manifested in a dynamic process; microbes maintain cellular
turgor and protect macromolecular structures by using
osmolytes; meanwhile, these osmolytes regulate hydrolytic
enzymes activity to acquire carbon for osmolytes synthesis and,
ultimately, achieve the balance of carbon consumption and
rhizodeposition (Welsh, 2000; Bouskill et al., 2016a; Vurukonda
et al., 2016; Rajkumar et al., 2017; Naseem et al., 2018; Hartman
and Tringe, 2019; Teijeiro et al., 2020).

Microbial Community
Different substrate configurations affect microbial traits, and a
“living” substrate could retain stable and beneficial microbial
communities. Fresh and easily degradable organic matter in the

substrate stimulates microbial growth and serves as an energy
source for microbes to synthesize extracellular enzymes that are
capable of degrading recalcitrant organic matter, thus facilitating
mineralization. This is based on the way microorganisms live in
the substrate that was explained by the “co-metabolism” theory
(Kuzyakov et al., 2000; Wang et al., 2015). Although we did not
find a specific case study on a microbial community that was
affected by varied substrates, there is emerging consensus on
which variables are most likely to have marked effects on the
microbial community.

An optimized ratio of substrate carbon/N for microbial
mineralization is believed to be around 20, which is calculated
by dividing the microbial carbon/N ratio (10) by the carbon
assimilation yield of microbial biomass (0.5) (Recous et al.,
1995; Manzoni et al., 2010). However, with the consumption
of nutrients, the microbial community develops in different
directions; not surprisingly, it generally does not lead to
desired yield and sustainability if the dynamic of the microbial
communities is underestimated. Fei et al. (2008) showed a
notable increase in bacteria and actinomycetes and a significant
decrease of fungi in surface soil-based greenhouses; that is, the
ratio of bacteria to fungi increased. As the substrate was used
for a long time, the microbial biomass showed a downward
trend. In agronomic practices by Bonanomi et al. (2017),
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soil with disinfestation treatments was used as the planting
substrate for plastic tunnel farming systems. Mulching films
were employed as a combination with microbial consortia,
containing beneficial microbes (i.e., antagonistic fungi of the
genus Trichoderma, mycorrhizal fungi of the genus Glomus,
and the plant growth-promoting bacterium Bacillus subtilis).
The application of beneficial microbes can indirectly increase
water use efficiency by controlling soilborne pathogens and
significantly increase root mycorrhizal colonization compared
with untreated controls in all cropping cycles.

We hoped to understand the link between the microbial
community and the substrate parameters. As shown in Figure 6,
among multiple factors, in addition to pH, water content, quality
and quantity of organic carbon, and the redox state are the most
significant factors that have notable influences on the structure of
microbial communities (Schimel et al., 2007; Lauber et al., 2009;
Kuramae et al., 2011, 2012; Okegbe et al., 2014; Maestre et al.,
2015; Prober et al., 2015; Fierer, 2017).

The driving factors that lead to the difference between CEA
planting substrate and field soil could be varied. Due to the
complexity of the natural soil system, measurements of bulk
soil (ectorhizosphere) properties do not necessarily capture the
microscale variations in soil properties that may drive spatial
variation in soil microbial community composition (Fierer,
2017). A broad range of different microbial habitats coexists
in field conditions; meanwhile, microbial communities and
microbial taxa are preferentially associated with different surface
vegetation. This is true for many mycorrhizal fungi, fungal plant
pathogens, and some N-fixing bacteria (for example, Rhizobium
spp.), which, typically, only associate with specific plant species.
However, in CEA systems, the microbial community can be
significantly regulated, which provides a basis for the application
of growth-promoting bacteria (PGPB). A cluster of bacteria
that colonize the root of the plant rhizosphere is termed
the “PGPB” (Dhayalan and Sudalaimuthu, 2021). The role of
PGPB in plant growth is of importance to water regulation
because the PGPB could induce a plant to tolerate water deficit
conditions via colonies in rhizospheres and endorhizospheres,
and it could provide a wider range for water regulation
in the system. Sandhya et al. (2010) proved that the plant
biomass was enhanced through the inoculation of Pseudomonas
putida under drought conditions. Armada et al. (2014) found
that the concentration of proline in the Lavandula shoot
was increased by inoculation of Bacillus thuringiensis, thereby
promoting plant growth.

In controlled environment agriculture–planting substrates,
moisture and aeration could be the most significant contributors
to determining microbial composition. Water condition decides
the O2 content and nutrient availability (Drenovsky et al.,
2004) and reshapes the community structure of eutrophicor
oligotrophic microbes; as a result, the nutritional type of the
microbes is determined (Hedenec et al., 2018). When water
deficiency occurs, it is nutrient-poor but oxygen-rich in the
substrate; thus, microbes die or enter dormancy and the overall
activity tends to decrease. However, it sets up a stage for aerobic
bacteria and/or oligotrophic bacteria (Blazewicz et al., 2014;
Armstrong et al., 2016).

The different behaviors of Gram-positive bacteria and
Gram-negative bacteria are a good example showing the
community structural changes under water deficiency. Gram-
positive bacteria are metabolically more “tenacious,” as they
can use recalcitrant compounds to produce extracellular
enzymes (Treseder et al., 2011; Naylor and Coleman-Derr,
2018). Actinomycetes, the oligotrophic bacteria under the
phylum Gram-positive bacteria, are metabolically versatile. They
can degrade complex organic compounds, maintain high-
carbon utilization efficiency, and form spores and filaments
through cellular modification (osmotic protectants, dormancy)
(Hartmann et al., 2017). These abilities ensure their survival and
even dominance in the substrate with low-hydraulic connectivity
and nutrient limitation (Wolf et al., 2013). Cell walls may render
microbes more resistant to water potential decrease; for example,
Gram-positive bacteria can survive in stress by producing strong,
thick, and interlinked cell walls of peptidoglycan (Schimel et al.,
2007). Another strategy for microbes to withstand stress is
sporulation, which is considered a potential factor in observing
the trend of abundance. Many genera in Gram-positive phyla
are known as sporophytes, while the Gram-negative phyla
have mostly lost the ability to sporulate during evolution
(Tocheva et al., 2016).

Water content variation reshapes the microbial community
structure significantly, while it has a minor effect on diversity
(Bachar et al., 2010; Blazewicz et al., 2014). On the other hand, the
different behaviors of bacteria and fungi under water deficiency
merit attention, especially under long-term water stress. Bachar
et al. (2010) showed that bacteria abundance had a decreasing
trend with the degree of water deficiency; however, bacteria
diversity had less relevance to water content. Acosta-Martinez
et al. (2014) showed that 10 months of severe drought caused the
fungal diversity index and OTUs to increase more than bacteria,
and found that Proteobacteria, Actinobacteria, Chloroflexi, and
Nitrospirae have higher abundance. While significant progress
has been made in exploring the relationship between how
water and nutrition shape microbial communities, the extent to
which water affects rhizosphere plant-microbe interactions is still
elusive. It remains to be seen which of the detected correlations
will prove to be significant for microbial diversity and structural
composition, and which will prove redundant (Aung et al., 2018;
Qin et al., 2019; Jain et al., 2020).

As shown in Table 1, for the benign output of the system,
there have been many attempts for different crops. To be
sure, proper water management is conducive to the benign
output of an agricultural system. There are constantly increasing
practical experiences on this issue. The method of negative
pressure irrigation is a water supply technology for water-
saving and fertilizer utilization efficiency improvement, which
emits water through a porous ceramic tube embedded in
the rhizosphere. This method can consistently supply water,
depending on the water consumption of the plants and soil
tension (Long et al., 2018). Zhao et al. (2019) employed
negative pressure irrigation to supply water in relation to soil
matrix tension and water consumption during rapeseed (Brassica
chinensis L.) planting. The rhizosphere water content was
maintained within 9.7–11.7%, which was more stable than that of
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traditional water supply and drip irrigation. As a result, microbial
diversity was increased, and the dominance of Proteobacteria,
Acidobacteria, etc., was eliminated from the microenvironment.
Other categories of bacteria flourished, including Actinobacteria,
Bacteroidetes, Verrucomicrobia, Firmicutes, Planctomycetes. This
method provided a stable microenvironment for improving
the yield and quality of rapeseed, increased the N, P,
and K content in plants, and contributed to improving
water use efficiency.

Indeed, the water and the air in the microenvironment are
linked. To explore the impact of aeration on the microbial
community, Li Y. et al. (2020) conducted an artificial aeration
experiment in the soil matrix and found that an aeration
treatment increased the abundance of Acidobacteria, reduced
the abundance of Gammaproteobacteria, and eliminated
Geobacteraceae and Halanaerobiaceae. Studies have described
that Geobacteraceae and Halanaerobiaceae are closely related
to Xanthomonas, which is an important plant pathogen
(Zhang et al., 2017; Li Y. et al., 2020). The aeration improved
the connection of pores, which led to a decrease in solute
transport capacity and nutrient availability. It must be noted
that Acidobacteria is an oligotrophic bacteria, which is good at
reproducing with low-carbon availability (Fierer et al., 2007). The
Acidobacteria can participate in the biogeochemical cycle, exhibit
metabolic activity, and finally dominate in number under such
circumstances (Lee et al., 2008). Through artificial regulation, a
better rhizosphere microenvironment is created, which increases
ACE, Chao index, Shannon diversity index, root length, surface
area, root tip, and activity.

However, it needs to be emphasized that proper water
management is more than water saving. Li M. et al. (2020)
compared two different irrigation methods, namely, subsurface
drip irrigation and furrow irrigation, and found that, in the
rhizosphere of drip irrigation, 28.3% of the tomato (Solanum
lycopersicum L.) yield decreased. Water limitation induced a
decrease in the potential activity of carbon cycle extracellular
enzymes; meanwhile, an increase in the overall abundance of
microbial functional genes was involved in the N cycle process.
As a result, the carbon-to-N ratio was altered in the rhizosphere
microenvironment. Furthermore, water stress increased the
colonization of arbuscular mycorrhizal fungi, increasing root
density. Finally, the biomass of tomato plants was allocated to
a non-yielding part. Therefore, although water can be used to
change the interaction between plants and microbes and root
morphological traits, if there are mismatches in plant demand,
resource availability, and microbial carbon-to-N ratios, the goal
of sustainability for CEA will not be achieved.

Microbial Traits for Microenvironment
Interaction
Currently, there is a lack of models that characterize the microbial
traits in CEA systems. The relationships between the rhizosphere
competitor, stress tolerator, and ruderal can be characterized
by the C-S-R framework (Grime, 1977), and the C-S-R life
history triangle is a good start in advancing trait-based microbial
ecology; however, it does not map well on microbes (Malik
et al., 2020). Global-scale research may shed light on this issue,
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TABLE 1 | Cases of water management, using CEA systems or controlled agricultural techniques to explore the impact of the microbiome on yield.

Plant Water management
method

Effects on microbial communities in
rhizosphere microenvironment

Application effect References

Tomato (Solanum
lycopersicum L.)

Irrigation combined with
aeration.

The abundance of Acidobacteria increased
and that of Gammaproteobacteria decreased
in response to aeration treatments;
conversely, Geobacteraceae and
Halanaerobiaceae were eliminated.

The ACE, Chao index, Shannon diversity
index, root length, surface area, tips, and
activity all increased.

Li Y. et al.
(2020)

Tomato (Solanum
lycopersicum L.)

Subsurface drip irrigation
combined with
concentrated organic
fertilizer application.

Higher mycorrhizal colonization rates, higher
abundance of microbial N-cycling genes, and
lower activities of carbon-degrading enzymes
were found in the rhizosphere of surface drip
irrigation plants compared to full irrigation.

Tomato plants produced shorter and finer
root systems with higher densities of roots
around the drip line, stems and leaves
increased, however, marketable tomato yield
decreased by 28.3%.

Li M. et al.
(2020)

Maize (Zea mays L.) Well-watered irrigation and
water-stressed irrigation in
field blocks.

Highly significant differences (approximately
2.6–3.9% of the variation in microbial
community composition) were found due to
water stress. Water stress-induced
belowground bacterial and archaeal
microbiomes dramatically change, which
were relative abundance increase of
Actinobacteria and Saccharibacteria in
rhizosphere, and decrease of Chloroflexi,
Proteobacteria, and Cyanobacteria.

Water-stressed irrigation significantly reduced
maize growth and productivity, among which
28% reduction was found in grain yield as
compared to well-water conditions.

Wang et al.
(2020)

Rapeseed (Brassica
chinensis L.)

Supplying water based on
plant consumption by using
negative pressure irrigation
technique.

The dominance of Proteobacteria and
Acidobacteria in the rhizosphere was
eliminated, and other taxa thrive, including
Actinobacteria, Bacteroidetes,
Verrucomicrobia, Firmicutes,
Planctomycetes, etc.

The yield and quality of rapeseed were
improved, the content of nitrogen (N),
phosphorus (P), and potassium (K) of the
plant was increased, and the water
consumption was reduced.

Zhao et al.
(2019)

Bell pepper
(Capsicum annuum
cv. Revolution)

Drip irrigation (below
ground surface) subjected
to well-watered and deficit
irrigation levels.

Extra moisture positively induced fungi
abundance through improvement in plant
aboveground performance. Microbial activity
at the community level decreased with water
content reduction. Bacteria were more
sensitive to water input changes as
compared to fungi.

Higher water input contributed to the increase
of pepper yield but negatively affected
substrate respiration. Deficit irrigation
reduced yield by 12.0% compared to the
well-watered treatment, while root responses
also followed a similar pattern as fruit yield.

Qin et al.
(2019)

Tomato (Solanum
lycopersicum L.)

Surface drip irrigation
combined with aeration.

Aeration slightly increased mean values of the
abundance of bacteria, fungi, and
actinomycetes, with average increases of 4.6,
5.5, and 3.4%, respectively, and the
abundance increased as irrigation amount
increased.

Total root length was significantly increased
by 22.2% on average under aeration,
meanwhile, total root surface area and
volume under the aeration was 6.6% and
6.7% higher than that of the control,
respectively. Dry biomass of tomato leaf,
stem, fruit, and root increased as irrigation
amount increased, and the effect was
significant on leaf, fruit, and root.

Chen et al.
(2019a)

Maize (Zea mays L.) Two levels of water stress
irrigation for pot
experiment.

Soil pH was lower in the rhizosphere than
bulk soil but was not affected by water
deficiency.

Water stress significantly decreased the
rhizosphere protease activity at elongation,
tasseling and grain-filling stages, and reduced
the rhizosphere alkaline phosphatase activity
at tasseling and grain-filling stages.

Song et al.
(2012)

such as earth system models (ESMs) (Wieder et al., 2013),
but they exhibited high uncertainties because they omitted key
biogeochemical mechanisms (Conant et al., 2011; Schmidt et al.,
2011). Microbial traits mainly correlate with resource utilization
with different strategies (Hall et al., 2018; Malik et al., 2020),
and thereby influence the microenvironment. The MIcrobial-
MIneral Carbon Stabilization (MIMICS) model incorporated
copiotrophic and oligotrophic microbial functional groups and
raised hypotheses involving the roles of substrate availability,
community-level enzyme induction, and microbial physiological
responses (Wieder et al., 2015). Several recent efforts have applied

this framework to microbial systems, particularly in the context of
anthropogenic-controlled environments (Ho et al., 2013; Krause
et al., 2014; Fierer, 2017; Wood et al., 2018). Malik et al.
(2020) reclassified multiple factors into three main microbial
strategies, which were high yield (Y), resource acquisition (A),
and stress tolerance (S), and conceptualized as the Y-A-S
framework (Figure 7).

Since we have reviewed much of the impact of water
content variation on the all-round characteristics of CEA
in this study, it is more important to conceptualize trait-
based microbial strategies so that system investment could
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be estimated. For example, when we analyze the influence
of water content variation on carbon cycling, we should
consider the rhizosphere microenvironment traits as mentioned;
these traits will interact with certain factors (root elongation,
exudation, rhizodeposition, osmosis regulation, allelopathy,
extracellular enzymes production, carbon decomposition,
microbial community evolution, microbial residue chemistry,
etc.) to determine long-term carbon storage in the substrate.
If we evaluate this process under the Y-A-S framework (Malik
et al., 2020), Y-strategists would contribute to rhizodeposition
that can benefit substrate carbon accumulation. In contrast,
A-strategies should contribute more to carbon decomposition
through investment by enhancing microbial extracellular enzyme
production (Schimel and Schaeffer, 2012; Kallenbach et al., 2016;
Malik et al., 2019). On the other hand, S-strategists might depend
on the type of stress compounds produced, such as osmolytes;
meanwhile, it would contribute to root sheath elongation and
microbial copiotrophic-oligotrophic functional alternation
(Hsiao and Xu, 2000; Schimel et al., 2007; Bouskill et al., 2016b).

The same is true for other substance cycling/transformations
in CEA systems, but the hindrance could be measuring
and quantification (Malik et al., 2020). Current approaches
have mostly focused on identifying taxonomic and functional
responses to environmental changes. However, integration of
these large datasets with process rate measurements remains
a challenge, thereby making it difficult to link microbial
composition and function with CEA systems (Krause et al., 2014;
Rocca et al., 2015; Hall et al., 2018). Water variation could
significantly affect rhizosphere respiration, microbial activity,
and plant yield (Qin et al., 2019). Future frameworks could
suggest the connection between water response and effect traits
(de Vries et al., 2020).

CONCLUSION AND FUTURE
PERSPECTIVES

Conclusion
In this review, we discussed the influence of water management
on rhizosphere microenvironments in CEA systems, pointed
out that water content variation affects the physicochemical
properties of the rhizosphere substrate and changes the
formation and availability of nutrients within it, thereby
emphasizing the influences of macroelement transformation and
consumption underwater content dynamics. Correspondently,
the physiological processes in the rhizosphere are adaptively
adjusted, which is achieved by the allelopathy of root exudates. In
addition, from the perspective of microbiology, in rhizospheres,
water content variation significantly affects microbial
metabolism and proliferation, thereafter altering its nutrient
type and community. The regulatory mechanism described
above has important implications for CEA management.
Water management can be used to seek advantages, avoid
disadvantages, and establish a stable and replicable microbial
microenvironment; furthermore, it could be one of the most
important methodologies for benign output and sustainability
for CEA systems.

Future Perspectives
While there are promising findings that have come out from
extensive research and production practices conducted to date,
the CEA system is still far from large-scale utilization. Concepts
of dealing with the artificial agricultural environment and its
systematization require innovation (Sigrimis et al., 2001). On
global food issues, we are not yet ready to deal with major
environmental changes (Alvarado et al., 2020). We hypothesize
there are at least two key points worth considering for the
theoretical development of CEA, namely, data integration and
modeling. In this study, we presented a brief overview of the two
issues and made suggestions for future research and the modern
development of agriculture.

Improvement of Universally Applicable Water
Management Reference for Various CEA Systems:
Data Integration
For traditional agriculture in different parts of the world, water
resources management has unique regional characteristics that
are calculated based on local hydrology (Hisdal and Tallaksen,
2003). Although many studies have been carried out for different
crops in different regions and under different conditions, it is
often difficult to replicate the same planting environment in
practice (Amitrano et al., 2019). For the future systemization and
globalization of the CEA, the currently published pieces of the
literature showed a lack of descriptive benchmarks and norms; as
a result, one management method is difficult to replicate, which
hinders relevant key issues from being comparatively studied
in different regions (Casaregola et al., 2016; Ladau and Eloe-
Fadrosh, 2019).

Therefore, a universally applicable water management
reference is crucial. At this stage, researchers are advised to focus
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on data acquisition for a series of key parameters, including
water-related organic matter content, O2 concentration,
respiration, substrate utilization rate, microbial composition,
and activity of the rhizosphere microenvironment (Linn and
Doran, 1984a; Williams, 2007; Zhou et al., 2014; Sierra et al.,
2015). It is necessary to track the evolution process of the
microenvironment under different water management strategies
and pay attention to the environmental context and the
development stage of multiple specific systems. Furthermore,
it would be very beneficial to establish a database of modern CEA
systems and share monitoring data and reports, which will help
to accelerate the research and development of high-tech artificial
agricultural ecology.

Quantification of Relationships Between Plant
Physiology and Biochemistry Underwater
Management: Modeling
To date, there is little evidence of coupling between rhizosphere
microenvironment variation and microbial functional traits that
affect plant physiology underwater content variation (de Vries
et al., 2020). On the other hand, due to microenvironment
complexity and a lack of descriptions of benchmarks and
norms, it is difficult to replicate a CEA system under different
planting backgrounds and promote management methods with
excellent performance.

Based on massive data acquired from water management
references worldwide (Sigrimis et al., 2001), we need to
further offer a platform to discover the relationship between
plant physiology and biochemistry by addressing ecological
questions on microbial community composition and rhizosphere
biogeochemical functions (Wieder et al., 2015). By evaluating
the regulatory effect of water control, it is necessary to
group microbial diversity into simplified functional groups
and demonstrate how community differences may have a
significant influence on rhizosphere substance transport and

transformation. This model is expected to parameterize and
accurately simulate the rhizosphere biogeochemical function of
the CEA, thus showing how functional traits interact with water
content gradients and follow perturbations, including wettability
of substrate, enzyme activity, and microbial community (Sardans
and Penuelas, 2005; Moore et al., 2010).
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substrates, structure and physical properties,” in Encyclopedia of Agrophysics,
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It is necessary to develop a resilient food supply that will withstand unexpected
future shocks and deliver the required amounts of nutrients to consumers. By
increasing the sustainability of food and agriculture, the food system will be able
to handle challenges such as climate change, declining agricultural resources,
growing population/urbanization, pandemics, and recessions/shortages. Micronutrient
deficiency, otherwise called hidden hunger, is one of the major malnutrition
consequences worldwide, particularly in middle- or low- income countries. Unlike
essential mineral or nutrient compounds, micronutrients could be less of a priority
due to their small levels of requirement. However, insufficient micronutrients caused
critical adverse health symptoms and are excessively vital for young children’s
development. Therefore, there have been numerous attempts to enhance minerals and
nutrients in food crops, including biofortification, food fortification, and supplementation.
Based on several interventions involving micronutrients, modern technology, such as
nanotechnology, can be applied to enhance sustainability and to reduce the food
system’s environmental impact. Previous studies have addressed various strategies
or interventions to mitigate major micronutrient deficiency including iron, iodine, zinc,
and vitamin A. Comparably small amounts of studies have addressed vitamin B12

deficiency and its fortification in food crops. Vitamin B12 deficiency causes serious
adverse health effects, including in the nervous or blood systems, and occurs along with
other micronutrient deficiencies, such as folate, iron, and zinc, worldwide, particularly in
middle- and low-income countries. Mitigation for B12 deficiency has mainly focused
on developing pharmacological and medical treatments such as vitamin B12 serum or
supplements. Further studies are required to undertake a sustainable approach to fortify
vitamin B12 in plant-based food sources for public health worldwide. This review paper
highlights nanoparticle application as a promising technology for enhancing vitamin B12

without conventional genetic modification requirements. The nanoparticle can efficiently
deliver the mineral/nutrient using coating techniques to targeted sites into the plant.
This is mainly because nanoparticles have better solubility and permeability due to
their nano size with high surface exposure. Vitamin B12-coated nanoparticles would
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be absorbed, translocated, and accumulated by the plant and eventually enhance the
bioavailability in food crops. Furthermore, by reducing adverse environmental effects,
such as leaching issues that mainly occur with conventional fertilizer usage, it would be
possible to develop more sustainable food fortification.

Keywords: biofortification, cobalamin (Cbl), food fortification, nanoparticle, vitamin B12, vitamin B12 deficiency

INTRODUCTION

A healthy diet contains adequate amounts of macronutrients,
including proteins, fats, and carbohydrates, and essential
micronutrients, such as vitamins and minerals. However, the
current global food system does not meet the universal
requirement of adequate nutrition in food production, which
directly influences human health. According to the Food and
Agriculture Organization, over 690 million people worldwide
are suffering hunger and nearly 750 million people have
been exposed to food insecurity in 2019 (FAO et al.,
2020). Globally, current food consumption shifts towards
animal-based food and highly processed-products, while the
consumption of fresh unprocessed-food products such as fruits
and vegetables has increased inadequately (Bodirsky et al.,
2020). The trends of food consumption have different patterns
depending on socioeconomic status and geographical, cultural,
and demographical traits. According to Agriculture and Rural
Development in European Commission, the consumptions of
high-value food, including meats and dairy products, has
significantly increased in emerging economies like China.
Meanwhile, the trends show a shift from red meat to plant-
based food consumption including fruits and vegetables in
developed economies countries such as Europe and North
America (Agriculture and Rural Development, 2019). In middle-
and high-income countries, plant-based diets (e.g., veganism
or vegetarianism) have been rising along with increased
concerns regarding climate change, environment issues, animal
welfare, and health (Jones, 2020). According to Google Trends
analysis, the interests regarding vegan/vegetarian diets have
been simultaneously increasing worldwide, particularly in upper
middle-income countries, along with the rising interest in

Abbreviations: AAS, atomic absorption spectrophotometer; Ado-Cbl, adenosyl
cobalamin; BSA NPs, bovine serum albumin nanoparticles; Cbl, cobalamin; CN-
Cbl, cyano cobalamin; DLS, dynamic light scattering; EDS, energy-dispersive
X-ray spectrometry; ELS, electrophoretic light scattering; ENMs, engineered
nanomaterials; FAO, Food and Agriculture Organisation; FE-SEM, Field Emission
Scanning Electron Microscope; FTIR, Fourier transform infrared; H-Cbl, hydroxo
cobalamin; HCl, hydrochloric acid; HCY, homocysteine pathway; His, histidine;
HPLC-ICP-MS, high performance liquid chromatography – inductively coupled
plasma mass spectrometry; ICP-OES, inductively coupled plasma optical emission
spectroscopy; ICP-MS, inductively coupled plasma mass spectrometry; IF, intrinsic
factor; LA-ICP-MS, laser ablation inductively coupled plasma mass spectroscopy;
MALDI-MS, matrix-assisted laser desorption/ionization mass spectrometry; Me-
Cbl, methyl cobalamin; NIH, National Institutes of Health; NPK, nitrogen–
phosphorus–potassium; NTA, nanoparticle tracking analysis; NTDs, neural tube
defections; RID, radioisotope dilution; RT-PCR, reverse transcription polymerase
chain reaction; SAM, S-adenosylmethionine; SEM, scanning electron microscopy;
SEM-EDX, scanning electron microscopy – energy dispersive X-ray analysis;
SFY, stirred functional yogurt; TEM, transmission electron microscopy; TC,
transcobalamin; UV-DRS, UV differential reflectance spectroscopy; WHO, World
Health Organisation; XANES, X-ray absorption near edge structure; XRD, X-ray
diffraction; XRF, X-ray fluorescence.

veganism (19.54%) and vegetarianism (15.09%). The actual rates
of plant-based diets has increased from 1.4 to 2% for vegan and
5% for vegetarian diets in the United States (Kamiński et al.,
2020). These trends of plant-based diets also contribute to an
incremental increase of plant-based sales in the U.S., up to 31.3%
from 2017 to 2019 (Forgrieve, 2019). Thus, there are rising
concerns regarding plant-based diets with low bioavailability of
essential mineral/micronutrients such as iron, zinc, vitamin D,
and fatty acids (Rizzo et al., 2016).

The nutrition transition shows a significant relation to
malnutrition-related health effects (Bodirsky et al., 2020).
Malnutrition is one of the major forms of food insecurity that
refers to deficiencies and excesses or imbalances of nutrients
or energy in human beings. Malnutrition symptoms include
undernutrition, micronutrient deficiency, and obesity (WHO,
2020). Micronutrient deficiency is also known as hidden
hunger due to the fact that its deficiency problem is generally
asymptomatic but influences human health critically. In addition,
micronutrient deficiency is highly related to food insecurity,
which is a widespread issue in low-income and lower-middle-
income countries such as Sub-Saharan Africa and South-Central
and South-East Asia (Muthayya et al., 2013). The rationale
underlying this is that these countries heavily rely on starchy
staple foods such as cereals, tubers, and roots, and the overall
availability of animal-based food is lower than that in high-
income countries (FAO et al., 2020). The population groups at
high risk for micronutrient deficiency include children under
five and pregnant women, who have a considerable need for
micronutrient supply for healthy development and growth. Child
growth stunting is one of the major adverse symptoms due to
malnutrition and it occurred in 21.3% or 144 million children in
2019 worldwide. Over 90% of stunted children lived in African
or Asian countries accounting for 40–54% of all stunted children
worldwide (FAO et al., 2020).

Among micronutrient deficiency, four major micronutrient
deficiencies have been highlighted, namely iron, iodine, zinc,
and vitamin A, which affect 2 billion people in the world
(Ruel-Bergeron et al., 2015). Various strategies for these key
micronutrient interventions have been developed and conducted
worldwide through biofortification, food fortification, and
supplementation (Khush et al., 2012). However, fortification of
vitamin B12 has been less highlighted although its deficiency
impacts on human health critically. Vitamin B12 deficiency
is particularly common among vegetarians because animal-
based food is the natural source for the B12. It can cause
neurological, hematological, and psychiatric symptoms and
affect the formation of red blood cells and the normal
functioning of the nervous system (Nakos, 2016). There
has been extensive medicinal and pharmacological research
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focusing on vitamin B12 supplementation. However, little is
known about the specific uptake mechanism of vitamin B12
enrichment in living plants. Therefore, this review paper aims
to review strategies for micronutrient fortification of food crops,
particularly vitamin B12, using nanotechnology. The objectives
are to: (i) provide an overview of micronutrient interventions,
(ii) determine a sustainable approach or technology for
micronutrient fortification such as nanoparticle applications,
and (iii) highlight the hydroponic system as a sustainable
micronutrient fortification method for food crops.

CURRENT STRATEGIES OR
INTERVENTIONS FOR MICRONUTRIENT
DEFICIENCY

Biofortification for Micronutrient
Biofortification, as a complex process of developing new varieties
of staple food crops, focuses on enhancing bioavailability
of micronutrients through agronomic practices, breeding,
or biotechnology techniques (Bouis and Saltzman, 2017;
FAO, 2017). Biofortification includes three main approaches:
agronomic practices, conventional breeding, and genetic
modification technology (Thompson and Amoroso, 2010).
In comparison to fertilizer development, biofortification can
enhance up to the sufficient level of micronutrient/mineral
in food crops without adverse environmental effects and it
provides a cost-effective strategy for the long-term application
with feasibility for underserved rural populations (Kaur et al.,
2020). Biofortified crops have been widely adopted in low- and
middle-income countries where staple crops, including cereals,
tuberous roots, and legumes crops, are mainly consumed. For
instance, vitamin A is fortified in various crops such as sweet
potato, maize, cassava, banana, and plantain along with the
enhancement of various agronomic traits including increased
harvest yield and stress resistance. Iron has been fortified in
legumes crops and pearl millet along with increased yield and
disease resistance. In addition, zinc fortification has also been
undertaken with wheat, rice, and maize (HarvestPlus and FAO,
2019).

Biofortification presents two main advantages: being cost-
effective in the long-term and having the ability to spread to rural
populations which are underserved (Bouis and Saltzman, 2017).
Through various stages of biofortification, such as exploration
development and delivery stages, the crop improvement activities
are conducted considering applicability and cost-effectiveness
worldwide, especially for low- and middle-income countries
(Bouis and Saltzman, 2017; FAO, 2017). The main challenges
for biofortification development consider three critical elements
which are supply, policy, and demand. Agronomic traits should
meet the micronutrient requirements and also biofortified crops
should be supplied to both rural and urban consumers through
supportive policies (Bouis and Saltzman, 2017). Supportive
policy is necessary for further intervention program with
sustainability. Consumer and growers’ participation can also limit
the biofortified food application which presents as an acceptance

of biofortified crop produce. Also, conventional plant breeding or
genetic engineering technology requires long-term development
and adequate expenses. Utilizing the agronomic method has also
highlighted the biofortification method which mainly focuses
on fertilizers with micronutrients using nanotechnology. Davies
(2018) stated that micronutrient-based nanoparticle application
would be a great alternative for biofortification without further
breeding or genetic variation by enhancing micronutrient
content and crop quality. The study found that micronutrient
contents including iron, zinc, and calcium are enhanced in
potato, tomato, and chili pepper grown in hydroponic systems
utilizing metal oxide nanoparticle which synthesized with amino
acid, which enhances the stability of nanoparticle (Davies, 2018).

Food Fortification for Micronutrient
Food fortification refers to an approach to enhance essential
micronutrient content by adding vitamins or minerals into
food crops so that it contributes to fortifying the contents of
nutrient/mineral and providing health benefits to the public
(FAO, 2017). Food fortification technology positively regulates
micronutrient deficiency and prevents malnutrition problems,
especially in staple crops. Compared to supplementations, which
generally require a large dose of micronutrients in the form of
capsules, tablets, and syrups (Smith et al., 2006; Elemike et al.,
2019), food fortification requires relatively small amounts of
micronutrients. In comparison to supplementation which can
easily cause overdoses (Elemike et al., 2019), food fortification
provides adequate amounts of micronutrients to consumers from
a mass scale to specific targeted scale (Smith et al., 2006). There
are several opportunities and challenges in food fortification.
First, fortified food would supply a better-quality diet within
micronutrients which are necessary for women and children by
reducing the requirements of supplementation. Second, fortified
food for staple crops could contain micronutrients in a natural
level. In addition, the application of fortified food could improve
the nutritional status in a cost-effective way in a large population
or targeted population worldwide.

Although food fortification has numerous impacts on the
public diet, there are several challenges to be considered. First of
all, although fortified food applies to the public or targeted group,
a specific fortified food product might be consumed only by some
part of the targeted group. It is required that adequate programs
or advertisements regarding fortified food are given for the
targeted group (Smith et al., 2006). Second, due to accessibility,
there is a higher chance to access fortified food in urban areas
compared to rural areas (Elemike et al., 2019). Therefore, research
should focus not only on the fortification process but also on the
distribution of fortified products. Third, fortified food generally
targets young children and women due to their extra requirement
of micronutrients. However, the amount of uptake of fortified
food is relatively small in infants or young children. Therefore,
they are less likely to consume recommended intakes compared
to their requirement of micronutrients. In addition, further
knowledge is required about the effect of interaction among
nutrients when micronutrients are added. To achieve sustainable
food fortification and its implementation, it is necessary to
consider transdisciplinary aspects based on understanding the
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effects of agriculture, environment, socioeconomic, and politics
(Smith et al., 2006). Also, further supportive national scale
involvement is vital for sustainable food fortification with
increased bioavailability in the long term.

VITAMIN B12 (COBALAMIN)

Background
Physiochemical Traits of Vitamin B12 and Its Role in
Human Health
Vitamin B12, known as cobalamin (Cbl), is a water-soluble
vitamin and it is synthesized by bacteria such as heterotrophic
bacteria and most of the aerobic photosynthetic cyanobacteria
(Tandon et al., 2017). Vitamin B12 mainly involves two enzymatic
reactions, DNA synthesis and assimilation of inorganic carbon,
which consequently influence on gene regulation, formation of
blood cells, and metabolism of the nervous system (National
Institute of Health, 2020). According to the National Institute
of Health, the recommended daily amount of vitamin B12 is
0.4 mcg to 0.5–0.6 mcg for infants, 1.2–2.4 mcg for children
to adolescence, and 2.4 mcg for adults (2.6 and 2.8 mcg for
pregnancy and lactation respectively) (Pawlak et al., 2013; Nakos,
2016).

Vitamin B12 is originated by bacteria mainly found in the
gastrointestinal tract of animals and it should be synthesized
via the fermentation process of lactic acid (Jedut et al., 2021).
There are two different vitamin B12-biosynthetic routes for
prokaryotes in nature based on their oxygen-dependency: aerobic
and anaerobic pathways. For instance, Paracoccus denitrificans
takes an aerobic (oxygen-dependent) pathway, whilst Bacilus
megaterium, P. shermanii, and Salmonella typhimurium take
anaerobic (oxygen-independent) pathways (Martens et al., 2002).
Enteric bacteria, as the main source of vitamin B12, is responsible
for most vitamin B12 biosynthesis processes found in animals
or humans. However, eukaryotes is merely linked to the
metabolic process of vitamin B12 so that nematodes or animals
acquire dietary vitamin B12 from vitamin B12-producing bacteria
(Lawrence et al., 2018). Vitamin B12 is a nutritional requirement
for animals, whereas plants neither require nor synthesize
it. Animals contain a vitamin B12-dependent enzyme called
methionine synthase (METH), such as methyl malonyl-CoA
mutase or methionine synthase, whilst plants contain vitamin
B12-independent methionine synthase (METE) enzyme (Tandon
et al., 2017). Only traceable amounts of vitamin B12 are found
in plants due to a nitrogen-fixing actinobacteria, Frankia anni,
which associates symbiotically with actinorhizal plants and
contributes vitamin B12 (M. Nakos et al., 2017). Thus it is mainly
found in animal-derived sources, including meat (e.g., ruminant
or omnivorous animals), dairy, fish, and shellfish (Watanabe and
Bito, 2018).

Vitamin B12 (Cobalamin) consists of central corrin rings
containing four pyrrole rings around a central cobalt atom, a
lower ligand (α-ligand) donated by 5,6-dimethylbenzimidazole
(DMBI), and an upper ligand (β-ligand) synthesized from an
adenosyl or methyl group (Nakos, 2016; Rizzo et al., 2016).
Dependent on the different ligands on the upper surface of

cobalt atoms, vitamin B12 is classified as four different chemical
forms: (i) hydroxocobalamin(H-Cbl), (ii) Methylcobalamin (Me-
Cbl), (iii) Cyanocobalamin (CN-Cbl), and (iv) adenosylcobalami
(Ado-Cbl). As coenzymes in the cell, Me-Cbl and Ado-Cbl
are the active forms of vitamin B12. CN-Cbl and H-Cbl
are provitamin forms requiring Me-Cbl or Ado-Cbl to be
utilized by the cells (Rizzo et al., 2016). By participating in
the metabolic homocysteine pathway (HCY), Me-Cbl acts a
cofactor of methionine synthases. HCY pathway impacts on
DNA synthesis and is involved in regenerating methyl donor
S-adenosylmethionine (SAM). Methionine is required not only
for SAM formation but also for metabolisms of DNA, RNA,
proteins, and lipids (NIH, 2021). Ado-Cbl, as a cofactor of
methylmalonyl-CoA mutase, is involved in metabolism of amino
acid and fatty acid. Among the different chemical forms of
vitamin B12, cyanocobalamin (CN-Cbl), which is chemically
manufactured, is the most stable form and is obtained by reacting
natural cobalamin with cyanide. Therefore, CN-Cbl is the most
widely used in food fortification, in nutrient formulas, and for
pharmaceutical purposes (Nakos, 2016; Rizzo et al., 2016).

Vitamin B12 Absorption, Digestion, and Circulation in
Humans
Vitamin B12 is predominately contained in animal-based food.
Following food-cobalamin intake, vitamin B12 attaches to dietary
animal protein produced from the salivary gland. In the stomach,
dietary protein is released by the acidic environment of the
stomach via proteolysis. Vitamin B12 binds to haptocorrin (R-
protein) which is secreted by the salivary glands protecting
vitamin B12 from acid degradation (Green et al., 2017). Pepsin
and hydrochloric acid (HCl) are released from gastric secretion.
In stomach, Intrinsic factor (IF) is also secreted, and it binds
less strongly when gastric R-protein presents. In duodenum,
hatocorrin degradation occurs and the pH is changed in favor of
vitamin B12 binding to IF. Pancreatic enzymes degrade dietary
vitamin B12 and haptocorrin complex to release free vitamin B12
and free vitamin B12 binds to IF and vitamin B12-IF complex
transport to ileum (Andrès et al., 2004). In the ileum, vitamin B12-
IF complex binds/enters to the cubam receptor which contains
cubilin. Cubam receptor mediates endocytosis of vitamin B12-IF
complex (Stabler, 2013; Green et al., 2017; Surendran et al., 2018).
After the IF and vitamin B12 are detached, vitamin B12 binds to
transport proteins transcobalamin I, II, and III. Transcobalamin
II (TCII) involves transportation of vitamin B12 to all cells in
the human body. Vitamin B12 is consequently transported via
the portal system. TCII-Cbl complex is absorbed by endocytosis
and free vitamin B12 is enzymatically converted into its two
coenzymatic forms: methyl-cobalamin (Me-Cbl) and adenosyl-
cobalamin (Ado-Cbl). Most vitamin B12 is stored in the river
and some vitamin B12 is secreted in bile which undergoes
enterohepatic circulation (Andrès et al., 2004; Green, 2017; Green
et al., 2017).

Previous studies pointed out several endogenous and
exogenous factors that impact on the absorption of vitamin
B12 in gastrointestinal metabolism and enterohepatic circulation
(Andrès et al., 2004). Firstly, achlorhydria in stomach may be
associated with cobalamin malabsorption, which is a lack of
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hydrochloric acid in the gastric secretion in the stomach. Vitamin
B12 malabsorption can be induced by insufficient IF along
with chronic gastritis which may lead to megaloblastic anemia
and neurological disorders (Andrès et al., 2004). Secondly,
insufficient exocrine pancreatic can also influence vitamin B12
malabsorption owing to low pH in the small intestine and
impaired degradation of haptocorrin due to pancreatic enzymes
(Green et al., 2017). Thirdly, bacterial overgrowth, such as
Pseudomonas spp. and Klebsiella spp., can influence vitamin B12
absorption in small intestine. Bacterial overgrowth may occur
by gastrectomy, ileocolic intestinal resection, and secretion of
impaired gastric acid (Andrès et al., 2004; Green et al., 2017).
Lastly, genetic disorders associated with vitamin B12 deficiency
is involved in plasma transportation and conversion to coenzyme
forms (Andrès et al., 2004; Figure 1).

Vitamin B12 Deficiency
Vitamin B12 deficiency is characterized by low levels of
circulating serum vitamin B12 and holo-transcobalamin
(holoTC) along with elevated levels of total homocysteine in
plasma and methylmalonic acid in serum or urine (Brito et al.,
2018). Homocysteine, as an amino acid, is generated by the
demethylation of methionine and is accumulated in blood when
folate, vitamin B12, and vitamin B6 are insufficient (Tucker et al.,
2004). Vitamin B12 deficiency is prevalent not only in lower-
middle-income countries, but also in upper-middle-income
countries. Geographically, the deficiency generally occurs in
middle- or low-income countries due to the staple crop and
plant-based diets and insufficient consumption of animal-based
food (Titcomb and Tanumihardjo, 2019). Deficiency of vitamin
B12/iron causes pernicious anemia, mainly threatening pregnant
women in South Asia and Sub-Sahara countries reaching 60
and 42% of children under five globally (Ritchie and Roser,
2017; Figures 2, 3). Vitamin B12 deficiency is also prevalent in
elderly, affecting up to 20% of people over 60 and approximately
6% of adults (younger than 60 years) in the United States and
United Kingdom (NIH, 2021).

Populations at high risk for vitamin B12 deficiency include
the elderly, children, pregnant women of reproductive age,
patients (e.g., autoimmune diseases including pernicious anemia
and atrophic gastritis), and those with malabsorption of food-
cobalamin including those on strict vegetarian or vegan diets
(Stabler, 2020). Within the elderly population, vitamin B12
malabsorption is mainly due to age-related gastric atrophy, which
causes a reduction in acid and intrinsic factor (IF) (Rusher and
Pawlak, 2013; Figure 1). Also, the populations with atrophic
gastritis with low levels of stomach acid secretion generally have
vitamin B12 malabsorption with certain gastric dysfunctions from
food-bound vitamin B12 sources (Watanabe, 2007). Vitamin B12
deficiency is generally measured by serum methylmalonic acid
(MMA) or the level of total plasma homocysteine which is
normally lower than 200 or 250 pg/mL (NIH, 2021). Maternal
vitamin B12 deficiency during the period and/or lactation
increases the possibility of birth defects or growth retardation in
infants (Brito et al., 2018). In addition, low levels of vitamin B12
in breastfeeding and insufficient maternal intake of animal-based
food causes brain development defects and overall developmental
regressions, particularly 4–6-month-old infants (Stabler, 2013).

Pathophysiology of vitamin B12 deficiency includes subclinical
symptoms because vitamin B12 is stored at 1–5 mg in the
human body which makes it difficult to diagnose deficiency
(NIH, 2021). Vitamin B12 deficiency is often accompanied
with other micronutrient deficiencies such as folate (as known
as B9), iron, zinc, and protein deficiencies (Stabler, 2020).
In particular, various studies have highlighted the correlation
between vitamin B12 and folate (Allen et al., 2010; Oakley
and Tulchinsky, 2010). Folic acid fortification neither prevents
nor treats vitamin B12 deficiency, but it also does not impact
adversely on vitamin B12 deficiency (Oakley and Tulchinsky,
2010). Severe vitamin B12 deficiency induces megaloblastic
anemia (abnormal nucleated red blood cells) and abnormal
neurologic diseases (NIH, 2021). This deficiency also causes
hematological and psychiatric adverse symptoms by affecting
the formation of red blood cells and the normal functions of
the nervous system (Nakos, 2016; Rizzo et al., 2016; Stabler,
2020). Previous research has highlighted several endogenous
and exogenous effects on the absorption of vitamin B12: (i)
food-cobalamin malabsorption such as inadequate vitamin B12
levels due to inappropriate dietary intake or low bioavailability;
(ii) malabsorption due to chronic disorder or autoimmune
diseases including genetic disorders, pernicious anemia, atrophic
gastric, malabsorption due to the overgrowth of Helicobacter
pylori, or chronic alcoholism; and (iii) competition for vitamin
B12 as a result of nitrous oxide exposure (Rusher and
Pawlak, 2013; Stabler, 2013; Brito et al., 2018). Currently,
patients suffering autoimmune diseases with vitamin B12
deficiency are recommended to be injected with 1000 µg
of vitamin B12 several times weekly. Also, high-dose oral
treatment is also recommended for patients providing effective
treatments. Vitamin B12 replacement therapy via intramuscular
administration was also conducted for treating vitamin B12
deficiency (Rusher and Pawlak, 2013; Stabler, 2013). However,
it has been reported that deficiency symptoms are alleviated
but not fully improved. Extensive medical and pharmacological
research has focused on vitamin B12 supplementation. A more
comprehensive study would be conducted on vitamin B12
enrichment in living plants.

Vitamin B12 Sources: Supplementations
and Natural Food Sources
It is common to treat vitamin B12 deficiency with high-
dose injection, oral treatments, and nasal gel spray with
cyanocobalamin. Although the supplementations have a high
level of vitamin B12 doses, it is generally believed to be safe since
only limited amounts of vitamin B12 are stored in the human
body (1.4–5.1 µg) (Doets et al., 2013; NIH, 2021). For instance,
vitamin B12 is absorbed 50% from 1 µg oral dose and 20% from
5 µg dose and the absorption is decreased by saturation from
vitamin B12-IF complex in the ileum from 1 to 2% of an oral
dose (Brito et al., 2018). Daily losses of vitamin B12 presents
3.8–20.7 µg in healthy populations (over 25 years old), which
is 1.4–8.6 times higher than the required amount of vitamin B12
preventing deficiency (Doets et al., 2013).

Vitamin B12 is generally concentrated in animal-based sources
such as meat, dairy products, eggs, fish, and shellfish (Bito et al.,
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FIGURE 1 | Gastrointestinal metabolisms and enterohepatic circulation of vitamin B12 (Cobalamin) (Modified from Andrès et al., 2004; Stabler, 2013; Hunt et al.,
2014; Green et al., 2017; Brito et al., 2018). (A) Dietary vitamin B12 attach to dietary animal protein produced from salivary gland. (B) Following food-cobalamin
intake, dietary protein is released by acidic environment of the stomach via proteolysis, and vitamin B12 binds to haptocorrin (R-protein) which secreted by salivary
glands protecting vitamin B12 from acid degradation. Pepsin and hydrochloric acid (HCl) from gastric secretion. In stomach, Intrinsic factor (IF) is also secreted, and it
binds less strongly when gastric R-protein presents. In duodenum, hatocorrin degradation occurs and the pH is changed in favor of vitamin B12 binding to IF.
Pancreatic enzymes degrade dietary vitamin B12 and haptocorrin complex to release free vitamin B12. Then free vitamin B12 binds to IF and vitamin B12 -IF complex
transport to ileum. (C) In ileum, IF-vitamin B12 complex binds/enters to the cubam receptor which consists of cubilin. Cubam receptor mediates endocytosis of IF-
vitamin B12 complex. After the IF and vitamin B12 detaches, vitamin B12 binds to transport proteins transcobalamin I, II, and III. Transcobalamin II (TCII) involves
transportation of B12 to all cells in the human body. Vitamin B12 is consequently transported via the portal system. (D) TCII- vitamin B12 complex is absorbed by
endocytosis and free vitamin B12 is enzymatically converted into its two coenzymatic forms including methyl-cobalamin (Me-Cbl) and adenosyl-cobalamin (Ado-Cbl).
Most of vitamin B12 stored in the river and some of vitamin B12 is secreted in bile, which undergoes enterohepatic circulation.

2013; Rizzo et al., 2016). According to Watanabe and Bito (2018),
the meat and livers of ruminant animals contain higher amounts
of vitamin B12 (cooked beef river contains 83 µg/100 g) than that
found in omnivorous animals (Cooked chicken meat contains
0.4–0.6 µg/100 g). Traceable amounts of vitamin B12 are found
in dairy products, such as milk (0.3–0.4 µg/100 g), egg (0.9–
1.4 µg/100 g), shellfish (104 µg/100 g), and fish including salmon,
trout, and tuna (3.0–8.9 µg/100 g) (Watanabe and Bito, 2018).
Compared to animal-based food, plant-based food contains very
low or negligible amounts of vitamin B12 (Nakos, 2016). For
instance, only negligible amounts of vitamin B12 was found
(<0.1 µg/100 g) in vegetables, including broccoli, asparagus, and
mung bean sprouts (Watanabe and Bito, 2018).

Several studies have focused on plants, fungi, and algae
with traceable amounts of vitamin B12 within these symbioses
including edible mushrooms, edible algae, fermented soybeans
(0.1–1.5 µg/100 g) and vegetables, and processed food such as
cereal, bread, and beverages (Bito et al., 2016; Watanabe and Bito,
2018). The contents of vitamin B12 in edible plants is generally
very low with different degrees of stability and bioavailability
which contribute complex analysis of vitamin B12 (Nakos et al.,
2017). Previous studies have emphasized that the biological
activity of vitamin B12 is uncertain in most cases due to the
limited availability of natural sources of vitamin B12 (Nakos et al.,
2017). Therefore, further studies are required to focus on the

fortification of vitamin B12 in food crops and evaluate their
applicability in the dietary system.

Status of Vitamin B12
Supplementation/Fortification
Among micronutrient deficiencies, the amelioration of vitamin
B12 deficiency is significantly less emphasized. Extensive
research regarding vitamin B12 fortification has focused on
supplementation for medical or pharmacological purposes.
Supplements of vitamin B12 from multivitamin/minerals are
generally 500–1,000 mcg of vitamin B12 with 2 and 1.3% of
absorption respectively (NIH, 2021). Due to the IF-mediated
gastrointestinal absorption and circulation system, vitamin B12
bioavailability decreased ranging from 1.5 to 2.0 µg per meal
under physiologic conditions or food processing (Watanabe,
2007). In healthy populations, vitamin B12 bioavailability
presents 42% from fish or meat (beef, lamb, and chicken),
ranging from 56 to 89%, and although traceable amounts
of vitamin B12 contents are found in the yolk, eggs have
poor bioavailability compared to other vitamin B12-contained
food sources. Vitamin B12 bioavailability can be significantly
degraded by dysfunctions such as atrophic gastritis with low
levels of stomach acid secretion. According to Dietary Reference
Intake, it is assumed that a healthy population with a normal
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FIGURE 2 | Vitamin B12/Iron deficiency: Anemia prevalence in children worldwide (Source: WorldBank; Ritchie and Roser, 2017). (A) Vitamin B12 /Iron deficiency:
anemia prevalence in children worldwide, 2016| Anemia (B12/Fe deficiency) in children under five predominantly occurs in Sub-Saharan Africa regions with average
60% (28.8–86.2%) and Southern Asia 55% (16.9–83.5%) in 2016. The prevalence of anemia occurs less in North America (8.5–9.4%), Europe (12.1–27.1%),
Central, East Asia (12.3–21.4%), and Oceania (13–48.4%). Prevalence of anemia relatively correlate to the values of gross domestic product (GDP). (B) Vitamin B12

/Iron deficiency: anemia prevalence in children worldwide, 1990 to 2016 | Prevalence of anemia (vitamin B12 /Fe deficiency) has been decreasing worldwide from
1990 to 2016 on average from 51 to 42%. However, it is still a significant issue in Sub-Saharan Africa and South Asia, who have approximately 60 and 55.1%
respectively in 2016.

FIGURE 3 | Vitamin B12/Iron deficiency: Anemia prevalence in women of reproductive age worldwide (Source: WorldBank; Ritchie and Roser, 2017). (A) Vitamin
B12/Iron deficiency: anemia prevalence in women of reproductive age worldwide, 2016. Anemia (vitamin B12/Fe deficiency) in women of reproductive age (aged
between 15 and 49) mainly occurs in South Asia (24.2–69.6%) and Sub-Saharan Africa (23.2–59.1%), and Middle East and North Africa regions (23.4–49.5%). In
particular, Yemen shows the highest rate with 69.6%. The prevalence of anemia in reproductive aged women occurs in comparatively low numbers in North America
(9.5–14.6%), Latin America, the Caribbean (18.5–30.2%), Europe, and Eastern Asia (15.7–26.4%). (B) Vitamin B12 /Iron deficiency: anemia prevalence in women of
reproductive age worldwide, 1990 to 2016. Prevalence of anemia (Vitamin B12/Fe deficiency) has been decreased worldwide from 1990 to 2016 (39.60% to
34.23%). However, it slightly increased in several regions from 2013 to 2016 mainly in East and Central Asia, Pacific and Europe regions.

gastrointestinal function can absorb 40–50% of vitamin B12 from
animal-based food sources (Watanabe, 2007). It is difficult to
evaluate vitamin B12 bioavailability by quantifying active vitamin

B12 or inactive corrinoids in certain foods, such as vitamin B12
fortified plant-based food. Therefore, for vitamin B12 fortification
strategies, it is necessary to enhance the contents of vitamin B12
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in food sources along with the high bioavailability which is actual
amounts of available uptake (Watanabe, 2007).

Little is known about vitamin B12 biofortification based on
crops. However, a relatively limited number of studies have
been conducted to investigate vitamin B12 fortification and
understand their mechanisms of uptake/distribution in living
plants. According to previous studies, several plants, fungi, and
algae (e.g., Japanese radish sprouts, mushrooms, dry seaweed,
and garden cress) absorb and translocate vitamin B12 if they are
grown in nutrient-sufficient conditions with organic fertilizer or
vitamin B12-enriched growing media (Sato et al., 2004; Bito et al.,
2013; Lawrence et al., 2018). One of the effective strategies to
enhance the contents of vitamin B12 is flour fortification for a
national scale with uniform dose. There are various processed
food products that have been fortified with vitamin B12 such as
cereal grain products (Tucker et al., 2004; Melo et al., 2020),
dried soup powder, and powdered milk drink (Sanchez et al.,
2013). Vitamin B12 can also be supplemented with fresh-cut fruits
and vegetables for alleviating its deficiency in the population
groups who are at high risk. A combination of vitamin B12 and
chitosan is applied in fresh-cut salad mixes (melon, pineapple,
and carrot) which are for ‘ready-to-blend’ beverages. According
to Artés-Hernández et al. (2017), the study shows the fortified
beverage contains up to 8.6 µg/1 kg of vitamin B12 along with an
enhanced shelf-life.

Unlike widespread folate fortified wheat flour, there is
inadequate case for vitamin B12 fortification with food crops
in worldwide. Folic acid fortification has been successfully
conducted, but it also increased the concerns about the possibility
of neurological issues and deterioration of cognitive ability
occurring with high folic acid supply and low level of vitamin
B12 (Garrod et al., 2019). The study conducted by Garrod
et al. (2019) aimed to quantify the bioavailability of fortified
vitamin B12 in bread in five healthy elderly people aged over
60. The study shows that vitamin-B12-fortified flour retains
its bioavailability approximately 50% after the processes of
fermentation and baking containing 2 µg/100 g. The study
shows the healthy elderly can absorb sufficient vitamin B12 from
the fortified bread addressing that the vitamin B12 fortified
wheat (flour) can be a promising animal-based substitute with
high-purity crystalline 14C-vitamin B12 (Garrod et al., 2019).
Further study would be required to investigate the absorption
of fortified flour for different targeted subjects who have high
risk of vitamin B12 deficiency such as children or pregnant
women or larger populations of the elderly. According to
Tucker et al. (2004), vitamin B complex fortified breakfast cereal
contribute enhancement of their contents including vitamin B6,
B9 (folate), and B12 (cobalamin). Fortified cereal significantly
improves vitamin B12 concentrations and reduces the prevalence
of high levels of plasma homocysteine from 13 to 3%. This
study highlights that fortified cereal would be great vitamin
B12 sources for general populations who frequently have poor
vitamin status (Tucker et al., 2004). Tucker et al. (2004) pointed
out that free vitamin B12-fortified breakfast cereals presents
better absorption compared to vitamin B12-bound to proteins
in food which may be due to the IF-mediated gastrointestinal
metabolisms effects on vitamin B12 absorption. Vitamin B12
fortification is also targeted to adults aged over 50 years by

using the microencapsulation approach (Melo et al., 2020). The
study found that the application of the encapsulated vitamin B12
powder in yogurt (50 µg of vitamin B12 was added into 175 g
of yogurt) successfully fortified vitamin B12. The study compared
Me-Cbl and CN-Cbl and the outcomes of the study show that
CN-Cbl presents better stability throughout shelf-life. This study
undertakes encapsulation technique for vitamin B12 fortification
using spray-drying method to coat vitamin B12 with a maize
starch-derived polymeric materials (Melo et al., 2020).

There are several in situ fortification methods for vitamin
B12 in fermented plant-based food. In situ fortification with
bacteria (Propionibacterium freudenreichii DSM 20271 and
Levilactobacillus brevis) successfully enhances vitamin B12
contents in fermented cereal, pseudo-cereal (such as rice
bran and buckwheat bran), and legume plants (Xie et al.,
2021). Fermented legume materials contain 300–400 ng/g (dry
weight) of vitamin B12 measured by ultra-high performance
liquid chromatography and the results suggest that fermented
crop materials can be a great potential alternative for plant-
based food-cobalamin. This study also found that optimal pH
condition for P. freudenreichii can increase the vitamin B12
contents in fermented grain materials. Further research would
be needed to examine the contents of other micronutrients
and minerals in the fermented crop materials using in situ
fortification which is necessary to be considered for vitamin
B12 amelioration along with other micronutrient deficiencies
(Xie et al., 2021). Vitamin B12 also successfully fortified up
to 0.97 µg/100 g in tempeh by in situ approach using
Propionibacterium freudenreichii (Log 7 CFU/g) and Rhizopus
oryzae spores (Log 4 CFU/g) (Wolkers – Rooijackers et al.,
2018). This research determines the effect of in situ strategy
on tempeh quality by analyzing the consumer acceptance traits
including microbial composition, firmness, and volatile organic
compounds to measure aroma quality. The result of the study
shows that the fortification using both food-grade bacterium
does not have any negative impact on the quality traits.
However, it is also necessary for this study to analyze other
micronutrient/mineral components that are highly related to
vitamin B12 deficiency and fortification.

Vitamin B12 supplement programs and fortification strategies
target reduction of vitamin B12 deficiency and further factors
should be considered for successful vitamin B12 fortification:
(i) actual concentration and bioavailability of vitamin B12 in
fortified or supplemented sources; (ii) demographic, geographic,
and socioeconomic traits of targeted groups, and (iii) effect of
frequent- or over-dose of vitamin B12 (Carmel, 2008).

NANOPARTICLE TECHNOLOGY: A
SUSTAINABLE APPROACH FOR
MICRONUTRIENT/MINERAL
ENHANCEMENT

Background on Nanoparticle Technology
Engineered nanomaterials (ENMs), called nanoparticles, feature
at least one dimension ranging from 1 to 100 nm and consist
of organic, inorganic, or hybrid materials (Shang et al., 2019).
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Owing to their small particle size, nanoparticles have a large
surface area and exhibit high solubility and mobility that is widely
exploited for smart delivery for pharmaceutical, medical, and
agricultural purposes (Shang et al., 2019). The size of ENMs
corresponds to biological barriers such as a plant cell wall or
membrane after root or foliar applications and to enable new
smart delivery of nutrients or pesticides (Nair et al., 2010;
Lowry et al., 2019). The characteristics of nanoparticles, such as
structure or surface chemistry traits, should be selected properly
for different functions or nanotechnological strategies (Lowry
et al., 2019). Through interactions between nanoparticles and
plants, including nutrient interactions, it is possible to enhance
the nutritional quality of food crops by accumulating specific
macro- and micronutrients.

The agronomical biofortification of food crops with
micronutrients/minerals is a promising technique with a fast
and easy way to mitigate inadequate essential nutrients/minerals
in plants (Elemike et al., 2019). Nano-agrochemicals can
be classified by their types or delivered nutrients, such as
macronutrient and micronutrient fertilizers and macronutrient
carriers (Singh Sekhon, 2014). Macronutrients, in particular
NPK fertilizers, can be applied with nanoparticles in nanocapsule
form, or particles can be coated with nutrients/minerals (such
as in urea-coated zeolite chips) with slow release application to
enhance the uptake and efficiency of fertilizer (Singh Sekhon,
2014). Nano-NPK fertilizer promotes crop harvest yield and
growth quality, including the size or weight of edible vegetative
parts and physiochemical compounds in several crops, such as
wheat (Abdel-Aziz et al., 2016; Al-juthery and Al-Shami, 2019),
potato (Rop et al., 2019), maize, kale, and capsicum crops (Rop
et al., 2019). Among techniques involving nano-NPK fertilizers,
such as the slow-release method or coating with nutrient ions,
nano-NPK fertilizers shorten the life cycles of crops compared
to conventional fertilizer application, which is highly relevant to
increasing crop yield (Liu and Lal, 2015). Micronutrient-loaded
nanoparticles may provide more favorable uptake or distribution
of micronutrients in plants by providing slow release of the
nutrient by plants or soils and reducing environmental pollution
(e.g., leaching) or agroecology degradation (Elemike et al., 2019).
Compared to conventional fertilizers, nanofertilizer can triple
the nutrient effectiveness, reduce the requirement or usage of
fertilizers applications, develop crops with stress resistance,
and cause less adverse environmental impacts (e.g., leaching)
(Elemike et al., 2019).

Micronutrient fertilizers are being developed with various
micronutrient ions, such as Fe (Rameshraddy et al., 2017); Mn,
Zn (Liu and Lal, 2015); and Cu (Trujillo-Reyes et al., 2014).
Depending on the application method, nanoparticles synthesized
with micronutrients differentially translocate and accumulate in
leaves, shoots, and grains along with various effects on growth
performance. For instance, hydroponic cultivation enables
more efficient and effective root application of nanofertilizer
(Jeyasubramanian et al., 2016). Nanofertilizers are also widely
applied for foliar applications using spraying methods.
Furthermore, nanofertilizer treatments can be conducted
together, such as the combination of seed priming and foliar
application of zinc oxide nanoparticles (ZnO NPs), which showed

enhancement of seedling growth and increased biomass contents
of chlorophyll and yield in rice (Rameshraddy et al., 2017).

Fortification Strategies of Vitamin B12
and Its Deficiency Relevant
Micronutrient
Vitamin B12 Fortification Using Nanoparticle
Technology
Vitamin B12 deficiency may be accompanied by high folate
status presenting a negative association with adverse health
consequences such as cognitive impairment and delaying nerve
conductivity (Brito et al., 2018). According to Prueksaritanond
et al. (2013), intramuscular inject of vitamin B12 along with
the supplemented iron and folate significantly improve
vitamin B12 deficiency. Thus, further strategies for vitamin
B12 fortification should ameliorate folate, iron, and zinc
deficiencies. Currently, nanocarriers have been applied for the
pharmaceutical application of vitamin B12 for targeted smart
delivery. Nanocarriers consist of organic/inorganic nanoparticles
and are utilized for smart delivery as commonly used in
the pharmaceutical industry. Nanoparticle applications offer
innovative solutions to improve the sensitivity of measurement
by enhancing the electromagnetic signal in metal nanoparticle
due to their nanosize with surface plasmon resonance effect
(Fidaleo et al., 2021). For vitamin B12 delivery, nanoparticles
should be absorbed in the small intestinal tracts. There are
several strategies for improving bioavailability using vitamin
B12 nanocarriers with thiolate polyacrylic acid particles and
nanoengineered polymeric capsules. However, there are
increasing concerns regarding potential toxicity of nanoparticles.
Further studies should address not only the mechanisms of
uptake and transport and metabolisms in vivo, but also the safety
applications dealing with the potential toxicity of nanoparticles.

Unlike for medical/pharmacological purposes, comparatively
limited studies have been conducted for food/agriculture
strategies. Seed priming techniques (Sato et al., 2004; Keshavarz
and Moghadam, 2017) and a hydroponic system with vitamin
B12-enriched solution (Bito et al., 2013) have been utilized for
vitamin B12 fortification in food crops (Table 1). Plants treated
with high concentrations of vitamin B12 exhibit more favorable
growth performance and an increased content of vitamin B12 in
the crops (Keshavarz and Moghadam, 2017). The study found
that vitamin B12 increases the resistance capacity against abiotic
stress and reduces oxidative stress by providing an effective
antioxidant and regulating osmotic balance. Common bean seeds
soaked with 11 and 22 µm of vitamin B12 concentrations show
enhanced chlorophyll contents, catalase, and peroxidase activity
in the leaves in the condition of salt stress compared with control
treatment. Also, the application of seed priming with 22 µm
of vitamin B12 under saline conditions increase the level of
proteins in the bean plants, whilst there was no effect of protein
improvement under non-saline conditions. The outcome of this
study highlights that the application of vitamin B12 enhances
not only the salinity tolerance, but also effective photosynthetic
biosynthesis by alleviating the adverse effect on photosynthesis
pigments in salinity stress (Keshavarz and Moghadam, 2017).
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Seed priming with vitamin B12-enriched solution also increases
the vitamin B12 contents in kaiware daikon sprout up to 1.5 µm/g
in any concentration of vitamin B12 solutions ranging from 0
to 200 µg/ml (Sato et al., 2004). This study also addresses the
possibility of reduction of vitamin B12 by cooking processes,
such as boiling, and also highlights that prolonged boiling (3–
10 min) will decrease the vitamin B12 contents in kaiware
daikon. Based on this previous finding, further studies can be
conducted to identify the effect of vitamin B12 enriched coated
with micronutrient/mineral in food crops and how much vitamin
B12 contents will be retained after cooking processes.

As demonstrated above, only a few previous studies focused
on vitamin B12 fortification in food crops (Sato et al., 2004; Bito
et al., 2013; Keshavarz and Moghadam, 2017; Table 1). Various
studies only focused on the quantification and determination
of vitamin B12 in food crops such as Hippophae rhamnoides
berries (Nakos et al., 2017), edible algae (Kumudha, 2015),
mushrooms (Watanabe et al., 2012, 2014; Bito et al., 2014, 2016),
and fermented plant-based products (Watanabe et al., 2013).
Titcomb and Tanumihardjo (2019) highlighted that high intake
of vitamin B12 did not show adverse effects on human bodies.
However, there are limitted studies on the effect of fortified
vitamin B12 in the food crops and its specific health effects on
human health. Further research would be required to identify
sustainable fortification methods for vitamin B12 and its stability
and effects on human health when it is digested or accumulated
in the long term. Furthermore, it still remains challenging to
quantify and determine exact vitamin B12 contents in food crops
because vitamin B12 mainly exists as bound form in food crops
with different degrees of stability (Nakos et al., 2017). Nakos
et al. (2017) pointed out that immunoaffinity chromatography
and HPLC analysis can provide quantitative chromatographic
isolation of vitamin B12 in food crops. Further studies should
distinguish between active or inactive analogs of vitamin B12
forms in food crops (Nakos et al., 2017).

Folate Fortification Using Nanoparticle Technology
In order to enhance the contents of vitamin B12 in food
crops, the interrelated deficiencies should also be alleviated.
Vitamin B9, as known as folate, is involved in the synthetic
mechanisms and methylations of nucleotides by intervening in
cell multiplications and tissue growth. Vitamin B12 and folate
presents an intimated connection via their cooperation in one-
carbon metabolism and the hematological complications that
are indistinguishable consequences/symptoms of deficiencies
caused by either vitamin B12 or folate (Green, 2017). In
vitamin B12 deficiency status, normal folate cycling disrupts the
regeneration of methylenetetrahydrofolate, and it is required
to sustain the synthesis of thymidine for replication of
DNA. Since vitamin B12 is required for its conversion to
tetrahydrofolate within the reaction of methionine synthase,
folate becomes trapped as methyl-folate which ultimately causes
functional folate deficiency (Green, 2017). Vitamin B12 deficiency
decreases the activity of methionine synthase and subsequently
reduces folate cycle intermediates, causing thymidine synthesis
(Titcomb and Tanumihardjo, 2019). TA
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Folate deficiency is prevalent worldwide and over 1.6
billion people are struggling with these deficiencies. Folate
deficiency occurs along with iron deficiency and induces
megaloblastic anemia in severe deficiency status due to reduced
oxygen-carrying capacity (Titcomb and Tanumihardjo, 2019).
However, fortification of folic acid, as a synthetic form of
folate, has successfully mitigated folate deficiency. Unlike
limited bioavailability of vitamin B12, folic acid has over 85%
bioavailability and folic acid has approximately 70% higher
bioavailability than food folate (Dary, 2008). There are various
folate fortified cereals and grains products aiming to reduce
the incidence of neural tube defections (NTDs) (Crider et al.,
2011). NTDs, as birth defects, occur when the neural tube is
exposed to underlying neural tissue owing to the failure of
closure during the early embryonic development. Mandatory
folic acid fortification programs have been carried our in 53
countries and wheat flour is most widely fortified with folate
(Crider et al., 2011). Food fortification with folic acid provides
sufficient amounts of folic acid to meet individual and global
requirements. However, fortified cereal grain products do not
adequately reach all women of reproductive age. Furthermore,
there are emerging concerns about the excessive intake of folic
acid from the fortified food adversary impacts on pernicious
anemia, known as vitamin B12 deficiency (Crider et al., 2011). For
instance, vitamin B12 deficient people have a higher possibility of
developing neurologic disorders from increased folic acid intake
(Carmel, 2011).

A recent study conducted by Darwish et al. (2021) shows
that folic acid and iron can be fortified via bovine serum
albumin-nanoparticles in stirred functional yogurt (SFY) (BSA-
NPs). BSA-NPs are coated with amino acids (lysine) allowing
the positive/negative charge of molecules to absorb electro-
statistically without any other compounds’ intervention. BSA-
NPs show stable applications and BSA-NPs loaded with folic
acid/iron restore most of the monitored plasma iron parameters
in SFY products. This fortified SFY retained iron and protein
without adverse effects or architectural changes in the liver
or kidney. Furthermore, it contributes to enhancing water-
holding capacity, microstructure, and overall acceptability of
sensors (Darwish et al., 2021). This study successfully introduces
the nano-encapsulation technique for enhancing iron and
folic acid addressing their physiochemical interaction between
dairy food products.

Iron Fortification Using Nanoparticle Technology
As a co-factor in photosynthetic, iron is an essential nutrient
for photosynthetic organisms involving various metabolic
mechanisms such as electron transport chain (Davies, 2018). Iron
deficiency is concomitant with vitamin B12 deficiency masking
the macrocytosis, typically seen in vitamin B12 deficiency. Due
to vitamin B12/folate deficiencies, ineffective formation of the
red cell is a block in iron utilization, causing increased serum
iron levels. If the hemolytic anemia condition persisted, iron
may be depleted and eventually cause iron deficiency anemia
(Green, 2017). Iron and iron oxide nanoparticle (Fe- and Fe2O3
NPs) application has been widely conducted because Fe/Fe2O3
NPs enhance the development of shoots/roots, plant growth, and

yields in potato, tomato plant (Shankramma et al., 2016), chili
pepper (Davies, 2018), and bean seedlings (Duran et al., 2018;
see Table 2). Iron bioavailability depends on the ferrous sulfate
standards indicating high bioavailability in highly water-soluble
compounds (Clarke, 1995).

Davies (2018) highlights that the application of nanoparticles
with innovative synthesis methods successfully fortify iron,
zinc, and calcium in potato, tomato, and chili pepper without
requiring conventional breeding. Potato tubers were propagated
with iron/iron oxide nanoparticle (FeNP/Fe3O4) coated with
histidine (His) with an average of 4.732 nm (n−20). FeNP + His
solution was applied via the foliar application and hydroponic
nutrient solution with 8, 12, and 16 mg/L concentration. The
application of FeNP+His 16mg/L significantly increased the
Fe contents in both potato skin and tuber owing to the nano
size of the Fe+His penetrating and accumulating in the tuber.
FeNP+His is also treated in tomato and chili pepper with
different concentrations. All concentrations (6, 12, and 24mg/L)
of FeNP+His significantly increased Fe contents in tomato
with the greatest increase obtained by 6 mg/L. Furthermore,
tomato treated with FeNP+His (particularly with 12 mg/L dose)
showed increased weight in the ripened fruits and produced
146.38% more than control. FeNP+His with 6 mg/L contributes
significantly to increasing the fresh weight of tomato from 287.21
501.08 g. Fe-fortified tomato displayed no phytotoxicity effects
on excessive amounts of Fe treatment. In chili pepper trials,
FeNP+His 6mg/L treatment increases plant height (70 nm) and
fresh weight. Among various varieties of chili peppers, C. Chinese
varieties gained a significant increase in Fe content with 6mg/L
treatment. This study highlights that the hydroponic propagation
contributes to fortifying micronutrient levels with advantageous
conditions by providing adequate soil and compost substrates.

Zinc Fortification Using Nanoparticle Technology
Over 20% of the worldwide population could have risks of zinc
deficiency based on the zinc intake and bioavailability estimations
from food balance data obtained by the FAO (Smith et al., 2006).
Zinc deficiencies widely occur in different geographical regions
including South Asia (particularly in India and Bangladesh),
Africa, and the Western Pacific. Zinc deficiency occurs along with
iron deficiency, which is inhibited by phytates presence (Smith
et al., 2006). Zinc and zinc oxide have been fortified in various
food crops such as maize (Itroutwar et al., 2020), potato (Davies,
2018), soybean (Hoe et al., 2018), rice (Rameshraddy et al., 2017;
Kasivelu et al., 2020), and barely (Seaman, 2017; Table 2).

Several studies present successful ZnO fortification in food
crops using nanopriming and root/foliar application enhancing
germination, plant growth, and harvest yield. Zn nanoparticle
application also enhances the contents of zinc in potato and rice.
Davies (2018) addressed the level of zinc in potato enhanced
by zinc nanoparticle coated with histidine (ZnNP + His).
The application of ZnNP + His presents a positive effect
of tuber fortification due to significantly increased amounts
of ZnO in potato tubers with 8 mg/L concentration in both
hydroponic propagation system and compost media. However,
ZnO is rapidly aggregated in an aqueous nutrient solution in
hydroponic systems. The aggregation of nanoparticles is one
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TABLE 2 | Micronutrient fortification relevant to vitamin B12 deficiency in food crops using nanoparticles: Iron (Fe) and Zinc (Zn).

Plant NPs NPs
mass/size

Analysis tools Media Germ. Seedling
phenotype

Root Vigor Yield Nutrient Toxicity References

Potato and
tomato

Fe3O4 NPs 8–32 mg/L,
3.62–20.18 nm

NPs synthesis (coating),
SDR (spinning disc reactor),
TEM, SEM, FTIR, ICP-OES
and XRD

Hydroponic N/A ↑ (Tuber) ↑ ↑ (Tuber) ↑ (Fe in skin
and tuber)

X (in Tomato) Davies, 2018

Bean Fe3O4 NPs
and Fe3O4

-PEG NPs

1–1000 mg/
11 nm and

12 nm

EDXRF, XRD, XRF, TEM,
DLS, XANES and SEM-EDX

Seed priming — ↑ (1 to
100 mg/L)

↑ ↑ ↑ (Seed coat
and radicle)

O (in high
concentration)

Duran et al.,
2018

Tomato Magnetic
Fe2O3 NPs

50–800 mg/L UV-vis spectrophotometer,
TEM and XRD

Greenhouse
and hydroponic

↑ ↑

(50–200 mg/L)
↑ N/A ↑ (Root hair,

root tip)
O (in high

concentration)
Shankramma
et al., 2016

Maize ZnO 10–200 mg/L,
∼37 nm

TEM, HR-SEM,
measurement of seed
germination and seedling
parameters

Seed priming,
in vitro

↑ ↑ ↑ N/A N/A X Itroutwar et al.,
2020

Maize and
Rice

γ-Fe2O3

and ZnO
100–2000 ppm SEM, UV-DRS, XRD, FT-IR,

germination and vigor
analysis

In vitro ↑ ↑ ↑ ↑ N/A N/A Kasivelu et al.,
2020

Potato Zn 13.18–
13.73 nm

NPs synthesis (coating),
SDR (spinning disc reactor),
TEM, SEM, FTIR, ICP-OES
and XRD

Hydroponic N/A ↑ (Tuber) ↓ (No. tuber) ↑ ↑ (Zn in tubers) ↑ chance (in
hydroponic)

Davies, 2018

Rice Zn, ZnO and
ZnSO4 NPs

500–
1500 ppm,

30 nm

Seed priming (1000 ppm)
and foliar application,
ICP-OES and RT-PCR
analysis

In vitro (drought
stress)

↑ (Zn, ZnO
seed priming)

↑ (ZnO seed
priming), ↓ (In

high ZnO,
ZnSO4)

↑ (Zn seed
priming)

↑ (ZnO > Zn) ↑

(ZnO > ZnSO4)
O (1500 ppm of

ZnO and
ZnSO4)

Rameshraddy
et al., 2017

Soybean Fe, ZnO, Cu
and Co

5–500 mg/L,
40–40 nm

Morphological and
cytological analysis,

In vitro ↑ ↑ ↑ N/A N/A ↑ % of Zn Hoe et al.,
2018

Barely
fodder

Teprosyn Zn/P 0.5–3.6 ml LA-ICP-MS, MALDI-MS,
HPLC-ICP-MS

Seed priming,
hydroponic

↑ ↑ ↓ N/A ↑ N/A (Seaman, 2017)
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of the major issues because the size of the aggregated particle
become larger which consequently reduces bioavailability of the
nanoparticle. Also, increased ZnNP + His application can also
cause phototoxic effects on food crops such as severe stunted
leaves. Therefore, it is necessary to avoid ZnO aggregation
and excessive applications for food fortification (Davies, 2018).
Rameshraddy et al. (2017) also presents that ZnO nanoparticle
application improves plant physiological growth (e.g., growth,
yield, and quality), and enhances drought stress tolerance along
with the increased contents of ZnO in rice. The study also
highlights that high concentration of ZnO and ZnSO4 (at
1500 ppm in both) significantly reduce rice seedling vigor which
might cause toxicity (Rameshraddy et al., 2017).

Micronutrient Fortification for Plants Grown in
Hydroponic and Aeroponic System
Hydroponic and aeroponic systems support effective fortification
of micronutrients with high productivity and efficiency by
providing optimized year-round production (Rouphael and
Kyriacou, 2018). Hydroponic cultivation refers to the growing
method based on the recirculated inorganic/organic nutrient
solution instead of soil cultivation. In hydroponic systems, the
plant roots are immersed partially or completely in a nutrient
solution. On the other hand, aeroponic system exposes the
plant roots to aerosol droplets containing micro-/macro-nutrient
(Eldridge et al., 2020). In aeroponic systems, droplet size is
one of the major parameters for determining the absorption
effectiveness directly influencing plant growth and it can be
classified into spray (over 100 µm), fog (1–100 µm), and
mist (1–35 µm) (Niam and Sucahyo, 2020). Both hydroponic
and aeroponic cultivations provide favorable environments
for plant growth. Nanoparticles can be applied into nutrient
solutions for hydroponic cultivation. Better absorption and
translocation of nanoparticles was observed in plants grown
in hydroponic systems compared to soil cultivation due to
more conductive aggregation and dissolution of nanoparticles
in roots zone in hydroponic system (Kranjc and Drobne,
2019). Some minerals/micronutrients present low mobility or
are even unavailable to plants in the soil depending on the
physicochemical characteristics including pH, composition, and
electrical conductivity (Freire et al., 2020). Therefore, hydroponic
cultivation systems can be an efficient strategy for vitamin B12
fortification by applying vitamin B12-enriched nutrient solution
precisely with nanoparticles coating techniques.

Bito et al. (2013) shows that vitamin B12-loaded nutrients
significantly improve the level of vitamin B12 in lettuce grown
in hydroponic systems. Hydroponic growing systems have better
management of water and nutrient supply without pathogen or
bacteria risks or leaching issues. This study dissolves CN-Cbl into
hydroponic nutrient solution at 5 µmol/L for lettuce growing.
The results indicated the majority of CN-Cbl accumulated in
leaves (86%) which may be a promising source of free CN-
Cbl in food crops. Approximately 164.6 µg/g fresh weight of
lettuce would provide the recommended daily allowance for
vitamin B12 (2.4 µg/g). This study addressed the expected costs
for CN-Cbl-nutrition solution for lettuce fortification which was
calculated to be approximately U.S $0.06. Therefore, compared

to conventional supplementary programs, it would be a cost-
effective fortification strategy with an excellent source of free
CN-Cbl for the populations who have plant-based diets or the
elderly (Bito et al., 2013). One of the main challenges was
to maintain the stability of CN-Cbl in hydroponic nutrient
solution for future application by controlling light conditions
(Bito et al., 2013). Additionally, the different concentrations of
vitamin B12 variously impact crop growth performance and rate
of vitamin B12 accumulation, so it is critical to identify the
optimal concentration of vitamin B12 solution for fortification of
living plants. Further study is required to undertake the actual
bioavailability of vitamin B12 in fortified food crops.

Previous studies present successful approaches for sustainable
fortification on food crops grown in hydroponic systems
by enhancing mineral/micronutrient and non-essential
micronutrients such as folate, iodine, and selenium. Watanabe
et al. (2017) present that the contents of folate significantly
increased approximately 1.8-fold in spinach with the applications
of folate and phenylalanine in hydroponic cultivation. As non-
essential micronutrients, selenium and iodine have been notably
investigated by several previous studies. Puccinelli et al. (2021)
showed that iodine was fortified in both basils and lettuces grown
in closed-loop hydroponic cultivation with 10 µM potassium
iodide-loaded nutrient solution. The outcome of the study
presents that the growth rate of lettuces in aeroponic systems is
much higher than in the hydroponic system, due to higher levels
of dissolved oxygen in the nutrient solution in aeroponic systems.
Therefore, aeroponics can provide an efficient growing system
for nutrient fortification in plants with greater oxygen availability
in the root zone, enhancing water and nutrients use efficiency.

Ultrasonic atomization aeroponic, as a novel hybrid system,
enables more precise and effective control by producing
very fine micro-size droplets (1–5 µm) of nutrient solution
generated by ultrasonic atomization disks (Niam and Sucahyo,
2020). Therefore, nanoparticles can be applied into nutrient
solution within ultrasonic atomization disk, and it would be
possible to increase targeted micronutrients in food crops
due to their better solubility and permeability. Further study
would be useful to investigate the optimal droplet size, flow
rate, and nutrient solution conditions such as temperature
and nanoparticle application in aeroponic systems (Niam and
Sucahyo, 2020). It is required to identify optimal nanoparticle
application to fortify micronutrients in closed soilless cultivation
such as in hydroponic and aeroponic systems, especially in
ultrasonic atomization aeroponics. Also, efforts should be
made for identifying adequate growing systems for food crops
based on understanding of their genotypes and physiological
characteristics.

Mechanisms of Uptake and
Translocation of Nanoparticles in Plants
Factors Impacting the Uptake and Translocation of
Nanoparticles in Plants
It is necessary to understand how the plant absorbs, transports,
and accumulates the nanoparticle in order to enhance
nutrient/mineral contents in food crops in targeted locations
(such as edible parts of the food crops). Nanoparticle application
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enables the effective smart-delivery functions owing to their
high solubility and mobility (Shang et al., 2019). Several
studies have been conducted to investigate the mechanisms of
uptake, transport, and accumulation of micronutrient/mineral
nanoparticle in living plants by applying integrated analytic
methods such as microscopy and mass spectrometry. However,
due to the complexity and interaction between nanoparticles and
plants, exact mechanisms should be investigated. Additionally,
various factors significantly impact the absorption and uptake of
nanoparticles in living plants. First, the size of nanoparticles is
one of the main restrictions for penetration into cell wall pores in
plants, which are 5–20 nm wide (Pérez-de-Luque, 2017). Second,
the type and chemical composition of nanoparticles have a great
influence on the absorption or uptake of nanoparticles (Rico
et al., 2011; Pérez-de-Luque, 2017).

Coating materials for nanoparticles and the chemical
composition of their surfaces can also alter their absorption
or accumulation in living plants (Schwab et al., 2016; Pérez-
de-Luque, 2017). Third, plant species impact the speed of
absorption and distribution of nanoparticles due to different
plant physiological traits, such as the thickness or architecture
of the barriers, including the size of the cell wall pore, Casparian
strip, and xylem thickness (Cifuentes et al., 2010). For instance,
paramagnetic-coated nanoparticles were applied to four different
crops, wheat, pea, sunflower, and tomato, with results indicating
that the nanoparticles accumulate in different plant locations,
such as vascular tissues or trichomes (Schwab et al., 2016). The
effects of ENMS on plants can be highlighted as dependent on
crop life stages, including (i) germination and early seedling
growth, (ii) post-transplant and further growth of seedlings, and
(iii) mature/harvest stages (Servin and White, 2016). Finally, the
method of application plays an important role in nanoparticle
pathways in plants. Nanoparticles in terrestrial plants generally
accumulate and aggregate at the root zone, which is greatly
influenced by microenvironmental conditions, including
symbiosis with bacteria or fungi (Schwab et al., 2016). According
to Schwab et al. (2016), the application of foliar ENMs in soil via
roots is particularly challenging due to the interaction between
microorganisms in soils and additional complex soil conditions.
Delivering ENMs via foliar application or seed coating may
improve the uptake or distribution of ENMs in living plants.
Further study is required to investigate the optimum application
method of ENMs based on understanding the transdisciplinary
factors of growing plants.

Uptake and Translocation of Nanoparticles in Plants
There are two primary paths for the uptake, translocation, and
accumulation of nanoparticles: foliar and root (Figure 4). In
foliar application, the cuticle is the major obstacle preventing
nanoparticles from entering plant tissues due to the water
resistance from waxy components. Therefore, the major route
for nutrient uptake is via cuticular pathways, including lipophilic
pathways. The lipophilic pathway involves diffusion via cuticular
wax layers, whilst the hydrophilic pathway occurs via polar
aqueous pores located in the cuticle or stomata in leaves: the
“stomatal pathway.” Uptake via the hydrophilic pathway is
influenced by stomatal openings, such as the morphological
traits of stomatal apertures in various plant species. After

the stomatal pathway, nanoparticles are transported via the
vascular pathway, consisting of the xylem and phloem systems.
The direction of flow in the xylem system is from root to
shoot, whilst the flow direction in the phloem system is from
shoot to root. Thus, in foliar applications, nanoparticles are
translocated only via the phloem system from leaves to roots.
Accordingly, previous studies have found that nanoparticles
can be transported via xylem and phloem systems. However,
the mechanisms of nanoparticle translocation in xylem and
phloem still require further investigation (Lv et al., 2019).
Due to the size of the cuticular pore, which is approximately
2 nm in diameter, the stomatal pathway is the most likely
route for nanoparticle translocation. Therefore, from foliar
spraying application, nanoparticles can be found in leaf stomata
and deeper plant tissues, such as phloem, with translocation
(Lv et al., 2019).

Compared to foliar application, many more studies have
focused on root application. In root application, nanoparticles
passively cross the permeable cuticle region and the pores of the
cell wall. There are several factors that influence the uptake of
nanoparticles in plants via root application, such as nanoparticle
size, fictionalization of surface (e.g., positive and negative charge),
morphological traits, conditions of exposure, plant species
and growth stage, root integrity, and rhizospheric processes
(Lv et al., 2019). When applied in the root zone, there are
several barriers that nanoparticles cross, including physiological
barriers (e.g., root hair) or environmental conditions of
the root (e.g., bacteria and mycorrhizae), mucilage/exudates,
and cuticle of the root periderm. During interactions with
barriers, nanoparticles penetrate the cell membrane by fluid-
phase endocytosis, passive diffusion, or mechanical piercing
and then accumulate in the mucilage, cuticle, and cell wall.
Afterward, microorganisms, through processes such as mucilage
exudation or biomineralization, assist nanoparticles in transport
(Schwab et al., 2016).

Once nanoparticles penetrate the plant cell membrane
through the pores of the roots, they start to diffuse by two
pathways: (i) the space between the cell wall and plasma
membrane and (ii) the intercellular space without penetrating
the cell membrane (shown in Figure 4). Via penetration of
roots, nanoparticles traverse from the root surface cuticle
to intercellular structures, such as the epidermis, cortex,
endodermis, and Casparian strip, and eventually penetrate the
shoot via xylem (Lv et al., 2019). When nanoparticles approach
the root epidermis, two major pathways have been previously
investigated, namely the apoplast and symplast, connecting cell
wall and intercellular spaces, and protoplasmic connections
through ion channels (Pérez-de-Luque, 2017). The apoplastic
pathway plays an important role in radial movement within
plant tissues, and it allows nanoparticles to translocate upwards
to the aerial part. In addition, once nanoparticles enter the
central cylinder, they can move towards the aerial part via the
transpiration stream through the xylem.

When the nanoparticles translocate through the apoplastic
pathway, they face a barrier reaching the xylem through
the root, which is called the Casparian strip and is mainly
required in the symplastic pathway. The Casparian strip is a
belt of cell wall components sealed by lipophilic hydrocarbons
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FIGURE 4 | Nanoparticle uptake and translocation in living plant: pathway of foliar spray and root application (modified from Pérez-de-Luque, 2017). (A) Root
application: uptake and translocate. There are two pathways for uptake and transport of nanoparticles once the nanoparticles traverse the root hair: apoplastic
pathway and symplastic pathway. (B) Foliar application: uptake and translocate. Nanoparticle can be applied via foliar spraying method allowing to uptake and
accumulate the nanoparticle into leaves efficiently. (C) Apoplastic and symplastic pathway. When nanoparticles approach the root epidermis, two major pathways
have been previously investigated: apoplast and symplast pathway. These allow the translocation of nanoparticles towards non-photosynthetic tissues and organs.

located adjacent to the vascular system. Casparian strips
hamper nanoparticle translocation from roots to shoots if the
particle size is too large (Cai et al., 2017; Lv et al., 2019).
The symplastic pathway, which involves the movement of
water and nutrients, utilizes the sieve tube elements in the
phloem, allowing the translocation of nanoparticles towards
non-photosynthetic tissues and organs. In the symplastic route,
nanoparticles penetrate the cytoplasm or adjacent cells through
plasmodesmata, which enables intercellular communication
by linking the cytoplasm between adjacent cells. There are
several hypotheses regarding symplastic pathways, involving
aquaporins, ion channel interconnection, endocytosis, and
breaking of membrane intubation. Endocytosis is the most
feasible transmembrane pathway, including for nutrient uptake
and microbial interactions (Lv et al., 2019). In root application,
the nanoparticles are mainly translocated through the xylem
but not the phloem and move from root to shoot and leaves
(Pérez-de-Luque, 2017).

Nanoparticles are translocated and accumulate at different
speeds and locations in plants based on their component
materials (Pérez-de-Luque, 2017). Generally, nanoparticles
accumulate in fruits, grains, flowers, or young leaves by traveling
to the vascular system (Lu et al., 2008; Khot et al., 2012). Owing
to advanced spectrometry or mass spectrometry techniques, it
is possible to determine the overall uptake, translocation, and
accumulation of nanoparticles in living plants. For instance,
transmission electron microscopy (TEM), scanning electron
microscopy (SEM), and X-ray spectroscopy analysis allow us

to determine the sizes, shapes, and locations of nanoparticles
in plant cells (Khot et al., 2012; Davies, 2018). Inductively
coupled plasma optical emission spectroscopy (ICP-OES) and
ICP-mass spectrometry (ICP-MS) precisely analyze nanoparticle
compounds (Pérez-de-Luque, 2017). However, further studies
should be conducted to identify the interaction between
nanoparticles that are absorbed by plants and animals or
humans that consume plants treated with nanoparticles (Pérez-
de-Luque, 2017). Additionally, the uptake, distribution, and
accumulation mechanisms vary and are greatly influenced by
several components. Mozafar and Oertli (1992) found the uptake
of vitamin B12 contents in soybean plants using the radioisotope
dilution (RID) technique. By identifying vitamin B12 and vitamin
B12-binding sites, the study showed that vitamin B12 transport
from vitamin B12-enriched nutrient to soybean plants that was
found in unifoliate, trifoliate leaves, and stems. Vitamin B12
transports rapidly from root to shoot and more vitamin B12 was
accumulated in the leaves in the plants aerated with nitrogen.

Overall Opportunities and Challenges of
Nanoparticle Applications for Food Crop
As a promising technology for sustainable agriculture,
nanotechnology poses numerous opportunities. First, ENMs
enhance the overall efficiency of water use and light and
agrochemical use (Zhou et al., 2015). Increased water use
efficiency is realized in nanofertilizer applications by increasing
the retaining capacity, decreasing the loss amount, and
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increasing the efficiency of utilization of water and nutrients
(Giraldo et al., 2014). ENMs show the potential to increase light
use efficiency in plants by augmenting chloroplast photosynthetic
activities and enhancing chloroplast reactive oxygen species
(ROS) (Giraldo et al., 2014). Agrochemical application shows
significant enhancement of performance by decreasing adverse
environmental effects, including leaching. Nanofertilizers
constitute an alternative technique to the use of conventional
fertilizers because they boost crop yield, quality, and tolerance
to abiotic stress owing to their high efficiency (Kah et al., 2018).
Compared to conventional fertilizer, nanofertilizer can increase
crop production by approximately 20–30% and achieve similar
levels of plant protection and nutrient enhancement with lower
fertilizer usage (Kranjc and Drobne, 2019). Owing to their
biochemical and physical characteristics, ENMs can be delivered
precisely to the plant interior to enhance the uptake of nutrients
and fertilizer (Lowry et al., 2019). Second, nanotechnology
promotes soil sustainability by lowering additional fertilizer
inputs via increased nutrient efficiency. Additionally, ENMs
have the potential to increase fungi, which is beneficial for plant
growth, or to encourage plant root vitality via nitrogen-fixing
bacteria. Furthermore, nanotechnology enables the control
of biotic stress such as pathogens or weed competitors and
abiotic stress, including extreme temperature and water stress
(Lowry et al., 2019).

There are several challenges for further deployment of
nanotechnology in agri-food. One of the most significant
challenges in nanotechnology is the potential risks and risk
perceptions regarding nanoparticles (Lowry et al., 2019).
Consumer perception and acceptance are negative towards
ENMs in food crops. According to Giles et al. (2015), food
product-integrated nanotechnology is less likely to be accepted
by consumers than food packaging within nanotechnology.
However, of most significant concern regarding ENM
applications in agricultural food is that sectors have only
focused on the input of nanoparticles as ingredients or additives
to food products directly, whilst comparatively little concern
has been aroused regarding nanoagrochemical applications,
including nanofertilizers or nanopesticides. Furthermore, these
observations indicate that the consumer accepts nanotechnology
application in agricultural food production when perceived
benefits outweigh the perceived risks. For the future application
of nanotechnology in food crops, it is necessary to encourage
marketing and commercialization for nanotechnology-processed
food crops by increasing acceptance along with expert opinions
regarding safety or acceptability (Giles et al., 2015). Further
efforts should address and secure the availability of nano-
agrochemicals within effective legislation and long-term risk
assessment for the entire life cycle of nanoparticle application to
food crops and further human/animal intake (Iqbal, 2019).

Additionally, although there have been several attempts, it
is still necessary to investigate the interaction between ENMs
and plants and to understand the mechanisms of uptake and
translocation of nanoparticles in living plants (Nair et al., 2010;
Pérez-de-Luque, 2017; Lowry et al., 2019). Precisely delivering
ENMs remains a challenge considering precise target location,
exact time of application, and appropriate dose of ENMs.
Additionally, in nanoparticle applications, particle size plays an

important role, influencing the translocation of nanoparticles
in living plants. Nanoparticle size can be increased beyond
the nano range and attain different shapes due to continuous
aggregation which also may result in Ostwald ripening. Thus,
synthesis process of nanoparticles should be developed to control
nanosize and composition of nanoparticles, particularly when
scaling up for commercial usages (Davies, 2018; Akbar et al.,
2020). Davies (2018) presents a successful synthesis approach for
producing stable sizes of nanoparticles ranging 3.62–20.18 nm
for calcium oxide, 3–7.6 nm for iron oxide, and 7.03–15.41 nm
for zinc oxide. The study exploited spinning disk reactor (SDR)
to synthesize nanoparticles, which provided relatively rapid,
efficient, and cost-effective synthesis process. SDR method allows
the production of large amounts of nanoparticles with uniform
size, and electrostatic coating method with histidine (amino
acid) also enhances the mobility and solubility of metal oxide
nanoparticle by enhancing retention capabilities and decreasing
leaching issue (Davies, 2018). Further guidance documents and
validated methods for nanoparticle size measurement should be
established (Parisi et al., 2014).

CONCLUSION

Overall, this review paper suggests that nanoparticle technology
would be a great sustainable strategy to mitigate vitamin
B12 deficiency by providing efficient smart delivery of
micronutrient/mineral to food crops. This review paper
suggests several key findings:

(1) A sustainable vitamin B12 fortification approach should
be balanced with other micronutrient/mineral deficiency
focusing on not only increasing the contents but also the
bioavailability of vitamin B12.

(2) Nanoparticle technologies, such as seed priming and
nanoparticle applications, can accelerate sustainable food
fortification with better quality and yield by targeted
macro- or micronutrient enhancement without further
plant breeding or genetic technology.

(3) To develop food fortification along with nanoparticle
applications, the participation of consumers and
experts is significant. Further attempts should focus
on enhancing the recognition of safety and applicability of
nanotechnology for food crops along with investigations
of the phytotoxicity and safety of nanoparticle application.

(4) Integration of hydroponic/aeroponic systems and
nanoparticle applications is expected to be a promising
technology for not only better productivity but also
micronutrient fortification (e.g., vitamin B12), which can
be applied to vertical farming or indoor farming in future.
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Light plays a pivotal role in plant growth, development, and stress responses. Green

light has been reported to enhance plant drought tolerance via stomatal regulation.

However, the mechanisms of green light-induced drought tolerance in plants remain

elusive. To uncover those mechanisms, we investigated the molecular responses of

tomato plants under monochromatic red, blue, and green light spectrum with drought

and well-water conditions using a comparative transcriptomic approach. The results

showed that compared with monochromatic red and blue light treated plants, green light

alleviated the drought-induced inhibition of plant growth and photosynthetic capacity,

and induced lower stomatal aperture and higher ABA accumulation in tomato leaves

after 9 days of drought stress. A total of 3,850 differentially expressed genes (DEGs)

was identified in tomato leaves through pairwise comparisons. Functional annotations

revealed that those DEGs responses to green light under drought stress were enriched

in plant hormone signal transduction, phototransduction, and calcium signaling pathway.

The DEGs involved in ABA synthesis and ABA signal transduction both participated

in the green light-induced drought tolerance of tomato plants. Compared with ABA

signal transduction, more DEGs related to ABA synthesis were detected under different

light spectral treatments. The bZIP transcription factor- HY5 was found to play a vital

role in green light-induced drought responses. Furthermore, other transcription factors,

including WRKY46 and WRKY81 might participate in the regulation of stomatal aperture

and ABA accumulation under green light. Taken together, the results of this study

might expand our understanding of green light-modulated tomato drought tolerance via

regulating ABA accumulation and stomatal aperture.

Keywords: green light, stomatal aperture, ABA, drought stress, transcriptome, tomato

INTRODUCTION

In nature, plants often suffer from adverse environmental conditions, including
drought, extreme temperature, heavy metal, and salinity stress. To survive under
different stress conditions, plants must optimize their growth and development at
the expense of yield loss. Drought is one of the most important prevalent abiotic
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stresses that limits crop growth and productivity (Somerville,
2001; Lesk et al., 2016). With the global temperature increasing
and worldwide population growth, the scarcity of water resources
in agriculture will aggravate crop loss. The traditional producing
staple foods could not meet the future food requirement due
to the shortage of sufficiency irrigation water, and drought
and/or unstable rainfall. Thus, new strategies for improving crop
drought tolerance and water use efficiency are urgently needed
for the next generation of agriculture (Chen et al., 2020).

Vertical Farming has been branded as the future of Food
Production due to the environmental benefits and food security
benefits (small geographical footprint, pesticide-free, water reuse,
all year round growing) (Kalantari et al., 2020). However, there
are still some issues that limit the wide commercialization of
vertical farming, such as high energy cost, limited crop choice
and lack of specialized crop varieties (Kozai andNiu, 2015). LEDs
offer cheap, cool, controllable sources of light that can selectively
and quantitatively provide different wavelengths that can activate
discrete developmental pathways to change leaf area, thickness,
stem length through photoreceptors include phytochrome and
cryptochrome (Kozai and Niu, 2015). This provides us with
a new opportunity to manipulate the quality and quantity of
produce for markets and meet the demands of retailers. In order
to understand the molecular mechanism leading to an increase
in the resource use efficiency (light, water and nutrients). It
is necessary to identify key genes (via transcriptomic analysis)
which act as molecular markers and regulators for vertical
framing (indoor farming) crop breeding.

It is reported that 70% of global freshwater is used for
agriculture (Döll, 2009; FAO, 2012). Most of the water used
in agriculture is lost to the atmosphere by evaporation and
transpiration that is regulated by stomatal movement. Stomata
are the important epidermal leaf pores in response to the
water states of plants. It is evident that the early response of
stomatal movement to drought stress can help plant survival
sometimes through maintaining high relative water content
(RWC) in leaves (Reddy et al., 2004). The plant hormone abscisic
acid (ABA) is the key regulator of stomatal movement, which
plays a pivotal role in plant’s adaptive response to drought
stress (Nakashima and Yamaguchi-Shinozaki, 2013). The ABA in
plants is indirectly synthesized through the carotenoid pathway
using β-carotene as a precursor (Schwartz and Zeevaart, 2010).
The 9-cis-epoxycarotenoid dioxygenase (NCED) encoded by the

homologous genes of VIVIPAROUS14 (VP14), converses of 9
′
-

cis-neoxanthin and 9
′
-cis-violaxanthin into xanthoxin in the

plastid of plant cells. In the cytoplasm, the resulting xanthoxin
will be further converted into two crucial enzymes: ABSCISIC
ACID 2 (ABA2) and Arabidopsis aldehyde oxidase 3 (AAO3)
(Chen et al., 2020). NCEDs are the rate-limiting enzymes of
ABA synthesis. Overexpression of NCED related genes has been
proved to enhance plant drought tolerance via increasing ABA
levels to trigger stomatal closure and reduce transpiration (Wan
et al., 2009; Lee and Luan, 2012). However, the decrease of
stomatal aperture or stomatal closure caused by drought stress
usually leads to a decrease in photosynthesis and finally results
in a relatively low yield (Mafakheri et al., 2010). Thus, it is
important to increase plant drought tolerance and concomitantly

stabilize photosynthesis to minimize the drought-induced yield
losses when carrying out stomatal regulation in crop production.
Given the importance of endogenous ABA in regulating stomatal
response to drought stress and the complexity of genetic
engineering approaches used in enhancing plant drought stress
tolerance, economic and innovative approaches are urgently
needed for improving crop drought tolerance.

Light not only provides energy for driving photosynthesis but
also works as a signal to regulate plant growth, development, and
stress responses in a phytochrome-dependent manner (Wang
et al., 2018). Light and ABA are integrated at the molecular level
to regulate seed germination and seedling development. LONG
HYPOCOTYL 5 (HY5, a bZIP transcription factor) plays an
important role in integrating light signals with endogenous ABA
pathways to help plants better adapt to environmental stresses
(Chen et al., 2008; Xu et al., 2014). Recently, increasing numbers
of studies demonstrate that endogenous ABAmetabolism and/or
ABA signaling pathway are subjected to the regulation of light
spectra, including blue, red, and far-red light (Wang et al.,
2018; Stawska and Oracz, 2019). In our previous studies, we
found that green light enhanced tomato drought tolerance via
altering stomatal aperture and ABA-dependent transcription
factor-AREB1 (Bian et al., 2019). However, how green light
induces ABA signals to regulate plant drought tolerance at the
molecular level remains largely unclear.

Ribonucleic acid sequencing (RNA-seq) analysis based on
next-generation sequencing is one of the main approaches
of bioinformatics. RNA-seq is a good method for whole-
transcriptome investigation (Cao et al., 2016). In this study,
the molecular mechanism pathways and key genes of drought-
treated tomato seedling response to green light were identified
using RNA-seq analysis. Based on plant physiological responses
and analyses of the Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO) enrichment, a model of
green light-enhanced tomato drought tolerance was proposed.
Our present study could not only further facilitate our
understanding of light spectra-regulated drought tolerance at the
genome-wide level but also could identify key regulators and
genes for improving stress tolerance of tomato grown under
controlled environments.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Seeds of tomato (Solanum Lycopersicum L. cv. Ailsa Craig; wild
type) were soaked in distilled water for 8 h and then grown
in dark for 48 h. These germinated seeds were sown in rock
wool cubes (3 × 3 × 4 cm3) and grown under white LED
light (Heliospectra RX30, Sweden) as our previous study (Bian
et al., 2019) with photosynthetic photon flux density (PPFD)
and photoperiod at 200 µmol m−2s−1 and 16 h, respectively, in
an environmentally controlled growth chamber. The day/night
temperature, air relative humidity, and CO2 level were 25/20

◦C,
65%, and 400 µmol mol−1, respectively. These seedlings were
watered with half-strength Hoagland nutrition solution every
other day.
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Drought and Light Treatments
After around 28 days, similarly sized and healthy seedlings with
five true leaves were transplanted into rock wool media (7.5
× 7.5 × 6.5 cm3). The rock wool media were watered using
half-strength Hoagland solution to reach their full water-holding
capacity before these seedlings were transplanted. Throughout
this whole experiment, these tomato seedlings were randomly
grown under two watering regimes (well-watered and drought-
stressed conditions) and concomitantly exposed to different
light spectra. The two watering regimes: (1) well-watered, 90
± 5% water-holding capacity of rock wools and (2) drought,
stressed, non-watered until the plants showed severe drought
stress symptoms–obvious turgor loss and wilting. The moisture
of rock wools was monitored using every other day in proximity
of the roots with a portable HH2 Moisture Meter connected
to a WET sensor (Delta-T Device LTD, Cambridge, UK). The
irrigation strategy was performed as the method described
in the previous study (Wang et al., 2013; Bian et al., 2019).
The light treatments included monochromatic red (peak at
660 nm), blue (peak at 450 nm) and green (peak at 530 nm)
LED light (Heliospectra RX30, Sweden). The three different
light treatments were combined with well-watered or drought
conditions. In the first three treatments, plants were grown under
well-watered conditions and exposed tomonochromatic red light
(RW), blue light (BW), or green light (GW) with PPFD at 200
µmolm−2 s−1. In the other three were drought treatments. These
drought-treated plants were irradiated with 200 µmol m−2 s−1

monochromatic red light (RD), blue light (BD), or green light
(GD), respectively.

Plant Growth and Abscisic Acid
Determination
After being treated for 9 days, the second fully expanded leaves
from the top of plants were collected and immediately frozen
in liquid nitrogen before being stored at −80◦C. The extraction
and determination of abscisic acid (ABA) were carried out as
described by Balcke et al. (2012). Furthermore, another eight
plants were randomly selected for the measurements of plant
height, biomass, and leaf area measurements as the method of
Bian et al. (2019). The leaf area was determined using a leaf area
meter (LI-3000C, LI-COR, NE, USA).

Gas Exchange and Stomatal Aperture
Determination
The second youngest and fully expanded leaves of plants under
different treatments were used for gas exchange determination
before (Day 0) and after treatment (Day 3, 6, and 9). The net
photosynthesis (Anet) and chlorophyll fluorescent parameters
were concomitantly measured using a portable photosynthesis
system (LI-6800 F, LI-COR, Inc., Lincoln, NE). The light response
curve of Anet was measured as the protocol of LI-6800F, and the
light intensities were set as following: 0, 30, 50, 100, 200, 500,
800, and 1,200 µmol m−2 s−1. The data obtained at the PPFD
of 200 µmol m−2s−1 were used to analyze the photosynthetic
performance of plants. During the gas exchange measurement,
actinic light in the leaf chamber was provided by red and blue

LED light sources (90% red, 10% blue), while the CO2 level, air
temperature, and airflow were set at 400 µmol mol−1, 25oC, and
500 µmol s−1, respectively. The light response curve fitting was
carried out according to the methods of Thornley (1976). The
responses of photosystem II (PSII) quantum efficiency (8PSII)
to the changes of PPFD were calculated as described by Baker
(2008). The length and width of the stomata were determined
using the method of Zeng et al. (2008). The stomatal aperture
was calculated as the ratio of stomatal width to length.

Relative Water Content and Cell Membrane
Stability
Themethod of Pan et al. (2012) was used to determine the relative
water content (RWC) of plants treated with different light and
water conditions. The cell membrane stability was expressed as
the electrolyte leakage. The electrolyte leakage was determined
as described by Jungklang et al. (2017). Briefly, five leaf discs
punched from the second youngest and fully expanded leaves
were put into a test tube with 20ml of distal water and shaken
every 5min. After 30min, the conductivity was measured using
a conductivity meter. The total conductivity was measured after
the test tubes were boiled for 15min. The electrolyte leakage was
calculated as the percentage of total conductivity.

RNA Extraction and Transcriptome
Sequencing
After 9 days of treatments, the second fully expanded leaves
from the top of randomly selected 12 plants (four plants per
sample, three samples per treatment) were collected for RNA
extraction. The total RNAs for transcriptome sequencing were
extracted using an RNeasy Plant Mini RNA isolation kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions.
The quantity and purification of total RNAs were determined
using a Nanodrop 2000C spectrophotometer (Thermo Scientific,
USA) before and after the total RNAs were treated with 50 µl
of RNase-free DNase I (Sigma-Aldrich, Poole, UK) at 37◦C for
15min. The integrity of total RNAs was rechecked using the
Agilent Bioanalyzer 2100 system (Agilent Technologies, USA).

The total RNA extracted from each leaf sample was
used for RNA-Seq library construction and sequencing by
Biomics (Beijing) Biotech Co, Ltd. For the RNA sample
preparations, 3 µg of RNA per sample was used as input
material. The NEBNext R© UltraTM RNA Library Prep Kit for
Illumina R© (NEB, USA) was used for generating sequencing
as the manufacturer’s instructions. Briefly, mRNA was purified
from total RNA using poly-T oligo-attached magnetic beads.
Fragmentation was carried out using divalent cations under
elevated temperature in NEBNext First Strand Synthesis Reaction
Buffer (5X). First-strand cDNA was synthesized using random
hexamer primer and M-MuLV Reverse transcriptase (RNase
H-), while the second strand cDNA was synthesized using
DNA Polymerase I and RNase H. Remaining overhangs were
converted into blunt ends via exonuclease/polymerase activities.
The library fragments were purified with AMPure P system
(Beckman Coulter, Beverly, USA) to select cDNA fragments of
referentially 250∼300 bp in length. Then PCR was performed
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TABLE 1 | The growth of tomato seedlings under different water and light spectral conditions (n = 6–8).

Treatments Plant height (cm) Leaf area (cm2) Dry weight (g)

Leaf Stem Leaf + stem

RW 27.23 ± 0.85 a 323.75 ± 18.07 a 0.53 ± 0.08 b 0.50 ± 0.05 a 1.03 ± 0.10 a

BW 24.74 ± 1.19 b 331.47 ± 39.76 ab 0.66 ± 0.03 a 0.48 ± 0.05 a 1.15 ± 0.08 a

GW 25.05 ± 1.02 b 272.44 ± 17.33 b 0.45 ± 0.09 b 0.32 ± 0.03 c 0.77 ± 0.12 b

RD 24.68 ± 1.39 b 221.36 ± 27.34 c 0.37 ± 0.06 b 0.33 ± 0.06 bc 0.70 ± 0.05 b

BD 21.84 ± 0.89 c 204.87 ± 16.48 c 0.43 ± 0.06 b 0.41 ± 0.03 b 0.84 ± 0.09 b

GD 24.81 ± 1.49 b 199.16 ± 29.01 c 0.37 ± 0.08 b 0.35 ± 0.03 bc 0.71 ± 0.12 b

The data are presented as Mean ± SEs. The different letters in each column indicate significant differences (p < 0.05) among treatments.

with Phusion High -Fidelity DNA polymerase, Universal PCR
primers, and Index (X) Primer. Finally, the enriched cDNA
libraries were assessed using the Agilent Bioanalyzer 2100
system before being sequenced on the HiSeq 6000 sequencing
platform (Illumina, USA) to generate 125/150 bp paired-
end reads.

Transcriptomic Analysis
The raw reads were cleaned by discarding the reads with adaptor
contamination and low-quality reads (a quality score of Q <

20). Clean reads from individual libraries of each group were
mapped to the tomato reference genome Hisat2 v2.0.5 (Kim
et al., 2015). The gene expression levels were estimated by the
FPKM (fragments per kilobase of per millions of fragments
mapped) of each gene calculated based on the length of the
reads count mapped gene using RSEM (RNA-Seq by Expectation
Maximization) module provided within the Trinity package
(Trapnell et al., 2009). The DESeq2 R package (1.16.1) was used
to carry out differential expression analysis of pairs of treatments
(three biological replicates). The Benjamini and Hochberg’s
approach was used to adjust the resulting p-values for controlling
the false discovery rate. Genes with an adjusted p-value < 0.05
and |log2 Fold Change| <1 found by DESeq2 were assigned as
differentially expressed between pairs of treatments. The analysis
of the Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways enrichment of differential
expression genes (DEGs) were performed using the cluster
Profiler R package was used to carry out (Tarazona et al.,
2011). The GO and KEGG terms with corrected p < 0.5
were considered significantly enriched by DEGs between the
two treatments.

Protein-protein Interaction Network and TF
Regulatory Analysis
The PPI pairs of DEGs were extracted from STRING version
10.5 (Damian et al., 2017). Cytoscape version 3.8.0 was used
to establish the PPI network of screened DEG (Shannon et al.,
2003). The top five hub DEGs involved in the PPI network were
identified from the network based on radiality by employing
cytohubba (Chaudhary et al., 2019).

Validation of RNA-Seq Data by qRT-PCR
Analysis
Ten DEGs were randomly selected for the validation of RNA-seq
results by qRT-PCR. A total amount of 1 µg RNA, which was
the same as that used for the RNA-seq sequence, was used for
cDNA synthesis was performed through a RevertAid First Strand
cDNA Synthesis Kit (Thermo Scientific, USA). The primers
for these selected genes were designed by Primer Premier 6.0.
Tomato Actin gene was employed as an internal reference gene
(Li et al., 2016). The sequences of these primers are summarized
in Supplementary Table 1. The qRT-PCR was performed on a
CFX ConnectTM Real-Time PCR Detection System (Bio-Rad,
Hercules, CA, USA) with SsoFastTM EvaGreen R© Supermix (Bio-
Rad). The thermocycling conditions were set to 95◦C for 30 s
and 40 cycles of 95C for 5 s, 56◦C for 5 s, and 60◦C for 5 s,
followed by amelting curve (65–95◦C). The qPCRwas performed
in triplicate, with three total RNA samples extracted from nine
plants (three plants per sample). The relative gene expression
levels of these selected genes were calculated using the 2−11Ct

method (Shannon et al., 2003).

RESULTS

The Plant Growth of Tomato Exposed to
Various Light Spectra Under Different
Water Conditions
The growth of tomato seedlings was significantly affected by light
spectra under both well-water and drought conditions (Table 1).
Under the well-water condition, the plant height was highest
under RW, followed by GW and then BW. The leaf area and plant
dry weight of GW were lower than those under RW and BW.
Except for the plant height and leaf dry weight, no significant
differences were observed in those studied parameters between
RW and BW. Drought led to significant decreases in plant height
and dry weight of plants grown under red and blue light but
showed slightly negative effects on those parameters of plants
exposed to green light. Furthermore, the leaf area and dry weight
of plants grown under RD, BD, and GD were comparable to each
other. The leaf areas of RD, BD, and GD decreased by 31.61,
38.20, and 10.02%, while the total dry mass decreased by 32.03,
26.16, and 7.79% when compared with those parameters of RW,
BW, and GW, respectively. These results indicate that green light
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FIGURE 1 | The photosynthetic response of tomato seedlings under different water and spectral conditions. (A,B), the changes of net photosynthetic rate (Anet) to

increased light intensity; (C,D), the changes of photosystem II (PSII) quantum efficiency (φPSII). RW, BW, and GW: well-water combined with red, blue, and green LED

light, respectively; RD, BD, and GD: drought stress combined with red, blue, and green LED light, respectively. The photosynthetic photon flux density (PPFD) for all

the treatments was 200 µmol m−2 s−1.

counteracted the negative effects of drought stress on the tomato
seedling growth.

The Photosynthetic Performance of
Tomato Plants Exposed to Different Light
Spectra
Drought stress led to marked decreases in max Anet and 8PSII

of tomato plants under red and blue light. However, the levels
of those parameters were comparable between GW and GD
(Figure 1). Under well-watered conditions, the max Anet was
highest under BW, flowed by RW and then GW throughout this
study (Figures 1A,B). The changes of Anet with the increasing of
light intensities (A-Q curve) were comparable among BD, RD,
and GD at day 6 (Figure 1A), while the A-Q curve of plants
under BD was markedly lower than those under RD and BD
at day 9 (Figure 1B). Furthermore, 8PSII values of plants under
different treatments decreased with the increase of light intensity.
The values of 8PSII under BW and BD were higher than those

under the other four treatments, while the 8PSII did not differ
significantly among RW, GW, RD, and GW at day 6 (Figure 1C).
The highest values of 8PSII were also observed under BW,
followed by RW and GW, while values of this parameter under
BD, RD, and GD were comparable to that under GW at day 9
(Figure 1D).

The Stomatal Responses and ABA Content
of Tomato Plants Under Different Light
Spectra
The gs and Tr were markedly decreased between Day 6 and
Day 9 (Figures 2A,B). The gs showed a similar change tendency
during the 9 days of treatments, but the gs of plants under GD
was lower than that under BD and RD (Figure 2A). Unlike gs,
Tr was significantly affected by light spectra. Under the well-
watered condition, the Tr levels of plant leaves under GW were
lower than those under RW and BW on day 6 and day 9.
After 6 days of drought treatment, the Tr differed significantly
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FIGURE 2 | The stomatal response, water use efficiency (WUE), and abscisic acid (ABA) content in leaves of plants under different water and light spectra condition.

(A,B), The responses of stomatal conductance (gs) and transpiration rate (Tr) of plant leaves; (C), The instantaneous WUE; (D), stomatal aperture; (E), ABA content in

plant leaves after 9 days of treatment. RW, BW, and GW: well-water combined with red, blue, and green LED light, respectively; RD, BD, and GD: drought stress

combined with red, blue, and green LED light, respectively. The PPFD for all the treatments was 200 µmol m−2 s−1.

among drought treatments, with the highest values observed
under BD, followed by RD, and then by GD, while Tr under
BD was markedly lower than those under RD and GD on day
9 (Figure 2B). Drought stress led to increases in instantaneous
WUE. The values of instantaneous WUE differed significantly
among GD, BD, and RD with the highest value detected under
GD, followed by RD and then BD (Figure 2C) at Day 9. Under
the well-water condition, there were no marked differences in
instantaneous WUE among different light spectra. Regardless of
water conditions, the stomatal apertures of green light treated
plants were lower than those under red and blue light between
Day 6 and Day 9 (Figure 2D).

To verify the involvement of ABA in the response of plants
to light spectra, the ABA content in tomato leaves of different
treatments was determined. Under well-water conditions, the
ABA content was comparable to each other, but the level of
ABA under GW was slightly higher than that under BW and
RW. However, under drought conditions, the ABA content was
significantly affected by light spectra. The ABA content was
highest under GD, followed by RD, while the lowest value was
observed under BD from Day 6 to Day 9 (Figure 2E).

The Responses of Water Status and Plant
Phenotype of Tomato Exposed Different
Light Spectra
Drought for 9 days led to amarked increase in electrolyte leakage.
The lowest electrolyte leakage was observed in green light
treated plants under both well-watered and drought conditions.

However, there was no significant difference in electrolyte leakage
between red and blue light, as shown by the comparable values
of this parameter between RW and BW, and between RD
and DW (Figure 3A). When compared with the other four
treatments, the RWC of BD and RD markedly decreased with
the lowest value observed under BD. It is worth noting that
no significant difference was observed in RWC between GW
and GD (Figure 3B). These results indicate green light shows
a positive function on enhancing the plant drought tolerance,
as being further validated by the different wilting phenotypes
of plants irradiated red, blue, green light under drought stress
(Figures 3C,D).

Identification of DEGs of Tomato Seedlings
Under Different Light Spectra by RNA-Seq
To further investigate key genes involved in the regulation of
tomato seedling drought tolerance under different light spectra,
we performed transcriptome analysis of plant leaves under red,
blue, and green monochromatic light after 9 days of drought
and well-watered treatment. A total of 3,850 DEGs was identified
through pairwise comparisons. There were 601, 13, and 503
DEGs in the comparisons of GD vs. BD, GD vs. RD, and
RD vs. BD, while 608, 505, and 1,616 DEGs were recorded
when comparing GW vs. BW, GW vs. RW, and RW vs.
BW (Figure 4A). Especially, 417, 8, and 307 DEGs were up-
regulated, whereas 183, 5, and 196 DEGs were down-regulated
in the comparison of GD vs. BD, GD vs. RD, and RD vs. BD,
respectively. A total of 159, 6, and 51 DEGs were up-regulated
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FIGURE 3 | The electrolyte leakage (A), relative water content [RWC, (B)], and phenotype (C,D) of plants were treated with different water and light spectral condition

for 9 days. RW, BW, and GW: well-water combined with red, blue, and green LED light, respectively; RD, BD, and GD: drought stress combined with red, blue, and

green LED light, respectively. The PPFD for all the treatments was 200 µmol m−2 s−1.

uniquely (Figure 4B), while the number of uniquely down-
regulated DEGs were 98, 2, and 104 between GD and BD, GD
and RD, and RD and BD, respectively (Figure 4C).

In addition, a hierarchical clustering analysis was performed
to present a general overview of the expression pattern of
DEGs (Figure 4D). Most of the genes with higher expression
levels under drought stress displayed lower transcription levels
under well-watered conditions and vice versa. Furthermore, the
expression profile of most genes under blue light showed a
great difference when compared with those of red and green
light treated leaves, especially under drought stress. Notably,
most DEGs presented different transcription profits between red
and green light under well-watered conditions; whereas most
identified genes showed a similar transcription pattern under
drought stress (Figure 4D).

Functional Classification of DEGs
Responses to Different Light Spectra
Under Drought Stress
To reveal the function of green light-induced transcriptomes
under drought stress, GO enrichment and KEGG pathway
analysis were performed to categorize the DEGs. A total of 417,
10, and 386 DEG in the comparisons of GD vs. BD, GD vs. RD,
and RD vs. BD were annotated into three major GO categories,
respectively (Supplementary Table 2). In the comparison of GD

vs. BD, the top 20 significantly enriched GO terms of DEGs
were categorized into “biological process” and “cellular process”
(Figure 5A). In the biological process category, the GO terms
markedly enriched in the comparison of GD vs. BD included
“oxidation-reduction process,” “anthocyanin-containing
compound metabolic process,” and “maltose metabolic process,”
and “starch biosynthetic process.” In the cellular process
category, the significantly enriched GO terms were observed
in “ammonium transmembrane transport,” “oxidoreductase
activity,” and “1-deoxy-D-xylulose-5-phosphate” (Figure 5A).
Compared with the other two comparisons, the enriched GO
terms of the GD vs. RD comparison were not very complex.
In the cellular component, “plasmodesma” was significantly
enriched, while “sequence-specific DNA binding” and “DNA-
binding transcription factors” were significantly enriched in
the category of molecular function. Furthermore, the most
significantly enriched GO terms of GD vs. RD comparison were
identified in the processes of “defense response,” “oxidation-
reduction process,” “protein phosphorylation,” and “regulation
of transcription” (Figure 5B). With respect to the comparison
of RD vs. BD, the significant enriched GO terms in the
biological process included “oxidation-reduction process,”
“anthocyanin-contained compounds,” “thiamine biosynthetic
process,” and “flavonoid glucuronidation,” while the top five
most significantly enriched GO terms in the molecular function
category was identified in the processes of “iron ion binding,”
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FIGURE 4 | The changes in gene expression profiles of tomato treated with different light spectra and water conditions. (A), The number of DEGs between

treatments; (B,C), Venn diagram presenting up-regulated and down-regulated genes among plants exposed to different light spectra under drought conditions; (D),

Hierarchical clustering of DEGs, fragments per kilobase of transcript per million fragments mapped (FPKM), and relative expression of DEGs between different light

and water treatments were calculated as log2 (FPKM) of differentially expressed genes, log2 (FPKM) of differentially expressed genes were calculated. A scale

indicating the color assigned to log2 (FPKM) is shown to the right of the cluster.

“monooxygenase activity,” “1-deoxy-D-xylulose-5-phosphate,”
“oxidoreductase activity,” and “L-ascorbic acid-binding.” In the
category of the cellular compound, only “plastoglobule” was
filtered into the top 20 significantly enriched GO terms in the
RD vs. BD comparison (Figure 5C).

To further explore the biological functions of DEGs, the
pathway enriched analysis based on the KEGG database was
performed. When comparing each biological category, a
higher number of DEGs were detected in the comparisons
of GD vs. BD and RD vs. BD compared with GD vs. RD
comparison, and the top 20 pathways in plants with the highest

enrichment levels were listed in Figure 6. Among these KEGG
pathways, DEGs in the comparison of GD vs. BD were mostly
enriched in “phototransduction,” “circadian entrainment,”
“calcium signaling pathway,” “circadian rhythm-plant,” and
“plant hormone signal transduction” (Figure 6A). However,
due to the less amount of DEGs detected in the comparison
of GD vs. RD, the most significantly enriched pathway was
detected in “arginine and proline metabolism” (Figure 6B).
Furthermore, the top 5 pathways in enrichment degree were
“phototransduction,” “arginine and proline metabolism,”
“calcium signaling pathway,” “circadian entrainment,” and
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FIGURE 5 | The GO enrichment analysis of DEGs in the comparisons of GD vs. BD (A), GD vs RD (B), and RD vs. BD (C) in three main categories. BP, biological

process; CC, cellular component; MF, molecular function.

FIGURE 6 | KEGG pathway enrichment analysis of the annotated DEGs in the comparisons of GD vs BD (A), GD vs. RD (B), and RD vs. BD (C). The Y-axis indicates

the KEGG pathway, while the X-axis presents the enrichment factor, which is the ratio of DEGs enriched to specific KEGG pathways to DEGs enriched to all KEGG

pathways. The dot size and the dot color indicate the number of DEGs of the pathway and q value, respectively.

“circadian rhythm-plant” under RD vs. BD comparison
(Figure 6C).

Transcription Factors Identified by DEGs
and PPI Network Analysis
The transcription factors among different comparisons
were identified from DEGs and summarized in
Supplementary Table 3. Among the DEGs of GD vs. BD
comparison, 610 transcription factors were identified, including
AP2/ERF (18), bHLH (16), bZIP (7), C2H2 (17), HSF (6), NAC
(17), MYB/MYB-related (19), andWRKY (8). In the comparison
of GD vs. RD, 13 transcription factor was identified, including
AP2/ERF (1), C2H2 (1), WRKY (2), and SNF2 (1). Furthermore,
there were 503 transcription factors detected in the comparison
of RD vs. BD, including AP2/ERF (11), bHLH (15), bZIP (8),
C2H2 (12), HSF (5), NAC (16), MYB/MYB-related (22), and
WRKY (6).

To further investigate the hub genes involved in light spectral-
induced drought tolerance, we first constructed the PPI network
using screened DEG by Cytoscapeversion 3.8.0 (Figure 7). The
top five hub proteins encoded by DEGs were further identified
in the PPI network based on radiality analysis by employing
cytohubba (Supplementary Tables 4, 5). In the comparison of
GD vs. BD, two key hub proteins were identified in two sub-
PPI networks. One of the key hub proteins-HY5 related gene
(Solyc08g061130.3) was down-regulated, which directly acted
with the other two hub protein: Solyc11g011980.3 (E3 ubiquitin-
protein ligase COP1-like isoform X1) and Solyc02g070980.1
(chlorophyll a/b-binding protein Cab-1A). The other key
hub gene-encoded protein was Solyc01g107730.3 (CycD3),
which was directly affected by Solyc06g071830.2 (BTB/POZ
and TAZ domain-containing protein 1) to participate in the
regulation process of Solyc04g014470.3 (transcription factors,
MYB20-like) (Figure 7A). In the comparison of RD vs. BD,
Solyc08g061130.3 (transcription factors, HY5) was also identified
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FIGURE 7 | Protein-protein interaction (PPI) network analysis based on the DEDs in the comparisons of “GD vs. BD” (A) and “RD vs. BD” (B). Nodes depict proteins

encoded by related genes and PPI are represented by edges in the network; the top five hub DEDs encoded proteins are represented by various colors (red: high

rank; Yellow: low rank) in the PPI networks.

as the key hub protein, directly interacting with other four
hub proteins: Solyc08g080540.3 (heat stress transcription factor,
B-2b), Solyc02g070980.1 (chlorophyll a/b-binding protein Cab-
1A), Solyc06g063280.1 (B-box zinc finger protein 32, BBX32),
and Solyc12g089240.2 (B-box zinc finger protein 20, BBX20)
(Figure 7B). Furthermore, no key hub proteins were identified
by PPI analysis in GD vs. RD comparison due to the few DEGs
detected in this comparison (Supplementary Table 4). These
results indicate that HY5 might play role pivotal role in the light
spectral-induced regulation of plant drought stress.

Differentially Expressed Genes Involved in
ABA Metabolism and ABA Signal
Transduction
Regardless of water conditions, the expression pattern of plant
hormone metabolism and signaling pathway-related DEGs
under green light was significant to those under red and
blue light. More DEGs were involved in ABA metabolism,
signaling, and responses (Supplementary Figure 1). To further
investigate how ABA-related genes responded to different light
spectra, the expression of ABA metabolism- and ABA signaling
transduction-related genes were filtered from the DEGs and
listed in Figure 8. Eight differentially expressed genes involved
in ABA biosynthesis and one ABA signaling transduction-
related gene were detected. Regardless of water conditions,
the transcription level of the violaxanthin de-epoxidase related
gene (Solyc04g050930.3, VDE) was highest under blue light,
followed by green light and red light. The highest and lowest
expression level of NCED1 (Solyc07g056570.1) encoding 9-cis-
epoxycarotenoid dioxygenase (NCED) was found under green
light and red light, respectively (Figures 8A,B). Compared
with blue light, ABA2 (Solyc12g056610.2), encoding another
important enzyme of ABA biosynthesis, was up-regulated under
green light and red light. The cytochrome P450 monooxygenase
(P450) encoded by CYP707As, plays an important role in
the catabolism of ABA. Five CYP707As were identified under

different light treatments. Regardless of water condition, three
CYP707A related genes (Solyc01g108210.3, Solyc04g080650.3,
and Solyc08g005610.3) were down-regulated under green light
when compared with those under blue (Figures 8A,B). Under the
well-water condition, the expression levels of Solyc01g108210.3,
Solyc04g071150, Solyc04g080650.3, and Solyc08g005610.3 under
red light were lower than those under blue light (Figure 8B);
however, only two identified CYP707As (Solyc01g108210.3 and
Solyc04g071150) were down-regulated under RD compared
with those under BD. In addition, the PP2C related gene
(Solyc05g052520.3) of plant leaves under green and red light was
down-regulated compared with that of blue light treated plants
(Figures 8A,B). These results suggest that the ABA biosynthesis,
metabolism, and ABA signaling transduction are regulated by
light spectra. Compared with red, green light not only enhances
ABA biosynthesis and concomitantly reduces ABA degradation
but is also involved in ABA signaling transduction in tomato
plants, while green light is more efficient in promoting ABA
biosynthesis in tomato seedlings.

Validation of Differently Expressed Genes
by qPCR
The reliability of RNA-Seq data was verified by qRT-PCR using 10
randomly selected DEGs. The transcript profiles of these selected
genes in the qRT-PCR analysis showed a similar pattern as being
identified by the FPKM from RNA-seq under corresponding
treatments (Supplementary Figure 2). These results confirm the
reliability of RNA-Seq data.

DISCUSSION

Light is one of the most important environmental cues in the
regulation of plant growth, development, and stress responses. A
better understanding of the interaction between light and stress
will provide useful information for helping both greenhouse and
vertical farming production, with increasing crop production and
concomitantly improving resource use efficiency. The present
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FIGURE 8 | The heatmap diagram of relative expression profiles of DEGs involved in ABA synthesis and ABA signaling transduction in response to red, blue, and

green light under drought conditions (A) and well-water conditions (B). Gene expression is shown in a heatmap with color scale representing log2 (FPKM) (blue: low

expression level; red: high expression level). A scale indicating the color assigned to log2 (FPKM) is shown to the right of the heatmap.

study aimed to explore the mechanism of green light on drought
tolerance of tomato plants from a physiological and molecular
perspective. For this purpose, this study investigated the effects
of monochrome red, blue, and green light on photosynthetic
performance, stomatal response, and endogenous ABA synthesis,
and further characterize the differences in the transcriptome
under drought stress.

In the present study, we found that compared with well-
watered plants, the photosynthesis of red and blue light-treated
plants was significantly decreased, while the photosynthetic
capacity under green light showed a slight decline during 9
days of drought treatments (Figure 1). Together with comparable
biomass of plants exposed to different light spectra under drought
stress (Table 1) and the low electrolyte leakage under green light
(Figure 3A), these results confirm the positive function of green
light on alleviating drought stress-induced decreases in plant
growth. This is consistent with our previous studies that green
light showed positive effects on maintaining photosynthetic
capacity and enhancing the stress tolerance of plants under
continuous light and drought conditions (Bian et al., 2018, 2019).

Stomata are the gateway for CO2 uptake and water loss from
plant leaves by transpiration (Osakabe et al., 2014). Apart from
being regulated by internal cues (e.g., phytohormones and Ca+2

signal), the stomatal aperture is controlled by external light
spectra. In the present study, the gs, Tr, and stomatal aperture
of well-watered plants were lower under green light than those
under red and blue light (Figure 2). These findings may lie
in the fact that red and blue light facility stomata opening,
while green light less efficient in promoting stomatal opening
and strong green light suppressed the blue-light dependent
stomatal opening (Frechilla et al., 2000; Shimazaki et al., 2007).
However, the effect of light spectra on gs was not in line
with the changes of Tr and stomatal aperture under drought
stress (Figure 2). In plants, transpiration is not only regulated
by light-regulated stomatal aperture but also affected by other
environmental factors, including soil and atmospheric moisture
stresses (Durand et al., 2019). Furthermore, the gs depends on
the aperture, size, and density of stomata in plants (Monda
et al., 2016). Thus, gs of plants is not always correlated with Tr
and stomatal aperture, especially under different abiotic stress
conditions (Durand et al., 2019; Zhang et al., 2020).

Compared with RD and BD, the relatively higher
instantaneous WUE and RWE and concomitantly lower
electrolyte leakage and stomatal aperture under GD were further
demonstrated our previous report that green light positively
enhanced tomato plant drought stress tolerance via stomatal
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regulation (Bian et al., 2019). As an important phytohormone,
ABA plays a vital role in plant growth, development, and
stress tolerance, such as stomatal regulation, cold, and drought
tolerance (Chen et al., 2020). In this study, the relatively high
ABA content in green light treated plants (Figure 2E) suggests
that ABA may be involved in the green light-induced regulation
of stomata and drought stress response. To reveal the underlying
mechanism of green light in the regulation of drought tolerance,
RNA-Seq analysis was employed to uncover the effects of light
spectra on the global expression profiling of plants under drought
stress. According to the basis of KEGG enrichment analysis, it
was confirmed that “light transduction” and “plant hormone
signal transduction” were involved in spectral regulation under
drought stress (Figure 6). The related genes encoded the key
enzymes of ABA synthesis, metabolism, and signaling were
successfully filtered from the DEGs (Figure 8). Thompson
et al. (2007) reported that overexpression of LeNCED1 greatly
reduced stomatal aperture through enhancing ABA synthesis
in plant leaves. Furthermore, the ABA content can be mirrored
by the expression of ABA2, another important gene in the ABA
synthesis pathway (Tripathi et al., 2016). Therefore, regardless
of water condition, the high ABA content and low stomatal
aperture in green light-treated plants in the present study might
be attributed to the up-regulated NCED1 (Solyc07g056570.1) and
ABA2 (Solyc12g056610.2) compared with that under red and
blue light, respectively (Figure 8).

The ABA content in plants depends on the balance between its
biosynthesis and catabolism. Up-regulated VDE gene expression
decreases ABA synthesis (Pastori et al., 2003). A cytochrome P450
monooxygenase (P450) encoded by CYP707As is a key enzyme in
ABA catabolism (Kushiro et al., 2004). Our present study showed
that VDE and most CYP707As identified from DEGs were up-
regulated under blue, while most CYP707As under green light
were down-regulated when compared with transcription levels
under red and blue light under drought conditions (Figure 8).
These results indicate that the relatively high ABA content under
green light was attributed to green light-induced ABA synthesis
and concomitantly a decrease of ABA catabolism.

ABA signal transduction plays a core role in ABA-dependent
responses to abiotic stress. The signal transduction module
of ABA is made up of three protein classes: Pyracbactin
Resistance/Pyracbactin resistance-like/Regulatory Component of
ABA Receptor (PYR/PYL/RCARs), Protein Phosphatase 2Cs
(PP2Cs), and SNF1-related protein kinase 2s (SnRKs) (Danquah
et al., 2014). PYR/PYL/RCARs are proved to be the ABA
receptors, while PP2Cs and SnRKs act as the negative and
positive regulators in ABA signaling, respectively (Park et al.,
2009; Umezawa et al., 2010). The PP2C activity is inhibited
by the PYR/PYL/RCAR-PP2C complex formation (Park et al.,
2009; Santiago et al., 2009). The inhibition of PP2Cs activity
allows SnRKs to actively target membrane proteins, ion channels,
and transcription factors, and facilitate transcription of ABA-
responsive genes, thereby regulating plant growth, development,
and stress responses (Umezawa et al., 2010; Soon et al., 2012).
Previous studies demonstrate that SnRK2.6 (open stomata,
OST1) regulates fast ABA responses resulting in stomatal
closure, which is inhibited by PP2Cs via dephosphorylation

FIGURE 9 | A proposed model of green light enhances tomato drought

tolerance.

of serine 175 (Umezawa et al., 2009; Vlad et al., 2009).
In our present study, the significantly different transcription
levels of one PP2C related gene (Solyc05g052520.3) under
different light spectra suggest light spectra play important
roles in ABA signal transduction. Together with the lower
stomatal aperture (Figure 2D) and drought-induced damage
under green light (Figure 3), the green-light induced drought
tolerance in this present study may partly attribute to
ABA signal transduction-induced the fast stomatal closure
(Figure 9).

Transcription factors play pivotal roles in plant tolerance
to various stresses through triggering or retarding downstream
gene expression. Several stress-related transcription factors of
bZIP, MYB/MYB-related, and WRKY were involved in the light
spectral regulation under drought (Supplementary Table 3).
According to the PPI network analysis, a bZIP family
transcription factor, HY5, was identified as the hub gene
in the regulation of light spectral on plant drought stress
responses (Figure 7). In plants, HY5 integrates light signal and
endogenous ABA to regulate plant development and stress
tolerance (Xu et al., 2014). In addition, HY5 acts downstream
of COP1 to suppresses ABA-regulated inhibition of seedling
development (Yadukrishnan et al., 2020). Compared to blue
light, green light led to down-regulation of HY5 related gene
(Supplementary Table 3) but promoted ABA synthesis and
signal transduction related gene expression (Figure 8), indicating
that HY5 might act as a negative regulator in the green light-
induced drought responses via modulating ABA synthesis and
related signal transduction. To reveal this hypothesis, more
detailed ongoing studies are still needed. Furthermore, WRKYs
is another important transcription factor family and plays a
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significant role in protecting plants against drought stress.
Activated expression of AtWRKY57 improves drought tolerance
by elevation of ABA levels in Arabidopsis (Jiang et al., 2012).
Jaffar et al. (2016) showed that overexpression of CmWRKY10 in
transgenic chrysanthemumplants improved tolerance to drought
stress via up-regulating NCED related gene expression. Although
no PPI network was constructed in the comparison of GD
vs. RD because of few DEGs identified in this comparison,
two important WRKY transcription factors, WRKY46 and
WRKY81, were filtered and their related gene expressions
were down-regulated by green light under drought conditions
(Supplementary Table 3). Previous studies demonstrated that
WRKY46 and WRKY81 were negative regulators for plant
drought tolerance (Chen et al., 2017; Ahammed et al., 2020b),
and their inhibition of drought tolerance is involved in the ABA-
mediated pathway and the light-dependent stomatal opening in
guard cells (Ding et al., 2014; Ahammed et al., 2020a). Compared
with red light-treated plants, the down-regulated WRKY46, and
WRKY81 and relatively high ABA content with the up-regulated
NCED related gene under green light suggest that WRKY46 and
WRKY81might indirectly be involved in the green light-induced
drought tolerance via ABA-dependent pathway.

To date, the green light receptors have not been confirmed,
but some studies indicate that green light might be involved
in the regulation of plant growth and morphogenesis through
the mediation of blue light receptors such as phototropin
and cryptochrome (Bouly et al., 2007; Matthews et al., 2020).
Based on the results of the present transcriptomic analysis and
previous studies, a putative regulatory network of green-induced
drought tolerance of tomato seedlings was proposed (Figure 9).
Under green light radiation, the green light receptor perceives
light signals and interacts with COP1, which directly regulates
HY5. HY5 could interact with other transcription factors, like
AREBs, DREBs, or WRKYs, to regulate the transcription of
downstream genes involved in drought stress tolerance (He et al.,
2018). Furthermore, green light promotes ABA accumulation
via triggering the expression of ABA biosynthesis-related genes,
such as NCED1 and ABA2, and meanwhile down-regulating
the expression of ABA degradation-related gene-CYP707A.
The resulting accumulated ABA induces signaling pathways,
such as ABA signaling and Ca2+/CaM, to enhance drought
tolerance. Further studies at physiological and molecular levels
should be conducted to provide more precise insight into the
mechanisms of green light-induced drought tolerance. Successful
identification of these key genes would give a great opportunity
for breeding new varieties with high resources use efficiency
or/and stress tolerance that are suitable to vertical farming.

CONCLUSION

The present study confirmed that green light has a positive
function in alleviating the detrimental effects of drought stress on
plant growth and photosynthetic capacity via stomatal aperture
regulation. According to the analysis of the transcriptomic
dataset, the identified those key genes encoding ABA synthesis
and signaling revealed the involvement of the ABA-dependent

pathway in green light-induced drought tolerance via stomatal
regulation. The responses of transcription factors, including
HY5, WRKY46, and WRKY81, to green light-induced drought
responses, were also identified. The transcription data lay the
groundwork for further revealing the mechanism of green light-
induced stomatal movement and stress tolerance under drought
conditions. However, further studies are needed to decipher
the regulatory mechanisms of HY5, WRKY46, and WRKY81
in green light-induced drought tolerance. Furthermore, it is
important to explore how genetic variation and phenotypic
plasticity respond to abiotic stresses with allowing specific traits
to be presented. We expect to be able to create an LED lighting
system that can be programmed to generate an optimized
wavelength recipe unique for each plant species.
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Supplementary Figure 1 | The Hierarchical clustering of plant hormone related

DEGs of tomato treated with different light spectra and water conditions.

Fragments per kilobase of transcript per million fragments mapped (FPKM), and

relative expression of DEGs between different light and water treatments were

calculated as log2 (FPKM) of differentially expressed genes, log2 (FPKM) of

differentially expressed genes were calculated. A scale indicating the color

assigned to log2 (FPKM) is shown to the right of the cluster.
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Supplementary Figure 2 | The expression patterns of 10 randomly selected

DEGs by RNA-Seq and qPCR. Gene expression is shown in a heatmap with color

scale representing log2 (fold change) (blue: low expression level; red: high

expression level). A scale indicating the color assigned to log2 (fold change) is

shown to the right of the heatmaps.

Supplementary Table 1 | The details of the primers used for RNA-Seq data

validation by qPCR.

Supplementary Table 2 | GO enrichment analysis.

Supplementary Table 3 | The transcription factor analysis of plants under

drought stress by DEGs.

Supplementary Table 4 | Protein-protein interaction (PPI) network analysis based

on the DEDs of the comparsion GD and BD.

Supplementary Table 5 | Protein-protein interaction (PPI) network analysis based

on the DEDs of the comparsion RD and BD.
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Yield prediction for crops is essential information for food security. A high-throughput
phenotyping platform (HTPP) generates the data of the complete life cycle of a plant.
However, the data are rarely used for yield prediction because of the lack of quality image
analysis methods, yield data associated with HTPP, and the time-series analysis method
for yield prediction. To overcome limitations, this study employed multiple deep learning
(DL) networks to extract high-quality HTTP data, establish an association between
HTTP data and the yield performance of crops, and select essential time intervals
using machine learning (ML). The images of Arabidopsis were taken 12 times under
environmentally controlled HTPP over 23 days after sowing (DAS). First, the features
from images were extracted using DL network U-Net with SE-ResXt101 encoder and
divided into early (15–21 DAS) and late (∼21–23 DAS) pre-flowering developmental
stages using the physiological characteristics of the Arabidopsis plant. Second, the late
pre-flowering stage at 23 DAS can be predicted using the ML algorithm XGBoost, based
only on a portion of the early pre-flowering stage (17–21 DAS). This was confirmed
using an additional biological experiment (P < 0.01). Finally, the projected area (PA)
was estimated into fresh weight (FW), and the correlation coefficient between FW and
predicted FW was calculated as 0.85. This was the first study that analyzed time-
series data to predict the FW of related but different developmental stages and predict
the PA. The results of this study were informative and enabled the understanding of
the FW of Arabidopsis or yield of leafy plants and total biomass consumed in vertical
farming. Moreover, this study highlighted the reduction of time-series data for examining
interesting traits and future application of time-series analysis in various HTPPs.

Keywords: time series analysis, phenomics, high-throughput phenotyping (HTP), deep learning (DL), growth
modeling, plant biomass, Arabidopsis thaliana

INTRODUCTION

Food insecurity has threatened the survival of many people because of the desertification of
arable land, global climate changes, population increase (Godfray et al., 2010), and spread of
infectious disease worldwide (Laborde et al., 2020). To combat food insecurity, agricultural
production approaches have not been revamped, wherein “digital agriculture” was proposed
to overcome these challenges (Redmond Ramin et al., 2018b). Multiple studies examined this
concept about agricultural production (Waltz, 2017). Regardless of the food production method
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for growing field crops in indoor conditions, multiple challenges
limit the implementation of this idea for the current agricultural
production. The successful transformation requires digital plant
phenotyping data and analysis tools (Granier and Vile, 2014).
Determining plant performance in various situations requires
various quantitative data to compare and make a decision
(Großkinsky et al., 2015). Therefore, a description of the
performance of a plant at a given time is important for the
transformation of digital agriculture (Chawade et al., 2019).

Plant phenotype includes multiple aspects of plant science
and its definitions vary in different plant science-related fields
(Tardieu et al., 2017). Automated high-throughput phenotyping
platform (HTPP) generates high-quality data (Lee et al., 2018)
from multiple sensors (Fahlgren et al., 2015) and yields the
complete life cycle of a plant (van Es et al., 2019). Moreover,
rich phenotype data, based on time series generated from a
single plant captured by HTPP, can provide insights into traits of
interest. HTPP-generated data are used to investigate the salinity
stress response in multiple rice cultivars and these data revealed
that candidate genes can be resistant to salt-related stress (Al-
Tamimi et al., 2016). However, many studies use only a small
fraction of phenotype data for a fixed time point (Al-Tamimi
et al., 2016; Chen et al., 2018) to associate phenotype data with
interesting traits. This is primarily attributed to multiple plant
scientists selecting measurement time that discriminates with
notable traits in plant-related populations. Moreover, time-series
analysis methods based on statistical models do not provide
satisfying results (Boken, 2000). Recently, yield prediction for
crop plants using machine learning (ML) algorithms from
satellite or drone images provided high accuracies (Khaki et al.,
2020). In these studies, the frequency of image acquisition
is broad (days) and small changes over narrow (hours) time
intervals are difficult to identify. Moreover, for determining
phenotype changes over the plant life cycle, the examination of
both narrow and broad time intervals is important (Tardieu et al.,
2017). Novel time points with ML tools are essential because
examining interesting traits from prior knowledge provides
limited information on traits. The analysis and prediction of
leaf area using time-series data at specific growth stages can
establish prediction models for the growth pattern of a plant
and essential time points. This study employed extreme gradient
boost (XGBoost) for multiple time steps of forecast models.
XGBoost, known as multiple additive regression trees, adds
multiple decision trees to achieve the best outcome. XGBoost
was used to analyze various classification and regression data
not provided (Ji et al., 2019). It used multiple steps to make
ensemble models for multiple time-step forecasts (Galicia et al.,
2019). The additional benefits of using the ensemble models
were the robustness and simplicity of modeling while forecasting
(Dineva et al., 2020).

Machine learning-based analysis improved the extraction of
projected area (PA) related to multiple agronomical traits. Many
studies on the growth pattern of a plant are destructive, i.e.,
they harvest the plant to measure its weight. This method is
labor-intensive, producing only a few time point measurements.
HTPP gathers images related to plant weight in the PA with a
high-frequency rate within a day. Moreover, the PA extracted

from HTPP in this study showed a high correlation between
images and biomass or photosynthetic capacity (Salas Fernandez
et al., 2017). Similarly, multiple agricultural traits are directly or
indirectly associated with PA (Yang et al., 2013; Araus and Cairns,
2014). Accurately extracting PA from the image of a plant is
difficult because multiple size leaf areas are connected with thin
branches in an overlapping manner (Lee et al., 2018). Previously,
studies separated the plant area from background images, and
the reported evaluation matrix shows that the accuracies of
the segmentation of plants heavily depend on a specific dataset
(Jiang and Li, 2020). ML algorithms, such as random forest (Lee
et al., 2018), increase accuracy over conventional image regency
approaches. Deep learning (DL) algorithms, such as U-Net,
provide additional enhancement of semantic segmentation for
biomedical (Ronneberger et al., 2015) and plant images (Chang
et al., 2020). The U-Net architecture is composed of encoder and
decoder architecture (Figure 1E). The first half of the architecture
contained the encoder or backbone and extracts features from an
image with multiple levels. The second half of the architecture,
the decoder, uses features from the previous step. For separating
object and background information, advanced encoders gather
additional features from images and achieve higher accuracies
(Hoeser and Kuenzer, 2020; Zhang et al., 2020). Hence, for
segmenting, there is room for improvement because U-Net
performs well in different soil conditions.

In this study, we examined the reduced time intervals for
predicting PA and estimate FW at different growth stages. This
study follows four steps. First, we applied the combination of DL
for plant image semantic segmentation for better PA and features
for plant shape. Second, ML-based prediction models used the
extracted plant features to predict the PA at the early and late pre-
flowering stages with biological replication. Third, we established
a relationship between FW using PA in a pre-flowering stage.
Finally, we compared the predicted FW with PAs from various
training models and harvested FW at 23 days after sowing (DAS).

MATERIALS AND METHODS

Arabidopsis developmental stages were defined as growth stages
with early vegetative stage, early pre-flowering, and late pre-
flowering stages from the phenological development of a plant
(Boyes et al., 2001). The images of plants were acquired at all
growth stages. However, the early pre-flowering stage was used
for the late pre-flowering stage growth pattern (Figure 2A). We
repeated experiment II to validate the outcome of experiment I at
23 DAS. We estimated fresh weight (FW) from PA with harvested
plants at the early pre-flowering stage and compared the
predicted FW with training models and measured FW at 23 DAS.

Plant Materials and High-Throughput
Phenotyping Setup
Arabidopsis thaliana was planted in the soil mixture and then
moved to the HTPP with environmentally controlled conditions.
The platform was programmed to obtain images with a 4K-RGB
camera (Logitech, California, United States) every hour between
08:00 am and 7:00 pm during the photoperiod. A motorized
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FIGURE 1 | Overview of Arabidopsis image analysis pipeline. There are three steps for image analysis. The first step is the preprocessing of raw images by (A) the
acquisition of the raw image, (B) detecting reference point (red dot), (C) correcting images with the red dot, (D) cropping into single plant images, and rescaling. The
second step is to train the (E) U-Net with various encoders and selecting encoders for the best result using the U-Net structure, (F) including encoder section,
training network with various encoders, such as SE-RENext101, (G) comparing results from various encoders. The last step is the post-processing of images and
exporting data using (H) error detection with a conditional random feature, (I) extract PA, and convex hull area, (J) perimeter.
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FIGURE 2 | Definition of early vegetative, early, and late pre-flowering stages were used in the study to visualize corresponding projected area (PA) of all and selected
samples of Arabidopsis. (A) Visualized plant images at three growth stages: early vegetative [8–15 days after sowing (DAS)], early pre-flowering stage (15–21 DAS),
and late pre-flowering stage (21–23 DAS). (B) The visualized growth pattern of all samples. Dashed blue lines indicate the average PA in each DAS. The orange solid
line indicates PA at early vegetative, early, and late pre-flowering stages, respectively. (C) The visualized growth pattern of selected individual Arabidopsis samples of
ID 98 (dot), ID 100 (dash with lines), and ID103 (dash). The actual measurement time point is displayed with solid lines in each sample.
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irrigation dipper was connected to each tray and filled with
water every 4 days over 4 weeks. Light-emitting diodes provided
(Lumens, Seoul, South Korea) 16 h of lighting at 230 µmol/m2/s.
A more detailed description is available in the study by Chang
et al. (2020).

Image Analysis Method and Evaluation
of Semantic Segmentation
The image analysis pipeline was modified from the work of
Chang et al. (2020) and comprised three parts. The first part
was the pre-processing image step that detected edges of the
tray (Figure 1B), corrected errors (Figure 1C), cropped, and
saved individual plant images (Figure 1D). The second part
was the segmentation process that tested U-Net (Figure 1E)
with various encoders (Figure 1F) and selected a well-performed
encoder (Figure 1G). The last part involved post-processing,
which removed additional errors (Figure 1H) and extracted
features from images (Figures 1I,J). This study tested multiple
encoders using U-Net for more quality data from plant images.

Pre-processing of images was required for U-Net
implementation. Firstly, we corrected image distortion of
captured raw RGB tray images using four red markers in pre-
processing; a tray image included 32- or 50-cell individual plants.
Then, the corrected tray image was cropped for separating
individual plants using the detected red marker coordinates
(Chang et al., 2020 #74). The cropped images were properly
scaled and padded for the U-net network size (512 × 512
dimensions). Secondly, the cropped, scaled, and padded RGB
color image and mask image pairs were needed to train a
semantic segmentation network; the mask image consisted of a
black background and a white foreground (i.e., plant region). We
selected an encoder such as Densenet, then performed training
steps. Lastly, the cropped, scaled, and padded RGB color image
inputs to the trained network, then only plant area was separated
from backgrounds such as soil as an output (i.e., a mask image).
Finally, the fully connected conditional random fields were
applied to the segmented results for post-processing.

Cropped images were generated for image analysis, and 446
images were randomly selected to represent data for comparing
different backbone approaches and source code available at
Github (Yakubovskiy, 2019). Selected backbones are listed in
Supplementary Table 2. To evaluate each backbone (encoder),
data were randomly divided into two: 90 and 10% for training
and data validation, respectively. Image augmentation such as
flip, padding, blur, and sharpen using Python (Python software
foundation, Beaverton, OR, United States) was performed to
reinforce smaller training data (Buslaev et al., 2020). For each
backbone, a total of 500 epochs of training was performed
(Yakubovskiy, 2019). The trained model was evaluated using the
validation dataset at the end of each epoch because an epoch has
as many steps as training data.

Each model of the backbone was trained using binary dice
and focal loss functions (Eqs 5, 7; we used beta value in Eq. 5).
The dice and focal loss exhibited good performance for class
imbalance problems (Milletari et al., 2016; Lin et al., 2017; Salehi
et al., 2017; Zhu et al., 2019) [the class meant the foreground
(plant part) and the background]. At the earlier stages of growth,

the sizes of the plants were small. Therefore, the foreground
class was much smaller, causing a class imbalance problem.
To overcome this, we used a combination of loss functions
during training.

The evaluation of the semantic segmentation used various
methods such as the intersection-over-union (IoU) method (Yu
et al., 2018). Eq. 1 shows that the IoU used calculates overlapped
PA percentage using the intersection of the PA between the
predicted (denoted by A) and ground-truth areas (denoted by B)
over union PA between the predicted and ground-truth areas.

IoU =
Area(A ∩ B)

Area(A ∪ B)
(1)

F1-scores were used for evaluating semantic segmentation in
agriculture (Bargoti and Underwood, 2017) and can be calculated
from Eqs 2–4. From the precision calculation, a true positive (TP)
result indicated that the output correctly predicted the pixels in
PA, while a false positive (FP) result indicated that the output
falsely predicted the pixels in non-PA. A TP and a false negative
(FN) result indicated that the output failed to predict pixels in
PA. Various backbones with U-Net could correctly determine PA
if the IoU score was >0.5. A higher number indicated a more
accurate prediction from the model. To compare the results, IoU
and F1 scores were measured and calculated average values were
used.

Precision (P) =
TP

TP + FP
(2)

Recall (R) =
TP

TP + FN
(3)

Fβ score =
(
1 + β2)

·
P · R

(β2 · P) + R
, β = 1 (4)

Dice loss = 1−Fβ score, β = 1 (5)

pt =

{
p if y = 1

1− p otherwise
(6)

Focal loss
(
pt
)
= −αt · (1−pt)

γ
· log (pt), α = 0.25, γ = 2 (7)

y ∈ {±1} means ground-truth class and p ∈ (0,1) is the estimated
probability of the model for the class with label y = 1.

Loss function = Dice loss + Focal loss (8)

Time-Series Data Definition and
Projected Area Prediction Models
Construction
This study measured a PA at the complete growth cycle of 232
plant samples. Experiments I and II measured 122 and 110
samples, respectively. The growth cycle range is 10–23 DAS with
165 time steps that include 12-time steps per day. The time data
format was in a sequential order ranging from 1 to 165 because
multiple time points were not present with the DAS format.
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To express specific time points with DAS, the measured hours
divided by 24 h were added after DAS. If images were taken 17 h
at 23 DAS, the time point expressed as 23 DAS was (17/24 h).
The training set was composed of a convex hull and compactness
from extracted individual plant images.

Based on the phenological development of a plant, Boyes
et al. (2001) defined Arabidopsis growth stages using the early
vegetative stage, early and late pre-flowering stages with the
Biologische Bundesanstalt, Bundessortenamt und CHemische
Industrie (BBCH) scale. The growth stages of the early and late
pre-flowering stages corresponded to 1.04 and 1.1 (Figure 2A)
where the decimal point indicated the number of rosette leaves.
The early vegetative stage was before 1.04. In our study, rosette
leaves were manually counted for early and late flowering stages.
The developmental stages and corresponding lengths of the early
and late pre-flowering stages ranged from 15 to 21 and 21 to
24 DASs, respectively, and 60 to 140 and 141 to 165 time steps,
respectively (Table 1), because inflorescence emerged at late 23
DAS in a partial plant population.

The early pre-flowering stage was then divided into six
training data sets, in those with endpoints at 20 and 21 DAS,
respectively. The first four training sets were based on the training
window: 15, 16, 17, and 18 DAS, with corresponding time lengths
of 80, 68, 56, and 44 time steps, respectively (Table 1). Each of the
training sets contained an ID, date, day, month, and experiment
number. Figure 2C (orange solid line at ID 100) shows the plot of
the measurement of PA of plants in the controlled environment
in the daylight period only.

The last two training sets (5 and 6) were based on the training
windows starting with 16 and 17 DASs with the corresponding
time steps of 55 and 43, respectively. A summary of the reference
time points for each set is listed in Table 1, where the entire
experiment was termed experiment I. To verify the repeatability,
an additional entire experiment, which was termed experiment
II, was repeated.

To examine the influence of various time lengths on the
performance of the forecast model, a direct forecasting package

TABLE 1 | Summary of reference points of each dataset with two-time scales
used in the study.

Training set Reference timepoints

DAS with (Time steps)

Training period Testing period

Start End Start End

Training 1 15 (60) 21 (140) 21 (141) 23 (165)

Training 2 16 (72) 21 (140) 21 (141) 23 (165)

Training 3 17 (84) 21 (140) 21 (141) 23 (165)

Training 4 18 (96) 21 (140) 21 (141) 23 (165)

Training 5 16 (72) 20 (127) 20 (128) 23 (165)

Training 6 17 (84) 20 (127) 20 (128) 23 (165)

The time scale was recorded with the day format as days after sowing (DAS)
with time steps. Moreover, the corresponding time steps are mention in the
parenthesis next to the day format.

called “forecastML” (Vienna, Austria) was utilized (Redell, 2020).
The R forecast library required static (location) and non-static
data (date and month). The period was set to 48 h. The
overall scheme of the data structure is available (Supplementary
Figure 3A). Individual model for each sample ID was constructed
and evaluated as training 1 to 4 dataset (Supplementary
Figure 3B) with multiple n-step ahead forecasting in training
data hours, as shown in Figure 3A. The R code utilized in the
analysis is available in the Supplementary Material. The mean
absolute error (MAE) calculated the average errors using the sum
of magnitude (absolute values) divided by the total samples (n), as
shown in Eq. 9. The root means square error (RMSE) calculated
average errors by identifying the total squared errors between the
observed and the predicted values over n. The square root of
mean squared errors was calculated using Eq. 10. The MAE and
RMSE were the most used metrics for measuring the accuracy of
time-series data (Cort and Kenji, 2005; Chai and Draxler, 2014).

MAE =
1
n

n∑
j = 1

|yj−ŷj| (9)

RMSE =

√√√√ 1
n

n∑
j = 1

(yj−ŷj)2 (10)

For all training datasets, horizons for the combined forecasting at
1, 6, 12, 24, 36, 42, and 48 h were selected.

Trained Model Testing With Late
Pre-flowering Stage Data
Individual PA forecasting models were constructed and tested
for the late growth stage of the Arabidopsis plant. Four training
models for various time intervals were then tested using testing
sets ranging from 21 to 23 DAS (141–165 time steps), while two
training models were tested with testing sets with a range of 20–
23 DAS (133 to 165 time steps). Table 1 lists the reference time
points for each set.

Statistical Analysis
Statistical tests were performed using R (R Core Team, 2019).
Three analyses were performed to verify that the forecast
values from the ensemble model provided accurate output.
The late growth time steps at 165 (23 DAS with 16 h) were
selected for statistical analysis because inflorescence emerged
at 23 DAS. First, an ANOVA test was used to determine if
one or more datasets were different. The observed outputs
were compared with the predicted values for six datasets. Non-
significant datasets (P < 0.01) were selected and the homogeneity
of variance for these sets was compared using Tukey’s honestly
significant difference at a family-wise confidence level of 95%.
The correlations between observed and predicted values were
tested using Spearman’s rank coefficient (R).

Measurement and Estimated Fresh
Weight
Previous studies indicated that strong relationships between
FW and PA exist in Arabidopsis (Fahlgren et al., 2015).
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FIGURE 3 | Predicted PA and error calculation at 1-, 24-, and 36-h forecast window sing ML algorithms (XGBoost). (A) Comparing PA prediction with 17–21 DAS of
ID 98. (B) Comparing evaluation matrices of mean absolute errors (MAE), root mean square error (RMSE) of three selected samples, namely, ID 98,100, and 103.
Global MAE and RMSE are defined as average MAEs and RMSE of all forecast time steps.

Moreover, it was infeasible to harvest all representative plant
images of 220,000 (165 time steps × 115 plants × 12
times per day). Therefore, plants were randomly selected
and harvested among 112 plants from HTPP at 14, 17,
and 20 DAS, respectively. Furthermore, 30 of 110 plants
were randomly selected in experiment II at early 23 DAS
because inflorescence emerged. Each plant was harvested
and measured using the precision scientific balance (Ohaus,
New Jersey, United States).

The following steps were required for establishing a
relationship between FW and PA. First, a regression model was
established to verify the relationship between FW and PA at
the early pre-flowering stage using the data at 14, 17, and 20
DAS, respectively. Second, the regression model for the early
pre-flowering stage was used to verify the predictability estimate
of FW from PA in experiment II at 23 DAS. Third, FW was
estimated from PA training models. Finally, the measured and
predicted FW at 23 DAS were compared.

RESULTS

Evaluation of Semantic Segmentation
The image analysis pipeline “U-Net” used for DL algorithms
yielded good results (Chang et al., 2020). However, minor errors
were evident when the network distinguished moss from plant
areas. Thus, this study incorporated a more flexible U-Net
network with various backbones (encoders) from other published
networks to improve the segmentation task (Jiang and Li, 2020).
IoU scores predicted PA over true PA values and a score of 1
indicated a perfect match between the predicted and true values.
F1 score calculated model accuracy by combining precision
and recall output. Similarly, a score of 1 indicated the highest
value for the evaluation. Results from the evaluation matrix
showed a high association between the evaluation and validation
data (Table 2), indicating that the up-to-date backbones such
as the SE-ResNext101 exhibited a reduced error rate than
VGG16. Furthermore, the residual module-based network such
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TABLE 2 | Summary of an evaluation matrix for semantic segmentation of U-Net
using various deep learning backbones (encoder).

Backbones Model evaluation matrix Validation matrix

IoU F1-score IoU F1-score

VGG16 0.9384 0.9682 0.9272 0.9626

VGG19 0.9464 0.9724 0.9301 0.9637

SEResNet152 0.9665 0.9824 0.9323 0.9639

SEResNeXt101 0.9684 0.9839 0.9324 0.9648

SENet154 0.9697 0.9846 0.9314 0.9643

ResNet154 0.9565 0.9777 0.9259 0.9613

ResNeXt101 0.9623 0.9808 0.9281 0.9614

MoblieNetV2 0.9518 0.9749 0.9250 0.9608

InceptionResNetV2 0.9640 0.9817 0.9308 0.9637

DenseNet201 0.9609 0.9801 0.9310 0.9642

Two evaluation scores are shown in the table. Intersection-over-union (IoU)
evaluation matrix and F1-score were calculated.

as ResNet154 provided a high-confidence F1-score of 0.9613. The
distribution evaluation matrix was then visualized to determine
whether the network architecture influenced that of the output.
The results (Supplementary Figure 1) indicated that squeeze
and excitation (SE) architecture provided the most accurate PA
among all backbones. The total loss of each backbone showed the
same result from the F1 score (Supplementary Figure 1C). These
results indicated that U-Net with SE backbones could be used for
segmentation in various crops.

Growth Pattern Analysis
The dynamic growth patterns were observed in Arabidopsis
day and night (Wiese et al., 2007; van Es et al., 2019) and
demonstrated that daylight growth was responsible for 70%
of growth activities (Wiese et al., 2007). The overall growth
pattern of the selected plant showed a somewhat linear trend
for multiple growth stages (Figure 2B) and agreed well with
previous studies on Arabidopsis (van Es et al., 2019). Three
of 122 plant samples were selected and the dynamic growth
pattern of the individual plants was compared (Figure 2C).
Individual samples had distinct patterns from (orange solid line)
one another and although the unmeasured night period varied,
ID 98 had the fastest-growing rate ahead of ID100 and 102.
However, its absolute growth rate (AGR) was the slowest at 20
DAS (Supplementary Table 2). Furthermore, the AGR of sample
ID 100 grew fastest in selected samples of ID 98, 100, and 102;
however, ID 102 was the fastest in afternoon time points. These
results reveal that a dynamic growth habit can be observed within
a 6-h time window. Consequently, the n-step forecast time was
determined using multiples of 6 h and translated into 0.5 days
because a 12-h-window was measured for a day.

Prediction of the Projected Area With
Training Models
High-confidence data were obtained using the 165 time steps
collected and an up-to-date DL network-based image analysis.
The definition of Boyes et al. (2001) was adapted (Figure 2A)
for defining the developmental stages of Arabidopsis. Results

showed that the early vegetative stage had slight sample variations
from the pre-flowering stage of the plant developmental phase
(Boyes et al., 2001; Figure 2B). Thus, the period from the early
pre-flowering stage was tested, and the prediction models were
validated in the late pre-flowering stage. Time-series analysis
required the predefined time steps for training and testing
purposes. Algorithms only used information within the training
window to build a model and predict future values in the pre-
determined forecast window. Later, predicted values from the
trained model were compared with measured PA with U-Net
within testing data. Forecasting terminologies were used in the
time series analysis because not all data have true values in future
events such as weather forecasts. This study determined the
training and testing windows for the plant developmental stages
until flowering bud emerged at late 23 DAS. The forecasting
window at 24 h indicated 2 days after 12 h defined 1 day in the
dataset. Various forecasting windows were tested with baseline
studies to compare predicted and true values at the end of the late
pre-flowering stage.

Verifying the essential time for the prediction model, the total
time data was divided into six training sets following the start and
end dates of the training data. Training sets 1–4 and training sets
5 and 6 were selected based on the end date of 21 and 20 DAS,
respectively. Similarly, they were selected from the start point
from 15 to 18 and 16 to 17 DAS, respectively (Table 1).

The initial analysis was performed with time points ranging
from 15 to 21 DAS. Forecasting multiple windows and combining
models provided more reliable results; however, the selection of
time steps depends on the dataset (Galicia et al., 2019). The errors
of different combinations of time steps were calculated using
multiple-error evaluation matrices. The forecast value showed a
similar trend among the different forecast windows at 1, 6, 12, 24,
36, 42, and 48 h, respectively (Supplementary Figure 2), because
growth variation was observed at least 6 h (Supplementary
Table 2). PA prediction deviated with increased time intervals for
forecast and forecasting window at 24 h provided an additional
reliable prediction value than the 36 h window (Figure 3A).
The result indicated that the optimal forecasting window ranged
between 24 and 36 h (Figure 3A). The data structure of the study
was performed for 12 h a day for measuring daylight growth,
which corresponded to 36 h for 3 days. To summarize, forecast
windows at 1, 6, 12, 24, 36, 42, and 48 h corresponded to 0.04, 0.5,
1, 2, 3, 3.5, and 4 days, respectively.

Time-series analysis used various result-testing tools such as
MAE and RMSE. MAE is one of the most commonly used
matrices for measuring the performance of forecast models.
A smaller MAE indicated that the predicted values were closer
to actual values (Tay and Cao, 2001). The effectiveness of
time-series analysis with the ML model was checked using
RMSE (Chen et al., 2006). Two absolute error evaluation
matrices provided appropriate information because no negative
values exist in the dataset. Selected subsamples from training
models were compared with check time window selection and
forecast evaluation within testing data. The MAE of each plant
sample showed little differences in multiple forecast windows
(Figure 3B) and the overall error rate called the global MAE
was 0.25 (Supplementary Figure 5A). Moreover, the RMSE
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of selected samples showed little differences (Figure 3B). All
samples of MAEs were calculated using a forecasting window
that ranged from 0.5 to 2 and a global MAE given as 0.7
(Supplementary Figure 4B). The result indicated that it served
as a baseline MAE for other datasets.

A total of six training sets were generated from the endpoints
of 20 and 21 DAS (Table 1 and Supplementary Figure 5F). The
training period of the training sets 5 and 6 started at 16 DAS
(Supplementary Figure 5F). The MAE ranged from 0.5 to 1.7
with the mean of global MAE as 0.7 (Supplementary Figure 4).
The prediction errors decreased slightly compared with the
baseline training sets 1–4. Furthermore, the training sets 3 and 4
with training windows that started at 17 and 18 DAS, respectively,
were compared to check their error rate decreased with a narrow
time. The results from training sets 3 and 4 indicated a similar
error rate with training sets 5 and 6 (Supplementary Figures 5B–
D). The mean of MAE training sets 3 and 4 was 0.6 and
0.7, respectively (Supplementary Figures 5C,D), suggesting that
limited intermediated time points for time-series analysis can be
feasible for predicting late-stage growth patterns.

The endpoint of the training set 5 and 6 was shifted to the
forecasting window at 20 DAS. Training set 5 started a time
window at 16 DAS and the MAEs of 1, 6, 12, and 24 h n-step
forecast showed similar ranges (0.5–1.5) compared with the
training sets 1–4. In the same training set, MAE increase by >2
or more at 36 and 42 h of the forecast period. Finally, the training
set 6 with a start date at 17 DAS exhibited increased MAEs over 3
at 36 and 42-h forecast.

Overall, MAEs were increased after 36 h (3 days) of
forecasting windows among different training sets (Figure 3B
and Supplementary Figure 5F). This result indicated that models
would predict reliable PAs at the endpoint of late time point in the
testing time steps (Supplementary Table 3).

Testing Trained Models With Late
Pre-flowering Stage Data
This study forecasts the late pre-flowering stage using correlated
features from the early pre-flowering. The growth forecast models
for each training set (Table 1) were constructed and tested
(Supplementary Figure 6 and Supplementary Table 3). The
test time included the late growth stage of the Arabidopsis
plant, including 23 DAS at which the emergence of inflorescence
occurs in certain plants. To forecast the target days at 23
DAS, the training sets 5 and 6 were forecasted 42 h or longer.
The forecasting plot of training sets 5 and 6 demonstrated
that prediction at least 42 h ahead of time was feasible
(Supplementary Figures 6E,F). Sample ID 98 was selected and
all the predicted values of the six training sets were compared
to evaluate prediction efficiencies (Figure 4A). Training sets 1–
4 showed a stable trend in the whole growth period but training
sets 5 and 6 demonstrated decreased accuracies after the end of
22 DAS. The prediction of the training sets 1–4 demonstrated
close to actual values in the late growth stage at 23 DAS at 5:00
pm (Figure 4B). Moreover, the global error rate showed a similar
trend in training sets 1–4 but different in training sets 5 and 6
(Figure 4C), although the error rates were similar between sets

1–4 and training sets 5 and 6 before 36 h of forecast window
(Figure 4A). The result indicated that training sets 1–4 forecast
the growth pattern of the late pre-flowering stage at 23 DAS.
The training set 3 that included only 5 days of data showed
similar MAEs compared with the 7-day data in the training set
1. An essential time window of fewer than 5 days of data (17–
21 DAS) was generated, which included the transitional window
from early to late pre-flowering stages in Arabidopsis. The same
time window was tested in the replication at experiment II.

In experiment II, the overall growth pattern was similar
(Figure 5A) to experiment I (Figure 2B). HTTP stopped in the
early hours of 23 DAS (23.37) because inflorescence was observed
in the portion population (n = 110) and the 30 randomly selected
plants for FW. Growth prediction models were constructed from
17 to 21 DAS (training set 3) and at 23 DAS, the t-test results
of the observed and predicted values using the training dataset 3
were not different (P > 0.01). The Spearman’s rank coefficient
(R) of PA and the predicted PA of experiments I and II were
calculated and compared. The coefficient (R) of experiment I
was 0.868 (Supplementary Figure 7A) and that of experiment
II was 0.872 (Supplementary Figure 7B). The coefficient of
each experiment was similar (P > 0.01), thereby confirming
the experimental reproducibility. Furthermore, an additional
statistical test is provided in Section “Statistical Analysis of
Validation Sets.”

Statistical Analysis of Validation Sets
The low MAEs (Supplementary Figure 5) is a good indication
of high accuracy-ML models and provide statistically inseparable
results with limited time points. To confirm the effectiveness of
limited time for forecasting late growth stages, certain statistical
methods were tested. One time point was selected in the late
growth stage for statistical analysis. The selected time point was
23 DAS at 17 h (23.71) because this time point corresponds
to the flower bud formation. The ANOVA test indicated that
at least one training set was significantly different (P < 0.01).
T-test of the observed and predicted values using training sets
1–4 were not significantly different (P > 0.01), while training sets
5 and 6 were observed to be significantly different (P < 0.01).
Tukey’s honestly significant difference (HSD) test confirmed that
all datasets of training sets 1–4 were not significantly different
(P > 0.01) at 95% of family confidence level (Supplementary
Figure 8). The result revealed that the time window ranges from
15 to 21 DAS were not different from the time-reduced windows
from 17 to 21 DAS. In the experiment, I, the prediction of PA
in the training 3 models was not significantly different from the
actual PAs (P> 0.01) at 95% of family confidence level (Figure 5B
and Supplementary Figure 9). Both experimental results confirm
that 17–21 DASs was the essential time window for predicting
at 23 DAS PAs. Furthermore, the selection of time intervals for
HTPP was feasible because using a partial time interval was as
effective as was using a whole interval in the early pre-flowering
stage. This procedure might be applicable in detecting subtle
differences in traits of interest where traits have expressed only a
part of the life cycle of a plant. Moreover, focusing on a restricted
time window of digital phenotyping data could alleviate the
heavy burden of big-scale research projects because they require
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FIGURE 4 | Predicted total leaf area and error range from 21 to 23 DAS in selected and total samples. Time points format as format images were taken at DAS
(DAS.hours). MAE was calculated using multiple time windows with various forecast time points. (A) Predicted values with multiple time windows of the dataset
(Figure 3) at 21–23 DAS (validation time points) of sample ID 98. (B) Correlation plot of all samples at 23.71. Clustering and grouping with R library for arranged
samples. (C) Predicted PAs with training sets 1–4 at the selected testing window are given as 22.26, 22.71, and 23.71. The result is shown in a boxplot of actual
and predicted PAs from each testing model. We compared with post hoc statistical test (Tukey’s HSD) and the significant result is showed with an asterisk.
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FIGURE 5 | Summary of a biological replication study at experiment II. (A) The visualized growth pattern of all samples of biological replication experiment including
three growth stages. (B) Predicted PAs with training sets 3 and 4 with testing window at 23 DAS. The result is shown in a boxplot of actual and predicted PAs from
each testing model. We then compared with post hoc statistical test (Tukey’s HSD) and the significant result is shown with an asterisk.

considerable resources to obtain new information during the
entire life cycle of a plant.

Estimated Fresh Weight Using the
Projected Area
Fresh weight provided important information of interesting
traits; however, the measuring data required the destruction
of samples, and obtaining the corresponding time-series
data was difficult.

Multiple steps were required to predict FW using PA. The
initial step was to establish a relationship between FW and PA in a
target plant species. First, time-series data required corresponded
to FW at each time point, and the estimated FW was obtained
from the regression model between FW and PA in Arabidopsis.
Previously, studies demonstrated a highly correlated relationship
between FW and PA (Walter et al., 2007; Faragó et al., 2018), and

the results of our study suggest the same relationship between FW
and PA in the range of 14–20 DAS (Figure 6A). Moreover, the
correlation coefficient between FW and PA was 0.99 (Figure 6A).
The next step was testing the established relationship in different
growth stages. The regression model from the early pre-flowering
stage for FW (R = 0.9683) was constructed and was used to
estimate the FW of the late pre-flowering stage. Results indicated
(Supplementary Figure 10) a high correlation coefficient value
(R = 0.9382) compared with the measurement during harvest at
23 DAS. Moreover, the estimated FW from PA not only provided
accurate values in the same growth stage but can also be applied
to different growth stages. The last step was to compare with
measured FW and predicted PA from the training models. PAs
were predicted with the training model 3 (Figure 5B) and then
FW was estimated using the regression from the previous step.
Finally, the predicted FW was compared with the measurement
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FIGURE 6 | Estimating fresh weight (FW) from the PA and predict FW with
three training sets. Panel (A): Harvest and weight 110 plants within the
pre-flowering stage (15, 18, and 20 DAS), and we compared measured FW
and PA from the image analysis. The correlation between FW and PA was
tested using Spearman’s rank correlation coefficient (R). The coefficient’s (R)
confidence level at 95% was shaded in gray. (A) Comparison of PA and FW in
the range of 14–21 DAS (R = 0.9904). (B) Randomly select 30 samples at
experiment II and predicted PAs with training 3 model and then converted into
estimated FW. Compared estimated FW and measured FW at 23 DAS
(R = 0.9042).

during harvest at 23 DAS, and a high correlation coefficient
(R = 0.8512) was observed (Figure 6B).

In summary, the new strategy showed that limited growth
period ranges were required to predict the growth pattern

of different developmental stages. The predicted PAs were
confirmed in an independent study and the PAs were converted
into highly accurate FW values.

DISCUSSION

Transforming into digital agriculture requires various digital
(Redmond Ramin et al., 2018b; Weersink et al., 2018; Klerkx
et al., 2019) and image data, which are essential data. The
primary reason why digital agriculture is essential is to detect
the health and performance of plants in real-time in various
environments. RGB images provide quantitative data in plant
breeding and production (Araus and Cairns, 2014). The early
image analysis from the legacy method or early application of ML
(Pan and He, 2008) yielded partial success and not many plant
scientists benefited from the quantitative data from the extract
from RGB images. Many studies of plant segmentation were
published and the result was difficult since the environmental
conditions (lights, view of camera, soil conditions) were not
identical in each experiment (Jiang and Li, 2020). ML- and
DL-based image pipeline showed superb qualities over outdated
legacy methods. The image analysis pipeline from ML showed
promising results in its application to semantic segmentation
in the rosette plant species named Youngia denticulata (Lee
et al., 2018). U-Net was applied to separate irradiated and
wild-type Arabidopsis plants (Chang et al., 2020). Additionally,
botanists showed interest to apply up-to-date DL in HTPP
data analysis (Jiang and Li, 2020). The encoder and decoder
portions of U-Net (Figure 1E) showed several performances in
various environments (Zhang et al., 2020). The encoder provides
valuable information on whether various encoders at U-Net yield
different results for interesting traits (PA) in agriculture (Jiang
and Li, 2020). We demonstrated a more flexible way of applying
networks to images for plant phenotyping (Figure 2). The SE
network architecture demonstrated the highest confidence level
among various backbones (Supplementary Figure 1). VGG-16, a
simple network, provides high accuracy for the IoU score at 0.94,
indicating a 94% of the images were correctly predicted with the
combination of simple networks. Thus, applying and using image
processing with DL still held certain challenges because of the lack
of significant computing resources such as graphical process units
or tensor process units. In a limited resource-research scheme,
it should be beneficial to apply a simple network and gradually
move to more complex network schemes. Importantly, it would
be interesting to examine a specific encoder that could provide
superior performance to detect the organs of plants such as
flowers or other targets for interesting traits.

Arabidopsis thaliana was selected because it is a model plant
for scientists and is rich in several noteworthy information.
Moreover, the growth pattern of the gene function (van Es et al.,
2019) and stress responses (Dhondt et al., 2014) was analyzed
using time series.

To incorporate time-series analysis in an Arabidopsis research,
many challenges in extracting and analyzing data from OMICS,
including phenomics data associated with developmental stages
were experienced. Previously, studies suggested that the growth
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pattern of long time steps provides valuable information on
interesting traits (Dhondt et al., 2014); however, an additional
investigation was not reported. Using complete time-series data is
beneficial because dynamic growth habits were observed between
15 and 23 DAS (Figure 2C). Time-series data divided into
developmental stages defined with the BBCH scale provided
a more descriptive explanation (Boyes et al., 2001) and useful
defined-data structure for analysis. To explain the end of the
analysis, training and testing windows needed to be associated
with developmental stages. Time-series analysis with XGBoost
demonstrated better performance over other algorithms (Ji
et al., 2019); however, this method was rarely used in biomass
prediction or studying interesting traits. We applied multiple
time steps with XGBoost and multiple correlated features
to predict PA and the result was highly confident. A new
analysis method that restricted time-series data within predefined
developmental stages is helpful because relevant data on the
relationship between or among different growth stages were
accessible. Working with interesting traits with a full life cycle in a
plant is time-consuming; therefore, it is possible to narrow down
specific developmental stages using our method. Furthermore,
our method can be used to reduce time intervals within the
developmental stages. The method can be applied to predict traits
of interest using HTPP data. Abiotic stress-related screening
requires multiple resources because plants require testing over
a long period. Arabidopsis plant showed stress effect after being
exposed to the salt solution for 8 days (Geng et al., 2013). In the
drought stress study, Arabidopsis demonstrated wilt symptoms
after we stopped watering for 20 days. The total observation
period of abiotic stress was ∼33 or 50% of the whole life cycle.
A new method is beneficial to researchers who require to screen
a larger number of samples using the HTTP because reduced
time windows for a population provide extra time for screening
another population.

The FW of a plant is an important selection criterion for
bioenergy conversion using plants and other target materials.
Since plant weight is obtained only after the growing plant is
harvested or growth is completely stopped, understanding plant
characteristics in a non-destructive method is a fundamentally
essential research field in recent biology. Previous studies
have demonstrated a positive correlation between FW and PA
(Walter et al., 2007; Araus and Cairns, 2014; Faragó et al.,
2018). Predicting FW from PA is plausible if there is a high
correlation between two factors. A high correlation was found
in our experiment and the estimated FW from PA using a
different developmental stage was accurate (R = 0.93). The
results indicated that the estimated FW in individual plants was
possible from PA using time-series data and can be applied to
predict FW or biomass in crops. FW of vegetable crops has
essential information for the grower since FW of vegetables
is a good indicator of yield at harvest. Vegetable crops are
grown in vertical farming or controlled environment agriculture
(CEA) and are important in food production and distribution,
particularly during a virus outbreak where food movement is
limited. Vertical farming produces more food in urban settings
compared with field production (Benke and Tomkins, 2017). The
estimation of FW using the visible spectrum is beneficial and

should be incorporated into vertical farming. Though phenotype
information, such as the leaf area index, has been used for
plant status (Wang et al., 2017) in CEA, the estimated FW
provides better plant status information and serves as a good yield
indicator (Marondedze et al., 2018). In a plant factory setting,
accurate yield prediction was performed with early time-series
phenotyping data in lettuce (Nagano et al., 2019). We tested
a model plant in the CEA for growth forecast with a limited
time window and it yielded an accurate result (Figure 6B).
A forecast of lettuce FW is possible but accurately predicting
individual FW of lettuce is challenging because vertical farming
production plants are tightly placed because the indoor farming
space is limited (Redmond Ramin et al., 2018a). Advanced DL
network using various encoders with U-Net provides more FW
or PA-related features. Furthermore, more sophisticated DL for
time-series analysis was promising in other fields, e.g., advanced
DL-based network, long-short-time-memory (LSTM), or gate
recurrent unit (GRU) outperformed the recurrent neural network
(Khaki et al., 2020). A novel DL called temporal attention-
based network (TCAN) can replace LSTM and GRU in certain
tasks (Hoeser and Kuenzer, 2020; Jiang and Li, 2020; Yan et al.,
2020). DL can achieve a performance level hitherto unachieved in
conventional and ML algorithms. Gathering and analyzing using
a long chain of time-series data enhances accuracy and increases
the prediction window of FW with up-to-date DL.

In conventional agricultural research to date, the observation
and selection of crops are possible only at a set time with
the naked eye of breeders. Time-series data analysis from
HTPP could provide valuable information. We applied up-
to-date DL for semantic segmentation from HTPP data and
analyzed selected pre-flowering developmental stages to forecast
the growth pattern of the next growth stage in Arabidopsis.
High-confidence F1-score (97%) was achieved using U-Net with
SE-ResXt101 for semantic segmentation. This study reported that
a part (17–21 DAS) of the developmental stages (P < 0.01)
is sufficient for predicting the growth pattern of different
developmental stages at 23 DAS. The result was confirmed with
an independent study (P < 0.01). Moreover, FW prediction
(P < 0.01) with HTPP time-series data is validated. The proposed
method could be applied to forecast the growth or yield of leafy
plants such as lettuce.
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The urban hydroponic production system is accelerating industrialization in step with
the potentials for reducing environmental impact. In contrast, establishing sustainable
fertilizer dosing techniques still lags behind the pace of expansion of the system. The
reproducibility of root-zone nutrient dynamics in the system is poorly understood, and
managing nutrients has so far primarily relied on periodic discharge or dumping of highly
concentrated nutrient solutions. Here, we assayed root-zone nutrient concentration
changes using three possible nutrient dosing types. Three Brassica species were
hydroponically cultivated in a controlled environment to apply the nutrient absorption
and transpiration parameters to the simulation analysis. We found that nutrient
dosing based on total ion concentration could provide more reproducible root-zone
nutrient dynamics. Our findings highlight the nutrient absorption parameter domain
in management practice. This simplifies conventional nutrient management into an
optimization problem. Collectively, our framework can be extended to fertilizer-emission-
free urban hydroponic production.

Keywords: sustainability, vertical farming, fertilizer, root-zone, hydroponics, urban agriculture

INTRODUCTION

Soil-based agriculture is facing substantial challenges such as the loss of arable land, water scarcity,
nutrient leaching, and the carbon costs of transporting products. Under these circumstances, as
a complementary solution, urban agriculture and vertical farming are currently being explored
(Benke and Tomkins, 2017; O’Sullivan et al., 2019). The vertical farming system uses resources
independently of the soil surface and expects optimal land use and environmental friendliness. In
line with this, the industry is also gearing up. Recently, there has been significant investment in
the urban and vertical farming industry. Traditional agribusiness, biotech, and holding companies
are entering a global race for new agricultural technologies (O’Sullivan et al., 2019). Inspired
by the potential of sustainability, researchers have started to explore urban vertical farming
production (Seto and Ramankutty, 2016; Eshed and Lippman, 2019; Eldridge et al., 2020; Kwon
et al., 2020; SharathKumar et al., 2020). However, at the same time, there are criticisms about
technical pitfalls that prevent vertical farming from substantially contributing to environmental
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sustainability (Russo and Cirella, 2019). In general, a vertical
farming system requires a highly controlled environment in
essential factors for plant growth such as light, temperature,
water, and mineral nutrients (Kozai and Niu, 2016). The
technological status of urban agriculture and vertical farming
as a complementary approach to traditional farming is still in
its infancy, and there is no solid technological framework for
sustainable resource management.

A hydroponic cultivation system, a core technology of
urban agriculture, also entails unsolved issues. Inevitably, in
hydroponics, fertilizer and water are used intensively. For
example, as standard conditions, 2–14 mM of nitrate is prepared
in the smaller rooted volume (van Delden et al., 2020). However,
still, periodic discharge or dumping of waste fertilizer solution
is a trade-off for nutrient management. The repeated emission of
concentrated nutrient solutions to the environment has long been
an unsolved issue inherent to the conventional greenhouse-based
hydroponic sites. Until now, most farms in the countries where
there is no legal mandate do not want to take the management
risk from blocking the wastewater. In South Korea, hydroponic
fertilizers equivalent to nearly 7,400 kg/ha/year are consumed,
and 25–30% of the supply is discharged outside the farms
(Lee and Kim, 2019).

On the contrary, only about 5% of the farms use wastewater
recycling systems. In Almería, Spain, one of the highest areas of
greenhouse-based hydroponics, 12% in 3,000 ha of farms uses
a recycling system (Massa et al., 2020). This trade-off between
the nutrient solution discharge and the nutrient management
is related to the concerns about unwanted deviations from
standard nutrient conditions and microbial risk. In microbial risk
management, a sterilizer could provide a solution (Ahn et al.,
2021). On the other hand, in the root-zone, multiple essential
nutrients show dynamic changes with perturbations in water
absorption, one of the major driving factors of root-zone nutrient
variations (Van Noordwijk, 1990; Le Bot et al., 1998). As a
result, in hydroponic systems, which are most advantageous for
manipulating root-zone nutrition for experiments or cropping,
various root-zone nutrient fluctuations have been reported
(Zekki et al., 1996; Massa et al., 2011; Signore et al., 2016;
Miller et al., 2020).

Due to these seemingly complicated aspects, most hydroponic
systems referenced empirical management strategies such as
leaching fraction and a suitable period of reuse (Jones, 2005). In
rooting medium culture, due to temporal and spatial variations
in mass flow, heterogeneity of nutrient distribution remains
high (De Rijck and Schrevens, 1998b; Bougoul and Boulard,
2006). Thus, this adds one more layer of complexity to the
problem. Instead, in water-based hydroponic cultivation systems,
the volume of water and the concentration of nutrients are
the most basic and measurable physicochemical factors in root-
zone management (Jones, 2005). Thus, root-zone conditioning
is inevitably approached based on volume and concentration.
In many studies, water level, electrical conductivity (EC, i.e.,
total ionic concentration), and pH have been used as standard
indicators (Fanasca et al., 2006; Signore et al., 2016; Lu et al.,
2017). However, it is poorly understood how the nutrient
dosing methods could manage the nutrient dynamics. Previous

studies have focused on on-line measurements, and several
applicable technologies were provided, but it is still challenging to
replace conventional nutrient management in terms of technical
stability or essential ion measurements (Bratov et al., 2010;
Bamsey et al., 2012). These lack of framework for understanding
nutrient reproducibility according to nutrient management
limits our ability to deduce resource management techniques
for zero emissions.

Here we designed a hydroponic simulation model for the
Michaelis–Menten equation-based simple hydroponic system
with stochastic variations in transpiration rate to address this
problem. Three Brassica species (curly kale, lacinato kale,
and pakchoi) were hydroponically cultivated in a controlled
environment to apply the nutrient absorption and transpiration
parameters to the simulation model. Three commonly applicable
nutrient dosing methods in the combination of volume, EC,
and time were applied in the simulation study. By applying
stochastic transpiration variations and the estimated parameters
to the hydroponic simulation model with three nutrient dosing
methods (volume-, time-, and EC + volume-based dosing), we
were able to theoretically predict that the reproducible root-zone
nutrient dynamics could be acquired by the EC + volume-basis
nutrient dosing method. The reproducible root-zone nutrient
dynamics under the stochastic transpiration variations suggest
that the root-zone nutrient variations could be managed at
the nutrient absorption parameter domain. Our systematic
assessment shows that optimization analyses present a novel
method to determine the nutrient dosing composition for
standard nutrient conditions in the root-zone without periodic
dumping or discharge of waste fertilizer solutions.

MATERIALS AND METHODS

Nutrient Absorption Measurement Under
a Controlled Environment
Three Brassica plant species were used for the nutrient absorption
experiment. Pakchoi (Brassica rapa subsp. chinensis), lacinato
kale (Brassica oleracea L., var. acephala), and curly kale (Brassica
oleracea L., var. sabellica) were cultivated under a controlled
environment system at the Korea Institute of Science and
Technology (SMART U-FARM, KIST, Gangneung, South Korea).
The three Brassica species were simultaneously sown and grown
hydroponically for 10 days. At 11 days after sowing, 84 plants
of each Brassica species were selected and transplanted to
the hydroponic growing system consisted of a single nutrient
container (0.3 m3) and cultivated for 54 days. The temperature
in the growing room was controlled at 20 ± 1◦C (night)
and 23 ± 1◦C (daytime). LED lamps (KLB-40-2C, red:blue:
white = 10:3:2 ratio, KAST Engineering, South Korea) were used
for daytime lighting. The LED lamps’ wavelength was composed
of red (660 nm), blue (440 nm), and warm white. The average
photosynthetic photon flux density (PPFD) in the growing bed
was 120 ± 5 µmol m−2 s−1. Diurnal light conditions were
applied (14 h daytime and 10 h dark). The average relative
humidity was 73 ± 5% at night and 60 ± 4% at daytime. Carbon
dioxide (CO2) was supplied at 714± 40 ppm.
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Macronutrient absorption was calculated by referring to Dr.
Yamazaki’s method (N/W) (Wada, 2019). The N/W method
calculates the absorption amount based on the container’s initial
nutrient concentration and volume and a concentration and
a volume of each nutrient at the end of the given period
(Figure 1A). On a weekly basis, the initial macronutrients
(K, Ca, Mg, NO3, H2PO4, and SO4) concentrations were
analyzed, and the water volume of the nutrient solution container
was measured as the initial condition of the system. For
NO3

−, H2PO4
−, and SO4

2− analysis, ion chromatography
was performed (730 Professional IC, Metrohm, Switzerland).
K+, Ca2+, and Mg2+ were analyzed using an inductively
coupled plasma-optical emission spectrophotometer (ICP-OES,
PerkinElmer SCIEX, United States). All the analytical procedures
were validated using certified internal reference materials and the
average concentration values were obtained by three repeated
measurements. The replenishment of the nutrient solution
during the week was not performed. At the end of the week,
the final macronutrient concentrations were analyzed, and the
water volume of the nutrient solution container was measured
as the final condition of the system. After the final value
was measured, the container’s nutrient solution was replaced

entirely with the fresh nutrient solution. The initial nutrient
condition composition of macro-elements (K, Ca, Mg, NO3,
H2PO4, and SO4) was established by referring to the percentage
equivalent ratios of anions and cations in Steiner’s universal
nutrient solution (Steiner, 1980; Jones, 2005). The total ion
equivalent concentration of the initial nutrient solution was
provided at 26.1 ± 3.8 meq L−1 (7.5 ± 1.0, 3.0 ± 1.4,
2.5 ± 1.1, 4.0 ± 0.4, 1.9 ± 0.4, and 1.4 ± 0.2 mM of
NO3

−, H2PO4
−, SO4

2−, K+, Ca2+, and Mg2+) and the initial
nutrient conditions distributing around Steiner’s standard ratio
(NO3

−: 60%, H2PO4
−: 5%, SO4

2−: 35%, K+: 35%, Ca2+: 45%,
Mg2+: 20%) were established to estimate the average level
of nutrient absorption parameters. The micronutrients in the
nutrient solution were Fe, B, Mn, Cu, Zn, and Mo at 2.80, 0.32,
0.77, 0.04, 0.02, and 0.02 ppm, respectively.

Hydroponic System Model
In the present study, a simple hydroponic system model was
designed. The simulation scale of nutrients and water in the
model was taken equal to the experiment’s hydroponic system
specification. In the model, we considered nutrient dosing
methods, nutrient absorption kinetics, the transpiration rate,

FIGURE 1 | The workflow of the theoretical and experimental analysis setup. (A) Nutrient absorption measurement of three Brassica species under a controlled
environment. (B) Parameter estimation process under the simple hydroponic system model by using the progress curve analysis. (C) Stochastic manipulation of
solar irradiance with a random walk generated cloud cover and subsequent transpiration rate variations in the simple hydroponic system model. (D) Three nutrient
dosing processes in the simulation analysis. (E) Simulation analysis of the nutrient dosing effects on the nutrient variations and nutrient solution optimization.
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and nutrient and water absorption capacity variations due
to plant growth.

The nutrient dynamics in the hydroponic system can be
expressed as follows:

Vtk
dCI

tk
dt
= QinCI

in − JI (1)

where Vtk is the water volume (m3) in the nutrient solution
tank of the hydroponic system, C is the nutrient concentration
(mol m−3), superscript I is the type of nutrients (K, Ca, Mg,
NO3, H2PO4, and SO4), and Q is the flow rate (m3 h−1) of
water to the nutrient solution tank. Subscript tk and in represent
nutrient solution tank and dosing, respectively, and indicate the
variables’ location.

Water volume in the nutrient solution tank of the hydroponic
system can be expressed as follows:

dVtk

dt
= Qin − Qtrs (2)

where Qtrs is the transpiration rate per plant (m3 h−1 plant−1).
The Michaelis-Menten equation has been used widely in

representing the plant’s nutrient absorption behavior (Le Bot
et al., 1998). The following equation can express nutrient
absorption variation along with plant growth:

JI
= PRSA

JI
maxCI

KI
m + CI (3)

where PRSA is root surface area (m2), JI is the nutrient
absorption rate (mol m−2 h−1), JI

max (mol m−2 h−1) is the
maximum absorption rate of nutrient I, and KI

m (mol) is
the Michaelis-Menten parameter. In this model, the nutrient
absorption dynamics are described by the function of nutrient
concentrations and root growth (Silberbush et al., 2005).

The root surface area PRSA was assumed to smooth cylinders
and calculated with root length and constant mean radius, and
the root length variation is modeled using a logistic function of
time (Barber, 1995):

PRL =
Rmax

1 + K1e−k1t (4)

PRSA = 2πr0PRL (5)

where PRL is the root length (m), Rmax is the maximal root length
(m), K1 and k1 are coefficients, r0 is the mean root radius (m), and
t is the elapsed time (h).

For the transpiration model, the Penman–Monteith equation
can be used to predict transpiration by crops.

We used the empirical version of the Penmen–Monteith
equation (Bailey et al., 1993; Choi and Shin, 2020). In this
model, the transpiration rate is mainly determined by the solar
irradiance, the vapor pressure deficit (VPD), and plant growth by
the following equation:

Qtrs = atrs

(
1− e−kextPLAI PVPD

)
K+ + btrsPLAIPVPD (6)

PLAI =
aLAI[

1 + e
x0−t
bLAI

] (7)

where atrs and btrs are empirical coefficients, kext is the extinction
coefficient in the plant canopy, K+ is the solar irradiance (W
m−2), PLAI is the leaf area index (LAI), and PVPD is VPD
(kPa). The Boltzmann sigmoid equation was used to express LAI
variations. aLAI , bLAI , and x0 are the empirical coefficient.

The parameters used in this model were estimated by a
progress curve analysis that estimates the value that minimized
the root mean square error (RMSE) between the measured and
simulated values. In the parameter estimation process, PPFD
and relative humidity variations during the day/night cycle were
converted to a radiometric unit (W m−2) and VPD (kPa). W
m−2 was obtained by dividing PPFD by the conversion constant
of warm-white fluorescent (Thimijan and Heins, 1983). VPD
was calculated by the vapor pressure equation (Choi and Shin,
2020). Transpiration and nutrient absorption data measured
in the controlled environment condition were applied for the
estimation of the parameters (Figure 1B).

Stochastic Manipulation of Transpiration
Rate
Under the hydroponic system model’s verified condition, the
stochastic changes in the transpiration rate were applied
(Figure 1C). The transpiration model used in this study could be
mainly driven by solar irradiance and VPD. Thus, the stochastic
seasonal variations in solar radiation and VPD could generate
dynamic changes in the transpiration, nutrient concentration,
and water content in the hydroponic system. The dynamic
changes in incoming solar radiation could be modeled by the
total cloud cover model based on solar elevation (Holtslag and
Van Ulden, 1983). The framework for stochastic changes in the
incoming solar radiation model and VPD was referred to water
dynamics model of an automated soilless irrigation system (Ahn
et al., 2021). In this model, solar irradiance is the incoming
solar radiation at ground level under the total cloud cover,
and the dynamic weather changes were simulated by moving
the cloud cover in a random walk process. In the case of
stochastic changes in VPD, the model simulates a random walk
process between 0.5 and 2.0 kPa. However, in this study, the
model parameter estimation was conducted under controlled
environmental conditions, and the solar irradiance level could
largely deviate from the experimental condition. Thus, the solar
irradiance was reduced to distribute the simulated transpiration
around the measured transpiration rate.

Simulation Analysis
We examined the reproducibility of the root-zone nutrient
dynamics according to the nutrient dosing methods with these
models. Three conventional nutrient dosing methods were
considered in this analysis: (1) volume-based, (2) time-based, and
(3) EC + volume-based (Figure 1D). The volume-based dosing
method routinely supplies the standard nutrient solution based
on the nutrient solution’s initial volume. The consumed water
and nutrients are compensated at the dosing time by supplying
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the standard nutrient solution to the container’s initial nutrient
solution volume. The time-based dosing method supplies a fixed
amount of nutrients at a fixed rate. EC + volume-based dosing
method estimates total ionic concentration and compensates
consumed total mineral nutrients to the initial value, and supplies
water to the container’s initial nutrient solution volume.

Under the reproducible nutrient dynamics condition in this
simulation analysis, the optimization analysis was conducted
to seek the standard nutrient solution for the least deviating
from the initial root-zone nutrient condition (Figure 1E). The
optimization analysis was carried out in the same way as the
parameter estimation by the progress curve analysis in this study.
During the process, the molar nutrient concentrations were
converted to the percentage molar ratios between the nutrients.
Therefore, in this way, it was made to be approached by the
scaling relationship of a plant stoichiometric perspective. The
mean values of estimated nutrient absorption parameters from
three Brassica species were converted to the percentage molar
ratios and compared in this perspective.

RESULTS

The overall increase in weekly transpiration and nutrient
absorption rate was observed in the three Brassica species as
the cultivation proceeded (Figure 2). Differences among the
three Brassica species’ transpiration and nutrient absorption
rates were observed to be in the order of pakchoi > lacinato
kale > curly kale. NO3 was the most absorbed nutrient in
all plants. The difference in absorption rate among individual
nutrients was similar in all plant species, except SO4. SO4
absorption amounts were distinctively higher in lacinato and
curly kale than in pakchoi.

Using the measured data in Figure 2A, the transpiration
parameters were estimated. The estimated transpiration
parameters for pakchoi, lacinato kale, and curly kale
simulated the amount of accumulated transpiration at the
RMSE 1.35 × 10−5, 1.62 × 10−5, and 2.09 × 10−5 m3

plant−1, respectively (Figure 3A). The amount of accumulated
transpiration was in the order, pakchoi > lacinato kale > curly
kale, similar to the measurements. The calibrated transpiration
model provided a good description of the water volume
behavior in the nutrient container of pakchoi, curly kale,
and lacinato kale at an RMSE of 1.43 × 10−2, 8.78 × 10−3,
1.35 × 10−2 m3 (Figure 3B). As explained in the “Materials and
Methods” section, the water stored in the nutrient container
was replaced weekly, and the simulation model showed the
periodical replacement of reservoir water and subsequent water
consumption by transpiration until the next water replacement.

The estimated Michaelis-Menten parameters for nutrient
absorption simulated the accumulated nutrient absorption with
good agreement with the measured data (Figure 4A). RMSEs for
the three species ranged from 4.60 × 10−5 to 8.09 × 10−5 mol
plant−1 in K, 3.06 × 10−5 to 4.14 × 10−5 mol plant−1 in Ca,
1.73 × 10−5 to 5.38 × 10−5 mol plant−1 in Mg, 4.62 × 10−4 to
5.09× 10−4 mol plant−1 in NO3, 2.70× 10−5 to 8.42× 10−5 mol
plant−1 in H2PO4, and 2.56 × 10−5 to 9.31 × 10−5 mol plant−1

in SO4. With these nutrient absorption model calibrations, the
simulated nutrient concentrations showed a good description
of the measured nutrient concentration behavior in the water
reservoir (Figure 4B). The percentage molar ratio of the initial
nutrient conditions after the weekly used nutrient solution was
distributed around Steiner’s standard percentage molar ratios
(Figure 4C).

The effect of the three nutrient dosing methods (volume-,
time-, and EC + volume-based) under stochastic transpiration
variations is shown in Figures 5A–C. Here, the pakchoi model
parameters, which have the highest absorption capacities for
nutrients and transpiration, were used as a representative for
analyzing the nutrient dosing effect. The root-zone response
to volume-based dosing was not monotonic (Figure 5A). As
the simulation proceeded, various routes of root-zone nutrient
changes were simulated in volume-based dosing conditions. The
EC+ volume- and time-based methods showed reproducible and
deterministic changes in the root-zone nutrients (Figures 5B,C).
However, while time-based dosing showed similar variations
to EC + volume-based dosing, overall decreasing tendencies
in nutrient concentration were observed (Figure 5B). The
percent coefficient of variation (% CV) summarizes the variation
attributes of each dosing method (Figure 5D). The EC +
volume- and time-based methods showed the lowest % CV.
Figures 5A–C also illustrates the nutrient dosing rates. Volume-
based dosing showed an irregular dosing rate, time-base dosing
showed a constant dosing rate, and EC + volume-based dosing
rate gradually increased as the simulation proceeded. During the
simulation analysis, most of the stochastic transpiration rates
generated by the random-walk cloud cover distributed within a
similar range of the measured transpiration rate (Figure 5E).

Figure 6 illustrates EC + volume-based dosing to control
the root-zone nutrients according to the standard nutrient
composition input. When the nutrient dosing composition was
the same as the standard nutrient composition, the three Brassica
species’ root-zone nutrient variations were reproducible and
deterministic (Figure 6A), as shown in Figure 5C. However,
they inevitably deviated from the initial nutrient composition
(i.e., standard nutrient composition) (Figure 5C). On the other
hand, the nutrient dosing composition acquired by optimization
analysis to achieve minimal deviation of the root-zone nutrients
from the standard composition provided approximately constant
root-zone nutrients close to the initial nutrient conditions (i.e.,
standard nutrient composition) (Figures 6B,D). The conversion
of the root-zone nutrient variations, optimized nutrient dosing
composition, and the standard nutrient composition into
mutual nutrient ratios displayed a plant stoichiometric scaling
relationship among the nutrients (Figures 6E,F). The ternary
graph of the percentage molar ratio of nutrients distinctively
visualized effects of input nutrient ratio on the output
nutrient ratio. Figure 6 also summarizes the relationship
between the dosing nutrient composition and the standard
nutrient composition. This result shows that a dosing nutrient
composition identical to the standard nutrient composition does
not result in standard nutrient conditions in the root-zone. The
dosing nutrient compositions determined by the optimization
analysis were nutrient solutions that least deviated from the
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FIGURE 2 | Transpiration and nutrient absorption rate estimated in the controlled environment experiment. (A) Weekly transpiration rate of three Brassica species.
The weekly nutrient absorption rate of pakchoi (B), lacinato kale (C), and curly kale (D).

FIGURE 3 | Comparison between simulated and measured accumulated transpiration (A) and subsequent changes of nutrient solution volume changes in the
nutrient solution container (B) for verifying the simple hydroponic system model.

standard nutrient conditions. The hydroponic systems in which
the three Brassica species were cropped were simulated using the
estimated nutrient uptake parameters.

Figures 7A,C illustrates the means, standard deviations, and %
CV of the three Brassica species’ Jmax parameters. Figures 7B,D
shows the conversion of the Jmax parameters to percentage molar
ratio and summarizes the means, standard deviations, and % CV
of the three Brassica species’ Jmax ratios. The Jmax for NO3 was the

highest of three Brassica’s means, and the mean Jmax for K, SO4,
Ca, Mg, and H2PO4 followed in that order. However, relatively
high % CVs were observed for K, Ca, Mg, NO3, and H2PO4
which differ the % CVs of percentage molar ratio of Jmax between
nutrients. The Jmax conversion to percantage molar ratio reduced
the % CV for K, Ca, Mg, NO3, and H2PO4, and increased that of
SO4. Overall, the mean % CV for Vmax was reduced from 61 to
41% when Jmax was converted to percentage molar ratio.
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FIGURE 4 | Comparison between simulated and measured accumulated nutrient absorption of three Brassica species (A) and subsequent nutrients molar
concentrations in the hydroponic system’s nutrient solution container (B). (C) Distribution of percentage molar ratio of cations and anions in the nutrient solution
container’s initial nutrient solution after replacing the weekly used nutrient solution around the Steiner’s standard percentage molar ratios.

FIGURE 5 | Characteristics of variations in root-zone nutrient concentration according to the nutrient dosing methods (pakchoi parameter applied simulation): (A)
volume-based, (B) time-based, and (C) EC + volume-based methods. (D) The percent coefficient of variation of root-zone nutrient concentration according to the
nutrient dosing methods. (E) Level of stochastic changes in the transpiration rate during the simulation analysis and box-plot comparing the distribution of the
simulated transpiration rate (pakchoi parameter applied simulation) and the measured transpiration rate of pakchoi.

DISCUSSION

Our theoretical analyses on nutrient dosing and root-zone
nutrients provide insight into root-zone nutrient dynamics.
Currently, nutrient dosing and time-dependent root-zone

nutrient dynamics are considered as steady-state. However, by
systematically varying the transpiration rate in the Michaelis-
Menten nutrient absorption-based hydroponic system model,
we could theoretically predict the appropriate nutrient dosing
method for acquiring reproducible root-zone nutrient dynamics.
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FIGURE 6 | Optimization results of a standard nutrient solution for acquiring the reproducible and least deviating root-zone nutrient dynamics from the initial nutrient
condition under the EC+volume-based nutrient dosing method. (A) Changes in root-zone nutrients concentration when the nutrient dosing was performed as a
nutrient solution with a conventional standard nutrient solution. (B) Changes in root-zone nutrients concentration when the nutrient dosing was performed as an
optimized nutrient solution. (C) Box-plot of the nutrient distribution during the nutrient dosing simulation with a nutrient solution with a conventional standard nutrient
concentration. (D) Box-plot of the nutrient distribution during the nutrient dosing simulation with an optimized nutrient solution. (E) The percentage molar ratio’s final
simulation output under the nutrient dosing condition of a conventional standard nutrient ratio input (Steiner’s ratio). (F) The percentage molar ratio’s final simulation
output under the nutrient dosing condition of an optimized nutrient ratio input.

FIGURE 7 | (A) Mean ± SD of Jmax of three Brassica species (pakchoi, lacinato kale, and curly kale). (B) Percentage molar ratio between Jmax of the nutrients.
(C) The percent coefficient of variation among the Jmax of three Brassica species. (D) The percent coefficient of variation among the percentage molar ratio between
Jmax of the nutrients.
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To our knowledge, only a few studies have theoretically
analyzed root-zone nutrient dynamics in the hydroponic system.
Heinen (1997) constructed a hydroponic simulation model and
analyzed the system’s solute flux and distribution characteristics.
Silberbush and Ben-Asher (2001) and Silberbush et al. (2005)
developed a simplified hydroponic system model and analyzed
nutrient concentration changes and ballast ion accumulation
(Na and Cl). Hydroponic systems are essential for plant science
and agricultural technologies because of their advantages in
manipulating root-zone nutrients. However, root-zone nutrients
are sensitive to perturbations. By elucidating plant stoichiometry
and nutrient dynamics, root-zone nutrient dynamics offer new
avenues for research and exploitation of dynamics in agricultural
systems. However, little is known on the reproducibility of root-
zone nutrient variations, which is essential for harnessing plant
nutritional dynamics.

Our hydroponic system model with stochastic transpiration
variation will enable us to examine the consequences of nutrient
dosing in the root-zone. In addition to water absorption
by plants, the root-zone nutrients could be affected at the
microscopic scale. In the solute pathway from the external
solution into root cells, ion diffusivity (Leitner et al., 2010),
metabolic activity (Swift et al., 2020), and ion interaction
(Munns and Tester, 2008) can affect nutrient influx, subsequently
changing nutrient conditions in the root zone. However, in
our study, we focused on the root-zone nutrient perturbation
caused by transpiration since water absorption is a significant
source of root-zone nutrients (Van Noordwijk, 1990; Le Bot
et al., 1998). Macroscopic-scale nutrient variations caused by
transpiration are frequently reported in in-field cultivation
experiments (Shin and Son, 2016).

The reproducibility of nutrient dynamics determined by
volume-, time-, and EC + volume-based dosing methods
under stochastic transpiration variations revealed clearly distinct
trends (Figures 5A–C). The reproducibility observed in the
EC + volume- and time-based dosing methods suggests
that the root-zone inconsistencies caused by the transpiration
variations could be eliminated through periodic compensation
of total nutrient absorption or a constant nutrient influx at
the hydroponic system boundary. However, while the time-
based periodical dosing showed reproducibility in terms of
root-zone nutrients, the overall nutrients showed decreasing
tendencies (Figure 5B). Notably, with time-based dosing,
most nutrients displayed a steady-state. However, depending
on the dosing interval or amount, the level of steady-state
nutrients could be generally lower or higher than the initial
root-zone nutrients. This observation is consistent with the
findings of an agricultural experiment involving constant and
periodical Mn and Zn dosing (Tzerakis et al., 2012). In the
aforementioned study, Mn and Zn showed a gradual increase
in the root-zone solution, leveling off after a certain period.
In discrete time, a steady-state indicates that influx and efflux
are equal in a system. A system that follows a Michaelis-
Menten-based mechanism could have a steady-state solution
(Golicnik, 2011). Thus, it could be concluded that the time-
based nutrient dosing provided constant and periodical influx
to the system, and the efflux, i.e., the nutrient absorption rate,

approached the constant and periodical influx. However, in
this case, the constant nutrient dosing could not follow the
increasing nutrient absorption capacity of the plant. Therefore,
fluctuations in the root-zone nutrients from their initial
condition were observed.

As reported in previous studies, transpiration could destabilize
the ratio between nutrient and water absorption; hence, root-
zone nutrients significantly fluctuate along with water absorption
variations (Van Noordwijk, 1990; Le Bot et al., 1998). The
transpiration phenomenon is indicative of plant characteristics
such as leaf area and stomatal conductivity; however, under
normal growth conditions, transpiration is primarily driven
by atmospheric environmental conditions (Pieruschka et al.,
2010). Therefore, although we conducted experiment under
controlled environmental conditions, the stochastic aspects
between atmospheric dynamics and transpiration need to be
considered in the simulation analysis. The root-zone nutrient
variations observed under volume-based dosing conditions
suggest the method is unsuitable for providing reproducible
root-zone nutrient conditions. In the present study, we created
stochastic transpiration variation by random-walk cloud cover
in a periodic solar radiation model, revealing that although
transpiration is a periodic phenomenon, root-zone nutrients
will diverge even under stochastic fluctuations within the
transpiration cycle. The volume-based dosing rate is determined
by the water volume removed from the root-zone (Signore et al.,
2016) while the standard nutrient composition is transported by
the water flux to the system. Consequently, nutrient influx varies
with transpiration variation and an irregular nutrient influx
applied at the system boundary of the root-zone. Such root-
zone nutrient behaviors has been reported in a study involving
volume-based nutrient dosing (Signore et al., 2016). The root-
zone nutrients displayed a wide range of variation when the
nutrient dosing treatments were performed based on the water
volume, indicating that root-zone nutrients can follow different
time-series changes depending on the transpiration variations.

Similar to time-based dosing, EC + volume-based nutrient
dosing generated reproducible time-series changes in the root-
zone nutrients (Figure 5C). The dosing rate gradually increased
as the simulation proceeded, indicating that the EC + volume-
based nutrient dosing compensated for the increasing capacity
for total nutrient absorption by plants. In contrast to the time-
based nutrient dosing, nutrient dosing rates varied with plant
growth; the total nutrients in the root-zone removed by the
plant were periodically compensated by dosing. The kinetics
of nutrient transport in plant roots are mostly determined by
nutrient transporters (Swift et al., 2020). Therefore, total nutrient
absorption approximately follows the influx kinetics of the total
nutrients into the root cells. On the kinetics of nutrient transport
in plant roots, nutrient selectivity could be conceptualized as the
individual nutrient influx as regulated by the proportion of each
nutrient’s transporter on the root surface and transporter affinity
(Menge et al., 2011). Therefore, periodical compensation of total
nutrient absorption by EC + volume-based dosing could reveal
the proportion of nutrient absorption transporters.

Consequently, both constant periodical time-based and EC
+ volume-based dosing minimize the perturbation caused by
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transpiration variations and reveal the kinetics aspect of nutrient
absorption. However, time-based dosing does not account for
the plant’s increasing nutrient absorption capacity in dosing
equations. As a result, reproducibility but with overall decreases
or increases from the initial root-zone variation is observed
depending on the dosing interval or amount (Figure 5B).
In contrast, EC + volume-based dosing periodically matched
the total nutrient influx to the root cell. From a theoretical
perspective, these results suggest that this dosing practice can
eliminate the two unknown variables effects (transpiration and
total nutrient absorption variations) from the root-zone system
boundary. Therefore, this indicates that the uncertainty in
the root-zone nutrient dynamics could be filtered down to
the level of the relative variations between the proportions of
Michaelis-Menten parameters. Accordingly, the dosing nutrient
composition for minimal deviation of root zone nutrients from
the standard nutrient composition could be acquired by an
optimization analysis (Figures 6B,D,F). Specifically, investigating
optimal nutrient proportions in the dosing nutrient solution,
which result in root-zone nutrients deviating the least from the
standard nutrient composition, corresponds to a process for
matching dosing nutrient proportions to the Michaelis-Menten
parameter proportions.

This new perspective suggests that an optimization analysis
can be used as a novel method to determine the nutrient dosing
composition for generating the standard nutrient conditions in
the root-zone. Conventionally in plant science, the standard
nutrient solution has been routinely supplied to establish
standardized root-zone nutrient conditions (De Rijck and
Schrevens, 1998a). However, our simulation analysis indicates
that a difference in nutrient dosing practice can lead to alterations
in root-zone nutrients even when dosing with standard nutrient
compositions. Furthermore, in the EC + volume-based dosing,
a dosing nutrient composition identical to the standard nutrient
composition does not result in standard nutrient conditions
in the root-zone (Figures 6A,C,E). However, based on its
reproducibility and proportional approach to the dosing nutrient
composition and the Michaelis-Menten parameters, a dosing
nutrient composition that results in minimal deviation of the root
zone nutrients from the standard nutrient composition could
be acquired (Figures 6B,D,F). Thus, in an on-site hydroponic
system, a standardized and simplified nutrient management
process might also be deduced from this perspective; for example,
in a hydroponic system in operation, simple feedback of the
nutrient proportion differences between the used solution and
target composition proportion into the next dosing solution
could expect the formation of stabilized root zone nutrient
variability centered on the target proportion.

The variation in the Michaelis-Menten nutrient uptake
parameters and how they affect the root-zone nutrients were
not addressed as this was beyond the scope of the present
study. However, we note the scaling relationships of nutrient
and parameter proportions considered in our study. In the
experiment, pakchoi, lacinato kale, and curly kale’s nutrient
absorption capacity varied widely among the species (Figures 2B,
4A). On the contrary, significant reductions in % CVs were
observed when the Jmax of the three Brassica species were

converted into a ratio between K, Ca, or Mg, NO3, and
H2PO4 ’s Jmax (Figure 7D). On the other hand, the % CV
of the Jmax proportion increased with SO4. These proportion
variations resulted in the stoichiometric proximity of K, Ca,
Mg, NO3, and H2PO4, in the three Brassica species. We
studied three Brassica species, and these are not meant to
represent all vegetable species. However, the relative proportion
of plant nutrients has been examined by plant stoichiometry,
providing a scaling relationship of nutrient balances from plant
nutrient variations (Parent et al., 2013). In the past, many
standard nutrient solutions have been developed and widely
used for plant science and agricultural cropping. These nutrient
solutions have some differences in macronutrient concentrations;
however, for most of them, the relative proportions of
cations and anions indicate stoichiometric proximity (De
Rijck and Schrevens, 1998a). Nevertheless, the mechanisms
of stoichiometric homeostasis and the nutrient solutions’
physiological costs remain under investigation (Rouached
and Rhee, 2017). The scaling relationship observed from a
stoichiometric perspective across plant systems by the proportion
approaches suggests a potential for an integrated framework for
plant nutrient dynamics research.

CONCLUSION

Our simulation analysis provided some clarity regarding root-
zone nutrient dynamics using Michaelis-Menten parameters.
Subsequently, based on the reproducibility of nutrient dosing,
our simulation analysis predicted a proportion approach to the
dosing nutrient composition and Michaelis-Menten parameters
as a novel method of manipulating root-zone nutrient dynamics.
This may turn conventional nutrient management practices into
a simplified optimization problem. From the reduced complexity,
we can expect to have a theoretical background to build a
seamless framework for exploiting plant nutrient dynamics in
the agronomic field and plant research. The framework presented
here may provide a platform extended to fertilizer-emission-free
agricultural production and plant stoichiometric research.
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The morphology of plants growing under combined blue- and red-light irradiation is 
affected by the presence or absence of time slots of blue- and red-light mono-irradiation. 
The purposes of this study were to investigate the morphology and growth of cos lettuce 
grown under light irradiation combining several durations of blue and red light simultaneously 
and independent mono-irradiations of blue and red light during the day, and to clarify the 
effects of the durations of blue-light mono-irradiation and blue-light irradiation. Young cos 
lettuce seedlings were grown under 24-h blue-light irradiation with a photosynthetic photon 
flux density (PPFD) of 110 μmol m−2 s−1 (B + 0R) or under 24-h blue-light irradiation with 
a PPFD of 100 μmol m−2 s−1 supplemented with 8 (B + 8R), 16 (B + 16R), and 24-h (B + 24R) 
red-light irradiation with PPFDs of 30, 15, and 10 μmol m−2 s−1, respectively (Experiment 1).  
The daily light integral was 9.50 mol m−2 in all treatments. In Experiment 1, leaf elongation 
was promoted as the duration of red-light irradiation decreased and the duration of blue-
light mono-irradiation increased. The maximum shoot dry weight was observed under 
the B + 8R treatment. Growth was likely promoted by the expansion of the light-receptive 
area caused by moderate leaf elongation without tilting. In Experiment 2, young cos lettuce 
seedlings were grown as for Experiment 1, but blue- and red-light irradiation intensities 
were reversed (R + 0B, R + 8B, R + 16B, and R + 24B). Leaf elongation was promoted by 
the absence of blue-light irradiation (R + 0B). The leaf surface was increasingly flattened, 
and the shoot dry weight was enhanced, as the duration of blue-light irradiation increased. 
Thus, cos lettuce leaf morphology may be manipulated by adjusting each duration of 
blue-light mono-irradiation, red-light mono-irradiation, and blue- and red-light simultaneous 
irradiation, which can, in turn, promote cos lettuce growth.

Keywords: artificial light, leaf elongation, leaf morphology, photomorphogenesis, light receptors

INTRODUCTION

The effects of lighting patterns on plant growth have been studied to improve plant 
cultivation with artificial light. A combination of blue and red light can prevent spindly 
growth (Hoenecke et  al., 1992; Yorio et  al., 2001), epinasty (Seif et  al., 2021), and achieve 
a high photosynthetic rate and high growth rate (Yorio et al., 1998; Hogewoning et  al., 
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2010) and improve disease and nutritional status assessment 
(Moosavi-Nezhad et al., 2021). Consequently, lighting patterns 
using blue and red light have been well-studied. When plants 
are irradiated with blue and red light simultaneously, growth 
rates are highest at a blue/red photosynthetic photon flux 
density (PPFD) ratio of 80–90/20–10 (e.g., Hernández and 
Kubota, 2016) at an identical total PPFD. In these studies, 
the spectral photon flux density distribution (SPFD) was 
constant during the light period. However, recently, there 
have been attempts to promote plant growth using lighting 
patterns by applying different SPFDs during different hours 
of the day (Jishi et  al., 2016; Ohtake et  al., 2018).

Jishi et  al. (2021) grew cos lettuce under various blue- 
and red-light combinations. Lighting patterns that include 
12 h of blue-light mono-irradiation (i.e., irradiation with 
only blue light without other colors of light) promote leaf 
elongation, probably owing to the phytochrome reaction. 
The phytochrome photostationary state (PSS) is the ratio 
of active phytochrome to total phytochrome; a low PSS 
promotes leaf and stem elongation through the shade-
avoidance response (Smith and Whitelam, 1997; Kong et  al., 
2020). The PSS under blue-light mono-irradiation is 
significantly lower than that under blue- and red-light 
simultaneous irradiation; therefore, blue-light mono-
irradiation is considered to promote leaf elongation. Jishi 
et  al. (2021) also reported that moderate leaf elongation 
caused by 12 h of blue-light mono-irradiation promotes 
growth, probably because of the expansion of the light-
receptive area and the greater amount of light received, 
although excessive leaf elongation causes the plants to collapse 
and does not promote growth.

The degree of leaf elongation may be  controlled by 
adjusting the duration of blue-light mono-irradiation (Jishi 
et  al., 2016). The effects of blue-light mono-irradiation on 
plant morphology are mediated by the phytochrome reaction, 
and blue-light irradiation (i.e., irradiation with blue light, 
with or without other colors of light irradiation) affects 
plant morphology through the blue-light receptors of 
phototropin and cryptochrome (Lin, 2002). Plant morphology 
may also be  controlled by adjusting the blue-light 
irradiation duration.

In the present study, we  conducted a pair of cos lettuce 
cultivation experiments in which blue- and red-light 
irradiation were combined. Experiment 1 comprised four 
treatments with identical durations of blue-light irradiation 
and different durations of blue-light mono-irradiation to 
investigate the effects of blue-light mono-irradiation duration 
and possible role of the phytochrome-mediated reaction. 
Experiment 2 comprised four treatments with identical 
durations of blue-light mono-irradiation and different 
durations of blue-light irradiation to investigate the effects 
of blue-light irradiation duration and possible role of the 
blue-light-receptor-mediated reaction. In addition, we discuss 
the blue- and red-light irradiation methods that effectively 
promote cos lettuce growth.

MATERIALS AND METHODS

Lighting Patterns
The PPFD values described here were measured at 2 cm above 
the surface of the urethane cube, in which the cos lettuce 
seedlings were planted, using a light quantum sensor (LI-190SA; 
LI-COR, Lincoln, NE, United  States).

In Experiment 1, to investigate the effects of the duration 
of blue-light mono-irradiation, seedlings were grown under 
24-h blue light with a PPFD of 110 μmol m−2 s−1 (B + 0R) or 
under 24-h blue-light irradiation with a PPFD of 100 μmol 
m−2 s−1 supplemented with 8 (B + 8R), 16 (B + 16R), or 24-h 
(B + 24R) red-light irradiation with PPFDs of 30, 15, and 10 μmol 
m−2 s−1, respectively (Figure  1). The durations of blue-light 
mono-irradiation were 24 (B + 0R), 16 (B + 8R), 8 (B + 16R), 
and 0-h (B + 24R). The daily averaged PPFD was 110 μmol 
m−2 s−1 [daily light integral (DLI): 9.50 mol m−2] for all treatments. 
The daily averaged PPFDs of blue and red light were 100 and 
10 μmol m−2 s−1, respectively, for B + 8R, B + 16R, and B + 24R, 
which included red-light irradiation.

In Experiment 2, to investigate the effects of the duration 
of blue-light irradiation, seedlings were grown under 24-h red-light 
irradiation with a PPFD of 110 μmol m−2 s−1 (R + 0B) or under 
24-h red-light irradiation with a PPFD of 100 μmol m−2 s−1 
supplemented with 8 (R + 8B), 16 (R + 16B), or 24-h (R + 24B) 
blue-light irradiation with PPFDs of 30, 15, and 10 μmol m−2 
s−1, respectively (Figure 2). The daily averaged PPFD was 110 μmol 
m−2 s−1 for all treatments. The daily averaged PPFDs of blue 
and red light were 10 and 100 μmol m−2 s−1, respectively, for 
R + 8B, R + 16B, and R + 24B, which included blue-light irradiation.

Plant Material
Cos lettuce (Lactuca sativa L. “Cos lettuce”; Takii Seed Co., 
Ltd., Kyoto, Japan) seeds were sown on watered urethane cubes 

FIGURE 1 | Lighting patterns used in Experiment 1. Plants were subjected 
to 24-h blue-light irradiation with a PPFD of 110 μmol m−2 s−1 (B + 0R) or under 
8 (B + 8R), 16 (B + 16R), or 24-h (B + 24R) red-light irradiation with PPFDs of 
30, 15, and 10 μmol m−2 s−1, respectively, supplemented with 24-h blue-light 
irradiation with a PPFD of 100 μmol m−2 s−1.
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and germinated in a temperature-controlled chamber (MIR-
553; SANYO Electric Co., Ltd., Osaka, Japan) at 25 ± 1°C under 
a 16-h light/8-h dark cycle. Light was provided with white 
LEDs at a PPFD of 100 μmol m−2 s−1. Seven days after sowing, 
seedlings with approximately 1-cm-long first true leaves were 
selected for the cultivation experiments.

Cultivation Experiments
Sixteen cos lettuce seedlings were transplanted individually into 
four holes made in four plastic boards of each urethane cube. 
Each of the four plastic boards was placed on a 5-L plastic 
container filled with a continuously aerated nutrient solution 
(half-strength Otsuka-A nutrient solution; OAT Agrio Co., Ltd., 
Tokyo, Japan) with electrical conductivity of 0.13 ± 0.01 S m−1. 
The internal spaces of two temperature-controlled chambers 
were partitioned into upper and lower compartments with 
cardboard and black paper to prevent light contamination 
between compartments. Four seedlings were cultivated in each 
of the four compartments for each treatment. The temperature 
was maintained at 25 ± 1°C throughout the day in all 
compartments. The CO2 concentration and relative humidity 
were not measured or controlled but were expected to have 
been similar among all compartments because the external air 
was continuously introduced into each compartment using air 
pumps from the same space. At 14 days after transplanting 
(21 days after sowing), all seedlings were harvested and measured. 
The total leaf area per plant was measured using an area meter 
(AAM-9; Hayashi Denko Co., Ltd., Tokyo, Japan). The shoots 
were dried for 1 h at 100°C and then dried at 80°C for 3 days 
before measurement of the shoot dry weight. The length and 
width of the largest leaf on each seedling were measured using 
a ruler. The cultivation experiments were repeated twice for 
each of the eight treatments, and the compartments were changed 
for each replication.

Lighting Sources
An LED panel with indicator-type white LEDs (NSPW310DS-b2W; 
Nichia Corp., Tokushima, Japan) was used for seedling growth 
before the cultivation experiments. Panels with blue (HBL3-
3S55-LE; Toricon, Shimane, Japan) and red (SRK1-3A80-LE; 
Toricon) LEDs were used for the cultivation experiments. The 
relative SPFDs of the white, blue, and red LED lights are shown 
in Figure  3. The SPFD was measured with a spectroradiometer 
(MS-720; EKO Instruments Co., Ltd., Tokyo, Japan). DC power 
supplies (PAS60-4.5 for blue LEDs, and PMC35-1 for red and 
white LEDs; Kikusui Electronics Corp., Yokohama, Japan) were 
used to supply electrical currents to the LEDs, and the PPFD 
values of blue and red light were adjusted through current 
control. Digital timers (H5CX; OMRON Corp., Kyoto, Japan) 
were connected to the DC power supplies and used to remotely 
control the durations of blue and red irradiation.

RESULTS

Experiment 1: Effects of Blue-Light  
Mono-Irradiation Duration
As the blue-light mono-irradiation duration increased, the leaves 
became more elongated (Figure 4). The average values of shoot 
fresh weight, shoot dry weight, and total leaf area were highest 
under B + 16R and lowest under B + 24R (Figures  5A–C). Leaf 
widths were similar among the treatments, but leaf lengths 
tended to increase along with blue-light mono-irradiation; thus, 
the leaf length/width ratio tended to be  greater as the blue-
light mono-irradiation duration increased (Figures  5D–F).

Experiment 2: Effects of Blue-Light 
Irradiation Duration
The leaves were elongated and twisted under R + B0 (Figure 6). 
In the blue-light irradiation treatments, the longer the blue-
light irradiation, the flatter the appearance of the leaves, with 
no curling into bowl shapes. Shoot fresh weight, shoot dry 
weight, and total leaf area tended to be  greater as the blue-
light irradiation duration increased (Figures 7A–C). Leaf length 
was greatest under R + B0, and in the blue-light irradiation 
treatments; it increased along with the blue-light irradiation 
duration (Figure  7D). Leaf width tended to be  greater as the 
blue-light irradiation duration increased (Figure  7E). As a 
result, the leaf length/width ratio was significantly greater under 
R + B0 and similar among the other treatments (Figure  7F).

DISCUSSION

Experiment 1: Effects of Blue-Light  
Mono-Irradiation Duration
The leaf length may be  increased under the longer blue-light 
mono-irradiation durations because of the resulting low PSS 
(Table  1; Sager et  al., 1988), as shown by the elongation of 
cucumber stems (Hernández and Kubota, 2016) and lettuce 
leaves (Jishi et al., 2021) exposed to blue-light mono-irradiation. 

FIGURE 2 | Lighting patterns used in Experiment 2. Plants were subjected 
to 24-h red-light irradiation with a PPFD of 110 μmol m−2 s−1 (R + 0B) or under 
8 (R + 8B), 16 (R + 16B), or 24-h (R + 24B) blue-light irradiation with PPFDs of 
30, 15, and 10 μmol m−2 s−1, respectively, supplemented with 24-h red-light 
irradiation with a PPFD of 100 μmol m−2 s−1.
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This result corroborates the finding by Jishi et  al. (2016) that 
the longer the duration of both red-light mono-irradiation 
and blue-light mono-irradiation, the greater the promotion of 
cos lettuce leaf elongation. The present results clearly showed 
that leaf elongation was increasingly promoted by a longer 
duration of blue-light mono-irradiation. Thus, the degree of 
elongation mediated by the phytochrome reaction may 
be  regulated by the duration of low PSS, such as blue-light 
mono-irradiation.

The leaf widths were similar among the treatments, suggesting 
that the longer blue-light mono-irradiation duration resulted 
in elongated leaves rather than enlarged leaves. The leaf lengths 
under B + 0R and B + 8R were similar, but seedlings appeared 
spindlier under B + 0R than under B + 8R (Figure  4).  

The seedlings grown under B + 0R collapsed owing to excessive 
elongation, and their dry matter production was low (Figure 5B) 
probably because of the low amount of light received. Therefore, 
leaf length under B + 0R may have the potential to increase 
as a photomorphogenic response, but the biomass may have 
been insufficient to allow an increase in leaf length.

The differences in shoot fresh weight, shoot dry weight, 
and total leaf area may result from differences in the amount 
of light received. Under B + 16R, the leaf surfaces facing the 
light source and the light-receptive area were high, whereas 
under B + 0R and B + 8R, the seedlings were tilted owing to 
excessive elongation. However, under B + 24R, the leaves did 
not elongate notably and the light-receptive area was small. 
As a result, the degree of leaf elongation was moderate under 
B + 16R for the purpose of promoting growth. Additionally, 
moderate durations of blue- and red-light irradiation vary 
depending on other environmental conditions. For example, 
the higher the DLI, the more plant elongation is suppressed 
(Johkan et  al., 2012). If a similar experiment was conducted 
with a higher DLI, then elongation would be  suppressed in 
all treatments and the leaf morphology of seedlings grown 
under B + 8R or B + 0R would be  relatively “moderate.” The 
degree of plant elongation may be  moderated by adjusting the 
duration of blue-light mono-irradiation in accordance with 
other environmental conditions, such as DLI.

Experiment 2: Effects of Blue-Light 
Irradiation Duration
The significantly greater leaf length under R + B0 may result 
from the absence of the inhibitory effects of blue-light irradiation 
on elongation through the cryptochrome reaction (Ahmad 
et  al., 1995; Zhao et al., 2007). The leaf length/width ratios, 
which were affected by blue-light mono-irradiation in Experiment 
1, probably through the phytochrome reaction, were similar 
under R + 8B, R + 16B, and R + 24B in Experiment 2. This 

A B

FIGURE 3 | Relative spectral photon flux density distributions of light from white LEDs used for seedling cultivation (A) and from blue and red LEDs used for growth 
experiments (B).

FIGURE 4 | Cos lettuce plants grown under irradiation conditions described 
in Figure 1 (Experiment 1).
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suggests that the elongation-suppressive effect of the 
cryptochrome is affected by the presence or absence of blue-
light irradiation during the day, but the effects of blue-light 
irradiation duration are small. The effects of blue-light DLI 

cannot be  discussed for the present experiment because the 
blue-light DLI was identical among treatments. The blue-light 
DLI in this study (0.86 mol m−2) may be  sufficiently high to 
saturate the cryptochrome reaction. Wheeler et  al. (1991) 
investigated the effects of blue-light PPFD in irradiated light 
on soybean grown under a 12-h light period. These authors 
found that stem elongation was suppressed as the blue-light 
PPFD increased up to 30 μmol m−2 s−1 (1.30 mol m−2), at which 
point the suppressive effect was saturated.

The differences in shoot fresh weight, shoot dry weight, 
and total leaf area resulted from differences in the amounts 
of light received. The treatments with a longer blue-light 
irradiation duration resulted in flatter leaves, which potentially 
have a greater light-receptive area by orienting the leaf surface 
toward the light source compared with that of epinastic leaves. 
Under R + B0, some leaves turned and did not face the light 
source, which likely also decreased the light-receptive area. 
Among the three treatments including blue-light irradiation, 
leaf length and width increased together with blue-light irradiation 
duration, whereas the leaf length/width ratio was similar. This 
may be because the development of flattened leaves was caused 
by the phototropin reaction, and the gain in biomass was 
caused by the increased light-receptive area of the flattened leaves.

The flattening of leaves with increase in blue-light irradiation 
duration may be  a phototropin-mediated response (Inoue et  al., 
2008). Although the blue-light DLI was identical among treatments, 
the degree of leaf flatness was affected by the duration of 

A B C

D E F

FIGURE 5 | Shoot fresh weight (A), shoot dry weight (B), total leaf area (C), leaf length (D), leaf width (E), and leaf length/width ratio (F) of cos lettuce seedlings 
grown under irradiation conditions described in Figure 1 (Experiment 1). Bars represent SEMs (n = 8). Different lower-case letters above bars within a panel indicate 
a significant difference (p < 0.05, Tukey–Kramer HSD test).

FIGURE 6 | Cos lettuce plants grown under irradiation conditions described 
in Figure 2 (Experiment 2).
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blue-light irradiation; therefore, the phototropin reaction may 
be  affected by the duration of blue-light irradiation rather than 
by blue-light DLI. Thus, the phototropin reaction induced by 
blue light may not follow the reciprocity law, whereas the 
phytochrome reaction is induced by end-of-day far-red light 
irradiation (Zou et  al., 2021). However, 10 μmol m−2 s−1, the 
lowest blue-light PPFD applied in the present study, may have 

been sufficient to saturate the phototropin reaction. Thus, it is 
possible that the phototropin reaction follows the reciprocity 
law at a significantly lower blue-light DLI and PPFD than applied 
in the present study.

Lighting Patterns to Promote Growth
Adjusting the duration of blue-light mono-irradiation to 
moderately elongate leaves is one way to increase the amount 
of light received and promote growth. However, leaf elongation 
is effective in increasing light-receptive areas only when leaves 
do not shade each other. Normally, immediately after planting 
of a crop, there is ample space between seedlings; during this 
phase, leaf elongation effectively promotes growth until shading 
occurs. In comparison, under high plant densities in which 
shading occurs earlier than in the present study, differences 
in growth may not be observed as strikingly as in the present study.

Another method to regulate phytochrome-mediated elongation 
is far-red-light irradiation (Meng and Runkle, 2019). Far-red-
light irradiation has the advantages that the PSS can be changed 
markedly by adjusting the far-red photon flux density and 
that it does not require timers to control the duration of 
blue- or red-light irradiation independently. When using far-red 
light irradiation, attention must be paid to the following: far-red 
light has a low photosynthetic efficiency; it is difficult to control 
the PSS because a small difference in the far-red PFD greatly 
affects the PSS; and the PSS differs between the upper and 
lower parts of the canopy owing to the greater penetration 

A B C

D E F

FIGURE 7 | Shoot fresh weights (A), shoot dry weights (B), total leaf areas (C), leaf lengths (D), leaf widths (E), and leaf length/width ratios (F) of cos lettuce 
seedlings under irradiation conditions described in Figure 2 (Experiment 2). Bars represent SEMs (n = 8). Different lower-case letters above bars within a panel 
indicate a significant difference (p < 0.05, Tukey–Kramer HSD test).

TABLE 1 | Phytochrome photostationary state (PSS) values under several 
photosynthetic photon flux density (PPFD) combinations of blue- and red-LED 
light irradiation for each time slot of treatments in the present study.

Blue-/red-light PPFD 
(μmol m−2 s−1)

Treatment including 
the time slot with 
blue-/red-light PPFD

PSS

110/0, 100/0 B + 0R, B + 8R, B + 16R, 
and B + 24R

0.55

100/30 B + 8R 0.86

100/15 B + 16R 0.83

100/10 B + 24R 0.80

30/100 R + 8B 0.90

15/100 R + 16B 0.90

10/100 R + 24B 0.91

0/110, 0/100 R + 0B, R + 8B, R + 16B, 
and R + 24B

0.91

The PSS values were calculated from the spectral photon flux densities (Figure 3) and 
photochemical cross-section data of Sager et al. (1988).
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of far-red light compared with red light. On the basis of this 
study’s results, the degree of elongation is also likely to 
be  regulated by adjusting the duration of the far-red-light 
irradiation during the light period. Blue-light mono-irradiation 
and far-red irradiation should be  used separately or in 
combination, depending on the purpose.

Long-blue-light irradiation during the day promotes the 
development of flat leaves and growth. The blue-light DLI was 
0.86 mol m−2 in the present study, and leaf flattening may 
be  further promoted by a greater blue-light DLI. However, 
because the emission wavelength bands of AlGaInP-based devices, 
which have relatively high luminous efficiency levels, are in the 
red region of 640–680 nm (Jung et al., 2021) near the absorption 
peak of chlorophyll, it is better to increase the red-light DLI 
for the purpose of increasing the amount of photosynthesis 
per the amount of light received with equal energy consumption. 
The price of the light source (initial investment cost) also cannot 
be  ignored as well as the electricity cost for lighting (running 
cost). Light sources with wavelengths that are in high demand 
for general home lighting are low-priced as a result of mass 
production. Even if the relative SPFD is not optimal for plant 
growth, the use of inexpensive light sources may maximize 
profits in commercial plant factories. The wavelength band of 
the light source should be  selected with consideration of the 
estimated photosynthetic rate and photoreceptor reactions based 
on the absorption spectrum of the photoreceptors.

Photosynthesis is suppressed and growth slows if the light 
environment does not change during a close to 24-h  cycle 
(Dodd et  al., 2005). One reason that growth was suppressed 
under B + 24R during Experiment 1 may have been because it 
was not a 24-h cycle. However, because growth was not particularly 
suppressed under R + B24 during Experiment 2, the effects of 
the circadian rhythms should have been small. Alternatively, 
cyclic changes in the PSS or the presence or absence of red 
light may be  the main circadian rhythm-related signals.

We have discussed the photoreceptor reaction as the response 
of plants to a light environment comprising different SPFDs 
in different durations. However, detailed physiological 
experiments, such as those using mutants, are needed to test 
these hypotheses. In addition, growth analysis is useful to 
examine the effect of the light environment on growth rate 
through morphology. Conducting such studies in the future, 
and the possible manipulation of plant responses using a time-
varying lighting method, are predicted to lead to further 
advances in light irradiation in plant factories.

CONCLUSION

The leaf morphology and growth of cos lettuce were affected 
by the durations of blue- and red-light irradiation. Leaf elongation 
increased along with the blue-light mono-irradiation duration, 
and leaf flattening increased along with the blue-light irradiation 
duration. These morphological traits can be applied to increase 
the amount of light received, thereby promoting the growth 
of cos lettuce.
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Chlorophyll fluorescence (CF) is used to measure the physiological status of plants affected 
by biotic and abiotic stresses. Therefore, we aimed to identify the changes in CF parameters 
in grafted watermelon seedlings exposed to salt, drought, and high and low temperatures. 
Grafted watermelon seedlings at the true three-leaf stage were subjected to salinity levels 
(0, 50, 100, 150, and 200 mM) and temperature [low (8°C), moderate (24°C), and high 
(40°C)] stresses for 12 days under controlled environmental conditions independently. 
Eight CF parameters were measured at 2-day intervals using the FluorCam machine 
quenching protocol of the FluorCam machine. The seedlings were also exposed to drought 
stress for 3 days independent of salinity and temperature stress; CF parameters were 
measured at 1-day intervals. In addition, growth parameters, proline, and chlorophyll 
content were evaluated in all three experiments. The CF parameters were differentially 
influenced depending on the type and extent of the stress conditions. The results showed 
a notable effect of salinity levels on CF parameters, predominantly in maximum quantum 
yield (Fv/Fm), non-photochemical quenching (NPQ), the ratio of the fluorescence decrease 
(Rfd), and quantum yield of non-regulated energy dissipation in PSII [Y(NO)]. High 
temperature had significant effects on Rfd and NPQ, whereas low temperature showed 
significant results in most CF parameters: Fv/Fm, Y(NO), NPQ, Rfd, the efficiency of 
excitation capture of open photosystem II (PSII) center (Fv′/Fm′), and effective quantum 
yield of photochemical energy conversion in PSII [Y(PSII)]. Only NPQ and Rfd were 
significantly influenced by severe drought stress. Approximately, all the growth parameters 
were significantly influenced by the stress level. Proline content increased with an increase 
in stress levels in all three experiments, whereas the chlorophyll (a and b) content either 
decreased or increased depending upon the stressor. The results provided here may 
be useful for understanding the effect of abiotic stresses on CF parameters and the 
selection of index CF parameters to detect abiotic stresses in grafted watermelon seedlings.

Keywords: proline, abiotic stress, maximum quantum yield, growth parameter, chlorophyll
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INTRODUCTION

Plants experience a range of stresses during their life cycle 
and exhibit physiological, biochemical, and molecular responses 
to biotic and abiotic stresses (Fahad et al., 2017; Nadeem et al., 
2018). These stressors affect the plants negatively in different 
ways, depending on the extent and duration of the stress (Shin 
et  al., 2020a; Giordano et  al., 2021). The ultimate effects of 
stressors are reduction in growth by decreasing the photosynthesis 
rate, changes in bioactive compounds, and overall yield (Toscano 
et al., 2019; Giordano et al., 2021). Among the different abiotic 
stresses, salt, temperature, and drought stress are some of the 
important abiotic stresses experienced by plants during cultivation 
(Kalaji et  al., 2016). The effects of each abiotic stress slightly 
differ from each other to some extent, although their ultimate 
effects are the reduction in growth via reduced photosynthesis 
rate, alteration in phytochemicals, and overall yield. The effects 
of stressors in plants have been studied in a range of plants 
at different stages of their life cycle (Bhandari et  al., 2018; 
Shin et  al., 2020a,b).

Salinity stress disrupts membrane permeability and stomatal 
closure, and imbalances ion concentrations; this reduces the 
photosynthetic rate as well as the levels of photosynthetic 
pigments, growth, and yields by up to 20% worldwide (De 
Oliveira et  al., 2013). Salinity stress influences the relationship 
between salinity level and water, stomatal closure, leaf wilting, 
premature aging of leaves due to salinity accumulation, and 
decreased growth and yield (Garg et  al., 2020; Lotfi et  al., 
2020). Salinity stress can be due to either a short-term exposure 
or a long-term stress due to continuous nutrient and salinity 
accumulation in the rhizome, affecting growth and fruit 
production (Negrão et  al., 2017). Plants may receive either 
high- or low-temperature stresses during cultivation; their effects 
are dependent on the plant genotypes (Korkmaz and Dufault, 
2001; Hou et  al., 2016; Rajametov et  al., 2021). In particular, 
high-and low-temperature stress causes various physiological 
changes in plants, such as damage to the cellular structure of 
plants, reduction of chlorophyll levels, and deterioration of 
photosynthetic function (Garstka et  al., 2007; Mattila et  al., 
2020). High temperatures severely affect the structure and 
functions of cell membranes, causing early bolting, dehydration 
of soil moisture content, and disruption of ion movement, 
which reduces photosynthesis and ~50% reduction in total 
yield in different crops (Fahad et  al., 2017; Nadeem et  al., 
2018). Under high temperature stress, plants accumulate reactive 
oxygen species (ROS), such as hydrogen peroxide (Soengas 
et  al., 2018; Hassan et  al., 2020). Furthermore, the electron 
transport ability during photosynthesis is reduced, reducing 
the energy utilization capacity of photosystem II (Song et  al., 
2014). In contrast, excessively low temperatures are responsible 
for chilling injuries in plants and damage to the photosynthetic 
apparatus (Lee et  al., 2021). Soil water content has a crucial 
role, and optimum water content is required for plant growth 
under normal conditions. A reduction in soil water content, 
causing drought stress in plants, disrupts the uptake of minerals 
and other essential nutrients (Yordanov et al., 2000). Sometimes, 
sudden changes in temperature levels during the life cycle of 

plants cause thermal shock which may induce the expression 
of some genes which in turn results in the increased synthesis 
of some proteins: heat shock proteins (Gupta et  al., 2010). 
These proteins are responsible to bind and stabilize misfolded 
proteins. Such proteins are also induced by the other stress 
factors such as osmotic potential, salinity, drought, and high 
intensity irradiations (Swindell et al., 2007). Furthermore, plants 
also undergo various in vitro phenotypic and in vivo physiological 
changes both internally and externally when subjected to drought 
stress, and activate multiple defense mechanisms for protection 
and survival (Yordanov et al., 2000; Kapoor et al., 2020; Tabassum 
et  al., 2021). In addition, drought stress is known to limit 
photosynthetic activity (Shafiq et  al., 2021). Drought stress 
caused by inadequate watering induces physiological changes 
in plants, such as cell dehydration, osmotic pressure imbalance, 
and plant growth retardation (Jia et  al., 2021). Depending on 
abiotic stressors, such as salinity, drought, high, and low 
temperatures, plants show various phenotypic and physiological 
responses in vivo according to various crops, genetic resources, 
varieties, growth stages, and stress tolerance levels (He et  al., 
2018). Photo-inhibition caused by environmental stress on 
photosystem II is closely related to the photosynthetic 
performance of plants (Murata et al., 2007). Therefore, studying 
the effects of abiotic stress in plants is an important step in 
the production of high-yield and nutritionally improved crops 
(Fahad et  al., 2017; Liang et  al., 2020).

Both destructive and non-destructive methods have been 
used to detect abiotic stress and their responses in plants 
(Gorbe and Calatayud, 2012; Kalaji et al., 2016; Bhandari et al., 
2018; Susič et  al., 2018; Shin et  al., 2020b). Among them, 
chlorophyll fluorescence (CF) imaging is one of the most 
common non-destructive techniques that has been applied to 
detect abiotic stresses in a range of plants (Moustakas et  al., 
2021). The CF parameters provide information on the mechanical 
detail and extent of damage in plants due to stress. Protocols 
capable of measuring various chlorophyll fluorescence parameters 
include the chlorophyll fluorescence induction curve (OJIP), 
the Kautsky effect (chlorophyll a fluorescence induction), and 
quenching effects (Lichtenthaler and Babani, 2000; Zushi et al., 
2012; Yao et  al., 2018; Shin et  al., 2020a).

Watermelon (Citrullus lanatus) is a high-income economic 
crop, with 3.08 million hectares of cultivated area and 100 
million tons of worldwide production (FAO, 2019). It has been 
found that the overall yield and fruit quality of watermelon 
are severely affected by biological and environmental stressors 
during cultivation (Toscano et al., 2019; Giordano et al., 2021). 
To solve this problem, the development of particular stress-
resistant cultivars has been pursued; however, it requires diverse 
strategies, sufficient time, and human resources (Bulgari et  al., 
2019). As an alternative, the use of stress-resistant stock cultivars 
and grafted seedlings for high quality and yield is steadily 
increasing (Kumar et al., 2017). As the use of grafted seedlings 
has increased in response to various stressors, the domestic 
seedling market is developing into specialized seedling production 
facilities with expertise in facility gardening, smart farms, and 
grafting machines (Kwack et  al., 2021). The development of 
the seedling industry reflects various cultivation management 
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objectives, such as of soil-borne diseases in the growing 
environment, climate change, and increases in fruit production 
(Rahmatian et  al., 2014; Spanò et  al., 2020). Furthermore, 
seedling industries have been used small container (plug tray 
having different sizes) for the efficient production of seedlings 
as it occupies small space and cost effective. The various abiotic 
factors affecting grafted seedlings include lack of nutrients, 
salinity accumulation, drought, water, and high and low 
temperatures (Coskun et al., 2016; Nievola et al., 2017; Hussain 
et al., 2018). Both grafted and non-grafted seedlings have been 
used for watermelon cultivation; however, the use of grafted 
seedlings has been increasing because of their high yield (Lee 
et  al., 2010). Several studies related to the effects of abiotic 
stress in watermelon have been performed (Yetişir and Uygur, 
2009; Hou et  al., 2016; Yanyan et  al., 2018; Lu et  al., 2020, 
2021). However, the effects of salinity, temperature, and drought 
stresses independently in a single cultivar during a different 
treatment schedule have not been performed in detail.

Therefore, this study was performed to evaluate the effects 
of salt, temperature, and drought stress on CF parameters, 
photosynthetic pigments (chlorophyll a and b), stress-related 
compounds (proline), and growth performance in grafted 
watermelon seedlings during progressive exposure to the 
respective stressors, and to select possible index CF parameters 
for the detection of salt, temperature, and drought stress.

MATERIALS AND METHODS

Plant Material and Seedling Preparation
For the preparation of watermelon (Citrullus lanatus) grafted 
seedlings, the scion cultivar ‘Seo Tae Ja’ (Asia Seed Co. Ltd., 
Seoul, South Korea) and stock cultivar ‘Seol Jung Mae Plus’ 
(Tae Seong Seed Co. Ltd., Yeonggwang, South Korea) which 
was resistant to temperature stress were used. The scion seeds 
were sowed in 128-cell plug trays (54.4 cm × 28.2 cm × 5.4 cm); 
stock seeds were sowed in 40-cell plug trays 
(54.4 cm × 28.2 cm × 5.4 cm) filled with bed soil (Chorok-i, 
Nongwoobio Co. Ltd., Suwon, South Korea). Grafted seedlings 
were made from the scion and stock using the single cotyledon 
grafting method, according to Hassell et  al. (2008), and were 
used in experiments when the true leaves of the scion reached 
the three-leaf stage. Watermelon-grafted seedlings were grown 
by a professional seedling company (Sol-Rae Seedling Farm, 
Iksan, South Korea) in a greenhouse with the standard protocol 
developed for experimental plant materials until the three true-
leaf stages.

Experimental Design and Growth 
Conditions
The experiment was performed under three different stress 
conditions: salt, temperature, and drought stress independently. 
A detailed experimental plan is presented in Figure  1. For 
the salt and temperature stress treatments, the grafted seedlings 
were grown in a closed light box (120 cm × 65 cm × 45 cm; 
l × b × h) under a fluorescent lamp (Philips, TLD 32 W/865RS) 

with a photosynthetic photon flux density (PPFD) of 
210 ± 10 μmol m−2 s−1, 24/18°C (day/night) temperature, 14/10-h 
(day/night) photoperiod, and 60 ± 3% relative humidity for 
3 days of acclimatization. In the salt stress treatment, 35 
seedlings were used for each treatment. The seedlings were 
treated with five different NaCl concentrations (0, 50, 100, 
150, and 200 mM). Three liters of the respective NaCl solution 
were kept in different trays before irrigation, and the seedlings 
were irrigated once a day for 10 min in the morning until 
the end of the experiment. The seedlings were grown under 
the same conditions for 12 days. Drought stress treatment 
followed the same conditions for acclimatization. For the 
drought stress experiment, one set of grafted seedlings was 
irrigated every day with the nutrient solution EC 1.5 dS−1 
using the sub-irrigation method for 20 min as the control 
(well-irrigated), whereas another set of seedlings was not 
irrigated (non-irrigation) after the start of the experiment 
for 3 days and assumed to be drought stressed. The conditions 
of the closed light box were similar to those of the salt 
stress experiment. The drought stress treatment was performed 
only for 3 days as the seedlings under drought stress showed 
permanent wilting symptoms with severe leaf deformation 
and stunted plant growth. In the temperature stress treatment, 
the seedlings were grown under the same light conditions, 
24/20°C (day/night) temperature, 14/10-h (day/night) 
photoperiod, and non-controlled relative humidity for 3 days 
for acclimatization of the seedlings. The seedlings were then 
grown under three temperature conditions: low [8/4°C (day/
night)], moderate [24/20°C (day/night)], and high [40/36°C 
(day/night)] for 12 days at the same light conditions. Irrigation 
was performed daily in the morning using the sub-irrigation 
method. Three liters of water was kept in each tray and the 
plug tray was embedded for 20 min in every morning and 
transferred to the respective temperature controller system.

Measurement of Chlorophyll Fluorescence 
Parameters
An open FluorCam 800 (Photon System Instruments, Drasow, 
Czech  Republic) was used for imaging of CF kinetics from the 
upper surface of all true leaves from the intact seedlings according 
to Shin et  al. (2020b). Cool white 6,500 K in the LED panels 
(130 mm × 130 mm) was used as the light source at an angle of 
45°. Seedlings were adapted in dark condition for 20 min before 
the measurement of CF parameters. The distance between the 
camera lens and the seedling canopy was maintained at 15–20 cm. 
In summary, eight CF parameters were assessed according to 
Shin et  al. (2020b) using the following protocols: quenching act 
2, shutter speed 20 μs, sensitivity 20%, actinic light 240 μmol m−2 s−1, 
and the saturating flash light 300 μmol m−2 s−1. Detailed information 
on each CF parameter is provided in Table  1. For the salinity 
and temperature stress treatments, seven watermelon-grafted 
seedlings (from 35 seedlings per treatment) were randomly selected 
for each time point (0, 2, 4, 6, 8, 10, and 12 days after the 
initiation of salinity stress) and used to measure the CF parameters. 
In contrast, the CF parameters were measured every day until 
day 3 of the drought stress initiation. Five seedlings (from 20 
seedlings per treatment) were randomly selected for each 
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measurement time (0, 1, 2, and 3 days) and used for the analysis 
of CF parameters.

Measurement of Growth Parameters and 
Soil Moisture Content
Growth parameters included the number of leaves, shoot fresh 
and dry weights of the scion, plant height of scion and stock, 
and root fresh weight. Plant height was measured using a set 
of digital calipers (CD-20APX; Mitutoyo Co., Kanagawa, Japan) 
to evaluate the growth performance of the grafted seedlings. 
Fresh shoot and root weights were measured using a digital 
weighing machine (UX420H; Shimadzu Corp., Kyoto, Japan). 
The relative water content of the soil in a single plug tray 
was measured by drying the soil samples at 105°C for 72 h 
according to Shin et  al. (2021a). The seedlings from 0, 6, and 
12 of treatment time after measuring CF and growth parameters 
were collected separately, freeze-dried and used for chlorophyll 
and proline analysis in salinity and temperature stress treatments, 
whereas the samples from all the treatment times (0, 1, 2, 
and 3 days after the initiation of treatment) were used in the 
drought stress experiment. Seven seedlings from each treatment 
and time were mixed independently, freeze-dried, ground into 
a fine powder, and stored at −20°C for the analysis of chlorophyll 
and proline content.

Analysis of Chlorophyll and Proline 
Content
Chlorophyll a and b were measured according to Shin et  al. 
(2020b) using a microplate reader (Multiskan Go; Thermo 
Scientific Inc.). Twenty milligrams of freeze-dried and finely 

FIGURE 1 | Overview of individual experimental processes and measurement timeline. A1, A2, and A3 represent the respective acclimatization times. D0–D12 
represents the days after the treatment time.

TABLE 1 | Chlorophyll fluorescence parameters used in this study.

Parameter Formula Description

Fv/Fm (Fm − F0)/Fm

Maximum quantum yield 
of PSII photochemistry 
measured in the dark-
adapted state

Fv′/Fm′ (Fm′ − F0’)/Fm′

Exciton transfer efficiency 
from antenna pigments to 
the reaction center of 
photosystem II (PSII) in 
the light-adapted state

Y(PSII) (Fm′ − Fs)/Fm′
Effective quantum yield of 
photochemical energy 
conversion in PSII

NPQ (Fm − Fm′)/Fm′
Non-photochemical 
quenching of maximum 
fluorescence

qP (Fm′ − Fs)/(Fm′ − F′0)
Photochemical quenching 
of PSII

qN (Fm − F’m)/(Fm − F′0)
Coefficient of non-
photochemical quenching 
of variable fluorescence

Y(NO)
1/[NPQ + 1 + qL(Fm/
F0–1)]

Quantum yield of non-
regulated energy 
dissipation in PSII

Rfd (Fm − Fs)/Fs
Ratio of fluorescence 
decline
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powdered samples were mixed with 10 ml MeOH (Avantor 
Performance Materials Co., Center Valley, PA, United  States) 
for 2 h at room temperature (~25°C), and the aliquot was 
centrifuged at 2,400 × g for 10 min. The supernatant was filtered 
using a 0.45 μm syringe filter, and the absorbance was measured 
at 652 and 665 nm using a microplate reader.

The method for analysis of proline content was adopted 
from Shin et  al. (2020b). A total of 50 mg of freeze-dried and 
powdered samples was mixed in 5 ml of 3% aqueous sulfosalicyclic 
acid dehydrate (Sigma-Aldrich, St. Louis, MO, United  States), 
extracted for 1 h by shaking at 200 rpm, centrifuged (2,400 × g 
for 10 min), and filtered. The supernatant of the sample (500 μl), 
acetic acid from Sigma-Aldrich (500 μl), and acid ninhydrin 
from Sigma-Aldrich (500 μl) were mixed simultaneously in a 
15-ml tube, kept in a water bath (at 95°C) for 1 h, and cooled 
rapidly on ice for 10 min. After adding 1 ml of toluene (Sigma-
Aldrich) to the supernatant, the mixture was vortexed and 
centrifuged at 2,400 × g for 10 min. Thereafter, the toluene phase 
(200 μl) was added in a 96-well plate, and the absorbance was 
measured using a microplate reader at 520 nm. Proline content 
was quantified using a commercial L-proline (Sigma-Aldrich) 
standard with a linear range of 0–100 μg ml−1.

Statistical Analyses
The results of growth parameters and CF parameters in salinity 
and temperature stress treatments are reported as the mean 
of seven biological replications, whereas the results were reported 
as the mean of five biological replications in drought stress 
treatment. The chlorophyll and proline contents were reported 
as the mean of three replicates in all the three experiments. 
Statistical analyses were performed using RStudio ver. 4.0.2 
(R Studio Desktop, Boston, MA, United  States). Statistical 
analysis followed by Duncan’s multiple range test was used to 
analyze the statistical differences among the mean values at 
p < 0.05. The interactive effect of respective treatments and 
treatment time were analyzed using a mixed model of one-way 
analysis of variance.

RESULTS

Effect of Salinity Level on Growth and CF 
Parameters
The effect of salinity level on growth parameters (number of 
leaves, plant height, shoot fresh weight, and root fresh weight) 
is presented in Figures  2A–D. The growth parameters were 
measured at 0, 6, and 12 days of the experiment. The visual 
appearance was poor at salinity levels of 150 and 200 mM 
(Figure  3). Growth parameters gradually decreased with 
increasing salinity levels during the progressive treatment. The 
effect of salinity level was highest at 12 days after treatment 
initiation. The number of leaves significantly decreased at all 
salinity levels compared to the control at day 12 of treatment. 
Plant height, shoot fresh weight, and root fresh weight were 
also significantly lower in the seedlings grown under salinity 
stress than in the control. The effect of salinity level on plant 
height was relatively higher than on other growth parameters.

The photochemical and non-photochemical quenching CF 
parameters measured at 2-day intervals were affected by 
salinity levels during the progressive treatment time (Figure 4). 
Except for Y(NO), all the other CF parameters decreased 
at higher salinity levels during the progressive treatment 
time. Fv/Fm, maximum quantum yield of PSII, showed 
non-significant changes until the end of the experiment 
(12 days of treatment time) at 0-, 50-, and 100-mM salinity 
levels. However, it decreased significantly at 150- and 200-mM 
salinity level from 8 day of treatment. Fv′/Fm′ also decreased 
at higher salinity levels in the later stage of treatment time; 
however, the magnitude of the decrease was lower than that 
of Fv/Fm. NPQ, an important non-photochemical quenching 
parameter, was not affected at the 50-mM salinity level 
throughout the experiment. It showed a gradual decrease 
from 6, 8, and 10 days after treatment at salinity levels of 
200, 150, and 100 mM, respectively. Y(NO), a component 
that indicates the effectiveness of the photo-protection 
mechanism, started to increase from 8 days after treatment 
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FIGURE 2 | Changes in growth parameters (A–D), chlorophyll (E,F) and 
proline (G) content of grafted watermelon seedlings grown under salinity 
stress during the progressive treatment time. Each bar represents the 
mean ± SD of seven biological replicates in growth parameters, and three 
replicates in chlorophyll and proline content. Different letters within a figure 
indicate a significant difference at p < 0.05 by Duncan’s multiple range test.
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only at higher salinity levels (150 and 200 mM). Rfd also showed 
a similar changing pattern as in the NPQ at the respective 
salinity levels. qP, qN, and Y(PSII) also decreased with an 
increase in salinity level (>50 mM) from the 4 day of treatment. 
In summary, the results showed significant differences in all 
CF parameters according to salinity level, treatment duration, 
and their interactive effects (Table  2).

Effect of Temperature Stress on Growth 
and Chlorophyll Fluorescence Parameters
The effects of low, moderate, and high temperature on 
growth parameters at 0, 6, and 12 days of treatment are 
presented in Figure 5. All the growth parameters were lower 
in both the high and low temperature conditions compared 
to the control in respective treatment times. The total number 

of leaves and root fresh weight were statistically higher at 
the end of the experiment than in the beginning in both 
moderate and high temperature conditions; however, it 
remained constant throughout the experimental time at low 
temperature. Plant height and shoot fresh weight increased 
under moderate and high temperature conditions, whereas 
they increased at 6 days of treatment time and decreased 
with further treatment time at low temperature. Among 
the three treatment conditions, low temperatures showed 
significantly lower values of growth parameters at the end 
of the experiment. Although the growth parameters were 
highly reduced in the low-temperature treatment, the visual 
appearance of seedlings was as good as that in seedlings 
at moderate temperature (Figure  6). The leaves of seedlings 
grown under higher temperatures showed yellow 
burning leaves.

FIGURE 3 | Changes in visual appearance of grafted watermelon seedlings grown under different salinity levels during the progressive treatment time.
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The CF parameters were differentially affected by the 
temperature conditions. Among the three temperature conditions, 
low temperature showed the highest effect on all CF parameters 
(Figure  7). Fv/Fm values continuously decreased from 0.81 at 
0 day to 0.45 at the end of the experiment under low temperature 
treatment; they remained steady throughout the treatment time 
in high- and moderate-temperature conditions. A similar 
decreasing pattern was also observed in Fv′/Fm′ and Y(PSII) 

values in the seedlings at low temperatures. Rfd and NPQ 
were significantly affected by both high and low temperatures, 
showing a gradual decrease during progressive treatment time. 
In contrast, qP and qN showed non-significant changes under 
all temperature conditions. Only low temperature had a significant 
effect on Y(NO) levels, which increased gradually from the 
beginning and were highest at the end of the experiment. 
Overall, the effect of temperature stress, treatment time, and 
their interaction showed significant results for nearly all the 
CF parameters except for qP (Table  3).

Effect of Drought Stress on Growth and 
Chlorophyll Fluorescence Parameters
The changes in soil water content and growth parameters of 
watermelon seedlings during the progressive treatment time 
(0–3 days after treatment) under control (well-irrigation) and 
drought-stress (no-irrigation) treatments are presented in 
Figure  8. The water content in the soil gradually decreased 
from 77% (1st day of treatment) to 37% (3rd day of treatment 
time) under drought stress. The shoot fresh weight and number 
of leaves were statistically lower in drought-stressed seedlings 
than in control seedlings on the 3rd day of the experiment. 
In contrast, plant height showed statistically similar values 
between control and drought stress groups at the respective 
treatment times, although the value was lower in drought-
stressed seedlings than in the control at the end of the 
experiment. The shoot of the scion began to wither continuously 
after the initiation of drought stress, and the stock began to 
wilt on the 2nd day (Figure  9). On the 3rd day of drought 
stress, the seedlings had permanent wilting symptoms showing 
cotyledons and curling of first three true leaves downward 
and upward, respectively; therefore, further treatment was 
not performed.

Most of the CF parameters did not differ significantly between 
control and drought-stressed seedlings during the respective 
treatment times (Figure  10). Fv/Fm remained unchanged 
throughout the experiment between control and drought stress 
treatment, while Fv′/Fm′, Y(NO), qN, and NPQ showed 
significant changes only at the end of the experiment (3rd day 
of treatment time). In contrast, Y(PSII), qP, and Rfd in drought 
stressed seedlings showed some decrement when compared to 

FIGURE 4 | Changes in CF parameters in grafted watermelon seedlings 
grown under different salt concentration levels during the progressive 
treatment time. Each plot point represents the mean ± SD of seven biological 
replicates. Refer Table 1 for the description of each parameter.

TABLE 2 | Summary of analysis of CF parameters of watermelon grafted seedlings at five salinity levels (0, 50, 100, 150, and 200 mM) and seven treatment times (0, 2, 
4, 6, 8, 10, and 12 days).

Parameters Salinity level (S) Treatment time (T) S × T

F-Value Significance F-Value Significance F-Value Significance

Fv/Fm 33.83 *** 23.45 *** 9.04 ***

Fv′/Fm′ 16.107 *** 19.26 *** 6.84 ***

Y(PSII) 63.04 *** 68.74 *** 7.37 ***

NPQ 80.57 *** 15.70 *** 15.62 ***

qN 62.88 *** 15.09 *** 12.10 ***

qP 41.987 *** 46.18 *** 6.05 ***

Rfd 73.12 *** 56.85 *** 12.99 ***

Y(NO) 46.05 *** 30.95 *** 10.03 ***

*** indicate significance at p < 0.001. Detailed information on each CF parameter is provided in Table 1.

151

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Shin et al. Abiotic Stress Responses in Watermelon

Frontiers in Plant Science | www.frontiersin.org 8 December 2021 | Volume 12 | Article 786309

control seedlings at respective treatment time showing the 
statistically lower value at the end of the treatment time. At 
overall, except for Fv/Fm, all CF parameters were significantly 
affected by drought stress, treatment time, and their interaction 
(Table  4).

Effect of Salinity, Temperature, and 
Drought Stress on Chlorophyll and Proline 
Content
Chlorophyll and proline content were differentially affected by 
salinity, drought, and temperature stress. Content levels of both 
chlorophyll a and b decreased with increasing salinity levels and 
treatment time (Figures  2E,F). Chlorophyll a was decreased 
significantly with the increase of salinity level until 150 mM, and 
increased at 200 mM salinity level at 6 days of treatment time, 
while it continuously decreased with the increase of salinity level 

at 12 days of treatment time. Chlorophyll b followed somewhat 
similar pattern as shown in chlorophyll content at 6 days of 
treatment time while it was statistically similar in higher 
concentration (150 and 200 mM) at 12 days of treatment time. 
Chlorophyll b was more sensitive to salinity levels than chlorophyll 
a. It showed 29 and 63% of decrement in 6 and 12 days of 
treatment time, respectively in 200 mM salinity level compared 
to the control. Temperature stress also had a significant effect 
on both chlorophyll a and b content. Seedlings exposed to both 
high and low temperature conditions had statistically lower 
chlorophyll content levels at both 6 and 12 days of treatment 
compared to the control (Figures  5E,F). However, they were 
differentially affected by high and low temperatures. High 
temperature showed a continuous decrease in levels of both 
chlorophylls as the treatment time progressed, whereas both 
chlorophylls content decreased at day 6 and was restored at day 
12 of low temperature stress. The effect of high temperature stress 
on the chlorophyll content was lower than that of the salinity 
stress treatment showing only 13 and 14% of decrement in 6 
and 12 days of treatment time, respectively. Levels of both chlorophyll 
a and b increased at day 12 of treatment at low temperatures 
when compared with those at high temperatures. Seedlings under 
drought stress showed significantly higher chlorophyll a content 
levels than the control at the 1st day and decreased from the 2nd 
day on, whereas chlorophyll b levels were lower in drought-stressed 
seedlings than in the control from the 1st day of treatment to 
the end of the experiment (Figures  8E,F).

The level of proline, an important stress indicator, increased 
with increases in salinity level at both 6 and 12 days of treatment 
time (Figure  2G), and the highest proline levels were found 
in the 200 mM-salinity level-treatment seedlings. Similarly, 
temperature stress also caused a significant change in proline 
content (Figure  5G). Plants subjected to both the high and 
low temperature treatment had higher proline content compared 
to the control at both the 6 and 12 day of treatment time 
(Figure 8G). High temperature stress showed the highest proline 
accumulation in both the 6 and 12 day of treatment time. 
Drought stress also resulted in higher proline content in stressed 
seedlings than in the control at different treatment times. 
Overall, the effect of each stressor, treatment time, and their 
interaction had significant effects on both chlorophyll and 
proline content (Table 5). Temperature stress showed the most 
significant changes (F-value: 5387; p > 0.001) in proline content 
within the stress levels of respective experiments, while both 
the chlorophyll a and b were highly affected by salinity stress 
than by the water and temperature stress.

DISCUSSION

Effect of Salt, Temperature, and Drought 
Stress on Growth Parameters
Plants experience many biotic and abiotic stresses during their 
life cycle. Salt, temperature, and drought stress are important 
abiotic stresses that have adverse effects on plant growth and 
productivity. This study summarizes the effects of salt, 
temperature, and drought stress on growth and CF parameters 
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FIGURE 5 | Changes in growth parameters (A–D), chlorophyll (E,F) and 
proline (G) content of grafted watermelon seedlings grown under moderate, 
high, and low temperatures during the progressive treatment time. Each bar 
represents the mean ± SD of seven biological replicates in growth parameters, 
and three replicates in chlorophyll and proline content. Different letters within 
a figure indicate a significant difference at p < 0.05 by Duncan’s multiple range 
test.
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along with chlorophyll and proline content in grafted watermelon 
seedlings at three true-leaf stages. The results showed the 
differential effects of each stress on growth performance and 
the photosynthetic apparatus. The magnitude of the effect was 
dependent on the type of stress and the duration of seedling 
exposure to stress. We  found a significant decrease in growth 
parameter values under all stress conditions, which was consistent 
with previous reports in a range of plants, including watermelon 
(Hou et  al., 2016; Bhandari et  al., 2018; Yanyan et  al., 2018; 
Lee et  al., 2021; Shin et  al., 2021a).

Similar to several previous studies in various plants (Bhandari 
et al., 2018; Shin et al., 2020a, 2021b), growth parameter values 
were significantly reduced in all three experiments. However, 
the magnitude of the variation was dependent on the stressor. 
There were clear differences between the control and salinity-
stressed seedlings. Changes in leaf phenotype and roots of 

plants subjected to salinity stress and a decrease in fresh shoot 
weight of scions were previously observed in watermelon, 
Arabidopsis, lettuce, and tomato (Kamanga et  al., 2020; Rolly 
et  al., 2020; Shin et  al., 2020a; Song et  al., 2020). In addition, 
the poor growth status showing leaf deformation and stunted 
seedling growth under drought stress conditions was similar 
to the previous report by Zhang et al. (2011) that might be due 
to physiological changes in the leaves, nodes, and stems, 
including decreased chlorophyll content and inhibition of 
photosynthesis due to lack of water (Zhang et al., 2019). Similar 
results have been reported for tomato, watermelon, and other 
plants (Omprakash et  al., 2017; Moles et  al., 2018; Li et  al., 
2019). These results were similar to those of previous studies, 
which found that the chlorophyll content of plants affected 
by drought stress was reduced in watermelon, tomato, lettuce, 
and Arabidopsis affected by drought stress (Banks et al., 2018; 

FIGURE 6 | Changes in visual appearance of grafted watermelon seedlings grown under different temperature conditions during the progressive treatment time.

153

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Shin et al. Abiotic Stress Responses in Watermelon

Frontiers in Plant Science | www.frontiersin.org 10 December 2021 | Volume 12 | Article 786309

Yao et  al., 2018; Malambane et  al., 2021; Shin et  al., 2021a). 
Our results also showed a decrease in growth parameters under 
high and low temperature conditions, which is in accordance 
with Hou et  al. (2016). In addition, high-temperature and 
low-temperature stress causes damage to the cellular structure 
of plants, reduction of chlorophyll, and deterioration of 
photosynthetic function (Garstka et  al., 2007; Mattila et  al., 
2020). The result showed more prominent effect of low 
temperature compared to the high temperature stress this was 
because the stock cultivar used in this study was resistant to 

the high temperature. Phenotypic changes in the leaves and 
roots of plants subjected to low-temperature stress and a decrease 
in fresh shoot weight of scions were also observed in Arabidopsis 
and watermelon seedlings (Mattila et al., 2020; Lu et al., 2021).

Effect of Salt, Temperature, and Drought 
Stress on CF Parameters
CF analysis can sensitively detect changes in photosynthetic 
activities in plants and has been used to study the response 
of plants to biotic and abiotic stresses (Gorbe and Calatayud, 
2012; Shin et  al., 2020a,b, 2021a). CF has been widely used 
as a non-destructive evaluation technique to evaluate the 
photosynthetic level of plants under salinity stress (Morant-
Manceau et  al., 2004; Bhandari et  al., 2018; Shin et  al., 2020b). 
However, the response to different stresses is highly dependent 
on the magnitude, type, and duration of stress undergone by 
the plants, and on plant genotypes. In this study, CF parameters 
responded differentially depending on the type of stress, although 
the general trends of some parameters were similar. Plants 
exposed to stressful conditions exhibited a decreasing trend 
in photochemical quenching and an increase in 
non-photochemical quenching parameters, although 
non-photochemical quenching parameters also decrease at severe 
stressful conditions (Murchie and Lawson, 2013).

Fv/Fm, an important photochemical quenching parameter 
that determines the maximum quantum efficiency under dark 
conditions, showed a similar value (~0.80) throughout the 
experimental period under control conditions in all three 
experiments. These results are consistent with a large number 
of other studies on unstressed plants (He et al., 2009; Bhandari 
et  al., 2018; Shin et  al., 2020b, 2021a). Salt stress induced a 
decrease in Fv/Fm values, but the decrease was significant 
only at higher salinity levels after 8 days of treatment. Similar 
results were also previously found in a range of plants, including 
watermelon (Hou et al., 2016; Shin et al., 2020b). In accordance 
with Bhandari et  al. (2018), we  found a significant decrease 
in Fv/Fm values in seedlings grown under low temperature, 
whereas high temperature did not affect Fv/Fm until the end 
of the experiment, indicating that higher temperatures did not 
damage the primary photochemical reaction sites; stroma of 
chloroplasts and thylakoid lamellae which are the primary sites 

FIGURE 7 | Changes in CF parameters in grafted watermelon seedlings 
grown under moderate, high and low temperature during progressive 
treatment time. Each plot point represents the mean ± SD of seven biological 
replicates. Refer Table 1 for the description of each parameter.

TABLE 3 | Summary of analysis of CF parameter of watermelon grafted seedlings at three temperature levels (8/4°C, 24/20°C, and 40/36°C day/night temperature) 
and seven treatment times (0, 2, 4, 6, 8, 10, and 12 days).

Parameters Temperature level (T) Treatment time (T) T × T

F-Value Significance F-Value Significance F-Value Significance

Fv/Fm 310.56 *** 13.81 *** 11.71 ***

Fv′/Fm′ 393.25 *** 12.27 *** 9.39 ***

Y(PSII) 28.54 *** 5.57 *** 2.47 *

NPQ 83.63 *** 7.37 *** 5.98 ***

qN 66.59 *** 5.08 *** 4.56 ***

qP 2.41 NS 2.72 * 1.46 NS
Rfd 77.74 *** 11.73 *** 3.94 ***

Y(NO) 253.10 *** 14.75 *** 11.84 ***

*, and *** indicate significance at p < 0.05, and p < 0.001, respectively. NS: non-significant. Detailed information on each CF parameter is provided in Table 1.
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of heat injury (Wise et al., 2004). In the drought stress treatment, 
we  found non-significant changes in Fv/Fm throughout the 
treatment period. Such differential effects on Fv/Fm by abiotic 
stresses have also been observed in a range of plants (Fahad 
et  al., 2017; Giordano et  al., 2021), however, this is the first 
report that provides information on Fv/Fm values under three 
stress factors at the same time.

The other photochemical quenching parameters [Fv′/Fm′, 
Y(PSII), and qP] were also affected when exposed to stress 
conditions. All of them exhibited similar trends as in the case 
of Fv/Fm, although the magnitude was different, showing lower 
values when exposed to higher salt stress (>50 mM). In the 
case of temperature stress treatment, we  found significantly 
lower values of Fv′/Fm′ and Y(PSII) from days 2 and 4 of 
treatment onward, respectively. In contrast, qP showed 
non-significant changes. Furthermore, only Y(PSII) values 

exhibited significant differences between control and drought-
stressed seedlings, and even in that case, the difference was 
statistically significant at the end of the experiment. The decrease 
in the Fv′/Fm′ values in the seedlings grown under lower 
temperatures might be  due to chilling injury caused by cold 
stress under the given conditions (Hou et  al., 2016). All the 
photo chemical quenching parameters were affected by 
temperature stress suggesting the disturbed homeostasis via 
the modification in carbon metabolism enzymes, starch 
accumulation, and sucrose synthesis, by down regulating the 
genes in carbohydrate metabolism (Ruan et  al., 2010).

Values of the non-photochemical quenching parameters NPQ 
and qN decreased with increasing salinity level and treatment 
time. In this case, we  also found a significant effect at higher 
salinity levels (>50 mM). The adverse effect was observed at 
150- and 200-mM salinity levels. In the second experiment 
with temperature stress conditions, both the high and low 
temperatures had non-significant effects on qN when compared 
to the control at the respective treatment time. In contrast, 
both high and low temperatures exhibited significant differences 
in NPQ values at the respective treatment times. NPQ levels 
generally increase under stressful conditions and decrease under 
severe stressful conditions (Murchie and Lawson, 2013), and 
the magnitude of changes depends on the plant species and 
the level of stress (Yao et al., 2018; Shin et al., 2020a). Seedlings 
grown under high salinity level and low and high temperatures 
showed a significant decrease in NPQ levels when compared 
to control seedlings during the respective treatment time, 
indicating a reduction in the heat dissipation capacity, limitations 
of CO2 assimilation, and imbalance of photochemical activity 
in photosystem II (Huang et al., 2019). In addition, our results 
also indicated the incapacity of the protection mechanism due 
to senescence for the downregulation during those periods 
(Ors et  al., 2021). Furthermore, non-significant changes in 
NPQ levels until the end of the experiment under drought 
conditions indicated that the photochemical activity in the 
photosystem was not severely influenced until that period.

Y(NO) is an important CF parameter that indicates the 
effectives of the photo-protective mechanisms (NPQ) in plants. 
The increase in Y(NO) levels at a higher salinity levels and 
at lower temperature conditions implied that the seedlings 
received extreme stress during the experiment, and the NPQ 
was decreased under extreme stress conditions (Murchie and 
Lawson, 2013; Huang et  al., 2019). These results are consistent 
with previous reports on watermelon and tomato seedlings 
(Hou et  al., 2016; Shin et  al., 2020a). Similar to the effects 
on NPQ, Y(NO) levels also exhibited non-significant changes 
until the 2nd day of treatment time in drought stress treatment, 
implying that the photosynthetic activity was normal until that 
period. Rfd, an indicator of plant vitality under stressful 
conditions (Murchie and Lawson, 2013), showed a significant 
decrease in high salinity levels from day 4 of the experiment 
on salinity stress experiment. Our results were consistent with 
those of Shin et  al. (2020b), who also found a significant 
decrease in Rfd levels in tomato seedlings exposed to extreme 
salinity stress. Both the high-and low-temperature stress also 
showed a significant decrease in Rfd levels from the beginning 

A E
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F
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FIGURE 8 | Changes in growth parameters (A–D), chlorophyll (E,F) and proline 
(G) content of grafted watermelon seedlings grown under drought stress during 
the progressive treatment time. Each bar represents the mean ± SD of five 
biological replicates in growth parameters, and three replicates in chlorophyll and 
proline content. Different letters within a figure indicate a significant difference at 
p < 0.05 by Duncan’s multiple range test. RWC: relative water content.
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of the experiment; however, low temperature had a more 
prominent effect on Rfd levels, in accordance with Hou et  al. 
(2016). Drought stress had minimal effect only at the end of 
the experiment, suggesting that the photosynthetic protective 
mechanism of watermelon seedlings is affected only under 
extreme drought conditions (soil water level < 40%). NPQ, which 
was the common parameter significantly affected by each of 
the stressor, is presented as a representative chlorophyll 
fluorescence images to understand the spatial heterogeneity 
(Figure  11). The results showed the obvious spatial variation 
in CF images but differently depending upon the stressor.

The response of CF parameters to salt, temperature, and 
drought stress conditions were different from each other. Fv/
Fm, NPQ, Rfd, and Y(NO) showed significant changes during 
the progressive treatment time at higher salinity levels, suggesting 
the possible use of these parameters to detect salinity stress. 
Only two CF parameters; Rfd and NPQ were significantly 
affected under high temperature conditions even the cultivar 
was high-temperature resistant, while six parameters [Fv/Fm, 
Fv′/Fm′, Rfd, Y(NO), Y(PSII), and NPQ] were affected 
significantly under low temperature conditions. So, two 
parameters (Rfd and NPQ) can be  used to detect low-and 
high-temperature stress, as these parameters decreased 
significantly from the beginning of the experiment under both 
temperature conditions. Furthermore, Rfd and NPQ levels 
decreased significantly at the end of the experiment in the 

drought stress treatment and could be considered for detecting 
drought stress. Further studies on seedlings of many watermelon 
genotypes exposed to long-term stress and higher light conditions 
might be  required to detect the effect of genotype, and the 
impact of initial severe stress as genotype is also a key factor 
for the tolerance of stress conditions.

Effect of Salt, Temperature, and Drought 
Stress on Chlorophyll and Proline Content
Proline, one of the osmoprotectants (glycine, proline, betaine, 
and soluble sugars) is an important compatible solute found in 
plants (Farooq et al., 2008). It is generally elevated in large amounts 
in plants under stressful conditions. It is found in plants in small 
quantities even under non-stressed conditions (Trovato et  al., 
2008; Gupta et al., 2014). It helps to maintain membrane integrity 
by maintaining turgor pressure to sustain the growth of the plant 
(Gupta et al., 2014). The level of proline content is highly dependent 
on plant genotypes and stressors (Nikolaeva et  al., 2010). Proline 
increased with the increase in stress level in all three experiments 
compared to the respective control seedlings, and the magnitude 
of increment was dependent on the stressor. We found a significant 
increase in proline content with increasing salinity and progressive 
treatment time. The highest proline levels were found in the 
seedlings treated with the highest salinity level, similar to previous 
reports on lettuce, tomato, and citrus (Shin et  al., 2020a,b; 
Martínez-Cuenca et  al., 2021). The elevation of proline levels at 

FIGURE 9 | Changes in visual appearance of grafted watermelon seedlings grown under control and drought stress conditions during the progressive treatment 
time.
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different salinity levels indicated that seedlings grown at the 
salinity level experienced high stress levels. Our results showed 
that the seedlings grown under both high and low temperatures 
had statistically higher proline content than the control at both 
6 and 12 days of treatment. However, the highest proline content 
was observed at high temperatures, which is consistent with 
previous results in paprika seedlings (Bhandari et  al., 2018). The 
over accumulation of proline under high temperature stress was 
responsible to regulate the osmotic activities and protect cellular 
structure by maintain the membrane stability and by buffering 

the cellular redox potential (Farooq et  al., 2008). So the status 
of the plants was maintained with normal photosynthesis showing 
non-significant changes in Fv/Fm. Similarly, seedlings experiencing 
drought stress also showed statistically higher proline content; 
however, the magnitude of increase was lower than that in 
previous reports (Li et  al., 2019; Shin et  al., 2021a), which might 
be  due to the difference in genotypes and less treatment time. 
These results suggest that a responsive mechanism exists due to 
salt, temperature, and drought stress in grafted watermelon 
seedlings, which along with other compounds also helps to 
generate an efficient antioxidant system to cope with ROS species, 
increase the protein stability, and stabilize the structure of the 
membrane bilayer (Mirzaei et  al., 2012). Comparative analysis 
showed that the highest proline accumulation and its fluctuation 
occurred under temperature stress, followed by salinity stress 
and drought stress.

Chlorophylls are photosynthetic pigments that are responsible 
for the photosynthetic efficiency of plants and are ultimately 
responsible for primary production (Gitelson et  al., 2003). 
Chlorophyll a and b levels were measured in all three experiments, 
and we found significant changes in the levels of both chlorophylls 
with increasing stress levels. The levels of both chlorophyll a 
and b decreased with increasing salinity levels during the 
progressive treatment time, consistent with previous reports 
in different vegetables, including watermelon (Taïbi et al., 2016; 
Yanyan et al., 2018; Shin et al., 2020a, 2021a). The lower content 
levels of the chlorophylls at higher salinity levels was probably 
due to damage to the chloroplast membrane and structure, 
increased activity of chlorophyllase, and photo-oxidation of 
chlorophyll due to the excessive accumulation of salt in the 
soil (Taffouo et  al., 2010; Silveira and Carvalho, 2016). 
Temperature stress treatment showed a somewhat different 
accumulation pattern of chlorophylls, and the effect was lower 
than that of salinity stress. As watermelon is a thermophilic 
crop, it is less affected at high temperatures than at low 
temperatures, and seedlings grown at low temperatures exhibited 
relatively higher chlorophyll content than those grown at high 
temperatures. Our results were consistent with previous reports 
by Hou et al. (2016), who also found lower chlorophyll content 
in watermelon seedlings grown at cold temperatures. This is 
because plants exposed to low temperatures experience chilling 

FIGURE 10 | Changes in CF parameters in grafted watermelon seedlings 
grown under control and drought stress conditions during the progressive 
treatment time. Each plot point represents the mean ± SD of seven biological 
replicates. Refer to  Table 1 for the description of each parameter.

TABLE 4 | Summary of analysis of CF parameters of watermelon grafted seedlings at two water levels (well-irrigated and non-irrigated) and four treatment times (0, 1, 
2, and 3 days).

Parameters Water level (W) Treatment time (T) W × T

F-Value Significance F-Value Significance F-Value Significance

Fv/Fm 2.93 NS 1.11 NS 0.82 NS
Fv′/Fm′ 8.25 ** 17.58 *** 6.51 **

Y(PSII) 89.41 *** 3.82 * 21.22 ***

NPQ 15.16 *** 32.80 *** 17.95 ***

qN 39.51 *** 57.78 *** 41.52 ***

qP 86.86 *** 6.30 ** 22.35 ***

Rfd 68.04 *** 26.91 *** 23.86 ***

Y(NO) 39.22 *** 15.50 *** 22.35 ***

*, **, and *** indicate significance at p < 0.05, p < 0.01, and p < 0.001, respectively. NS: non-significant. Detailed information on each CF parameter is provided in Table 1.

157

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Shin et al. Abiotic Stress Responses in Watermelon

Frontiers in Plant Science | www.frontiersin.org 14 December 2021 | Volume 12 | Article 786309

FIGURE 11 | Representative chlorophyll fluorescence images of non-photochemical quenching (NPQ) under the salinity, drought, and temperature stress treatment 
in different time after each stress initiation in watermelon seedlings.

injury, which enhances ion imbalance, reduction in antioxidant 
activity, and low chlorophyll content (Lu et  al., 2020; Mlinarić 
et  al., 2021). Chlorophyll content in drought-stressed seedlings 
was least affected among the three treatment types, although 
significant changes were observed between control and 

drought-stressed seedlings during the respective treatment 
schedule. In the drought stress experiment, the treatment was 
conducted for only 3 days as the status of the seedling was 
poor after that period. Previous reports also showed that 
chlorophyll levels in plants decrease after severe stress; however, 

TABLE 5 | Summary of analysis of chlorophyll and proline of watermelon grafted seedlings at various salinity, drought, and temperature levels, and multiple treatment 
times.

Treatment Parameter Stress level (S) Measurement treatment time (T) S × T

F-Value Significance F-Value Significance F-Value Significance

Salt
Chl a 9,147 *** 7,891 *** 1875 ***

Chl b 697.41 *** 492.61 *** 64.66 ***

Proline 963.06 *** 62.02 *** 11.93 ***

Drought
Chl a 36.09 *** 68.58 *** 98.83 ***

Chl b 12.13 ** 45.45 *** 37.76 ***

Proline 889.36 *** 285.41 *** 61.56 ***

Temperature
Chl a 572 *** 203.4 *** 532 ***

Chl b 73.41 *** 44.46 *** 97.33 ***

Proline 5387.5 *** 399.7 *** 469.2 ***

** and *** indicate significance at p < 0.01 and p < 0.001, respectively. Chl: chlorophyll.
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some authors have reported an increase in chlorophyll content 
for some time and decrement after exposure to severe stress 
conditions (Partelli et  al., 2009; Bhandari et  al., 2018; Shin 
et  al., 2020b, 2021a).

CONCLUSION

This study showed the potential of using CF imaging to 
detect abiotic stressors (salinity, high and low temperature, 
and drought) in grafted watermelon seedlings (Figure  11). 
The response of the seedlings to various abiotic stresses was 
observed through changes in CF and growth parameters, 
chlorophyll, and proline content. The changes were dependent 
on the type of stressor and duration. Most CF parameters 
were affected only at the higher salinity stress (>50 mM), 
with the most influential parameters being Fv/Fm, NPQ, 
Rfd, and Y(NO) increased during the progressive treatment 
time. Low temperature had a prominent effect on nearly all 
the CF parameters compared to the high temperature stress, 
suggesting that the low temperature caused more severe 
photo-inhibition of photosynthesis than high temperature. 
Drought stress had a similar effect on CF parameters as in 
the high-temperature stress, showing significant changes only 
in the Rfd and NPQ. Altogether, NPQ and Rfd could be used 
as index parameters for the detection of three abiotic stresses. 
In general, values of all the growth parameters reduced, 
chlorophyll content levels were decreased or increased 
depending upon the stressor, and proline content was increased 
in the seedlings exposed to each stressor. These results imply 
that photosynthetic activity, growth performance, and 
chlorophyll and proline content are differentially affected by 

each stressor and their magnitude, which might be  useful 
for the effective detection of each stress during the production 
process of watermelon-grafted seedlings. Furthermore, research 
on open environmental conditions having high light condition 
and combined application of stressors are required for 
understanding the comparative and synergetic effects of these 
stressors, respectively in photosynthetic and growth parameters 
in watermelon seedlings.
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This study aimed to evaluate short-duration (24 h) UV-B irradiation as a preharvest
abiotic stressor in canola plants. Moreover, we quantified the expression levels of
genes related to bioactive compounds synthesis in response to UV-B radiation. Canola
seedlings were cultivated in a plant factory under artificial light (200 µmol m−2 s−1

photosynthetic photon flux density; white LED lamps; 16 h on/8 h off), 25◦C/20◦C
daytime/nighttime air temperature, and 70% relative humidity. Eighteen days after
sowing, the seedlings were subjected to supplemental UV-B treatment. The control
plants received no UV-B irradiation. The plants were exposed to 3, 5, or 7 W m−2 UV-B
irradiation. There were no significant differences in shoot fresh weight between the UV-
B-irradiated and control plants. With increasing UV-B irradiation intensity and exposure
time, the H2O2 content gradually increased, the expression levels of genes related
to photosynthesis downregulated, and phenylpropanoid and flavonoid production,
and also total phenolic, flavonoid, antioxidant, and anthocyanin concentrations were
significantly enhanced. The genes related to secondary metabolite biosynthesis were
immediately upregulated after UV-B irradiation. The relative gene expression patterns
identified using qRT-PCR corroborated the variations in gene expression that were
revealed using microarray analysis. The time point at which the genes were induced
varied with the gene location along the biosynthetic pathway. To the best of our
knowledge, this is the first study to demonstrate a temporal difference between the
accumulation of antioxidants and the induction of genes related to the synthesis of this
compound in UV-B-treated canola plants. Our results demonstrated that short-term UV-
B irradiation could augment antioxidant biosynthesis in canola without sacrificing crop
yield or quality.

Keywords: antioxidant capacity, bioactive compounds, environmental stress, phytochemical, microarray
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INTRODUCTION

Phytochemicals are naturally occurring, bioactive, and non-
nutrient compounds in plants (Visioli et al., 2011). They
include polyphenols, terpenoids, alkaloids, carotenoids,
aromatic glucosinolates, among others. Some of these promote
human health, as they are anti-inflammatory, anticancer,
antioxidant, and so on (Reddy et al., 2003; Scalbert et al.,
2011). Research interest in foods containing functional
antioxidant phytochemicals has recently grown. The quantity
and quality of phytochemicals may be improved through
various environmental controls. Plant factories and vertical
farms can precisely regulate the ambient environment and are
suitable as production systems for crops rich in phytochemicals
(Goto, 2011).

Plants control a wide range of physiological processes and
use UV radiation as an environmental signal. The three types
of UV radiation are UV-C (100–280 nm), UV-B (280–315 nm),
and UV-A (315–400 nm) (Madronich et al., 1998). However,
only UV-A and UV-B radiations reach the surface of the Earth,
as UV-C is absorbed mainly by the tropospheric ozone layer.
As UV-B irradiation range is highly energetic and has a short
wavelength, it can generate excessive reactive oxygen species
(ROS) in plants exposed to high levels of it. Excessive ROS
can damage DNA, proteins, membranes, and the photosynthetic
apparatus. Hence, they can adversely affect plant growth and
development (Tevini et al., 1981; Flint and Caldwell, 1984; Tevini
and Steinmüller, 1987; Jenkins, 2009). In contrast, low-level
UV-B irradiation promotes morphological responses in plants,
such as leaf growth, stomatal differentiation, and the inhibition
of hypocotyl elongation. Therefore, the morphophysiological
responses of plants to UV irradiation vary with intensity and
exposure duration. However, even at the same UV irradiation
intensity and exposure time plant responses vary with species,
genotype, resistance, sensitivity, leaf thickness, and other factors
(Rozema et al., 1997; Kataria et al., 2014; Lee and Oh, 2015).
According to a previous report (Sytar et al., 2018), the sensitivity
of lettuce to UV was different depending on the species, and
the content of secondary metabolites (total phenol, flavonoid,
anthocyanin, and phenolic acids) also varied when different
lettuce species were exposed to the same UV conditions.

Plants may adapt to augmented UV-B irradiation by
increasing secondary metabolite production. UV-B-responsive
genes are induced via UV resistance locus 8 (UVR8)-dependent
UV-B signaling pathway, and promote the accumulation of
phenolic compounds, such as hydroxycinnamic, ferulic, caffeic,
and sinapic acids and flavonoid compounds, such as luteolin,
kaempferol, and quercetin (Jenkins, 2009; Wargent et al., 2009;
Neugart et al., 2014; Escobar et al., 2017). The overall responses
of plants to UV-B irradiation are governed by acclimatization
mechanisms, such as the accumulation of compounds that absorb
UV-B radiation, and they protect the photosynthetic apparatus
from injury (Allen et al., 1998; Chang et al., 2009). The long-
term effects of UV-B irradiation on plants have been extensively
investigated, and the findings of these studies helped predict
the consequences of increasing UV exposure. Nevertheless,
few studies have focused on the impact of short-term UV-B

exposure on plants. As the photosynthesis process is sensitive
to UV-B irradiation, most plant species are affected by it and
their growth may be impaired in response to prolonged UV
exposure. Therefore, research is being conducted on increasing
the phytochemical content of plants without inhibiting their
growth. It was recently discovered that short-term (several days)
UV-B irradiation might serve as a preharvest treatment to obtain
plant products rich in antioxidants (Pandey and Pandey-Rai,
2014; Inostroza-Blancheteau et al., 2016). Studies on the effects
of short-term UV-B irradiation may help elucidate UV-induced
signaling pathways and trends in genes and/or parameters that
immediately respond to UV irradiation.

Previous research showed that upregulation of the expression
of genes related to bioactive secondary metabolites synthesis
triggered by UV-B exposure may vary with duration. Inostroza-
Blancheteau et al. (2016) found that PAL, CHS, and F3’H
expression levels were upregulated within 6 h of UV-B exposure.
Elevated total phenolic content was observed in highbush
blueberry leaves (Vaccinium corymbosum L. cv. Bluegold)
exposed to UV-B for 24 h. In addition, Neugart and Bumke-
Vogt (2021) investigated the effects on major genes expression of
the phenylpropanoid pathway, contents of the flavonoid groups,
and hydroxycinnamic acid derivatives after short-term UV-B
irradiation and before the harvest of various Brassica species
(B. rapa, B. nigra, B. oleracea, B. juncea, B. napus, and B. carinata).
The response during the acclimation period after the UV-B
irradiation (2 and 24 h) was investigated, but the response
immediately after the UV-B irradiation was not confirmed. If
we conduct a study to check the changes in gene expression
and the content of bioactive compounds immediately after UV
exposure, it is expected that the temporal differences between
gene expression and the synthesis of bioactive compounds in
response to UV irradiation are elucidated.

Hence, this study aimed to identify UV-B treatment
conditions conducive to the accumulation of bioactive
compounds without inhibiting plant growth. Furthermore,
this study was performed to confirm the expression patterns of
photosynthesis and secondary metabolites biosynthesis related
genes and the increasing patterns of bioactive compounds
according to UV-B exposure time in canola plants.

MATERIALS AND METHODS

Plant Materials and Cultivation
Conditions
The experiments were conducted at Chiba University, Japan,
in a closed plant production system with multilayer cultivation
shelves. Canola (Brassica napus L. cv. Kizakino-natane) was the
plant material. It was used as a model for research on the growth,
gene expression, and accumulation of bioactive compounds in
a Brassica leaf vegetable cultivated under various environmental
conditions (Goto et al., 2020; Son et al., 2020). The seeds were
germinated on Kimtowels (NIPPONPAPER CRECIA Co. Ltd.,
Tokyo, Japan). One day after sowing (DAS), the germinated
seeds were transplanted to M-size polyurethane sponges (M
Hydroponics Laboratory Co. Inc., Aichi, Japan). The seedlings
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were then transplanted to 18.6-L hydroponic containers (San Box
No. 26B; SANKO Co. Ltd., Tokyo, Japan) under white LED lamps
(LDL40S-N/19/21; Panasonic Corp., Osaka, Japan) and cultivated
until 18 DAS. A quarter-strength Otsuka A formulation (OAT
house A treatment; OAT Agrio Co. Ltd., Tokyo, Japan) was
the nutrient solution used in all the experiments. The pH and
electrical conductivity of the nutrient solution were∼6.4-6.5 and
∼1.0-1.1 dS m−1, respectively. The environmental conditions
were 200 µmol m−2 s−1 photosynthetic photon flux density, 16-
h light/8-h dark, 25◦C/20◦C daytime/nighttime air temperature,
70% RH, and 1,000 µmol mol−1 CO2.

UV-B Treatment
The 18-DAS seedlings were subjected to UV-B irradiation at
three intensities, including relatively low (intensity 3 W m−2;
daily dose 259.2 kJ m−2), medium (intensity 5 W m−2; daily
dose 432 kJ m−2), and high (intensity 7 W m−2; daily dose
604.8 kJ m−2) (Figure 1A). The UV-B energy levels used in
this study were determined through preliminary experiments.
When UV-B levels of 3, 5, and 7 W m−2 were applied to 18-
DAS canola plants for 3 days, changes in gene expression of
PAL, CHS, rbcL, and rbcS, and morphological changes such as
a decrease in leaf area and increase in specific leaf weight (leaf
thickness) were observed in leaves in response to UV-B levels
(data not shown). Therefore, the three levels of UV-B used in our
study were thought to be effective treatments for inducing both
gene expression and bioactive compounds synthesis in canola
plants for only 1 day. This study was conducted to confirm the
initial response by short-term UV-B irradiation for 1 day. Each
UV-B irradiation intensity was regulated by covering the UV-B
lamp with Al foil. UV-B irradiation was applied to the canola
plants for 24 h. The UV-B irradiation source was a UV-B lamp
(TL20W/01 RS; Philips, Hamburg, Germany). Figure 1A shows
the spectral radiant flux of the UV-B lamp. The UV-B lamp
spectrum was measured with a spectroradiometer (USR-45D;
Ushio Inc., Tokyo, Japan). Ten samples were performed during
24 h. The duration of the UV-B treatments and the sampling
intervals are shown in Figure 1B. Shoot fresh weights were
determined immediately before and after 24 h UV-B treatment.

Total Phenolic Concentration and
Antioxidant Capacity Determination
Canola leaf samples were dried under vacuum in a freezer (FDU-
1110; Tokyo Rikakikai Co. Ltd., Tokyo, Japan) at −45◦C for
24 h and pulverized in an MM400 ball mill (Retsch GmbH,
Haan, Germany) at 20 Hz for 2 min. Dried powder (0.01 g) was
extracted with 1 mL of 80% (v/v) acetone. The third leaves of each
canola plant that were subjected to different UV-B irradiation
intensities were used in the analysis. The UV-B irradiation
times were 0, 0.25, 0.5, 1, 2, 5, 8, 12, 16, and 24 h. Total
phenolics and antioxidants were extracted from ∼200 mg fresh
leaf sample with 80% (v/v) acetone according to the methods
of Miller and Rice-Evans (1996) and Ainsworth and Gillespie
(2007), respectively. The total phenolic concentration and the
antioxidant capacity were determined with a spectrophotometer
(V-750; JASCO Corp., Tokyo, Japan) at 765 nm and 730 nm,

respectively. Results were expressed as milligrams gallic acid
equivalents (GAE) per gram of fresh weight for the total phenolic
concentration (GAE mg g−1 FW). To determine the antioxidant
capacity, acetone extracts were diluted 10-fold, and the results
were expressed as millimoles trolox-equivalents per gram fresh
weight (TEAC mM g−1 FW).

Flavonoid Concentration Determination
The third leaves of each canola plant were exposed to UV-B
irradiation for 0, 0.25, 0.5, 1, 2, 5, 8, 12, 16, or 24 h and were
used for this analysis. Approximately, 200 mg of leaf tissue was
dried under vacuum in a freezer (FDU-1110; Tokyo Rikakikai Co.
Ltd.) at −45◦C for 24 h and pulverized in an MM400 ball mill
(Retsch GmbH) at 20 Hz for 2 min. About 7 mg dried powder
was extracted with 1 ml of 70% (v/v) ethanol and the extracts
were sonicated at 30 Hz for 6 min, incubated in the dark at
4◦C overnight, and centrifuged at 13,000 × g for 2 min at room
temperature (20–25◦C). The extract (150 µl) was then added
to a mixture of 750 µl distilled water plus 45 µl of 5% (w/v)
NaNO2. The solution was then vortexed and maintained in the
dark at room temperature (20–25◦C) for 6 min. Then, 90 µl of
10% (w/v) AlCl3 was added to the solution, and the mixture was
incubated for 5 min. Then, 300 µl of 1 M NaOH and 165 µl of
distilled water were added to the solution. The optical density
of the reaction mixture was measured in a spectrophotometer
(V-750; JASCO Corp.) at 510 nm. The flavonoid concentration
was expressed as milligrams catechin equivalents per gram dry
weight (mg catechin/g DW).

Anthocyanin Concentration
Determination
Approximately, 400-500 mg fresh second leaf tissue was collected
from plants subjected to UV-B irradiation for 0.25, 0.5, 1, 2,
5, 8, 12, 16, or 24 h. The leaf tissue was stored at −80◦C
until the analysis. The anthocyanins were analyzed according
to the method of Mancinelli and Schwartz (1984) with certain
modifications. The plant tissues were extracted overnight at 4◦C
in 400 µl of 1% (v/v) HCl in methanol. Two hundred microliters
of distilled water plus 500 µl chloroform were added to the
extracts and the mixtures were centrifuged at 13,000 × g for
2 min at room temperature (20–25◦C). The chloroform layer
was separated, 400 µl of the top layer was transferred to a fresh
microtube, and 600 µl of 1% (v/v) HCl in methanol was added
to it. The anthocyanin concentrations were calculated using the
following formula:

A530− 0.25× A657 (1)

where, the factor 0.25 compensates for the contribution
of the chlorophylls to A530. Cyanidin-3-glucoside was a
reference standard.

Hydrogen Peroxide Content
Determination
The hydrogen peroxide content of the canola plants was
determined according to the method of Velikova et al. (2000).
Fresh leaf tissue (0.2 g) was ground twice in the MM400 ball mill
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FIGURE 1 | A spectral radiant flux of UV-B lamp (TL20W/01 RS; Philips, Hamburg, Germany) measured with a spectroradiometer (USR-45D; Ushio Inc., Tokyo,
Japan) and photographs of canola plants under UV-B lamps (A), UV-B sampling and exposure times (B), and canola plants after 16 h UV-B treatment (C). UV-B
irradiation intensity was set to 3, 5, and 7 W m−2 by overlapping Al foil on the lamp tube. Sampling was conducted at 0, 0.25, 0.5, 1, 2, 5, 8, 12, 16, and 24 h to
investigate time-dependent responses to UV-B irradiation. UV-B irradiation intensities at top of the cultivation panel were set to 3, 5, and 7 W m−2. White bar = 3 cm.

(Retsch GmbH) at 30 Hz for 1 min each time. Then 2 mL of 0.1%
(w/v) trichloroacetic acid (TCA) was added to the microtube
containing the leaf sample. The extract was centrifuged at
12,000 × g for 15 min at room temperature (20–25◦C). The
supernatant (0.5 mL) was added to 0.5 mL of 10 mM potassium
phosphate buffer (pH 7.0) plus 1 ml of 1 M KI. The absorbance
was measured in a spectrophotometer (V-750; JASCO Corp.) at
390 nm. H2O2 in the leaf extracts was estimated via an equation
used to determine standard H2O2 concentrations. The H2O2 was
expressed as micromoles H2O2 equivalents per gram fresh weight
(µmol H2O2/g FW).

Gene Expression Quantification
The third leaves were sampled at 0, 0.25, 0.5, 1, 2, 5,
8, 12, 16, and 24 h UV-B irradiation to investigate time-
dependent changes in gene expression. Approximately, 100-
150 mg fresh leaf sample was collected and stored at −80◦C
until the analysis. The RNeasy Plant Mini Kit (Qiagen
N.V., Venlo, Netherlands) was used to extract total RNA.
The oligonucleotide primers used in the experiments were
constructed according to information obtained from the
GenBank database (Supplementary Table 1). Complementary
DNA (cDNA) was synthesized with a PrimeScript RT Reagent
Kit (Perfect Real Time; Takara Bio Inc., Kusatsu, Shiga, Japan)
in a GeneAmp PCR System 9700 (Thermo Fisher Scientific,
Waltham, MA, United States). The PCR was performed in

a Thermal Cycler Dice Real Time System (TP970; Takara
Bio Inc.) set to 37◦C for 15 min followed by incubation at
85◦C for 5 s, termination of the reaction, and cooling at
4◦C. TB Green Premix ex Taq (Tli RNaseH Plus; Takara Bio
Inc.) was used for the PCR. The PCR conditions for the
amplification were 95◦C for 5 s (hold), 40 cycles of 95◦C
for 5 s→60◦C for 30 s (two-step PCR), one cycle of 95◦C
for 15 s→60◦C for 30 s→95◦C for 15 s (dissociation). The
following mRNAs were amplified: phenylalanine ammonia-lyase
(PAL), cinnamic acid 4-hydroxylase (C4H), 4-coumaroyl-CoA
ligase (4CL), ferulate 5-hydroxylase (F5H), chalcone synthase
(CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase
(F3H), flavonoid 3′-hydroxylase (F3′H), flavonol synthase (FLS),
dihydroflavonol 4-reductase (DFR), anthocyanidin synthase
(ANS), constitutively photomorphogenic (COP1), elongated
hypocotyl 5 (HY5), light-harvesting complex II chlorophyll
a/b-binding protein gene (Lhcb), ribulose-1,5-bisphosphate
carboxylase/oxygenase large subunit (rbcL), and ribulose-1,5-
bisphosphate carboxylase/oxygenase small subunit (rbcS). The
mRNA expression levels were normalized against that of the actin
(ACT) reference gene. Relative gene expression was calculated
using the log2 treatment:control ratio.

Microarray Analysis
To explore genome-wide expression changes, samples were
selected from plants exposed to 5 W m−2 UV-B irradiation
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for 0.5, 2, 8, 16, and 24 h. Total RNA (1–5 µg) was isolated
from each sample with an Agilent Quick Amp Labeling Kit
(Agilent Technologies, Palo Alto, CA, United States) and
used in the microarray analysis. After fragmentation, the
cDNA (1.65 µg) was hybridized using Agilent microarray
protocols. The hybridized probes were scanned with an Agilent
G4900DA SG12494263. The ratios of normalized fluorescence
values were obtained by calculating the log2 treatment:control
expression ratios.

The differentially expressed genes (DEGs) were used to
evaluate differential gene expression of 5 W m−2 UV-B
irradiation. To analyze reliable data, the noise was excluded
(signal evaluation). Flag values of microarray analyzed with
Agilent software are as follows: [0] signal was not detected, [1]
signal detected but difficult to evaluate, and [2] signal detected.
Results of variations in gene expression only involved data with
flag values [2]. After data signal evaluation, gene ontology (GO)
terms were retrieved and data with confirmed GO function
were used for DEGs analysis. Gene differences between those
values were calculated based on the Log2 ratio. The result was
shown as the number of upregulated (Log2 fold change ≥ 1) and
downregulated genes (Log2 fold change ≤−1).

Statistical Analysis
The means were subjected to one-way ANOVA in SPSS v.
24 (IBM Corp., Armonk, NY, United States). There were four
biological replicates and one plant per replicate. The displayed
data are the means and ±SE per treatment. The means were
compared using the Tukey–Kramer test. Treatment means were
considered significantly different at p < 0.05.

RESULTS

Growth Characteristics After UV-B
Exposure
After 16 h UV-B irradiation exposure, the stems of the canola
plants turned red. Stem redness intensified with UV-B irradiation
intensity (Figure 1C). At higher UV-B irradiation intensity
levels, the fresh weight of the canola plant decreased after 24 h.
However, none of the UV-B treatments (3, 5, or 7 W m−2)
notably affected canola growth relative to the control after 24 h
(Supplementary Figure 1).

Total Phenolic, Flavonoid, and
Anthocyanin Concentrations, and
Antioxidant Capacity in Response to
UV-B
The total phenolic concentration and antioxidant capacity of the
canola leaves varied with UV-B exposure time and irradiation
level (Figure 2). The total phenolic concentration increased 2 h
after the onset of UV-B irradiation and continuously increased
over time (Figure 2A). The plants subjected to 3, 5, and 7 W m−2

UV-B irradiation for 16 h showed a 1.43-, 1.53-, and 1.66-fold
increase, respectively, in total phenolic concentrations compared
with the control plants. The total phenolic concentration

increased with UV-B irradiation intensity, showing a 1.82-fold
increase in the plants subjected to 7 W m−2 UV-B irradiation
for 24 h compared with the control. After 24 h, the plants
exposed to 7 W m−2 UV-B irradiation presented a 1.75-fold
increase in antioxidant capacity compared with the control
plants (Figure 2B).

The total flavonoid concentration in the canola leaves varied
with UV-B irradiation intensity and exposure time (Figure 2C).
The total flavonoid concentration increased 8 h after the onset
of UV-B irradiation and continuously increased. They reached
their maxima after 24 h UV-B irradiation but did not significantly
differ among UV-B irradiation intensity levels.

The plants subjected to 3, 5, and 7 W m−2 UV-B irradiation
showed 2.59-, 2.63-, and 5.15-fold increase, respectively, in
anthocyanin concentrations after 16 h of the treatment compared
with the control plants (Figure 2D). The plants exposed to 7 W
m−2 UV-B irradiation for 24 h showed an 11.21-fold increase in
anthocyanin concentrations compared with the control plants.
The stems and leaves of the canola plants turned red after
16 h UV-B exposure.

Hydrogen Peroxide Production in
Response to UV-B
In this work, the association between H2O2 content and plant
UV-B exposure was like that for anthocyanin (Figure 3). The
H2O2 content significantly increased 8 h after the onset of UV-
B irradiation and continuously increased. The plants subjected
to 7 W m−2 UV-B irradiation for 24 h showed maximum
H2O2 content, representing a 4.97-fold increase compared with
the control plants.

Expression of Genes Related to
UVR8-Dependent UV-B Signaling
Pathway
The expression levels of COP1 and HY5 were significantly
induced by UV-B irradiation (Figure 4). The levels of COP1 and
HY5 were upregulated after the onset of UV-B irradiation and
reached maxima at 2 h; thereafter, COP1 and HY5 levels were
substantially downregulated.

Expression of UV-B-Responsive Genes
Related to Phenylpropanoid and
Flavonoid Biosynthesis
To identify DEGs from microarray data, genes were determined
to be differentially expressed in the UV-B samples compared with
the control samples (Supplementary Figure 2). GO annotation
was used to functionally analyze the canola plant. Approximately,
2,500 gene transcripts were assessed after the signal evaluation
was applied during 24 h of UV-B exposure (Supplementary
Figure 2). Differential gene expression analysis showed a total
of 291, 398, 197, 192, and 305 at 0.5, 2, 8, 16, and 24 h of UV-
B exposure, respectively. Among them, 188 and 181 upregulated
genes showed significantly highest fold changes at 0.5 and 2 h
of UV irradiation. The number of downregulated genes was 217,
showing the highest fold change at 2 h of UV irradiation.
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FIGURE 2 | Time courses of total phenolic concentration (A), antioxidant capacity (B), flavonoid concentration (C), and anthocyanin concentration (D) in canola
subjected to 3, 5, and 7 W m−2 UV-B irradiation intensity. Third (total phenolic and antioxidant capacity and flavonoid) and second (anthocyanin) leaves from the
bottom of each canola plant were subjected to various UV-B irradiation intensities. Vertical bars indicate SE (n = 4). Different letters (a, b, and c) indicate a significant
difference using Tukey–Kramer test (*p < 0.05, **p < 0.01, and ***p < 0.001, respectively).

FIGURE 3 | Time courses of H2O2 content in canola subjected to 3, 5, and 7 W m−2 UV-B irradiation intensity. Second leaves from the bottom of each canola plant
were subjected to various UV-B irradiation intensities. Vertical bars indicate SE (n = 4). Different letters (a, b, and c) indicate a significant difference using
Tukey–Kramer test (*p < 0.05, **p < 0.01, and ***p < 0.001, respectively).

Table 1 shows the results of the microarray analyses of
the variations in the expression levels of the genes related
to phenylpropanoid and flavonoid biosynthesis, respectively.

The relative gene expression patterns identified using RT-PCR
corroborated the variations in gene expression revealed by
microarray analysis. PAL was continuously expressed between
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FIGURE 4 | Time courses of COP1 (A) and HY5 (B) mRNA expression in canola plants. Vertical bars indicate SE (n = 4). Third leaves from the bottom of each canola
plant were subjected to various UV-B irradiation intensities. UV-B irradiation intensities at the top of the cultivation panel were set to 3, 5, and 7 W m-2. Line graphs
indicate log2 fold changes (treatment:control) in gene expression levels.

2 h and 16 h UV-B irradiation. The expression levels of C3′H
and CCoAOMT were significantly upregulated after 2 h UV-
B exposure. F5H expression was upregulated after 8 h UV-B
treatment. The downstream SGT expression was upregulated
throughout the UV-B irradiation period. The expression levels
of all flavonoid genes, except FLS and ANS, continuously varied
between 2 and 16 h of UV-B treatment (Table 1).

The expression levels of the genes encoding secondary
metabolites and the shikimate pathway were analyzed
(Supplementary Figure 3). Relative gene expression varied
with UV-B irradiation intensity and exposure time. The PAL
and C4H expression levels reached maxima after 2 h UV-B
treatment (Figure 5). PAL and C4H encode the first and
second key enzymes in the phenylpropanoid pathway. In the
plants subjected to 7 W m−2 UV-B irradiation, PAL and C4H
expression levels were downregulated at a slower rate than in the
plants subjected to the other UV-B irradiation intensity levels.
The trend in 4CL expression in response to UV-B irradiation
resembled those for PAL, C4H, and F5H expression, which
peaked after 5 h UV-B treatment and increased once again after
16 h UV-B exposure. The plants exposed to 7 W m−2 UV-B
irradiation maintained high F5H expression levels between 5
and 12 h UV-B exposure. CHS expression reached maxima at
5 h (3 W m−2) and 8 h (5 and 7 W m−2) UV-B treatment
and decreased thereafter. CHI expression reached a peak after
2 h at all the UV-B irradiation intensity levels and decreased
thereafter. F3H expression reached a peak at 5 h after UV-B
treatment and decreased thereafter. F3’H expression reached
a maximum after 5 h UV-B irradiation and remained at high
levels between 5 and 12 h UV-B treatment. FLS expression
reached peaks at 2 h (5 and 7 W m−2) and 5 h (3 W m−2) UV-B
exposure and decreased thereafter. DFR expression reached a
maximum at 5 h UV-B exposure and decreased to a minimum
after 16 h. In the plants subjected to 5 and 7 W m−2 UV-B
irradiation, DFR expression reached maxima after 5 h UV-B
treatment and decreased thereafter. ANS expression showed a
trend similar to that of DFR only until 5 h UV-B treatment. At all
UV-B irradiation intensities, ANS expression was dramatically
downregulated after 8 h and was upregulated thereafter.

Expression of Genes Related to
Photosynthesis in Response to UV-B
Radiation
Figure 6 shows the log2 ratios of the expression levels of the
photosynthesis-related genes, namely Lhcb1, rbcL, and rbcS,
within 24 h of UV-B irradiation. Relative Lhcb1 expression was
reduced under all UV-B treatments. However, the timing of
the decrease in Lhcb1 expression varied with UV-B irradiation
intensity. Nevertheless, all UV-B irradiation intensities lowered
gene photosynthesis-related gene expression after 8 h UV-
B treatment. Then, Lhcb1 expression was upregulated after
16 h UV-B exposure.

The rbcL expression levels varied with UV-B irradiation
intensity. For 3 and 7 W m−2 UV-B irradiation treatments,
rbcL expression was rapidly upregulated after 2 h, downregulated
after 8 h, and showed expression levels similar to those of the
control thereafter.

The rbcS expression levels also varied with UV-B irradiation
intensity. For 3 and 7 W m−2 treatments, rbcS expression was
rapidly upregulated after 4 h and downregulated after 8 h.
Under the 5 W m−2 UV-B treatment, however, rbcS expression
was immediately upregulated at 8 h and downregulated
thereafter. Nevertheless, the variations in the expression levels
did not significantly differ among photosynthesis-related genes
(data not shown).

DISCUSSION

Effect of UV-B Irradiation on Growth
The growth of the canola plants was not significantly affected by
short-term (24 h) UV-B treatment (Supplementary Figure 1).
Ravindran et al. (2010) reported that UV-B exposure for 2 days
(20 W m−2, 2 h per day; daily dose 144 kJ m−2) did not affect
the growth parameters (shoot length, fresh weight, dry weight, or
leaf area) of Indigofera tinctoria, whereas 4-day UV-B irradiation
reduced growth. When tobacco was subjected to various UV-
B irradiation doses (0, 37, 740, 1,480, and 2,960 J m−2) for
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TABLE 1 | Gene expression variation related to phenylpropanoid and flavonoid biosynthesis in canola subjected to UV-B irradiation.

Genename [EC No.] Description Time points after start of treatment (h)

0.5 2 8 16 24

PAL [EC:4.3.1.24] Phenylalanine ammonia-lyase 0.41 3.01 2.92 1.94 0.30

C4H [EC:1.14.1491] Cinnamate 4-hydroxylase isoform 0.42 3.90 2.39 2.50 0.89

4CL [EC:6.2.1.12] 4-Coumarate-CoA ligase 0.08 0.48 0.11 −0.01 −0.84

C3’H [EC:1.14.14.96] p-Coumaroyl ester 3′-hydroxylase −0.08 2.29 0.93 −0.25 0.02

CCoAOMT [EC:2.1.1.104] Caffeoyl-Coenzyme A 3-O-Methyltransferase −0.27 2.72 0.27 0.08 −0.04

CCR [EC:1.2.1.44] Cinnamoyl-CoA reductase −0.73 0.10 0.47 1.02 −0.89

F5H [EC:1.14.-.-] Ferulate 5-hydroxylase −0.64 0.93 1.69 2.68 0.39

POX [EC:1.11.1.7] Peroxidase 0.22 −0.49 −0.69 −0.45 −0.61

SGT [EC:2.4.1.120] Sinapate glucosyltransferase 0.15 3.36 4.86 3.48 1.61

SCT [EC:3.4.16– 2.3.1.91] 1-O-sinapoylglucose:choline sinapoyltransferase −0.11 −0.12 −0.13 −0.01 −0.40

CHS [EC:2.3.1.74] Chalcone synthase −0.02 2.73 5.76 3.49 2.91

CHI [EC:5.5.1.6] Chalcone isomerase 0.13 3.44 5.54 3.01 2.60

F3H [EC:1.14.11.9] Flavanone 3-hydroxylase 0.14 1.77 2.74 2.93 1.16

F3’H [EC:1.14.13.21] Flavonoid 3′-hydroxylase 0.92 5.99 8.67 9.43 9.46

FLS [EC:1.14.11.23 1.14.20.6] Flavonol synthase −0.32 −0.33 −0.06 0.75 −1.67

DFR [EC:1.1.1.219 1.1.1.234] Dihydroflavonol 4-reductase −0.49 0.51 2.51 3.28 4.26

ANS [EC:1.14.11.19 1.14.20.4] Anthocyanidin synthase 0.27 −0.17 −0.29 0.09 0.13

Values indicate log2 ratios (n = 1) obtained by calculating treatment:control gene expression ratios. UV-B irradiation intensity at the top of the cultivation panel was set to
5 W m−2.
Positive values that increased by ≥ 1.0 are in pink. To analyze reliable data, the noise was excluded (signal evaluation). Flag values of microarray analyzed with Agilent
software are as follows: [0] signal not detected, [1] signal detected difficult to evaluate, and [2] signal detected. Results of variations in gene expression only involved data
with flag values [2].

FIGURE 5 | Time courses of PAL (A), C4H (B), 4CL (C), F5H (D), CHS (E), CHI (F), F3H (G), F3’H (H), FLS (I), DFR (J), and ANS (K) mRNA expression in canola
(n = 4). Third leaves from the bottom of each canola plant were subjected to various UV-B irradiation intensities. UV-B irradiation intensities at top of the cultivation
panel were set to 3, 5, and 7 W m−2. Line graphs indicate log2 fold changes (treatment:control) in gene expression levels.
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FIGURE 6 | Time courses of (A) Lhcb1, (B) rbcL, and (C) rbcS mRNA expression in canola (n = 4). Third leaves from the bottom of each canola plant were
subjected to various UV-B irradiation intensities. UV-B irradiation intensities at top of the cultivation panel were set to 3, 5, and 7 W m−2. Line graphs indicate log2

fold changes (treatment:control) in gene expression levels.

4 days, cell proliferation significantly declined. Cell death was
also significantly induced after 4 days of UV-B irradiation at all
intensities (Takahashi et al., 2015). These results indicate that
exposure to 3, 5, and 7 W m−2 UV-B irradiation for 24 h did
not adversely affect canola plant growth. These treatments were
not intense enough to cause permanent oxidative damage to the
plants. However, long-term UV-B treatment may adversely affect
plant growth, and the responses to it may vary with plant species,
developmental stage, and leaf thickness (Piluzza and Bullitta,
2011; Wang et al., 2018).

Effects of UV-B Irradiation on Bioactive
Compounds and Hydrogen Peroxide
High-intensity UV light can damage DNA, proteins, and the
photosynthetic apparatus, including the chloroplasts. These
injuries can adversely affect plant growth and development
(Diffey, 1991). However, low-intensity UV irradiation may
induce various protective mechanisms in plants, including the
accumulation of low-molecular-weight compounds, such as
antioxidants that suppress oxidative damage and maintain redox
homeostasis (Bharti and Khurana, 1997). UV-B irradiation can
induce the biosynthesis of phenylpropanoids and flavonoids
that absorb UV (Jenkins, 2009; Robson et al., 2015). In the
leaf epidermis, phenolics reduce oxidative damage and protect
the photosynthetic apparatus by inhibiting the penetration
of UV-B irradiation into the inner photosynthetic layers
(Agati and Tattini, 2010).

Here, short-term UV-B irradiation at 3, 5, and 7 W
m−2 activated secondary metabolite biosynthesis pathways
and promoted antioxidant accumulation in canola plants
(Figures 2, 3). The concentrations of secondary metabolites, such
as total phenolics, antioxidants, total flavonoids, anthocyanins,
and H2O2, significantly increased in response to all UV-B
exposure levels (Figures 2, 3). These results suggested that
the stems and leaves of canola plants turned red because the
concentration of anthocyanins was significantly increased by UV-
B irradiation; thus, anthocyanin expression may be associated
with higher UV-B irradiation levels (Figure 2D). Furthermore,
the results of total phenolic and antioxidant capacity showed
almost similar trends, which agreed with results of previous
studies that showed a positive linear relation between total

phenolic content and antioxidant capacity (ABTS and DPPH)
(Javanmardi et al., 2003; Pennycooke et al., 2005; Piluzza and
Bullitta, 2011).

Based on the homeostasis between ROS and antioxidants,
ROS is continuously generated in different cellular compartments
as by-products of various metabolic pathways, such as plant
respiration and photosynthesis, even under normal conditions
(Berni et al., 2019). A constant adjustment of ROS concentration
is achieved by non-enzymatic secondary metabolites such as CAT,
APX, GPX, and GR; therefore, plants have a normal metabolism
(Kapoor et al., 2015). However, when plants were subjected to a
stressful environment (biotic and abiotic), an imbalance between
ROS and antioxidants occurs, resulting in a rapid increase in
ROS concentration and inducing irreversible oxidative processes
such as cell death by “oxidative burst” (Sharma et al., 2012).
However, the appropriate concentration of ROS acts as a
signaling molecule participating in important developmental
and physiological processes and responds to highly generated
ROS by generating secondary metabolites such as polyphenol,
terpene, and vitamins (Sharma et al., 2012; Xia et al., 2015).
In particular, H2O2 plays a central role in signaling pathways
because of its relatively long lifetime and can freely diffuse across
membranes through aquaporins (Bienert et al., 2007; Møller
et al., 2007). Moreover, at the appropriate levels, ROS may act as
signaling molecules in various intracellular processes and induce
antioxidant biosynthesis.

In this study, the concentration of H2O2 showed a tendency
to increase as energy increased, but all UV treatments did not
significantly affect plant growth and morphological changes.
Therefore, the amount of ROS generated was not high enough to
inhibit canola growth and was within the appropriate range. The
observed increases in the bioactive compound content at 3, 5, and
7 W m−2 UV-B irradiation indicated that these radiation levels
were within a suitable range to stimulate antioxidant biosynthesis
in canola. Previous studies reported that the UV levels they
used increased the bioactive compound content in plants (Lois,
1994). Arabidopsis plants were exposed to various levels of UV-
B irradiation intensity (0.10, 0.15, 0.24, 0.37, and 0.8 W m−2)
for 30 h and flavonoid accumulation was the highest at 0.15 W
m−2 UV-B irradiation (Lois, 1994). However, exposure to high
UV levels may actually decrease the bioactive compound content
by impairing cellular function. Similar results were obtained for
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sweet basil leaves exposed to various levels of UV-B irradiation
intensity (0, 2.3, 3.6, and 4.8 W m−2) (Ghasemzadeh et al.,
2016). The concentrations of total phenolics, total flavonoids,
and individual flavonoids, and phenolic acids were the highest
at 3.6 W m−2 UV-B irradiation but significantly declined at
4.8 W m−2 UV-B irradiation. In Medicago sativa, antioxidant
and flavonoid compounds significantly increased in response
to lower UV-B irradiation levels (17.35 µW cm−2 d−1),
whereas higher UV-B irradiation levels caused severe damage
and adversely affected growth and development (Gao et al.,
2019). The foregoing results suggest that, below certain UV
exposure thresholds, the content of bioactive compounds, such
as flavonoids, may be proportional to the UV dose. In this study,
there is a possibility that 7 W m−2 UV-B irradiation was the
optimal UV-B exposure level, whereas 10 W m−2 reduced the
bioactive compound content in canola.

Effects of UV-B Irradiation on Expression
of the Secondary Metabolites
Biosynthesis-Related Genes
The expression of the genes encoding antistress and antioxidant
compounds is regulated by the UVR8 pathway (Hideg et al.,
2013). The cytoplasmic UVR8 photoreceptor is an active dimer
and it becomes a monomer during UV-B absorption. UV-B-
induced UVR8 photoreceptor monomers directly reacted with
E3 ubiquitin ligase “constitutively photomorphogenic 1” (COP1)
and promoted “elongated hypocotyl 5” (HY5) transcription in
Arabidopsis nuclei (Brown et al., 2005; Favory et al., 2009; Wu
et al., 2012). In Arabidopsis, the accumulation of HY5 transcripts
promoted flavonoid biosynthesis by activating chalcone synthase
(CHS) and prevented UV-B absorption by epidermal tissue
(Bharti and Khurana, 1997; Kliebenstein et al., 2002; Brown
and Jenkins, 2008). Photomorphogenic responses, such as an
increase in leaf thickness, axillary branching, and the induction
of UV-absorbing compounds, are mediated by the activation
of UV-B photoreceptor UV “resistance locus 8” (UVR8) in
response to low-to-moderate UV-B irradiation levels (0.1-21
µmol m−2 s−1 and 1.77-1.07 W m−2) (Hectors et al., 2007;
Brown and Jenkins, 2008; Rizzini et al., 2011). COP1 and HY5
transcription were induced in Arabidopsis by low UV-B flux
rates (0.1 µmol m−2 s−1) (Brown and Jenkins, 2008). In this
study, the expression levels of COP1 and HY5 were upregulated
immediately after UV-B exposure and attained the highest
expression levels after 2 h. UV-B-absorbing compounds were
also affected by UVR8 pathway activation and accumulated in
the canola plants (Figure 2). However, high UV-B irradiation
levels may induce ROS biosynthesis, which damages DNA,
proteins, membranes, and so on, and impedes plant growth and
development (Brown and Jenkins, 2008; Hideg et al., 2013). Here,
the UV-exposed plants were not harmed, and their bioactive
compound content had significantly increased. These results
suggest that the canola plants were subjected to only low-to-
moderate levels of UV-B irradiation.

The genes PAL, C4H, 4CL, F5H, CHS, CHI, F3H, F3’H,
FLS, DFR, and ANS are key genes in the phenylpropanoid
and flavonoid biosynthesis pathways. PAL leads to the main

bifurcation in phenylpropanoid metabolism and is an upstream
gene. F3’H, DFR, and ANS are downstream genes in flavonoid
biosynthesis. The times to peak expression differed among genes;
genes with downregulated expression required a long time to
reach maximum expression (Figure 5); however, with variable
gene expression (Table 1), the trends in upregulation were like
those encoding phenylpropanoids (PAL, C4H, and F5H) and
flavonoids (CHS, CHI, F3H, F3’H, and DFR) according to qRT-
PCR (Figure 5). When Chrysanthemum morifolium was exposed
to UV-B irradiation for different durations, HY5 expression
was rapidly upregulated after 1 h, whereas the expression levels
of CHS, CHI, F3H, and FLS increased after 6 h (Yang et al.,
2018). Similar trends were reported in a previous study analyzing
CHS, CHI, F3H, DFR, and ANS expression in radish sprouts
(Su et al., 2016). CHS, CHI, and F3H are located upstream
in the flavonoid biosynthesis pathway, and their expression
levels were upregulated after 12 h UV-B exposure. However, the
expression levels of downstream DFR and ANS were upregulated
after 24 h UV-B irradiation. Moreover, the expression levels of
phenylpropanoid and flavonoid-related genes were consistently
upregulated at 7 W m−2 UV-B irradiation. At 7 W m−2 UV-B
irradiation, gene expression levels decreased at a slower rate than
at 3 and 5 W m−2 UV-B irradiation. Therefore, 7 W m−2 UV-B
irradiation stimulated gene expression more effectively than 3 or
5 W m−2, regardless of the duration of UV-B exposure.

Microarray analysis was used for the whole-genome
exploration of gene expression profiles in canola plants.
Quantitative RT-PCR results supported the microarray data. In
the microarray analysis, many DEGs, down- or upregulated,
were observed during 24 h of UV-B irradiation (Supplementary
Figure 2). These genes identified in this study have been
implicated in secondary metabolite syntheses (Table 1). The
DEGs were significantly upregulated at the 0.5 and 2 h of UV-B
exposure relative to the other time point. The significantly
upregulated DEGs with unknown genes were from the 0.5 and
2 h of UV-B irradiation. These results suggested that DEGs were
involved in the complex molecular mechanisms necessary for
resistance to UV irradiation in canola plants. In addition, even
in the quantitative RT-PCR results (Figures 4, 5), genes of the
UVR8 pathway and the upper group of the secondary metabolite
rapidly increased after 2 h of UV exposure. The DEGs results
indicated that numerous genes in UV-B treated plants have
undergone molecular biological changes on 0.5 and 2 h of UV-B
irradiation. Even at 0.5 h, the number of upregulated genes was
large. It is possible that unanalyzed (or unconfirmed) genes were
expressed and ultimately led to upregulation.

The time points at which the expression levels of genes were
upregulated varied with plant species. UV-B irradiation induced
genes related to phenylpropanoid and flavonoid biosynthesis,
which increased polyphenol antioxidant content. The results
of the gene expression analyses were consistent with those for
the characteristics of the bioactive compounds (Figure 2). The
observed increases in the bioactive compound content in plants
subjected to 3, 5, and 7 W m−2 UV-B irradiation indicated
that all UV-B exposure levels were within a range suitable
to stimulate antioxidant phenolic compound biosynthesis in
canola. All UV-B treatments increased the production of these
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bioactive compounds by upregulating the expression levels
of several key genes in the biosynthetic pathways for these
compounds. However, there were significant time lags between
the observed increases in the levels of these compounds and
upregulation of the expression levels of genes encoding them.
The expression levels of PAL, C4H, and 4CL were dramatically
increased after 2 h UV-B irradiation. The relative expression
of F5H reached a peak after 5 h UV-B irradiation (Figure 5).
The total phenolic concentration coincided with the peaks in
F5H expression and significantly increased, starting at 5 h UV-
B irradiation (Figure 2A). The flavonoid biosynthesis genes
(CHS, F3H, F3’H, and FLS) were induced in response to HY5
transcript accumulation following UV-B irradiation, and their
peak expression levels occurred after 5-8 h UV-B irradiation. The
expression levels of ANS and DFR reached their maxima at 12-
16 h UV-B treatment. According to a previous report, some genes
involved in the biosynthesis of the phenylpropanoid pathway are
not expressed continuously when exposed to UV-B irradiation,
but genes are expressed rapidly for a short period and then return
to the basal level (Höll et al., 2019; Meyer et al., 2021). Our results
also showed a tendency to decrease to the basal level after each
gene expression peaked.

Total flavonoid concentration and relative anthocyanin
content increased at 5-8 h and 12-16 h UV-B irradiation,
respectively (Figure 2). Regardless of the time points at which the
expression levels of the gene reached their maxima, the bioactive
compound content continued to rise. These reactions may have
been defense responses in anticipation of future exposure to
the same abiotic stress. If UV irradiation is interrupted, the
plant may use its “memory capacity” to continue increasing
the bioactive compound content (Bruce et al., 2007). Time
differences between gene expression and bioactive compound
biosynthesis were reported for wheat leaves under drought
stress (Ma et al., 2014). Their CHS, CHI, F3H, FLS, DFR, and
ANS expression levels reached their maxima at 12-16 h after
UV. Timely application of short-term, moderate-intensity UV-
B irradiation to leafy vegetables 1-2 days preharvest might
enhance antioxidant phytochemical production without yield or
quality loss in horticultural crops raised in plant factories and
vertical farms under artificial light. Thus, bioactive compound
biosynthesis might have continued to increase in canola even
after the 24-h UV-B treatment.

Effects of UV-B Irradiation on Expression
of the Photosynthetic Metabolites
Biosynthesis-Related Genes
The photosynthesis-related genes Lhcb1, rbcL, and rbcS were
differentially expressed throughout the entire UV-B irradiation
period (Figure 6). The Lhcb1, rbcL, and rbcS expression levels
in pea plants were reduced by UV-B treatment (Strid et al.,
1994). Lhcb1 encodes the chlorophyll a/b-binding protein of
the photosystem (PS) - light-harvesting antenna complex and
maintains the photosynthetic apparatus (Andersson et al., 2003).
Lhcb1 also modulates stomatal movement and promotes plant
stress tolerance (Xu et al., 2012). In this study, Lhcb1 expression
was rapidly downregulated under all UV-B treatments after

8 h and upregulated after 24 h UV-B treatment (Figure 6A).
These results suggest that short-term UV-B exposure had a
negative effect on the photosynthetic machinery. Kalbina and
Strid (2006) reported that Lhcb1 mRNA expression was reduced
in Arabidopsis by short-term UV-B irradiation. O2

·− and H2O2
are secondary messengers involved in the downregulation of
the expression of photosynthetic genes, such as Lhcb (Kalbina
and Strid, 2006). Hence, the generated ROS might have
downregulated Lhcb1 expression in this study.

The CO2 fixation is achieved through photosynthesis, and
the enzyme Rubisco is involved in this complex process. It was
reported that this highly sensitive mechanism may be inhibited
by UV-B irradiation (Fedina et al., 2010). The rbcS (Rubisco
small subunit) and rbcL (Rubisco large subunit) proteins are
susceptible to degradation. However, the expression levels of
rbcS and rbcL are upregulated to compensate for the damage
caused to their protein products by oxidative stress (Xiong et al.,
2010). Here, rbcS expression was upregulated after 2 h and
downregulated after 8 h UV-B treatment (Figure 6C); however,
rbcL expression was upregulated after 4 h and downregulated
after 16 h UV-B treatment. The times of peak expression differed
slightly between rbcS and rbcL. Nevertheless, the rbcS and
rbcL protein levels were drastically downregulated by UV-B
treatment. It is therefore possible that rbcS and rbcL mRNA levels
were rapidly upregulated to regenerate the lost photosynthetic
proteins (Xiong et al., 2010). Enhanced gene transcription
might compensate for ROS-mediated protein damage/loss and
help maintain the photosynthetic machinery subjected to UV-
B irradiation. Increased rbcS and rbcL transcription have also
been reported to cause drought and salinity stress, which promote
oxidative stress (Lilley et al., 1996; Fu et al., 2007). Thus, rbcS and
rbcL expression levels were rapidly upregulated to compensate for
the decreases in photosynthetic protein content caused by UV-B
exposure. Nevertheless, prolonged UV-B exposure might delay or
even suppress upregulation of rbcS and rbcL expression.

In canola, short-term UV-B irradiation downregulated the
expression of genes implicated in photosynthesis but did
not adversely affect plant growth (Supplementary Figure 1).
However, if UV-B irradiation continues for > 2 days, plant
growth would significantly decrease.

CONCLUSION

This study demonstrated that the genes regulating secondary
metabolite biosynthesis in canola were affected by UV-B
irradiation intensity and duration. UV-B irradiation for ≤ 24 h
was merely a mild stressor for canola and did not damage
its photosynthetic machinery or hinder its growth. To
minimize UV-B-induced damage, phenylpropanoid and
flavonoid biosynthesis were rapidly activated, and antioxidant
phytochemicals accumulated. The expression levels of the genes
governing targeted secondary metabolic pathways significantly
differed with UV-B exposure duration. There were also temporal
differences between gene expression and bioactive compound
accumulation. The concentrations of all antioxidants increased in
response to the peak expression levels of the genes regulating the
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phenylpropanoid and flavonoid pathways. The plants subjected
to 7 W m−2 UV-B irradiation showed 1. 82-, 1. 75-, and
11.21-fold increase in total phenolic, flavonoid, and anthocyanin
concentrations, respectively, compared with the unexposed
controls because of the inherent “memory mechanism” of the
plant. To the best of our knowledge, this work is the first to
demonstrate a temporal difference between the accumulation
of antioxidants and the induction of the genes encoding them
in UV-B-treated canola plants. Based on the discoveries in this
work, timely application of short-term, moderate-intensity UV-
B irradiation to canola and other leafy vegetables at 1-2 days
preharvest might enhance the biosynthesis of health-promoting
antioxidants without compromising crop yield or quality.

As biosynthesis and accumulation of bioactive compounds
are regulated by complex temporal and spatial patterns, more
in-depth studies are needed on temporal differences between
gene expression and target bioactive compounds’ accumulation.
Short-term UV irradiation could be a widely used technique for
controlling the activation timing of target compounds in plant
factories and vertical farms.
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Prediction of crop yield is an essential task for maximizing the global food supply,
particularly in developing countries. This study investigated lettuce yield (fresh weight)
prediction using four machine learning (ML) models, namely, support vector regressor
(SVR), extreme gradient boosting (XGB), random forest (RF), and deep neural network
(DNN). It was cultivated in three hydroponics systems (i.e., suspended nutrient film
technique system, pyramidal aeroponic system, and tower aeroponic system), which
interacted with three different magnetic unit strengths under a controlled greenhouse
environment during the growing season in 2018 and 2019. Three scenarios consisting
of the combinations of input variables (i.e., leaf number, water consumption, dry weight,
stem length, and stem diameter) were assessed. The XGB model with scenario 3 (all
input variables) yielded the lowest root mean square error (RMSE) of 8.88 g followed
by SVR with the same scenario that achieved 9.55 g, and the highest result was by
RF with scenario 1 (i.e., leaf number and water consumption) that achieved 12.89 g. All
model scenarios having Scatter Index (SI) (i.e., RMSE divided by the average values of
the observed yield) values less than 0.1 were classified as excellent in predicting fresh
lettuce yield. Based on all of the performance statistics, the two best models were SVR
with scenario 3 and DNN with scenario 2 (i.e., leaf number, water consumption, and
dry weight). However, DNN with scenario 2 requiring less input variables is preferred.
The potential of the DNN model to predict fresh lettuce yield is promising, and it can be
applied on a large scale as a rapid tool for decision-makers to manage crop yield.

Keywords: machine learning, deep learning, DNN, yield prediction, food safety 2

INTRODUCTION

The changing conditions of climate and weather patterns during the past years have fueled the
current problems of land and water scarcity and continue to cause harm in the agricultural sector
(Majid et al., 2021). Globally, the agricultural sector is the largest consumer of water comprising
about 70% of the total demand, but 70% of this is returned as wastewater through the different
processes (Kloas et al., 2015; Murad et al., 2017). While per capita drinking water is about 2–5 L/day,
it requires about 5,000 L of water to produce daily dietary needs per person (Manju et al., 2017). The
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development of sustainable plans has become a global focus, and
a circular economy is the order of the day (Wei et al., 2019).

Without a doubt, the use of modern technologies has
increased ability of mankind to meet the latest challenges of
limited resources. Hydroponic systems are considered as an
alternative to traditional agricultural systems (Majid et al., 2021).
Safety, sustainability, and policy issues associated with water
and agriculture are fundamental to Egyptian interests. Irrigated
agriculture is the main user of water resources in most parts
of the world. Stress on water availability and associated impacts
among competing user groups in the region are increasing due
to population growth, development, environmental, and wildlife
concerns (Abd-Rbo et al., 2015). Therefore, the application of
modern agricultural techniques of hydroponic and aeroponics
without the need for soil is on the increase (Mehra et al.,
2018). Hydroponic systems can increase water productivity and
maintain the quality of production. Therefore, they should be
implemented on any scale to support the environment and
agriculture (El-Ssawy et al., 2020). Artificial intelligence (AI),
such as neural networks, has been applied in hydrology to deal
with complex phenomena (Elbeltagi et al., 2020; Abdel-Fattah
and Abdo, 2020; Mokhtar et al., 2021) and is also used to
control the growth of hydroponic plants (Mehra et al., 2018).
For some systems, such as the nutrient film technique (NFT),
a fresh solution of nutrients is continuously supplied to the
crops to compensate for the uptake of nutrients and water by
the plants. In some systems, the input of nutrients is based on
the nutrient/water uptake ratio concept, i.e., nutrient weight per
unit volume of water absorbed (Sonneveld and Voogt, 2001;
Neocleous and Savvas, 2019).

Lettuce grows much faster in aeroponics compared to a
floating system, probably due to the higher dissolved oxygen
level in the nutrient solution (Puccinelli et al., 2021). Hydroponic
systems can be automated using Internet of Things technology,
and machine learning (ML), a subset of AI, is very beneficial in
this regard. However, the use of ML in hydroponic/aeroponic
systems to automate plant growth has received less research
(Araújo et al., 2019). Recently, there have been many approaches
to estimate crop yield based on conventional methods, including
models of process-oriented crop simulation and statistical-based
models analyzing crop production and explanatory variables
(Johnson, 2014; Cai et al., 2019). Conventional statistical-
based methods or specific response functions linking yield and
independent variables provide an alternative to forecast yield due
to their simpler computation and higher interpretation power
(Qader et al., 2018). However, there are some problems with
conventional empirical prediction models because they tend to
be applicable to local conditions and the generalization for other
areas is limited (Qader et al., 2018; Folberth et al., 2019). ML is
a “black-box” with complicated functions but has the capability
for dealing with complex relationships between the independent
and the dependent variables (Kamir et al., 2020; Cao et al., 2021).
In recent years, ML techniques have been used in agricultural
research fields, such as classification of crop and monitoring of
growth and prediction of yield in some countries (Sadeghipour
et al., 2013; Shah et al., 2019; Wolanin et al., 2019). The ground
is now set for future sustainable agriculture that is data-driven to
feed AI and robots (Saiz-Rubio and Rovira-Más, 2020).

The ML is improving the ability of computers to perform
actions on their own after they have been trained for a specific
task. For machines to think like humans, they should first
learn like human beings. The mind of a human being makes
decisions based on past experiences, i.e., the data of the past
that one has been exposed to. ML algorithms have different
uses in hydroponics, such as to control plant growth, electrical
conductivity (EC) values, and the constituents of the nutrient
solution (Mehra et al., 2018). It instructs computers to perform
complicated tasks through regression, diagnosis, planning, and
recognition by learning from historical data. Thus, data and
algorithms are considered fundamental to performance of ML
models. Higher quality data and larger data sizes are instrumental
for the accuracy of ML models. It is also necessary to apply
suitable algorithms to achieve solutions to different problems
containing different types of datasets (Kang et al., 2020). For
example, Johnson (2014) applied a regression tree (RT) for
predicting yields of soybean and maize at the county-level in
the United States. In Australia, Cai et al. (2019) compared
the three improved ML models [i.e., support vector machine
(SVM), random forest (RF), and neural network (NN)] and the
method of traditional regression [i.e., Least Absolute Shrinkage
and Selection Operator (LASSO)] for the prediction of wheat
yield. Their results showed that ML methods were better than the
traditional regression method.

Jeong et al. (2016) predicted the yield of wheat, maize,
and potato by applying RF and multiple linear regression
(MLR). They concluded that RF was better than MLR in
predicting crop yields. Fukuda et al. (2013) also applied RF
to predict yields of mango fruit with a successful outcome.
Deep learning (DL), a subset of NN, has multiple layers
and progressively extracts higher-level features from the raw
input data (Lecun et al., 2015; Khaki and Wang, 2019). You
et al. (2017) used convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) to predict soybean yield
based on a sequence of remotely sensed images. Furthermore,
a deep neural network (DNN) was applied to predict maize
yield during 2008–2016, and the results showed that DNN was
clearly better than LASSO, shallow neural network (SNN), and
RT (Khaki and Wang, 2019). Kim et al. (2019) applied a DNN
model to predict corn and soybean yield during 2006–2015.
In Argentina, Khaki and Wang (2019) developed a DNN for
predicting soybean yields.

The initial cost for establishing a hydroponic system is
very high, making it imperative to predict crop yield before
establishment using models, such as ML. Therefore, the objectives
of this study were to (1) apply four ML models to predict
fresh head weight (yield) of lettuce under controlled greenhouse
conditions subject to three input scenarios consisting of the
combinations of input variables and (2) identify the best
model scenarios.

MATERIALS AND METHODS

Experimental Treatments
The experiment was conducted in a controlled greenhouse
(2.0 m wide, 3.5 m long, and 2.5 m height) environment
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FIGURE 1 | Components of the experimental setup. (A) Photograph.
(B) Computer graphics.

made with an iron frame covered with a polyethylene sheet
at the Agricultural Engineering Research Institute, Agricultural
Research Center, Giza, Egypt, during the growing season in 2018
and 2019. It contained three hydroponics systems (i.e., suspended
NFT system, pyramidal aeroponic system, and tower aeroponic
system) as shown in Figure 1, subjected to three different
magnetic levels (MWL1 = 3,800 gauss, MWL2 = 5,250 gauss,
and MWL3 = 6,300 gauss) (Figure 2). The nutrient solution
was pumped from an irrigation storage tank through 16-mm
polyethylene pipes connected to each system by a 1-hp pump, and
the irrigation rate was 10 L/day for 6 h.

The suspended NFT system consisted of 150-cm-high vertical
iron stands that support three horizontal pipes each of 250 cm
length and 10.16 cm diameter. Each pipe had holes with 5 cm
diameter at 20-cm intervals containing the hydroponic cups that
housed the plants. The pyramidal aeroponic system consisted
of 1 m2 iron frames, two put together to make a V-shaped
structure and placed on an iron tank (1 m wide, 1 m long, and
0.5 cm deep). The iron frames were covered with high-density
plastic sheets on both sides forming a triangular pyramid, the
plants being housed in the plastic sheet. A gutter at the bottom
of the pyramid collected the nutrient solution which was then
redirected to the irrigation storage tank. Four foggers of 0.5 m
diameter, discharging at 6 L/h under 2 bar pressure, were installed
inside the system. The tower aeroponic system was made of pipes
of 15.24 cm diameter and 1.5 m height. Also with this system,
the plants were placed at 20 cm intervals in hydroponic cups
within holes of 5 cm diameter. The nutrient solution was pumped
from a tank to the foggers installed above the system through a

polyethylene pipe of 16 mm diameter. The same type of foggers
was used for both the pyramidal and the tower aeroponic systems.

The lettuce (cv. LimorHyb.) plants were obtained from the
Institute of Horticulture Research, Giza, Egypt. In the hydroponic
systems, the plants were grown in high-density sponges of
3 cm thick. They were cultivated for 3 weeks in 5 cm deep
cups filled with nutrient solution to generate complete rooting.
The plants were placed in different hydroponics systems after
rooting on April 01, 2018, and March 01, 2019. Irrigation water
was sourced from two tanks filled with a nutrient solution
in the environmentally controlled greenhouse. The EC of the
nutrient solution was approximately 1.5 dS/m which also had the
following chemical properties: N = 51, P = 219.29, K = 358.3,
Ca = 135, Mg = 45, Fe = 2.7, Mn = 0.75, Cu = 0.375, Zn = 0.113,
B = 0.188, and Mo = 0.009 (Jackson and McGonigle, 2005).

Climate Conditions
The range of temperature during the two seasons was 23–25 and
20–22◦C, and the relative humidity was 60–65%. These weather
conditions were controlled and monitored by the greenhouse
tools (i.e., cooling pad, suction van, and monitoring sensor) and
were checked by a Hygrometer Thermo-Anemometer Model
407412 (accuracy ±0.8◦C and ±3%) and monitoring sensor
CSP60BA252M with a nominal resistance of 2,500 ohms. Light
intensity was 1981:1992 in the lux unit, and it was measured by
light meter Model YK-10LX (accuracy±5% and 4 days).

Plant Variables and Scenarios
The systems were designed to contain 64 plants per square meter
in each system. The harvest occurred after 50 days from planting
in the systems at the same time. For each harvest, three plants
were taken from each system. Then, the explanatory features, or
variables used interchangeably, of leaf number, stem length, stem
diameter, and dry weight, as well as the water consumption, and
the dependent feature of fresh head weight (yield) were recorded.
Descriptive statistical analysis of the collected data during the
growing season of 2 years is shown in Table 1 for the three
complete datasets. The explanatory features were divided into
three scenarios: scenario 1 (leaf number and water consumption),
scenario 2 (leaf number, water consumption, and dry weight), and
scenario 3 (leaf number, water consumption, dry weight, stem
length, and stem diameter, i.e., all input variables) (Table 2).

Machine Learning Models
Support Vector Machine
The SVM is a supervised learning algorithm that can also be
used as a regression model. The main objective is to minimize
the errors and individualize the hyperplane that increases the
tolerance limit. The approximated function in the algorithm of
SVM is given as follows:

f (x) = ωϕ(x)+ b (1)

where ϕ (x) is a feature space of higher dimension converted
from the input vector x, ω represents the weights vector, and b
are thresholds that are estimated by minimizing the following

Frontiers in Plant Science | www.frontiersin.org 3 March 2022 | Volume 13 | Article 706042178

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-706042 February 25, 2022 Time: 15:46 # 4

Mokhtar et al. Modeling Hydroponically Grown Lettuce Yield

FIGURE 2 | Flowchart of the treatments implemented and models applied.

regularized risk function:

R(C) = C
1
n

n∑
i=1

L(di, yi)+
1
2
‖ ω ‖2 (2)

where C is the penalty parameter of the error, di is the desired
value, n is the number of observations, and C 1

n
∑n

i=1 L(di, yi)
is the empirical error in which the function Lε is determined as
follows:

Lε(d, y) =
∣∣d − y

∣∣− ε
∣∣d − y

∣∣ ≥ ε or 0 otherwise (3)

where 1
2 ‖ ω ‖2 is the so-called regularization term and ε is the

tube size. The approximated function of Equation (1) is expressed
in an explicit form by introducing Lagrange multipliers and
exploiting the optimality constraints as follows:

f (x, αi, α
∗
i ) =

n∑
i=1

(αi − α∗i )k(x, xi)+ b (4)

where k(x, xi) is the kernel function. Vapnik (2016) and
Fan et al. (2018) have provided detailed information and the
computational procedures of the SVM algorithm.

TABLE 1 | Descriptive statistical analysis of the collected data.

Mean Max Min SD Q1 Q3

Stem diameter 22.05 28.20 17.00 2.84 19.98 23.98

Leaf number 26.88 37.00 21.00 3.51 24.00 29.00

Stem length 41.15 52.00 32.00 4.28 38.00 43.00

Dry weight 18.20 27.90 13.10 3.17 16.25 19.05

water/area 0.32 0.42 0.25 0.05 0.26 0.34

Fresh head weight 329.81 416.20 275.20 36.48 301.73 346.10

Extreme Gradient Boosting
The extreme gradient boosting (XGB) algorithm proposed by
Chen and Guestrin (2016) is a novel implementation method
for Gradient Boosting Machine which is based on RTs. The
algorithm depends on the “boosting” idea which combines
all the predictions of a set of “weak” learners to develop
a “strong” learner during strategies of additive training. The
general function for the prediction at step t is given as follows:

fi(t)
=

t∑
k=1

fk (xi) = f (t−1)
i + ft (xi) (5)

where ft (xi) is the learner at step t, fi (t) and fi (t-1) are the
predictions at steps t and t-1, and xi is the input variable.

To avoid the overfitting problem without any influence on
the model computational speed, the XGB applies the analytic
expression given below to evaluate the “goodness” of the model

TABLE 2 | Summary of the combination of the input variables for the applied
models.

Scenario Model Input variables
combination

1 SVR1 XGB1 RF1 DNN1 Leaf number, water
consumption

2 SVR2 XGB2 RF2 DNN2 Leaf number, water
consumption, dry

weight

3 SVR3 XGB3 RF3 DNN3 Leaf number, water
consumption, dry

weight, stem length,
stem diameter

SVR1, XGB1, RF1, and DNN1 for the first scenario, 2 is the second scenario, and
3 is the third scenario.
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from the original function:

Obj(t)
=

n∑
k=1

l
(
−
yi, yi

)
+

t∑
k=1

�
(
fi
)

(6)

where l is the loss function, n is the number of observations, and
� is the regularization term which is defined as follows:

�
(
f
)
= γT +

1
2
λ||ω||2 (7)

where ω is the vector of scores in the leaves, λ is the regularization
parameter, and γ is the minimum loss needed to further
partition the leaf node. More information and procedures of
the computation of the XGB algorithm can be found in the
study by Chen and Guestrin (1994).

Random Forest
The RF model was developed by Breiman (2001) and uses
the “bagging” idea to ensemble a collection of decision trees
with controlled variance. The RF model is commonly used
for regression and prediction problems. An RF regression is a
specific type of bootstrap ensembles. It deals with random binary
trees that use a subset of the observations via bootstrapping,
where a random subset of the training dataset is sampled from
the raw dataset and utilized to evolve the model. The detailed
computational procedure of the RF model can be found in the
studies by Breiman (2001) and Ferreira and da Cunha (2020). To
get the best score, an RF was trained using 200 trees, 5 max depth,
and the default values of the other hyperparameters. During the
tuning phase, the following sets of hyperparameters and their
respective values were used: n estimators (number of trees) (100,
200, 300, and 500) and max depth (1, 2, 5, and 10).

Deep Neural Network
The DNN is a powerful DL model (Montes-Atenas et al., 2016;
Achieng, 2019). It is an artificial neural network (ANN) with
multiple layers between the input layers, hidden layers, and
output layers to learn more complex non-linear relationships
between input and output. In this study, the rectified linear unit
(ReLU) was applied as an activation function which is commonly
employed to establish input-output relationships and defined as
follows (Xu et al., 2015; Ghimire et al., 2019):

ReLu(s) =
{

x(x > 0
0(x ≤ 0

}
(8)

The loss function in the DNN model is expressed as follows:

loss =
1

2n

n∑
i=1

(
Ti − T

′

i

)2
(9)

where n is the number of observation data T, and T′is the
estimated value by the DNN model which can be defined for
a three-hidden-layer DNN model with the ReLU activation
function as follows:

T′ = ReLu-4(-3(ReLu(-2(ReLu)(-1 + b1))+ b3))+ b4
(10)

where ω1, ω2, ω3, and ω4 are the weights in the network and b1,
b2, b3, and b4 are the bias terms.

Performance Evaluation of the Models
In this study, the mean absolute error (MAE), the root mean
square error (RMSE), and the mean bias error (MBE) were used
to evaluate the applied models. In addition, uncertainty with
a 95% confidence level (U95) was estimated (Gueymard, 2014;
Behar et al., 2015). The model deviations and the T-statistic test
(Tstat) were used to evaluate the significant differences between
the predicted and the observed yield (Stone, 1994; Gueymard,
2014). The performance statistics are defined as follows:

MAE =
1
n

n∑
i=1

|Oi − Pi| (11)

RMSE =
√

1
n

∑
(Pi − Oi)

2 (12)

MBE =
1
n

n∑
i=1

(Oi − Pi) (13)

SI =
RMSE

O−
(14)

Tstat =

√
(1− n) MBE2

RMSE2 −MBE2 (15)

U95 = 1.96
√(

SD2 + RMSE2
)

(16)

where
−

O represents the average values of the observed yield,
Oi and Pi are the observed and predicted yield, respectively, and
i is the number of observations. SD is the standard deviation of
the difference between the observed and estimated values. The
range of the Scatter Index (SI) for the classification of the models
is “excellent” if SI < 0.1, “good” if 0.1 < SI < 0.2, “fair” if
0.2 < SI < 0.3, and “poor” if SI > 0.3. Notably, the MBE and
T-statistics take both negative and positive values.

In this study, the datasets were divided into 70% for training
and 30% for testing. The ML models were implemented using
the Python programming language library Scikit-learn 0.22.1.
A virtual machine was established on Google Cloud Platform
which was used for the computations. The hyperparameter
tuning was performed using a grid search method for each
model to get the best score as well as the best parameter sets
that gave the lowest prediction errors in the testing stages (Al-
Fugara et al., 2020; Fan et al., 2021). For support vector regressor
(SVR), two different kernels (i.e., radial basis function and linear)
were applied, as well as regularization parameter C from the
set (1, 2, 3, 4, and 5), and maintained the default values of
the remaining hyperparameters. To get the best score, an XGB
was applied by using 400 trees, 10 max depths, a learning
rate of 0.1, and the other hyperparameters that are the default
values. The following sets of hyperparameters were applied: n
estimators (number of trees) (100, 200, 300, 400, and 500);
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FIGURE 3 | The performance statistics values for different model scenarios.

max depth (1, 2, 5, 10, and 12); and learning rate (0.05, 0.1,
and 0.5). RF was trained using 400 trees, where 10 max depth
and the default values of the other hyperparameters were used.

During the hyperparameter tuning stage, the following sets of
hyperparameters were assessed: number of trees (100, 200, 300,
400, and 500) and max depth (1, 2, 5, 10, and 12). For the DNN
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model, the neuron numbers in the four hidden layers were 256,
128, 128, and 64 neurons, respectively, and the iterations (epochs)
were optimized as 500 epochs.

RESULTS AND DISCUSSION

Evaluation of the Machine Learning
Models
The results of the application of the ML models are shown in
Figure 3. The XGB model with scenario 3 yielded the lowest
RMSE value of 8.88 g followed by SVR with scenario 3 at 9.55 g,
and the highest value was in XGB with scenario 1. With regard
to MAE, XGB reported the lowest value with scenario 3 as 7.1 g,
and the same model yielded the highest value with scenario 1 as
12.1 g. In terms of the coefficient of determination (R2), all model
scenarios registered more than 0.88 except for XGB with scenario
1 which recorded a modest value of 0.78 (Figure 3).

The lowest T-statistic was recorded by SVR with scenario 2,
and the highest was recorded by DNN with scenario 2. For the
uncertainty, XGB with scenario 3 recorded the lowest value as
24.8, and the highest value of 46.8 was recorded by the same
model but with scenario 1, following the same trend as RMSE
and MAE. In terms of the MBE, the highest value was reported
by the DNN model with scenario 3 as 3.95 g followed by DNN
with scenario 2 as 3.8 g. All model scenarios produced SI values
of <0.1, which is an indication of excellent performance by all
models. This may be related to the strong correlation between
the input and output variables. However, the selection of input
variables is one of the most important aspects for ML models to
achieve better results.

The ML models performed well at the controlled environment
level. Our methodology is scalable, simple, and inexpensive
for estimating lettuce fresh weight. It is observed that the
prediction accuracy of the models varied and also depended on
the scenario input variables. Prediction of crop yield is extremely
challenging due to its dependency on multiple factors, such as
crop genotype, environmental factors, management practice, and
their interactions (Khaki et al., 2020). There are many studies
discussing crop genotype and environmental factors, but our
study is focused on the effect of plant components and water
consumption on yield (fresh head weight). The DL subset of ML
can be further improved by combining with crop models, adding
detailed farming management data, and higher spatiotemporal
input variables (Cao et al., 2021).

We predicted lettuce crop yield depending on the input
variable scenarios. Scenario 1 consisted of leaf number and
water consumption, scenario 2 combined leaf number, dry
weight, and water consumption, and scenario 3 included all
features (i.e., stem diameter, leaf number, stem length, dry
weight, and water consumption). Our results are in agreement
with previous studies that showed that the RF model can
accurately estimate crop yields (Fukuda et al., 2013; Everingham
et al., 2016). There was no overfitting during the training stage
for the RF model yet it had the lowest R2 for scenarios 2
and 3 and the second lowest value after XGB for scenario
1. In contrast, the results of Jeong et al. (2016) reported

FIGURE 4 | Taylor diagram displaying a statistical comparison of the applied
models used for predicting fresh head weight (yield).

that the algorithm of RF may suffer overfit to data because
its algorithm consists of an ensemble of a large number of
decision trees that may not be fully described mechanistically.
Also, RF may cause a loss of accuracy when extreme ends are
expected or responses are outside the limits of the training data
(Jeong et al., 2016).

Model Comparison
As shown in Figure 3, the XGB model reported the lowest
RMSE and MAE values of 2.69 and 2.2%, respectively, and
also the highest R2 value (0.94) for scenario 3. According to
the SI statistics, the SVR model with scenario 3 had excellent
performance (Li et al., 2013). The second model was XGB as
judged by the RMSE (2.89%) and MAE (2.4%) performance
statistics. Figure 4 presents a Taylor diagram that shows how
much the observations are matched by the predictions and the
degree of compliance by the model (Taylor, 2001; Maroufpoor
et al., 2019). It is clear that the best models were SVR with
scenario 3 and DNN with scenario 2. However, SVR with
scenario 3 (i.e., leaf number, water consumption, dry weight,
stem length, and stem diameter) is superior, and DNN with
scenario 2 (i.e., leaf number, water consumption, and dry weight)
is equally good. It needs to be mentioned that DNN with
scenario 2 has less input features than SVR with scenario 3,
making DNN with scenario 2 the preferred model. Nevertheless,
all four models that were applied have a high correlation
coefficient in excess of 0.95, and the SD was close to the
observed values.

A boxplot to compare the models based on the residuals
(estimation error) is shown in Figure 5. Positive and negative
estimation errors show under- and overestimations, respectively.
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FIGURE 5 | Boxplots showing the distribution of the estimation errors in the
test stage for support vector regressor (SVR), extreme gradient boosting
(XGB), deep neural network (DNN), and random forest (RF) models. Q25,
lower quartile of errors; Q75, upper quartile of errors; IQR, interquartile range
for each model.

TABLE 3 | The performance statistics of support vector regressor (SVR), extreme
gradient boosting (XGB), deep neural network (DNN), and random forest (RF)
models for lettuce.

Model Scenario SI T U95 MBE

SVR 1 0.035 0.647 31.90 1.59

2 0.032 0.015 29.35 0.034

3 0.029 1.600 26.10 3.10

XGB 1 0.051 0.780 46.80 2.84

2 0.031 0.110 28.70 –0.25

3 0.027 0.540 24.80 1.04

DNN 1 0.037 0.630 34.50 1.70

2 0.033 1.650 30.30 3.80

3 0.035 1.630 31.90 3.95

RF 1 0.039 0.160 36.2 –0.45

2 0.035 0.135 32.1 –0.34

3 0.033 0.087 30.3 –0.21

SI, Scatter Index; Tstat, T-statistic test; U95, Uncertainty with a 95% confidence
level; MBE, mean bias error.

The DNN with scenario 2 model appears to be the best model
having the lowest error in comparison with the others. It has
a lower quartile (Q1) value of –10.33, while XGB has a value
of –9.99, and SVR, a value of –10. Third quartile (Q3) error
analysis is better than Q1 because it contains 75% of the error.
It is reported that the DNN with scenario 2 model has a
difference of 1Q3 = 3.48 compared with XGB with scenario
3 which has 1Q3 = 0.79 compared with SVR3. Moreover, the
smaller interquartile range (IQR = Q3–Q1) by DNNs compared
with the other three models clearly show that its distribution
of error is much better than the others (Figure 5), and it is
therefore preferred.

As mentioned earlier, the highest R2 and the lowest RMSE
were recorded by XGB (0.94 and 8.88, respectively) with scenario
3, followed by DNN with scenario 2 (0.93 and 11.11, respectively).
Also, XGB with scenario 3 had the lowest MAE followed
by XGB with scenario 2. These results do not agree with

Fan et al. (2021) who reported that the best model results were
given by DNN models (R2 = 0.816–0.954), slightly outperforming
SVR models (R2 = 0.731–0.948) during the testing stage,
followed by XGB models (R2 = 0.739–0.929) under the four-
input combination, but their research was about summer maize
in Northwest China. The DNN model had a high prediction
performance of yield which is similar to those reported by
Khaki and Wang (2019), where RMSE for the validation dataset
was around 11% of their respective values. The accuracy for
the prediction of the crop yield was slightly higher than that
reported by Khaki and Wang (2019) because they used average
yield. In Table 3, the SI values are lower than 0.1 for all
model scenarios, meaning the accuracy of the models can be
characterized as “excellent” (Li et al., 2013; Maroufpoor et al.,
2019).

CONCLUSION

This study presented ML approaches for the prediction of
lettuce crop yield cultivated in three different hydroponic systems
which interacted with three different kinds of magnetic water.
Three samples were collected from each system 50 days after
transplanting, at the same time, for all systems for 2 years.
The datasets were divided into 70% for the training of the four
ML models (i.e., RF, XGB, SVR, and DNNs) used to predict
lettuce crop yield based on the three scenarios of input plant
and water features, and 30% of the remaining data were used for
testing the models.

The lowest RMSE was recorded in XGB with scenario 3
followed by SVR with scenario 3, and the highest, by RF with
scenario 1. The R2 was more than 0.77 for all applied model
scenarios. Based on the SI, all models performed excellently,
especially XGB with scenario 3 and SVR with scenario 3. Based
on all performance statistics, the two best models were SVR with
scenario 3 and DNN with scenario 2. However, the latter model
scenario is preferred because it requires fewer input variables.

The methods developed in this study can be further improved
by combining the input variables with climate variables, farming
management data, and higher resolution spatiotemporal input
variables for the successful prediction of crop yield on a large
scale. The ML models could be a rapid tool for predicting crop
yield and disaster evaluation over a large area.
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